Remove excess calls to gdb_flush
[binutils-gdb.git] / gdb / remote.c
1 /* Remote target communications for serial-line targets in custom GDB protocol
2
3 Copyright (C) 1988-2019 Free Software Foundation, Inc.
4
5 This file is part of GDB.
6
7 This program is free software; you can redistribute it and/or modify
8 it under the terms of the GNU General Public License as published by
9 the Free Software Foundation; either version 3 of the License, or
10 (at your option) any later version.
11
12 This program is distributed in the hope that it will be useful,
13 but WITHOUT ANY WARRANTY; without even the implied warranty of
14 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
15 GNU General Public License for more details.
16
17 You should have received a copy of the GNU General Public License
18 along with this program. If not, see <http://www.gnu.org/licenses/>. */
19
20 /* See the GDB User Guide for details of the GDB remote protocol. */
21
22 #include "defs.h"
23 #include <ctype.h>
24 #include <fcntl.h>
25 #include "inferior.h"
26 #include "infrun.h"
27 #include "bfd.h"
28 #include "symfile.h"
29 #include "target.h"
30 #include "process-stratum-target.h"
31 #include "gdbcmd.h"
32 #include "objfiles.h"
33 #include "gdb-stabs.h"
34 #include "gdbthread.h"
35 #include "remote.h"
36 #include "remote-notif.h"
37 #include "regcache.h"
38 #include "value.h"
39 #include "observable.h"
40 #include "solib.h"
41 #include "cli/cli-decode.h"
42 #include "cli/cli-setshow.h"
43 #include "target-descriptions.h"
44 #include "gdb_bfd.h"
45 #include "common/filestuff.h"
46 #include "common/rsp-low.h"
47 #include "disasm.h"
48 #include "location.h"
49
50 #include "common/gdb_sys_time.h"
51
52 #include "event-loop.h"
53 #include "event-top.h"
54 #include "inf-loop.h"
55
56 #include <signal.h>
57 #include "serial.h"
58
59 #include "gdbcore.h" /* for exec_bfd */
60
61 #include "remote-fileio.h"
62 #include "gdb/fileio.h"
63 #include <sys/stat.h>
64 #include "xml-support.h"
65
66 #include "memory-map.h"
67
68 #include "tracepoint.h"
69 #include "ax.h"
70 #include "ax-gdb.h"
71 #include "common/agent.h"
72 #include "btrace.h"
73 #include "record-btrace.h"
74 #include <algorithm>
75 #include "common/scoped_restore.h"
76 #include "common/environ.h"
77 #include "common/byte-vector.h"
78 #include <unordered_map>
79
80 /* The remote target. */
81
82 static const char remote_doc[] = N_("\
83 Use a remote computer via a serial line, using a gdb-specific protocol.\n\
84 Specify the serial device it is connected to\n\
85 (e.g. /dev/ttyS0, /dev/ttya, COM1, etc.).");
86
87 #define OPAQUETHREADBYTES 8
88
89 /* a 64 bit opaque identifier */
90 typedef unsigned char threadref[OPAQUETHREADBYTES];
91
92 struct gdb_ext_thread_info;
93 struct threads_listing_context;
94 typedef int (*rmt_thread_action) (threadref *ref, void *context);
95 struct protocol_feature;
96 struct packet_reg;
97
98 struct stop_reply;
99 static void stop_reply_xfree (struct stop_reply *);
100
101 struct stop_reply_deleter
102 {
103 void operator() (stop_reply *r) const
104 {
105 stop_reply_xfree (r);
106 }
107 };
108
109 typedef std::unique_ptr<stop_reply, stop_reply_deleter> stop_reply_up;
110
111 /* Generic configuration support for packets the stub optionally
112 supports. Allows the user to specify the use of the packet as well
113 as allowing GDB to auto-detect support in the remote stub. */
114
115 enum packet_support
116 {
117 PACKET_SUPPORT_UNKNOWN = 0,
118 PACKET_ENABLE,
119 PACKET_DISABLE
120 };
121
122 /* Analyze a packet's return value and update the packet config
123 accordingly. */
124
125 enum packet_result
126 {
127 PACKET_ERROR,
128 PACKET_OK,
129 PACKET_UNKNOWN
130 };
131
132 struct threads_listing_context;
133
134 /* Stub vCont actions support.
135
136 Each field is a boolean flag indicating whether the stub reports
137 support for the corresponding action. */
138
139 struct vCont_action_support
140 {
141 /* vCont;t */
142 bool t = false;
143
144 /* vCont;r */
145 bool r = false;
146
147 /* vCont;s */
148 bool s = false;
149
150 /* vCont;S */
151 bool S = false;
152 };
153
154 /* About this many threadisds fit in a packet. */
155
156 #define MAXTHREADLISTRESULTS 32
157
158 /* Data for the vFile:pread readahead cache. */
159
160 struct readahead_cache
161 {
162 /* Invalidate the readahead cache. */
163 void invalidate ();
164
165 /* Invalidate the readahead cache if it is holding data for FD. */
166 void invalidate_fd (int fd);
167
168 /* Serve pread from the readahead cache. Returns number of bytes
169 read, or 0 if the request can't be served from the cache. */
170 int pread (int fd, gdb_byte *read_buf, size_t len, ULONGEST offset);
171
172 /* The file descriptor for the file that is being cached. -1 if the
173 cache is invalid. */
174 int fd = -1;
175
176 /* The offset into the file that the cache buffer corresponds
177 to. */
178 ULONGEST offset = 0;
179
180 /* The buffer holding the cache contents. */
181 gdb_byte *buf = nullptr;
182 /* The buffer's size. We try to read as much as fits into a packet
183 at a time. */
184 size_t bufsize = 0;
185
186 /* Cache hit and miss counters. */
187 ULONGEST hit_count = 0;
188 ULONGEST miss_count = 0;
189 };
190
191 /* Description of the remote protocol for a given architecture. */
192
193 struct packet_reg
194 {
195 long offset; /* Offset into G packet. */
196 long regnum; /* GDB's internal register number. */
197 LONGEST pnum; /* Remote protocol register number. */
198 int in_g_packet; /* Always part of G packet. */
199 /* long size in bytes; == register_size (target_gdbarch (), regnum);
200 at present. */
201 /* char *name; == gdbarch_register_name (target_gdbarch (), regnum);
202 at present. */
203 };
204
205 struct remote_arch_state
206 {
207 explicit remote_arch_state (struct gdbarch *gdbarch);
208
209 /* Description of the remote protocol registers. */
210 long sizeof_g_packet;
211
212 /* Description of the remote protocol registers indexed by REGNUM
213 (making an array gdbarch_num_regs in size). */
214 std::unique_ptr<packet_reg[]> regs;
215
216 /* This is the size (in chars) of the first response to the ``g''
217 packet. It is used as a heuristic when determining the maximum
218 size of memory-read and memory-write packets. A target will
219 typically only reserve a buffer large enough to hold the ``g''
220 packet. The size does not include packet overhead (headers and
221 trailers). */
222 long actual_register_packet_size;
223
224 /* This is the maximum size (in chars) of a non read/write packet.
225 It is also used as a cap on the size of read/write packets. */
226 long remote_packet_size;
227 };
228
229 /* Description of the remote protocol state for the currently
230 connected target. This is per-target state, and independent of the
231 selected architecture. */
232
233 class remote_state
234 {
235 public:
236
237 remote_state ();
238 ~remote_state ();
239
240 /* Get the remote arch state for GDBARCH. */
241 struct remote_arch_state *get_remote_arch_state (struct gdbarch *gdbarch);
242
243 public: /* data */
244
245 /* A buffer to use for incoming packets, and its current size. The
246 buffer is grown dynamically for larger incoming packets.
247 Outgoing packets may also be constructed in this buffer.
248 The size of the buffer is always at least REMOTE_PACKET_SIZE;
249 REMOTE_PACKET_SIZE should be used to limit the length of outgoing
250 packets. */
251 gdb::char_vector buf;
252
253 /* True if we're going through initial connection setup (finding out
254 about the remote side's threads, relocating symbols, etc.). */
255 bool starting_up = false;
256
257 /* If we negotiated packet size explicitly (and thus can bypass
258 heuristics for the largest packet size that will not overflow
259 a buffer in the stub), this will be set to that packet size.
260 Otherwise zero, meaning to use the guessed size. */
261 long explicit_packet_size = 0;
262
263 /* remote_wait is normally called when the target is running and
264 waits for a stop reply packet. But sometimes we need to call it
265 when the target is already stopped. We can send a "?" packet
266 and have remote_wait read the response. Or, if we already have
267 the response, we can stash it in BUF and tell remote_wait to
268 skip calling getpkt. This flag is set when BUF contains a
269 stop reply packet and the target is not waiting. */
270 int cached_wait_status = 0;
271
272 /* True, if in no ack mode. That is, neither GDB nor the stub will
273 expect acks from each other. The connection is assumed to be
274 reliable. */
275 bool noack_mode = false;
276
277 /* True if we're connected in extended remote mode. */
278 bool extended = false;
279
280 /* True if we resumed the target and we're waiting for the target to
281 stop. In the mean time, we can't start another command/query.
282 The remote server wouldn't be ready to process it, so we'd
283 timeout waiting for a reply that would never come and eventually
284 we'd close the connection. This can happen in asynchronous mode
285 because we allow GDB commands while the target is running. */
286 bool waiting_for_stop_reply = false;
287
288 /* The status of the stub support for the various vCont actions. */
289 vCont_action_support supports_vCont;
290
291 /* True if the user has pressed Ctrl-C, but the target hasn't
292 responded to that. */
293 bool ctrlc_pending_p = false;
294
295 /* True if we saw a Ctrl-C while reading or writing from/to the
296 remote descriptor. At that point it is not safe to send a remote
297 interrupt packet, so we instead remember we saw the Ctrl-C and
298 process it once we're done with sending/receiving the current
299 packet, which should be shortly. If however that takes too long,
300 and the user presses Ctrl-C again, we offer to disconnect. */
301 bool got_ctrlc_during_io = false;
302
303 /* Descriptor for I/O to remote machine. Initialize it to NULL so that
304 remote_open knows that we don't have a file open when the program
305 starts. */
306 struct serial *remote_desc = nullptr;
307
308 /* These are the threads which we last sent to the remote system. The
309 TID member will be -1 for all or -2 for not sent yet. */
310 ptid_t general_thread = null_ptid;
311 ptid_t continue_thread = null_ptid;
312
313 /* This is the traceframe which we last selected on the remote system.
314 It will be -1 if no traceframe is selected. */
315 int remote_traceframe_number = -1;
316
317 char *last_pass_packet = nullptr;
318
319 /* The last QProgramSignals packet sent to the target. We bypass
320 sending a new program signals list down to the target if the new
321 packet is exactly the same as the last we sent. IOW, we only let
322 the target know about program signals list changes. */
323 char *last_program_signals_packet = nullptr;
324
325 gdb_signal last_sent_signal = GDB_SIGNAL_0;
326
327 bool last_sent_step = false;
328
329 /* The execution direction of the last resume we got. */
330 exec_direction_kind last_resume_exec_dir = EXEC_FORWARD;
331
332 char *finished_object = nullptr;
333 char *finished_annex = nullptr;
334 ULONGEST finished_offset = 0;
335
336 /* Should we try the 'ThreadInfo' query packet?
337
338 This variable (NOT available to the user: auto-detect only!)
339 determines whether GDB will use the new, simpler "ThreadInfo"
340 query or the older, more complex syntax for thread queries.
341 This is an auto-detect variable (set to true at each connect,
342 and set to false when the target fails to recognize it). */
343 bool use_threadinfo_query = false;
344 bool use_threadextra_query = false;
345
346 threadref echo_nextthread {};
347 threadref nextthread {};
348 threadref resultthreadlist[MAXTHREADLISTRESULTS] {};
349
350 /* The state of remote notification. */
351 struct remote_notif_state *notif_state = nullptr;
352
353 /* The branch trace configuration. */
354 struct btrace_config btrace_config {};
355
356 /* The argument to the last "vFile:setfs:" packet we sent, used
357 to avoid sending repeated unnecessary "vFile:setfs:" packets.
358 Initialized to -1 to indicate that no "vFile:setfs:" packet
359 has yet been sent. */
360 int fs_pid = -1;
361
362 /* A readahead cache for vFile:pread. Often, reading a binary
363 involves a sequence of small reads. E.g., when parsing an ELF
364 file. A readahead cache helps mostly the case of remote
365 debugging on a connection with higher latency, due to the
366 request/reply nature of the RSP. We only cache data for a single
367 file descriptor at a time. */
368 struct readahead_cache readahead_cache;
369
370 /* The list of already fetched and acknowledged stop events. This
371 queue is used for notification Stop, and other notifications
372 don't need queue for their events, because the notification
373 events of Stop can't be consumed immediately, so that events
374 should be queued first, and be consumed by remote_wait_{ns,as}
375 one per time. Other notifications can consume their events
376 immediately, so queue is not needed for them. */
377 std::vector<stop_reply_up> stop_reply_queue;
378
379 /* Asynchronous signal handle registered as event loop source for
380 when we have pending events ready to be passed to the core. */
381 struct async_event_handler *remote_async_inferior_event_token = nullptr;
382
383 /* FIXME: cagney/1999-09-23: Even though getpkt was called with
384 ``forever'' still use the normal timeout mechanism. This is
385 currently used by the ASYNC code to guarentee that target reads
386 during the initial connect always time-out. Once getpkt has been
387 modified to return a timeout indication and, in turn
388 remote_wait()/wait_for_inferior() have gained a timeout parameter
389 this can go away. */
390 int wait_forever_enabled_p = 1;
391
392 private:
393 /* Mapping of remote protocol data for each gdbarch. Usually there
394 is only one entry here, though we may see more with stubs that
395 support multi-process. */
396 std::unordered_map<struct gdbarch *, remote_arch_state>
397 m_arch_states;
398 };
399
400 static const target_info remote_target_info = {
401 "remote",
402 N_("Remote serial target in gdb-specific protocol"),
403 remote_doc
404 };
405
406 class remote_target : public process_stratum_target
407 {
408 public:
409 remote_target () = default;
410 ~remote_target () override;
411
412 const target_info &info () const override
413 { return remote_target_info; }
414
415 thread_control_capabilities get_thread_control_capabilities () override
416 { return tc_schedlock; }
417
418 /* Open a remote connection. */
419 static void open (const char *, int);
420
421 void close () override;
422
423 void detach (inferior *, int) override;
424 void disconnect (const char *, int) override;
425
426 void commit_resume () override;
427 void resume (ptid_t, int, enum gdb_signal) override;
428 ptid_t wait (ptid_t, struct target_waitstatus *, int) override;
429
430 void fetch_registers (struct regcache *, int) override;
431 void store_registers (struct regcache *, int) override;
432 void prepare_to_store (struct regcache *) override;
433
434 void files_info () override;
435
436 int insert_breakpoint (struct gdbarch *, struct bp_target_info *) override;
437
438 int remove_breakpoint (struct gdbarch *, struct bp_target_info *,
439 enum remove_bp_reason) override;
440
441
442 bool stopped_by_sw_breakpoint () override;
443 bool supports_stopped_by_sw_breakpoint () override;
444
445 bool stopped_by_hw_breakpoint () override;
446
447 bool supports_stopped_by_hw_breakpoint () override;
448
449 bool stopped_by_watchpoint () override;
450
451 bool stopped_data_address (CORE_ADDR *) override;
452
453 bool watchpoint_addr_within_range (CORE_ADDR, CORE_ADDR, int) override;
454
455 int can_use_hw_breakpoint (enum bptype, int, int) override;
456
457 int insert_hw_breakpoint (struct gdbarch *, struct bp_target_info *) override;
458
459 int remove_hw_breakpoint (struct gdbarch *, struct bp_target_info *) override;
460
461 int region_ok_for_hw_watchpoint (CORE_ADDR, int) override;
462
463 int insert_watchpoint (CORE_ADDR, int, enum target_hw_bp_type,
464 struct expression *) override;
465
466 int remove_watchpoint (CORE_ADDR, int, enum target_hw_bp_type,
467 struct expression *) override;
468
469 void kill () override;
470
471 void load (const char *, int) override;
472
473 void mourn_inferior () override;
474
475 void pass_signals (gdb::array_view<const unsigned char>) override;
476
477 int set_syscall_catchpoint (int, bool, int,
478 gdb::array_view<const int>) override;
479
480 void program_signals (gdb::array_view<const unsigned char>) override;
481
482 bool thread_alive (ptid_t ptid) override;
483
484 const char *thread_name (struct thread_info *) override;
485
486 void update_thread_list () override;
487
488 const char *pid_to_str (ptid_t) override;
489
490 const char *extra_thread_info (struct thread_info *) override;
491
492 ptid_t get_ada_task_ptid (long lwp, long thread) override;
493
494 thread_info *thread_handle_to_thread_info (const gdb_byte *thread_handle,
495 int handle_len,
496 inferior *inf) override;
497
498 void stop (ptid_t) override;
499
500 void interrupt () override;
501
502 void pass_ctrlc () override;
503
504 enum target_xfer_status xfer_partial (enum target_object object,
505 const char *annex,
506 gdb_byte *readbuf,
507 const gdb_byte *writebuf,
508 ULONGEST offset, ULONGEST len,
509 ULONGEST *xfered_len) override;
510
511 ULONGEST get_memory_xfer_limit () override;
512
513 void rcmd (const char *command, struct ui_file *output) override;
514
515 char *pid_to_exec_file (int pid) override;
516
517 void log_command (const char *cmd) override
518 {
519 serial_log_command (this, cmd);
520 }
521
522 CORE_ADDR get_thread_local_address (ptid_t ptid,
523 CORE_ADDR load_module_addr,
524 CORE_ADDR offset) override;
525
526 bool can_execute_reverse () override;
527
528 std::vector<mem_region> memory_map () override;
529
530 void flash_erase (ULONGEST address, LONGEST length) override;
531
532 void flash_done () override;
533
534 const struct target_desc *read_description () override;
535
536 int search_memory (CORE_ADDR start_addr, ULONGEST search_space_len,
537 const gdb_byte *pattern, ULONGEST pattern_len,
538 CORE_ADDR *found_addrp) override;
539
540 bool can_async_p () override;
541
542 bool is_async_p () override;
543
544 void async (int) override;
545
546 void thread_events (int) override;
547
548 int can_do_single_step () override;
549
550 void terminal_inferior () override;
551
552 void terminal_ours () override;
553
554 bool supports_non_stop () override;
555
556 bool supports_multi_process () override;
557
558 bool supports_disable_randomization () override;
559
560 bool filesystem_is_local () override;
561
562
563 int fileio_open (struct inferior *inf, const char *filename,
564 int flags, int mode, int warn_if_slow,
565 int *target_errno) override;
566
567 int fileio_pwrite (int fd, const gdb_byte *write_buf, int len,
568 ULONGEST offset, int *target_errno) override;
569
570 int fileio_pread (int fd, gdb_byte *read_buf, int len,
571 ULONGEST offset, int *target_errno) override;
572
573 int fileio_fstat (int fd, struct stat *sb, int *target_errno) override;
574
575 int fileio_close (int fd, int *target_errno) override;
576
577 int fileio_unlink (struct inferior *inf,
578 const char *filename,
579 int *target_errno) override;
580
581 gdb::optional<std::string>
582 fileio_readlink (struct inferior *inf,
583 const char *filename,
584 int *target_errno) override;
585
586 bool supports_enable_disable_tracepoint () override;
587
588 bool supports_string_tracing () override;
589
590 bool supports_evaluation_of_breakpoint_conditions () override;
591
592 bool can_run_breakpoint_commands () override;
593
594 void trace_init () override;
595
596 void download_tracepoint (struct bp_location *location) override;
597
598 bool can_download_tracepoint () override;
599
600 void download_trace_state_variable (const trace_state_variable &tsv) override;
601
602 void enable_tracepoint (struct bp_location *location) override;
603
604 void disable_tracepoint (struct bp_location *location) override;
605
606 void trace_set_readonly_regions () override;
607
608 void trace_start () override;
609
610 int get_trace_status (struct trace_status *ts) override;
611
612 void get_tracepoint_status (struct breakpoint *tp, struct uploaded_tp *utp)
613 override;
614
615 void trace_stop () override;
616
617 int trace_find (enum trace_find_type type, int num,
618 CORE_ADDR addr1, CORE_ADDR addr2, int *tpp) override;
619
620 bool get_trace_state_variable_value (int tsv, LONGEST *val) override;
621
622 int save_trace_data (const char *filename) override;
623
624 int upload_tracepoints (struct uploaded_tp **utpp) override;
625
626 int upload_trace_state_variables (struct uploaded_tsv **utsvp) override;
627
628 LONGEST get_raw_trace_data (gdb_byte *buf, ULONGEST offset, LONGEST len) override;
629
630 int get_min_fast_tracepoint_insn_len () override;
631
632 void set_disconnected_tracing (int val) override;
633
634 void set_circular_trace_buffer (int val) override;
635
636 void set_trace_buffer_size (LONGEST val) override;
637
638 bool set_trace_notes (const char *user, const char *notes,
639 const char *stopnotes) override;
640
641 int core_of_thread (ptid_t ptid) override;
642
643 int verify_memory (const gdb_byte *data,
644 CORE_ADDR memaddr, ULONGEST size) override;
645
646
647 bool get_tib_address (ptid_t ptid, CORE_ADDR *addr) override;
648
649 void set_permissions () override;
650
651 bool static_tracepoint_marker_at (CORE_ADDR,
652 struct static_tracepoint_marker *marker)
653 override;
654
655 std::vector<static_tracepoint_marker>
656 static_tracepoint_markers_by_strid (const char *id) override;
657
658 traceframe_info_up traceframe_info () override;
659
660 bool use_agent (bool use) override;
661 bool can_use_agent () override;
662
663 struct btrace_target_info *enable_btrace (ptid_t ptid,
664 const struct btrace_config *conf) override;
665
666 void disable_btrace (struct btrace_target_info *tinfo) override;
667
668 void teardown_btrace (struct btrace_target_info *tinfo) override;
669
670 enum btrace_error read_btrace (struct btrace_data *data,
671 struct btrace_target_info *btinfo,
672 enum btrace_read_type type) override;
673
674 const struct btrace_config *btrace_conf (const struct btrace_target_info *) override;
675 bool augmented_libraries_svr4_read () override;
676 int follow_fork (int, int) override;
677 void follow_exec (struct inferior *, char *) override;
678 int insert_fork_catchpoint (int) override;
679 int remove_fork_catchpoint (int) override;
680 int insert_vfork_catchpoint (int) override;
681 int remove_vfork_catchpoint (int) override;
682 int insert_exec_catchpoint (int) override;
683 int remove_exec_catchpoint (int) override;
684 enum exec_direction_kind execution_direction () override;
685
686 public: /* Remote specific methods. */
687
688 void remote_download_command_source (int num, ULONGEST addr,
689 struct command_line *cmds);
690
691 void remote_file_put (const char *local_file, const char *remote_file,
692 int from_tty);
693 void remote_file_get (const char *remote_file, const char *local_file,
694 int from_tty);
695 void remote_file_delete (const char *remote_file, int from_tty);
696
697 int remote_hostio_pread (int fd, gdb_byte *read_buf, int len,
698 ULONGEST offset, int *remote_errno);
699 int remote_hostio_pwrite (int fd, const gdb_byte *write_buf, int len,
700 ULONGEST offset, int *remote_errno);
701 int remote_hostio_pread_vFile (int fd, gdb_byte *read_buf, int len,
702 ULONGEST offset, int *remote_errno);
703
704 int remote_hostio_send_command (int command_bytes, int which_packet,
705 int *remote_errno, char **attachment,
706 int *attachment_len);
707 int remote_hostio_set_filesystem (struct inferior *inf,
708 int *remote_errno);
709 /* We should get rid of this and use fileio_open directly. */
710 int remote_hostio_open (struct inferior *inf, const char *filename,
711 int flags, int mode, int warn_if_slow,
712 int *remote_errno);
713 int remote_hostio_close (int fd, int *remote_errno);
714
715 int remote_hostio_unlink (inferior *inf, const char *filename,
716 int *remote_errno);
717
718 struct remote_state *get_remote_state ();
719
720 long get_remote_packet_size (void);
721 long get_memory_packet_size (struct memory_packet_config *config);
722
723 long get_memory_write_packet_size ();
724 long get_memory_read_packet_size ();
725
726 char *append_pending_thread_resumptions (char *p, char *endp,
727 ptid_t ptid);
728 static void open_1 (const char *name, int from_tty, int extended_p);
729 void start_remote (int from_tty, int extended_p);
730 void remote_detach_1 (struct inferior *inf, int from_tty);
731
732 char *append_resumption (char *p, char *endp,
733 ptid_t ptid, int step, gdb_signal siggnal);
734 int remote_resume_with_vcont (ptid_t ptid, int step,
735 gdb_signal siggnal);
736
737 void add_current_inferior_and_thread (char *wait_status);
738
739 ptid_t wait_ns (ptid_t ptid, struct target_waitstatus *status,
740 int options);
741 ptid_t wait_as (ptid_t ptid, target_waitstatus *status,
742 int options);
743
744 ptid_t process_stop_reply (struct stop_reply *stop_reply,
745 target_waitstatus *status);
746
747 void remote_notice_new_inferior (ptid_t currthread, int executing);
748
749 void process_initial_stop_replies (int from_tty);
750
751 thread_info *remote_add_thread (ptid_t ptid, bool running, bool executing);
752
753 void btrace_sync_conf (const btrace_config *conf);
754
755 void remote_btrace_maybe_reopen ();
756
757 void remove_new_fork_children (threads_listing_context *context);
758 void kill_new_fork_children (int pid);
759 void discard_pending_stop_replies (struct inferior *inf);
760 int stop_reply_queue_length ();
761
762 void check_pending_events_prevent_wildcard_vcont
763 (int *may_global_wildcard_vcont);
764
765 void discard_pending_stop_replies_in_queue ();
766 struct stop_reply *remote_notif_remove_queued_reply (ptid_t ptid);
767 struct stop_reply *queued_stop_reply (ptid_t ptid);
768 int peek_stop_reply (ptid_t ptid);
769 void remote_parse_stop_reply (const char *buf, stop_reply *event);
770
771 void remote_stop_ns (ptid_t ptid);
772 void remote_interrupt_as ();
773 void remote_interrupt_ns ();
774
775 char *remote_get_noisy_reply ();
776 int remote_query_attached (int pid);
777 inferior *remote_add_inferior (int fake_pid_p, int pid, int attached,
778 int try_open_exec);
779
780 ptid_t remote_current_thread (ptid_t oldpid);
781 ptid_t get_current_thread (char *wait_status);
782
783 void set_thread (ptid_t ptid, int gen);
784 void set_general_thread (ptid_t ptid);
785 void set_continue_thread (ptid_t ptid);
786 void set_general_process ();
787
788 char *write_ptid (char *buf, const char *endbuf, ptid_t ptid);
789
790 int remote_unpack_thread_info_response (char *pkt, threadref *expectedref,
791 gdb_ext_thread_info *info);
792 int remote_get_threadinfo (threadref *threadid, int fieldset,
793 gdb_ext_thread_info *info);
794
795 int parse_threadlist_response (char *pkt, int result_limit,
796 threadref *original_echo,
797 threadref *resultlist,
798 int *doneflag);
799 int remote_get_threadlist (int startflag, threadref *nextthread,
800 int result_limit, int *done, int *result_count,
801 threadref *threadlist);
802
803 int remote_threadlist_iterator (rmt_thread_action stepfunction,
804 void *context, int looplimit);
805
806 int remote_get_threads_with_ql (threads_listing_context *context);
807 int remote_get_threads_with_qxfer (threads_listing_context *context);
808 int remote_get_threads_with_qthreadinfo (threads_listing_context *context);
809
810 void extended_remote_restart ();
811
812 void get_offsets ();
813
814 void remote_check_symbols ();
815
816 void remote_supported_packet (const struct protocol_feature *feature,
817 enum packet_support support,
818 const char *argument);
819
820 void remote_query_supported ();
821
822 void remote_packet_size (const protocol_feature *feature,
823 packet_support support, const char *value);
824
825 void remote_serial_quit_handler ();
826
827 void remote_detach_pid (int pid);
828
829 void remote_vcont_probe ();
830
831 void remote_resume_with_hc (ptid_t ptid, int step,
832 gdb_signal siggnal);
833
834 void send_interrupt_sequence ();
835 void interrupt_query ();
836
837 void remote_notif_get_pending_events (notif_client *nc);
838
839 int fetch_register_using_p (struct regcache *regcache,
840 packet_reg *reg);
841 int send_g_packet ();
842 void process_g_packet (struct regcache *regcache);
843 void fetch_registers_using_g (struct regcache *regcache);
844 int store_register_using_P (const struct regcache *regcache,
845 packet_reg *reg);
846 void store_registers_using_G (const struct regcache *regcache);
847
848 void set_remote_traceframe ();
849
850 void check_binary_download (CORE_ADDR addr);
851
852 target_xfer_status remote_write_bytes_aux (const char *header,
853 CORE_ADDR memaddr,
854 const gdb_byte *myaddr,
855 ULONGEST len_units,
856 int unit_size,
857 ULONGEST *xfered_len_units,
858 char packet_format,
859 int use_length);
860
861 target_xfer_status remote_write_bytes (CORE_ADDR memaddr,
862 const gdb_byte *myaddr, ULONGEST len,
863 int unit_size, ULONGEST *xfered_len);
864
865 target_xfer_status remote_read_bytes_1 (CORE_ADDR memaddr, gdb_byte *myaddr,
866 ULONGEST len_units,
867 int unit_size, ULONGEST *xfered_len_units);
868
869 target_xfer_status remote_xfer_live_readonly_partial (gdb_byte *readbuf,
870 ULONGEST memaddr,
871 ULONGEST len,
872 int unit_size,
873 ULONGEST *xfered_len);
874
875 target_xfer_status remote_read_bytes (CORE_ADDR memaddr,
876 gdb_byte *myaddr, ULONGEST len,
877 int unit_size,
878 ULONGEST *xfered_len);
879
880 packet_result remote_send_printf (const char *format, ...)
881 ATTRIBUTE_PRINTF (2, 3);
882
883 target_xfer_status remote_flash_write (ULONGEST address,
884 ULONGEST length, ULONGEST *xfered_len,
885 const gdb_byte *data);
886
887 int readchar (int timeout);
888
889 void remote_serial_write (const char *str, int len);
890
891 int putpkt (const char *buf);
892 int putpkt_binary (const char *buf, int cnt);
893
894 int putpkt (const gdb::char_vector &buf)
895 {
896 return putpkt (buf.data ());
897 }
898
899 void skip_frame ();
900 long read_frame (gdb::char_vector *buf_p);
901 void getpkt (gdb::char_vector *buf, int forever);
902 int getpkt_or_notif_sane_1 (gdb::char_vector *buf, int forever,
903 int expecting_notif, int *is_notif);
904 int getpkt_sane (gdb::char_vector *buf, int forever);
905 int getpkt_or_notif_sane (gdb::char_vector *buf, int forever,
906 int *is_notif);
907 int remote_vkill (int pid);
908 void remote_kill_k ();
909
910 void extended_remote_disable_randomization (int val);
911 int extended_remote_run (const std::string &args);
912
913 void send_environment_packet (const char *action,
914 const char *packet,
915 const char *value);
916
917 void extended_remote_environment_support ();
918 void extended_remote_set_inferior_cwd ();
919
920 target_xfer_status remote_write_qxfer (const char *object_name,
921 const char *annex,
922 const gdb_byte *writebuf,
923 ULONGEST offset, LONGEST len,
924 ULONGEST *xfered_len,
925 struct packet_config *packet);
926
927 target_xfer_status remote_read_qxfer (const char *object_name,
928 const char *annex,
929 gdb_byte *readbuf, ULONGEST offset,
930 LONGEST len,
931 ULONGEST *xfered_len,
932 struct packet_config *packet);
933
934 void push_stop_reply (struct stop_reply *new_event);
935
936 bool vcont_r_supported ();
937
938 void packet_command (const char *args, int from_tty);
939
940 private: /* data fields */
941
942 /* The remote state. Don't reference this directly. Use the
943 get_remote_state method instead. */
944 remote_state m_remote_state;
945 };
946
947 static const target_info extended_remote_target_info = {
948 "extended-remote",
949 N_("Extended remote serial target in gdb-specific protocol"),
950 remote_doc
951 };
952
953 /* Set up the extended remote target by extending the standard remote
954 target and adding to it. */
955
956 class extended_remote_target final : public remote_target
957 {
958 public:
959 const target_info &info () const override
960 { return extended_remote_target_info; }
961
962 /* Open an extended-remote connection. */
963 static void open (const char *, int);
964
965 bool can_create_inferior () override { return true; }
966 void create_inferior (const char *, const std::string &,
967 char **, int) override;
968
969 void detach (inferior *, int) override;
970
971 bool can_attach () override { return true; }
972 void attach (const char *, int) override;
973
974 void post_attach (int) override;
975 bool supports_disable_randomization () override;
976 };
977
978 /* Per-program-space data key. */
979 static const struct program_space_data *remote_pspace_data;
980
981 /* The variable registered as the control variable used by the
982 remote exec-file commands. While the remote exec-file setting is
983 per-program-space, the set/show machinery uses this as the
984 location of the remote exec-file value. */
985 static char *remote_exec_file_var;
986
987 /* The size to align memory write packets, when practical. The protocol
988 does not guarantee any alignment, and gdb will generate short
989 writes and unaligned writes, but even as a best-effort attempt this
990 can improve bulk transfers. For instance, if a write is misaligned
991 relative to the target's data bus, the stub may need to make an extra
992 round trip fetching data from the target. This doesn't make a
993 huge difference, but it's easy to do, so we try to be helpful.
994
995 The alignment chosen is arbitrary; usually data bus width is
996 important here, not the possibly larger cache line size. */
997 enum { REMOTE_ALIGN_WRITES = 16 };
998
999 /* Prototypes for local functions. */
1000
1001 static int hexnumlen (ULONGEST num);
1002
1003 static int stubhex (int ch);
1004
1005 static int hexnumstr (char *, ULONGEST);
1006
1007 static int hexnumnstr (char *, ULONGEST, int);
1008
1009 static CORE_ADDR remote_address_masked (CORE_ADDR);
1010
1011 static void print_packet (const char *);
1012
1013 static int stub_unpack_int (char *buff, int fieldlength);
1014
1015 struct packet_config;
1016
1017 static void show_packet_config_cmd (struct packet_config *config);
1018
1019 static void show_remote_protocol_packet_cmd (struct ui_file *file,
1020 int from_tty,
1021 struct cmd_list_element *c,
1022 const char *value);
1023
1024 static ptid_t read_ptid (const char *buf, const char **obuf);
1025
1026 static void remote_async_inferior_event_handler (gdb_client_data);
1027
1028 static bool remote_read_description_p (struct target_ops *target);
1029
1030 static void remote_console_output (const char *msg);
1031
1032 static void remote_btrace_reset (remote_state *rs);
1033
1034 static void remote_unpush_and_throw (void);
1035
1036 /* For "remote". */
1037
1038 static struct cmd_list_element *remote_cmdlist;
1039
1040 /* For "set remote" and "show remote". */
1041
1042 static struct cmd_list_element *remote_set_cmdlist;
1043 static struct cmd_list_element *remote_show_cmdlist;
1044
1045 /* Controls whether GDB is willing to use range stepping. */
1046
1047 static int use_range_stepping = 1;
1048
1049 /* The max number of chars in debug output. The rest of chars are
1050 omitted. */
1051
1052 #define REMOTE_DEBUG_MAX_CHAR 512
1053
1054 /* Private data that we'll store in (struct thread_info)->priv. */
1055 struct remote_thread_info : public private_thread_info
1056 {
1057 std::string extra;
1058 std::string name;
1059 int core = -1;
1060
1061 /* Thread handle, perhaps a pthread_t or thread_t value, stored as a
1062 sequence of bytes. */
1063 gdb::byte_vector thread_handle;
1064
1065 /* Whether the target stopped for a breakpoint/watchpoint. */
1066 enum target_stop_reason stop_reason = TARGET_STOPPED_BY_NO_REASON;
1067
1068 /* This is set to the data address of the access causing the target
1069 to stop for a watchpoint. */
1070 CORE_ADDR watch_data_address = 0;
1071
1072 /* Fields used by the vCont action coalescing implemented in
1073 remote_resume / remote_commit_resume. remote_resume stores each
1074 thread's last resume request in these fields, so that a later
1075 remote_commit_resume knows which is the proper action for this
1076 thread to include in the vCont packet. */
1077
1078 /* True if the last target_resume call for this thread was a step
1079 request, false if a continue request. */
1080 int last_resume_step = 0;
1081
1082 /* The signal specified in the last target_resume call for this
1083 thread. */
1084 gdb_signal last_resume_sig = GDB_SIGNAL_0;
1085
1086 /* Whether this thread was already vCont-resumed on the remote
1087 side. */
1088 int vcont_resumed = 0;
1089 };
1090
1091 remote_state::remote_state ()
1092 : buf (400)
1093 {
1094 }
1095
1096 remote_state::~remote_state ()
1097 {
1098 xfree (this->last_pass_packet);
1099 xfree (this->last_program_signals_packet);
1100 xfree (this->finished_object);
1101 xfree (this->finished_annex);
1102 }
1103
1104 /* Utility: generate error from an incoming stub packet. */
1105 static void
1106 trace_error (char *buf)
1107 {
1108 if (*buf++ != 'E')
1109 return; /* not an error msg */
1110 switch (*buf)
1111 {
1112 case '1': /* malformed packet error */
1113 if (*++buf == '0') /* general case: */
1114 error (_("remote.c: error in outgoing packet."));
1115 else
1116 error (_("remote.c: error in outgoing packet at field #%ld."),
1117 strtol (buf, NULL, 16));
1118 default:
1119 error (_("Target returns error code '%s'."), buf);
1120 }
1121 }
1122
1123 /* Utility: wait for reply from stub, while accepting "O" packets. */
1124
1125 char *
1126 remote_target::remote_get_noisy_reply ()
1127 {
1128 struct remote_state *rs = get_remote_state ();
1129
1130 do /* Loop on reply from remote stub. */
1131 {
1132 char *buf;
1133
1134 QUIT; /* Allow user to bail out with ^C. */
1135 getpkt (&rs->buf, 0);
1136 buf = rs->buf.data ();
1137 if (buf[0] == 'E')
1138 trace_error (buf);
1139 else if (startswith (buf, "qRelocInsn:"))
1140 {
1141 ULONGEST ul;
1142 CORE_ADDR from, to, org_to;
1143 const char *p, *pp;
1144 int adjusted_size = 0;
1145 int relocated = 0;
1146
1147 p = buf + strlen ("qRelocInsn:");
1148 pp = unpack_varlen_hex (p, &ul);
1149 if (*pp != ';')
1150 error (_("invalid qRelocInsn packet: %s"), buf);
1151 from = ul;
1152
1153 p = pp + 1;
1154 unpack_varlen_hex (p, &ul);
1155 to = ul;
1156
1157 org_to = to;
1158
1159 TRY
1160 {
1161 gdbarch_relocate_instruction (target_gdbarch (), &to, from);
1162 relocated = 1;
1163 }
1164 CATCH (ex, RETURN_MASK_ALL)
1165 {
1166 if (ex.error == MEMORY_ERROR)
1167 {
1168 /* Propagate memory errors silently back to the
1169 target. The stub may have limited the range of
1170 addresses we can write to, for example. */
1171 }
1172 else
1173 {
1174 /* Something unexpectedly bad happened. Be verbose
1175 so we can tell what, and propagate the error back
1176 to the stub, so it doesn't get stuck waiting for
1177 a response. */
1178 exception_fprintf (gdb_stderr, ex,
1179 _("warning: relocating instruction: "));
1180 }
1181 putpkt ("E01");
1182 }
1183 END_CATCH
1184
1185 if (relocated)
1186 {
1187 adjusted_size = to - org_to;
1188
1189 xsnprintf (buf, rs->buf.size (), "qRelocInsn:%x", adjusted_size);
1190 putpkt (buf);
1191 }
1192 }
1193 else if (buf[0] == 'O' && buf[1] != 'K')
1194 remote_console_output (buf + 1); /* 'O' message from stub */
1195 else
1196 return buf; /* Here's the actual reply. */
1197 }
1198 while (1);
1199 }
1200
1201 struct remote_arch_state *
1202 remote_state::get_remote_arch_state (struct gdbarch *gdbarch)
1203 {
1204 remote_arch_state *rsa;
1205
1206 auto it = this->m_arch_states.find (gdbarch);
1207 if (it == this->m_arch_states.end ())
1208 {
1209 auto p = this->m_arch_states.emplace (std::piecewise_construct,
1210 std::forward_as_tuple (gdbarch),
1211 std::forward_as_tuple (gdbarch));
1212 rsa = &p.first->second;
1213
1214 /* Make sure that the packet buffer is plenty big enough for
1215 this architecture. */
1216 if (this->buf.size () < rsa->remote_packet_size)
1217 this->buf.resize (2 * rsa->remote_packet_size);
1218 }
1219 else
1220 rsa = &it->second;
1221
1222 return rsa;
1223 }
1224
1225 /* Fetch the global remote target state. */
1226
1227 remote_state *
1228 remote_target::get_remote_state ()
1229 {
1230 /* Make sure that the remote architecture state has been
1231 initialized, because doing so might reallocate rs->buf. Any
1232 function which calls getpkt also needs to be mindful of changes
1233 to rs->buf, but this call limits the number of places which run
1234 into trouble. */
1235 m_remote_state.get_remote_arch_state (target_gdbarch ());
1236
1237 return &m_remote_state;
1238 }
1239
1240 /* Cleanup routine for the remote module's pspace data. */
1241
1242 static void
1243 remote_pspace_data_cleanup (struct program_space *pspace, void *arg)
1244 {
1245 char *remote_exec_file = (char *) arg;
1246
1247 xfree (remote_exec_file);
1248 }
1249
1250 /* Fetch the remote exec-file from the current program space. */
1251
1252 static const char *
1253 get_remote_exec_file (void)
1254 {
1255 char *remote_exec_file;
1256
1257 remote_exec_file
1258 = (char *) program_space_data (current_program_space,
1259 remote_pspace_data);
1260 if (remote_exec_file == NULL)
1261 return "";
1262
1263 return remote_exec_file;
1264 }
1265
1266 /* Set the remote exec file for PSPACE. */
1267
1268 static void
1269 set_pspace_remote_exec_file (struct program_space *pspace,
1270 char *remote_exec_file)
1271 {
1272 char *old_file = (char *) program_space_data (pspace, remote_pspace_data);
1273
1274 xfree (old_file);
1275 set_program_space_data (pspace, remote_pspace_data,
1276 xstrdup (remote_exec_file));
1277 }
1278
1279 /* The "set/show remote exec-file" set command hook. */
1280
1281 static void
1282 set_remote_exec_file (const char *ignored, int from_tty,
1283 struct cmd_list_element *c)
1284 {
1285 gdb_assert (remote_exec_file_var != NULL);
1286 set_pspace_remote_exec_file (current_program_space, remote_exec_file_var);
1287 }
1288
1289 /* The "set/show remote exec-file" show command hook. */
1290
1291 static void
1292 show_remote_exec_file (struct ui_file *file, int from_tty,
1293 struct cmd_list_element *cmd, const char *value)
1294 {
1295 fprintf_filtered (file, "%s\n", remote_exec_file_var);
1296 }
1297
1298 static int
1299 compare_pnums (const void *lhs_, const void *rhs_)
1300 {
1301 const struct packet_reg * const *lhs
1302 = (const struct packet_reg * const *) lhs_;
1303 const struct packet_reg * const *rhs
1304 = (const struct packet_reg * const *) rhs_;
1305
1306 if ((*lhs)->pnum < (*rhs)->pnum)
1307 return -1;
1308 else if ((*lhs)->pnum == (*rhs)->pnum)
1309 return 0;
1310 else
1311 return 1;
1312 }
1313
1314 static int
1315 map_regcache_remote_table (struct gdbarch *gdbarch, struct packet_reg *regs)
1316 {
1317 int regnum, num_remote_regs, offset;
1318 struct packet_reg **remote_regs;
1319
1320 for (regnum = 0; regnum < gdbarch_num_regs (gdbarch); regnum++)
1321 {
1322 struct packet_reg *r = &regs[regnum];
1323
1324 if (register_size (gdbarch, regnum) == 0)
1325 /* Do not try to fetch zero-sized (placeholder) registers. */
1326 r->pnum = -1;
1327 else
1328 r->pnum = gdbarch_remote_register_number (gdbarch, regnum);
1329
1330 r->regnum = regnum;
1331 }
1332
1333 /* Define the g/G packet format as the contents of each register
1334 with a remote protocol number, in order of ascending protocol
1335 number. */
1336
1337 remote_regs = XALLOCAVEC (struct packet_reg *, gdbarch_num_regs (gdbarch));
1338 for (num_remote_regs = 0, regnum = 0;
1339 regnum < gdbarch_num_regs (gdbarch);
1340 regnum++)
1341 if (regs[regnum].pnum != -1)
1342 remote_regs[num_remote_regs++] = &regs[regnum];
1343
1344 qsort (remote_regs, num_remote_regs, sizeof (struct packet_reg *),
1345 compare_pnums);
1346
1347 for (regnum = 0, offset = 0; regnum < num_remote_regs; regnum++)
1348 {
1349 remote_regs[regnum]->in_g_packet = 1;
1350 remote_regs[regnum]->offset = offset;
1351 offset += register_size (gdbarch, remote_regs[regnum]->regnum);
1352 }
1353
1354 return offset;
1355 }
1356
1357 /* Given the architecture described by GDBARCH, return the remote
1358 protocol register's number and the register's offset in the g/G
1359 packets of GDB register REGNUM, in PNUM and POFFSET respectively.
1360 If the target does not have a mapping for REGNUM, return false,
1361 otherwise, return true. */
1362
1363 int
1364 remote_register_number_and_offset (struct gdbarch *gdbarch, int regnum,
1365 int *pnum, int *poffset)
1366 {
1367 gdb_assert (regnum < gdbarch_num_regs (gdbarch));
1368
1369 std::vector<packet_reg> regs (gdbarch_num_regs (gdbarch));
1370
1371 map_regcache_remote_table (gdbarch, regs.data ());
1372
1373 *pnum = regs[regnum].pnum;
1374 *poffset = regs[regnum].offset;
1375
1376 return *pnum != -1;
1377 }
1378
1379 remote_arch_state::remote_arch_state (struct gdbarch *gdbarch)
1380 {
1381 /* Use the architecture to build a regnum<->pnum table, which will be
1382 1:1 unless a feature set specifies otherwise. */
1383 this->regs.reset (new packet_reg [gdbarch_num_regs (gdbarch)] ());
1384
1385 /* Record the maximum possible size of the g packet - it may turn out
1386 to be smaller. */
1387 this->sizeof_g_packet
1388 = map_regcache_remote_table (gdbarch, this->regs.get ());
1389
1390 /* Default maximum number of characters in a packet body. Many
1391 remote stubs have a hardwired buffer size of 400 bytes
1392 (c.f. BUFMAX in m68k-stub.c and i386-stub.c). BUFMAX-1 is used
1393 as the maximum packet-size to ensure that the packet and an extra
1394 NUL character can always fit in the buffer. This stops GDB
1395 trashing stubs that try to squeeze an extra NUL into what is
1396 already a full buffer (As of 1999-12-04 that was most stubs). */
1397 this->remote_packet_size = 400 - 1;
1398
1399 /* This one is filled in when a ``g'' packet is received. */
1400 this->actual_register_packet_size = 0;
1401
1402 /* Should rsa->sizeof_g_packet needs more space than the
1403 default, adjust the size accordingly. Remember that each byte is
1404 encoded as two characters. 32 is the overhead for the packet
1405 header / footer. NOTE: cagney/1999-10-26: I suspect that 8
1406 (``$NN:G...#NN'') is a better guess, the below has been padded a
1407 little. */
1408 if (this->sizeof_g_packet > ((this->remote_packet_size - 32) / 2))
1409 this->remote_packet_size = (this->sizeof_g_packet * 2 + 32);
1410 }
1411
1412 /* Get a pointer to the current remote target. If not connected to a
1413 remote target, return NULL. */
1414
1415 static remote_target *
1416 get_current_remote_target ()
1417 {
1418 target_ops *proc_target = find_target_at (process_stratum);
1419 return dynamic_cast<remote_target *> (proc_target);
1420 }
1421
1422 /* Return the current allowed size of a remote packet. This is
1423 inferred from the current architecture, and should be used to
1424 limit the length of outgoing packets. */
1425 long
1426 remote_target::get_remote_packet_size ()
1427 {
1428 struct remote_state *rs = get_remote_state ();
1429 remote_arch_state *rsa = rs->get_remote_arch_state (target_gdbarch ());
1430
1431 if (rs->explicit_packet_size)
1432 return rs->explicit_packet_size;
1433
1434 return rsa->remote_packet_size;
1435 }
1436
1437 static struct packet_reg *
1438 packet_reg_from_regnum (struct gdbarch *gdbarch, struct remote_arch_state *rsa,
1439 long regnum)
1440 {
1441 if (regnum < 0 && regnum >= gdbarch_num_regs (gdbarch))
1442 return NULL;
1443 else
1444 {
1445 struct packet_reg *r = &rsa->regs[regnum];
1446
1447 gdb_assert (r->regnum == regnum);
1448 return r;
1449 }
1450 }
1451
1452 static struct packet_reg *
1453 packet_reg_from_pnum (struct gdbarch *gdbarch, struct remote_arch_state *rsa,
1454 LONGEST pnum)
1455 {
1456 int i;
1457
1458 for (i = 0; i < gdbarch_num_regs (gdbarch); i++)
1459 {
1460 struct packet_reg *r = &rsa->regs[i];
1461
1462 if (r->pnum == pnum)
1463 return r;
1464 }
1465 return NULL;
1466 }
1467
1468 /* Allow the user to specify what sequence to send to the remote
1469 when he requests a program interruption: Although ^C is usually
1470 what remote systems expect (this is the default, here), it is
1471 sometimes preferable to send a break. On other systems such
1472 as the Linux kernel, a break followed by g, which is Magic SysRq g
1473 is required in order to interrupt the execution. */
1474 const char interrupt_sequence_control_c[] = "Ctrl-C";
1475 const char interrupt_sequence_break[] = "BREAK";
1476 const char interrupt_sequence_break_g[] = "BREAK-g";
1477 static const char *const interrupt_sequence_modes[] =
1478 {
1479 interrupt_sequence_control_c,
1480 interrupt_sequence_break,
1481 interrupt_sequence_break_g,
1482 NULL
1483 };
1484 static const char *interrupt_sequence_mode = interrupt_sequence_control_c;
1485
1486 static void
1487 show_interrupt_sequence (struct ui_file *file, int from_tty,
1488 struct cmd_list_element *c,
1489 const char *value)
1490 {
1491 if (interrupt_sequence_mode == interrupt_sequence_control_c)
1492 fprintf_filtered (file,
1493 _("Send the ASCII ETX character (Ctrl-c) "
1494 "to the remote target to interrupt the "
1495 "execution of the program.\n"));
1496 else if (interrupt_sequence_mode == interrupt_sequence_break)
1497 fprintf_filtered (file,
1498 _("send a break signal to the remote target "
1499 "to interrupt the execution of the program.\n"));
1500 else if (interrupt_sequence_mode == interrupt_sequence_break_g)
1501 fprintf_filtered (file,
1502 _("Send a break signal and 'g' a.k.a. Magic SysRq g to "
1503 "the remote target to interrupt the execution "
1504 "of Linux kernel.\n"));
1505 else
1506 internal_error (__FILE__, __LINE__,
1507 _("Invalid value for interrupt_sequence_mode: %s."),
1508 interrupt_sequence_mode);
1509 }
1510
1511 /* This boolean variable specifies whether interrupt_sequence is sent
1512 to the remote target when gdb connects to it.
1513 This is mostly needed when you debug the Linux kernel: The Linux kernel
1514 expects BREAK g which is Magic SysRq g for connecting gdb. */
1515 static int interrupt_on_connect = 0;
1516
1517 /* This variable is used to implement the "set/show remotebreak" commands.
1518 Since these commands are now deprecated in favor of "set/show remote
1519 interrupt-sequence", it no longer has any effect on the code. */
1520 static int remote_break;
1521
1522 static void
1523 set_remotebreak (const char *args, int from_tty, struct cmd_list_element *c)
1524 {
1525 if (remote_break)
1526 interrupt_sequence_mode = interrupt_sequence_break;
1527 else
1528 interrupt_sequence_mode = interrupt_sequence_control_c;
1529 }
1530
1531 static void
1532 show_remotebreak (struct ui_file *file, int from_tty,
1533 struct cmd_list_element *c,
1534 const char *value)
1535 {
1536 }
1537
1538 /* This variable sets the number of bits in an address that are to be
1539 sent in a memory ("M" or "m") packet. Normally, after stripping
1540 leading zeros, the entire address would be sent. This variable
1541 restricts the address to REMOTE_ADDRESS_SIZE bits. HISTORY: The
1542 initial implementation of remote.c restricted the address sent in
1543 memory packets to ``host::sizeof long'' bytes - (typically 32
1544 bits). Consequently, for 64 bit targets, the upper 32 bits of an
1545 address was never sent. Since fixing this bug may cause a break in
1546 some remote targets this variable is principly provided to
1547 facilitate backward compatibility. */
1548
1549 static unsigned int remote_address_size;
1550
1551 \f
1552 /* User configurable variables for the number of characters in a
1553 memory read/write packet. MIN (rsa->remote_packet_size,
1554 rsa->sizeof_g_packet) is the default. Some targets need smaller
1555 values (fifo overruns, et.al.) and some users need larger values
1556 (speed up transfers). The variables ``preferred_*'' (the user
1557 request), ``current_*'' (what was actually set) and ``forced_*''
1558 (Positive - a soft limit, negative - a hard limit). */
1559
1560 struct memory_packet_config
1561 {
1562 const char *name;
1563 long size;
1564 int fixed_p;
1565 };
1566
1567 /* The default max memory-write-packet-size, when the setting is
1568 "fixed". The 16k is historical. (It came from older GDB's using
1569 alloca for buffers and the knowledge (folklore?) that some hosts
1570 don't cope very well with large alloca calls.) */
1571 #define DEFAULT_MAX_MEMORY_PACKET_SIZE_FIXED 16384
1572
1573 /* The minimum remote packet size for memory transfers. Ensures we
1574 can write at least one byte. */
1575 #define MIN_MEMORY_PACKET_SIZE 20
1576
1577 /* Get the memory packet size, assuming it is fixed. */
1578
1579 static long
1580 get_fixed_memory_packet_size (struct memory_packet_config *config)
1581 {
1582 gdb_assert (config->fixed_p);
1583
1584 if (config->size <= 0)
1585 return DEFAULT_MAX_MEMORY_PACKET_SIZE_FIXED;
1586 else
1587 return config->size;
1588 }
1589
1590 /* Compute the current size of a read/write packet. Since this makes
1591 use of ``actual_register_packet_size'' the computation is dynamic. */
1592
1593 long
1594 remote_target::get_memory_packet_size (struct memory_packet_config *config)
1595 {
1596 struct remote_state *rs = get_remote_state ();
1597 remote_arch_state *rsa = rs->get_remote_arch_state (target_gdbarch ());
1598
1599 long what_they_get;
1600 if (config->fixed_p)
1601 what_they_get = get_fixed_memory_packet_size (config);
1602 else
1603 {
1604 what_they_get = get_remote_packet_size ();
1605 /* Limit the packet to the size specified by the user. */
1606 if (config->size > 0
1607 && what_they_get > config->size)
1608 what_they_get = config->size;
1609
1610 /* Limit it to the size of the targets ``g'' response unless we have
1611 permission from the stub to use a larger packet size. */
1612 if (rs->explicit_packet_size == 0
1613 && rsa->actual_register_packet_size > 0
1614 && what_they_get > rsa->actual_register_packet_size)
1615 what_they_get = rsa->actual_register_packet_size;
1616 }
1617 if (what_they_get < MIN_MEMORY_PACKET_SIZE)
1618 what_they_get = MIN_MEMORY_PACKET_SIZE;
1619
1620 /* Make sure there is room in the global buffer for this packet
1621 (including its trailing NUL byte). */
1622 if (rs->buf.size () < what_they_get + 1)
1623 rs->buf.resize (2 * what_they_get);
1624
1625 return what_they_get;
1626 }
1627
1628 /* Update the size of a read/write packet. If they user wants
1629 something really big then do a sanity check. */
1630
1631 static void
1632 set_memory_packet_size (const char *args, struct memory_packet_config *config)
1633 {
1634 int fixed_p = config->fixed_p;
1635 long size = config->size;
1636
1637 if (args == NULL)
1638 error (_("Argument required (integer, `fixed' or `limited')."));
1639 else if (strcmp (args, "hard") == 0
1640 || strcmp (args, "fixed") == 0)
1641 fixed_p = 1;
1642 else if (strcmp (args, "soft") == 0
1643 || strcmp (args, "limit") == 0)
1644 fixed_p = 0;
1645 else
1646 {
1647 char *end;
1648
1649 size = strtoul (args, &end, 0);
1650 if (args == end)
1651 error (_("Invalid %s (bad syntax)."), config->name);
1652
1653 /* Instead of explicitly capping the size of a packet to or
1654 disallowing it, the user is allowed to set the size to
1655 something arbitrarily large. */
1656 }
1657
1658 /* Extra checks? */
1659 if (fixed_p && !config->fixed_p)
1660 {
1661 /* So that the query shows the correct value. */
1662 long query_size = (size <= 0
1663 ? DEFAULT_MAX_MEMORY_PACKET_SIZE_FIXED
1664 : size);
1665
1666 if (! query (_("The target may not be able to correctly handle a %s\n"
1667 "of %ld bytes. Change the packet size? "),
1668 config->name, query_size))
1669 error (_("Packet size not changed."));
1670 }
1671 /* Update the config. */
1672 config->fixed_p = fixed_p;
1673 config->size = size;
1674 }
1675
1676 static void
1677 show_memory_packet_size (struct memory_packet_config *config)
1678 {
1679 if (config->size == 0)
1680 printf_filtered (_("The %s is 0 (default). "), config->name);
1681 else
1682 printf_filtered (_("The %s is %ld. "), config->name, config->size);
1683 if (config->fixed_p)
1684 printf_filtered (_("Packets are fixed at %ld bytes.\n"),
1685 get_fixed_memory_packet_size (config));
1686 else
1687 {
1688 remote_target *remote = get_current_remote_target ();
1689
1690 if (remote != NULL)
1691 printf_filtered (_("Packets are limited to %ld bytes.\n"),
1692 remote->get_memory_packet_size (config));
1693 else
1694 puts_filtered ("The actual limit will be further reduced "
1695 "dependent on the target.\n");
1696 }
1697 }
1698
1699 static struct memory_packet_config memory_write_packet_config =
1700 {
1701 "memory-write-packet-size",
1702 };
1703
1704 static void
1705 set_memory_write_packet_size (const char *args, int from_tty)
1706 {
1707 set_memory_packet_size (args, &memory_write_packet_config);
1708 }
1709
1710 static void
1711 show_memory_write_packet_size (const char *args, int from_tty)
1712 {
1713 show_memory_packet_size (&memory_write_packet_config);
1714 }
1715
1716 /* Show the number of hardware watchpoints that can be used. */
1717
1718 static void
1719 show_hardware_watchpoint_limit (struct ui_file *file, int from_tty,
1720 struct cmd_list_element *c,
1721 const char *value)
1722 {
1723 fprintf_filtered (file, _("The maximum number of target hardware "
1724 "watchpoints is %s.\n"), value);
1725 }
1726
1727 /* Show the length limit (in bytes) for hardware watchpoints. */
1728
1729 static void
1730 show_hardware_watchpoint_length_limit (struct ui_file *file, int from_tty,
1731 struct cmd_list_element *c,
1732 const char *value)
1733 {
1734 fprintf_filtered (file, _("The maximum length (in bytes) of a target "
1735 "hardware watchpoint is %s.\n"), value);
1736 }
1737
1738 /* Show the number of hardware breakpoints that can be used. */
1739
1740 static void
1741 show_hardware_breakpoint_limit (struct ui_file *file, int from_tty,
1742 struct cmd_list_element *c,
1743 const char *value)
1744 {
1745 fprintf_filtered (file, _("The maximum number of target hardware "
1746 "breakpoints is %s.\n"), value);
1747 }
1748
1749 long
1750 remote_target::get_memory_write_packet_size ()
1751 {
1752 return get_memory_packet_size (&memory_write_packet_config);
1753 }
1754
1755 static struct memory_packet_config memory_read_packet_config =
1756 {
1757 "memory-read-packet-size",
1758 };
1759
1760 static void
1761 set_memory_read_packet_size (const char *args, int from_tty)
1762 {
1763 set_memory_packet_size (args, &memory_read_packet_config);
1764 }
1765
1766 static void
1767 show_memory_read_packet_size (const char *args, int from_tty)
1768 {
1769 show_memory_packet_size (&memory_read_packet_config);
1770 }
1771
1772 long
1773 remote_target::get_memory_read_packet_size ()
1774 {
1775 long size = get_memory_packet_size (&memory_read_packet_config);
1776
1777 /* FIXME: cagney/1999-11-07: Functions like getpkt() need to get an
1778 extra buffer size argument before the memory read size can be
1779 increased beyond this. */
1780 if (size > get_remote_packet_size ())
1781 size = get_remote_packet_size ();
1782 return size;
1783 }
1784
1785 \f
1786
1787 struct packet_config
1788 {
1789 const char *name;
1790 const char *title;
1791
1792 /* If auto, GDB auto-detects support for this packet or feature,
1793 either through qSupported, or by trying the packet and looking
1794 at the response. If true, GDB assumes the target supports this
1795 packet. If false, the packet is disabled. Configs that don't
1796 have an associated command always have this set to auto. */
1797 enum auto_boolean detect;
1798
1799 /* Does the target support this packet? */
1800 enum packet_support support;
1801 };
1802
1803 static enum packet_support packet_config_support (struct packet_config *config);
1804 static enum packet_support packet_support (int packet);
1805
1806 static void
1807 show_packet_config_cmd (struct packet_config *config)
1808 {
1809 const char *support = "internal-error";
1810
1811 switch (packet_config_support (config))
1812 {
1813 case PACKET_ENABLE:
1814 support = "enabled";
1815 break;
1816 case PACKET_DISABLE:
1817 support = "disabled";
1818 break;
1819 case PACKET_SUPPORT_UNKNOWN:
1820 support = "unknown";
1821 break;
1822 }
1823 switch (config->detect)
1824 {
1825 case AUTO_BOOLEAN_AUTO:
1826 printf_filtered (_("Support for the `%s' packet "
1827 "is auto-detected, currently %s.\n"),
1828 config->name, support);
1829 break;
1830 case AUTO_BOOLEAN_TRUE:
1831 case AUTO_BOOLEAN_FALSE:
1832 printf_filtered (_("Support for the `%s' packet is currently %s.\n"),
1833 config->name, support);
1834 break;
1835 }
1836 }
1837
1838 static void
1839 add_packet_config_cmd (struct packet_config *config, const char *name,
1840 const char *title, int legacy)
1841 {
1842 char *set_doc;
1843 char *show_doc;
1844 char *cmd_name;
1845
1846 config->name = name;
1847 config->title = title;
1848 set_doc = xstrprintf ("Set use of remote protocol `%s' (%s) packet",
1849 name, title);
1850 show_doc = xstrprintf ("Show current use of remote "
1851 "protocol `%s' (%s) packet",
1852 name, title);
1853 /* set/show TITLE-packet {auto,on,off} */
1854 cmd_name = xstrprintf ("%s-packet", title);
1855 add_setshow_auto_boolean_cmd (cmd_name, class_obscure,
1856 &config->detect, set_doc,
1857 show_doc, NULL, /* help_doc */
1858 NULL,
1859 show_remote_protocol_packet_cmd,
1860 &remote_set_cmdlist, &remote_show_cmdlist);
1861 /* The command code copies the documentation strings. */
1862 xfree (set_doc);
1863 xfree (show_doc);
1864 /* set/show remote NAME-packet {auto,on,off} -- legacy. */
1865 if (legacy)
1866 {
1867 char *legacy_name;
1868
1869 legacy_name = xstrprintf ("%s-packet", name);
1870 add_alias_cmd (legacy_name, cmd_name, class_obscure, 0,
1871 &remote_set_cmdlist);
1872 add_alias_cmd (legacy_name, cmd_name, class_obscure, 0,
1873 &remote_show_cmdlist);
1874 }
1875 }
1876
1877 static enum packet_result
1878 packet_check_result (const char *buf)
1879 {
1880 if (buf[0] != '\0')
1881 {
1882 /* The stub recognized the packet request. Check that the
1883 operation succeeded. */
1884 if (buf[0] == 'E'
1885 && isxdigit (buf[1]) && isxdigit (buf[2])
1886 && buf[3] == '\0')
1887 /* "Enn" - definitly an error. */
1888 return PACKET_ERROR;
1889
1890 /* Always treat "E." as an error. This will be used for
1891 more verbose error messages, such as E.memtypes. */
1892 if (buf[0] == 'E' && buf[1] == '.')
1893 return PACKET_ERROR;
1894
1895 /* The packet may or may not be OK. Just assume it is. */
1896 return PACKET_OK;
1897 }
1898 else
1899 /* The stub does not support the packet. */
1900 return PACKET_UNKNOWN;
1901 }
1902
1903 static enum packet_result
1904 packet_check_result (const gdb::char_vector &buf)
1905 {
1906 return packet_check_result (buf.data ());
1907 }
1908
1909 static enum packet_result
1910 packet_ok (const char *buf, struct packet_config *config)
1911 {
1912 enum packet_result result;
1913
1914 if (config->detect != AUTO_BOOLEAN_TRUE
1915 && config->support == PACKET_DISABLE)
1916 internal_error (__FILE__, __LINE__,
1917 _("packet_ok: attempt to use a disabled packet"));
1918
1919 result = packet_check_result (buf);
1920 switch (result)
1921 {
1922 case PACKET_OK:
1923 case PACKET_ERROR:
1924 /* The stub recognized the packet request. */
1925 if (config->support == PACKET_SUPPORT_UNKNOWN)
1926 {
1927 if (remote_debug)
1928 fprintf_unfiltered (gdb_stdlog,
1929 "Packet %s (%s) is supported\n",
1930 config->name, config->title);
1931 config->support = PACKET_ENABLE;
1932 }
1933 break;
1934 case PACKET_UNKNOWN:
1935 /* The stub does not support the packet. */
1936 if (config->detect == AUTO_BOOLEAN_AUTO
1937 && config->support == PACKET_ENABLE)
1938 {
1939 /* If the stub previously indicated that the packet was
1940 supported then there is a protocol error. */
1941 error (_("Protocol error: %s (%s) conflicting enabled responses."),
1942 config->name, config->title);
1943 }
1944 else if (config->detect == AUTO_BOOLEAN_TRUE)
1945 {
1946 /* The user set it wrong. */
1947 error (_("Enabled packet %s (%s) not recognized by stub"),
1948 config->name, config->title);
1949 }
1950
1951 if (remote_debug)
1952 fprintf_unfiltered (gdb_stdlog,
1953 "Packet %s (%s) is NOT supported\n",
1954 config->name, config->title);
1955 config->support = PACKET_DISABLE;
1956 break;
1957 }
1958
1959 return result;
1960 }
1961
1962 static enum packet_result
1963 packet_ok (const gdb::char_vector &buf, struct packet_config *config)
1964 {
1965 return packet_ok (buf.data (), config);
1966 }
1967
1968 enum {
1969 PACKET_vCont = 0,
1970 PACKET_X,
1971 PACKET_qSymbol,
1972 PACKET_P,
1973 PACKET_p,
1974 PACKET_Z0,
1975 PACKET_Z1,
1976 PACKET_Z2,
1977 PACKET_Z3,
1978 PACKET_Z4,
1979 PACKET_vFile_setfs,
1980 PACKET_vFile_open,
1981 PACKET_vFile_pread,
1982 PACKET_vFile_pwrite,
1983 PACKET_vFile_close,
1984 PACKET_vFile_unlink,
1985 PACKET_vFile_readlink,
1986 PACKET_vFile_fstat,
1987 PACKET_qXfer_auxv,
1988 PACKET_qXfer_features,
1989 PACKET_qXfer_exec_file,
1990 PACKET_qXfer_libraries,
1991 PACKET_qXfer_libraries_svr4,
1992 PACKET_qXfer_memory_map,
1993 PACKET_qXfer_spu_read,
1994 PACKET_qXfer_spu_write,
1995 PACKET_qXfer_osdata,
1996 PACKET_qXfer_threads,
1997 PACKET_qXfer_statictrace_read,
1998 PACKET_qXfer_traceframe_info,
1999 PACKET_qXfer_uib,
2000 PACKET_qGetTIBAddr,
2001 PACKET_qGetTLSAddr,
2002 PACKET_qSupported,
2003 PACKET_qTStatus,
2004 PACKET_QPassSignals,
2005 PACKET_QCatchSyscalls,
2006 PACKET_QProgramSignals,
2007 PACKET_QSetWorkingDir,
2008 PACKET_QStartupWithShell,
2009 PACKET_QEnvironmentHexEncoded,
2010 PACKET_QEnvironmentReset,
2011 PACKET_QEnvironmentUnset,
2012 PACKET_qCRC,
2013 PACKET_qSearch_memory,
2014 PACKET_vAttach,
2015 PACKET_vRun,
2016 PACKET_QStartNoAckMode,
2017 PACKET_vKill,
2018 PACKET_qXfer_siginfo_read,
2019 PACKET_qXfer_siginfo_write,
2020 PACKET_qAttached,
2021
2022 /* Support for conditional tracepoints. */
2023 PACKET_ConditionalTracepoints,
2024
2025 /* Support for target-side breakpoint conditions. */
2026 PACKET_ConditionalBreakpoints,
2027
2028 /* Support for target-side breakpoint commands. */
2029 PACKET_BreakpointCommands,
2030
2031 /* Support for fast tracepoints. */
2032 PACKET_FastTracepoints,
2033
2034 /* Support for static tracepoints. */
2035 PACKET_StaticTracepoints,
2036
2037 /* Support for installing tracepoints while a trace experiment is
2038 running. */
2039 PACKET_InstallInTrace,
2040
2041 PACKET_bc,
2042 PACKET_bs,
2043 PACKET_TracepointSource,
2044 PACKET_QAllow,
2045 PACKET_qXfer_fdpic,
2046 PACKET_QDisableRandomization,
2047 PACKET_QAgent,
2048 PACKET_QTBuffer_size,
2049 PACKET_Qbtrace_off,
2050 PACKET_Qbtrace_bts,
2051 PACKET_Qbtrace_pt,
2052 PACKET_qXfer_btrace,
2053
2054 /* Support for the QNonStop packet. */
2055 PACKET_QNonStop,
2056
2057 /* Support for the QThreadEvents packet. */
2058 PACKET_QThreadEvents,
2059
2060 /* Support for multi-process extensions. */
2061 PACKET_multiprocess_feature,
2062
2063 /* Support for enabling and disabling tracepoints while a trace
2064 experiment is running. */
2065 PACKET_EnableDisableTracepoints_feature,
2066
2067 /* Support for collecting strings using the tracenz bytecode. */
2068 PACKET_tracenz_feature,
2069
2070 /* Support for continuing to run a trace experiment while GDB is
2071 disconnected. */
2072 PACKET_DisconnectedTracing_feature,
2073
2074 /* Support for qXfer:libraries-svr4:read with a non-empty annex. */
2075 PACKET_augmented_libraries_svr4_read_feature,
2076
2077 /* Support for the qXfer:btrace-conf:read packet. */
2078 PACKET_qXfer_btrace_conf,
2079
2080 /* Support for the Qbtrace-conf:bts:size packet. */
2081 PACKET_Qbtrace_conf_bts_size,
2082
2083 /* Support for swbreak+ feature. */
2084 PACKET_swbreak_feature,
2085
2086 /* Support for hwbreak+ feature. */
2087 PACKET_hwbreak_feature,
2088
2089 /* Support for fork events. */
2090 PACKET_fork_event_feature,
2091
2092 /* Support for vfork events. */
2093 PACKET_vfork_event_feature,
2094
2095 /* Support for the Qbtrace-conf:pt:size packet. */
2096 PACKET_Qbtrace_conf_pt_size,
2097
2098 /* Support for exec events. */
2099 PACKET_exec_event_feature,
2100
2101 /* Support for query supported vCont actions. */
2102 PACKET_vContSupported,
2103
2104 /* Support remote CTRL-C. */
2105 PACKET_vCtrlC,
2106
2107 /* Support TARGET_WAITKIND_NO_RESUMED. */
2108 PACKET_no_resumed,
2109
2110 PACKET_MAX
2111 };
2112
2113 static struct packet_config remote_protocol_packets[PACKET_MAX];
2114
2115 /* Returns the packet's corresponding "set remote foo-packet" command
2116 state. See struct packet_config for more details. */
2117
2118 static enum auto_boolean
2119 packet_set_cmd_state (int packet)
2120 {
2121 return remote_protocol_packets[packet].detect;
2122 }
2123
2124 /* Returns whether a given packet or feature is supported. This takes
2125 into account the state of the corresponding "set remote foo-packet"
2126 command, which may be used to bypass auto-detection. */
2127
2128 static enum packet_support
2129 packet_config_support (struct packet_config *config)
2130 {
2131 switch (config->detect)
2132 {
2133 case AUTO_BOOLEAN_TRUE:
2134 return PACKET_ENABLE;
2135 case AUTO_BOOLEAN_FALSE:
2136 return PACKET_DISABLE;
2137 case AUTO_BOOLEAN_AUTO:
2138 return config->support;
2139 default:
2140 gdb_assert_not_reached (_("bad switch"));
2141 }
2142 }
2143
2144 /* Same as packet_config_support, but takes the packet's enum value as
2145 argument. */
2146
2147 static enum packet_support
2148 packet_support (int packet)
2149 {
2150 struct packet_config *config = &remote_protocol_packets[packet];
2151
2152 return packet_config_support (config);
2153 }
2154
2155 static void
2156 show_remote_protocol_packet_cmd (struct ui_file *file, int from_tty,
2157 struct cmd_list_element *c,
2158 const char *value)
2159 {
2160 struct packet_config *packet;
2161
2162 for (packet = remote_protocol_packets;
2163 packet < &remote_protocol_packets[PACKET_MAX];
2164 packet++)
2165 {
2166 if (&packet->detect == c->var)
2167 {
2168 show_packet_config_cmd (packet);
2169 return;
2170 }
2171 }
2172 internal_error (__FILE__, __LINE__, _("Could not find config for %s"),
2173 c->name);
2174 }
2175
2176 /* Should we try one of the 'Z' requests? */
2177
2178 enum Z_packet_type
2179 {
2180 Z_PACKET_SOFTWARE_BP,
2181 Z_PACKET_HARDWARE_BP,
2182 Z_PACKET_WRITE_WP,
2183 Z_PACKET_READ_WP,
2184 Z_PACKET_ACCESS_WP,
2185 NR_Z_PACKET_TYPES
2186 };
2187
2188 /* For compatibility with older distributions. Provide a ``set remote
2189 Z-packet ...'' command that updates all the Z packet types. */
2190
2191 static enum auto_boolean remote_Z_packet_detect;
2192
2193 static void
2194 set_remote_protocol_Z_packet_cmd (const char *args, int from_tty,
2195 struct cmd_list_element *c)
2196 {
2197 int i;
2198
2199 for (i = 0; i < NR_Z_PACKET_TYPES; i++)
2200 remote_protocol_packets[PACKET_Z0 + i].detect = remote_Z_packet_detect;
2201 }
2202
2203 static void
2204 show_remote_protocol_Z_packet_cmd (struct ui_file *file, int from_tty,
2205 struct cmd_list_element *c,
2206 const char *value)
2207 {
2208 int i;
2209
2210 for (i = 0; i < NR_Z_PACKET_TYPES; i++)
2211 {
2212 show_packet_config_cmd (&remote_protocol_packets[PACKET_Z0 + i]);
2213 }
2214 }
2215
2216 /* Returns true if the multi-process extensions are in effect. */
2217
2218 static int
2219 remote_multi_process_p (struct remote_state *rs)
2220 {
2221 return packet_support (PACKET_multiprocess_feature) == PACKET_ENABLE;
2222 }
2223
2224 /* Returns true if fork events are supported. */
2225
2226 static int
2227 remote_fork_event_p (struct remote_state *rs)
2228 {
2229 return packet_support (PACKET_fork_event_feature) == PACKET_ENABLE;
2230 }
2231
2232 /* Returns true if vfork events are supported. */
2233
2234 static int
2235 remote_vfork_event_p (struct remote_state *rs)
2236 {
2237 return packet_support (PACKET_vfork_event_feature) == PACKET_ENABLE;
2238 }
2239
2240 /* Returns true if exec events are supported. */
2241
2242 static int
2243 remote_exec_event_p (struct remote_state *rs)
2244 {
2245 return packet_support (PACKET_exec_event_feature) == PACKET_ENABLE;
2246 }
2247
2248 /* Insert fork catchpoint target routine. If fork events are enabled
2249 then return success, nothing more to do. */
2250
2251 int
2252 remote_target::insert_fork_catchpoint (int pid)
2253 {
2254 struct remote_state *rs = get_remote_state ();
2255
2256 return !remote_fork_event_p (rs);
2257 }
2258
2259 /* Remove fork catchpoint target routine. Nothing to do, just
2260 return success. */
2261
2262 int
2263 remote_target::remove_fork_catchpoint (int pid)
2264 {
2265 return 0;
2266 }
2267
2268 /* Insert vfork catchpoint target routine. If vfork events are enabled
2269 then return success, nothing more to do. */
2270
2271 int
2272 remote_target::insert_vfork_catchpoint (int pid)
2273 {
2274 struct remote_state *rs = get_remote_state ();
2275
2276 return !remote_vfork_event_p (rs);
2277 }
2278
2279 /* Remove vfork catchpoint target routine. Nothing to do, just
2280 return success. */
2281
2282 int
2283 remote_target::remove_vfork_catchpoint (int pid)
2284 {
2285 return 0;
2286 }
2287
2288 /* Insert exec catchpoint target routine. If exec events are
2289 enabled, just return success. */
2290
2291 int
2292 remote_target::insert_exec_catchpoint (int pid)
2293 {
2294 struct remote_state *rs = get_remote_state ();
2295
2296 return !remote_exec_event_p (rs);
2297 }
2298
2299 /* Remove exec catchpoint target routine. Nothing to do, just
2300 return success. */
2301
2302 int
2303 remote_target::remove_exec_catchpoint (int pid)
2304 {
2305 return 0;
2306 }
2307
2308 \f
2309
2310 static ptid_t magic_null_ptid;
2311 static ptid_t not_sent_ptid;
2312 static ptid_t any_thread_ptid;
2313
2314 /* Find out if the stub attached to PID (and hence GDB should offer to
2315 detach instead of killing it when bailing out). */
2316
2317 int
2318 remote_target::remote_query_attached (int pid)
2319 {
2320 struct remote_state *rs = get_remote_state ();
2321 size_t size = get_remote_packet_size ();
2322
2323 if (packet_support (PACKET_qAttached) == PACKET_DISABLE)
2324 return 0;
2325
2326 if (remote_multi_process_p (rs))
2327 xsnprintf (rs->buf.data (), size, "qAttached:%x", pid);
2328 else
2329 xsnprintf (rs->buf.data (), size, "qAttached");
2330
2331 putpkt (rs->buf);
2332 getpkt (&rs->buf, 0);
2333
2334 switch (packet_ok (rs->buf,
2335 &remote_protocol_packets[PACKET_qAttached]))
2336 {
2337 case PACKET_OK:
2338 if (strcmp (rs->buf.data (), "1") == 0)
2339 return 1;
2340 break;
2341 case PACKET_ERROR:
2342 warning (_("Remote failure reply: %s"), rs->buf.data ());
2343 break;
2344 case PACKET_UNKNOWN:
2345 break;
2346 }
2347
2348 return 0;
2349 }
2350
2351 /* Add PID to GDB's inferior table. If FAKE_PID_P is true, then PID
2352 has been invented by GDB, instead of reported by the target. Since
2353 we can be connected to a remote system before before knowing about
2354 any inferior, mark the target with execution when we find the first
2355 inferior. If ATTACHED is 1, then we had just attached to this
2356 inferior. If it is 0, then we just created this inferior. If it
2357 is -1, then try querying the remote stub to find out if it had
2358 attached to the inferior or not. If TRY_OPEN_EXEC is true then
2359 attempt to open this inferior's executable as the main executable
2360 if no main executable is open already. */
2361
2362 inferior *
2363 remote_target::remote_add_inferior (int fake_pid_p, int pid, int attached,
2364 int try_open_exec)
2365 {
2366 struct inferior *inf;
2367
2368 /* Check whether this process we're learning about is to be
2369 considered attached, or if is to be considered to have been
2370 spawned by the stub. */
2371 if (attached == -1)
2372 attached = remote_query_attached (pid);
2373
2374 if (gdbarch_has_global_solist (target_gdbarch ()))
2375 {
2376 /* If the target shares code across all inferiors, then every
2377 attach adds a new inferior. */
2378 inf = add_inferior (pid);
2379
2380 /* ... and every inferior is bound to the same program space.
2381 However, each inferior may still have its own address
2382 space. */
2383 inf->aspace = maybe_new_address_space ();
2384 inf->pspace = current_program_space;
2385 }
2386 else
2387 {
2388 /* In the traditional debugging scenario, there's a 1-1 match
2389 between program/address spaces. We simply bind the inferior
2390 to the program space's address space. */
2391 inf = current_inferior ();
2392 inferior_appeared (inf, pid);
2393 }
2394
2395 inf->attach_flag = attached;
2396 inf->fake_pid_p = fake_pid_p;
2397
2398 /* If no main executable is currently open then attempt to
2399 open the file that was executed to create this inferior. */
2400 if (try_open_exec && get_exec_file (0) == NULL)
2401 exec_file_locate_attach (pid, 0, 1);
2402
2403 return inf;
2404 }
2405
2406 static remote_thread_info *get_remote_thread_info (thread_info *thread);
2407 static remote_thread_info *get_remote_thread_info (ptid_t ptid);
2408
2409 /* Add thread PTID to GDB's thread list. Tag it as executing/running
2410 according to RUNNING. */
2411
2412 thread_info *
2413 remote_target::remote_add_thread (ptid_t ptid, bool running, bool executing)
2414 {
2415 struct remote_state *rs = get_remote_state ();
2416 struct thread_info *thread;
2417
2418 /* GDB historically didn't pull threads in the initial connection
2419 setup. If the remote target doesn't even have a concept of
2420 threads (e.g., a bare-metal target), even if internally we
2421 consider that a single-threaded target, mentioning a new thread
2422 might be confusing to the user. Be silent then, preserving the
2423 age old behavior. */
2424 if (rs->starting_up)
2425 thread = add_thread_silent (ptid);
2426 else
2427 thread = add_thread (ptid);
2428
2429 get_remote_thread_info (thread)->vcont_resumed = executing;
2430 set_executing (ptid, executing);
2431 set_running (ptid, running);
2432
2433 return thread;
2434 }
2435
2436 /* Come here when we learn about a thread id from the remote target.
2437 It may be the first time we hear about such thread, so take the
2438 opportunity to add it to GDB's thread list. In case this is the
2439 first time we're noticing its corresponding inferior, add it to
2440 GDB's inferior list as well. EXECUTING indicates whether the
2441 thread is (internally) executing or stopped. */
2442
2443 void
2444 remote_target::remote_notice_new_inferior (ptid_t currthread, int executing)
2445 {
2446 /* In non-stop mode, we assume new found threads are (externally)
2447 running until proven otherwise with a stop reply. In all-stop,
2448 we can only get here if all threads are stopped. */
2449 int running = target_is_non_stop_p () ? 1 : 0;
2450
2451 /* If this is a new thread, add it to GDB's thread list.
2452 If we leave it up to WFI to do this, bad things will happen. */
2453
2454 thread_info *tp = find_thread_ptid (currthread);
2455 if (tp != NULL && tp->state == THREAD_EXITED)
2456 {
2457 /* We're seeing an event on a thread id we knew had exited.
2458 This has to be a new thread reusing the old id. Add it. */
2459 remote_add_thread (currthread, running, executing);
2460 return;
2461 }
2462
2463 if (!in_thread_list (currthread))
2464 {
2465 struct inferior *inf = NULL;
2466 int pid = currthread.pid ();
2467
2468 if (inferior_ptid.is_pid ()
2469 && pid == inferior_ptid.pid ())
2470 {
2471 /* inferior_ptid has no thread member yet. This can happen
2472 with the vAttach -> remote_wait,"TAAthread:" path if the
2473 stub doesn't support qC. This is the first stop reported
2474 after an attach, so this is the main thread. Update the
2475 ptid in the thread list. */
2476 if (in_thread_list (ptid_t (pid)))
2477 thread_change_ptid (inferior_ptid, currthread);
2478 else
2479 {
2480 remote_add_thread (currthread, running, executing);
2481 inferior_ptid = currthread;
2482 }
2483 return;
2484 }
2485
2486 if (magic_null_ptid == inferior_ptid)
2487 {
2488 /* inferior_ptid is not set yet. This can happen with the
2489 vRun -> remote_wait,"TAAthread:" path if the stub
2490 doesn't support qC. This is the first stop reported
2491 after an attach, so this is the main thread. Update the
2492 ptid in the thread list. */
2493 thread_change_ptid (inferior_ptid, currthread);
2494 return;
2495 }
2496
2497 /* When connecting to a target remote, or to a target
2498 extended-remote which already was debugging an inferior, we
2499 may not know about it yet. Add it before adding its child
2500 thread, so notifications are emitted in a sensible order. */
2501 if (find_inferior_pid (currthread.pid ()) == NULL)
2502 {
2503 struct remote_state *rs = get_remote_state ();
2504 int fake_pid_p = !remote_multi_process_p (rs);
2505
2506 inf = remote_add_inferior (fake_pid_p,
2507 currthread.pid (), -1, 1);
2508 }
2509
2510 /* This is really a new thread. Add it. */
2511 thread_info *new_thr
2512 = remote_add_thread (currthread, running, executing);
2513
2514 /* If we found a new inferior, let the common code do whatever
2515 it needs to with it (e.g., read shared libraries, insert
2516 breakpoints), unless we're just setting up an all-stop
2517 connection. */
2518 if (inf != NULL)
2519 {
2520 struct remote_state *rs = get_remote_state ();
2521
2522 if (!rs->starting_up)
2523 notice_new_inferior (new_thr, executing, 0);
2524 }
2525 }
2526 }
2527
2528 /* Return THREAD's private thread data, creating it if necessary. */
2529
2530 static remote_thread_info *
2531 get_remote_thread_info (thread_info *thread)
2532 {
2533 gdb_assert (thread != NULL);
2534
2535 if (thread->priv == NULL)
2536 thread->priv.reset (new remote_thread_info);
2537
2538 return static_cast<remote_thread_info *> (thread->priv.get ());
2539 }
2540
2541 static remote_thread_info *
2542 get_remote_thread_info (ptid_t ptid)
2543 {
2544 thread_info *thr = find_thread_ptid (ptid);
2545 return get_remote_thread_info (thr);
2546 }
2547
2548 /* Call this function as a result of
2549 1) A halt indication (T packet) containing a thread id
2550 2) A direct query of currthread
2551 3) Successful execution of set thread */
2552
2553 static void
2554 record_currthread (struct remote_state *rs, ptid_t currthread)
2555 {
2556 rs->general_thread = currthread;
2557 }
2558
2559 /* If 'QPassSignals' is supported, tell the remote stub what signals
2560 it can simply pass through to the inferior without reporting. */
2561
2562 void
2563 remote_target::pass_signals (gdb::array_view<const unsigned char> pass_signals)
2564 {
2565 if (packet_support (PACKET_QPassSignals) != PACKET_DISABLE)
2566 {
2567 char *pass_packet, *p;
2568 int count = 0;
2569 struct remote_state *rs = get_remote_state ();
2570
2571 gdb_assert (pass_signals.size () < 256);
2572 for (size_t i = 0; i < pass_signals.size (); i++)
2573 {
2574 if (pass_signals[i])
2575 count++;
2576 }
2577 pass_packet = (char *) xmalloc (count * 3 + strlen ("QPassSignals:") + 1);
2578 strcpy (pass_packet, "QPassSignals:");
2579 p = pass_packet + strlen (pass_packet);
2580 for (size_t i = 0; i < pass_signals.size (); i++)
2581 {
2582 if (pass_signals[i])
2583 {
2584 if (i >= 16)
2585 *p++ = tohex (i >> 4);
2586 *p++ = tohex (i & 15);
2587 if (count)
2588 *p++ = ';';
2589 else
2590 break;
2591 count--;
2592 }
2593 }
2594 *p = 0;
2595 if (!rs->last_pass_packet || strcmp (rs->last_pass_packet, pass_packet))
2596 {
2597 putpkt (pass_packet);
2598 getpkt (&rs->buf, 0);
2599 packet_ok (rs->buf, &remote_protocol_packets[PACKET_QPassSignals]);
2600 if (rs->last_pass_packet)
2601 xfree (rs->last_pass_packet);
2602 rs->last_pass_packet = pass_packet;
2603 }
2604 else
2605 xfree (pass_packet);
2606 }
2607 }
2608
2609 /* If 'QCatchSyscalls' is supported, tell the remote stub
2610 to report syscalls to GDB. */
2611
2612 int
2613 remote_target::set_syscall_catchpoint (int pid, bool needed, int any_count,
2614 gdb::array_view<const int> syscall_counts)
2615 {
2616 const char *catch_packet;
2617 enum packet_result result;
2618 int n_sysno = 0;
2619
2620 if (packet_support (PACKET_QCatchSyscalls) == PACKET_DISABLE)
2621 {
2622 /* Not supported. */
2623 return 1;
2624 }
2625
2626 if (needed && any_count == 0)
2627 {
2628 /* Count how many syscalls are to be caught. */
2629 for (size_t i = 0; i < syscall_counts.size (); i++)
2630 {
2631 if (syscall_counts[i] != 0)
2632 n_sysno++;
2633 }
2634 }
2635
2636 if (remote_debug)
2637 {
2638 fprintf_unfiltered (gdb_stdlog,
2639 "remote_set_syscall_catchpoint "
2640 "pid %d needed %d any_count %d n_sysno %d\n",
2641 pid, needed, any_count, n_sysno);
2642 }
2643
2644 std::string built_packet;
2645 if (needed)
2646 {
2647 /* Prepare a packet with the sysno list, assuming max 8+1
2648 characters for a sysno. If the resulting packet size is too
2649 big, fallback on the non-selective packet. */
2650 const int maxpktsz = strlen ("QCatchSyscalls:1") + n_sysno * 9 + 1;
2651 built_packet.reserve (maxpktsz);
2652 built_packet = "QCatchSyscalls:1";
2653 if (any_count == 0)
2654 {
2655 /* Add in each syscall to be caught. */
2656 for (size_t i = 0; i < syscall_counts.size (); i++)
2657 {
2658 if (syscall_counts[i] != 0)
2659 string_appendf (built_packet, ";%zx", i);
2660 }
2661 }
2662 if (built_packet.size () > get_remote_packet_size ())
2663 {
2664 /* catch_packet too big. Fallback to less efficient
2665 non selective mode, with GDB doing the filtering. */
2666 catch_packet = "QCatchSyscalls:1";
2667 }
2668 else
2669 catch_packet = built_packet.c_str ();
2670 }
2671 else
2672 catch_packet = "QCatchSyscalls:0";
2673
2674 struct remote_state *rs = get_remote_state ();
2675
2676 putpkt (catch_packet);
2677 getpkt (&rs->buf, 0);
2678 result = packet_ok (rs->buf, &remote_protocol_packets[PACKET_QCatchSyscalls]);
2679 if (result == PACKET_OK)
2680 return 0;
2681 else
2682 return -1;
2683 }
2684
2685 /* If 'QProgramSignals' is supported, tell the remote stub what
2686 signals it should pass through to the inferior when detaching. */
2687
2688 void
2689 remote_target::program_signals (gdb::array_view<const unsigned char> signals)
2690 {
2691 if (packet_support (PACKET_QProgramSignals) != PACKET_DISABLE)
2692 {
2693 char *packet, *p;
2694 int count = 0;
2695 struct remote_state *rs = get_remote_state ();
2696
2697 gdb_assert (signals.size () < 256);
2698 for (size_t i = 0; i < signals.size (); i++)
2699 {
2700 if (signals[i])
2701 count++;
2702 }
2703 packet = (char *) xmalloc (count * 3 + strlen ("QProgramSignals:") + 1);
2704 strcpy (packet, "QProgramSignals:");
2705 p = packet + strlen (packet);
2706 for (size_t i = 0; i < signals.size (); i++)
2707 {
2708 if (signal_pass_state (i))
2709 {
2710 if (i >= 16)
2711 *p++ = tohex (i >> 4);
2712 *p++ = tohex (i & 15);
2713 if (count)
2714 *p++ = ';';
2715 else
2716 break;
2717 count--;
2718 }
2719 }
2720 *p = 0;
2721 if (!rs->last_program_signals_packet
2722 || strcmp (rs->last_program_signals_packet, packet) != 0)
2723 {
2724 putpkt (packet);
2725 getpkt (&rs->buf, 0);
2726 packet_ok (rs->buf, &remote_protocol_packets[PACKET_QProgramSignals]);
2727 xfree (rs->last_program_signals_packet);
2728 rs->last_program_signals_packet = packet;
2729 }
2730 else
2731 xfree (packet);
2732 }
2733 }
2734
2735 /* If PTID is MAGIC_NULL_PTID, don't set any thread. If PTID is
2736 MINUS_ONE_PTID, set the thread to -1, so the stub returns the
2737 thread. If GEN is set, set the general thread, if not, then set
2738 the step/continue thread. */
2739 void
2740 remote_target::set_thread (ptid_t ptid, int gen)
2741 {
2742 struct remote_state *rs = get_remote_state ();
2743 ptid_t state = gen ? rs->general_thread : rs->continue_thread;
2744 char *buf = rs->buf.data ();
2745 char *endbuf = buf + get_remote_packet_size ();
2746
2747 if (state == ptid)
2748 return;
2749
2750 *buf++ = 'H';
2751 *buf++ = gen ? 'g' : 'c';
2752 if (ptid == magic_null_ptid)
2753 xsnprintf (buf, endbuf - buf, "0");
2754 else if (ptid == any_thread_ptid)
2755 xsnprintf (buf, endbuf - buf, "0");
2756 else if (ptid == minus_one_ptid)
2757 xsnprintf (buf, endbuf - buf, "-1");
2758 else
2759 write_ptid (buf, endbuf, ptid);
2760 putpkt (rs->buf);
2761 getpkt (&rs->buf, 0);
2762 if (gen)
2763 rs->general_thread = ptid;
2764 else
2765 rs->continue_thread = ptid;
2766 }
2767
2768 void
2769 remote_target::set_general_thread (ptid_t ptid)
2770 {
2771 set_thread (ptid, 1);
2772 }
2773
2774 void
2775 remote_target::set_continue_thread (ptid_t ptid)
2776 {
2777 set_thread (ptid, 0);
2778 }
2779
2780 /* Change the remote current process. Which thread within the process
2781 ends up selected isn't important, as long as it is the same process
2782 as what INFERIOR_PTID points to.
2783
2784 This comes from that fact that there is no explicit notion of
2785 "selected process" in the protocol. The selected process for
2786 general operations is the process the selected general thread
2787 belongs to. */
2788
2789 void
2790 remote_target::set_general_process ()
2791 {
2792 struct remote_state *rs = get_remote_state ();
2793
2794 /* If the remote can't handle multiple processes, don't bother. */
2795 if (!remote_multi_process_p (rs))
2796 return;
2797
2798 /* We only need to change the remote current thread if it's pointing
2799 at some other process. */
2800 if (rs->general_thread.pid () != inferior_ptid.pid ())
2801 set_general_thread (inferior_ptid);
2802 }
2803
2804 \f
2805 /* Return nonzero if this is the main thread that we made up ourselves
2806 to model non-threaded targets as single-threaded. */
2807
2808 static int
2809 remote_thread_always_alive (ptid_t ptid)
2810 {
2811 if (ptid == magic_null_ptid)
2812 /* The main thread is always alive. */
2813 return 1;
2814
2815 if (ptid.pid () != 0 && ptid.lwp () == 0)
2816 /* The main thread is always alive. This can happen after a
2817 vAttach, if the remote side doesn't support
2818 multi-threading. */
2819 return 1;
2820
2821 return 0;
2822 }
2823
2824 /* Return nonzero if the thread PTID is still alive on the remote
2825 system. */
2826
2827 bool
2828 remote_target::thread_alive (ptid_t ptid)
2829 {
2830 struct remote_state *rs = get_remote_state ();
2831 char *p, *endp;
2832
2833 /* Check if this is a thread that we made up ourselves to model
2834 non-threaded targets as single-threaded. */
2835 if (remote_thread_always_alive (ptid))
2836 return 1;
2837
2838 p = rs->buf.data ();
2839 endp = p + get_remote_packet_size ();
2840
2841 *p++ = 'T';
2842 write_ptid (p, endp, ptid);
2843
2844 putpkt (rs->buf);
2845 getpkt (&rs->buf, 0);
2846 return (rs->buf[0] == 'O' && rs->buf[1] == 'K');
2847 }
2848
2849 /* Return a pointer to a thread name if we know it and NULL otherwise.
2850 The thread_info object owns the memory for the name. */
2851
2852 const char *
2853 remote_target::thread_name (struct thread_info *info)
2854 {
2855 if (info->priv != NULL)
2856 {
2857 const std::string &name = get_remote_thread_info (info)->name;
2858 return !name.empty () ? name.c_str () : NULL;
2859 }
2860
2861 return NULL;
2862 }
2863
2864 /* About these extended threadlist and threadinfo packets. They are
2865 variable length packets but, the fields within them are often fixed
2866 length. They are redundent enough to send over UDP as is the
2867 remote protocol in general. There is a matching unit test module
2868 in libstub. */
2869
2870 /* WARNING: This threadref data structure comes from the remote O.S.,
2871 libstub protocol encoding, and remote.c. It is not particularly
2872 changable. */
2873
2874 /* Right now, the internal structure is int. We want it to be bigger.
2875 Plan to fix this. */
2876
2877 typedef int gdb_threadref; /* Internal GDB thread reference. */
2878
2879 /* gdb_ext_thread_info is an internal GDB data structure which is
2880 equivalent to the reply of the remote threadinfo packet. */
2881
2882 struct gdb_ext_thread_info
2883 {
2884 threadref threadid; /* External form of thread reference. */
2885 int active; /* Has state interesting to GDB?
2886 regs, stack. */
2887 char display[256]; /* Brief state display, name,
2888 blocked/suspended. */
2889 char shortname[32]; /* To be used to name threads. */
2890 char more_display[256]; /* Long info, statistics, queue depth,
2891 whatever. */
2892 };
2893
2894 /* The volume of remote transfers can be limited by submitting
2895 a mask containing bits specifying the desired information.
2896 Use a union of these values as the 'selection' parameter to
2897 get_thread_info. FIXME: Make these TAG names more thread specific. */
2898
2899 #define TAG_THREADID 1
2900 #define TAG_EXISTS 2
2901 #define TAG_DISPLAY 4
2902 #define TAG_THREADNAME 8
2903 #define TAG_MOREDISPLAY 16
2904
2905 #define BUF_THREAD_ID_SIZE (OPAQUETHREADBYTES * 2)
2906
2907 static char *unpack_nibble (char *buf, int *val);
2908
2909 static char *unpack_byte (char *buf, int *value);
2910
2911 static char *pack_int (char *buf, int value);
2912
2913 static char *unpack_int (char *buf, int *value);
2914
2915 static char *unpack_string (char *src, char *dest, int length);
2916
2917 static char *pack_threadid (char *pkt, threadref *id);
2918
2919 static char *unpack_threadid (char *inbuf, threadref *id);
2920
2921 void int_to_threadref (threadref *id, int value);
2922
2923 static int threadref_to_int (threadref *ref);
2924
2925 static void copy_threadref (threadref *dest, threadref *src);
2926
2927 static int threadmatch (threadref *dest, threadref *src);
2928
2929 static char *pack_threadinfo_request (char *pkt, int mode,
2930 threadref *id);
2931
2932 static char *pack_threadlist_request (char *pkt, int startflag,
2933 int threadcount,
2934 threadref *nextthread);
2935
2936 static int remote_newthread_step (threadref *ref, void *context);
2937
2938
2939 /* Write a PTID to BUF. ENDBUF points to one-passed-the-end of the
2940 buffer we're allowed to write to. Returns
2941 BUF+CHARACTERS_WRITTEN. */
2942
2943 char *
2944 remote_target::write_ptid (char *buf, const char *endbuf, ptid_t ptid)
2945 {
2946 int pid, tid;
2947 struct remote_state *rs = get_remote_state ();
2948
2949 if (remote_multi_process_p (rs))
2950 {
2951 pid = ptid.pid ();
2952 if (pid < 0)
2953 buf += xsnprintf (buf, endbuf - buf, "p-%x.", -pid);
2954 else
2955 buf += xsnprintf (buf, endbuf - buf, "p%x.", pid);
2956 }
2957 tid = ptid.lwp ();
2958 if (tid < 0)
2959 buf += xsnprintf (buf, endbuf - buf, "-%x", -tid);
2960 else
2961 buf += xsnprintf (buf, endbuf - buf, "%x", tid);
2962
2963 return buf;
2964 }
2965
2966 /* Extract a PTID from BUF. If non-null, OBUF is set to one past the
2967 last parsed char. Returns null_ptid if no thread id is found, and
2968 throws an error if the thread id has an invalid format. */
2969
2970 static ptid_t
2971 read_ptid (const char *buf, const char **obuf)
2972 {
2973 const char *p = buf;
2974 const char *pp;
2975 ULONGEST pid = 0, tid = 0;
2976
2977 if (*p == 'p')
2978 {
2979 /* Multi-process ptid. */
2980 pp = unpack_varlen_hex (p + 1, &pid);
2981 if (*pp != '.')
2982 error (_("invalid remote ptid: %s"), p);
2983
2984 p = pp;
2985 pp = unpack_varlen_hex (p + 1, &tid);
2986 if (obuf)
2987 *obuf = pp;
2988 return ptid_t (pid, tid, 0);
2989 }
2990
2991 /* No multi-process. Just a tid. */
2992 pp = unpack_varlen_hex (p, &tid);
2993
2994 /* Return null_ptid when no thread id is found. */
2995 if (p == pp)
2996 {
2997 if (obuf)
2998 *obuf = pp;
2999 return null_ptid;
3000 }
3001
3002 /* Since the stub is not sending a process id, then default to
3003 what's in inferior_ptid, unless it's null at this point. If so,
3004 then since there's no way to know the pid of the reported
3005 threads, use the magic number. */
3006 if (inferior_ptid == null_ptid)
3007 pid = magic_null_ptid.pid ();
3008 else
3009 pid = inferior_ptid.pid ();
3010
3011 if (obuf)
3012 *obuf = pp;
3013 return ptid_t (pid, tid, 0);
3014 }
3015
3016 static int
3017 stubhex (int ch)
3018 {
3019 if (ch >= 'a' && ch <= 'f')
3020 return ch - 'a' + 10;
3021 if (ch >= '0' && ch <= '9')
3022 return ch - '0';
3023 if (ch >= 'A' && ch <= 'F')
3024 return ch - 'A' + 10;
3025 return -1;
3026 }
3027
3028 static int
3029 stub_unpack_int (char *buff, int fieldlength)
3030 {
3031 int nibble;
3032 int retval = 0;
3033
3034 while (fieldlength)
3035 {
3036 nibble = stubhex (*buff++);
3037 retval |= nibble;
3038 fieldlength--;
3039 if (fieldlength)
3040 retval = retval << 4;
3041 }
3042 return retval;
3043 }
3044
3045 static char *
3046 unpack_nibble (char *buf, int *val)
3047 {
3048 *val = fromhex (*buf++);
3049 return buf;
3050 }
3051
3052 static char *
3053 unpack_byte (char *buf, int *value)
3054 {
3055 *value = stub_unpack_int (buf, 2);
3056 return buf + 2;
3057 }
3058
3059 static char *
3060 pack_int (char *buf, int value)
3061 {
3062 buf = pack_hex_byte (buf, (value >> 24) & 0xff);
3063 buf = pack_hex_byte (buf, (value >> 16) & 0xff);
3064 buf = pack_hex_byte (buf, (value >> 8) & 0x0ff);
3065 buf = pack_hex_byte (buf, (value & 0xff));
3066 return buf;
3067 }
3068
3069 static char *
3070 unpack_int (char *buf, int *value)
3071 {
3072 *value = stub_unpack_int (buf, 8);
3073 return buf + 8;
3074 }
3075
3076 #if 0 /* Currently unused, uncomment when needed. */
3077 static char *pack_string (char *pkt, char *string);
3078
3079 static char *
3080 pack_string (char *pkt, char *string)
3081 {
3082 char ch;
3083 int len;
3084
3085 len = strlen (string);
3086 if (len > 200)
3087 len = 200; /* Bigger than most GDB packets, junk??? */
3088 pkt = pack_hex_byte (pkt, len);
3089 while (len-- > 0)
3090 {
3091 ch = *string++;
3092 if ((ch == '\0') || (ch == '#'))
3093 ch = '*'; /* Protect encapsulation. */
3094 *pkt++ = ch;
3095 }
3096 return pkt;
3097 }
3098 #endif /* 0 (unused) */
3099
3100 static char *
3101 unpack_string (char *src, char *dest, int length)
3102 {
3103 while (length--)
3104 *dest++ = *src++;
3105 *dest = '\0';
3106 return src;
3107 }
3108
3109 static char *
3110 pack_threadid (char *pkt, threadref *id)
3111 {
3112 char *limit;
3113 unsigned char *altid;
3114
3115 altid = (unsigned char *) id;
3116 limit = pkt + BUF_THREAD_ID_SIZE;
3117 while (pkt < limit)
3118 pkt = pack_hex_byte (pkt, *altid++);
3119 return pkt;
3120 }
3121
3122
3123 static char *
3124 unpack_threadid (char *inbuf, threadref *id)
3125 {
3126 char *altref;
3127 char *limit = inbuf + BUF_THREAD_ID_SIZE;
3128 int x, y;
3129
3130 altref = (char *) id;
3131
3132 while (inbuf < limit)
3133 {
3134 x = stubhex (*inbuf++);
3135 y = stubhex (*inbuf++);
3136 *altref++ = (x << 4) | y;
3137 }
3138 return inbuf;
3139 }
3140
3141 /* Externally, threadrefs are 64 bits but internally, they are still
3142 ints. This is due to a mismatch of specifications. We would like
3143 to use 64bit thread references internally. This is an adapter
3144 function. */
3145
3146 void
3147 int_to_threadref (threadref *id, int value)
3148 {
3149 unsigned char *scan;
3150
3151 scan = (unsigned char *) id;
3152 {
3153 int i = 4;
3154 while (i--)
3155 *scan++ = 0;
3156 }
3157 *scan++ = (value >> 24) & 0xff;
3158 *scan++ = (value >> 16) & 0xff;
3159 *scan++ = (value >> 8) & 0xff;
3160 *scan++ = (value & 0xff);
3161 }
3162
3163 static int
3164 threadref_to_int (threadref *ref)
3165 {
3166 int i, value = 0;
3167 unsigned char *scan;
3168
3169 scan = *ref;
3170 scan += 4;
3171 i = 4;
3172 while (i-- > 0)
3173 value = (value << 8) | ((*scan++) & 0xff);
3174 return value;
3175 }
3176
3177 static void
3178 copy_threadref (threadref *dest, threadref *src)
3179 {
3180 int i;
3181 unsigned char *csrc, *cdest;
3182
3183 csrc = (unsigned char *) src;
3184 cdest = (unsigned char *) dest;
3185 i = 8;
3186 while (i--)
3187 *cdest++ = *csrc++;
3188 }
3189
3190 static int
3191 threadmatch (threadref *dest, threadref *src)
3192 {
3193 /* Things are broken right now, so just assume we got a match. */
3194 #if 0
3195 unsigned char *srcp, *destp;
3196 int i, result;
3197 srcp = (char *) src;
3198 destp = (char *) dest;
3199
3200 result = 1;
3201 while (i-- > 0)
3202 result &= (*srcp++ == *destp++) ? 1 : 0;
3203 return result;
3204 #endif
3205 return 1;
3206 }
3207
3208 /*
3209 threadid:1, # always request threadid
3210 context_exists:2,
3211 display:4,
3212 unique_name:8,
3213 more_display:16
3214 */
3215
3216 /* Encoding: 'Q':8,'P':8,mask:32,threadid:64 */
3217
3218 static char *
3219 pack_threadinfo_request (char *pkt, int mode, threadref *id)
3220 {
3221 *pkt++ = 'q'; /* Info Query */
3222 *pkt++ = 'P'; /* process or thread info */
3223 pkt = pack_int (pkt, mode); /* mode */
3224 pkt = pack_threadid (pkt, id); /* threadid */
3225 *pkt = '\0'; /* terminate */
3226 return pkt;
3227 }
3228
3229 /* These values tag the fields in a thread info response packet. */
3230 /* Tagging the fields allows us to request specific fields and to
3231 add more fields as time goes by. */
3232
3233 #define TAG_THREADID 1 /* Echo the thread identifier. */
3234 #define TAG_EXISTS 2 /* Is this process defined enough to
3235 fetch registers and its stack? */
3236 #define TAG_DISPLAY 4 /* A short thing maybe to put on a window */
3237 #define TAG_THREADNAME 8 /* string, maps 1-to-1 with a thread is. */
3238 #define TAG_MOREDISPLAY 16 /* Whatever the kernel wants to say about
3239 the process. */
3240
3241 int
3242 remote_target::remote_unpack_thread_info_response (char *pkt,
3243 threadref *expectedref,
3244 gdb_ext_thread_info *info)
3245 {
3246 struct remote_state *rs = get_remote_state ();
3247 int mask, length;
3248 int tag;
3249 threadref ref;
3250 char *limit = pkt + rs->buf.size (); /* Plausible parsing limit. */
3251 int retval = 1;
3252
3253 /* info->threadid = 0; FIXME: implement zero_threadref. */
3254 info->active = 0;
3255 info->display[0] = '\0';
3256 info->shortname[0] = '\0';
3257 info->more_display[0] = '\0';
3258
3259 /* Assume the characters indicating the packet type have been
3260 stripped. */
3261 pkt = unpack_int (pkt, &mask); /* arg mask */
3262 pkt = unpack_threadid (pkt, &ref);
3263
3264 if (mask == 0)
3265 warning (_("Incomplete response to threadinfo request."));
3266 if (!threadmatch (&ref, expectedref))
3267 { /* This is an answer to a different request. */
3268 warning (_("ERROR RMT Thread info mismatch."));
3269 return 0;
3270 }
3271 copy_threadref (&info->threadid, &ref);
3272
3273 /* Loop on tagged fields , try to bail if somthing goes wrong. */
3274
3275 /* Packets are terminated with nulls. */
3276 while ((pkt < limit) && mask && *pkt)
3277 {
3278 pkt = unpack_int (pkt, &tag); /* tag */
3279 pkt = unpack_byte (pkt, &length); /* length */
3280 if (!(tag & mask)) /* Tags out of synch with mask. */
3281 {
3282 warning (_("ERROR RMT: threadinfo tag mismatch."));
3283 retval = 0;
3284 break;
3285 }
3286 if (tag == TAG_THREADID)
3287 {
3288 if (length != 16)
3289 {
3290 warning (_("ERROR RMT: length of threadid is not 16."));
3291 retval = 0;
3292 break;
3293 }
3294 pkt = unpack_threadid (pkt, &ref);
3295 mask = mask & ~TAG_THREADID;
3296 continue;
3297 }
3298 if (tag == TAG_EXISTS)
3299 {
3300 info->active = stub_unpack_int (pkt, length);
3301 pkt += length;
3302 mask = mask & ~(TAG_EXISTS);
3303 if (length > 8)
3304 {
3305 warning (_("ERROR RMT: 'exists' length too long."));
3306 retval = 0;
3307 break;
3308 }
3309 continue;
3310 }
3311 if (tag == TAG_THREADNAME)
3312 {
3313 pkt = unpack_string (pkt, &info->shortname[0], length);
3314 mask = mask & ~TAG_THREADNAME;
3315 continue;
3316 }
3317 if (tag == TAG_DISPLAY)
3318 {
3319 pkt = unpack_string (pkt, &info->display[0], length);
3320 mask = mask & ~TAG_DISPLAY;
3321 continue;
3322 }
3323 if (tag == TAG_MOREDISPLAY)
3324 {
3325 pkt = unpack_string (pkt, &info->more_display[0], length);
3326 mask = mask & ~TAG_MOREDISPLAY;
3327 continue;
3328 }
3329 warning (_("ERROR RMT: unknown thread info tag."));
3330 break; /* Not a tag we know about. */
3331 }
3332 return retval;
3333 }
3334
3335 int
3336 remote_target::remote_get_threadinfo (threadref *threadid,
3337 int fieldset,
3338 gdb_ext_thread_info *info)
3339 {
3340 struct remote_state *rs = get_remote_state ();
3341 int result;
3342
3343 pack_threadinfo_request (rs->buf.data (), fieldset, threadid);
3344 putpkt (rs->buf);
3345 getpkt (&rs->buf, 0);
3346
3347 if (rs->buf[0] == '\0')
3348 return 0;
3349
3350 result = remote_unpack_thread_info_response (&rs->buf[2],
3351 threadid, info);
3352 return result;
3353 }
3354
3355 /* Format: i'Q':8,i"L":8,initflag:8,batchsize:16,lastthreadid:32 */
3356
3357 static char *
3358 pack_threadlist_request (char *pkt, int startflag, int threadcount,
3359 threadref *nextthread)
3360 {
3361 *pkt++ = 'q'; /* info query packet */
3362 *pkt++ = 'L'; /* Process LIST or threadLIST request */
3363 pkt = pack_nibble (pkt, startflag); /* initflag 1 bytes */
3364 pkt = pack_hex_byte (pkt, threadcount); /* threadcount 2 bytes */
3365 pkt = pack_threadid (pkt, nextthread); /* 64 bit thread identifier */
3366 *pkt = '\0';
3367 return pkt;
3368 }
3369
3370 /* Encoding: 'q':8,'M':8,count:16,done:8,argthreadid:64,(threadid:64)* */
3371
3372 int
3373 remote_target::parse_threadlist_response (char *pkt, int result_limit,
3374 threadref *original_echo,
3375 threadref *resultlist,
3376 int *doneflag)
3377 {
3378 struct remote_state *rs = get_remote_state ();
3379 char *limit;
3380 int count, resultcount, done;
3381
3382 resultcount = 0;
3383 /* Assume the 'q' and 'M chars have been stripped. */
3384 limit = pkt + (rs->buf.size () - BUF_THREAD_ID_SIZE);
3385 /* done parse past here */
3386 pkt = unpack_byte (pkt, &count); /* count field */
3387 pkt = unpack_nibble (pkt, &done);
3388 /* The first threadid is the argument threadid. */
3389 pkt = unpack_threadid (pkt, original_echo); /* should match query packet */
3390 while ((count-- > 0) && (pkt < limit))
3391 {
3392 pkt = unpack_threadid (pkt, resultlist++);
3393 if (resultcount++ >= result_limit)
3394 break;
3395 }
3396 if (doneflag)
3397 *doneflag = done;
3398 return resultcount;
3399 }
3400
3401 /* Fetch the next batch of threads from the remote. Returns -1 if the
3402 qL packet is not supported, 0 on error and 1 on success. */
3403
3404 int
3405 remote_target::remote_get_threadlist (int startflag, threadref *nextthread,
3406 int result_limit, int *done, int *result_count,
3407 threadref *threadlist)
3408 {
3409 struct remote_state *rs = get_remote_state ();
3410 int result = 1;
3411
3412 /* Trancate result limit to be smaller than the packet size. */
3413 if ((((result_limit + 1) * BUF_THREAD_ID_SIZE) + 10)
3414 >= get_remote_packet_size ())
3415 result_limit = (get_remote_packet_size () / BUF_THREAD_ID_SIZE) - 2;
3416
3417 pack_threadlist_request (rs->buf.data (), startflag, result_limit,
3418 nextthread);
3419 putpkt (rs->buf);
3420 getpkt (&rs->buf, 0);
3421 if (rs->buf[0] == '\0')
3422 {
3423 /* Packet not supported. */
3424 return -1;
3425 }
3426
3427 *result_count =
3428 parse_threadlist_response (&rs->buf[2], result_limit,
3429 &rs->echo_nextthread, threadlist, done);
3430
3431 if (!threadmatch (&rs->echo_nextthread, nextthread))
3432 {
3433 /* FIXME: This is a good reason to drop the packet. */
3434 /* Possably, there is a duplicate response. */
3435 /* Possabilities :
3436 retransmit immediatly - race conditions
3437 retransmit after timeout - yes
3438 exit
3439 wait for packet, then exit
3440 */
3441 warning (_("HMM: threadlist did not echo arg thread, dropping it."));
3442 return 0; /* I choose simply exiting. */
3443 }
3444 if (*result_count <= 0)
3445 {
3446 if (*done != 1)
3447 {
3448 warning (_("RMT ERROR : failed to get remote thread list."));
3449 result = 0;
3450 }
3451 return result; /* break; */
3452 }
3453 if (*result_count > result_limit)
3454 {
3455 *result_count = 0;
3456 warning (_("RMT ERROR: threadlist response longer than requested."));
3457 return 0;
3458 }
3459 return result;
3460 }
3461
3462 /* Fetch the list of remote threads, with the qL packet, and call
3463 STEPFUNCTION for each thread found. Stops iterating and returns 1
3464 if STEPFUNCTION returns true. Stops iterating and returns 0 if the
3465 STEPFUNCTION returns false. If the packet is not supported,
3466 returns -1. */
3467
3468 int
3469 remote_target::remote_threadlist_iterator (rmt_thread_action stepfunction,
3470 void *context, int looplimit)
3471 {
3472 struct remote_state *rs = get_remote_state ();
3473 int done, i, result_count;
3474 int startflag = 1;
3475 int result = 1;
3476 int loopcount = 0;
3477
3478 done = 0;
3479 while (!done)
3480 {
3481 if (loopcount++ > looplimit)
3482 {
3483 result = 0;
3484 warning (_("Remote fetch threadlist -infinite loop-."));
3485 break;
3486 }
3487 result = remote_get_threadlist (startflag, &rs->nextthread,
3488 MAXTHREADLISTRESULTS,
3489 &done, &result_count,
3490 rs->resultthreadlist);
3491 if (result <= 0)
3492 break;
3493 /* Clear for later iterations. */
3494 startflag = 0;
3495 /* Setup to resume next batch of thread references, set nextthread. */
3496 if (result_count >= 1)
3497 copy_threadref (&rs->nextthread,
3498 &rs->resultthreadlist[result_count - 1]);
3499 i = 0;
3500 while (result_count--)
3501 {
3502 if (!(*stepfunction) (&rs->resultthreadlist[i++], context))
3503 {
3504 result = 0;
3505 break;
3506 }
3507 }
3508 }
3509 return result;
3510 }
3511
3512 /* A thread found on the remote target. */
3513
3514 struct thread_item
3515 {
3516 explicit thread_item (ptid_t ptid_)
3517 : ptid (ptid_)
3518 {}
3519
3520 thread_item (thread_item &&other) = default;
3521 thread_item &operator= (thread_item &&other) = default;
3522
3523 DISABLE_COPY_AND_ASSIGN (thread_item);
3524
3525 /* The thread's PTID. */
3526 ptid_t ptid;
3527
3528 /* The thread's extra info. */
3529 std::string extra;
3530
3531 /* The thread's name. */
3532 std::string name;
3533
3534 /* The core the thread was running on. -1 if not known. */
3535 int core = -1;
3536
3537 /* The thread handle associated with the thread. */
3538 gdb::byte_vector thread_handle;
3539 };
3540
3541 /* Context passed around to the various methods listing remote
3542 threads. As new threads are found, they're added to the ITEMS
3543 vector. */
3544
3545 struct threads_listing_context
3546 {
3547 /* Return true if this object contains an entry for a thread with ptid
3548 PTID. */
3549
3550 bool contains_thread (ptid_t ptid) const
3551 {
3552 auto match_ptid = [&] (const thread_item &item)
3553 {
3554 return item.ptid == ptid;
3555 };
3556
3557 auto it = std::find_if (this->items.begin (),
3558 this->items.end (),
3559 match_ptid);
3560
3561 return it != this->items.end ();
3562 }
3563
3564 /* Remove the thread with ptid PTID. */
3565
3566 void remove_thread (ptid_t ptid)
3567 {
3568 auto match_ptid = [&] (const thread_item &item)
3569 {
3570 return item.ptid == ptid;
3571 };
3572
3573 auto it = std::remove_if (this->items.begin (),
3574 this->items.end (),
3575 match_ptid);
3576
3577 if (it != this->items.end ())
3578 this->items.erase (it);
3579 }
3580
3581 /* The threads found on the remote target. */
3582 std::vector<thread_item> items;
3583 };
3584
3585 static int
3586 remote_newthread_step (threadref *ref, void *data)
3587 {
3588 struct threads_listing_context *context
3589 = (struct threads_listing_context *) data;
3590 int pid = inferior_ptid.pid ();
3591 int lwp = threadref_to_int (ref);
3592 ptid_t ptid (pid, lwp);
3593
3594 context->items.emplace_back (ptid);
3595
3596 return 1; /* continue iterator */
3597 }
3598
3599 #define CRAZY_MAX_THREADS 1000
3600
3601 ptid_t
3602 remote_target::remote_current_thread (ptid_t oldpid)
3603 {
3604 struct remote_state *rs = get_remote_state ();
3605
3606 putpkt ("qC");
3607 getpkt (&rs->buf, 0);
3608 if (rs->buf[0] == 'Q' && rs->buf[1] == 'C')
3609 {
3610 const char *obuf;
3611 ptid_t result;
3612
3613 result = read_ptid (&rs->buf[2], &obuf);
3614 if (*obuf != '\0' && remote_debug)
3615 fprintf_unfiltered (gdb_stdlog,
3616 "warning: garbage in qC reply\n");
3617
3618 return result;
3619 }
3620 else
3621 return oldpid;
3622 }
3623
3624 /* List remote threads using the deprecated qL packet. */
3625
3626 int
3627 remote_target::remote_get_threads_with_ql (threads_listing_context *context)
3628 {
3629 if (remote_threadlist_iterator (remote_newthread_step, context,
3630 CRAZY_MAX_THREADS) >= 0)
3631 return 1;
3632
3633 return 0;
3634 }
3635
3636 #if defined(HAVE_LIBEXPAT)
3637
3638 static void
3639 start_thread (struct gdb_xml_parser *parser,
3640 const struct gdb_xml_element *element,
3641 void *user_data,
3642 std::vector<gdb_xml_value> &attributes)
3643 {
3644 struct threads_listing_context *data
3645 = (struct threads_listing_context *) user_data;
3646 struct gdb_xml_value *attr;
3647
3648 char *id = (char *) xml_find_attribute (attributes, "id")->value.get ();
3649 ptid_t ptid = read_ptid (id, NULL);
3650
3651 data->items.emplace_back (ptid);
3652 thread_item &item = data->items.back ();
3653
3654 attr = xml_find_attribute (attributes, "core");
3655 if (attr != NULL)
3656 item.core = *(ULONGEST *) attr->value.get ();
3657
3658 attr = xml_find_attribute (attributes, "name");
3659 if (attr != NULL)
3660 item.name = (const char *) attr->value.get ();
3661
3662 attr = xml_find_attribute (attributes, "handle");
3663 if (attr != NULL)
3664 item.thread_handle = hex2bin ((const char *) attr->value.get ());
3665 }
3666
3667 static void
3668 end_thread (struct gdb_xml_parser *parser,
3669 const struct gdb_xml_element *element,
3670 void *user_data, const char *body_text)
3671 {
3672 struct threads_listing_context *data
3673 = (struct threads_listing_context *) user_data;
3674
3675 if (body_text != NULL && *body_text != '\0')
3676 data->items.back ().extra = body_text;
3677 }
3678
3679 const struct gdb_xml_attribute thread_attributes[] = {
3680 { "id", GDB_XML_AF_NONE, NULL, NULL },
3681 { "core", GDB_XML_AF_OPTIONAL, gdb_xml_parse_attr_ulongest, NULL },
3682 { "name", GDB_XML_AF_OPTIONAL, NULL, NULL },
3683 { "handle", GDB_XML_AF_OPTIONAL, NULL, NULL },
3684 { NULL, GDB_XML_AF_NONE, NULL, NULL }
3685 };
3686
3687 const struct gdb_xml_element thread_children[] = {
3688 { NULL, NULL, NULL, GDB_XML_EF_NONE, NULL, NULL }
3689 };
3690
3691 const struct gdb_xml_element threads_children[] = {
3692 { "thread", thread_attributes, thread_children,
3693 GDB_XML_EF_REPEATABLE | GDB_XML_EF_OPTIONAL,
3694 start_thread, end_thread },
3695 { NULL, NULL, NULL, GDB_XML_EF_NONE, NULL, NULL }
3696 };
3697
3698 const struct gdb_xml_element threads_elements[] = {
3699 { "threads", NULL, threads_children,
3700 GDB_XML_EF_NONE, NULL, NULL },
3701 { NULL, NULL, NULL, GDB_XML_EF_NONE, NULL, NULL }
3702 };
3703
3704 #endif
3705
3706 /* List remote threads using qXfer:threads:read. */
3707
3708 int
3709 remote_target::remote_get_threads_with_qxfer (threads_listing_context *context)
3710 {
3711 #if defined(HAVE_LIBEXPAT)
3712 if (packet_support (PACKET_qXfer_threads) == PACKET_ENABLE)
3713 {
3714 gdb::optional<gdb::char_vector> xml
3715 = target_read_stralloc (this, TARGET_OBJECT_THREADS, NULL);
3716
3717 if (xml && (*xml)[0] != '\0')
3718 {
3719 gdb_xml_parse_quick (_("threads"), "threads.dtd",
3720 threads_elements, xml->data (), context);
3721 }
3722
3723 return 1;
3724 }
3725 #endif
3726
3727 return 0;
3728 }
3729
3730 /* List remote threads using qfThreadInfo/qsThreadInfo. */
3731
3732 int
3733 remote_target::remote_get_threads_with_qthreadinfo (threads_listing_context *context)
3734 {
3735 struct remote_state *rs = get_remote_state ();
3736
3737 if (rs->use_threadinfo_query)
3738 {
3739 const char *bufp;
3740
3741 putpkt ("qfThreadInfo");
3742 getpkt (&rs->buf, 0);
3743 bufp = rs->buf.data ();
3744 if (bufp[0] != '\0') /* q packet recognized */
3745 {
3746 while (*bufp++ == 'm') /* reply contains one or more TID */
3747 {
3748 do
3749 {
3750 ptid_t ptid = read_ptid (bufp, &bufp);
3751 context->items.emplace_back (ptid);
3752 }
3753 while (*bufp++ == ','); /* comma-separated list */
3754 putpkt ("qsThreadInfo");
3755 getpkt (&rs->buf, 0);
3756 bufp = rs->buf.data ();
3757 }
3758 return 1;
3759 }
3760 else
3761 {
3762 /* Packet not recognized. */
3763 rs->use_threadinfo_query = 0;
3764 }
3765 }
3766
3767 return 0;
3768 }
3769
3770 /* Implement the to_update_thread_list function for the remote
3771 targets. */
3772
3773 void
3774 remote_target::update_thread_list ()
3775 {
3776 struct threads_listing_context context;
3777 int got_list = 0;
3778
3779 /* We have a few different mechanisms to fetch the thread list. Try
3780 them all, starting with the most preferred one first, falling
3781 back to older methods. */
3782 if (remote_get_threads_with_qxfer (&context)
3783 || remote_get_threads_with_qthreadinfo (&context)
3784 || remote_get_threads_with_ql (&context))
3785 {
3786 got_list = 1;
3787
3788 if (context.items.empty ()
3789 && remote_thread_always_alive (inferior_ptid))
3790 {
3791 /* Some targets don't really support threads, but still
3792 reply an (empty) thread list in response to the thread
3793 listing packets, instead of replying "packet not
3794 supported". Exit early so we don't delete the main
3795 thread. */
3796 return;
3797 }
3798
3799 /* CONTEXT now holds the current thread list on the remote
3800 target end. Delete GDB-side threads no longer found on the
3801 target. */
3802 for (thread_info *tp : all_threads_safe ())
3803 {
3804 if (!context.contains_thread (tp->ptid))
3805 {
3806 /* Not found. */
3807 delete_thread (tp);
3808 }
3809 }
3810
3811 /* Remove any unreported fork child threads from CONTEXT so
3812 that we don't interfere with follow fork, which is where
3813 creation of such threads is handled. */
3814 remove_new_fork_children (&context);
3815
3816 /* And now add threads we don't know about yet to our list. */
3817 for (thread_item &item : context.items)
3818 {
3819 if (item.ptid != null_ptid)
3820 {
3821 /* In non-stop mode, we assume new found threads are
3822 executing until proven otherwise with a stop reply.
3823 In all-stop, we can only get here if all threads are
3824 stopped. */
3825 int executing = target_is_non_stop_p () ? 1 : 0;
3826
3827 remote_notice_new_inferior (item.ptid, executing);
3828
3829 thread_info *tp = find_thread_ptid (item.ptid);
3830 remote_thread_info *info = get_remote_thread_info (tp);
3831 info->core = item.core;
3832 info->extra = std::move (item.extra);
3833 info->name = std::move (item.name);
3834 info->thread_handle = std::move (item.thread_handle);
3835 }
3836 }
3837 }
3838
3839 if (!got_list)
3840 {
3841 /* If no thread listing method is supported, then query whether
3842 each known thread is alive, one by one, with the T packet.
3843 If the target doesn't support threads at all, then this is a
3844 no-op. See remote_thread_alive. */
3845 prune_threads ();
3846 }
3847 }
3848
3849 /*
3850 * Collect a descriptive string about the given thread.
3851 * The target may say anything it wants to about the thread
3852 * (typically info about its blocked / runnable state, name, etc.).
3853 * This string will appear in the info threads display.
3854 *
3855 * Optional: targets are not required to implement this function.
3856 */
3857
3858 const char *
3859 remote_target::extra_thread_info (thread_info *tp)
3860 {
3861 struct remote_state *rs = get_remote_state ();
3862 int set;
3863 threadref id;
3864 struct gdb_ext_thread_info threadinfo;
3865
3866 if (rs->remote_desc == 0) /* paranoia */
3867 internal_error (__FILE__, __LINE__,
3868 _("remote_threads_extra_info"));
3869
3870 if (tp->ptid == magic_null_ptid
3871 || (tp->ptid.pid () != 0 && tp->ptid.lwp () == 0))
3872 /* This is the main thread which was added by GDB. The remote
3873 server doesn't know about it. */
3874 return NULL;
3875
3876 std::string &extra = get_remote_thread_info (tp)->extra;
3877
3878 /* If already have cached info, use it. */
3879 if (!extra.empty ())
3880 return extra.c_str ();
3881
3882 if (packet_support (PACKET_qXfer_threads) == PACKET_ENABLE)
3883 {
3884 /* If we're using qXfer:threads:read, then the extra info is
3885 included in the XML. So if we didn't have anything cached,
3886 it's because there's really no extra info. */
3887 return NULL;
3888 }
3889
3890 if (rs->use_threadextra_query)
3891 {
3892 char *b = rs->buf.data ();
3893 char *endb = b + get_remote_packet_size ();
3894
3895 xsnprintf (b, endb - b, "qThreadExtraInfo,");
3896 b += strlen (b);
3897 write_ptid (b, endb, tp->ptid);
3898
3899 putpkt (rs->buf);
3900 getpkt (&rs->buf, 0);
3901 if (rs->buf[0] != 0)
3902 {
3903 extra.resize (strlen (rs->buf.data ()) / 2);
3904 hex2bin (rs->buf.data (), (gdb_byte *) &extra[0], extra.size ());
3905 return extra.c_str ();
3906 }
3907 }
3908
3909 /* If the above query fails, fall back to the old method. */
3910 rs->use_threadextra_query = 0;
3911 set = TAG_THREADID | TAG_EXISTS | TAG_THREADNAME
3912 | TAG_MOREDISPLAY | TAG_DISPLAY;
3913 int_to_threadref (&id, tp->ptid.lwp ());
3914 if (remote_get_threadinfo (&id, set, &threadinfo))
3915 if (threadinfo.active)
3916 {
3917 if (*threadinfo.shortname)
3918 string_appendf (extra, " Name: %s", threadinfo.shortname);
3919 if (*threadinfo.display)
3920 {
3921 if (!extra.empty ())
3922 extra += ',';
3923 string_appendf (extra, " State: %s", threadinfo.display);
3924 }
3925 if (*threadinfo.more_display)
3926 {
3927 if (!extra.empty ())
3928 extra += ',';
3929 string_appendf (extra, " Priority: %s", threadinfo.more_display);
3930 }
3931 return extra.c_str ();
3932 }
3933 return NULL;
3934 }
3935 \f
3936
3937 bool
3938 remote_target::static_tracepoint_marker_at (CORE_ADDR addr,
3939 struct static_tracepoint_marker *marker)
3940 {
3941 struct remote_state *rs = get_remote_state ();
3942 char *p = rs->buf.data ();
3943
3944 xsnprintf (p, get_remote_packet_size (), "qTSTMat:");
3945 p += strlen (p);
3946 p += hexnumstr (p, addr);
3947 putpkt (rs->buf);
3948 getpkt (&rs->buf, 0);
3949 p = rs->buf.data ();
3950
3951 if (*p == 'E')
3952 error (_("Remote failure reply: %s"), p);
3953
3954 if (*p++ == 'm')
3955 {
3956 parse_static_tracepoint_marker_definition (p, NULL, marker);
3957 return true;
3958 }
3959
3960 return false;
3961 }
3962
3963 std::vector<static_tracepoint_marker>
3964 remote_target::static_tracepoint_markers_by_strid (const char *strid)
3965 {
3966 struct remote_state *rs = get_remote_state ();
3967 std::vector<static_tracepoint_marker> markers;
3968 const char *p;
3969 static_tracepoint_marker marker;
3970
3971 /* Ask for a first packet of static tracepoint marker
3972 definition. */
3973 putpkt ("qTfSTM");
3974 getpkt (&rs->buf, 0);
3975 p = rs->buf.data ();
3976 if (*p == 'E')
3977 error (_("Remote failure reply: %s"), p);
3978
3979 while (*p++ == 'm')
3980 {
3981 do
3982 {
3983 parse_static_tracepoint_marker_definition (p, &p, &marker);
3984
3985 if (strid == NULL || marker.str_id == strid)
3986 markers.push_back (std::move (marker));
3987 }
3988 while (*p++ == ','); /* comma-separated list */
3989 /* Ask for another packet of static tracepoint definition. */
3990 putpkt ("qTsSTM");
3991 getpkt (&rs->buf, 0);
3992 p = rs->buf.data ();
3993 }
3994
3995 return markers;
3996 }
3997
3998 \f
3999 /* Implement the to_get_ada_task_ptid function for the remote targets. */
4000
4001 ptid_t
4002 remote_target::get_ada_task_ptid (long lwp, long thread)
4003 {
4004 return ptid_t (inferior_ptid.pid (), lwp, 0);
4005 }
4006 \f
4007
4008 /* Restart the remote side; this is an extended protocol operation. */
4009
4010 void
4011 remote_target::extended_remote_restart ()
4012 {
4013 struct remote_state *rs = get_remote_state ();
4014
4015 /* Send the restart command; for reasons I don't understand the
4016 remote side really expects a number after the "R". */
4017 xsnprintf (rs->buf.data (), get_remote_packet_size (), "R%x", 0);
4018 putpkt (rs->buf);
4019
4020 remote_fileio_reset ();
4021 }
4022 \f
4023 /* Clean up connection to a remote debugger. */
4024
4025 void
4026 remote_target::close ()
4027 {
4028 /* Make sure we leave stdin registered in the event loop. */
4029 terminal_ours ();
4030
4031 /* We don't have a connection to the remote stub anymore. Get rid
4032 of all the inferiors and their threads we were controlling.
4033 Reset inferior_ptid to null_ptid first, as otherwise has_stack_frame
4034 will be unable to find the thread corresponding to (pid, 0, 0). */
4035 inferior_ptid = null_ptid;
4036 discard_all_inferiors ();
4037
4038 trace_reset_local_state ();
4039
4040 delete this;
4041 }
4042
4043 remote_target::~remote_target ()
4044 {
4045 struct remote_state *rs = get_remote_state ();
4046
4047 /* Check for NULL because we may get here with a partially
4048 constructed target/connection. */
4049 if (rs->remote_desc == nullptr)
4050 return;
4051
4052 serial_close (rs->remote_desc);
4053
4054 /* We are destroying the remote target, so we should discard
4055 everything of this target. */
4056 discard_pending_stop_replies_in_queue ();
4057
4058 if (rs->remote_async_inferior_event_token)
4059 delete_async_event_handler (&rs->remote_async_inferior_event_token);
4060
4061 remote_notif_state_xfree (rs->notif_state);
4062 }
4063
4064 /* Query the remote side for the text, data and bss offsets. */
4065
4066 void
4067 remote_target::get_offsets ()
4068 {
4069 struct remote_state *rs = get_remote_state ();
4070 char *buf;
4071 char *ptr;
4072 int lose, num_segments = 0, do_sections, do_segments;
4073 CORE_ADDR text_addr, data_addr, bss_addr, segments[2];
4074 struct section_offsets *offs;
4075 struct symfile_segment_data *data;
4076
4077 if (symfile_objfile == NULL)
4078 return;
4079
4080 putpkt ("qOffsets");
4081 getpkt (&rs->buf, 0);
4082 buf = rs->buf.data ();
4083
4084 if (buf[0] == '\000')
4085 return; /* Return silently. Stub doesn't support
4086 this command. */
4087 if (buf[0] == 'E')
4088 {
4089 warning (_("Remote failure reply: %s"), buf);
4090 return;
4091 }
4092
4093 /* Pick up each field in turn. This used to be done with scanf, but
4094 scanf will make trouble if CORE_ADDR size doesn't match
4095 conversion directives correctly. The following code will work
4096 with any size of CORE_ADDR. */
4097 text_addr = data_addr = bss_addr = 0;
4098 ptr = buf;
4099 lose = 0;
4100
4101 if (startswith (ptr, "Text="))
4102 {
4103 ptr += 5;
4104 /* Don't use strtol, could lose on big values. */
4105 while (*ptr && *ptr != ';')
4106 text_addr = (text_addr << 4) + fromhex (*ptr++);
4107
4108 if (startswith (ptr, ";Data="))
4109 {
4110 ptr += 6;
4111 while (*ptr && *ptr != ';')
4112 data_addr = (data_addr << 4) + fromhex (*ptr++);
4113 }
4114 else
4115 lose = 1;
4116
4117 if (!lose && startswith (ptr, ";Bss="))
4118 {
4119 ptr += 5;
4120 while (*ptr && *ptr != ';')
4121 bss_addr = (bss_addr << 4) + fromhex (*ptr++);
4122
4123 if (bss_addr != data_addr)
4124 warning (_("Target reported unsupported offsets: %s"), buf);
4125 }
4126 else
4127 lose = 1;
4128 }
4129 else if (startswith (ptr, "TextSeg="))
4130 {
4131 ptr += 8;
4132 /* Don't use strtol, could lose on big values. */
4133 while (*ptr && *ptr != ';')
4134 text_addr = (text_addr << 4) + fromhex (*ptr++);
4135 num_segments = 1;
4136
4137 if (startswith (ptr, ";DataSeg="))
4138 {
4139 ptr += 9;
4140 while (*ptr && *ptr != ';')
4141 data_addr = (data_addr << 4) + fromhex (*ptr++);
4142 num_segments++;
4143 }
4144 }
4145 else
4146 lose = 1;
4147
4148 if (lose)
4149 error (_("Malformed response to offset query, %s"), buf);
4150 else if (*ptr != '\0')
4151 warning (_("Target reported unsupported offsets: %s"), buf);
4152
4153 offs = ((struct section_offsets *)
4154 alloca (SIZEOF_N_SECTION_OFFSETS (symfile_objfile->num_sections)));
4155 memcpy (offs, symfile_objfile->section_offsets,
4156 SIZEOF_N_SECTION_OFFSETS (symfile_objfile->num_sections));
4157
4158 data = get_symfile_segment_data (symfile_objfile->obfd);
4159 do_segments = (data != NULL);
4160 do_sections = num_segments == 0;
4161
4162 if (num_segments > 0)
4163 {
4164 segments[0] = text_addr;
4165 segments[1] = data_addr;
4166 }
4167 /* If we have two segments, we can still try to relocate everything
4168 by assuming that the .text and .data offsets apply to the whole
4169 text and data segments. Convert the offsets given in the packet
4170 to base addresses for symfile_map_offsets_to_segments. */
4171 else if (data && data->num_segments == 2)
4172 {
4173 segments[0] = data->segment_bases[0] + text_addr;
4174 segments[1] = data->segment_bases[1] + data_addr;
4175 num_segments = 2;
4176 }
4177 /* If the object file has only one segment, assume that it is text
4178 rather than data; main programs with no writable data are rare,
4179 but programs with no code are useless. Of course the code might
4180 have ended up in the data segment... to detect that we would need
4181 the permissions here. */
4182 else if (data && data->num_segments == 1)
4183 {
4184 segments[0] = data->segment_bases[0] + text_addr;
4185 num_segments = 1;
4186 }
4187 /* There's no way to relocate by segment. */
4188 else
4189 do_segments = 0;
4190
4191 if (do_segments)
4192 {
4193 int ret = symfile_map_offsets_to_segments (symfile_objfile->obfd, data,
4194 offs, num_segments, segments);
4195
4196 if (ret == 0 && !do_sections)
4197 error (_("Can not handle qOffsets TextSeg "
4198 "response with this symbol file"));
4199
4200 if (ret > 0)
4201 do_sections = 0;
4202 }
4203
4204 if (data)
4205 free_symfile_segment_data (data);
4206
4207 if (do_sections)
4208 {
4209 offs->offsets[SECT_OFF_TEXT (symfile_objfile)] = text_addr;
4210
4211 /* This is a temporary kludge to force data and bss to use the
4212 same offsets because that's what nlmconv does now. The real
4213 solution requires changes to the stub and remote.c that I
4214 don't have time to do right now. */
4215
4216 offs->offsets[SECT_OFF_DATA (symfile_objfile)] = data_addr;
4217 offs->offsets[SECT_OFF_BSS (symfile_objfile)] = data_addr;
4218 }
4219
4220 objfile_relocate (symfile_objfile, offs);
4221 }
4222
4223 /* Send interrupt_sequence to remote target. */
4224
4225 void
4226 remote_target::send_interrupt_sequence ()
4227 {
4228 struct remote_state *rs = get_remote_state ();
4229
4230 if (interrupt_sequence_mode == interrupt_sequence_control_c)
4231 remote_serial_write ("\x03", 1);
4232 else if (interrupt_sequence_mode == interrupt_sequence_break)
4233 serial_send_break (rs->remote_desc);
4234 else if (interrupt_sequence_mode == interrupt_sequence_break_g)
4235 {
4236 serial_send_break (rs->remote_desc);
4237 remote_serial_write ("g", 1);
4238 }
4239 else
4240 internal_error (__FILE__, __LINE__,
4241 _("Invalid value for interrupt_sequence_mode: %s."),
4242 interrupt_sequence_mode);
4243 }
4244
4245
4246 /* If STOP_REPLY is a T stop reply, look for the "thread" register,
4247 and extract the PTID. Returns NULL_PTID if not found. */
4248
4249 static ptid_t
4250 stop_reply_extract_thread (char *stop_reply)
4251 {
4252 if (stop_reply[0] == 'T' && strlen (stop_reply) > 3)
4253 {
4254 const char *p;
4255
4256 /* Txx r:val ; r:val (...) */
4257 p = &stop_reply[3];
4258
4259 /* Look for "register" named "thread". */
4260 while (*p != '\0')
4261 {
4262 const char *p1;
4263
4264 p1 = strchr (p, ':');
4265 if (p1 == NULL)
4266 return null_ptid;
4267
4268 if (strncmp (p, "thread", p1 - p) == 0)
4269 return read_ptid (++p1, &p);
4270
4271 p1 = strchr (p, ';');
4272 if (p1 == NULL)
4273 return null_ptid;
4274 p1++;
4275
4276 p = p1;
4277 }
4278 }
4279
4280 return null_ptid;
4281 }
4282
4283 /* Determine the remote side's current thread. If we have a stop
4284 reply handy (in WAIT_STATUS), maybe it's a T stop reply with a
4285 "thread" register we can extract the current thread from. If not,
4286 ask the remote which is the current thread with qC. The former
4287 method avoids a roundtrip. */
4288
4289 ptid_t
4290 remote_target::get_current_thread (char *wait_status)
4291 {
4292 ptid_t ptid = null_ptid;
4293
4294 /* Note we don't use remote_parse_stop_reply as that makes use of
4295 the target architecture, which we haven't yet fully determined at
4296 this point. */
4297 if (wait_status != NULL)
4298 ptid = stop_reply_extract_thread (wait_status);
4299 if (ptid == null_ptid)
4300 ptid = remote_current_thread (inferior_ptid);
4301
4302 return ptid;
4303 }
4304
4305 /* Query the remote target for which is the current thread/process,
4306 add it to our tables, and update INFERIOR_PTID. The caller is
4307 responsible for setting the state such that the remote end is ready
4308 to return the current thread.
4309
4310 This function is called after handling the '?' or 'vRun' packets,
4311 whose response is a stop reply from which we can also try
4312 extracting the thread. If the target doesn't support the explicit
4313 qC query, we infer the current thread from that stop reply, passed
4314 in in WAIT_STATUS, which may be NULL. */
4315
4316 void
4317 remote_target::add_current_inferior_and_thread (char *wait_status)
4318 {
4319 struct remote_state *rs = get_remote_state ();
4320 int fake_pid_p = 0;
4321
4322 inferior_ptid = null_ptid;
4323
4324 /* Now, if we have thread information, update inferior_ptid. */
4325 ptid_t curr_ptid = get_current_thread (wait_status);
4326
4327 if (curr_ptid != null_ptid)
4328 {
4329 if (!remote_multi_process_p (rs))
4330 fake_pid_p = 1;
4331 }
4332 else
4333 {
4334 /* Without this, some commands which require an active target
4335 (such as kill) won't work. This variable serves (at least)
4336 double duty as both the pid of the target process (if it has
4337 such), and as a flag indicating that a target is active. */
4338 curr_ptid = magic_null_ptid;
4339 fake_pid_p = 1;
4340 }
4341
4342 remote_add_inferior (fake_pid_p, curr_ptid.pid (), -1, 1);
4343
4344 /* Add the main thread and switch to it. Don't try reading
4345 registers yet, since we haven't fetched the target description
4346 yet. */
4347 thread_info *tp = add_thread_silent (curr_ptid);
4348 switch_to_thread_no_regs (tp);
4349 }
4350
4351 /* Print info about a thread that was found already stopped on
4352 connection. */
4353
4354 static void
4355 print_one_stopped_thread (struct thread_info *thread)
4356 {
4357 struct target_waitstatus *ws = &thread->suspend.waitstatus;
4358
4359 switch_to_thread (thread);
4360 thread->suspend.stop_pc = get_frame_pc (get_current_frame ());
4361 set_current_sal_from_frame (get_current_frame ());
4362
4363 thread->suspend.waitstatus_pending_p = 0;
4364
4365 if (ws->kind == TARGET_WAITKIND_STOPPED)
4366 {
4367 enum gdb_signal sig = ws->value.sig;
4368
4369 if (signal_print_state (sig))
4370 gdb::observers::signal_received.notify (sig);
4371 }
4372 gdb::observers::normal_stop.notify (NULL, 1);
4373 }
4374
4375 /* Process all initial stop replies the remote side sent in response
4376 to the ? packet. These indicate threads that were already stopped
4377 on initial connection. We mark these threads as stopped and print
4378 their current frame before giving the user the prompt. */
4379
4380 void
4381 remote_target::process_initial_stop_replies (int from_tty)
4382 {
4383 int pending_stop_replies = stop_reply_queue_length ();
4384 struct thread_info *selected = NULL;
4385 struct thread_info *lowest_stopped = NULL;
4386 struct thread_info *first = NULL;
4387
4388 /* Consume the initial pending events. */
4389 while (pending_stop_replies-- > 0)
4390 {
4391 ptid_t waiton_ptid = minus_one_ptid;
4392 ptid_t event_ptid;
4393 struct target_waitstatus ws;
4394 int ignore_event = 0;
4395
4396 memset (&ws, 0, sizeof (ws));
4397 event_ptid = target_wait (waiton_ptid, &ws, TARGET_WNOHANG);
4398 if (remote_debug)
4399 print_target_wait_results (waiton_ptid, event_ptid, &ws);
4400
4401 switch (ws.kind)
4402 {
4403 case TARGET_WAITKIND_IGNORE:
4404 case TARGET_WAITKIND_NO_RESUMED:
4405 case TARGET_WAITKIND_SIGNALLED:
4406 case TARGET_WAITKIND_EXITED:
4407 /* We shouldn't see these, but if we do, just ignore. */
4408 if (remote_debug)
4409 fprintf_unfiltered (gdb_stdlog, "remote: event ignored\n");
4410 ignore_event = 1;
4411 break;
4412
4413 case TARGET_WAITKIND_EXECD:
4414 xfree (ws.value.execd_pathname);
4415 break;
4416 default:
4417 break;
4418 }
4419
4420 if (ignore_event)
4421 continue;
4422
4423 struct thread_info *evthread = find_thread_ptid (event_ptid);
4424
4425 if (ws.kind == TARGET_WAITKIND_STOPPED)
4426 {
4427 enum gdb_signal sig = ws.value.sig;
4428
4429 /* Stubs traditionally report SIGTRAP as initial signal,
4430 instead of signal 0. Suppress it. */
4431 if (sig == GDB_SIGNAL_TRAP)
4432 sig = GDB_SIGNAL_0;
4433 evthread->suspend.stop_signal = sig;
4434 ws.value.sig = sig;
4435 }
4436
4437 evthread->suspend.waitstatus = ws;
4438
4439 if (ws.kind != TARGET_WAITKIND_STOPPED
4440 || ws.value.sig != GDB_SIGNAL_0)
4441 evthread->suspend.waitstatus_pending_p = 1;
4442
4443 set_executing (event_ptid, 0);
4444 set_running (event_ptid, 0);
4445 get_remote_thread_info (evthread)->vcont_resumed = 0;
4446 }
4447
4448 /* "Notice" the new inferiors before anything related to
4449 registers/memory. */
4450 for (inferior *inf : all_non_exited_inferiors ())
4451 {
4452 inf->needs_setup = 1;
4453
4454 if (non_stop)
4455 {
4456 thread_info *thread = any_live_thread_of_inferior (inf);
4457 notice_new_inferior (thread, thread->state == THREAD_RUNNING,
4458 from_tty);
4459 }
4460 }
4461
4462 /* If all-stop on top of non-stop, pause all threads. Note this
4463 records the threads' stop pc, so must be done after "noticing"
4464 the inferiors. */
4465 if (!non_stop)
4466 {
4467 stop_all_threads ();
4468
4469 /* If all threads of an inferior were already stopped, we
4470 haven't setup the inferior yet. */
4471 for (inferior *inf : all_non_exited_inferiors ())
4472 {
4473 if (inf->needs_setup)
4474 {
4475 thread_info *thread = any_live_thread_of_inferior (inf);
4476 switch_to_thread_no_regs (thread);
4477 setup_inferior (0);
4478 }
4479 }
4480 }
4481
4482 /* Now go over all threads that are stopped, and print their current
4483 frame. If all-stop, then if there's a signalled thread, pick
4484 that as current. */
4485 for (thread_info *thread : all_non_exited_threads ())
4486 {
4487 if (first == NULL)
4488 first = thread;
4489
4490 if (!non_stop)
4491 thread->set_running (false);
4492 else if (thread->state != THREAD_STOPPED)
4493 continue;
4494
4495 if (selected == NULL
4496 && thread->suspend.waitstatus_pending_p)
4497 selected = thread;
4498
4499 if (lowest_stopped == NULL
4500 || thread->inf->num < lowest_stopped->inf->num
4501 || thread->per_inf_num < lowest_stopped->per_inf_num)
4502 lowest_stopped = thread;
4503
4504 if (non_stop)
4505 print_one_stopped_thread (thread);
4506 }
4507
4508 /* In all-stop, we only print the status of one thread, and leave
4509 others with their status pending. */
4510 if (!non_stop)
4511 {
4512 thread_info *thread = selected;
4513 if (thread == NULL)
4514 thread = lowest_stopped;
4515 if (thread == NULL)
4516 thread = first;
4517
4518 print_one_stopped_thread (thread);
4519 }
4520
4521 /* For "info program". */
4522 thread_info *thread = inferior_thread ();
4523 if (thread->state == THREAD_STOPPED)
4524 set_last_target_status (inferior_ptid, thread->suspend.waitstatus);
4525 }
4526
4527 /* Start the remote connection and sync state. */
4528
4529 void
4530 remote_target::start_remote (int from_tty, int extended_p)
4531 {
4532 struct remote_state *rs = get_remote_state ();
4533 struct packet_config *noack_config;
4534 char *wait_status = NULL;
4535
4536 /* Signal other parts that we're going through the initial setup,
4537 and so things may not be stable yet. E.g., we don't try to
4538 install tracepoints until we've relocated symbols. Also, a
4539 Ctrl-C before we're connected and synced up can't interrupt the
4540 target. Instead, it offers to drop the (potentially wedged)
4541 connection. */
4542 rs->starting_up = 1;
4543
4544 QUIT;
4545
4546 if (interrupt_on_connect)
4547 send_interrupt_sequence ();
4548
4549 /* Ack any packet which the remote side has already sent. */
4550 remote_serial_write ("+", 1);
4551
4552 /* The first packet we send to the target is the optional "supported
4553 packets" request. If the target can answer this, it will tell us
4554 which later probes to skip. */
4555 remote_query_supported ();
4556
4557 /* If the stub wants to get a QAllow, compose one and send it. */
4558 if (packet_support (PACKET_QAllow) != PACKET_DISABLE)
4559 set_permissions ();
4560
4561 /* gdbserver < 7.7 (before its fix from 2013-12-11) did reply to any
4562 unknown 'v' packet with string "OK". "OK" gets interpreted by GDB
4563 as a reply to known packet. For packet "vFile:setfs:" it is an
4564 invalid reply and GDB would return error in
4565 remote_hostio_set_filesystem, making remote files access impossible.
4566 Disable "vFile:setfs:" in such case. Do not disable other 'v' packets as
4567 other "vFile" packets get correctly detected even on gdbserver < 7.7. */
4568 {
4569 const char v_mustreplyempty[] = "vMustReplyEmpty";
4570
4571 putpkt (v_mustreplyempty);
4572 getpkt (&rs->buf, 0);
4573 if (strcmp (rs->buf.data (), "OK") == 0)
4574 remote_protocol_packets[PACKET_vFile_setfs].support = PACKET_DISABLE;
4575 else if (strcmp (rs->buf.data (), "") != 0)
4576 error (_("Remote replied unexpectedly to '%s': %s"), v_mustreplyempty,
4577 rs->buf.data ());
4578 }
4579
4580 /* Next, we possibly activate noack mode.
4581
4582 If the QStartNoAckMode packet configuration is set to AUTO,
4583 enable noack mode if the stub reported a wish for it with
4584 qSupported.
4585
4586 If set to TRUE, then enable noack mode even if the stub didn't
4587 report it in qSupported. If the stub doesn't reply OK, the
4588 session ends with an error.
4589
4590 If FALSE, then don't activate noack mode, regardless of what the
4591 stub claimed should be the default with qSupported. */
4592
4593 noack_config = &remote_protocol_packets[PACKET_QStartNoAckMode];
4594 if (packet_config_support (noack_config) != PACKET_DISABLE)
4595 {
4596 putpkt ("QStartNoAckMode");
4597 getpkt (&rs->buf, 0);
4598 if (packet_ok (rs->buf, noack_config) == PACKET_OK)
4599 rs->noack_mode = 1;
4600 }
4601
4602 if (extended_p)
4603 {
4604 /* Tell the remote that we are using the extended protocol. */
4605 putpkt ("!");
4606 getpkt (&rs->buf, 0);
4607 }
4608
4609 /* Let the target know which signals it is allowed to pass down to
4610 the program. */
4611 update_signals_program_target ();
4612
4613 /* Next, if the target can specify a description, read it. We do
4614 this before anything involving memory or registers. */
4615 target_find_description ();
4616
4617 /* Next, now that we know something about the target, update the
4618 address spaces in the program spaces. */
4619 update_address_spaces ();
4620
4621 /* On OSs where the list of libraries is global to all
4622 processes, we fetch them early. */
4623 if (gdbarch_has_global_solist (target_gdbarch ()))
4624 solib_add (NULL, from_tty, auto_solib_add);
4625
4626 if (target_is_non_stop_p ())
4627 {
4628 if (packet_support (PACKET_QNonStop) != PACKET_ENABLE)
4629 error (_("Non-stop mode requested, but remote "
4630 "does not support non-stop"));
4631
4632 putpkt ("QNonStop:1");
4633 getpkt (&rs->buf, 0);
4634
4635 if (strcmp (rs->buf.data (), "OK") != 0)
4636 error (_("Remote refused setting non-stop mode with: %s"),
4637 rs->buf.data ());
4638
4639 /* Find about threads and processes the stub is already
4640 controlling. We default to adding them in the running state.
4641 The '?' query below will then tell us about which threads are
4642 stopped. */
4643 this->update_thread_list ();
4644 }
4645 else if (packet_support (PACKET_QNonStop) == PACKET_ENABLE)
4646 {
4647 /* Don't assume that the stub can operate in all-stop mode.
4648 Request it explicitly. */
4649 putpkt ("QNonStop:0");
4650 getpkt (&rs->buf, 0);
4651
4652 if (strcmp (rs->buf.data (), "OK") != 0)
4653 error (_("Remote refused setting all-stop mode with: %s"),
4654 rs->buf.data ());
4655 }
4656
4657 /* Upload TSVs regardless of whether the target is running or not. The
4658 remote stub, such as GDBserver, may have some predefined or builtin
4659 TSVs, even if the target is not running. */
4660 if (get_trace_status (current_trace_status ()) != -1)
4661 {
4662 struct uploaded_tsv *uploaded_tsvs = NULL;
4663
4664 upload_trace_state_variables (&uploaded_tsvs);
4665 merge_uploaded_trace_state_variables (&uploaded_tsvs);
4666 }
4667
4668 /* Check whether the target is running now. */
4669 putpkt ("?");
4670 getpkt (&rs->buf, 0);
4671
4672 if (!target_is_non_stop_p ())
4673 {
4674 if (rs->buf[0] == 'W' || rs->buf[0] == 'X')
4675 {
4676 if (!extended_p)
4677 error (_("The target is not running (try extended-remote?)"));
4678
4679 /* We're connected, but not running. Drop out before we
4680 call start_remote. */
4681 rs->starting_up = 0;
4682 return;
4683 }
4684 else
4685 {
4686 /* Save the reply for later. */
4687 wait_status = (char *) alloca (strlen (rs->buf.data ()) + 1);
4688 strcpy (wait_status, rs->buf.data ());
4689 }
4690
4691 /* Fetch thread list. */
4692 target_update_thread_list ();
4693
4694 /* Let the stub know that we want it to return the thread. */
4695 set_continue_thread (minus_one_ptid);
4696
4697 if (thread_count () == 0)
4698 {
4699 /* Target has no concept of threads at all. GDB treats
4700 non-threaded target as single-threaded; add a main
4701 thread. */
4702 add_current_inferior_and_thread (wait_status);
4703 }
4704 else
4705 {
4706 /* We have thread information; select the thread the target
4707 says should be current. If we're reconnecting to a
4708 multi-threaded program, this will ideally be the thread
4709 that last reported an event before GDB disconnected. */
4710 inferior_ptid = get_current_thread (wait_status);
4711 if (inferior_ptid == null_ptid)
4712 {
4713 /* Odd... The target was able to list threads, but not
4714 tell us which thread was current (no "thread"
4715 register in T stop reply?). Just pick the first
4716 thread in the thread list then. */
4717
4718 if (remote_debug)
4719 fprintf_unfiltered (gdb_stdlog,
4720 "warning: couldn't determine remote "
4721 "current thread; picking first in list.\n");
4722
4723 inferior_ptid = inferior_list->thread_list->ptid;
4724 }
4725 }
4726
4727 /* init_wait_for_inferior should be called before get_offsets in order
4728 to manage `inserted' flag in bp loc in a correct state.
4729 breakpoint_init_inferior, called from init_wait_for_inferior, set
4730 `inserted' flag to 0, while before breakpoint_re_set, called from
4731 start_remote, set `inserted' flag to 1. In the initialization of
4732 inferior, breakpoint_init_inferior should be called first, and then
4733 breakpoint_re_set can be called. If this order is broken, state of
4734 `inserted' flag is wrong, and cause some problems on breakpoint
4735 manipulation. */
4736 init_wait_for_inferior ();
4737
4738 get_offsets (); /* Get text, data & bss offsets. */
4739
4740 /* If we could not find a description using qXfer, and we know
4741 how to do it some other way, try again. This is not
4742 supported for non-stop; it could be, but it is tricky if
4743 there are no stopped threads when we connect. */
4744 if (remote_read_description_p (this)
4745 && gdbarch_target_desc (target_gdbarch ()) == NULL)
4746 {
4747 target_clear_description ();
4748 target_find_description ();
4749 }
4750
4751 /* Use the previously fetched status. */
4752 gdb_assert (wait_status != NULL);
4753 strcpy (rs->buf.data (), wait_status);
4754 rs->cached_wait_status = 1;
4755
4756 ::start_remote (from_tty); /* Initialize gdb process mechanisms. */
4757 }
4758 else
4759 {
4760 /* Clear WFI global state. Do this before finding about new
4761 threads and inferiors, and setting the current inferior.
4762 Otherwise we would clear the proceed status of the current
4763 inferior when we want its stop_soon state to be preserved
4764 (see notice_new_inferior). */
4765 init_wait_for_inferior ();
4766
4767 /* In non-stop, we will either get an "OK", meaning that there
4768 are no stopped threads at this time; or, a regular stop
4769 reply. In the latter case, there may be more than one thread
4770 stopped --- we pull them all out using the vStopped
4771 mechanism. */
4772 if (strcmp (rs->buf.data (), "OK") != 0)
4773 {
4774 struct notif_client *notif = &notif_client_stop;
4775
4776 /* remote_notif_get_pending_replies acks this one, and gets
4777 the rest out. */
4778 rs->notif_state->pending_event[notif_client_stop.id]
4779 = remote_notif_parse (this, notif, rs->buf.data ());
4780 remote_notif_get_pending_events (notif);
4781 }
4782
4783 if (thread_count () == 0)
4784 {
4785 if (!extended_p)
4786 error (_("The target is not running (try extended-remote?)"));
4787
4788 /* We're connected, but not running. Drop out before we
4789 call start_remote. */
4790 rs->starting_up = 0;
4791 return;
4792 }
4793
4794 /* In non-stop mode, any cached wait status will be stored in
4795 the stop reply queue. */
4796 gdb_assert (wait_status == NULL);
4797
4798 /* Report all signals during attach/startup. */
4799 pass_signals ({});
4800
4801 /* If there are already stopped threads, mark them stopped and
4802 report their stops before giving the prompt to the user. */
4803 process_initial_stop_replies (from_tty);
4804
4805 if (target_can_async_p ())
4806 target_async (1);
4807 }
4808
4809 /* If we connected to a live target, do some additional setup. */
4810 if (target_has_execution)
4811 {
4812 if (symfile_objfile) /* No use without a symbol-file. */
4813 remote_check_symbols ();
4814 }
4815
4816 /* Possibly the target has been engaged in a trace run started
4817 previously; find out where things are at. */
4818 if (get_trace_status (current_trace_status ()) != -1)
4819 {
4820 struct uploaded_tp *uploaded_tps = NULL;
4821
4822 if (current_trace_status ()->running)
4823 printf_filtered (_("Trace is already running on the target.\n"));
4824
4825 upload_tracepoints (&uploaded_tps);
4826
4827 merge_uploaded_tracepoints (&uploaded_tps);
4828 }
4829
4830 /* Possibly the target has been engaged in a btrace record started
4831 previously; find out where things are at. */
4832 remote_btrace_maybe_reopen ();
4833
4834 /* The thread and inferior lists are now synchronized with the
4835 target, our symbols have been relocated, and we're merged the
4836 target's tracepoints with ours. We're done with basic start
4837 up. */
4838 rs->starting_up = 0;
4839
4840 /* Maybe breakpoints are global and need to be inserted now. */
4841 if (breakpoints_should_be_inserted_now ())
4842 insert_breakpoints ();
4843 }
4844
4845 /* Open a connection to a remote debugger.
4846 NAME is the filename used for communication. */
4847
4848 void
4849 remote_target::open (const char *name, int from_tty)
4850 {
4851 open_1 (name, from_tty, 0);
4852 }
4853
4854 /* Open a connection to a remote debugger using the extended
4855 remote gdb protocol. NAME is the filename used for communication. */
4856
4857 void
4858 extended_remote_target::open (const char *name, int from_tty)
4859 {
4860 open_1 (name, from_tty, 1 /*extended_p */);
4861 }
4862
4863 /* Reset all packets back to "unknown support". Called when opening a
4864 new connection to a remote target. */
4865
4866 static void
4867 reset_all_packet_configs_support (void)
4868 {
4869 int i;
4870
4871 for (i = 0; i < PACKET_MAX; i++)
4872 remote_protocol_packets[i].support = PACKET_SUPPORT_UNKNOWN;
4873 }
4874
4875 /* Initialize all packet configs. */
4876
4877 static void
4878 init_all_packet_configs (void)
4879 {
4880 int i;
4881
4882 for (i = 0; i < PACKET_MAX; i++)
4883 {
4884 remote_protocol_packets[i].detect = AUTO_BOOLEAN_AUTO;
4885 remote_protocol_packets[i].support = PACKET_SUPPORT_UNKNOWN;
4886 }
4887 }
4888
4889 /* Symbol look-up. */
4890
4891 void
4892 remote_target::remote_check_symbols ()
4893 {
4894 char *tmp;
4895 int end;
4896
4897 /* The remote side has no concept of inferiors that aren't running
4898 yet, it only knows about running processes. If we're connected
4899 but our current inferior is not running, we should not invite the
4900 remote target to request symbol lookups related to its
4901 (unrelated) current process. */
4902 if (!target_has_execution)
4903 return;
4904
4905 if (packet_support (PACKET_qSymbol) == PACKET_DISABLE)
4906 return;
4907
4908 /* Make sure the remote is pointing at the right process. Note
4909 there's no way to select "no process". */
4910 set_general_process ();
4911
4912 /* Allocate a message buffer. We can't reuse the input buffer in RS,
4913 because we need both at the same time. */
4914 gdb::char_vector msg (get_remote_packet_size ());
4915 gdb::char_vector reply (get_remote_packet_size ());
4916
4917 /* Invite target to request symbol lookups. */
4918
4919 putpkt ("qSymbol::");
4920 getpkt (&reply, 0);
4921 packet_ok (reply, &remote_protocol_packets[PACKET_qSymbol]);
4922
4923 while (startswith (reply.data (), "qSymbol:"))
4924 {
4925 struct bound_minimal_symbol sym;
4926
4927 tmp = &reply[8];
4928 end = hex2bin (tmp, reinterpret_cast <gdb_byte *> (msg.data ()),
4929 strlen (tmp) / 2);
4930 msg[end] = '\0';
4931 sym = lookup_minimal_symbol (msg.data (), NULL, NULL);
4932 if (sym.minsym == NULL)
4933 xsnprintf (msg.data (), get_remote_packet_size (), "qSymbol::%s",
4934 &reply[8]);
4935 else
4936 {
4937 int addr_size = gdbarch_addr_bit (target_gdbarch ()) / 8;
4938 CORE_ADDR sym_addr = BMSYMBOL_VALUE_ADDRESS (sym);
4939
4940 /* If this is a function address, return the start of code
4941 instead of any data function descriptor. */
4942 sym_addr = gdbarch_convert_from_func_ptr_addr (target_gdbarch (),
4943 sym_addr,
4944 current_top_target ());
4945
4946 xsnprintf (msg.data (), get_remote_packet_size (), "qSymbol:%s:%s",
4947 phex_nz (sym_addr, addr_size), &reply[8]);
4948 }
4949
4950 putpkt (msg.data ());
4951 getpkt (&reply, 0);
4952 }
4953 }
4954
4955 static struct serial *
4956 remote_serial_open (const char *name)
4957 {
4958 static int udp_warning = 0;
4959
4960 /* FIXME: Parsing NAME here is a hack. But we want to warn here instead
4961 of in ser-tcp.c, because it is the remote protocol assuming that the
4962 serial connection is reliable and not the serial connection promising
4963 to be. */
4964 if (!udp_warning && startswith (name, "udp:"))
4965 {
4966 warning (_("The remote protocol may be unreliable over UDP.\n"
4967 "Some events may be lost, rendering further debugging "
4968 "impossible."));
4969 udp_warning = 1;
4970 }
4971
4972 return serial_open (name);
4973 }
4974
4975 /* Inform the target of our permission settings. The permission flags
4976 work without this, but if the target knows the settings, it can do
4977 a couple things. First, it can add its own check, to catch cases
4978 that somehow manage to get by the permissions checks in target
4979 methods. Second, if the target is wired to disallow particular
4980 settings (for instance, a system in the field that is not set up to
4981 be able to stop at a breakpoint), it can object to any unavailable
4982 permissions. */
4983
4984 void
4985 remote_target::set_permissions ()
4986 {
4987 struct remote_state *rs = get_remote_state ();
4988
4989 xsnprintf (rs->buf.data (), get_remote_packet_size (), "QAllow:"
4990 "WriteReg:%x;WriteMem:%x;"
4991 "InsertBreak:%x;InsertTrace:%x;"
4992 "InsertFastTrace:%x;Stop:%x",
4993 may_write_registers, may_write_memory,
4994 may_insert_breakpoints, may_insert_tracepoints,
4995 may_insert_fast_tracepoints, may_stop);
4996 putpkt (rs->buf);
4997 getpkt (&rs->buf, 0);
4998
4999 /* If the target didn't like the packet, warn the user. Do not try
5000 to undo the user's settings, that would just be maddening. */
5001 if (strcmp (rs->buf.data (), "OK") != 0)
5002 warning (_("Remote refused setting permissions with: %s"),
5003 rs->buf.data ());
5004 }
5005
5006 /* This type describes each known response to the qSupported
5007 packet. */
5008 struct protocol_feature
5009 {
5010 /* The name of this protocol feature. */
5011 const char *name;
5012
5013 /* The default for this protocol feature. */
5014 enum packet_support default_support;
5015
5016 /* The function to call when this feature is reported, or after
5017 qSupported processing if the feature is not supported.
5018 The first argument points to this structure. The second
5019 argument indicates whether the packet requested support be
5020 enabled, disabled, or probed (or the default, if this function
5021 is being called at the end of processing and this feature was
5022 not reported). The third argument may be NULL; if not NULL, it
5023 is a NUL-terminated string taken from the packet following
5024 this feature's name and an equals sign. */
5025 void (*func) (remote_target *remote, const struct protocol_feature *,
5026 enum packet_support, const char *);
5027
5028 /* The corresponding packet for this feature. Only used if
5029 FUNC is remote_supported_packet. */
5030 int packet;
5031 };
5032
5033 static void
5034 remote_supported_packet (remote_target *remote,
5035 const struct protocol_feature *feature,
5036 enum packet_support support,
5037 const char *argument)
5038 {
5039 if (argument)
5040 {
5041 warning (_("Remote qSupported response supplied an unexpected value for"
5042 " \"%s\"."), feature->name);
5043 return;
5044 }
5045
5046 remote_protocol_packets[feature->packet].support = support;
5047 }
5048
5049 void
5050 remote_target::remote_packet_size (const protocol_feature *feature,
5051 enum packet_support support, const char *value)
5052 {
5053 struct remote_state *rs = get_remote_state ();
5054
5055 int packet_size;
5056 char *value_end;
5057
5058 if (support != PACKET_ENABLE)
5059 return;
5060
5061 if (value == NULL || *value == '\0')
5062 {
5063 warning (_("Remote target reported \"%s\" without a size."),
5064 feature->name);
5065 return;
5066 }
5067
5068 errno = 0;
5069 packet_size = strtol (value, &value_end, 16);
5070 if (errno != 0 || *value_end != '\0' || packet_size < 0)
5071 {
5072 warning (_("Remote target reported \"%s\" with a bad size: \"%s\"."),
5073 feature->name, value);
5074 return;
5075 }
5076
5077 /* Record the new maximum packet size. */
5078 rs->explicit_packet_size = packet_size;
5079 }
5080
5081 void
5082 remote_packet_size (remote_target *remote, const protocol_feature *feature,
5083 enum packet_support support, const char *value)
5084 {
5085 remote->remote_packet_size (feature, support, value);
5086 }
5087
5088 static const struct protocol_feature remote_protocol_features[] = {
5089 { "PacketSize", PACKET_DISABLE, remote_packet_size, -1 },
5090 { "qXfer:auxv:read", PACKET_DISABLE, remote_supported_packet,
5091 PACKET_qXfer_auxv },
5092 { "qXfer:exec-file:read", PACKET_DISABLE, remote_supported_packet,
5093 PACKET_qXfer_exec_file },
5094 { "qXfer:features:read", PACKET_DISABLE, remote_supported_packet,
5095 PACKET_qXfer_features },
5096 { "qXfer:libraries:read", PACKET_DISABLE, remote_supported_packet,
5097 PACKET_qXfer_libraries },
5098 { "qXfer:libraries-svr4:read", PACKET_DISABLE, remote_supported_packet,
5099 PACKET_qXfer_libraries_svr4 },
5100 { "augmented-libraries-svr4-read", PACKET_DISABLE,
5101 remote_supported_packet, PACKET_augmented_libraries_svr4_read_feature },
5102 { "qXfer:memory-map:read", PACKET_DISABLE, remote_supported_packet,
5103 PACKET_qXfer_memory_map },
5104 { "qXfer:spu:read", PACKET_DISABLE, remote_supported_packet,
5105 PACKET_qXfer_spu_read },
5106 { "qXfer:spu:write", PACKET_DISABLE, remote_supported_packet,
5107 PACKET_qXfer_spu_write },
5108 { "qXfer:osdata:read", PACKET_DISABLE, remote_supported_packet,
5109 PACKET_qXfer_osdata },
5110 { "qXfer:threads:read", PACKET_DISABLE, remote_supported_packet,
5111 PACKET_qXfer_threads },
5112 { "qXfer:traceframe-info:read", PACKET_DISABLE, remote_supported_packet,
5113 PACKET_qXfer_traceframe_info },
5114 { "QPassSignals", PACKET_DISABLE, remote_supported_packet,
5115 PACKET_QPassSignals },
5116 { "QCatchSyscalls", PACKET_DISABLE, remote_supported_packet,
5117 PACKET_QCatchSyscalls },
5118 { "QProgramSignals", PACKET_DISABLE, remote_supported_packet,
5119 PACKET_QProgramSignals },
5120 { "QSetWorkingDir", PACKET_DISABLE, remote_supported_packet,
5121 PACKET_QSetWorkingDir },
5122 { "QStartupWithShell", PACKET_DISABLE, remote_supported_packet,
5123 PACKET_QStartupWithShell },
5124 { "QEnvironmentHexEncoded", PACKET_DISABLE, remote_supported_packet,
5125 PACKET_QEnvironmentHexEncoded },
5126 { "QEnvironmentReset", PACKET_DISABLE, remote_supported_packet,
5127 PACKET_QEnvironmentReset },
5128 { "QEnvironmentUnset", PACKET_DISABLE, remote_supported_packet,
5129 PACKET_QEnvironmentUnset },
5130 { "QStartNoAckMode", PACKET_DISABLE, remote_supported_packet,
5131 PACKET_QStartNoAckMode },
5132 { "multiprocess", PACKET_DISABLE, remote_supported_packet,
5133 PACKET_multiprocess_feature },
5134 { "QNonStop", PACKET_DISABLE, remote_supported_packet, PACKET_QNonStop },
5135 { "qXfer:siginfo:read", PACKET_DISABLE, remote_supported_packet,
5136 PACKET_qXfer_siginfo_read },
5137 { "qXfer:siginfo:write", PACKET_DISABLE, remote_supported_packet,
5138 PACKET_qXfer_siginfo_write },
5139 { "ConditionalTracepoints", PACKET_DISABLE, remote_supported_packet,
5140 PACKET_ConditionalTracepoints },
5141 { "ConditionalBreakpoints", PACKET_DISABLE, remote_supported_packet,
5142 PACKET_ConditionalBreakpoints },
5143 { "BreakpointCommands", PACKET_DISABLE, remote_supported_packet,
5144 PACKET_BreakpointCommands },
5145 { "FastTracepoints", PACKET_DISABLE, remote_supported_packet,
5146 PACKET_FastTracepoints },
5147 { "StaticTracepoints", PACKET_DISABLE, remote_supported_packet,
5148 PACKET_StaticTracepoints },
5149 {"InstallInTrace", PACKET_DISABLE, remote_supported_packet,
5150 PACKET_InstallInTrace},
5151 { "DisconnectedTracing", PACKET_DISABLE, remote_supported_packet,
5152 PACKET_DisconnectedTracing_feature },
5153 { "ReverseContinue", PACKET_DISABLE, remote_supported_packet,
5154 PACKET_bc },
5155 { "ReverseStep", PACKET_DISABLE, remote_supported_packet,
5156 PACKET_bs },
5157 { "TracepointSource", PACKET_DISABLE, remote_supported_packet,
5158 PACKET_TracepointSource },
5159 { "QAllow", PACKET_DISABLE, remote_supported_packet,
5160 PACKET_QAllow },
5161 { "EnableDisableTracepoints", PACKET_DISABLE, remote_supported_packet,
5162 PACKET_EnableDisableTracepoints_feature },
5163 { "qXfer:fdpic:read", PACKET_DISABLE, remote_supported_packet,
5164 PACKET_qXfer_fdpic },
5165 { "qXfer:uib:read", PACKET_DISABLE, remote_supported_packet,
5166 PACKET_qXfer_uib },
5167 { "QDisableRandomization", PACKET_DISABLE, remote_supported_packet,
5168 PACKET_QDisableRandomization },
5169 { "QAgent", PACKET_DISABLE, remote_supported_packet, PACKET_QAgent},
5170 { "QTBuffer:size", PACKET_DISABLE,
5171 remote_supported_packet, PACKET_QTBuffer_size},
5172 { "tracenz", PACKET_DISABLE, remote_supported_packet, PACKET_tracenz_feature },
5173 { "Qbtrace:off", PACKET_DISABLE, remote_supported_packet, PACKET_Qbtrace_off },
5174 { "Qbtrace:bts", PACKET_DISABLE, remote_supported_packet, PACKET_Qbtrace_bts },
5175 { "Qbtrace:pt", PACKET_DISABLE, remote_supported_packet, PACKET_Qbtrace_pt },
5176 { "qXfer:btrace:read", PACKET_DISABLE, remote_supported_packet,
5177 PACKET_qXfer_btrace },
5178 { "qXfer:btrace-conf:read", PACKET_DISABLE, remote_supported_packet,
5179 PACKET_qXfer_btrace_conf },
5180 { "Qbtrace-conf:bts:size", PACKET_DISABLE, remote_supported_packet,
5181 PACKET_Qbtrace_conf_bts_size },
5182 { "swbreak", PACKET_DISABLE, remote_supported_packet, PACKET_swbreak_feature },
5183 { "hwbreak", PACKET_DISABLE, remote_supported_packet, PACKET_hwbreak_feature },
5184 { "fork-events", PACKET_DISABLE, remote_supported_packet,
5185 PACKET_fork_event_feature },
5186 { "vfork-events", PACKET_DISABLE, remote_supported_packet,
5187 PACKET_vfork_event_feature },
5188 { "exec-events", PACKET_DISABLE, remote_supported_packet,
5189 PACKET_exec_event_feature },
5190 { "Qbtrace-conf:pt:size", PACKET_DISABLE, remote_supported_packet,
5191 PACKET_Qbtrace_conf_pt_size },
5192 { "vContSupported", PACKET_DISABLE, remote_supported_packet, PACKET_vContSupported },
5193 { "QThreadEvents", PACKET_DISABLE, remote_supported_packet, PACKET_QThreadEvents },
5194 { "no-resumed", PACKET_DISABLE, remote_supported_packet, PACKET_no_resumed },
5195 };
5196
5197 static char *remote_support_xml;
5198
5199 /* Register string appended to "xmlRegisters=" in qSupported query. */
5200
5201 void
5202 register_remote_support_xml (const char *xml)
5203 {
5204 #if defined(HAVE_LIBEXPAT)
5205 if (remote_support_xml == NULL)
5206 remote_support_xml = concat ("xmlRegisters=", xml, (char *) NULL);
5207 else
5208 {
5209 char *copy = xstrdup (remote_support_xml + 13);
5210 char *p = strtok (copy, ",");
5211
5212 do
5213 {
5214 if (strcmp (p, xml) == 0)
5215 {
5216 /* already there */
5217 xfree (copy);
5218 return;
5219 }
5220 }
5221 while ((p = strtok (NULL, ",")) != NULL);
5222 xfree (copy);
5223
5224 remote_support_xml = reconcat (remote_support_xml,
5225 remote_support_xml, ",", xml,
5226 (char *) NULL);
5227 }
5228 #endif
5229 }
5230
5231 static void
5232 remote_query_supported_append (std::string *msg, const char *append)
5233 {
5234 if (!msg->empty ())
5235 msg->append (";");
5236 msg->append (append);
5237 }
5238
5239 void
5240 remote_target::remote_query_supported ()
5241 {
5242 struct remote_state *rs = get_remote_state ();
5243 char *next;
5244 int i;
5245 unsigned char seen [ARRAY_SIZE (remote_protocol_features)];
5246
5247 /* The packet support flags are handled differently for this packet
5248 than for most others. We treat an error, a disabled packet, and
5249 an empty response identically: any features which must be reported
5250 to be used will be automatically disabled. An empty buffer
5251 accomplishes this, since that is also the representation for a list
5252 containing no features. */
5253
5254 rs->buf[0] = 0;
5255 if (packet_support (PACKET_qSupported) != PACKET_DISABLE)
5256 {
5257 std::string q;
5258
5259 if (packet_set_cmd_state (PACKET_multiprocess_feature) != AUTO_BOOLEAN_FALSE)
5260 remote_query_supported_append (&q, "multiprocess+");
5261
5262 if (packet_set_cmd_state (PACKET_swbreak_feature) != AUTO_BOOLEAN_FALSE)
5263 remote_query_supported_append (&q, "swbreak+");
5264 if (packet_set_cmd_state (PACKET_hwbreak_feature) != AUTO_BOOLEAN_FALSE)
5265 remote_query_supported_append (&q, "hwbreak+");
5266
5267 remote_query_supported_append (&q, "qRelocInsn+");
5268
5269 if (packet_set_cmd_state (PACKET_fork_event_feature)
5270 != AUTO_BOOLEAN_FALSE)
5271 remote_query_supported_append (&q, "fork-events+");
5272 if (packet_set_cmd_state (PACKET_vfork_event_feature)
5273 != AUTO_BOOLEAN_FALSE)
5274 remote_query_supported_append (&q, "vfork-events+");
5275 if (packet_set_cmd_state (PACKET_exec_event_feature)
5276 != AUTO_BOOLEAN_FALSE)
5277 remote_query_supported_append (&q, "exec-events+");
5278
5279 if (packet_set_cmd_state (PACKET_vContSupported) != AUTO_BOOLEAN_FALSE)
5280 remote_query_supported_append (&q, "vContSupported+");
5281
5282 if (packet_set_cmd_state (PACKET_QThreadEvents) != AUTO_BOOLEAN_FALSE)
5283 remote_query_supported_append (&q, "QThreadEvents+");
5284
5285 if (packet_set_cmd_state (PACKET_no_resumed) != AUTO_BOOLEAN_FALSE)
5286 remote_query_supported_append (&q, "no-resumed+");
5287
5288 /* Keep this one last to work around a gdbserver <= 7.10 bug in
5289 the qSupported:xmlRegisters=i386 handling. */
5290 if (remote_support_xml != NULL
5291 && packet_support (PACKET_qXfer_features) != PACKET_DISABLE)
5292 remote_query_supported_append (&q, remote_support_xml);
5293
5294 q = "qSupported:" + q;
5295 putpkt (q.c_str ());
5296
5297 getpkt (&rs->buf, 0);
5298
5299 /* If an error occured, warn, but do not return - just reset the
5300 buffer to empty and go on to disable features. */
5301 if (packet_ok (rs->buf, &remote_protocol_packets[PACKET_qSupported])
5302 == PACKET_ERROR)
5303 {
5304 warning (_("Remote failure reply: %s"), rs->buf.data ());
5305 rs->buf[0] = 0;
5306 }
5307 }
5308
5309 memset (seen, 0, sizeof (seen));
5310
5311 next = rs->buf.data ();
5312 while (*next)
5313 {
5314 enum packet_support is_supported;
5315 char *p, *end, *name_end, *value;
5316
5317 /* First separate out this item from the rest of the packet. If
5318 there's another item after this, we overwrite the separator
5319 (terminated strings are much easier to work with). */
5320 p = next;
5321 end = strchr (p, ';');
5322 if (end == NULL)
5323 {
5324 end = p + strlen (p);
5325 next = end;
5326 }
5327 else
5328 {
5329 *end = '\0';
5330 next = end + 1;
5331
5332 if (end == p)
5333 {
5334 warning (_("empty item in \"qSupported\" response"));
5335 continue;
5336 }
5337 }
5338
5339 name_end = strchr (p, '=');
5340 if (name_end)
5341 {
5342 /* This is a name=value entry. */
5343 is_supported = PACKET_ENABLE;
5344 value = name_end + 1;
5345 *name_end = '\0';
5346 }
5347 else
5348 {
5349 value = NULL;
5350 switch (end[-1])
5351 {
5352 case '+':
5353 is_supported = PACKET_ENABLE;
5354 break;
5355
5356 case '-':
5357 is_supported = PACKET_DISABLE;
5358 break;
5359
5360 case '?':
5361 is_supported = PACKET_SUPPORT_UNKNOWN;
5362 break;
5363
5364 default:
5365 warning (_("unrecognized item \"%s\" "
5366 "in \"qSupported\" response"), p);
5367 continue;
5368 }
5369 end[-1] = '\0';
5370 }
5371
5372 for (i = 0; i < ARRAY_SIZE (remote_protocol_features); i++)
5373 if (strcmp (remote_protocol_features[i].name, p) == 0)
5374 {
5375 const struct protocol_feature *feature;
5376
5377 seen[i] = 1;
5378 feature = &remote_protocol_features[i];
5379 feature->func (this, feature, is_supported, value);
5380 break;
5381 }
5382 }
5383
5384 /* If we increased the packet size, make sure to increase the global
5385 buffer size also. We delay this until after parsing the entire
5386 qSupported packet, because this is the same buffer we were
5387 parsing. */
5388 if (rs->buf.size () < rs->explicit_packet_size)
5389 rs->buf.resize (rs->explicit_packet_size);
5390
5391 /* Handle the defaults for unmentioned features. */
5392 for (i = 0; i < ARRAY_SIZE (remote_protocol_features); i++)
5393 if (!seen[i])
5394 {
5395 const struct protocol_feature *feature;
5396
5397 feature = &remote_protocol_features[i];
5398 feature->func (this, feature, feature->default_support, NULL);
5399 }
5400 }
5401
5402 /* Serial QUIT handler for the remote serial descriptor.
5403
5404 Defers handling a Ctrl-C until we're done with the current
5405 command/response packet sequence, unless:
5406
5407 - We're setting up the connection. Don't send a remote interrupt
5408 request, as we're not fully synced yet. Quit immediately
5409 instead.
5410
5411 - The target has been resumed in the foreground
5412 (target_terminal::is_ours is false) with a synchronous resume
5413 packet, and we're blocked waiting for the stop reply, thus a
5414 Ctrl-C should be immediately sent to the target.
5415
5416 - We get a second Ctrl-C while still within the same serial read or
5417 write. In that case the serial is seemingly wedged --- offer to
5418 quit/disconnect.
5419
5420 - We see a second Ctrl-C without target response, after having
5421 previously interrupted the target. In that case the target/stub
5422 is probably wedged --- offer to quit/disconnect.
5423 */
5424
5425 void
5426 remote_target::remote_serial_quit_handler ()
5427 {
5428 struct remote_state *rs = get_remote_state ();
5429
5430 if (check_quit_flag ())
5431 {
5432 /* If we're starting up, we're not fully synced yet. Quit
5433 immediately. */
5434 if (rs->starting_up)
5435 quit ();
5436 else if (rs->got_ctrlc_during_io)
5437 {
5438 if (query (_("The target is not responding to GDB commands.\n"
5439 "Stop debugging it? ")))
5440 remote_unpush_and_throw ();
5441 }
5442 /* If ^C has already been sent once, offer to disconnect. */
5443 else if (!target_terminal::is_ours () && rs->ctrlc_pending_p)
5444 interrupt_query ();
5445 /* All-stop protocol, and blocked waiting for stop reply. Send
5446 an interrupt request. */
5447 else if (!target_terminal::is_ours () && rs->waiting_for_stop_reply)
5448 target_interrupt ();
5449 else
5450 rs->got_ctrlc_during_io = 1;
5451 }
5452 }
5453
5454 /* The remote_target that is current while the quit handler is
5455 overridden with remote_serial_quit_handler. */
5456 static remote_target *curr_quit_handler_target;
5457
5458 static void
5459 remote_serial_quit_handler ()
5460 {
5461 curr_quit_handler_target->remote_serial_quit_handler ();
5462 }
5463
5464 /* Remove any of the remote.c targets from target stack. Upper targets depend
5465 on it so remove them first. */
5466
5467 static void
5468 remote_unpush_target (void)
5469 {
5470 pop_all_targets_at_and_above (process_stratum);
5471 }
5472
5473 static void
5474 remote_unpush_and_throw (void)
5475 {
5476 remote_unpush_target ();
5477 throw_error (TARGET_CLOSE_ERROR, _("Disconnected from target."));
5478 }
5479
5480 void
5481 remote_target::open_1 (const char *name, int from_tty, int extended_p)
5482 {
5483 remote_target *curr_remote = get_current_remote_target ();
5484
5485 if (name == 0)
5486 error (_("To open a remote debug connection, you need to specify what\n"
5487 "serial device is attached to the remote system\n"
5488 "(e.g. /dev/ttyS0, /dev/ttya, COM1, etc.)."));
5489
5490 /* If we're connected to a running target, target_preopen will kill it.
5491 Ask this question first, before target_preopen has a chance to kill
5492 anything. */
5493 if (curr_remote != NULL && !have_inferiors ())
5494 {
5495 if (from_tty
5496 && !query (_("Already connected to a remote target. Disconnect? ")))
5497 error (_("Still connected."));
5498 }
5499
5500 /* Here the possibly existing remote target gets unpushed. */
5501 target_preopen (from_tty);
5502
5503 remote_fileio_reset ();
5504 reopen_exec_file ();
5505 reread_symbols ();
5506
5507 remote_target *remote
5508 = (extended_p ? new extended_remote_target () : new remote_target ());
5509 target_ops_up target_holder (remote);
5510
5511 remote_state *rs = remote->get_remote_state ();
5512
5513 /* See FIXME above. */
5514 if (!target_async_permitted)
5515 rs->wait_forever_enabled_p = 1;
5516
5517 rs->remote_desc = remote_serial_open (name);
5518 if (!rs->remote_desc)
5519 perror_with_name (name);
5520
5521 if (baud_rate != -1)
5522 {
5523 if (serial_setbaudrate (rs->remote_desc, baud_rate))
5524 {
5525 /* The requested speed could not be set. Error out to
5526 top level after closing remote_desc. Take care to
5527 set remote_desc to NULL to avoid closing remote_desc
5528 more than once. */
5529 serial_close (rs->remote_desc);
5530 rs->remote_desc = NULL;
5531 perror_with_name (name);
5532 }
5533 }
5534
5535 serial_setparity (rs->remote_desc, serial_parity);
5536 serial_raw (rs->remote_desc);
5537
5538 /* If there is something sitting in the buffer we might take it as a
5539 response to a command, which would be bad. */
5540 serial_flush_input (rs->remote_desc);
5541
5542 if (from_tty)
5543 {
5544 puts_filtered ("Remote debugging using ");
5545 puts_filtered (name);
5546 puts_filtered ("\n");
5547 }
5548
5549 /* Switch to using the remote target now. */
5550 push_target (std::move (target_holder));
5551
5552 /* Register extra event sources in the event loop. */
5553 rs->remote_async_inferior_event_token
5554 = create_async_event_handler (remote_async_inferior_event_handler,
5555 remote);
5556 rs->notif_state = remote_notif_state_allocate (remote);
5557
5558 /* Reset the target state; these things will be queried either by
5559 remote_query_supported or as they are needed. */
5560 reset_all_packet_configs_support ();
5561 rs->cached_wait_status = 0;
5562 rs->explicit_packet_size = 0;
5563 rs->noack_mode = 0;
5564 rs->extended = extended_p;
5565 rs->waiting_for_stop_reply = 0;
5566 rs->ctrlc_pending_p = 0;
5567 rs->got_ctrlc_during_io = 0;
5568
5569 rs->general_thread = not_sent_ptid;
5570 rs->continue_thread = not_sent_ptid;
5571 rs->remote_traceframe_number = -1;
5572
5573 rs->last_resume_exec_dir = EXEC_FORWARD;
5574
5575 /* Probe for ability to use "ThreadInfo" query, as required. */
5576 rs->use_threadinfo_query = 1;
5577 rs->use_threadextra_query = 1;
5578
5579 rs->readahead_cache.invalidate ();
5580
5581 if (target_async_permitted)
5582 {
5583 /* FIXME: cagney/1999-09-23: During the initial connection it is
5584 assumed that the target is already ready and able to respond to
5585 requests. Unfortunately remote_start_remote() eventually calls
5586 wait_for_inferior() with no timeout. wait_forever_enabled_p gets
5587 around this. Eventually a mechanism that allows
5588 wait_for_inferior() to expect/get timeouts will be
5589 implemented. */
5590 rs->wait_forever_enabled_p = 0;
5591 }
5592
5593 /* First delete any symbols previously loaded from shared libraries. */
5594 no_shared_libraries (NULL, 0);
5595
5596 /* Start the remote connection. If error() or QUIT, discard this
5597 target (we'd otherwise be in an inconsistent state) and then
5598 propogate the error on up the exception chain. This ensures that
5599 the caller doesn't stumble along blindly assuming that the
5600 function succeeded. The CLI doesn't have this problem but other
5601 UI's, such as MI do.
5602
5603 FIXME: cagney/2002-05-19: Instead of re-throwing the exception,
5604 this function should return an error indication letting the
5605 caller restore the previous state. Unfortunately the command
5606 ``target remote'' is directly wired to this function making that
5607 impossible. On a positive note, the CLI side of this problem has
5608 been fixed - the function set_cmd_context() makes it possible for
5609 all the ``target ....'' commands to share a common callback
5610 function. See cli-dump.c. */
5611 {
5612
5613 TRY
5614 {
5615 remote->start_remote (from_tty, extended_p);
5616 }
5617 CATCH (ex, RETURN_MASK_ALL)
5618 {
5619 /* Pop the partially set up target - unless something else did
5620 already before throwing the exception. */
5621 if (ex.error != TARGET_CLOSE_ERROR)
5622 remote_unpush_target ();
5623 throw_exception (ex);
5624 }
5625 END_CATCH
5626 }
5627
5628 remote_btrace_reset (rs);
5629
5630 if (target_async_permitted)
5631 rs->wait_forever_enabled_p = 1;
5632 }
5633
5634 /* Detach the specified process. */
5635
5636 void
5637 remote_target::remote_detach_pid (int pid)
5638 {
5639 struct remote_state *rs = get_remote_state ();
5640
5641 /* This should not be necessary, but the handling for D;PID in
5642 GDBserver versions prior to 8.2 incorrectly assumes that the
5643 selected process points to the same process we're detaching,
5644 leading to misbehavior (and possibly GDBserver crashing) when it
5645 does not. Since it's easy and cheap, work around it by forcing
5646 GDBserver to select GDB's current process. */
5647 set_general_process ();
5648
5649 if (remote_multi_process_p (rs))
5650 xsnprintf (rs->buf.data (), get_remote_packet_size (), "D;%x", pid);
5651 else
5652 strcpy (rs->buf.data (), "D");
5653
5654 putpkt (rs->buf);
5655 getpkt (&rs->buf, 0);
5656
5657 if (rs->buf[0] == 'O' && rs->buf[1] == 'K')
5658 ;
5659 else if (rs->buf[0] == '\0')
5660 error (_("Remote doesn't know how to detach"));
5661 else
5662 error (_("Can't detach process."));
5663 }
5664
5665 /* This detaches a program to which we previously attached, using
5666 inferior_ptid to identify the process. After this is done, GDB
5667 can be used to debug some other program. We better not have left
5668 any breakpoints in the target program or it'll die when it hits
5669 one. */
5670
5671 void
5672 remote_target::remote_detach_1 (inferior *inf, int from_tty)
5673 {
5674 int pid = inferior_ptid.pid ();
5675 struct remote_state *rs = get_remote_state ();
5676 int is_fork_parent;
5677
5678 if (!target_has_execution)
5679 error (_("No process to detach from."));
5680
5681 target_announce_detach (from_tty);
5682
5683 /* Tell the remote target to detach. */
5684 remote_detach_pid (pid);
5685
5686 /* Exit only if this is the only active inferior. */
5687 if (from_tty && !rs->extended && number_of_live_inferiors () == 1)
5688 puts_filtered (_("Ending remote debugging.\n"));
5689
5690 struct thread_info *tp = find_thread_ptid (inferior_ptid);
5691
5692 /* Check to see if we are detaching a fork parent. Note that if we
5693 are detaching a fork child, tp == NULL. */
5694 is_fork_parent = (tp != NULL
5695 && tp->pending_follow.kind == TARGET_WAITKIND_FORKED);
5696
5697 /* If doing detach-on-fork, we don't mourn, because that will delete
5698 breakpoints that should be available for the followed inferior. */
5699 if (!is_fork_parent)
5700 {
5701 /* Save the pid as a string before mourning, since that will
5702 unpush the remote target, and we need the string after. */
5703 std::string infpid = target_pid_to_str (ptid_t (pid));
5704
5705 target_mourn_inferior (inferior_ptid);
5706 if (print_inferior_events)
5707 printf_unfiltered (_("[Inferior %d (%s) detached]\n"),
5708 inf->num, infpid.c_str ());
5709 }
5710 else
5711 {
5712 inferior_ptid = null_ptid;
5713 detach_inferior (current_inferior ());
5714 }
5715 }
5716
5717 void
5718 remote_target::detach (inferior *inf, int from_tty)
5719 {
5720 remote_detach_1 (inf, from_tty);
5721 }
5722
5723 void
5724 extended_remote_target::detach (inferior *inf, int from_tty)
5725 {
5726 remote_detach_1 (inf, from_tty);
5727 }
5728
5729 /* Target follow-fork function for remote targets. On entry, and
5730 at return, the current inferior is the fork parent.
5731
5732 Note that although this is currently only used for extended-remote,
5733 it is named remote_follow_fork in anticipation of using it for the
5734 remote target as well. */
5735
5736 int
5737 remote_target::follow_fork (int follow_child, int detach_fork)
5738 {
5739 struct remote_state *rs = get_remote_state ();
5740 enum target_waitkind kind = inferior_thread ()->pending_follow.kind;
5741
5742 if ((kind == TARGET_WAITKIND_FORKED && remote_fork_event_p (rs))
5743 || (kind == TARGET_WAITKIND_VFORKED && remote_vfork_event_p (rs)))
5744 {
5745 /* When following the parent and detaching the child, we detach
5746 the child here. For the case of following the child and
5747 detaching the parent, the detach is done in the target-
5748 independent follow fork code in infrun.c. We can't use
5749 target_detach when detaching an unfollowed child because
5750 the client side doesn't know anything about the child. */
5751 if (detach_fork && !follow_child)
5752 {
5753 /* Detach the fork child. */
5754 ptid_t child_ptid;
5755 pid_t child_pid;
5756
5757 child_ptid = inferior_thread ()->pending_follow.value.related_pid;
5758 child_pid = child_ptid.pid ();
5759
5760 remote_detach_pid (child_pid);
5761 }
5762 }
5763 return 0;
5764 }
5765
5766 /* Target follow-exec function for remote targets. Save EXECD_PATHNAME
5767 in the program space of the new inferior. On entry and at return the
5768 current inferior is the exec'ing inferior. INF is the new exec'd
5769 inferior, which may be the same as the exec'ing inferior unless
5770 follow-exec-mode is "new". */
5771
5772 void
5773 remote_target::follow_exec (struct inferior *inf, char *execd_pathname)
5774 {
5775 /* We know that this is a target file name, so if it has the "target:"
5776 prefix we strip it off before saving it in the program space. */
5777 if (is_target_filename (execd_pathname))
5778 execd_pathname += strlen (TARGET_SYSROOT_PREFIX);
5779
5780 set_pspace_remote_exec_file (inf->pspace, execd_pathname);
5781 }
5782
5783 /* Same as remote_detach, but don't send the "D" packet; just disconnect. */
5784
5785 void
5786 remote_target::disconnect (const char *args, int from_tty)
5787 {
5788 if (args)
5789 error (_("Argument given to \"disconnect\" when remotely debugging."));
5790
5791 /* Make sure we unpush even the extended remote targets. Calling
5792 target_mourn_inferior won't unpush, and remote_mourn won't
5793 unpush if there is more than one inferior left. */
5794 unpush_target (this);
5795 generic_mourn_inferior ();
5796
5797 if (from_tty)
5798 puts_filtered ("Ending remote debugging.\n");
5799 }
5800
5801 /* Attach to the process specified by ARGS. If FROM_TTY is non-zero,
5802 be chatty about it. */
5803
5804 void
5805 extended_remote_target::attach (const char *args, int from_tty)
5806 {
5807 struct remote_state *rs = get_remote_state ();
5808 int pid;
5809 char *wait_status = NULL;
5810
5811 pid = parse_pid_to_attach (args);
5812
5813 /* Remote PID can be freely equal to getpid, do not check it here the same
5814 way as in other targets. */
5815
5816 if (packet_support (PACKET_vAttach) == PACKET_DISABLE)
5817 error (_("This target does not support attaching to a process"));
5818
5819 if (from_tty)
5820 {
5821 char *exec_file = get_exec_file (0);
5822
5823 if (exec_file)
5824 printf_unfiltered (_("Attaching to program: %s, %s\n"), exec_file,
5825 target_pid_to_str (ptid_t (pid)));
5826 else
5827 printf_unfiltered (_("Attaching to %s\n"),
5828 target_pid_to_str (ptid_t (pid)));
5829 }
5830
5831 xsnprintf (rs->buf.data (), get_remote_packet_size (), "vAttach;%x", pid);
5832 putpkt (rs->buf);
5833 getpkt (&rs->buf, 0);
5834
5835 switch (packet_ok (rs->buf,
5836 &remote_protocol_packets[PACKET_vAttach]))
5837 {
5838 case PACKET_OK:
5839 if (!target_is_non_stop_p ())
5840 {
5841 /* Save the reply for later. */
5842 wait_status = (char *) alloca (strlen (rs->buf.data ()) + 1);
5843 strcpy (wait_status, rs->buf.data ());
5844 }
5845 else if (strcmp (rs->buf.data (), "OK") != 0)
5846 error (_("Attaching to %s failed with: %s"),
5847 target_pid_to_str (ptid_t (pid)),
5848 rs->buf.data ());
5849 break;
5850 case PACKET_UNKNOWN:
5851 error (_("This target does not support attaching to a process"));
5852 default:
5853 error (_("Attaching to %s failed"),
5854 target_pid_to_str (ptid_t (pid)));
5855 }
5856
5857 set_current_inferior (remote_add_inferior (0, pid, 1, 0));
5858
5859 inferior_ptid = ptid_t (pid);
5860
5861 if (target_is_non_stop_p ())
5862 {
5863 struct thread_info *thread;
5864
5865 /* Get list of threads. */
5866 update_thread_list ();
5867
5868 thread = first_thread_of_inferior (current_inferior ());
5869 if (thread)
5870 inferior_ptid = thread->ptid;
5871 else
5872 inferior_ptid = ptid_t (pid);
5873
5874 /* Invalidate our notion of the remote current thread. */
5875 record_currthread (rs, minus_one_ptid);
5876 }
5877 else
5878 {
5879 /* Now, if we have thread information, update inferior_ptid. */
5880 inferior_ptid = remote_current_thread (inferior_ptid);
5881
5882 /* Add the main thread to the thread list. */
5883 thread_info *thr = add_thread_silent (inferior_ptid);
5884 /* Don't consider the thread stopped until we've processed the
5885 saved stop reply. */
5886 set_executing (thr->ptid, true);
5887 }
5888
5889 /* Next, if the target can specify a description, read it. We do
5890 this before anything involving memory or registers. */
5891 target_find_description ();
5892
5893 if (!target_is_non_stop_p ())
5894 {
5895 /* Use the previously fetched status. */
5896 gdb_assert (wait_status != NULL);
5897
5898 if (target_can_async_p ())
5899 {
5900 struct notif_event *reply
5901 = remote_notif_parse (this, &notif_client_stop, wait_status);
5902
5903 push_stop_reply ((struct stop_reply *) reply);
5904
5905 target_async (1);
5906 }
5907 else
5908 {
5909 gdb_assert (wait_status != NULL);
5910 strcpy (rs->buf.data (), wait_status);
5911 rs->cached_wait_status = 1;
5912 }
5913 }
5914 else
5915 gdb_assert (wait_status == NULL);
5916 }
5917
5918 /* Implementation of the to_post_attach method. */
5919
5920 void
5921 extended_remote_target::post_attach (int pid)
5922 {
5923 /* Get text, data & bss offsets. */
5924 get_offsets ();
5925
5926 /* In certain cases GDB might not have had the chance to start
5927 symbol lookup up until now. This could happen if the debugged
5928 binary is not using shared libraries, the vsyscall page is not
5929 present (on Linux) and the binary itself hadn't changed since the
5930 debugging process was started. */
5931 if (symfile_objfile != NULL)
5932 remote_check_symbols();
5933 }
5934
5935 \f
5936 /* Check for the availability of vCont. This function should also check
5937 the response. */
5938
5939 void
5940 remote_target::remote_vcont_probe ()
5941 {
5942 remote_state *rs = get_remote_state ();
5943 char *buf;
5944
5945 strcpy (rs->buf.data (), "vCont?");
5946 putpkt (rs->buf);
5947 getpkt (&rs->buf, 0);
5948 buf = rs->buf.data ();
5949
5950 /* Make sure that the features we assume are supported. */
5951 if (startswith (buf, "vCont"))
5952 {
5953 char *p = &buf[5];
5954 int support_c, support_C;
5955
5956 rs->supports_vCont.s = 0;
5957 rs->supports_vCont.S = 0;
5958 support_c = 0;
5959 support_C = 0;
5960 rs->supports_vCont.t = 0;
5961 rs->supports_vCont.r = 0;
5962 while (p && *p == ';')
5963 {
5964 p++;
5965 if (*p == 's' && (*(p + 1) == ';' || *(p + 1) == 0))
5966 rs->supports_vCont.s = 1;
5967 else if (*p == 'S' && (*(p + 1) == ';' || *(p + 1) == 0))
5968 rs->supports_vCont.S = 1;
5969 else if (*p == 'c' && (*(p + 1) == ';' || *(p + 1) == 0))
5970 support_c = 1;
5971 else if (*p == 'C' && (*(p + 1) == ';' || *(p + 1) == 0))
5972 support_C = 1;
5973 else if (*p == 't' && (*(p + 1) == ';' || *(p + 1) == 0))
5974 rs->supports_vCont.t = 1;
5975 else if (*p == 'r' && (*(p + 1) == ';' || *(p + 1) == 0))
5976 rs->supports_vCont.r = 1;
5977
5978 p = strchr (p, ';');
5979 }
5980
5981 /* If c, and C are not all supported, we can't use vCont. Clearing
5982 BUF will make packet_ok disable the packet. */
5983 if (!support_c || !support_C)
5984 buf[0] = 0;
5985 }
5986
5987 packet_ok (rs->buf, &remote_protocol_packets[PACKET_vCont]);
5988 }
5989
5990 /* Helper function for building "vCont" resumptions. Write a
5991 resumption to P. ENDP points to one-passed-the-end of the buffer
5992 we're allowed to write to. Returns BUF+CHARACTERS_WRITTEN. The
5993 thread to be resumed is PTID; STEP and SIGGNAL indicate whether the
5994 resumed thread should be single-stepped and/or signalled. If PTID
5995 equals minus_one_ptid, then all threads are resumed; if PTID
5996 represents a process, then all threads of the process are resumed;
5997 the thread to be stepped and/or signalled is given in the global
5998 INFERIOR_PTID. */
5999
6000 char *
6001 remote_target::append_resumption (char *p, char *endp,
6002 ptid_t ptid, int step, gdb_signal siggnal)
6003 {
6004 struct remote_state *rs = get_remote_state ();
6005
6006 if (step && siggnal != GDB_SIGNAL_0)
6007 p += xsnprintf (p, endp - p, ";S%02x", siggnal);
6008 else if (step
6009 /* GDB is willing to range step. */
6010 && use_range_stepping
6011 /* Target supports range stepping. */
6012 && rs->supports_vCont.r
6013 /* We don't currently support range stepping multiple
6014 threads with a wildcard (though the protocol allows it,
6015 so stubs shouldn't make an active effort to forbid
6016 it). */
6017 && !(remote_multi_process_p (rs) && ptid.is_pid ()))
6018 {
6019 struct thread_info *tp;
6020
6021 if (ptid == minus_one_ptid)
6022 {
6023 /* If we don't know about the target thread's tid, then
6024 we're resuming magic_null_ptid (see caller). */
6025 tp = find_thread_ptid (magic_null_ptid);
6026 }
6027 else
6028 tp = find_thread_ptid (ptid);
6029 gdb_assert (tp != NULL);
6030
6031 if (tp->control.may_range_step)
6032 {
6033 int addr_size = gdbarch_addr_bit (target_gdbarch ()) / 8;
6034
6035 p += xsnprintf (p, endp - p, ";r%s,%s",
6036 phex_nz (tp->control.step_range_start,
6037 addr_size),
6038 phex_nz (tp->control.step_range_end,
6039 addr_size));
6040 }
6041 else
6042 p += xsnprintf (p, endp - p, ";s");
6043 }
6044 else if (step)
6045 p += xsnprintf (p, endp - p, ";s");
6046 else if (siggnal != GDB_SIGNAL_0)
6047 p += xsnprintf (p, endp - p, ";C%02x", siggnal);
6048 else
6049 p += xsnprintf (p, endp - p, ";c");
6050
6051 if (remote_multi_process_p (rs) && ptid.is_pid ())
6052 {
6053 ptid_t nptid;
6054
6055 /* All (-1) threads of process. */
6056 nptid = ptid_t (ptid.pid (), -1, 0);
6057
6058 p += xsnprintf (p, endp - p, ":");
6059 p = write_ptid (p, endp, nptid);
6060 }
6061 else if (ptid != minus_one_ptid)
6062 {
6063 p += xsnprintf (p, endp - p, ":");
6064 p = write_ptid (p, endp, ptid);
6065 }
6066
6067 return p;
6068 }
6069
6070 /* Clear the thread's private info on resume. */
6071
6072 static void
6073 resume_clear_thread_private_info (struct thread_info *thread)
6074 {
6075 if (thread->priv != NULL)
6076 {
6077 remote_thread_info *priv = get_remote_thread_info (thread);
6078
6079 priv->stop_reason = TARGET_STOPPED_BY_NO_REASON;
6080 priv->watch_data_address = 0;
6081 }
6082 }
6083
6084 /* Append a vCont continue-with-signal action for threads that have a
6085 non-zero stop signal. */
6086
6087 char *
6088 remote_target::append_pending_thread_resumptions (char *p, char *endp,
6089 ptid_t ptid)
6090 {
6091 for (thread_info *thread : all_non_exited_threads (ptid))
6092 if (inferior_ptid != thread->ptid
6093 && thread->suspend.stop_signal != GDB_SIGNAL_0)
6094 {
6095 p = append_resumption (p, endp, thread->ptid,
6096 0, thread->suspend.stop_signal);
6097 thread->suspend.stop_signal = GDB_SIGNAL_0;
6098 resume_clear_thread_private_info (thread);
6099 }
6100
6101 return p;
6102 }
6103
6104 /* Set the target running, using the packets that use Hc
6105 (c/s/C/S). */
6106
6107 void
6108 remote_target::remote_resume_with_hc (ptid_t ptid, int step,
6109 gdb_signal siggnal)
6110 {
6111 struct remote_state *rs = get_remote_state ();
6112 char *buf;
6113
6114 rs->last_sent_signal = siggnal;
6115 rs->last_sent_step = step;
6116
6117 /* The c/s/C/S resume packets use Hc, so set the continue
6118 thread. */
6119 if (ptid == minus_one_ptid)
6120 set_continue_thread (any_thread_ptid);
6121 else
6122 set_continue_thread (ptid);
6123
6124 for (thread_info *thread : all_non_exited_threads ())
6125 resume_clear_thread_private_info (thread);
6126
6127 buf = rs->buf.data ();
6128 if (::execution_direction == EXEC_REVERSE)
6129 {
6130 /* We don't pass signals to the target in reverse exec mode. */
6131 if (info_verbose && siggnal != GDB_SIGNAL_0)
6132 warning (_(" - Can't pass signal %d to target in reverse: ignored."),
6133 siggnal);
6134
6135 if (step && packet_support (PACKET_bs) == PACKET_DISABLE)
6136 error (_("Remote reverse-step not supported."));
6137 if (!step && packet_support (PACKET_bc) == PACKET_DISABLE)
6138 error (_("Remote reverse-continue not supported."));
6139
6140 strcpy (buf, step ? "bs" : "bc");
6141 }
6142 else if (siggnal != GDB_SIGNAL_0)
6143 {
6144 buf[0] = step ? 'S' : 'C';
6145 buf[1] = tohex (((int) siggnal >> 4) & 0xf);
6146 buf[2] = tohex (((int) siggnal) & 0xf);
6147 buf[3] = '\0';
6148 }
6149 else
6150 strcpy (buf, step ? "s" : "c");
6151
6152 putpkt (buf);
6153 }
6154
6155 /* Resume the remote inferior by using a "vCont" packet. The thread
6156 to be resumed is PTID; STEP and SIGGNAL indicate whether the
6157 resumed thread should be single-stepped and/or signalled. If PTID
6158 equals minus_one_ptid, then all threads are resumed; the thread to
6159 be stepped and/or signalled is given in the global INFERIOR_PTID.
6160 This function returns non-zero iff it resumes the inferior.
6161
6162 This function issues a strict subset of all possible vCont commands
6163 at the moment. */
6164
6165 int
6166 remote_target::remote_resume_with_vcont (ptid_t ptid, int step,
6167 enum gdb_signal siggnal)
6168 {
6169 struct remote_state *rs = get_remote_state ();
6170 char *p;
6171 char *endp;
6172
6173 /* No reverse execution actions defined for vCont. */
6174 if (::execution_direction == EXEC_REVERSE)
6175 return 0;
6176
6177 if (packet_support (PACKET_vCont) == PACKET_SUPPORT_UNKNOWN)
6178 remote_vcont_probe ();
6179
6180 if (packet_support (PACKET_vCont) == PACKET_DISABLE)
6181 return 0;
6182
6183 p = rs->buf.data ();
6184 endp = p + get_remote_packet_size ();
6185
6186 /* If we could generate a wider range of packets, we'd have to worry
6187 about overflowing BUF. Should there be a generic
6188 "multi-part-packet" packet? */
6189
6190 p += xsnprintf (p, endp - p, "vCont");
6191
6192 if (ptid == magic_null_ptid)
6193 {
6194 /* MAGIC_NULL_PTID means that we don't have any active threads,
6195 so we don't have any TID numbers the inferior will
6196 understand. Make sure to only send forms that do not specify
6197 a TID. */
6198 append_resumption (p, endp, minus_one_ptid, step, siggnal);
6199 }
6200 else if (ptid == minus_one_ptid || ptid.is_pid ())
6201 {
6202 /* Resume all threads (of all processes, or of a single
6203 process), with preference for INFERIOR_PTID. This assumes
6204 inferior_ptid belongs to the set of all threads we are about
6205 to resume. */
6206 if (step || siggnal != GDB_SIGNAL_0)
6207 {
6208 /* Step inferior_ptid, with or without signal. */
6209 p = append_resumption (p, endp, inferior_ptid, step, siggnal);
6210 }
6211
6212 /* Also pass down any pending signaled resumption for other
6213 threads not the current. */
6214 p = append_pending_thread_resumptions (p, endp, ptid);
6215
6216 /* And continue others without a signal. */
6217 append_resumption (p, endp, ptid, /*step=*/ 0, GDB_SIGNAL_0);
6218 }
6219 else
6220 {
6221 /* Scheduler locking; resume only PTID. */
6222 append_resumption (p, endp, ptid, step, siggnal);
6223 }
6224
6225 gdb_assert (strlen (rs->buf.data ()) < get_remote_packet_size ());
6226 putpkt (rs->buf);
6227
6228 if (target_is_non_stop_p ())
6229 {
6230 /* In non-stop, the stub replies to vCont with "OK". The stop
6231 reply will be reported asynchronously by means of a `%Stop'
6232 notification. */
6233 getpkt (&rs->buf, 0);
6234 if (strcmp (rs->buf.data (), "OK") != 0)
6235 error (_("Unexpected vCont reply in non-stop mode: %s"),
6236 rs->buf.data ());
6237 }
6238
6239 return 1;
6240 }
6241
6242 /* Tell the remote machine to resume. */
6243
6244 void
6245 remote_target::resume (ptid_t ptid, int step, enum gdb_signal siggnal)
6246 {
6247 struct remote_state *rs = get_remote_state ();
6248
6249 /* When connected in non-stop mode, the core resumes threads
6250 individually. Resuming remote threads directly in target_resume
6251 would thus result in sending one packet per thread. Instead, to
6252 minimize roundtrip latency, here we just store the resume
6253 request; the actual remote resumption will be done in
6254 target_commit_resume / remote_commit_resume, where we'll be able
6255 to do vCont action coalescing. */
6256 if (target_is_non_stop_p () && ::execution_direction != EXEC_REVERSE)
6257 {
6258 remote_thread_info *remote_thr;
6259
6260 if (minus_one_ptid == ptid || ptid.is_pid ())
6261 remote_thr = get_remote_thread_info (inferior_ptid);
6262 else
6263 remote_thr = get_remote_thread_info (ptid);
6264
6265 remote_thr->last_resume_step = step;
6266 remote_thr->last_resume_sig = siggnal;
6267 return;
6268 }
6269
6270 /* In all-stop, we can't mark REMOTE_ASYNC_GET_PENDING_EVENTS_TOKEN
6271 (explained in remote-notif.c:handle_notification) so
6272 remote_notif_process is not called. We need find a place where
6273 it is safe to start a 'vNotif' sequence. It is good to do it
6274 before resuming inferior, because inferior was stopped and no RSP
6275 traffic at that moment. */
6276 if (!target_is_non_stop_p ())
6277 remote_notif_process (rs->notif_state, &notif_client_stop);
6278
6279 rs->last_resume_exec_dir = ::execution_direction;
6280
6281 /* Prefer vCont, and fallback to s/c/S/C, which use Hc. */
6282 if (!remote_resume_with_vcont (ptid, step, siggnal))
6283 remote_resume_with_hc (ptid, step, siggnal);
6284
6285 /* We are about to start executing the inferior, let's register it
6286 with the event loop. NOTE: this is the one place where all the
6287 execution commands end up. We could alternatively do this in each
6288 of the execution commands in infcmd.c. */
6289 /* FIXME: ezannoni 1999-09-28: We may need to move this out of here
6290 into infcmd.c in order to allow inferior function calls to work
6291 NOT asynchronously. */
6292 if (target_can_async_p ())
6293 target_async (1);
6294
6295 /* We've just told the target to resume. The remote server will
6296 wait for the inferior to stop, and then send a stop reply. In
6297 the mean time, we can't start another command/query ourselves
6298 because the stub wouldn't be ready to process it. This applies
6299 only to the base all-stop protocol, however. In non-stop (which
6300 only supports vCont), the stub replies with an "OK", and is
6301 immediate able to process further serial input. */
6302 if (!target_is_non_stop_p ())
6303 rs->waiting_for_stop_reply = 1;
6304 }
6305
6306 static int is_pending_fork_parent_thread (struct thread_info *thread);
6307
6308 /* Private per-inferior info for target remote processes. */
6309
6310 struct remote_inferior : public private_inferior
6311 {
6312 /* Whether we can send a wildcard vCont for this process. */
6313 bool may_wildcard_vcont = true;
6314 };
6315
6316 /* Get the remote private inferior data associated to INF. */
6317
6318 static remote_inferior *
6319 get_remote_inferior (inferior *inf)
6320 {
6321 if (inf->priv == NULL)
6322 inf->priv.reset (new remote_inferior);
6323
6324 return static_cast<remote_inferior *> (inf->priv.get ());
6325 }
6326
6327 /* Class used to track the construction of a vCont packet in the
6328 outgoing packet buffer. This is used to send multiple vCont
6329 packets if we have more actions than would fit a single packet. */
6330
6331 class vcont_builder
6332 {
6333 public:
6334 explicit vcont_builder (remote_target *remote)
6335 : m_remote (remote)
6336 {
6337 restart ();
6338 }
6339
6340 void flush ();
6341 void push_action (ptid_t ptid, bool step, gdb_signal siggnal);
6342
6343 private:
6344 void restart ();
6345
6346 /* The remote target. */
6347 remote_target *m_remote;
6348
6349 /* Pointer to the first action. P points here if no action has been
6350 appended yet. */
6351 char *m_first_action;
6352
6353 /* Where the next action will be appended. */
6354 char *m_p;
6355
6356 /* The end of the buffer. Must never write past this. */
6357 char *m_endp;
6358 };
6359
6360 /* Prepare the outgoing buffer for a new vCont packet. */
6361
6362 void
6363 vcont_builder::restart ()
6364 {
6365 struct remote_state *rs = m_remote->get_remote_state ();
6366
6367 m_p = rs->buf.data ();
6368 m_endp = m_p + m_remote->get_remote_packet_size ();
6369 m_p += xsnprintf (m_p, m_endp - m_p, "vCont");
6370 m_first_action = m_p;
6371 }
6372
6373 /* If the vCont packet being built has any action, send it to the
6374 remote end. */
6375
6376 void
6377 vcont_builder::flush ()
6378 {
6379 struct remote_state *rs;
6380
6381 if (m_p == m_first_action)
6382 return;
6383
6384 rs = m_remote->get_remote_state ();
6385 m_remote->putpkt (rs->buf);
6386 m_remote->getpkt (&rs->buf, 0);
6387 if (strcmp (rs->buf.data (), "OK") != 0)
6388 error (_("Unexpected vCont reply in non-stop mode: %s"), rs->buf.data ());
6389 }
6390
6391 /* The largest action is range-stepping, with its two addresses. This
6392 is more than sufficient. If a new, bigger action is created, it'll
6393 quickly trigger a failed assertion in append_resumption (and we'll
6394 just bump this). */
6395 #define MAX_ACTION_SIZE 200
6396
6397 /* Append a new vCont action in the outgoing packet being built. If
6398 the action doesn't fit the packet along with previous actions, push
6399 what we've got so far to the remote end and start over a new vCont
6400 packet (with the new action). */
6401
6402 void
6403 vcont_builder::push_action (ptid_t ptid, bool step, gdb_signal siggnal)
6404 {
6405 char buf[MAX_ACTION_SIZE + 1];
6406
6407 char *endp = m_remote->append_resumption (buf, buf + sizeof (buf),
6408 ptid, step, siggnal);
6409
6410 /* Check whether this new action would fit in the vCont packet along
6411 with previous actions. If not, send what we've got so far and
6412 start a new vCont packet. */
6413 size_t rsize = endp - buf;
6414 if (rsize > m_endp - m_p)
6415 {
6416 flush ();
6417 restart ();
6418
6419 /* Should now fit. */
6420 gdb_assert (rsize <= m_endp - m_p);
6421 }
6422
6423 memcpy (m_p, buf, rsize);
6424 m_p += rsize;
6425 *m_p = '\0';
6426 }
6427
6428 /* to_commit_resume implementation. */
6429
6430 void
6431 remote_target::commit_resume ()
6432 {
6433 int any_process_wildcard;
6434 int may_global_wildcard_vcont;
6435
6436 /* If connected in all-stop mode, we'd send the remote resume
6437 request directly from remote_resume. Likewise if
6438 reverse-debugging, as there are no defined vCont actions for
6439 reverse execution. */
6440 if (!target_is_non_stop_p () || ::execution_direction == EXEC_REVERSE)
6441 return;
6442
6443 /* Try to send wildcard actions ("vCont;c" or "vCont;c:pPID.-1")
6444 instead of resuming all threads of each process individually.
6445 However, if any thread of a process must remain halted, we can't
6446 send wildcard resumes and must send one action per thread.
6447
6448 Care must be taken to not resume threads/processes the server
6449 side already told us are stopped, but the core doesn't know about
6450 yet, because the events are still in the vStopped notification
6451 queue. For example:
6452
6453 #1 => vCont s:p1.1;c
6454 #2 <= OK
6455 #3 <= %Stopped T05 p1.1
6456 #4 => vStopped
6457 #5 <= T05 p1.2
6458 #6 => vStopped
6459 #7 <= OK
6460 #8 (infrun handles the stop for p1.1 and continues stepping)
6461 #9 => vCont s:p1.1;c
6462
6463 The last vCont above would resume thread p1.2 by mistake, because
6464 the server has no idea that the event for p1.2 had not been
6465 handled yet.
6466
6467 The server side must similarly ignore resume actions for the
6468 thread that has a pending %Stopped notification (and any other
6469 threads with events pending), until GDB acks the notification
6470 with vStopped. Otherwise, e.g., the following case is
6471 mishandled:
6472
6473 #1 => g (or any other packet)
6474 #2 <= [registers]
6475 #3 <= %Stopped T05 p1.2
6476 #4 => vCont s:p1.1;c
6477 #5 <= OK
6478
6479 Above, the server must not resume thread p1.2. GDB can't know
6480 that p1.2 stopped until it acks the %Stopped notification, and
6481 since from GDB's perspective all threads should be running, it
6482 sends a "c" action.
6483
6484 Finally, special care must also be given to handling fork/vfork
6485 events. A (v)fork event actually tells us that two processes
6486 stopped -- the parent and the child. Until we follow the fork,
6487 we must not resume the child. Therefore, if we have a pending
6488 fork follow, we must not send a global wildcard resume action
6489 (vCont;c). We can still send process-wide wildcards though. */
6490
6491 /* Start by assuming a global wildcard (vCont;c) is possible. */
6492 may_global_wildcard_vcont = 1;
6493
6494 /* And assume every process is individually wildcard-able too. */
6495 for (inferior *inf : all_non_exited_inferiors ())
6496 {
6497 remote_inferior *priv = get_remote_inferior (inf);
6498
6499 priv->may_wildcard_vcont = true;
6500 }
6501
6502 /* Check for any pending events (not reported or processed yet) and
6503 disable process and global wildcard resumes appropriately. */
6504 check_pending_events_prevent_wildcard_vcont (&may_global_wildcard_vcont);
6505
6506 for (thread_info *tp : all_non_exited_threads ())
6507 {
6508 /* If a thread of a process is not meant to be resumed, then we
6509 can't wildcard that process. */
6510 if (!tp->executing)
6511 {
6512 get_remote_inferior (tp->inf)->may_wildcard_vcont = false;
6513
6514 /* And if we can't wildcard a process, we can't wildcard
6515 everything either. */
6516 may_global_wildcard_vcont = 0;
6517 continue;
6518 }
6519
6520 /* If a thread is the parent of an unfollowed fork, then we
6521 can't do a global wildcard, as that would resume the fork
6522 child. */
6523 if (is_pending_fork_parent_thread (tp))
6524 may_global_wildcard_vcont = 0;
6525 }
6526
6527 /* Now let's build the vCont packet(s). Actions must be appended
6528 from narrower to wider scopes (thread -> process -> global). If
6529 we end up with too many actions for a single packet vcont_builder
6530 flushes the current vCont packet to the remote side and starts a
6531 new one. */
6532 struct vcont_builder vcont_builder (this);
6533
6534 /* Threads first. */
6535 for (thread_info *tp : all_non_exited_threads ())
6536 {
6537 remote_thread_info *remote_thr = get_remote_thread_info (tp);
6538
6539 if (!tp->executing || remote_thr->vcont_resumed)
6540 continue;
6541
6542 gdb_assert (!thread_is_in_step_over_chain (tp));
6543
6544 if (!remote_thr->last_resume_step
6545 && remote_thr->last_resume_sig == GDB_SIGNAL_0
6546 && get_remote_inferior (tp->inf)->may_wildcard_vcont)
6547 {
6548 /* We'll send a wildcard resume instead. */
6549 remote_thr->vcont_resumed = 1;
6550 continue;
6551 }
6552
6553 vcont_builder.push_action (tp->ptid,
6554 remote_thr->last_resume_step,
6555 remote_thr->last_resume_sig);
6556 remote_thr->vcont_resumed = 1;
6557 }
6558
6559 /* Now check whether we can send any process-wide wildcard. This is
6560 to avoid sending a global wildcard in the case nothing is
6561 supposed to be resumed. */
6562 any_process_wildcard = 0;
6563
6564 for (inferior *inf : all_non_exited_inferiors ())
6565 {
6566 if (get_remote_inferior (inf)->may_wildcard_vcont)
6567 {
6568 any_process_wildcard = 1;
6569 break;
6570 }
6571 }
6572
6573 if (any_process_wildcard)
6574 {
6575 /* If all processes are wildcard-able, then send a single "c"
6576 action, otherwise, send an "all (-1) threads of process"
6577 continue action for each running process, if any. */
6578 if (may_global_wildcard_vcont)
6579 {
6580 vcont_builder.push_action (minus_one_ptid,
6581 false, GDB_SIGNAL_0);
6582 }
6583 else
6584 {
6585 for (inferior *inf : all_non_exited_inferiors ())
6586 {
6587 if (get_remote_inferior (inf)->may_wildcard_vcont)
6588 {
6589 vcont_builder.push_action (ptid_t (inf->pid),
6590 false, GDB_SIGNAL_0);
6591 }
6592 }
6593 }
6594 }
6595
6596 vcont_builder.flush ();
6597 }
6598
6599 \f
6600
6601 /* Non-stop version of target_stop. Uses `vCont;t' to stop a remote
6602 thread, all threads of a remote process, or all threads of all
6603 processes. */
6604
6605 void
6606 remote_target::remote_stop_ns (ptid_t ptid)
6607 {
6608 struct remote_state *rs = get_remote_state ();
6609 char *p = rs->buf.data ();
6610 char *endp = p + get_remote_packet_size ();
6611
6612 if (packet_support (PACKET_vCont) == PACKET_SUPPORT_UNKNOWN)
6613 remote_vcont_probe ();
6614
6615 if (!rs->supports_vCont.t)
6616 error (_("Remote server does not support stopping threads"));
6617
6618 if (ptid == minus_one_ptid
6619 || (!remote_multi_process_p (rs) && ptid.is_pid ()))
6620 p += xsnprintf (p, endp - p, "vCont;t");
6621 else
6622 {
6623 ptid_t nptid;
6624
6625 p += xsnprintf (p, endp - p, "vCont;t:");
6626
6627 if (ptid.is_pid ())
6628 /* All (-1) threads of process. */
6629 nptid = ptid_t (ptid.pid (), -1, 0);
6630 else
6631 {
6632 /* Small optimization: if we already have a stop reply for
6633 this thread, no use in telling the stub we want this
6634 stopped. */
6635 if (peek_stop_reply (ptid))
6636 return;
6637
6638 nptid = ptid;
6639 }
6640
6641 write_ptid (p, endp, nptid);
6642 }
6643
6644 /* In non-stop, we get an immediate OK reply. The stop reply will
6645 come in asynchronously by notification. */
6646 putpkt (rs->buf);
6647 getpkt (&rs->buf, 0);
6648 if (strcmp (rs->buf.data (), "OK") != 0)
6649 error (_("Stopping %s failed: %s"), target_pid_to_str (ptid),
6650 rs->buf.data ());
6651 }
6652
6653 /* All-stop version of target_interrupt. Sends a break or a ^C to
6654 interrupt the remote target. It is undefined which thread of which
6655 process reports the interrupt. */
6656
6657 void
6658 remote_target::remote_interrupt_as ()
6659 {
6660 struct remote_state *rs = get_remote_state ();
6661
6662 rs->ctrlc_pending_p = 1;
6663
6664 /* If the inferior is stopped already, but the core didn't know
6665 about it yet, just ignore the request. The cached wait status
6666 will be collected in remote_wait. */
6667 if (rs->cached_wait_status)
6668 return;
6669
6670 /* Send interrupt_sequence to remote target. */
6671 send_interrupt_sequence ();
6672 }
6673
6674 /* Non-stop version of target_interrupt. Uses `vCtrlC' to interrupt
6675 the remote target. It is undefined which thread of which process
6676 reports the interrupt. Throws an error if the packet is not
6677 supported by the server. */
6678
6679 void
6680 remote_target::remote_interrupt_ns ()
6681 {
6682 struct remote_state *rs = get_remote_state ();
6683 char *p = rs->buf.data ();
6684 char *endp = p + get_remote_packet_size ();
6685
6686 xsnprintf (p, endp - p, "vCtrlC");
6687
6688 /* In non-stop, we get an immediate OK reply. The stop reply will
6689 come in asynchronously by notification. */
6690 putpkt (rs->buf);
6691 getpkt (&rs->buf, 0);
6692
6693 switch (packet_ok (rs->buf, &remote_protocol_packets[PACKET_vCtrlC]))
6694 {
6695 case PACKET_OK:
6696 break;
6697 case PACKET_UNKNOWN:
6698 error (_("No support for interrupting the remote target."));
6699 case PACKET_ERROR:
6700 error (_("Interrupting target failed: %s"), rs->buf.data ());
6701 }
6702 }
6703
6704 /* Implement the to_stop function for the remote targets. */
6705
6706 void
6707 remote_target::stop (ptid_t ptid)
6708 {
6709 if (remote_debug)
6710 fprintf_unfiltered (gdb_stdlog, "remote_stop called\n");
6711
6712 if (target_is_non_stop_p ())
6713 remote_stop_ns (ptid);
6714 else
6715 {
6716 /* We don't currently have a way to transparently pause the
6717 remote target in all-stop mode. Interrupt it instead. */
6718 remote_interrupt_as ();
6719 }
6720 }
6721
6722 /* Implement the to_interrupt function for the remote targets. */
6723
6724 void
6725 remote_target::interrupt ()
6726 {
6727 if (remote_debug)
6728 fprintf_unfiltered (gdb_stdlog, "remote_interrupt called\n");
6729
6730 if (target_is_non_stop_p ())
6731 remote_interrupt_ns ();
6732 else
6733 remote_interrupt_as ();
6734 }
6735
6736 /* Implement the to_pass_ctrlc function for the remote targets. */
6737
6738 void
6739 remote_target::pass_ctrlc ()
6740 {
6741 struct remote_state *rs = get_remote_state ();
6742
6743 if (remote_debug)
6744 fprintf_unfiltered (gdb_stdlog, "remote_pass_ctrlc called\n");
6745
6746 /* If we're starting up, we're not fully synced yet. Quit
6747 immediately. */
6748 if (rs->starting_up)
6749 quit ();
6750 /* If ^C has already been sent once, offer to disconnect. */
6751 else if (rs->ctrlc_pending_p)
6752 interrupt_query ();
6753 else
6754 target_interrupt ();
6755 }
6756
6757 /* Ask the user what to do when an interrupt is received. */
6758
6759 void
6760 remote_target::interrupt_query ()
6761 {
6762 struct remote_state *rs = get_remote_state ();
6763
6764 if (rs->waiting_for_stop_reply && rs->ctrlc_pending_p)
6765 {
6766 if (query (_("The target is not responding to interrupt requests.\n"
6767 "Stop debugging it? ")))
6768 {
6769 remote_unpush_target ();
6770 throw_error (TARGET_CLOSE_ERROR, _("Disconnected from target."));
6771 }
6772 }
6773 else
6774 {
6775 if (query (_("Interrupted while waiting for the program.\n"
6776 "Give up waiting? ")))
6777 quit ();
6778 }
6779 }
6780
6781 /* Enable/disable target terminal ownership. Most targets can use
6782 terminal groups to control terminal ownership. Remote targets are
6783 different in that explicit transfer of ownership to/from GDB/target
6784 is required. */
6785
6786 void
6787 remote_target::terminal_inferior ()
6788 {
6789 /* NOTE: At this point we could also register our selves as the
6790 recipient of all input. Any characters typed could then be
6791 passed on down to the target. */
6792 }
6793
6794 void
6795 remote_target::terminal_ours ()
6796 {
6797 }
6798
6799 static void
6800 remote_console_output (const char *msg)
6801 {
6802 const char *p;
6803
6804 for (p = msg; p[0] && p[1]; p += 2)
6805 {
6806 char tb[2];
6807 char c = fromhex (p[0]) * 16 + fromhex (p[1]);
6808
6809 tb[0] = c;
6810 tb[1] = 0;
6811 fputs_unfiltered (tb, gdb_stdtarg);
6812 }
6813 gdb_flush (gdb_stdtarg);
6814 }
6815
6816 DEF_VEC_O(cached_reg_t);
6817
6818 typedef struct stop_reply
6819 {
6820 struct notif_event base;
6821
6822 /* The identifier of the thread about this event */
6823 ptid_t ptid;
6824
6825 /* The remote state this event is associated with. When the remote
6826 connection, represented by a remote_state object, is closed,
6827 all the associated stop_reply events should be released. */
6828 struct remote_state *rs;
6829
6830 struct target_waitstatus ws;
6831
6832 /* The architecture associated with the expedited registers. */
6833 gdbarch *arch;
6834
6835 /* Expedited registers. This makes remote debugging a bit more
6836 efficient for those targets that provide critical registers as
6837 part of their normal status mechanism (as another roundtrip to
6838 fetch them is avoided). */
6839 VEC(cached_reg_t) *regcache;
6840
6841 enum target_stop_reason stop_reason;
6842
6843 CORE_ADDR watch_data_address;
6844
6845 int core;
6846 } *stop_reply_p;
6847
6848 static void
6849 stop_reply_xfree (struct stop_reply *r)
6850 {
6851 notif_event_xfree ((struct notif_event *) r);
6852 }
6853
6854 /* Return the length of the stop reply queue. */
6855
6856 int
6857 remote_target::stop_reply_queue_length ()
6858 {
6859 remote_state *rs = get_remote_state ();
6860 return rs->stop_reply_queue.size ();
6861 }
6862
6863 void
6864 remote_notif_stop_parse (remote_target *remote,
6865 struct notif_client *self, const char *buf,
6866 struct notif_event *event)
6867 {
6868 remote->remote_parse_stop_reply (buf, (struct stop_reply *) event);
6869 }
6870
6871 static void
6872 remote_notif_stop_ack (remote_target *remote,
6873 struct notif_client *self, const char *buf,
6874 struct notif_event *event)
6875 {
6876 struct stop_reply *stop_reply = (struct stop_reply *) event;
6877
6878 /* acknowledge */
6879 putpkt (remote, self->ack_command);
6880
6881 if (stop_reply->ws.kind == TARGET_WAITKIND_IGNORE)
6882 {
6883 /* We got an unknown stop reply. */
6884 error (_("Unknown stop reply"));
6885 }
6886
6887 remote->push_stop_reply (stop_reply);
6888 }
6889
6890 static int
6891 remote_notif_stop_can_get_pending_events (remote_target *remote,
6892 struct notif_client *self)
6893 {
6894 /* We can't get pending events in remote_notif_process for
6895 notification stop, and we have to do this in remote_wait_ns
6896 instead. If we fetch all queued events from stub, remote stub
6897 may exit and we have no chance to process them back in
6898 remote_wait_ns. */
6899 remote_state *rs = remote->get_remote_state ();
6900 mark_async_event_handler (rs->remote_async_inferior_event_token);
6901 return 0;
6902 }
6903
6904 static void
6905 stop_reply_dtr (struct notif_event *event)
6906 {
6907 struct stop_reply *r = (struct stop_reply *) event;
6908 cached_reg_t *reg;
6909 int ix;
6910
6911 for (ix = 0;
6912 VEC_iterate (cached_reg_t, r->regcache, ix, reg);
6913 ix++)
6914 xfree (reg->data);
6915
6916 VEC_free (cached_reg_t, r->regcache);
6917 }
6918
6919 static struct notif_event *
6920 remote_notif_stop_alloc_reply (void)
6921 {
6922 /* We cast to a pointer to the "base class". */
6923 struct notif_event *r = (struct notif_event *) XNEW (struct stop_reply);
6924
6925 r->dtr = stop_reply_dtr;
6926
6927 return r;
6928 }
6929
6930 /* A client of notification Stop. */
6931
6932 struct notif_client notif_client_stop =
6933 {
6934 "Stop",
6935 "vStopped",
6936 remote_notif_stop_parse,
6937 remote_notif_stop_ack,
6938 remote_notif_stop_can_get_pending_events,
6939 remote_notif_stop_alloc_reply,
6940 REMOTE_NOTIF_STOP,
6941 };
6942
6943 /* Determine if THREAD_PTID is a pending fork parent thread. ARG contains
6944 the pid of the process that owns the threads we want to check, or
6945 -1 if we want to check all threads. */
6946
6947 static int
6948 is_pending_fork_parent (struct target_waitstatus *ws, int event_pid,
6949 ptid_t thread_ptid)
6950 {
6951 if (ws->kind == TARGET_WAITKIND_FORKED
6952 || ws->kind == TARGET_WAITKIND_VFORKED)
6953 {
6954 if (event_pid == -1 || event_pid == thread_ptid.pid ())
6955 return 1;
6956 }
6957
6958 return 0;
6959 }
6960
6961 /* Return the thread's pending status used to determine whether the
6962 thread is a fork parent stopped at a fork event. */
6963
6964 static struct target_waitstatus *
6965 thread_pending_fork_status (struct thread_info *thread)
6966 {
6967 if (thread->suspend.waitstatus_pending_p)
6968 return &thread->suspend.waitstatus;
6969 else
6970 return &thread->pending_follow;
6971 }
6972
6973 /* Determine if THREAD is a pending fork parent thread. */
6974
6975 static int
6976 is_pending_fork_parent_thread (struct thread_info *thread)
6977 {
6978 struct target_waitstatus *ws = thread_pending_fork_status (thread);
6979 int pid = -1;
6980
6981 return is_pending_fork_parent (ws, pid, thread->ptid);
6982 }
6983
6984 /* If CONTEXT contains any fork child threads that have not been
6985 reported yet, remove them from the CONTEXT list. If such a
6986 thread exists it is because we are stopped at a fork catchpoint
6987 and have not yet called follow_fork, which will set up the
6988 host-side data structures for the new process. */
6989
6990 void
6991 remote_target::remove_new_fork_children (threads_listing_context *context)
6992 {
6993 int pid = -1;
6994 struct notif_client *notif = &notif_client_stop;
6995
6996 /* For any threads stopped at a fork event, remove the corresponding
6997 fork child threads from the CONTEXT list. */
6998 for (thread_info *thread : all_non_exited_threads ())
6999 {
7000 struct target_waitstatus *ws = thread_pending_fork_status (thread);
7001
7002 if (is_pending_fork_parent (ws, pid, thread->ptid))
7003 context->remove_thread (ws->value.related_pid);
7004 }
7005
7006 /* Check for any pending fork events (not reported or processed yet)
7007 in process PID and remove those fork child threads from the
7008 CONTEXT list as well. */
7009 remote_notif_get_pending_events (notif);
7010 for (auto &event : get_remote_state ()->stop_reply_queue)
7011 if (event->ws.kind == TARGET_WAITKIND_FORKED
7012 || event->ws.kind == TARGET_WAITKIND_VFORKED
7013 || event->ws.kind == TARGET_WAITKIND_THREAD_EXITED)
7014 context->remove_thread (event->ws.value.related_pid);
7015 }
7016
7017 /* Check whether any event pending in the vStopped queue would prevent
7018 a global or process wildcard vCont action. Clear
7019 *may_global_wildcard if we can't do a global wildcard (vCont;c),
7020 and clear the event inferior's may_wildcard_vcont flag if we can't
7021 do a process-wide wildcard resume (vCont;c:pPID.-1). */
7022
7023 void
7024 remote_target::check_pending_events_prevent_wildcard_vcont
7025 (int *may_global_wildcard)
7026 {
7027 struct notif_client *notif = &notif_client_stop;
7028
7029 remote_notif_get_pending_events (notif);
7030 for (auto &event : get_remote_state ()->stop_reply_queue)
7031 {
7032 if (event->ws.kind == TARGET_WAITKIND_NO_RESUMED
7033 || event->ws.kind == TARGET_WAITKIND_NO_HISTORY)
7034 continue;
7035
7036 if (event->ws.kind == TARGET_WAITKIND_FORKED
7037 || event->ws.kind == TARGET_WAITKIND_VFORKED)
7038 *may_global_wildcard = 0;
7039
7040 struct inferior *inf = find_inferior_ptid (event->ptid);
7041
7042 /* This may be the first time we heard about this process.
7043 Regardless, we must not do a global wildcard resume, otherwise
7044 we'd resume this process too. */
7045 *may_global_wildcard = 0;
7046 if (inf != NULL)
7047 get_remote_inferior (inf)->may_wildcard_vcont = false;
7048 }
7049 }
7050
7051 /* Discard all pending stop replies of inferior INF. */
7052
7053 void
7054 remote_target::discard_pending_stop_replies (struct inferior *inf)
7055 {
7056 struct stop_reply *reply;
7057 struct remote_state *rs = get_remote_state ();
7058 struct remote_notif_state *rns = rs->notif_state;
7059
7060 /* This function can be notified when an inferior exists. When the
7061 target is not remote, the notification state is NULL. */
7062 if (rs->remote_desc == NULL)
7063 return;
7064
7065 reply = (struct stop_reply *) rns->pending_event[notif_client_stop.id];
7066
7067 /* Discard the in-flight notification. */
7068 if (reply != NULL && reply->ptid.pid () == inf->pid)
7069 {
7070 stop_reply_xfree (reply);
7071 rns->pending_event[notif_client_stop.id] = NULL;
7072 }
7073
7074 /* Discard the stop replies we have already pulled with
7075 vStopped. */
7076 auto iter = std::remove_if (rs->stop_reply_queue.begin (),
7077 rs->stop_reply_queue.end (),
7078 [=] (const stop_reply_up &event)
7079 {
7080 return event->ptid.pid () == inf->pid;
7081 });
7082 rs->stop_reply_queue.erase (iter, rs->stop_reply_queue.end ());
7083 }
7084
7085 /* Discard the stop replies for RS in stop_reply_queue. */
7086
7087 void
7088 remote_target::discard_pending_stop_replies_in_queue ()
7089 {
7090 remote_state *rs = get_remote_state ();
7091
7092 /* Discard the stop replies we have already pulled with
7093 vStopped. */
7094 auto iter = std::remove_if (rs->stop_reply_queue.begin (),
7095 rs->stop_reply_queue.end (),
7096 [=] (const stop_reply_up &event)
7097 {
7098 return event->rs == rs;
7099 });
7100 rs->stop_reply_queue.erase (iter, rs->stop_reply_queue.end ());
7101 }
7102
7103 /* Remove the first reply in 'stop_reply_queue' which matches
7104 PTID. */
7105
7106 struct stop_reply *
7107 remote_target::remote_notif_remove_queued_reply (ptid_t ptid)
7108 {
7109 remote_state *rs = get_remote_state ();
7110
7111 auto iter = std::find_if (rs->stop_reply_queue.begin (),
7112 rs->stop_reply_queue.end (),
7113 [=] (const stop_reply_up &event)
7114 {
7115 return event->ptid.matches (ptid);
7116 });
7117 struct stop_reply *result;
7118 if (iter == rs->stop_reply_queue.end ())
7119 result = nullptr;
7120 else
7121 {
7122 result = iter->release ();
7123 rs->stop_reply_queue.erase (iter);
7124 }
7125
7126 if (notif_debug)
7127 fprintf_unfiltered (gdb_stdlog,
7128 "notif: discard queued event: 'Stop' in %s\n",
7129 target_pid_to_str (ptid));
7130
7131 return result;
7132 }
7133
7134 /* Look for a queued stop reply belonging to PTID. If one is found,
7135 remove it from the queue, and return it. Returns NULL if none is
7136 found. If there are still queued events left to process, tell the
7137 event loop to get back to target_wait soon. */
7138
7139 struct stop_reply *
7140 remote_target::queued_stop_reply (ptid_t ptid)
7141 {
7142 remote_state *rs = get_remote_state ();
7143 struct stop_reply *r = remote_notif_remove_queued_reply (ptid);
7144
7145 if (!rs->stop_reply_queue.empty ())
7146 {
7147 /* There's still at least an event left. */
7148 mark_async_event_handler (rs->remote_async_inferior_event_token);
7149 }
7150
7151 return r;
7152 }
7153
7154 /* Push a fully parsed stop reply in the stop reply queue. Since we
7155 know that we now have at least one queued event left to pass to the
7156 core side, tell the event loop to get back to target_wait soon. */
7157
7158 void
7159 remote_target::push_stop_reply (struct stop_reply *new_event)
7160 {
7161 remote_state *rs = get_remote_state ();
7162 rs->stop_reply_queue.push_back (stop_reply_up (new_event));
7163
7164 if (notif_debug)
7165 fprintf_unfiltered (gdb_stdlog,
7166 "notif: push 'Stop' %s to queue %d\n",
7167 target_pid_to_str (new_event->ptid),
7168 int (rs->stop_reply_queue.size ()));
7169
7170 mark_async_event_handler (rs->remote_async_inferior_event_token);
7171 }
7172
7173 /* Returns true if we have a stop reply for PTID. */
7174
7175 int
7176 remote_target::peek_stop_reply (ptid_t ptid)
7177 {
7178 remote_state *rs = get_remote_state ();
7179 for (auto &event : rs->stop_reply_queue)
7180 if (ptid == event->ptid
7181 && event->ws.kind == TARGET_WAITKIND_STOPPED)
7182 return 1;
7183 return 0;
7184 }
7185
7186 /* Helper for remote_parse_stop_reply. Return nonzero if the substring
7187 starting with P and ending with PEND matches PREFIX. */
7188
7189 static int
7190 strprefix (const char *p, const char *pend, const char *prefix)
7191 {
7192 for ( ; p < pend; p++, prefix++)
7193 if (*p != *prefix)
7194 return 0;
7195 return *prefix == '\0';
7196 }
7197
7198 /* Parse the stop reply in BUF. Either the function succeeds, and the
7199 result is stored in EVENT, or throws an error. */
7200
7201 void
7202 remote_target::remote_parse_stop_reply (const char *buf, stop_reply *event)
7203 {
7204 remote_arch_state *rsa = NULL;
7205 ULONGEST addr;
7206 const char *p;
7207 int skipregs = 0;
7208
7209 event->ptid = null_ptid;
7210 event->rs = get_remote_state ();
7211 event->ws.kind = TARGET_WAITKIND_IGNORE;
7212 event->ws.value.integer = 0;
7213 event->stop_reason = TARGET_STOPPED_BY_NO_REASON;
7214 event->regcache = NULL;
7215 event->core = -1;
7216
7217 switch (buf[0])
7218 {
7219 case 'T': /* Status with PC, SP, FP, ... */
7220 /* Expedited reply, containing Signal, {regno, reg} repeat. */
7221 /* format is: 'Tssn...:r...;n...:r...;n...:r...;#cc', where
7222 ss = signal number
7223 n... = register number
7224 r... = register contents
7225 */
7226
7227 p = &buf[3]; /* after Txx */
7228 while (*p)
7229 {
7230 const char *p1;
7231 int fieldsize;
7232
7233 p1 = strchr (p, ':');
7234 if (p1 == NULL)
7235 error (_("Malformed packet(a) (missing colon): %s\n\
7236 Packet: '%s'\n"),
7237 p, buf);
7238 if (p == p1)
7239 error (_("Malformed packet(a) (missing register number): %s\n\
7240 Packet: '%s'\n"),
7241 p, buf);
7242
7243 /* Some "registers" are actually extended stop information.
7244 Note if you're adding a new entry here: GDB 7.9 and
7245 earlier assume that all register "numbers" that start
7246 with an hex digit are real register numbers. Make sure
7247 the server only sends such a packet if it knows the
7248 client understands it. */
7249
7250 if (strprefix (p, p1, "thread"))
7251 event->ptid = read_ptid (++p1, &p);
7252 else if (strprefix (p, p1, "syscall_entry"))
7253 {
7254 ULONGEST sysno;
7255
7256 event->ws.kind = TARGET_WAITKIND_SYSCALL_ENTRY;
7257 p = unpack_varlen_hex (++p1, &sysno);
7258 event->ws.value.syscall_number = (int) sysno;
7259 }
7260 else if (strprefix (p, p1, "syscall_return"))
7261 {
7262 ULONGEST sysno;
7263
7264 event->ws.kind = TARGET_WAITKIND_SYSCALL_RETURN;
7265 p = unpack_varlen_hex (++p1, &sysno);
7266 event->ws.value.syscall_number = (int) sysno;
7267 }
7268 else if (strprefix (p, p1, "watch")
7269 || strprefix (p, p1, "rwatch")
7270 || strprefix (p, p1, "awatch"))
7271 {
7272 event->stop_reason = TARGET_STOPPED_BY_WATCHPOINT;
7273 p = unpack_varlen_hex (++p1, &addr);
7274 event->watch_data_address = (CORE_ADDR) addr;
7275 }
7276 else if (strprefix (p, p1, "swbreak"))
7277 {
7278 event->stop_reason = TARGET_STOPPED_BY_SW_BREAKPOINT;
7279
7280 /* Make sure the stub doesn't forget to indicate support
7281 with qSupported. */
7282 if (packet_support (PACKET_swbreak_feature) != PACKET_ENABLE)
7283 error (_("Unexpected swbreak stop reason"));
7284
7285 /* The value part is documented as "must be empty",
7286 though we ignore it, in case we ever decide to make
7287 use of it in a backward compatible way. */
7288 p = strchrnul (p1 + 1, ';');
7289 }
7290 else if (strprefix (p, p1, "hwbreak"))
7291 {
7292 event->stop_reason = TARGET_STOPPED_BY_HW_BREAKPOINT;
7293
7294 /* Make sure the stub doesn't forget to indicate support
7295 with qSupported. */
7296 if (packet_support (PACKET_hwbreak_feature) != PACKET_ENABLE)
7297 error (_("Unexpected hwbreak stop reason"));
7298
7299 /* See above. */
7300 p = strchrnul (p1 + 1, ';');
7301 }
7302 else if (strprefix (p, p1, "library"))
7303 {
7304 event->ws.kind = TARGET_WAITKIND_LOADED;
7305 p = strchrnul (p1 + 1, ';');
7306 }
7307 else if (strprefix (p, p1, "replaylog"))
7308 {
7309 event->ws.kind = TARGET_WAITKIND_NO_HISTORY;
7310 /* p1 will indicate "begin" or "end", but it makes
7311 no difference for now, so ignore it. */
7312 p = strchrnul (p1 + 1, ';');
7313 }
7314 else if (strprefix (p, p1, "core"))
7315 {
7316 ULONGEST c;
7317
7318 p = unpack_varlen_hex (++p1, &c);
7319 event->core = c;
7320 }
7321 else if (strprefix (p, p1, "fork"))
7322 {
7323 event->ws.value.related_pid = read_ptid (++p1, &p);
7324 event->ws.kind = TARGET_WAITKIND_FORKED;
7325 }
7326 else if (strprefix (p, p1, "vfork"))
7327 {
7328 event->ws.value.related_pid = read_ptid (++p1, &p);
7329 event->ws.kind = TARGET_WAITKIND_VFORKED;
7330 }
7331 else if (strprefix (p, p1, "vforkdone"))
7332 {
7333 event->ws.kind = TARGET_WAITKIND_VFORK_DONE;
7334 p = strchrnul (p1 + 1, ';');
7335 }
7336 else if (strprefix (p, p1, "exec"))
7337 {
7338 ULONGEST ignored;
7339 int pathlen;
7340
7341 /* Determine the length of the execd pathname. */
7342 p = unpack_varlen_hex (++p1, &ignored);
7343 pathlen = (p - p1) / 2;
7344
7345 /* Save the pathname for event reporting and for
7346 the next run command. */
7347 char *pathname = (char *) xmalloc (pathlen + 1);
7348 struct cleanup *old_chain = make_cleanup (xfree, pathname);
7349 hex2bin (p1, (gdb_byte *) pathname, pathlen);
7350 pathname[pathlen] = '\0';
7351 discard_cleanups (old_chain);
7352
7353 /* This is freed during event handling. */
7354 event->ws.value.execd_pathname = pathname;
7355 event->ws.kind = TARGET_WAITKIND_EXECD;
7356
7357 /* Skip the registers included in this packet, since
7358 they may be for an architecture different from the
7359 one used by the original program. */
7360 skipregs = 1;
7361 }
7362 else if (strprefix (p, p1, "create"))
7363 {
7364 event->ws.kind = TARGET_WAITKIND_THREAD_CREATED;
7365 p = strchrnul (p1 + 1, ';');
7366 }
7367 else
7368 {
7369 ULONGEST pnum;
7370 const char *p_temp;
7371
7372 if (skipregs)
7373 {
7374 p = strchrnul (p1 + 1, ';');
7375 p++;
7376 continue;
7377 }
7378
7379 /* Maybe a real ``P'' register number. */
7380 p_temp = unpack_varlen_hex (p, &pnum);
7381 /* If the first invalid character is the colon, we got a
7382 register number. Otherwise, it's an unknown stop
7383 reason. */
7384 if (p_temp == p1)
7385 {
7386 /* If we haven't parsed the event's thread yet, find
7387 it now, in order to find the architecture of the
7388 reported expedited registers. */
7389 if (event->ptid == null_ptid)
7390 {
7391 const char *thr = strstr (p1 + 1, ";thread:");
7392 if (thr != NULL)
7393 event->ptid = read_ptid (thr + strlen (";thread:"),
7394 NULL);
7395 else
7396 {
7397 /* Either the current thread hasn't changed,
7398 or the inferior is not multi-threaded.
7399 The event must be for the thread we last
7400 set as (or learned as being) current. */
7401 event->ptid = event->rs->general_thread;
7402 }
7403 }
7404
7405 if (rsa == NULL)
7406 {
7407 inferior *inf = (event->ptid == null_ptid
7408 ? NULL
7409 : find_inferior_ptid (event->ptid));
7410 /* If this is the first time we learn anything
7411 about this process, skip the registers
7412 included in this packet, since we don't yet
7413 know which architecture to use to parse them.
7414 We'll determine the architecture later when
7415 we process the stop reply and retrieve the
7416 target description, via
7417 remote_notice_new_inferior ->
7418 post_create_inferior. */
7419 if (inf == NULL)
7420 {
7421 p = strchrnul (p1 + 1, ';');
7422 p++;
7423 continue;
7424 }
7425
7426 event->arch = inf->gdbarch;
7427 rsa = event->rs->get_remote_arch_state (event->arch);
7428 }
7429
7430 packet_reg *reg
7431 = packet_reg_from_pnum (event->arch, rsa, pnum);
7432 cached_reg_t cached_reg;
7433
7434 if (reg == NULL)
7435 error (_("Remote sent bad register number %s: %s\n\
7436 Packet: '%s'\n"),
7437 hex_string (pnum), p, buf);
7438
7439 cached_reg.num = reg->regnum;
7440 cached_reg.data = (gdb_byte *)
7441 xmalloc (register_size (event->arch, reg->regnum));
7442
7443 p = p1 + 1;
7444 fieldsize = hex2bin (p, cached_reg.data,
7445 register_size (event->arch, reg->regnum));
7446 p += 2 * fieldsize;
7447 if (fieldsize < register_size (event->arch, reg->regnum))
7448 warning (_("Remote reply is too short: %s"), buf);
7449
7450 VEC_safe_push (cached_reg_t, event->regcache, &cached_reg);
7451 }
7452 else
7453 {
7454 /* Not a number. Silently skip unknown optional
7455 info. */
7456 p = strchrnul (p1 + 1, ';');
7457 }
7458 }
7459
7460 if (*p != ';')
7461 error (_("Remote register badly formatted: %s\nhere: %s"),
7462 buf, p);
7463 ++p;
7464 }
7465
7466 if (event->ws.kind != TARGET_WAITKIND_IGNORE)
7467 break;
7468
7469 /* fall through */
7470 case 'S': /* Old style status, just signal only. */
7471 {
7472 int sig;
7473
7474 event->ws.kind = TARGET_WAITKIND_STOPPED;
7475 sig = (fromhex (buf[1]) << 4) + fromhex (buf[2]);
7476 if (GDB_SIGNAL_FIRST <= sig && sig < GDB_SIGNAL_LAST)
7477 event->ws.value.sig = (enum gdb_signal) sig;
7478 else
7479 event->ws.value.sig = GDB_SIGNAL_UNKNOWN;
7480 }
7481 break;
7482 case 'w': /* Thread exited. */
7483 {
7484 ULONGEST value;
7485
7486 event->ws.kind = TARGET_WAITKIND_THREAD_EXITED;
7487 p = unpack_varlen_hex (&buf[1], &value);
7488 event->ws.value.integer = value;
7489 if (*p != ';')
7490 error (_("stop reply packet badly formatted: %s"), buf);
7491 event->ptid = read_ptid (++p, NULL);
7492 break;
7493 }
7494 case 'W': /* Target exited. */
7495 case 'X':
7496 {
7497 int pid;
7498 ULONGEST value;
7499
7500 /* GDB used to accept only 2 hex chars here. Stubs should
7501 only send more if they detect GDB supports multi-process
7502 support. */
7503 p = unpack_varlen_hex (&buf[1], &value);
7504
7505 if (buf[0] == 'W')
7506 {
7507 /* The remote process exited. */
7508 event->ws.kind = TARGET_WAITKIND_EXITED;
7509 event->ws.value.integer = value;
7510 }
7511 else
7512 {
7513 /* The remote process exited with a signal. */
7514 event->ws.kind = TARGET_WAITKIND_SIGNALLED;
7515 if (GDB_SIGNAL_FIRST <= value && value < GDB_SIGNAL_LAST)
7516 event->ws.value.sig = (enum gdb_signal) value;
7517 else
7518 event->ws.value.sig = GDB_SIGNAL_UNKNOWN;
7519 }
7520
7521 /* If no process is specified, assume inferior_ptid. */
7522 pid = inferior_ptid.pid ();
7523 if (*p == '\0')
7524 ;
7525 else if (*p == ';')
7526 {
7527 p++;
7528
7529 if (*p == '\0')
7530 ;
7531 else if (startswith (p, "process:"))
7532 {
7533 ULONGEST upid;
7534
7535 p += sizeof ("process:") - 1;
7536 unpack_varlen_hex (p, &upid);
7537 pid = upid;
7538 }
7539 else
7540 error (_("unknown stop reply packet: %s"), buf);
7541 }
7542 else
7543 error (_("unknown stop reply packet: %s"), buf);
7544 event->ptid = ptid_t (pid);
7545 }
7546 break;
7547 case 'N':
7548 event->ws.kind = TARGET_WAITKIND_NO_RESUMED;
7549 event->ptid = minus_one_ptid;
7550 break;
7551 }
7552
7553 if (target_is_non_stop_p () && event->ptid == null_ptid)
7554 error (_("No process or thread specified in stop reply: %s"), buf);
7555 }
7556
7557 /* When the stub wants to tell GDB about a new notification reply, it
7558 sends a notification (%Stop, for example). Those can come it at
7559 any time, hence, we have to make sure that any pending
7560 putpkt/getpkt sequence we're making is finished, before querying
7561 the stub for more events with the corresponding ack command
7562 (vStopped, for example). E.g., if we started a vStopped sequence
7563 immediately upon receiving the notification, something like this
7564 could happen:
7565
7566 1.1) --> Hg 1
7567 1.2) <-- OK
7568 1.3) --> g
7569 1.4) <-- %Stop
7570 1.5) --> vStopped
7571 1.6) <-- (registers reply to step #1.3)
7572
7573 Obviously, the reply in step #1.6 would be unexpected to a vStopped
7574 query.
7575
7576 To solve this, whenever we parse a %Stop notification successfully,
7577 we mark the REMOTE_ASYNC_GET_PENDING_EVENTS_TOKEN, and carry on
7578 doing whatever we were doing:
7579
7580 2.1) --> Hg 1
7581 2.2) <-- OK
7582 2.3) --> g
7583 2.4) <-- %Stop
7584 <GDB marks the REMOTE_ASYNC_GET_PENDING_EVENTS_TOKEN>
7585 2.5) <-- (registers reply to step #2.3)
7586
7587 Eventualy after step #2.5, we return to the event loop, which
7588 notices there's an event on the
7589 REMOTE_ASYNC_GET_PENDING_EVENTS_TOKEN event and calls the
7590 associated callback --- the function below. At this point, we're
7591 always safe to start a vStopped sequence. :
7592
7593 2.6) --> vStopped
7594 2.7) <-- T05 thread:2
7595 2.8) --> vStopped
7596 2.9) --> OK
7597 */
7598
7599 void
7600 remote_target::remote_notif_get_pending_events (notif_client *nc)
7601 {
7602 struct remote_state *rs = get_remote_state ();
7603
7604 if (rs->notif_state->pending_event[nc->id] != NULL)
7605 {
7606 if (notif_debug)
7607 fprintf_unfiltered (gdb_stdlog,
7608 "notif: process: '%s' ack pending event\n",
7609 nc->name);
7610
7611 /* acknowledge */
7612 nc->ack (this, nc, rs->buf.data (),
7613 rs->notif_state->pending_event[nc->id]);
7614 rs->notif_state->pending_event[nc->id] = NULL;
7615
7616 while (1)
7617 {
7618 getpkt (&rs->buf, 0);
7619 if (strcmp (rs->buf.data (), "OK") == 0)
7620 break;
7621 else
7622 remote_notif_ack (this, nc, rs->buf.data ());
7623 }
7624 }
7625 else
7626 {
7627 if (notif_debug)
7628 fprintf_unfiltered (gdb_stdlog,
7629 "notif: process: '%s' no pending reply\n",
7630 nc->name);
7631 }
7632 }
7633
7634 /* Wrapper around remote_target::remote_notif_get_pending_events to
7635 avoid having to export the whole remote_target class. */
7636
7637 void
7638 remote_notif_get_pending_events (remote_target *remote, notif_client *nc)
7639 {
7640 remote->remote_notif_get_pending_events (nc);
7641 }
7642
7643 /* Called when it is decided that STOP_REPLY holds the info of the
7644 event that is to be returned to the core. This function always
7645 destroys STOP_REPLY. */
7646
7647 ptid_t
7648 remote_target::process_stop_reply (struct stop_reply *stop_reply,
7649 struct target_waitstatus *status)
7650 {
7651 ptid_t ptid;
7652
7653 *status = stop_reply->ws;
7654 ptid = stop_reply->ptid;
7655
7656 /* If no thread/process was reported by the stub, assume the current
7657 inferior. */
7658 if (ptid == null_ptid)
7659 ptid = inferior_ptid;
7660
7661 if (status->kind != TARGET_WAITKIND_EXITED
7662 && status->kind != TARGET_WAITKIND_SIGNALLED
7663 && status->kind != TARGET_WAITKIND_NO_RESUMED)
7664 {
7665 /* Expedited registers. */
7666 if (stop_reply->regcache)
7667 {
7668 struct regcache *regcache
7669 = get_thread_arch_regcache (ptid, stop_reply->arch);
7670 cached_reg_t *reg;
7671 int ix;
7672
7673 for (ix = 0;
7674 VEC_iterate (cached_reg_t, stop_reply->regcache, ix, reg);
7675 ix++)
7676 {
7677 regcache->raw_supply (reg->num, reg->data);
7678 xfree (reg->data);
7679 }
7680
7681 VEC_free (cached_reg_t, stop_reply->regcache);
7682 }
7683
7684 remote_notice_new_inferior (ptid, 0);
7685 remote_thread_info *remote_thr = get_remote_thread_info (ptid);
7686 remote_thr->core = stop_reply->core;
7687 remote_thr->stop_reason = stop_reply->stop_reason;
7688 remote_thr->watch_data_address = stop_reply->watch_data_address;
7689 remote_thr->vcont_resumed = 0;
7690 }
7691
7692 stop_reply_xfree (stop_reply);
7693 return ptid;
7694 }
7695
7696 /* The non-stop mode version of target_wait. */
7697
7698 ptid_t
7699 remote_target::wait_ns (ptid_t ptid, struct target_waitstatus *status, int options)
7700 {
7701 struct remote_state *rs = get_remote_state ();
7702 struct stop_reply *stop_reply;
7703 int ret;
7704 int is_notif = 0;
7705
7706 /* If in non-stop mode, get out of getpkt even if a
7707 notification is received. */
7708
7709 ret = getpkt_or_notif_sane (&rs->buf, 0 /* forever */, &is_notif);
7710 while (1)
7711 {
7712 if (ret != -1 && !is_notif)
7713 switch (rs->buf[0])
7714 {
7715 case 'E': /* Error of some sort. */
7716 /* We're out of sync with the target now. Did it continue
7717 or not? We can't tell which thread it was in non-stop,
7718 so just ignore this. */
7719 warning (_("Remote failure reply: %s"), rs->buf.data ());
7720 break;
7721 case 'O': /* Console output. */
7722 remote_console_output (&rs->buf[1]);
7723 break;
7724 default:
7725 warning (_("Invalid remote reply: %s"), rs->buf.data ());
7726 break;
7727 }
7728
7729 /* Acknowledge a pending stop reply that may have arrived in the
7730 mean time. */
7731 if (rs->notif_state->pending_event[notif_client_stop.id] != NULL)
7732 remote_notif_get_pending_events (&notif_client_stop);
7733
7734 /* If indeed we noticed a stop reply, we're done. */
7735 stop_reply = queued_stop_reply (ptid);
7736 if (stop_reply != NULL)
7737 return process_stop_reply (stop_reply, status);
7738
7739 /* Still no event. If we're just polling for an event, then
7740 return to the event loop. */
7741 if (options & TARGET_WNOHANG)
7742 {
7743 status->kind = TARGET_WAITKIND_IGNORE;
7744 return minus_one_ptid;
7745 }
7746
7747 /* Otherwise do a blocking wait. */
7748 ret = getpkt_or_notif_sane (&rs->buf, 1 /* forever */, &is_notif);
7749 }
7750 }
7751
7752 /* Wait until the remote machine stops, then return, storing status in
7753 STATUS just as `wait' would. */
7754
7755 ptid_t
7756 remote_target::wait_as (ptid_t ptid, target_waitstatus *status, int options)
7757 {
7758 struct remote_state *rs = get_remote_state ();
7759 ptid_t event_ptid = null_ptid;
7760 char *buf;
7761 struct stop_reply *stop_reply;
7762
7763 again:
7764
7765 status->kind = TARGET_WAITKIND_IGNORE;
7766 status->value.integer = 0;
7767
7768 stop_reply = queued_stop_reply (ptid);
7769 if (stop_reply != NULL)
7770 return process_stop_reply (stop_reply, status);
7771
7772 if (rs->cached_wait_status)
7773 /* Use the cached wait status, but only once. */
7774 rs->cached_wait_status = 0;
7775 else
7776 {
7777 int ret;
7778 int is_notif;
7779 int forever = ((options & TARGET_WNOHANG) == 0
7780 && rs->wait_forever_enabled_p);
7781
7782 if (!rs->waiting_for_stop_reply)
7783 {
7784 status->kind = TARGET_WAITKIND_NO_RESUMED;
7785 return minus_one_ptid;
7786 }
7787
7788 /* FIXME: cagney/1999-09-27: If we're in async mode we should
7789 _never_ wait for ever -> test on target_is_async_p().
7790 However, before we do that we need to ensure that the caller
7791 knows how to take the target into/out of async mode. */
7792 ret = getpkt_or_notif_sane (&rs->buf, forever, &is_notif);
7793
7794 /* GDB gets a notification. Return to core as this event is
7795 not interesting. */
7796 if (ret != -1 && is_notif)
7797 return minus_one_ptid;
7798
7799 if (ret == -1 && (options & TARGET_WNOHANG) != 0)
7800 return minus_one_ptid;
7801 }
7802
7803 buf = rs->buf.data ();
7804
7805 /* Assume that the target has acknowledged Ctrl-C unless we receive
7806 an 'F' or 'O' packet. */
7807 if (buf[0] != 'F' && buf[0] != 'O')
7808 rs->ctrlc_pending_p = 0;
7809
7810 switch (buf[0])
7811 {
7812 case 'E': /* Error of some sort. */
7813 /* We're out of sync with the target now. Did it continue or
7814 not? Not is more likely, so report a stop. */
7815 rs->waiting_for_stop_reply = 0;
7816
7817 warning (_("Remote failure reply: %s"), buf);
7818 status->kind = TARGET_WAITKIND_STOPPED;
7819 status->value.sig = GDB_SIGNAL_0;
7820 break;
7821 case 'F': /* File-I/O request. */
7822 /* GDB may access the inferior memory while handling the File-I/O
7823 request, but we don't want GDB accessing memory while waiting
7824 for a stop reply. See the comments in putpkt_binary. Set
7825 waiting_for_stop_reply to 0 temporarily. */
7826 rs->waiting_for_stop_reply = 0;
7827 remote_fileio_request (this, buf, rs->ctrlc_pending_p);
7828 rs->ctrlc_pending_p = 0;
7829 /* GDB handled the File-I/O request, and the target is running
7830 again. Keep waiting for events. */
7831 rs->waiting_for_stop_reply = 1;
7832 break;
7833 case 'N': case 'T': case 'S': case 'X': case 'W':
7834 {
7835 /* There is a stop reply to handle. */
7836 rs->waiting_for_stop_reply = 0;
7837
7838 stop_reply
7839 = (struct stop_reply *) remote_notif_parse (this,
7840 &notif_client_stop,
7841 rs->buf.data ());
7842
7843 event_ptid = process_stop_reply (stop_reply, status);
7844 break;
7845 }
7846 case 'O': /* Console output. */
7847 remote_console_output (buf + 1);
7848 break;
7849 case '\0':
7850 if (rs->last_sent_signal != GDB_SIGNAL_0)
7851 {
7852 /* Zero length reply means that we tried 'S' or 'C' and the
7853 remote system doesn't support it. */
7854 target_terminal::ours_for_output ();
7855 printf_filtered
7856 ("Can't send signals to this remote system. %s not sent.\n",
7857 gdb_signal_to_name (rs->last_sent_signal));
7858 rs->last_sent_signal = GDB_SIGNAL_0;
7859 target_terminal::inferior ();
7860
7861 strcpy (buf, rs->last_sent_step ? "s" : "c");
7862 putpkt (buf);
7863 break;
7864 }
7865 /* fallthrough */
7866 default:
7867 warning (_("Invalid remote reply: %s"), buf);
7868 break;
7869 }
7870
7871 if (status->kind == TARGET_WAITKIND_NO_RESUMED)
7872 return minus_one_ptid;
7873 else if (status->kind == TARGET_WAITKIND_IGNORE)
7874 {
7875 /* Nothing interesting happened. If we're doing a non-blocking
7876 poll, we're done. Otherwise, go back to waiting. */
7877 if (options & TARGET_WNOHANG)
7878 return minus_one_ptid;
7879 else
7880 goto again;
7881 }
7882 else if (status->kind != TARGET_WAITKIND_EXITED
7883 && status->kind != TARGET_WAITKIND_SIGNALLED)
7884 {
7885 if (event_ptid != null_ptid)
7886 record_currthread (rs, event_ptid);
7887 else
7888 event_ptid = inferior_ptid;
7889 }
7890 else
7891 /* A process exit. Invalidate our notion of current thread. */
7892 record_currthread (rs, minus_one_ptid);
7893
7894 return event_ptid;
7895 }
7896
7897 /* Wait until the remote machine stops, then return, storing status in
7898 STATUS just as `wait' would. */
7899
7900 ptid_t
7901 remote_target::wait (ptid_t ptid, struct target_waitstatus *status, int options)
7902 {
7903 ptid_t event_ptid;
7904
7905 if (target_is_non_stop_p ())
7906 event_ptid = wait_ns (ptid, status, options);
7907 else
7908 event_ptid = wait_as (ptid, status, options);
7909
7910 if (target_is_async_p ())
7911 {
7912 remote_state *rs = get_remote_state ();
7913
7914 /* If there are are events left in the queue tell the event loop
7915 to return here. */
7916 if (!rs->stop_reply_queue.empty ())
7917 mark_async_event_handler (rs->remote_async_inferior_event_token);
7918 }
7919
7920 return event_ptid;
7921 }
7922
7923 /* Fetch a single register using a 'p' packet. */
7924
7925 int
7926 remote_target::fetch_register_using_p (struct regcache *regcache,
7927 packet_reg *reg)
7928 {
7929 struct gdbarch *gdbarch = regcache->arch ();
7930 struct remote_state *rs = get_remote_state ();
7931 char *buf, *p;
7932 gdb_byte *regp = (gdb_byte *) alloca (register_size (gdbarch, reg->regnum));
7933 int i;
7934
7935 if (packet_support (PACKET_p) == PACKET_DISABLE)
7936 return 0;
7937
7938 if (reg->pnum == -1)
7939 return 0;
7940
7941 p = rs->buf.data ();
7942 *p++ = 'p';
7943 p += hexnumstr (p, reg->pnum);
7944 *p++ = '\0';
7945 putpkt (rs->buf);
7946 getpkt (&rs->buf, 0);
7947
7948 buf = rs->buf.data ();
7949
7950 switch (packet_ok (rs->buf, &remote_protocol_packets[PACKET_p]))
7951 {
7952 case PACKET_OK:
7953 break;
7954 case PACKET_UNKNOWN:
7955 return 0;
7956 case PACKET_ERROR:
7957 error (_("Could not fetch register \"%s\"; remote failure reply '%s'"),
7958 gdbarch_register_name (regcache->arch (),
7959 reg->regnum),
7960 buf);
7961 }
7962
7963 /* If this register is unfetchable, tell the regcache. */
7964 if (buf[0] == 'x')
7965 {
7966 regcache->raw_supply (reg->regnum, NULL);
7967 return 1;
7968 }
7969
7970 /* Otherwise, parse and supply the value. */
7971 p = buf;
7972 i = 0;
7973 while (p[0] != 0)
7974 {
7975 if (p[1] == 0)
7976 error (_("fetch_register_using_p: early buf termination"));
7977
7978 regp[i++] = fromhex (p[0]) * 16 + fromhex (p[1]);
7979 p += 2;
7980 }
7981 regcache->raw_supply (reg->regnum, regp);
7982 return 1;
7983 }
7984
7985 /* Fetch the registers included in the target's 'g' packet. */
7986
7987 int
7988 remote_target::send_g_packet ()
7989 {
7990 struct remote_state *rs = get_remote_state ();
7991 int buf_len;
7992
7993 xsnprintf (rs->buf.data (), get_remote_packet_size (), "g");
7994 putpkt (rs->buf);
7995 getpkt (&rs->buf, 0);
7996 if (packet_check_result (rs->buf) == PACKET_ERROR)
7997 error (_("Could not read registers; remote failure reply '%s'"),
7998 rs->buf.data ());
7999
8000 /* We can get out of synch in various cases. If the first character
8001 in the buffer is not a hex character, assume that has happened
8002 and try to fetch another packet to read. */
8003 while ((rs->buf[0] < '0' || rs->buf[0] > '9')
8004 && (rs->buf[0] < 'A' || rs->buf[0] > 'F')
8005 && (rs->buf[0] < 'a' || rs->buf[0] > 'f')
8006 && rs->buf[0] != 'x') /* New: unavailable register value. */
8007 {
8008 if (remote_debug)
8009 fprintf_unfiltered (gdb_stdlog,
8010 "Bad register packet; fetching a new packet\n");
8011 getpkt (&rs->buf, 0);
8012 }
8013
8014 buf_len = strlen (rs->buf.data ());
8015
8016 /* Sanity check the received packet. */
8017 if (buf_len % 2 != 0)
8018 error (_("Remote 'g' packet reply is of odd length: %s"), rs->buf.data ());
8019
8020 return buf_len / 2;
8021 }
8022
8023 void
8024 remote_target::process_g_packet (struct regcache *regcache)
8025 {
8026 struct gdbarch *gdbarch = regcache->arch ();
8027 struct remote_state *rs = get_remote_state ();
8028 remote_arch_state *rsa = rs->get_remote_arch_state (gdbarch);
8029 int i, buf_len;
8030 char *p;
8031 char *regs;
8032
8033 buf_len = strlen (rs->buf.data ());
8034
8035 /* Further sanity checks, with knowledge of the architecture. */
8036 if (buf_len > 2 * rsa->sizeof_g_packet)
8037 error (_("Remote 'g' packet reply is too long (expected %ld bytes, got %d "
8038 "bytes): %s"),
8039 rsa->sizeof_g_packet, buf_len / 2,
8040 rs->buf.data ());
8041
8042 /* Save the size of the packet sent to us by the target. It is used
8043 as a heuristic when determining the max size of packets that the
8044 target can safely receive. */
8045 if (rsa->actual_register_packet_size == 0)
8046 rsa->actual_register_packet_size = buf_len;
8047
8048 /* If this is smaller than we guessed the 'g' packet would be,
8049 update our records. A 'g' reply that doesn't include a register's
8050 value implies either that the register is not available, or that
8051 the 'p' packet must be used. */
8052 if (buf_len < 2 * rsa->sizeof_g_packet)
8053 {
8054 long sizeof_g_packet = buf_len / 2;
8055
8056 for (i = 0; i < gdbarch_num_regs (gdbarch); i++)
8057 {
8058 long offset = rsa->regs[i].offset;
8059 long reg_size = register_size (gdbarch, i);
8060
8061 if (rsa->regs[i].pnum == -1)
8062 continue;
8063
8064 if (offset >= sizeof_g_packet)
8065 rsa->regs[i].in_g_packet = 0;
8066 else if (offset + reg_size > sizeof_g_packet)
8067 error (_("Truncated register %d in remote 'g' packet"), i);
8068 else
8069 rsa->regs[i].in_g_packet = 1;
8070 }
8071
8072 /* Looks valid enough, we can assume this is the correct length
8073 for a 'g' packet. It's important not to adjust
8074 rsa->sizeof_g_packet if we have truncated registers otherwise
8075 this "if" won't be run the next time the method is called
8076 with a packet of the same size and one of the internal errors
8077 below will trigger instead. */
8078 rsa->sizeof_g_packet = sizeof_g_packet;
8079 }
8080
8081 regs = (char *) alloca (rsa->sizeof_g_packet);
8082
8083 /* Unimplemented registers read as all bits zero. */
8084 memset (regs, 0, rsa->sizeof_g_packet);
8085
8086 /* Reply describes registers byte by byte, each byte encoded as two
8087 hex characters. Suck them all up, then supply them to the
8088 register cacheing/storage mechanism. */
8089
8090 p = rs->buf.data ();
8091 for (i = 0; i < rsa->sizeof_g_packet; i++)
8092 {
8093 if (p[0] == 0 || p[1] == 0)
8094 /* This shouldn't happen - we adjusted sizeof_g_packet above. */
8095 internal_error (__FILE__, __LINE__,
8096 _("unexpected end of 'g' packet reply"));
8097
8098 if (p[0] == 'x' && p[1] == 'x')
8099 regs[i] = 0; /* 'x' */
8100 else
8101 regs[i] = fromhex (p[0]) * 16 + fromhex (p[1]);
8102 p += 2;
8103 }
8104
8105 for (i = 0; i < gdbarch_num_regs (gdbarch); i++)
8106 {
8107 struct packet_reg *r = &rsa->regs[i];
8108 long reg_size = register_size (gdbarch, i);
8109
8110 if (r->in_g_packet)
8111 {
8112 if ((r->offset + reg_size) * 2 > strlen (rs->buf.data ()))
8113 /* This shouldn't happen - we adjusted in_g_packet above. */
8114 internal_error (__FILE__, __LINE__,
8115 _("unexpected end of 'g' packet reply"));
8116 else if (rs->buf[r->offset * 2] == 'x')
8117 {
8118 gdb_assert (r->offset * 2 < strlen (rs->buf.data ()));
8119 /* The register isn't available, mark it as such (at
8120 the same time setting the value to zero). */
8121 regcache->raw_supply (r->regnum, NULL);
8122 }
8123 else
8124 regcache->raw_supply (r->regnum, regs + r->offset);
8125 }
8126 }
8127 }
8128
8129 void
8130 remote_target::fetch_registers_using_g (struct regcache *regcache)
8131 {
8132 send_g_packet ();
8133 process_g_packet (regcache);
8134 }
8135
8136 /* Make the remote selected traceframe match GDB's selected
8137 traceframe. */
8138
8139 void
8140 remote_target::set_remote_traceframe ()
8141 {
8142 int newnum;
8143 struct remote_state *rs = get_remote_state ();
8144
8145 if (rs->remote_traceframe_number == get_traceframe_number ())
8146 return;
8147
8148 /* Avoid recursion, remote_trace_find calls us again. */
8149 rs->remote_traceframe_number = get_traceframe_number ();
8150
8151 newnum = target_trace_find (tfind_number,
8152 get_traceframe_number (), 0, 0, NULL);
8153
8154 /* Should not happen. If it does, all bets are off. */
8155 if (newnum != get_traceframe_number ())
8156 warning (_("could not set remote traceframe"));
8157 }
8158
8159 void
8160 remote_target::fetch_registers (struct regcache *regcache, int regnum)
8161 {
8162 struct gdbarch *gdbarch = regcache->arch ();
8163 struct remote_state *rs = get_remote_state ();
8164 remote_arch_state *rsa = rs->get_remote_arch_state (gdbarch);
8165 int i;
8166
8167 set_remote_traceframe ();
8168 set_general_thread (regcache->ptid ());
8169
8170 if (regnum >= 0)
8171 {
8172 packet_reg *reg = packet_reg_from_regnum (gdbarch, rsa, regnum);
8173
8174 gdb_assert (reg != NULL);
8175
8176 /* If this register might be in the 'g' packet, try that first -
8177 we are likely to read more than one register. If this is the
8178 first 'g' packet, we might be overly optimistic about its
8179 contents, so fall back to 'p'. */
8180 if (reg->in_g_packet)
8181 {
8182 fetch_registers_using_g (regcache);
8183 if (reg->in_g_packet)
8184 return;
8185 }
8186
8187 if (fetch_register_using_p (regcache, reg))
8188 return;
8189
8190 /* This register is not available. */
8191 regcache->raw_supply (reg->regnum, NULL);
8192
8193 return;
8194 }
8195
8196 fetch_registers_using_g (regcache);
8197
8198 for (i = 0; i < gdbarch_num_regs (gdbarch); i++)
8199 if (!rsa->regs[i].in_g_packet)
8200 if (!fetch_register_using_p (regcache, &rsa->regs[i]))
8201 {
8202 /* This register is not available. */
8203 regcache->raw_supply (i, NULL);
8204 }
8205 }
8206
8207 /* Prepare to store registers. Since we may send them all (using a
8208 'G' request), we have to read out the ones we don't want to change
8209 first. */
8210
8211 void
8212 remote_target::prepare_to_store (struct regcache *regcache)
8213 {
8214 struct remote_state *rs = get_remote_state ();
8215 remote_arch_state *rsa = rs->get_remote_arch_state (regcache->arch ());
8216 int i;
8217
8218 /* Make sure the entire registers array is valid. */
8219 switch (packet_support (PACKET_P))
8220 {
8221 case PACKET_DISABLE:
8222 case PACKET_SUPPORT_UNKNOWN:
8223 /* Make sure all the necessary registers are cached. */
8224 for (i = 0; i < gdbarch_num_regs (regcache->arch ()); i++)
8225 if (rsa->regs[i].in_g_packet)
8226 regcache->raw_update (rsa->regs[i].regnum);
8227 break;
8228 case PACKET_ENABLE:
8229 break;
8230 }
8231 }
8232
8233 /* Helper: Attempt to store REGNUM using the P packet. Return fail IFF
8234 packet was not recognized. */
8235
8236 int
8237 remote_target::store_register_using_P (const struct regcache *regcache,
8238 packet_reg *reg)
8239 {
8240 struct gdbarch *gdbarch = regcache->arch ();
8241 struct remote_state *rs = get_remote_state ();
8242 /* Try storing a single register. */
8243 char *buf = rs->buf.data ();
8244 gdb_byte *regp = (gdb_byte *) alloca (register_size (gdbarch, reg->regnum));
8245 char *p;
8246
8247 if (packet_support (PACKET_P) == PACKET_DISABLE)
8248 return 0;
8249
8250 if (reg->pnum == -1)
8251 return 0;
8252
8253 xsnprintf (buf, get_remote_packet_size (), "P%s=", phex_nz (reg->pnum, 0));
8254 p = buf + strlen (buf);
8255 regcache->raw_collect (reg->regnum, regp);
8256 bin2hex (regp, p, register_size (gdbarch, reg->regnum));
8257 putpkt (rs->buf);
8258 getpkt (&rs->buf, 0);
8259
8260 switch (packet_ok (rs->buf, &remote_protocol_packets[PACKET_P]))
8261 {
8262 case PACKET_OK:
8263 return 1;
8264 case PACKET_ERROR:
8265 error (_("Could not write register \"%s\"; remote failure reply '%s'"),
8266 gdbarch_register_name (gdbarch, reg->regnum), rs->buf.data ());
8267 case PACKET_UNKNOWN:
8268 return 0;
8269 default:
8270 internal_error (__FILE__, __LINE__, _("Bad result from packet_ok"));
8271 }
8272 }
8273
8274 /* Store register REGNUM, or all registers if REGNUM == -1, from the
8275 contents of the register cache buffer. FIXME: ignores errors. */
8276
8277 void
8278 remote_target::store_registers_using_G (const struct regcache *regcache)
8279 {
8280 struct remote_state *rs = get_remote_state ();
8281 remote_arch_state *rsa = rs->get_remote_arch_state (regcache->arch ());
8282 gdb_byte *regs;
8283 char *p;
8284
8285 /* Extract all the registers in the regcache copying them into a
8286 local buffer. */
8287 {
8288 int i;
8289
8290 regs = (gdb_byte *) alloca (rsa->sizeof_g_packet);
8291 memset (regs, 0, rsa->sizeof_g_packet);
8292 for (i = 0; i < gdbarch_num_regs (regcache->arch ()); i++)
8293 {
8294 struct packet_reg *r = &rsa->regs[i];
8295
8296 if (r->in_g_packet)
8297 regcache->raw_collect (r->regnum, regs + r->offset);
8298 }
8299 }
8300
8301 /* Command describes registers byte by byte,
8302 each byte encoded as two hex characters. */
8303 p = rs->buf.data ();
8304 *p++ = 'G';
8305 bin2hex (regs, p, rsa->sizeof_g_packet);
8306 putpkt (rs->buf);
8307 getpkt (&rs->buf, 0);
8308 if (packet_check_result (rs->buf) == PACKET_ERROR)
8309 error (_("Could not write registers; remote failure reply '%s'"),
8310 rs->buf.data ());
8311 }
8312
8313 /* Store register REGNUM, or all registers if REGNUM == -1, from the contents
8314 of the register cache buffer. FIXME: ignores errors. */
8315
8316 void
8317 remote_target::store_registers (struct regcache *regcache, int regnum)
8318 {
8319 struct gdbarch *gdbarch = regcache->arch ();
8320 struct remote_state *rs = get_remote_state ();
8321 remote_arch_state *rsa = rs->get_remote_arch_state (gdbarch);
8322 int i;
8323
8324 set_remote_traceframe ();
8325 set_general_thread (regcache->ptid ());
8326
8327 if (regnum >= 0)
8328 {
8329 packet_reg *reg = packet_reg_from_regnum (gdbarch, rsa, regnum);
8330
8331 gdb_assert (reg != NULL);
8332
8333 /* Always prefer to store registers using the 'P' packet if
8334 possible; we often change only a small number of registers.
8335 Sometimes we change a larger number; we'd need help from a
8336 higher layer to know to use 'G'. */
8337 if (store_register_using_P (regcache, reg))
8338 return;
8339
8340 /* For now, don't complain if we have no way to write the
8341 register. GDB loses track of unavailable registers too
8342 easily. Some day, this may be an error. We don't have
8343 any way to read the register, either... */
8344 if (!reg->in_g_packet)
8345 return;
8346
8347 store_registers_using_G (regcache);
8348 return;
8349 }
8350
8351 store_registers_using_G (regcache);
8352
8353 for (i = 0; i < gdbarch_num_regs (gdbarch); i++)
8354 if (!rsa->regs[i].in_g_packet)
8355 if (!store_register_using_P (regcache, &rsa->regs[i]))
8356 /* See above for why we do not issue an error here. */
8357 continue;
8358 }
8359 \f
8360
8361 /* Return the number of hex digits in num. */
8362
8363 static int
8364 hexnumlen (ULONGEST num)
8365 {
8366 int i;
8367
8368 for (i = 0; num != 0; i++)
8369 num >>= 4;
8370
8371 return std::max (i, 1);
8372 }
8373
8374 /* Set BUF to the minimum number of hex digits representing NUM. */
8375
8376 static int
8377 hexnumstr (char *buf, ULONGEST num)
8378 {
8379 int len = hexnumlen (num);
8380
8381 return hexnumnstr (buf, num, len);
8382 }
8383
8384
8385 /* Set BUF to the hex digits representing NUM, padded to WIDTH characters. */
8386
8387 static int
8388 hexnumnstr (char *buf, ULONGEST num, int width)
8389 {
8390 int i;
8391
8392 buf[width] = '\0';
8393
8394 for (i = width - 1; i >= 0; i--)
8395 {
8396 buf[i] = "0123456789abcdef"[(num & 0xf)];
8397 num >>= 4;
8398 }
8399
8400 return width;
8401 }
8402
8403 /* Mask all but the least significant REMOTE_ADDRESS_SIZE bits. */
8404
8405 static CORE_ADDR
8406 remote_address_masked (CORE_ADDR addr)
8407 {
8408 unsigned int address_size = remote_address_size;
8409
8410 /* If "remoteaddresssize" was not set, default to target address size. */
8411 if (!address_size)
8412 address_size = gdbarch_addr_bit (target_gdbarch ());
8413
8414 if (address_size > 0
8415 && address_size < (sizeof (ULONGEST) * 8))
8416 {
8417 /* Only create a mask when that mask can safely be constructed
8418 in a ULONGEST variable. */
8419 ULONGEST mask = 1;
8420
8421 mask = (mask << address_size) - 1;
8422 addr &= mask;
8423 }
8424 return addr;
8425 }
8426
8427 /* Determine whether the remote target supports binary downloading.
8428 This is accomplished by sending a no-op memory write of zero length
8429 to the target at the specified address. It does not suffice to send
8430 the whole packet, since many stubs strip the eighth bit and
8431 subsequently compute a wrong checksum, which causes real havoc with
8432 remote_write_bytes.
8433
8434 NOTE: This can still lose if the serial line is not eight-bit
8435 clean. In cases like this, the user should clear "remote
8436 X-packet". */
8437
8438 void
8439 remote_target::check_binary_download (CORE_ADDR addr)
8440 {
8441 struct remote_state *rs = get_remote_state ();
8442
8443 switch (packet_support (PACKET_X))
8444 {
8445 case PACKET_DISABLE:
8446 break;
8447 case PACKET_ENABLE:
8448 break;
8449 case PACKET_SUPPORT_UNKNOWN:
8450 {
8451 char *p;
8452
8453 p = rs->buf.data ();
8454 *p++ = 'X';
8455 p += hexnumstr (p, (ULONGEST) addr);
8456 *p++ = ',';
8457 p += hexnumstr (p, (ULONGEST) 0);
8458 *p++ = ':';
8459 *p = '\0';
8460
8461 putpkt_binary (rs->buf.data (), (int) (p - rs->buf.data ()));
8462 getpkt (&rs->buf, 0);
8463
8464 if (rs->buf[0] == '\0')
8465 {
8466 if (remote_debug)
8467 fprintf_unfiltered (gdb_stdlog,
8468 "binary downloading NOT "
8469 "supported by target\n");
8470 remote_protocol_packets[PACKET_X].support = PACKET_DISABLE;
8471 }
8472 else
8473 {
8474 if (remote_debug)
8475 fprintf_unfiltered (gdb_stdlog,
8476 "binary downloading supported by target\n");
8477 remote_protocol_packets[PACKET_X].support = PACKET_ENABLE;
8478 }
8479 break;
8480 }
8481 }
8482 }
8483
8484 /* Helper function to resize the payload in order to try to get a good
8485 alignment. We try to write an amount of data such that the next write will
8486 start on an address aligned on REMOTE_ALIGN_WRITES. */
8487
8488 static int
8489 align_for_efficient_write (int todo, CORE_ADDR memaddr)
8490 {
8491 return ((memaddr + todo) & ~(REMOTE_ALIGN_WRITES - 1)) - memaddr;
8492 }
8493
8494 /* Write memory data directly to the remote machine.
8495 This does not inform the data cache; the data cache uses this.
8496 HEADER is the starting part of the packet.
8497 MEMADDR is the address in the remote memory space.
8498 MYADDR is the address of the buffer in our space.
8499 LEN_UNITS is the number of addressable units to write.
8500 UNIT_SIZE is the length in bytes of an addressable unit.
8501 PACKET_FORMAT should be either 'X' or 'M', and indicates if we
8502 should send data as binary ('X'), or hex-encoded ('M').
8503
8504 The function creates packet of the form
8505 <HEADER><ADDRESS>,<LENGTH>:<DATA>
8506
8507 where encoding of <DATA> is terminated by PACKET_FORMAT.
8508
8509 If USE_LENGTH is 0, then the <LENGTH> field and the preceding comma
8510 are omitted.
8511
8512 Return the transferred status, error or OK (an
8513 'enum target_xfer_status' value). Save the number of addressable units
8514 transferred in *XFERED_LEN_UNITS. Only transfer a single packet.
8515
8516 On a platform with an addressable memory size of 2 bytes (UNIT_SIZE == 2), an
8517 exchange between gdb and the stub could look like (?? in place of the
8518 checksum):
8519
8520 -> $m1000,4#??
8521 <- aaaabbbbccccdddd
8522
8523 -> $M1000,3:eeeeffffeeee#??
8524 <- OK
8525
8526 -> $m1000,4#??
8527 <- eeeeffffeeeedddd */
8528
8529 target_xfer_status
8530 remote_target::remote_write_bytes_aux (const char *header, CORE_ADDR memaddr,
8531 const gdb_byte *myaddr,
8532 ULONGEST len_units,
8533 int unit_size,
8534 ULONGEST *xfered_len_units,
8535 char packet_format, int use_length)
8536 {
8537 struct remote_state *rs = get_remote_state ();
8538 char *p;
8539 char *plen = NULL;
8540 int plenlen = 0;
8541 int todo_units;
8542 int units_written;
8543 int payload_capacity_bytes;
8544 int payload_length_bytes;
8545
8546 if (packet_format != 'X' && packet_format != 'M')
8547 internal_error (__FILE__, __LINE__,
8548 _("remote_write_bytes_aux: bad packet format"));
8549
8550 if (len_units == 0)
8551 return TARGET_XFER_EOF;
8552
8553 payload_capacity_bytes = get_memory_write_packet_size ();
8554
8555 /* The packet buffer will be large enough for the payload;
8556 get_memory_packet_size ensures this. */
8557 rs->buf[0] = '\0';
8558
8559 /* Compute the size of the actual payload by subtracting out the
8560 packet header and footer overhead: "$M<memaddr>,<len>:...#nn". */
8561
8562 payload_capacity_bytes -= strlen ("$,:#NN");
8563 if (!use_length)
8564 /* The comma won't be used. */
8565 payload_capacity_bytes += 1;
8566 payload_capacity_bytes -= strlen (header);
8567 payload_capacity_bytes -= hexnumlen (memaddr);
8568
8569 /* Construct the packet excluding the data: "<header><memaddr>,<len>:". */
8570
8571 strcat (rs->buf.data (), header);
8572 p = rs->buf.data () + strlen (header);
8573
8574 /* Compute a best guess of the number of bytes actually transfered. */
8575 if (packet_format == 'X')
8576 {
8577 /* Best guess at number of bytes that will fit. */
8578 todo_units = std::min (len_units,
8579 (ULONGEST) payload_capacity_bytes / unit_size);
8580 if (use_length)
8581 payload_capacity_bytes -= hexnumlen (todo_units);
8582 todo_units = std::min (todo_units, payload_capacity_bytes / unit_size);
8583 }
8584 else
8585 {
8586 /* Number of bytes that will fit. */
8587 todo_units
8588 = std::min (len_units,
8589 (ULONGEST) (payload_capacity_bytes / unit_size) / 2);
8590 if (use_length)
8591 payload_capacity_bytes -= hexnumlen (todo_units);
8592 todo_units = std::min (todo_units,
8593 (payload_capacity_bytes / unit_size) / 2);
8594 }
8595
8596 if (todo_units <= 0)
8597 internal_error (__FILE__, __LINE__,
8598 _("minimum packet size too small to write data"));
8599
8600 /* If we already need another packet, then try to align the end
8601 of this packet to a useful boundary. */
8602 if (todo_units > 2 * REMOTE_ALIGN_WRITES && todo_units < len_units)
8603 todo_units = align_for_efficient_write (todo_units, memaddr);
8604
8605 /* Append "<memaddr>". */
8606 memaddr = remote_address_masked (memaddr);
8607 p += hexnumstr (p, (ULONGEST) memaddr);
8608
8609 if (use_length)
8610 {
8611 /* Append ",". */
8612 *p++ = ',';
8613
8614 /* Append the length and retain its location and size. It may need to be
8615 adjusted once the packet body has been created. */
8616 plen = p;
8617 plenlen = hexnumstr (p, (ULONGEST) todo_units);
8618 p += plenlen;
8619 }
8620
8621 /* Append ":". */
8622 *p++ = ':';
8623 *p = '\0';
8624
8625 /* Append the packet body. */
8626 if (packet_format == 'X')
8627 {
8628 /* Binary mode. Send target system values byte by byte, in
8629 increasing byte addresses. Only escape certain critical
8630 characters. */
8631 payload_length_bytes =
8632 remote_escape_output (myaddr, todo_units, unit_size, (gdb_byte *) p,
8633 &units_written, payload_capacity_bytes);
8634
8635 /* If not all TODO units fit, then we'll need another packet. Make
8636 a second try to keep the end of the packet aligned. Don't do
8637 this if the packet is tiny. */
8638 if (units_written < todo_units && units_written > 2 * REMOTE_ALIGN_WRITES)
8639 {
8640 int new_todo_units;
8641
8642 new_todo_units = align_for_efficient_write (units_written, memaddr);
8643
8644 if (new_todo_units != units_written)
8645 payload_length_bytes =
8646 remote_escape_output (myaddr, new_todo_units, unit_size,
8647 (gdb_byte *) p, &units_written,
8648 payload_capacity_bytes);
8649 }
8650
8651 p += payload_length_bytes;
8652 if (use_length && units_written < todo_units)
8653 {
8654 /* Escape chars have filled up the buffer prematurely,
8655 and we have actually sent fewer units than planned.
8656 Fix-up the length field of the packet. Use the same
8657 number of characters as before. */
8658 plen += hexnumnstr (plen, (ULONGEST) units_written,
8659 plenlen);
8660 *plen = ':'; /* overwrite \0 from hexnumnstr() */
8661 }
8662 }
8663 else
8664 {
8665 /* Normal mode: Send target system values byte by byte, in
8666 increasing byte addresses. Each byte is encoded as a two hex
8667 value. */
8668 p += 2 * bin2hex (myaddr, p, todo_units * unit_size);
8669 units_written = todo_units;
8670 }
8671
8672 putpkt_binary (rs->buf.data (), (int) (p - rs->buf.data ()));
8673 getpkt (&rs->buf, 0);
8674
8675 if (rs->buf[0] == 'E')
8676 return TARGET_XFER_E_IO;
8677
8678 /* Return UNITS_WRITTEN, not TODO_UNITS, in case escape chars caused us to
8679 send fewer units than we'd planned. */
8680 *xfered_len_units = (ULONGEST) units_written;
8681 return (*xfered_len_units != 0) ? TARGET_XFER_OK : TARGET_XFER_EOF;
8682 }
8683
8684 /* Write memory data directly to the remote machine.
8685 This does not inform the data cache; the data cache uses this.
8686 MEMADDR is the address in the remote memory space.
8687 MYADDR is the address of the buffer in our space.
8688 LEN is the number of bytes.
8689
8690 Return the transferred status, error or OK (an
8691 'enum target_xfer_status' value). Save the number of bytes
8692 transferred in *XFERED_LEN. Only transfer a single packet. */
8693
8694 target_xfer_status
8695 remote_target::remote_write_bytes (CORE_ADDR memaddr, const gdb_byte *myaddr,
8696 ULONGEST len, int unit_size,
8697 ULONGEST *xfered_len)
8698 {
8699 const char *packet_format = NULL;
8700
8701 /* Check whether the target supports binary download. */
8702 check_binary_download (memaddr);
8703
8704 switch (packet_support (PACKET_X))
8705 {
8706 case PACKET_ENABLE:
8707 packet_format = "X";
8708 break;
8709 case PACKET_DISABLE:
8710 packet_format = "M";
8711 break;
8712 case PACKET_SUPPORT_UNKNOWN:
8713 internal_error (__FILE__, __LINE__,
8714 _("remote_write_bytes: bad internal state"));
8715 default:
8716 internal_error (__FILE__, __LINE__, _("bad switch"));
8717 }
8718
8719 return remote_write_bytes_aux (packet_format,
8720 memaddr, myaddr, len, unit_size, xfered_len,
8721 packet_format[0], 1);
8722 }
8723
8724 /* Read memory data directly from the remote machine.
8725 This does not use the data cache; the data cache uses this.
8726 MEMADDR is the address in the remote memory space.
8727 MYADDR is the address of the buffer in our space.
8728 LEN_UNITS is the number of addressable memory units to read..
8729 UNIT_SIZE is the length in bytes of an addressable unit.
8730
8731 Return the transferred status, error or OK (an
8732 'enum target_xfer_status' value). Save the number of bytes
8733 transferred in *XFERED_LEN_UNITS.
8734
8735 See the comment of remote_write_bytes_aux for an example of
8736 memory read/write exchange between gdb and the stub. */
8737
8738 target_xfer_status
8739 remote_target::remote_read_bytes_1 (CORE_ADDR memaddr, gdb_byte *myaddr,
8740 ULONGEST len_units,
8741 int unit_size, ULONGEST *xfered_len_units)
8742 {
8743 struct remote_state *rs = get_remote_state ();
8744 int buf_size_bytes; /* Max size of packet output buffer. */
8745 char *p;
8746 int todo_units;
8747 int decoded_bytes;
8748
8749 buf_size_bytes = get_memory_read_packet_size ();
8750 /* The packet buffer will be large enough for the payload;
8751 get_memory_packet_size ensures this. */
8752
8753 /* Number of units that will fit. */
8754 todo_units = std::min (len_units,
8755 (ULONGEST) (buf_size_bytes / unit_size) / 2);
8756
8757 /* Construct "m"<memaddr>","<len>". */
8758 memaddr = remote_address_masked (memaddr);
8759 p = rs->buf.data ();
8760 *p++ = 'm';
8761 p += hexnumstr (p, (ULONGEST) memaddr);
8762 *p++ = ',';
8763 p += hexnumstr (p, (ULONGEST) todo_units);
8764 *p = '\0';
8765 putpkt (rs->buf);
8766 getpkt (&rs->buf, 0);
8767 if (rs->buf[0] == 'E'
8768 && isxdigit (rs->buf[1]) && isxdigit (rs->buf[2])
8769 && rs->buf[3] == '\0')
8770 return TARGET_XFER_E_IO;
8771 /* Reply describes memory byte by byte, each byte encoded as two hex
8772 characters. */
8773 p = rs->buf.data ();
8774 decoded_bytes = hex2bin (p, myaddr, todo_units * unit_size);
8775 /* Return what we have. Let higher layers handle partial reads. */
8776 *xfered_len_units = (ULONGEST) (decoded_bytes / unit_size);
8777 return (*xfered_len_units != 0) ? TARGET_XFER_OK : TARGET_XFER_EOF;
8778 }
8779
8780 /* Using the set of read-only target sections of remote, read live
8781 read-only memory.
8782
8783 For interface/parameters/return description see target.h,
8784 to_xfer_partial. */
8785
8786 target_xfer_status
8787 remote_target::remote_xfer_live_readonly_partial (gdb_byte *readbuf,
8788 ULONGEST memaddr,
8789 ULONGEST len,
8790 int unit_size,
8791 ULONGEST *xfered_len)
8792 {
8793 struct target_section *secp;
8794 struct target_section_table *table;
8795
8796 secp = target_section_by_addr (this, memaddr);
8797 if (secp != NULL
8798 && (bfd_get_section_flags (secp->the_bfd_section->owner,
8799 secp->the_bfd_section)
8800 & SEC_READONLY))
8801 {
8802 struct target_section *p;
8803 ULONGEST memend = memaddr + len;
8804
8805 table = target_get_section_table (this);
8806
8807 for (p = table->sections; p < table->sections_end; p++)
8808 {
8809 if (memaddr >= p->addr)
8810 {
8811 if (memend <= p->endaddr)
8812 {
8813 /* Entire transfer is within this section. */
8814 return remote_read_bytes_1 (memaddr, readbuf, len, unit_size,
8815 xfered_len);
8816 }
8817 else if (memaddr >= p->endaddr)
8818 {
8819 /* This section ends before the transfer starts. */
8820 continue;
8821 }
8822 else
8823 {
8824 /* This section overlaps the transfer. Just do half. */
8825 len = p->endaddr - memaddr;
8826 return remote_read_bytes_1 (memaddr, readbuf, len, unit_size,
8827 xfered_len);
8828 }
8829 }
8830 }
8831 }
8832
8833 return TARGET_XFER_EOF;
8834 }
8835
8836 /* Similar to remote_read_bytes_1, but it reads from the remote stub
8837 first if the requested memory is unavailable in traceframe.
8838 Otherwise, fall back to remote_read_bytes_1. */
8839
8840 target_xfer_status
8841 remote_target::remote_read_bytes (CORE_ADDR memaddr,
8842 gdb_byte *myaddr, ULONGEST len, int unit_size,
8843 ULONGEST *xfered_len)
8844 {
8845 if (len == 0)
8846 return TARGET_XFER_EOF;
8847
8848 if (get_traceframe_number () != -1)
8849 {
8850 std::vector<mem_range> available;
8851
8852 /* If we fail to get the set of available memory, then the
8853 target does not support querying traceframe info, and so we
8854 attempt reading from the traceframe anyway (assuming the
8855 target implements the old QTro packet then). */
8856 if (traceframe_available_memory (&available, memaddr, len))
8857 {
8858 if (available.empty () || available[0].start != memaddr)
8859 {
8860 enum target_xfer_status res;
8861
8862 /* Don't read into the traceframe's available
8863 memory. */
8864 if (!available.empty ())
8865 {
8866 LONGEST oldlen = len;
8867
8868 len = available[0].start - memaddr;
8869 gdb_assert (len <= oldlen);
8870 }
8871
8872 /* This goes through the topmost target again. */
8873 res = remote_xfer_live_readonly_partial (myaddr, memaddr,
8874 len, unit_size, xfered_len);
8875 if (res == TARGET_XFER_OK)
8876 return TARGET_XFER_OK;
8877 else
8878 {
8879 /* No use trying further, we know some memory starting
8880 at MEMADDR isn't available. */
8881 *xfered_len = len;
8882 return (*xfered_len != 0) ?
8883 TARGET_XFER_UNAVAILABLE : TARGET_XFER_EOF;
8884 }
8885 }
8886
8887 /* Don't try to read more than how much is available, in
8888 case the target implements the deprecated QTro packet to
8889 cater for older GDBs (the target's knowledge of read-only
8890 sections may be outdated by now). */
8891 len = available[0].length;
8892 }
8893 }
8894
8895 return remote_read_bytes_1 (memaddr, myaddr, len, unit_size, xfered_len);
8896 }
8897
8898 \f
8899
8900 /* Sends a packet with content determined by the printf format string
8901 FORMAT and the remaining arguments, then gets the reply. Returns
8902 whether the packet was a success, a failure, or unknown. */
8903
8904 packet_result
8905 remote_target::remote_send_printf (const char *format, ...)
8906 {
8907 struct remote_state *rs = get_remote_state ();
8908 int max_size = get_remote_packet_size ();
8909 va_list ap;
8910
8911 va_start (ap, format);
8912
8913 rs->buf[0] = '\0';
8914 int size = vsnprintf (rs->buf.data (), max_size, format, ap);
8915
8916 va_end (ap);
8917
8918 if (size >= max_size)
8919 internal_error (__FILE__, __LINE__, _("Too long remote packet."));
8920
8921 if (putpkt (rs->buf) < 0)
8922 error (_("Communication problem with target."));
8923
8924 rs->buf[0] = '\0';
8925 getpkt (&rs->buf, 0);
8926
8927 return packet_check_result (rs->buf);
8928 }
8929
8930 /* Flash writing can take quite some time. We'll set
8931 effectively infinite timeout for flash operations.
8932 In future, we'll need to decide on a better approach. */
8933 static const int remote_flash_timeout = 1000;
8934
8935 void
8936 remote_target::flash_erase (ULONGEST address, LONGEST length)
8937 {
8938 int addr_size = gdbarch_addr_bit (target_gdbarch ()) / 8;
8939 enum packet_result ret;
8940 scoped_restore restore_timeout
8941 = make_scoped_restore (&remote_timeout, remote_flash_timeout);
8942
8943 ret = remote_send_printf ("vFlashErase:%s,%s",
8944 phex (address, addr_size),
8945 phex (length, 4));
8946 switch (ret)
8947 {
8948 case PACKET_UNKNOWN:
8949 error (_("Remote target does not support flash erase"));
8950 case PACKET_ERROR:
8951 error (_("Error erasing flash with vFlashErase packet"));
8952 default:
8953 break;
8954 }
8955 }
8956
8957 target_xfer_status
8958 remote_target::remote_flash_write (ULONGEST address,
8959 ULONGEST length, ULONGEST *xfered_len,
8960 const gdb_byte *data)
8961 {
8962 scoped_restore restore_timeout
8963 = make_scoped_restore (&remote_timeout, remote_flash_timeout);
8964 return remote_write_bytes_aux ("vFlashWrite:", address, data, length, 1,
8965 xfered_len,'X', 0);
8966 }
8967
8968 void
8969 remote_target::flash_done ()
8970 {
8971 int ret;
8972
8973 scoped_restore restore_timeout
8974 = make_scoped_restore (&remote_timeout, remote_flash_timeout);
8975
8976 ret = remote_send_printf ("vFlashDone");
8977
8978 switch (ret)
8979 {
8980 case PACKET_UNKNOWN:
8981 error (_("Remote target does not support vFlashDone"));
8982 case PACKET_ERROR:
8983 error (_("Error finishing flash operation"));
8984 default:
8985 break;
8986 }
8987 }
8988
8989 void
8990 remote_target::files_info ()
8991 {
8992 puts_filtered ("Debugging a target over a serial line.\n");
8993 }
8994 \f
8995 /* Stuff for dealing with the packets which are part of this protocol.
8996 See comment at top of file for details. */
8997
8998 /* Close/unpush the remote target, and throw a TARGET_CLOSE_ERROR
8999 error to higher layers. Called when a serial error is detected.
9000 The exception message is STRING, followed by a colon and a blank,
9001 the system error message for errno at function entry and final dot
9002 for output compatibility with throw_perror_with_name. */
9003
9004 static void
9005 unpush_and_perror (const char *string)
9006 {
9007 int saved_errno = errno;
9008
9009 remote_unpush_target ();
9010 throw_error (TARGET_CLOSE_ERROR, "%s: %s.", string,
9011 safe_strerror (saved_errno));
9012 }
9013
9014 /* Read a single character from the remote end. The current quit
9015 handler is overridden to avoid quitting in the middle of packet
9016 sequence, as that would break communication with the remote server.
9017 See remote_serial_quit_handler for more detail. */
9018
9019 int
9020 remote_target::readchar (int timeout)
9021 {
9022 int ch;
9023 struct remote_state *rs = get_remote_state ();
9024
9025 {
9026 scoped_restore restore_quit_target
9027 = make_scoped_restore (&curr_quit_handler_target, this);
9028 scoped_restore restore_quit
9029 = make_scoped_restore (&quit_handler, ::remote_serial_quit_handler);
9030
9031 rs->got_ctrlc_during_io = 0;
9032
9033 ch = serial_readchar (rs->remote_desc, timeout);
9034
9035 if (rs->got_ctrlc_during_io)
9036 set_quit_flag ();
9037 }
9038
9039 if (ch >= 0)
9040 return ch;
9041
9042 switch ((enum serial_rc) ch)
9043 {
9044 case SERIAL_EOF:
9045 remote_unpush_target ();
9046 throw_error (TARGET_CLOSE_ERROR, _("Remote connection closed"));
9047 /* no return */
9048 case SERIAL_ERROR:
9049 unpush_and_perror (_("Remote communication error. "
9050 "Target disconnected."));
9051 /* no return */
9052 case SERIAL_TIMEOUT:
9053 break;
9054 }
9055 return ch;
9056 }
9057
9058 /* Wrapper for serial_write that closes the target and throws if
9059 writing fails. The current quit handler is overridden to avoid
9060 quitting in the middle of packet sequence, as that would break
9061 communication with the remote server. See
9062 remote_serial_quit_handler for more detail. */
9063
9064 void
9065 remote_target::remote_serial_write (const char *str, int len)
9066 {
9067 struct remote_state *rs = get_remote_state ();
9068
9069 scoped_restore restore_quit_target
9070 = make_scoped_restore (&curr_quit_handler_target, this);
9071 scoped_restore restore_quit
9072 = make_scoped_restore (&quit_handler, ::remote_serial_quit_handler);
9073
9074 rs->got_ctrlc_during_io = 0;
9075
9076 if (serial_write (rs->remote_desc, str, len))
9077 {
9078 unpush_and_perror (_("Remote communication error. "
9079 "Target disconnected."));
9080 }
9081
9082 if (rs->got_ctrlc_during_io)
9083 set_quit_flag ();
9084 }
9085
9086 /* Return a string representing an escaped version of BUF, of len N.
9087 E.g. \n is converted to \\n, \t to \\t, etc. */
9088
9089 static std::string
9090 escape_buffer (const char *buf, int n)
9091 {
9092 string_file stb;
9093
9094 stb.putstrn (buf, n, '\\');
9095 return std::move (stb.string ());
9096 }
9097
9098 /* Display a null-terminated packet on stdout, for debugging, using C
9099 string notation. */
9100
9101 static void
9102 print_packet (const char *buf)
9103 {
9104 puts_filtered ("\"");
9105 fputstr_filtered (buf, '"', gdb_stdout);
9106 puts_filtered ("\"");
9107 }
9108
9109 int
9110 remote_target::putpkt (const char *buf)
9111 {
9112 return putpkt_binary (buf, strlen (buf));
9113 }
9114
9115 /* Wrapper around remote_target::putpkt to avoid exporting
9116 remote_target. */
9117
9118 int
9119 putpkt (remote_target *remote, const char *buf)
9120 {
9121 return remote->putpkt (buf);
9122 }
9123
9124 /* Send a packet to the remote machine, with error checking. The data
9125 of the packet is in BUF. The string in BUF can be at most
9126 get_remote_packet_size () - 5 to account for the $, # and checksum,
9127 and for a possible /0 if we are debugging (remote_debug) and want
9128 to print the sent packet as a string. */
9129
9130 int
9131 remote_target::putpkt_binary (const char *buf, int cnt)
9132 {
9133 struct remote_state *rs = get_remote_state ();
9134 int i;
9135 unsigned char csum = 0;
9136 gdb::def_vector<char> data (cnt + 6);
9137 char *buf2 = data.data ();
9138
9139 int ch;
9140 int tcount = 0;
9141 char *p;
9142
9143 /* Catch cases like trying to read memory or listing threads while
9144 we're waiting for a stop reply. The remote server wouldn't be
9145 ready to handle this request, so we'd hang and timeout. We don't
9146 have to worry about this in synchronous mode, because in that
9147 case it's not possible to issue a command while the target is
9148 running. This is not a problem in non-stop mode, because in that
9149 case, the stub is always ready to process serial input. */
9150 if (!target_is_non_stop_p ()
9151 && target_is_async_p ()
9152 && rs->waiting_for_stop_reply)
9153 {
9154 error (_("Cannot execute this command while the target is running.\n"
9155 "Use the \"interrupt\" command to stop the target\n"
9156 "and then try again."));
9157 }
9158
9159 /* We're sending out a new packet. Make sure we don't look at a
9160 stale cached response. */
9161 rs->cached_wait_status = 0;
9162
9163 /* Copy the packet into buffer BUF2, encapsulating it
9164 and giving it a checksum. */
9165
9166 p = buf2;
9167 *p++ = '$';
9168
9169 for (i = 0; i < cnt; i++)
9170 {
9171 csum += buf[i];
9172 *p++ = buf[i];
9173 }
9174 *p++ = '#';
9175 *p++ = tohex ((csum >> 4) & 0xf);
9176 *p++ = tohex (csum & 0xf);
9177
9178 /* Send it over and over until we get a positive ack. */
9179
9180 while (1)
9181 {
9182 int started_error_output = 0;
9183
9184 if (remote_debug)
9185 {
9186 *p = '\0';
9187
9188 int len = (int) (p - buf2);
9189
9190 std::string str
9191 = escape_buffer (buf2, std::min (len, REMOTE_DEBUG_MAX_CHAR));
9192
9193 fprintf_unfiltered (gdb_stdlog, "Sending packet: %s", str.c_str ());
9194
9195 if (len > REMOTE_DEBUG_MAX_CHAR)
9196 fprintf_unfiltered (gdb_stdlog, "[%d bytes omitted]",
9197 len - REMOTE_DEBUG_MAX_CHAR);
9198
9199 fprintf_unfiltered (gdb_stdlog, "...");
9200
9201 gdb_flush (gdb_stdlog);
9202 }
9203 remote_serial_write (buf2, p - buf2);
9204
9205 /* If this is a no acks version of the remote protocol, send the
9206 packet and move on. */
9207 if (rs->noack_mode)
9208 break;
9209
9210 /* Read until either a timeout occurs (-2) or '+' is read.
9211 Handle any notification that arrives in the mean time. */
9212 while (1)
9213 {
9214 ch = readchar (remote_timeout);
9215
9216 if (remote_debug)
9217 {
9218 switch (ch)
9219 {
9220 case '+':
9221 case '-':
9222 case SERIAL_TIMEOUT:
9223 case '$':
9224 case '%':
9225 if (started_error_output)
9226 {
9227 putchar_unfiltered ('\n');
9228 started_error_output = 0;
9229 }
9230 }
9231 }
9232
9233 switch (ch)
9234 {
9235 case '+':
9236 if (remote_debug)
9237 fprintf_unfiltered (gdb_stdlog, "Ack\n");
9238 return 1;
9239 case '-':
9240 if (remote_debug)
9241 fprintf_unfiltered (gdb_stdlog, "Nak\n");
9242 /* FALLTHROUGH */
9243 case SERIAL_TIMEOUT:
9244 tcount++;
9245 if (tcount > 3)
9246 return 0;
9247 break; /* Retransmit buffer. */
9248 case '$':
9249 {
9250 if (remote_debug)
9251 fprintf_unfiltered (gdb_stdlog,
9252 "Packet instead of Ack, ignoring it\n");
9253 /* It's probably an old response sent because an ACK
9254 was lost. Gobble up the packet and ack it so it
9255 doesn't get retransmitted when we resend this
9256 packet. */
9257 skip_frame ();
9258 remote_serial_write ("+", 1);
9259 continue; /* Now, go look for +. */
9260 }
9261
9262 case '%':
9263 {
9264 int val;
9265
9266 /* If we got a notification, handle it, and go back to looking
9267 for an ack. */
9268 /* We've found the start of a notification. Now
9269 collect the data. */
9270 val = read_frame (&rs->buf);
9271 if (val >= 0)
9272 {
9273 if (remote_debug)
9274 {
9275 std::string str = escape_buffer (rs->buf.data (), val);
9276
9277 fprintf_unfiltered (gdb_stdlog,
9278 " Notification received: %s\n",
9279 str.c_str ());
9280 }
9281 handle_notification (rs->notif_state, rs->buf.data ());
9282 /* We're in sync now, rewait for the ack. */
9283 tcount = 0;
9284 }
9285 else
9286 {
9287 if (remote_debug)
9288 {
9289 if (!started_error_output)
9290 {
9291 started_error_output = 1;
9292 fprintf_unfiltered (gdb_stdlog, "putpkt: Junk: ");
9293 }
9294 fputc_unfiltered (ch & 0177, gdb_stdlog);
9295 fprintf_unfiltered (gdb_stdlog, "%s", rs->buf.data ());
9296 }
9297 }
9298 continue;
9299 }
9300 /* fall-through */
9301 default:
9302 if (remote_debug)
9303 {
9304 if (!started_error_output)
9305 {
9306 started_error_output = 1;
9307 fprintf_unfiltered (gdb_stdlog, "putpkt: Junk: ");
9308 }
9309 fputc_unfiltered (ch & 0177, gdb_stdlog);
9310 }
9311 continue;
9312 }
9313 break; /* Here to retransmit. */
9314 }
9315
9316 #if 0
9317 /* This is wrong. If doing a long backtrace, the user should be
9318 able to get out next time we call QUIT, without anything as
9319 violent as interrupt_query. If we want to provide a way out of
9320 here without getting to the next QUIT, it should be based on
9321 hitting ^C twice as in remote_wait. */
9322 if (quit_flag)
9323 {
9324 quit_flag = 0;
9325 interrupt_query ();
9326 }
9327 #endif
9328 }
9329
9330 return 0;
9331 }
9332
9333 /* Come here after finding the start of a frame when we expected an
9334 ack. Do our best to discard the rest of this packet. */
9335
9336 void
9337 remote_target::skip_frame ()
9338 {
9339 int c;
9340
9341 while (1)
9342 {
9343 c = readchar (remote_timeout);
9344 switch (c)
9345 {
9346 case SERIAL_TIMEOUT:
9347 /* Nothing we can do. */
9348 return;
9349 case '#':
9350 /* Discard the two bytes of checksum and stop. */
9351 c = readchar (remote_timeout);
9352 if (c >= 0)
9353 c = readchar (remote_timeout);
9354
9355 return;
9356 case '*': /* Run length encoding. */
9357 /* Discard the repeat count. */
9358 c = readchar (remote_timeout);
9359 if (c < 0)
9360 return;
9361 break;
9362 default:
9363 /* A regular character. */
9364 break;
9365 }
9366 }
9367 }
9368
9369 /* Come here after finding the start of the frame. Collect the rest
9370 into *BUF, verifying the checksum, length, and handling run-length
9371 compression. NUL terminate the buffer. If there is not enough room,
9372 expand *BUF.
9373
9374 Returns -1 on error, number of characters in buffer (ignoring the
9375 trailing NULL) on success. (could be extended to return one of the
9376 SERIAL status indications). */
9377
9378 long
9379 remote_target::read_frame (gdb::char_vector *buf_p)
9380 {
9381 unsigned char csum;
9382 long bc;
9383 int c;
9384 char *buf = buf_p->data ();
9385 struct remote_state *rs = get_remote_state ();
9386
9387 csum = 0;
9388 bc = 0;
9389
9390 while (1)
9391 {
9392 c = readchar (remote_timeout);
9393 switch (c)
9394 {
9395 case SERIAL_TIMEOUT:
9396 if (remote_debug)
9397 fputs_filtered ("Timeout in mid-packet, retrying\n", gdb_stdlog);
9398 return -1;
9399 case '$':
9400 if (remote_debug)
9401 fputs_filtered ("Saw new packet start in middle of old one\n",
9402 gdb_stdlog);
9403 return -1; /* Start a new packet, count retries. */
9404 case '#':
9405 {
9406 unsigned char pktcsum;
9407 int check_0 = 0;
9408 int check_1 = 0;
9409
9410 buf[bc] = '\0';
9411
9412 check_0 = readchar (remote_timeout);
9413 if (check_0 >= 0)
9414 check_1 = readchar (remote_timeout);
9415
9416 if (check_0 == SERIAL_TIMEOUT || check_1 == SERIAL_TIMEOUT)
9417 {
9418 if (remote_debug)
9419 fputs_filtered ("Timeout in checksum, retrying\n",
9420 gdb_stdlog);
9421 return -1;
9422 }
9423 else if (check_0 < 0 || check_1 < 0)
9424 {
9425 if (remote_debug)
9426 fputs_filtered ("Communication error in checksum\n",
9427 gdb_stdlog);
9428 return -1;
9429 }
9430
9431 /* Don't recompute the checksum; with no ack packets we
9432 don't have any way to indicate a packet retransmission
9433 is necessary. */
9434 if (rs->noack_mode)
9435 return bc;
9436
9437 pktcsum = (fromhex (check_0) << 4) | fromhex (check_1);
9438 if (csum == pktcsum)
9439 return bc;
9440
9441 if (remote_debug)
9442 {
9443 std::string str = escape_buffer (buf, bc);
9444
9445 fprintf_unfiltered (gdb_stdlog,
9446 "Bad checksum, sentsum=0x%x, "
9447 "csum=0x%x, buf=%s\n",
9448 pktcsum, csum, str.c_str ());
9449 }
9450 /* Number of characters in buffer ignoring trailing
9451 NULL. */
9452 return -1;
9453 }
9454 case '*': /* Run length encoding. */
9455 {
9456 int repeat;
9457
9458 csum += c;
9459 c = readchar (remote_timeout);
9460 csum += c;
9461 repeat = c - ' ' + 3; /* Compute repeat count. */
9462
9463 /* The character before ``*'' is repeated. */
9464
9465 if (repeat > 0 && repeat <= 255 && bc > 0)
9466 {
9467 if (bc + repeat - 1 >= buf_p->size () - 1)
9468 {
9469 /* Make some more room in the buffer. */
9470 buf_p->resize (buf_p->size () + repeat);
9471 buf = buf_p->data ();
9472 }
9473
9474 memset (&buf[bc], buf[bc - 1], repeat);
9475 bc += repeat;
9476 continue;
9477 }
9478
9479 buf[bc] = '\0';
9480 printf_filtered (_("Invalid run length encoding: %s\n"), buf);
9481 return -1;
9482 }
9483 default:
9484 if (bc >= buf_p->size () - 1)
9485 {
9486 /* Make some more room in the buffer. */
9487 buf_p->resize (buf_p->size () * 2);
9488 buf = buf_p->data ();
9489 }
9490
9491 buf[bc++] = c;
9492 csum += c;
9493 continue;
9494 }
9495 }
9496 }
9497
9498 /* Read a packet from the remote machine, with error checking, and
9499 store it in *BUF. Resize *BUF if necessary to hold the result. If
9500 FOREVER, wait forever rather than timing out; this is used (in
9501 synchronous mode) to wait for a target that is is executing user
9502 code to stop. */
9503 /* FIXME: ezannoni 2000-02-01 this wrapper is necessary so that we
9504 don't have to change all the calls to getpkt to deal with the
9505 return value, because at the moment I don't know what the right
9506 thing to do it for those. */
9507
9508 void
9509 remote_target::getpkt (gdb::char_vector *buf, int forever)
9510 {
9511 getpkt_sane (buf, forever);
9512 }
9513
9514
9515 /* Read a packet from the remote machine, with error checking, and
9516 store it in *BUF. Resize *BUF if necessary to hold the result. If
9517 FOREVER, wait forever rather than timing out; this is used (in
9518 synchronous mode) to wait for a target that is is executing user
9519 code to stop. If FOREVER == 0, this function is allowed to time
9520 out gracefully and return an indication of this to the caller.
9521 Otherwise return the number of bytes read. If EXPECTING_NOTIF,
9522 consider receiving a notification enough reason to return to the
9523 caller. *IS_NOTIF is an output boolean that indicates whether *BUF
9524 holds a notification or not (a regular packet). */
9525
9526 int
9527 remote_target::getpkt_or_notif_sane_1 (gdb::char_vector *buf,
9528 int forever, int expecting_notif,
9529 int *is_notif)
9530 {
9531 struct remote_state *rs = get_remote_state ();
9532 int c;
9533 int tries;
9534 int timeout;
9535 int val = -1;
9536
9537 /* We're reading a new response. Make sure we don't look at a
9538 previously cached response. */
9539 rs->cached_wait_status = 0;
9540
9541 strcpy (buf->data (), "timeout");
9542
9543 if (forever)
9544 timeout = watchdog > 0 ? watchdog : -1;
9545 else if (expecting_notif)
9546 timeout = 0; /* There should already be a char in the buffer. If
9547 not, bail out. */
9548 else
9549 timeout = remote_timeout;
9550
9551 #define MAX_TRIES 3
9552
9553 /* Process any number of notifications, and then return when
9554 we get a packet. */
9555 for (;;)
9556 {
9557 /* If we get a timeout or bad checksum, retry up to MAX_TRIES
9558 times. */
9559 for (tries = 1; tries <= MAX_TRIES; tries++)
9560 {
9561 /* This can loop forever if the remote side sends us
9562 characters continuously, but if it pauses, we'll get
9563 SERIAL_TIMEOUT from readchar because of timeout. Then
9564 we'll count that as a retry.
9565
9566 Note that even when forever is set, we will only wait
9567 forever prior to the start of a packet. After that, we
9568 expect characters to arrive at a brisk pace. They should
9569 show up within remote_timeout intervals. */
9570 do
9571 c = readchar (timeout);
9572 while (c != SERIAL_TIMEOUT && c != '$' && c != '%');
9573
9574 if (c == SERIAL_TIMEOUT)
9575 {
9576 if (expecting_notif)
9577 return -1; /* Don't complain, it's normal to not get
9578 anything in this case. */
9579
9580 if (forever) /* Watchdog went off? Kill the target. */
9581 {
9582 remote_unpush_target ();
9583 throw_error (TARGET_CLOSE_ERROR,
9584 _("Watchdog timeout has expired. "
9585 "Target detached."));
9586 }
9587 if (remote_debug)
9588 fputs_filtered ("Timed out.\n", gdb_stdlog);
9589 }
9590 else
9591 {
9592 /* We've found the start of a packet or notification.
9593 Now collect the data. */
9594 val = read_frame (buf);
9595 if (val >= 0)
9596 break;
9597 }
9598
9599 remote_serial_write ("-", 1);
9600 }
9601
9602 if (tries > MAX_TRIES)
9603 {
9604 /* We have tried hard enough, and just can't receive the
9605 packet/notification. Give up. */
9606 printf_unfiltered (_("Ignoring packet error, continuing...\n"));
9607
9608 /* Skip the ack char if we're in no-ack mode. */
9609 if (!rs->noack_mode)
9610 remote_serial_write ("+", 1);
9611 return -1;
9612 }
9613
9614 /* If we got an ordinary packet, return that to our caller. */
9615 if (c == '$')
9616 {
9617 if (remote_debug)
9618 {
9619 std::string str
9620 = escape_buffer (buf->data (),
9621 std::min (val, REMOTE_DEBUG_MAX_CHAR));
9622
9623 fprintf_unfiltered (gdb_stdlog, "Packet received: %s",
9624 str.c_str ());
9625
9626 if (val > REMOTE_DEBUG_MAX_CHAR)
9627 fprintf_unfiltered (gdb_stdlog, "[%d bytes omitted]",
9628 val - REMOTE_DEBUG_MAX_CHAR);
9629
9630 fprintf_unfiltered (gdb_stdlog, "\n");
9631 }
9632
9633 /* Skip the ack char if we're in no-ack mode. */
9634 if (!rs->noack_mode)
9635 remote_serial_write ("+", 1);
9636 if (is_notif != NULL)
9637 *is_notif = 0;
9638 return val;
9639 }
9640
9641 /* If we got a notification, handle it, and go back to looking
9642 for a packet. */
9643 else
9644 {
9645 gdb_assert (c == '%');
9646
9647 if (remote_debug)
9648 {
9649 std::string str = escape_buffer (buf->data (), val);
9650
9651 fprintf_unfiltered (gdb_stdlog,
9652 " Notification received: %s\n",
9653 str.c_str ());
9654 }
9655 if (is_notif != NULL)
9656 *is_notif = 1;
9657
9658 handle_notification (rs->notif_state, buf->data ());
9659
9660 /* Notifications require no acknowledgement. */
9661
9662 if (expecting_notif)
9663 return val;
9664 }
9665 }
9666 }
9667
9668 int
9669 remote_target::getpkt_sane (gdb::char_vector *buf, int forever)
9670 {
9671 return getpkt_or_notif_sane_1 (buf, forever, 0, NULL);
9672 }
9673
9674 int
9675 remote_target::getpkt_or_notif_sane (gdb::char_vector *buf, int forever,
9676 int *is_notif)
9677 {
9678 return getpkt_or_notif_sane_1 (buf, forever, 1, is_notif);
9679 }
9680
9681 /* Kill any new fork children of process PID that haven't been
9682 processed by follow_fork. */
9683
9684 void
9685 remote_target::kill_new_fork_children (int pid)
9686 {
9687 remote_state *rs = get_remote_state ();
9688 struct notif_client *notif = &notif_client_stop;
9689
9690 /* Kill the fork child threads of any threads in process PID
9691 that are stopped at a fork event. */
9692 for (thread_info *thread : all_non_exited_threads ())
9693 {
9694 struct target_waitstatus *ws = &thread->pending_follow;
9695
9696 if (is_pending_fork_parent (ws, pid, thread->ptid))
9697 {
9698 int child_pid = ws->value.related_pid.pid ();
9699 int res;
9700
9701 res = remote_vkill (child_pid);
9702 if (res != 0)
9703 error (_("Can't kill fork child process %d"), child_pid);
9704 }
9705 }
9706
9707 /* Check for any pending fork events (not reported or processed yet)
9708 in process PID and kill those fork child threads as well. */
9709 remote_notif_get_pending_events (notif);
9710 for (auto &event : rs->stop_reply_queue)
9711 if (is_pending_fork_parent (&event->ws, pid, event->ptid))
9712 {
9713 int child_pid = event->ws.value.related_pid.pid ();
9714 int res;
9715
9716 res = remote_vkill (child_pid);
9717 if (res != 0)
9718 error (_("Can't kill fork child process %d"), child_pid);
9719 }
9720 }
9721
9722 \f
9723 /* Target hook to kill the current inferior. */
9724
9725 void
9726 remote_target::kill ()
9727 {
9728 int res = -1;
9729 int pid = inferior_ptid.pid ();
9730 struct remote_state *rs = get_remote_state ();
9731
9732 if (packet_support (PACKET_vKill) != PACKET_DISABLE)
9733 {
9734 /* If we're stopped while forking and we haven't followed yet,
9735 kill the child task. We need to do this before killing the
9736 parent task because if this is a vfork then the parent will
9737 be sleeping. */
9738 kill_new_fork_children (pid);
9739
9740 res = remote_vkill (pid);
9741 if (res == 0)
9742 {
9743 target_mourn_inferior (inferior_ptid);
9744 return;
9745 }
9746 }
9747
9748 /* If we are in 'target remote' mode and we are killing the only
9749 inferior, then we will tell gdbserver to exit and unpush the
9750 target. */
9751 if (res == -1 && !remote_multi_process_p (rs)
9752 && number_of_live_inferiors () == 1)
9753 {
9754 remote_kill_k ();
9755
9756 /* We've killed the remote end, we get to mourn it. If we are
9757 not in extended mode, mourning the inferior also unpushes
9758 remote_ops from the target stack, which closes the remote
9759 connection. */
9760 target_mourn_inferior (inferior_ptid);
9761
9762 return;
9763 }
9764
9765 error (_("Can't kill process"));
9766 }
9767
9768 /* Send a kill request to the target using the 'vKill' packet. */
9769
9770 int
9771 remote_target::remote_vkill (int pid)
9772 {
9773 if (packet_support (PACKET_vKill) == PACKET_DISABLE)
9774 return -1;
9775
9776 remote_state *rs = get_remote_state ();
9777
9778 /* Tell the remote target to detach. */
9779 xsnprintf (rs->buf.data (), get_remote_packet_size (), "vKill;%x", pid);
9780 putpkt (rs->buf);
9781 getpkt (&rs->buf, 0);
9782
9783 switch (packet_ok (rs->buf,
9784 &remote_protocol_packets[PACKET_vKill]))
9785 {
9786 case PACKET_OK:
9787 return 0;
9788 case PACKET_ERROR:
9789 return 1;
9790 case PACKET_UNKNOWN:
9791 return -1;
9792 default:
9793 internal_error (__FILE__, __LINE__, _("Bad result from packet_ok"));
9794 }
9795 }
9796
9797 /* Send a kill request to the target using the 'k' packet. */
9798
9799 void
9800 remote_target::remote_kill_k ()
9801 {
9802 /* Catch errors so the user can quit from gdb even when we
9803 aren't on speaking terms with the remote system. */
9804 TRY
9805 {
9806 putpkt ("k");
9807 }
9808 CATCH (ex, RETURN_MASK_ERROR)
9809 {
9810 if (ex.error == TARGET_CLOSE_ERROR)
9811 {
9812 /* If we got an (EOF) error that caused the target
9813 to go away, then we're done, that's what we wanted.
9814 "k" is susceptible to cause a premature EOF, given
9815 that the remote server isn't actually required to
9816 reply to "k", and it can happen that it doesn't
9817 even get to reply ACK to the "k". */
9818 return;
9819 }
9820
9821 /* Otherwise, something went wrong. We didn't actually kill
9822 the target. Just propagate the exception, and let the
9823 user or higher layers decide what to do. */
9824 throw_exception (ex);
9825 }
9826 END_CATCH
9827 }
9828
9829 void
9830 remote_target::mourn_inferior ()
9831 {
9832 struct remote_state *rs = get_remote_state ();
9833
9834 /* We're no longer interested in notification events of an inferior
9835 that exited or was killed/detached. */
9836 discard_pending_stop_replies (current_inferior ());
9837
9838 /* In 'target remote' mode with one inferior, we close the connection. */
9839 if (!rs->extended && number_of_live_inferiors () <= 1)
9840 {
9841 unpush_target (this);
9842
9843 /* remote_close takes care of doing most of the clean up. */
9844 generic_mourn_inferior ();
9845 return;
9846 }
9847
9848 /* In case we got here due to an error, but we're going to stay
9849 connected. */
9850 rs->waiting_for_stop_reply = 0;
9851
9852 /* If the current general thread belonged to the process we just
9853 detached from or has exited, the remote side current general
9854 thread becomes undefined. Considering a case like this:
9855
9856 - We just got here due to a detach.
9857 - The process that we're detaching from happens to immediately
9858 report a global breakpoint being hit in non-stop mode, in the
9859 same thread we had selected before.
9860 - GDB attaches to this process again.
9861 - This event happens to be the next event we handle.
9862
9863 GDB would consider that the current general thread didn't need to
9864 be set on the stub side (with Hg), since for all it knew,
9865 GENERAL_THREAD hadn't changed.
9866
9867 Notice that although in all-stop mode, the remote server always
9868 sets the current thread to the thread reporting the stop event,
9869 that doesn't happen in non-stop mode; in non-stop, the stub *must
9870 not* change the current thread when reporting a breakpoint hit,
9871 due to the decoupling of event reporting and event handling.
9872
9873 To keep things simple, we always invalidate our notion of the
9874 current thread. */
9875 record_currthread (rs, minus_one_ptid);
9876
9877 /* Call common code to mark the inferior as not running. */
9878 generic_mourn_inferior ();
9879
9880 if (!have_inferiors ())
9881 {
9882 if (!remote_multi_process_p (rs))
9883 {
9884 /* Check whether the target is running now - some remote stubs
9885 automatically restart after kill. */
9886 putpkt ("?");
9887 getpkt (&rs->buf, 0);
9888
9889 if (rs->buf[0] == 'S' || rs->buf[0] == 'T')
9890 {
9891 /* Assume that the target has been restarted. Set
9892 inferior_ptid so that bits of core GDB realizes
9893 there's something here, e.g., so that the user can
9894 say "kill" again. */
9895 inferior_ptid = magic_null_ptid;
9896 }
9897 }
9898 }
9899 }
9900
9901 bool
9902 extended_remote_target::supports_disable_randomization ()
9903 {
9904 return packet_support (PACKET_QDisableRandomization) == PACKET_ENABLE;
9905 }
9906
9907 void
9908 remote_target::extended_remote_disable_randomization (int val)
9909 {
9910 struct remote_state *rs = get_remote_state ();
9911 char *reply;
9912
9913 xsnprintf (rs->buf.data (), get_remote_packet_size (),
9914 "QDisableRandomization:%x", val);
9915 putpkt (rs->buf);
9916 reply = remote_get_noisy_reply ();
9917 if (*reply == '\0')
9918 error (_("Target does not support QDisableRandomization."));
9919 if (strcmp (reply, "OK") != 0)
9920 error (_("Bogus QDisableRandomization reply from target: %s"), reply);
9921 }
9922
9923 int
9924 remote_target::extended_remote_run (const std::string &args)
9925 {
9926 struct remote_state *rs = get_remote_state ();
9927 int len;
9928 const char *remote_exec_file = get_remote_exec_file ();
9929
9930 /* If the user has disabled vRun support, or we have detected that
9931 support is not available, do not try it. */
9932 if (packet_support (PACKET_vRun) == PACKET_DISABLE)
9933 return -1;
9934
9935 strcpy (rs->buf.data (), "vRun;");
9936 len = strlen (rs->buf.data ());
9937
9938 if (strlen (remote_exec_file) * 2 + len >= get_remote_packet_size ())
9939 error (_("Remote file name too long for run packet"));
9940 len += 2 * bin2hex ((gdb_byte *) remote_exec_file, rs->buf.data () + len,
9941 strlen (remote_exec_file));
9942
9943 if (!args.empty ())
9944 {
9945 int i;
9946
9947 gdb_argv argv (args.c_str ());
9948 for (i = 0; argv[i] != NULL; i++)
9949 {
9950 if (strlen (argv[i]) * 2 + 1 + len >= get_remote_packet_size ())
9951 error (_("Argument list too long for run packet"));
9952 rs->buf[len++] = ';';
9953 len += 2 * bin2hex ((gdb_byte *) argv[i], rs->buf.data () + len,
9954 strlen (argv[i]));
9955 }
9956 }
9957
9958 rs->buf[len++] = '\0';
9959
9960 putpkt (rs->buf);
9961 getpkt (&rs->buf, 0);
9962
9963 switch (packet_ok (rs->buf, &remote_protocol_packets[PACKET_vRun]))
9964 {
9965 case PACKET_OK:
9966 /* We have a wait response. All is well. */
9967 return 0;
9968 case PACKET_UNKNOWN:
9969 return -1;
9970 case PACKET_ERROR:
9971 if (remote_exec_file[0] == '\0')
9972 error (_("Running the default executable on the remote target failed; "
9973 "try \"set remote exec-file\"?"));
9974 else
9975 error (_("Running \"%s\" on the remote target failed"),
9976 remote_exec_file);
9977 default:
9978 gdb_assert_not_reached (_("bad switch"));
9979 }
9980 }
9981
9982 /* Helper function to send set/unset environment packets. ACTION is
9983 either "set" or "unset". PACKET is either "QEnvironmentHexEncoded"
9984 or "QEnvironmentUnsetVariable". VALUE is the variable to be
9985 sent. */
9986
9987 void
9988 remote_target::send_environment_packet (const char *action,
9989 const char *packet,
9990 const char *value)
9991 {
9992 remote_state *rs = get_remote_state ();
9993
9994 /* Convert the environment variable to an hex string, which
9995 is the best format to be transmitted over the wire. */
9996 std::string encoded_value = bin2hex ((const gdb_byte *) value,
9997 strlen (value));
9998
9999 xsnprintf (rs->buf.data (), get_remote_packet_size (),
10000 "%s:%s", packet, encoded_value.c_str ());
10001
10002 putpkt (rs->buf);
10003 getpkt (&rs->buf, 0);
10004 if (strcmp (rs->buf.data (), "OK") != 0)
10005 warning (_("Unable to %s environment variable '%s' on remote."),
10006 action, value);
10007 }
10008
10009 /* Helper function to handle the QEnvironment* packets. */
10010
10011 void
10012 remote_target::extended_remote_environment_support ()
10013 {
10014 remote_state *rs = get_remote_state ();
10015
10016 if (packet_support (PACKET_QEnvironmentReset) != PACKET_DISABLE)
10017 {
10018 putpkt ("QEnvironmentReset");
10019 getpkt (&rs->buf, 0);
10020 if (strcmp (rs->buf.data (), "OK") != 0)
10021 warning (_("Unable to reset environment on remote."));
10022 }
10023
10024 gdb_environ *e = &current_inferior ()->environment;
10025
10026 if (packet_support (PACKET_QEnvironmentHexEncoded) != PACKET_DISABLE)
10027 for (const std::string &el : e->user_set_env ())
10028 send_environment_packet ("set", "QEnvironmentHexEncoded",
10029 el.c_str ());
10030
10031 if (packet_support (PACKET_QEnvironmentUnset) != PACKET_DISABLE)
10032 for (const std::string &el : e->user_unset_env ())
10033 send_environment_packet ("unset", "QEnvironmentUnset", el.c_str ());
10034 }
10035
10036 /* Helper function to set the current working directory for the
10037 inferior in the remote target. */
10038
10039 void
10040 remote_target::extended_remote_set_inferior_cwd ()
10041 {
10042 if (packet_support (PACKET_QSetWorkingDir) != PACKET_DISABLE)
10043 {
10044 const char *inferior_cwd = get_inferior_cwd ();
10045 remote_state *rs = get_remote_state ();
10046
10047 if (inferior_cwd != NULL)
10048 {
10049 std::string hexpath = bin2hex ((const gdb_byte *) inferior_cwd,
10050 strlen (inferior_cwd));
10051
10052 xsnprintf (rs->buf.data (), get_remote_packet_size (),
10053 "QSetWorkingDir:%s", hexpath.c_str ());
10054 }
10055 else
10056 {
10057 /* An empty inferior_cwd means that the user wants us to
10058 reset the remote server's inferior's cwd. */
10059 xsnprintf (rs->buf.data (), get_remote_packet_size (),
10060 "QSetWorkingDir:");
10061 }
10062
10063 putpkt (rs->buf);
10064 getpkt (&rs->buf, 0);
10065 if (packet_ok (rs->buf,
10066 &remote_protocol_packets[PACKET_QSetWorkingDir])
10067 != PACKET_OK)
10068 error (_("\
10069 Remote replied unexpectedly while setting the inferior's working\n\
10070 directory: %s"),
10071 rs->buf.data ());
10072
10073 }
10074 }
10075
10076 /* In the extended protocol we want to be able to do things like
10077 "run" and have them basically work as expected. So we need
10078 a special create_inferior function. We support changing the
10079 executable file and the command line arguments, but not the
10080 environment. */
10081
10082 void
10083 extended_remote_target::create_inferior (const char *exec_file,
10084 const std::string &args,
10085 char **env, int from_tty)
10086 {
10087 int run_worked;
10088 char *stop_reply;
10089 struct remote_state *rs = get_remote_state ();
10090 const char *remote_exec_file = get_remote_exec_file ();
10091
10092 /* If running asynchronously, register the target file descriptor
10093 with the event loop. */
10094 if (target_can_async_p ())
10095 target_async (1);
10096
10097 /* Disable address space randomization if requested (and supported). */
10098 if (supports_disable_randomization ())
10099 extended_remote_disable_randomization (disable_randomization);
10100
10101 /* If startup-with-shell is on, we inform gdbserver to start the
10102 remote inferior using a shell. */
10103 if (packet_support (PACKET_QStartupWithShell) != PACKET_DISABLE)
10104 {
10105 xsnprintf (rs->buf.data (), get_remote_packet_size (),
10106 "QStartupWithShell:%d", startup_with_shell ? 1 : 0);
10107 putpkt (rs->buf);
10108 getpkt (&rs->buf, 0);
10109 if (strcmp (rs->buf.data (), "OK") != 0)
10110 error (_("\
10111 Remote replied unexpectedly while setting startup-with-shell: %s"),
10112 rs->buf.data ());
10113 }
10114
10115 extended_remote_environment_support ();
10116
10117 extended_remote_set_inferior_cwd ();
10118
10119 /* Now restart the remote server. */
10120 run_worked = extended_remote_run (args) != -1;
10121 if (!run_worked)
10122 {
10123 /* vRun was not supported. Fail if we need it to do what the
10124 user requested. */
10125 if (remote_exec_file[0])
10126 error (_("Remote target does not support \"set remote exec-file\""));
10127 if (!args.empty ())
10128 error (_("Remote target does not support \"set args\" or run ARGS"));
10129
10130 /* Fall back to "R". */
10131 extended_remote_restart ();
10132 }
10133
10134 /* vRun's success return is a stop reply. */
10135 stop_reply = run_worked ? rs->buf.data () : NULL;
10136 add_current_inferior_and_thread (stop_reply);
10137
10138 /* Get updated offsets, if the stub uses qOffsets. */
10139 get_offsets ();
10140 }
10141 \f
10142
10143 /* Given a location's target info BP_TGT and the packet buffer BUF, output
10144 the list of conditions (in agent expression bytecode format), if any, the
10145 target needs to evaluate. The output is placed into the packet buffer
10146 started from BUF and ended at BUF_END. */
10147
10148 static int
10149 remote_add_target_side_condition (struct gdbarch *gdbarch,
10150 struct bp_target_info *bp_tgt, char *buf,
10151 char *buf_end)
10152 {
10153 if (bp_tgt->conditions.empty ())
10154 return 0;
10155
10156 buf += strlen (buf);
10157 xsnprintf (buf, buf_end - buf, "%s", ";");
10158 buf++;
10159
10160 /* Send conditions to the target. */
10161 for (agent_expr *aexpr : bp_tgt->conditions)
10162 {
10163 xsnprintf (buf, buf_end - buf, "X%x,", aexpr->len);
10164 buf += strlen (buf);
10165 for (int i = 0; i < aexpr->len; ++i)
10166 buf = pack_hex_byte (buf, aexpr->buf[i]);
10167 *buf = '\0';
10168 }
10169 return 0;
10170 }
10171
10172 static void
10173 remote_add_target_side_commands (struct gdbarch *gdbarch,
10174 struct bp_target_info *bp_tgt, char *buf)
10175 {
10176 if (bp_tgt->tcommands.empty ())
10177 return;
10178
10179 buf += strlen (buf);
10180
10181 sprintf (buf, ";cmds:%x,", bp_tgt->persist);
10182 buf += strlen (buf);
10183
10184 /* Concatenate all the agent expressions that are commands into the
10185 cmds parameter. */
10186 for (agent_expr *aexpr : bp_tgt->tcommands)
10187 {
10188 sprintf (buf, "X%x,", aexpr->len);
10189 buf += strlen (buf);
10190 for (int i = 0; i < aexpr->len; ++i)
10191 buf = pack_hex_byte (buf, aexpr->buf[i]);
10192 *buf = '\0';
10193 }
10194 }
10195
10196 /* Insert a breakpoint. On targets that have software breakpoint
10197 support, we ask the remote target to do the work; on targets
10198 which don't, we insert a traditional memory breakpoint. */
10199
10200 int
10201 remote_target::insert_breakpoint (struct gdbarch *gdbarch,
10202 struct bp_target_info *bp_tgt)
10203 {
10204 /* Try the "Z" s/w breakpoint packet if it is not already disabled.
10205 If it succeeds, then set the support to PACKET_ENABLE. If it
10206 fails, and the user has explicitly requested the Z support then
10207 report an error, otherwise, mark it disabled and go on. */
10208
10209 if (packet_support (PACKET_Z0) != PACKET_DISABLE)
10210 {
10211 CORE_ADDR addr = bp_tgt->reqstd_address;
10212 struct remote_state *rs;
10213 char *p, *endbuf;
10214
10215 /* Make sure the remote is pointing at the right process, if
10216 necessary. */
10217 if (!gdbarch_has_global_breakpoints (target_gdbarch ()))
10218 set_general_process ();
10219
10220 rs = get_remote_state ();
10221 p = rs->buf.data ();
10222 endbuf = p + get_remote_packet_size ();
10223
10224 *(p++) = 'Z';
10225 *(p++) = '0';
10226 *(p++) = ',';
10227 addr = (ULONGEST) remote_address_masked (addr);
10228 p += hexnumstr (p, addr);
10229 xsnprintf (p, endbuf - p, ",%d", bp_tgt->kind);
10230
10231 if (supports_evaluation_of_breakpoint_conditions ())
10232 remote_add_target_side_condition (gdbarch, bp_tgt, p, endbuf);
10233
10234 if (can_run_breakpoint_commands ())
10235 remote_add_target_side_commands (gdbarch, bp_tgt, p);
10236
10237 putpkt (rs->buf);
10238 getpkt (&rs->buf, 0);
10239
10240 switch (packet_ok (rs->buf, &remote_protocol_packets[PACKET_Z0]))
10241 {
10242 case PACKET_ERROR:
10243 return -1;
10244 case PACKET_OK:
10245 return 0;
10246 case PACKET_UNKNOWN:
10247 break;
10248 }
10249 }
10250
10251 /* If this breakpoint has target-side commands but this stub doesn't
10252 support Z0 packets, throw error. */
10253 if (!bp_tgt->tcommands.empty ())
10254 throw_error (NOT_SUPPORTED_ERROR, _("\
10255 Target doesn't support breakpoints that have target side commands."));
10256
10257 return memory_insert_breakpoint (this, gdbarch, bp_tgt);
10258 }
10259
10260 int
10261 remote_target::remove_breakpoint (struct gdbarch *gdbarch,
10262 struct bp_target_info *bp_tgt,
10263 enum remove_bp_reason reason)
10264 {
10265 CORE_ADDR addr = bp_tgt->placed_address;
10266 struct remote_state *rs = get_remote_state ();
10267
10268 if (packet_support (PACKET_Z0) != PACKET_DISABLE)
10269 {
10270 char *p = rs->buf.data ();
10271 char *endbuf = p + get_remote_packet_size ();
10272
10273 /* Make sure the remote is pointing at the right process, if
10274 necessary. */
10275 if (!gdbarch_has_global_breakpoints (target_gdbarch ()))
10276 set_general_process ();
10277
10278 *(p++) = 'z';
10279 *(p++) = '0';
10280 *(p++) = ',';
10281
10282 addr = (ULONGEST) remote_address_masked (bp_tgt->placed_address);
10283 p += hexnumstr (p, addr);
10284 xsnprintf (p, endbuf - p, ",%d", bp_tgt->kind);
10285
10286 putpkt (rs->buf);
10287 getpkt (&rs->buf, 0);
10288
10289 return (rs->buf[0] == 'E');
10290 }
10291
10292 return memory_remove_breakpoint (this, gdbarch, bp_tgt, reason);
10293 }
10294
10295 static enum Z_packet_type
10296 watchpoint_to_Z_packet (int type)
10297 {
10298 switch (type)
10299 {
10300 case hw_write:
10301 return Z_PACKET_WRITE_WP;
10302 break;
10303 case hw_read:
10304 return Z_PACKET_READ_WP;
10305 break;
10306 case hw_access:
10307 return Z_PACKET_ACCESS_WP;
10308 break;
10309 default:
10310 internal_error (__FILE__, __LINE__,
10311 _("hw_bp_to_z: bad watchpoint type %d"), type);
10312 }
10313 }
10314
10315 int
10316 remote_target::insert_watchpoint (CORE_ADDR addr, int len,
10317 enum target_hw_bp_type type, struct expression *cond)
10318 {
10319 struct remote_state *rs = get_remote_state ();
10320 char *endbuf = rs->buf.data () + get_remote_packet_size ();
10321 char *p;
10322 enum Z_packet_type packet = watchpoint_to_Z_packet (type);
10323
10324 if (packet_support (PACKET_Z0 + packet) == PACKET_DISABLE)
10325 return 1;
10326
10327 /* Make sure the remote is pointing at the right process, if
10328 necessary. */
10329 if (!gdbarch_has_global_breakpoints (target_gdbarch ()))
10330 set_general_process ();
10331
10332 xsnprintf (rs->buf.data (), endbuf - rs->buf.data (), "Z%x,", packet);
10333 p = strchr (rs->buf.data (), '\0');
10334 addr = remote_address_masked (addr);
10335 p += hexnumstr (p, (ULONGEST) addr);
10336 xsnprintf (p, endbuf - p, ",%x", len);
10337
10338 putpkt (rs->buf);
10339 getpkt (&rs->buf, 0);
10340
10341 switch (packet_ok (rs->buf, &remote_protocol_packets[PACKET_Z0 + packet]))
10342 {
10343 case PACKET_ERROR:
10344 return -1;
10345 case PACKET_UNKNOWN:
10346 return 1;
10347 case PACKET_OK:
10348 return 0;
10349 }
10350 internal_error (__FILE__, __LINE__,
10351 _("remote_insert_watchpoint: reached end of function"));
10352 }
10353
10354 bool
10355 remote_target::watchpoint_addr_within_range (CORE_ADDR addr,
10356 CORE_ADDR start, int length)
10357 {
10358 CORE_ADDR diff = remote_address_masked (addr - start);
10359
10360 return diff < length;
10361 }
10362
10363
10364 int
10365 remote_target::remove_watchpoint (CORE_ADDR addr, int len,
10366 enum target_hw_bp_type type, struct expression *cond)
10367 {
10368 struct remote_state *rs = get_remote_state ();
10369 char *endbuf = rs->buf.data () + get_remote_packet_size ();
10370 char *p;
10371 enum Z_packet_type packet = watchpoint_to_Z_packet (type);
10372
10373 if (packet_support (PACKET_Z0 + packet) == PACKET_DISABLE)
10374 return -1;
10375
10376 /* Make sure the remote is pointing at the right process, if
10377 necessary. */
10378 if (!gdbarch_has_global_breakpoints (target_gdbarch ()))
10379 set_general_process ();
10380
10381 xsnprintf (rs->buf.data (), endbuf - rs->buf.data (), "z%x,", packet);
10382 p = strchr (rs->buf.data (), '\0');
10383 addr = remote_address_masked (addr);
10384 p += hexnumstr (p, (ULONGEST) addr);
10385 xsnprintf (p, endbuf - p, ",%x", len);
10386 putpkt (rs->buf);
10387 getpkt (&rs->buf, 0);
10388
10389 switch (packet_ok (rs->buf, &remote_protocol_packets[PACKET_Z0 + packet]))
10390 {
10391 case PACKET_ERROR:
10392 case PACKET_UNKNOWN:
10393 return -1;
10394 case PACKET_OK:
10395 return 0;
10396 }
10397 internal_error (__FILE__, __LINE__,
10398 _("remote_remove_watchpoint: reached end of function"));
10399 }
10400
10401
10402 int remote_hw_watchpoint_limit = -1;
10403 int remote_hw_watchpoint_length_limit = -1;
10404 int remote_hw_breakpoint_limit = -1;
10405
10406 int
10407 remote_target::region_ok_for_hw_watchpoint (CORE_ADDR addr, int len)
10408 {
10409 if (remote_hw_watchpoint_length_limit == 0)
10410 return 0;
10411 else if (remote_hw_watchpoint_length_limit < 0)
10412 return 1;
10413 else if (len <= remote_hw_watchpoint_length_limit)
10414 return 1;
10415 else
10416 return 0;
10417 }
10418
10419 int
10420 remote_target::can_use_hw_breakpoint (enum bptype type, int cnt, int ot)
10421 {
10422 if (type == bp_hardware_breakpoint)
10423 {
10424 if (remote_hw_breakpoint_limit == 0)
10425 return 0;
10426 else if (remote_hw_breakpoint_limit < 0)
10427 return 1;
10428 else if (cnt <= remote_hw_breakpoint_limit)
10429 return 1;
10430 }
10431 else
10432 {
10433 if (remote_hw_watchpoint_limit == 0)
10434 return 0;
10435 else if (remote_hw_watchpoint_limit < 0)
10436 return 1;
10437 else if (ot)
10438 return -1;
10439 else if (cnt <= remote_hw_watchpoint_limit)
10440 return 1;
10441 }
10442 return -1;
10443 }
10444
10445 /* The to_stopped_by_sw_breakpoint method of target remote. */
10446
10447 bool
10448 remote_target::stopped_by_sw_breakpoint ()
10449 {
10450 struct thread_info *thread = inferior_thread ();
10451
10452 return (thread->priv != NULL
10453 && (get_remote_thread_info (thread)->stop_reason
10454 == TARGET_STOPPED_BY_SW_BREAKPOINT));
10455 }
10456
10457 /* The to_supports_stopped_by_sw_breakpoint method of target
10458 remote. */
10459
10460 bool
10461 remote_target::supports_stopped_by_sw_breakpoint ()
10462 {
10463 return (packet_support (PACKET_swbreak_feature) == PACKET_ENABLE);
10464 }
10465
10466 /* The to_stopped_by_hw_breakpoint method of target remote. */
10467
10468 bool
10469 remote_target::stopped_by_hw_breakpoint ()
10470 {
10471 struct thread_info *thread = inferior_thread ();
10472
10473 return (thread->priv != NULL
10474 && (get_remote_thread_info (thread)->stop_reason
10475 == TARGET_STOPPED_BY_HW_BREAKPOINT));
10476 }
10477
10478 /* The to_supports_stopped_by_hw_breakpoint method of target
10479 remote. */
10480
10481 bool
10482 remote_target::supports_stopped_by_hw_breakpoint ()
10483 {
10484 return (packet_support (PACKET_hwbreak_feature) == PACKET_ENABLE);
10485 }
10486
10487 bool
10488 remote_target::stopped_by_watchpoint ()
10489 {
10490 struct thread_info *thread = inferior_thread ();
10491
10492 return (thread->priv != NULL
10493 && (get_remote_thread_info (thread)->stop_reason
10494 == TARGET_STOPPED_BY_WATCHPOINT));
10495 }
10496
10497 bool
10498 remote_target::stopped_data_address (CORE_ADDR *addr_p)
10499 {
10500 struct thread_info *thread = inferior_thread ();
10501
10502 if (thread->priv != NULL
10503 && (get_remote_thread_info (thread)->stop_reason
10504 == TARGET_STOPPED_BY_WATCHPOINT))
10505 {
10506 *addr_p = get_remote_thread_info (thread)->watch_data_address;
10507 return true;
10508 }
10509
10510 return false;
10511 }
10512
10513
10514 int
10515 remote_target::insert_hw_breakpoint (struct gdbarch *gdbarch,
10516 struct bp_target_info *bp_tgt)
10517 {
10518 CORE_ADDR addr = bp_tgt->reqstd_address;
10519 struct remote_state *rs;
10520 char *p, *endbuf;
10521 char *message;
10522
10523 if (packet_support (PACKET_Z1) == PACKET_DISABLE)
10524 return -1;
10525
10526 /* Make sure the remote is pointing at the right process, if
10527 necessary. */
10528 if (!gdbarch_has_global_breakpoints (target_gdbarch ()))
10529 set_general_process ();
10530
10531 rs = get_remote_state ();
10532 p = rs->buf.data ();
10533 endbuf = p + get_remote_packet_size ();
10534
10535 *(p++) = 'Z';
10536 *(p++) = '1';
10537 *(p++) = ',';
10538
10539 addr = remote_address_masked (addr);
10540 p += hexnumstr (p, (ULONGEST) addr);
10541 xsnprintf (p, endbuf - p, ",%x", bp_tgt->kind);
10542
10543 if (supports_evaluation_of_breakpoint_conditions ())
10544 remote_add_target_side_condition (gdbarch, bp_tgt, p, endbuf);
10545
10546 if (can_run_breakpoint_commands ())
10547 remote_add_target_side_commands (gdbarch, bp_tgt, p);
10548
10549 putpkt (rs->buf);
10550 getpkt (&rs->buf, 0);
10551
10552 switch (packet_ok (rs->buf, &remote_protocol_packets[PACKET_Z1]))
10553 {
10554 case PACKET_ERROR:
10555 if (rs->buf[1] == '.')
10556 {
10557 message = strchr (&rs->buf[2], '.');
10558 if (message)
10559 error (_("Remote failure reply: %s"), message + 1);
10560 }
10561 return -1;
10562 case PACKET_UNKNOWN:
10563 return -1;
10564 case PACKET_OK:
10565 return 0;
10566 }
10567 internal_error (__FILE__, __LINE__,
10568 _("remote_insert_hw_breakpoint: reached end of function"));
10569 }
10570
10571
10572 int
10573 remote_target::remove_hw_breakpoint (struct gdbarch *gdbarch,
10574 struct bp_target_info *bp_tgt)
10575 {
10576 CORE_ADDR addr;
10577 struct remote_state *rs = get_remote_state ();
10578 char *p = rs->buf.data ();
10579 char *endbuf = p + get_remote_packet_size ();
10580
10581 if (packet_support (PACKET_Z1) == PACKET_DISABLE)
10582 return -1;
10583
10584 /* Make sure the remote is pointing at the right process, if
10585 necessary. */
10586 if (!gdbarch_has_global_breakpoints (target_gdbarch ()))
10587 set_general_process ();
10588
10589 *(p++) = 'z';
10590 *(p++) = '1';
10591 *(p++) = ',';
10592
10593 addr = remote_address_masked (bp_tgt->placed_address);
10594 p += hexnumstr (p, (ULONGEST) addr);
10595 xsnprintf (p, endbuf - p, ",%x", bp_tgt->kind);
10596
10597 putpkt (rs->buf);
10598 getpkt (&rs->buf, 0);
10599
10600 switch (packet_ok (rs->buf, &remote_protocol_packets[PACKET_Z1]))
10601 {
10602 case PACKET_ERROR:
10603 case PACKET_UNKNOWN:
10604 return -1;
10605 case PACKET_OK:
10606 return 0;
10607 }
10608 internal_error (__FILE__, __LINE__,
10609 _("remote_remove_hw_breakpoint: reached end of function"));
10610 }
10611
10612 /* Verify memory using the "qCRC:" request. */
10613
10614 int
10615 remote_target::verify_memory (const gdb_byte *data, CORE_ADDR lma, ULONGEST size)
10616 {
10617 struct remote_state *rs = get_remote_state ();
10618 unsigned long host_crc, target_crc;
10619 char *tmp;
10620
10621 /* It doesn't make sense to use qCRC if the remote target is
10622 connected but not running. */
10623 if (target_has_execution && packet_support (PACKET_qCRC) != PACKET_DISABLE)
10624 {
10625 enum packet_result result;
10626
10627 /* Make sure the remote is pointing at the right process. */
10628 set_general_process ();
10629
10630 /* FIXME: assumes lma can fit into long. */
10631 xsnprintf (rs->buf.data (), get_remote_packet_size (), "qCRC:%lx,%lx",
10632 (long) lma, (long) size);
10633 putpkt (rs->buf);
10634
10635 /* Be clever; compute the host_crc before waiting for target
10636 reply. */
10637 host_crc = xcrc32 (data, size, 0xffffffff);
10638
10639 getpkt (&rs->buf, 0);
10640
10641 result = packet_ok (rs->buf,
10642 &remote_protocol_packets[PACKET_qCRC]);
10643 if (result == PACKET_ERROR)
10644 return -1;
10645 else if (result == PACKET_OK)
10646 {
10647 for (target_crc = 0, tmp = &rs->buf[1]; *tmp; tmp++)
10648 target_crc = target_crc * 16 + fromhex (*tmp);
10649
10650 return (host_crc == target_crc);
10651 }
10652 }
10653
10654 return simple_verify_memory (this, data, lma, size);
10655 }
10656
10657 /* compare-sections command
10658
10659 With no arguments, compares each loadable section in the exec bfd
10660 with the same memory range on the target, and reports mismatches.
10661 Useful for verifying the image on the target against the exec file. */
10662
10663 static void
10664 compare_sections_command (const char *args, int from_tty)
10665 {
10666 asection *s;
10667 const char *sectname;
10668 bfd_size_type size;
10669 bfd_vma lma;
10670 int matched = 0;
10671 int mismatched = 0;
10672 int res;
10673 int read_only = 0;
10674
10675 if (!exec_bfd)
10676 error (_("command cannot be used without an exec file"));
10677
10678 if (args != NULL && strcmp (args, "-r") == 0)
10679 {
10680 read_only = 1;
10681 args = NULL;
10682 }
10683
10684 for (s = exec_bfd->sections; s; s = s->next)
10685 {
10686 if (!(s->flags & SEC_LOAD))
10687 continue; /* Skip non-loadable section. */
10688
10689 if (read_only && (s->flags & SEC_READONLY) == 0)
10690 continue; /* Skip writeable sections */
10691
10692 size = bfd_get_section_size (s);
10693 if (size == 0)
10694 continue; /* Skip zero-length section. */
10695
10696 sectname = bfd_get_section_name (exec_bfd, s);
10697 if (args && strcmp (args, sectname) != 0)
10698 continue; /* Not the section selected by user. */
10699
10700 matched = 1; /* Do this section. */
10701 lma = s->lma;
10702
10703 gdb::byte_vector sectdata (size);
10704 bfd_get_section_contents (exec_bfd, s, sectdata.data (), 0, size);
10705
10706 res = target_verify_memory (sectdata.data (), lma, size);
10707
10708 if (res == -1)
10709 error (_("target memory fault, section %s, range %s -- %s"), sectname,
10710 paddress (target_gdbarch (), lma),
10711 paddress (target_gdbarch (), lma + size));
10712
10713 printf_filtered ("Section %s, range %s -- %s: ", sectname,
10714 paddress (target_gdbarch (), lma),
10715 paddress (target_gdbarch (), lma + size));
10716 if (res)
10717 printf_filtered ("matched.\n");
10718 else
10719 {
10720 printf_filtered ("MIS-MATCHED!\n");
10721 mismatched++;
10722 }
10723 }
10724 if (mismatched > 0)
10725 warning (_("One or more sections of the target image does not match\n\
10726 the loaded file\n"));
10727 if (args && !matched)
10728 printf_filtered (_("No loaded section named '%s'.\n"), args);
10729 }
10730
10731 /* Write LEN bytes from WRITEBUF into OBJECT_NAME/ANNEX at OFFSET
10732 into remote target. The number of bytes written to the remote
10733 target is returned, or -1 for error. */
10734
10735 target_xfer_status
10736 remote_target::remote_write_qxfer (const char *object_name,
10737 const char *annex, const gdb_byte *writebuf,
10738 ULONGEST offset, LONGEST len,
10739 ULONGEST *xfered_len,
10740 struct packet_config *packet)
10741 {
10742 int i, buf_len;
10743 ULONGEST n;
10744 struct remote_state *rs = get_remote_state ();
10745 int max_size = get_memory_write_packet_size ();
10746
10747 if (packet_config_support (packet) == PACKET_DISABLE)
10748 return TARGET_XFER_E_IO;
10749
10750 /* Insert header. */
10751 i = snprintf (rs->buf.data (), max_size,
10752 "qXfer:%s:write:%s:%s:",
10753 object_name, annex ? annex : "",
10754 phex_nz (offset, sizeof offset));
10755 max_size -= (i + 1);
10756
10757 /* Escape as much data as fits into rs->buf. */
10758 buf_len = remote_escape_output
10759 (writebuf, len, 1, (gdb_byte *) rs->buf.data () + i, &max_size, max_size);
10760
10761 if (putpkt_binary (rs->buf.data (), i + buf_len) < 0
10762 || getpkt_sane (&rs->buf, 0) < 0
10763 || packet_ok (rs->buf, packet) != PACKET_OK)
10764 return TARGET_XFER_E_IO;
10765
10766 unpack_varlen_hex (rs->buf.data (), &n);
10767
10768 *xfered_len = n;
10769 return (*xfered_len != 0) ? TARGET_XFER_OK : TARGET_XFER_EOF;
10770 }
10771
10772 /* Read OBJECT_NAME/ANNEX from the remote target using a qXfer packet.
10773 Data at OFFSET, of up to LEN bytes, is read into READBUF; the
10774 number of bytes read is returned, or 0 for EOF, or -1 for error.
10775 The number of bytes read may be less than LEN without indicating an
10776 EOF. PACKET is checked and updated to indicate whether the remote
10777 target supports this object. */
10778
10779 target_xfer_status
10780 remote_target::remote_read_qxfer (const char *object_name,
10781 const char *annex,
10782 gdb_byte *readbuf, ULONGEST offset,
10783 LONGEST len,
10784 ULONGEST *xfered_len,
10785 struct packet_config *packet)
10786 {
10787 struct remote_state *rs = get_remote_state ();
10788 LONGEST i, n, packet_len;
10789
10790 if (packet_config_support (packet) == PACKET_DISABLE)
10791 return TARGET_XFER_E_IO;
10792
10793 /* Check whether we've cached an end-of-object packet that matches
10794 this request. */
10795 if (rs->finished_object)
10796 {
10797 if (strcmp (object_name, rs->finished_object) == 0
10798 && strcmp (annex ? annex : "", rs->finished_annex) == 0
10799 && offset == rs->finished_offset)
10800 return TARGET_XFER_EOF;
10801
10802
10803 /* Otherwise, we're now reading something different. Discard
10804 the cache. */
10805 xfree (rs->finished_object);
10806 xfree (rs->finished_annex);
10807 rs->finished_object = NULL;
10808 rs->finished_annex = NULL;
10809 }
10810
10811 /* Request only enough to fit in a single packet. The actual data
10812 may not, since we don't know how much of it will need to be escaped;
10813 the target is free to respond with slightly less data. We subtract
10814 five to account for the response type and the protocol frame. */
10815 n = std::min<LONGEST> (get_remote_packet_size () - 5, len);
10816 snprintf (rs->buf.data (), get_remote_packet_size () - 4,
10817 "qXfer:%s:read:%s:%s,%s",
10818 object_name, annex ? annex : "",
10819 phex_nz (offset, sizeof offset),
10820 phex_nz (n, sizeof n));
10821 i = putpkt (rs->buf);
10822 if (i < 0)
10823 return TARGET_XFER_E_IO;
10824
10825 rs->buf[0] = '\0';
10826 packet_len = getpkt_sane (&rs->buf, 0);
10827 if (packet_len < 0 || packet_ok (rs->buf, packet) != PACKET_OK)
10828 return TARGET_XFER_E_IO;
10829
10830 if (rs->buf[0] != 'l' && rs->buf[0] != 'm')
10831 error (_("Unknown remote qXfer reply: %s"), rs->buf.data ());
10832
10833 /* 'm' means there is (or at least might be) more data after this
10834 batch. That does not make sense unless there's at least one byte
10835 of data in this reply. */
10836 if (rs->buf[0] == 'm' && packet_len == 1)
10837 error (_("Remote qXfer reply contained no data."));
10838
10839 /* Got some data. */
10840 i = remote_unescape_input ((gdb_byte *) rs->buf.data () + 1,
10841 packet_len - 1, readbuf, n);
10842
10843 /* 'l' is an EOF marker, possibly including a final block of data,
10844 or possibly empty. If we have the final block of a non-empty
10845 object, record this fact to bypass a subsequent partial read. */
10846 if (rs->buf[0] == 'l' && offset + i > 0)
10847 {
10848 rs->finished_object = xstrdup (object_name);
10849 rs->finished_annex = xstrdup (annex ? annex : "");
10850 rs->finished_offset = offset + i;
10851 }
10852
10853 if (i == 0)
10854 return TARGET_XFER_EOF;
10855 else
10856 {
10857 *xfered_len = i;
10858 return TARGET_XFER_OK;
10859 }
10860 }
10861
10862 enum target_xfer_status
10863 remote_target::xfer_partial (enum target_object object,
10864 const char *annex, gdb_byte *readbuf,
10865 const gdb_byte *writebuf, ULONGEST offset, ULONGEST len,
10866 ULONGEST *xfered_len)
10867 {
10868 struct remote_state *rs;
10869 int i;
10870 char *p2;
10871 char query_type;
10872 int unit_size = gdbarch_addressable_memory_unit_size (target_gdbarch ());
10873
10874 set_remote_traceframe ();
10875 set_general_thread (inferior_ptid);
10876
10877 rs = get_remote_state ();
10878
10879 /* Handle memory using the standard memory routines. */
10880 if (object == TARGET_OBJECT_MEMORY)
10881 {
10882 /* If the remote target is connected but not running, we should
10883 pass this request down to a lower stratum (e.g. the executable
10884 file). */
10885 if (!target_has_execution)
10886 return TARGET_XFER_EOF;
10887
10888 if (writebuf != NULL)
10889 return remote_write_bytes (offset, writebuf, len, unit_size,
10890 xfered_len);
10891 else
10892 return remote_read_bytes (offset, readbuf, len, unit_size,
10893 xfered_len);
10894 }
10895
10896 /* Handle SPU memory using qxfer packets. */
10897 if (object == TARGET_OBJECT_SPU)
10898 {
10899 if (readbuf)
10900 return remote_read_qxfer ("spu", annex, readbuf, offset, len,
10901 xfered_len, &remote_protocol_packets
10902 [PACKET_qXfer_spu_read]);
10903 else
10904 return remote_write_qxfer ("spu", annex, writebuf, offset, len,
10905 xfered_len, &remote_protocol_packets
10906 [PACKET_qXfer_spu_write]);
10907 }
10908
10909 /* Handle extra signal info using qxfer packets. */
10910 if (object == TARGET_OBJECT_SIGNAL_INFO)
10911 {
10912 if (readbuf)
10913 return remote_read_qxfer ("siginfo", annex, readbuf, offset, len,
10914 xfered_len, &remote_protocol_packets
10915 [PACKET_qXfer_siginfo_read]);
10916 else
10917 return remote_write_qxfer ("siginfo", annex,
10918 writebuf, offset, len, xfered_len,
10919 &remote_protocol_packets
10920 [PACKET_qXfer_siginfo_write]);
10921 }
10922
10923 if (object == TARGET_OBJECT_STATIC_TRACE_DATA)
10924 {
10925 if (readbuf)
10926 return remote_read_qxfer ("statictrace", annex,
10927 readbuf, offset, len, xfered_len,
10928 &remote_protocol_packets
10929 [PACKET_qXfer_statictrace_read]);
10930 else
10931 return TARGET_XFER_E_IO;
10932 }
10933
10934 /* Only handle flash writes. */
10935 if (writebuf != NULL)
10936 {
10937 switch (object)
10938 {
10939 case TARGET_OBJECT_FLASH:
10940 return remote_flash_write (offset, len, xfered_len,
10941 writebuf);
10942
10943 default:
10944 return TARGET_XFER_E_IO;
10945 }
10946 }
10947
10948 /* Map pre-existing objects onto letters. DO NOT do this for new
10949 objects!!! Instead specify new query packets. */
10950 switch (object)
10951 {
10952 case TARGET_OBJECT_AVR:
10953 query_type = 'R';
10954 break;
10955
10956 case TARGET_OBJECT_AUXV:
10957 gdb_assert (annex == NULL);
10958 return remote_read_qxfer ("auxv", annex, readbuf, offset, len,
10959 xfered_len,
10960 &remote_protocol_packets[PACKET_qXfer_auxv]);
10961
10962 case TARGET_OBJECT_AVAILABLE_FEATURES:
10963 return remote_read_qxfer
10964 ("features", annex, readbuf, offset, len, xfered_len,
10965 &remote_protocol_packets[PACKET_qXfer_features]);
10966
10967 case TARGET_OBJECT_LIBRARIES:
10968 return remote_read_qxfer
10969 ("libraries", annex, readbuf, offset, len, xfered_len,
10970 &remote_protocol_packets[PACKET_qXfer_libraries]);
10971
10972 case TARGET_OBJECT_LIBRARIES_SVR4:
10973 return remote_read_qxfer
10974 ("libraries-svr4", annex, readbuf, offset, len, xfered_len,
10975 &remote_protocol_packets[PACKET_qXfer_libraries_svr4]);
10976
10977 case TARGET_OBJECT_MEMORY_MAP:
10978 gdb_assert (annex == NULL);
10979 return remote_read_qxfer ("memory-map", annex, readbuf, offset, len,
10980 xfered_len,
10981 &remote_protocol_packets[PACKET_qXfer_memory_map]);
10982
10983 case TARGET_OBJECT_OSDATA:
10984 /* Should only get here if we're connected. */
10985 gdb_assert (rs->remote_desc);
10986 return remote_read_qxfer
10987 ("osdata", annex, readbuf, offset, len, xfered_len,
10988 &remote_protocol_packets[PACKET_qXfer_osdata]);
10989
10990 case TARGET_OBJECT_THREADS:
10991 gdb_assert (annex == NULL);
10992 return remote_read_qxfer ("threads", annex, readbuf, offset, len,
10993 xfered_len,
10994 &remote_protocol_packets[PACKET_qXfer_threads]);
10995
10996 case TARGET_OBJECT_TRACEFRAME_INFO:
10997 gdb_assert (annex == NULL);
10998 return remote_read_qxfer
10999 ("traceframe-info", annex, readbuf, offset, len, xfered_len,
11000 &remote_protocol_packets[PACKET_qXfer_traceframe_info]);
11001
11002 case TARGET_OBJECT_FDPIC:
11003 return remote_read_qxfer ("fdpic", annex, readbuf, offset, len,
11004 xfered_len,
11005 &remote_protocol_packets[PACKET_qXfer_fdpic]);
11006
11007 case TARGET_OBJECT_OPENVMS_UIB:
11008 return remote_read_qxfer ("uib", annex, readbuf, offset, len,
11009 xfered_len,
11010 &remote_protocol_packets[PACKET_qXfer_uib]);
11011
11012 case TARGET_OBJECT_BTRACE:
11013 return remote_read_qxfer ("btrace", annex, readbuf, offset, len,
11014 xfered_len,
11015 &remote_protocol_packets[PACKET_qXfer_btrace]);
11016
11017 case TARGET_OBJECT_BTRACE_CONF:
11018 return remote_read_qxfer ("btrace-conf", annex, readbuf, offset,
11019 len, xfered_len,
11020 &remote_protocol_packets[PACKET_qXfer_btrace_conf]);
11021
11022 case TARGET_OBJECT_EXEC_FILE:
11023 return remote_read_qxfer ("exec-file", annex, readbuf, offset,
11024 len, xfered_len,
11025 &remote_protocol_packets[PACKET_qXfer_exec_file]);
11026
11027 default:
11028 return TARGET_XFER_E_IO;
11029 }
11030
11031 /* Minimum outbuf size is get_remote_packet_size (). If LEN is not
11032 large enough let the caller deal with it. */
11033 if (len < get_remote_packet_size ())
11034 return TARGET_XFER_E_IO;
11035 len = get_remote_packet_size ();
11036
11037 /* Except for querying the minimum buffer size, target must be open. */
11038 if (!rs->remote_desc)
11039 error (_("remote query is only available after target open"));
11040
11041 gdb_assert (annex != NULL);
11042 gdb_assert (readbuf != NULL);
11043
11044 p2 = rs->buf.data ();
11045 *p2++ = 'q';
11046 *p2++ = query_type;
11047
11048 /* We used one buffer char for the remote protocol q command and
11049 another for the query type. As the remote protocol encapsulation
11050 uses 4 chars plus one extra in case we are debugging
11051 (remote_debug), we have PBUFZIZ - 7 left to pack the query
11052 string. */
11053 i = 0;
11054 while (annex[i] && (i < (get_remote_packet_size () - 8)))
11055 {
11056 /* Bad caller may have sent forbidden characters. */
11057 gdb_assert (isprint (annex[i]) && annex[i] != '$' && annex[i] != '#');
11058 *p2++ = annex[i];
11059 i++;
11060 }
11061 *p2 = '\0';
11062 gdb_assert (annex[i] == '\0');
11063
11064 i = putpkt (rs->buf);
11065 if (i < 0)
11066 return TARGET_XFER_E_IO;
11067
11068 getpkt (&rs->buf, 0);
11069 strcpy ((char *) readbuf, rs->buf.data ());
11070
11071 *xfered_len = strlen ((char *) readbuf);
11072 return (*xfered_len != 0) ? TARGET_XFER_OK : TARGET_XFER_EOF;
11073 }
11074
11075 /* Implementation of to_get_memory_xfer_limit. */
11076
11077 ULONGEST
11078 remote_target::get_memory_xfer_limit ()
11079 {
11080 return get_memory_write_packet_size ();
11081 }
11082
11083 int
11084 remote_target::search_memory (CORE_ADDR start_addr, ULONGEST search_space_len,
11085 const gdb_byte *pattern, ULONGEST pattern_len,
11086 CORE_ADDR *found_addrp)
11087 {
11088 int addr_size = gdbarch_addr_bit (target_gdbarch ()) / 8;
11089 struct remote_state *rs = get_remote_state ();
11090 int max_size = get_memory_write_packet_size ();
11091 struct packet_config *packet =
11092 &remote_protocol_packets[PACKET_qSearch_memory];
11093 /* Number of packet bytes used to encode the pattern;
11094 this could be more than PATTERN_LEN due to escape characters. */
11095 int escaped_pattern_len;
11096 /* Amount of pattern that was encodable in the packet. */
11097 int used_pattern_len;
11098 int i;
11099 int found;
11100 ULONGEST found_addr;
11101
11102 /* Don't go to the target if we don't have to. This is done before
11103 checking packet_config_support to avoid the possibility that a
11104 success for this edge case means the facility works in
11105 general. */
11106 if (pattern_len > search_space_len)
11107 return 0;
11108 if (pattern_len == 0)
11109 {
11110 *found_addrp = start_addr;
11111 return 1;
11112 }
11113
11114 /* If we already know the packet isn't supported, fall back to the simple
11115 way of searching memory. */
11116
11117 if (packet_config_support (packet) == PACKET_DISABLE)
11118 {
11119 /* Target doesn't provided special support, fall back and use the
11120 standard support (copy memory and do the search here). */
11121 return simple_search_memory (this, start_addr, search_space_len,
11122 pattern, pattern_len, found_addrp);
11123 }
11124
11125 /* Make sure the remote is pointing at the right process. */
11126 set_general_process ();
11127
11128 /* Insert header. */
11129 i = snprintf (rs->buf.data (), max_size,
11130 "qSearch:memory:%s;%s;",
11131 phex_nz (start_addr, addr_size),
11132 phex_nz (search_space_len, sizeof (search_space_len)));
11133 max_size -= (i + 1);
11134
11135 /* Escape as much data as fits into rs->buf. */
11136 escaped_pattern_len =
11137 remote_escape_output (pattern, pattern_len, 1,
11138 (gdb_byte *) rs->buf.data () + i,
11139 &used_pattern_len, max_size);
11140
11141 /* Bail if the pattern is too large. */
11142 if (used_pattern_len != pattern_len)
11143 error (_("Pattern is too large to transmit to remote target."));
11144
11145 if (putpkt_binary (rs->buf.data (), i + escaped_pattern_len) < 0
11146 || getpkt_sane (&rs->buf, 0) < 0
11147 || packet_ok (rs->buf, packet) != PACKET_OK)
11148 {
11149 /* The request may not have worked because the command is not
11150 supported. If so, fall back to the simple way. */
11151 if (packet_config_support (packet) == PACKET_DISABLE)
11152 {
11153 return simple_search_memory (this, start_addr, search_space_len,
11154 pattern, pattern_len, found_addrp);
11155 }
11156 return -1;
11157 }
11158
11159 if (rs->buf[0] == '0')
11160 found = 0;
11161 else if (rs->buf[0] == '1')
11162 {
11163 found = 1;
11164 if (rs->buf[1] != ',')
11165 error (_("Unknown qSearch:memory reply: %s"), rs->buf.data ());
11166 unpack_varlen_hex (&rs->buf[2], &found_addr);
11167 *found_addrp = found_addr;
11168 }
11169 else
11170 error (_("Unknown qSearch:memory reply: %s"), rs->buf.data ());
11171
11172 return found;
11173 }
11174
11175 void
11176 remote_target::rcmd (const char *command, struct ui_file *outbuf)
11177 {
11178 struct remote_state *rs = get_remote_state ();
11179 char *p = rs->buf.data ();
11180
11181 if (!rs->remote_desc)
11182 error (_("remote rcmd is only available after target open"));
11183
11184 /* Send a NULL command across as an empty command. */
11185 if (command == NULL)
11186 command = "";
11187
11188 /* The query prefix. */
11189 strcpy (rs->buf.data (), "qRcmd,");
11190 p = strchr (rs->buf.data (), '\0');
11191
11192 if ((strlen (rs->buf.data ()) + strlen (command) * 2 + 8/*misc*/)
11193 > get_remote_packet_size ())
11194 error (_("\"monitor\" command ``%s'' is too long."), command);
11195
11196 /* Encode the actual command. */
11197 bin2hex ((const gdb_byte *) command, p, strlen (command));
11198
11199 if (putpkt (rs->buf) < 0)
11200 error (_("Communication problem with target."));
11201
11202 /* get/display the response */
11203 while (1)
11204 {
11205 char *buf;
11206
11207 /* XXX - see also remote_get_noisy_reply(). */
11208 QUIT; /* Allow user to bail out with ^C. */
11209 rs->buf[0] = '\0';
11210 if (getpkt_sane (&rs->buf, 0) == -1)
11211 {
11212 /* Timeout. Continue to (try to) read responses.
11213 This is better than stopping with an error, assuming the stub
11214 is still executing the (long) monitor command.
11215 If needed, the user can interrupt gdb using C-c, obtaining
11216 an effect similar to stop on timeout. */
11217 continue;
11218 }
11219 buf = rs->buf.data ();
11220 if (buf[0] == '\0')
11221 error (_("Target does not support this command."));
11222 if (buf[0] == 'O' && buf[1] != 'K')
11223 {
11224 remote_console_output (buf + 1); /* 'O' message from stub. */
11225 continue;
11226 }
11227 if (strcmp (buf, "OK") == 0)
11228 break;
11229 if (strlen (buf) == 3 && buf[0] == 'E'
11230 && isdigit (buf[1]) && isdigit (buf[2]))
11231 {
11232 error (_("Protocol error with Rcmd"));
11233 }
11234 for (p = buf; p[0] != '\0' && p[1] != '\0'; p += 2)
11235 {
11236 char c = (fromhex (p[0]) << 4) + fromhex (p[1]);
11237
11238 fputc_unfiltered (c, outbuf);
11239 }
11240 break;
11241 }
11242 }
11243
11244 std::vector<mem_region>
11245 remote_target::memory_map ()
11246 {
11247 std::vector<mem_region> result;
11248 gdb::optional<gdb::char_vector> text
11249 = target_read_stralloc (current_top_target (), TARGET_OBJECT_MEMORY_MAP, NULL);
11250
11251 if (text)
11252 result = parse_memory_map (text->data ());
11253
11254 return result;
11255 }
11256
11257 static void
11258 packet_command (const char *args, int from_tty)
11259 {
11260 remote_target *remote = get_current_remote_target ();
11261
11262 if (remote == nullptr)
11263 error (_("command can only be used with remote target"));
11264
11265 remote->packet_command (args, from_tty);
11266 }
11267
11268 void
11269 remote_target::packet_command (const char *args, int from_tty)
11270 {
11271 if (!args)
11272 error (_("remote-packet command requires packet text as argument"));
11273
11274 puts_filtered ("sending: ");
11275 print_packet (args);
11276 puts_filtered ("\n");
11277 putpkt (args);
11278
11279 remote_state *rs = get_remote_state ();
11280
11281 getpkt (&rs->buf, 0);
11282 puts_filtered ("received: ");
11283 print_packet (rs->buf.data ());
11284 puts_filtered ("\n");
11285 }
11286
11287 #if 0
11288 /* --------- UNIT_TEST for THREAD oriented PACKETS ------------------- */
11289
11290 static void display_thread_info (struct gdb_ext_thread_info *info);
11291
11292 static void threadset_test_cmd (char *cmd, int tty);
11293
11294 static void threadalive_test (char *cmd, int tty);
11295
11296 static void threadlist_test_cmd (char *cmd, int tty);
11297
11298 int get_and_display_threadinfo (threadref *ref);
11299
11300 static void threadinfo_test_cmd (char *cmd, int tty);
11301
11302 static int thread_display_step (threadref *ref, void *context);
11303
11304 static void threadlist_update_test_cmd (char *cmd, int tty);
11305
11306 static void init_remote_threadtests (void);
11307
11308 #define SAMPLE_THREAD 0x05060708 /* Truncated 64 bit threadid. */
11309
11310 static void
11311 threadset_test_cmd (const char *cmd, int tty)
11312 {
11313 int sample_thread = SAMPLE_THREAD;
11314
11315 printf_filtered (_("Remote threadset test\n"));
11316 set_general_thread (sample_thread);
11317 }
11318
11319
11320 static void
11321 threadalive_test (const char *cmd, int tty)
11322 {
11323 int sample_thread = SAMPLE_THREAD;
11324 int pid = inferior_ptid.pid ();
11325 ptid_t ptid = ptid_t (pid, sample_thread, 0);
11326
11327 if (remote_thread_alive (ptid))
11328 printf_filtered ("PASS: Thread alive test\n");
11329 else
11330 printf_filtered ("FAIL: Thread alive test\n");
11331 }
11332
11333 void output_threadid (char *title, threadref *ref);
11334
11335 void
11336 output_threadid (char *title, threadref *ref)
11337 {
11338 char hexid[20];
11339
11340 pack_threadid (&hexid[0], ref); /* Convert threead id into hex. */
11341 hexid[16] = 0;
11342 printf_filtered ("%s %s\n", title, (&hexid[0]));
11343 }
11344
11345 static void
11346 threadlist_test_cmd (const char *cmd, int tty)
11347 {
11348 int startflag = 1;
11349 threadref nextthread;
11350 int done, result_count;
11351 threadref threadlist[3];
11352
11353 printf_filtered ("Remote Threadlist test\n");
11354 if (!remote_get_threadlist (startflag, &nextthread, 3, &done,
11355 &result_count, &threadlist[0]))
11356 printf_filtered ("FAIL: threadlist test\n");
11357 else
11358 {
11359 threadref *scan = threadlist;
11360 threadref *limit = scan + result_count;
11361
11362 while (scan < limit)
11363 output_threadid (" thread ", scan++);
11364 }
11365 }
11366
11367 void
11368 display_thread_info (struct gdb_ext_thread_info *info)
11369 {
11370 output_threadid ("Threadid: ", &info->threadid);
11371 printf_filtered ("Name: %s\n ", info->shortname);
11372 printf_filtered ("State: %s\n", info->display);
11373 printf_filtered ("other: %s\n\n", info->more_display);
11374 }
11375
11376 int
11377 get_and_display_threadinfo (threadref *ref)
11378 {
11379 int result;
11380 int set;
11381 struct gdb_ext_thread_info threadinfo;
11382
11383 set = TAG_THREADID | TAG_EXISTS | TAG_THREADNAME
11384 | TAG_MOREDISPLAY | TAG_DISPLAY;
11385 if (0 != (result = remote_get_threadinfo (ref, set, &threadinfo)))
11386 display_thread_info (&threadinfo);
11387 return result;
11388 }
11389
11390 static void
11391 threadinfo_test_cmd (const char *cmd, int tty)
11392 {
11393 int athread = SAMPLE_THREAD;
11394 threadref thread;
11395 int set;
11396
11397 int_to_threadref (&thread, athread);
11398 printf_filtered ("Remote Threadinfo test\n");
11399 if (!get_and_display_threadinfo (&thread))
11400 printf_filtered ("FAIL cannot get thread info\n");
11401 }
11402
11403 static int
11404 thread_display_step (threadref *ref, void *context)
11405 {
11406 /* output_threadid(" threadstep ",ref); *//* simple test */
11407 return get_and_display_threadinfo (ref);
11408 }
11409
11410 static void
11411 threadlist_update_test_cmd (const char *cmd, int tty)
11412 {
11413 printf_filtered ("Remote Threadlist update test\n");
11414 remote_threadlist_iterator (thread_display_step, 0, CRAZY_MAX_THREADS);
11415 }
11416
11417 static void
11418 init_remote_threadtests (void)
11419 {
11420 add_com ("tlist", class_obscure, threadlist_test_cmd,
11421 _("Fetch and print the remote list of "
11422 "thread identifiers, one pkt only"));
11423 add_com ("tinfo", class_obscure, threadinfo_test_cmd,
11424 _("Fetch and display info about one thread"));
11425 add_com ("tset", class_obscure, threadset_test_cmd,
11426 _("Test setting to a different thread"));
11427 add_com ("tupd", class_obscure, threadlist_update_test_cmd,
11428 _("Iterate through updating all remote thread info"));
11429 add_com ("talive", class_obscure, threadalive_test,
11430 _(" Remote thread alive test "));
11431 }
11432
11433 #endif /* 0 */
11434
11435 /* Convert a thread ID to a string. Returns the string in a static
11436 buffer. */
11437
11438 const char *
11439 remote_target::pid_to_str (ptid_t ptid)
11440 {
11441 static char buf[64];
11442 struct remote_state *rs = get_remote_state ();
11443
11444 if (ptid == null_ptid)
11445 return normal_pid_to_str (ptid);
11446 else if (ptid.is_pid ())
11447 {
11448 /* Printing an inferior target id. */
11449
11450 /* When multi-process extensions are off, there's no way in the
11451 remote protocol to know the remote process id, if there's any
11452 at all. There's one exception --- when we're connected with
11453 target extended-remote, and we manually attached to a process
11454 with "attach PID". We don't record anywhere a flag that
11455 allows us to distinguish that case from the case of
11456 connecting with extended-remote and the stub already being
11457 attached to a process, and reporting yes to qAttached, hence
11458 no smart special casing here. */
11459 if (!remote_multi_process_p (rs))
11460 {
11461 xsnprintf (buf, sizeof buf, "Remote target");
11462 return buf;
11463 }
11464
11465 return normal_pid_to_str (ptid);
11466 }
11467 else
11468 {
11469 if (magic_null_ptid == ptid)
11470 xsnprintf (buf, sizeof buf, "Thread <main>");
11471 else if (remote_multi_process_p (rs))
11472 if (ptid.lwp () == 0)
11473 return normal_pid_to_str (ptid);
11474 else
11475 xsnprintf (buf, sizeof buf, "Thread %d.%ld",
11476 ptid.pid (), ptid.lwp ());
11477 else
11478 xsnprintf (buf, sizeof buf, "Thread %ld",
11479 ptid.lwp ());
11480 return buf;
11481 }
11482 }
11483
11484 /* Get the address of the thread local variable in OBJFILE which is
11485 stored at OFFSET within the thread local storage for thread PTID. */
11486
11487 CORE_ADDR
11488 remote_target::get_thread_local_address (ptid_t ptid, CORE_ADDR lm,
11489 CORE_ADDR offset)
11490 {
11491 if (packet_support (PACKET_qGetTLSAddr) != PACKET_DISABLE)
11492 {
11493 struct remote_state *rs = get_remote_state ();
11494 char *p = rs->buf.data ();
11495 char *endp = p + get_remote_packet_size ();
11496 enum packet_result result;
11497
11498 strcpy (p, "qGetTLSAddr:");
11499 p += strlen (p);
11500 p = write_ptid (p, endp, ptid);
11501 *p++ = ',';
11502 p += hexnumstr (p, offset);
11503 *p++ = ',';
11504 p += hexnumstr (p, lm);
11505 *p++ = '\0';
11506
11507 putpkt (rs->buf);
11508 getpkt (&rs->buf, 0);
11509 result = packet_ok (rs->buf,
11510 &remote_protocol_packets[PACKET_qGetTLSAddr]);
11511 if (result == PACKET_OK)
11512 {
11513 ULONGEST addr;
11514
11515 unpack_varlen_hex (rs->buf.data (), &addr);
11516 return addr;
11517 }
11518 else if (result == PACKET_UNKNOWN)
11519 throw_error (TLS_GENERIC_ERROR,
11520 _("Remote target doesn't support qGetTLSAddr packet"));
11521 else
11522 throw_error (TLS_GENERIC_ERROR,
11523 _("Remote target failed to process qGetTLSAddr request"));
11524 }
11525 else
11526 throw_error (TLS_GENERIC_ERROR,
11527 _("TLS not supported or disabled on this target"));
11528 /* Not reached. */
11529 return 0;
11530 }
11531
11532 /* Provide thread local base, i.e. Thread Information Block address.
11533 Returns 1 if ptid is found and thread_local_base is non zero. */
11534
11535 bool
11536 remote_target::get_tib_address (ptid_t ptid, CORE_ADDR *addr)
11537 {
11538 if (packet_support (PACKET_qGetTIBAddr) != PACKET_DISABLE)
11539 {
11540 struct remote_state *rs = get_remote_state ();
11541 char *p = rs->buf.data ();
11542 char *endp = p + get_remote_packet_size ();
11543 enum packet_result result;
11544
11545 strcpy (p, "qGetTIBAddr:");
11546 p += strlen (p);
11547 p = write_ptid (p, endp, ptid);
11548 *p++ = '\0';
11549
11550 putpkt (rs->buf);
11551 getpkt (&rs->buf, 0);
11552 result = packet_ok (rs->buf,
11553 &remote_protocol_packets[PACKET_qGetTIBAddr]);
11554 if (result == PACKET_OK)
11555 {
11556 ULONGEST val;
11557 unpack_varlen_hex (rs->buf.data (), &val);
11558 if (addr)
11559 *addr = (CORE_ADDR) val;
11560 return true;
11561 }
11562 else if (result == PACKET_UNKNOWN)
11563 error (_("Remote target doesn't support qGetTIBAddr packet"));
11564 else
11565 error (_("Remote target failed to process qGetTIBAddr request"));
11566 }
11567 else
11568 error (_("qGetTIBAddr not supported or disabled on this target"));
11569 /* Not reached. */
11570 return false;
11571 }
11572
11573 /* Support for inferring a target description based on the current
11574 architecture and the size of a 'g' packet. While the 'g' packet
11575 can have any size (since optional registers can be left off the
11576 end), some sizes are easily recognizable given knowledge of the
11577 approximate architecture. */
11578
11579 struct remote_g_packet_guess
11580 {
11581 remote_g_packet_guess (int bytes_, const struct target_desc *tdesc_)
11582 : bytes (bytes_),
11583 tdesc (tdesc_)
11584 {
11585 }
11586
11587 int bytes;
11588 const struct target_desc *tdesc;
11589 };
11590
11591 struct remote_g_packet_data : public allocate_on_obstack
11592 {
11593 std::vector<remote_g_packet_guess> guesses;
11594 };
11595
11596 static struct gdbarch_data *remote_g_packet_data_handle;
11597
11598 static void *
11599 remote_g_packet_data_init (struct obstack *obstack)
11600 {
11601 return new (obstack) remote_g_packet_data;
11602 }
11603
11604 void
11605 register_remote_g_packet_guess (struct gdbarch *gdbarch, int bytes,
11606 const struct target_desc *tdesc)
11607 {
11608 struct remote_g_packet_data *data
11609 = ((struct remote_g_packet_data *)
11610 gdbarch_data (gdbarch, remote_g_packet_data_handle));
11611
11612 gdb_assert (tdesc != NULL);
11613
11614 for (const remote_g_packet_guess &guess : data->guesses)
11615 if (guess.bytes == bytes)
11616 internal_error (__FILE__, __LINE__,
11617 _("Duplicate g packet description added for size %d"),
11618 bytes);
11619
11620 data->guesses.emplace_back (bytes, tdesc);
11621 }
11622
11623 /* Return true if remote_read_description would do anything on this target
11624 and architecture, false otherwise. */
11625
11626 static bool
11627 remote_read_description_p (struct target_ops *target)
11628 {
11629 struct remote_g_packet_data *data
11630 = ((struct remote_g_packet_data *)
11631 gdbarch_data (target_gdbarch (), remote_g_packet_data_handle));
11632
11633 return !data->guesses.empty ();
11634 }
11635
11636 const struct target_desc *
11637 remote_target::read_description ()
11638 {
11639 struct remote_g_packet_data *data
11640 = ((struct remote_g_packet_data *)
11641 gdbarch_data (target_gdbarch (), remote_g_packet_data_handle));
11642
11643 /* Do not try this during initial connection, when we do not know
11644 whether there is a running but stopped thread. */
11645 if (!target_has_execution || inferior_ptid == null_ptid)
11646 return beneath ()->read_description ();
11647
11648 if (!data->guesses.empty ())
11649 {
11650 int bytes = send_g_packet ();
11651
11652 for (const remote_g_packet_guess &guess : data->guesses)
11653 if (guess.bytes == bytes)
11654 return guess.tdesc;
11655
11656 /* We discard the g packet. A minor optimization would be to
11657 hold on to it, and fill the register cache once we have selected
11658 an architecture, but it's too tricky to do safely. */
11659 }
11660
11661 return beneath ()->read_description ();
11662 }
11663
11664 /* Remote file transfer support. This is host-initiated I/O, not
11665 target-initiated; for target-initiated, see remote-fileio.c. */
11666
11667 /* If *LEFT is at least the length of STRING, copy STRING to
11668 *BUFFER, update *BUFFER to point to the new end of the buffer, and
11669 decrease *LEFT. Otherwise raise an error. */
11670
11671 static void
11672 remote_buffer_add_string (char **buffer, int *left, const char *string)
11673 {
11674 int len = strlen (string);
11675
11676 if (len > *left)
11677 error (_("Packet too long for target."));
11678
11679 memcpy (*buffer, string, len);
11680 *buffer += len;
11681 *left -= len;
11682
11683 /* NUL-terminate the buffer as a convenience, if there is
11684 room. */
11685 if (*left)
11686 **buffer = '\0';
11687 }
11688
11689 /* If *LEFT is large enough, hex encode LEN bytes from BYTES into
11690 *BUFFER, update *BUFFER to point to the new end of the buffer, and
11691 decrease *LEFT. Otherwise raise an error. */
11692
11693 static void
11694 remote_buffer_add_bytes (char **buffer, int *left, const gdb_byte *bytes,
11695 int len)
11696 {
11697 if (2 * len > *left)
11698 error (_("Packet too long for target."));
11699
11700 bin2hex (bytes, *buffer, len);
11701 *buffer += 2 * len;
11702 *left -= 2 * len;
11703
11704 /* NUL-terminate the buffer as a convenience, if there is
11705 room. */
11706 if (*left)
11707 **buffer = '\0';
11708 }
11709
11710 /* If *LEFT is large enough, convert VALUE to hex and add it to
11711 *BUFFER, update *BUFFER to point to the new end of the buffer, and
11712 decrease *LEFT. Otherwise raise an error. */
11713
11714 static void
11715 remote_buffer_add_int (char **buffer, int *left, ULONGEST value)
11716 {
11717 int len = hexnumlen (value);
11718
11719 if (len > *left)
11720 error (_("Packet too long for target."));
11721
11722 hexnumstr (*buffer, value);
11723 *buffer += len;
11724 *left -= len;
11725
11726 /* NUL-terminate the buffer as a convenience, if there is
11727 room. */
11728 if (*left)
11729 **buffer = '\0';
11730 }
11731
11732 /* Parse an I/O result packet from BUFFER. Set RETCODE to the return
11733 value, *REMOTE_ERRNO to the remote error number or zero if none
11734 was included, and *ATTACHMENT to point to the start of the annex
11735 if any. The length of the packet isn't needed here; there may
11736 be NUL bytes in BUFFER, but they will be after *ATTACHMENT.
11737
11738 Return 0 if the packet could be parsed, -1 if it could not. If
11739 -1 is returned, the other variables may not be initialized. */
11740
11741 static int
11742 remote_hostio_parse_result (char *buffer, int *retcode,
11743 int *remote_errno, char **attachment)
11744 {
11745 char *p, *p2;
11746
11747 *remote_errno = 0;
11748 *attachment = NULL;
11749
11750 if (buffer[0] != 'F')
11751 return -1;
11752
11753 errno = 0;
11754 *retcode = strtol (&buffer[1], &p, 16);
11755 if (errno != 0 || p == &buffer[1])
11756 return -1;
11757
11758 /* Check for ",errno". */
11759 if (*p == ',')
11760 {
11761 errno = 0;
11762 *remote_errno = strtol (p + 1, &p2, 16);
11763 if (errno != 0 || p + 1 == p2)
11764 return -1;
11765 p = p2;
11766 }
11767
11768 /* Check for ";attachment". If there is no attachment, the
11769 packet should end here. */
11770 if (*p == ';')
11771 {
11772 *attachment = p + 1;
11773 return 0;
11774 }
11775 else if (*p == '\0')
11776 return 0;
11777 else
11778 return -1;
11779 }
11780
11781 /* Send a prepared I/O packet to the target and read its response.
11782 The prepared packet is in the global RS->BUF before this function
11783 is called, and the answer is there when we return.
11784
11785 COMMAND_BYTES is the length of the request to send, which may include
11786 binary data. WHICH_PACKET is the packet configuration to check
11787 before attempting a packet. If an error occurs, *REMOTE_ERRNO
11788 is set to the error number and -1 is returned. Otherwise the value
11789 returned by the function is returned.
11790
11791 ATTACHMENT and ATTACHMENT_LEN should be non-NULL if and only if an
11792 attachment is expected; an error will be reported if there's a
11793 mismatch. If one is found, *ATTACHMENT will be set to point into
11794 the packet buffer and *ATTACHMENT_LEN will be set to the
11795 attachment's length. */
11796
11797 int
11798 remote_target::remote_hostio_send_command (int command_bytes, int which_packet,
11799 int *remote_errno, char **attachment,
11800 int *attachment_len)
11801 {
11802 struct remote_state *rs = get_remote_state ();
11803 int ret, bytes_read;
11804 char *attachment_tmp;
11805
11806 if (packet_support (which_packet) == PACKET_DISABLE)
11807 {
11808 *remote_errno = FILEIO_ENOSYS;
11809 return -1;
11810 }
11811
11812 putpkt_binary (rs->buf.data (), command_bytes);
11813 bytes_read = getpkt_sane (&rs->buf, 0);
11814
11815 /* If it timed out, something is wrong. Don't try to parse the
11816 buffer. */
11817 if (bytes_read < 0)
11818 {
11819 *remote_errno = FILEIO_EINVAL;
11820 return -1;
11821 }
11822
11823 switch (packet_ok (rs->buf, &remote_protocol_packets[which_packet]))
11824 {
11825 case PACKET_ERROR:
11826 *remote_errno = FILEIO_EINVAL;
11827 return -1;
11828 case PACKET_UNKNOWN:
11829 *remote_errno = FILEIO_ENOSYS;
11830 return -1;
11831 case PACKET_OK:
11832 break;
11833 }
11834
11835 if (remote_hostio_parse_result (rs->buf.data (), &ret, remote_errno,
11836 &attachment_tmp))
11837 {
11838 *remote_errno = FILEIO_EINVAL;
11839 return -1;
11840 }
11841
11842 /* Make sure we saw an attachment if and only if we expected one. */
11843 if ((attachment_tmp == NULL && attachment != NULL)
11844 || (attachment_tmp != NULL && attachment == NULL))
11845 {
11846 *remote_errno = FILEIO_EINVAL;
11847 return -1;
11848 }
11849
11850 /* If an attachment was found, it must point into the packet buffer;
11851 work out how many bytes there were. */
11852 if (attachment_tmp != NULL)
11853 {
11854 *attachment = attachment_tmp;
11855 *attachment_len = bytes_read - (*attachment - rs->buf.data ());
11856 }
11857
11858 return ret;
11859 }
11860
11861 /* See declaration.h. */
11862
11863 void
11864 readahead_cache::invalidate ()
11865 {
11866 this->fd = -1;
11867 }
11868
11869 /* See declaration.h. */
11870
11871 void
11872 readahead_cache::invalidate_fd (int fd)
11873 {
11874 if (this->fd == fd)
11875 this->fd = -1;
11876 }
11877
11878 /* Set the filesystem remote_hostio functions that take FILENAME
11879 arguments will use. Return 0 on success, or -1 if an error
11880 occurs (and set *REMOTE_ERRNO). */
11881
11882 int
11883 remote_target::remote_hostio_set_filesystem (struct inferior *inf,
11884 int *remote_errno)
11885 {
11886 struct remote_state *rs = get_remote_state ();
11887 int required_pid = (inf == NULL || inf->fake_pid_p) ? 0 : inf->pid;
11888 char *p = rs->buf.data ();
11889 int left = get_remote_packet_size () - 1;
11890 char arg[9];
11891 int ret;
11892
11893 if (packet_support (PACKET_vFile_setfs) == PACKET_DISABLE)
11894 return 0;
11895
11896 if (rs->fs_pid != -1 && required_pid == rs->fs_pid)
11897 return 0;
11898
11899 remote_buffer_add_string (&p, &left, "vFile:setfs:");
11900
11901 xsnprintf (arg, sizeof (arg), "%x", required_pid);
11902 remote_buffer_add_string (&p, &left, arg);
11903
11904 ret = remote_hostio_send_command (p - rs->buf.data (), PACKET_vFile_setfs,
11905 remote_errno, NULL, NULL);
11906
11907 if (packet_support (PACKET_vFile_setfs) == PACKET_DISABLE)
11908 return 0;
11909
11910 if (ret == 0)
11911 rs->fs_pid = required_pid;
11912
11913 return ret;
11914 }
11915
11916 /* Implementation of to_fileio_open. */
11917
11918 int
11919 remote_target::remote_hostio_open (inferior *inf, const char *filename,
11920 int flags, int mode, int warn_if_slow,
11921 int *remote_errno)
11922 {
11923 struct remote_state *rs = get_remote_state ();
11924 char *p = rs->buf.data ();
11925 int left = get_remote_packet_size () - 1;
11926
11927 if (warn_if_slow)
11928 {
11929 static int warning_issued = 0;
11930
11931 printf_unfiltered (_("Reading %s from remote target...\n"),
11932 filename);
11933
11934 if (!warning_issued)
11935 {
11936 warning (_("File transfers from remote targets can be slow."
11937 " Use \"set sysroot\" to access files locally"
11938 " instead."));
11939 warning_issued = 1;
11940 }
11941 }
11942
11943 if (remote_hostio_set_filesystem (inf, remote_errno) != 0)
11944 return -1;
11945
11946 remote_buffer_add_string (&p, &left, "vFile:open:");
11947
11948 remote_buffer_add_bytes (&p, &left, (const gdb_byte *) filename,
11949 strlen (filename));
11950 remote_buffer_add_string (&p, &left, ",");
11951
11952 remote_buffer_add_int (&p, &left, flags);
11953 remote_buffer_add_string (&p, &left, ",");
11954
11955 remote_buffer_add_int (&p, &left, mode);
11956
11957 return remote_hostio_send_command (p - rs->buf.data (), PACKET_vFile_open,
11958 remote_errno, NULL, NULL);
11959 }
11960
11961 int
11962 remote_target::fileio_open (struct inferior *inf, const char *filename,
11963 int flags, int mode, int warn_if_slow,
11964 int *remote_errno)
11965 {
11966 return remote_hostio_open (inf, filename, flags, mode, warn_if_slow,
11967 remote_errno);
11968 }
11969
11970 /* Implementation of to_fileio_pwrite. */
11971
11972 int
11973 remote_target::remote_hostio_pwrite (int fd, const gdb_byte *write_buf, int len,
11974 ULONGEST offset, int *remote_errno)
11975 {
11976 struct remote_state *rs = get_remote_state ();
11977 char *p = rs->buf.data ();
11978 int left = get_remote_packet_size ();
11979 int out_len;
11980
11981 rs->readahead_cache.invalidate_fd (fd);
11982
11983 remote_buffer_add_string (&p, &left, "vFile:pwrite:");
11984
11985 remote_buffer_add_int (&p, &left, fd);
11986 remote_buffer_add_string (&p, &left, ",");
11987
11988 remote_buffer_add_int (&p, &left, offset);
11989 remote_buffer_add_string (&p, &left, ",");
11990
11991 p += remote_escape_output (write_buf, len, 1, (gdb_byte *) p, &out_len,
11992 (get_remote_packet_size ()
11993 - (p - rs->buf.data ())));
11994
11995 return remote_hostio_send_command (p - rs->buf.data (), PACKET_vFile_pwrite,
11996 remote_errno, NULL, NULL);
11997 }
11998
11999 int
12000 remote_target::fileio_pwrite (int fd, const gdb_byte *write_buf, int len,
12001 ULONGEST offset, int *remote_errno)
12002 {
12003 return remote_hostio_pwrite (fd, write_buf, len, offset, remote_errno);
12004 }
12005
12006 /* Helper for the implementation of to_fileio_pread. Read the file
12007 from the remote side with vFile:pread. */
12008
12009 int
12010 remote_target::remote_hostio_pread_vFile (int fd, gdb_byte *read_buf, int len,
12011 ULONGEST offset, int *remote_errno)
12012 {
12013 struct remote_state *rs = get_remote_state ();
12014 char *p = rs->buf.data ();
12015 char *attachment;
12016 int left = get_remote_packet_size ();
12017 int ret, attachment_len;
12018 int read_len;
12019
12020 remote_buffer_add_string (&p, &left, "vFile:pread:");
12021
12022 remote_buffer_add_int (&p, &left, fd);
12023 remote_buffer_add_string (&p, &left, ",");
12024
12025 remote_buffer_add_int (&p, &left, len);
12026 remote_buffer_add_string (&p, &left, ",");
12027
12028 remote_buffer_add_int (&p, &left, offset);
12029
12030 ret = remote_hostio_send_command (p - rs->buf.data (), PACKET_vFile_pread,
12031 remote_errno, &attachment,
12032 &attachment_len);
12033
12034 if (ret < 0)
12035 return ret;
12036
12037 read_len = remote_unescape_input ((gdb_byte *) attachment, attachment_len,
12038 read_buf, len);
12039 if (read_len != ret)
12040 error (_("Read returned %d, but %d bytes."), ret, (int) read_len);
12041
12042 return ret;
12043 }
12044
12045 /* See declaration.h. */
12046
12047 int
12048 readahead_cache::pread (int fd, gdb_byte *read_buf, size_t len,
12049 ULONGEST offset)
12050 {
12051 if (this->fd == fd
12052 && this->offset <= offset
12053 && offset < this->offset + this->bufsize)
12054 {
12055 ULONGEST max = this->offset + this->bufsize;
12056
12057 if (offset + len > max)
12058 len = max - offset;
12059
12060 memcpy (read_buf, this->buf + offset - this->offset, len);
12061 return len;
12062 }
12063
12064 return 0;
12065 }
12066
12067 /* Implementation of to_fileio_pread. */
12068
12069 int
12070 remote_target::remote_hostio_pread (int fd, gdb_byte *read_buf, int len,
12071 ULONGEST offset, int *remote_errno)
12072 {
12073 int ret;
12074 struct remote_state *rs = get_remote_state ();
12075 readahead_cache *cache = &rs->readahead_cache;
12076
12077 ret = cache->pread (fd, read_buf, len, offset);
12078 if (ret > 0)
12079 {
12080 cache->hit_count++;
12081
12082 if (remote_debug)
12083 fprintf_unfiltered (gdb_stdlog, "readahead cache hit %s\n",
12084 pulongest (cache->hit_count));
12085 return ret;
12086 }
12087
12088 cache->miss_count++;
12089 if (remote_debug)
12090 fprintf_unfiltered (gdb_stdlog, "readahead cache miss %s\n",
12091 pulongest (cache->miss_count));
12092
12093 cache->fd = fd;
12094 cache->offset = offset;
12095 cache->bufsize = get_remote_packet_size ();
12096 cache->buf = (gdb_byte *) xrealloc (cache->buf, cache->bufsize);
12097
12098 ret = remote_hostio_pread_vFile (cache->fd, cache->buf, cache->bufsize,
12099 cache->offset, remote_errno);
12100 if (ret <= 0)
12101 {
12102 cache->invalidate_fd (fd);
12103 return ret;
12104 }
12105
12106 cache->bufsize = ret;
12107 return cache->pread (fd, read_buf, len, offset);
12108 }
12109
12110 int
12111 remote_target::fileio_pread (int fd, gdb_byte *read_buf, int len,
12112 ULONGEST offset, int *remote_errno)
12113 {
12114 return remote_hostio_pread (fd, read_buf, len, offset, remote_errno);
12115 }
12116
12117 /* Implementation of to_fileio_close. */
12118
12119 int
12120 remote_target::remote_hostio_close (int fd, int *remote_errno)
12121 {
12122 struct remote_state *rs = get_remote_state ();
12123 char *p = rs->buf.data ();
12124 int left = get_remote_packet_size () - 1;
12125
12126 rs->readahead_cache.invalidate_fd (fd);
12127
12128 remote_buffer_add_string (&p, &left, "vFile:close:");
12129
12130 remote_buffer_add_int (&p, &left, fd);
12131
12132 return remote_hostio_send_command (p - rs->buf.data (), PACKET_vFile_close,
12133 remote_errno, NULL, NULL);
12134 }
12135
12136 int
12137 remote_target::fileio_close (int fd, int *remote_errno)
12138 {
12139 return remote_hostio_close (fd, remote_errno);
12140 }
12141
12142 /* Implementation of to_fileio_unlink. */
12143
12144 int
12145 remote_target::remote_hostio_unlink (inferior *inf, const char *filename,
12146 int *remote_errno)
12147 {
12148 struct remote_state *rs = get_remote_state ();
12149 char *p = rs->buf.data ();
12150 int left = get_remote_packet_size () - 1;
12151
12152 if (remote_hostio_set_filesystem (inf, remote_errno) != 0)
12153 return -1;
12154
12155 remote_buffer_add_string (&p, &left, "vFile:unlink:");
12156
12157 remote_buffer_add_bytes (&p, &left, (const gdb_byte *) filename,
12158 strlen (filename));
12159
12160 return remote_hostio_send_command (p - rs->buf.data (), PACKET_vFile_unlink,
12161 remote_errno, NULL, NULL);
12162 }
12163
12164 int
12165 remote_target::fileio_unlink (struct inferior *inf, const char *filename,
12166 int *remote_errno)
12167 {
12168 return remote_hostio_unlink (inf, filename, remote_errno);
12169 }
12170
12171 /* Implementation of to_fileio_readlink. */
12172
12173 gdb::optional<std::string>
12174 remote_target::fileio_readlink (struct inferior *inf, const char *filename,
12175 int *remote_errno)
12176 {
12177 struct remote_state *rs = get_remote_state ();
12178 char *p = rs->buf.data ();
12179 char *attachment;
12180 int left = get_remote_packet_size ();
12181 int len, attachment_len;
12182 int read_len;
12183
12184 if (remote_hostio_set_filesystem (inf, remote_errno) != 0)
12185 return {};
12186
12187 remote_buffer_add_string (&p, &left, "vFile:readlink:");
12188
12189 remote_buffer_add_bytes (&p, &left, (const gdb_byte *) filename,
12190 strlen (filename));
12191
12192 len = remote_hostio_send_command (p - rs->buf.data (), PACKET_vFile_readlink,
12193 remote_errno, &attachment,
12194 &attachment_len);
12195
12196 if (len < 0)
12197 return {};
12198
12199 std::string ret (len, '\0');
12200
12201 read_len = remote_unescape_input ((gdb_byte *) attachment, attachment_len,
12202 (gdb_byte *) &ret[0], len);
12203 if (read_len != len)
12204 error (_("Readlink returned %d, but %d bytes."), len, read_len);
12205
12206 return ret;
12207 }
12208
12209 /* Implementation of to_fileio_fstat. */
12210
12211 int
12212 remote_target::fileio_fstat (int fd, struct stat *st, int *remote_errno)
12213 {
12214 struct remote_state *rs = get_remote_state ();
12215 char *p = rs->buf.data ();
12216 int left = get_remote_packet_size ();
12217 int attachment_len, ret;
12218 char *attachment;
12219 struct fio_stat fst;
12220 int read_len;
12221
12222 remote_buffer_add_string (&p, &left, "vFile:fstat:");
12223
12224 remote_buffer_add_int (&p, &left, fd);
12225
12226 ret = remote_hostio_send_command (p - rs->buf.data (), PACKET_vFile_fstat,
12227 remote_errno, &attachment,
12228 &attachment_len);
12229 if (ret < 0)
12230 {
12231 if (*remote_errno != FILEIO_ENOSYS)
12232 return ret;
12233
12234 /* Strictly we should return -1, ENOSYS here, but when
12235 "set sysroot remote:" was implemented in August 2008
12236 BFD's need for a stat function was sidestepped with
12237 this hack. This was not remedied until March 2015
12238 so we retain the previous behavior to avoid breaking
12239 compatibility.
12240
12241 Note that the memset is a March 2015 addition; older
12242 GDBs set st_size *and nothing else* so the structure
12243 would have garbage in all other fields. This might
12244 break something but retaining the previous behavior
12245 here would be just too wrong. */
12246
12247 memset (st, 0, sizeof (struct stat));
12248 st->st_size = INT_MAX;
12249 return 0;
12250 }
12251
12252 read_len = remote_unescape_input ((gdb_byte *) attachment, attachment_len,
12253 (gdb_byte *) &fst, sizeof (fst));
12254
12255 if (read_len != ret)
12256 error (_("vFile:fstat returned %d, but %d bytes."), ret, read_len);
12257
12258 if (read_len != sizeof (fst))
12259 error (_("vFile:fstat returned %d bytes, but expecting %d."),
12260 read_len, (int) sizeof (fst));
12261
12262 remote_fileio_to_host_stat (&fst, st);
12263
12264 return 0;
12265 }
12266
12267 /* Implementation of to_filesystem_is_local. */
12268
12269 bool
12270 remote_target::filesystem_is_local ()
12271 {
12272 /* Valgrind GDB presents itself as a remote target but works
12273 on the local filesystem: it does not implement remote get
12274 and users are not expected to set a sysroot. To handle
12275 this case we treat the remote filesystem as local if the
12276 sysroot is exactly TARGET_SYSROOT_PREFIX and if the stub
12277 does not support vFile:open. */
12278 if (strcmp (gdb_sysroot, TARGET_SYSROOT_PREFIX) == 0)
12279 {
12280 enum packet_support ps = packet_support (PACKET_vFile_open);
12281
12282 if (ps == PACKET_SUPPORT_UNKNOWN)
12283 {
12284 int fd, remote_errno;
12285
12286 /* Try opening a file to probe support. The supplied
12287 filename is irrelevant, we only care about whether
12288 the stub recognizes the packet or not. */
12289 fd = remote_hostio_open (NULL, "just probing",
12290 FILEIO_O_RDONLY, 0700, 0,
12291 &remote_errno);
12292
12293 if (fd >= 0)
12294 remote_hostio_close (fd, &remote_errno);
12295
12296 ps = packet_support (PACKET_vFile_open);
12297 }
12298
12299 if (ps == PACKET_DISABLE)
12300 {
12301 static int warning_issued = 0;
12302
12303 if (!warning_issued)
12304 {
12305 warning (_("remote target does not support file"
12306 " transfer, attempting to access files"
12307 " from local filesystem."));
12308 warning_issued = 1;
12309 }
12310
12311 return true;
12312 }
12313 }
12314
12315 return false;
12316 }
12317
12318 static int
12319 remote_fileio_errno_to_host (int errnum)
12320 {
12321 switch (errnum)
12322 {
12323 case FILEIO_EPERM:
12324 return EPERM;
12325 case FILEIO_ENOENT:
12326 return ENOENT;
12327 case FILEIO_EINTR:
12328 return EINTR;
12329 case FILEIO_EIO:
12330 return EIO;
12331 case FILEIO_EBADF:
12332 return EBADF;
12333 case FILEIO_EACCES:
12334 return EACCES;
12335 case FILEIO_EFAULT:
12336 return EFAULT;
12337 case FILEIO_EBUSY:
12338 return EBUSY;
12339 case FILEIO_EEXIST:
12340 return EEXIST;
12341 case FILEIO_ENODEV:
12342 return ENODEV;
12343 case FILEIO_ENOTDIR:
12344 return ENOTDIR;
12345 case FILEIO_EISDIR:
12346 return EISDIR;
12347 case FILEIO_EINVAL:
12348 return EINVAL;
12349 case FILEIO_ENFILE:
12350 return ENFILE;
12351 case FILEIO_EMFILE:
12352 return EMFILE;
12353 case FILEIO_EFBIG:
12354 return EFBIG;
12355 case FILEIO_ENOSPC:
12356 return ENOSPC;
12357 case FILEIO_ESPIPE:
12358 return ESPIPE;
12359 case FILEIO_EROFS:
12360 return EROFS;
12361 case FILEIO_ENOSYS:
12362 return ENOSYS;
12363 case FILEIO_ENAMETOOLONG:
12364 return ENAMETOOLONG;
12365 }
12366 return -1;
12367 }
12368
12369 static char *
12370 remote_hostio_error (int errnum)
12371 {
12372 int host_error = remote_fileio_errno_to_host (errnum);
12373
12374 if (host_error == -1)
12375 error (_("Unknown remote I/O error %d"), errnum);
12376 else
12377 error (_("Remote I/O error: %s"), safe_strerror (host_error));
12378 }
12379
12380 /* A RAII wrapper around a remote file descriptor. */
12381
12382 class scoped_remote_fd
12383 {
12384 public:
12385 scoped_remote_fd (remote_target *remote, int fd)
12386 : m_remote (remote), m_fd (fd)
12387 {
12388 }
12389
12390 ~scoped_remote_fd ()
12391 {
12392 if (m_fd != -1)
12393 {
12394 try
12395 {
12396 int remote_errno;
12397 m_remote->remote_hostio_close (m_fd, &remote_errno);
12398 }
12399 catch (...)
12400 {
12401 /* Swallow exception before it escapes the dtor. If
12402 something goes wrong, likely the connection is gone,
12403 and there's nothing else that can be done. */
12404 }
12405 }
12406 }
12407
12408 DISABLE_COPY_AND_ASSIGN (scoped_remote_fd);
12409
12410 /* Release ownership of the file descriptor, and return it. */
12411 ATTRIBUTE_UNUSED_RESULT int release () noexcept
12412 {
12413 int fd = m_fd;
12414 m_fd = -1;
12415 return fd;
12416 }
12417
12418 /* Return the owned file descriptor. */
12419 int get () const noexcept
12420 {
12421 return m_fd;
12422 }
12423
12424 private:
12425 /* The remote target. */
12426 remote_target *m_remote;
12427
12428 /* The owned remote I/O file descriptor. */
12429 int m_fd;
12430 };
12431
12432 void
12433 remote_file_put (const char *local_file, const char *remote_file, int from_tty)
12434 {
12435 remote_target *remote = get_current_remote_target ();
12436
12437 if (remote == nullptr)
12438 error (_("command can only be used with remote target"));
12439
12440 remote->remote_file_put (local_file, remote_file, from_tty);
12441 }
12442
12443 void
12444 remote_target::remote_file_put (const char *local_file, const char *remote_file,
12445 int from_tty)
12446 {
12447 int retcode, remote_errno, bytes, io_size;
12448 int bytes_in_buffer;
12449 int saw_eof;
12450 ULONGEST offset;
12451
12452 gdb_file_up file = gdb_fopen_cloexec (local_file, "rb");
12453 if (file == NULL)
12454 perror_with_name (local_file);
12455
12456 scoped_remote_fd fd
12457 (this, remote_hostio_open (NULL,
12458 remote_file, (FILEIO_O_WRONLY | FILEIO_O_CREAT
12459 | FILEIO_O_TRUNC),
12460 0700, 0, &remote_errno));
12461 if (fd.get () == -1)
12462 remote_hostio_error (remote_errno);
12463
12464 /* Send up to this many bytes at once. They won't all fit in the
12465 remote packet limit, so we'll transfer slightly fewer. */
12466 io_size = get_remote_packet_size ();
12467 gdb::byte_vector buffer (io_size);
12468
12469 bytes_in_buffer = 0;
12470 saw_eof = 0;
12471 offset = 0;
12472 while (bytes_in_buffer || !saw_eof)
12473 {
12474 if (!saw_eof)
12475 {
12476 bytes = fread (buffer.data () + bytes_in_buffer, 1,
12477 io_size - bytes_in_buffer,
12478 file.get ());
12479 if (bytes == 0)
12480 {
12481 if (ferror (file.get ()))
12482 error (_("Error reading %s."), local_file);
12483 else
12484 {
12485 /* EOF. Unless there is something still in the
12486 buffer from the last iteration, we are done. */
12487 saw_eof = 1;
12488 if (bytes_in_buffer == 0)
12489 break;
12490 }
12491 }
12492 }
12493 else
12494 bytes = 0;
12495
12496 bytes += bytes_in_buffer;
12497 bytes_in_buffer = 0;
12498
12499 retcode = remote_hostio_pwrite (fd.get (), buffer.data (), bytes,
12500 offset, &remote_errno);
12501
12502 if (retcode < 0)
12503 remote_hostio_error (remote_errno);
12504 else if (retcode == 0)
12505 error (_("Remote write of %d bytes returned 0!"), bytes);
12506 else if (retcode < bytes)
12507 {
12508 /* Short write. Save the rest of the read data for the next
12509 write. */
12510 bytes_in_buffer = bytes - retcode;
12511 memmove (buffer.data (), buffer.data () + retcode, bytes_in_buffer);
12512 }
12513
12514 offset += retcode;
12515 }
12516
12517 if (remote_hostio_close (fd.release (), &remote_errno))
12518 remote_hostio_error (remote_errno);
12519
12520 if (from_tty)
12521 printf_filtered (_("Successfully sent file \"%s\".\n"), local_file);
12522 }
12523
12524 void
12525 remote_file_get (const char *remote_file, const char *local_file, int from_tty)
12526 {
12527 remote_target *remote = get_current_remote_target ();
12528
12529 if (remote == nullptr)
12530 error (_("command can only be used with remote target"));
12531
12532 remote->remote_file_get (remote_file, local_file, from_tty);
12533 }
12534
12535 void
12536 remote_target::remote_file_get (const char *remote_file, const char *local_file,
12537 int from_tty)
12538 {
12539 int remote_errno, bytes, io_size;
12540 ULONGEST offset;
12541
12542 scoped_remote_fd fd
12543 (this, remote_hostio_open (NULL,
12544 remote_file, FILEIO_O_RDONLY, 0, 0,
12545 &remote_errno));
12546 if (fd.get () == -1)
12547 remote_hostio_error (remote_errno);
12548
12549 gdb_file_up file = gdb_fopen_cloexec (local_file, "wb");
12550 if (file == NULL)
12551 perror_with_name (local_file);
12552
12553 /* Send up to this many bytes at once. They won't all fit in the
12554 remote packet limit, so we'll transfer slightly fewer. */
12555 io_size = get_remote_packet_size ();
12556 gdb::byte_vector buffer (io_size);
12557
12558 offset = 0;
12559 while (1)
12560 {
12561 bytes = remote_hostio_pread (fd.get (), buffer.data (), io_size, offset,
12562 &remote_errno);
12563 if (bytes == 0)
12564 /* Success, but no bytes, means end-of-file. */
12565 break;
12566 if (bytes == -1)
12567 remote_hostio_error (remote_errno);
12568
12569 offset += bytes;
12570
12571 bytes = fwrite (buffer.data (), 1, bytes, file.get ());
12572 if (bytes == 0)
12573 perror_with_name (local_file);
12574 }
12575
12576 if (remote_hostio_close (fd.release (), &remote_errno))
12577 remote_hostio_error (remote_errno);
12578
12579 if (from_tty)
12580 printf_filtered (_("Successfully fetched file \"%s\".\n"), remote_file);
12581 }
12582
12583 void
12584 remote_file_delete (const char *remote_file, int from_tty)
12585 {
12586 remote_target *remote = get_current_remote_target ();
12587
12588 if (remote == nullptr)
12589 error (_("command can only be used with remote target"));
12590
12591 remote->remote_file_delete (remote_file, from_tty);
12592 }
12593
12594 void
12595 remote_target::remote_file_delete (const char *remote_file, int from_tty)
12596 {
12597 int retcode, remote_errno;
12598
12599 retcode = remote_hostio_unlink (NULL, remote_file, &remote_errno);
12600 if (retcode == -1)
12601 remote_hostio_error (remote_errno);
12602
12603 if (from_tty)
12604 printf_filtered (_("Successfully deleted file \"%s\".\n"), remote_file);
12605 }
12606
12607 static void
12608 remote_put_command (const char *args, int from_tty)
12609 {
12610 if (args == NULL)
12611 error_no_arg (_("file to put"));
12612
12613 gdb_argv argv (args);
12614 if (argv[0] == NULL || argv[1] == NULL || argv[2] != NULL)
12615 error (_("Invalid parameters to remote put"));
12616
12617 remote_file_put (argv[0], argv[1], from_tty);
12618 }
12619
12620 static void
12621 remote_get_command (const char *args, int from_tty)
12622 {
12623 if (args == NULL)
12624 error_no_arg (_("file to get"));
12625
12626 gdb_argv argv (args);
12627 if (argv[0] == NULL || argv[1] == NULL || argv[2] != NULL)
12628 error (_("Invalid parameters to remote get"));
12629
12630 remote_file_get (argv[0], argv[1], from_tty);
12631 }
12632
12633 static void
12634 remote_delete_command (const char *args, int from_tty)
12635 {
12636 if (args == NULL)
12637 error_no_arg (_("file to delete"));
12638
12639 gdb_argv argv (args);
12640 if (argv[0] == NULL || argv[1] != NULL)
12641 error (_("Invalid parameters to remote delete"));
12642
12643 remote_file_delete (argv[0], from_tty);
12644 }
12645
12646 static void
12647 remote_command (const char *args, int from_tty)
12648 {
12649 help_list (remote_cmdlist, "remote ", all_commands, gdb_stdout);
12650 }
12651
12652 bool
12653 remote_target::can_execute_reverse ()
12654 {
12655 if (packet_support (PACKET_bs) == PACKET_ENABLE
12656 || packet_support (PACKET_bc) == PACKET_ENABLE)
12657 return true;
12658 else
12659 return false;
12660 }
12661
12662 bool
12663 remote_target::supports_non_stop ()
12664 {
12665 return true;
12666 }
12667
12668 bool
12669 remote_target::supports_disable_randomization ()
12670 {
12671 /* Only supported in extended mode. */
12672 return false;
12673 }
12674
12675 bool
12676 remote_target::supports_multi_process ()
12677 {
12678 struct remote_state *rs = get_remote_state ();
12679
12680 return remote_multi_process_p (rs);
12681 }
12682
12683 static int
12684 remote_supports_cond_tracepoints ()
12685 {
12686 return packet_support (PACKET_ConditionalTracepoints) == PACKET_ENABLE;
12687 }
12688
12689 bool
12690 remote_target::supports_evaluation_of_breakpoint_conditions ()
12691 {
12692 return packet_support (PACKET_ConditionalBreakpoints) == PACKET_ENABLE;
12693 }
12694
12695 static int
12696 remote_supports_fast_tracepoints ()
12697 {
12698 return packet_support (PACKET_FastTracepoints) == PACKET_ENABLE;
12699 }
12700
12701 static int
12702 remote_supports_static_tracepoints ()
12703 {
12704 return packet_support (PACKET_StaticTracepoints) == PACKET_ENABLE;
12705 }
12706
12707 static int
12708 remote_supports_install_in_trace ()
12709 {
12710 return packet_support (PACKET_InstallInTrace) == PACKET_ENABLE;
12711 }
12712
12713 bool
12714 remote_target::supports_enable_disable_tracepoint ()
12715 {
12716 return (packet_support (PACKET_EnableDisableTracepoints_feature)
12717 == PACKET_ENABLE);
12718 }
12719
12720 bool
12721 remote_target::supports_string_tracing ()
12722 {
12723 return packet_support (PACKET_tracenz_feature) == PACKET_ENABLE;
12724 }
12725
12726 bool
12727 remote_target::can_run_breakpoint_commands ()
12728 {
12729 return packet_support (PACKET_BreakpointCommands) == PACKET_ENABLE;
12730 }
12731
12732 void
12733 remote_target::trace_init ()
12734 {
12735 struct remote_state *rs = get_remote_state ();
12736
12737 putpkt ("QTinit");
12738 remote_get_noisy_reply ();
12739 if (strcmp (rs->buf.data (), "OK") != 0)
12740 error (_("Target does not support this command."));
12741 }
12742
12743 /* Recursive routine to walk through command list including loops, and
12744 download packets for each command. */
12745
12746 void
12747 remote_target::remote_download_command_source (int num, ULONGEST addr,
12748 struct command_line *cmds)
12749 {
12750 struct remote_state *rs = get_remote_state ();
12751 struct command_line *cmd;
12752
12753 for (cmd = cmds; cmd; cmd = cmd->next)
12754 {
12755 QUIT; /* Allow user to bail out with ^C. */
12756 strcpy (rs->buf.data (), "QTDPsrc:");
12757 encode_source_string (num, addr, "cmd", cmd->line,
12758 rs->buf.data () + strlen (rs->buf.data ()),
12759 rs->buf.size () - strlen (rs->buf.data ()));
12760 putpkt (rs->buf);
12761 remote_get_noisy_reply ();
12762 if (strcmp (rs->buf.data (), "OK"))
12763 warning (_("Target does not support source download."));
12764
12765 if (cmd->control_type == while_control
12766 || cmd->control_type == while_stepping_control)
12767 {
12768 remote_download_command_source (num, addr, cmd->body_list_0.get ());
12769
12770 QUIT; /* Allow user to bail out with ^C. */
12771 strcpy (rs->buf.data (), "QTDPsrc:");
12772 encode_source_string (num, addr, "cmd", "end",
12773 rs->buf.data () + strlen (rs->buf.data ()),
12774 rs->buf.size () - strlen (rs->buf.data ()));
12775 putpkt (rs->buf);
12776 remote_get_noisy_reply ();
12777 if (strcmp (rs->buf.data (), "OK"))
12778 warning (_("Target does not support source download."));
12779 }
12780 }
12781 }
12782
12783 void
12784 remote_target::download_tracepoint (struct bp_location *loc)
12785 {
12786 CORE_ADDR tpaddr;
12787 char addrbuf[40];
12788 std::vector<std::string> tdp_actions;
12789 std::vector<std::string> stepping_actions;
12790 char *pkt;
12791 struct breakpoint *b = loc->owner;
12792 struct tracepoint *t = (struct tracepoint *) b;
12793 struct remote_state *rs = get_remote_state ();
12794 int ret;
12795 const char *err_msg = _("Tracepoint packet too large for target.");
12796 size_t size_left;
12797
12798 /* We use a buffer other than rs->buf because we'll build strings
12799 across multiple statements, and other statements in between could
12800 modify rs->buf. */
12801 gdb::char_vector buf (get_remote_packet_size ());
12802
12803 encode_actions_rsp (loc, &tdp_actions, &stepping_actions);
12804
12805 tpaddr = loc->address;
12806 sprintf_vma (addrbuf, tpaddr);
12807 ret = snprintf (buf.data (), buf.size (), "QTDP:%x:%s:%c:%lx:%x",
12808 b->number, addrbuf, /* address */
12809 (b->enable_state == bp_enabled ? 'E' : 'D'),
12810 t->step_count, t->pass_count);
12811
12812 if (ret < 0 || ret >= buf.size ())
12813 error ("%s", err_msg);
12814
12815 /* Fast tracepoints are mostly handled by the target, but we can
12816 tell the target how big of an instruction block should be moved
12817 around. */
12818 if (b->type == bp_fast_tracepoint)
12819 {
12820 /* Only test for support at download time; we may not know
12821 target capabilities at definition time. */
12822 if (remote_supports_fast_tracepoints ())
12823 {
12824 if (gdbarch_fast_tracepoint_valid_at (loc->gdbarch, tpaddr,
12825 NULL))
12826 {
12827 size_left = buf.size () - strlen (buf.data ());
12828 ret = snprintf (buf.data () + strlen (buf.data ()),
12829 size_left, ":F%x",
12830 gdb_insn_length (loc->gdbarch, tpaddr));
12831
12832 if (ret < 0 || ret >= size_left)
12833 error ("%s", err_msg);
12834 }
12835 else
12836 /* If it passed validation at definition but fails now,
12837 something is very wrong. */
12838 internal_error (__FILE__, __LINE__,
12839 _("Fast tracepoint not "
12840 "valid during download"));
12841 }
12842 else
12843 /* Fast tracepoints are functionally identical to regular
12844 tracepoints, so don't take lack of support as a reason to
12845 give up on the trace run. */
12846 warning (_("Target does not support fast tracepoints, "
12847 "downloading %d as regular tracepoint"), b->number);
12848 }
12849 else if (b->type == bp_static_tracepoint)
12850 {
12851 /* Only test for support at download time; we may not know
12852 target capabilities at definition time. */
12853 if (remote_supports_static_tracepoints ())
12854 {
12855 struct static_tracepoint_marker marker;
12856
12857 if (target_static_tracepoint_marker_at (tpaddr, &marker))
12858 {
12859 size_left = buf.size () - strlen (buf.data ());
12860 ret = snprintf (buf.data () + strlen (buf.data ()),
12861 size_left, ":S");
12862
12863 if (ret < 0 || ret >= size_left)
12864 error ("%s", err_msg);
12865 }
12866 else
12867 error (_("Static tracepoint not valid during download"));
12868 }
12869 else
12870 /* Fast tracepoints are functionally identical to regular
12871 tracepoints, so don't take lack of support as a reason
12872 to give up on the trace run. */
12873 error (_("Target does not support static tracepoints"));
12874 }
12875 /* If the tracepoint has a conditional, make it into an agent
12876 expression and append to the definition. */
12877 if (loc->cond)
12878 {
12879 /* Only test support at download time, we may not know target
12880 capabilities at definition time. */
12881 if (remote_supports_cond_tracepoints ())
12882 {
12883 agent_expr_up aexpr = gen_eval_for_expr (tpaddr,
12884 loc->cond.get ());
12885
12886 size_left = buf.size () - strlen (buf.data ());
12887
12888 ret = snprintf (buf.data () + strlen (buf.data ()),
12889 size_left, ":X%x,", aexpr->len);
12890
12891 if (ret < 0 || ret >= size_left)
12892 error ("%s", err_msg);
12893
12894 size_left = buf.size () - strlen (buf.data ());
12895
12896 /* Two bytes to encode each aexpr byte, plus the terminating
12897 null byte. */
12898 if (aexpr->len * 2 + 1 > size_left)
12899 error ("%s", err_msg);
12900
12901 pkt = buf.data () + strlen (buf.data ());
12902
12903 for (int ndx = 0; ndx < aexpr->len; ++ndx)
12904 pkt = pack_hex_byte (pkt, aexpr->buf[ndx]);
12905 *pkt = '\0';
12906 }
12907 else
12908 warning (_("Target does not support conditional tracepoints, "
12909 "ignoring tp %d cond"), b->number);
12910 }
12911
12912 if (b->commands || *default_collect)
12913 {
12914 size_left = buf.size () - strlen (buf.data ());
12915
12916 ret = snprintf (buf.data () + strlen (buf.data ()),
12917 size_left, "-");
12918
12919 if (ret < 0 || ret >= size_left)
12920 error ("%s", err_msg);
12921 }
12922
12923 putpkt (buf.data ());
12924 remote_get_noisy_reply ();
12925 if (strcmp (rs->buf.data (), "OK"))
12926 error (_("Target does not support tracepoints."));
12927
12928 /* do_single_steps (t); */
12929 for (auto action_it = tdp_actions.begin ();
12930 action_it != tdp_actions.end (); action_it++)
12931 {
12932 QUIT; /* Allow user to bail out with ^C. */
12933
12934 bool has_more = ((action_it + 1) != tdp_actions.end ()
12935 || !stepping_actions.empty ());
12936
12937 ret = snprintf (buf.data (), buf.size (), "QTDP:-%x:%s:%s%c",
12938 b->number, addrbuf, /* address */
12939 action_it->c_str (),
12940 has_more ? '-' : 0);
12941
12942 if (ret < 0 || ret >= buf.size ())
12943 error ("%s", err_msg);
12944
12945 putpkt (buf.data ());
12946 remote_get_noisy_reply ();
12947 if (strcmp (rs->buf.data (), "OK"))
12948 error (_("Error on target while setting tracepoints."));
12949 }
12950
12951 for (auto action_it = stepping_actions.begin ();
12952 action_it != stepping_actions.end (); action_it++)
12953 {
12954 QUIT; /* Allow user to bail out with ^C. */
12955
12956 bool is_first = action_it == stepping_actions.begin ();
12957 bool has_more = (action_it + 1) != stepping_actions.end ();
12958
12959 ret = snprintf (buf.data (), buf.size (), "QTDP:-%x:%s:%s%s%s",
12960 b->number, addrbuf, /* address */
12961 is_first ? "S" : "",
12962 action_it->c_str (),
12963 has_more ? "-" : "");
12964
12965 if (ret < 0 || ret >= buf.size ())
12966 error ("%s", err_msg);
12967
12968 putpkt (buf.data ());
12969 remote_get_noisy_reply ();
12970 if (strcmp (rs->buf.data (), "OK"))
12971 error (_("Error on target while setting tracepoints."));
12972 }
12973
12974 if (packet_support (PACKET_TracepointSource) == PACKET_ENABLE)
12975 {
12976 if (b->location != NULL)
12977 {
12978 ret = snprintf (buf.data (), buf.size (), "QTDPsrc:");
12979
12980 if (ret < 0 || ret >= buf.size ())
12981 error ("%s", err_msg);
12982
12983 encode_source_string (b->number, loc->address, "at",
12984 event_location_to_string (b->location.get ()),
12985 buf.data () + strlen (buf.data ()),
12986 buf.size () - strlen (buf.data ()));
12987 putpkt (buf.data ());
12988 remote_get_noisy_reply ();
12989 if (strcmp (rs->buf.data (), "OK"))
12990 warning (_("Target does not support source download."));
12991 }
12992 if (b->cond_string)
12993 {
12994 ret = snprintf (buf.data (), buf.size (), "QTDPsrc:");
12995
12996 if (ret < 0 || ret >= buf.size ())
12997 error ("%s", err_msg);
12998
12999 encode_source_string (b->number, loc->address,
13000 "cond", b->cond_string,
13001 buf.data () + strlen (buf.data ()),
13002 buf.size () - strlen (buf.data ()));
13003 putpkt (buf.data ());
13004 remote_get_noisy_reply ();
13005 if (strcmp (rs->buf.data (), "OK"))
13006 warning (_("Target does not support source download."));
13007 }
13008 remote_download_command_source (b->number, loc->address,
13009 breakpoint_commands (b));
13010 }
13011 }
13012
13013 bool
13014 remote_target::can_download_tracepoint ()
13015 {
13016 struct remote_state *rs = get_remote_state ();
13017 struct trace_status *ts;
13018 int status;
13019
13020 /* Don't try to install tracepoints until we've relocated our
13021 symbols, and fetched and merged the target's tracepoint list with
13022 ours. */
13023 if (rs->starting_up)
13024 return false;
13025
13026 ts = current_trace_status ();
13027 status = get_trace_status (ts);
13028
13029 if (status == -1 || !ts->running_known || !ts->running)
13030 return false;
13031
13032 /* If we are in a tracing experiment, but remote stub doesn't support
13033 installing tracepoint in trace, we have to return. */
13034 if (!remote_supports_install_in_trace ())
13035 return false;
13036
13037 return true;
13038 }
13039
13040
13041 void
13042 remote_target::download_trace_state_variable (const trace_state_variable &tsv)
13043 {
13044 struct remote_state *rs = get_remote_state ();
13045 char *p;
13046
13047 xsnprintf (rs->buf.data (), get_remote_packet_size (), "QTDV:%x:%s:%x:",
13048 tsv.number, phex ((ULONGEST) tsv.initial_value, 8),
13049 tsv.builtin);
13050 p = rs->buf.data () + strlen (rs->buf.data ());
13051 if ((p - rs->buf.data ()) + tsv.name.length () * 2
13052 >= get_remote_packet_size ())
13053 error (_("Trace state variable name too long for tsv definition packet"));
13054 p += 2 * bin2hex ((gdb_byte *) (tsv.name.data ()), p, tsv.name.length ());
13055 *p++ = '\0';
13056 putpkt (rs->buf);
13057 remote_get_noisy_reply ();
13058 if (rs->buf[0] == '\0')
13059 error (_("Target does not support this command."));
13060 if (strcmp (rs->buf.data (), "OK") != 0)
13061 error (_("Error on target while downloading trace state variable."));
13062 }
13063
13064 void
13065 remote_target::enable_tracepoint (struct bp_location *location)
13066 {
13067 struct remote_state *rs = get_remote_state ();
13068 char addr_buf[40];
13069
13070 sprintf_vma (addr_buf, location->address);
13071 xsnprintf (rs->buf.data (), get_remote_packet_size (), "QTEnable:%x:%s",
13072 location->owner->number, addr_buf);
13073 putpkt (rs->buf);
13074 remote_get_noisy_reply ();
13075 if (rs->buf[0] == '\0')
13076 error (_("Target does not support enabling tracepoints while a trace run is ongoing."));
13077 if (strcmp (rs->buf.data (), "OK") != 0)
13078 error (_("Error on target while enabling tracepoint."));
13079 }
13080
13081 void
13082 remote_target::disable_tracepoint (struct bp_location *location)
13083 {
13084 struct remote_state *rs = get_remote_state ();
13085 char addr_buf[40];
13086
13087 sprintf_vma (addr_buf, location->address);
13088 xsnprintf (rs->buf.data (), get_remote_packet_size (), "QTDisable:%x:%s",
13089 location->owner->number, addr_buf);
13090 putpkt (rs->buf);
13091 remote_get_noisy_reply ();
13092 if (rs->buf[0] == '\0')
13093 error (_("Target does not support disabling tracepoints while a trace run is ongoing."));
13094 if (strcmp (rs->buf.data (), "OK") != 0)
13095 error (_("Error on target while disabling tracepoint."));
13096 }
13097
13098 void
13099 remote_target::trace_set_readonly_regions ()
13100 {
13101 asection *s;
13102 bfd *abfd = NULL;
13103 bfd_size_type size;
13104 bfd_vma vma;
13105 int anysecs = 0;
13106 int offset = 0;
13107
13108 if (!exec_bfd)
13109 return; /* No information to give. */
13110
13111 struct remote_state *rs = get_remote_state ();
13112
13113 strcpy (rs->buf.data (), "QTro");
13114 offset = strlen (rs->buf.data ());
13115 for (s = exec_bfd->sections; s; s = s->next)
13116 {
13117 char tmp1[40], tmp2[40];
13118 int sec_length;
13119
13120 if ((s->flags & SEC_LOAD) == 0 ||
13121 /* (s->flags & SEC_CODE) == 0 || */
13122 (s->flags & SEC_READONLY) == 0)
13123 continue;
13124
13125 anysecs = 1;
13126 vma = bfd_get_section_vma (abfd, s);
13127 size = bfd_get_section_size (s);
13128 sprintf_vma (tmp1, vma);
13129 sprintf_vma (tmp2, vma + size);
13130 sec_length = 1 + strlen (tmp1) + 1 + strlen (tmp2);
13131 if (offset + sec_length + 1 > rs->buf.size ())
13132 {
13133 if (packet_support (PACKET_qXfer_traceframe_info) != PACKET_ENABLE)
13134 warning (_("\
13135 Too many sections for read-only sections definition packet."));
13136 break;
13137 }
13138 xsnprintf (rs->buf.data () + offset, rs->buf.size () - offset, ":%s,%s",
13139 tmp1, tmp2);
13140 offset += sec_length;
13141 }
13142 if (anysecs)
13143 {
13144 putpkt (rs->buf);
13145 getpkt (&rs->buf, 0);
13146 }
13147 }
13148
13149 void
13150 remote_target::trace_start ()
13151 {
13152 struct remote_state *rs = get_remote_state ();
13153
13154 putpkt ("QTStart");
13155 remote_get_noisy_reply ();
13156 if (rs->buf[0] == '\0')
13157 error (_("Target does not support this command."));
13158 if (strcmp (rs->buf.data (), "OK") != 0)
13159 error (_("Bogus reply from target: %s"), rs->buf.data ());
13160 }
13161
13162 int
13163 remote_target::get_trace_status (struct trace_status *ts)
13164 {
13165 /* Initialize it just to avoid a GCC false warning. */
13166 char *p = NULL;
13167 /* FIXME we need to get register block size some other way. */
13168 extern int trace_regblock_size;
13169 enum packet_result result;
13170 struct remote_state *rs = get_remote_state ();
13171
13172 if (packet_support (PACKET_qTStatus) == PACKET_DISABLE)
13173 return -1;
13174
13175 trace_regblock_size
13176 = rs->get_remote_arch_state (target_gdbarch ())->sizeof_g_packet;
13177
13178 putpkt ("qTStatus");
13179
13180 TRY
13181 {
13182 p = remote_get_noisy_reply ();
13183 }
13184 CATCH (ex, RETURN_MASK_ERROR)
13185 {
13186 if (ex.error != TARGET_CLOSE_ERROR)
13187 {
13188 exception_fprintf (gdb_stderr, ex, "qTStatus: ");
13189 return -1;
13190 }
13191 throw_exception (ex);
13192 }
13193 END_CATCH
13194
13195 result = packet_ok (p, &remote_protocol_packets[PACKET_qTStatus]);
13196
13197 /* If the remote target doesn't do tracing, flag it. */
13198 if (result == PACKET_UNKNOWN)
13199 return -1;
13200
13201 /* We're working with a live target. */
13202 ts->filename = NULL;
13203
13204 if (*p++ != 'T')
13205 error (_("Bogus trace status reply from target: %s"), rs->buf.data ());
13206
13207 /* Function 'parse_trace_status' sets default value of each field of
13208 'ts' at first, so we don't have to do it here. */
13209 parse_trace_status (p, ts);
13210
13211 return ts->running;
13212 }
13213
13214 void
13215 remote_target::get_tracepoint_status (struct breakpoint *bp,
13216 struct uploaded_tp *utp)
13217 {
13218 struct remote_state *rs = get_remote_state ();
13219 char *reply;
13220 struct bp_location *loc;
13221 struct tracepoint *tp = (struct tracepoint *) bp;
13222 size_t size = get_remote_packet_size ();
13223
13224 if (tp)
13225 {
13226 tp->hit_count = 0;
13227 tp->traceframe_usage = 0;
13228 for (loc = tp->loc; loc; loc = loc->next)
13229 {
13230 /* If the tracepoint was never downloaded, don't go asking for
13231 any status. */
13232 if (tp->number_on_target == 0)
13233 continue;
13234 xsnprintf (rs->buf.data (), size, "qTP:%x:%s", tp->number_on_target,
13235 phex_nz (loc->address, 0));
13236 putpkt (rs->buf);
13237 reply = remote_get_noisy_reply ();
13238 if (reply && *reply)
13239 {
13240 if (*reply == 'V')
13241 parse_tracepoint_status (reply + 1, bp, utp);
13242 }
13243 }
13244 }
13245 else if (utp)
13246 {
13247 utp->hit_count = 0;
13248 utp->traceframe_usage = 0;
13249 xsnprintf (rs->buf.data (), size, "qTP:%x:%s", utp->number,
13250 phex_nz (utp->addr, 0));
13251 putpkt (rs->buf);
13252 reply = remote_get_noisy_reply ();
13253 if (reply && *reply)
13254 {
13255 if (*reply == 'V')
13256 parse_tracepoint_status (reply + 1, bp, utp);
13257 }
13258 }
13259 }
13260
13261 void
13262 remote_target::trace_stop ()
13263 {
13264 struct remote_state *rs = get_remote_state ();
13265
13266 putpkt ("QTStop");
13267 remote_get_noisy_reply ();
13268 if (rs->buf[0] == '\0')
13269 error (_("Target does not support this command."));
13270 if (strcmp (rs->buf.data (), "OK") != 0)
13271 error (_("Bogus reply from target: %s"), rs->buf.data ());
13272 }
13273
13274 int
13275 remote_target::trace_find (enum trace_find_type type, int num,
13276 CORE_ADDR addr1, CORE_ADDR addr2,
13277 int *tpp)
13278 {
13279 struct remote_state *rs = get_remote_state ();
13280 char *endbuf = rs->buf.data () + get_remote_packet_size ();
13281 char *p, *reply;
13282 int target_frameno = -1, target_tracept = -1;
13283
13284 /* Lookups other than by absolute frame number depend on the current
13285 trace selected, so make sure it is correct on the remote end
13286 first. */
13287 if (type != tfind_number)
13288 set_remote_traceframe ();
13289
13290 p = rs->buf.data ();
13291 strcpy (p, "QTFrame:");
13292 p = strchr (p, '\0');
13293 switch (type)
13294 {
13295 case tfind_number:
13296 xsnprintf (p, endbuf - p, "%x", num);
13297 break;
13298 case tfind_pc:
13299 xsnprintf (p, endbuf - p, "pc:%s", phex_nz (addr1, 0));
13300 break;
13301 case tfind_tp:
13302 xsnprintf (p, endbuf - p, "tdp:%x", num);
13303 break;
13304 case tfind_range:
13305 xsnprintf (p, endbuf - p, "range:%s:%s", phex_nz (addr1, 0),
13306 phex_nz (addr2, 0));
13307 break;
13308 case tfind_outside:
13309 xsnprintf (p, endbuf - p, "outside:%s:%s", phex_nz (addr1, 0),
13310 phex_nz (addr2, 0));
13311 break;
13312 default:
13313 error (_("Unknown trace find type %d"), type);
13314 }
13315
13316 putpkt (rs->buf);
13317 reply = remote_get_noisy_reply ();
13318 if (*reply == '\0')
13319 error (_("Target does not support this command."));
13320
13321 while (reply && *reply)
13322 switch (*reply)
13323 {
13324 case 'F':
13325 p = ++reply;
13326 target_frameno = (int) strtol (p, &reply, 16);
13327 if (reply == p)
13328 error (_("Unable to parse trace frame number"));
13329 /* Don't update our remote traceframe number cache on failure
13330 to select a remote traceframe. */
13331 if (target_frameno == -1)
13332 return -1;
13333 break;
13334 case 'T':
13335 p = ++reply;
13336 target_tracept = (int) strtol (p, &reply, 16);
13337 if (reply == p)
13338 error (_("Unable to parse tracepoint number"));
13339 break;
13340 case 'O': /* "OK"? */
13341 if (reply[1] == 'K' && reply[2] == '\0')
13342 reply += 2;
13343 else
13344 error (_("Bogus reply from target: %s"), reply);
13345 break;
13346 default:
13347 error (_("Bogus reply from target: %s"), reply);
13348 }
13349 if (tpp)
13350 *tpp = target_tracept;
13351
13352 rs->remote_traceframe_number = target_frameno;
13353 return target_frameno;
13354 }
13355
13356 bool
13357 remote_target::get_trace_state_variable_value (int tsvnum, LONGEST *val)
13358 {
13359 struct remote_state *rs = get_remote_state ();
13360 char *reply;
13361 ULONGEST uval;
13362
13363 set_remote_traceframe ();
13364
13365 xsnprintf (rs->buf.data (), get_remote_packet_size (), "qTV:%x", tsvnum);
13366 putpkt (rs->buf);
13367 reply = remote_get_noisy_reply ();
13368 if (reply && *reply)
13369 {
13370 if (*reply == 'V')
13371 {
13372 unpack_varlen_hex (reply + 1, &uval);
13373 *val = (LONGEST) uval;
13374 return true;
13375 }
13376 }
13377 return false;
13378 }
13379
13380 int
13381 remote_target::save_trace_data (const char *filename)
13382 {
13383 struct remote_state *rs = get_remote_state ();
13384 char *p, *reply;
13385
13386 p = rs->buf.data ();
13387 strcpy (p, "QTSave:");
13388 p += strlen (p);
13389 if ((p - rs->buf.data ()) + strlen (filename) * 2
13390 >= get_remote_packet_size ())
13391 error (_("Remote file name too long for trace save packet"));
13392 p += 2 * bin2hex ((gdb_byte *) filename, p, strlen (filename));
13393 *p++ = '\0';
13394 putpkt (rs->buf);
13395 reply = remote_get_noisy_reply ();
13396 if (*reply == '\0')
13397 error (_("Target does not support this command."));
13398 if (strcmp (reply, "OK") != 0)
13399 error (_("Bogus reply from target: %s"), reply);
13400 return 0;
13401 }
13402
13403 /* This is basically a memory transfer, but needs to be its own packet
13404 because we don't know how the target actually organizes its trace
13405 memory, plus we want to be able to ask for as much as possible, but
13406 not be unhappy if we don't get as much as we ask for. */
13407
13408 LONGEST
13409 remote_target::get_raw_trace_data (gdb_byte *buf, ULONGEST offset, LONGEST len)
13410 {
13411 struct remote_state *rs = get_remote_state ();
13412 char *reply;
13413 char *p;
13414 int rslt;
13415
13416 p = rs->buf.data ();
13417 strcpy (p, "qTBuffer:");
13418 p += strlen (p);
13419 p += hexnumstr (p, offset);
13420 *p++ = ',';
13421 p += hexnumstr (p, len);
13422 *p++ = '\0';
13423
13424 putpkt (rs->buf);
13425 reply = remote_get_noisy_reply ();
13426 if (reply && *reply)
13427 {
13428 /* 'l' by itself means we're at the end of the buffer and
13429 there is nothing more to get. */
13430 if (*reply == 'l')
13431 return 0;
13432
13433 /* Convert the reply into binary. Limit the number of bytes to
13434 convert according to our passed-in buffer size, rather than
13435 what was returned in the packet; if the target is
13436 unexpectedly generous and gives us a bigger reply than we
13437 asked for, we don't want to crash. */
13438 rslt = hex2bin (reply, buf, len);
13439 return rslt;
13440 }
13441
13442 /* Something went wrong, flag as an error. */
13443 return -1;
13444 }
13445
13446 void
13447 remote_target::set_disconnected_tracing (int val)
13448 {
13449 struct remote_state *rs = get_remote_state ();
13450
13451 if (packet_support (PACKET_DisconnectedTracing_feature) == PACKET_ENABLE)
13452 {
13453 char *reply;
13454
13455 xsnprintf (rs->buf.data (), get_remote_packet_size (),
13456 "QTDisconnected:%x", val);
13457 putpkt (rs->buf);
13458 reply = remote_get_noisy_reply ();
13459 if (*reply == '\0')
13460 error (_("Target does not support this command."));
13461 if (strcmp (reply, "OK") != 0)
13462 error (_("Bogus reply from target: %s"), reply);
13463 }
13464 else if (val)
13465 warning (_("Target does not support disconnected tracing."));
13466 }
13467
13468 int
13469 remote_target::core_of_thread (ptid_t ptid)
13470 {
13471 struct thread_info *info = find_thread_ptid (ptid);
13472
13473 if (info != NULL && info->priv != NULL)
13474 return get_remote_thread_info (info)->core;
13475
13476 return -1;
13477 }
13478
13479 void
13480 remote_target::set_circular_trace_buffer (int val)
13481 {
13482 struct remote_state *rs = get_remote_state ();
13483 char *reply;
13484
13485 xsnprintf (rs->buf.data (), get_remote_packet_size (),
13486 "QTBuffer:circular:%x", val);
13487 putpkt (rs->buf);
13488 reply = remote_get_noisy_reply ();
13489 if (*reply == '\0')
13490 error (_("Target does not support this command."));
13491 if (strcmp (reply, "OK") != 0)
13492 error (_("Bogus reply from target: %s"), reply);
13493 }
13494
13495 traceframe_info_up
13496 remote_target::traceframe_info ()
13497 {
13498 gdb::optional<gdb::char_vector> text
13499 = target_read_stralloc (current_top_target (), TARGET_OBJECT_TRACEFRAME_INFO,
13500 NULL);
13501 if (text)
13502 return parse_traceframe_info (text->data ());
13503
13504 return NULL;
13505 }
13506
13507 /* Handle the qTMinFTPILen packet. Returns the minimum length of
13508 instruction on which a fast tracepoint may be placed. Returns -1
13509 if the packet is not supported, and 0 if the minimum instruction
13510 length is unknown. */
13511
13512 int
13513 remote_target::get_min_fast_tracepoint_insn_len ()
13514 {
13515 struct remote_state *rs = get_remote_state ();
13516 char *reply;
13517
13518 /* If we're not debugging a process yet, the IPA can't be
13519 loaded. */
13520 if (!target_has_execution)
13521 return 0;
13522
13523 /* Make sure the remote is pointing at the right process. */
13524 set_general_process ();
13525
13526 xsnprintf (rs->buf.data (), get_remote_packet_size (), "qTMinFTPILen");
13527 putpkt (rs->buf);
13528 reply = remote_get_noisy_reply ();
13529 if (*reply == '\0')
13530 return -1;
13531 else
13532 {
13533 ULONGEST min_insn_len;
13534
13535 unpack_varlen_hex (reply, &min_insn_len);
13536
13537 return (int) min_insn_len;
13538 }
13539 }
13540
13541 void
13542 remote_target::set_trace_buffer_size (LONGEST val)
13543 {
13544 if (packet_support (PACKET_QTBuffer_size) != PACKET_DISABLE)
13545 {
13546 struct remote_state *rs = get_remote_state ();
13547 char *buf = rs->buf.data ();
13548 char *endbuf = buf + get_remote_packet_size ();
13549 enum packet_result result;
13550
13551 gdb_assert (val >= 0 || val == -1);
13552 buf += xsnprintf (buf, endbuf - buf, "QTBuffer:size:");
13553 /* Send -1 as literal "-1" to avoid host size dependency. */
13554 if (val < 0)
13555 {
13556 *buf++ = '-';
13557 buf += hexnumstr (buf, (ULONGEST) -val);
13558 }
13559 else
13560 buf += hexnumstr (buf, (ULONGEST) val);
13561
13562 putpkt (rs->buf);
13563 remote_get_noisy_reply ();
13564 result = packet_ok (rs->buf,
13565 &remote_protocol_packets[PACKET_QTBuffer_size]);
13566
13567 if (result != PACKET_OK)
13568 warning (_("Bogus reply from target: %s"), rs->buf.data ());
13569 }
13570 }
13571
13572 bool
13573 remote_target::set_trace_notes (const char *user, const char *notes,
13574 const char *stop_notes)
13575 {
13576 struct remote_state *rs = get_remote_state ();
13577 char *reply;
13578 char *buf = rs->buf.data ();
13579 char *endbuf = buf + get_remote_packet_size ();
13580 int nbytes;
13581
13582 buf += xsnprintf (buf, endbuf - buf, "QTNotes:");
13583 if (user)
13584 {
13585 buf += xsnprintf (buf, endbuf - buf, "user:");
13586 nbytes = bin2hex ((gdb_byte *) user, buf, strlen (user));
13587 buf += 2 * nbytes;
13588 *buf++ = ';';
13589 }
13590 if (notes)
13591 {
13592 buf += xsnprintf (buf, endbuf - buf, "notes:");
13593 nbytes = bin2hex ((gdb_byte *) notes, buf, strlen (notes));
13594 buf += 2 * nbytes;
13595 *buf++ = ';';
13596 }
13597 if (stop_notes)
13598 {
13599 buf += xsnprintf (buf, endbuf - buf, "tstop:");
13600 nbytes = bin2hex ((gdb_byte *) stop_notes, buf, strlen (stop_notes));
13601 buf += 2 * nbytes;
13602 *buf++ = ';';
13603 }
13604 /* Ensure the buffer is terminated. */
13605 *buf = '\0';
13606
13607 putpkt (rs->buf);
13608 reply = remote_get_noisy_reply ();
13609 if (*reply == '\0')
13610 return false;
13611
13612 if (strcmp (reply, "OK") != 0)
13613 error (_("Bogus reply from target: %s"), reply);
13614
13615 return true;
13616 }
13617
13618 bool
13619 remote_target::use_agent (bool use)
13620 {
13621 if (packet_support (PACKET_QAgent) != PACKET_DISABLE)
13622 {
13623 struct remote_state *rs = get_remote_state ();
13624
13625 /* If the stub supports QAgent. */
13626 xsnprintf (rs->buf.data (), get_remote_packet_size (), "QAgent:%d", use);
13627 putpkt (rs->buf);
13628 getpkt (&rs->buf, 0);
13629
13630 if (strcmp (rs->buf.data (), "OK") == 0)
13631 {
13632 ::use_agent = use;
13633 return true;
13634 }
13635 }
13636
13637 return false;
13638 }
13639
13640 bool
13641 remote_target::can_use_agent ()
13642 {
13643 return (packet_support (PACKET_QAgent) != PACKET_DISABLE);
13644 }
13645
13646 struct btrace_target_info
13647 {
13648 /* The ptid of the traced thread. */
13649 ptid_t ptid;
13650
13651 /* The obtained branch trace configuration. */
13652 struct btrace_config conf;
13653 };
13654
13655 /* Reset our idea of our target's btrace configuration. */
13656
13657 static void
13658 remote_btrace_reset (remote_state *rs)
13659 {
13660 memset (&rs->btrace_config, 0, sizeof (rs->btrace_config));
13661 }
13662
13663 /* Synchronize the configuration with the target. */
13664
13665 void
13666 remote_target::btrace_sync_conf (const btrace_config *conf)
13667 {
13668 struct packet_config *packet;
13669 struct remote_state *rs;
13670 char *buf, *pos, *endbuf;
13671
13672 rs = get_remote_state ();
13673 buf = rs->buf.data ();
13674 endbuf = buf + get_remote_packet_size ();
13675
13676 packet = &remote_protocol_packets[PACKET_Qbtrace_conf_bts_size];
13677 if (packet_config_support (packet) == PACKET_ENABLE
13678 && conf->bts.size != rs->btrace_config.bts.size)
13679 {
13680 pos = buf;
13681 pos += xsnprintf (pos, endbuf - pos, "%s=0x%x", packet->name,
13682 conf->bts.size);
13683
13684 putpkt (buf);
13685 getpkt (&rs->buf, 0);
13686
13687 if (packet_ok (buf, packet) == PACKET_ERROR)
13688 {
13689 if (buf[0] == 'E' && buf[1] == '.')
13690 error (_("Failed to configure the BTS buffer size: %s"), buf + 2);
13691 else
13692 error (_("Failed to configure the BTS buffer size."));
13693 }
13694
13695 rs->btrace_config.bts.size = conf->bts.size;
13696 }
13697
13698 packet = &remote_protocol_packets[PACKET_Qbtrace_conf_pt_size];
13699 if (packet_config_support (packet) == PACKET_ENABLE
13700 && conf->pt.size != rs->btrace_config.pt.size)
13701 {
13702 pos = buf;
13703 pos += xsnprintf (pos, endbuf - pos, "%s=0x%x", packet->name,
13704 conf->pt.size);
13705
13706 putpkt (buf);
13707 getpkt (&rs->buf, 0);
13708
13709 if (packet_ok (buf, packet) == PACKET_ERROR)
13710 {
13711 if (buf[0] == 'E' && buf[1] == '.')
13712 error (_("Failed to configure the trace buffer size: %s"), buf + 2);
13713 else
13714 error (_("Failed to configure the trace buffer size."));
13715 }
13716
13717 rs->btrace_config.pt.size = conf->pt.size;
13718 }
13719 }
13720
13721 /* Read the current thread's btrace configuration from the target and
13722 store it into CONF. */
13723
13724 static void
13725 btrace_read_config (struct btrace_config *conf)
13726 {
13727 gdb::optional<gdb::char_vector> xml
13728 = target_read_stralloc (current_top_target (), TARGET_OBJECT_BTRACE_CONF, "");
13729 if (xml)
13730 parse_xml_btrace_conf (conf, xml->data ());
13731 }
13732
13733 /* Maybe reopen target btrace. */
13734
13735 void
13736 remote_target::remote_btrace_maybe_reopen ()
13737 {
13738 struct remote_state *rs = get_remote_state ();
13739 int btrace_target_pushed = 0;
13740 #if !defined (HAVE_LIBIPT)
13741 int warned = 0;
13742 #endif
13743
13744 scoped_restore_current_thread restore_thread;
13745
13746 for (thread_info *tp : all_non_exited_threads ())
13747 {
13748 set_general_thread (tp->ptid);
13749
13750 memset (&rs->btrace_config, 0x00, sizeof (struct btrace_config));
13751 btrace_read_config (&rs->btrace_config);
13752
13753 if (rs->btrace_config.format == BTRACE_FORMAT_NONE)
13754 continue;
13755
13756 #if !defined (HAVE_LIBIPT)
13757 if (rs->btrace_config.format == BTRACE_FORMAT_PT)
13758 {
13759 if (!warned)
13760 {
13761 warned = 1;
13762 warning (_("Target is recording using Intel Processor Trace "
13763 "but support was disabled at compile time."));
13764 }
13765
13766 continue;
13767 }
13768 #endif /* !defined (HAVE_LIBIPT) */
13769
13770 /* Push target, once, but before anything else happens. This way our
13771 changes to the threads will be cleaned up by unpushing the target
13772 in case btrace_read_config () throws. */
13773 if (!btrace_target_pushed)
13774 {
13775 btrace_target_pushed = 1;
13776 record_btrace_push_target ();
13777 printf_filtered (_("Target is recording using %s.\n"),
13778 btrace_format_string (rs->btrace_config.format));
13779 }
13780
13781 tp->btrace.target = XCNEW (struct btrace_target_info);
13782 tp->btrace.target->ptid = tp->ptid;
13783 tp->btrace.target->conf = rs->btrace_config;
13784 }
13785 }
13786
13787 /* Enable branch tracing. */
13788
13789 struct btrace_target_info *
13790 remote_target::enable_btrace (ptid_t ptid, const struct btrace_config *conf)
13791 {
13792 struct btrace_target_info *tinfo = NULL;
13793 struct packet_config *packet = NULL;
13794 struct remote_state *rs = get_remote_state ();
13795 char *buf = rs->buf.data ();
13796 char *endbuf = buf + get_remote_packet_size ();
13797
13798 switch (conf->format)
13799 {
13800 case BTRACE_FORMAT_BTS:
13801 packet = &remote_protocol_packets[PACKET_Qbtrace_bts];
13802 break;
13803
13804 case BTRACE_FORMAT_PT:
13805 packet = &remote_protocol_packets[PACKET_Qbtrace_pt];
13806 break;
13807 }
13808
13809 if (packet == NULL || packet_config_support (packet) != PACKET_ENABLE)
13810 error (_("Target does not support branch tracing."));
13811
13812 btrace_sync_conf (conf);
13813
13814 set_general_thread (ptid);
13815
13816 buf += xsnprintf (buf, endbuf - buf, "%s", packet->name);
13817 putpkt (rs->buf);
13818 getpkt (&rs->buf, 0);
13819
13820 if (packet_ok (rs->buf, packet) == PACKET_ERROR)
13821 {
13822 if (rs->buf[0] == 'E' && rs->buf[1] == '.')
13823 error (_("Could not enable branch tracing for %s: %s"),
13824 target_pid_to_str (ptid), &rs->buf[2]);
13825 else
13826 error (_("Could not enable branch tracing for %s."),
13827 target_pid_to_str (ptid));
13828 }
13829
13830 tinfo = XCNEW (struct btrace_target_info);
13831 tinfo->ptid = ptid;
13832
13833 /* If we fail to read the configuration, we lose some information, but the
13834 tracing itself is not impacted. */
13835 TRY
13836 {
13837 btrace_read_config (&tinfo->conf);
13838 }
13839 CATCH (err, RETURN_MASK_ERROR)
13840 {
13841 if (err.message != NULL)
13842 warning ("%s", err.message);
13843 }
13844 END_CATCH
13845
13846 return tinfo;
13847 }
13848
13849 /* Disable branch tracing. */
13850
13851 void
13852 remote_target::disable_btrace (struct btrace_target_info *tinfo)
13853 {
13854 struct packet_config *packet = &remote_protocol_packets[PACKET_Qbtrace_off];
13855 struct remote_state *rs = get_remote_state ();
13856 char *buf = rs->buf.data ();
13857 char *endbuf = buf + get_remote_packet_size ();
13858
13859 if (packet_config_support (packet) != PACKET_ENABLE)
13860 error (_("Target does not support branch tracing."));
13861
13862 set_general_thread (tinfo->ptid);
13863
13864 buf += xsnprintf (buf, endbuf - buf, "%s", packet->name);
13865 putpkt (rs->buf);
13866 getpkt (&rs->buf, 0);
13867
13868 if (packet_ok (rs->buf, packet) == PACKET_ERROR)
13869 {
13870 if (rs->buf[0] == 'E' && rs->buf[1] == '.')
13871 error (_("Could not disable branch tracing for %s: %s"),
13872 target_pid_to_str (tinfo->ptid), &rs->buf[2]);
13873 else
13874 error (_("Could not disable branch tracing for %s."),
13875 target_pid_to_str (tinfo->ptid));
13876 }
13877
13878 xfree (tinfo);
13879 }
13880
13881 /* Teardown branch tracing. */
13882
13883 void
13884 remote_target::teardown_btrace (struct btrace_target_info *tinfo)
13885 {
13886 /* We must not talk to the target during teardown. */
13887 xfree (tinfo);
13888 }
13889
13890 /* Read the branch trace. */
13891
13892 enum btrace_error
13893 remote_target::read_btrace (struct btrace_data *btrace,
13894 struct btrace_target_info *tinfo,
13895 enum btrace_read_type type)
13896 {
13897 struct packet_config *packet = &remote_protocol_packets[PACKET_qXfer_btrace];
13898 const char *annex;
13899
13900 if (packet_config_support (packet) != PACKET_ENABLE)
13901 error (_("Target does not support branch tracing."));
13902
13903 #if !defined(HAVE_LIBEXPAT)
13904 error (_("Cannot process branch tracing result. XML parsing not supported."));
13905 #endif
13906
13907 switch (type)
13908 {
13909 case BTRACE_READ_ALL:
13910 annex = "all";
13911 break;
13912 case BTRACE_READ_NEW:
13913 annex = "new";
13914 break;
13915 case BTRACE_READ_DELTA:
13916 annex = "delta";
13917 break;
13918 default:
13919 internal_error (__FILE__, __LINE__,
13920 _("Bad branch tracing read type: %u."),
13921 (unsigned int) type);
13922 }
13923
13924 gdb::optional<gdb::char_vector> xml
13925 = target_read_stralloc (current_top_target (), TARGET_OBJECT_BTRACE, annex);
13926 if (!xml)
13927 return BTRACE_ERR_UNKNOWN;
13928
13929 parse_xml_btrace (btrace, xml->data ());
13930
13931 return BTRACE_ERR_NONE;
13932 }
13933
13934 const struct btrace_config *
13935 remote_target::btrace_conf (const struct btrace_target_info *tinfo)
13936 {
13937 return &tinfo->conf;
13938 }
13939
13940 bool
13941 remote_target::augmented_libraries_svr4_read ()
13942 {
13943 return (packet_support (PACKET_augmented_libraries_svr4_read_feature)
13944 == PACKET_ENABLE);
13945 }
13946
13947 /* Implementation of to_load. */
13948
13949 void
13950 remote_target::load (const char *name, int from_tty)
13951 {
13952 generic_load (name, from_tty);
13953 }
13954
13955 /* Accepts an integer PID; returns a string representing a file that
13956 can be opened on the remote side to get the symbols for the child
13957 process. Returns NULL if the operation is not supported. */
13958
13959 char *
13960 remote_target::pid_to_exec_file (int pid)
13961 {
13962 static gdb::optional<gdb::char_vector> filename;
13963 struct inferior *inf;
13964 char *annex = NULL;
13965
13966 if (packet_support (PACKET_qXfer_exec_file) != PACKET_ENABLE)
13967 return NULL;
13968
13969 inf = find_inferior_pid (pid);
13970 if (inf == NULL)
13971 internal_error (__FILE__, __LINE__,
13972 _("not currently attached to process %d"), pid);
13973
13974 if (!inf->fake_pid_p)
13975 {
13976 const int annex_size = 9;
13977
13978 annex = (char *) alloca (annex_size);
13979 xsnprintf (annex, annex_size, "%x", pid);
13980 }
13981
13982 filename = target_read_stralloc (current_top_target (),
13983 TARGET_OBJECT_EXEC_FILE, annex);
13984
13985 return filename ? filename->data () : nullptr;
13986 }
13987
13988 /* Implement the to_can_do_single_step target_ops method. */
13989
13990 int
13991 remote_target::can_do_single_step ()
13992 {
13993 /* We can only tell whether target supports single step or not by
13994 supported s and S vCont actions if the stub supports vContSupported
13995 feature. If the stub doesn't support vContSupported feature,
13996 we have conservatively to think target doesn't supports single
13997 step. */
13998 if (packet_support (PACKET_vContSupported) == PACKET_ENABLE)
13999 {
14000 struct remote_state *rs = get_remote_state ();
14001
14002 if (packet_support (PACKET_vCont) == PACKET_SUPPORT_UNKNOWN)
14003 remote_vcont_probe ();
14004
14005 return rs->supports_vCont.s && rs->supports_vCont.S;
14006 }
14007 else
14008 return 0;
14009 }
14010
14011 /* Implementation of the to_execution_direction method for the remote
14012 target. */
14013
14014 enum exec_direction_kind
14015 remote_target::execution_direction ()
14016 {
14017 struct remote_state *rs = get_remote_state ();
14018
14019 return rs->last_resume_exec_dir;
14020 }
14021
14022 /* Return pointer to the thread_info struct which corresponds to
14023 THREAD_HANDLE (having length HANDLE_LEN). */
14024
14025 thread_info *
14026 remote_target::thread_handle_to_thread_info (const gdb_byte *thread_handle,
14027 int handle_len,
14028 inferior *inf)
14029 {
14030 for (thread_info *tp : all_non_exited_threads ())
14031 {
14032 remote_thread_info *priv = get_remote_thread_info (tp);
14033
14034 if (tp->inf == inf && priv != NULL)
14035 {
14036 if (handle_len != priv->thread_handle.size ())
14037 error (_("Thread handle size mismatch: %d vs %zu (from remote)"),
14038 handle_len, priv->thread_handle.size ());
14039 if (memcmp (thread_handle, priv->thread_handle.data (),
14040 handle_len) == 0)
14041 return tp;
14042 }
14043 }
14044
14045 return NULL;
14046 }
14047
14048 bool
14049 remote_target::can_async_p ()
14050 {
14051 struct remote_state *rs = get_remote_state ();
14052
14053 /* We don't go async if the user has explicitly prevented it with the
14054 "maint set target-async" command. */
14055 if (!target_async_permitted)
14056 return false;
14057
14058 /* We're async whenever the serial device is. */
14059 return serial_can_async_p (rs->remote_desc);
14060 }
14061
14062 bool
14063 remote_target::is_async_p ()
14064 {
14065 struct remote_state *rs = get_remote_state ();
14066
14067 if (!target_async_permitted)
14068 /* We only enable async when the user specifically asks for it. */
14069 return false;
14070
14071 /* We're async whenever the serial device is. */
14072 return serial_is_async_p (rs->remote_desc);
14073 }
14074
14075 /* Pass the SERIAL event on and up to the client. One day this code
14076 will be able to delay notifying the client of an event until the
14077 point where an entire packet has been received. */
14078
14079 static serial_event_ftype remote_async_serial_handler;
14080
14081 static void
14082 remote_async_serial_handler (struct serial *scb, void *context)
14083 {
14084 /* Don't propogate error information up to the client. Instead let
14085 the client find out about the error by querying the target. */
14086 inferior_event_handler (INF_REG_EVENT, NULL);
14087 }
14088
14089 static void
14090 remote_async_inferior_event_handler (gdb_client_data data)
14091 {
14092 inferior_event_handler (INF_REG_EVENT, data);
14093 }
14094
14095 void
14096 remote_target::async (int enable)
14097 {
14098 struct remote_state *rs = get_remote_state ();
14099
14100 if (enable)
14101 {
14102 serial_async (rs->remote_desc, remote_async_serial_handler, rs);
14103
14104 /* If there are pending events in the stop reply queue tell the
14105 event loop to process them. */
14106 if (!rs->stop_reply_queue.empty ())
14107 mark_async_event_handler (rs->remote_async_inferior_event_token);
14108 /* For simplicity, below we clear the pending events token
14109 without remembering whether it is marked, so here we always
14110 mark it. If there's actually no pending notification to
14111 process, this ends up being a no-op (other than a spurious
14112 event-loop wakeup). */
14113 if (target_is_non_stop_p ())
14114 mark_async_event_handler (rs->notif_state->get_pending_events_token);
14115 }
14116 else
14117 {
14118 serial_async (rs->remote_desc, NULL, NULL);
14119 /* If the core is disabling async, it doesn't want to be
14120 disturbed with target events. Clear all async event sources
14121 too. */
14122 clear_async_event_handler (rs->remote_async_inferior_event_token);
14123 if (target_is_non_stop_p ())
14124 clear_async_event_handler (rs->notif_state->get_pending_events_token);
14125 }
14126 }
14127
14128 /* Implementation of the to_thread_events method. */
14129
14130 void
14131 remote_target::thread_events (int enable)
14132 {
14133 struct remote_state *rs = get_remote_state ();
14134 size_t size = get_remote_packet_size ();
14135
14136 if (packet_support (PACKET_QThreadEvents) == PACKET_DISABLE)
14137 return;
14138
14139 xsnprintf (rs->buf.data (), size, "QThreadEvents:%x", enable ? 1 : 0);
14140 putpkt (rs->buf);
14141 getpkt (&rs->buf, 0);
14142
14143 switch (packet_ok (rs->buf,
14144 &remote_protocol_packets[PACKET_QThreadEvents]))
14145 {
14146 case PACKET_OK:
14147 if (strcmp (rs->buf.data (), "OK") != 0)
14148 error (_("Remote refused setting thread events: %s"), rs->buf.data ());
14149 break;
14150 case PACKET_ERROR:
14151 warning (_("Remote failure reply: %s"), rs->buf.data ());
14152 break;
14153 case PACKET_UNKNOWN:
14154 break;
14155 }
14156 }
14157
14158 static void
14159 set_remote_cmd (const char *args, int from_tty)
14160 {
14161 help_list (remote_set_cmdlist, "set remote ", all_commands, gdb_stdout);
14162 }
14163
14164 static void
14165 show_remote_cmd (const char *args, int from_tty)
14166 {
14167 /* We can't just use cmd_show_list here, because we want to skip
14168 the redundant "show remote Z-packet" and the legacy aliases. */
14169 struct cmd_list_element *list = remote_show_cmdlist;
14170 struct ui_out *uiout = current_uiout;
14171
14172 ui_out_emit_tuple tuple_emitter (uiout, "showlist");
14173 for (; list != NULL; list = list->next)
14174 if (strcmp (list->name, "Z-packet") == 0)
14175 continue;
14176 else if (list->type == not_set_cmd)
14177 /* Alias commands are exactly like the original, except they
14178 don't have the normal type. */
14179 continue;
14180 else
14181 {
14182 ui_out_emit_tuple option_emitter (uiout, "option");
14183
14184 uiout->field_string ("name", list->name);
14185 uiout->text (": ");
14186 if (list->type == show_cmd)
14187 do_show_command (NULL, from_tty, list);
14188 else
14189 cmd_func (list, NULL, from_tty);
14190 }
14191 }
14192
14193
14194 /* Function to be called whenever a new objfile (shlib) is detected. */
14195 static void
14196 remote_new_objfile (struct objfile *objfile)
14197 {
14198 remote_target *remote = get_current_remote_target ();
14199
14200 if (remote != NULL) /* Have a remote connection. */
14201 remote->remote_check_symbols ();
14202 }
14203
14204 /* Pull all the tracepoints defined on the target and create local
14205 data structures representing them. We don't want to create real
14206 tracepoints yet, we don't want to mess up the user's existing
14207 collection. */
14208
14209 int
14210 remote_target::upload_tracepoints (struct uploaded_tp **utpp)
14211 {
14212 struct remote_state *rs = get_remote_state ();
14213 char *p;
14214
14215 /* Ask for a first packet of tracepoint definition. */
14216 putpkt ("qTfP");
14217 getpkt (&rs->buf, 0);
14218 p = rs->buf.data ();
14219 while (*p && *p != 'l')
14220 {
14221 parse_tracepoint_definition (p, utpp);
14222 /* Ask for another packet of tracepoint definition. */
14223 putpkt ("qTsP");
14224 getpkt (&rs->buf, 0);
14225 p = rs->buf.data ();
14226 }
14227 return 0;
14228 }
14229
14230 int
14231 remote_target::upload_trace_state_variables (struct uploaded_tsv **utsvp)
14232 {
14233 struct remote_state *rs = get_remote_state ();
14234 char *p;
14235
14236 /* Ask for a first packet of variable definition. */
14237 putpkt ("qTfV");
14238 getpkt (&rs->buf, 0);
14239 p = rs->buf.data ();
14240 while (*p && *p != 'l')
14241 {
14242 parse_tsv_definition (p, utsvp);
14243 /* Ask for another packet of variable definition. */
14244 putpkt ("qTsV");
14245 getpkt (&rs->buf, 0);
14246 p = rs->buf.data ();
14247 }
14248 return 0;
14249 }
14250
14251 /* The "set/show range-stepping" show hook. */
14252
14253 static void
14254 show_range_stepping (struct ui_file *file, int from_tty,
14255 struct cmd_list_element *c,
14256 const char *value)
14257 {
14258 fprintf_filtered (file,
14259 _("Debugger's willingness to use range stepping "
14260 "is %s.\n"), value);
14261 }
14262
14263 /* Return true if the vCont;r action is supported by the remote
14264 stub. */
14265
14266 bool
14267 remote_target::vcont_r_supported ()
14268 {
14269 if (packet_support (PACKET_vCont) == PACKET_SUPPORT_UNKNOWN)
14270 remote_vcont_probe ();
14271
14272 return (packet_support (PACKET_vCont) == PACKET_ENABLE
14273 && get_remote_state ()->supports_vCont.r);
14274 }
14275
14276 /* The "set/show range-stepping" set hook. */
14277
14278 static void
14279 set_range_stepping (const char *ignore_args, int from_tty,
14280 struct cmd_list_element *c)
14281 {
14282 /* When enabling, check whether range stepping is actually supported
14283 by the target, and warn if not. */
14284 if (use_range_stepping)
14285 {
14286 remote_target *remote = get_current_remote_target ();
14287 if (remote == NULL
14288 || !remote->vcont_r_supported ())
14289 warning (_("Range stepping is not supported by the current target"));
14290 }
14291 }
14292
14293 void
14294 _initialize_remote (void)
14295 {
14296 struct cmd_list_element *cmd;
14297 const char *cmd_name;
14298
14299 /* architecture specific data */
14300 remote_g_packet_data_handle =
14301 gdbarch_data_register_pre_init (remote_g_packet_data_init);
14302
14303 remote_pspace_data
14304 = register_program_space_data_with_cleanup (NULL,
14305 remote_pspace_data_cleanup);
14306
14307 add_target (remote_target_info, remote_target::open);
14308 add_target (extended_remote_target_info, extended_remote_target::open);
14309
14310 /* Hook into new objfile notification. */
14311 gdb::observers::new_objfile.attach (remote_new_objfile);
14312
14313 #if 0
14314 init_remote_threadtests ();
14315 #endif
14316
14317 /* set/show remote ... */
14318
14319 add_prefix_cmd ("remote", class_maintenance, set_remote_cmd, _("\
14320 Remote protocol specific variables\n\
14321 Configure various remote-protocol specific variables such as\n\
14322 the packets being used"),
14323 &remote_set_cmdlist, "set remote ",
14324 0 /* allow-unknown */, &setlist);
14325 add_prefix_cmd ("remote", class_maintenance, show_remote_cmd, _("\
14326 Remote protocol specific variables\n\
14327 Configure various remote-protocol specific variables such as\n\
14328 the packets being used"),
14329 &remote_show_cmdlist, "show remote ",
14330 0 /* allow-unknown */, &showlist);
14331
14332 add_cmd ("compare-sections", class_obscure, compare_sections_command, _("\
14333 Compare section data on target to the exec file.\n\
14334 Argument is a single section name (default: all loaded sections).\n\
14335 To compare only read-only loaded sections, specify the -r option."),
14336 &cmdlist);
14337
14338 add_cmd ("packet", class_maintenance, packet_command, _("\
14339 Send an arbitrary packet to a remote target.\n\
14340 maintenance packet TEXT\n\
14341 If GDB is talking to an inferior via the GDB serial protocol, then\n\
14342 this command sends the string TEXT to the inferior, and displays the\n\
14343 response packet. GDB supplies the initial `$' character, and the\n\
14344 terminating `#' character and checksum."),
14345 &maintenancelist);
14346
14347 add_setshow_boolean_cmd ("remotebreak", no_class, &remote_break, _("\
14348 Set whether to send break if interrupted."), _("\
14349 Show whether to send break if interrupted."), _("\
14350 If set, a break, instead of a cntrl-c, is sent to the remote target."),
14351 set_remotebreak, show_remotebreak,
14352 &setlist, &showlist);
14353 cmd_name = "remotebreak";
14354 cmd = lookup_cmd (&cmd_name, setlist, "", -1, 1);
14355 deprecate_cmd (cmd, "set remote interrupt-sequence");
14356 cmd_name = "remotebreak"; /* needed because lookup_cmd updates the pointer */
14357 cmd = lookup_cmd (&cmd_name, showlist, "", -1, 1);
14358 deprecate_cmd (cmd, "show remote interrupt-sequence");
14359
14360 add_setshow_enum_cmd ("interrupt-sequence", class_support,
14361 interrupt_sequence_modes, &interrupt_sequence_mode,
14362 _("\
14363 Set interrupt sequence to remote target."), _("\
14364 Show interrupt sequence to remote target."), _("\
14365 Valid value is \"Ctrl-C\", \"BREAK\" or \"BREAK-g\". The default is \"Ctrl-C\"."),
14366 NULL, show_interrupt_sequence,
14367 &remote_set_cmdlist,
14368 &remote_show_cmdlist);
14369
14370 add_setshow_boolean_cmd ("interrupt-on-connect", class_support,
14371 &interrupt_on_connect, _("\
14372 Set whether interrupt-sequence is sent to remote target when gdb connects to."), _(" \
14373 Show whether interrupt-sequence is sent to remote target when gdb connects to."), _(" \
14374 If set, interrupt sequence is sent to remote target."),
14375 NULL, NULL,
14376 &remote_set_cmdlist, &remote_show_cmdlist);
14377
14378 /* Install commands for configuring memory read/write packets. */
14379
14380 add_cmd ("remotewritesize", no_class, set_memory_write_packet_size, _("\
14381 Set the maximum number of bytes per memory write packet (deprecated)."),
14382 &setlist);
14383 add_cmd ("remotewritesize", no_class, show_memory_write_packet_size, _("\
14384 Show the maximum number of bytes per memory write packet (deprecated)."),
14385 &showlist);
14386 add_cmd ("memory-write-packet-size", no_class,
14387 set_memory_write_packet_size, _("\
14388 Set the maximum number of bytes per memory-write packet.\n\
14389 Specify the number of bytes in a packet or 0 (zero) for the\n\
14390 default packet size. The actual limit is further reduced\n\
14391 dependent on the target. Specify ``fixed'' to disable the\n\
14392 further restriction and ``limit'' to enable that restriction."),
14393 &remote_set_cmdlist);
14394 add_cmd ("memory-read-packet-size", no_class,
14395 set_memory_read_packet_size, _("\
14396 Set the maximum number of bytes per memory-read packet.\n\
14397 Specify the number of bytes in a packet or 0 (zero) for the\n\
14398 default packet size. The actual limit is further reduced\n\
14399 dependent on the target. Specify ``fixed'' to disable the\n\
14400 further restriction and ``limit'' to enable that restriction."),
14401 &remote_set_cmdlist);
14402 add_cmd ("memory-write-packet-size", no_class,
14403 show_memory_write_packet_size,
14404 _("Show the maximum number of bytes per memory-write packet."),
14405 &remote_show_cmdlist);
14406 add_cmd ("memory-read-packet-size", no_class,
14407 show_memory_read_packet_size,
14408 _("Show the maximum number of bytes per memory-read packet."),
14409 &remote_show_cmdlist);
14410
14411 add_setshow_zuinteger_unlimited_cmd ("hardware-watchpoint-limit", no_class,
14412 &remote_hw_watchpoint_limit, _("\
14413 Set the maximum number of target hardware watchpoints."), _("\
14414 Show the maximum number of target hardware watchpoints."), _("\
14415 Specify \"unlimited\" for unlimited hardware watchpoints."),
14416 NULL, show_hardware_watchpoint_limit,
14417 &remote_set_cmdlist,
14418 &remote_show_cmdlist);
14419 add_setshow_zuinteger_unlimited_cmd ("hardware-watchpoint-length-limit",
14420 no_class,
14421 &remote_hw_watchpoint_length_limit, _("\
14422 Set the maximum length (in bytes) of a target hardware watchpoint."), _("\
14423 Show the maximum length (in bytes) of a target hardware watchpoint."), _("\
14424 Specify \"unlimited\" to allow watchpoints of unlimited size."),
14425 NULL, show_hardware_watchpoint_length_limit,
14426 &remote_set_cmdlist, &remote_show_cmdlist);
14427 add_setshow_zuinteger_unlimited_cmd ("hardware-breakpoint-limit", no_class,
14428 &remote_hw_breakpoint_limit, _("\
14429 Set the maximum number of target hardware breakpoints."), _("\
14430 Show the maximum number of target hardware breakpoints."), _("\
14431 Specify \"unlimited\" for unlimited hardware breakpoints."),
14432 NULL, show_hardware_breakpoint_limit,
14433 &remote_set_cmdlist, &remote_show_cmdlist);
14434
14435 add_setshow_zuinteger_cmd ("remoteaddresssize", class_obscure,
14436 &remote_address_size, _("\
14437 Set the maximum size of the address (in bits) in a memory packet."), _("\
14438 Show the maximum size of the address (in bits) in a memory packet."), NULL,
14439 NULL,
14440 NULL, /* FIXME: i18n: */
14441 &setlist, &showlist);
14442
14443 init_all_packet_configs ();
14444
14445 add_packet_config_cmd (&remote_protocol_packets[PACKET_X],
14446 "X", "binary-download", 1);
14447
14448 add_packet_config_cmd (&remote_protocol_packets[PACKET_vCont],
14449 "vCont", "verbose-resume", 0);
14450
14451 add_packet_config_cmd (&remote_protocol_packets[PACKET_QPassSignals],
14452 "QPassSignals", "pass-signals", 0);
14453
14454 add_packet_config_cmd (&remote_protocol_packets[PACKET_QCatchSyscalls],
14455 "QCatchSyscalls", "catch-syscalls", 0);
14456
14457 add_packet_config_cmd (&remote_protocol_packets[PACKET_QProgramSignals],
14458 "QProgramSignals", "program-signals", 0);
14459
14460 add_packet_config_cmd (&remote_protocol_packets[PACKET_QSetWorkingDir],
14461 "QSetWorkingDir", "set-working-dir", 0);
14462
14463 add_packet_config_cmd (&remote_protocol_packets[PACKET_QStartupWithShell],
14464 "QStartupWithShell", "startup-with-shell", 0);
14465
14466 add_packet_config_cmd (&remote_protocol_packets
14467 [PACKET_QEnvironmentHexEncoded],
14468 "QEnvironmentHexEncoded", "environment-hex-encoded",
14469 0);
14470
14471 add_packet_config_cmd (&remote_protocol_packets[PACKET_QEnvironmentReset],
14472 "QEnvironmentReset", "environment-reset",
14473 0);
14474
14475 add_packet_config_cmd (&remote_protocol_packets[PACKET_QEnvironmentUnset],
14476 "QEnvironmentUnset", "environment-unset",
14477 0);
14478
14479 add_packet_config_cmd (&remote_protocol_packets[PACKET_qSymbol],
14480 "qSymbol", "symbol-lookup", 0);
14481
14482 add_packet_config_cmd (&remote_protocol_packets[PACKET_P],
14483 "P", "set-register", 1);
14484
14485 add_packet_config_cmd (&remote_protocol_packets[PACKET_p],
14486 "p", "fetch-register", 1);
14487
14488 add_packet_config_cmd (&remote_protocol_packets[PACKET_Z0],
14489 "Z0", "software-breakpoint", 0);
14490
14491 add_packet_config_cmd (&remote_protocol_packets[PACKET_Z1],
14492 "Z1", "hardware-breakpoint", 0);
14493
14494 add_packet_config_cmd (&remote_protocol_packets[PACKET_Z2],
14495 "Z2", "write-watchpoint", 0);
14496
14497 add_packet_config_cmd (&remote_protocol_packets[PACKET_Z3],
14498 "Z3", "read-watchpoint", 0);
14499
14500 add_packet_config_cmd (&remote_protocol_packets[PACKET_Z4],
14501 "Z4", "access-watchpoint", 0);
14502
14503 add_packet_config_cmd (&remote_protocol_packets[PACKET_qXfer_auxv],
14504 "qXfer:auxv:read", "read-aux-vector", 0);
14505
14506 add_packet_config_cmd (&remote_protocol_packets[PACKET_qXfer_exec_file],
14507 "qXfer:exec-file:read", "pid-to-exec-file", 0);
14508
14509 add_packet_config_cmd (&remote_protocol_packets[PACKET_qXfer_features],
14510 "qXfer:features:read", "target-features", 0);
14511
14512 add_packet_config_cmd (&remote_protocol_packets[PACKET_qXfer_libraries],
14513 "qXfer:libraries:read", "library-info", 0);
14514
14515 add_packet_config_cmd (&remote_protocol_packets[PACKET_qXfer_libraries_svr4],
14516 "qXfer:libraries-svr4:read", "library-info-svr4", 0);
14517
14518 add_packet_config_cmd (&remote_protocol_packets[PACKET_qXfer_memory_map],
14519 "qXfer:memory-map:read", "memory-map", 0);
14520
14521 add_packet_config_cmd (&remote_protocol_packets[PACKET_qXfer_spu_read],
14522 "qXfer:spu:read", "read-spu-object", 0);
14523
14524 add_packet_config_cmd (&remote_protocol_packets[PACKET_qXfer_spu_write],
14525 "qXfer:spu:write", "write-spu-object", 0);
14526
14527 add_packet_config_cmd (&remote_protocol_packets[PACKET_qXfer_osdata],
14528 "qXfer:osdata:read", "osdata", 0);
14529
14530 add_packet_config_cmd (&remote_protocol_packets[PACKET_qXfer_threads],
14531 "qXfer:threads:read", "threads", 0);
14532
14533 add_packet_config_cmd (&remote_protocol_packets[PACKET_qXfer_siginfo_read],
14534 "qXfer:siginfo:read", "read-siginfo-object", 0);
14535
14536 add_packet_config_cmd (&remote_protocol_packets[PACKET_qXfer_siginfo_write],
14537 "qXfer:siginfo:write", "write-siginfo-object", 0);
14538
14539 add_packet_config_cmd
14540 (&remote_protocol_packets[PACKET_qXfer_traceframe_info],
14541 "qXfer:traceframe-info:read", "traceframe-info", 0);
14542
14543 add_packet_config_cmd (&remote_protocol_packets[PACKET_qXfer_uib],
14544 "qXfer:uib:read", "unwind-info-block", 0);
14545
14546 add_packet_config_cmd (&remote_protocol_packets[PACKET_qGetTLSAddr],
14547 "qGetTLSAddr", "get-thread-local-storage-address",
14548 0);
14549
14550 add_packet_config_cmd (&remote_protocol_packets[PACKET_qGetTIBAddr],
14551 "qGetTIBAddr", "get-thread-information-block-address",
14552 0);
14553
14554 add_packet_config_cmd (&remote_protocol_packets[PACKET_bc],
14555 "bc", "reverse-continue", 0);
14556
14557 add_packet_config_cmd (&remote_protocol_packets[PACKET_bs],
14558 "bs", "reverse-step", 0);
14559
14560 add_packet_config_cmd (&remote_protocol_packets[PACKET_qSupported],
14561 "qSupported", "supported-packets", 0);
14562
14563 add_packet_config_cmd (&remote_protocol_packets[PACKET_qSearch_memory],
14564 "qSearch:memory", "search-memory", 0);
14565
14566 add_packet_config_cmd (&remote_protocol_packets[PACKET_qTStatus],
14567 "qTStatus", "trace-status", 0);
14568
14569 add_packet_config_cmd (&remote_protocol_packets[PACKET_vFile_setfs],
14570 "vFile:setfs", "hostio-setfs", 0);
14571
14572 add_packet_config_cmd (&remote_protocol_packets[PACKET_vFile_open],
14573 "vFile:open", "hostio-open", 0);
14574
14575 add_packet_config_cmd (&remote_protocol_packets[PACKET_vFile_pread],
14576 "vFile:pread", "hostio-pread", 0);
14577
14578 add_packet_config_cmd (&remote_protocol_packets[PACKET_vFile_pwrite],
14579 "vFile:pwrite", "hostio-pwrite", 0);
14580
14581 add_packet_config_cmd (&remote_protocol_packets[PACKET_vFile_close],
14582 "vFile:close", "hostio-close", 0);
14583
14584 add_packet_config_cmd (&remote_protocol_packets[PACKET_vFile_unlink],
14585 "vFile:unlink", "hostio-unlink", 0);
14586
14587 add_packet_config_cmd (&remote_protocol_packets[PACKET_vFile_readlink],
14588 "vFile:readlink", "hostio-readlink", 0);
14589
14590 add_packet_config_cmd (&remote_protocol_packets[PACKET_vFile_fstat],
14591 "vFile:fstat", "hostio-fstat", 0);
14592
14593 add_packet_config_cmd (&remote_protocol_packets[PACKET_vAttach],
14594 "vAttach", "attach", 0);
14595
14596 add_packet_config_cmd (&remote_protocol_packets[PACKET_vRun],
14597 "vRun", "run", 0);
14598
14599 add_packet_config_cmd (&remote_protocol_packets[PACKET_QStartNoAckMode],
14600 "QStartNoAckMode", "noack", 0);
14601
14602 add_packet_config_cmd (&remote_protocol_packets[PACKET_vKill],
14603 "vKill", "kill", 0);
14604
14605 add_packet_config_cmd (&remote_protocol_packets[PACKET_qAttached],
14606 "qAttached", "query-attached", 0);
14607
14608 add_packet_config_cmd (&remote_protocol_packets[PACKET_ConditionalTracepoints],
14609 "ConditionalTracepoints",
14610 "conditional-tracepoints", 0);
14611
14612 add_packet_config_cmd (&remote_protocol_packets[PACKET_ConditionalBreakpoints],
14613 "ConditionalBreakpoints",
14614 "conditional-breakpoints", 0);
14615
14616 add_packet_config_cmd (&remote_protocol_packets[PACKET_BreakpointCommands],
14617 "BreakpointCommands",
14618 "breakpoint-commands", 0);
14619
14620 add_packet_config_cmd (&remote_protocol_packets[PACKET_FastTracepoints],
14621 "FastTracepoints", "fast-tracepoints", 0);
14622
14623 add_packet_config_cmd (&remote_protocol_packets[PACKET_TracepointSource],
14624 "TracepointSource", "TracepointSource", 0);
14625
14626 add_packet_config_cmd (&remote_protocol_packets[PACKET_QAllow],
14627 "QAllow", "allow", 0);
14628
14629 add_packet_config_cmd (&remote_protocol_packets[PACKET_StaticTracepoints],
14630 "StaticTracepoints", "static-tracepoints", 0);
14631
14632 add_packet_config_cmd (&remote_protocol_packets[PACKET_InstallInTrace],
14633 "InstallInTrace", "install-in-trace", 0);
14634
14635 add_packet_config_cmd (&remote_protocol_packets[PACKET_qXfer_statictrace_read],
14636 "qXfer:statictrace:read", "read-sdata-object", 0);
14637
14638 add_packet_config_cmd (&remote_protocol_packets[PACKET_qXfer_fdpic],
14639 "qXfer:fdpic:read", "read-fdpic-loadmap", 0);
14640
14641 add_packet_config_cmd (&remote_protocol_packets[PACKET_QDisableRandomization],
14642 "QDisableRandomization", "disable-randomization", 0);
14643
14644 add_packet_config_cmd (&remote_protocol_packets[PACKET_QAgent],
14645 "QAgent", "agent", 0);
14646
14647 add_packet_config_cmd (&remote_protocol_packets[PACKET_QTBuffer_size],
14648 "QTBuffer:size", "trace-buffer-size", 0);
14649
14650 add_packet_config_cmd (&remote_protocol_packets[PACKET_Qbtrace_off],
14651 "Qbtrace:off", "disable-btrace", 0);
14652
14653 add_packet_config_cmd (&remote_protocol_packets[PACKET_Qbtrace_bts],
14654 "Qbtrace:bts", "enable-btrace-bts", 0);
14655
14656 add_packet_config_cmd (&remote_protocol_packets[PACKET_Qbtrace_pt],
14657 "Qbtrace:pt", "enable-btrace-pt", 0);
14658
14659 add_packet_config_cmd (&remote_protocol_packets[PACKET_qXfer_btrace],
14660 "qXfer:btrace", "read-btrace", 0);
14661
14662 add_packet_config_cmd (&remote_protocol_packets[PACKET_qXfer_btrace_conf],
14663 "qXfer:btrace-conf", "read-btrace-conf", 0);
14664
14665 add_packet_config_cmd (&remote_protocol_packets[PACKET_Qbtrace_conf_bts_size],
14666 "Qbtrace-conf:bts:size", "btrace-conf-bts-size", 0);
14667
14668 add_packet_config_cmd (&remote_protocol_packets[PACKET_multiprocess_feature],
14669 "multiprocess-feature", "multiprocess-feature", 0);
14670
14671 add_packet_config_cmd (&remote_protocol_packets[PACKET_swbreak_feature],
14672 "swbreak-feature", "swbreak-feature", 0);
14673
14674 add_packet_config_cmd (&remote_protocol_packets[PACKET_hwbreak_feature],
14675 "hwbreak-feature", "hwbreak-feature", 0);
14676
14677 add_packet_config_cmd (&remote_protocol_packets[PACKET_fork_event_feature],
14678 "fork-event-feature", "fork-event-feature", 0);
14679
14680 add_packet_config_cmd (&remote_protocol_packets[PACKET_vfork_event_feature],
14681 "vfork-event-feature", "vfork-event-feature", 0);
14682
14683 add_packet_config_cmd (&remote_protocol_packets[PACKET_Qbtrace_conf_pt_size],
14684 "Qbtrace-conf:pt:size", "btrace-conf-pt-size", 0);
14685
14686 add_packet_config_cmd (&remote_protocol_packets[PACKET_vContSupported],
14687 "vContSupported", "verbose-resume-supported", 0);
14688
14689 add_packet_config_cmd (&remote_protocol_packets[PACKET_exec_event_feature],
14690 "exec-event-feature", "exec-event-feature", 0);
14691
14692 add_packet_config_cmd (&remote_protocol_packets[PACKET_vCtrlC],
14693 "vCtrlC", "ctrl-c", 0);
14694
14695 add_packet_config_cmd (&remote_protocol_packets[PACKET_QThreadEvents],
14696 "QThreadEvents", "thread-events", 0);
14697
14698 add_packet_config_cmd (&remote_protocol_packets[PACKET_no_resumed],
14699 "N stop reply", "no-resumed-stop-reply", 0);
14700
14701 /* Assert that we've registered "set remote foo-packet" commands
14702 for all packet configs. */
14703 {
14704 int i;
14705
14706 for (i = 0; i < PACKET_MAX; i++)
14707 {
14708 /* Ideally all configs would have a command associated. Some
14709 still don't though. */
14710 int excepted;
14711
14712 switch (i)
14713 {
14714 case PACKET_QNonStop:
14715 case PACKET_EnableDisableTracepoints_feature:
14716 case PACKET_tracenz_feature:
14717 case PACKET_DisconnectedTracing_feature:
14718 case PACKET_augmented_libraries_svr4_read_feature:
14719 case PACKET_qCRC:
14720 /* Additions to this list need to be well justified:
14721 pre-existing packets are OK; new packets are not. */
14722 excepted = 1;
14723 break;
14724 default:
14725 excepted = 0;
14726 break;
14727 }
14728
14729 /* This catches both forgetting to add a config command, and
14730 forgetting to remove a packet from the exception list. */
14731 gdb_assert (excepted == (remote_protocol_packets[i].name == NULL));
14732 }
14733 }
14734
14735 /* Keep the old ``set remote Z-packet ...'' working. Each individual
14736 Z sub-packet has its own set and show commands, but users may
14737 have sets to this variable in their .gdbinit files (or in their
14738 documentation). */
14739 add_setshow_auto_boolean_cmd ("Z-packet", class_obscure,
14740 &remote_Z_packet_detect, _("\
14741 Set use of remote protocol `Z' packets"), _("\
14742 Show use of remote protocol `Z' packets "), _("\
14743 When set, GDB will attempt to use the remote breakpoint and watchpoint\n\
14744 packets."),
14745 set_remote_protocol_Z_packet_cmd,
14746 show_remote_protocol_Z_packet_cmd,
14747 /* FIXME: i18n: Use of remote protocol
14748 `Z' packets is %s. */
14749 &remote_set_cmdlist, &remote_show_cmdlist);
14750
14751 add_prefix_cmd ("remote", class_files, remote_command, _("\
14752 Manipulate files on the remote system\n\
14753 Transfer files to and from the remote target system."),
14754 &remote_cmdlist, "remote ",
14755 0 /* allow-unknown */, &cmdlist);
14756
14757 add_cmd ("put", class_files, remote_put_command,
14758 _("Copy a local file to the remote system."),
14759 &remote_cmdlist);
14760
14761 add_cmd ("get", class_files, remote_get_command,
14762 _("Copy a remote file to the local system."),
14763 &remote_cmdlist);
14764
14765 add_cmd ("delete", class_files, remote_delete_command,
14766 _("Delete a remote file."),
14767 &remote_cmdlist);
14768
14769 add_setshow_string_noescape_cmd ("exec-file", class_files,
14770 &remote_exec_file_var, _("\
14771 Set the remote pathname for \"run\""), _("\
14772 Show the remote pathname for \"run\""), NULL,
14773 set_remote_exec_file,
14774 show_remote_exec_file,
14775 &remote_set_cmdlist,
14776 &remote_show_cmdlist);
14777
14778 add_setshow_boolean_cmd ("range-stepping", class_run,
14779 &use_range_stepping, _("\
14780 Enable or disable range stepping."), _("\
14781 Show whether target-assisted range stepping is enabled."), _("\
14782 If on, and the target supports it, when stepping a source line, GDB\n\
14783 tells the target to step the corresponding range of addresses itself instead\n\
14784 of issuing multiple single-steps. This speeds up source level\n\
14785 stepping. If off, GDB always issues single-steps, even if range\n\
14786 stepping is supported by the target. The default is on."),
14787 set_range_stepping,
14788 show_range_stepping,
14789 &setlist,
14790 &showlist);
14791
14792 /* Eventually initialize fileio. See fileio.c */
14793 initialize_remote_fileio (remote_set_cmdlist, remote_show_cmdlist);
14794
14795 /* Take advantage of the fact that the TID field is not used, to tag
14796 special ptids with it set to != 0. */
14797 magic_null_ptid = ptid_t (42000, -1, 1);
14798 not_sent_ptid = ptid_t (42000, -2, 1);
14799 any_thread_ptid = ptid_t (42000, 0, 1);
14800 }