* remote.c (remote_open_1): Move acknowledging any pending ack,
[binutils-gdb.git] / gdb / remote.c
1 /* Remote target communications for serial-line targets in custom GDB protocol
2
3 Copyright (C) 1988, 1989, 1990, 1991, 1992, 1993, 1994, 1995, 1996, 1997,
4 1998, 1999, 2000, 2001, 2002, 2003, 2004, 2005, 2006, 2007, 2008
5 Free Software Foundation, Inc.
6
7 This file is part of GDB.
8
9 This program is free software; you can redistribute it and/or modify
10 it under the terms of the GNU General Public License as published by
11 the Free Software Foundation; either version 3 of the License, or
12 (at your option) any later version.
13
14 This program is distributed in the hope that it will be useful,
15 but WITHOUT ANY WARRANTY; without even the implied warranty of
16 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
17 GNU General Public License for more details.
18
19 You should have received a copy of the GNU General Public License
20 along with this program. If not, see <http://www.gnu.org/licenses/>. */
21
22 /* See the GDB User Guide for details of the GDB remote protocol. */
23
24 #include "defs.h"
25 #include "gdb_string.h"
26 #include <ctype.h>
27 #include <fcntl.h>
28 #include "inferior.h"
29 #include "bfd.h"
30 #include "symfile.h"
31 #include "exceptions.h"
32 #include "target.h"
33 /*#include "terminal.h" */
34 #include "gdbcmd.h"
35 #include "objfiles.h"
36 #include "gdb-stabs.h"
37 #include "gdbthread.h"
38 #include "remote.h"
39 #include "regcache.h"
40 #include "value.h"
41 #include "gdb_assert.h"
42 #include "observer.h"
43 #include "solib.h"
44 #include "cli/cli-decode.h"
45 #include "cli/cli-setshow.h"
46 #include "target-descriptions.h"
47
48 #include <ctype.h>
49 #include <sys/time.h>
50
51 #include "event-loop.h"
52 #include "event-top.h"
53 #include "inf-loop.h"
54
55 #include <signal.h>
56 #include "serial.h"
57
58 #include "gdbcore.h" /* for exec_bfd */
59
60 #include "remote-fileio.h"
61 #include "gdb/fileio.h"
62 #include "gdb_stat.h"
63
64 #include "memory-map.h"
65
66 /* The size to align memory write packets, when practical. The protocol
67 does not guarantee any alignment, and gdb will generate short
68 writes and unaligned writes, but even as a best-effort attempt this
69 can improve bulk transfers. For instance, if a write is misaligned
70 relative to the target's data bus, the stub may need to make an extra
71 round trip fetching data from the target. This doesn't make a
72 huge difference, but it's easy to do, so we try to be helpful.
73
74 The alignment chosen is arbitrary; usually data bus width is
75 important here, not the possibly larger cache line size. */
76 enum { REMOTE_ALIGN_WRITES = 16 };
77
78 /* Prototypes for local functions. */
79 static void cleanup_sigint_signal_handler (void *dummy);
80 static void initialize_sigint_signal_handler (void);
81 static int getpkt_sane (char **buf, long *sizeof_buf, int forever);
82
83 static void handle_remote_sigint (int);
84 static void handle_remote_sigint_twice (int);
85 static void async_remote_interrupt (gdb_client_data);
86 void async_remote_interrupt_twice (gdb_client_data);
87
88 static void remote_files_info (struct target_ops *ignore);
89
90 static void remote_prepare_to_store (struct regcache *regcache);
91
92 static void remote_fetch_registers (struct regcache *regcache, int regno);
93
94 static void remote_resume (ptid_t ptid, int step,
95 enum target_signal siggnal);
96 static void remote_open (char *name, int from_tty);
97
98 static void extended_remote_open (char *name, int from_tty);
99
100 static void remote_open_1 (char *, int, struct target_ops *, int extended_p);
101
102 static void remote_close (int quitting);
103
104 static void remote_store_registers (struct regcache *regcache, int regno);
105
106 static void remote_mourn (void);
107
108 static void extended_remote_restart (void);
109
110 static void extended_remote_mourn (void);
111
112 static void remote_mourn_1 (struct target_ops *);
113
114 static void remote_send (char **buf, long *sizeof_buf_p);
115
116 static int readchar (int timeout);
117
118 static ptid_t remote_wait (ptid_t ptid,
119 struct target_waitstatus *status);
120
121 static void remote_kill (void);
122
123 static int tohex (int nib);
124
125 static int remote_can_async_p (void);
126
127 static int remote_is_async_p (void);
128
129 static void remote_async (void (*callback) (enum inferior_event_type event_type,
130 void *context), void *context);
131
132 static int remote_async_mask (int new_mask);
133
134 static void remote_detach (char *args, int from_tty);
135
136 static void remote_interrupt (int signo);
137
138 static void remote_interrupt_twice (int signo);
139
140 static void interrupt_query (void);
141
142 static void set_general_thread (struct ptid ptid);
143 static void set_continue_thread (struct ptid ptid);
144
145 static int remote_thread_alive (ptid_t);
146
147 static void get_offsets (void);
148
149 static void skip_frame (void);
150
151 static long read_frame (char **buf_p, long *sizeof_buf);
152
153 static int hexnumlen (ULONGEST num);
154
155 static void init_remote_ops (void);
156
157 static void init_extended_remote_ops (void);
158
159 static void remote_stop (ptid_t);
160
161 static int ishex (int ch, int *val);
162
163 static int stubhex (int ch);
164
165 static int hexnumstr (char *, ULONGEST);
166
167 static int hexnumnstr (char *, ULONGEST, int);
168
169 static CORE_ADDR remote_address_masked (CORE_ADDR);
170
171 static void print_packet (char *);
172
173 static unsigned long crc32 (unsigned char *, int, unsigned int);
174
175 static void compare_sections_command (char *, int);
176
177 static void packet_command (char *, int);
178
179 static int stub_unpack_int (char *buff, int fieldlength);
180
181 static ptid_t remote_current_thread (ptid_t oldptid);
182
183 static void remote_find_new_threads (void);
184
185 static void record_currthread (ptid_t currthread);
186
187 static int fromhex (int a);
188
189 static int hex2bin (const char *hex, gdb_byte *bin, int count);
190
191 static int bin2hex (const gdb_byte *bin, char *hex, int count);
192
193 static int putpkt_binary (char *buf, int cnt);
194
195 static void check_binary_download (CORE_ADDR addr);
196
197 struct packet_config;
198
199 static void show_packet_config_cmd (struct packet_config *config);
200
201 static void update_packet_config (struct packet_config *config);
202
203 static void set_remote_protocol_packet_cmd (char *args, int from_tty,
204 struct cmd_list_element *c);
205
206 static void show_remote_protocol_packet_cmd (struct ui_file *file,
207 int from_tty,
208 struct cmd_list_element *c,
209 const char *value);
210
211 static char *write_ptid (char *buf, const char *endbuf, ptid_t ptid);
212 static ptid_t read_ptid (char *buf, char **obuf);
213
214 static void remote_query_supported (void);
215
216 static void remote_check_symbols (struct objfile *objfile);
217
218 void _initialize_remote (void);
219
220 /* For "remote". */
221
222 static struct cmd_list_element *remote_cmdlist;
223
224 /* For "set remote" and "show remote". */
225
226 static struct cmd_list_element *remote_set_cmdlist;
227 static struct cmd_list_element *remote_show_cmdlist;
228
229 /* Description of the remote protocol state for the currently
230 connected target. This is per-target state, and independent of the
231 selected architecture. */
232
233 struct remote_state
234 {
235 /* A buffer to use for incoming packets, and its current size. The
236 buffer is grown dynamically for larger incoming packets.
237 Outgoing packets may also be constructed in this buffer.
238 BUF_SIZE is always at least REMOTE_PACKET_SIZE;
239 REMOTE_PACKET_SIZE should be used to limit the length of outgoing
240 packets. */
241 char *buf;
242 long buf_size;
243
244 /* If we negotiated packet size explicitly (and thus can bypass
245 heuristics for the largest packet size that will not overflow
246 a buffer in the stub), this will be set to that packet size.
247 Otherwise zero, meaning to use the guessed size. */
248 long explicit_packet_size;
249
250 /* remote_wait is normally called when the target is running and
251 waits for a stop reply packet. But sometimes we need to call it
252 when the target is already stopped. We can send a "?" packet
253 and have remote_wait read the response. Or, if we already have
254 the response, we can stash it in BUF and tell remote_wait to
255 skip calling getpkt. This flag is set when BUF contains a
256 stop reply packet and the target is not waiting. */
257 int cached_wait_status;
258
259 /* True, if in no ack mode. That is, neither GDB nor the stub will
260 expect acks from each other. The connection is assumed to be
261 reliable. */
262 int noack_mode;
263
264 /* True if we're connected in extended remote mode. */
265 int extended;
266
267 /* True if the stub reported support for multi-process
268 extensions. */
269 int multi_process_aware;
270
271 /* True if we resumed the target and we're waiting for the target to
272 stop. In the mean time, we can't start another command/query.
273 The remote server wouldn't be ready to process it, so we'd
274 timeout waiting for a reply that would never come and eventually
275 we'd close the connection. This can happen in asynchronous mode
276 because we allow GDB commands while the target is running. */
277 int waiting_for_stop_reply;
278 };
279
280 /* Returns true if the multi-process extensions are in effect. */
281 static int
282 remote_multi_process_p (struct remote_state *rs)
283 {
284 return rs->extended && rs->multi_process_aware;
285 }
286
287 /* This data could be associated with a target, but we do not always
288 have access to the current target when we need it, so for now it is
289 static. This will be fine for as long as only one target is in use
290 at a time. */
291 static struct remote_state remote_state;
292
293 static struct remote_state *
294 get_remote_state_raw (void)
295 {
296 return &remote_state;
297 }
298
299 /* Description of the remote protocol for a given architecture. */
300
301 struct packet_reg
302 {
303 long offset; /* Offset into G packet. */
304 long regnum; /* GDB's internal register number. */
305 LONGEST pnum; /* Remote protocol register number. */
306 int in_g_packet; /* Always part of G packet. */
307 /* long size in bytes; == register_size (target_gdbarch, regnum);
308 at present. */
309 /* char *name; == gdbarch_register_name (target_gdbarch, regnum);
310 at present. */
311 };
312
313 struct remote_arch_state
314 {
315 /* Description of the remote protocol registers. */
316 long sizeof_g_packet;
317
318 /* Description of the remote protocol registers indexed by REGNUM
319 (making an array gdbarch_num_regs in size). */
320 struct packet_reg *regs;
321
322 /* This is the size (in chars) of the first response to the ``g''
323 packet. It is used as a heuristic when determining the maximum
324 size of memory-read and memory-write packets. A target will
325 typically only reserve a buffer large enough to hold the ``g''
326 packet. The size does not include packet overhead (headers and
327 trailers). */
328 long actual_register_packet_size;
329
330 /* This is the maximum size (in chars) of a non read/write packet.
331 It is also used as a cap on the size of read/write packets. */
332 long remote_packet_size;
333 };
334
335
336 /* Handle for retreving the remote protocol data from gdbarch. */
337 static struct gdbarch_data *remote_gdbarch_data_handle;
338
339 static struct remote_arch_state *
340 get_remote_arch_state (void)
341 {
342 return gdbarch_data (target_gdbarch, remote_gdbarch_data_handle);
343 }
344
345 /* Fetch the global remote target state. */
346
347 static struct remote_state *
348 get_remote_state (void)
349 {
350 /* Make sure that the remote architecture state has been
351 initialized, because doing so might reallocate rs->buf. Any
352 function which calls getpkt also needs to be mindful of changes
353 to rs->buf, but this call limits the number of places which run
354 into trouble. */
355 get_remote_arch_state ();
356
357 return get_remote_state_raw ();
358 }
359
360 static int
361 compare_pnums (const void *lhs_, const void *rhs_)
362 {
363 const struct packet_reg * const *lhs = lhs_;
364 const struct packet_reg * const *rhs = rhs_;
365
366 if ((*lhs)->pnum < (*rhs)->pnum)
367 return -1;
368 else if ((*lhs)->pnum == (*rhs)->pnum)
369 return 0;
370 else
371 return 1;
372 }
373
374 static void *
375 init_remote_state (struct gdbarch *gdbarch)
376 {
377 int regnum, num_remote_regs, offset;
378 struct remote_state *rs = get_remote_state_raw ();
379 struct remote_arch_state *rsa;
380 struct packet_reg **remote_regs;
381
382 rsa = GDBARCH_OBSTACK_ZALLOC (gdbarch, struct remote_arch_state);
383
384 /* Use the architecture to build a regnum<->pnum table, which will be
385 1:1 unless a feature set specifies otherwise. */
386 rsa->regs = GDBARCH_OBSTACK_CALLOC (gdbarch,
387 gdbarch_num_regs (gdbarch),
388 struct packet_reg);
389 for (regnum = 0; regnum < gdbarch_num_regs (gdbarch); regnum++)
390 {
391 struct packet_reg *r = &rsa->regs[regnum];
392
393 if (register_size (gdbarch, regnum) == 0)
394 /* Do not try to fetch zero-sized (placeholder) registers. */
395 r->pnum = -1;
396 else
397 r->pnum = gdbarch_remote_register_number (gdbarch, regnum);
398
399 r->regnum = regnum;
400 }
401
402 /* Define the g/G packet format as the contents of each register
403 with a remote protocol number, in order of ascending protocol
404 number. */
405
406 remote_regs = alloca (gdbarch_num_regs (gdbarch)
407 * sizeof (struct packet_reg *));
408 for (num_remote_regs = 0, regnum = 0;
409 regnum < gdbarch_num_regs (gdbarch);
410 regnum++)
411 if (rsa->regs[regnum].pnum != -1)
412 remote_regs[num_remote_regs++] = &rsa->regs[regnum];
413
414 qsort (remote_regs, num_remote_regs, sizeof (struct packet_reg *),
415 compare_pnums);
416
417 for (regnum = 0, offset = 0; regnum < num_remote_regs; regnum++)
418 {
419 remote_regs[regnum]->in_g_packet = 1;
420 remote_regs[regnum]->offset = offset;
421 offset += register_size (gdbarch, remote_regs[regnum]->regnum);
422 }
423
424 /* Record the maximum possible size of the g packet - it may turn out
425 to be smaller. */
426 rsa->sizeof_g_packet = offset;
427
428 /* Default maximum number of characters in a packet body. Many
429 remote stubs have a hardwired buffer size of 400 bytes
430 (c.f. BUFMAX in m68k-stub.c and i386-stub.c). BUFMAX-1 is used
431 as the maximum packet-size to ensure that the packet and an extra
432 NUL character can always fit in the buffer. This stops GDB
433 trashing stubs that try to squeeze an extra NUL into what is
434 already a full buffer (As of 1999-12-04 that was most stubs). */
435 rsa->remote_packet_size = 400 - 1;
436
437 /* This one is filled in when a ``g'' packet is received. */
438 rsa->actual_register_packet_size = 0;
439
440 /* Should rsa->sizeof_g_packet needs more space than the
441 default, adjust the size accordingly. Remember that each byte is
442 encoded as two characters. 32 is the overhead for the packet
443 header / footer. NOTE: cagney/1999-10-26: I suspect that 8
444 (``$NN:G...#NN'') is a better guess, the below has been padded a
445 little. */
446 if (rsa->sizeof_g_packet > ((rsa->remote_packet_size - 32) / 2))
447 rsa->remote_packet_size = (rsa->sizeof_g_packet * 2 + 32);
448
449 /* Make sure that the packet buffer is plenty big enough for
450 this architecture. */
451 if (rs->buf_size < rsa->remote_packet_size)
452 {
453 rs->buf_size = 2 * rsa->remote_packet_size;
454 rs->buf = xrealloc (rs->buf, rs->buf_size);
455 }
456
457 return rsa;
458 }
459
460 /* Return the current allowed size of a remote packet. This is
461 inferred from the current architecture, and should be used to
462 limit the length of outgoing packets. */
463 static long
464 get_remote_packet_size (void)
465 {
466 struct remote_state *rs = get_remote_state ();
467 struct remote_arch_state *rsa = get_remote_arch_state ();
468
469 if (rs->explicit_packet_size)
470 return rs->explicit_packet_size;
471
472 return rsa->remote_packet_size;
473 }
474
475 static struct packet_reg *
476 packet_reg_from_regnum (struct remote_arch_state *rsa, long regnum)
477 {
478 if (regnum < 0 && regnum >= gdbarch_num_regs (target_gdbarch))
479 return NULL;
480 else
481 {
482 struct packet_reg *r = &rsa->regs[regnum];
483 gdb_assert (r->regnum == regnum);
484 return r;
485 }
486 }
487
488 static struct packet_reg *
489 packet_reg_from_pnum (struct remote_arch_state *rsa, LONGEST pnum)
490 {
491 int i;
492 for (i = 0; i < gdbarch_num_regs (target_gdbarch); i++)
493 {
494 struct packet_reg *r = &rsa->regs[i];
495 if (r->pnum == pnum)
496 return r;
497 }
498 return NULL;
499 }
500
501 /* FIXME: graces/2002-08-08: These variables should eventually be
502 bound to an instance of the target object (as in gdbarch-tdep()),
503 when such a thing exists. */
504
505 /* This is set to the data address of the access causing the target
506 to stop for a watchpoint. */
507 static CORE_ADDR remote_watch_data_address;
508
509 /* This is non-zero if target stopped for a watchpoint. */
510 static int remote_stopped_by_watchpoint_p;
511
512 static struct target_ops remote_ops;
513
514 static struct target_ops extended_remote_ops;
515
516 static int remote_async_mask_value = 1;
517
518 /* FIXME: cagney/1999-09-23: Even though getpkt was called with
519 ``forever'' still use the normal timeout mechanism. This is
520 currently used by the ASYNC code to guarentee that target reads
521 during the initial connect always time-out. Once getpkt has been
522 modified to return a timeout indication and, in turn
523 remote_wait()/wait_for_inferior() have gained a timeout parameter
524 this can go away. */
525 static int wait_forever_enabled_p = 1;
526
527
528 /* This variable chooses whether to send a ^C or a break when the user
529 requests program interruption. Although ^C is usually what remote
530 systems expect, and that is the default here, sometimes a break is
531 preferable instead. */
532
533 static int remote_break;
534
535 /* Descriptor for I/O to remote machine. Initialize it to NULL so that
536 remote_open knows that we don't have a file open when the program
537 starts. */
538 static struct serial *remote_desc = NULL;
539
540 /* This variable sets the number of bits in an address that are to be
541 sent in a memory ("M" or "m") packet. Normally, after stripping
542 leading zeros, the entire address would be sent. This variable
543 restricts the address to REMOTE_ADDRESS_SIZE bits. HISTORY: The
544 initial implementation of remote.c restricted the address sent in
545 memory packets to ``host::sizeof long'' bytes - (typically 32
546 bits). Consequently, for 64 bit targets, the upper 32 bits of an
547 address was never sent. Since fixing this bug may cause a break in
548 some remote targets this variable is principly provided to
549 facilitate backward compatibility. */
550
551 static int remote_address_size;
552
553 /* Temporary to track who currently owns the terminal. See
554 remote_terminal_* for more details. */
555
556 static int remote_async_terminal_ours_p;
557
558 /* The executable file to use for "run" on the remote side. */
559
560 static char *remote_exec_file = "";
561
562 \f
563 /* User configurable variables for the number of characters in a
564 memory read/write packet. MIN (rsa->remote_packet_size,
565 rsa->sizeof_g_packet) is the default. Some targets need smaller
566 values (fifo overruns, et.al.) and some users need larger values
567 (speed up transfers). The variables ``preferred_*'' (the user
568 request), ``current_*'' (what was actually set) and ``forced_*''
569 (Positive - a soft limit, negative - a hard limit). */
570
571 struct memory_packet_config
572 {
573 char *name;
574 long size;
575 int fixed_p;
576 };
577
578 /* Compute the current size of a read/write packet. Since this makes
579 use of ``actual_register_packet_size'' the computation is dynamic. */
580
581 static long
582 get_memory_packet_size (struct memory_packet_config *config)
583 {
584 struct remote_state *rs = get_remote_state ();
585 struct remote_arch_state *rsa = get_remote_arch_state ();
586
587 /* NOTE: The somewhat arbitrary 16k comes from the knowledge (folk
588 law?) that some hosts don't cope very well with large alloca()
589 calls. Eventually the alloca() code will be replaced by calls to
590 xmalloc() and make_cleanups() allowing this restriction to either
591 be lifted or removed. */
592 #ifndef MAX_REMOTE_PACKET_SIZE
593 #define MAX_REMOTE_PACKET_SIZE 16384
594 #endif
595 /* NOTE: 20 ensures we can write at least one byte. */
596 #ifndef MIN_REMOTE_PACKET_SIZE
597 #define MIN_REMOTE_PACKET_SIZE 20
598 #endif
599 long what_they_get;
600 if (config->fixed_p)
601 {
602 if (config->size <= 0)
603 what_they_get = MAX_REMOTE_PACKET_SIZE;
604 else
605 what_they_get = config->size;
606 }
607 else
608 {
609 what_they_get = get_remote_packet_size ();
610 /* Limit the packet to the size specified by the user. */
611 if (config->size > 0
612 && what_they_get > config->size)
613 what_they_get = config->size;
614
615 /* Limit it to the size of the targets ``g'' response unless we have
616 permission from the stub to use a larger packet size. */
617 if (rs->explicit_packet_size == 0
618 && rsa->actual_register_packet_size > 0
619 && what_they_get > rsa->actual_register_packet_size)
620 what_they_get = rsa->actual_register_packet_size;
621 }
622 if (what_they_get > MAX_REMOTE_PACKET_SIZE)
623 what_they_get = MAX_REMOTE_PACKET_SIZE;
624 if (what_they_get < MIN_REMOTE_PACKET_SIZE)
625 what_they_get = MIN_REMOTE_PACKET_SIZE;
626
627 /* Make sure there is room in the global buffer for this packet
628 (including its trailing NUL byte). */
629 if (rs->buf_size < what_they_get + 1)
630 {
631 rs->buf_size = 2 * what_they_get;
632 rs->buf = xrealloc (rs->buf, 2 * what_they_get);
633 }
634
635 return what_they_get;
636 }
637
638 /* Update the size of a read/write packet. If they user wants
639 something really big then do a sanity check. */
640
641 static void
642 set_memory_packet_size (char *args, struct memory_packet_config *config)
643 {
644 int fixed_p = config->fixed_p;
645 long size = config->size;
646 if (args == NULL)
647 error (_("Argument required (integer, `fixed' or `limited')."));
648 else if (strcmp (args, "hard") == 0
649 || strcmp (args, "fixed") == 0)
650 fixed_p = 1;
651 else if (strcmp (args, "soft") == 0
652 || strcmp (args, "limit") == 0)
653 fixed_p = 0;
654 else
655 {
656 char *end;
657 size = strtoul (args, &end, 0);
658 if (args == end)
659 error (_("Invalid %s (bad syntax)."), config->name);
660 #if 0
661 /* Instead of explicitly capping the size of a packet to
662 MAX_REMOTE_PACKET_SIZE or dissallowing it, the user is
663 instead allowed to set the size to something arbitrarily
664 large. */
665 if (size > MAX_REMOTE_PACKET_SIZE)
666 error (_("Invalid %s (too large)."), config->name);
667 #endif
668 }
669 /* Extra checks? */
670 if (fixed_p && !config->fixed_p)
671 {
672 if (! query (_("The target may not be able to correctly handle a %s\n"
673 "of %ld bytes. Change the packet size? "),
674 config->name, size))
675 error (_("Packet size not changed."));
676 }
677 /* Update the config. */
678 config->fixed_p = fixed_p;
679 config->size = size;
680 }
681
682 static void
683 show_memory_packet_size (struct memory_packet_config *config)
684 {
685 printf_filtered (_("The %s is %ld. "), config->name, config->size);
686 if (config->fixed_p)
687 printf_filtered (_("Packets are fixed at %ld bytes.\n"),
688 get_memory_packet_size (config));
689 else
690 printf_filtered (_("Packets are limited to %ld bytes.\n"),
691 get_memory_packet_size (config));
692 }
693
694 static struct memory_packet_config memory_write_packet_config =
695 {
696 "memory-write-packet-size",
697 };
698
699 static void
700 set_memory_write_packet_size (char *args, int from_tty)
701 {
702 set_memory_packet_size (args, &memory_write_packet_config);
703 }
704
705 static void
706 show_memory_write_packet_size (char *args, int from_tty)
707 {
708 show_memory_packet_size (&memory_write_packet_config);
709 }
710
711 static long
712 get_memory_write_packet_size (void)
713 {
714 return get_memory_packet_size (&memory_write_packet_config);
715 }
716
717 static struct memory_packet_config memory_read_packet_config =
718 {
719 "memory-read-packet-size",
720 };
721
722 static void
723 set_memory_read_packet_size (char *args, int from_tty)
724 {
725 set_memory_packet_size (args, &memory_read_packet_config);
726 }
727
728 static void
729 show_memory_read_packet_size (char *args, int from_tty)
730 {
731 show_memory_packet_size (&memory_read_packet_config);
732 }
733
734 static long
735 get_memory_read_packet_size (void)
736 {
737 long size = get_memory_packet_size (&memory_read_packet_config);
738 /* FIXME: cagney/1999-11-07: Functions like getpkt() need to get an
739 extra buffer size argument before the memory read size can be
740 increased beyond this. */
741 if (size > get_remote_packet_size ())
742 size = get_remote_packet_size ();
743 return size;
744 }
745
746 \f
747 /* Generic configuration support for packets the stub optionally
748 supports. Allows the user to specify the use of the packet as well
749 as allowing GDB to auto-detect support in the remote stub. */
750
751 enum packet_support
752 {
753 PACKET_SUPPORT_UNKNOWN = 0,
754 PACKET_ENABLE,
755 PACKET_DISABLE
756 };
757
758 struct packet_config
759 {
760 const char *name;
761 const char *title;
762 enum auto_boolean detect;
763 enum packet_support support;
764 };
765
766 /* Analyze a packet's return value and update the packet config
767 accordingly. */
768
769 enum packet_result
770 {
771 PACKET_ERROR,
772 PACKET_OK,
773 PACKET_UNKNOWN
774 };
775
776 static void
777 update_packet_config (struct packet_config *config)
778 {
779 switch (config->detect)
780 {
781 case AUTO_BOOLEAN_TRUE:
782 config->support = PACKET_ENABLE;
783 break;
784 case AUTO_BOOLEAN_FALSE:
785 config->support = PACKET_DISABLE;
786 break;
787 case AUTO_BOOLEAN_AUTO:
788 config->support = PACKET_SUPPORT_UNKNOWN;
789 break;
790 }
791 }
792
793 static void
794 show_packet_config_cmd (struct packet_config *config)
795 {
796 char *support = "internal-error";
797 switch (config->support)
798 {
799 case PACKET_ENABLE:
800 support = "enabled";
801 break;
802 case PACKET_DISABLE:
803 support = "disabled";
804 break;
805 case PACKET_SUPPORT_UNKNOWN:
806 support = "unknown";
807 break;
808 }
809 switch (config->detect)
810 {
811 case AUTO_BOOLEAN_AUTO:
812 printf_filtered (_("Support for the `%s' packet is auto-detected, currently %s.\n"),
813 config->name, support);
814 break;
815 case AUTO_BOOLEAN_TRUE:
816 case AUTO_BOOLEAN_FALSE:
817 printf_filtered (_("Support for the `%s' packet is currently %s.\n"),
818 config->name, support);
819 break;
820 }
821 }
822
823 static void
824 add_packet_config_cmd (struct packet_config *config, const char *name,
825 const char *title, int legacy)
826 {
827 char *set_doc;
828 char *show_doc;
829 char *cmd_name;
830
831 config->name = name;
832 config->title = title;
833 config->detect = AUTO_BOOLEAN_AUTO;
834 config->support = PACKET_SUPPORT_UNKNOWN;
835 set_doc = xstrprintf ("Set use of remote protocol `%s' (%s) packet",
836 name, title);
837 show_doc = xstrprintf ("Show current use of remote protocol `%s' (%s) packet",
838 name, title);
839 /* set/show TITLE-packet {auto,on,off} */
840 cmd_name = xstrprintf ("%s-packet", title);
841 add_setshow_auto_boolean_cmd (cmd_name, class_obscure,
842 &config->detect, set_doc, show_doc, NULL, /* help_doc */
843 set_remote_protocol_packet_cmd,
844 show_remote_protocol_packet_cmd,
845 &remote_set_cmdlist, &remote_show_cmdlist);
846 /* set/show remote NAME-packet {auto,on,off} -- legacy. */
847 if (legacy)
848 {
849 char *legacy_name;
850 legacy_name = xstrprintf ("%s-packet", name);
851 add_alias_cmd (legacy_name, cmd_name, class_obscure, 0,
852 &remote_set_cmdlist);
853 add_alias_cmd (legacy_name, cmd_name, class_obscure, 0,
854 &remote_show_cmdlist);
855 }
856 }
857
858 static enum packet_result
859 packet_check_result (const char *buf)
860 {
861 if (buf[0] != '\0')
862 {
863 /* The stub recognized the packet request. Check that the
864 operation succeeded. */
865 if (buf[0] == 'E'
866 && isxdigit (buf[1]) && isxdigit (buf[2])
867 && buf[3] == '\0')
868 /* "Enn" - definitly an error. */
869 return PACKET_ERROR;
870
871 /* Always treat "E." as an error. This will be used for
872 more verbose error messages, such as E.memtypes. */
873 if (buf[0] == 'E' && buf[1] == '.')
874 return PACKET_ERROR;
875
876 /* The packet may or may not be OK. Just assume it is. */
877 return PACKET_OK;
878 }
879 else
880 /* The stub does not support the packet. */
881 return PACKET_UNKNOWN;
882 }
883
884 static enum packet_result
885 packet_ok (const char *buf, struct packet_config *config)
886 {
887 enum packet_result result;
888
889 result = packet_check_result (buf);
890 switch (result)
891 {
892 case PACKET_OK:
893 case PACKET_ERROR:
894 /* The stub recognized the packet request. */
895 switch (config->support)
896 {
897 case PACKET_SUPPORT_UNKNOWN:
898 if (remote_debug)
899 fprintf_unfiltered (gdb_stdlog,
900 "Packet %s (%s) is supported\n",
901 config->name, config->title);
902 config->support = PACKET_ENABLE;
903 break;
904 case PACKET_DISABLE:
905 internal_error (__FILE__, __LINE__,
906 _("packet_ok: attempt to use a disabled packet"));
907 break;
908 case PACKET_ENABLE:
909 break;
910 }
911 break;
912 case PACKET_UNKNOWN:
913 /* The stub does not support the packet. */
914 switch (config->support)
915 {
916 case PACKET_ENABLE:
917 if (config->detect == AUTO_BOOLEAN_AUTO)
918 /* If the stub previously indicated that the packet was
919 supported then there is a protocol error.. */
920 error (_("Protocol error: %s (%s) conflicting enabled responses."),
921 config->name, config->title);
922 else
923 /* The user set it wrong. */
924 error (_("Enabled packet %s (%s) not recognized by stub"),
925 config->name, config->title);
926 break;
927 case PACKET_SUPPORT_UNKNOWN:
928 if (remote_debug)
929 fprintf_unfiltered (gdb_stdlog,
930 "Packet %s (%s) is NOT supported\n",
931 config->name, config->title);
932 config->support = PACKET_DISABLE;
933 break;
934 case PACKET_DISABLE:
935 break;
936 }
937 break;
938 }
939
940 return result;
941 }
942
943 enum {
944 PACKET_vCont = 0,
945 PACKET_X,
946 PACKET_qSymbol,
947 PACKET_P,
948 PACKET_p,
949 PACKET_Z0,
950 PACKET_Z1,
951 PACKET_Z2,
952 PACKET_Z3,
953 PACKET_Z4,
954 PACKET_vFile_open,
955 PACKET_vFile_pread,
956 PACKET_vFile_pwrite,
957 PACKET_vFile_close,
958 PACKET_vFile_unlink,
959 PACKET_qXfer_auxv,
960 PACKET_qXfer_features,
961 PACKET_qXfer_libraries,
962 PACKET_qXfer_memory_map,
963 PACKET_qXfer_spu_read,
964 PACKET_qXfer_spu_write,
965 PACKET_qGetTLSAddr,
966 PACKET_qSupported,
967 PACKET_QPassSignals,
968 PACKET_qSearch_memory,
969 PACKET_vAttach,
970 PACKET_vRun,
971 PACKET_QStartNoAckMode,
972 PACKET_vKill,
973 PACKET_MAX
974 };
975
976 static struct packet_config remote_protocol_packets[PACKET_MAX];
977
978 static void
979 set_remote_protocol_packet_cmd (char *args, int from_tty,
980 struct cmd_list_element *c)
981 {
982 struct packet_config *packet;
983
984 for (packet = remote_protocol_packets;
985 packet < &remote_protocol_packets[PACKET_MAX];
986 packet++)
987 {
988 if (&packet->detect == c->var)
989 {
990 update_packet_config (packet);
991 return;
992 }
993 }
994 internal_error (__FILE__, __LINE__, "Could not find config for %s",
995 c->name);
996 }
997
998 static void
999 show_remote_protocol_packet_cmd (struct ui_file *file, int from_tty,
1000 struct cmd_list_element *c,
1001 const char *value)
1002 {
1003 struct packet_config *packet;
1004
1005 for (packet = remote_protocol_packets;
1006 packet < &remote_protocol_packets[PACKET_MAX];
1007 packet++)
1008 {
1009 if (&packet->detect == c->var)
1010 {
1011 show_packet_config_cmd (packet);
1012 return;
1013 }
1014 }
1015 internal_error (__FILE__, __LINE__, "Could not find config for %s",
1016 c->name);
1017 }
1018
1019 /* Should we try one of the 'Z' requests? */
1020
1021 enum Z_packet_type
1022 {
1023 Z_PACKET_SOFTWARE_BP,
1024 Z_PACKET_HARDWARE_BP,
1025 Z_PACKET_WRITE_WP,
1026 Z_PACKET_READ_WP,
1027 Z_PACKET_ACCESS_WP,
1028 NR_Z_PACKET_TYPES
1029 };
1030
1031 /* For compatibility with older distributions. Provide a ``set remote
1032 Z-packet ...'' command that updates all the Z packet types. */
1033
1034 static enum auto_boolean remote_Z_packet_detect;
1035
1036 static void
1037 set_remote_protocol_Z_packet_cmd (char *args, int from_tty,
1038 struct cmd_list_element *c)
1039 {
1040 int i;
1041 for (i = 0; i < NR_Z_PACKET_TYPES; i++)
1042 {
1043 remote_protocol_packets[PACKET_Z0 + i].detect = remote_Z_packet_detect;
1044 update_packet_config (&remote_protocol_packets[PACKET_Z0 + i]);
1045 }
1046 }
1047
1048 static void
1049 show_remote_protocol_Z_packet_cmd (struct ui_file *file, int from_tty,
1050 struct cmd_list_element *c,
1051 const char *value)
1052 {
1053 int i;
1054 for (i = 0; i < NR_Z_PACKET_TYPES; i++)
1055 {
1056 show_packet_config_cmd (&remote_protocol_packets[PACKET_Z0 + i]);
1057 }
1058 }
1059
1060 /* Should we try the 'ThreadInfo' query packet?
1061
1062 This variable (NOT available to the user: auto-detect only!)
1063 determines whether GDB will use the new, simpler "ThreadInfo"
1064 query or the older, more complex syntax for thread queries.
1065 This is an auto-detect variable (set to true at each connect,
1066 and set to false when the target fails to recognize it). */
1067
1068 static int use_threadinfo_query;
1069 static int use_threadextra_query;
1070
1071 /* Tokens for use by the asynchronous signal handlers for SIGINT. */
1072 static struct async_signal_handler *sigint_remote_twice_token;
1073 static struct async_signal_handler *sigint_remote_token;
1074
1075 \f
1076
1077 static ptid_t magic_null_ptid;
1078 static ptid_t not_sent_ptid;
1079 static ptid_t any_thread_ptid;
1080
1081 /* These are the threads which we last sent to the remote system. The
1082 TID member will be -1 for all or -2 for not sent yet. */
1083
1084 static ptid_t general_thread;
1085 static ptid_t continue_thread;
1086
1087
1088 /* Call this function as a result of
1089 1) A halt indication (T packet) containing a thread id
1090 2) A direct query of currthread
1091 3) Successful execution of set thread
1092 */
1093
1094 static void
1095 record_currthread (ptid_t currthread)
1096 {
1097 general_thread = currthread;
1098
1099 /* If this is a new thread, add it to GDB's thread list.
1100 If we leave it up to WFI to do this, bad things will happen. */
1101
1102 if (in_thread_list (currthread) && is_exited (currthread))
1103 {
1104 /* We're seeing an event on a thread id we knew had exited.
1105 This has to be a new thread reusing the old id. Add it. */
1106 add_thread (currthread);
1107 return;
1108 }
1109
1110 if (!in_thread_list (currthread))
1111 {
1112 if (ptid_equal (pid_to_ptid (ptid_get_pid (currthread)), inferior_ptid))
1113 {
1114 /* inferior_ptid has no thread member yet. This can happen
1115 with the vAttach -> remote_wait,"TAAthread:" path if the
1116 stub doesn't support qC. This is the first stop reported
1117 after an attach, so this is the main thread. Update the
1118 ptid in the thread list. */
1119 thread_change_ptid (inferior_ptid, currthread);
1120 return;
1121 }
1122
1123 if (ptid_equal (magic_null_ptid, inferior_ptid))
1124 {
1125 /* inferior_ptid is not set yet. This can happen with the
1126 vRun -> remote_wait,"TAAthread:" path if the stub
1127 doesn't support qC. This is the first stop reported
1128 after an attach, so this is the main thread. Update the
1129 ptid in the thread list. */
1130 thread_change_ptid (inferior_ptid, currthread);
1131 return;
1132 }
1133
1134 /* This is really a new thread. Add it. */
1135 add_thread (currthread);
1136 }
1137
1138 if (!in_inferior_list (ptid_get_pid (currthread)))
1139 /* When connecting to a target remote, or to a target
1140 extended-remote which already was debugging an inferior, we may
1141 not know about it yet --- add it. */
1142 add_inferior (ptid_get_pid (currthread));
1143 }
1144
1145 static char *last_pass_packet;
1146
1147 /* If 'QPassSignals' is supported, tell the remote stub what signals
1148 it can simply pass through to the inferior without reporting. */
1149
1150 static void
1151 remote_pass_signals (void)
1152 {
1153 if (remote_protocol_packets[PACKET_QPassSignals].support != PACKET_DISABLE)
1154 {
1155 char *pass_packet, *p;
1156 int numsigs = (int) TARGET_SIGNAL_LAST;
1157 int count = 0, i;
1158
1159 gdb_assert (numsigs < 256);
1160 for (i = 0; i < numsigs; i++)
1161 {
1162 if (signal_stop_state (i) == 0
1163 && signal_print_state (i) == 0
1164 && signal_pass_state (i) == 1)
1165 count++;
1166 }
1167 pass_packet = xmalloc (count * 3 + strlen ("QPassSignals:") + 1);
1168 strcpy (pass_packet, "QPassSignals:");
1169 p = pass_packet + strlen (pass_packet);
1170 for (i = 0; i < numsigs; i++)
1171 {
1172 if (signal_stop_state (i) == 0
1173 && signal_print_state (i) == 0
1174 && signal_pass_state (i) == 1)
1175 {
1176 if (i >= 16)
1177 *p++ = tohex (i >> 4);
1178 *p++ = tohex (i & 15);
1179 if (count)
1180 *p++ = ';';
1181 else
1182 break;
1183 count--;
1184 }
1185 }
1186 *p = 0;
1187 if (!last_pass_packet || strcmp (last_pass_packet, pass_packet))
1188 {
1189 struct remote_state *rs = get_remote_state ();
1190 char *buf = rs->buf;
1191
1192 putpkt (pass_packet);
1193 getpkt (&rs->buf, &rs->buf_size, 0);
1194 packet_ok (buf, &remote_protocol_packets[PACKET_QPassSignals]);
1195 if (last_pass_packet)
1196 xfree (last_pass_packet);
1197 last_pass_packet = pass_packet;
1198 }
1199 else
1200 xfree (pass_packet);
1201 }
1202 }
1203
1204 /* If PTID is MAGIC_NULL_PTID, don't set any thread. If PTID is
1205 MINUS_ONE_PTID, set the thread to -1, so the stub returns the
1206 thread. If GEN is set, set the general thread, if not, then set
1207 the step/continue thread. */
1208 static void
1209 set_thread (struct ptid ptid, int gen)
1210 {
1211 struct remote_state *rs = get_remote_state ();
1212 ptid_t state = gen ? general_thread : continue_thread;
1213 char *buf = rs->buf;
1214 char *endbuf = rs->buf + get_remote_packet_size ();
1215
1216 if (ptid_equal (state, ptid))
1217 return;
1218
1219 *buf++ = 'H';
1220 *buf++ = gen ? 'g' : 'c';
1221 if (ptid_equal (ptid, magic_null_ptid))
1222 xsnprintf (buf, endbuf - buf, "0");
1223 else if (ptid_equal (ptid, any_thread_ptid))
1224 xsnprintf (buf, endbuf - buf, "0");
1225 else if (ptid_equal (ptid, minus_one_ptid))
1226 xsnprintf (buf, endbuf - buf, "-1");
1227 else
1228 write_ptid (buf, endbuf, ptid);
1229 putpkt (rs->buf);
1230 getpkt (&rs->buf, &rs->buf_size, 0);
1231 if (gen)
1232 general_thread = ptid;
1233 else
1234 continue_thread = ptid;
1235 }
1236
1237 static void
1238 set_general_thread (struct ptid ptid)
1239 {
1240 set_thread (ptid, 1);
1241 }
1242
1243 static void
1244 set_continue_thread (struct ptid ptid)
1245 {
1246 set_thread (ptid, 0);
1247 }
1248
1249 \f
1250 /* Return nonzero if the thread PTID is still alive on the remote
1251 system. */
1252
1253 static int
1254 remote_thread_alive (ptid_t ptid)
1255 {
1256 struct remote_state *rs = get_remote_state ();
1257 int tid = ptid_get_tid (ptid);
1258 char *p, *endp;
1259
1260 if (ptid_equal (ptid, magic_null_ptid))
1261 /* The main thread is always alive. */
1262 return 1;
1263
1264 if (ptid_get_pid (ptid) != 0 && ptid_get_tid (ptid) == 0)
1265 /* The main thread is always alive. This can happen after a
1266 vAttach, if the remote side doesn't support
1267 multi-threading. */
1268 return 1;
1269
1270 p = rs->buf;
1271 endp = rs->buf + get_remote_packet_size ();
1272
1273 *p++ = 'T';
1274 write_ptid (p, endp, ptid);
1275
1276 putpkt (rs->buf);
1277 getpkt (&rs->buf, &rs->buf_size, 0);
1278 return (rs->buf[0] == 'O' && rs->buf[1] == 'K');
1279 }
1280
1281 /* About these extended threadlist and threadinfo packets. They are
1282 variable length packets but, the fields within them are often fixed
1283 length. They are redundent enough to send over UDP as is the
1284 remote protocol in general. There is a matching unit test module
1285 in libstub. */
1286
1287 #define OPAQUETHREADBYTES 8
1288
1289 /* a 64 bit opaque identifier */
1290 typedef unsigned char threadref[OPAQUETHREADBYTES];
1291
1292 /* WARNING: This threadref data structure comes from the remote O.S.,
1293 libstub protocol encoding, and remote.c. it is not particularly
1294 changable. */
1295
1296 /* Right now, the internal structure is int. We want it to be bigger.
1297 Plan to fix this.
1298 */
1299
1300 typedef int gdb_threadref; /* Internal GDB thread reference. */
1301
1302 /* gdb_ext_thread_info is an internal GDB data structure which is
1303 equivalent to the reply of the remote threadinfo packet. */
1304
1305 struct gdb_ext_thread_info
1306 {
1307 threadref threadid; /* External form of thread reference. */
1308 int active; /* Has state interesting to GDB?
1309 regs, stack. */
1310 char display[256]; /* Brief state display, name,
1311 blocked/suspended. */
1312 char shortname[32]; /* To be used to name threads. */
1313 char more_display[256]; /* Long info, statistics, queue depth,
1314 whatever. */
1315 };
1316
1317 /* The volume of remote transfers can be limited by submitting
1318 a mask containing bits specifying the desired information.
1319 Use a union of these values as the 'selection' parameter to
1320 get_thread_info. FIXME: Make these TAG names more thread specific.
1321 */
1322
1323 #define TAG_THREADID 1
1324 #define TAG_EXISTS 2
1325 #define TAG_DISPLAY 4
1326 #define TAG_THREADNAME 8
1327 #define TAG_MOREDISPLAY 16
1328
1329 #define BUF_THREAD_ID_SIZE (OPAQUETHREADBYTES * 2)
1330
1331 char *unpack_varlen_hex (char *buff, ULONGEST *result);
1332
1333 static char *unpack_nibble (char *buf, int *val);
1334
1335 static char *pack_nibble (char *buf, int nibble);
1336
1337 static char *pack_hex_byte (char *pkt, int /* unsigned char */ byte);
1338
1339 static char *unpack_byte (char *buf, int *value);
1340
1341 static char *pack_int (char *buf, int value);
1342
1343 static char *unpack_int (char *buf, int *value);
1344
1345 static char *unpack_string (char *src, char *dest, int length);
1346
1347 static char *pack_threadid (char *pkt, threadref *id);
1348
1349 static char *unpack_threadid (char *inbuf, threadref *id);
1350
1351 void int_to_threadref (threadref *id, int value);
1352
1353 static int threadref_to_int (threadref *ref);
1354
1355 static void copy_threadref (threadref *dest, threadref *src);
1356
1357 static int threadmatch (threadref *dest, threadref *src);
1358
1359 static char *pack_threadinfo_request (char *pkt, int mode,
1360 threadref *id);
1361
1362 static int remote_unpack_thread_info_response (char *pkt,
1363 threadref *expectedref,
1364 struct gdb_ext_thread_info
1365 *info);
1366
1367
1368 static int remote_get_threadinfo (threadref *threadid,
1369 int fieldset, /*TAG mask */
1370 struct gdb_ext_thread_info *info);
1371
1372 static char *pack_threadlist_request (char *pkt, int startflag,
1373 int threadcount,
1374 threadref *nextthread);
1375
1376 static int parse_threadlist_response (char *pkt,
1377 int result_limit,
1378 threadref *original_echo,
1379 threadref *resultlist,
1380 int *doneflag);
1381
1382 static int remote_get_threadlist (int startflag,
1383 threadref *nextthread,
1384 int result_limit,
1385 int *done,
1386 int *result_count,
1387 threadref *threadlist);
1388
1389 typedef int (*rmt_thread_action) (threadref *ref, void *context);
1390
1391 static int remote_threadlist_iterator (rmt_thread_action stepfunction,
1392 void *context, int looplimit);
1393
1394 static int remote_newthread_step (threadref *ref, void *context);
1395
1396
1397 /* Write a PTID to BUF. ENDBUF points to one-passed-the-end of the
1398 buffer we're allowed to write to. Returns
1399 BUF+CHARACTERS_WRITTEN. */
1400
1401 static char *
1402 write_ptid (char *buf, const char *endbuf, ptid_t ptid)
1403 {
1404 int pid, tid;
1405 struct remote_state *rs = get_remote_state ();
1406
1407 if (remote_multi_process_p (rs))
1408 {
1409 pid = ptid_get_pid (ptid);
1410 if (pid < 0)
1411 buf += xsnprintf (buf, endbuf - buf, "p-%x.", -pid);
1412 else
1413 buf += xsnprintf (buf, endbuf - buf, "p%x.", pid);
1414 }
1415 tid = ptid_get_tid (ptid);
1416 if (tid < 0)
1417 buf += xsnprintf (buf, endbuf - buf, "-%x", -tid);
1418 else
1419 buf += xsnprintf (buf, endbuf - buf, "%x", tid);
1420
1421 return buf;
1422 }
1423
1424 /* Extract a PTID from BUF. If non-null, OBUF is set to the to one
1425 passed the last parsed char. Returns null_ptid on error. */
1426
1427 static ptid_t
1428 read_ptid (char *buf, char **obuf)
1429 {
1430 char *p = buf;
1431 char *pp;
1432 ULONGEST pid = 0, tid = 0;
1433 ptid_t ptid;
1434
1435 if (*p == 'p')
1436 {
1437 /* Multi-process ptid. */
1438 pp = unpack_varlen_hex (p + 1, &pid);
1439 if (*pp != '.')
1440 error (_("invalid remote ptid: %s\n"), p);
1441
1442 p = pp;
1443 pp = unpack_varlen_hex (p + 1, &tid);
1444 if (obuf)
1445 *obuf = pp;
1446 return ptid_build (pid, 0, tid);
1447 }
1448
1449 /* No multi-process. Just a tid. */
1450 pp = unpack_varlen_hex (p, &tid);
1451
1452 /* Since the stub is not sending a process id, then default to
1453 what's in inferior_ptid. */
1454 pid = ptid_get_pid (inferior_ptid);
1455
1456 if (obuf)
1457 *obuf = pp;
1458 return ptid_build (pid, 0, tid);
1459 }
1460
1461 /* Encode 64 bits in 16 chars of hex. */
1462
1463 static const char hexchars[] = "0123456789abcdef";
1464
1465 static int
1466 ishex (int ch, int *val)
1467 {
1468 if ((ch >= 'a') && (ch <= 'f'))
1469 {
1470 *val = ch - 'a' + 10;
1471 return 1;
1472 }
1473 if ((ch >= 'A') && (ch <= 'F'))
1474 {
1475 *val = ch - 'A' + 10;
1476 return 1;
1477 }
1478 if ((ch >= '0') && (ch <= '9'))
1479 {
1480 *val = ch - '0';
1481 return 1;
1482 }
1483 return 0;
1484 }
1485
1486 static int
1487 stubhex (int ch)
1488 {
1489 if (ch >= 'a' && ch <= 'f')
1490 return ch - 'a' + 10;
1491 if (ch >= '0' && ch <= '9')
1492 return ch - '0';
1493 if (ch >= 'A' && ch <= 'F')
1494 return ch - 'A' + 10;
1495 return -1;
1496 }
1497
1498 static int
1499 stub_unpack_int (char *buff, int fieldlength)
1500 {
1501 int nibble;
1502 int retval = 0;
1503
1504 while (fieldlength)
1505 {
1506 nibble = stubhex (*buff++);
1507 retval |= nibble;
1508 fieldlength--;
1509 if (fieldlength)
1510 retval = retval << 4;
1511 }
1512 return retval;
1513 }
1514
1515 char *
1516 unpack_varlen_hex (char *buff, /* packet to parse */
1517 ULONGEST *result)
1518 {
1519 int nibble;
1520 ULONGEST retval = 0;
1521
1522 while (ishex (*buff, &nibble))
1523 {
1524 buff++;
1525 retval = retval << 4;
1526 retval |= nibble & 0x0f;
1527 }
1528 *result = retval;
1529 return buff;
1530 }
1531
1532 static char *
1533 unpack_nibble (char *buf, int *val)
1534 {
1535 *val = fromhex (*buf++);
1536 return buf;
1537 }
1538
1539 static char *
1540 pack_nibble (char *buf, int nibble)
1541 {
1542 *buf++ = hexchars[(nibble & 0x0f)];
1543 return buf;
1544 }
1545
1546 static char *
1547 pack_hex_byte (char *pkt, int byte)
1548 {
1549 *pkt++ = hexchars[(byte >> 4) & 0xf];
1550 *pkt++ = hexchars[(byte & 0xf)];
1551 return pkt;
1552 }
1553
1554 static char *
1555 unpack_byte (char *buf, int *value)
1556 {
1557 *value = stub_unpack_int (buf, 2);
1558 return buf + 2;
1559 }
1560
1561 static char *
1562 pack_int (char *buf, int value)
1563 {
1564 buf = pack_hex_byte (buf, (value >> 24) & 0xff);
1565 buf = pack_hex_byte (buf, (value >> 16) & 0xff);
1566 buf = pack_hex_byte (buf, (value >> 8) & 0x0ff);
1567 buf = pack_hex_byte (buf, (value & 0xff));
1568 return buf;
1569 }
1570
1571 static char *
1572 unpack_int (char *buf, int *value)
1573 {
1574 *value = stub_unpack_int (buf, 8);
1575 return buf + 8;
1576 }
1577
1578 #if 0 /* Currently unused, uncomment when needed. */
1579 static char *pack_string (char *pkt, char *string);
1580
1581 static char *
1582 pack_string (char *pkt, char *string)
1583 {
1584 char ch;
1585 int len;
1586
1587 len = strlen (string);
1588 if (len > 200)
1589 len = 200; /* Bigger than most GDB packets, junk??? */
1590 pkt = pack_hex_byte (pkt, len);
1591 while (len-- > 0)
1592 {
1593 ch = *string++;
1594 if ((ch == '\0') || (ch == '#'))
1595 ch = '*'; /* Protect encapsulation. */
1596 *pkt++ = ch;
1597 }
1598 return pkt;
1599 }
1600 #endif /* 0 (unused) */
1601
1602 static char *
1603 unpack_string (char *src, char *dest, int length)
1604 {
1605 while (length--)
1606 *dest++ = *src++;
1607 *dest = '\0';
1608 return src;
1609 }
1610
1611 static char *
1612 pack_threadid (char *pkt, threadref *id)
1613 {
1614 char *limit;
1615 unsigned char *altid;
1616
1617 altid = (unsigned char *) id;
1618 limit = pkt + BUF_THREAD_ID_SIZE;
1619 while (pkt < limit)
1620 pkt = pack_hex_byte (pkt, *altid++);
1621 return pkt;
1622 }
1623
1624
1625 static char *
1626 unpack_threadid (char *inbuf, threadref *id)
1627 {
1628 char *altref;
1629 char *limit = inbuf + BUF_THREAD_ID_SIZE;
1630 int x, y;
1631
1632 altref = (char *) id;
1633
1634 while (inbuf < limit)
1635 {
1636 x = stubhex (*inbuf++);
1637 y = stubhex (*inbuf++);
1638 *altref++ = (x << 4) | y;
1639 }
1640 return inbuf;
1641 }
1642
1643 /* Externally, threadrefs are 64 bits but internally, they are still
1644 ints. This is due to a mismatch of specifications. We would like
1645 to use 64bit thread references internally. This is an adapter
1646 function. */
1647
1648 void
1649 int_to_threadref (threadref *id, int value)
1650 {
1651 unsigned char *scan;
1652
1653 scan = (unsigned char *) id;
1654 {
1655 int i = 4;
1656 while (i--)
1657 *scan++ = 0;
1658 }
1659 *scan++ = (value >> 24) & 0xff;
1660 *scan++ = (value >> 16) & 0xff;
1661 *scan++ = (value >> 8) & 0xff;
1662 *scan++ = (value & 0xff);
1663 }
1664
1665 static int
1666 threadref_to_int (threadref *ref)
1667 {
1668 int i, value = 0;
1669 unsigned char *scan;
1670
1671 scan = *ref;
1672 scan += 4;
1673 i = 4;
1674 while (i-- > 0)
1675 value = (value << 8) | ((*scan++) & 0xff);
1676 return value;
1677 }
1678
1679 static void
1680 copy_threadref (threadref *dest, threadref *src)
1681 {
1682 int i;
1683 unsigned char *csrc, *cdest;
1684
1685 csrc = (unsigned char *) src;
1686 cdest = (unsigned char *) dest;
1687 i = 8;
1688 while (i--)
1689 *cdest++ = *csrc++;
1690 }
1691
1692 static int
1693 threadmatch (threadref *dest, threadref *src)
1694 {
1695 /* Things are broken right now, so just assume we got a match. */
1696 #if 0
1697 unsigned char *srcp, *destp;
1698 int i, result;
1699 srcp = (char *) src;
1700 destp = (char *) dest;
1701
1702 result = 1;
1703 while (i-- > 0)
1704 result &= (*srcp++ == *destp++) ? 1 : 0;
1705 return result;
1706 #endif
1707 return 1;
1708 }
1709
1710 /*
1711 threadid:1, # always request threadid
1712 context_exists:2,
1713 display:4,
1714 unique_name:8,
1715 more_display:16
1716 */
1717
1718 /* Encoding: 'Q':8,'P':8,mask:32,threadid:64 */
1719
1720 static char *
1721 pack_threadinfo_request (char *pkt, int mode, threadref *id)
1722 {
1723 *pkt++ = 'q'; /* Info Query */
1724 *pkt++ = 'P'; /* process or thread info */
1725 pkt = pack_int (pkt, mode); /* mode */
1726 pkt = pack_threadid (pkt, id); /* threadid */
1727 *pkt = '\0'; /* terminate */
1728 return pkt;
1729 }
1730
1731 /* These values tag the fields in a thread info response packet. */
1732 /* Tagging the fields allows us to request specific fields and to
1733 add more fields as time goes by. */
1734
1735 #define TAG_THREADID 1 /* Echo the thread identifier. */
1736 #define TAG_EXISTS 2 /* Is this process defined enough to
1737 fetch registers and its stack? */
1738 #define TAG_DISPLAY 4 /* A short thing maybe to put on a window */
1739 #define TAG_THREADNAME 8 /* string, maps 1-to-1 with a thread is. */
1740 #define TAG_MOREDISPLAY 16 /* Whatever the kernel wants to say about
1741 the process. */
1742
1743 static int
1744 remote_unpack_thread_info_response (char *pkt, threadref *expectedref,
1745 struct gdb_ext_thread_info *info)
1746 {
1747 struct remote_state *rs = get_remote_state ();
1748 int mask, length;
1749 int tag;
1750 threadref ref;
1751 char *limit = pkt + rs->buf_size; /* Plausible parsing limit. */
1752 int retval = 1;
1753
1754 /* info->threadid = 0; FIXME: implement zero_threadref. */
1755 info->active = 0;
1756 info->display[0] = '\0';
1757 info->shortname[0] = '\0';
1758 info->more_display[0] = '\0';
1759
1760 /* Assume the characters indicating the packet type have been
1761 stripped. */
1762 pkt = unpack_int (pkt, &mask); /* arg mask */
1763 pkt = unpack_threadid (pkt, &ref);
1764
1765 if (mask == 0)
1766 warning (_("Incomplete response to threadinfo request."));
1767 if (!threadmatch (&ref, expectedref))
1768 { /* This is an answer to a different request. */
1769 warning (_("ERROR RMT Thread info mismatch."));
1770 return 0;
1771 }
1772 copy_threadref (&info->threadid, &ref);
1773
1774 /* Loop on tagged fields , try to bail if somthing goes wrong. */
1775
1776 /* Packets are terminated with nulls. */
1777 while ((pkt < limit) && mask && *pkt)
1778 {
1779 pkt = unpack_int (pkt, &tag); /* tag */
1780 pkt = unpack_byte (pkt, &length); /* length */
1781 if (!(tag & mask)) /* Tags out of synch with mask. */
1782 {
1783 warning (_("ERROR RMT: threadinfo tag mismatch."));
1784 retval = 0;
1785 break;
1786 }
1787 if (tag == TAG_THREADID)
1788 {
1789 if (length != 16)
1790 {
1791 warning (_("ERROR RMT: length of threadid is not 16."));
1792 retval = 0;
1793 break;
1794 }
1795 pkt = unpack_threadid (pkt, &ref);
1796 mask = mask & ~TAG_THREADID;
1797 continue;
1798 }
1799 if (tag == TAG_EXISTS)
1800 {
1801 info->active = stub_unpack_int (pkt, length);
1802 pkt += length;
1803 mask = mask & ~(TAG_EXISTS);
1804 if (length > 8)
1805 {
1806 warning (_("ERROR RMT: 'exists' length too long."));
1807 retval = 0;
1808 break;
1809 }
1810 continue;
1811 }
1812 if (tag == TAG_THREADNAME)
1813 {
1814 pkt = unpack_string (pkt, &info->shortname[0], length);
1815 mask = mask & ~TAG_THREADNAME;
1816 continue;
1817 }
1818 if (tag == TAG_DISPLAY)
1819 {
1820 pkt = unpack_string (pkt, &info->display[0], length);
1821 mask = mask & ~TAG_DISPLAY;
1822 continue;
1823 }
1824 if (tag == TAG_MOREDISPLAY)
1825 {
1826 pkt = unpack_string (pkt, &info->more_display[0], length);
1827 mask = mask & ~TAG_MOREDISPLAY;
1828 continue;
1829 }
1830 warning (_("ERROR RMT: unknown thread info tag."));
1831 break; /* Not a tag we know about. */
1832 }
1833 return retval;
1834 }
1835
1836 static int
1837 remote_get_threadinfo (threadref *threadid, int fieldset, /* TAG mask */
1838 struct gdb_ext_thread_info *info)
1839 {
1840 struct remote_state *rs = get_remote_state ();
1841 int result;
1842
1843 pack_threadinfo_request (rs->buf, fieldset, threadid);
1844 putpkt (rs->buf);
1845 getpkt (&rs->buf, &rs->buf_size, 0);
1846
1847 if (rs->buf[0] == '\0')
1848 return 0;
1849
1850 result = remote_unpack_thread_info_response (rs->buf + 2,
1851 threadid, info);
1852 return result;
1853 }
1854
1855 /* Format: i'Q':8,i"L":8,initflag:8,batchsize:16,lastthreadid:32 */
1856
1857 static char *
1858 pack_threadlist_request (char *pkt, int startflag, int threadcount,
1859 threadref *nextthread)
1860 {
1861 *pkt++ = 'q'; /* info query packet */
1862 *pkt++ = 'L'; /* Process LIST or threadLIST request */
1863 pkt = pack_nibble (pkt, startflag); /* initflag 1 bytes */
1864 pkt = pack_hex_byte (pkt, threadcount); /* threadcount 2 bytes */
1865 pkt = pack_threadid (pkt, nextthread); /* 64 bit thread identifier */
1866 *pkt = '\0';
1867 return pkt;
1868 }
1869
1870 /* Encoding: 'q':8,'M':8,count:16,done:8,argthreadid:64,(threadid:64)* */
1871
1872 static int
1873 parse_threadlist_response (char *pkt, int result_limit,
1874 threadref *original_echo, threadref *resultlist,
1875 int *doneflag)
1876 {
1877 struct remote_state *rs = get_remote_state ();
1878 char *limit;
1879 int count, resultcount, done;
1880
1881 resultcount = 0;
1882 /* Assume the 'q' and 'M chars have been stripped. */
1883 limit = pkt + (rs->buf_size - BUF_THREAD_ID_SIZE);
1884 /* done parse past here */
1885 pkt = unpack_byte (pkt, &count); /* count field */
1886 pkt = unpack_nibble (pkt, &done);
1887 /* The first threadid is the argument threadid. */
1888 pkt = unpack_threadid (pkt, original_echo); /* should match query packet */
1889 while ((count-- > 0) && (pkt < limit))
1890 {
1891 pkt = unpack_threadid (pkt, resultlist++);
1892 if (resultcount++ >= result_limit)
1893 break;
1894 }
1895 if (doneflag)
1896 *doneflag = done;
1897 return resultcount;
1898 }
1899
1900 static int
1901 remote_get_threadlist (int startflag, threadref *nextthread, int result_limit,
1902 int *done, int *result_count, threadref *threadlist)
1903 {
1904 struct remote_state *rs = get_remote_state ();
1905 static threadref echo_nextthread;
1906 int result = 1;
1907
1908 /* Trancate result limit to be smaller than the packet size. */
1909 if ((((result_limit + 1) * BUF_THREAD_ID_SIZE) + 10) >= get_remote_packet_size ())
1910 result_limit = (get_remote_packet_size () / BUF_THREAD_ID_SIZE) - 2;
1911
1912 pack_threadlist_request (rs->buf, startflag, result_limit, nextthread);
1913 putpkt (rs->buf);
1914 getpkt (&rs->buf, &rs->buf_size, 0);
1915
1916 if (*rs->buf == '\0')
1917 *result_count = 0;
1918 else
1919 *result_count =
1920 parse_threadlist_response (rs->buf + 2, result_limit, &echo_nextthread,
1921 threadlist, done);
1922
1923 if (!threadmatch (&echo_nextthread, nextthread))
1924 {
1925 /* FIXME: This is a good reason to drop the packet. */
1926 /* Possably, there is a duplicate response. */
1927 /* Possabilities :
1928 retransmit immediatly - race conditions
1929 retransmit after timeout - yes
1930 exit
1931 wait for packet, then exit
1932 */
1933 warning (_("HMM: threadlist did not echo arg thread, dropping it."));
1934 return 0; /* I choose simply exiting. */
1935 }
1936 if (*result_count <= 0)
1937 {
1938 if (*done != 1)
1939 {
1940 warning (_("RMT ERROR : failed to get remote thread list."));
1941 result = 0;
1942 }
1943 return result; /* break; */
1944 }
1945 if (*result_count > result_limit)
1946 {
1947 *result_count = 0;
1948 warning (_("RMT ERROR: threadlist response longer than requested."));
1949 return 0;
1950 }
1951 return result;
1952 }
1953
1954 /* This is the interface between remote and threads, remotes upper
1955 interface. */
1956
1957 /* remote_find_new_threads retrieves the thread list and for each
1958 thread in the list, looks up the thread in GDB's internal list,
1959 adding the thread if it does not already exist. This involves
1960 getting partial thread lists from the remote target so, polling the
1961 quit_flag is required. */
1962
1963
1964 /* About this many threadisds fit in a packet. */
1965
1966 #define MAXTHREADLISTRESULTS 32
1967
1968 static int
1969 remote_threadlist_iterator (rmt_thread_action stepfunction, void *context,
1970 int looplimit)
1971 {
1972 int done, i, result_count;
1973 int startflag = 1;
1974 int result = 1;
1975 int loopcount = 0;
1976 static threadref nextthread;
1977 static threadref resultthreadlist[MAXTHREADLISTRESULTS];
1978
1979 done = 0;
1980 while (!done)
1981 {
1982 if (loopcount++ > looplimit)
1983 {
1984 result = 0;
1985 warning (_("Remote fetch threadlist -infinite loop-."));
1986 break;
1987 }
1988 if (!remote_get_threadlist (startflag, &nextthread, MAXTHREADLISTRESULTS,
1989 &done, &result_count, resultthreadlist))
1990 {
1991 result = 0;
1992 break;
1993 }
1994 /* Clear for later iterations. */
1995 startflag = 0;
1996 /* Setup to resume next batch of thread references, set nextthread. */
1997 if (result_count >= 1)
1998 copy_threadref (&nextthread, &resultthreadlist[result_count - 1]);
1999 i = 0;
2000 while (result_count--)
2001 if (!(result = (*stepfunction) (&resultthreadlist[i++], context)))
2002 break;
2003 }
2004 return result;
2005 }
2006
2007 static int
2008 remote_newthread_step (threadref *ref, void *context)
2009 {
2010 int pid = ptid_get_pid (inferior_ptid);
2011 ptid_t ptid = ptid_build (pid, 0, threadref_to_int (ref));
2012
2013 if (!in_thread_list (ptid))
2014 add_thread (ptid);
2015 return 1; /* continue iterator */
2016 }
2017
2018 #define CRAZY_MAX_THREADS 1000
2019
2020 static ptid_t
2021 remote_current_thread (ptid_t oldpid)
2022 {
2023 struct remote_state *rs = get_remote_state ();
2024 char *p = rs->buf;
2025 int tid;
2026 int pid;
2027
2028 putpkt ("qC");
2029 getpkt (&rs->buf, &rs->buf_size, 0);
2030 if (rs->buf[0] == 'Q' && rs->buf[1] == 'C')
2031 return read_ptid (&rs->buf[2], NULL);
2032 else
2033 return oldpid;
2034 }
2035
2036 /* Find new threads for info threads command.
2037 * Original version, using John Metzler's thread protocol.
2038 */
2039
2040 static void
2041 remote_find_new_threads (void)
2042 {
2043 remote_threadlist_iterator (remote_newthread_step, 0,
2044 CRAZY_MAX_THREADS);
2045 }
2046
2047 /*
2048 * Find all threads for info threads command.
2049 * Uses new thread protocol contributed by Cisco.
2050 * Falls back and attempts to use the older method (above)
2051 * if the target doesn't respond to the new method.
2052 */
2053
2054 static void
2055 remote_threads_info (void)
2056 {
2057 struct remote_state *rs = get_remote_state ();
2058 char *bufp;
2059 ptid_t new_thread;
2060
2061 if (remote_desc == 0) /* paranoia */
2062 error (_("Command can only be used when connected to the remote target."));
2063
2064 if (use_threadinfo_query)
2065 {
2066 putpkt ("qfThreadInfo");
2067 getpkt (&rs->buf, &rs->buf_size, 0);
2068 bufp = rs->buf;
2069 if (bufp[0] != '\0') /* q packet recognized */
2070 {
2071 while (*bufp++ == 'm') /* reply contains one or more TID */
2072 {
2073 do
2074 {
2075 new_thread = read_ptid (bufp, &bufp);
2076 if (!ptid_equal (new_thread, null_ptid)
2077 && !in_thread_list (new_thread))
2078 {
2079 if (!in_inferior_list (ptid_get_pid (new_thread)))
2080 /* When connected to a multi-process aware
2081 stub, "info threads" may show up threads of
2082 inferiors we didn't know about yet. Add
2083 them. */
2084 add_inferior (ptid_get_pid (new_thread));
2085
2086 add_thread (new_thread);
2087 }
2088 }
2089 while (*bufp++ == ','); /* comma-separated list */
2090 putpkt ("qsThreadInfo");
2091 getpkt (&rs->buf, &rs->buf_size, 0);
2092 bufp = rs->buf;
2093 }
2094 return; /* done */
2095 }
2096 }
2097
2098 /* Else fall back to old method based on jmetzler protocol. */
2099 use_threadinfo_query = 0;
2100 remote_find_new_threads ();
2101 return;
2102 }
2103
2104 /*
2105 * Collect a descriptive string about the given thread.
2106 * The target may say anything it wants to about the thread
2107 * (typically info about its blocked / runnable state, name, etc.).
2108 * This string will appear in the info threads display.
2109 *
2110 * Optional: targets are not required to implement this function.
2111 */
2112
2113 static char *
2114 remote_threads_extra_info (struct thread_info *tp)
2115 {
2116 struct remote_state *rs = get_remote_state ();
2117 int result;
2118 int set;
2119 threadref id;
2120 struct gdb_ext_thread_info threadinfo;
2121 static char display_buf[100]; /* arbitrary... */
2122 int n = 0; /* position in display_buf */
2123
2124 if (remote_desc == 0) /* paranoia */
2125 internal_error (__FILE__, __LINE__,
2126 _("remote_threads_extra_info"));
2127
2128 if (ptid_equal (tp->ptid, magic_null_ptid)
2129 || (ptid_get_pid (tp->ptid) != 0 && ptid_get_tid (tp->ptid) == 0))
2130 /* This is the main thread which was added by GDB. The remote
2131 server doesn't know about it. */
2132 return NULL;
2133
2134 if (use_threadextra_query)
2135 {
2136 char *b = rs->buf;
2137 char *endb = rs->buf + get_remote_packet_size ();
2138
2139 xsnprintf (b, endb - b, "qThreadExtraInfo,");
2140 b += strlen (b);
2141 write_ptid (b, endb, tp->ptid);
2142
2143 putpkt (rs->buf);
2144 getpkt (&rs->buf, &rs->buf_size, 0);
2145 if (rs->buf[0] != 0)
2146 {
2147 n = min (strlen (rs->buf) / 2, sizeof (display_buf));
2148 result = hex2bin (rs->buf, (gdb_byte *) display_buf, n);
2149 display_buf [result] = '\0';
2150 return display_buf;
2151 }
2152 }
2153
2154 /* If the above query fails, fall back to the old method. */
2155 use_threadextra_query = 0;
2156 set = TAG_THREADID | TAG_EXISTS | TAG_THREADNAME
2157 | TAG_MOREDISPLAY | TAG_DISPLAY;
2158 int_to_threadref (&id, ptid_get_tid (tp->ptid));
2159 if (remote_get_threadinfo (&id, set, &threadinfo))
2160 if (threadinfo.active)
2161 {
2162 if (*threadinfo.shortname)
2163 n += xsnprintf (&display_buf[0], sizeof (display_buf) - n,
2164 " Name: %s,", threadinfo.shortname);
2165 if (*threadinfo.display)
2166 n += xsnprintf (&display_buf[n], sizeof (display_buf) - n,
2167 " State: %s,", threadinfo.display);
2168 if (*threadinfo.more_display)
2169 n += xsnprintf (&display_buf[n], sizeof (display_buf) - n,
2170 " Priority: %s", threadinfo.more_display);
2171
2172 if (n > 0)
2173 {
2174 /* For purely cosmetic reasons, clear up trailing commas. */
2175 if (',' == display_buf[n-1])
2176 display_buf[n-1] = ' ';
2177 return display_buf;
2178 }
2179 }
2180 return NULL;
2181 }
2182 \f
2183
2184 /* Restart the remote side; this is an extended protocol operation. */
2185
2186 static void
2187 extended_remote_restart (void)
2188 {
2189 struct remote_state *rs = get_remote_state ();
2190
2191 /* Send the restart command; for reasons I don't understand the
2192 remote side really expects a number after the "R". */
2193 xsnprintf (rs->buf, get_remote_packet_size (), "R%x", 0);
2194 putpkt (rs->buf);
2195
2196 remote_fileio_reset ();
2197 }
2198 \f
2199 /* Clean up connection to a remote debugger. */
2200
2201 static void
2202 remote_close (int quitting)
2203 {
2204 if (remote_desc)
2205 serial_close (remote_desc);
2206 remote_desc = NULL;
2207 }
2208
2209 /* Query the remote side for the text, data and bss offsets. */
2210
2211 static void
2212 get_offsets (void)
2213 {
2214 struct remote_state *rs = get_remote_state ();
2215 char *buf;
2216 char *ptr;
2217 int lose, num_segments = 0, do_sections, do_segments;
2218 CORE_ADDR text_addr, data_addr, bss_addr, segments[2];
2219 struct section_offsets *offs;
2220 struct symfile_segment_data *data;
2221
2222 if (symfile_objfile == NULL)
2223 return;
2224
2225 putpkt ("qOffsets");
2226 getpkt (&rs->buf, &rs->buf_size, 0);
2227 buf = rs->buf;
2228
2229 if (buf[0] == '\000')
2230 return; /* Return silently. Stub doesn't support
2231 this command. */
2232 if (buf[0] == 'E')
2233 {
2234 warning (_("Remote failure reply: %s"), buf);
2235 return;
2236 }
2237
2238 /* Pick up each field in turn. This used to be done with scanf, but
2239 scanf will make trouble if CORE_ADDR size doesn't match
2240 conversion directives correctly. The following code will work
2241 with any size of CORE_ADDR. */
2242 text_addr = data_addr = bss_addr = 0;
2243 ptr = buf;
2244 lose = 0;
2245
2246 if (strncmp (ptr, "Text=", 5) == 0)
2247 {
2248 ptr += 5;
2249 /* Don't use strtol, could lose on big values. */
2250 while (*ptr && *ptr != ';')
2251 text_addr = (text_addr << 4) + fromhex (*ptr++);
2252
2253 if (strncmp (ptr, ";Data=", 6) == 0)
2254 {
2255 ptr += 6;
2256 while (*ptr && *ptr != ';')
2257 data_addr = (data_addr << 4) + fromhex (*ptr++);
2258 }
2259 else
2260 lose = 1;
2261
2262 if (!lose && strncmp (ptr, ";Bss=", 5) == 0)
2263 {
2264 ptr += 5;
2265 while (*ptr && *ptr != ';')
2266 bss_addr = (bss_addr << 4) + fromhex (*ptr++);
2267
2268 if (bss_addr != data_addr)
2269 warning (_("Target reported unsupported offsets: %s"), buf);
2270 }
2271 else
2272 lose = 1;
2273 }
2274 else if (strncmp (ptr, "TextSeg=", 8) == 0)
2275 {
2276 ptr += 8;
2277 /* Don't use strtol, could lose on big values. */
2278 while (*ptr && *ptr != ';')
2279 text_addr = (text_addr << 4) + fromhex (*ptr++);
2280 num_segments = 1;
2281
2282 if (strncmp (ptr, ";DataSeg=", 9) == 0)
2283 {
2284 ptr += 9;
2285 while (*ptr && *ptr != ';')
2286 data_addr = (data_addr << 4) + fromhex (*ptr++);
2287 num_segments++;
2288 }
2289 }
2290 else
2291 lose = 1;
2292
2293 if (lose)
2294 error (_("Malformed response to offset query, %s"), buf);
2295 else if (*ptr != '\0')
2296 warning (_("Target reported unsupported offsets: %s"), buf);
2297
2298 offs = ((struct section_offsets *)
2299 alloca (SIZEOF_N_SECTION_OFFSETS (symfile_objfile->num_sections)));
2300 memcpy (offs, symfile_objfile->section_offsets,
2301 SIZEOF_N_SECTION_OFFSETS (symfile_objfile->num_sections));
2302
2303 data = get_symfile_segment_data (symfile_objfile->obfd);
2304 do_segments = (data != NULL);
2305 do_sections = num_segments == 0;
2306
2307 if (num_segments > 0)
2308 {
2309 segments[0] = text_addr;
2310 segments[1] = data_addr;
2311 }
2312 /* If we have two segments, we can still try to relocate everything
2313 by assuming that the .text and .data offsets apply to the whole
2314 text and data segments. Convert the offsets given in the packet
2315 to base addresses for symfile_map_offsets_to_segments. */
2316 else if (data && data->num_segments == 2)
2317 {
2318 segments[0] = data->segment_bases[0] + text_addr;
2319 segments[1] = data->segment_bases[1] + data_addr;
2320 num_segments = 2;
2321 }
2322 /* If the object file has only one segment, assume that it is text
2323 rather than data; main programs with no writable data are rare,
2324 but programs with no code are useless. Of course the code might
2325 have ended up in the data segment... to detect that we would need
2326 the permissions here. */
2327 else if (data && data->num_segments == 1)
2328 {
2329 segments[0] = data->segment_bases[0] + text_addr;
2330 num_segments = 1;
2331 }
2332 /* There's no way to relocate by segment. */
2333 else
2334 do_segments = 0;
2335
2336 if (do_segments)
2337 {
2338 int ret = symfile_map_offsets_to_segments (symfile_objfile->obfd, data,
2339 offs, num_segments, segments);
2340
2341 if (ret == 0 && !do_sections)
2342 error (_("Can not handle qOffsets TextSeg response with this symbol file"));
2343
2344 if (ret > 0)
2345 do_sections = 0;
2346 }
2347
2348 if (data)
2349 free_symfile_segment_data (data);
2350
2351 if (do_sections)
2352 {
2353 offs->offsets[SECT_OFF_TEXT (symfile_objfile)] = text_addr;
2354
2355 /* This is a temporary kludge to force data and bss to use the same offsets
2356 because that's what nlmconv does now. The real solution requires changes
2357 to the stub and remote.c that I don't have time to do right now. */
2358
2359 offs->offsets[SECT_OFF_DATA (symfile_objfile)] = data_addr;
2360 offs->offsets[SECT_OFF_BSS (symfile_objfile)] = data_addr;
2361 }
2362
2363 objfile_relocate (symfile_objfile, offs);
2364 }
2365
2366 /* Stub for catch_exception. */
2367
2368 struct start_remote_args
2369 {
2370 int from_tty;
2371
2372 /* The current target. */
2373 struct target_ops *target;
2374
2375 /* Non-zero if this is an extended-remote target. */
2376 int extended_p;
2377 };
2378
2379 static void
2380 remote_start_remote (struct ui_out *uiout, void *opaque)
2381 {
2382 struct start_remote_args *args = opaque;
2383 struct remote_state *rs = get_remote_state ();
2384 struct packet_config *noack_config;
2385 char *wait_status = NULL;
2386
2387 immediate_quit++; /* Allow user to interrupt it. */
2388
2389 /* Ack any packet which the remote side has already sent. */
2390 serial_write (remote_desc, "+", 1);
2391
2392 /* The first packet we send to the target is the optional "supported
2393 packets" request. If the target can answer this, it will tell us
2394 which later probes to skip. */
2395 remote_query_supported ();
2396
2397 /* Next, we possibly activate noack mode.
2398
2399 If the QStartNoAckMode packet configuration is set to AUTO,
2400 enable noack mode if the stub reported a wish for it with
2401 qSupported.
2402
2403 If set to TRUE, then enable noack mode even if the stub didn't
2404 report it in qSupported. If the stub doesn't reply OK, the
2405 session ends with an error.
2406
2407 If FALSE, then don't activate noack mode, regardless of what the
2408 stub claimed should be the default with qSupported. */
2409
2410 noack_config = &remote_protocol_packets[PACKET_QStartNoAckMode];
2411
2412 if (noack_config->detect == AUTO_BOOLEAN_TRUE
2413 || (noack_config->detect == AUTO_BOOLEAN_AUTO
2414 && noack_config->support == PACKET_ENABLE))
2415 {
2416 putpkt ("QStartNoAckMode");
2417 getpkt (&rs->buf, &rs->buf_size, 0);
2418 if (packet_ok (rs->buf, noack_config) == PACKET_OK)
2419 rs->noack_mode = 1;
2420 }
2421
2422 /* Next, if the target can specify a description, read it. We do
2423 this before anything involving memory or registers. */
2424 target_find_description ();
2425
2426 /* Check whether the target is running now. */
2427 putpkt ("?");
2428 getpkt (&rs->buf, &rs->buf_size, 0);
2429
2430 if (rs->buf[0] == 'W' || rs->buf[0] == 'X')
2431 {
2432 if (args->extended_p)
2433 {
2434 /* We're connected, but not running. Drop out before we
2435 call start_remote. */
2436 target_mark_exited (args->target);
2437 return;
2438 }
2439 else
2440 error (_("The target is not running (try extended-remote?)"));
2441 }
2442 else
2443 {
2444 if (args->extended_p)
2445 target_mark_running (args->target);
2446
2447 /* Save the reply for later. */
2448 wait_status = alloca (strlen (rs->buf) + 1);
2449 strcpy (wait_status, rs->buf);
2450 }
2451
2452 /* Start afresh. */
2453 init_thread_list ();
2454
2455 /* Let the stub know that we want it to return the thread. */
2456 set_continue_thread (minus_one_ptid);
2457
2458 /* Without this, some commands which require an active target
2459 (such as kill) won't work. This variable serves (at least)
2460 double duty as both the pid of the target process (if it has
2461 such), and as a flag indicating that a target is active.
2462 These functions should be split out into seperate variables,
2463 especially since GDB will someday have a notion of debugging
2464 several processes. */
2465 inferior_ptid = magic_null_ptid;
2466
2467 /* Now, if we have thread information, update inferior_ptid. */
2468 inferior_ptid = remote_current_thread (inferior_ptid);
2469
2470 add_inferior (ptid_get_pid (inferior_ptid));
2471
2472 /* Always add the main thread. */
2473 add_thread_silent (inferior_ptid);
2474
2475 get_offsets (); /* Get text, data & bss offsets. */
2476
2477 /* Use the previously fetched status. */
2478 gdb_assert (wait_status != NULL);
2479 strcpy (rs->buf, wait_status);
2480 rs->cached_wait_status = 1;
2481
2482 immediate_quit--;
2483 start_remote (args->from_tty); /* Initialize gdb process mechanisms. */
2484
2485 if (args->extended_p)
2486 {
2487 /* Tell the remote that we are using the extended protocol. */
2488 putpkt ("!");
2489 getpkt (&rs->buf, &rs->buf_size, 0);
2490 }
2491
2492 /* If we connected to a live target, do some additional setup. */
2493 if (target_has_execution)
2494 {
2495 if (exec_bfd) /* No use without an exec file. */
2496 remote_check_symbols (symfile_objfile);
2497 }
2498 }
2499
2500 /* Open a connection to a remote debugger.
2501 NAME is the filename used for communication. */
2502
2503 static void
2504 remote_open (char *name, int from_tty)
2505 {
2506 remote_open_1 (name, from_tty, &remote_ops, 0);
2507 }
2508
2509 /* Open a connection to a remote debugger using the extended
2510 remote gdb protocol. NAME is the filename used for communication. */
2511
2512 static void
2513 extended_remote_open (char *name, int from_tty)
2514 {
2515 remote_open_1 (name, from_tty, &extended_remote_ops, 1 /*extended_p */);
2516 }
2517
2518 /* Generic code for opening a connection to a remote target. */
2519
2520 static void
2521 init_all_packet_configs (void)
2522 {
2523 int i;
2524 for (i = 0; i < PACKET_MAX; i++)
2525 update_packet_config (&remote_protocol_packets[i]);
2526 }
2527
2528 /* Symbol look-up. */
2529
2530 static void
2531 remote_check_symbols (struct objfile *objfile)
2532 {
2533 struct remote_state *rs = get_remote_state ();
2534 char *msg, *reply, *tmp;
2535 struct minimal_symbol *sym;
2536 int end;
2537
2538 if (remote_protocol_packets[PACKET_qSymbol].support == PACKET_DISABLE)
2539 return;
2540
2541 /* Allocate a message buffer. We can't reuse the input buffer in RS,
2542 because we need both at the same time. */
2543 msg = alloca (get_remote_packet_size ());
2544
2545 /* Invite target to request symbol lookups. */
2546
2547 putpkt ("qSymbol::");
2548 getpkt (&rs->buf, &rs->buf_size, 0);
2549 packet_ok (rs->buf, &remote_protocol_packets[PACKET_qSymbol]);
2550 reply = rs->buf;
2551
2552 while (strncmp (reply, "qSymbol:", 8) == 0)
2553 {
2554 tmp = &reply[8];
2555 end = hex2bin (tmp, (gdb_byte *) msg, strlen (tmp) / 2);
2556 msg[end] = '\0';
2557 sym = lookup_minimal_symbol (msg, NULL, NULL);
2558 if (sym == NULL)
2559 xsnprintf (msg, get_remote_packet_size (), "qSymbol::%s", &reply[8]);
2560 else
2561 {
2562 CORE_ADDR sym_addr = SYMBOL_VALUE_ADDRESS (sym);
2563
2564 /* If this is a function address, return the start of code
2565 instead of any data function descriptor. */
2566 sym_addr = gdbarch_convert_from_func_ptr_addr (target_gdbarch,
2567 sym_addr,
2568 &current_target);
2569
2570 xsnprintf (msg, get_remote_packet_size (), "qSymbol:%s:%s",
2571 paddr_nz (sym_addr), &reply[8]);
2572 }
2573
2574 putpkt (msg);
2575 getpkt (&rs->buf, &rs->buf_size, 0);
2576 reply = rs->buf;
2577 }
2578 }
2579
2580 static struct serial *
2581 remote_serial_open (char *name)
2582 {
2583 static int udp_warning = 0;
2584
2585 /* FIXME: Parsing NAME here is a hack. But we want to warn here instead
2586 of in ser-tcp.c, because it is the remote protocol assuming that the
2587 serial connection is reliable and not the serial connection promising
2588 to be. */
2589 if (!udp_warning && strncmp (name, "udp:", 4) == 0)
2590 {
2591 warning (_("\
2592 The remote protocol may be unreliable over UDP.\n\
2593 Some events may be lost, rendering further debugging impossible."));
2594 udp_warning = 1;
2595 }
2596
2597 return serial_open (name);
2598 }
2599
2600 /* This type describes each known response to the qSupported
2601 packet. */
2602 struct protocol_feature
2603 {
2604 /* The name of this protocol feature. */
2605 const char *name;
2606
2607 /* The default for this protocol feature. */
2608 enum packet_support default_support;
2609
2610 /* The function to call when this feature is reported, or after
2611 qSupported processing if the feature is not supported.
2612 The first argument points to this structure. The second
2613 argument indicates whether the packet requested support be
2614 enabled, disabled, or probed (or the default, if this function
2615 is being called at the end of processing and this feature was
2616 not reported). The third argument may be NULL; if not NULL, it
2617 is a NUL-terminated string taken from the packet following
2618 this feature's name and an equals sign. */
2619 void (*func) (const struct protocol_feature *, enum packet_support,
2620 const char *);
2621
2622 /* The corresponding packet for this feature. Only used if
2623 FUNC is remote_supported_packet. */
2624 int packet;
2625 };
2626
2627 static void
2628 remote_supported_packet (const struct protocol_feature *feature,
2629 enum packet_support support,
2630 const char *argument)
2631 {
2632 if (argument)
2633 {
2634 warning (_("Remote qSupported response supplied an unexpected value for"
2635 " \"%s\"."), feature->name);
2636 return;
2637 }
2638
2639 if (remote_protocol_packets[feature->packet].support
2640 == PACKET_SUPPORT_UNKNOWN)
2641 remote_protocol_packets[feature->packet].support = support;
2642 }
2643
2644 static void
2645 remote_packet_size (const struct protocol_feature *feature,
2646 enum packet_support support, const char *value)
2647 {
2648 struct remote_state *rs = get_remote_state ();
2649
2650 int packet_size;
2651 char *value_end;
2652
2653 if (support != PACKET_ENABLE)
2654 return;
2655
2656 if (value == NULL || *value == '\0')
2657 {
2658 warning (_("Remote target reported \"%s\" without a size."),
2659 feature->name);
2660 return;
2661 }
2662
2663 errno = 0;
2664 packet_size = strtol (value, &value_end, 16);
2665 if (errno != 0 || *value_end != '\0' || packet_size < 0)
2666 {
2667 warning (_("Remote target reported \"%s\" with a bad size: \"%s\"."),
2668 feature->name, value);
2669 return;
2670 }
2671
2672 if (packet_size > MAX_REMOTE_PACKET_SIZE)
2673 {
2674 warning (_("limiting remote suggested packet size (%d bytes) to %d"),
2675 packet_size, MAX_REMOTE_PACKET_SIZE);
2676 packet_size = MAX_REMOTE_PACKET_SIZE;
2677 }
2678
2679 /* Record the new maximum packet size. */
2680 rs->explicit_packet_size = packet_size;
2681 }
2682
2683 static void
2684 remote_multi_process_feature (const struct protocol_feature *feature,
2685 enum packet_support support, const char *value)
2686 {
2687 struct remote_state *rs = get_remote_state ();
2688 rs->multi_process_aware = (support == PACKET_ENABLE);
2689 }
2690
2691 static struct protocol_feature remote_protocol_features[] = {
2692 { "PacketSize", PACKET_DISABLE, remote_packet_size, -1 },
2693 { "qXfer:auxv:read", PACKET_DISABLE, remote_supported_packet,
2694 PACKET_qXfer_auxv },
2695 { "qXfer:features:read", PACKET_DISABLE, remote_supported_packet,
2696 PACKET_qXfer_features },
2697 { "qXfer:libraries:read", PACKET_DISABLE, remote_supported_packet,
2698 PACKET_qXfer_libraries },
2699 { "qXfer:memory-map:read", PACKET_DISABLE, remote_supported_packet,
2700 PACKET_qXfer_memory_map },
2701 { "qXfer:spu:read", PACKET_DISABLE, remote_supported_packet,
2702 PACKET_qXfer_spu_read },
2703 { "qXfer:spu:write", PACKET_DISABLE, remote_supported_packet,
2704 PACKET_qXfer_spu_write },
2705 { "QPassSignals", PACKET_DISABLE, remote_supported_packet,
2706 PACKET_QPassSignals },
2707 { "QStartNoAckMode", PACKET_DISABLE, remote_supported_packet,
2708 PACKET_QStartNoAckMode },
2709 { "multiprocess", PACKET_DISABLE, remote_multi_process_feature, -1 },
2710 };
2711
2712 static void
2713 remote_query_supported (void)
2714 {
2715 struct remote_state *rs = get_remote_state ();
2716 char *next;
2717 int i;
2718 unsigned char seen [ARRAY_SIZE (remote_protocol_features)];
2719
2720 /* The packet support flags are handled differently for this packet
2721 than for most others. We treat an error, a disabled packet, and
2722 an empty response identically: any features which must be reported
2723 to be used will be automatically disabled. An empty buffer
2724 accomplishes this, since that is also the representation for a list
2725 containing no features. */
2726
2727 rs->buf[0] = 0;
2728 if (remote_protocol_packets[PACKET_qSupported].support != PACKET_DISABLE)
2729 {
2730 if (rs->extended)
2731 putpkt ("qSupported:multiprocess+");
2732 else
2733 putpkt ("qSupported");
2734
2735 getpkt (&rs->buf, &rs->buf_size, 0);
2736
2737 /* If an error occured, warn, but do not return - just reset the
2738 buffer to empty and go on to disable features. */
2739 if (packet_ok (rs->buf, &remote_protocol_packets[PACKET_qSupported])
2740 == PACKET_ERROR)
2741 {
2742 warning (_("Remote failure reply: %s"), rs->buf);
2743 rs->buf[0] = 0;
2744 }
2745 }
2746
2747 memset (seen, 0, sizeof (seen));
2748
2749 next = rs->buf;
2750 while (*next)
2751 {
2752 enum packet_support is_supported;
2753 char *p, *end, *name_end, *value;
2754
2755 /* First separate out this item from the rest of the packet. If
2756 there's another item after this, we overwrite the separator
2757 (terminated strings are much easier to work with). */
2758 p = next;
2759 end = strchr (p, ';');
2760 if (end == NULL)
2761 {
2762 end = p + strlen (p);
2763 next = end;
2764 }
2765 else
2766 {
2767 *end = '\0';
2768 next = end + 1;
2769
2770 if (end == p)
2771 {
2772 warning (_("empty item in \"qSupported\" response"));
2773 continue;
2774 }
2775 }
2776
2777 name_end = strchr (p, '=');
2778 if (name_end)
2779 {
2780 /* This is a name=value entry. */
2781 is_supported = PACKET_ENABLE;
2782 value = name_end + 1;
2783 *name_end = '\0';
2784 }
2785 else
2786 {
2787 value = NULL;
2788 switch (end[-1])
2789 {
2790 case '+':
2791 is_supported = PACKET_ENABLE;
2792 break;
2793
2794 case '-':
2795 is_supported = PACKET_DISABLE;
2796 break;
2797
2798 case '?':
2799 is_supported = PACKET_SUPPORT_UNKNOWN;
2800 break;
2801
2802 default:
2803 warning (_("unrecognized item \"%s\" in \"qSupported\" response"), p);
2804 continue;
2805 }
2806 end[-1] = '\0';
2807 }
2808
2809 for (i = 0; i < ARRAY_SIZE (remote_protocol_features); i++)
2810 if (strcmp (remote_protocol_features[i].name, p) == 0)
2811 {
2812 const struct protocol_feature *feature;
2813
2814 seen[i] = 1;
2815 feature = &remote_protocol_features[i];
2816 feature->func (feature, is_supported, value);
2817 break;
2818 }
2819 }
2820
2821 /* If we increased the packet size, make sure to increase the global
2822 buffer size also. We delay this until after parsing the entire
2823 qSupported packet, because this is the same buffer we were
2824 parsing. */
2825 if (rs->buf_size < rs->explicit_packet_size)
2826 {
2827 rs->buf_size = rs->explicit_packet_size;
2828 rs->buf = xrealloc (rs->buf, rs->buf_size);
2829 }
2830
2831 /* Handle the defaults for unmentioned features. */
2832 for (i = 0; i < ARRAY_SIZE (remote_protocol_features); i++)
2833 if (!seen[i])
2834 {
2835 const struct protocol_feature *feature;
2836
2837 feature = &remote_protocol_features[i];
2838 feature->func (feature, feature->default_support, NULL);
2839 }
2840 }
2841
2842
2843 static void
2844 remote_open_1 (char *name, int from_tty, struct target_ops *target, int extended_p)
2845 {
2846 struct remote_state *rs = get_remote_state ();
2847
2848 if (name == 0)
2849 error (_("To open a remote debug connection, you need to specify what\n"
2850 "serial device is attached to the remote system\n"
2851 "(e.g. /dev/ttyS0, /dev/ttya, COM1, etc.)."));
2852
2853 /* See FIXME above. */
2854 if (!target_async_permitted)
2855 wait_forever_enabled_p = 1;
2856
2857 /* If we're connected to a running target, target_preopen will kill it.
2858 But if we're connected to a target system with no running process,
2859 then we will still be connected when it returns. Ask this question
2860 first, before target_preopen has a chance to kill anything. */
2861 if (remote_desc != NULL && !target_has_execution)
2862 {
2863 if (!from_tty
2864 || query (_("Already connected to a remote target. Disconnect? ")))
2865 pop_target ();
2866 else
2867 error (_("Still connected."));
2868 }
2869
2870 target_preopen (from_tty);
2871
2872 unpush_target (target);
2873
2874 /* This time without a query. If we were connected to an
2875 extended-remote target and target_preopen killed the running
2876 process, we may still be connected. If we are starting "target
2877 remote" now, the extended-remote target will not have been
2878 removed by unpush_target. */
2879 if (remote_desc != NULL && !target_has_execution)
2880 pop_target ();
2881
2882 /* Make sure we send the passed signals list the next time we resume. */
2883 xfree (last_pass_packet);
2884 last_pass_packet = NULL;
2885
2886 remote_fileio_reset ();
2887 reopen_exec_file ();
2888 reread_symbols ();
2889
2890 remote_desc = remote_serial_open (name);
2891 if (!remote_desc)
2892 perror_with_name (name);
2893
2894 if (baud_rate != -1)
2895 {
2896 if (serial_setbaudrate (remote_desc, baud_rate))
2897 {
2898 /* The requested speed could not be set. Error out to
2899 top level after closing remote_desc. Take care to
2900 set remote_desc to NULL to avoid closing remote_desc
2901 more than once. */
2902 serial_close (remote_desc);
2903 remote_desc = NULL;
2904 perror_with_name (name);
2905 }
2906 }
2907
2908 serial_raw (remote_desc);
2909
2910 /* If there is something sitting in the buffer we might take it as a
2911 response to a command, which would be bad. */
2912 serial_flush_input (remote_desc);
2913
2914 if (from_tty)
2915 {
2916 puts_filtered ("Remote debugging using ");
2917 puts_filtered (name);
2918 puts_filtered ("\n");
2919 }
2920 push_target (target); /* Switch to using remote target now. */
2921
2922 /* Assume that the target is running, unless we learn otherwise. */
2923 target_mark_running (target);
2924
2925 /* Reset the target state; these things will be queried either by
2926 remote_query_supported or as they are needed. */
2927 init_all_packet_configs ();
2928 rs->explicit_packet_size = 0;
2929 rs->noack_mode = 0;
2930 rs->multi_process_aware = 0;
2931 rs->extended = extended_p;
2932 rs->waiting_for_stop_reply = 0;
2933
2934 general_thread = not_sent_ptid;
2935 continue_thread = not_sent_ptid;
2936
2937 /* Probe for ability to use "ThreadInfo" query, as required. */
2938 use_threadinfo_query = 1;
2939 use_threadextra_query = 1;
2940
2941 if (target_async_permitted)
2942 {
2943 /* With this target we start out by owning the terminal. */
2944 remote_async_terminal_ours_p = 1;
2945
2946 /* FIXME: cagney/1999-09-23: During the initial connection it is
2947 assumed that the target is already ready and able to respond to
2948 requests. Unfortunately remote_start_remote() eventually calls
2949 wait_for_inferior() with no timeout. wait_forever_enabled_p gets
2950 around this. Eventually a mechanism that allows
2951 wait_for_inferior() to expect/get timeouts will be
2952 implemented. */
2953 wait_forever_enabled_p = 0;
2954 }
2955
2956 /* First delete any symbols previously loaded from shared libraries. */
2957 no_shared_libraries (NULL, 0);
2958
2959 /* Start the remote connection. If error() or QUIT, discard this
2960 target (we'd otherwise be in an inconsistent state) and then
2961 propogate the error on up the exception chain. This ensures that
2962 the caller doesn't stumble along blindly assuming that the
2963 function succeeded. The CLI doesn't have this problem but other
2964 UI's, such as MI do.
2965
2966 FIXME: cagney/2002-05-19: Instead of re-throwing the exception,
2967 this function should return an error indication letting the
2968 caller restore the previous state. Unfortunately the command
2969 ``target remote'' is directly wired to this function making that
2970 impossible. On a positive note, the CLI side of this problem has
2971 been fixed - the function set_cmd_context() makes it possible for
2972 all the ``target ....'' commands to share a common callback
2973 function. See cli-dump.c. */
2974 {
2975 struct gdb_exception ex;
2976 struct start_remote_args args;
2977
2978 args.from_tty = from_tty;
2979 args.target = target;
2980 args.extended_p = extended_p;
2981
2982 ex = catch_exception (uiout, remote_start_remote, &args, RETURN_MASK_ALL);
2983 if (ex.reason < 0)
2984 {
2985 /* Pop the partially set up target - unless something else did
2986 already before throwing the exception. */
2987 if (remote_desc != NULL)
2988 pop_target ();
2989 if (target_async_permitted)
2990 wait_forever_enabled_p = 1;
2991 throw_exception (ex);
2992 }
2993 }
2994
2995 if (target_async_permitted)
2996 wait_forever_enabled_p = 1;
2997 }
2998
2999 /* This takes a program previously attached to and detaches it. After
3000 this is done, GDB can be used to debug some other program. We
3001 better not have left any breakpoints in the target program or it'll
3002 die when it hits one. */
3003
3004 static void
3005 remote_detach_1 (char *args, int from_tty, int extended)
3006 {
3007 int pid = ptid_get_pid (inferior_ptid);
3008 struct remote_state *rs = get_remote_state ();
3009
3010 if (args)
3011 error (_("Argument given to \"detach\" when remotely debugging."));
3012
3013 if (!target_has_execution)
3014 error (_("No process to detach from."));
3015
3016 /* Tell the remote target to detach. */
3017 if (remote_multi_process_p (rs))
3018 sprintf (rs->buf, "D;%x", pid);
3019 else
3020 strcpy (rs->buf, "D");
3021
3022 putpkt (rs->buf);
3023 getpkt (&rs->buf, &rs->buf_size, 0);
3024
3025 if (rs->buf[0] == 'O' && rs->buf[1] == 'K')
3026 ;
3027 else if (rs->buf[0] == '\0')
3028 error (_("Remote doesn't know how to detach"));
3029 else
3030 error (_("Can't detach process."));
3031
3032 /* Unregister the file descriptor from the event loop. */
3033 if (target_is_async_p ())
3034 serial_async (remote_desc, NULL, 0);
3035
3036 if (from_tty)
3037 {
3038 if (remote_multi_process_p (rs))
3039 printf_filtered (_("Detached from remote %s.\n"),
3040 target_pid_to_str (pid_to_ptid (pid)));
3041 else
3042 {
3043 if (extended)
3044 puts_filtered (_("Detached from remote process.\n"));
3045 else
3046 puts_filtered (_("Ending remote debugging.\n"));
3047 }
3048 }
3049
3050 detach_inferior (pid);
3051 target_mourn_inferior ();
3052 }
3053
3054 static void
3055 remote_detach (char *args, int from_tty)
3056 {
3057 remote_detach_1 (args, from_tty, 0);
3058 }
3059
3060 static void
3061 extended_remote_detach (char *args, int from_tty)
3062 {
3063 remote_detach_1 (args, from_tty, 1);
3064 }
3065
3066 /* Same as remote_detach, but don't send the "D" packet; just disconnect. */
3067
3068 static void
3069 remote_disconnect (struct target_ops *target, char *args, int from_tty)
3070 {
3071 if (args)
3072 error (_("Argument given to \"disconnect\" when remotely debugging."));
3073
3074 /* Unregister the file descriptor from the event loop. */
3075 if (target_is_async_p ())
3076 serial_async (remote_desc, NULL, 0);
3077
3078 /* Make sure we unpush even the extended remote targets; mourn
3079 won't do it. So call remote_mourn_1 directly instead of
3080 target_mourn_inferior. */
3081 remote_mourn_1 (target);
3082
3083 if (from_tty)
3084 puts_filtered ("Ending remote debugging.\n");
3085 }
3086
3087 /* Attach to the process specified by ARGS. If FROM_TTY is non-zero,
3088 be chatty about it. */
3089
3090 static void
3091 extended_remote_attach_1 (struct target_ops *target, char *args, int from_tty)
3092 {
3093 struct remote_state *rs = get_remote_state ();
3094 int pid;
3095 char *dummy;
3096 char *wait_status = NULL;
3097 struct inferior *inf;
3098
3099 if (!args)
3100 error_no_arg (_("process-id to attach"));
3101
3102 dummy = args;
3103 pid = strtol (args, &dummy, 0);
3104 /* Some targets don't set errno on errors, grrr! */
3105 if (pid == 0 && args == dummy)
3106 error (_("Illegal process-id: %s."), args);
3107
3108 if (remote_protocol_packets[PACKET_vAttach].support == PACKET_DISABLE)
3109 error (_("This target does not support attaching to a process"));
3110
3111 sprintf (rs->buf, "vAttach;%x", pid);
3112 putpkt (rs->buf);
3113 getpkt (&rs->buf, &rs->buf_size, 0);
3114
3115 if (packet_ok (rs->buf, &remote_protocol_packets[PACKET_vAttach]) == PACKET_OK)
3116 {
3117 if (from_tty)
3118 printf_unfiltered (_("Attached to %s\n"),
3119 target_pid_to_str (pid_to_ptid (pid)));
3120
3121 /* Save the reply for later. */
3122 wait_status = alloca (strlen (rs->buf) + 1);
3123 strcpy (wait_status, rs->buf);
3124 }
3125 else if (remote_protocol_packets[PACKET_vAttach].support == PACKET_DISABLE)
3126 error (_("This target does not support attaching to a process"));
3127 else
3128 error (_("Attaching to %s failed"),
3129 target_pid_to_str (pid_to_ptid (pid)));
3130
3131 target_mark_running (target);
3132 inferior_ptid = pid_to_ptid (pid);
3133
3134 /* Now, if we have thread information, update inferior_ptid. */
3135 inferior_ptid = remote_current_thread (inferior_ptid);
3136
3137 inf = add_inferior (pid);
3138 inf->attach_flag = 1;
3139
3140 /* Now, add the main thread to the thread list. */
3141 add_thread_silent (inferior_ptid);
3142
3143 /* Next, if the target can specify a description, read it. We do
3144 this before anything involving memory or registers. */
3145 target_find_description ();
3146
3147 /* Use the previously fetched status. */
3148 gdb_assert (wait_status != NULL);
3149 strcpy (rs->buf, wait_status);
3150 rs->cached_wait_status = 1;
3151 }
3152
3153 static void
3154 extended_remote_attach (char *args, int from_tty)
3155 {
3156 extended_remote_attach_1 (&extended_remote_ops, args, from_tty);
3157 }
3158
3159 /* Convert hex digit A to a number. */
3160
3161 static int
3162 fromhex (int a)
3163 {
3164 if (a >= '0' && a <= '9')
3165 return a - '0';
3166 else if (a >= 'a' && a <= 'f')
3167 return a - 'a' + 10;
3168 else if (a >= 'A' && a <= 'F')
3169 return a - 'A' + 10;
3170 else
3171 error (_("Reply contains invalid hex digit %d"), a);
3172 }
3173
3174 static int
3175 hex2bin (const char *hex, gdb_byte *bin, int count)
3176 {
3177 int i;
3178
3179 for (i = 0; i < count; i++)
3180 {
3181 if (hex[0] == 0 || hex[1] == 0)
3182 {
3183 /* Hex string is short, or of uneven length.
3184 Return the count that has been converted so far. */
3185 return i;
3186 }
3187 *bin++ = fromhex (hex[0]) * 16 + fromhex (hex[1]);
3188 hex += 2;
3189 }
3190 return i;
3191 }
3192
3193 /* Convert number NIB to a hex digit. */
3194
3195 static int
3196 tohex (int nib)
3197 {
3198 if (nib < 10)
3199 return '0' + nib;
3200 else
3201 return 'a' + nib - 10;
3202 }
3203
3204 static int
3205 bin2hex (const gdb_byte *bin, char *hex, int count)
3206 {
3207 int i;
3208 /* May use a length, or a nul-terminated string as input. */
3209 if (count == 0)
3210 count = strlen ((char *) bin);
3211
3212 for (i = 0; i < count; i++)
3213 {
3214 *hex++ = tohex ((*bin >> 4) & 0xf);
3215 *hex++ = tohex (*bin++ & 0xf);
3216 }
3217 *hex = 0;
3218 return i;
3219 }
3220 \f
3221 /* Check for the availability of vCont. This function should also check
3222 the response. */
3223
3224 static void
3225 remote_vcont_probe (struct remote_state *rs)
3226 {
3227 char *buf;
3228
3229 strcpy (rs->buf, "vCont?");
3230 putpkt (rs->buf);
3231 getpkt (&rs->buf, &rs->buf_size, 0);
3232 buf = rs->buf;
3233
3234 /* Make sure that the features we assume are supported. */
3235 if (strncmp (buf, "vCont", 5) == 0)
3236 {
3237 char *p = &buf[5];
3238 int support_s, support_S, support_c, support_C;
3239
3240 support_s = 0;
3241 support_S = 0;
3242 support_c = 0;
3243 support_C = 0;
3244 while (p && *p == ';')
3245 {
3246 p++;
3247 if (*p == 's' && (*(p + 1) == ';' || *(p + 1) == 0))
3248 support_s = 1;
3249 else if (*p == 'S' && (*(p + 1) == ';' || *(p + 1) == 0))
3250 support_S = 1;
3251 else if (*p == 'c' && (*(p + 1) == ';' || *(p + 1) == 0))
3252 support_c = 1;
3253 else if (*p == 'C' && (*(p + 1) == ';' || *(p + 1) == 0))
3254 support_C = 1;
3255
3256 p = strchr (p, ';');
3257 }
3258
3259 /* If s, S, c, and C are not all supported, we can't use vCont. Clearing
3260 BUF will make packet_ok disable the packet. */
3261 if (!support_s || !support_S || !support_c || !support_C)
3262 buf[0] = 0;
3263 }
3264
3265 packet_ok (buf, &remote_protocol_packets[PACKET_vCont]);
3266 }
3267
3268 /* Resume the remote inferior by using a "vCont" packet. The thread
3269 to be resumed is PTID; STEP and SIGGNAL indicate whether the
3270 resumed thread should be single-stepped and/or signalled. If PTID
3271 equals minus_one_ptid, then all threads are resumed; the thread to
3272 be stepped and/or signalled is given in the global INFERIOR_PTID.
3273 This function returns non-zero iff it resumes the inferior.
3274
3275 This function issues a strict subset of all possible vCont commands at the
3276 moment. */
3277
3278 static int
3279 remote_vcont_resume (ptid_t ptid, int step, enum target_signal siggnal)
3280 {
3281 struct remote_state *rs = get_remote_state ();
3282 char *p;
3283 char *endp;
3284
3285 if (remote_protocol_packets[PACKET_vCont].support == PACKET_SUPPORT_UNKNOWN)
3286 remote_vcont_probe (rs);
3287
3288 if (remote_protocol_packets[PACKET_vCont].support == PACKET_DISABLE)
3289 return 0;
3290
3291 p = rs->buf;
3292 endp = rs->buf + get_remote_packet_size ();
3293
3294 /* If we could generate a wider range of packets, we'd have to worry
3295 about overflowing BUF. Should there be a generic
3296 "multi-part-packet" packet? */
3297
3298 if (ptid_equal (ptid, magic_null_ptid))
3299 {
3300 /* MAGIC_NULL_PTID means that we don't have any active threads,
3301 so we don't have any TID numbers the inferior will
3302 understand. Make sure to only send forms that do not specify
3303 a TID. */
3304 if (step && siggnal != TARGET_SIGNAL_0)
3305 xsnprintf (p, endp - p, "vCont;S%02x", siggnal);
3306 else if (step)
3307 xsnprintf (p, endp - p, "vCont;s");
3308 else if (siggnal != TARGET_SIGNAL_0)
3309 xsnprintf (p, endp - p, "vCont;C%02x", siggnal);
3310 else
3311 xsnprintf (p, endp - p, "vCont;c");
3312 }
3313 else if (ptid_equal (ptid, minus_one_ptid))
3314 {
3315 /* Resume all threads, with preference for INFERIOR_PTID. */
3316 if (step && siggnal != TARGET_SIGNAL_0)
3317 {
3318 /* Step inferior_ptid with signal. */
3319 p += xsnprintf (p, endp - p, "vCont;S%02x:", siggnal);
3320 p = write_ptid (p, endp, inferior_ptid);
3321 /* And continue others. */
3322 p += xsnprintf (p, endp - p, ";c");
3323 }
3324 else if (step)
3325 {
3326 /* Step inferior_ptid. */
3327 p += xsnprintf (p, endp - p, "vCont;s:");
3328 p = write_ptid (p, endp, inferior_ptid);
3329 /* And continue others. */
3330 p += xsnprintf (p, endp - p, ";c");
3331 }
3332 else if (siggnal != TARGET_SIGNAL_0)
3333 {
3334 /* Continue inferior_ptid with signal. */
3335 p += xsnprintf (p, endp - p, "vCont;C%02x:", siggnal);
3336 p = write_ptid (p, endp, inferior_ptid);
3337 /* And continue others. */
3338 p += xsnprintf (p, endp - p, ";c");
3339 }
3340 else
3341 xsnprintf (p, endp - p, "vCont;c");
3342 }
3343 else
3344 {
3345 /* Scheduler locking; resume only PTID. */
3346 if (step && siggnal != TARGET_SIGNAL_0)
3347 {
3348 /* Step ptid with signal. */
3349 p += xsnprintf (p, endp - p, "vCont;S%02x:", siggnal);
3350 p = write_ptid (p, endp, ptid);
3351 }
3352 else if (step)
3353 {
3354 /* Step ptid. */
3355 p += xsnprintf (p, endp - p, "vCont;s:");
3356 p = write_ptid (p, endp, ptid);
3357 }
3358 else if (siggnal != TARGET_SIGNAL_0)
3359 {
3360 /* Continue ptid with signal. */
3361 p += xsnprintf (p, endp - p, "vCont;C%02x:", siggnal);
3362 p = write_ptid (p, endp, ptid);
3363 }
3364 else
3365 {
3366 /* Continue ptid. */
3367 p += xsnprintf (p, endp - p, "vCont;c:");
3368 p = write_ptid (p, endp, ptid);
3369 }
3370 }
3371
3372 gdb_assert (strlen (rs->buf) < get_remote_packet_size ());
3373 putpkt (rs->buf);
3374
3375 return 1;
3376 }
3377
3378 /* Tell the remote machine to resume. */
3379
3380 static enum target_signal last_sent_signal = TARGET_SIGNAL_0;
3381
3382 static int last_sent_step;
3383
3384 static void
3385 remote_resume (ptid_t ptid, int step, enum target_signal siggnal)
3386 {
3387 struct remote_state *rs = get_remote_state ();
3388 char *buf;
3389
3390 last_sent_signal = siggnal;
3391 last_sent_step = step;
3392
3393 /* Update the inferior on signals to silently pass, if they've changed. */
3394 remote_pass_signals ();
3395
3396 /* The vCont packet doesn't need to specify threads via Hc. */
3397 if (remote_vcont_resume (ptid, step, siggnal))
3398 goto done;
3399
3400 /* All other supported resume packets do use Hc, so set the continue
3401 thread. */
3402 if (ptid_equal (ptid, minus_one_ptid))
3403 set_continue_thread (any_thread_ptid);
3404 else
3405 set_continue_thread (ptid);
3406
3407 buf = rs->buf;
3408 if (siggnal != TARGET_SIGNAL_0)
3409 {
3410 buf[0] = step ? 'S' : 'C';
3411 buf[1] = tohex (((int) siggnal >> 4) & 0xf);
3412 buf[2] = tohex (((int) siggnal) & 0xf);
3413 buf[3] = '\0';
3414 }
3415 else
3416 strcpy (buf, step ? "s" : "c");
3417
3418 putpkt (buf);
3419
3420 done:
3421 /* We are about to start executing the inferior, let's register it
3422 with the event loop. NOTE: this is the one place where all the
3423 execution commands end up. We could alternatively do this in each
3424 of the execution commands in infcmd.c. */
3425 /* FIXME: ezannoni 1999-09-28: We may need to move this out of here
3426 into infcmd.c in order to allow inferior function calls to work
3427 NOT asynchronously. */
3428 if (target_can_async_p ())
3429 target_async (inferior_event_handler, 0);
3430
3431 /* We've just told the target to resume. The remote server will
3432 wait for the inferior to stop, and then send a stop reply. In
3433 the mean time, we can't start another command/query ourselves
3434 because the stub wouldn't be ready to process it. */
3435 rs->waiting_for_stop_reply = 1;
3436 }
3437 \f
3438
3439 /* Set up the signal handler for SIGINT, while the target is
3440 executing, ovewriting the 'regular' SIGINT signal handler. */
3441 static void
3442 initialize_sigint_signal_handler (void)
3443 {
3444 signal (SIGINT, handle_remote_sigint);
3445 }
3446
3447 /* Signal handler for SIGINT, while the target is executing. */
3448 static void
3449 handle_remote_sigint (int sig)
3450 {
3451 signal (sig, handle_remote_sigint_twice);
3452 mark_async_signal_handler_wrapper (sigint_remote_token);
3453 }
3454
3455 /* Signal handler for SIGINT, installed after SIGINT has already been
3456 sent once. It will take effect the second time that the user sends
3457 a ^C. */
3458 static void
3459 handle_remote_sigint_twice (int sig)
3460 {
3461 signal (sig, handle_remote_sigint);
3462 mark_async_signal_handler_wrapper (sigint_remote_twice_token);
3463 }
3464
3465 /* Perform the real interruption of the target execution, in response
3466 to a ^C. */
3467 static void
3468 async_remote_interrupt (gdb_client_data arg)
3469 {
3470 if (remote_debug)
3471 fprintf_unfiltered (gdb_stdlog, "remote_interrupt called\n");
3472
3473 target_stop (inferior_ptid);
3474 }
3475
3476 /* Perform interrupt, if the first attempt did not succeed. Just give
3477 up on the target alltogether. */
3478 void
3479 async_remote_interrupt_twice (gdb_client_data arg)
3480 {
3481 if (remote_debug)
3482 fprintf_unfiltered (gdb_stdlog, "remote_interrupt_twice called\n");
3483
3484 interrupt_query ();
3485 }
3486
3487 /* Reinstall the usual SIGINT handlers, after the target has
3488 stopped. */
3489 static void
3490 cleanup_sigint_signal_handler (void *dummy)
3491 {
3492 signal (SIGINT, handle_sigint);
3493 }
3494
3495 /* Send ^C to target to halt it. Target will respond, and send us a
3496 packet. */
3497 static void (*ofunc) (int);
3498
3499 /* The command line interface's stop routine. This function is installed
3500 as a signal handler for SIGINT. The first time a user requests a
3501 stop, we call remote_stop to send a break or ^C. If there is no
3502 response from the target (it didn't stop when the user requested it),
3503 we ask the user if he'd like to detach from the target. */
3504 static void
3505 remote_interrupt (int signo)
3506 {
3507 /* If this doesn't work, try more severe steps. */
3508 signal (signo, remote_interrupt_twice);
3509
3510 gdb_call_async_signal_handler (sigint_remote_token, 1);
3511 }
3512
3513 /* The user typed ^C twice. */
3514
3515 static void
3516 remote_interrupt_twice (int signo)
3517 {
3518 signal (signo, ofunc);
3519 gdb_call_async_signal_handler (sigint_remote_twice_token, 1);
3520 signal (signo, remote_interrupt);
3521 }
3522
3523 /* This is the generic stop called via the target vector. When a target
3524 interrupt is requested, either by the command line or the GUI, we
3525 will eventually end up here. */
3526 static void
3527 remote_stop (ptid_t ptid)
3528 {
3529 /* Send a break or a ^C, depending on user preference. */
3530 if (remote_debug)
3531 fprintf_unfiltered (gdb_stdlog, "remote_stop called\n");
3532
3533 if (remote_break)
3534 serial_send_break (remote_desc);
3535 else
3536 serial_write (remote_desc, "\003", 1);
3537 }
3538
3539 /* Ask the user what to do when an interrupt is received. */
3540
3541 static void
3542 interrupt_query (void)
3543 {
3544 target_terminal_ours ();
3545
3546 if (query ("Interrupted while waiting for the program.\n\
3547 Give up (and stop debugging it)? "))
3548 {
3549 target_mourn_inferior ();
3550 signal (SIGINT, handle_sigint);
3551 deprecated_throw_reason (RETURN_QUIT);
3552 }
3553
3554 target_terminal_inferior ();
3555 }
3556
3557 /* Enable/disable target terminal ownership. Most targets can use
3558 terminal groups to control terminal ownership. Remote targets are
3559 different in that explicit transfer of ownership to/from GDB/target
3560 is required. */
3561
3562 static void
3563 remote_terminal_inferior (void)
3564 {
3565 if (!target_async_permitted)
3566 /* Nothing to do. */
3567 return;
3568
3569 /* FIXME: cagney/1999-09-27: Shouldn't need to test for
3570 sync_execution here. This function should only be called when
3571 GDB is resuming the inferior in the forground. A background
3572 resume (``run&'') should leave GDB in control of the terminal and
3573 consequently should not call this code. */
3574 if (!sync_execution)
3575 return;
3576 /* FIXME: cagney/1999-09-27: Closely related to the above. Make
3577 calls target_terminal_*() idenpotent. The event-loop GDB talking
3578 to an asynchronous target with a synchronous command calls this
3579 function from both event-top.c and infrun.c/infcmd.c. Once GDB
3580 stops trying to transfer the terminal to the target when it
3581 shouldn't this guard can go away. */
3582 if (!remote_async_terminal_ours_p)
3583 return;
3584 delete_file_handler (input_fd);
3585 remote_async_terminal_ours_p = 0;
3586 initialize_sigint_signal_handler ();
3587 /* NOTE: At this point we could also register our selves as the
3588 recipient of all input. Any characters typed could then be
3589 passed on down to the target. */
3590 }
3591
3592 static void
3593 remote_terminal_ours (void)
3594 {
3595 if (!target_async_permitted)
3596 /* Nothing to do. */
3597 return;
3598
3599 /* See FIXME in remote_terminal_inferior. */
3600 if (!sync_execution)
3601 return;
3602 /* See FIXME in remote_terminal_inferior. */
3603 if (remote_async_terminal_ours_p)
3604 return;
3605 cleanup_sigint_signal_handler (NULL);
3606 add_file_handler (input_fd, stdin_event_handler, 0);
3607 remote_async_terminal_ours_p = 1;
3608 }
3609
3610 void
3611 remote_console_output (char *msg)
3612 {
3613 char *p;
3614
3615 for (p = msg; p[0] && p[1]; p += 2)
3616 {
3617 char tb[2];
3618 char c = fromhex (p[0]) * 16 + fromhex (p[1]);
3619 tb[0] = c;
3620 tb[1] = 0;
3621 fputs_unfiltered (tb, gdb_stdtarg);
3622 }
3623 gdb_flush (gdb_stdtarg);
3624 }
3625
3626 /* Wait until the remote machine stops, then return,
3627 storing status in STATUS just as `wait' would. */
3628
3629 static ptid_t
3630 remote_wait (ptid_t ptid, struct target_waitstatus *status)
3631 {
3632 struct remote_state *rs = get_remote_state ();
3633 struct remote_arch_state *rsa = get_remote_arch_state ();
3634 ptid_t event_ptid = null_ptid;
3635 ULONGEST addr;
3636 int solibs_changed = 0;
3637
3638 status->kind = TARGET_WAITKIND_EXITED;
3639 status->value.integer = 0;
3640
3641 while (1)
3642 {
3643 char *buf, *p;
3644
3645 if (rs->cached_wait_status)
3646 /* Use the cached wait status, but only once. */
3647 rs->cached_wait_status = 0;
3648 else
3649 {
3650 if (!target_is_async_p ())
3651 {
3652 ofunc = signal (SIGINT, remote_interrupt);
3653 /* If the user hit C-c before this packet, or between packets,
3654 pretend that it was hit right here. */
3655 if (quit_flag)
3656 {
3657 quit_flag = 0;
3658 remote_interrupt (SIGINT);
3659 }
3660 }
3661 /* FIXME: cagney/1999-09-27: If we're in async mode we should
3662 _never_ wait for ever -> test on target_is_async_p().
3663 However, before we do that we need to ensure that the caller
3664 knows how to take the target into/out of async mode. */
3665 getpkt (&rs->buf, &rs->buf_size, wait_forever_enabled_p);
3666 if (!target_is_async_p ())
3667 signal (SIGINT, ofunc);
3668 }
3669
3670 buf = rs->buf;
3671
3672 remote_stopped_by_watchpoint_p = 0;
3673
3674 /* We got something. */
3675 rs->waiting_for_stop_reply = 0;
3676
3677 switch (buf[0])
3678 {
3679 case 'E': /* Error of some sort. */
3680 /* We're out of sync with the target now. Did it continue or not?
3681 Not is more likely, so report a stop. */
3682 warning (_("Remote failure reply: %s"), buf);
3683 status->kind = TARGET_WAITKIND_STOPPED;
3684 status->value.sig = TARGET_SIGNAL_0;
3685 goto got_status;
3686 case 'F': /* File-I/O request. */
3687 remote_fileio_request (buf);
3688
3689 /* This stop reply is special. We reply back to the stub,
3690 and keep waiting for the target to stop. */
3691 rs->waiting_for_stop_reply = 1;
3692 continue;
3693 case 'T': /* Status with PC, SP, FP, ... */
3694 {
3695 gdb_byte regs[MAX_REGISTER_SIZE];
3696
3697 /* Expedited reply, containing Signal, {regno, reg} repeat. */
3698 /* format is: 'Tssn...:r...;n...:r...;n...:r...;#cc', where
3699 ss = signal number
3700 n... = register number
3701 r... = register contents
3702 */
3703 p = &buf[3]; /* after Txx */
3704
3705 while (*p)
3706 {
3707 char *p1;
3708 char *p_temp;
3709 int fieldsize;
3710 LONGEST pnum = 0;
3711
3712 /* If the packet contains a register number, save it
3713 in pnum and set p1 to point to the character
3714 following it. Otherwise p1 points to p. */
3715
3716 /* If this packet is an awatch packet, don't parse the
3717 'a' as a register number. */
3718
3719 if (strncmp (p, "awatch", strlen("awatch")) != 0)
3720 {
3721 /* Read the ``P'' register number. */
3722 pnum = strtol (p, &p_temp, 16);
3723 p1 = p_temp;
3724 }
3725 else
3726 p1 = p;
3727
3728 if (p1 == p) /* No register number present here. */
3729 {
3730 p1 = strchr (p, ':');
3731 if (p1 == NULL)
3732 error (_("Malformed packet(a) (missing colon): %s\n\
3733 Packet: '%s'\n"),
3734 p, buf);
3735 if (strncmp (p, "thread", p1 - p) == 0)
3736 event_ptid = read_ptid (++p1, &p);
3737 else if ((strncmp (p, "watch", p1 - p) == 0)
3738 || (strncmp (p, "rwatch", p1 - p) == 0)
3739 || (strncmp (p, "awatch", p1 - p) == 0))
3740 {
3741 remote_stopped_by_watchpoint_p = 1;
3742 p = unpack_varlen_hex (++p1, &addr);
3743 remote_watch_data_address = (CORE_ADDR)addr;
3744 }
3745 else if (strncmp (p, "library", p1 - p) == 0)
3746 {
3747 p1++;
3748 p_temp = p1;
3749 while (*p_temp && *p_temp != ';')
3750 p_temp++;
3751
3752 solibs_changed = 1;
3753 p = p_temp;
3754 }
3755 else
3756 {
3757 /* Silently skip unknown optional info. */
3758 p_temp = strchr (p1 + 1, ';');
3759 if (p_temp)
3760 p = p_temp;
3761 }
3762 }
3763 else
3764 {
3765 struct packet_reg *reg = packet_reg_from_pnum (rsa, pnum);
3766 p = p1;
3767
3768 if (*p != ':')
3769 error (_("Malformed packet(b) (missing colon): %s\n\
3770 Packet: '%s'\n"),
3771 p, buf);
3772 ++p;
3773
3774 if (reg == NULL)
3775 error (_("Remote sent bad register number %s: %s\n\
3776 Packet: '%s'\n"),
3777 phex_nz (pnum, 0), p, buf);
3778
3779 fieldsize = hex2bin (p, regs,
3780 register_size (target_gdbarch,
3781 reg->regnum));
3782 p += 2 * fieldsize;
3783 if (fieldsize < register_size (target_gdbarch,
3784 reg->regnum))
3785 warning (_("Remote reply is too short: %s"), buf);
3786 regcache_raw_supply (get_current_regcache (),
3787 reg->regnum, regs);
3788 }
3789
3790 if (*p != ';')
3791 error (_("Remote register badly formatted: %s\nhere: %s"),
3792 buf, p);
3793 ++p;
3794 }
3795 }
3796 /* fall through */
3797 case 'S': /* Old style status, just signal only. */
3798 if (solibs_changed)
3799 status->kind = TARGET_WAITKIND_LOADED;
3800 else
3801 {
3802 status->kind = TARGET_WAITKIND_STOPPED;
3803 status->value.sig = (enum target_signal)
3804 (((fromhex (buf[1])) << 4) + (fromhex (buf[2])));
3805 }
3806 goto got_status;
3807 case 'W': /* Target exited. */
3808 case 'X':
3809 {
3810 char *p;
3811 int pid;
3812 ULONGEST value;
3813
3814 /* GDB used to accept only 2 hex chars here. Stubs should
3815 only send more if they detect GDB supports
3816 multi-process support. */
3817 p = unpack_varlen_hex (&buf[1], &value);
3818
3819 if (buf[0] == 'W')
3820 {
3821 /* The remote process exited. */
3822 status->kind = TARGET_WAITKIND_EXITED;
3823 status->value.integer = value;
3824 }
3825 else
3826 {
3827 /* The remote process exited with a signal. */
3828 status->kind = TARGET_WAITKIND_SIGNALLED;
3829 status->value.sig = (enum target_signal) value;
3830 }
3831
3832 /* If no process is specified, assume inferior_ptid. */
3833 pid = ptid_get_pid (inferior_ptid);
3834 if (*p == '\0')
3835 ;
3836 else if (*p == ';')
3837 {
3838 p++;
3839
3840 if (p == '\0')
3841 ;
3842 else if (strncmp (p,
3843 "process:", sizeof ("process:") - 1) == 0)
3844 {
3845 ULONGEST upid;
3846 p += sizeof ("process:") - 1;
3847 unpack_varlen_hex (p, &upid);
3848 pid = upid;
3849 }
3850 else
3851 error (_("unknown stop reply packet: %s"), buf);
3852 }
3853 else
3854 error (_("unknown stop reply packet: %s"), buf);
3855 event_ptid = ptid_build (pid, 0, 0);
3856 goto got_status;
3857 }
3858 case 'O': /* Console output. */
3859 remote_console_output (buf + 1);
3860
3861 /* The target didn't really stop; keep waiting. */
3862 rs->waiting_for_stop_reply = 1;
3863
3864 if (target_can_async_p ())
3865 {
3866 /* Return immediately to the event loop. The event loop
3867 will still be waiting on the inferior afterwards. */
3868 status->kind = TARGET_WAITKIND_IGNORE;
3869 goto got_status;
3870 }
3871 else
3872 continue;
3873 case '\0':
3874 if (last_sent_signal != TARGET_SIGNAL_0)
3875 {
3876 /* Zero length reply means that we tried 'S' or 'C' and
3877 the remote system doesn't support it. */
3878 target_terminal_ours_for_output ();
3879 printf_filtered
3880 ("Can't send signals to this remote system. %s not sent.\n",
3881 target_signal_to_name (last_sent_signal));
3882 last_sent_signal = TARGET_SIGNAL_0;
3883 target_terminal_inferior ();
3884
3885 strcpy ((char *) buf, last_sent_step ? "s" : "c");
3886 putpkt ((char *) buf);
3887
3888 /* We just told the target to resume, so a stop reply is
3889 in order. */
3890 rs->waiting_for_stop_reply = 1;
3891 continue;
3892 }
3893 /* else fallthrough */
3894 default:
3895 warning (_("Invalid remote reply: %s"), buf);
3896 /* Keep waiting. */
3897 rs->waiting_for_stop_reply = 1;
3898 continue;
3899 }
3900 }
3901 got_status:
3902 if (status->kind == TARGET_WAITKIND_EXITED
3903 || status->kind == TARGET_WAITKIND_SIGNALLED)
3904 {
3905 int pid = ptid_get_pid (event_ptid);
3906 delete_inferior (pid);
3907 }
3908 else
3909 {
3910 if (!ptid_equal (event_ptid, null_ptid))
3911 record_currthread (event_ptid);
3912 else
3913 event_ptid = inferior_ptid;
3914 }
3915
3916 return event_ptid;
3917 }
3918
3919 /* Fetch a single register using a 'p' packet. */
3920
3921 static int
3922 fetch_register_using_p (struct regcache *regcache, struct packet_reg *reg)
3923 {
3924 struct remote_state *rs = get_remote_state ();
3925 char *buf, *p;
3926 char regp[MAX_REGISTER_SIZE];
3927 int i;
3928
3929 if (remote_protocol_packets[PACKET_p].support == PACKET_DISABLE)
3930 return 0;
3931
3932 if (reg->pnum == -1)
3933 return 0;
3934
3935 p = rs->buf;
3936 *p++ = 'p';
3937 p += hexnumstr (p, reg->pnum);
3938 *p++ = '\0';
3939 remote_send (&rs->buf, &rs->buf_size);
3940
3941 buf = rs->buf;
3942
3943 switch (packet_ok (buf, &remote_protocol_packets[PACKET_p]))
3944 {
3945 case PACKET_OK:
3946 break;
3947 case PACKET_UNKNOWN:
3948 return 0;
3949 case PACKET_ERROR:
3950 error (_("Could not fetch register \"%s\""),
3951 gdbarch_register_name (get_regcache_arch (regcache), reg->regnum));
3952 }
3953
3954 /* If this register is unfetchable, tell the regcache. */
3955 if (buf[0] == 'x')
3956 {
3957 regcache_raw_supply (regcache, reg->regnum, NULL);
3958 return 1;
3959 }
3960
3961 /* Otherwise, parse and supply the value. */
3962 p = buf;
3963 i = 0;
3964 while (p[0] != 0)
3965 {
3966 if (p[1] == 0)
3967 error (_("fetch_register_using_p: early buf termination"));
3968
3969 regp[i++] = fromhex (p[0]) * 16 + fromhex (p[1]);
3970 p += 2;
3971 }
3972 regcache_raw_supply (regcache, reg->regnum, regp);
3973 return 1;
3974 }
3975
3976 /* Fetch the registers included in the target's 'g' packet. */
3977
3978 static int
3979 send_g_packet (void)
3980 {
3981 struct remote_state *rs = get_remote_state ();
3982 int i, buf_len;
3983 char *p;
3984 char *regs;
3985
3986 sprintf (rs->buf, "g");
3987 remote_send (&rs->buf, &rs->buf_size);
3988
3989 /* We can get out of synch in various cases. If the first character
3990 in the buffer is not a hex character, assume that has happened
3991 and try to fetch another packet to read. */
3992 while ((rs->buf[0] < '0' || rs->buf[0] > '9')
3993 && (rs->buf[0] < 'A' || rs->buf[0] > 'F')
3994 && (rs->buf[0] < 'a' || rs->buf[0] > 'f')
3995 && rs->buf[0] != 'x') /* New: unavailable register value. */
3996 {
3997 if (remote_debug)
3998 fprintf_unfiltered (gdb_stdlog,
3999 "Bad register packet; fetching a new packet\n");
4000 getpkt (&rs->buf, &rs->buf_size, 0);
4001 }
4002
4003 buf_len = strlen (rs->buf);
4004
4005 /* Sanity check the received packet. */
4006 if (buf_len % 2 != 0)
4007 error (_("Remote 'g' packet reply is of odd length: %s"), rs->buf);
4008
4009 return buf_len / 2;
4010 }
4011
4012 static void
4013 process_g_packet (struct regcache *regcache)
4014 {
4015 struct gdbarch *gdbarch = get_regcache_arch (regcache);
4016 struct remote_state *rs = get_remote_state ();
4017 struct remote_arch_state *rsa = get_remote_arch_state ();
4018 int i, buf_len;
4019 char *p;
4020 char *regs;
4021
4022 buf_len = strlen (rs->buf);
4023
4024 /* Further sanity checks, with knowledge of the architecture. */
4025 if (buf_len > 2 * rsa->sizeof_g_packet)
4026 error (_("Remote 'g' packet reply is too long: %s"), rs->buf);
4027
4028 /* Save the size of the packet sent to us by the target. It is used
4029 as a heuristic when determining the max size of packets that the
4030 target can safely receive. */
4031 if (rsa->actual_register_packet_size == 0)
4032 rsa->actual_register_packet_size = buf_len;
4033
4034 /* If this is smaller than we guessed the 'g' packet would be,
4035 update our records. A 'g' reply that doesn't include a register's
4036 value implies either that the register is not available, or that
4037 the 'p' packet must be used. */
4038 if (buf_len < 2 * rsa->sizeof_g_packet)
4039 {
4040 rsa->sizeof_g_packet = buf_len / 2;
4041
4042 for (i = 0; i < gdbarch_num_regs (gdbarch); i++)
4043 {
4044 if (rsa->regs[i].pnum == -1)
4045 continue;
4046
4047 if (rsa->regs[i].offset >= rsa->sizeof_g_packet)
4048 rsa->regs[i].in_g_packet = 0;
4049 else
4050 rsa->regs[i].in_g_packet = 1;
4051 }
4052 }
4053
4054 regs = alloca (rsa->sizeof_g_packet);
4055
4056 /* Unimplemented registers read as all bits zero. */
4057 memset (regs, 0, rsa->sizeof_g_packet);
4058
4059 /* Reply describes registers byte by byte, each byte encoded as two
4060 hex characters. Suck them all up, then supply them to the
4061 register cacheing/storage mechanism. */
4062
4063 p = rs->buf;
4064 for (i = 0; i < rsa->sizeof_g_packet; i++)
4065 {
4066 if (p[0] == 0 || p[1] == 0)
4067 /* This shouldn't happen - we adjusted sizeof_g_packet above. */
4068 internal_error (__FILE__, __LINE__,
4069 "unexpected end of 'g' packet reply");
4070
4071 if (p[0] == 'x' && p[1] == 'x')
4072 regs[i] = 0; /* 'x' */
4073 else
4074 regs[i] = fromhex (p[0]) * 16 + fromhex (p[1]);
4075 p += 2;
4076 }
4077
4078 {
4079 int i;
4080 for (i = 0; i < gdbarch_num_regs (gdbarch); i++)
4081 {
4082 struct packet_reg *r = &rsa->regs[i];
4083 if (r->in_g_packet)
4084 {
4085 if (r->offset * 2 >= strlen (rs->buf))
4086 /* This shouldn't happen - we adjusted in_g_packet above. */
4087 internal_error (__FILE__, __LINE__,
4088 "unexpected end of 'g' packet reply");
4089 else if (rs->buf[r->offset * 2] == 'x')
4090 {
4091 gdb_assert (r->offset * 2 < strlen (rs->buf));
4092 /* The register isn't available, mark it as such (at
4093 the same time setting the value to zero). */
4094 regcache_raw_supply (regcache, r->regnum, NULL);
4095 }
4096 else
4097 regcache_raw_supply (regcache, r->regnum,
4098 regs + r->offset);
4099 }
4100 }
4101 }
4102 }
4103
4104 static void
4105 fetch_registers_using_g (struct regcache *regcache)
4106 {
4107 send_g_packet ();
4108 process_g_packet (regcache);
4109 }
4110
4111 static void
4112 remote_fetch_registers (struct regcache *regcache, int regnum)
4113 {
4114 struct remote_state *rs = get_remote_state ();
4115 struct remote_arch_state *rsa = get_remote_arch_state ();
4116 int i;
4117
4118 set_general_thread (inferior_ptid);
4119
4120 if (regnum >= 0)
4121 {
4122 struct packet_reg *reg = packet_reg_from_regnum (rsa, regnum);
4123 gdb_assert (reg != NULL);
4124
4125 /* If this register might be in the 'g' packet, try that first -
4126 we are likely to read more than one register. If this is the
4127 first 'g' packet, we might be overly optimistic about its
4128 contents, so fall back to 'p'. */
4129 if (reg->in_g_packet)
4130 {
4131 fetch_registers_using_g (regcache);
4132 if (reg->in_g_packet)
4133 return;
4134 }
4135
4136 if (fetch_register_using_p (regcache, reg))
4137 return;
4138
4139 /* This register is not available. */
4140 regcache_raw_supply (regcache, reg->regnum, NULL);
4141
4142 return;
4143 }
4144
4145 fetch_registers_using_g (regcache);
4146
4147 for (i = 0; i < gdbarch_num_regs (get_regcache_arch (regcache)); i++)
4148 if (!rsa->regs[i].in_g_packet)
4149 if (!fetch_register_using_p (regcache, &rsa->regs[i]))
4150 {
4151 /* This register is not available. */
4152 regcache_raw_supply (regcache, i, NULL);
4153 }
4154 }
4155
4156 /* Prepare to store registers. Since we may send them all (using a
4157 'G' request), we have to read out the ones we don't want to change
4158 first. */
4159
4160 static void
4161 remote_prepare_to_store (struct regcache *regcache)
4162 {
4163 struct remote_arch_state *rsa = get_remote_arch_state ();
4164 int i;
4165 gdb_byte buf[MAX_REGISTER_SIZE];
4166
4167 /* Make sure the entire registers array is valid. */
4168 switch (remote_protocol_packets[PACKET_P].support)
4169 {
4170 case PACKET_DISABLE:
4171 case PACKET_SUPPORT_UNKNOWN:
4172 /* Make sure all the necessary registers are cached. */
4173 for (i = 0; i < gdbarch_num_regs (get_regcache_arch (regcache)); i++)
4174 if (rsa->regs[i].in_g_packet)
4175 regcache_raw_read (regcache, rsa->regs[i].regnum, buf);
4176 break;
4177 case PACKET_ENABLE:
4178 break;
4179 }
4180 }
4181
4182 /* Helper: Attempt to store REGNUM using the P packet. Return fail IFF
4183 packet was not recognized. */
4184
4185 static int
4186 store_register_using_P (const struct regcache *regcache, struct packet_reg *reg)
4187 {
4188 struct gdbarch *gdbarch = get_regcache_arch (regcache);
4189 struct remote_state *rs = get_remote_state ();
4190 struct remote_arch_state *rsa = get_remote_arch_state ();
4191 /* Try storing a single register. */
4192 char *buf = rs->buf;
4193 gdb_byte regp[MAX_REGISTER_SIZE];
4194 char *p;
4195
4196 if (remote_protocol_packets[PACKET_P].support == PACKET_DISABLE)
4197 return 0;
4198
4199 if (reg->pnum == -1)
4200 return 0;
4201
4202 xsnprintf (buf, get_remote_packet_size (), "P%s=", phex_nz (reg->pnum, 0));
4203 p = buf + strlen (buf);
4204 regcache_raw_collect (regcache, reg->regnum, regp);
4205 bin2hex (regp, p, register_size (gdbarch, reg->regnum));
4206 remote_send (&rs->buf, &rs->buf_size);
4207
4208 switch (packet_ok (rs->buf, &remote_protocol_packets[PACKET_P]))
4209 {
4210 case PACKET_OK:
4211 return 1;
4212 case PACKET_ERROR:
4213 error (_("Could not write register \"%s\""),
4214 gdbarch_register_name (gdbarch, reg->regnum));
4215 case PACKET_UNKNOWN:
4216 return 0;
4217 default:
4218 internal_error (__FILE__, __LINE__, _("Bad result from packet_ok"));
4219 }
4220 }
4221
4222 /* Store register REGNUM, or all registers if REGNUM == -1, from the
4223 contents of the register cache buffer. FIXME: ignores errors. */
4224
4225 static void
4226 store_registers_using_G (const struct regcache *regcache)
4227 {
4228 struct remote_state *rs = get_remote_state ();
4229 struct remote_arch_state *rsa = get_remote_arch_state ();
4230 gdb_byte *regs;
4231 char *p;
4232
4233 /* Extract all the registers in the regcache copying them into a
4234 local buffer. */
4235 {
4236 int i;
4237 regs = alloca (rsa->sizeof_g_packet);
4238 memset (regs, 0, rsa->sizeof_g_packet);
4239 for (i = 0; i < gdbarch_num_regs (get_regcache_arch (regcache)); i++)
4240 {
4241 struct packet_reg *r = &rsa->regs[i];
4242 if (r->in_g_packet)
4243 regcache_raw_collect (regcache, r->regnum, regs + r->offset);
4244 }
4245 }
4246
4247 /* Command describes registers byte by byte,
4248 each byte encoded as two hex characters. */
4249 p = rs->buf;
4250 *p++ = 'G';
4251 /* remote_prepare_to_store insures that rsa->sizeof_g_packet gets
4252 updated. */
4253 bin2hex (regs, p, rsa->sizeof_g_packet);
4254 remote_send (&rs->buf, &rs->buf_size);
4255 }
4256
4257 /* Store register REGNUM, or all registers if REGNUM == -1, from the contents
4258 of the register cache buffer. FIXME: ignores errors. */
4259
4260 static void
4261 remote_store_registers (struct regcache *regcache, int regnum)
4262 {
4263 struct remote_state *rs = get_remote_state ();
4264 struct remote_arch_state *rsa = get_remote_arch_state ();
4265 int i;
4266
4267 set_general_thread (inferior_ptid);
4268
4269 if (regnum >= 0)
4270 {
4271 struct packet_reg *reg = packet_reg_from_regnum (rsa, regnum);
4272 gdb_assert (reg != NULL);
4273
4274 /* Always prefer to store registers using the 'P' packet if
4275 possible; we often change only a small number of registers.
4276 Sometimes we change a larger number; we'd need help from a
4277 higher layer to know to use 'G'. */
4278 if (store_register_using_P (regcache, reg))
4279 return;
4280
4281 /* For now, don't complain if we have no way to write the
4282 register. GDB loses track of unavailable registers too
4283 easily. Some day, this may be an error. We don't have
4284 any way to read the register, either... */
4285 if (!reg->in_g_packet)
4286 return;
4287
4288 store_registers_using_G (regcache);
4289 return;
4290 }
4291
4292 store_registers_using_G (regcache);
4293
4294 for (i = 0; i < gdbarch_num_regs (get_regcache_arch (regcache)); i++)
4295 if (!rsa->regs[i].in_g_packet)
4296 if (!store_register_using_P (regcache, &rsa->regs[i]))
4297 /* See above for why we do not issue an error here. */
4298 continue;
4299 }
4300 \f
4301
4302 /* Return the number of hex digits in num. */
4303
4304 static int
4305 hexnumlen (ULONGEST num)
4306 {
4307 int i;
4308
4309 for (i = 0; num != 0; i++)
4310 num >>= 4;
4311
4312 return max (i, 1);
4313 }
4314
4315 /* Set BUF to the minimum number of hex digits representing NUM. */
4316
4317 static int
4318 hexnumstr (char *buf, ULONGEST num)
4319 {
4320 int len = hexnumlen (num);
4321 return hexnumnstr (buf, num, len);
4322 }
4323
4324
4325 /* Set BUF to the hex digits representing NUM, padded to WIDTH characters. */
4326
4327 static int
4328 hexnumnstr (char *buf, ULONGEST num, int width)
4329 {
4330 int i;
4331
4332 buf[width] = '\0';
4333
4334 for (i = width - 1; i >= 0; i--)
4335 {
4336 buf[i] = "0123456789abcdef"[(num & 0xf)];
4337 num >>= 4;
4338 }
4339
4340 return width;
4341 }
4342
4343 /* Mask all but the least significant REMOTE_ADDRESS_SIZE bits. */
4344
4345 static CORE_ADDR
4346 remote_address_masked (CORE_ADDR addr)
4347 {
4348 int address_size = remote_address_size;
4349 /* If "remoteaddresssize" was not set, default to target address size. */
4350 if (!address_size)
4351 address_size = gdbarch_addr_bit (target_gdbarch);
4352
4353 if (address_size > 0
4354 && address_size < (sizeof (ULONGEST) * 8))
4355 {
4356 /* Only create a mask when that mask can safely be constructed
4357 in a ULONGEST variable. */
4358 ULONGEST mask = 1;
4359 mask = (mask << address_size) - 1;
4360 addr &= mask;
4361 }
4362 return addr;
4363 }
4364
4365 /* Convert BUFFER, binary data at least LEN bytes long, into escaped
4366 binary data in OUT_BUF. Set *OUT_LEN to the length of the data
4367 encoded in OUT_BUF, and return the number of bytes in OUT_BUF
4368 (which may be more than *OUT_LEN due to escape characters). The
4369 total number of bytes in the output buffer will be at most
4370 OUT_MAXLEN. */
4371
4372 static int
4373 remote_escape_output (const gdb_byte *buffer, int len,
4374 gdb_byte *out_buf, int *out_len,
4375 int out_maxlen)
4376 {
4377 int input_index, output_index;
4378
4379 output_index = 0;
4380 for (input_index = 0; input_index < len; input_index++)
4381 {
4382 gdb_byte b = buffer[input_index];
4383
4384 if (b == '$' || b == '#' || b == '}')
4385 {
4386 /* These must be escaped. */
4387 if (output_index + 2 > out_maxlen)
4388 break;
4389 out_buf[output_index++] = '}';
4390 out_buf[output_index++] = b ^ 0x20;
4391 }
4392 else
4393 {
4394 if (output_index + 1 > out_maxlen)
4395 break;
4396 out_buf[output_index++] = b;
4397 }
4398 }
4399
4400 *out_len = input_index;
4401 return output_index;
4402 }
4403
4404 /* Convert BUFFER, escaped data LEN bytes long, into binary data
4405 in OUT_BUF. Return the number of bytes written to OUT_BUF.
4406 Raise an error if the total number of bytes exceeds OUT_MAXLEN.
4407
4408 This function reverses remote_escape_output. It allows more
4409 escaped characters than that function does, in particular because
4410 '*' must be escaped to avoid the run-length encoding processing
4411 in reading packets. */
4412
4413 static int
4414 remote_unescape_input (const gdb_byte *buffer, int len,
4415 gdb_byte *out_buf, int out_maxlen)
4416 {
4417 int input_index, output_index;
4418 int escaped;
4419
4420 output_index = 0;
4421 escaped = 0;
4422 for (input_index = 0; input_index < len; input_index++)
4423 {
4424 gdb_byte b = buffer[input_index];
4425
4426 if (output_index + 1 > out_maxlen)
4427 {
4428 warning (_("Received too much data from remote target;"
4429 " ignoring overflow."));
4430 return output_index;
4431 }
4432
4433 if (escaped)
4434 {
4435 out_buf[output_index++] = b ^ 0x20;
4436 escaped = 0;
4437 }
4438 else if (b == '}')
4439 escaped = 1;
4440 else
4441 out_buf[output_index++] = b;
4442 }
4443
4444 if (escaped)
4445 error (_("Unmatched escape character in target response."));
4446
4447 return output_index;
4448 }
4449
4450 /* Determine whether the remote target supports binary downloading.
4451 This is accomplished by sending a no-op memory write of zero length
4452 to the target at the specified address. It does not suffice to send
4453 the whole packet, since many stubs strip the eighth bit and
4454 subsequently compute a wrong checksum, which causes real havoc with
4455 remote_write_bytes.
4456
4457 NOTE: This can still lose if the serial line is not eight-bit
4458 clean. In cases like this, the user should clear "remote
4459 X-packet". */
4460
4461 static void
4462 check_binary_download (CORE_ADDR addr)
4463 {
4464 struct remote_state *rs = get_remote_state ();
4465
4466 switch (remote_protocol_packets[PACKET_X].support)
4467 {
4468 case PACKET_DISABLE:
4469 break;
4470 case PACKET_ENABLE:
4471 break;
4472 case PACKET_SUPPORT_UNKNOWN:
4473 {
4474 char *p;
4475
4476 p = rs->buf;
4477 *p++ = 'X';
4478 p += hexnumstr (p, (ULONGEST) addr);
4479 *p++ = ',';
4480 p += hexnumstr (p, (ULONGEST) 0);
4481 *p++ = ':';
4482 *p = '\0';
4483
4484 putpkt_binary (rs->buf, (int) (p - rs->buf));
4485 getpkt (&rs->buf, &rs->buf_size, 0);
4486
4487 if (rs->buf[0] == '\0')
4488 {
4489 if (remote_debug)
4490 fprintf_unfiltered (gdb_stdlog,
4491 "binary downloading NOT suppported by target\n");
4492 remote_protocol_packets[PACKET_X].support = PACKET_DISABLE;
4493 }
4494 else
4495 {
4496 if (remote_debug)
4497 fprintf_unfiltered (gdb_stdlog,
4498 "binary downloading suppported by target\n");
4499 remote_protocol_packets[PACKET_X].support = PACKET_ENABLE;
4500 }
4501 break;
4502 }
4503 }
4504 }
4505
4506 /* Write memory data directly to the remote machine.
4507 This does not inform the data cache; the data cache uses this.
4508 HEADER is the starting part of the packet.
4509 MEMADDR is the address in the remote memory space.
4510 MYADDR is the address of the buffer in our space.
4511 LEN is the number of bytes.
4512 PACKET_FORMAT should be either 'X' or 'M', and indicates if we
4513 should send data as binary ('X'), or hex-encoded ('M').
4514
4515 The function creates packet of the form
4516 <HEADER><ADDRESS>,<LENGTH>:<DATA>
4517
4518 where encoding of <DATA> is termined by PACKET_FORMAT.
4519
4520 If USE_LENGTH is 0, then the <LENGTH> field and the preceding comma
4521 are omitted.
4522
4523 Returns the number of bytes transferred, or 0 (setting errno) for
4524 error. Only transfer a single packet. */
4525
4526 static int
4527 remote_write_bytes_aux (const char *header, CORE_ADDR memaddr,
4528 const gdb_byte *myaddr, int len,
4529 char packet_format, int use_length)
4530 {
4531 struct remote_state *rs = get_remote_state ();
4532 char *p;
4533 char *plen = NULL;
4534 int plenlen = 0;
4535 int todo;
4536 int nr_bytes;
4537 int payload_size;
4538 int payload_length;
4539 int header_length;
4540
4541 if (packet_format != 'X' && packet_format != 'M')
4542 internal_error (__FILE__, __LINE__,
4543 "remote_write_bytes_aux: bad packet format");
4544
4545 if (len <= 0)
4546 return 0;
4547
4548 payload_size = get_memory_write_packet_size ();
4549
4550 /* The packet buffer will be large enough for the payload;
4551 get_memory_packet_size ensures this. */
4552 rs->buf[0] = '\0';
4553
4554 /* Compute the size of the actual payload by subtracting out the
4555 packet header and footer overhead: "$M<memaddr>,<len>:...#nn".
4556 */
4557 payload_size -= strlen ("$,:#NN");
4558 if (!use_length)
4559 /* The comma won't be used. */
4560 payload_size += 1;
4561 header_length = strlen (header);
4562 payload_size -= header_length;
4563 payload_size -= hexnumlen (memaddr);
4564
4565 /* Construct the packet excluding the data: "<header><memaddr>,<len>:". */
4566
4567 strcat (rs->buf, header);
4568 p = rs->buf + strlen (header);
4569
4570 /* Compute a best guess of the number of bytes actually transfered. */
4571 if (packet_format == 'X')
4572 {
4573 /* Best guess at number of bytes that will fit. */
4574 todo = min (len, payload_size);
4575 if (use_length)
4576 payload_size -= hexnumlen (todo);
4577 todo = min (todo, payload_size);
4578 }
4579 else
4580 {
4581 /* Num bytes that will fit. */
4582 todo = min (len, payload_size / 2);
4583 if (use_length)
4584 payload_size -= hexnumlen (todo);
4585 todo = min (todo, payload_size / 2);
4586 }
4587
4588 if (todo <= 0)
4589 internal_error (__FILE__, __LINE__,
4590 _("minumum packet size too small to write data"));
4591
4592 /* If we already need another packet, then try to align the end
4593 of this packet to a useful boundary. */
4594 if (todo > 2 * REMOTE_ALIGN_WRITES && todo < len)
4595 todo = ((memaddr + todo) & ~(REMOTE_ALIGN_WRITES - 1)) - memaddr;
4596
4597 /* Append "<memaddr>". */
4598 memaddr = remote_address_masked (memaddr);
4599 p += hexnumstr (p, (ULONGEST) memaddr);
4600
4601 if (use_length)
4602 {
4603 /* Append ",". */
4604 *p++ = ',';
4605
4606 /* Append <len>. Retain the location/size of <len>. It may need to
4607 be adjusted once the packet body has been created. */
4608 plen = p;
4609 plenlen = hexnumstr (p, (ULONGEST) todo);
4610 p += plenlen;
4611 }
4612
4613 /* Append ":". */
4614 *p++ = ':';
4615 *p = '\0';
4616
4617 /* Append the packet body. */
4618 if (packet_format == 'X')
4619 {
4620 /* Binary mode. Send target system values byte by byte, in
4621 increasing byte addresses. Only escape certain critical
4622 characters. */
4623 payload_length = remote_escape_output (myaddr, todo, p, &nr_bytes,
4624 payload_size);
4625
4626 /* If not all TODO bytes fit, then we'll need another packet. Make
4627 a second try to keep the end of the packet aligned. Don't do
4628 this if the packet is tiny. */
4629 if (nr_bytes < todo && nr_bytes > 2 * REMOTE_ALIGN_WRITES)
4630 {
4631 int new_nr_bytes;
4632
4633 new_nr_bytes = (((memaddr + nr_bytes) & ~(REMOTE_ALIGN_WRITES - 1))
4634 - memaddr);
4635 if (new_nr_bytes != nr_bytes)
4636 payload_length = remote_escape_output (myaddr, new_nr_bytes,
4637 p, &nr_bytes,
4638 payload_size);
4639 }
4640
4641 p += payload_length;
4642 if (use_length && nr_bytes < todo)
4643 {
4644 /* Escape chars have filled up the buffer prematurely,
4645 and we have actually sent fewer bytes than planned.
4646 Fix-up the length field of the packet. Use the same
4647 number of characters as before. */
4648 plen += hexnumnstr (plen, (ULONGEST) nr_bytes, plenlen);
4649 *plen = ':'; /* overwrite \0 from hexnumnstr() */
4650 }
4651 }
4652 else
4653 {
4654 /* Normal mode: Send target system values byte by byte, in
4655 increasing byte addresses. Each byte is encoded as a two hex
4656 value. */
4657 nr_bytes = bin2hex (myaddr, p, todo);
4658 p += 2 * nr_bytes;
4659 }
4660
4661 putpkt_binary (rs->buf, (int) (p - rs->buf));
4662 getpkt (&rs->buf, &rs->buf_size, 0);
4663
4664 if (rs->buf[0] == 'E')
4665 {
4666 /* There is no correspondance between what the remote protocol
4667 uses for errors and errno codes. We would like a cleaner way
4668 of representing errors (big enough to include errno codes,
4669 bfd_error codes, and others). But for now just return EIO. */
4670 errno = EIO;
4671 return 0;
4672 }
4673
4674 /* Return NR_BYTES, not TODO, in case escape chars caused us to send
4675 fewer bytes than we'd planned. */
4676 return nr_bytes;
4677 }
4678
4679 /* Write memory data directly to the remote machine.
4680 This does not inform the data cache; the data cache uses this.
4681 MEMADDR is the address in the remote memory space.
4682 MYADDR is the address of the buffer in our space.
4683 LEN is the number of bytes.
4684
4685 Returns number of bytes transferred, or 0 (setting errno) for
4686 error. Only transfer a single packet. */
4687
4688 int
4689 remote_write_bytes (CORE_ADDR memaddr, const gdb_byte *myaddr, int len)
4690 {
4691 char *packet_format = 0;
4692
4693 /* Check whether the target supports binary download. */
4694 check_binary_download (memaddr);
4695
4696 switch (remote_protocol_packets[PACKET_X].support)
4697 {
4698 case PACKET_ENABLE:
4699 packet_format = "X";
4700 break;
4701 case PACKET_DISABLE:
4702 packet_format = "M";
4703 break;
4704 case PACKET_SUPPORT_UNKNOWN:
4705 internal_error (__FILE__, __LINE__,
4706 _("remote_write_bytes: bad internal state"));
4707 default:
4708 internal_error (__FILE__, __LINE__, _("bad switch"));
4709 }
4710
4711 return remote_write_bytes_aux (packet_format,
4712 memaddr, myaddr, len, packet_format[0], 1);
4713 }
4714
4715 /* Read memory data directly from the remote machine.
4716 This does not use the data cache; the data cache uses this.
4717 MEMADDR is the address in the remote memory space.
4718 MYADDR is the address of the buffer in our space.
4719 LEN is the number of bytes.
4720
4721 Returns number of bytes transferred, or 0 for error. */
4722
4723 /* NOTE: cagney/1999-10-18: This function (and its siblings in other
4724 remote targets) shouldn't attempt to read the entire buffer.
4725 Instead it should read a single packet worth of data and then
4726 return the byte size of that packet to the caller. The caller (its
4727 caller and its callers caller ;-) already contains code for
4728 handling partial reads. */
4729
4730 int
4731 remote_read_bytes (CORE_ADDR memaddr, gdb_byte *myaddr, int len)
4732 {
4733 struct remote_state *rs = get_remote_state ();
4734 int max_buf_size; /* Max size of packet output buffer. */
4735 int origlen;
4736
4737 if (len <= 0)
4738 return 0;
4739
4740 max_buf_size = get_memory_read_packet_size ();
4741 /* The packet buffer will be large enough for the payload;
4742 get_memory_packet_size ensures this. */
4743
4744 origlen = len;
4745 while (len > 0)
4746 {
4747 char *p;
4748 int todo;
4749 int i;
4750
4751 todo = min (len, max_buf_size / 2); /* num bytes that will fit */
4752
4753 /* construct "m"<memaddr>","<len>" */
4754 /* sprintf (rs->buf, "m%lx,%x", (unsigned long) memaddr, todo); */
4755 memaddr = remote_address_masked (memaddr);
4756 p = rs->buf;
4757 *p++ = 'm';
4758 p += hexnumstr (p, (ULONGEST) memaddr);
4759 *p++ = ',';
4760 p += hexnumstr (p, (ULONGEST) todo);
4761 *p = '\0';
4762
4763 putpkt (rs->buf);
4764 getpkt (&rs->buf, &rs->buf_size, 0);
4765
4766 if (rs->buf[0] == 'E'
4767 && isxdigit (rs->buf[1]) && isxdigit (rs->buf[2])
4768 && rs->buf[3] == '\0')
4769 {
4770 /* There is no correspondance between what the remote
4771 protocol uses for errors and errno codes. We would like
4772 a cleaner way of representing errors (big enough to
4773 include errno codes, bfd_error codes, and others). But
4774 for now just return EIO. */
4775 errno = EIO;
4776 return 0;
4777 }
4778
4779 /* Reply describes memory byte by byte,
4780 each byte encoded as two hex characters. */
4781
4782 p = rs->buf;
4783 if ((i = hex2bin (p, myaddr, todo)) < todo)
4784 {
4785 /* Reply is short. This means that we were able to read
4786 only part of what we wanted to. */
4787 return i + (origlen - len);
4788 }
4789 myaddr += todo;
4790 memaddr += todo;
4791 len -= todo;
4792 }
4793 return origlen;
4794 }
4795 \f
4796 /* Read or write LEN bytes from inferior memory at MEMADDR,
4797 transferring to or from debugger address BUFFER. Write to inferior
4798 if SHOULD_WRITE is nonzero. Returns length of data written or
4799 read; 0 for error. TARGET is unused. */
4800
4801 static int
4802 remote_xfer_memory (CORE_ADDR mem_addr, gdb_byte *buffer, int mem_len,
4803 int should_write, struct mem_attrib *attrib,
4804 struct target_ops *target)
4805 {
4806 int res;
4807
4808 set_general_thread (inferior_ptid);
4809
4810 if (should_write)
4811 res = remote_write_bytes (mem_addr, buffer, mem_len);
4812 else
4813 res = remote_read_bytes (mem_addr, buffer, mem_len);
4814
4815 return res;
4816 }
4817
4818 /* Sends a packet with content determined by the printf format string
4819 FORMAT and the remaining arguments, then gets the reply. Returns
4820 whether the packet was a success, a failure, or unknown. */
4821
4822 enum packet_result
4823 remote_send_printf (const char *format, ...)
4824 {
4825 struct remote_state *rs = get_remote_state ();
4826 int max_size = get_remote_packet_size ();
4827
4828 va_list ap;
4829 va_start (ap, format);
4830
4831 rs->buf[0] = '\0';
4832 if (vsnprintf (rs->buf, max_size, format, ap) >= max_size)
4833 internal_error (__FILE__, __LINE__, "Too long remote packet.");
4834
4835 if (putpkt (rs->buf) < 0)
4836 error (_("Communication problem with target."));
4837
4838 rs->buf[0] = '\0';
4839 getpkt (&rs->buf, &rs->buf_size, 0);
4840
4841 return packet_check_result (rs->buf);
4842 }
4843
4844 static void
4845 restore_remote_timeout (void *p)
4846 {
4847 int value = *(int *)p;
4848 remote_timeout = value;
4849 }
4850
4851 /* Flash writing can take quite some time. We'll set
4852 effectively infinite timeout for flash operations.
4853 In future, we'll need to decide on a better approach. */
4854 static const int remote_flash_timeout = 1000;
4855
4856 static void
4857 remote_flash_erase (struct target_ops *ops,
4858 ULONGEST address, LONGEST length)
4859 {
4860 int saved_remote_timeout = remote_timeout;
4861 enum packet_result ret;
4862
4863 struct cleanup *back_to = make_cleanup (restore_remote_timeout,
4864 &saved_remote_timeout);
4865 remote_timeout = remote_flash_timeout;
4866
4867 ret = remote_send_printf ("vFlashErase:%s,%s",
4868 paddr (address),
4869 phex (length, 4));
4870 switch (ret)
4871 {
4872 case PACKET_UNKNOWN:
4873 error (_("Remote target does not support flash erase"));
4874 case PACKET_ERROR:
4875 error (_("Error erasing flash with vFlashErase packet"));
4876 default:
4877 break;
4878 }
4879
4880 do_cleanups (back_to);
4881 }
4882
4883 static LONGEST
4884 remote_flash_write (struct target_ops *ops,
4885 ULONGEST address, LONGEST length,
4886 const gdb_byte *data)
4887 {
4888 int saved_remote_timeout = remote_timeout;
4889 int ret;
4890 struct cleanup *back_to = make_cleanup (restore_remote_timeout,
4891 &saved_remote_timeout);
4892
4893 remote_timeout = remote_flash_timeout;
4894 ret = remote_write_bytes_aux ("vFlashWrite:", address, data, length, 'X', 0);
4895 do_cleanups (back_to);
4896
4897 return ret;
4898 }
4899
4900 static void
4901 remote_flash_done (struct target_ops *ops)
4902 {
4903 int saved_remote_timeout = remote_timeout;
4904 int ret;
4905 struct cleanup *back_to = make_cleanup (restore_remote_timeout,
4906 &saved_remote_timeout);
4907
4908 remote_timeout = remote_flash_timeout;
4909 ret = remote_send_printf ("vFlashDone");
4910 do_cleanups (back_to);
4911
4912 switch (ret)
4913 {
4914 case PACKET_UNKNOWN:
4915 error (_("Remote target does not support vFlashDone"));
4916 case PACKET_ERROR:
4917 error (_("Error finishing flash operation"));
4918 default:
4919 break;
4920 }
4921 }
4922
4923 static void
4924 remote_files_info (struct target_ops *ignore)
4925 {
4926 puts_filtered ("Debugging a target over a serial line.\n");
4927 }
4928 \f
4929 /* Stuff for dealing with the packets which are part of this protocol.
4930 See comment at top of file for details. */
4931
4932 /* Read a single character from the remote end. */
4933
4934 static int
4935 readchar (int timeout)
4936 {
4937 int ch;
4938
4939 ch = serial_readchar (remote_desc, timeout);
4940
4941 if (ch >= 0)
4942 return ch;
4943
4944 switch ((enum serial_rc) ch)
4945 {
4946 case SERIAL_EOF:
4947 target_mourn_inferior ();
4948 error (_("Remote connection closed"));
4949 /* no return */
4950 case SERIAL_ERROR:
4951 perror_with_name (_("Remote communication error"));
4952 /* no return */
4953 case SERIAL_TIMEOUT:
4954 break;
4955 }
4956 return ch;
4957 }
4958
4959 /* Send the command in *BUF to the remote machine, and read the reply
4960 into *BUF. Report an error if we get an error reply. Resize
4961 *BUF using xrealloc if necessary to hold the result, and update
4962 *SIZEOF_BUF. */
4963
4964 static void
4965 remote_send (char **buf,
4966 long *sizeof_buf)
4967 {
4968 putpkt (*buf);
4969 getpkt (buf, sizeof_buf, 0);
4970
4971 if ((*buf)[0] == 'E')
4972 error (_("Remote failure reply: %s"), *buf);
4973 }
4974
4975 /* Display a null-terminated packet on stdout, for debugging, using C
4976 string notation. */
4977
4978 static void
4979 print_packet (char *buf)
4980 {
4981 puts_filtered ("\"");
4982 fputstr_filtered (buf, '"', gdb_stdout);
4983 puts_filtered ("\"");
4984 }
4985
4986 int
4987 putpkt (char *buf)
4988 {
4989 return putpkt_binary (buf, strlen (buf));
4990 }
4991
4992 /* Send a packet to the remote machine, with error checking. The data
4993 of the packet is in BUF. The string in BUF can be at most
4994 get_remote_packet_size () - 5 to account for the $, # and checksum,
4995 and for a possible /0 if we are debugging (remote_debug) and want
4996 to print the sent packet as a string. */
4997
4998 static int
4999 putpkt_binary (char *buf, int cnt)
5000 {
5001 struct remote_state *rs = get_remote_state ();
5002 int i;
5003 unsigned char csum = 0;
5004 char *buf2 = alloca (cnt + 6);
5005
5006 int ch;
5007 int tcount = 0;
5008 char *p;
5009
5010 /* Catch cases like trying to read memory or listing threads while
5011 we're waiting for a stop reply. The remote server wouldn't be
5012 ready to handle this request, so we'd hang and timeout. We don't
5013 have to worry about this in synchronous mode, because in that
5014 case it's not possible to issue a command while the target is
5015 running. */
5016 if (target_can_async_p () && rs->waiting_for_stop_reply)
5017 error (_("Cannot execute this command while the target is running."));
5018
5019 /* We're sending out a new packet. Make sure we don't look at a
5020 stale cached response. */
5021 rs->cached_wait_status = 0;
5022
5023 /* Copy the packet into buffer BUF2, encapsulating it
5024 and giving it a checksum. */
5025
5026 p = buf2;
5027 *p++ = '$';
5028
5029 for (i = 0; i < cnt; i++)
5030 {
5031 csum += buf[i];
5032 *p++ = buf[i];
5033 }
5034 *p++ = '#';
5035 *p++ = tohex ((csum >> 4) & 0xf);
5036 *p++ = tohex (csum & 0xf);
5037
5038 /* Send it over and over until we get a positive ack. */
5039
5040 while (1)
5041 {
5042 int started_error_output = 0;
5043
5044 if (remote_debug)
5045 {
5046 *p = '\0';
5047 fprintf_unfiltered (gdb_stdlog, "Sending packet: ");
5048 fputstrn_unfiltered (buf2, p - buf2, 0, gdb_stdlog);
5049 fprintf_unfiltered (gdb_stdlog, "...");
5050 gdb_flush (gdb_stdlog);
5051 }
5052 if (serial_write (remote_desc, buf2, p - buf2))
5053 perror_with_name (_("putpkt: write failed"));
5054
5055 /* If this is a no acks version of the remote protocol, send the
5056 packet and move on. */
5057 if (rs->noack_mode)
5058 break;
5059
5060 /* Read until either a timeout occurs (-2) or '+' is read. */
5061 while (1)
5062 {
5063 ch = readchar (remote_timeout);
5064
5065 if (remote_debug)
5066 {
5067 switch (ch)
5068 {
5069 case '+':
5070 case '-':
5071 case SERIAL_TIMEOUT:
5072 case '$':
5073 if (started_error_output)
5074 {
5075 putchar_unfiltered ('\n');
5076 started_error_output = 0;
5077 }
5078 }
5079 }
5080
5081 switch (ch)
5082 {
5083 case '+':
5084 if (remote_debug)
5085 fprintf_unfiltered (gdb_stdlog, "Ack\n");
5086 return 1;
5087 case '-':
5088 if (remote_debug)
5089 fprintf_unfiltered (gdb_stdlog, "Nak\n");
5090 case SERIAL_TIMEOUT:
5091 tcount++;
5092 if (tcount > 3)
5093 return 0;
5094 break; /* Retransmit buffer. */
5095 case '$':
5096 {
5097 if (remote_debug)
5098 fprintf_unfiltered (gdb_stdlog,
5099 "Packet instead of Ack, ignoring it\n");
5100 /* It's probably an old response sent because an ACK
5101 was lost. Gobble up the packet and ack it so it
5102 doesn't get retransmitted when we resend this
5103 packet. */
5104 skip_frame ();
5105 serial_write (remote_desc, "+", 1);
5106 continue; /* Now, go look for +. */
5107 }
5108 default:
5109 if (remote_debug)
5110 {
5111 if (!started_error_output)
5112 {
5113 started_error_output = 1;
5114 fprintf_unfiltered (gdb_stdlog, "putpkt: Junk: ");
5115 }
5116 fputc_unfiltered (ch & 0177, gdb_stdlog);
5117 }
5118 continue;
5119 }
5120 break; /* Here to retransmit. */
5121 }
5122
5123 #if 0
5124 /* This is wrong. If doing a long backtrace, the user should be
5125 able to get out next time we call QUIT, without anything as
5126 violent as interrupt_query. If we want to provide a way out of
5127 here without getting to the next QUIT, it should be based on
5128 hitting ^C twice as in remote_wait. */
5129 if (quit_flag)
5130 {
5131 quit_flag = 0;
5132 interrupt_query ();
5133 }
5134 #endif
5135 }
5136 return 0;
5137 }
5138
5139 /* Come here after finding the start of a frame when we expected an
5140 ack. Do our best to discard the rest of this packet. */
5141
5142 static void
5143 skip_frame (void)
5144 {
5145 int c;
5146
5147 while (1)
5148 {
5149 c = readchar (remote_timeout);
5150 switch (c)
5151 {
5152 case SERIAL_TIMEOUT:
5153 /* Nothing we can do. */
5154 return;
5155 case '#':
5156 /* Discard the two bytes of checksum and stop. */
5157 c = readchar (remote_timeout);
5158 if (c >= 0)
5159 c = readchar (remote_timeout);
5160
5161 return;
5162 case '*': /* Run length encoding. */
5163 /* Discard the repeat count. */
5164 c = readchar (remote_timeout);
5165 if (c < 0)
5166 return;
5167 break;
5168 default:
5169 /* A regular character. */
5170 break;
5171 }
5172 }
5173 }
5174
5175 /* Come here after finding the start of the frame. Collect the rest
5176 into *BUF, verifying the checksum, length, and handling run-length
5177 compression. NUL terminate the buffer. If there is not enough room,
5178 expand *BUF using xrealloc.
5179
5180 Returns -1 on error, number of characters in buffer (ignoring the
5181 trailing NULL) on success. (could be extended to return one of the
5182 SERIAL status indications). */
5183
5184 static long
5185 read_frame (char **buf_p,
5186 long *sizeof_buf)
5187 {
5188 unsigned char csum;
5189 long bc;
5190 int c;
5191 char *buf = *buf_p;
5192 struct remote_state *rs = get_remote_state ();
5193
5194 csum = 0;
5195 bc = 0;
5196
5197 while (1)
5198 {
5199 c = readchar (remote_timeout);
5200 switch (c)
5201 {
5202 case SERIAL_TIMEOUT:
5203 if (remote_debug)
5204 fputs_filtered ("Timeout in mid-packet, retrying\n", gdb_stdlog);
5205 return -1;
5206 case '$':
5207 if (remote_debug)
5208 fputs_filtered ("Saw new packet start in middle of old one\n",
5209 gdb_stdlog);
5210 return -1; /* Start a new packet, count retries. */
5211 case '#':
5212 {
5213 unsigned char pktcsum;
5214 int check_0 = 0;
5215 int check_1 = 0;
5216
5217 buf[bc] = '\0';
5218
5219 check_0 = readchar (remote_timeout);
5220 if (check_0 >= 0)
5221 check_1 = readchar (remote_timeout);
5222
5223 if (check_0 == SERIAL_TIMEOUT || check_1 == SERIAL_TIMEOUT)
5224 {
5225 if (remote_debug)
5226 fputs_filtered ("Timeout in checksum, retrying\n",
5227 gdb_stdlog);
5228 return -1;
5229 }
5230 else if (check_0 < 0 || check_1 < 0)
5231 {
5232 if (remote_debug)
5233 fputs_filtered ("Communication error in checksum\n",
5234 gdb_stdlog);
5235 return -1;
5236 }
5237
5238 /* Don't recompute the checksum; with no ack packets we
5239 don't have any way to indicate a packet retransmission
5240 is necessary. */
5241 if (rs->noack_mode)
5242 return bc;
5243
5244 pktcsum = (fromhex (check_0) << 4) | fromhex (check_1);
5245 if (csum == pktcsum)
5246 return bc;
5247
5248 if (remote_debug)
5249 {
5250 fprintf_filtered (gdb_stdlog,
5251 "Bad checksum, sentsum=0x%x, csum=0x%x, buf=",
5252 pktcsum, csum);
5253 fputstrn_filtered (buf, bc, 0, gdb_stdlog);
5254 fputs_filtered ("\n", gdb_stdlog);
5255 }
5256 /* Number of characters in buffer ignoring trailing
5257 NULL. */
5258 return -1;
5259 }
5260 case '*': /* Run length encoding. */
5261 {
5262 int repeat;
5263 csum += c;
5264
5265 c = readchar (remote_timeout);
5266 csum += c;
5267 repeat = c - ' ' + 3; /* Compute repeat count. */
5268
5269 /* The character before ``*'' is repeated. */
5270
5271 if (repeat > 0 && repeat <= 255 && bc > 0)
5272 {
5273 if (bc + repeat - 1 >= *sizeof_buf - 1)
5274 {
5275 /* Make some more room in the buffer. */
5276 *sizeof_buf += repeat;
5277 *buf_p = xrealloc (*buf_p, *sizeof_buf);
5278 buf = *buf_p;
5279 }
5280
5281 memset (&buf[bc], buf[bc - 1], repeat);
5282 bc += repeat;
5283 continue;
5284 }
5285
5286 buf[bc] = '\0';
5287 printf_filtered (_("Invalid run length encoding: %s\n"), buf);
5288 return -1;
5289 }
5290 default:
5291 if (bc >= *sizeof_buf - 1)
5292 {
5293 /* Make some more room in the buffer. */
5294 *sizeof_buf *= 2;
5295 *buf_p = xrealloc (*buf_p, *sizeof_buf);
5296 buf = *buf_p;
5297 }
5298
5299 buf[bc++] = c;
5300 csum += c;
5301 continue;
5302 }
5303 }
5304 }
5305
5306 /* Read a packet from the remote machine, with error checking, and
5307 store it in *BUF. Resize *BUF using xrealloc if necessary to hold
5308 the result, and update *SIZEOF_BUF. If FOREVER, wait forever
5309 rather than timing out; this is used (in synchronous mode) to wait
5310 for a target that is is executing user code to stop. */
5311 /* FIXME: ezannoni 2000-02-01 this wrapper is necessary so that we
5312 don't have to change all the calls to getpkt to deal with the
5313 return value, because at the moment I don't know what the right
5314 thing to do it for those. */
5315 void
5316 getpkt (char **buf,
5317 long *sizeof_buf,
5318 int forever)
5319 {
5320 int timed_out;
5321
5322 timed_out = getpkt_sane (buf, sizeof_buf, forever);
5323 }
5324
5325
5326 /* Read a packet from the remote machine, with error checking, and
5327 store it in *BUF. Resize *BUF using xrealloc if necessary to hold
5328 the result, and update *SIZEOF_BUF. If FOREVER, wait forever
5329 rather than timing out; this is used (in synchronous mode) to wait
5330 for a target that is is executing user code to stop. If FOREVER ==
5331 0, this function is allowed to time out gracefully and return an
5332 indication of this to the caller. Otherwise return the number
5333 of bytes read. */
5334 static int
5335 getpkt_sane (char **buf, long *sizeof_buf, int forever)
5336 {
5337 struct remote_state *rs = get_remote_state ();
5338 int c;
5339 int tries;
5340 int timeout;
5341 int val;
5342
5343 /* We're reading a new response. Make sure we don't look at a
5344 previously cached response. */
5345 rs->cached_wait_status = 0;
5346
5347 strcpy (*buf, "timeout");
5348
5349 if (forever)
5350 {
5351 timeout = watchdog > 0 ? watchdog : -1;
5352 }
5353
5354 else
5355 timeout = remote_timeout;
5356
5357 #define MAX_TRIES 3
5358
5359 for (tries = 1; tries <= MAX_TRIES; tries++)
5360 {
5361 /* This can loop forever if the remote side sends us characters
5362 continuously, but if it pauses, we'll get a zero from
5363 readchar because of timeout. Then we'll count that as a
5364 retry. */
5365
5366 /* Note that we will only wait forever prior to the start of a
5367 packet. After that, we expect characters to arrive at a
5368 brisk pace. They should show up within remote_timeout
5369 intervals. */
5370
5371 do
5372 {
5373 c = readchar (timeout);
5374
5375 if (c == SERIAL_TIMEOUT)
5376 {
5377 if (forever) /* Watchdog went off? Kill the target. */
5378 {
5379 QUIT;
5380 target_mourn_inferior ();
5381 error (_("Watchdog timeout has expired. Target detached."));
5382 }
5383 if (remote_debug)
5384 fputs_filtered ("Timed out.\n", gdb_stdlog);
5385 goto retry;
5386 }
5387 }
5388 while (c != '$');
5389
5390 /* We've found the start of a packet, now collect the data. */
5391
5392 val = read_frame (buf, sizeof_buf);
5393
5394 if (val >= 0)
5395 {
5396 if (remote_debug)
5397 {
5398 fprintf_unfiltered (gdb_stdlog, "Packet received: ");
5399 fputstrn_unfiltered (*buf, val, 0, gdb_stdlog);
5400 fprintf_unfiltered (gdb_stdlog, "\n");
5401 }
5402
5403 /* Skip the ack char if we're in no-ack mode. */
5404 if (!rs->noack_mode)
5405 serial_write (remote_desc, "+", 1);
5406 return val;
5407 }
5408
5409 /* Try the whole thing again. */
5410 retry:
5411 /* Skip the nack char if we're in no-ack mode. */
5412 if (!rs->noack_mode)
5413 serial_write (remote_desc, "-", 1);
5414 }
5415
5416 /* We have tried hard enough, and just can't receive the packet.
5417 Give up. */
5418
5419 printf_unfiltered (_("Ignoring packet error, continuing...\n"));
5420
5421 /* Skip the ack char if we're in no-ack mode. */
5422 if (!rs->noack_mode)
5423 serial_write (remote_desc, "+", 1);
5424 return -1;
5425 }
5426 \f
5427 static void
5428 remote_kill (void)
5429 {
5430 /* Unregister the file descriptor from the event loop. */
5431 if (target_is_async_p ())
5432 serial_async (remote_desc, NULL, 0);
5433
5434 /* Use catch_errors so the user can quit from gdb even when we
5435 aren't on speaking terms with the remote system. */
5436 catch_errors ((catch_errors_ftype *) putpkt, "k", "", RETURN_MASK_ERROR);
5437
5438 /* Don't wait for it to die. I'm not really sure it matters whether
5439 we do or not. For the existing stubs, kill is a noop. */
5440 target_mourn_inferior ();
5441 }
5442
5443 static int
5444 remote_vkill (int pid, struct remote_state *rs)
5445 {
5446 if (remote_protocol_packets[PACKET_vKill].support == PACKET_DISABLE)
5447 return -1;
5448
5449 /* Tell the remote target to detach. */
5450 sprintf (rs->buf, "vKill;%x", pid);
5451 putpkt (rs->buf);
5452 getpkt (&rs->buf, &rs->buf_size, 0);
5453
5454 if (packet_ok (rs->buf,
5455 &remote_protocol_packets[PACKET_vKill]) == PACKET_OK)
5456 return 0;
5457 else if (remote_protocol_packets[PACKET_vKill].support == PACKET_DISABLE)
5458 return -1;
5459 else
5460 return 1;
5461 }
5462
5463 static void
5464 extended_remote_kill (void)
5465 {
5466 int res;
5467 int pid = ptid_get_pid (inferior_ptid);
5468 struct remote_state *rs = get_remote_state ();
5469
5470 res = remote_vkill (pid, rs);
5471 if (res == -1 && !remote_multi_process_p (rs))
5472 {
5473 /* Don't try 'k' on a multi-process aware stub -- it has no way
5474 to specify the pid. */
5475
5476 putpkt ("k");
5477 #if 0
5478 getpkt (&rs->buf, &rs->buf_size, 0);
5479 if (rs->buf[0] != 'O' || rs->buf[0] != 'K')
5480 res = 1;
5481 #else
5482 /* Don't wait for it to die. I'm not really sure it matters whether
5483 we do or not. For the existing stubs, kill is a noop. */
5484 res = 0;
5485 #endif
5486 }
5487
5488 if (res != 0)
5489 error (_("Can't kill process"));
5490
5491 delete_inferior (pid);
5492 target_mourn_inferior ();
5493 }
5494
5495 static void
5496 remote_mourn (void)
5497 {
5498 remote_mourn_1 (&remote_ops);
5499 }
5500
5501 /* Worker function for remote_mourn. */
5502 static void
5503 remote_mourn_1 (struct target_ops *target)
5504 {
5505 /* Get rid of all the inferiors and their threads we were
5506 controlling. */
5507 discard_all_inferiors ();
5508
5509 unpush_target (target);
5510 generic_mourn_inferior ();
5511 }
5512
5513 static int
5514 select_new_thread_callback (struct thread_info *th, void* data)
5515 {
5516 if (!ptid_equal (th->ptid, minus_one_ptid))
5517 {
5518 switch_to_thread (th->ptid);
5519 printf_filtered (_("[Switching to %s]\n"),
5520 target_pid_to_str (inferior_ptid));
5521 return 1;
5522 }
5523 return 0;
5524 }
5525
5526 static void
5527 extended_remote_mourn_1 (struct target_ops *target)
5528 {
5529 struct remote_state *rs = get_remote_state ();
5530
5531 /* In case we got here due to an error, but we're going to stay
5532 connected. */
5533 rs->waiting_for_stop_reply = 0;
5534
5535 /* Unlike "target remote", we do not want to unpush the target; then
5536 the next time the user says "run", we won't be connected. */
5537
5538 if (have_inferiors ())
5539 {
5540 extern void nullify_last_target_wait_ptid ();
5541 /* Multi-process case. The current process has exited, but
5542 there are other processes to debug. Switch to the first
5543 available. */
5544 iterate_over_threads (select_new_thread_callback, NULL);
5545 nullify_last_target_wait_ptid ();
5546 }
5547 else
5548 {
5549 struct remote_state *rs = get_remote_state ();
5550
5551 /* Call common code to mark the inferior as not running. */
5552 generic_mourn_inferior ();
5553 if (!remote_multi_process_p (rs))
5554 {
5555 /* Check whether the target is running now - some remote stubs
5556 automatically restart after kill. */
5557 putpkt ("?");
5558 getpkt (&rs->buf, &rs->buf_size, 0);
5559
5560 if (rs->buf[0] == 'S' || rs->buf[0] == 'T')
5561 {
5562 /* Assume that the target has been restarted. Set inferior_ptid
5563 so that bits of core GDB realizes there's something here, e.g.,
5564 so that the user can say "kill" again. */
5565 inferior_ptid = magic_null_ptid;
5566 }
5567 else
5568 {
5569 /* Mark this (still pushed) target as not executable until we
5570 restart it. */
5571 target_mark_exited (target);
5572 }
5573 }
5574 else
5575 /* Always remove execution if this was the last process. */
5576 target_mark_exited (target);
5577 }
5578 }
5579
5580 static void
5581 extended_remote_mourn (void)
5582 {
5583 extended_remote_mourn_1 (&extended_remote_ops);
5584 }
5585
5586 static int
5587 extended_remote_run (char *args)
5588 {
5589 struct remote_state *rs = get_remote_state ();
5590 char *p;
5591 int len;
5592
5593 /* If the user has disabled vRun support, or we have detected that
5594 support is not available, do not try it. */
5595 if (remote_protocol_packets[PACKET_vRun].support == PACKET_DISABLE)
5596 return -1;
5597
5598 strcpy (rs->buf, "vRun;");
5599 len = strlen (rs->buf);
5600
5601 if (strlen (remote_exec_file) * 2 + len >= get_remote_packet_size ())
5602 error (_("Remote file name too long for run packet"));
5603 len += 2 * bin2hex ((gdb_byte *) remote_exec_file, rs->buf + len, 0);
5604
5605 gdb_assert (args != NULL);
5606 if (*args)
5607 {
5608 struct cleanup *back_to;
5609 int i;
5610 char **argv;
5611
5612 argv = gdb_buildargv (args);
5613 back_to = make_cleanup ((void (*) (void *)) freeargv, argv);
5614 for (i = 0; argv[i] != NULL; i++)
5615 {
5616 if (strlen (argv[i]) * 2 + 1 + len >= get_remote_packet_size ())
5617 error (_("Argument list too long for run packet"));
5618 rs->buf[len++] = ';';
5619 len += 2 * bin2hex ((gdb_byte *) argv[i], rs->buf + len, 0);
5620 }
5621 do_cleanups (back_to);
5622 }
5623
5624 rs->buf[len++] = '\0';
5625
5626 putpkt (rs->buf);
5627 getpkt (&rs->buf, &rs->buf_size, 0);
5628
5629 if (packet_ok (rs->buf, &remote_protocol_packets[PACKET_vRun]) == PACKET_OK)
5630 {
5631 /* We have a wait response; we don't need it, though. All is well. */
5632 return 0;
5633 }
5634 else if (remote_protocol_packets[PACKET_vRun].support == PACKET_DISABLE)
5635 /* It wasn't disabled before, but it is now. */
5636 return -1;
5637 else
5638 {
5639 if (remote_exec_file[0] == '\0')
5640 error (_("Running the default executable on the remote target failed; "
5641 "try \"set remote exec-file\"?"));
5642 else
5643 error (_("Running \"%s\" on the remote target failed"),
5644 remote_exec_file);
5645 }
5646 }
5647
5648 /* In the extended protocol we want to be able to do things like
5649 "run" and have them basically work as expected. So we need
5650 a special create_inferior function. We support changing the
5651 executable file and the command line arguments, but not the
5652 environment. */
5653
5654 static void
5655 extended_remote_create_inferior_1 (char *exec_file, char *args,
5656 char **env, int from_tty)
5657 {
5658 /* If running asynchronously, register the target file descriptor
5659 with the event loop. */
5660 if (target_can_async_p ())
5661 target_async (inferior_event_handler, 0);
5662
5663 /* Now restart the remote server. */
5664 if (extended_remote_run (args) == -1)
5665 {
5666 /* vRun was not supported. Fail if we need it to do what the
5667 user requested. */
5668 if (remote_exec_file[0])
5669 error (_("Remote target does not support \"set remote exec-file\""));
5670 if (args[0])
5671 error (_("Remote target does not support \"set args\" or run <ARGS>"));
5672
5673 /* Fall back to "R". */
5674 extended_remote_restart ();
5675 }
5676
5677 /* Clean up from the last time we ran, before we mark the target
5678 running again. This will mark breakpoints uninserted, and
5679 get_offsets may insert breakpoints. */
5680 init_thread_list ();
5681 init_wait_for_inferior ();
5682
5683 /* Now mark the inferior as running before we do anything else. */
5684 inferior_ptid = magic_null_ptid;
5685
5686 add_inferior (ptid_get_pid (inferior_ptid));
5687 add_thread_silent (inferior_ptid);
5688
5689 target_mark_running (&extended_remote_ops);
5690
5691 /* Get updated offsets, if the stub uses qOffsets. */
5692 get_offsets ();
5693 }
5694
5695 static void
5696 extended_remote_create_inferior (char *exec_file, char *args,
5697 char **env, int from_tty)
5698 {
5699 extended_remote_create_inferior_1 (exec_file, args, env, from_tty);
5700 }
5701 \f
5702
5703 /* Insert a breakpoint. On targets that have software breakpoint
5704 support, we ask the remote target to do the work; on targets
5705 which don't, we insert a traditional memory breakpoint. */
5706
5707 static int
5708 remote_insert_breakpoint (struct bp_target_info *bp_tgt)
5709 {
5710 /* Try the "Z" s/w breakpoint packet if it is not already disabled.
5711 If it succeeds, then set the support to PACKET_ENABLE. If it
5712 fails, and the user has explicitly requested the Z support then
5713 report an error, otherwise, mark it disabled and go on. */
5714
5715 if (remote_protocol_packets[PACKET_Z0].support != PACKET_DISABLE)
5716 {
5717 CORE_ADDR addr = bp_tgt->placed_address;
5718 struct remote_state *rs;
5719 char *p;
5720 int bpsize;
5721
5722 gdbarch_breakpoint_from_pc (target_gdbarch, &addr, &bpsize);
5723
5724 rs = get_remote_state ();
5725 p = rs->buf;
5726
5727 *(p++) = 'Z';
5728 *(p++) = '0';
5729 *(p++) = ',';
5730 addr = (ULONGEST) remote_address_masked (addr);
5731 p += hexnumstr (p, addr);
5732 sprintf (p, ",%d", bpsize);
5733
5734 putpkt (rs->buf);
5735 getpkt (&rs->buf, &rs->buf_size, 0);
5736
5737 switch (packet_ok (rs->buf, &remote_protocol_packets[PACKET_Z0]))
5738 {
5739 case PACKET_ERROR:
5740 return -1;
5741 case PACKET_OK:
5742 bp_tgt->placed_address = addr;
5743 bp_tgt->placed_size = bpsize;
5744 return 0;
5745 case PACKET_UNKNOWN:
5746 break;
5747 }
5748 }
5749
5750 return memory_insert_breakpoint (bp_tgt);
5751 }
5752
5753 static int
5754 remote_remove_breakpoint (struct bp_target_info *bp_tgt)
5755 {
5756 CORE_ADDR addr = bp_tgt->placed_address;
5757 struct remote_state *rs = get_remote_state ();
5758 int bp_size;
5759
5760 if (remote_protocol_packets[PACKET_Z0].support != PACKET_DISABLE)
5761 {
5762 char *p = rs->buf;
5763
5764 *(p++) = 'z';
5765 *(p++) = '0';
5766 *(p++) = ',';
5767
5768 addr = (ULONGEST) remote_address_masked (bp_tgt->placed_address);
5769 p += hexnumstr (p, addr);
5770 sprintf (p, ",%d", bp_tgt->placed_size);
5771
5772 putpkt (rs->buf);
5773 getpkt (&rs->buf, &rs->buf_size, 0);
5774
5775 return (rs->buf[0] == 'E');
5776 }
5777
5778 return memory_remove_breakpoint (bp_tgt);
5779 }
5780
5781 static int
5782 watchpoint_to_Z_packet (int type)
5783 {
5784 switch (type)
5785 {
5786 case hw_write:
5787 return Z_PACKET_WRITE_WP;
5788 break;
5789 case hw_read:
5790 return Z_PACKET_READ_WP;
5791 break;
5792 case hw_access:
5793 return Z_PACKET_ACCESS_WP;
5794 break;
5795 default:
5796 internal_error (__FILE__, __LINE__,
5797 _("hw_bp_to_z: bad watchpoint type %d"), type);
5798 }
5799 }
5800
5801 static int
5802 remote_insert_watchpoint (CORE_ADDR addr, int len, int type)
5803 {
5804 struct remote_state *rs = get_remote_state ();
5805 char *p;
5806 enum Z_packet_type packet = watchpoint_to_Z_packet (type);
5807
5808 if (remote_protocol_packets[PACKET_Z0 + packet].support == PACKET_DISABLE)
5809 return -1;
5810
5811 sprintf (rs->buf, "Z%x,", packet);
5812 p = strchr (rs->buf, '\0');
5813 addr = remote_address_masked (addr);
5814 p += hexnumstr (p, (ULONGEST) addr);
5815 sprintf (p, ",%x", len);
5816
5817 putpkt (rs->buf);
5818 getpkt (&rs->buf, &rs->buf_size, 0);
5819
5820 switch (packet_ok (rs->buf, &remote_protocol_packets[PACKET_Z0 + packet]))
5821 {
5822 case PACKET_ERROR:
5823 case PACKET_UNKNOWN:
5824 return -1;
5825 case PACKET_OK:
5826 return 0;
5827 }
5828 internal_error (__FILE__, __LINE__,
5829 _("remote_insert_watchpoint: reached end of function"));
5830 }
5831
5832
5833 static int
5834 remote_remove_watchpoint (CORE_ADDR addr, int len, int type)
5835 {
5836 struct remote_state *rs = get_remote_state ();
5837 char *p;
5838 enum Z_packet_type packet = watchpoint_to_Z_packet (type);
5839
5840 if (remote_protocol_packets[PACKET_Z0 + packet].support == PACKET_DISABLE)
5841 return -1;
5842
5843 sprintf (rs->buf, "z%x,", packet);
5844 p = strchr (rs->buf, '\0');
5845 addr = remote_address_masked (addr);
5846 p += hexnumstr (p, (ULONGEST) addr);
5847 sprintf (p, ",%x", len);
5848 putpkt (rs->buf);
5849 getpkt (&rs->buf, &rs->buf_size, 0);
5850
5851 switch (packet_ok (rs->buf, &remote_protocol_packets[PACKET_Z0 + packet]))
5852 {
5853 case PACKET_ERROR:
5854 case PACKET_UNKNOWN:
5855 return -1;
5856 case PACKET_OK:
5857 return 0;
5858 }
5859 internal_error (__FILE__, __LINE__,
5860 _("remote_remove_watchpoint: reached end of function"));
5861 }
5862
5863
5864 int remote_hw_watchpoint_limit = -1;
5865 int remote_hw_breakpoint_limit = -1;
5866
5867 static int
5868 remote_check_watch_resources (int type, int cnt, int ot)
5869 {
5870 if (type == bp_hardware_breakpoint)
5871 {
5872 if (remote_hw_breakpoint_limit == 0)
5873 return 0;
5874 else if (remote_hw_breakpoint_limit < 0)
5875 return 1;
5876 else if (cnt <= remote_hw_breakpoint_limit)
5877 return 1;
5878 }
5879 else
5880 {
5881 if (remote_hw_watchpoint_limit == 0)
5882 return 0;
5883 else if (remote_hw_watchpoint_limit < 0)
5884 return 1;
5885 else if (ot)
5886 return -1;
5887 else if (cnt <= remote_hw_watchpoint_limit)
5888 return 1;
5889 }
5890 return -1;
5891 }
5892
5893 static int
5894 remote_stopped_by_watchpoint (void)
5895 {
5896 return remote_stopped_by_watchpoint_p;
5897 }
5898
5899 static int
5900 remote_stopped_data_address (struct target_ops *target, CORE_ADDR *addr_p)
5901 {
5902 int rc = 0;
5903 if (remote_stopped_by_watchpoint ())
5904 {
5905 *addr_p = remote_watch_data_address;
5906 rc = 1;
5907 }
5908
5909 return rc;
5910 }
5911
5912
5913 static int
5914 remote_insert_hw_breakpoint (struct bp_target_info *bp_tgt)
5915 {
5916 CORE_ADDR addr;
5917 struct remote_state *rs;
5918 char *p;
5919
5920 /* The length field should be set to the size of a breakpoint
5921 instruction, even though we aren't inserting one ourselves. */
5922
5923 gdbarch_breakpoint_from_pc
5924 (target_gdbarch, &bp_tgt->placed_address, &bp_tgt->placed_size);
5925
5926 if (remote_protocol_packets[PACKET_Z1].support == PACKET_DISABLE)
5927 return -1;
5928
5929 rs = get_remote_state ();
5930 p = rs->buf;
5931
5932 *(p++) = 'Z';
5933 *(p++) = '1';
5934 *(p++) = ',';
5935
5936 addr = remote_address_masked (bp_tgt->placed_address);
5937 p += hexnumstr (p, (ULONGEST) addr);
5938 sprintf (p, ",%x", bp_tgt->placed_size);
5939
5940 putpkt (rs->buf);
5941 getpkt (&rs->buf, &rs->buf_size, 0);
5942
5943 switch (packet_ok (rs->buf, &remote_protocol_packets[PACKET_Z1]))
5944 {
5945 case PACKET_ERROR:
5946 case PACKET_UNKNOWN:
5947 return -1;
5948 case PACKET_OK:
5949 return 0;
5950 }
5951 internal_error (__FILE__, __LINE__,
5952 _("remote_insert_hw_breakpoint: reached end of function"));
5953 }
5954
5955
5956 static int
5957 remote_remove_hw_breakpoint (struct bp_target_info *bp_tgt)
5958 {
5959 CORE_ADDR addr;
5960 struct remote_state *rs = get_remote_state ();
5961 char *p = rs->buf;
5962
5963 if (remote_protocol_packets[PACKET_Z1].support == PACKET_DISABLE)
5964 return -1;
5965
5966 *(p++) = 'z';
5967 *(p++) = '1';
5968 *(p++) = ',';
5969
5970 addr = remote_address_masked (bp_tgt->placed_address);
5971 p += hexnumstr (p, (ULONGEST) addr);
5972 sprintf (p, ",%x", bp_tgt->placed_size);
5973
5974 putpkt (rs->buf);
5975 getpkt (&rs->buf, &rs->buf_size, 0);
5976
5977 switch (packet_ok (rs->buf, &remote_protocol_packets[PACKET_Z1]))
5978 {
5979 case PACKET_ERROR:
5980 case PACKET_UNKNOWN:
5981 return -1;
5982 case PACKET_OK:
5983 return 0;
5984 }
5985 internal_error (__FILE__, __LINE__,
5986 _("remote_remove_hw_breakpoint: reached end of function"));
5987 }
5988
5989 /* Some targets are only capable of doing downloads, and afterwards
5990 they switch to the remote serial protocol. This function provides
5991 a clean way to get from the download target to the remote target.
5992 It's basically just a wrapper so that we don't have to expose any
5993 of the internal workings of remote.c.
5994
5995 Prior to calling this routine, you should shutdown the current
5996 target code, else you will get the "A program is being debugged
5997 already..." message. Usually a call to pop_target() suffices. */
5998
5999 void
6000 push_remote_target (char *name, int from_tty)
6001 {
6002 printf_filtered (_("Switching to remote protocol\n"));
6003 remote_open (name, from_tty);
6004 }
6005
6006 /* Table used by the crc32 function to calcuate the checksum. */
6007
6008 static unsigned long crc32_table[256] =
6009 {0, 0};
6010
6011 static unsigned long
6012 crc32 (unsigned char *buf, int len, unsigned int crc)
6013 {
6014 if (!crc32_table[1])
6015 {
6016 /* Initialize the CRC table and the decoding table. */
6017 int i, j;
6018 unsigned int c;
6019
6020 for (i = 0; i < 256; i++)
6021 {
6022 for (c = i << 24, j = 8; j > 0; --j)
6023 c = c & 0x80000000 ? (c << 1) ^ 0x04c11db7 : (c << 1);
6024 crc32_table[i] = c;
6025 }
6026 }
6027
6028 while (len--)
6029 {
6030 crc = (crc << 8) ^ crc32_table[((crc >> 24) ^ *buf) & 255];
6031 buf++;
6032 }
6033 return crc;
6034 }
6035
6036 /* compare-sections command
6037
6038 With no arguments, compares each loadable section in the exec bfd
6039 with the same memory range on the target, and reports mismatches.
6040 Useful for verifying the image on the target against the exec file.
6041 Depends on the target understanding the new "qCRC:" request. */
6042
6043 /* FIXME: cagney/1999-10-26: This command should be broken down into a
6044 target method (target verify memory) and generic version of the
6045 actual command. This will allow other high-level code (especially
6046 generic_load()) to make use of this target functionality. */
6047
6048 static void
6049 compare_sections_command (char *args, int from_tty)
6050 {
6051 struct remote_state *rs = get_remote_state ();
6052 asection *s;
6053 unsigned long host_crc, target_crc;
6054 extern bfd *exec_bfd;
6055 struct cleanup *old_chain;
6056 char *tmp;
6057 char *sectdata;
6058 const char *sectname;
6059 bfd_size_type size;
6060 bfd_vma lma;
6061 int matched = 0;
6062 int mismatched = 0;
6063
6064 if (!exec_bfd)
6065 error (_("command cannot be used without an exec file"));
6066 if (!current_target.to_shortname ||
6067 strcmp (current_target.to_shortname, "remote") != 0)
6068 error (_("command can only be used with remote target"));
6069
6070 for (s = exec_bfd->sections; s; s = s->next)
6071 {
6072 if (!(s->flags & SEC_LOAD))
6073 continue; /* skip non-loadable section */
6074
6075 size = bfd_get_section_size (s);
6076 if (size == 0)
6077 continue; /* skip zero-length section */
6078
6079 sectname = bfd_get_section_name (exec_bfd, s);
6080 if (args && strcmp (args, sectname) != 0)
6081 continue; /* not the section selected by user */
6082
6083 matched = 1; /* do this section */
6084 lma = s->lma;
6085 /* FIXME: assumes lma can fit into long. */
6086 xsnprintf (rs->buf, get_remote_packet_size (), "qCRC:%lx,%lx",
6087 (long) lma, (long) size);
6088 putpkt (rs->buf);
6089
6090 /* Be clever; compute the host_crc before waiting for target
6091 reply. */
6092 sectdata = xmalloc (size);
6093 old_chain = make_cleanup (xfree, sectdata);
6094 bfd_get_section_contents (exec_bfd, s, sectdata, 0, size);
6095 host_crc = crc32 ((unsigned char *) sectdata, size, 0xffffffff);
6096
6097 getpkt (&rs->buf, &rs->buf_size, 0);
6098 if (rs->buf[0] == 'E')
6099 error (_("target memory fault, section %s, range 0x%s -- 0x%s"),
6100 sectname, paddr (lma), paddr (lma + size));
6101 if (rs->buf[0] != 'C')
6102 error (_("remote target does not support this operation"));
6103
6104 for (target_crc = 0, tmp = &rs->buf[1]; *tmp; tmp++)
6105 target_crc = target_crc * 16 + fromhex (*tmp);
6106
6107 printf_filtered ("Section %s, range 0x%s -- 0x%s: ",
6108 sectname, paddr (lma), paddr (lma + size));
6109 if (host_crc == target_crc)
6110 printf_filtered ("matched.\n");
6111 else
6112 {
6113 printf_filtered ("MIS-MATCHED!\n");
6114 mismatched++;
6115 }
6116
6117 do_cleanups (old_chain);
6118 }
6119 if (mismatched > 0)
6120 warning (_("One or more sections of the remote executable does not match\n\
6121 the loaded file\n"));
6122 if (args && !matched)
6123 printf_filtered (_("No loaded section named '%s'.\n"), args);
6124 }
6125
6126 /* Write LEN bytes from WRITEBUF into OBJECT_NAME/ANNEX at OFFSET
6127 into remote target. The number of bytes written to the remote
6128 target is returned, or -1 for error. */
6129
6130 static LONGEST
6131 remote_write_qxfer (struct target_ops *ops, const char *object_name,
6132 const char *annex, const gdb_byte *writebuf,
6133 ULONGEST offset, LONGEST len,
6134 struct packet_config *packet)
6135 {
6136 int i, buf_len;
6137 ULONGEST n;
6138 gdb_byte *wbuf;
6139 struct remote_state *rs = get_remote_state ();
6140 int max_size = get_memory_write_packet_size ();
6141
6142 if (packet->support == PACKET_DISABLE)
6143 return -1;
6144
6145 /* Insert header. */
6146 i = snprintf (rs->buf, max_size,
6147 "qXfer:%s:write:%s:%s:",
6148 object_name, annex ? annex : "",
6149 phex_nz (offset, sizeof offset));
6150 max_size -= (i + 1);
6151
6152 /* Escape as much data as fits into rs->buf. */
6153 buf_len = remote_escape_output
6154 (writebuf, len, (rs->buf + i), &max_size, max_size);
6155
6156 if (putpkt_binary (rs->buf, i + buf_len) < 0
6157 || getpkt_sane (&rs->buf, &rs->buf_size, 0) < 0
6158 || packet_ok (rs->buf, packet) != PACKET_OK)
6159 return -1;
6160
6161 unpack_varlen_hex (rs->buf, &n);
6162 return n;
6163 }
6164
6165 /* Read OBJECT_NAME/ANNEX from the remote target using a qXfer packet.
6166 Data at OFFSET, of up to LEN bytes, is read into READBUF; the
6167 number of bytes read is returned, or 0 for EOF, or -1 for error.
6168 The number of bytes read may be less than LEN without indicating an
6169 EOF. PACKET is checked and updated to indicate whether the remote
6170 target supports this object. */
6171
6172 static LONGEST
6173 remote_read_qxfer (struct target_ops *ops, const char *object_name,
6174 const char *annex,
6175 gdb_byte *readbuf, ULONGEST offset, LONGEST len,
6176 struct packet_config *packet)
6177 {
6178 static char *finished_object;
6179 static char *finished_annex;
6180 static ULONGEST finished_offset;
6181
6182 struct remote_state *rs = get_remote_state ();
6183 unsigned int total = 0;
6184 LONGEST i, n, packet_len;
6185
6186 if (packet->support == PACKET_DISABLE)
6187 return -1;
6188
6189 /* Check whether we've cached an end-of-object packet that matches
6190 this request. */
6191 if (finished_object)
6192 {
6193 if (strcmp (object_name, finished_object) == 0
6194 && strcmp (annex ? annex : "", finished_annex) == 0
6195 && offset == finished_offset)
6196 return 0;
6197
6198 /* Otherwise, we're now reading something different. Discard
6199 the cache. */
6200 xfree (finished_object);
6201 xfree (finished_annex);
6202 finished_object = NULL;
6203 finished_annex = NULL;
6204 }
6205
6206 /* Request only enough to fit in a single packet. The actual data
6207 may not, since we don't know how much of it will need to be escaped;
6208 the target is free to respond with slightly less data. We subtract
6209 five to account for the response type and the protocol frame. */
6210 n = min (get_remote_packet_size () - 5, len);
6211 snprintf (rs->buf, get_remote_packet_size () - 4, "qXfer:%s:read:%s:%s,%s",
6212 object_name, annex ? annex : "",
6213 phex_nz (offset, sizeof offset),
6214 phex_nz (n, sizeof n));
6215 i = putpkt (rs->buf);
6216 if (i < 0)
6217 return -1;
6218
6219 rs->buf[0] = '\0';
6220 packet_len = getpkt_sane (&rs->buf, &rs->buf_size, 0);
6221 if (packet_len < 0 || packet_ok (rs->buf, packet) != PACKET_OK)
6222 return -1;
6223
6224 if (rs->buf[0] != 'l' && rs->buf[0] != 'm')
6225 error (_("Unknown remote qXfer reply: %s"), rs->buf);
6226
6227 /* 'm' means there is (or at least might be) more data after this
6228 batch. That does not make sense unless there's at least one byte
6229 of data in this reply. */
6230 if (rs->buf[0] == 'm' && packet_len == 1)
6231 error (_("Remote qXfer reply contained no data."));
6232
6233 /* Got some data. */
6234 i = remote_unescape_input (rs->buf + 1, packet_len - 1, readbuf, n);
6235
6236 /* 'l' is an EOF marker, possibly including a final block of data,
6237 or possibly empty. If we have the final block of a non-empty
6238 object, record this fact to bypass a subsequent partial read. */
6239 if (rs->buf[0] == 'l' && offset + i > 0)
6240 {
6241 finished_object = xstrdup (object_name);
6242 finished_annex = xstrdup (annex ? annex : "");
6243 finished_offset = offset + i;
6244 }
6245
6246 return i;
6247 }
6248
6249 static LONGEST
6250 remote_xfer_partial (struct target_ops *ops, enum target_object object,
6251 const char *annex, gdb_byte *readbuf,
6252 const gdb_byte *writebuf, ULONGEST offset, LONGEST len)
6253 {
6254 struct remote_state *rs;
6255 int i;
6256 char *p2;
6257 char query_type;
6258
6259 set_general_thread (inferior_ptid);
6260
6261 rs = get_remote_state ();
6262
6263 /* Handle memory using the standard memory routines. */
6264 if (object == TARGET_OBJECT_MEMORY)
6265 {
6266 int xfered;
6267 errno = 0;
6268
6269 /* If the remote target is connected but not running, we should
6270 pass this request down to a lower stratum (e.g. the executable
6271 file). */
6272 if (!target_has_execution)
6273 return 0;
6274
6275 if (writebuf != NULL)
6276 xfered = remote_write_bytes (offset, writebuf, len);
6277 else
6278 xfered = remote_read_bytes (offset, readbuf, len);
6279
6280 if (xfered > 0)
6281 return xfered;
6282 else if (xfered == 0 && errno == 0)
6283 return 0;
6284 else
6285 return -1;
6286 }
6287
6288 /* Handle SPU memory using qxfer packets. */
6289 if (object == TARGET_OBJECT_SPU)
6290 {
6291 if (readbuf)
6292 return remote_read_qxfer (ops, "spu", annex, readbuf, offset, len,
6293 &remote_protocol_packets
6294 [PACKET_qXfer_spu_read]);
6295 else
6296 return remote_write_qxfer (ops, "spu", annex, writebuf, offset, len,
6297 &remote_protocol_packets
6298 [PACKET_qXfer_spu_write]);
6299 }
6300
6301 /* Only handle flash writes. */
6302 if (writebuf != NULL)
6303 {
6304 LONGEST xfered;
6305
6306 switch (object)
6307 {
6308 case TARGET_OBJECT_FLASH:
6309 xfered = remote_flash_write (ops, offset, len, writebuf);
6310
6311 if (xfered > 0)
6312 return xfered;
6313 else if (xfered == 0 && errno == 0)
6314 return 0;
6315 else
6316 return -1;
6317
6318 default:
6319 return -1;
6320 }
6321 }
6322
6323 /* Map pre-existing objects onto letters. DO NOT do this for new
6324 objects!!! Instead specify new query packets. */
6325 switch (object)
6326 {
6327 case TARGET_OBJECT_AVR:
6328 query_type = 'R';
6329 break;
6330
6331 case TARGET_OBJECT_AUXV:
6332 gdb_assert (annex == NULL);
6333 return remote_read_qxfer (ops, "auxv", annex, readbuf, offset, len,
6334 &remote_protocol_packets[PACKET_qXfer_auxv]);
6335
6336 case TARGET_OBJECT_AVAILABLE_FEATURES:
6337 return remote_read_qxfer
6338 (ops, "features", annex, readbuf, offset, len,
6339 &remote_protocol_packets[PACKET_qXfer_features]);
6340
6341 case TARGET_OBJECT_LIBRARIES:
6342 return remote_read_qxfer
6343 (ops, "libraries", annex, readbuf, offset, len,
6344 &remote_protocol_packets[PACKET_qXfer_libraries]);
6345
6346 case TARGET_OBJECT_MEMORY_MAP:
6347 gdb_assert (annex == NULL);
6348 return remote_read_qxfer (ops, "memory-map", annex, readbuf, offset, len,
6349 &remote_protocol_packets[PACKET_qXfer_memory_map]);
6350
6351 default:
6352 return -1;
6353 }
6354
6355 /* Note: a zero OFFSET and LEN can be used to query the minimum
6356 buffer size. */
6357 if (offset == 0 && len == 0)
6358 return (get_remote_packet_size ());
6359 /* Minimum outbuf size is get_remote_packet_size (). If LEN is not
6360 large enough let the caller deal with it. */
6361 if (len < get_remote_packet_size ())
6362 return -1;
6363 len = get_remote_packet_size ();
6364
6365 /* Except for querying the minimum buffer size, target must be open. */
6366 if (!remote_desc)
6367 error (_("remote query is only available after target open"));
6368
6369 gdb_assert (annex != NULL);
6370 gdb_assert (readbuf != NULL);
6371
6372 p2 = rs->buf;
6373 *p2++ = 'q';
6374 *p2++ = query_type;
6375
6376 /* We used one buffer char for the remote protocol q command and
6377 another for the query type. As the remote protocol encapsulation
6378 uses 4 chars plus one extra in case we are debugging
6379 (remote_debug), we have PBUFZIZ - 7 left to pack the query
6380 string. */
6381 i = 0;
6382 while (annex[i] && (i < (get_remote_packet_size () - 8)))
6383 {
6384 /* Bad caller may have sent forbidden characters. */
6385 gdb_assert (isprint (annex[i]) && annex[i] != '$' && annex[i] != '#');
6386 *p2++ = annex[i];
6387 i++;
6388 }
6389 *p2 = '\0';
6390 gdb_assert (annex[i] == '\0');
6391
6392 i = putpkt (rs->buf);
6393 if (i < 0)
6394 return i;
6395
6396 getpkt (&rs->buf, &rs->buf_size, 0);
6397 strcpy ((char *) readbuf, rs->buf);
6398
6399 return strlen ((char *) readbuf);
6400 }
6401
6402 static int
6403 remote_search_memory (struct target_ops* ops,
6404 CORE_ADDR start_addr, ULONGEST search_space_len,
6405 const gdb_byte *pattern, ULONGEST pattern_len,
6406 CORE_ADDR *found_addrp)
6407 {
6408 struct remote_state *rs = get_remote_state ();
6409 int max_size = get_memory_write_packet_size ();
6410 struct packet_config *packet =
6411 &remote_protocol_packets[PACKET_qSearch_memory];
6412 /* number of packet bytes used to encode the pattern,
6413 this could be more than PATTERN_LEN due to escape characters */
6414 int escaped_pattern_len;
6415 /* amount of pattern that was encodable in the packet */
6416 int used_pattern_len;
6417 int i;
6418 int found;
6419 ULONGEST found_addr;
6420
6421 /* Don't go to the target if we don't have to.
6422 This is done before checking packet->support to avoid the possibility that
6423 a success for this edge case means the facility works in general. */
6424 if (pattern_len > search_space_len)
6425 return 0;
6426 if (pattern_len == 0)
6427 {
6428 *found_addrp = start_addr;
6429 return 1;
6430 }
6431
6432 /* If we already know the packet isn't supported, fall back to the simple
6433 way of searching memory. */
6434
6435 if (packet->support == PACKET_DISABLE)
6436 {
6437 /* Target doesn't provided special support, fall back and use the
6438 standard support (copy memory and do the search here). */
6439 return simple_search_memory (ops, start_addr, search_space_len,
6440 pattern, pattern_len, found_addrp);
6441 }
6442
6443 /* Insert header. */
6444 i = snprintf (rs->buf, max_size,
6445 "qSearch:memory:%s;%s;",
6446 paddr_nz (start_addr),
6447 phex_nz (search_space_len, sizeof (search_space_len)));
6448 max_size -= (i + 1);
6449
6450 /* Escape as much data as fits into rs->buf. */
6451 escaped_pattern_len =
6452 remote_escape_output (pattern, pattern_len, (rs->buf + i),
6453 &used_pattern_len, max_size);
6454
6455 /* Bail if the pattern is too large. */
6456 if (used_pattern_len != pattern_len)
6457 error ("Pattern is too large to transmit to remote target.");
6458
6459 if (putpkt_binary (rs->buf, i + escaped_pattern_len) < 0
6460 || getpkt_sane (&rs->buf, &rs->buf_size, 0) < 0
6461 || packet_ok (rs->buf, packet) != PACKET_OK)
6462 {
6463 /* The request may not have worked because the command is not
6464 supported. If so, fall back to the simple way. */
6465 if (packet->support == PACKET_DISABLE)
6466 {
6467 return simple_search_memory (ops, start_addr, search_space_len,
6468 pattern, pattern_len, found_addrp);
6469 }
6470 return -1;
6471 }
6472
6473 if (rs->buf[0] == '0')
6474 found = 0;
6475 else if (rs->buf[0] == '1')
6476 {
6477 found = 1;
6478 if (rs->buf[1] != ',')
6479 error (_("Unknown qSearch:memory reply: %s"), rs->buf);
6480 unpack_varlen_hex (rs->buf + 2, &found_addr);
6481 *found_addrp = found_addr;
6482 }
6483 else
6484 error (_("Unknown qSearch:memory reply: %s"), rs->buf);
6485
6486 return found;
6487 }
6488
6489 static void
6490 remote_rcmd (char *command,
6491 struct ui_file *outbuf)
6492 {
6493 struct remote_state *rs = get_remote_state ();
6494 char *p = rs->buf;
6495
6496 if (!remote_desc)
6497 error (_("remote rcmd is only available after target open"));
6498
6499 /* Send a NULL command across as an empty command. */
6500 if (command == NULL)
6501 command = "";
6502
6503 /* The query prefix. */
6504 strcpy (rs->buf, "qRcmd,");
6505 p = strchr (rs->buf, '\0');
6506
6507 if ((strlen (rs->buf) + strlen (command) * 2 + 8/*misc*/) > get_remote_packet_size ())
6508 error (_("\"monitor\" command ``%s'' is too long."), command);
6509
6510 /* Encode the actual command. */
6511 bin2hex ((gdb_byte *) command, p, 0);
6512
6513 if (putpkt (rs->buf) < 0)
6514 error (_("Communication problem with target."));
6515
6516 /* get/display the response */
6517 while (1)
6518 {
6519 char *buf;
6520
6521 /* XXX - see also tracepoint.c:remote_get_noisy_reply(). */
6522 rs->buf[0] = '\0';
6523 getpkt (&rs->buf, &rs->buf_size, 0);
6524 buf = rs->buf;
6525 if (buf[0] == '\0')
6526 error (_("Target does not support this command."));
6527 if (buf[0] == 'O' && buf[1] != 'K')
6528 {
6529 remote_console_output (buf + 1); /* 'O' message from stub. */
6530 continue;
6531 }
6532 if (strcmp (buf, "OK") == 0)
6533 break;
6534 if (strlen (buf) == 3 && buf[0] == 'E'
6535 && isdigit (buf[1]) && isdigit (buf[2]))
6536 {
6537 error (_("Protocol error with Rcmd"));
6538 }
6539 for (p = buf; p[0] != '\0' && p[1] != '\0'; p += 2)
6540 {
6541 char c = (fromhex (p[0]) << 4) + fromhex (p[1]);
6542 fputc_unfiltered (c, outbuf);
6543 }
6544 break;
6545 }
6546 }
6547
6548 static VEC(mem_region_s) *
6549 remote_memory_map (struct target_ops *ops)
6550 {
6551 VEC(mem_region_s) *result = NULL;
6552 char *text = target_read_stralloc (&current_target,
6553 TARGET_OBJECT_MEMORY_MAP, NULL);
6554
6555 if (text)
6556 {
6557 struct cleanup *back_to = make_cleanup (xfree, text);
6558 result = parse_memory_map (text);
6559 do_cleanups (back_to);
6560 }
6561
6562 return result;
6563 }
6564
6565 static void
6566 packet_command (char *args, int from_tty)
6567 {
6568 struct remote_state *rs = get_remote_state ();
6569
6570 if (!remote_desc)
6571 error (_("command can only be used with remote target"));
6572
6573 if (!args)
6574 error (_("remote-packet command requires packet text as argument"));
6575
6576 puts_filtered ("sending: ");
6577 print_packet (args);
6578 puts_filtered ("\n");
6579 putpkt (args);
6580
6581 getpkt (&rs->buf, &rs->buf_size, 0);
6582 puts_filtered ("received: ");
6583 print_packet (rs->buf);
6584 puts_filtered ("\n");
6585 }
6586
6587 #if 0
6588 /* --------- UNIT_TEST for THREAD oriented PACKETS ------------------- */
6589
6590 static void display_thread_info (struct gdb_ext_thread_info *info);
6591
6592 static void threadset_test_cmd (char *cmd, int tty);
6593
6594 static void threadalive_test (char *cmd, int tty);
6595
6596 static void threadlist_test_cmd (char *cmd, int tty);
6597
6598 int get_and_display_threadinfo (threadref *ref);
6599
6600 static void threadinfo_test_cmd (char *cmd, int tty);
6601
6602 static int thread_display_step (threadref *ref, void *context);
6603
6604 static void threadlist_update_test_cmd (char *cmd, int tty);
6605
6606 static void init_remote_threadtests (void);
6607
6608 #define SAMPLE_THREAD 0x05060708 /* Truncated 64 bit threadid. */
6609
6610 static void
6611 threadset_test_cmd (char *cmd, int tty)
6612 {
6613 int sample_thread = SAMPLE_THREAD;
6614
6615 printf_filtered (_("Remote threadset test\n"));
6616 set_general_thread (sample_thread);
6617 }
6618
6619
6620 static void
6621 threadalive_test (char *cmd, int tty)
6622 {
6623 int sample_thread = SAMPLE_THREAD;
6624 int pid = ptid_get_pid (inferior_ptid);
6625 ptid_t ptid = ptid_build (pid, 0, sample_thread);
6626
6627 if (remote_thread_alive (ptid))
6628 printf_filtered ("PASS: Thread alive test\n");
6629 else
6630 printf_filtered ("FAIL: Thread alive test\n");
6631 }
6632
6633 void output_threadid (char *title, threadref *ref);
6634
6635 void
6636 output_threadid (char *title, threadref *ref)
6637 {
6638 char hexid[20];
6639
6640 pack_threadid (&hexid[0], ref); /* Convert threead id into hex. */
6641 hexid[16] = 0;
6642 printf_filtered ("%s %s\n", title, (&hexid[0]));
6643 }
6644
6645 static void
6646 threadlist_test_cmd (char *cmd, int tty)
6647 {
6648 int startflag = 1;
6649 threadref nextthread;
6650 int done, result_count;
6651 threadref threadlist[3];
6652
6653 printf_filtered ("Remote Threadlist test\n");
6654 if (!remote_get_threadlist (startflag, &nextthread, 3, &done,
6655 &result_count, &threadlist[0]))
6656 printf_filtered ("FAIL: threadlist test\n");
6657 else
6658 {
6659 threadref *scan = threadlist;
6660 threadref *limit = scan + result_count;
6661
6662 while (scan < limit)
6663 output_threadid (" thread ", scan++);
6664 }
6665 }
6666
6667 void
6668 display_thread_info (struct gdb_ext_thread_info *info)
6669 {
6670 output_threadid ("Threadid: ", &info->threadid);
6671 printf_filtered ("Name: %s\n ", info->shortname);
6672 printf_filtered ("State: %s\n", info->display);
6673 printf_filtered ("other: %s\n\n", info->more_display);
6674 }
6675
6676 int
6677 get_and_display_threadinfo (threadref *ref)
6678 {
6679 int result;
6680 int set;
6681 struct gdb_ext_thread_info threadinfo;
6682
6683 set = TAG_THREADID | TAG_EXISTS | TAG_THREADNAME
6684 | TAG_MOREDISPLAY | TAG_DISPLAY;
6685 if (0 != (result = remote_get_threadinfo (ref, set, &threadinfo)))
6686 display_thread_info (&threadinfo);
6687 return result;
6688 }
6689
6690 static void
6691 threadinfo_test_cmd (char *cmd, int tty)
6692 {
6693 int athread = SAMPLE_THREAD;
6694 threadref thread;
6695 int set;
6696
6697 int_to_threadref (&thread, athread);
6698 printf_filtered ("Remote Threadinfo test\n");
6699 if (!get_and_display_threadinfo (&thread))
6700 printf_filtered ("FAIL cannot get thread info\n");
6701 }
6702
6703 static int
6704 thread_display_step (threadref *ref, void *context)
6705 {
6706 /* output_threadid(" threadstep ",ref); *//* simple test */
6707 return get_and_display_threadinfo (ref);
6708 }
6709
6710 static void
6711 threadlist_update_test_cmd (char *cmd, int tty)
6712 {
6713 printf_filtered ("Remote Threadlist update test\n");
6714 remote_threadlist_iterator (thread_display_step, 0, CRAZY_MAX_THREADS);
6715 }
6716
6717 static void
6718 init_remote_threadtests (void)
6719 {
6720 add_com ("tlist", class_obscure, threadlist_test_cmd, _("\
6721 Fetch and print the remote list of thread identifiers, one pkt only"));
6722 add_com ("tinfo", class_obscure, threadinfo_test_cmd,
6723 _("Fetch and display info about one thread"));
6724 add_com ("tset", class_obscure, threadset_test_cmd,
6725 _("Test setting to a different thread"));
6726 add_com ("tupd", class_obscure, threadlist_update_test_cmd,
6727 _("Iterate through updating all remote thread info"));
6728 add_com ("talive", class_obscure, threadalive_test,
6729 _(" Remote thread alive test "));
6730 }
6731
6732 #endif /* 0 */
6733
6734 /* Convert a thread ID to a string. Returns the string in a static
6735 buffer. */
6736
6737 static char *
6738 remote_pid_to_str (ptid_t ptid)
6739 {
6740 static char buf[64];
6741 struct remote_state *rs = get_remote_state ();
6742
6743 if (ptid_equal (magic_null_ptid, ptid))
6744 {
6745 xsnprintf (buf, sizeof buf, "Thread <main>");
6746 return buf;
6747 }
6748 else if (remote_multi_process_p (rs)
6749 && ptid_get_tid (ptid) != 0 && ptid_get_pid (ptid) != 0)
6750 {
6751 xsnprintf (buf, sizeof buf, "Thread %d.%ld",
6752 ptid_get_pid (ptid), ptid_get_tid (ptid));
6753 return buf;
6754 }
6755 else if (ptid_get_tid (ptid) != 0)
6756 {
6757 xsnprintf (buf, sizeof buf, "Thread %ld",
6758 ptid_get_tid (ptid));
6759 return buf;
6760 }
6761
6762 return normal_pid_to_str (ptid);
6763 }
6764
6765 /* Get the address of the thread local variable in OBJFILE which is
6766 stored at OFFSET within the thread local storage for thread PTID. */
6767
6768 static CORE_ADDR
6769 remote_get_thread_local_address (ptid_t ptid, CORE_ADDR lm, CORE_ADDR offset)
6770 {
6771 if (remote_protocol_packets[PACKET_qGetTLSAddr].support != PACKET_DISABLE)
6772 {
6773 struct remote_state *rs = get_remote_state ();
6774 char *p = rs->buf;
6775 char *endp = rs->buf + get_remote_packet_size ();
6776 enum packet_result result;
6777
6778 strcpy (p, "qGetTLSAddr:");
6779 p += strlen (p);
6780 p = write_ptid (p, endp, ptid);
6781 *p++ = ',';
6782 p += hexnumstr (p, offset);
6783 *p++ = ',';
6784 p += hexnumstr (p, lm);
6785 *p++ = '\0';
6786
6787 putpkt (rs->buf);
6788 getpkt (&rs->buf, &rs->buf_size, 0);
6789 result = packet_ok (rs->buf, &remote_protocol_packets[PACKET_qGetTLSAddr]);
6790 if (result == PACKET_OK)
6791 {
6792 ULONGEST result;
6793
6794 unpack_varlen_hex (rs->buf, &result);
6795 return result;
6796 }
6797 else if (result == PACKET_UNKNOWN)
6798 throw_error (TLS_GENERIC_ERROR,
6799 _("Remote target doesn't support qGetTLSAddr packet"));
6800 else
6801 throw_error (TLS_GENERIC_ERROR,
6802 _("Remote target failed to process qGetTLSAddr request"));
6803 }
6804 else
6805 throw_error (TLS_GENERIC_ERROR,
6806 _("TLS not supported or disabled on this target"));
6807 /* Not reached. */
6808 return 0;
6809 }
6810
6811 /* Support for inferring a target description based on the current
6812 architecture and the size of a 'g' packet. While the 'g' packet
6813 can have any size (since optional registers can be left off the
6814 end), some sizes are easily recognizable given knowledge of the
6815 approximate architecture. */
6816
6817 struct remote_g_packet_guess
6818 {
6819 int bytes;
6820 const struct target_desc *tdesc;
6821 };
6822 typedef struct remote_g_packet_guess remote_g_packet_guess_s;
6823 DEF_VEC_O(remote_g_packet_guess_s);
6824
6825 struct remote_g_packet_data
6826 {
6827 VEC(remote_g_packet_guess_s) *guesses;
6828 };
6829
6830 static struct gdbarch_data *remote_g_packet_data_handle;
6831
6832 static void *
6833 remote_g_packet_data_init (struct obstack *obstack)
6834 {
6835 return OBSTACK_ZALLOC (obstack, struct remote_g_packet_data);
6836 }
6837
6838 void
6839 register_remote_g_packet_guess (struct gdbarch *gdbarch, int bytes,
6840 const struct target_desc *tdesc)
6841 {
6842 struct remote_g_packet_data *data
6843 = gdbarch_data (gdbarch, remote_g_packet_data_handle);
6844 struct remote_g_packet_guess new_guess, *guess;
6845 int ix;
6846
6847 gdb_assert (tdesc != NULL);
6848
6849 for (ix = 0;
6850 VEC_iterate (remote_g_packet_guess_s, data->guesses, ix, guess);
6851 ix++)
6852 if (guess->bytes == bytes)
6853 internal_error (__FILE__, __LINE__,
6854 "Duplicate g packet description added for size %d",
6855 bytes);
6856
6857 new_guess.bytes = bytes;
6858 new_guess.tdesc = tdesc;
6859 VEC_safe_push (remote_g_packet_guess_s, data->guesses, &new_guess);
6860 }
6861
6862 static const struct target_desc *
6863 remote_read_description (struct target_ops *target)
6864 {
6865 struct remote_g_packet_data *data
6866 = gdbarch_data (target_gdbarch, remote_g_packet_data_handle);
6867
6868 if (!VEC_empty (remote_g_packet_guess_s, data->guesses))
6869 {
6870 struct remote_g_packet_guess *guess;
6871 int ix;
6872 int bytes = send_g_packet ();
6873
6874 for (ix = 0;
6875 VEC_iterate (remote_g_packet_guess_s, data->guesses, ix, guess);
6876 ix++)
6877 if (guess->bytes == bytes)
6878 return guess->tdesc;
6879
6880 /* We discard the g packet. A minor optimization would be to
6881 hold on to it, and fill the register cache once we have selected
6882 an architecture, but it's too tricky to do safely. */
6883 }
6884
6885 return NULL;
6886 }
6887
6888 /* Remote file transfer support. This is host-initiated I/O, not
6889 target-initiated; for target-initiated, see remote-fileio.c. */
6890
6891 /* If *LEFT is at least the length of STRING, copy STRING to
6892 *BUFFER, update *BUFFER to point to the new end of the buffer, and
6893 decrease *LEFT. Otherwise raise an error. */
6894
6895 static void
6896 remote_buffer_add_string (char **buffer, int *left, char *string)
6897 {
6898 int len = strlen (string);
6899
6900 if (len > *left)
6901 error (_("Packet too long for target."));
6902
6903 memcpy (*buffer, string, len);
6904 *buffer += len;
6905 *left -= len;
6906
6907 /* NUL-terminate the buffer as a convenience, if there is
6908 room. */
6909 if (*left)
6910 **buffer = '\0';
6911 }
6912
6913 /* If *LEFT is large enough, hex encode LEN bytes from BYTES into
6914 *BUFFER, update *BUFFER to point to the new end of the buffer, and
6915 decrease *LEFT. Otherwise raise an error. */
6916
6917 static void
6918 remote_buffer_add_bytes (char **buffer, int *left, const gdb_byte *bytes,
6919 int len)
6920 {
6921 if (2 * len > *left)
6922 error (_("Packet too long for target."));
6923
6924 bin2hex (bytes, *buffer, len);
6925 *buffer += 2 * len;
6926 *left -= 2 * len;
6927
6928 /* NUL-terminate the buffer as a convenience, if there is
6929 room. */
6930 if (*left)
6931 **buffer = '\0';
6932 }
6933
6934 /* If *LEFT is large enough, convert VALUE to hex and add it to
6935 *BUFFER, update *BUFFER to point to the new end of the buffer, and
6936 decrease *LEFT. Otherwise raise an error. */
6937
6938 static void
6939 remote_buffer_add_int (char **buffer, int *left, ULONGEST value)
6940 {
6941 int len = hexnumlen (value);
6942
6943 if (len > *left)
6944 error (_("Packet too long for target."));
6945
6946 hexnumstr (*buffer, value);
6947 *buffer += len;
6948 *left -= len;
6949
6950 /* NUL-terminate the buffer as a convenience, if there is
6951 room. */
6952 if (*left)
6953 **buffer = '\0';
6954 }
6955
6956 /* Parse an I/O result packet from BUFFER. Set RETCODE to the return
6957 value, *REMOTE_ERRNO to the remote error number or zero if none
6958 was included, and *ATTACHMENT to point to the start of the annex
6959 if any. The length of the packet isn't needed here; there may
6960 be NUL bytes in BUFFER, but they will be after *ATTACHMENT.
6961
6962 Return 0 if the packet could be parsed, -1 if it could not. If
6963 -1 is returned, the other variables may not be initialized. */
6964
6965 static int
6966 remote_hostio_parse_result (char *buffer, int *retcode,
6967 int *remote_errno, char **attachment)
6968 {
6969 char *p, *p2;
6970
6971 *remote_errno = 0;
6972 *attachment = NULL;
6973
6974 if (buffer[0] != 'F')
6975 return -1;
6976
6977 errno = 0;
6978 *retcode = strtol (&buffer[1], &p, 16);
6979 if (errno != 0 || p == &buffer[1])
6980 return -1;
6981
6982 /* Check for ",errno". */
6983 if (*p == ',')
6984 {
6985 errno = 0;
6986 *remote_errno = strtol (p + 1, &p2, 16);
6987 if (errno != 0 || p + 1 == p2)
6988 return -1;
6989 p = p2;
6990 }
6991
6992 /* Check for ";attachment". If there is no attachment, the
6993 packet should end here. */
6994 if (*p == ';')
6995 {
6996 *attachment = p + 1;
6997 return 0;
6998 }
6999 else if (*p == '\0')
7000 return 0;
7001 else
7002 return -1;
7003 }
7004
7005 /* Send a prepared I/O packet to the target and read its response.
7006 The prepared packet is in the global RS->BUF before this function
7007 is called, and the answer is there when we return.
7008
7009 COMMAND_BYTES is the length of the request to send, which may include
7010 binary data. WHICH_PACKET is the packet configuration to check
7011 before attempting a packet. If an error occurs, *REMOTE_ERRNO
7012 is set to the error number and -1 is returned. Otherwise the value
7013 returned by the function is returned.
7014
7015 ATTACHMENT and ATTACHMENT_LEN should be non-NULL if and only if an
7016 attachment is expected; an error will be reported if there's a
7017 mismatch. If one is found, *ATTACHMENT will be set to point into
7018 the packet buffer and *ATTACHMENT_LEN will be set to the
7019 attachment's length. */
7020
7021 static int
7022 remote_hostio_send_command (int command_bytes, int which_packet,
7023 int *remote_errno, char **attachment,
7024 int *attachment_len)
7025 {
7026 struct remote_state *rs = get_remote_state ();
7027 int ret, bytes_read;
7028 char *attachment_tmp;
7029
7030 if (!remote_desc
7031 || remote_protocol_packets[which_packet].support == PACKET_DISABLE)
7032 {
7033 *remote_errno = FILEIO_ENOSYS;
7034 return -1;
7035 }
7036
7037 putpkt_binary (rs->buf, command_bytes);
7038 bytes_read = getpkt_sane (&rs->buf, &rs->buf_size, 0);
7039
7040 /* If it timed out, something is wrong. Don't try to parse the
7041 buffer. */
7042 if (bytes_read < 0)
7043 {
7044 *remote_errno = FILEIO_EINVAL;
7045 return -1;
7046 }
7047
7048 switch (packet_ok (rs->buf, &remote_protocol_packets[which_packet]))
7049 {
7050 case PACKET_ERROR:
7051 *remote_errno = FILEIO_EINVAL;
7052 return -1;
7053 case PACKET_UNKNOWN:
7054 *remote_errno = FILEIO_ENOSYS;
7055 return -1;
7056 case PACKET_OK:
7057 break;
7058 }
7059
7060 if (remote_hostio_parse_result (rs->buf, &ret, remote_errno,
7061 &attachment_tmp))
7062 {
7063 *remote_errno = FILEIO_EINVAL;
7064 return -1;
7065 }
7066
7067 /* Make sure we saw an attachment if and only if we expected one. */
7068 if ((attachment_tmp == NULL && attachment != NULL)
7069 || (attachment_tmp != NULL && attachment == NULL))
7070 {
7071 *remote_errno = FILEIO_EINVAL;
7072 return -1;
7073 }
7074
7075 /* If an attachment was found, it must point into the packet buffer;
7076 work out how many bytes there were. */
7077 if (attachment_tmp != NULL)
7078 {
7079 *attachment = attachment_tmp;
7080 *attachment_len = bytes_read - (*attachment - rs->buf);
7081 }
7082
7083 return ret;
7084 }
7085
7086 /* Open FILENAME on the remote target, using FLAGS and MODE. Return a
7087 remote file descriptor, or -1 if an error occurs (and set
7088 *REMOTE_ERRNO). */
7089
7090 static int
7091 remote_hostio_open (const char *filename, int flags, int mode,
7092 int *remote_errno)
7093 {
7094 struct remote_state *rs = get_remote_state ();
7095 char *p = rs->buf;
7096 int left = get_remote_packet_size () - 1;
7097
7098 remote_buffer_add_string (&p, &left, "vFile:open:");
7099
7100 remote_buffer_add_bytes (&p, &left, (const gdb_byte *) filename,
7101 strlen (filename));
7102 remote_buffer_add_string (&p, &left, ",");
7103
7104 remote_buffer_add_int (&p, &left, flags);
7105 remote_buffer_add_string (&p, &left, ",");
7106
7107 remote_buffer_add_int (&p, &left, mode);
7108
7109 return remote_hostio_send_command (p - rs->buf, PACKET_vFile_open,
7110 remote_errno, NULL, NULL);
7111 }
7112
7113 /* Write up to LEN bytes from WRITE_BUF to FD on the remote target.
7114 Return the number of bytes written, or -1 if an error occurs (and
7115 set *REMOTE_ERRNO). */
7116
7117 static int
7118 remote_hostio_pwrite (int fd, const gdb_byte *write_buf, int len,
7119 ULONGEST offset, int *remote_errno)
7120 {
7121 struct remote_state *rs = get_remote_state ();
7122 char *p = rs->buf;
7123 int left = get_remote_packet_size ();
7124 int out_len;
7125
7126 remote_buffer_add_string (&p, &left, "vFile:pwrite:");
7127
7128 remote_buffer_add_int (&p, &left, fd);
7129 remote_buffer_add_string (&p, &left, ",");
7130
7131 remote_buffer_add_int (&p, &left, offset);
7132 remote_buffer_add_string (&p, &left, ",");
7133
7134 p += remote_escape_output (write_buf, len, p, &out_len,
7135 get_remote_packet_size () - (p - rs->buf));
7136
7137 return remote_hostio_send_command (p - rs->buf, PACKET_vFile_pwrite,
7138 remote_errno, NULL, NULL);
7139 }
7140
7141 /* Read up to LEN bytes FD on the remote target into READ_BUF
7142 Return the number of bytes read, or -1 if an error occurs (and
7143 set *REMOTE_ERRNO). */
7144
7145 static int
7146 remote_hostio_pread (int fd, gdb_byte *read_buf, int len,
7147 ULONGEST offset, int *remote_errno)
7148 {
7149 struct remote_state *rs = get_remote_state ();
7150 char *p = rs->buf;
7151 char *attachment;
7152 int left = get_remote_packet_size ();
7153 int ret, attachment_len;
7154 int read_len;
7155
7156 remote_buffer_add_string (&p, &left, "vFile:pread:");
7157
7158 remote_buffer_add_int (&p, &left, fd);
7159 remote_buffer_add_string (&p, &left, ",");
7160
7161 remote_buffer_add_int (&p, &left, len);
7162 remote_buffer_add_string (&p, &left, ",");
7163
7164 remote_buffer_add_int (&p, &left, offset);
7165
7166 ret = remote_hostio_send_command (p - rs->buf, PACKET_vFile_pread,
7167 remote_errno, &attachment,
7168 &attachment_len);
7169
7170 if (ret < 0)
7171 return ret;
7172
7173 read_len = remote_unescape_input (attachment, attachment_len,
7174 read_buf, len);
7175 if (read_len != ret)
7176 error (_("Read returned %d, but %d bytes."), ret, (int) read_len);
7177
7178 return ret;
7179 }
7180
7181 /* Close FD on the remote target. Return 0, or -1 if an error occurs
7182 (and set *REMOTE_ERRNO). */
7183
7184 static int
7185 remote_hostio_close (int fd, int *remote_errno)
7186 {
7187 struct remote_state *rs = get_remote_state ();
7188 char *p = rs->buf;
7189 int left = get_remote_packet_size () - 1;
7190
7191 remote_buffer_add_string (&p, &left, "vFile:close:");
7192
7193 remote_buffer_add_int (&p, &left, fd);
7194
7195 return remote_hostio_send_command (p - rs->buf, PACKET_vFile_close,
7196 remote_errno, NULL, NULL);
7197 }
7198
7199 /* Unlink FILENAME on the remote target. Return 0, or -1 if an error
7200 occurs (and set *REMOTE_ERRNO). */
7201
7202 static int
7203 remote_hostio_unlink (const char *filename, int *remote_errno)
7204 {
7205 struct remote_state *rs = get_remote_state ();
7206 char *p = rs->buf;
7207 int left = get_remote_packet_size () - 1;
7208
7209 remote_buffer_add_string (&p, &left, "vFile:unlink:");
7210
7211 remote_buffer_add_bytes (&p, &left, (const gdb_byte *) filename,
7212 strlen (filename));
7213
7214 return remote_hostio_send_command (p - rs->buf, PACKET_vFile_unlink,
7215 remote_errno, NULL, NULL);
7216 }
7217
7218 static int
7219 remote_fileio_errno_to_host (int errnum)
7220 {
7221 switch (errnum)
7222 {
7223 case FILEIO_EPERM:
7224 return EPERM;
7225 case FILEIO_ENOENT:
7226 return ENOENT;
7227 case FILEIO_EINTR:
7228 return EINTR;
7229 case FILEIO_EIO:
7230 return EIO;
7231 case FILEIO_EBADF:
7232 return EBADF;
7233 case FILEIO_EACCES:
7234 return EACCES;
7235 case FILEIO_EFAULT:
7236 return EFAULT;
7237 case FILEIO_EBUSY:
7238 return EBUSY;
7239 case FILEIO_EEXIST:
7240 return EEXIST;
7241 case FILEIO_ENODEV:
7242 return ENODEV;
7243 case FILEIO_ENOTDIR:
7244 return ENOTDIR;
7245 case FILEIO_EISDIR:
7246 return EISDIR;
7247 case FILEIO_EINVAL:
7248 return EINVAL;
7249 case FILEIO_ENFILE:
7250 return ENFILE;
7251 case FILEIO_EMFILE:
7252 return EMFILE;
7253 case FILEIO_EFBIG:
7254 return EFBIG;
7255 case FILEIO_ENOSPC:
7256 return ENOSPC;
7257 case FILEIO_ESPIPE:
7258 return ESPIPE;
7259 case FILEIO_EROFS:
7260 return EROFS;
7261 case FILEIO_ENOSYS:
7262 return ENOSYS;
7263 case FILEIO_ENAMETOOLONG:
7264 return ENAMETOOLONG;
7265 }
7266 return -1;
7267 }
7268
7269 static char *
7270 remote_hostio_error (int errnum)
7271 {
7272 int host_error = remote_fileio_errno_to_host (errnum);
7273
7274 if (host_error == -1)
7275 error (_("Unknown remote I/O error %d"), errnum);
7276 else
7277 error (_("Remote I/O error: %s"), safe_strerror (host_error));
7278 }
7279
7280 static void
7281 fclose_cleanup (void *file)
7282 {
7283 fclose (file);
7284 }
7285
7286 static void
7287 remote_hostio_close_cleanup (void *opaque)
7288 {
7289 int fd = *(int *) opaque;
7290 int remote_errno;
7291
7292 remote_hostio_close (fd, &remote_errno);
7293 }
7294
7295
7296 static void *
7297 remote_bfd_iovec_open (struct bfd *abfd, void *open_closure)
7298 {
7299 const char *filename = bfd_get_filename (abfd);
7300 int fd, remote_errno;
7301 int *stream;
7302
7303 gdb_assert (remote_filename_p (filename));
7304
7305 fd = remote_hostio_open (filename + 7, FILEIO_O_RDONLY, 0, &remote_errno);
7306 if (fd == -1)
7307 {
7308 errno = remote_fileio_errno_to_host (remote_errno);
7309 bfd_set_error (bfd_error_system_call);
7310 return NULL;
7311 }
7312
7313 stream = xmalloc (sizeof (int));
7314 *stream = fd;
7315 return stream;
7316 }
7317
7318 static int
7319 remote_bfd_iovec_close (struct bfd *abfd, void *stream)
7320 {
7321 int fd = *(int *)stream;
7322 int remote_errno;
7323
7324 xfree (stream);
7325
7326 /* Ignore errors on close; these may happen if the remote
7327 connection was already torn down. */
7328 remote_hostio_close (fd, &remote_errno);
7329
7330 return 1;
7331 }
7332
7333 static file_ptr
7334 remote_bfd_iovec_pread (struct bfd *abfd, void *stream, void *buf,
7335 file_ptr nbytes, file_ptr offset)
7336 {
7337 int fd = *(int *)stream;
7338 int remote_errno;
7339 file_ptr pos, bytes;
7340
7341 pos = 0;
7342 while (nbytes > pos)
7343 {
7344 bytes = remote_hostio_pread (fd, (char *)buf + pos, nbytes - pos,
7345 offset + pos, &remote_errno);
7346 if (bytes == 0)
7347 /* Success, but no bytes, means end-of-file. */
7348 break;
7349 if (bytes == -1)
7350 {
7351 errno = remote_fileio_errno_to_host (remote_errno);
7352 bfd_set_error (bfd_error_system_call);
7353 return -1;
7354 }
7355
7356 pos += bytes;
7357 }
7358
7359 return pos;
7360 }
7361
7362 static int
7363 remote_bfd_iovec_stat (struct bfd *abfd, void *stream, struct stat *sb)
7364 {
7365 /* FIXME: We should probably implement remote_hostio_stat. */
7366 sb->st_size = INT_MAX;
7367 return 0;
7368 }
7369
7370 int
7371 remote_filename_p (const char *filename)
7372 {
7373 return strncmp (filename, "remote:", 7) == 0;
7374 }
7375
7376 bfd *
7377 remote_bfd_open (const char *remote_file, const char *target)
7378 {
7379 return bfd_openr_iovec (remote_file, target,
7380 remote_bfd_iovec_open, NULL,
7381 remote_bfd_iovec_pread,
7382 remote_bfd_iovec_close,
7383 remote_bfd_iovec_stat);
7384 }
7385
7386 void
7387 remote_file_put (const char *local_file, const char *remote_file, int from_tty)
7388 {
7389 struct cleanup *back_to, *close_cleanup;
7390 int retcode, fd, remote_errno, bytes, io_size;
7391 FILE *file;
7392 gdb_byte *buffer;
7393 int bytes_in_buffer;
7394 int saw_eof;
7395 ULONGEST offset;
7396
7397 if (!remote_desc)
7398 error (_("command can only be used with remote target"));
7399
7400 file = fopen (local_file, "rb");
7401 if (file == NULL)
7402 perror_with_name (local_file);
7403 back_to = make_cleanup (fclose_cleanup, file);
7404
7405 fd = remote_hostio_open (remote_file, (FILEIO_O_WRONLY | FILEIO_O_CREAT
7406 | FILEIO_O_TRUNC),
7407 0700, &remote_errno);
7408 if (fd == -1)
7409 remote_hostio_error (remote_errno);
7410
7411 /* Send up to this many bytes at once. They won't all fit in the
7412 remote packet limit, so we'll transfer slightly fewer. */
7413 io_size = get_remote_packet_size ();
7414 buffer = xmalloc (io_size);
7415 make_cleanup (xfree, buffer);
7416
7417 close_cleanup = make_cleanup (remote_hostio_close_cleanup, &fd);
7418
7419 bytes_in_buffer = 0;
7420 saw_eof = 0;
7421 offset = 0;
7422 while (bytes_in_buffer || !saw_eof)
7423 {
7424 if (!saw_eof)
7425 {
7426 bytes = fread (buffer + bytes_in_buffer, 1, io_size - bytes_in_buffer,
7427 file);
7428 if (bytes == 0)
7429 {
7430 if (ferror (file))
7431 error (_("Error reading %s."), local_file);
7432 else
7433 {
7434 /* EOF. Unless there is something still in the
7435 buffer from the last iteration, we are done. */
7436 saw_eof = 1;
7437 if (bytes_in_buffer == 0)
7438 break;
7439 }
7440 }
7441 }
7442 else
7443 bytes = 0;
7444
7445 bytes += bytes_in_buffer;
7446 bytes_in_buffer = 0;
7447
7448 retcode = remote_hostio_pwrite (fd, buffer, bytes, offset, &remote_errno);
7449
7450 if (retcode < 0)
7451 remote_hostio_error (remote_errno);
7452 else if (retcode == 0)
7453 error (_("Remote write of %d bytes returned 0!"), bytes);
7454 else if (retcode < bytes)
7455 {
7456 /* Short write. Save the rest of the read data for the next
7457 write. */
7458 bytes_in_buffer = bytes - retcode;
7459 memmove (buffer, buffer + retcode, bytes_in_buffer);
7460 }
7461
7462 offset += retcode;
7463 }
7464
7465 discard_cleanups (close_cleanup);
7466 if (remote_hostio_close (fd, &remote_errno))
7467 remote_hostio_error (remote_errno);
7468
7469 if (from_tty)
7470 printf_filtered (_("Successfully sent file \"%s\".\n"), local_file);
7471 do_cleanups (back_to);
7472 }
7473
7474 void
7475 remote_file_get (const char *remote_file, const char *local_file, int from_tty)
7476 {
7477 struct cleanup *back_to, *close_cleanup;
7478 int retcode, fd, remote_errno, bytes, io_size;
7479 FILE *file;
7480 gdb_byte *buffer;
7481 ULONGEST offset;
7482
7483 if (!remote_desc)
7484 error (_("command can only be used with remote target"));
7485
7486 fd = remote_hostio_open (remote_file, FILEIO_O_RDONLY, 0, &remote_errno);
7487 if (fd == -1)
7488 remote_hostio_error (remote_errno);
7489
7490 file = fopen (local_file, "wb");
7491 if (file == NULL)
7492 perror_with_name (local_file);
7493 back_to = make_cleanup (fclose_cleanup, file);
7494
7495 /* Send up to this many bytes at once. They won't all fit in the
7496 remote packet limit, so we'll transfer slightly fewer. */
7497 io_size = get_remote_packet_size ();
7498 buffer = xmalloc (io_size);
7499 make_cleanup (xfree, buffer);
7500
7501 close_cleanup = make_cleanup (remote_hostio_close_cleanup, &fd);
7502
7503 offset = 0;
7504 while (1)
7505 {
7506 bytes = remote_hostio_pread (fd, buffer, io_size, offset, &remote_errno);
7507 if (bytes == 0)
7508 /* Success, but no bytes, means end-of-file. */
7509 break;
7510 if (bytes == -1)
7511 remote_hostio_error (remote_errno);
7512
7513 offset += bytes;
7514
7515 bytes = fwrite (buffer, 1, bytes, file);
7516 if (bytes == 0)
7517 perror_with_name (local_file);
7518 }
7519
7520 discard_cleanups (close_cleanup);
7521 if (remote_hostio_close (fd, &remote_errno))
7522 remote_hostio_error (remote_errno);
7523
7524 if (from_tty)
7525 printf_filtered (_("Successfully fetched file \"%s\".\n"), remote_file);
7526 do_cleanups (back_to);
7527 }
7528
7529 void
7530 remote_file_delete (const char *remote_file, int from_tty)
7531 {
7532 int retcode, remote_errno;
7533
7534 if (!remote_desc)
7535 error (_("command can only be used with remote target"));
7536
7537 retcode = remote_hostio_unlink (remote_file, &remote_errno);
7538 if (retcode == -1)
7539 remote_hostio_error (remote_errno);
7540
7541 if (from_tty)
7542 printf_filtered (_("Successfully deleted file \"%s\".\n"), remote_file);
7543 }
7544
7545 static void
7546 remote_put_command (char *args, int from_tty)
7547 {
7548 struct cleanup *back_to;
7549 char **argv;
7550
7551 if (args == NULL)
7552 error_no_arg (_("file to put"));
7553
7554 argv = gdb_buildargv (args);
7555 back_to = make_cleanup_freeargv (argv);
7556 if (argv[0] == NULL || argv[1] == NULL || argv[2] != NULL)
7557 error (_("Invalid parameters to remote put"));
7558
7559 remote_file_put (argv[0], argv[1], from_tty);
7560
7561 do_cleanups (back_to);
7562 }
7563
7564 static void
7565 remote_get_command (char *args, int from_tty)
7566 {
7567 struct cleanup *back_to;
7568 char **argv;
7569
7570 if (args == NULL)
7571 error_no_arg (_("file to get"));
7572
7573 argv = gdb_buildargv (args);
7574 back_to = make_cleanup_freeargv (argv);
7575 if (argv[0] == NULL || argv[1] == NULL || argv[2] != NULL)
7576 error (_("Invalid parameters to remote get"));
7577
7578 remote_file_get (argv[0], argv[1], from_tty);
7579
7580 do_cleanups (back_to);
7581 }
7582
7583 static void
7584 remote_delete_command (char *args, int from_tty)
7585 {
7586 struct cleanup *back_to;
7587 char **argv;
7588
7589 if (args == NULL)
7590 error_no_arg (_("file to delete"));
7591
7592 argv = gdb_buildargv (args);
7593 back_to = make_cleanup_freeargv (argv);
7594 if (argv[0] == NULL || argv[1] != NULL)
7595 error (_("Invalid parameters to remote delete"));
7596
7597 remote_file_delete (argv[0], from_tty);
7598
7599 do_cleanups (back_to);
7600 }
7601
7602 static void
7603 remote_command (char *args, int from_tty)
7604 {
7605 help_list (remote_cmdlist, "remote ", -1, gdb_stdout);
7606 }
7607
7608 static void
7609 init_remote_ops (void)
7610 {
7611 remote_ops.to_shortname = "remote";
7612 remote_ops.to_longname = "Remote serial target in gdb-specific protocol";
7613 remote_ops.to_doc =
7614 "Use a remote computer via a serial line, using a gdb-specific protocol.\n\
7615 Specify the serial device it is connected to\n\
7616 (e.g. /dev/ttyS0, /dev/ttya, COM1, etc.).";
7617 remote_ops.to_open = remote_open;
7618 remote_ops.to_close = remote_close;
7619 remote_ops.to_detach = remote_detach;
7620 remote_ops.to_disconnect = remote_disconnect;
7621 remote_ops.to_resume = remote_resume;
7622 remote_ops.to_wait = remote_wait;
7623 remote_ops.to_fetch_registers = remote_fetch_registers;
7624 remote_ops.to_store_registers = remote_store_registers;
7625 remote_ops.to_prepare_to_store = remote_prepare_to_store;
7626 remote_ops.deprecated_xfer_memory = remote_xfer_memory;
7627 remote_ops.to_files_info = remote_files_info;
7628 remote_ops.to_insert_breakpoint = remote_insert_breakpoint;
7629 remote_ops.to_remove_breakpoint = remote_remove_breakpoint;
7630 remote_ops.to_stopped_by_watchpoint = remote_stopped_by_watchpoint;
7631 remote_ops.to_stopped_data_address = remote_stopped_data_address;
7632 remote_ops.to_can_use_hw_breakpoint = remote_check_watch_resources;
7633 remote_ops.to_insert_hw_breakpoint = remote_insert_hw_breakpoint;
7634 remote_ops.to_remove_hw_breakpoint = remote_remove_hw_breakpoint;
7635 remote_ops.to_insert_watchpoint = remote_insert_watchpoint;
7636 remote_ops.to_remove_watchpoint = remote_remove_watchpoint;
7637 remote_ops.to_kill = remote_kill;
7638 remote_ops.to_load = generic_load;
7639 remote_ops.to_mourn_inferior = remote_mourn;
7640 remote_ops.to_thread_alive = remote_thread_alive;
7641 remote_ops.to_find_new_threads = remote_threads_info;
7642 remote_ops.to_pid_to_str = remote_pid_to_str;
7643 remote_ops.to_extra_thread_info = remote_threads_extra_info;
7644 remote_ops.to_stop = remote_stop;
7645 remote_ops.to_xfer_partial = remote_xfer_partial;
7646 remote_ops.to_rcmd = remote_rcmd;
7647 remote_ops.to_log_command = serial_log_command;
7648 remote_ops.to_get_thread_local_address = remote_get_thread_local_address;
7649 remote_ops.to_stratum = process_stratum;
7650 remote_ops.to_has_all_memory = 1;
7651 remote_ops.to_has_memory = 1;
7652 remote_ops.to_has_stack = 1;
7653 remote_ops.to_has_registers = 1;
7654 remote_ops.to_has_execution = 1;
7655 remote_ops.to_has_thread_control = tc_schedlock; /* can lock scheduler */
7656 remote_ops.to_magic = OPS_MAGIC;
7657 remote_ops.to_memory_map = remote_memory_map;
7658 remote_ops.to_flash_erase = remote_flash_erase;
7659 remote_ops.to_flash_done = remote_flash_done;
7660 remote_ops.to_read_description = remote_read_description;
7661 remote_ops.to_search_memory = remote_search_memory;
7662 remote_ops.to_can_async_p = remote_can_async_p;
7663 remote_ops.to_is_async_p = remote_is_async_p;
7664 remote_ops.to_async = remote_async;
7665 remote_ops.to_async_mask = remote_async_mask;
7666 remote_ops.to_terminal_inferior = remote_terminal_inferior;
7667 remote_ops.to_terminal_ours = remote_terminal_ours;
7668 }
7669
7670 /* Set up the extended remote vector by making a copy of the standard
7671 remote vector and adding to it. */
7672
7673 static void
7674 init_extended_remote_ops (void)
7675 {
7676 extended_remote_ops = remote_ops;
7677
7678 extended_remote_ops.to_shortname = "extended-remote";
7679 extended_remote_ops.to_longname =
7680 "Extended remote serial target in gdb-specific protocol";
7681 extended_remote_ops.to_doc =
7682 "Use a remote computer via a serial line, using a gdb-specific protocol.\n\
7683 Specify the serial device it is connected to (e.g. /dev/ttya).";
7684 extended_remote_ops.to_open = extended_remote_open;
7685 extended_remote_ops.to_create_inferior = extended_remote_create_inferior;
7686 extended_remote_ops.to_mourn_inferior = extended_remote_mourn;
7687 extended_remote_ops.to_detach = extended_remote_detach;
7688 extended_remote_ops.to_attach = extended_remote_attach;
7689 extended_remote_ops.to_kill = extended_remote_kill;
7690 }
7691
7692 static int
7693 remote_can_async_p (void)
7694 {
7695 if (!target_async_permitted)
7696 /* We only enable async when the user specifically asks for it. */
7697 return 0;
7698
7699 /* We're async whenever the serial device is. */
7700 return remote_async_mask_value && serial_can_async_p (remote_desc);
7701 }
7702
7703 static int
7704 remote_is_async_p (void)
7705 {
7706 if (!target_async_permitted)
7707 /* We only enable async when the user specifically asks for it. */
7708 return 0;
7709
7710 /* We're async whenever the serial device is. */
7711 return remote_async_mask_value && serial_is_async_p (remote_desc);
7712 }
7713
7714 /* Pass the SERIAL event on and up to the client. One day this code
7715 will be able to delay notifying the client of an event until the
7716 point where an entire packet has been received. */
7717
7718 static void (*async_client_callback) (enum inferior_event_type event_type,
7719 void *context);
7720 static void *async_client_context;
7721 static serial_event_ftype remote_async_serial_handler;
7722
7723 static void
7724 remote_async_serial_handler (struct serial *scb, void *context)
7725 {
7726 /* Don't propogate error information up to the client. Instead let
7727 the client find out about the error by querying the target. */
7728 async_client_callback (INF_REG_EVENT, async_client_context);
7729 }
7730
7731 static void
7732 remote_async (void (*callback) (enum inferior_event_type event_type,
7733 void *context), void *context)
7734 {
7735 if (remote_async_mask_value == 0)
7736 internal_error (__FILE__, __LINE__,
7737 _("Calling remote_async when async is masked"));
7738
7739 if (callback != NULL)
7740 {
7741 serial_async (remote_desc, remote_async_serial_handler, NULL);
7742 async_client_callback = callback;
7743 async_client_context = context;
7744 }
7745 else
7746 serial_async (remote_desc, NULL, NULL);
7747 }
7748
7749 static int
7750 remote_async_mask (int new_mask)
7751 {
7752 int curr_mask = remote_async_mask_value;
7753 remote_async_mask_value = new_mask;
7754 return curr_mask;
7755 }
7756
7757 static void
7758 set_remote_cmd (char *args, int from_tty)
7759 {
7760 help_list (remote_set_cmdlist, "set remote ", -1, gdb_stdout);
7761 }
7762
7763 static void
7764 show_remote_cmd (char *args, int from_tty)
7765 {
7766 /* We can't just use cmd_show_list here, because we want to skip
7767 the redundant "show remote Z-packet" and the legacy aliases. */
7768 struct cleanup *showlist_chain;
7769 struct cmd_list_element *list = remote_show_cmdlist;
7770
7771 showlist_chain = make_cleanup_ui_out_tuple_begin_end (uiout, "showlist");
7772 for (; list != NULL; list = list->next)
7773 if (strcmp (list->name, "Z-packet") == 0)
7774 continue;
7775 else if (list->type == not_set_cmd)
7776 /* Alias commands are exactly like the original, except they
7777 don't have the normal type. */
7778 continue;
7779 else
7780 {
7781 struct cleanup *option_chain
7782 = make_cleanup_ui_out_tuple_begin_end (uiout, "option");
7783 ui_out_field_string (uiout, "name", list->name);
7784 ui_out_text (uiout, ": ");
7785 if (list->type == show_cmd)
7786 do_setshow_command ((char *) NULL, from_tty, list);
7787 else
7788 cmd_func (list, NULL, from_tty);
7789 /* Close the tuple. */
7790 do_cleanups (option_chain);
7791 }
7792
7793 /* Close the tuple. */
7794 do_cleanups (showlist_chain);
7795 }
7796
7797
7798 /* Function to be called whenever a new objfile (shlib) is detected. */
7799 static void
7800 remote_new_objfile (struct objfile *objfile)
7801 {
7802 if (remote_desc != 0) /* Have a remote connection. */
7803 remote_check_symbols (objfile);
7804 }
7805
7806 void
7807 _initialize_remote (void)
7808 {
7809 struct remote_state *rs;
7810
7811 /* architecture specific data */
7812 remote_gdbarch_data_handle =
7813 gdbarch_data_register_post_init (init_remote_state);
7814 remote_g_packet_data_handle =
7815 gdbarch_data_register_pre_init (remote_g_packet_data_init);
7816
7817 /* Initialize the per-target state. At the moment there is only one
7818 of these, not one per target. Only one target is active at a
7819 time. The default buffer size is unimportant; it will be expanded
7820 whenever a larger buffer is needed. */
7821 rs = get_remote_state_raw ();
7822 rs->buf_size = 400;
7823 rs->buf = xmalloc (rs->buf_size);
7824
7825 init_remote_ops ();
7826 add_target (&remote_ops);
7827
7828 init_extended_remote_ops ();
7829 add_target (&extended_remote_ops);
7830
7831 /* Hook into new objfile notification. */
7832 observer_attach_new_objfile (remote_new_objfile);
7833
7834 /* Set up signal handlers. */
7835 sigint_remote_token =
7836 create_async_signal_handler (async_remote_interrupt, NULL);
7837 sigint_remote_twice_token =
7838 create_async_signal_handler (inferior_event_handler_wrapper, NULL);
7839
7840 #if 0
7841 init_remote_threadtests ();
7842 #endif
7843
7844 /* set/show remote ... */
7845
7846 add_prefix_cmd ("remote", class_maintenance, set_remote_cmd, _("\
7847 Remote protocol specific variables\n\
7848 Configure various remote-protocol specific variables such as\n\
7849 the packets being used"),
7850 &remote_set_cmdlist, "set remote ",
7851 0 /* allow-unknown */, &setlist);
7852 add_prefix_cmd ("remote", class_maintenance, show_remote_cmd, _("\
7853 Remote protocol specific variables\n\
7854 Configure various remote-protocol specific variables such as\n\
7855 the packets being used"),
7856 &remote_show_cmdlist, "show remote ",
7857 0 /* allow-unknown */, &showlist);
7858
7859 add_cmd ("compare-sections", class_obscure, compare_sections_command, _("\
7860 Compare section data on target to the exec file.\n\
7861 Argument is a single section name (default: all loaded sections)."),
7862 &cmdlist);
7863
7864 add_cmd ("packet", class_maintenance, packet_command, _("\
7865 Send an arbitrary packet to a remote target.\n\
7866 maintenance packet TEXT\n\
7867 If GDB is talking to an inferior via the GDB serial protocol, then\n\
7868 this command sends the string TEXT to the inferior, and displays the\n\
7869 response packet. GDB supplies the initial `$' character, and the\n\
7870 terminating `#' character and checksum."),
7871 &maintenancelist);
7872
7873 add_setshow_boolean_cmd ("remotebreak", no_class, &remote_break, _("\
7874 Set whether to send break if interrupted."), _("\
7875 Show whether to send break if interrupted."), _("\
7876 If set, a break, instead of a cntrl-c, is sent to the remote target."),
7877 NULL, NULL, /* FIXME: i18n: Whether to send break if interrupted is %s. */
7878 &setlist, &showlist);
7879
7880 /* Install commands for configuring memory read/write packets. */
7881
7882 add_cmd ("remotewritesize", no_class, set_memory_write_packet_size, _("\
7883 Set the maximum number of bytes per memory write packet (deprecated)."),
7884 &setlist);
7885 add_cmd ("remotewritesize", no_class, show_memory_write_packet_size, _("\
7886 Show the maximum number of bytes per memory write packet (deprecated)."),
7887 &showlist);
7888 add_cmd ("memory-write-packet-size", no_class,
7889 set_memory_write_packet_size, _("\
7890 Set the maximum number of bytes per memory-write packet.\n\
7891 Specify the number of bytes in a packet or 0 (zero) for the\n\
7892 default packet size. The actual limit is further reduced\n\
7893 dependent on the target. Specify ``fixed'' to disable the\n\
7894 further restriction and ``limit'' to enable that restriction."),
7895 &remote_set_cmdlist);
7896 add_cmd ("memory-read-packet-size", no_class,
7897 set_memory_read_packet_size, _("\
7898 Set the maximum number of bytes per memory-read packet.\n\
7899 Specify the number of bytes in a packet or 0 (zero) for the\n\
7900 default packet size. The actual limit is further reduced\n\
7901 dependent on the target. Specify ``fixed'' to disable the\n\
7902 further restriction and ``limit'' to enable that restriction."),
7903 &remote_set_cmdlist);
7904 add_cmd ("memory-write-packet-size", no_class,
7905 show_memory_write_packet_size,
7906 _("Show the maximum number of bytes per memory-write packet."),
7907 &remote_show_cmdlist);
7908 add_cmd ("memory-read-packet-size", no_class,
7909 show_memory_read_packet_size,
7910 _("Show the maximum number of bytes per memory-read packet."),
7911 &remote_show_cmdlist);
7912
7913 add_setshow_zinteger_cmd ("hardware-watchpoint-limit", no_class,
7914 &remote_hw_watchpoint_limit, _("\
7915 Set the maximum number of target hardware watchpoints."), _("\
7916 Show the maximum number of target hardware watchpoints."), _("\
7917 Specify a negative limit for unlimited."),
7918 NULL, NULL, /* FIXME: i18n: The maximum number of target hardware watchpoints is %s. */
7919 &remote_set_cmdlist, &remote_show_cmdlist);
7920 add_setshow_zinteger_cmd ("hardware-breakpoint-limit", no_class,
7921 &remote_hw_breakpoint_limit, _("\
7922 Set the maximum number of target hardware breakpoints."), _("\
7923 Show the maximum number of target hardware breakpoints."), _("\
7924 Specify a negative limit for unlimited."),
7925 NULL, NULL, /* FIXME: i18n: The maximum number of target hardware breakpoints is %s. */
7926 &remote_set_cmdlist, &remote_show_cmdlist);
7927
7928 add_setshow_integer_cmd ("remoteaddresssize", class_obscure,
7929 &remote_address_size, _("\
7930 Set the maximum size of the address (in bits) in a memory packet."), _("\
7931 Show the maximum size of the address (in bits) in a memory packet."), NULL,
7932 NULL,
7933 NULL, /* FIXME: i18n: */
7934 &setlist, &showlist);
7935
7936 add_packet_config_cmd (&remote_protocol_packets[PACKET_X],
7937 "X", "binary-download", 1);
7938
7939 add_packet_config_cmd (&remote_protocol_packets[PACKET_vCont],
7940 "vCont", "verbose-resume", 0);
7941
7942 add_packet_config_cmd (&remote_protocol_packets[PACKET_QPassSignals],
7943 "QPassSignals", "pass-signals", 0);
7944
7945 add_packet_config_cmd (&remote_protocol_packets[PACKET_qSymbol],
7946 "qSymbol", "symbol-lookup", 0);
7947
7948 add_packet_config_cmd (&remote_protocol_packets[PACKET_P],
7949 "P", "set-register", 1);
7950
7951 add_packet_config_cmd (&remote_protocol_packets[PACKET_p],
7952 "p", "fetch-register", 1);
7953
7954 add_packet_config_cmd (&remote_protocol_packets[PACKET_Z0],
7955 "Z0", "software-breakpoint", 0);
7956
7957 add_packet_config_cmd (&remote_protocol_packets[PACKET_Z1],
7958 "Z1", "hardware-breakpoint", 0);
7959
7960 add_packet_config_cmd (&remote_protocol_packets[PACKET_Z2],
7961 "Z2", "write-watchpoint", 0);
7962
7963 add_packet_config_cmd (&remote_protocol_packets[PACKET_Z3],
7964 "Z3", "read-watchpoint", 0);
7965
7966 add_packet_config_cmd (&remote_protocol_packets[PACKET_Z4],
7967 "Z4", "access-watchpoint", 0);
7968
7969 add_packet_config_cmd (&remote_protocol_packets[PACKET_qXfer_auxv],
7970 "qXfer:auxv:read", "read-aux-vector", 0);
7971
7972 add_packet_config_cmd (&remote_protocol_packets[PACKET_qXfer_features],
7973 "qXfer:features:read", "target-features", 0);
7974
7975 add_packet_config_cmd (&remote_protocol_packets[PACKET_qXfer_libraries],
7976 "qXfer:libraries:read", "library-info", 0);
7977
7978 add_packet_config_cmd (&remote_protocol_packets[PACKET_qXfer_memory_map],
7979 "qXfer:memory-map:read", "memory-map", 0);
7980
7981 add_packet_config_cmd (&remote_protocol_packets[PACKET_qXfer_spu_read],
7982 "qXfer:spu:read", "read-spu-object", 0);
7983
7984 add_packet_config_cmd (&remote_protocol_packets[PACKET_qXfer_spu_write],
7985 "qXfer:spu:write", "write-spu-object", 0);
7986
7987 add_packet_config_cmd (&remote_protocol_packets[PACKET_qGetTLSAddr],
7988 "qGetTLSAddr", "get-thread-local-storage-address",
7989 0);
7990
7991 add_packet_config_cmd (&remote_protocol_packets[PACKET_qSupported],
7992 "qSupported", "supported-packets", 0);
7993
7994 add_packet_config_cmd (&remote_protocol_packets[PACKET_qSearch_memory],
7995 "qSearch:memory", "search-memory", 0);
7996
7997 add_packet_config_cmd (&remote_protocol_packets[PACKET_vFile_open],
7998 "vFile:open", "hostio-open", 0);
7999
8000 add_packet_config_cmd (&remote_protocol_packets[PACKET_vFile_pread],
8001 "vFile:pread", "hostio-pread", 0);
8002
8003 add_packet_config_cmd (&remote_protocol_packets[PACKET_vFile_pwrite],
8004 "vFile:pwrite", "hostio-pwrite", 0);
8005
8006 add_packet_config_cmd (&remote_protocol_packets[PACKET_vFile_close],
8007 "vFile:close", "hostio-close", 0);
8008
8009 add_packet_config_cmd (&remote_protocol_packets[PACKET_vFile_unlink],
8010 "vFile:unlink", "hostio-unlink", 0);
8011
8012 add_packet_config_cmd (&remote_protocol_packets[PACKET_vAttach],
8013 "vAttach", "attach", 0);
8014
8015 add_packet_config_cmd (&remote_protocol_packets[PACKET_vRun],
8016 "vRun", "run", 0);
8017
8018 add_packet_config_cmd (&remote_protocol_packets[PACKET_QStartNoAckMode],
8019 "QStartNoAckMode", "noack", 0);
8020
8021 add_packet_config_cmd (&remote_protocol_packets[PACKET_vKill],
8022 "vKill", "kill", 0);
8023
8024 /* Keep the old ``set remote Z-packet ...'' working. Each individual
8025 Z sub-packet has its own set and show commands, but users may
8026 have sets to this variable in their .gdbinit files (or in their
8027 documentation). */
8028 add_setshow_auto_boolean_cmd ("Z-packet", class_obscure,
8029 &remote_Z_packet_detect, _("\
8030 Set use of remote protocol `Z' packets"), _("\
8031 Show use of remote protocol `Z' packets "), _("\
8032 When set, GDB will attempt to use the remote breakpoint and watchpoint\n\
8033 packets."),
8034 set_remote_protocol_Z_packet_cmd,
8035 show_remote_protocol_Z_packet_cmd, /* FIXME: i18n: Use of remote protocol `Z' packets is %s. */
8036 &remote_set_cmdlist, &remote_show_cmdlist);
8037
8038 add_prefix_cmd ("remote", class_files, remote_command, _("\
8039 Manipulate files on the remote system\n\
8040 Transfer files to and from the remote target system."),
8041 &remote_cmdlist, "remote ",
8042 0 /* allow-unknown */, &cmdlist);
8043
8044 add_cmd ("put", class_files, remote_put_command,
8045 _("Copy a local file to the remote system."),
8046 &remote_cmdlist);
8047
8048 add_cmd ("get", class_files, remote_get_command,
8049 _("Copy a remote file to the local system."),
8050 &remote_cmdlist);
8051
8052 add_cmd ("delete", class_files, remote_delete_command,
8053 _("Delete a remote file."),
8054 &remote_cmdlist);
8055
8056 remote_exec_file = xstrdup ("");
8057 add_setshow_string_noescape_cmd ("exec-file", class_files,
8058 &remote_exec_file, _("\
8059 Set the remote pathname for \"run\""), _("\
8060 Show the remote pathname for \"run\""), NULL, NULL, NULL,
8061 &remote_set_cmdlist, &remote_show_cmdlist);
8062
8063 /* Eventually initialize fileio. See fileio.c */
8064 initialize_remote_fileio (remote_set_cmdlist, remote_show_cmdlist);
8065
8066 /* Take advantage of the fact that the LWP field is not used, to tag
8067 special ptids with it set to != 0. */
8068 magic_null_ptid = ptid_build (42000, 1, -1);
8069 not_sent_ptid = ptid_build (42000, 1, -2);
8070 any_thread_ptid = ptid_build (42000, 1, 0);
8071 }