Eliminate calls to deprecated_show_value_hack(). This also eliminates the
[binutils-gdb.git] / gdb / remote.c
1 /* Remote target communications for serial-line targets in custom GDB protocol
2
3 Copyright 1988, 1989, 1990, 1991, 1992, 1993, 1994, 1995, 1996,
4 1997, 1998, 1999, 2000, 2001, 2002, 2003, 2004, 2005
5 Free Software Foundation, Inc.
6
7 This file is part of GDB.
8
9 This program is free software; you can redistribute it and/or modify
10 it under the terms of the GNU General Public License as published by
11 the Free Software Foundation; either version 2 of the License, or
12 (at your option) any later version.
13
14 This program is distributed in the hope that it will be useful,
15 but WITHOUT ANY WARRANTY; without even the implied warranty of
16 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
17 GNU General Public License for more details.
18
19 You should have received a copy of the GNU General Public License
20 along with this program; if not, write to the Free Software
21 Foundation, Inc., 59 Temple Place - Suite 330,
22 Boston, MA 02111-1307, USA. */
23
24 /* See the GDB User Guide for details of the GDB remote protocol. */
25
26 #include "defs.h"
27 #include "gdb_string.h"
28 #include <ctype.h>
29 #include <fcntl.h>
30 #include "inferior.h"
31 #include "bfd.h"
32 #include "symfile.h"
33 #include "exceptions.h"
34 #include "target.h"
35 /*#include "terminal.h" */
36 #include "gdbcmd.h"
37 #include "objfiles.h"
38 #include "gdb-stabs.h"
39 #include "gdbthread.h"
40 #include "remote.h"
41 #include "regcache.h"
42 #include "value.h"
43 #include "gdb_assert.h"
44 #include "observer.h"
45
46 #include <ctype.h>
47 #include <sys/time.h>
48
49 #include "event-loop.h"
50 #include "event-top.h"
51 #include "inf-loop.h"
52
53 #include <signal.h>
54 #include "serial.h"
55
56 #include "gdbcore.h" /* for exec_bfd */
57
58 #include "remote-fileio.h"
59
60 /* Prototypes for local functions. */
61 static void cleanup_sigint_signal_handler (void *dummy);
62 static void initialize_sigint_signal_handler (void);
63 static int getpkt_sane (char *buf, long sizeof_buf, int forever);
64
65 static void handle_remote_sigint (int);
66 static void handle_remote_sigint_twice (int);
67 static void async_remote_interrupt (gdb_client_data);
68 void async_remote_interrupt_twice (gdb_client_data);
69
70 static void build_remote_gdbarch_data (void);
71
72 static void remote_files_info (struct target_ops *ignore);
73
74 static int remote_xfer_memory (CORE_ADDR memaddr, char *myaddr,
75 int len, int should_write,
76 struct mem_attrib *attrib,
77 struct target_ops *target);
78
79 static void remote_prepare_to_store (void);
80
81 static void remote_fetch_registers (int regno);
82
83 static void remote_resume (ptid_t ptid, int step,
84 enum target_signal siggnal);
85 static void remote_async_resume (ptid_t ptid, int step,
86 enum target_signal siggnal);
87 static void remote_open (char *name, int from_tty);
88 static void remote_async_open (char *name, int from_tty);
89
90 static void extended_remote_open (char *name, int from_tty);
91 static void extended_remote_async_open (char *name, int from_tty);
92
93 static void remote_open_1 (char *, int, struct target_ops *, int extended_p,
94 int async_p);
95
96 static void remote_close (int quitting);
97
98 static void remote_store_registers (int regno);
99
100 static void remote_mourn (void);
101 static void remote_async_mourn (void);
102
103 static void extended_remote_restart (void);
104
105 static void extended_remote_mourn (void);
106
107 static void remote_mourn_1 (struct target_ops *);
108
109 static void remote_send (char *buf, long sizeof_buf);
110
111 static int readchar (int timeout);
112
113 static ptid_t remote_wait (ptid_t ptid,
114 struct target_waitstatus *status);
115 static ptid_t remote_async_wait (ptid_t ptid,
116 struct target_waitstatus *status);
117
118 static void remote_kill (void);
119 static void remote_async_kill (void);
120
121 static int tohex (int nib);
122
123 static void remote_detach (char *args, int from_tty);
124
125 static void remote_interrupt (int signo);
126
127 static void remote_interrupt_twice (int signo);
128
129 static void interrupt_query (void);
130
131 static void set_thread (int, int);
132
133 static int remote_thread_alive (ptid_t);
134
135 static void get_offsets (void);
136
137 static long read_frame (char *buf, long sizeof_buf);
138
139 static int remote_insert_breakpoint (CORE_ADDR, char *);
140
141 static int remote_remove_breakpoint (CORE_ADDR, char *);
142
143 static int hexnumlen (ULONGEST num);
144
145 static void init_remote_ops (void);
146
147 static void init_extended_remote_ops (void);
148
149 static void remote_stop (void);
150
151 static int ishex (int ch, int *val);
152
153 static int stubhex (int ch);
154
155 static int hexnumstr (char *, ULONGEST);
156
157 static int hexnumnstr (char *, ULONGEST, int);
158
159 static CORE_ADDR remote_address_masked (CORE_ADDR);
160
161 static void print_packet (char *);
162
163 static unsigned long crc32 (unsigned char *, int, unsigned int);
164
165 static void compare_sections_command (char *, int);
166
167 static void packet_command (char *, int);
168
169 static int stub_unpack_int (char *buff, int fieldlength);
170
171 static ptid_t remote_current_thread (ptid_t oldptid);
172
173 static void remote_find_new_threads (void);
174
175 static void record_currthread (int currthread);
176
177 static int fromhex (int a);
178
179 static int hex2bin (const char *hex, char *bin, int count);
180
181 static int bin2hex (const char *bin, char *hex, int count);
182
183 static int putpkt_binary (char *buf, int cnt);
184
185 static void check_binary_download (CORE_ADDR addr);
186
187 struct packet_config;
188
189 static void show_packet_config_cmd (struct packet_config *config);
190
191 static void update_packet_config (struct packet_config *config);
192
193 void _initialize_remote (void);
194
195 /* Description of the remote protocol. Strictly speaking, when the
196 target is open()ed, remote.c should create a per-target description
197 of the remote protocol using that target's architecture.
198 Unfortunately, the target stack doesn't include local state. For
199 the moment keep the information in the target's architecture
200 object. Sigh.. */
201
202 struct packet_reg
203 {
204 long offset; /* Offset into G packet. */
205 long regnum; /* GDB's internal register number. */
206 LONGEST pnum; /* Remote protocol register number. */
207 int in_g_packet; /* Always part of G packet. */
208 /* long size in bytes; == register_size (current_gdbarch, regnum);
209 at present. */
210 /* char *name; == REGISTER_NAME (regnum); at present. */
211 };
212
213 struct remote_state
214 {
215 /* Description of the remote protocol registers. */
216 long sizeof_g_packet;
217
218 /* Description of the remote protocol registers indexed by REGNUM
219 (making an array of NUM_REGS + NUM_PSEUDO_REGS in size). */
220 struct packet_reg *regs;
221
222 /* This is the size (in chars) of the first response to the ``g''
223 packet. It is used as a heuristic when determining the maximum
224 size of memory-read and memory-write packets. A target will
225 typically only reserve a buffer large enough to hold the ``g''
226 packet. The size does not include packet overhead (headers and
227 trailers). */
228 long actual_register_packet_size;
229
230 /* This is the maximum size (in chars) of a non read/write packet.
231 It is also used as a cap on the size of read/write packets. */
232 long remote_packet_size;
233 };
234
235
236 /* Handle for retreving the remote protocol data from gdbarch. */
237 static struct gdbarch_data *remote_gdbarch_data_handle;
238
239 static struct remote_state *
240 get_remote_state (void)
241 {
242 return gdbarch_data (current_gdbarch, remote_gdbarch_data_handle);
243 }
244
245 static void *
246 init_remote_state (struct gdbarch *gdbarch)
247 {
248 int regnum;
249 struct remote_state *rs = GDBARCH_OBSTACK_ZALLOC (gdbarch, struct remote_state);
250
251 if (deprecated_register_bytes () != 0)
252 rs->sizeof_g_packet = deprecated_register_bytes ();
253 else
254 rs->sizeof_g_packet = 0;
255
256 /* Assume a 1:1 regnum<->pnum table. */
257 rs->regs = GDBARCH_OBSTACK_CALLOC (gdbarch, NUM_REGS + NUM_PSEUDO_REGS,
258 struct packet_reg);
259 for (regnum = 0; regnum < NUM_REGS + NUM_PSEUDO_REGS; regnum++)
260 {
261 struct packet_reg *r = &rs->regs[regnum];
262 r->pnum = regnum;
263 r->regnum = regnum;
264 r->offset = DEPRECATED_REGISTER_BYTE (regnum);
265 r->in_g_packet = (regnum < NUM_REGS);
266 /* ...name = REGISTER_NAME (regnum); */
267
268 /* Compute packet size by accumulating the size of all registers. */
269 if (deprecated_register_bytes () == 0)
270 rs->sizeof_g_packet += register_size (current_gdbarch, regnum);
271 }
272
273 /* Default maximum number of characters in a packet body. Many
274 remote stubs have a hardwired buffer size of 400 bytes
275 (c.f. BUFMAX in m68k-stub.c and i386-stub.c). BUFMAX-1 is used
276 as the maximum packet-size to ensure that the packet and an extra
277 NUL character can always fit in the buffer. This stops GDB
278 trashing stubs that try to squeeze an extra NUL into what is
279 already a full buffer (As of 1999-12-04 that was most stubs. */
280 rs->remote_packet_size = 400 - 1;
281
282 /* Should rs->sizeof_g_packet needs more space than the
283 default, adjust the size accordingly. Remember that each byte is
284 encoded as two characters. 32 is the overhead for the packet
285 header / footer. NOTE: cagney/1999-10-26: I suspect that 8
286 (``$NN:G...#NN'') is a better guess, the below has been padded a
287 little. */
288 if (rs->sizeof_g_packet > ((rs->remote_packet_size - 32) / 2))
289 rs->remote_packet_size = (rs->sizeof_g_packet * 2 + 32);
290
291 /* This one is filled in when a ``g'' packet is received. */
292 rs->actual_register_packet_size = 0;
293
294 return rs;
295 }
296
297 static struct packet_reg *
298 packet_reg_from_regnum (struct remote_state *rs, long regnum)
299 {
300 if (regnum < 0 && regnum >= NUM_REGS + NUM_PSEUDO_REGS)
301 return NULL;
302 else
303 {
304 struct packet_reg *r = &rs->regs[regnum];
305 gdb_assert (r->regnum == regnum);
306 return r;
307 }
308 }
309
310 static struct packet_reg *
311 packet_reg_from_pnum (struct remote_state *rs, LONGEST pnum)
312 {
313 int i;
314 for (i = 0; i < NUM_REGS + NUM_PSEUDO_REGS; i++)
315 {
316 struct packet_reg *r = &rs->regs[i];
317 if (r->pnum == pnum)
318 return r;
319 }
320 return NULL;
321 }
322
323 /* FIXME: graces/2002-08-08: These variables should eventually be
324 bound to an instance of the target object (as in gdbarch-tdep()),
325 when such a thing exists. */
326
327 /* This is set to the data address of the access causing the target
328 to stop for a watchpoint. */
329 static CORE_ADDR remote_watch_data_address;
330
331 /* This is non-zero if taregt stopped for a watchpoint. */
332 static int remote_stopped_by_watchpoint_p;
333
334
335 static struct target_ops remote_ops;
336
337 static struct target_ops extended_remote_ops;
338
339 /* Temporary target ops. Just like the remote_ops and
340 extended_remote_ops, but with asynchronous support. */
341 static struct target_ops remote_async_ops;
342
343 static struct target_ops extended_async_remote_ops;
344
345 /* FIXME: cagney/1999-09-23: Even though getpkt was called with
346 ``forever'' still use the normal timeout mechanism. This is
347 currently used by the ASYNC code to guarentee that target reads
348 during the initial connect always time-out. Once getpkt has been
349 modified to return a timeout indication and, in turn
350 remote_wait()/wait_for_inferior() have gained a timeout parameter
351 this can go away. */
352 static int wait_forever_enabled_p = 1;
353
354
355 /* This variable chooses whether to send a ^C or a break when the user
356 requests program interruption. Although ^C is usually what remote
357 systems expect, and that is the default here, sometimes a break is
358 preferable instead. */
359
360 static int remote_break;
361
362 /* Descriptor for I/O to remote machine. Initialize it to NULL so that
363 remote_open knows that we don't have a file open when the program
364 starts. */
365 static struct serial *remote_desc = NULL;
366
367 /* This variable sets the number of bits in an address that are to be
368 sent in a memory ("M" or "m") packet. Normally, after stripping
369 leading zeros, the entire address would be sent. This variable
370 restricts the address to REMOTE_ADDRESS_SIZE bits. HISTORY: The
371 initial implementation of remote.c restricted the address sent in
372 memory packets to ``host::sizeof long'' bytes - (typically 32
373 bits). Consequently, for 64 bit targets, the upper 32 bits of an
374 address was never sent. Since fixing this bug may cause a break in
375 some remote targets this variable is principly provided to
376 facilitate backward compatibility. */
377
378 static int remote_address_size;
379
380 /* Tempoary to track who currently owns the terminal. See
381 target_async_terminal_* for more details. */
382
383 static int remote_async_terminal_ours_p;
384
385 \f
386 /* User configurable variables for the number of characters in a
387 memory read/write packet. MIN ((rs->remote_packet_size),
388 rs->sizeof_g_packet) is the default. Some targets need smaller
389 values (fifo overruns, et.al.) and some users need larger values
390 (speed up transfers). The variables ``preferred_*'' (the user
391 request), ``current_*'' (what was actually set) and ``forced_*''
392 (Positive - a soft limit, negative - a hard limit). */
393
394 struct memory_packet_config
395 {
396 char *name;
397 long size;
398 int fixed_p;
399 };
400
401 /* Compute the current size of a read/write packet. Since this makes
402 use of ``actual_register_packet_size'' the computation is dynamic. */
403
404 static long
405 get_memory_packet_size (struct memory_packet_config *config)
406 {
407 struct remote_state *rs = get_remote_state ();
408 /* NOTE: The somewhat arbitrary 16k comes from the knowledge (folk
409 law?) that some hosts don't cope very well with large alloca()
410 calls. Eventually the alloca() code will be replaced by calls to
411 xmalloc() and make_cleanups() allowing this restriction to either
412 be lifted or removed. */
413 #ifndef MAX_REMOTE_PACKET_SIZE
414 #define MAX_REMOTE_PACKET_SIZE 16384
415 #endif
416 /* NOTE: 20 ensures we can write at least one byte. */
417 #ifndef MIN_REMOTE_PACKET_SIZE
418 #define MIN_REMOTE_PACKET_SIZE 20
419 #endif
420 long what_they_get;
421 if (config->fixed_p)
422 {
423 if (config->size <= 0)
424 what_they_get = MAX_REMOTE_PACKET_SIZE;
425 else
426 what_they_get = config->size;
427 }
428 else
429 {
430 what_they_get = (rs->remote_packet_size);
431 /* Limit the packet to the size specified by the user. */
432 if (config->size > 0
433 && what_they_get > config->size)
434 what_they_get = config->size;
435 /* Limit it to the size of the targets ``g'' response. */
436 if ((rs->actual_register_packet_size) > 0
437 && what_they_get > (rs->actual_register_packet_size))
438 what_they_get = (rs->actual_register_packet_size);
439 }
440 if (what_they_get > MAX_REMOTE_PACKET_SIZE)
441 what_they_get = MAX_REMOTE_PACKET_SIZE;
442 if (what_they_get < MIN_REMOTE_PACKET_SIZE)
443 what_they_get = MIN_REMOTE_PACKET_SIZE;
444 return what_they_get;
445 }
446
447 /* Update the size of a read/write packet. If they user wants
448 something really big then do a sanity check. */
449
450 static void
451 set_memory_packet_size (char *args, struct memory_packet_config *config)
452 {
453 int fixed_p = config->fixed_p;
454 long size = config->size;
455 if (args == NULL)
456 error (_("Argument required (integer, `fixed' or `limited')."));
457 else if (strcmp (args, "hard") == 0
458 || strcmp (args, "fixed") == 0)
459 fixed_p = 1;
460 else if (strcmp (args, "soft") == 0
461 || strcmp (args, "limit") == 0)
462 fixed_p = 0;
463 else
464 {
465 char *end;
466 size = strtoul (args, &end, 0);
467 if (args == end)
468 error (_("Invalid %s (bad syntax)."), config->name);
469 #if 0
470 /* Instead of explicitly capping the size of a packet to
471 MAX_REMOTE_PACKET_SIZE or dissallowing it, the user is
472 instead allowed to set the size to something arbitrarily
473 large. */
474 if (size > MAX_REMOTE_PACKET_SIZE)
475 error (_("Invalid %s (too large)."), config->name);
476 #endif
477 }
478 /* Extra checks? */
479 if (fixed_p && !config->fixed_p)
480 {
481 if (! query (_("The target may not be able to correctly handle a %s\n"
482 "of %ld bytes. Change the packet size? "),
483 config->name, size))
484 error (_("Packet size not changed."));
485 }
486 /* Update the config. */
487 config->fixed_p = fixed_p;
488 config->size = size;
489 }
490
491 static void
492 show_memory_packet_size (struct memory_packet_config *config)
493 {
494 printf_filtered (_("The %s is %ld. "), config->name, config->size);
495 if (config->fixed_p)
496 printf_filtered (_("Packets are fixed at %ld bytes.\n"),
497 get_memory_packet_size (config));
498 else
499 printf_filtered (_("Packets are limited to %ld bytes.\n"),
500 get_memory_packet_size (config));
501 }
502
503 static struct memory_packet_config memory_write_packet_config =
504 {
505 "memory-write-packet-size",
506 };
507
508 static void
509 set_memory_write_packet_size (char *args, int from_tty)
510 {
511 set_memory_packet_size (args, &memory_write_packet_config);
512 }
513
514 static void
515 show_memory_write_packet_size (char *args, int from_tty)
516 {
517 show_memory_packet_size (&memory_write_packet_config);
518 }
519
520 static long
521 get_memory_write_packet_size (void)
522 {
523 return get_memory_packet_size (&memory_write_packet_config);
524 }
525
526 static struct memory_packet_config memory_read_packet_config =
527 {
528 "memory-read-packet-size",
529 };
530
531 static void
532 set_memory_read_packet_size (char *args, int from_tty)
533 {
534 set_memory_packet_size (args, &memory_read_packet_config);
535 }
536
537 static void
538 show_memory_read_packet_size (char *args, int from_tty)
539 {
540 show_memory_packet_size (&memory_read_packet_config);
541 }
542
543 static long
544 get_memory_read_packet_size (void)
545 {
546 struct remote_state *rs = get_remote_state ();
547 long size = get_memory_packet_size (&memory_read_packet_config);
548 /* FIXME: cagney/1999-11-07: Functions like getpkt() need to get an
549 extra buffer size argument before the memory read size can be
550 increased beyond (rs->remote_packet_size). */
551 if (size > (rs->remote_packet_size))
552 size = (rs->remote_packet_size);
553 return size;
554 }
555
556 \f
557 /* Generic configuration support for packets the stub optionally
558 supports. Allows the user to specify the use of the packet as well
559 as allowing GDB to auto-detect support in the remote stub. */
560
561 enum packet_support
562 {
563 PACKET_SUPPORT_UNKNOWN = 0,
564 PACKET_ENABLE,
565 PACKET_DISABLE
566 };
567
568 struct packet_config
569 {
570 char *name;
571 char *title;
572 enum auto_boolean detect;
573 enum packet_support support;
574 };
575
576 /* Analyze a packet's return value and update the packet config
577 accordingly. */
578
579 enum packet_result
580 {
581 PACKET_ERROR,
582 PACKET_OK,
583 PACKET_UNKNOWN
584 };
585
586 static void
587 update_packet_config (struct packet_config *config)
588 {
589 switch (config->detect)
590 {
591 case AUTO_BOOLEAN_TRUE:
592 config->support = PACKET_ENABLE;
593 break;
594 case AUTO_BOOLEAN_FALSE:
595 config->support = PACKET_DISABLE;
596 break;
597 case AUTO_BOOLEAN_AUTO:
598 config->support = PACKET_SUPPORT_UNKNOWN;
599 break;
600 }
601 }
602
603 static void
604 show_packet_config_cmd (struct packet_config *config)
605 {
606 char *support = "internal-error";
607 switch (config->support)
608 {
609 case PACKET_ENABLE:
610 support = "enabled";
611 break;
612 case PACKET_DISABLE:
613 support = "disabled";
614 break;
615 case PACKET_SUPPORT_UNKNOWN:
616 support = "unknown";
617 break;
618 }
619 switch (config->detect)
620 {
621 case AUTO_BOOLEAN_AUTO:
622 printf_filtered (_("Support for remote protocol `%s' (%s) packet is auto-detected, currently %s.\n"),
623 config->name, config->title, support);
624 break;
625 case AUTO_BOOLEAN_TRUE:
626 case AUTO_BOOLEAN_FALSE:
627 printf_filtered (_("Support for remote protocol `%s' (%s) packet is currently %s.\n"),
628 config->name, config->title, support);
629 break;
630 }
631 }
632
633 static void
634 add_packet_config_cmd (struct packet_config *config,
635 char *name,
636 char *title,
637 cmd_sfunc_ftype *set_func,
638 show_value_ftype *show_func,
639 struct cmd_list_element **set_remote_list,
640 struct cmd_list_element **show_remote_list,
641 int legacy)
642 {
643 struct cmd_list_element *set_cmd;
644 struct cmd_list_element *show_cmd;
645 char *set_doc;
646 char *show_doc;
647 char *help_doc;
648 char *print;
649 char *cmd_name;
650 config->name = name;
651 config->title = title;
652 config->detect = AUTO_BOOLEAN_AUTO;
653 config->support = PACKET_SUPPORT_UNKNOWN;
654 set_doc = xstrprintf ("Set use of remote protocol `%s' (%s) packet",
655 name, title);
656 show_doc = xstrprintf ("Show current use of remote protocol `%s' (%s) packet",
657 name, title);
658 print = xstrprintf ("Current use of remote protocol `%s' (%s) is %%s",
659 name, title);
660 /* set/show TITLE-packet {auto,on,off} */
661 cmd_name = xstrprintf ("%s-packet", title);
662 add_setshow_auto_boolean_cmd (cmd_name, class_obscure,
663 &config->detect, set_doc, show_doc, NULL, /* help_doc */
664 set_func, show_func,
665 set_remote_list, show_remote_list);
666 /* set/show remote NAME-packet {auto,on,off} -- legacy. */
667 if (legacy)
668 {
669 char *legacy_name;
670 legacy_name = xstrprintf ("%s-packet", name);
671 add_alias_cmd (legacy_name, cmd_name, class_obscure, 0,
672 set_remote_list);
673 add_alias_cmd (legacy_name, cmd_name, class_obscure, 0,
674 show_remote_list);
675 }
676 }
677
678 static enum packet_result
679 packet_ok (const char *buf, struct packet_config *config)
680 {
681 if (buf[0] != '\0')
682 {
683 /* The stub recognized the packet request. Check that the
684 operation succeeded. */
685 switch (config->support)
686 {
687 case PACKET_SUPPORT_UNKNOWN:
688 if (remote_debug)
689 fprintf_unfiltered (gdb_stdlog,
690 "Packet %s (%s) is supported\n",
691 config->name, config->title);
692 config->support = PACKET_ENABLE;
693 break;
694 case PACKET_DISABLE:
695 internal_error (__FILE__, __LINE__,
696 _("packet_ok: attempt to use a disabled packet"));
697 break;
698 case PACKET_ENABLE:
699 break;
700 }
701 if (buf[0] == 'O' && buf[1] == 'K' && buf[2] == '\0')
702 /* "OK" - definitly OK. */
703 return PACKET_OK;
704 if (buf[0] == 'E'
705 && isxdigit (buf[1]) && isxdigit (buf[2])
706 && buf[3] == '\0')
707 /* "Enn" - definitly an error. */
708 return PACKET_ERROR;
709 /* The packet may or may not be OK. Just assume it is. */
710 return PACKET_OK;
711 }
712 else
713 {
714 /* The stub does not support the packet. */
715 switch (config->support)
716 {
717 case PACKET_ENABLE:
718 if (config->detect == AUTO_BOOLEAN_AUTO)
719 /* If the stub previously indicated that the packet was
720 supported then there is a protocol error.. */
721 error (_("Protocol error: %s (%s) conflicting enabled responses."),
722 config->name, config->title);
723 else
724 /* The user set it wrong. */
725 error (_("Enabled packet %s (%s) not recognized by stub"),
726 config->name, config->title);
727 break;
728 case PACKET_SUPPORT_UNKNOWN:
729 if (remote_debug)
730 fprintf_unfiltered (gdb_stdlog,
731 "Packet %s (%s) is NOT supported\n",
732 config->name, config->title);
733 config->support = PACKET_DISABLE;
734 break;
735 case PACKET_DISABLE:
736 break;
737 }
738 return PACKET_UNKNOWN;
739 }
740 }
741
742 /* Should we try the 'vCont' (descriptive resume) request? */
743 static struct packet_config remote_protocol_vcont;
744
745 static void
746 set_remote_protocol_vcont_packet_cmd (char *args, int from_tty,
747 struct cmd_list_element *c)
748 {
749 update_packet_config (&remote_protocol_vcont);
750 }
751
752 static void
753 show_remote_protocol_vcont_packet_cmd (struct ui_file *file, int from_tty,
754 struct cmd_list_element *c,
755 const char *value)
756 {
757 show_packet_config_cmd (&remote_protocol_vcont);
758 }
759
760 /* Should we try the 'qSymbol' (target symbol lookup service) request? */
761 static struct packet_config remote_protocol_qSymbol;
762
763 static void
764 set_remote_protocol_qSymbol_packet_cmd (char *args, int from_tty,
765 struct cmd_list_element *c)
766 {
767 update_packet_config (&remote_protocol_qSymbol);
768 }
769
770 static void
771 show_remote_protocol_qSymbol_packet_cmd (struct ui_file *file, int from_tty,
772 struct cmd_list_element *c,
773 const char *value)
774 {
775 show_packet_config_cmd (&remote_protocol_qSymbol);
776 }
777
778 /* Should we try the 'P' (set register) request? */
779
780 static struct packet_config remote_protocol_P;
781
782 static void
783 set_remote_protocol_P_packet_cmd (char *args, int from_tty,
784 struct cmd_list_element *c)
785 {
786 update_packet_config (&remote_protocol_P);
787 }
788
789 static void
790 show_remote_protocol_P_packet_cmd (struct ui_file *file, int from_tty,
791 struct cmd_list_element *c,
792 const char *value)
793 {
794 show_packet_config_cmd (&remote_protocol_P);
795 }
796
797 /* Should we try one of the 'Z' requests? */
798
799 enum Z_packet_type
800 {
801 Z_PACKET_SOFTWARE_BP,
802 Z_PACKET_HARDWARE_BP,
803 Z_PACKET_WRITE_WP,
804 Z_PACKET_READ_WP,
805 Z_PACKET_ACCESS_WP,
806 NR_Z_PACKET_TYPES
807 };
808
809 static struct packet_config remote_protocol_Z[NR_Z_PACKET_TYPES];
810
811 /* FIXME: Instead of having all these boiler plate functions, the
812 command callback should include a context argument. */
813
814 static void
815 set_remote_protocol_Z_software_bp_packet_cmd (char *args, int from_tty,
816 struct cmd_list_element *c)
817 {
818 update_packet_config (&remote_protocol_Z[Z_PACKET_SOFTWARE_BP]);
819 }
820
821 static void
822 show_remote_protocol_Z_software_bp_packet_cmd (struct ui_file *file, int from_tty,
823 struct cmd_list_element *c,
824 const char *value)
825 {
826 show_packet_config_cmd (&remote_protocol_Z[Z_PACKET_SOFTWARE_BP]);
827 }
828
829 static void
830 set_remote_protocol_Z_hardware_bp_packet_cmd (char *args, int from_tty,
831 struct cmd_list_element *c)
832 {
833 update_packet_config (&remote_protocol_Z[Z_PACKET_HARDWARE_BP]);
834 }
835
836 static void
837 show_remote_protocol_Z_hardware_bp_packet_cmd (struct ui_file *file, int from_tty,
838 struct cmd_list_element *c,
839 const char *value)
840 {
841 show_packet_config_cmd (&remote_protocol_Z[Z_PACKET_HARDWARE_BP]);
842 }
843
844 static void
845 set_remote_protocol_Z_write_wp_packet_cmd (char *args, int from_tty,
846 struct cmd_list_element *c)
847 {
848 update_packet_config (&remote_protocol_Z[Z_PACKET_WRITE_WP]);
849 }
850
851 static void
852 show_remote_protocol_Z_write_wp_packet_cmd (struct ui_file *file, int from_tty,
853 struct cmd_list_element *c,
854 const char *value)
855 {
856 show_packet_config_cmd (&remote_protocol_Z[Z_PACKET_WRITE_WP]);
857 }
858
859 static void
860 set_remote_protocol_Z_read_wp_packet_cmd (char *args, int from_tty,
861 struct cmd_list_element *c)
862 {
863 update_packet_config (&remote_protocol_Z[Z_PACKET_READ_WP]);
864 }
865
866 static void
867 show_remote_protocol_Z_read_wp_packet_cmd (struct ui_file *file, int from_tty,
868 struct cmd_list_element *c,
869 const char *value)
870 {
871 show_packet_config_cmd (&remote_protocol_Z[Z_PACKET_READ_WP]);
872 }
873
874 static void
875 set_remote_protocol_Z_access_wp_packet_cmd (char *args, int from_tty,
876 struct cmd_list_element *c)
877 {
878 update_packet_config (&remote_protocol_Z[Z_PACKET_ACCESS_WP]);
879 }
880
881 static void
882 show_remote_protocol_Z_access_wp_packet_cmd (struct ui_file *file, int from_tty,
883 struct cmd_list_element *c,
884 const char *value)
885 {
886 show_packet_config_cmd (&remote_protocol_Z[Z_PACKET_ACCESS_WP]);
887 }
888
889 /* For compatibility with older distributions. Provide a ``set remote
890 Z-packet ...'' command that updates all the Z packet types. */
891
892 static enum auto_boolean remote_Z_packet_detect;
893
894 static void
895 set_remote_protocol_Z_packet_cmd (char *args, int from_tty,
896 struct cmd_list_element *c)
897 {
898 int i;
899 for (i = 0; i < NR_Z_PACKET_TYPES; i++)
900 {
901 remote_protocol_Z[i].detect = remote_Z_packet_detect;
902 update_packet_config (&remote_protocol_Z[i]);
903 }
904 }
905
906 static void
907 show_remote_protocol_Z_packet_cmd (struct ui_file *file, int from_tty,
908 struct cmd_list_element *c,
909 const char *value)
910 {
911 int i;
912 for (i = 0; i < NR_Z_PACKET_TYPES; i++)
913 {
914 show_packet_config_cmd (&remote_protocol_Z[i]);
915 }
916 }
917
918 /* Should we try the 'X' (remote binary download) packet?
919
920 This variable (available to the user via "set remote X-packet")
921 dictates whether downloads are sent in binary (via the 'X' packet).
922 We assume that the stub can, and attempt to do it. This will be
923 cleared if the stub does not understand it. This switch is still
924 needed, though in cases when the packet is supported in the stub,
925 but the connection does not allow it (i.e., 7-bit serial connection
926 only). */
927
928 static struct packet_config remote_protocol_binary_download;
929
930 /* Should we try the 'ThreadInfo' query packet?
931
932 This variable (NOT available to the user: auto-detect only!)
933 determines whether GDB will use the new, simpler "ThreadInfo"
934 query or the older, more complex syntax for thread queries.
935 This is an auto-detect variable (set to true at each connect,
936 and set to false when the target fails to recognize it). */
937
938 static int use_threadinfo_query;
939 static int use_threadextra_query;
940
941 static void
942 set_remote_protocol_binary_download_cmd (char *args,
943 int from_tty,
944 struct cmd_list_element *c)
945 {
946 update_packet_config (&remote_protocol_binary_download);
947 }
948
949 static void
950 show_remote_protocol_binary_download_cmd (struct ui_file *file, int from_tty,
951 struct cmd_list_element *c,
952 const char *value)
953 {
954 show_packet_config_cmd (&remote_protocol_binary_download);
955 }
956
957 /* Should we try the 'qPart:auxv' (target auxiliary vector read) request? */
958 static struct packet_config remote_protocol_qPart_auxv;
959
960 static void
961 set_remote_protocol_qPart_auxv_packet_cmd (char *args, int from_tty,
962 struct cmd_list_element *c)
963 {
964 update_packet_config (&remote_protocol_qPart_auxv);
965 }
966
967 static void
968 show_remote_protocol_qPart_auxv_packet_cmd (struct ui_file *file, int from_tty,
969 struct cmd_list_element *c,
970 const char *value)
971 {
972 show_packet_config_cmd (&remote_protocol_qPart_auxv);
973 }
974
975 static struct packet_config remote_protocol_p;
976
977 static void
978 set_remote_protocol_p_packet_cmd (char *args, int from_tty,
979 struct cmd_list_element *c)
980 {
981 update_packet_config (&remote_protocol_p);
982 }
983
984 static void
985 show_remote_protocol_p_packet_cmd (struct ui_file *file, int from_tty,
986 struct cmd_list_element *c,
987 const char *value)
988 {
989 show_packet_config_cmd (&remote_protocol_p);
990 }
991
992
993
994 /* Tokens for use by the asynchronous signal handlers for SIGINT. */
995 static void *sigint_remote_twice_token;
996 static void *sigint_remote_token;
997
998 /* These are pointers to hook functions that may be set in order to
999 modify resume/wait behavior for a particular architecture. */
1000
1001 void (*deprecated_target_resume_hook) (void);
1002 void (*deprecated_target_wait_loop_hook) (void);
1003 \f
1004
1005
1006 /* These are the threads which we last sent to the remote system.
1007 -1 for all or -2 for not sent yet. */
1008 static int general_thread;
1009 static int continue_thread;
1010
1011 /* Call this function as a result of
1012 1) A halt indication (T packet) containing a thread id
1013 2) A direct query of currthread
1014 3) Successful execution of set thread
1015 */
1016
1017 static void
1018 record_currthread (int currthread)
1019 {
1020 general_thread = currthread;
1021
1022 /* If this is a new thread, add it to GDB's thread list.
1023 If we leave it up to WFI to do this, bad things will happen. */
1024 if (!in_thread_list (pid_to_ptid (currthread)))
1025 {
1026 add_thread (pid_to_ptid (currthread));
1027 ui_out_text (uiout, "[New ");
1028 ui_out_text (uiout, target_pid_to_str (pid_to_ptid (currthread)));
1029 ui_out_text (uiout, "]\n");
1030 }
1031 }
1032
1033 #define MAGIC_NULL_PID 42000
1034
1035 static void
1036 set_thread (int th, int gen)
1037 {
1038 struct remote_state *rs = get_remote_state ();
1039 char *buf = alloca (rs->remote_packet_size);
1040 int state = gen ? general_thread : continue_thread;
1041
1042 if (state == th)
1043 return;
1044
1045 buf[0] = 'H';
1046 buf[1] = gen ? 'g' : 'c';
1047 if (th == MAGIC_NULL_PID)
1048 {
1049 buf[2] = '0';
1050 buf[3] = '\0';
1051 }
1052 else if (th < 0)
1053 sprintf (&buf[2], "-%x", -th);
1054 else
1055 sprintf (&buf[2], "%x", th);
1056 putpkt (buf);
1057 getpkt (buf, (rs->remote_packet_size), 0);
1058 if (gen)
1059 general_thread = th;
1060 else
1061 continue_thread = th;
1062 }
1063 \f
1064 /* Return nonzero if the thread TH is still alive on the remote system. */
1065
1066 static int
1067 remote_thread_alive (ptid_t ptid)
1068 {
1069 int tid = PIDGET (ptid);
1070 char buf[16];
1071
1072 if (tid < 0)
1073 sprintf (buf, "T-%08x", -tid);
1074 else
1075 sprintf (buf, "T%08x", tid);
1076 putpkt (buf);
1077 getpkt (buf, sizeof (buf), 0);
1078 return (buf[0] == 'O' && buf[1] == 'K');
1079 }
1080
1081 /* About these extended threadlist and threadinfo packets. They are
1082 variable length packets but, the fields within them are often fixed
1083 length. They are redundent enough to send over UDP as is the
1084 remote protocol in general. There is a matching unit test module
1085 in libstub. */
1086
1087 #define OPAQUETHREADBYTES 8
1088
1089 /* a 64 bit opaque identifier */
1090 typedef unsigned char threadref[OPAQUETHREADBYTES];
1091
1092 /* WARNING: This threadref data structure comes from the remote O.S.,
1093 libstub protocol encoding, and remote.c. it is not particularly
1094 changable. */
1095
1096 /* Right now, the internal structure is int. We want it to be bigger.
1097 Plan to fix this.
1098 */
1099
1100 typedef int gdb_threadref; /* Internal GDB thread reference. */
1101
1102 /* gdb_ext_thread_info is an internal GDB data structure which is
1103 equivalint to the reply of the remote threadinfo packet. */
1104
1105 struct gdb_ext_thread_info
1106 {
1107 threadref threadid; /* External form of thread reference. */
1108 int active; /* Has state interesting to GDB?
1109 regs, stack. */
1110 char display[256]; /* Brief state display, name,
1111 blocked/syspended. */
1112 char shortname[32]; /* To be used to name threads. */
1113 char more_display[256]; /* Long info, statistics, queue depth,
1114 whatever. */
1115 };
1116
1117 /* The volume of remote transfers can be limited by submitting
1118 a mask containing bits specifying the desired information.
1119 Use a union of these values as the 'selection' parameter to
1120 get_thread_info. FIXME: Make these TAG names more thread specific.
1121 */
1122
1123 #define TAG_THREADID 1
1124 #define TAG_EXISTS 2
1125 #define TAG_DISPLAY 4
1126 #define TAG_THREADNAME 8
1127 #define TAG_MOREDISPLAY 16
1128
1129 #define BUF_THREAD_ID_SIZE (OPAQUETHREADBYTES * 2)
1130
1131 char *unpack_varlen_hex (char *buff, ULONGEST *result);
1132
1133 static char *unpack_nibble (char *buf, int *val);
1134
1135 static char *pack_nibble (char *buf, int nibble);
1136
1137 static char *pack_hex_byte (char *pkt, int /* unsigned char */ byte);
1138
1139 static char *unpack_byte (char *buf, int *value);
1140
1141 static char *pack_int (char *buf, int value);
1142
1143 static char *unpack_int (char *buf, int *value);
1144
1145 static char *unpack_string (char *src, char *dest, int length);
1146
1147 static char *pack_threadid (char *pkt, threadref *id);
1148
1149 static char *unpack_threadid (char *inbuf, threadref *id);
1150
1151 void int_to_threadref (threadref *id, int value);
1152
1153 static int threadref_to_int (threadref *ref);
1154
1155 static void copy_threadref (threadref *dest, threadref *src);
1156
1157 static int threadmatch (threadref *dest, threadref *src);
1158
1159 static char *pack_threadinfo_request (char *pkt, int mode,
1160 threadref *id);
1161
1162 static int remote_unpack_thread_info_response (char *pkt,
1163 threadref *expectedref,
1164 struct gdb_ext_thread_info
1165 *info);
1166
1167
1168 static int remote_get_threadinfo (threadref *threadid,
1169 int fieldset, /*TAG mask */
1170 struct gdb_ext_thread_info *info);
1171
1172 static char *pack_threadlist_request (char *pkt, int startflag,
1173 int threadcount,
1174 threadref *nextthread);
1175
1176 static int parse_threadlist_response (char *pkt,
1177 int result_limit,
1178 threadref *original_echo,
1179 threadref *resultlist,
1180 int *doneflag);
1181
1182 static int remote_get_threadlist (int startflag,
1183 threadref *nextthread,
1184 int result_limit,
1185 int *done,
1186 int *result_count,
1187 threadref *threadlist);
1188
1189 typedef int (*rmt_thread_action) (threadref *ref, void *context);
1190
1191 static int remote_threadlist_iterator (rmt_thread_action stepfunction,
1192 void *context, int looplimit);
1193
1194 static int remote_newthread_step (threadref *ref, void *context);
1195
1196 /* Encode 64 bits in 16 chars of hex. */
1197
1198 static const char hexchars[] = "0123456789abcdef";
1199
1200 static int
1201 ishex (int ch, int *val)
1202 {
1203 if ((ch >= 'a') && (ch <= 'f'))
1204 {
1205 *val = ch - 'a' + 10;
1206 return 1;
1207 }
1208 if ((ch >= 'A') && (ch <= 'F'))
1209 {
1210 *val = ch - 'A' + 10;
1211 return 1;
1212 }
1213 if ((ch >= '0') && (ch <= '9'))
1214 {
1215 *val = ch - '0';
1216 return 1;
1217 }
1218 return 0;
1219 }
1220
1221 static int
1222 stubhex (int ch)
1223 {
1224 if (ch >= 'a' && ch <= 'f')
1225 return ch - 'a' + 10;
1226 if (ch >= '0' && ch <= '9')
1227 return ch - '0';
1228 if (ch >= 'A' && ch <= 'F')
1229 return ch - 'A' + 10;
1230 return -1;
1231 }
1232
1233 static int
1234 stub_unpack_int (char *buff, int fieldlength)
1235 {
1236 int nibble;
1237 int retval = 0;
1238
1239 while (fieldlength)
1240 {
1241 nibble = stubhex (*buff++);
1242 retval |= nibble;
1243 fieldlength--;
1244 if (fieldlength)
1245 retval = retval << 4;
1246 }
1247 return retval;
1248 }
1249
1250 char *
1251 unpack_varlen_hex (char *buff, /* packet to parse */
1252 ULONGEST *result)
1253 {
1254 int nibble;
1255 int retval = 0;
1256
1257 while (ishex (*buff, &nibble))
1258 {
1259 buff++;
1260 retval = retval << 4;
1261 retval |= nibble & 0x0f;
1262 }
1263 *result = retval;
1264 return buff;
1265 }
1266
1267 static char *
1268 unpack_nibble (char *buf, int *val)
1269 {
1270 ishex (*buf++, val);
1271 return buf;
1272 }
1273
1274 static char *
1275 pack_nibble (char *buf, int nibble)
1276 {
1277 *buf++ = hexchars[(nibble & 0x0f)];
1278 return buf;
1279 }
1280
1281 static char *
1282 pack_hex_byte (char *pkt, int byte)
1283 {
1284 *pkt++ = hexchars[(byte >> 4) & 0xf];
1285 *pkt++ = hexchars[(byte & 0xf)];
1286 return pkt;
1287 }
1288
1289 static char *
1290 unpack_byte (char *buf, int *value)
1291 {
1292 *value = stub_unpack_int (buf, 2);
1293 return buf + 2;
1294 }
1295
1296 static char *
1297 pack_int (char *buf, int value)
1298 {
1299 buf = pack_hex_byte (buf, (value >> 24) & 0xff);
1300 buf = pack_hex_byte (buf, (value >> 16) & 0xff);
1301 buf = pack_hex_byte (buf, (value >> 8) & 0x0ff);
1302 buf = pack_hex_byte (buf, (value & 0xff));
1303 return buf;
1304 }
1305
1306 static char *
1307 unpack_int (char *buf, int *value)
1308 {
1309 *value = stub_unpack_int (buf, 8);
1310 return buf + 8;
1311 }
1312
1313 #if 0 /* Currently unused, uncomment when needed. */
1314 static char *pack_string (char *pkt, char *string);
1315
1316 static char *
1317 pack_string (char *pkt, char *string)
1318 {
1319 char ch;
1320 int len;
1321
1322 len = strlen (string);
1323 if (len > 200)
1324 len = 200; /* Bigger than most GDB packets, junk??? */
1325 pkt = pack_hex_byte (pkt, len);
1326 while (len-- > 0)
1327 {
1328 ch = *string++;
1329 if ((ch == '\0') || (ch == '#'))
1330 ch = '*'; /* Protect encapsulation. */
1331 *pkt++ = ch;
1332 }
1333 return pkt;
1334 }
1335 #endif /* 0 (unused) */
1336
1337 static char *
1338 unpack_string (char *src, char *dest, int length)
1339 {
1340 while (length--)
1341 *dest++ = *src++;
1342 *dest = '\0';
1343 return src;
1344 }
1345
1346 static char *
1347 pack_threadid (char *pkt, threadref *id)
1348 {
1349 char *limit;
1350 unsigned char *altid;
1351
1352 altid = (unsigned char *) id;
1353 limit = pkt + BUF_THREAD_ID_SIZE;
1354 while (pkt < limit)
1355 pkt = pack_hex_byte (pkt, *altid++);
1356 return pkt;
1357 }
1358
1359
1360 static char *
1361 unpack_threadid (char *inbuf, threadref *id)
1362 {
1363 char *altref;
1364 char *limit = inbuf + BUF_THREAD_ID_SIZE;
1365 int x, y;
1366
1367 altref = (char *) id;
1368
1369 while (inbuf < limit)
1370 {
1371 x = stubhex (*inbuf++);
1372 y = stubhex (*inbuf++);
1373 *altref++ = (x << 4) | y;
1374 }
1375 return inbuf;
1376 }
1377
1378 /* Externally, threadrefs are 64 bits but internally, they are still
1379 ints. This is due to a mismatch of specifications. We would like
1380 to use 64bit thread references internally. This is an adapter
1381 function. */
1382
1383 void
1384 int_to_threadref (threadref *id, int value)
1385 {
1386 unsigned char *scan;
1387
1388 scan = (unsigned char *) id;
1389 {
1390 int i = 4;
1391 while (i--)
1392 *scan++ = 0;
1393 }
1394 *scan++ = (value >> 24) & 0xff;
1395 *scan++ = (value >> 16) & 0xff;
1396 *scan++ = (value >> 8) & 0xff;
1397 *scan++ = (value & 0xff);
1398 }
1399
1400 static int
1401 threadref_to_int (threadref *ref)
1402 {
1403 int i, value = 0;
1404 unsigned char *scan;
1405
1406 scan = (char *) ref;
1407 scan += 4;
1408 i = 4;
1409 while (i-- > 0)
1410 value = (value << 8) | ((*scan++) & 0xff);
1411 return value;
1412 }
1413
1414 static void
1415 copy_threadref (threadref *dest, threadref *src)
1416 {
1417 int i;
1418 unsigned char *csrc, *cdest;
1419
1420 csrc = (unsigned char *) src;
1421 cdest = (unsigned char *) dest;
1422 i = 8;
1423 while (i--)
1424 *cdest++ = *csrc++;
1425 }
1426
1427 static int
1428 threadmatch (threadref *dest, threadref *src)
1429 {
1430 /* Things are broken right now, so just assume we got a match. */
1431 #if 0
1432 unsigned char *srcp, *destp;
1433 int i, result;
1434 srcp = (char *) src;
1435 destp = (char *) dest;
1436
1437 result = 1;
1438 while (i-- > 0)
1439 result &= (*srcp++ == *destp++) ? 1 : 0;
1440 return result;
1441 #endif
1442 return 1;
1443 }
1444
1445 /*
1446 threadid:1, # always request threadid
1447 context_exists:2,
1448 display:4,
1449 unique_name:8,
1450 more_display:16
1451 */
1452
1453 /* Encoding: 'Q':8,'P':8,mask:32,threadid:64 */
1454
1455 static char *
1456 pack_threadinfo_request (char *pkt, int mode, threadref *id)
1457 {
1458 *pkt++ = 'q'; /* Info Query */
1459 *pkt++ = 'P'; /* process or thread info */
1460 pkt = pack_int (pkt, mode); /* mode */
1461 pkt = pack_threadid (pkt, id); /* threadid */
1462 *pkt = '\0'; /* terminate */
1463 return pkt;
1464 }
1465
1466 /* These values tag the fields in a thread info response packet. */
1467 /* Tagging the fields allows us to request specific fields and to
1468 add more fields as time goes by. */
1469
1470 #define TAG_THREADID 1 /* Echo the thread identifier. */
1471 #define TAG_EXISTS 2 /* Is this process defined enough to
1472 fetch registers and its stack? */
1473 #define TAG_DISPLAY 4 /* A short thing maybe to put on a window */
1474 #define TAG_THREADNAME 8 /* string, maps 1-to-1 with a thread is. */
1475 #define TAG_MOREDISPLAY 16 /* Whatever the kernel wants to say about
1476 the process. */
1477
1478 static int
1479 remote_unpack_thread_info_response (char *pkt, threadref *expectedref,
1480 struct gdb_ext_thread_info *info)
1481 {
1482 struct remote_state *rs = get_remote_state ();
1483 int mask, length;
1484 unsigned int tag;
1485 threadref ref;
1486 char *limit = pkt + (rs->remote_packet_size); /* plausable parsing limit */
1487 int retval = 1;
1488
1489 /* info->threadid = 0; FIXME: implement zero_threadref. */
1490 info->active = 0;
1491 info->display[0] = '\0';
1492 info->shortname[0] = '\0';
1493 info->more_display[0] = '\0';
1494
1495 /* Assume the characters indicating the packet type have been
1496 stripped. */
1497 pkt = unpack_int (pkt, &mask); /* arg mask */
1498 pkt = unpack_threadid (pkt, &ref);
1499
1500 if (mask == 0)
1501 warning (_("Incomplete response to threadinfo request."));
1502 if (!threadmatch (&ref, expectedref))
1503 { /* This is an answer to a different request. */
1504 warning (_("ERROR RMT Thread info mismatch."));
1505 return 0;
1506 }
1507 copy_threadref (&info->threadid, &ref);
1508
1509 /* Loop on tagged fields , try to bail if somthing goes wrong. */
1510
1511 /* Packets are terminated with nulls. */
1512 while ((pkt < limit) && mask && *pkt)
1513 {
1514 pkt = unpack_int (pkt, &tag); /* tag */
1515 pkt = unpack_byte (pkt, &length); /* length */
1516 if (!(tag & mask)) /* Tags out of synch with mask. */
1517 {
1518 warning (_("ERROR RMT: threadinfo tag mismatch."));
1519 retval = 0;
1520 break;
1521 }
1522 if (tag == TAG_THREADID)
1523 {
1524 if (length != 16)
1525 {
1526 warning (_("ERROR RMT: length of threadid is not 16."));
1527 retval = 0;
1528 break;
1529 }
1530 pkt = unpack_threadid (pkt, &ref);
1531 mask = mask & ~TAG_THREADID;
1532 continue;
1533 }
1534 if (tag == TAG_EXISTS)
1535 {
1536 info->active = stub_unpack_int (pkt, length);
1537 pkt += length;
1538 mask = mask & ~(TAG_EXISTS);
1539 if (length > 8)
1540 {
1541 warning (_("ERROR RMT: 'exists' length too long."));
1542 retval = 0;
1543 break;
1544 }
1545 continue;
1546 }
1547 if (tag == TAG_THREADNAME)
1548 {
1549 pkt = unpack_string (pkt, &info->shortname[0], length);
1550 mask = mask & ~TAG_THREADNAME;
1551 continue;
1552 }
1553 if (tag == TAG_DISPLAY)
1554 {
1555 pkt = unpack_string (pkt, &info->display[0], length);
1556 mask = mask & ~TAG_DISPLAY;
1557 continue;
1558 }
1559 if (tag == TAG_MOREDISPLAY)
1560 {
1561 pkt = unpack_string (pkt, &info->more_display[0], length);
1562 mask = mask & ~TAG_MOREDISPLAY;
1563 continue;
1564 }
1565 warning (_("ERROR RMT: unknown thread info tag."));
1566 break; /* Not a tag we know about. */
1567 }
1568 return retval;
1569 }
1570
1571 static int
1572 remote_get_threadinfo (threadref *threadid, int fieldset, /* TAG mask */
1573 struct gdb_ext_thread_info *info)
1574 {
1575 struct remote_state *rs = get_remote_state ();
1576 int result;
1577 char *threadinfo_pkt = alloca (rs->remote_packet_size);
1578
1579 pack_threadinfo_request (threadinfo_pkt, fieldset, threadid);
1580 putpkt (threadinfo_pkt);
1581 getpkt (threadinfo_pkt, (rs->remote_packet_size), 0);
1582 result = remote_unpack_thread_info_response (threadinfo_pkt + 2,
1583 threadid, info);
1584 return result;
1585 }
1586
1587 /* Format: i'Q':8,i"L":8,initflag:8,batchsize:16,lastthreadid:32 */
1588
1589 static char *
1590 pack_threadlist_request (char *pkt, int startflag, int threadcount,
1591 threadref *nextthread)
1592 {
1593 *pkt++ = 'q'; /* info query packet */
1594 *pkt++ = 'L'; /* Process LIST or threadLIST request */
1595 pkt = pack_nibble (pkt, startflag); /* initflag 1 bytes */
1596 pkt = pack_hex_byte (pkt, threadcount); /* threadcount 2 bytes */
1597 pkt = pack_threadid (pkt, nextthread); /* 64 bit thread identifier */
1598 *pkt = '\0';
1599 return pkt;
1600 }
1601
1602 /* Encoding: 'q':8,'M':8,count:16,done:8,argthreadid:64,(threadid:64)* */
1603
1604 static int
1605 parse_threadlist_response (char *pkt, int result_limit,
1606 threadref *original_echo, threadref *resultlist,
1607 int *doneflag)
1608 {
1609 struct remote_state *rs = get_remote_state ();
1610 char *limit;
1611 int count, resultcount, done;
1612
1613 resultcount = 0;
1614 /* Assume the 'q' and 'M chars have been stripped. */
1615 limit = pkt + ((rs->remote_packet_size) - BUF_THREAD_ID_SIZE);
1616 /* done parse past here */
1617 pkt = unpack_byte (pkt, &count); /* count field */
1618 pkt = unpack_nibble (pkt, &done);
1619 /* The first threadid is the argument threadid. */
1620 pkt = unpack_threadid (pkt, original_echo); /* should match query packet */
1621 while ((count-- > 0) && (pkt < limit))
1622 {
1623 pkt = unpack_threadid (pkt, resultlist++);
1624 if (resultcount++ >= result_limit)
1625 break;
1626 }
1627 if (doneflag)
1628 *doneflag = done;
1629 return resultcount;
1630 }
1631
1632 static int
1633 remote_get_threadlist (int startflag, threadref *nextthread, int result_limit,
1634 int *done, int *result_count, threadref *threadlist)
1635 {
1636 struct remote_state *rs = get_remote_state ();
1637 static threadref echo_nextthread;
1638 char *threadlist_packet = alloca (rs->remote_packet_size);
1639 char *t_response = alloca (rs->remote_packet_size);
1640 int result = 1;
1641
1642 /* Trancate result limit to be smaller than the packet size. */
1643 if ((((result_limit + 1) * BUF_THREAD_ID_SIZE) + 10) >= (rs->remote_packet_size))
1644 result_limit = ((rs->remote_packet_size) / BUF_THREAD_ID_SIZE) - 2;
1645
1646 pack_threadlist_request (threadlist_packet,
1647 startflag, result_limit, nextthread);
1648 putpkt (threadlist_packet);
1649 getpkt (t_response, (rs->remote_packet_size), 0);
1650
1651 *result_count =
1652 parse_threadlist_response (t_response + 2, result_limit, &echo_nextthread,
1653 threadlist, done);
1654
1655 if (!threadmatch (&echo_nextthread, nextthread))
1656 {
1657 /* FIXME: This is a good reason to drop the packet. */
1658 /* Possably, there is a duplicate response. */
1659 /* Possabilities :
1660 retransmit immediatly - race conditions
1661 retransmit after timeout - yes
1662 exit
1663 wait for packet, then exit
1664 */
1665 warning (_("HMM: threadlist did not echo arg thread, dropping it."));
1666 return 0; /* I choose simply exiting. */
1667 }
1668 if (*result_count <= 0)
1669 {
1670 if (*done != 1)
1671 {
1672 warning (_("RMT ERROR : failed to get remote thread list."));
1673 result = 0;
1674 }
1675 return result; /* break; */
1676 }
1677 if (*result_count > result_limit)
1678 {
1679 *result_count = 0;
1680 warning (_("RMT ERROR: threadlist response longer than requested."));
1681 return 0;
1682 }
1683 return result;
1684 }
1685
1686 /* This is the interface between remote and threads, remotes upper
1687 interface. */
1688
1689 /* remote_find_new_threads retrieves the thread list and for each
1690 thread in the list, looks up the thread in GDB's internal list,
1691 ading the thread if it does not already exist. This involves
1692 getting partial thread lists from the remote target so, polling the
1693 quit_flag is required. */
1694
1695
1696 /* About this many threadisds fit in a packet. */
1697
1698 #define MAXTHREADLISTRESULTS 32
1699
1700 static int
1701 remote_threadlist_iterator (rmt_thread_action stepfunction, void *context,
1702 int looplimit)
1703 {
1704 int done, i, result_count;
1705 int startflag = 1;
1706 int result = 1;
1707 int loopcount = 0;
1708 static threadref nextthread;
1709 static threadref resultthreadlist[MAXTHREADLISTRESULTS];
1710
1711 done = 0;
1712 while (!done)
1713 {
1714 if (loopcount++ > looplimit)
1715 {
1716 result = 0;
1717 warning (_("Remote fetch threadlist -infinite loop-."));
1718 break;
1719 }
1720 if (!remote_get_threadlist (startflag, &nextthread, MAXTHREADLISTRESULTS,
1721 &done, &result_count, resultthreadlist))
1722 {
1723 result = 0;
1724 break;
1725 }
1726 /* Clear for later iterations. */
1727 startflag = 0;
1728 /* Setup to resume next batch of thread references, set nextthread. */
1729 if (result_count >= 1)
1730 copy_threadref (&nextthread, &resultthreadlist[result_count - 1]);
1731 i = 0;
1732 while (result_count--)
1733 if (!(result = (*stepfunction) (&resultthreadlist[i++], context)))
1734 break;
1735 }
1736 return result;
1737 }
1738
1739 static int
1740 remote_newthread_step (threadref *ref, void *context)
1741 {
1742 ptid_t ptid;
1743
1744 ptid = pid_to_ptid (threadref_to_int (ref));
1745
1746 if (!in_thread_list (ptid))
1747 add_thread (ptid);
1748 return 1; /* continue iterator */
1749 }
1750
1751 #define CRAZY_MAX_THREADS 1000
1752
1753 static ptid_t
1754 remote_current_thread (ptid_t oldpid)
1755 {
1756 struct remote_state *rs = get_remote_state ();
1757 char *buf = alloca (rs->remote_packet_size);
1758
1759 putpkt ("qC");
1760 getpkt (buf, (rs->remote_packet_size), 0);
1761 if (buf[0] == 'Q' && buf[1] == 'C')
1762 /* Use strtoul here, so we'll correctly parse values whose highest
1763 bit is set. The protocol carries them as a simple series of
1764 hex digits; in the absence of a sign, strtol will see such
1765 values as positive numbers out of range for signed 'long', and
1766 return LONG_MAX to indicate an overflow. */
1767 return pid_to_ptid (strtoul (&buf[2], NULL, 16));
1768 else
1769 return oldpid;
1770 }
1771
1772 /* Find new threads for info threads command.
1773 * Original version, using John Metzler's thread protocol.
1774 */
1775
1776 static void
1777 remote_find_new_threads (void)
1778 {
1779 remote_threadlist_iterator (remote_newthread_step, 0,
1780 CRAZY_MAX_THREADS);
1781 if (PIDGET (inferior_ptid) == MAGIC_NULL_PID) /* ack ack ack */
1782 inferior_ptid = remote_current_thread (inferior_ptid);
1783 }
1784
1785 /*
1786 * Find all threads for info threads command.
1787 * Uses new thread protocol contributed by Cisco.
1788 * Falls back and attempts to use the older method (above)
1789 * if the target doesn't respond to the new method.
1790 */
1791
1792 static void
1793 remote_threads_info (void)
1794 {
1795 struct remote_state *rs = get_remote_state ();
1796 char *buf = alloca (rs->remote_packet_size);
1797 char *bufp;
1798 int tid;
1799
1800 if (remote_desc == 0) /* paranoia */
1801 error (_("Command can only be used when connected to the remote target."));
1802
1803 if (use_threadinfo_query)
1804 {
1805 putpkt ("qfThreadInfo");
1806 bufp = buf;
1807 getpkt (bufp, (rs->remote_packet_size), 0);
1808 if (bufp[0] != '\0') /* q packet recognized */
1809 {
1810 while (*bufp++ == 'm') /* reply contains one or more TID */
1811 {
1812 do
1813 {
1814 /* Use strtoul here, so we'll correctly parse values
1815 whose highest bit is set. The protocol carries
1816 them as a simple series of hex digits; in the
1817 absence of a sign, strtol will see such values as
1818 positive numbers out of range for signed 'long',
1819 and return LONG_MAX to indicate an overflow. */
1820 tid = strtoul (bufp, &bufp, 16);
1821 if (tid != 0 && !in_thread_list (pid_to_ptid (tid)))
1822 add_thread (pid_to_ptid (tid));
1823 }
1824 while (*bufp++ == ','); /* comma-separated list */
1825 putpkt ("qsThreadInfo");
1826 bufp = buf;
1827 getpkt (bufp, (rs->remote_packet_size), 0);
1828 }
1829 return; /* done */
1830 }
1831 }
1832
1833 /* Else fall back to old method based on jmetzler protocol. */
1834 use_threadinfo_query = 0;
1835 remote_find_new_threads ();
1836 return;
1837 }
1838
1839 /*
1840 * Collect a descriptive string about the given thread.
1841 * The target may say anything it wants to about the thread
1842 * (typically info about its blocked / runnable state, name, etc.).
1843 * This string will appear in the info threads display.
1844 *
1845 * Optional: targets are not required to implement this function.
1846 */
1847
1848 static char *
1849 remote_threads_extra_info (struct thread_info *tp)
1850 {
1851 struct remote_state *rs = get_remote_state ();
1852 int result;
1853 int set;
1854 threadref id;
1855 struct gdb_ext_thread_info threadinfo;
1856 static char display_buf[100]; /* arbitrary... */
1857 char *bufp = alloca (rs->remote_packet_size);
1858 int n = 0; /* position in display_buf */
1859
1860 if (remote_desc == 0) /* paranoia */
1861 internal_error (__FILE__, __LINE__,
1862 _("remote_threads_extra_info"));
1863
1864 if (use_threadextra_query)
1865 {
1866 sprintf (bufp, "qThreadExtraInfo,%x", PIDGET (tp->ptid));
1867 putpkt (bufp);
1868 getpkt (bufp, (rs->remote_packet_size), 0);
1869 if (bufp[0] != 0)
1870 {
1871 n = min (strlen (bufp) / 2, sizeof (display_buf));
1872 result = hex2bin (bufp, display_buf, n);
1873 display_buf [result] = '\0';
1874 return display_buf;
1875 }
1876 }
1877
1878 /* If the above query fails, fall back to the old method. */
1879 use_threadextra_query = 0;
1880 set = TAG_THREADID | TAG_EXISTS | TAG_THREADNAME
1881 | TAG_MOREDISPLAY | TAG_DISPLAY;
1882 int_to_threadref (&id, PIDGET (tp->ptid));
1883 if (remote_get_threadinfo (&id, set, &threadinfo))
1884 if (threadinfo.active)
1885 {
1886 if (*threadinfo.shortname)
1887 n += sprintf(&display_buf[0], " Name: %s,", threadinfo.shortname);
1888 if (*threadinfo.display)
1889 n += sprintf(&display_buf[n], " State: %s,", threadinfo.display);
1890 if (*threadinfo.more_display)
1891 n += sprintf(&display_buf[n], " Priority: %s",
1892 threadinfo.more_display);
1893
1894 if (n > 0)
1895 {
1896 /* For purely cosmetic reasons, clear up trailing commas. */
1897 if (',' == display_buf[n-1])
1898 display_buf[n-1] = ' ';
1899 return display_buf;
1900 }
1901 }
1902 return NULL;
1903 }
1904
1905 \f
1906
1907 /* Restart the remote side; this is an extended protocol operation. */
1908
1909 static void
1910 extended_remote_restart (void)
1911 {
1912 struct remote_state *rs = get_remote_state ();
1913 char *buf = alloca (rs->remote_packet_size);
1914
1915 /* Send the restart command; for reasons I don't understand the
1916 remote side really expects a number after the "R". */
1917 buf[0] = 'R';
1918 sprintf (&buf[1], "%x", 0);
1919 putpkt (buf);
1920
1921 /* Now query for status so this looks just like we restarted
1922 gdbserver from scratch. */
1923 putpkt ("?");
1924 getpkt (buf, (rs->remote_packet_size), 0);
1925 }
1926 \f
1927 /* Clean up connection to a remote debugger. */
1928
1929 static void
1930 remote_close (int quitting)
1931 {
1932 if (remote_desc)
1933 serial_close (remote_desc);
1934 remote_desc = NULL;
1935 }
1936
1937 /* Query the remote side for the text, data and bss offsets. */
1938
1939 static void
1940 get_offsets (void)
1941 {
1942 struct remote_state *rs = get_remote_state ();
1943 char *buf = alloca (rs->remote_packet_size);
1944 char *ptr;
1945 int lose;
1946 CORE_ADDR text_addr, data_addr, bss_addr;
1947 struct section_offsets *offs;
1948
1949 putpkt ("qOffsets");
1950
1951 getpkt (buf, (rs->remote_packet_size), 0);
1952
1953 if (buf[0] == '\000')
1954 return; /* Return silently. Stub doesn't support
1955 this command. */
1956 if (buf[0] == 'E')
1957 {
1958 warning (_("Remote failure reply: %s"), buf);
1959 return;
1960 }
1961
1962 /* Pick up each field in turn. This used to be done with scanf, but
1963 scanf will make trouble if CORE_ADDR size doesn't match
1964 conversion directives correctly. The following code will work
1965 with any size of CORE_ADDR. */
1966 text_addr = data_addr = bss_addr = 0;
1967 ptr = buf;
1968 lose = 0;
1969
1970 if (strncmp (ptr, "Text=", 5) == 0)
1971 {
1972 ptr += 5;
1973 /* Don't use strtol, could lose on big values. */
1974 while (*ptr && *ptr != ';')
1975 text_addr = (text_addr << 4) + fromhex (*ptr++);
1976 }
1977 else
1978 lose = 1;
1979
1980 if (!lose && strncmp (ptr, ";Data=", 6) == 0)
1981 {
1982 ptr += 6;
1983 while (*ptr && *ptr != ';')
1984 data_addr = (data_addr << 4) + fromhex (*ptr++);
1985 }
1986 else
1987 lose = 1;
1988
1989 if (!lose && strncmp (ptr, ";Bss=", 5) == 0)
1990 {
1991 ptr += 5;
1992 while (*ptr && *ptr != ';')
1993 bss_addr = (bss_addr << 4) + fromhex (*ptr++);
1994 }
1995 else
1996 lose = 1;
1997
1998 if (lose)
1999 error (_("Malformed response to offset query, %s"), buf);
2000
2001 if (symfile_objfile == NULL)
2002 return;
2003
2004 offs = ((struct section_offsets *)
2005 alloca (SIZEOF_N_SECTION_OFFSETS (symfile_objfile->num_sections)));
2006 memcpy (offs, symfile_objfile->section_offsets,
2007 SIZEOF_N_SECTION_OFFSETS (symfile_objfile->num_sections));
2008
2009 offs->offsets[SECT_OFF_TEXT (symfile_objfile)] = text_addr;
2010
2011 /* This is a temporary kludge to force data and bss to use the same offsets
2012 because that's what nlmconv does now. The real solution requires changes
2013 to the stub and remote.c that I don't have time to do right now. */
2014
2015 offs->offsets[SECT_OFF_DATA (symfile_objfile)] = data_addr;
2016 offs->offsets[SECT_OFF_BSS (symfile_objfile)] = data_addr;
2017
2018 objfile_relocate (symfile_objfile, offs);
2019 }
2020
2021 /* Stub for catch_errors. */
2022
2023 static int
2024 remote_start_remote_dummy (struct ui_out *uiout, void *dummy)
2025 {
2026 start_remote (); /* Initialize gdb process mechanisms. */
2027 /* NOTE: Return something >=0. A -ve value is reserved for
2028 catch_exceptions. */
2029 return 1;
2030 }
2031
2032 static void
2033 remote_start_remote (struct ui_out *uiout, void *dummy)
2034 {
2035 immediate_quit++; /* Allow user to interrupt it. */
2036
2037 /* Ack any packet which the remote side has already sent. */
2038 serial_write (remote_desc, "+", 1);
2039
2040 /* Let the stub know that we want it to return the thread. */
2041 set_thread (-1, 0);
2042
2043 inferior_ptid = remote_current_thread (inferior_ptid);
2044
2045 get_offsets (); /* Get text, data & bss offsets. */
2046
2047 putpkt ("?"); /* Initiate a query from remote machine. */
2048 immediate_quit--;
2049
2050 remote_start_remote_dummy (uiout, dummy);
2051 }
2052
2053 /* Open a connection to a remote debugger.
2054 NAME is the filename used for communication. */
2055
2056 static void
2057 remote_open (char *name, int from_tty)
2058 {
2059 remote_open_1 (name, from_tty, &remote_ops, 0, 0);
2060 }
2061
2062 /* Just like remote_open, but with asynchronous support. */
2063 static void
2064 remote_async_open (char *name, int from_tty)
2065 {
2066 remote_open_1 (name, from_tty, &remote_async_ops, 0, 1);
2067 }
2068
2069 /* Open a connection to a remote debugger using the extended
2070 remote gdb protocol. NAME is the filename used for communication. */
2071
2072 static void
2073 extended_remote_open (char *name, int from_tty)
2074 {
2075 remote_open_1 (name, from_tty, &extended_remote_ops, 1 /*extended_p */,
2076 0 /* async_p */);
2077 }
2078
2079 /* Just like extended_remote_open, but with asynchronous support. */
2080 static void
2081 extended_remote_async_open (char *name, int from_tty)
2082 {
2083 remote_open_1 (name, from_tty, &extended_async_remote_ops,
2084 1 /*extended_p */, 1 /* async_p */);
2085 }
2086
2087 /* Generic code for opening a connection to a remote target. */
2088
2089 static void
2090 init_all_packet_configs (void)
2091 {
2092 int i;
2093 update_packet_config (&remote_protocol_P);
2094 update_packet_config (&remote_protocol_p);
2095 update_packet_config (&remote_protocol_qSymbol);
2096 update_packet_config (&remote_protocol_vcont);
2097 for (i = 0; i < NR_Z_PACKET_TYPES; i++)
2098 update_packet_config (&remote_protocol_Z[i]);
2099 /* Force remote_write_bytes to check whether target supports binary
2100 downloading. */
2101 update_packet_config (&remote_protocol_binary_download);
2102 update_packet_config (&remote_protocol_qPart_auxv);
2103 }
2104
2105 /* Symbol look-up. */
2106
2107 static void
2108 remote_check_symbols (struct objfile *objfile)
2109 {
2110 struct remote_state *rs = get_remote_state ();
2111 char *msg, *reply, *tmp;
2112 struct minimal_symbol *sym;
2113 int end;
2114
2115 if (remote_protocol_qSymbol.support == PACKET_DISABLE)
2116 return;
2117
2118 msg = alloca (rs->remote_packet_size);
2119 reply = alloca (rs->remote_packet_size);
2120
2121 /* Invite target to request symbol lookups. */
2122
2123 putpkt ("qSymbol::");
2124 getpkt (reply, (rs->remote_packet_size), 0);
2125 packet_ok (reply, &remote_protocol_qSymbol);
2126
2127 while (strncmp (reply, "qSymbol:", 8) == 0)
2128 {
2129 tmp = &reply[8];
2130 end = hex2bin (tmp, msg, strlen (tmp) / 2);
2131 msg[end] = '\0';
2132 sym = lookup_minimal_symbol (msg, NULL, NULL);
2133 if (sym == NULL)
2134 sprintf (msg, "qSymbol::%s", &reply[8]);
2135 else
2136 sprintf (msg, "qSymbol:%s:%s",
2137 paddr_nz (SYMBOL_VALUE_ADDRESS (sym)),
2138 &reply[8]);
2139 putpkt (msg);
2140 getpkt (reply, (rs->remote_packet_size), 0);
2141 }
2142 }
2143
2144 static struct serial *
2145 remote_serial_open (char *name)
2146 {
2147 static int udp_warning = 0;
2148
2149 /* FIXME: Parsing NAME here is a hack. But we want to warn here instead
2150 of in ser-tcp.c, because it is the remote protocol assuming that the
2151 serial connection is reliable and not the serial connection promising
2152 to be. */
2153 if (!udp_warning && strncmp (name, "udp:", 4) == 0)
2154 {
2155 warning (_("\
2156 The remote protocol may be unreliable over UDP.\n\
2157 Some events may be lost, rendering further debugging impossible."));
2158 udp_warning = 1;
2159 }
2160
2161 return serial_open (name);
2162 }
2163
2164 static void
2165 remote_open_1 (char *name, int from_tty, struct target_ops *target,
2166 int extended_p, int async_p)
2167 {
2168 struct exception ex;
2169 struct remote_state *rs = get_remote_state ();
2170 if (name == 0)
2171 error (_("To open a remote debug connection, you need to specify what\n"
2172 "serial device is attached to the remote system\n"
2173 "(e.g. /dev/ttyS0, /dev/ttya, COM1, etc.)."));
2174
2175 /* See FIXME above. */
2176 if (!async_p)
2177 wait_forever_enabled_p = 1;
2178
2179 reopen_exec_file ();
2180 reread_symbols ();
2181
2182 target_preopen (from_tty);
2183
2184 unpush_target (target);
2185
2186 remote_desc = remote_serial_open (name);
2187 if (!remote_desc)
2188 perror_with_name (name);
2189
2190 if (baud_rate != -1)
2191 {
2192 if (serial_setbaudrate (remote_desc, baud_rate))
2193 {
2194 /* The requested speed could not be set. Error out to
2195 top level after closing remote_desc. Take care to
2196 set remote_desc to NULL to avoid closing remote_desc
2197 more than once. */
2198 serial_close (remote_desc);
2199 remote_desc = NULL;
2200 perror_with_name (name);
2201 }
2202 }
2203
2204 serial_raw (remote_desc);
2205
2206 /* If there is something sitting in the buffer we might take it as a
2207 response to a command, which would be bad. */
2208 serial_flush_input (remote_desc);
2209
2210 if (from_tty)
2211 {
2212 puts_filtered ("Remote debugging using ");
2213 puts_filtered (name);
2214 puts_filtered ("\n");
2215 }
2216 push_target (target); /* Switch to using remote target now. */
2217
2218 init_all_packet_configs ();
2219
2220 general_thread = -2;
2221 continue_thread = -2;
2222
2223 /* Probe for ability to use "ThreadInfo" query, as required. */
2224 use_threadinfo_query = 1;
2225 use_threadextra_query = 1;
2226
2227 /* Without this, some commands which require an active target (such
2228 as kill) won't work. This variable serves (at least) double duty
2229 as both the pid of the target process (if it has such), and as a
2230 flag indicating that a target is active. These functions should
2231 be split out into seperate variables, especially since GDB will
2232 someday have a notion of debugging several processes. */
2233
2234 inferior_ptid = pid_to_ptid (MAGIC_NULL_PID);
2235
2236 if (async_p)
2237 {
2238 /* With this target we start out by owning the terminal. */
2239 remote_async_terminal_ours_p = 1;
2240
2241 /* FIXME: cagney/1999-09-23: During the initial connection it is
2242 assumed that the target is already ready and able to respond to
2243 requests. Unfortunately remote_start_remote() eventually calls
2244 wait_for_inferior() with no timeout. wait_forever_enabled_p gets
2245 around this. Eventually a mechanism that allows
2246 wait_for_inferior() to expect/get timeouts will be
2247 implemented. */
2248 wait_forever_enabled_p = 0;
2249 }
2250
2251 #ifdef SOLIB_CREATE_INFERIOR_HOOK
2252 /* First delete any symbols previously loaded from shared libraries. */
2253 no_shared_libraries (NULL, 0);
2254 #endif
2255
2256 /* Start the remote connection. If error() or QUIT, discard this
2257 target (we'd otherwise be in an inconsistent state) and then
2258 propogate the error on up the exception chain. This ensures that
2259 the caller doesn't stumble along blindly assuming that the
2260 function succeeded. The CLI doesn't have this problem but other
2261 UI's, such as MI do.
2262
2263 FIXME: cagney/2002-05-19: Instead of re-throwing the exception,
2264 this function should return an error indication letting the
2265 caller restore the previous state. Unfortunately the command
2266 ``target remote'' is directly wired to this function making that
2267 impossible. On a positive note, the CLI side of this problem has
2268 been fixed - the function set_cmd_context() makes it possible for
2269 all the ``target ....'' commands to share a common callback
2270 function. See cli-dump.c. */
2271 ex = catch_exception (uiout, remote_start_remote, NULL, RETURN_MASK_ALL);
2272 if (ex.reason < 0)
2273 {
2274 pop_target ();
2275 if (async_p)
2276 wait_forever_enabled_p = 1;
2277 throw_exception (ex);
2278 }
2279
2280 if (async_p)
2281 wait_forever_enabled_p = 1;
2282
2283 if (extended_p)
2284 {
2285 /* Tell the remote that we are using the extended protocol. */
2286 char *buf = alloca (rs->remote_packet_size);
2287 putpkt ("!");
2288 getpkt (buf, (rs->remote_packet_size), 0);
2289 }
2290 #ifdef SOLIB_CREATE_INFERIOR_HOOK
2291 /* FIXME: need a master target_open vector from which all
2292 remote_opens can be called, so that stuff like this can
2293 go there. Failing that, the following code must be copied
2294 to the open function for any remote target that wants to
2295 support svr4 shared libraries. */
2296
2297 /* Set up to detect and load shared libraries. */
2298 if (exec_bfd) /* No use without an exec file. */
2299 {
2300 SOLIB_CREATE_INFERIOR_HOOK (PIDGET (inferior_ptid));
2301 remote_check_symbols (symfile_objfile);
2302 }
2303 #endif
2304
2305 observer_notify_inferior_created (&current_target, from_tty);
2306 }
2307
2308 /* This takes a program previously attached to and detaches it. After
2309 this is done, GDB can be used to debug some other program. We
2310 better not have left any breakpoints in the target program or it'll
2311 die when it hits one. */
2312
2313 static void
2314 remote_detach (char *args, int from_tty)
2315 {
2316 struct remote_state *rs = get_remote_state ();
2317 char *buf = alloca (rs->remote_packet_size);
2318
2319 if (args)
2320 error (_("Argument given to \"detach\" when remotely debugging."));
2321
2322 /* Tell the remote target to detach. */
2323 strcpy (buf, "D");
2324 remote_send (buf, (rs->remote_packet_size));
2325
2326 /* Unregister the file descriptor from the event loop. */
2327 if (target_is_async_p ())
2328 serial_async (remote_desc, NULL, 0);
2329
2330 target_mourn_inferior ();
2331 if (from_tty)
2332 puts_filtered ("Ending remote debugging.\n");
2333 }
2334
2335 /* Same as remote_detach, but don't send the "D" packet; just disconnect. */
2336
2337 static void
2338 remote_disconnect (char *args, int from_tty)
2339 {
2340 struct remote_state *rs = get_remote_state ();
2341 char *buf = alloca (rs->remote_packet_size);
2342
2343 if (args)
2344 error (_("Argument given to \"detach\" when remotely debugging."));
2345
2346 /* Unregister the file descriptor from the event loop. */
2347 if (target_is_async_p ())
2348 serial_async (remote_desc, NULL, 0);
2349
2350 target_mourn_inferior ();
2351 if (from_tty)
2352 puts_filtered ("Ending remote debugging.\n");
2353 }
2354
2355 /* Convert hex digit A to a number. */
2356
2357 static int
2358 fromhex (int a)
2359 {
2360 if (a >= '0' && a <= '9')
2361 return a - '0';
2362 else if (a >= 'a' && a <= 'f')
2363 return a - 'a' + 10;
2364 else if (a >= 'A' && a <= 'F')
2365 return a - 'A' + 10;
2366 else
2367 error (_("Reply contains invalid hex digit %d"), a);
2368 }
2369
2370 static int
2371 hex2bin (const char *hex, char *bin, int count)
2372 {
2373 int i;
2374
2375 for (i = 0; i < count; i++)
2376 {
2377 if (hex[0] == 0 || hex[1] == 0)
2378 {
2379 /* Hex string is short, or of uneven length.
2380 Return the count that has been converted so far. */
2381 return i;
2382 }
2383 *bin++ = fromhex (hex[0]) * 16 + fromhex (hex[1]);
2384 hex += 2;
2385 }
2386 return i;
2387 }
2388
2389 /* Convert number NIB to a hex digit. */
2390
2391 static int
2392 tohex (int nib)
2393 {
2394 if (nib < 10)
2395 return '0' + nib;
2396 else
2397 return 'a' + nib - 10;
2398 }
2399
2400 static int
2401 bin2hex (const char *bin, char *hex, int count)
2402 {
2403 int i;
2404 /* May use a length, or a nul-terminated string as input. */
2405 if (count == 0)
2406 count = strlen (bin);
2407
2408 for (i = 0; i < count; i++)
2409 {
2410 *hex++ = tohex ((*bin >> 4) & 0xf);
2411 *hex++ = tohex (*bin++ & 0xf);
2412 }
2413 *hex = 0;
2414 return i;
2415 }
2416 \f
2417 /* Check for the availability of vCont. This function should also check
2418 the response. */
2419
2420 static void
2421 remote_vcont_probe (struct remote_state *rs, char *buf)
2422 {
2423 strcpy (buf, "vCont?");
2424 putpkt (buf);
2425 getpkt (buf, rs->remote_packet_size, 0);
2426
2427 /* Make sure that the features we assume are supported. */
2428 if (strncmp (buf, "vCont", 5) == 0)
2429 {
2430 char *p = &buf[5];
2431 int support_s, support_S, support_c, support_C;
2432
2433 support_s = 0;
2434 support_S = 0;
2435 support_c = 0;
2436 support_C = 0;
2437 while (p && *p == ';')
2438 {
2439 p++;
2440 if (*p == 's' && (*(p + 1) == ';' || *(p + 1) == 0))
2441 support_s = 1;
2442 else if (*p == 'S' && (*(p + 1) == ';' || *(p + 1) == 0))
2443 support_S = 1;
2444 else if (*p == 'c' && (*(p + 1) == ';' || *(p + 1) == 0))
2445 support_c = 1;
2446 else if (*p == 'C' && (*(p + 1) == ';' || *(p + 1) == 0))
2447 support_C = 1;
2448
2449 p = strchr (p, ';');
2450 }
2451
2452 /* If s, S, c, and C are not all supported, we can't use vCont. Clearing
2453 BUF will make packet_ok disable the packet. */
2454 if (!support_s || !support_S || !support_c || !support_C)
2455 buf[0] = 0;
2456 }
2457
2458 packet_ok (buf, &remote_protocol_vcont);
2459 }
2460
2461 /* Resume the remote inferior by using a "vCont" packet. The thread
2462 to be resumed is PTID; STEP and SIGGNAL indicate whether the
2463 resumed thread should be single-stepped and/or signalled. If PTID's
2464 PID is -1, then all threads are resumed; the thread to be stepped and/or
2465 signalled is given in the global INFERIOR_PTID. This function returns
2466 non-zero iff it resumes the inferior.
2467
2468 This function issues a strict subset of all possible vCont commands at the
2469 moment. */
2470
2471 static int
2472 remote_vcont_resume (ptid_t ptid, int step, enum target_signal siggnal)
2473 {
2474 struct remote_state *rs = get_remote_state ();
2475 int pid = PIDGET (ptid);
2476 char *buf = NULL, *outbuf;
2477 struct cleanup *old_cleanup;
2478
2479 buf = xmalloc (rs->remote_packet_size);
2480 old_cleanup = make_cleanup (xfree, buf);
2481
2482 if (remote_protocol_vcont.support == PACKET_SUPPORT_UNKNOWN)
2483 remote_vcont_probe (rs, buf);
2484
2485 if (remote_protocol_vcont.support == PACKET_DISABLE)
2486 {
2487 do_cleanups (old_cleanup);
2488 return 0;
2489 }
2490
2491 /* If we could generate a wider range of packets, we'd have to worry
2492 about overflowing BUF. Should there be a generic
2493 "multi-part-packet" packet? */
2494
2495 if (PIDGET (inferior_ptid) == MAGIC_NULL_PID)
2496 {
2497 /* MAGIC_NULL_PTID means that we don't have any active threads, so we
2498 don't have any PID numbers the inferior will understand. Make sure
2499 to only send forms that do not specify a PID. */
2500 if (step && siggnal != TARGET_SIGNAL_0)
2501 outbuf = xstrprintf ("vCont;S%02x", siggnal);
2502 else if (step)
2503 outbuf = xstrprintf ("vCont;s");
2504 else if (siggnal != TARGET_SIGNAL_0)
2505 outbuf = xstrprintf ("vCont;C%02x", siggnal);
2506 else
2507 outbuf = xstrprintf ("vCont;c");
2508 }
2509 else if (pid == -1)
2510 {
2511 /* Resume all threads, with preference for INFERIOR_PTID. */
2512 if (step && siggnal != TARGET_SIGNAL_0)
2513 outbuf = xstrprintf ("vCont;S%02x:%x;c", siggnal,
2514 PIDGET (inferior_ptid));
2515 else if (step)
2516 outbuf = xstrprintf ("vCont;s:%x;c", PIDGET (inferior_ptid));
2517 else if (siggnal != TARGET_SIGNAL_0)
2518 outbuf = xstrprintf ("vCont;C%02x:%x;c", siggnal,
2519 PIDGET (inferior_ptid));
2520 else
2521 outbuf = xstrprintf ("vCont;c");
2522 }
2523 else
2524 {
2525 /* Scheduler locking; resume only PTID. */
2526 if (step && siggnal != TARGET_SIGNAL_0)
2527 outbuf = xstrprintf ("vCont;S%02x:%x", siggnal, pid);
2528 else if (step)
2529 outbuf = xstrprintf ("vCont;s:%x", pid);
2530 else if (siggnal != TARGET_SIGNAL_0)
2531 outbuf = xstrprintf ("vCont;C%02x:%x", siggnal, pid);
2532 else
2533 outbuf = xstrprintf ("vCont;c:%x", pid);
2534 }
2535
2536 gdb_assert (outbuf && strlen (outbuf) < rs->remote_packet_size);
2537 make_cleanup (xfree, outbuf);
2538
2539 putpkt (outbuf);
2540
2541 do_cleanups (old_cleanup);
2542
2543 return 1;
2544 }
2545
2546 /* Tell the remote machine to resume. */
2547
2548 static enum target_signal last_sent_signal = TARGET_SIGNAL_0;
2549
2550 static int last_sent_step;
2551
2552 static void
2553 remote_resume (ptid_t ptid, int step, enum target_signal siggnal)
2554 {
2555 struct remote_state *rs = get_remote_state ();
2556 char *buf = alloca (rs->remote_packet_size);
2557 int pid = PIDGET (ptid);
2558 char *p;
2559
2560 last_sent_signal = siggnal;
2561 last_sent_step = step;
2562
2563 /* A hook for when we need to do something at the last moment before
2564 resumption. */
2565 if (deprecated_target_resume_hook)
2566 (*deprecated_target_resume_hook) ();
2567
2568 /* The vCont packet doesn't need to specify threads via Hc. */
2569 if (remote_vcont_resume (ptid, step, siggnal))
2570 return;
2571
2572 /* All other supported resume packets do use Hc, so call set_thread. */
2573 if (pid == -1)
2574 set_thread (0, 0); /* Run any thread. */
2575 else
2576 set_thread (pid, 0); /* Run this thread. */
2577
2578 if (siggnal != TARGET_SIGNAL_0)
2579 {
2580 buf[0] = step ? 'S' : 'C';
2581 buf[1] = tohex (((int) siggnal >> 4) & 0xf);
2582 buf[2] = tohex (((int) siggnal) & 0xf);
2583 buf[3] = '\0';
2584 }
2585 else
2586 strcpy (buf, step ? "s" : "c");
2587
2588 putpkt (buf);
2589 }
2590
2591 /* Same as remote_resume, but with async support. */
2592 static void
2593 remote_async_resume (ptid_t ptid, int step, enum target_signal siggnal)
2594 {
2595 remote_resume (ptid, step, siggnal);
2596
2597 /* We are about to start executing the inferior, let's register it
2598 with the event loop. NOTE: this is the one place where all the
2599 execution commands end up. We could alternatively do this in each
2600 of the execution commands in infcmd.c. */
2601 /* FIXME: ezannoni 1999-09-28: We may need to move this out of here
2602 into infcmd.c in order to allow inferior function calls to work
2603 NOT asynchronously. */
2604 if (target_can_async_p ())
2605 target_async (inferior_event_handler, 0);
2606 /* Tell the world that the target is now executing. */
2607 /* FIXME: cagney/1999-09-23: Is it the targets responsibility to set
2608 this? Instead, should the client of target just assume (for
2609 async targets) that the target is going to start executing? Is
2610 this information already found in the continuation block? */
2611 if (target_is_async_p ())
2612 target_executing = 1;
2613 }
2614 \f
2615
2616 /* Set up the signal handler for SIGINT, while the target is
2617 executing, ovewriting the 'regular' SIGINT signal handler. */
2618 static void
2619 initialize_sigint_signal_handler (void)
2620 {
2621 sigint_remote_token =
2622 create_async_signal_handler (async_remote_interrupt, NULL);
2623 signal (SIGINT, handle_remote_sigint);
2624 }
2625
2626 /* Signal handler for SIGINT, while the target is executing. */
2627 static void
2628 handle_remote_sigint (int sig)
2629 {
2630 signal (sig, handle_remote_sigint_twice);
2631 sigint_remote_twice_token =
2632 create_async_signal_handler (async_remote_interrupt_twice, NULL);
2633 mark_async_signal_handler_wrapper (sigint_remote_token);
2634 }
2635
2636 /* Signal handler for SIGINT, installed after SIGINT has already been
2637 sent once. It will take effect the second time that the user sends
2638 a ^C. */
2639 static void
2640 handle_remote_sigint_twice (int sig)
2641 {
2642 signal (sig, handle_sigint);
2643 sigint_remote_twice_token =
2644 create_async_signal_handler (inferior_event_handler_wrapper, NULL);
2645 mark_async_signal_handler_wrapper (sigint_remote_twice_token);
2646 }
2647
2648 /* Perform the real interruption of the target execution, in response
2649 to a ^C. */
2650 static void
2651 async_remote_interrupt (gdb_client_data arg)
2652 {
2653 if (remote_debug)
2654 fprintf_unfiltered (gdb_stdlog, "remote_interrupt called\n");
2655
2656 target_stop ();
2657 }
2658
2659 /* Perform interrupt, if the first attempt did not succeed. Just give
2660 up on the target alltogether. */
2661 void
2662 async_remote_interrupt_twice (gdb_client_data arg)
2663 {
2664 if (remote_debug)
2665 fprintf_unfiltered (gdb_stdlog, "remote_interrupt_twice called\n");
2666 /* Do something only if the target was not killed by the previous
2667 cntl-C. */
2668 if (target_executing)
2669 {
2670 interrupt_query ();
2671 signal (SIGINT, handle_remote_sigint);
2672 }
2673 }
2674
2675 /* Reinstall the usual SIGINT handlers, after the target has
2676 stopped. */
2677 static void
2678 cleanup_sigint_signal_handler (void *dummy)
2679 {
2680 signal (SIGINT, handle_sigint);
2681 if (sigint_remote_twice_token)
2682 delete_async_signal_handler ((struct async_signal_handler **)
2683 &sigint_remote_twice_token);
2684 if (sigint_remote_token)
2685 delete_async_signal_handler ((struct async_signal_handler **)
2686 &sigint_remote_token);
2687 }
2688
2689 /* Send ^C to target to halt it. Target will respond, and send us a
2690 packet. */
2691 static void (*ofunc) (int);
2692
2693 /* The command line interface's stop routine. This function is installed
2694 as a signal handler for SIGINT. The first time a user requests a
2695 stop, we call remote_stop to send a break or ^C. If there is no
2696 response from the target (it didn't stop when the user requested it),
2697 we ask the user if he'd like to detach from the target. */
2698 static void
2699 remote_interrupt (int signo)
2700 {
2701 /* If this doesn't work, try more severe steps. */
2702 signal (signo, remote_interrupt_twice);
2703
2704 if (remote_debug)
2705 fprintf_unfiltered (gdb_stdlog, "remote_interrupt called\n");
2706
2707 target_stop ();
2708 }
2709
2710 /* The user typed ^C twice. */
2711
2712 static void
2713 remote_interrupt_twice (int signo)
2714 {
2715 signal (signo, ofunc);
2716 interrupt_query ();
2717 signal (signo, remote_interrupt);
2718 }
2719
2720 /* This is the generic stop called via the target vector. When a target
2721 interrupt is requested, either by the command line or the GUI, we
2722 will eventually end up here. */
2723 static void
2724 remote_stop (void)
2725 {
2726 /* Send a break or a ^C, depending on user preference. */
2727 if (remote_debug)
2728 fprintf_unfiltered (gdb_stdlog, "remote_stop called\n");
2729
2730 if (remote_break)
2731 serial_send_break (remote_desc);
2732 else
2733 serial_write (remote_desc, "\003", 1);
2734 }
2735
2736 /* Ask the user what to do when an interrupt is received. */
2737
2738 static void
2739 interrupt_query (void)
2740 {
2741 target_terminal_ours ();
2742
2743 if (query ("Interrupted while waiting for the program.\n\
2744 Give up (and stop debugging it)? "))
2745 {
2746 target_mourn_inferior ();
2747 deprecated_throw_reason (RETURN_QUIT);
2748 }
2749
2750 target_terminal_inferior ();
2751 }
2752
2753 /* Enable/disable target terminal ownership. Most targets can use
2754 terminal groups to control terminal ownership. Remote targets are
2755 different in that explicit transfer of ownership to/from GDB/target
2756 is required. */
2757
2758 static void
2759 remote_async_terminal_inferior (void)
2760 {
2761 /* FIXME: cagney/1999-09-27: Shouldn't need to test for
2762 sync_execution here. This function should only be called when
2763 GDB is resuming the inferior in the forground. A background
2764 resume (``run&'') should leave GDB in control of the terminal and
2765 consequently should not call this code. */
2766 if (!sync_execution)
2767 return;
2768 /* FIXME: cagney/1999-09-27: Closely related to the above. Make
2769 calls target_terminal_*() idenpotent. The event-loop GDB talking
2770 to an asynchronous target with a synchronous command calls this
2771 function from both event-top.c and infrun.c/infcmd.c. Once GDB
2772 stops trying to transfer the terminal to the target when it
2773 shouldn't this guard can go away. */
2774 if (!remote_async_terminal_ours_p)
2775 return;
2776 delete_file_handler (input_fd);
2777 remote_async_terminal_ours_p = 0;
2778 initialize_sigint_signal_handler ();
2779 /* NOTE: At this point we could also register our selves as the
2780 recipient of all input. Any characters typed could then be
2781 passed on down to the target. */
2782 }
2783
2784 static void
2785 remote_async_terminal_ours (void)
2786 {
2787 /* See FIXME in remote_async_terminal_inferior. */
2788 if (!sync_execution)
2789 return;
2790 /* See FIXME in remote_async_terminal_inferior. */
2791 if (remote_async_terminal_ours_p)
2792 return;
2793 cleanup_sigint_signal_handler (NULL);
2794 add_file_handler (input_fd, stdin_event_handler, 0);
2795 remote_async_terminal_ours_p = 1;
2796 }
2797
2798 /* If nonzero, ignore the next kill. */
2799
2800 int kill_kludge;
2801
2802 void
2803 remote_console_output (char *msg)
2804 {
2805 char *p;
2806
2807 for (p = msg; p[0] && p[1]; p += 2)
2808 {
2809 char tb[2];
2810 char c = fromhex (p[0]) * 16 + fromhex (p[1]);
2811 tb[0] = c;
2812 tb[1] = 0;
2813 fputs_unfiltered (tb, gdb_stdtarg);
2814 }
2815 gdb_flush (gdb_stdtarg);
2816 }
2817
2818 /* Wait until the remote machine stops, then return,
2819 storing status in STATUS just as `wait' would.
2820 Returns "pid", which in the case of a multi-threaded
2821 remote OS, is the thread-id. */
2822
2823 static ptid_t
2824 remote_wait (ptid_t ptid, struct target_waitstatus *status)
2825 {
2826 struct remote_state *rs = get_remote_state ();
2827 unsigned char *buf = alloca (rs->remote_packet_size);
2828 ULONGEST thread_num = -1;
2829 ULONGEST addr;
2830
2831 status->kind = TARGET_WAITKIND_EXITED;
2832 status->value.integer = 0;
2833
2834 while (1)
2835 {
2836 unsigned char *p;
2837
2838 ofunc = signal (SIGINT, remote_interrupt);
2839 getpkt (buf, (rs->remote_packet_size), 1);
2840 signal (SIGINT, ofunc);
2841
2842 /* This is a hook for when we need to do something (perhaps the
2843 collection of trace data) every time the target stops. */
2844 if (deprecated_target_wait_loop_hook)
2845 (*deprecated_target_wait_loop_hook) ();
2846
2847 remote_stopped_by_watchpoint_p = 0;
2848
2849 switch (buf[0])
2850 {
2851 case 'E': /* Error of some sort. */
2852 warning (_("Remote failure reply: %s"), buf);
2853 continue;
2854 case 'F': /* File-I/O request. */
2855 remote_fileio_request (buf);
2856 continue;
2857 case 'T': /* Status with PC, SP, FP, ... */
2858 {
2859 int i;
2860 char regs[MAX_REGISTER_SIZE];
2861
2862 /* Expedited reply, containing Signal, {regno, reg} repeat. */
2863 /* format is: 'Tssn...:r...;n...:r...;n...:r...;#cc', where
2864 ss = signal number
2865 n... = register number
2866 r... = register contents
2867 */
2868 p = &buf[3]; /* after Txx */
2869
2870 while (*p)
2871 {
2872 unsigned char *p1;
2873 char *p_temp;
2874 int fieldsize;
2875 LONGEST pnum = 0;
2876
2877 /* If the packet contains a register number save it in
2878 pnum and set p1 to point to the character following
2879 it. Otherwise p1 points to p. */
2880
2881 /* If this packet is an awatch packet, don't parse the
2882 'a' as a register number. */
2883
2884 if (strncmp (p, "awatch", strlen("awatch")) != 0)
2885 {
2886 /* Read the ``P'' register number. */
2887 pnum = strtol (p, &p_temp, 16);
2888 p1 = (unsigned char *) p_temp;
2889 }
2890 else
2891 p1 = p;
2892
2893 if (p1 == p) /* No register number present here. */
2894 {
2895 p1 = (unsigned char *) strchr (p, ':');
2896 if (p1 == NULL)
2897 warning (_("Malformed packet(a) (missing colon): %s\n\
2898 Packet: '%s'\n"),
2899 p, buf);
2900 if (strncmp (p, "thread", p1 - p) == 0)
2901 {
2902 p_temp = unpack_varlen_hex (++p1, &thread_num);
2903 record_currthread (thread_num);
2904 p = (unsigned char *) p_temp;
2905 }
2906 else if ((strncmp (p, "watch", p1 - p) == 0)
2907 || (strncmp (p, "rwatch", p1 - p) == 0)
2908 || (strncmp (p, "awatch", p1 - p) == 0))
2909 {
2910 remote_stopped_by_watchpoint_p = 1;
2911 p = unpack_varlen_hex (++p1, &addr);
2912 remote_watch_data_address = (CORE_ADDR)addr;
2913 }
2914 else
2915 {
2916 /* Silently skip unknown optional info. */
2917 p_temp = strchr (p1 + 1, ';');
2918 if (p_temp)
2919 p = (unsigned char *) p_temp;
2920 }
2921 }
2922 else
2923 {
2924 struct packet_reg *reg = packet_reg_from_pnum (rs, pnum);
2925 p = p1;
2926
2927 if (*p++ != ':')
2928 error (_("Malformed packet(b) (missing colon): %s\n\
2929 Packet: '%s'\n"),
2930 p, buf);
2931
2932 if (reg == NULL)
2933 error (_("Remote sent bad register number %s: %s\n\
2934 Packet: '%s'\n"),
2935 phex_nz (pnum, 0), p, buf);
2936
2937 fieldsize = hex2bin (p, regs,
2938 register_size (current_gdbarch,
2939 reg->regnum));
2940 p += 2 * fieldsize;
2941 if (fieldsize < register_size (current_gdbarch,
2942 reg->regnum))
2943 warning (_("Remote reply is too short: %s"), buf);
2944 regcache_raw_supply (current_regcache,
2945 reg->regnum, regs);
2946 }
2947
2948 if (*p++ != ';')
2949 error (_("Remote register badly formatted: %s\nhere: %s"),
2950 buf, p);
2951 }
2952 }
2953 /* fall through */
2954 case 'S': /* Old style status, just signal only. */
2955 status->kind = TARGET_WAITKIND_STOPPED;
2956 status->value.sig = (enum target_signal)
2957 (((fromhex (buf[1])) << 4) + (fromhex (buf[2])));
2958
2959 if (buf[3] == 'p')
2960 {
2961 thread_num = strtol ((const char *) &buf[4], NULL, 16);
2962 record_currthread (thread_num);
2963 }
2964 goto got_status;
2965 case 'W': /* Target exited. */
2966 {
2967 /* The remote process exited. */
2968 status->kind = TARGET_WAITKIND_EXITED;
2969 status->value.integer = (fromhex (buf[1]) << 4) + fromhex (buf[2]);
2970 goto got_status;
2971 }
2972 case 'X':
2973 status->kind = TARGET_WAITKIND_SIGNALLED;
2974 status->value.sig = (enum target_signal)
2975 (((fromhex (buf[1])) << 4) + (fromhex (buf[2])));
2976 kill_kludge = 1;
2977
2978 goto got_status;
2979 case 'O': /* Console output. */
2980 remote_console_output (buf + 1);
2981 continue;
2982 case '\0':
2983 if (last_sent_signal != TARGET_SIGNAL_0)
2984 {
2985 /* Zero length reply means that we tried 'S' or 'C' and
2986 the remote system doesn't support it. */
2987 target_terminal_ours_for_output ();
2988 printf_filtered
2989 ("Can't send signals to this remote system. %s not sent.\n",
2990 target_signal_to_name (last_sent_signal));
2991 last_sent_signal = TARGET_SIGNAL_0;
2992 target_terminal_inferior ();
2993
2994 strcpy ((char *) buf, last_sent_step ? "s" : "c");
2995 putpkt ((char *) buf);
2996 continue;
2997 }
2998 /* else fallthrough */
2999 default:
3000 warning (_("Invalid remote reply: %s"), buf);
3001 continue;
3002 }
3003 }
3004 got_status:
3005 if (thread_num != -1)
3006 {
3007 return pid_to_ptid (thread_num);
3008 }
3009 return inferior_ptid;
3010 }
3011
3012 /* Async version of remote_wait. */
3013 static ptid_t
3014 remote_async_wait (ptid_t ptid, struct target_waitstatus *status)
3015 {
3016 struct remote_state *rs = get_remote_state ();
3017 unsigned char *buf = alloca (rs->remote_packet_size);
3018 ULONGEST thread_num = -1;
3019 ULONGEST addr;
3020
3021 status->kind = TARGET_WAITKIND_EXITED;
3022 status->value.integer = 0;
3023
3024 remote_stopped_by_watchpoint_p = 0;
3025
3026 while (1)
3027 {
3028 unsigned char *p;
3029
3030 if (!target_is_async_p ())
3031 ofunc = signal (SIGINT, remote_interrupt);
3032 /* FIXME: cagney/1999-09-27: If we're in async mode we should
3033 _never_ wait for ever -> test on target_is_async_p().
3034 However, before we do that we need to ensure that the caller
3035 knows how to take the target into/out of async mode. */
3036 getpkt (buf, (rs->remote_packet_size), wait_forever_enabled_p);
3037 if (!target_is_async_p ())
3038 signal (SIGINT, ofunc);
3039
3040 /* This is a hook for when we need to do something (perhaps the
3041 collection of trace data) every time the target stops. */
3042 if (deprecated_target_wait_loop_hook)
3043 (*deprecated_target_wait_loop_hook) ();
3044
3045 switch (buf[0])
3046 {
3047 case 'E': /* Error of some sort. */
3048 warning (_("Remote failure reply: %s"), buf);
3049 continue;
3050 case 'F': /* File-I/O request. */
3051 remote_fileio_request (buf);
3052 continue;
3053 case 'T': /* Status with PC, SP, FP, ... */
3054 {
3055 int i;
3056 char regs[MAX_REGISTER_SIZE];
3057
3058 /* Expedited reply, containing Signal, {regno, reg} repeat. */
3059 /* format is: 'Tssn...:r...;n...:r...;n...:r...;#cc', where
3060 ss = signal number
3061 n... = register number
3062 r... = register contents
3063 */
3064 p = &buf[3]; /* after Txx */
3065
3066 while (*p)
3067 {
3068 unsigned char *p1;
3069 char *p_temp;
3070 int fieldsize;
3071 long pnum = 0;
3072
3073 /* If the packet contains a register number, save it
3074 in pnum and set p1 to point to the character
3075 following it. Otherwise p1 points to p. */
3076
3077 /* If this packet is an awatch packet, don't parse the 'a'
3078 as a register number. */
3079
3080 if (!strncmp (p, "awatch", strlen ("awatch")) != 0)
3081 {
3082 /* Read the register number. */
3083 pnum = strtol (p, &p_temp, 16);
3084 p1 = (unsigned char *) p_temp;
3085 }
3086 else
3087 p1 = p;
3088
3089 if (p1 == p) /* No register number present here. */
3090 {
3091 p1 = (unsigned char *) strchr (p, ':');
3092 if (p1 == NULL)
3093 error (_("Malformed packet(a) (missing colon): %s\n\
3094 Packet: '%s'\n"),
3095 p, buf);
3096 if (strncmp (p, "thread", p1 - p) == 0)
3097 {
3098 p_temp = unpack_varlen_hex (++p1, &thread_num);
3099 record_currthread (thread_num);
3100 p = (unsigned char *) p_temp;
3101 }
3102 else if ((strncmp (p, "watch", p1 - p) == 0)
3103 || (strncmp (p, "rwatch", p1 - p) == 0)
3104 || (strncmp (p, "awatch", p1 - p) == 0))
3105 {
3106 remote_stopped_by_watchpoint_p = 1;
3107 p = unpack_varlen_hex (++p1, &addr);
3108 remote_watch_data_address = (CORE_ADDR)addr;
3109 }
3110 else
3111 {
3112 /* Silently skip unknown optional info. */
3113 p_temp = (unsigned char *) strchr (p1 + 1, ';');
3114 if (p_temp)
3115 p = p_temp;
3116 }
3117 }
3118
3119 else
3120 {
3121 struct packet_reg *reg = packet_reg_from_pnum (rs, pnum);
3122 p = p1;
3123 if (*p++ != ':')
3124 error (_("Malformed packet(b) (missing colon): %s\n\
3125 Packet: '%s'\n"),
3126 p, buf);
3127
3128 if (reg == NULL)
3129 error (_("Remote sent bad register number %ld: %s\n\
3130 Packet: '%s'\n"),
3131 pnum, p, buf);
3132
3133 fieldsize = hex2bin (p, regs,
3134 register_size (current_gdbarch,
3135 reg->regnum));
3136 p += 2 * fieldsize;
3137 if (fieldsize < register_size (current_gdbarch,
3138 reg->regnum))
3139 warning (_("Remote reply is too short: %s"), buf);
3140 regcache_raw_supply (current_regcache, reg->regnum, regs);
3141 }
3142
3143 if (*p++ != ';')
3144 error (_("Remote register badly formatted: %s\nhere: %s"),
3145 buf, p);
3146 }
3147 }
3148 /* fall through */
3149 case 'S': /* Old style status, just signal only. */
3150 status->kind = TARGET_WAITKIND_STOPPED;
3151 status->value.sig = (enum target_signal)
3152 (((fromhex (buf[1])) << 4) + (fromhex (buf[2])));
3153
3154 if (buf[3] == 'p')
3155 {
3156 thread_num = strtol ((const char *) &buf[4], NULL, 16);
3157 record_currthread (thread_num);
3158 }
3159 goto got_status;
3160 case 'W': /* Target exited. */
3161 {
3162 /* The remote process exited. */
3163 status->kind = TARGET_WAITKIND_EXITED;
3164 status->value.integer = (fromhex (buf[1]) << 4) + fromhex (buf[2]);
3165 goto got_status;
3166 }
3167 case 'X':
3168 status->kind = TARGET_WAITKIND_SIGNALLED;
3169 status->value.sig = (enum target_signal)
3170 (((fromhex (buf[1])) << 4) + (fromhex (buf[2])));
3171 kill_kludge = 1;
3172
3173 goto got_status;
3174 case 'O': /* Console output. */
3175 remote_console_output (buf + 1);
3176 /* Return immediately to the event loop. The event loop will
3177 still be waiting on the inferior afterwards. */
3178 status->kind = TARGET_WAITKIND_IGNORE;
3179 goto got_status;
3180 case '\0':
3181 if (last_sent_signal != TARGET_SIGNAL_0)
3182 {
3183 /* Zero length reply means that we tried 'S' or 'C' and
3184 the remote system doesn't support it. */
3185 target_terminal_ours_for_output ();
3186 printf_filtered
3187 ("Can't send signals to this remote system. %s not sent.\n",
3188 target_signal_to_name (last_sent_signal));
3189 last_sent_signal = TARGET_SIGNAL_0;
3190 target_terminal_inferior ();
3191
3192 strcpy ((char *) buf, last_sent_step ? "s" : "c");
3193 putpkt ((char *) buf);
3194 continue;
3195 }
3196 /* else fallthrough */
3197 default:
3198 warning (_("Invalid remote reply: %s"), buf);
3199 continue;
3200 }
3201 }
3202 got_status:
3203 if (thread_num != -1)
3204 {
3205 return pid_to_ptid (thread_num);
3206 }
3207 return inferior_ptid;
3208 }
3209
3210 /* Number of bytes of registers this stub implements. */
3211
3212 static int register_bytes_found;
3213
3214 /* Read the remote registers into the block REGS. */
3215 /* Currently we just read all the registers, so we don't use regnum. */
3216
3217 static int
3218 fetch_register_using_p (int regnum)
3219 {
3220 struct remote_state *rs = get_remote_state ();
3221 char *buf = alloca (rs->remote_packet_size), *p;
3222 char regp[MAX_REGISTER_SIZE];
3223 int i;
3224
3225 p = buf;
3226 *p++ = 'p';
3227 p += hexnumstr (p, regnum);
3228 *p++ = '\0';
3229 remote_send (buf, rs->remote_packet_size);
3230
3231 /* If the stub didn't recognize the packet, or if we got an error,
3232 tell our caller. */
3233 if (buf[0] == '\0' || buf[0] == 'E')
3234 return 0;
3235
3236 /* If this register is unfetchable, tell the regcache. */
3237 if (buf[0] == 'x')
3238 {
3239 regcache_raw_supply (current_regcache, regnum, NULL);
3240 set_register_cached (regnum, -1);
3241 return 1;
3242 }
3243
3244 /* Otherwise, parse and supply the value. */
3245 p = buf;
3246 i = 0;
3247 while (p[0] != 0)
3248 {
3249 if (p[1] == 0)
3250 {
3251 error (_("fetch_register_using_p: early buf termination"));
3252 return 0;
3253 }
3254
3255 regp[i++] = fromhex (p[0]) * 16 + fromhex (p[1]);
3256 p += 2;
3257 }
3258 regcache_raw_supply (current_regcache, regnum, regp);
3259 return 1;
3260 }
3261
3262 static void
3263 remote_fetch_registers (int regnum)
3264 {
3265 struct remote_state *rs = get_remote_state ();
3266 char *buf = alloca (rs->remote_packet_size);
3267 int i;
3268 char *p;
3269 char *regs = alloca (rs->sizeof_g_packet);
3270
3271 set_thread (PIDGET (inferior_ptid), 1);
3272
3273 if (regnum >= 0)
3274 {
3275 struct packet_reg *reg = packet_reg_from_regnum (rs, regnum);
3276 gdb_assert (reg != NULL);
3277 if (!reg->in_g_packet)
3278 internal_error (__FILE__, __LINE__,
3279 _("Attempt to fetch a non G-packet register when this "
3280 "remote.c does not support the p-packet."));
3281 }
3282 switch (remote_protocol_p.support)
3283 {
3284 case PACKET_DISABLE:
3285 break;
3286 case PACKET_ENABLE:
3287 if (fetch_register_using_p (regnum))
3288 return;
3289 else
3290 error (_("Protocol error: p packet not recognized by stub"));
3291 case PACKET_SUPPORT_UNKNOWN:
3292 if (fetch_register_using_p (regnum))
3293 {
3294 /* The stub recognized the 'p' packet. Remember this. */
3295 remote_protocol_p.support = PACKET_ENABLE;
3296 return;
3297 }
3298 else
3299 {
3300 /* The stub does not support the 'P' packet. Use 'G'
3301 instead, and don't try using 'P' in the future (it
3302 will just waste our time). */
3303 remote_protocol_p.support = PACKET_DISABLE;
3304 break;
3305 }
3306 }
3307
3308 sprintf (buf, "g");
3309 remote_send (buf, (rs->remote_packet_size));
3310
3311 /* Save the size of the packet sent to us by the target. Its used
3312 as a heuristic when determining the max size of packets that the
3313 target can safely receive. */
3314 if ((rs->actual_register_packet_size) == 0)
3315 (rs->actual_register_packet_size) = strlen (buf);
3316
3317 /* Unimplemented registers read as all bits zero. */
3318 memset (regs, 0, rs->sizeof_g_packet);
3319
3320 /* We can get out of synch in various cases. If the first character
3321 in the buffer is not a hex character, assume that has happened
3322 and try to fetch another packet to read. */
3323 while ((buf[0] < '0' || buf[0] > '9')
3324 && (buf[0] < 'A' || buf[0] > 'F')
3325 && (buf[0] < 'a' || buf[0] > 'f')
3326 && buf[0] != 'x') /* New: unavailable register value. */
3327 {
3328 if (remote_debug)
3329 fprintf_unfiltered (gdb_stdlog,
3330 "Bad register packet; fetching a new packet\n");
3331 getpkt (buf, (rs->remote_packet_size), 0);
3332 }
3333
3334 /* Reply describes registers byte by byte, each byte encoded as two
3335 hex characters. Suck them all up, then supply them to the
3336 register cacheing/storage mechanism. */
3337
3338 p = buf;
3339 for (i = 0; i < rs->sizeof_g_packet; i++)
3340 {
3341 if (p[0] == 0)
3342 break;
3343 if (p[1] == 0)
3344 {
3345 warning (_("Remote reply is of odd length: %s"), buf);
3346 /* Don't change register_bytes_found in this case, and don't
3347 print a second warning. */
3348 goto supply_them;
3349 }
3350 if (p[0] == 'x' && p[1] == 'x')
3351 regs[i] = 0; /* 'x' */
3352 else
3353 regs[i] = fromhex (p[0]) * 16 + fromhex (p[1]);
3354 p += 2;
3355 }
3356
3357 if (i != register_bytes_found)
3358 {
3359 register_bytes_found = i;
3360 if (REGISTER_BYTES_OK_P ()
3361 && !REGISTER_BYTES_OK (i))
3362 warning (_("Remote reply is too short: %s"), buf);
3363 }
3364
3365 supply_them:
3366 {
3367 int i;
3368 for (i = 0; i < NUM_REGS + NUM_PSEUDO_REGS; i++)
3369 {
3370 struct packet_reg *r = &rs->regs[i];
3371 if (r->in_g_packet)
3372 {
3373 if (r->offset * 2 >= strlen (buf))
3374 /* A short packet that didn't include the register's
3375 value, this implies that the register is zero (and
3376 not that the register is unavailable). Supply that
3377 zero value. */
3378 regcache_raw_supply (current_regcache, r->regnum, NULL);
3379 else if (buf[r->offset * 2] == 'x')
3380 {
3381 gdb_assert (r->offset * 2 < strlen (buf));
3382 /* The register isn't available, mark it as such (at
3383 the same time setting the value to zero). */
3384 regcache_raw_supply (current_regcache, r->regnum, NULL);
3385 set_register_cached (i, -1);
3386 }
3387 else
3388 regcache_raw_supply (current_regcache, r->regnum,
3389 regs + r->offset);
3390 }
3391 }
3392 }
3393 }
3394
3395 /* Prepare to store registers. Since we may send them all (using a
3396 'G' request), we have to read out the ones we don't want to change
3397 first. */
3398
3399 static void
3400 remote_prepare_to_store (void)
3401 {
3402 struct remote_state *rs = get_remote_state ();
3403 int i;
3404 char buf[MAX_REGISTER_SIZE];
3405
3406 /* Make sure the entire registers array is valid. */
3407 switch (remote_protocol_P.support)
3408 {
3409 case PACKET_DISABLE:
3410 case PACKET_SUPPORT_UNKNOWN:
3411 /* Make sure all the necessary registers are cached. */
3412 for (i = 0; i < NUM_REGS; i++)
3413 if (rs->regs[i].in_g_packet)
3414 regcache_raw_read (current_regcache, rs->regs[i].regnum, buf);
3415 break;
3416 case PACKET_ENABLE:
3417 break;
3418 }
3419 }
3420
3421 /* Helper: Attempt to store REGNUM using the P packet. Return fail IFF
3422 packet was not recognized. */
3423
3424 static int
3425 store_register_using_P (int regnum)
3426 {
3427 struct remote_state *rs = get_remote_state ();
3428 struct packet_reg *reg = packet_reg_from_regnum (rs, regnum);
3429 /* Try storing a single register. */
3430 char *buf = alloca (rs->remote_packet_size);
3431 char regp[MAX_REGISTER_SIZE];
3432 char *p;
3433 int i;
3434
3435 sprintf (buf, "P%s=", phex_nz (reg->pnum, 0));
3436 p = buf + strlen (buf);
3437 regcache_raw_collect (current_regcache, reg->regnum, regp);
3438 bin2hex (regp, p, register_size (current_gdbarch, reg->regnum));
3439 remote_send (buf, rs->remote_packet_size);
3440
3441 return buf[0] != '\0';
3442 }
3443
3444
3445 /* Store register REGNUM, or all registers if REGNUM == -1, from the
3446 contents of the register cache buffer. FIXME: ignores errors. */
3447
3448 static void
3449 remote_store_registers (int regnum)
3450 {
3451 struct remote_state *rs = get_remote_state ();
3452 char *buf;
3453 char *regs;
3454 int i;
3455 char *p;
3456
3457 set_thread (PIDGET (inferior_ptid), 1);
3458
3459 if (regnum >= 0)
3460 {
3461 switch (remote_protocol_P.support)
3462 {
3463 case PACKET_DISABLE:
3464 break;
3465 case PACKET_ENABLE:
3466 if (store_register_using_P (regnum))
3467 return;
3468 else
3469 error (_("Protocol error: P packet not recognized by stub"));
3470 case PACKET_SUPPORT_UNKNOWN:
3471 if (store_register_using_P (regnum))
3472 {
3473 /* The stub recognized the 'P' packet. Remember this. */
3474 remote_protocol_P.support = PACKET_ENABLE;
3475 return;
3476 }
3477 else
3478 {
3479 /* The stub does not support the 'P' packet. Use 'G'
3480 instead, and don't try using 'P' in the future (it
3481 will just waste our time). */
3482 remote_protocol_P.support = PACKET_DISABLE;
3483 break;
3484 }
3485 }
3486 }
3487
3488 /* Extract all the registers in the regcache copying them into a
3489 local buffer. */
3490 {
3491 int i;
3492 regs = alloca (rs->sizeof_g_packet);
3493 memset (regs, 0, rs->sizeof_g_packet);
3494 for (i = 0; i < NUM_REGS + NUM_PSEUDO_REGS; i++)
3495 {
3496 struct packet_reg *r = &rs->regs[i];
3497 if (r->in_g_packet)
3498 regcache_raw_collect (current_regcache, r->regnum, regs + r->offset);
3499 }
3500 }
3501
3502 /* Command describes registers byte by byte,
3503 each byte encoded as two hex characters. */
3504 buf = alloca (rs->remote_packet_size);
3505 p = buf;
3506 *p++ = 'G';
3507 /* remote_prepare_to_store insures that register_bytes_found gets set. */
3508 bin2hex (regs, p, register_bytes_found);
3509 remote_send (buf, (rs->remote_packet_size));
3510 }
3511 \f
3512
3513 /* Return the number of hex digits in num. */
3514
3515 static int
3516 hexnumlen (ULONGEST num)
3517 {
3518 int i;
3519
3520 for (i = 0; num != 0; i++)
3521 num >>= 4;
3522
3523 return max (i, 1);
3524 }
3525
3526 /* Set BUF to the minimum number of hex digits representing NUM. */
3527
3528 static int
3529 hexnumstr (char *buf, ULONGEST num)
3530 {
3531 int len = hexnumlen (num);
3532 return hexnumnstr (buf, num, len);
3533 }
3534
3535
3536 /* Set BUF to the hex digits representing NUM, padded to WIDTH characters. */
3537
3538 static int
3539 hexnumnstr (char *buf, ULONGEST num, int width)
3540 {
3541 int i;
3542
3543 buf[width] = '\0';
3544
3545 for (i = width - 1; i >= 0; i--)
3546 {
3547 buf[i] = "0123456789abcdef"[(num & 0xf)];
3548 num >>= 4;
3549 }
3550
3551 return width;
3552 }
3553
3554 /* Mask all but the least significant REMOTE_ADDRESS_SIZE bits. */
3555
3556 static CORE_ADDR
3557 remote_address_masked (CORE_ADDR addr)
3558 {
3559 if (remote_address_size > 0
3560 && remote_address_size < (sizeof (ULONGEST) * 8))
3561 {
3562 /* Only create a mask when that mask can safely be constructed
3563 in a ULONGEST variable. */
3564 ULONGEST mask = 1;
3565 mask = (mask << remote_address_size) - 1;
3566 addr &= mask;
3567 }
3568 return addr;
3569 }
3570
3571 /* Determine whether the remote target supports binary downloading.
3572 This is accomplished by sending a no-op memory write of zero length
3573 to the target at the specified address. It does not suffice to send
3574 the whole packet, since many stubs strip the eighth bit and
3575 subsequently compute a wrong checksum, which causes real havoc with
3576 remote_write_bytes.
3577
3578 NOTE: This can still lose if the serial line is not eight-bit
3579 clean. In cases like this, the user should clear "remote
3580 X-packet". */
3581
3582 static void
3583 check_binary_download (CORE_ADDR addr)
3584 {
3585 struct remote_state *rs = get_remote_state ();
3586 switch (remote_protocol_binary_download.support)
3587 {
3588 case PACKET_DISABLE:
3589 break;
3590 case PACKET_ENABLE:
3591 break;
3592 case PACKET_SUPPORT_UNKNOWN:
3593 {
3594 char *buf = alloca (rs->remote_packet_size);
3595 char *p;
3596
3597 p = buf;
3598 *p++ = 'X';
3599 p += hexnumstr (p, (ULONGEST) addr);
3600 *p++ = ',';
3601 p += hexnumstr (p, (ULONGEST) 0);
3602 *p++ = ':';
3603 *p = '\0';
3604
3605 putpkt_binary (buf, (int) (p - buf));
3606 getpkt (buf, (rs->remote_packet_size), 0);
3607
3608 if (buf[0] == '\0')
3609 {
3610 if (remote_debug)
3611 fprintf_unfiltered (gdb_stdlog,
3612 "binary downloading NOT suppported by target\n");
3613 remote_protocol_binary_download.support = PACKET_DISABLE;
3614 }
3615 else
3616 {
3617 if (remote_debug)
3618 fprintf_unfiltered (gdb_stdlog,
3619 "binary downloading suppported by target\n");
3620 remote_protocol_binary_download.support = PACKET_ENABLE;
3621 }
3622 break;
3623 }
3624 }
3625 }
3626
3627 /* Write memory data directly to the remote machine.
3628 This does not inform the data cache; the data cache uses this.
3629 MEMADDR is the address in the remote memory space.
3630 MYADDR is the address of the buffer in our space.
3631 LEN is the number of bytes.
3632
3633 Returns number of bytes transferred, or 0 (setting errno) for
3634 error. Only transfer a single packet. */
3635
3636 int
3637 remote_write_bytes (CORE_ADDR memaddr, char *myaddr, int len)
3638 {
3639 unsigned char *buf;
3640 unsigned char *p;
3641 unsigned char *plen;
3642 long sizeof_buf;
3643 int plenlen;
3644 int todo;
3645 int nr_bytes;
3646 int payload_size;
3647 unsigned char *payload_start;
3648
3649 /* Verify that the target can support a binary download. */
3650 check_binary_download (memaddr);
3651
3652 payload_size = get_memory_write_packet_size ();
3653
3654 /* Compute the size, and then allocate space for the largest
3655 possible packet. Include space for an extra trailing NUL. */
3656 sizeof_buf = payload_size + 1;
3657 buf = alloca (sizeof_buf);
3658
3659 /* Compute the size of the actual payload by subtracting out the
3660 packet header and footer overhead: "$M<memaddr>,<len>:...#nn".
3661 */
3662 payload_size -= strlen ("$M,:#NN");
3663 payload_size -= hexnumlen (memaddr);
3664
3665 /* Construct the packet header: "[MX]<memaddr>,<len>:". */
3666
3667 /* Append "[XM]". Compute a best guess of the number of bytes
3668 actually transfered. */
3669 p = buf;
3670 switch (remote_protocol_binary_download.support)
3671 {
3672 case PACKET_ENABLE:
3673 *p++ = 'X';
3674 /* Best guess at number of bytes that will fit. */
3675 todo = min (len, payload_size);
3676 payload_size -= hexnumlen (todo);
3677 todo = min (todo, payload_size);
3678 break;
3679 case PACKET_DISABLE:
3680 *p++ = 'M';
3681 /* Num bytes that will fit. */
3682 todo = min (len, payload_size / 2);
3683 payload_size -= hexnumlen (todo);
3684 todo = min (todo, payload_size / 2);
3685 break;
3686 case PACKET_SUPPORT_UNKNOWN:
3687 internal_error (__FILE__, __LINE__,
3688 _("remote_write_bytes: bad internal state"));
3689 default:
3690 internal_error (__FILE__, __LINE__, _("bad switch"));
3691 }
3692 if (todo <= 0)
3693 internal_error (__FILE__, __LINE__,
3694 _("minumum packet size too small to write data"));
3695
3696 /* Append "<memaddr>". */
3697 memaddr = remote_address_masked (memaddr);
3698 p += hexnumstr (p, (ULONGEST) memaddr);
3699
3700 /* Append ",". */
3701 *p++ = ',';
3702
3703 /* Append <len>. Retain the location/size of <len>. It may need to
3704 be adjusted once the packet body has been created. */
3705 plen = p;
3706 plenlen = hexnumstr (p, (ULONGEST) todo);
3707 p += plenlen;
3708
3709 /* Append ":". */
3710 *p++ = ':';
3711 *p = '\0';
3712
3713 /* Append the packet body. */
3714 payload_start = p;
3715 switch (remote_protocol_binary_download.support)
3716 {
3717 case PACKET_ENABLE:
3718 /* Binary mode. Send target system values byte by byte, in
3719 increasing byte addresses. Only escape certain critical
3720 characters. */
3721 for (nr_bytes = 0;
3722 (nr_bytes < todo) && (p - payload_start) < payload_size;
3723 nr_bytes++)
3724 {
3725 switch (myaddr[nr_bytes] & 0xff)
3726 {
3727 case '$':
3728 case '#':
3729 case 0x7d:
3730 /* These must be escaped. */
3731 *p++ = 0x7d;
3732 *p++ = (myaddr[nr_bytes] & 0xff) ^ 0x20;
3733 break;
3734 default:
3735 *p++ = myaddr[nr_bytes] & 0xff;
3736 break;
3737 }
3738 }
3739 if (nr_bytes < todo)
3740 {
3741 /* Escape chars have filled up the buffer prematurely,
3742 and we have actually sent fewer bytes than planned.
3743 Fix-up the length field of the packet. Use the same
3744 number of characters as before. */
3745 plen += hexnumnstr (plen, (ULONGEST) nr_bytes, plenlen);
3746 *plen = ':'; /* overwrite \0 from hexnumnstr() */
3747 }
3748 break;
3749 case PACKET_DISABLE:
3750 /* Normal mode: Send target system values byte by byte, in
3751 increasing byte addresses. Each byte is encoded as a two hex
3752 value. */
3753 nr_bytes = bin2hex (myaddr, p, todo);
3754 p += 2 * nr_bytes;
3755 break;
3756 case PACKET_SUPPORT_UNKNOWN:
3757 internal_error (__FILE__, __LINE__,
3758 _("remote_write_bytes: bad internal state"));
3759 default:
3760 internal_error (__FILE__, __LINE__, _("bad switch"));
3761 }
3762
3763 putpkt_binary (buf, (int) (p - buf));
3764 getpkt (buf, sizeof_buf, 0);
3765
3766 if (buf[0] == 'E')
3767 {
3768 /* There is no correspondance between what the remote protocol
3769 uses for errors and errno codes. We would like a cleaner way
3770 of representing errors (big enough to include errno codes,
3771 bfd_error codes, and others). But for now just return EIO. */
3772 errno = EIO;
3773 return 0;
3774 }
3775
3776 /* Return NR_BYTES, not TODO, in case escape chars caused us to send
3777 fewer bytes than we'd planned. */
3778 return nr_bytes;
3779 }
3780
3781 /* Read memory data directly from the remote machine.
3782 This does not use the data cache; the data cache uses this.
3783 MEMADDR is the address in the remote memory space.
3784 MYADDR is the address of the buffer in our space.
3785 LEN is the number of bytes.
3786
3787 Returns number of bytes transferred, or 0 for error. */
3788
3789 /* NOTE: cagney/1999-10-18: This function (and its siblings in other
3790 remote targets) shouldn't attempt to read the entire buffer.
3791 Instead it should read a single packet worth of data and then
3792 return the byte size of that packet to the caller. The caller (its
3793 caller and its callers caller ;-) already contains code for
3794 handling partial reads. */
3795
3796 int
3797 remote_read_bytes (CORE_ADDR memaddr, char *myaddr, int len)
3798 {
3799 char *buf;
3800 int max_buf_size; /* Max size of packet output buffer. */
3801 long sizeof_buf;
3802 int origlen;
3803
3804 /* Create a buffer big enough for this packet. */
3805 max_buf_size = get_memory_read_packet_size ();
3806 sizeof_buf = max_buf_size + 1; /* Space for trailing NULL. */
3807 buf = alloca (sizeof_buf);
3808
3809 origlen = len;
3810 while (len > 0)
3811 {
3812 char *p;
3813 int todo;
3814 int i;
3815
3816 todo = min (len, max_buf_size / 2); /* num bytes that will fit */
3817
3818 /* construct "m"<memaddr>","<len>" */
3819 /* sprintf (buf, "m%lx,%x", (unsigned long) memaddr, todo); */
3820 memaddr = remote_address_masked (memaddr);
3821 p = buf;
3822 *p++ = 'm';
3823 p += hexnumstr (p, (ULONGEST) memaddr);
3824 *p++ = ',';
3825 p += hexnumstr (p, (ULONGEST) todo);
3826 *p = '\0';
3827
3828 putpkt (buf);
3829 getpkt (buf, sizeof_buf, 0);
3830
3831 if (buf[0] == 'E'
3832 && isxdigit (buf[1]) && isxdigit (buf[2])
3833 && buf[3] == '\0')
3834 {
3835 /* There is no correspondance between what the remote
3836 protocol uses for errors and errno codes. We would like
3837 a cleaner way of representing errors (big enough to
3838 include errno codes, bfd_error codes, and others). But
3839 for now just return EIO. */
3840 errno = EIO;
3841 return 0;
3842 }
3843
3844 /* Reply describes memory byte by byte,
3845 each byte encoded as two hex characters. */
3846
3847 p = buf;
3848 if ((i = hex2bin (p, myaddr, todo)) < todo)
3849 {
3850 /* Reply is short. This means that we were able to read
3851 only part of what we wanted to. */
3852 return i + (origlen - len);
3853 }
3854 myaddr += todo;
3855 memaddr += todo;
3856 len -= todo;
3857 }
3858 return origlen;
3859 }
3860 \f
3861 /* Read or write LEN bytes from inferior memory at MEMADDR,
3862 transferring to or from debugger address BUFFER. Write to inferior
3863 if SHOULD_WRITE is nonzero. Returns length of data written or
3864 read; 0 for error. TARGET is unused. */
3865
3866 static int
3867 remote_xfer_memory (CORE_ADDR mem_addr, char *buffer, int mem_len,
3868 int should_write, struct mem_attrib *attrib,
3869 struct target_ops *target)
3870 {
3871 CORE_ADDR targ_addr;
3872 int targ_len;
3873 int res;
3874
3875 /* Should this be the selected frame? */
3876 gdbarch_remote_translate_xfer_address (current_gdbarch,
3877 current_regcache,
3878 mem_addr, mem_len,
3879 &targ_addr, &targ_len);
3880 if (targ_len <= 0)
3881 return 0;
3882
3883 if (should_write)
3884 res = remote_write_bytes (targ_addr, buffer, targ_len);
3885 else
3886 res = remote_read_bytes (targ_addr, buffer, targ_len);
3887
3888 return res;
3889 }
3890
3891 static void
3892 remote_files_info (struct target_ops *ignore)
3893 {
3894 puts_filtered ("Debugging a target over a serial line.\n");
3895 }
3896 \f
3897 /* Stuff for dealing with the packets which are part of this protocol.
3898 See comment at top of file for details. */
3899
3900 /* Read a single character from the remote end, masking it down to 7
3901 bits. */
3902
3903 static int
3904 readchar (int timeout)
3905 {
3906 int ch;
3907
3908 ch = serial_readchar (remote_desc, timeout);
3909
3910 if (ch >= 0)
3911 return (ch & 0x7f);
3912
3913 switch ((enum serial_rc) ch)
3914 {
3915 case SERIAL_EOF:
3916 target_mourn_inferior ();
3917 error (_("Remote connection closed"));
3918 /* no return */
3919 case SERIAL_ERROR:
3920 perror_with_name (_("Remote communication error"));
3921 /* no return */
3922 case SERIAL_TIMEOUT:
3923 break;
3924 }
3925 return ch;
3926 }
3927
3928 /* Send the command in BUF to the remote machine, and read the reply
3929 into BUF. Report an error if we get an error reply. */
3930
3931 static void
3932 remote_send (char *buf,
3933 long sizeof_buf)
3934 {
3935 putpkt (buf);
3936 getpkt (buf, sizeof_buf, 0);
3937
3938 if (buf[0] == 'E')
3939 error (_("Remote failure reply: %s"), buf);
3940 }
3941
3942 /* Display a null-terminated packet on stdout, for debugging, using C
3943 string notation. */
3944
3945 static void
3946 print_packet (char *buf)
3947 {
3948 puts_filtered ("\"");
3949 fputstr_filtered (buf, '"', gdb_stdout);
3950 puts_filtered ("\"");
3951 }
3952
3953 int
3954 putpkt (char *buf)
3955 {
3956 return putpkt_binary (buf, strlen (buf));
3957 }
3958
3959 /* Send a packet to the remote machine, with error checking. The data
3960 of the packet is in BUF. The string in BUF can be at most
3961 (rs->remote_packet_size) - 5 to account for the $, # and checksum,
3962 and for a possible /0 if we are debugging (remote_debug) and want
3963 to print the sent packet as a string. */
3964
3965 static int
3966 putpkt_binary (char *buf, int cnt)
3967 {
3968 struct remote_state *rs = get_remote_state ();
3969 int i;
3970 unsigned char csum = 0;
3971 char *buf2 = alloca (cnt + 6);
3972 long sizeof_junkbuf = (rs->remote_packet_size);
3973 char *junkbuf = alloca (sizeof_junkbuf);
3974
3975 int ch;
3976 int tcount = 0;
3977 char *p;
3978
3979 /* Copy the packet into buffer BUF2, encapsulating it
3980 and giving it a checksum. */
3981
3982 p = buf2;
3983 *p++ = '$';
3984
3985 for (i = 0; i < cnt; i++)
3986 {
3987 csum += buf[i];
3988 *p++ = buf[i];
3989 }
3990 *p++ = '#';
3991 *p++ = tohex ((csum >> 4) & 0xf);
3992 *p++ = tohex (csum & 0xf);
3993
3994 /* Send it over and over until we get a positive ack. */
3995
3996 while (1)
3997 {
3998 int started_error_output = 0;
3999
4000 if (remote_debug)
4001 {
4002 *p = '\0';
4003 fprintf_unfiltered (gdb_stdlog, "Sending packet: ");
4004 fputstrn_unfiltered (buf2, p - buf2, 0, gdb_stdlog);
4005 fprintf_unfiltered (gdb_stdlog, "...");
4006 gdb_flush (gdb_stdlog);
4007 }
4008 if (serial_write (remote_desc, buf2, p - buf2))
4009 perror_with_name (_("putpkt: write failed"));
4010
4011 /* Read until either a timeout occurs (-2) or '+' is read. */
4012 while (1)
4013 {
4014 ch = readchar (remote_timeout);
4015
4016 if (remote_debug)
4017 {
4018 switch (ch)
4019 {
4020 case '+':
4021 case '-':
4022 case SERIAL_TIMEOUT:
4023 case '$':
4024 if (started_error_output)
4025 {
4026 putchar_unfiltered ('\n');
4027 started_error_output = 0;
4028 }
4029 }
4030 }
4031
4032 switch (ch)
4033 {
4034 case '+':
4035 if (remote_debug)
4036 fprintf_unfiltered (gdb_stdlog, "Ack\n");
4037 return 1;
4038 case '-':
4039 if (remote_debug)
4040 fprintf_unfiltered (gdb_stdlog, "Nak\n");
4041 case SERIAL_TIMEOUT:
4042 tcount++;
4043 if (tcount > 3)
4044 return 0;
4045 break; /* Retransmit buffer. */
4046 case '$':
4047 {
4048 if (remote_debug)
4049 fprintf_unfiltered (gdb_stdlog,
4050 "Packet instead of Ack, ignoring it\n");
4051 /* It's probably an old response sent because an ACK
4052 was lost. Gobble up the packet and ack it so it
4053 doesn't get retransmitted when we resend this
4054 packet. */
4055 read_frame (junkbuf, sizeof_junkbuf);
4056 serial_write (remote_desc, "+", 1);
4057 continue; /* Now, go look for +. */
4058 }
4059 default:
4060 if (remote_debug)
4061 {
4062 if (!started_error_output)
4063 {
4064 started_error_output = 1;
4065 fprintf_unfiltered (gdb_stdlog, "putpkt: Junk: ");
4066 }
4067 fputc_unfiltered (ch & 0177, gdb_stdlog);
4068 }
4069 continue;
4070 }
4071 break; /* Here to retransmit. */
4072 }
4073
4074 #if 0
4075 /* This is wrong. If doing a long backtrace, the user should be
4076 able to get out next time we call QUIT, without anything as
4077 violent as interrupt_query. If we want to provide a way out of
4078 here without getting to the next QUIT, it should be based on
4079 hitting ^C twice as in remote_wait. */
4080 if (quit_flag)
4081 {
4082 quit_flag = 0;
4083 interrupt_query ();
4084 }
4085 #endif
4086 }
4087 }
4088
4089 /* Come here after finding the start of the frame. Collect the rest
4090 into BUF, verifying the checksum, length, and handling run-length
4091 compression. No more than sizeof_buf-1 characters are read so that
4092 the buffer can be NUL terminated.
4093
4094 Returns -1 on error, number of characters in buffer (ignoring the
4095 trailing NULL) on success. (could be extended to return one of the
4096 SERIAL status indications). */
4097
4098 static long
4099 read_frame (char *buf,
4100 long sizeof_buf)
4101 {
4102 unsigned char csum;
4103 long bc;
4104 int c;
4105
4106 csum = 0;
4107 bc = 0;
4108
4109 while (1)
4110 {
4111 /* ASSERT (bc < sizeof_buf - 1) - space for trailing NULL. */
4112 c = readchar (remote_timeout);
4113 switch (c)
4114 {
4115 case SERIAL_TIMEOUT:
4116 if (remote_debug)
4117 fputs_filtered ("Timeout in mid-packet, retrying\n", gdb_stdlog);
4118 return -1;
4119 case '$':
4120 if (remote_debug)
4121 fputs_filtered ("Saw new packet start in middle of old one\n",
4122 gdb_stdlog);
4123 return -1; /* Start a new packet, count retries. */
4124 case '#':
4125 {
4126 unsigned char pktcsum;
4127 int check_0 = 0;
4128 int check_1 = 0;
4129
4130 buf[bc] = '\0';
4131
4132 check_0 = readchar (remote_timeout);
4133 if (check_0 >= 0)
4134 check_1 = readchar (remote_timeout);
4135
4136 if (check_0 == SERIAL_TIMEOUT || check_1 == SERIAL_TIMEOUT)
4137 {
4138 if (remote_debug)
4139 fputs_filtered ("Timeout in checksum, retrying\n",
4140 gdb_stdlog);
4141 return -1;
4142 }
4143 else if (check_0 < 0 || check_1 < 0)
4144 {
4145 if (remote_debug)
4146 fputs_filtered ("Communication error in checksum\n",
4147 gdb_stdlog);
4148 return -1;
4149 }
4150
4151 pktcsum = (fromhex (check_0) << 4) | fromhex (check_1);
4152 if (csum == pktcsum)
4153 return bc;
4154
4155 if (remote_debug)
4156 {
4157 fprintf_filtered (gdb_stdlog,
4158 "Bad checksum, sentsum=0x%x, csum=0x%x, buf=",
4159 pktcsum, csum);
4160 fputs_filtered (buf, gdb_stdlog);
4161 fputs_filtered ("\n", gdb_stdlog);
4162 }
4163 /* Number of characters in buffer ignoring trailing
4164 NULL. */
4165 return -1;
4166 }
4167 case '*': /* Run length encoding. */
4168 {
4169 int repeat;
4170 csum += c;
4171
4172 c = readchar (remote_timeout);
4173 csum += c;
4174 repeat = c - ' ' + 3; /* Compute repeat count. */
4175
4176 /* The character before ``*'' is repeated. */
4177
4178 if (repeat > 0 && repeat <= 255
4179 && bc > 0
4180 && bc + repeat - 1 < sizeof_buf - 1)
4181 {
4182 memset (&buf[bc], buf[bc - 1], repeat);
4183 bc += repeat;
4184 continue;
4185 }
4186
4187 buf[bc] = '\0';
4188 printf_filtered (_("Repeat count %d too large for buffer: "),
4189 repeat);
4190 puts_filtered (buf);
4191 puts_filtered ("\n");
4192 return -1;
4193 }
4194 default:
4195 if (bc < sizeof_buf - 1)
4196 {
4197 buf[bc++] = c;
4198 csum += c;
4199 continue;
4200 }
4201
4202 buf[bc] = '\0';
4203 puts_filtered ("Remote packet too long: ");
4204 puts_filtered (buf);
4205 puts_filtered ("\n");
4206
4207 return -1;
4208 }
4209 }
4210 }
4211
4212 /* Read a packet from the remote machine, with error checking, and
4213 store it in BUF. If FOREVER, wait forever rather than timing out;
4214 this is used (in synchronous mode) to wait for a target that is is
4215 executing user code to stop. */
4216 /* FIXME: ezannoni 2000-02-01 this wrapper is necessary so that we
4217 don't have to change all the calls to getpkt to deal with the
4218 return value, because at the moment I don't know what the right
4219 thing to do it for those. */
4220 void
4221 getpkt (char *buf,
4222 long sizeof_buf,
4223 int forever)
4224 {
4225 int timed_out;
4226
4227 timed_out = getpkt_sane (buf, sizeof_buf, forever);
4228 }
4229
4230
4231 /* Read a packet from the remote machine, with error checking, and
4232 store it in BUF. If FOREVER, wait forever rather than timing out;
4233 this is used (in synchronous mode) to wait for a target that is is
4234 executing user code to stop. If FOREVER == 0, this function is
4235 allowed to time out gracefully and return an indication of this to
4236 the caller. */
4237 static int
4238 getpkt_sane (char *buf,
4239 long sizeof_buf,
4240 int forever)
4241 {
4242 int c;
4243 int tries;
4244 int timeout;
4245 int val;
4246
4247 strcpy (buf, "timeout");
4248
4249 if (forever)
4250 {
4251 timeout = watchdog > 0 ? watchdog : -1;
4252 }
4253
4254 else
4255 timeout = remote_timeout;
4256
4257 #define MAX_TRIES 3
4258
4259 for (tries = 1; tries <= MAX_TRIES; tries++)
4260 {
4261 /* This can loop forever if the remote side sends us characters
4262 continuously, but if it pauses, we'll get a zero from
4263 readchar because of timeout. Then we'll count that as a
4264 retry. */
4265
4266 /* Note that we will only wait forever prior to the start of a
4267 packet. After that, we expect characters to arrive at a
4268 brisk pace. They should show up within remote_timeout
4269 intervals. */
4270
4271 do
4272 {
4273 c = readchar (timeout);
4274
4275 if (c == SERIAL_TIMEOUT)
4276 {
4277 if (forever) /* Watchdog went off? Kill the target. */
4278 {
4279 QUIT;
4280 target_mourn_inferior ();
4281 error (_("Watchdog has expired. Target detached."));
4282 }
4283 if (remote_debug)
4284 fputs_filtered ("Timed out.\n", gdb_stdlog);
4285 goto retry;
4286 }
4287 }
4288 while (c != '$');
4289
4290 /* We've found the start of a packet, now collect the data. */
4291
4292 val = read_frame (buf, sizeof_buf);
4293
4294 if (val >= 0)
4295 {
4296 if (remote_debug)
4297 {
4298 fprintf_unfiltered (gdb_stdlog, "Packet received: ");
4299 fputstr_unfiltered (buf, 0, gdb_stdlog);
4300 fprintf_unfiltered (gdb_stdlog, "\n");
4301 }
4302 serial_write (remote_desc, "+", 1);
4303 return 0;
4304 }
4305
4306 /* Try the whole thing again. */
4307 retry:
4308 serial_write (remote_desc, "-", 1);
4309 }
4310
4311 /* We have tried hard enough, and just can't receive the packet.
4312 Give up. */
4313
4314 printf_unfiltered (_("Ignoring packet error, continuing...\n"));
4315 serial_write (remote_desc, "+", 1);
4316 return 1;
4317 }
4318 \f
4319 static void
4320 remote_kill (void)
4321 {
4322 /* For some mysterious reason, wait_for_inferior calls kill instead of
4323 mourn after it gets TARGET_WAITKIND_SIGNALLED. Work around it. */
4324 if (kill_kludge)
4325 {
4326 kill_kludge = 0;
4327 target_mourn_inferior ();
4328 return;
4329 }
4330
4331 /* Use catch_errors so the user can quit from gdb even when we aren't on
4332 speaking terms with the remote system. */
4333 catch_errors ((catch_errors_ftype *) putpkt, "k", "", RETURN_MASK_ERROR);
4334
4335 /* Don't wait for it to die. I'm not really sure it matters whether
4336 we do or not. For the existing stubs, kill is a noop. */
4337 target_mourn_inferior ();
4338 }
4339
4340 /* Async version of remote_kill. */
4341 static void
4342 remote_async_kill (void)
4343 {
4344 /* Unregister the file descriptor from the event loop. */
4345 if (target_is_async_p ())
4346 serial_async (remote_desc, NULL, 0);
4347
4348 /* For some mysterious reason, wait_for_inferior calls kill instead of
4349 mourn after it gets TARGET_WAITKIND_SIGNALLED. Work around it. */
4350 if (kill_kludge)
4351 {
4352 kill_kludge = 0;
4353 target_mourn_inferior ();
4354 return;
4355 }
4356
4357 /* Use catch_errors so the user can quit from gdb even when we
4358 aren't on speaking terms with the remote system. */
4359 catch_errors ((catch_errors_ftype *) putpkt, "k", "", RETURN_MASK_ERROR);
4360
4361 /* Don't wait for it to die. I'm not really sure it matters whether
4362 we do or not. For the existing stubs, kill is a noop. */
4363 target_mourn_inferior ();
4364 }
4365
4366 static void
4367 remote_mourn (void)
4368 {
4369 remote_mourn_1 (&remote_ops);
4370 }
4371
4372 static void
4373 remote_async_mourn (void)
4374 {
4375 remote_mourn_1 (&remote_async_ops);
4376 }
4377
4378 static void
4379 extended_remote_mourn (void)
4380 {
4381 /* We do _not_ want to mourn the target like this; this will
4382 remove the extended remote target from the target stack,
4383 and the next time the user says "run" it'll fail.
4384
4385 FIXME: What is the right thing to do here? */
4386 #if 0
4387 remote_mourn_1 (&extended_remote_ops);
4388 #endif
4389 }
4390
4391 /* Worker function for remote_mourn. */
4392 static void
4393 remote_mourn_1 (struct target_ops *target)
4394 {
4395 unpush_target (target);
4396 generic_mourn_inferior ();
4397 }
4398
4399 /* In the extended protocol we want to be able to do things like
4400 "run" and have them basically work as expected. So we need
4401 a special create_inferior function.
4402
4403 FIXME: One day add support for changing the exec file
4404 we're debugging, arguments and an environment. */
4405
4406 static void
4407 extended_remote_create_inferior (char *exec_file, char *args,
4408 char **env, int from_tty)
4409 {
4410 /* Rip out the breakpoints; we'll reinsert them after restarting
4411 the remote server. */
4412 remove_breakpoints ();
4413
4414 /* Now restart the remote server. */
4415 extended_remote_restart ();
4416
4417 /* Now put the breakpoints back in. This way we're safe if the
4418 restart function works via a unix fork on the remote side. */
4419 insert_breakpoints ();
4420
4421 /* Clean up from the last time we were running. */
4422 clear_proceed_status ();
4423
4424 /* Let the remote process run. */
4425 proceed (-1, TARGET_SIGNAL_0, 0);
4426 }
4427
4428 /* Async version of extended_remote_create_inferior. */
4429 static void
4430 extended_remote_async_create_inferior (char *exec_file, char *args,
4431 char **env, int from_tty)
4432 {
4433 /* Rip out the breakpoints; we'll reinsert them after restarting
4434 the remote server. */
4435 remove_breakpoints ();
4436
4437 /* If running asynchronously, register the target file descriptor
4438 with the event loop. */
4439 if (target_can_async_p ())
4440 target_async (inferior_event_handler, 0);
4441
4442 /* Now restart the remote server. */
4443 extended_remote_restart ();
4444
4445 /* Now put the breakpoints back in. This way we're safe if the
4446 restart function works via a unix fork on the remote side. */
4447 insert_breakpoints ();
4448
4449 /* Clean up from the last time we were running. */
4450 clear_proceed_status ();
4451
4452 /* Let the remote process run. */
4453 proceed (-1, TARGET_SIGNAL_0, 0);
4454 }
4455 \f
4456
4457 /* On some machines, e.g. 68k, we may use a different breakpoint
4458 instruction than other targets; in those use
4459 DEPRECATED_REMOTE_BREAKPOINT instead of just BREAKPOINT_FROM_PC.
4460 Also, bi-endian targets may define
4461 DEPRECATED_LITTLE_REMOTE_BREAKPOINT and
4462 DEPRECATED_BIG_REMOTE_BREAKPOINT. If none of these are defined, we
4463 just call the standard routines that are in mem-break.c. */
4464
4465 /* NOTE: cagney/2003-06-08: This is silly. A remote and simulator
4466 target should use an identical BREAKPOINT_FROM_PC. As for native,
4467 the ARCH-OS-tdep.c code can override the default. */
4468
4469 #if defined (DEPRECATED_LITTLE_REMOTE_BREAKPOINT) && defined (DEPRECATED_BIG_REMOTE_BREAKPOINT) && !defined(DEPRECATED_REMOTE_BREAKPOINT)
4470 #define DEPRECATED_REMOTE_BREAKPOINT
4471 #endif
4472
4473 #ifdef DEPRECATED_REMOTE_BREAKPOINT
4474
4475 /* If the target isn't bi-endian, just pretend it is. */
4476 #if !defined (DEPRECATED_LITTLE_REMOTE_BREAKPOINT) && !defined (DEPRECATED_BIG_REMOTE_BREAKPOINT)
4477 #define DEPRECATED_LITTLE_REMOTE_BREAKPOINT DEPRECATED_REMOTE_BREAKPOINT
4478 #define DEPRECATED_BIG_REMOTE_BREAKPOINT DEPRECATED_REMOTE_BREAKPOINT
4479 #endif
4480
4481 static unsigned char big_break_insn[] = DEPRECATED_BIG_REMOTE_BREAKPOINT;
4482 static unsigned char little_break_insn[] = DEPRECATED_LITTLE_REMOTE_BREAKPOINT;
4483
4484 #endif /* DEPRECATED_REMOTE_BREAKPOINT */
4485
4486 /* Insert a breakpoint on targets that don't have any better
4487 breakpoint support. We read the contents of the target location
4488 and stash it, then overwrite it with a breakpoint instruction.
4489 ADDR is the target location in the target machine. CONTENTS_CACHE
4490 is a pointer to memory allocated for saving the target contents.
4491 It is guaranteed by the caller to be long enough to save the number
4492 of bytes returned by BREAKPOINT_FROM_PC. */
4493
4494 static int
4495 remote_insert_breakpoint (CORE_ADDR addr, char *contents_cache)
4496 {
4497 struct remote_state *rs = get_remote_state ();
4498 #ifdef DEPRECATED_REMOTE_BREAKPOINT
4499 int val;
4500 #endif
4501 int bp_size;
4502
4503 /* Try the "Z" s/w breakpoint packet if it is not already disabled.
4504 If it succeeds, then set the support to PACKET_ENABLE. If it
4505 fails, and the user has explicitly requested the Z support then
4506 report an error, otherwise, mark it disabled and go on. */
4507
4508 if (remote_protocol_Z[Z_PACKET_SOFTWARE_BP].support != PACKET_DISABLE)
4509 {
4510 char *buf = alloca (rs->remote_packet_size);
4511 char *p = buf;
4512
4513 addr = remote_address_masked (addr);
4514 *(p++) = 'Z';
4515 *(p++) = '0';
4516 *(p++) = ',';
4517 p += hexnumstr (p, (ULONGEST) addr);
4518 BREAKPOINT_FROM_PC (&addr, &bp_size);
4519 sprintf (p, ",%d", bp_size);
4520
4521 putpkt (buf);
4522 getpkt (buf, (rs->remote_packet_size), 0);
4523
4524 switch (packet_ok (buf, &remote_protocol_Z[Z_PACKET_SOFTWARE_BP]))
4525 {
4526 case PACKET_ERROR:
4527 return -1;
4528 case PACKET_OK:
4529 return 0;
4530 case PACKET_UNKNOWN:
4531 break;
4532 }
4533 }
4534
4535 #ifdef DEPRECATED_REMOTE_BREAKPOINT
4536 val = target_read_memory (addr, contents_cache, sizeof big_break_insn);
4537
4538 if (val == 0)
4539 {
4540 if (TARGET_BYTE_ORDER == BFD_ENDIAN_BIG)
4541 val = target_write_memory (addr, (char *) big_break_insn,
4542 sizeof big_break_insn);
4543 else
4544 val = target_write_memory (addr, (char *) little_break_insn,
4545 sizeof little_break_insn);
4546 }
4547
4548 return val;
4549 #else
4550 return memory_insert_breakpoint (addr, contents_cache);
4551 #endif /* DEPRECATED_REMOTE_BREAKPOINT */
4552 }
4553
4554 static int
4555 remote_remove_breakpoint (CORE_ADDR addr, char *contents_cache)
4556 {
4557 struct remote_state *rs = get_remote_state ();
4558 int bp_size;
4559
4560 if (remote_protocol_Z[Z_PACKET_SOFTWARE_BP].support != PACKET_DISABLE)
4561 {
4562 char *buf = alloca (rs->remote_packet_size);
4563 char *p = buf;
4564
4565 *(p++) = 'z';
4566 *(p++) = '0';
4567 *(p++) = ',';
4568
4569 addr = remote_address_masked (addr);
4570 p += hexnumstr (p, (ULONGEST) addr);
4571 BREAKPOINT_FROM_PC (&addr, &bp_size);
4572 sprintf (p, ",%d", bp_size);
4573
4574 putpkt (buf);
4575 getpkt (buf, (rs->remote_packet_size), 0);
4576
4577 return (buf[0] == 'E');
4578 }
4579
4580 #ifdef DEPRECATED_REMOTE_BREAKPOINT
4581 return target_write_memory (addr, contents_cache, sizeof big_break_insn);
4582 #else
4583 return memory_remove_breakpoint (addr, contents_cache);
4584 #endif /* DEPRECATED_REMOTE_BREAKPOINT */
4585 }
4586
4587 static int
4588 watchpoint_to_Z_packet (int type)
4589 {
4590 switch (type)
4591 {
4592 case hw_write:
4593 return 2;
4594 break;
4595 case hw_read:
4596 return 3;
4597 break;
4598 case hw_access:
4599 return 4;
4600 break;
4601 default:
4602 internal_error (__FILE__, __LINE__,
4603 _("hw_bp_to_z: bad watchpoint type %d"), type);
4604 }
4605 }
4606
4607 static int
4608 remote_insert_watchpoint (CORE_ADDR addr, int len, int type)
4609 {
4610 struct remote_state *rs = get_remote_state ();
4611 char *buf = alloca (rs->remote_packet_size);
4612 char *p;
4613 enum Z_packet_type packet = watchpoint_to_Z_packet (type);
4614
4615 if (remote_protocol_Z[packet].support == PACKET_DISABLE)
4616 error (_("Can't set hardware watchpoints without the '%s' (%s) packet."),
4617 remote_protocol_Z[packet].name,
4618 remote_protocol_Z[packet].title);
4619
4620 sprintf (buf, "Z%x,", packet);
4621 p = strchr (buf, '\0');
4622 addr = remote_address_masked (addr);
4623 p += hexnumstr (p, (ULONGEST) addr);
4624 sprintf (p, ",%x", len);
4625
4626 putpkt (buf);
4627 getpkt (buf, (rs->remote_packet_size), 0);
4628
4629 switch (packet_ok (buf, &remote_protocol_Z[packet]))
4630 {
4631 case PACKET_ERROR:
4632 case PACKET_UNKNOWN:
4633 return -1;
4634 case PACKET_OK:
4635 return 0;
4636 }
4637 internal_error (__FILE__, __LINE__,
4638 _("remote_insert_watchpoint: reached end of function"));
4639 }
4640
4641
4642 static int
4643 remote_remove_watchpoint (CORE_ADDR addr, int len, int type)
4644 {
4645 struct remote_state *rs = get_remote_state ();
4646 char *buf = alloca (rs->remote_packet_size);
4647 char *p;
4648 enum Z_packet_type packet = watchpoint_to_Z_packet (type);
4649
4650 if (remote_protocol_Z[packet].support == PACKET_DISABLE)
4651 error (_("Can't clear hardware watchpoints without the '%s' (%s) packet."),
4652 remote_protocol_Z[packet].name,
4653 remote_protocol_Z[packet].title);
4654
4655 sprintf (buf, "z%x,", packet);
4656 p = strchr (buf, '\0');
4657 addr = remote_address_masked (addr);
4658 p += hexnumstr (p, (ULONGEST) addr);
4659 sprintf (p, ",%x", len);
4660 putpkt (buf);
4661 getpkt (buf, (rs->remote_packet_size), 0);
4662
4663 switch (packet_ok (buf, &remote_protocol_Z[packet]))
4664 {
4665 case PACKET_ERROR:
4666 case PACKET_UNKNOWN:
4667 return -1;
4668 case PACKET_OK:
4669 return 0;
4670 }
4671 internal_error (__FILE__, __LINE__,
4672 _("remote_remove_watchpoint: reached end of function"));
4673 }
4674
4675
4676 int remote_hw_watchpoint_limit = -1;
4677 int remote_hw_breakpoint_limit = -1;
4678
4679 static int
4680 remote_check_watch_resources (int type, int cnt, int ot)
4681 {
4682 if (type == bp_hardware_breakpoint)
4683 {
4684 if (remote_hw_breakpoint_limit == 0)
4685 return 0;
4686 else if (remote_hw_breakpoint_limit < 0)
4687 return 1;
4688 else if (cnt <= remote_hw_breakpoint_limit)
4689 return 1;
4690 }
4691 else
4692 {
4693 if (remote_hw_watchpoint_limit == 0)
4694 return 0;
4695 else if (remote_hw_watchpoint_limit < 0)
4696 return 1;
4697 else if (ot)
4698 return -1;
4699 else if (cnt <= remote_hw_watchpoint_limit)
4700 return 1;
4701 }
4702 return -1;
4703 }
4704
4705 static int
4706 remote_stopped_by_watchpoint (void)
4707 {
4708 return remote_stopped_by_watchpoint_p;
4709 }
4710
4711 extern int stepped_after_stopped_by_watchpoint;
4712
4713 static int
4714 remote_stopped_data_address (struct target_ops *target, CORE_ADDR *addr_p)
4715 {
4716 int rc = 0;
4717 if (remote_stopped_by_watchpoint ()
4718 || stepped_after_stopped_by_watchpoint)
4719 {
4720 *addr_p = remote_watch_data_address;
4721 rc = 1;
4722 }
4723
4724 return rc;
4725 }
4726
4727
4728 static int
4729 remote_insert_hw_breakpoint (CORE_ADDR addr, char *shadow)
4730 {
4731 int len = 0;
4732 struct remote_state *rs = get_remote_state ();
4733 char *buf = alloca (rs->remote_packet_size);
4734 char *p = buf;
4735
4736 /* The length field should be set to the size of a breakpoint
4737 instruction. */
4738
4739 BREAKPOINT_FROM_PC (&addr, &len);
4740
4741 if (remote_protocol_Z[Z_PACKET_HARDWARE_BP].support == PACKET_DISABLE)
4742 error (_("Can't set hardware breakpoint without the '%s' (%s) packet."),
4743 remote_protocol_Z[Z_PACKET_HARDWARE_BP].name,
4744 remote_protocol_Z[Z_PACKET_HARDWARE_BP].title);
4745
4746 *(p++) = 'Z';
4747 *(p++) = '1';
4748 *(p++) = ',';
4749
4750 addr = remote_address_masked (addr);
4751 p += hexnumstr (p, (ULONGEST) addr);
4752 sprintf (p, ",%x", len);
4753
4754 putpkt (buf);
4755 getpkt (buf, (rs->remote_packet_size), 0);
4756
4757 switch (packet_ok (buf, &remote_protocol_Z[Z_PACKET_HARDWARE_BP]))
4758 {
4759 case PACKET_ERROR:
4760 case PACKET_UNKNOWN:
4761 return -1;
4762 case PACKET_OK:
4763 return 0;
4764 }
4765 internal_error (__FILE__, __LINE__,
4766 _("remote_insert_hw_breakpoint: reached end of function"));
4767 }
4768
4769
4770 static int
4771 remote_remove_hw_breakpoint (CORE_ADDR addr, char *shadow)
4772 {
4773 int len;
4774 struct remote_state *rs = get_remote_state ();
4775 char *buf = alloca (rs->remote_packet_size);
4776 char *p = buf;
4777
4778 /* The length field should be set to the size of a breakpoint
4779 instruction. */
4780
4781 BREAKPOINT_FROM_PC (&addr, &len);
4782
4783 if (remote_protocol_Z[Z_PACKET_HARDWARE_BP].support == PACKET_DISABLE)
4784 error (_("Can't clear hardware breakpoint without the '%s' (%s) packet."),
4785 remote_protocol_Z[Z_PACKET_HARDWARE_BP].name,
4786 remote_protocol_Z[Z_PACKET_HARDWARE_BP].title);
4787
4788 *(p++) = 'z';
4789 *(p++) = '1';
4790 *(p++) = ',';
4791
4792 addr = remote_address_masked (addr);
4793 p += hexnumstr (p, (ULONGEST) addr);
4794 sprintf (p, ",%x", len);
4795
4796 putpkt(buf);
4797 getpkt (buf, (rs->remote_packet_size), 0);
4798
4799 switch (packet_ok (buf, &remote_protocol_Z[Z_PACKET_HARDWARE_BP]))
4800 {
4801 case PACKET_ERROR:
4802 case PACKET_UNKNOWN:
4803 return -1;
4804 case PACKET_OK:
4805 return 0;
4806 }
4807 internal_error (__FILE__, __LINE__,
4808 _("remote_remove_hw_breakpoint: reached end of function"));
4809 }
4810
4811 /* Some targets are only capable of doing downloads, and afterwards
4812 they switch to the remote serial protocol. This function provides
4813 a clean way to get from the download target to the remote target.
4814 It's basically just a wrapper so that we don't have to expose any
4815 of the internal workings of remote.c.
4816
4817 Prior to calling this routine, you should shutdown the current
4818 target code, else you will get the "A program is being debugged
4819 already..." message. Usually a call to pop_target() suffices. */
4820
4821 void
4822 push_remote_target (char *name, int from_tty)
4823 {
4824 printf_filtered (_("Switching to remote protocol\n"));
4825 remote_open (name, from_tty);
4826 }
4827
4828 /* Table used by the crc32 function to calcuate the checksum. */
4829
4830 static unsigned long crc32_table[256] =
4831 {0, 0};
4832
4833 static unsigned long
4834 crc32 (unsigned char *buf, int len, unsigned int crc)
4835 {
4836 if (!crc32_table[1])
4837 {
4838 /* Initialize the CRC table and the decoding table. */
4839 int i, j;
4840 unsigned int c;
4841
4842 for (i = 0; i < 256; i++)
4843 {
4844 for (c = i << 24, j = 8; j > 0; --j)
4845 c = c & 0x80000000 ? (c << 1) ^ 0x04c11db7 : (c << 1);
4846 crc32_table[i] = c;
4847 }
4848 }
4849
4850 while (len--)
4851 {
4852 crc = (crc << 8) ^ crc32_table[((crc >> 24) ^ *buf) & 255];
4853 buf++;
4854 }
4855 return crc;
4856 }
4857
4858 /* compare-sections command
4859
4860 With no arguments, compares each loadable section in the exec bfd
4861 with the same memory range on the target, and reports mismatches.
4862 Useful for verifying the image on the target against the exec file.
4863 Depends on the target understanding the new "qCRC:" request. */
4864
4865 /* FIXME: cagney/1999-10-26: This command should be broken down into a
4866 target method (target verify memory) and generic version of the
4867 actual command. This will allow other high-level code (especially
4868 generic_load()) to make use of this target functionality. */
4869
4870 static void
4871 compare_sections_command (char *args, int from_tty)
4872 {
4873 struct remote_state *rs = get_remote_state ();
4874 asection *s;
4875 unsigned long host_crc, target_crc;
4876 extern bfd *exec_bfd;
4877 struct cleanup *old_chain;
4878 char *tmp;
4879 char *sectdata;
4880 const char *sectname;
4881 char *buf = alloca (rs->remote_packet_size);
4882 bfd_size_type size;
4883 bfd_vma lma;
4884 int matched = 0;
4885 int mismatched = 0;
4886
4887 if (!exec_bfd)
4888 error (_("command cannot be used without an exec file"));
4889 if (!current_target.to_shortname ||
4890 strcmp (current_target.to_shortname, "remote") != 0)
4891 error (_("command can only be used with remote target"));
4892
4893 for (s = exec_bfd->sections; s; s = s->next)
4894 {
4895 if (!(s->flags & SEC_LOAD))
4896 continue; /* skip non-loadable section */
4897
4898 size = bfd_get_section_size (s);
4899 if (size == 0)
4900 continue; /* skip zero-length section */
4901
4902 sectname = bfd_get_section_name (exec_bfd, s);
4903 if (args && strcmp (args, sectname) != 0)
4904 continue; /* not the section selected by user */
4905
4906 matched = 1; /* do this section */
4907 lma = s->lma;
4908 /* FIXME: assumes lma can fit into long. */
4909 sprintf (buf, "qCRC:%lx,%lx", (long) lma, (long) size);
4910 putpkt (buf);
4911
4912 /* Be clever; compute the host_crc before waiting for target
4913 reply. */
4914 sectdata = xmalloc (size);
4915 old_chain = make_cleanup (xfree, sectdata);
4916 bfd_get_section_contents (exec_bfd, s, sectdata, 0, size);
4917 host_crc = crc32 ((unsigned char *) sectdata, size, 0xffffffff);
4918
4919 getpkt (buf, (rs->remote_packet_size), 0);
4920 if (buf[0] == 'E')
4921 error (_("target memory fault, section %s, range 0x%s -- 0x%s"),
4922 sectname, paddr (lma), paddr (lma + size));
4923 if (buf[0] != 'C')
4924 error (_("remote target does not support this operation"));
4925
4926 for (target_crc = 0, tmp = &buf[1]; *tmp; tmp++)
4927 target_crc = target_crc * 16 + fromhex (*tmp);
4928
4929 printf_filtered ("Section %s, range 0x%s -- 0x%s: ",
4930 sectname, paddr (lma), paddr (lma + size));
4931 if (host_crc == target_crc)
4932 printf_filtered ("matched.\n");
4933 else
4934 {
4935 printf_filtered ("MIS-MATCHED!\n");
4936 mismatched++;
4937 }
4938
4939 do_cleanups (old_chain);
4940 }
4941 if (mismatched > 0)
4942 warning (_("One or more sections of the remote executable does not match\n\
4943 the loaded file\n"));
4944 if (args && !matched)
4945 printf_filtered (_("No loaded section named '%s'.\n"), args);
4946 }
4947
4948 static LONGEST
4949 remote_xfer_partial (struct target_ops *ops, enum target_object object,
4950 const char *annex, void *readbuf, const void *writebuf,
4951 ULONGEST offset, LONGEST len)
4952 {
4953 struct remote_state *rs = get_remote_state ();
4954 int i;
4955 char *buf2 = alloca (rs->remote_packet_size);
4956 char *p2 = &buf2[0];
4957 char query_type;
4958
4959 /* Handle memory using remote_xfer_memory. */
4960 if (object == TARGET_OBJECT_MEMORY)
4961 {
4962 int xfered;
4963 errno = 0;
4964
4965 if (writebuf != NULL)
4966 {
4967 void *buffer = xmalloc (len);
4968 struct cleanup *cleanup = make_cleanup (xfree, buffer);
4969 memcpy (buffer, writebuf, len);
4970 xfered = remote_xfer_memory (offset, buffer, len, 1, NULL, ops);
4971 do_cleanups (cleanup);
4972 }
4973 else
4974 xfered = remote_xfer_memory (offset, readbuf, len, 0, NULL, ops);
4975
4976 if (xfered > 0)
4977 return xfered;
4978 else if (xfered == 0 && errno == 0)
4979 return 0;
4980 else
4981 return -1;
4982 }
4983
4984 /* Only handle reads. */
4985 if (writebuf != NULL || readbuf == NULL)
4986 return -1;
4987
4988 /* Map pre-existing objects onto letters. DO NOT do this for new
4989 objects!!! Instead specify new query packets. */
4990 switch (object)
4991 {
4992 case TARGET_OBJECT_KOD:
4993 query_type = 'K';
4994 break;
4995 case TARGET_OBJECT_AVR:
4996 query_type = 'R';
4997 break;
4998
4999 case TARGET_OBJECT_AUXV:
5000 if (remote_protocol_qPart_auxv.support != PACKET_DISABLE)
5001 {
5002 unsigned int total = 0;
5003 while (len > 0)
5004 {
5005 LONGEST n = min ((rs->remote_packet_size - 2) / 2, len);
5006 snprintf (buf2, rs->remote_packet_size,
5007 "qPart:auxv:read::%s,%s",
5008 phex_nz (offset, sizeof offset),
5009 phex_nz (n, sizeof n));
5010 i = putpkt (buf2);
5011 if (i < 0)
5012 return total > 0 ? total : i;
5013 buf2[0] = '\0';
5014 getpkt (buf2, rs->remote_packet_size, 0);
5015 if (packet_ok (buf2, &remote_protocol_qPart_auxv) != PACKET_OK)
5016 return total > 0 ? total : -1;
5017 if (buf2[0] == 'O' && buf2[1] == 'K' && buf2[2] == '\0')
5018 break; /* Got EOF indicator. */
5019 /* Got some data. */
5020 i = hex2bin (buf2, readbuf, len);
5021 if (i > 0)
5022 {
5023 readbuf = (void *) ((char *) readbuf + i);
5024 offset += i;
5025 len -= i;
5026 total += i;
5027 }
5028 }
5029 return total;
5030 }
5031 return -1;
5032
5033 default:
5034 return -1;
5035 }
5036
5037 /* Note: a zero OFFSET and LEN can be used to query the minimum
5038 buffer size. */
5039 if (offset == 0 && len == 0)
5040 return (rs->remote_packet_size);
5041 /* Minimum outbuf size is (rs->remote_packet_size) - if bufsiz is
5042 not large enough let the caller. */
5043 if (len < (rs->remote_packet_size))
5044 return -1;
5045 len = rs->remote_packet_size;
5046
5047 /* Except for querying the minimum buffer size, target must be open. */
5048 if (!remote_desc)
5049 error (_("remote query is only available after target open"));
5050
5051 gdb_assert (annex != NULL);
5052 gdb_assert (readbuf != NULL);
5053
5054 *p2++ = 'q';
5055 *p2++ = query_type;
5056
5057 /* We used one buffer char for the remote protocol q command and
5058 another for the query type. As the remote protocol encapsulation
5059 uses 4 chars plus one extra in case we are debugging
5060 (remote_debug), we have PBUFZIZ - 7 left to pack the query
5061 string. */
5062 i = 0;
5063 while (annex[i] && (i < ((rs->remote_packet_size) - 8)))
5064 {
5065 /* Bad caller may have sent forbidden characters. */
5066 gdb_assert (isprint (annex[i]) && annex[i] != '$' && annex[i] != '#');
5067 *p2++ = annex[i];
5068 i++;
5069 }
5070 *p2 = '\0';
5071 gdb_assert (annex[i] == '\0');
5072
5073 i = putpkt (buf2);
5074 if (i < 0)
5075 return i;
5076
5077 getpkt (readbuf, len, 0);
5078
5079 return strlen (readbuf);
5080 }
5081
5082 static void
5083 remote_rcmd (char *command,
5084 struct ui_file *outbuf)
5085 {
5086 struct remote_state *rs = get_remote_state ();
5087 int i;
5088 char *buf = alloca (rs->remote_packet_size);
5089 char *p = buf;
5090
5091 if (!remote_desc)
5092 error (_("remote rcmd is only available after target open"));
5093
5094 /* Send a NULL command across as an empty command. */
5095 if (command == NULL)
5096 command = "";
5097
5098 /* The query prefix. */
5099 strcpy (buf, "qRcmd,");
5100 p = strchr (buf, '\0');
5101
5102 if ((strlen (buf) + strlen (command) * 2 + 8/*misc*/) > (rs->remote_packet_size))
5103 error (_("\"monitor\" command ``%s'' is too long."), command);
5104
5105 /* Encode the actual command. */
5106 bin2hex (command, p, 0);
5107
5108 if (putpkt (buf) < 0)
5109 error (_("Communication problem with target."));
5110
5111 /* get/display the response */
5112 while (1)
5113 {
5114 /* XXX - see also tracepoint.c:remote_get_noisy_reply(). */
5115 buf[0] = '\0';
5116 getpkt (buf, (rs->remote_packet_size), 0);
5117 if (buf[0] == '\0')
5118 error (_("Target does not support this command."));
5119 if (buf[0] == 'O' && buf[1] != 'K')
5120 {
5121 remote_console_output (buf + 1); /* 'O' message from stub. */
5122 continue;
5123 }
5124 if (strcmp (buf, "OK") == 0)
5125 break;
5126 if (strlen (buf) == 3 && buf[0] == 'E'
5127 && isdigit (buf[1]) && isdigit (buf[2]))
5128 {
5129 error (_("Protocol error with Rcmd"));
5130 }
5131 for (p = buf; p[0] != '\0' && p[1] != '\0'; p += 2)
5132 {
5133 char c = (fromhex (p[0]) << 4) + fromhex (p[1]);
5134 fputc_unfiltered (c, outbuf);
5135 }
5136 break;
5137 }
5138 }
5139
5140 static void
5141 packet_command (char *args, int from_tty)
5142 {
5143 struct remote_state *rs = get_remote_state ();
5144 char *buf = alloca (rs->remote_packet_size);
5145
5146 if (!remote_desc)
5147 error (_("command can only be used with remote target"));
5148
5149 if (!args)
5150 error (_("remote-packet command requires packet text as argument"));
5151
5152 puts_filtered ("sending: ");
5153 print_packet (args);
5154 puts_filtered ("\n");
5155 putpkt (args);
5156
5157 getpkt (buf, (rs->remote_packet_size), 0);
5158 puts_filtered ("received: ");
5159 print_packet (buf);
5160 puts_filtered ("\n");
5161 }
5162
5163 #if 0
5164 /* --------- UNIT_TEST for THREAD oriented PACKETS ------------------- */
5165
5166 static void display_thread_info (struct gdb_ext_thread_info *info);
5167
5168 static void threadset_test_cmd (char *cmd, int tty);
5169
5170 static void threadalive_test (char *cmd, int tty);
5171
5172 static void threadlist_test_cmd (char *cmd, int tty);
5173
5174 int get_and_display_threadinfo (threadref *ref);
5175
5176 static void threadinfo_test_cmd (char *cmd, int tty);
5177
5178 static int thread_display_step (threadref *ref, void *context);
5179
5180 static void threadlist_update_test_cmd (char *cmd, int tty);
5181
5182 static void init_remote_threadtests (void);
5183
5184 #define SAMPLE_THREAD 0x05060708 /* Truncated 64 bit threadid. */
5185
5186 static void
5187 threadset_test_cmd (char *cmd, int tty)
5188 {
5189 int sample_thread = SAMPLE_THREAD;
5190
5191 printf_filtered (_("Remote threadset test\n"));
5192 set_thread (sample_thread, 1);
5193 }
5194
5195
5196 static void
5197 threadalive_test (char *cmd, int tty)
5198 {
5199 int sample_thread = SAMPLE_THREAD;
5200
5201 if (remote_thread_alive (pid_to_ptid (sample_thread)))
5202 printf_filtered ("PASS: Thread alive test\n");
5203 else
5204 printf_filtered ("FAIL: Thread alive test\n");
5205 }
5206
5207 void output_threadid (char *title, threadref *ref);
5208
5209 void
5210 output_threadid (char *title, threadref *ref)
5211 {
5212 char hexid[20];
5213
5214 pack_threadid (&hexid[0], ref); /* Convert threead id into hex. */
5215 hexid[16] = 0;
5216 printf_filtered ("%s %s\n", title, (&hexid[0]));
5217 }
5218
5219 static void
5220 threadlist_test_cmd (char *cmd, int tty)
5221 {
5222 int startflag = 1;
5223 threadref nextthread;
5224 int done, result_count;
5225 threadref threadlist[3];
5226
5227 printf_filtered ("Remote Threadlist test\n");
5228 if (!remote_get_threadlist (startflag, &nextthread, 3, &done,
5229 &result_count, &threadlist[0]))
5230 printf_filtered ("FAIL: threadlist test\n");
5231 else
5232 {
5233 threadref *scan = threadlist;
5234 threadref *limit = scan + result_count;
5235
5236 while (scan < limit)
5237 output_threadid (" thread ", scan++);
5238 }
5239 }
5240
5241 void
5242 display_thread_info (struct gdb_ext_thread_info *info)
5243 {
5244 output_threadid ("Threadid: ", &info->threadid);
5245 printf_filtered ("Name: %s\n ", info->shortname);
5246 printf_filtered ("State: %s\n", info->display);
5247 printf_filtered ("other: %s\n\n", info->more_display);
5248 }
5249
5250 int
5251 get_and_display_threadinfo (threadref *ref)
5252 {
5253 int result;
5254 int set;
5255 struct gdb_ext_thread_info threadinfo;
5256
5257 set = TAG_THREADID | TAG_EXISTS | TAG_THREADNAME
5258 | TAG_MOREDISPLAY | TAG_DISPLAY;
5259 if (0 != (result = remote_get_threadinfo (ref, set, &threadinfo)))
5260 display_thread_info (&threadinfo);
5261 return result;
5262 }
5263
5264 static void
5265 threadinfo_test_cmd (char *cmd, int tty)
5266 {
5267 int athread = SAMPLE_THREAD;
5268 threadref thread;
5269 int set;
5270
5271 int_to_threadref (&thread, athread);
5272 printf_filtered ("Remote Threadinfo test\n");
5273 if (!get_and_display_threadinfo (&thread))
5274 printf_filtered ("FAIL cannot get thread info\n");
5275 }
5276
5277 static int
5278 thread_display_step (threadref *ref, void *context)
5279 {
5280 /* output_threadid(" threadstep ",ref); *//* simple test */
5281 return get_and_display_threadinfo (ref);
5282 }
5283
5284 static void
5285 threadlist_update_test_cmd (char *cmd, int tty)
5286 {
5287 printf_filtered ("Remote Threadlist update test\n");
5288 remote_threadlist_iterator (thread_display_step, 0, CRAZY_MAX_THREADS);
5289 }
5290
5291 static void
5292 init_remote_threadtests (void)
5293 {
5294 add_com ("tlist", class_obscure, threadlist_test_cmd, _("\
5295 Fetch and print the remote list of thread identifiers, one pkt only"));
5296 add_com ("tinfo", class_obscure, threadinfo_test_cmd,
5297 _("Fetch and display info about one thread"));
5298 add_com ("tset", class_obscure, threadset_test_cmd,
5299 _("Test setting to a different thread"));
5300 add_com ("tupd", class_obscure, threadlist_update_test_cmd,
5301 _("Iterate through updating all remote thread info"));
5302 add_com ("talive", class_obscure, threadalive_test,
5303 _(" Remote thread alive test "));
5304 }
5305
5306 #endif /* 0 */
5307
5308 /* Convert a thread ID to a string. Returns the string in a static
5309 buffer. */
5310
5311 static char *
5312 remote_pid_to_str (ptid_t ptid)
5313 {
5314 static char buf[32];
5315 int size;
5316
5317 size = snprintf (buf, sizeof buf, "thread %d", ptid_get_pid (ptid));
5318 gdb_assert (size < sizeof buf);
5319 return buf;
5320 }
5321
5322 static void
5323 init_remote_ops (void)
5324 {
5325 remote_ops.to_shortname = "remote";
5326 remote_ops.to_longname = "Remote serial target in gdb-specific protocol";
5327 remote_ops.to_doc =
5328 "Use a remote computer via a serial line, using a gdb-specific protocol.\n\
5329 Specify the serial device it is connected to\n\
5330 (e.g. /dev/ttyS0, /dev/ttya, COM1, etc.).";
5331 remote_ops.to_open = remote_open;
5332 remote_ops.to_close = remote_close;
5333 remote_ops.to_detach = remote_detach;
5334 remote_ops.to_disconnect = remote_disconnect;
5335 remote_ops.to_resume = remote_resume;
5336 remote_ops.to_wait = remote_wait;
5337 remote_ops.to_fetch_registers = remote_fetch_registers;
5338 remote_ops.to_store_registers = remote_store_registers;
5339 remote_ops.to_prepare_to_store = remote_prepare_to_store;
5340 remote_ops.deprecated_xfer_memory = remote_xfer_memory;
5341 remote_ops.to_files_info = remote_files_info;
5342 remote_ops.to_insert_breakpoint = remote_insert_breakpoint;
5343 remote_ops.to_remove_breakpoint = remote_remove_breakpoint;
5344 remote_ops.to_stopped_by_watchpoint = remote_stopped_by_watchpoint;
5345 remote_ops.to_stopped_data_address = remote_stopped_data_address;
5346 remote_ops.to_can_use_hw_breakpoint = remote_check_watch_resources;
5347 remote_ops.to_insert_hw_breakpoint = remote_insert_hw_breakpoint;
5348 remote_ops.to_remove_hw_breakpoint = remote_remove_hw_breakpoint;
5349 remote_ops.to_insert_watchpoint = remote_insert_watchpoint;
5350 remote_ops.to_remove_watchpoint = remote_remove_watchpoint;
5351 remote_ops.to_kill = remote_kill;
5352 remote_ops.to_load = generic_load;
5353 remote_ops.to_mourn_inferior = remote_mourn;
5354 remote_ops.to_thread_alive = remote_thread_alive;
5355 remote_ops.to_find_new_threads = remote_threads_info;
5356 remote_ops.to_pid_to_str = remote_pid_to_str;
5357 remote_ops.to_extra_thread_info = remote_threads_extra_info;
5358 remote_ops.to_stop = remote_stop;
5359 remote_ops.to_xfer_partial = remote_xfer_partial;
5360 remote_ops.to_rcmd = remote_rcmd;
5361 remote_ops.to_stratum = process_stratum;
5362 remote_ops.to_has_all_memory = 1;
5363 remote_ops.to_has_memory = 1;
5364 remote_ops.to_has_stack = 1;
5365 remote_ops.to_has_registers = 1;
5366 remote_ops.to_has_execution = 1;
5367 remote_ops.to_has_thread_control = tc_schedlock; /* can lock scheduler */
5368 remote_ops.to_magic = OPS_MAGIC;
5369 }
5370
5371 /* Set up the extended remote vector by making a copy of the standard
5372 remote vector and adding to it. */
5373
5374 static void
5375 init_extended_remote_ops (void)
5376 {
5377 extended_remote_ops = remote_ops;
5378
5379 extended_remote_ops.to_shortname = "extended-remote";
5380 extended_remote_ops.to_longname =
5381 "Extended remote serial target in gdb-specific protocol";
5382 extended_remote_ops.to_doc =
5383 "Use a remote computer via a serial line, using a gdb-specific protocol.\n\
5384 Specify the serial device it is connected to (e.g. /dev/ttya).",
5385 extended_remote_ops.to_open = extended_remote_open;
5386 extended_remote_ops.to_create_inferior = extended_remote_create_inferior;
5387 extended_remote_ops.to_mourn_inferior = extended_remote_mourn;
5388 }
5389
5390 static int
5391 remote_can_async_p (void)
5392 {
5393 /* We're async whenever the serial device is. */
5394 return (current_target.to_async_mask_value) && serial_can_async_p (remote_desc);
5395 }
5396
5397 static int
5398 remote_is_async_p (void)
5399 {
5400 /* We're async whenever the serial device is. */
5401 return (current_target.to_async_mask_value) && serial_is_async_p (remote_desc);
5402 }
5403
5404 /* Pass the SERIAL event on and up to the client. One day this code
5405 will be able to delay notifying the client of an event until the
5406 point where an entire packet has been received. */
5407
5408 static void (*async_client_callback) (enum inferior_event_type event_type,
5409 void *context);
5410 static void *async_client_context;
5411 static serial_event_ftype remote_async_serial_handler;
5412
5413 static void
5414 remote_async_serial_handler (struct serial *scb, void *context)
5415 {
5416 /* Don't propogate error information up to the client. Instead let
5417 the client find out about the error by querying the target. */
5418 async_client_callback (INF_REG_EVENT, async_client_context);
5419 }
5420
5421 static void
5422 remote_async (void (*callback) (enum inferior_event_type event_type,
5423 void *context), void *context)
5424 {
5425 if (current_target.to_async_mask_value == 0)
5426 internal_error (__FILE__, __LINE__,
5427 _("Calling remote_async when async is masked"));
5428
5429 if (callback != NULL)
5430 {
5431 serial_async (remote_desc, remote_async_serial_handler, NULL);
5432 async_client_callback = callback;
5433 async_client_context = context;
5434 }
5435 else
5436 serial_async (remote_desc, NULL, NULL);
5437 }
5438
5439 /* Target async and target extended-async.
5440
5441 This are temporary targets, until it is all tested. Eventually
5442 async support will be incorporated int the usual 'remote'
5443 target. */
5444
5445 static void
5446 init_remote_async_ops (void)
5447 {
5448 remote_async_ops.to_shortname = "async";
5449 remote_async_ops.to_longname =
5450 "Remote serial target in async version of the gdb-specific protocol";
5451 remote_async_ops.to_doc =
5452 "Use a remote computer via a serial line, using a gdb-specific protocol.\n\
5453 Specify the serial device it is connected to (e.g. /dev/ttya).";
5454 remote_async_ops.to_open = remote_async_open;
5455 remote_async_ops.to_close = remote_close;
5456 remote_async_ops.to_detach = remote_detach;
5457 remote_async_ops.to_disconnect = remote_disconnect;
5458 remote_async_ops.to_resume = remote_async_resume;
5459 remote_async_ops.to_wait = remote_async_wait;
5460 remote_async_ops.to_fetch_registers = remote_fetch_registers;
5461 remote_async_ops.to_store_registers = remote_store_registers;
5462 remote_async_ops.to_prepare_to_store = remote_prepare_to_store;
5463 remote_async_ops.deprecated_xfer_memory = remote_xfer_memory;
5464 remote_async_ops.to_files_info = remote_files_info;
5465 remote_async_ops.to_insert_breakpoint = remote_insert_breakpoint;
5466 remote_async_ops.to_remove_breakpoint = remote_remove_breakpoint;
5467 remote_async_ops.to_can_use_hw_breakpoint = remote_check_watch_resources;
5468 remote_async_ops.to_insert_hw_breakpoint = remote_insert_hw_breakpoint;
5469 remote_async_ops.to_remove_hw_breakpoint = remote_remove_hw_breakpoint;
5470 remote_async_ops.to_insert_watchpoint = remote_insert_watchpoint;
5471 remote_async_ops.to_remove_watchpoint = remote_remove_watchpoint;
5472 remote_async_ops.to_stopped_by_watchpoint = remote_stopped_by_watchpoint;
5473 remote_async_ops.to_stopped_data_address = remote_stopped_data_address;
5474 remote_async_ops.to_terminal_inferior = remote_async_terminal_inferior;
5475 remote_async_ops.to_terminal_ours = remote_async_terminal_ours;
5476 remote_async_ops.to_kill = remote_async_kill;
5477 remote_async_ops.to_load = generic_load;
5478 remote_async_ops.to_mourn_inferior = remote_async_mourn;
5479 remote_async_ops.to_thread_alive = remote_thread_alive;
5480 remote_async_ops.to_find_new_threads = remote_threads_info;
5481 remote_async_ops.to_pid_to_str = remote_pid_to_str;
5482 remote_async_ops.to_extra_thread_info = remote_threads_extra_info;
5483 remote_async_ops.to_stop = remote_stop;
5484 remote_async_ops.to_xfer_partial = remote_xfer_partial;
5485 remote_async_ops.to_rcmd = remote_rcmd;
5486 remote_async_ops.to_stratum = process_stratum;
5487 remote_async_ops.to_has_all_memory = 1;
5488 remote_async_ops.to_has_memory = 1;
5489 remote_async_ops.to_has_stack = 1;
5490 remote_async_ops.to_has_registers = 1;
5491 remote_async_ops.to_has_execution = 1;
5492 remote_async_ops.to_has_thread_control = tc_schedlock; /* can lock scheduler */
5493 remote_async_ops.to_can_async_p = remote_can_async_p;
5494 remote_async_ops.to_is_async_p = remote_is_async_p;
5495 remote_async_ops.to_async = remote_async;
5496 remote_async_ops.to_async_mask_value = 1;
5497 remote_async_ops.to_magic = OPS_MAGIC;
5498 }
5499
5500 /* Set up the async extended remote vector by making a copy of the standard
5501 remote vector and adding to it. */
5502
5503 static void
5504 init_extended_async_remote_ops (void)
5505 {
5506 extended_async_remote_ops = remote_async_ops;
5507
5508 extended_async_remote_ops.to_shortname = "extended-async";
5509 extended_async_remote_ops.to_longname =
5510 "Extended remote serial target in async gdb-specific protocol";
5511 extended_async_remote_ops.to_doc =
5512 "Use a remote computer via a serial line, using an async gdb-specific protocol.\n\
5513 Specify the serial device it is connected to (e.g. /dev/ttya).",
5514 extended_async_remote_ops.to_open = extended_remote_async_open;
5515 extended_async_remote_ops.to_create_inferior = extended_remote_async_create_inferior;
5516 extended_async_remote_ops.to_mourn_inferior = extended_remote_mourn;
5517 }
5518
5519 static void
5520 set_remote_cmd (char *args, int from_tty)
5521 {
5522 }
5523
5524 static void
5525 show_remote_cmd (char *args, int from_tty)
5526 {
5527 /* FIXME: cagney/2002-06-15: This function should iterate over
5528 remote_show_cmdlist for a list of sub commands to show. */
5529 show_remote_protocol_Z_packet_cmd (gdb_stdout, from_tty, NULL, NULL);
5530 show_remote_protocol_P_packet_cmd (gdb_stdout, from_tty, NULL, NULL);
5531 show_remote_protocol_p_packet_cmd (gdb_stdout, from_tty, NULL, NULL);
5532 show_remote_protocol_qSymbol_packet_cmd (gdb_stdout, from_tty, NULL, NULL);
5533 show_remote_protocol_vcont_packet_cmd (gdb_stdout, from_tty, NULL, NULL);
5534 show_remote_protocol_binary_download_cmd (gdb_stdout, from_tty, NULL, NULL);
5535 show_remote_protocol_qPart_auxv_packet_cmd (gdb_stdout, from_tty, NULL, NULL);
5536 }
5537
5538 static void
5539 build_remote_gdbarch_data (void)
5540 {
5541 remote_address_size = TARGET_ADDR_BIT;
5542 }
5543
5544 /* Saved pointer to previous owner of the new_objfile event. */
5545 static void (*remote_new_objfile_chain) (struct objfile *);
5546
5547 /* Function to be called whenever a new objfile (shlib) is detected. */
5548 static void
5549 remote_new_objfile (struct objfile *objfile)
5550 {
5551 if (remote_desc != 0) /* Have a remote connection. */
5552 {
5553 remote_check_symbols (objfile);
5554 }
5555 /* Call predecessor on chain, if any. */
5556 if (remote_new_objfile_chain != 0 &&
5557 remote_desc == 0)
5558 remote_new_objfile_chain (objfile);
5559 }
5560
5561 void
5562 _initialize_remote (void)
5563 {
5564 static struct cmd_list_element *remote_set_cmdlist;
5565 static struct cmd_list_element *remote_show_cmdlist;
5566 struct cmd_list_element *tmpcmd;
5567
5568 /* architecture specific data */
5569 remote_gdbarch_data_handle =
5570 gdbarch_data_register_post_init (init_remote_state);
5571
5572 /* Old tacky stuff. NOTE: This comes after the remote protocol so
5573 that the remote protocol has been initialized. */
5574 DEPRECATED_REGISTER_GDBARCH_SWAP (remote_address_size);
5575 deprecated_register_gdbarch_swap (NULL, 0, build_remote_gdbarch_data);
5576
5577 init_remote_ops ();
5578 add_target (&remote_ops);
5579
5580 init_extended_remote_ops ();
5581 add_target (&extended_remote_ops);
5582
5583 init_remote_async_ops ();
5584 add_target (&remote_async_ops);
5585
5586 init_extended_async_remote_ops ();
5587 add_target (&extended_async_remote_ops);
5588
5589 /* Hook into new objfile notification. */
5590 remote_new_objfile_chain = deprecated_target_new_objfile_hook;
5591 deprecated_target_new_objfile_hook = remote_new_objfile;
5592
5593 #if 0
5594 init_remote_threadtests ();
5595 #endif
5596
5597 /* set/show remote ... */
5598
5599 add_prefix_cmd ("remote", class_maintenance, set_remote_cmd, _("\
5600 Remote protocol specific variables\n\
5601 Configure various remote-protocol specific variables such as\n\
5602 the packets being used"),
5603 &remote_set_cmdlist, "set remote ",
5604 0 /* allow-unknown */, &setlist);
5605 add_prefix_cmd ("remote", class_maintenance, show_remote_cmd, _("\
5606 Remote protocol specific variables\n\
5607 Configure various remote-protocol specific variables such as\n\
5608 the packets being used"),
5609 &remote_show_cmdlist, "show remote ",
5610 0 /* allow-unknown */, &showlist);
5611
5612 add_cmd ("compare-sections", class_obscure, compare_sections_command, _("\
5613 Compare section data on target to the exec file.\n\
5614 Argument is a single section name (default: all loaded sections)."),
5615 &cmdlist);
5616
5617 add_cmd ("packet", class_maintenance, packet_command, _("\
5618 Send an arbitrary packet to a remote target.\n\
5619 maintenance packet TEXT\n\
5620 If GDB is talking to an inferior via the GDB serial protocol, then\n\
5621 this command sends the string TEXT to the inferior, and displays the\n\
5622 response packet. GDB supplies the initial `$' character, and the\n\
5623 terminating `#' character and checksum."),
5624 &maintenancelist);
5625
5626 add_setshow_boolean_cmd ("remotebreak", no_class, &remote_break, _("\
5627 Set whether to send break if interrupted."), _("\
5628 Show whether to send break if interrupted."), _("\
5629 If set, a break, instead of a cntrl-c, is sent to the remote target."),
5630 NULL, NULL, /* FIXME: i18n: Whether to send break if interrupted is %s. */
5631 &setlist, &showlist);
5632
5633 /* Install commands for configuring memory read/write packets. */
5634
5635 add_cmd ("remotewritesize", no_class, set_memory_write_packet_size, _("\
5636 Set the maximum number of bytes per memory write packet (deprecated)."),
5637 &setlist);
5638 add_cmd ("remotewritesize", no_class, show_memory_write_packet_size, _("\
5639 Show the maximum number of bytes per memory write packet (deprecated)."),
5640 &showlist);
5641 add_cmd ("memory-write-packet-size", no_class,
5642 set_memory_write_packet_size, _("\
5643 Set the maximum number of bytes per memory-write packet.\n\
5644 Specify the number of bytes in a packet or 0 (zero) for the\n\
5645 default packet size. The actual limit is further reduced\n\
5646 dependent on the target. Specify ``fixed'' to disable the\n\
5647 further restriction and ``limit'' to enable that restriction."),
5648 &remote_set_cmdlist);
5649 add_cmd ("memory-read-packet-size", no_class,
5650 set_memory_read_packet_size, _("\
5651 Set the maximum number of bytes per memory-read packet.\n\
5652 Specify the number of bytes in a packet or 0 (zero) for the\n\
5653 default packet size. The actual limit is further reduced\n\
5654 dependent on the target. Specify ``fixed'' to disable the\n\
5655 further restriction and ``limit'' to enable that restriction."),
5656 &remote_set_cmdlist);
5657 add_cmd ("memory-write-packet-size", no_class,
5658 show_memory_write_packet_size,
5659 _("Show the maximum number of bytes per memory-write packet."),
5660 &remote_show_cmdlist);
5661 add_cmd ("memory-read-packet-size", no_class,
5662 show_memory_read_packet_size,
5663 _("Show the maximum number of bytes per memory-read packet."),
5664 &remote_show_cmdlist);
5665
5666 add_setshow_zinteger_cmd ("hardware-watchpoint-limit", no_class,
5667 &remote_hw_watchpoint_limit, _("\
5668 Set the maximum number of target hardware watchpoints."), _("\
5669 Show the maximum number of target hardware watchpoints."), _("\
5670 Specify a negative limit for unlimited."),
5671 NULL, NULL, /* FIXME: i18n: The maximum number of target hardware watchpoints is %s. */
5672 &remote_set_cmdlist, &remote_show_cmdlist);
5673 add_setshow_zinteger_cmd ("hardware-breakpoint-limit", no_class,
5674 &remote_hw_breakpoint_limit, _("\
5675 Set the maximum number of target hardware breakpoints."), _("\
5676 Show the maximum number of target hardware breakpoints."), _("\
5677 Specify a negative limit for unlimited."),
5678 NULL, NULL, /* FIXME: i18n: The maximum number of target hardware breakpoints is %s. */
5679 &remote_set_cmdlist, &remote_show_cmdlist);
5680
5681 add_setshow_integer_cmd ("remoteaddresssize", class_obscure,
5682 &remote_address_size, _("\
5683 Set the maximum size of the address (in bits) in a memory packet."), _("\
5684 Show the maximum size of the address (in bits) in a memory packet."), NULL,
5685 NULL,
5686 NULL, /* FIXME: i18n: */
5687 &setlist, &showlist);
5688
5689 add_packet_config_cmd (&remote_protocol_binary_download,
5690 "X", "binary-download",
5691 set_remote_protocol_binary_download_cmd,
5692 show_remote_protocol_binary_download_cmd,
5693 &remote_set_cmdlist, &remote_show_cmdlist,
5694 1);
5695
5696 add_packet_config_cmd (&remote_protocol_vcont,
5697 "vCont", "verbose-resume",
5698 set_remote_protocol_vcont_packet_cmd,
5699 show_remote_protocol_vcont_packet_cmd,
5700 &remote_set_cmdlist, &remote_show_cmdlist,
5701 0);
5702
5703 add_packet_config_cmd (&remote_protocol_qSymbol,
5704 "qSymbol", "symbol-lookup",
5705 set_remote_protocol_qSymbol_packet_cmd,
5706 show_remote_protocol_qSymbol_packet_cmd,
5707 &remote_set_cmdlist, &remote_show_cmdlist,
5708 0);
5709
5710 add_packet_config_cmd (&remote_protocol_P,
5711 "P", "set-register",
5712 set_remote_protocol_P_packet_cmd,
5713 show_remote_protocol_P_packet_cmd,
5714 &remote_set_cmdlist, &remote_show_cmdlist,
5715 1);
5716
5717 add_packet_config_cmd (&remote_protocol_p,
5718 "p", "fetch-register",
5719 set_remote_protocol_p_packet_cmd,
5720 show_remote_protocol_p_packet_cmd,
5721 &remote_set_cmdlist, &remote_show_cmdlist,
5722 1);
5723
5724 add_packet_config_cmd (&remote_protocol_Z[Z_PACKET_SOFTWARE_BP],
5725 "Z0", "software-breakpoint",
5726 set_remote_protocol_Z_software_bp_packet_cmd,
5727 show_remote_protocol_Z_software_bp_packet_cmd,
5728 &remote_set_cmdlist, &remote_show_cmdlist,
5729 0);
5730
5731 add_packet_config_cmd (&remote_protocol_Z[Z_PACKET_HARDWARE_BP],
5732 "Z1", "hardware-breakpoint",
5733 set_remote_protocol_Z_hardware_bp_packet_cmd,
5734 show_remote_protocol_Z_hardware_bp_packet_cmd,
5735 &remote_set_cmdlist, &remote_show_cmdlist,
5736 0);
5737
5738 add_packet_config_cmd (&remote_protocol_Z[Z_PACKET_WRITE_WP],
5739 "Z2", "write-watchpoint",
5740 set_remote_protocol_Z_write_wp_packet_cmd,
5741 show_remote_protocol_Z_write_wp_packet_cmd,
5742 &remote_set_cmdlist, &remote_show_cmdlist,
5743 0);
5744
5745 add_packet_config_cmd (&remote_protocol_Z[Z_PACKET_READ_WP],
5746 "Z3", "read-watchpoint",
5747 set_remote_protocol_Z_read_wp_packet_cmd,
5748 show_remote_protocol_Z_read_wp_packet_cmd,
5749 &remote_set_cmdlist, &remote_show_cmdlist,
5750 0);
5751
5752 add_packet_config_cmd (&remote_protocol_Z[Z_PACKET_ACCESS_WP],
5753 "Z4", "access-watchpoint",
5754 set_remote_protocol_Z_access_wp_packet_cmd,
5755 show_remote_protocol_Z_access_wp_packet_cmd,
5756 &remote_set_cmdlist, &remote_show_cmdlist,
5757 0);
5758
5759 add_packet_config_cmd (&remote_protocol_qPart_auxv,
5760 "qPart_auxv", "read-aux-vector",
5761 set_remote_protocol_qPart_auxv_packet_cmd,
5762 show_remote_protocol_qPart_auxv_packet_cmd,
5763 &remote_set_cmdlist, &remote_show_cmdlist,
5764 0);
5765
5766 /* Keep the old ``set remote Z-packet ...'' working. */
5767 add_setshow_auto_boolean_cmd ("Z-packet", class_obscure,
5768 &remote_Z_packet_detect, _("\
5769 Set use of remote protocol `Z' packets"), _("\
5770 Show use of remote protocol `Z' packets "), _("\
5771 When set, GDB will attempt to use the remote breakpoint and watchpoint\n\
5772 packets."),
5773 set_remote_protocol_Z_packet_cmd,
5774 show_remote_protocol_Z_packet_cmd, /* FIXME: i18n: Use of remote protocol `Z' packets is %s. */
5775 &remote_set_cmdlist, &remote_show_cmdlist);
5776
5777 /* Eventually initialize fileio. See fileio.c */
5778 initialize_remote_fileio (remote_set_cmdlist, remote_show_cmdlist);
5779 }