2009-08-12 Michael Snyder <msnyder@vmware.com>
[binutils-gdb.git] / gdb / remote.c
1 /* Remote target communications for serial-line targets in custom GDB protocol
2
3 Copyright (C) 1988, 1989, 1990, 1991, 1992, 1993, 1994, 1995, 1996, 1997,
4 1998, 1999, 2000, 2001, 2002, 2003, 2004, 2005, 2006, 2007, 2008, 2009
5 Free Software Foundation, Inc.
6
7 This file is part of GDB.
8
9 This program is free software; you can redistribute it and/or modify
10 it under the terms of the GNU General Public License as published by
11 the Free Software Foundation; either version 3 of the License, or
12 (at your option) any later version.
13
14 This program is distributed in the hope that it will be useful,
15 but WITHOUT ANY WARRANTY; without even the implied warranty of
16 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
17 GNU General Public License for more details.
18
19 You should have received a copy of the GNU General Public License
20 along with this program. If not, see <http://www.gnu.org/licenses/>. */
21
22 /* See the GDB User Guide for details of the GDB remote protocol. */
23
24 #include "defs.h"
25 #include "gdb_string.h"
26 #include <ctype.h>
27 #include <fcntl.h>
28 #include "inferior.h"
29 #include "bfd.h"
30 #include "symfile.h"
31 #include "exceptions.h"
32 #include "target.h"
33 /*#include "terminal.h" */
34 #include "gdbcmd.h"
35 #include "objfiles.h"
36 #include "gdb-stabs.h"
37 #include "gdbthread.h"
38 #include "remote.h"
39 #include "regcache.h"
40 #include "value.h"
41 #include "gdb_assert.h"
42 #include "observer.h"
43 #include "solib.h"
44 #include "cli/cli-decode.h"
45 #include "cli/cli-setshow.h"
46 #include "target-descriptions.h"
47
48 #include <ctype.h>
49 #include <sys/time.h>
50
51 #include "event-loop.h"
52 #include "event-top.h"
53 #include "inf-loop.h"
54
55 #include <signal.h>
56 #include "serial.h"
57
58 #include "gdbcore.h" /* for exec_bfd */
59
60 #include "remote-fileio.h"
61 #include "gdb/fileio.h"
62 #include "gdb_stat.h"
63
64 #include "memory-map.h"
65
66 /* The size to align memory write packets, when practical. The protocol
67 does not guarantee any alignment, and gdb will generate short
68 writes and unaligned writes, but even as a best-effort attempt this
69 can improve bulk transfers. For instance, if a write is misaligned
70 relative to the target's data bus, the stub may need to make an extra
71 round trip fetching data from the target. This doesn't make a
72 huge difference, but it's easy to do, so we try to be helpful.
73
74 The alignment chosen is arbitrary; usually data bus width is
75 important here, not the possibly larger cache line size. */
76 enum { REMOTE_ALIGN_WRITES = 16 };
77
78 /* Prototypes for local functions. */
79 static void cleanup_sigint_signal_handler (void *dummy);
80 static void initialize_sigint_signal_handler (void);
81 static int getpkt_sane (char **buf, long *sizeof_buf, int forever);
82 static int getpkt_or_notif_sane (char **buf, long *sizeof_buf,
83 int forever);
84
85 static void handle_remote_sigint (int);
86 static void handle_remote_sigint_twice (int);
87 static void async_remote_interrupt (gdb_client_data);
88 void async_remote_interrupt_twice (gdb_client_data);
89
90 static void remote_files_info (struct target_ops *ignore);
91
92 static void remote_prepare_to_store (struct regcache *regcache);
93
94 static void remote_open (char *name, int from_tty);
95
96 static void extended_remote_open (char *name, int from_tty);
97
98 static void remote_open_1 (char *, int, struct target_ops *, int extended_p);
99
100 static void remote_close (int quitting);
101
102 static void remote_mourn (struct target_ops *ops);
103
104 static void extended_remote_restart (void);
105
106 static void extended_remote_mourn (struct target_ops *);
107
108 static void remote_mourn_1 (struct target_ops *);
109
110 static void remote_send (char **buf, long *sizeof_buf_p);
111
112 static int readchar (int timeout);
113
114 static void remote_kill (struct target_ops *ops);
115
116 static int tohex (int nib);
117
118 static int remote_can_async_p (void);
119
120 static int remote_is_async_p (void);
121
122 static void remote_async (void (*callback) (enum inferior_event_type event_type,
123 void *context), void *context);
124
125 static int remote_async_mask (int new_mask);
126
127 static void remote_detach (struct target_ops *ops, char *args, int from_tty);
128
129 static void remote_interrupt (int signo);
130
131 static void remote_interrupt_twice (int signo);
132
133 static void interrupt_query (void);
134
135 static void set_general_thread (struct ptid ptid);
136 static void set_continue_thread (struct ptid ptid);
137
138 static void get_offsets (void);
139
140 static void skip_frame (void);
141
142 static long read_frame (char **buf_p, long *sizeof_buf);
143
144 static int hexnumlen (ULONGEST num);
145
146 static void init_remote_ops (void);
147
148 static void init_extended_remote_ops (void);
149
150 static void remote_stop (ptid_t);
151
152 static int ishex (int ch, int *val);
153
154 static int stubhex (int ch);
155
156 static int hexnumstr (char *, ULONGEST);
157
158 static int hexnumnstr (char *, ULONGEST, int);
159
160 static CORE_ADDR remote_address_masked (CORE_ADDR);
161
162 static void print_packet (char *);
163
164 static unsigned long crc32 (unsigned char *, int, unsigned int);
165
166 static void compare_sections_command (char *, int);
167
168 static void packet_command (char *, int);
169
170 static int stub_unpack_int (char *buff, int fieldlength);
171
172 static ptid_t remote_current_thread (ptid_t oldptid);
173
174 static void remote_find_new_threads (void);
175
176 static void record_currthread (ptid_t currthread);
177
178 static int fromhex (int a);
179
180 static int hex2bin (const char *hex, gdb_byte *bin, int count);
181
182 static int bin2hex (const gdb_byte *bin, char *hex, int count);
183
184 static int putpkt_binary (char *buf, int cnt);
185
186 static void check_binary_download (CORE_ADDR addr);
187
188 struct packet_config;
189
190 static void show_packet_config_cmd (struct packet_config *config);
191
192 static void update_packet_config (struct packet_config *config);
193
194 static void set_remote_protocol_packet_cmd (char *args, int from_tty,
195 struct cmd_list_element *c);
196
197 static void show_remote_protocol_packet_cmd (struct ui_file *file,
198 int from_tty,
199 struct cmd_list_element *c,
200 const char *value);
201
202 static char *write_ptid (char *buf, const char *endbuf, ptid_t ptid);
203 static ptid_t read_ptid (char *buf, char **obuf);
204
205 static void remote_query_supported (void);
206
207 static void remote_check_symbols (struct objfile *objfile);
208
209 void _initialize_remote (void);
210
211 struct stop_reply;
212 static struct stop_reply *stop_reply_xmalloc (void);
213 static void stop_reply_xfree (struct stop_reply *);
214 static void do_stop_reply_xfree (void *arg);
215 static void remote_parse_stop_reply (char *buf, struct stop_reply *);
216 static void push_stop_reply (struct stop_reply *);
217 static void remote_get_pending_stop_replies (void);
218 static void discard_pending_stop_replies (int pid);
219 static int peek_stop_reply (ptid_t ptid);
220
221 static void remote_async_inferior_event_handler (gdb_client_data);
222 static void remote_async_get_pending_events_handler (gdb_client_data);
223
224 static void remote_terminal_ours (void);
225
226 static int remote_read_description_p (struct target_ops *target);
227
228 /* The non-stop remote protocol provisions for one pending stop reply.
229 This is where we keep it until it is acknowledged. */
230
231 static struct stop_reply *pending_stop_reply = NULL;
232
233 /* For "remote". */
234
235 static struct cmd_list_element *remote_cmdlist;
236
237 /* For "set remote" and "show remote". */
238
239 static struct cmd_list_element *remote_set_cmdlist;
240 static struct cmd_list_element *remote_show_cmdlist;
241
242 /* Description of the remote protocol state for the currently
243 connected target. This is per-target state, and independent of the
244 selected architecture. */
245
246 struct remote_state
247 {
248 /* A buffer to use for incoming packets, and its current size. The
249 buffer is grown dynamically for larger incoming packets.
250 Outgoing packets may also be constructed in this buffer.
251 BUF_SIZE is always at least REMOTE_PACKET_SIZE;
252 REMOTE_PACKET_SIZE should be used to limit the length of outgoing
253 packets. */
254 char *buf;
255 long buf_size;
256
257 /* If we negotiated packet size explicitly (and thus can bypass
258 heuristics for the largest packet size that will not overflow
259 a buffer in the stub), this will be set to that packet size.
260 Otherwise zero, meaning to use the guessed size. */
261 long explicit_packet_size;
262
263 /* remote_wait is normally called when the target is running and
264 waits for a stop reply packet. But sometimes we need to call it
265 when the target is already stopped. We can send a "?" packet
266 and have remote_wait read the response. Or, if we already have
267 the response, we can stash it in BUF and tell remote_wait to
268 skip calling getpkt. This flag is set when BUF contains a
269 stop reply packet and the target is not waiting. */
270 int cached_wait_status;
271
272 /* True, if in no ack mode. That is, neither GDB nor the stub will
273 expect acks from each other. The connection is assumed to be
274 reliable. */
275 int noack_mode;
276
277 /* True if we're connected in extended remote mode. */
278 int extended;
279
280 /* True if the stub reported support for multi-process
281 extensions. */
282 int multi_process_aware;
283
284 /* True if we resumed the target and we're waiting for the target to
285 stop. In the mean time, we can't start another command/query.
286 The remote server wouldn't be ready to process it, so we'd
287 timeout waiting for a reply that would never come and eventually
288 we'd close the connection. This can happen in asynchronous mode
289 because we allow GDB commands while the target is running. */
290 int waiting_for_stop_reply;
291
292 /* True if the stub reports support for non-stop mode. */
293 int non_stop_aware;
294
295 /* True if the stub reports support for vCont;t. */
296 int support_vCont_t;
297
298 /* True if the stub reports support for conditional tracepoints. */
299 int cond_tracepoints;
300 };
301
302 /* Returns true if the multi-process extensions are in effect. */
303 static int
304 remote_multi_process_p (struct remote_state *rs)
305 {
306 return rs->extended && rs->multi_process_aware;
307 }
308
309 /* This data could be associated with a target, but we do not always
310 have access to the current target when we need it, so for now it is
311 static. This will be fine for as long as only one target is in use
312 at a time. */
313 static struct remote_state remote_state;
314
315 static struct remote_state *
316 get_remote_state_raw (void)
317 {
318 return &remote_state;
319 }
320
321 /* Description of the remote protocol for a given architecture. */
322
323 struct packet_reg
324 {
325 long offset; /* Offset into G packet. */
326 long regnum; /* GDB's internal register number. */
327 LONGEST pnum; /* Remote protocol register number. */
328 int in_g_packet; /* Always part of G packet. */
329 /* long size in bytes; == register_size (target_gdbarch, regnum);
330 at present. */
331 /* char *name; == gdbarch_register_name (target_gdbarch, regnum);
332 at present. */
333 };
334
335 struct remote_arch_state
336 {
337 /* Description of the remote protocol registers. */
338 long sizeof_g_packet;
339
340 /* Description of the remote protocol registers indexed by REGNUM
341 (making an array gdbarch_num_regs in size). */
342 struct packet_reg *regs;
343
344 /* This is the size (in chars) of the first response to the ``g''
345 packet. It is used as a heuristic when determining the maximum
346 size of memory-read and memory-write packets. A target will
347 typically only reserve a buffer large enough to hold the ``g''
348 packet. The size does not include packet overhead (headers and
349 trailers). */
350 long actual_register_packet_size;
351
352 /* This is the maximum size (in chars) of a non read/write packet.
353 It is also used as a cap on the size of read/write packets. */
354 long remote_packet_size;
355 };
356
357
358 /* Handle for retreving the remote protocol data from gdbarch. */
359 static struct gdbarch_data *remote_gdbarch_data_handle;
360
361 static struct remote_arch_state *
362 get_remote_arch_state (void)
363 {
364 return gdbarch_data (target_gdbarch, remote_gdbarch_data_handle);
365 }
366
367 /* Fetch the global remote target state. */
368
369 static struct remote_state *
370 get_remote_state (void)
371 {
372 /* Make sure that the remote architecture state has been
373 initialized, because doing so might reallocate rs->buf. Any
374 function which calls getpkt also needs to be mindful of changes
375 to rs->buf, but this call limits the number of places which run
376 into trouble. */
377 get_remote_arch_state ();
378
379 return get_remote_state_raw ();
380 }
381
382 static int
383 compare_pnums (const void *lhs_, const void *rhs_)
384 {
385 const struct packet_reg * const *lhs = lhs_;
386 const struct packet_reg * const *rhs = rhs_;
387
388 if ((*lhs)->pnum < (*rhs)->pnum)
389 return -1;
390 else if ((*lhs)->pnum == (*rhs)->pnum)
391 return 0;
392 else
393 return 1;
394 }
395
396 static void *
397 init_remote_state (struct gdbarch *gdbarch)
398 {
399 int regnum, num_remote_regs, offset;
400 struct remote_state *rs = get_remote_state_raw ();
401 struct remote_arch_state *rsa;
402 struct packet_reg **remote_regs;
403
404 rsa = GDBARCH_OBSTACK_ZALLOC (gdbarch, struct remote_arch_state);
405
406 /* Use the architecture to build a regnum<->pnum table, which will be
407 1:1 unless a feature set specifies otherwise. */
408 rsa->regs = GDBARCH_OBSTACK_CALLOC (gdbarch,
409 gdbarch_num_regs (gdbarch),
410 struct packet_reg);
411 for (regnum = 0; regnum < gdbarch_num_regs (gdbarch); regnum++)
412 {
413 struct packet_reg *r = &rsa->regs[regnum];
414
415 if (register_size (gdbarch, regnum) == 0)
416 /* Do not try to fetch zero-sized (placeholder) registers. */
417 r->pnum = -1;
418 else
419 r->pnum = gdbarch_remote_register_number (gdbarch, regnum);
420
421 r->regnum = regnum;
422 }
423
424 /* Define the g/G packet format as the contents of each register
425 with a remote protocol number, in order of ascending protocol
426 number. */
427
428 remote_regs = alloca (gdbarch_num_regs (gdbarch)
429 * sizeof (struct packet_reg *));
430 for (num_remote_regs = 0, regnum = 0;
431 regnum < gdbarch_num_regs (gdbarch);
432 regnum++)
433 if (rsa->regs[regnum].pnum != -1)
434 remote_regs[num_remote_regs++] = &rsa->regs[regnum];
435
436 qsort (remote_regs, num_remote_regs, sizeof (struct packet_reg *),
437 compare_pnums);
438
439 for (regnum = 0, offset = 0; regnum < num_remote_regs; regnum++)
440 {
441 remote_regs[regnum]->in_g_packet = 1;
442 remote_regs[regnum]->offset = offset;
443 offset += register_size (gdbarch, remote_regs[regnum]->regnum);
444 }
445
446 /* Record the maximum possible size of the g packet - it may turn out
447 to be smaller. */
448 rsa->sizeof_g_packet = offset;
449
450 /* Default maximum number of characters in a packet body. Many
451 remote stubs have a hardwired buffer size of 400 bytes
452 (c.f. BUFMAX in m68k-stub.c and i386-stub.c). BUFMAX-1 is used
453 as the maximum packet-size to ensure that the packet and an extra
454 NUL character can always fit in the buffer. This stops GDB
455 trashing stubs that try to squeeze an extra NUL into what is
456 already a full buffer (As of 1999-12-04 that was most stubs). */
457 rsa->remote_packet_size = 400 - 1;
458
459 /* This one is filled in when a ``g'' packet is received. */
460 rsa->actual_register_packet_size = 0;
461
462 /* Should rsa->sizeof_g_packet needs more space than the
463 default, adjust the size accordingly. Remember that each byte is
464 encoded as two characters. 32 is the overhead for the packet
465 header / footer. NOTE: cagney/1999-10-26: I suspect that 8
466 (``$NN:G...#NN'') is a better guess, the below has been padded a
467 little. */
468 if (rsa->sizeof_g_packet > ((rsa->remote_packet_size - 32) / 2))
469 rsa->remote_packet_size = (rsa->sizeof_g_packet * 2 + 32);
470
471 /* Make sure that the packet buffer is plenty big enough for
472 this architecture. */
473 if (rs->buf_size < rsa->remote_packet_size)
474 {
475 rs->buf_size = 2 * rsa->remote_packet_size;
476 rs->buf = xrealloc (rs->buf, rs->buf_size);
477 }
478
479 return rsa;
480 }
481
482 /* Return the current allowed size of a remote packet. This is
483 inferred from the current architecture, and should be used to
484 limit the length of outgoing packets. */
485 static long
486 get_remote_packet_size (void)
487 {
488 struct remote_state *rs = get_remote_state ();
489 struct remote_arch_state *rsa = get_remote_arch_state ();
490
491 if (rs->explicit_packet_size)
492 return rs->explicit_packet_size;
493
494 return rsa->remote_packet_size;
495 }
496
497 static struct packet_reg *
498 packet_reg_from_regnum (struct remote_arch_state *rsa, long regnum)
499 {
500 if (regnum < 0 && regnum >= gdbarch_num_regs (target_gdbarch))
501 return NULL;
502 else
503 {
504 struct packet_reg *r = &rsa->regs[regnum];
505 gdb_assert (r->regnum == regnum);
506 return r;
507 }
508 }
509
510 static struct packet_reg *
511 packet_reg_from_pnum (struct remote_arch_state *rsa, LONGEST pnum)
512 {
513 int i;
514 for (i = 0; i < gdbarch_num_regs (target_gdbarch); i++)
515 {
516 struct packet_reg *r = &rsa->regs[i];
517 if (r->pnum == pnum)
518 return r;
519 }
520 return NULL;
521 }
522
523 /* FIXME: graces/2002-08-08: These variables should eventually be
524 bound to an instance of the target object (as in gdbarch-tdep()),
525 when such a thing exists. */
526
527 /* This is set to the data address of the access causing the target
528 to stop for a watchpoint. */
529 static CORE_ADDR remote_watch_data_address;
530
531 /* This is non-zero if target stopped for a watchpoint. */
532 static int remote_stopped_by_watchpoint_p;
533
534 static struct target_ops remote_ops;
535
536 static struct target_ops extended_remote_ops;
537
538 static int remote_async_mask_value = 1;
539
540 /* FIXME: cagney/1999-09-23: Even though getpkt was called with
541 ``forever'' still use the normal timeout mechanism. This is
542 currently used by the ASYNC code to guarentee that target reads
543 during the initial connect always time-out. Once getpkt has been
544 modified to return a timeout indication and, in turn
545 remote_wait()/wait_for_inferior() have gained a timeout parameter
546 this can go away. */
547 static int wait_forever_enabled_p = 1;
548
549
550 /* This variable chooses whether to send a ^C or a break when the user
551 requests program interruption. Although ^C is usually what remote
552 systems expect, and that is the default here, sometimes a break is
553 preferable instead. */
554
555 static int remote_break;
556
557 /* Descriptor for I/O to remote machine. Initialize it to NULL so that
558 remote_open knows that we don't have a file open when the program
559 starts. */
560 static struct serial *remote_desc = NULL;
561
562 /* This variable sets the number of bits in an address that are to be
563 sent in a memory ("M" or "m") packet. Normally, after stripping
564 leading zeros, the entire address would be sent. This variable
565 restricts the address to REMOTE_ADDRESS_SIZE bits. HISTORY: The
566 initial implementation of remote.c restricted the address sent in
567 memory packets to ``host::sizeof long'' bytes - (typically 32
568 bits). Consequently, for 64 bit targets, the upper 32 bits of an
569 address was never sent. Since fixing this bug may cause a break in
570 some remote targets this variable is principly provided to
571 facilitate backward compatibility. */
572
573 static int remote_address_size;
574
575 /* Temporary to track who currently owns the terminal. See
576 remote_terminal_* for more details. */
577
578 static int remote_async_terminal_ours_p;
579
580 /* The executable file to use for "run" on the remote side. */
581
582 static char *remote_exec_file = "";
583
584 \f
585 /* User configurable variables for the number of characters in a
586 memory read/write packet. MIN (rsa->remote_packet_size,
587 rsa->sizeof_g_packet) is the default. Some targets need smaller
588 values (fifo overruns, et.al.) and some users need larger values
589 (speed up transfers). The variables ``preferred_*'' (the user
590 request), ``current_*'' (what was actually set) and ``forced_*''
591 (Positive - a soft limit, negative - a hard limit). */
592
593 struct memory_packet_config
594 {
595 char *name;
596 long size;
597 int fixed_p;
598 };
599
600 /* Compute the current size of a read/write packet. Since this makes
601 use of ``actual_register_packet_size'' the computation is dynamic. */
602
603 static long
604 get_memory_packet_size (struct memory_packet_config *config)
605 {
606 struct remote_state *rs = get_remote_state ();
607 struct remote_arch_state *rsa = get_remote_arch_state ();
608
609 /* NOTE: The somewhat arbitrary 16k comes from the knowledge (folk
610 law?) that some hosts don't cope very well with large alloca()
611 calls. Eventually the alloca() code will be replaced by calls to
612 xmalloc() and make_cleanups() allowing this restriction to either
613 be lifted or removed. */
614 #ifndef MAX_REMOTE_PACKET_SIZE
615 #define MAX_REMOTE_PACKET_SIZE 16384
616 #endif
617 /* NOTE: 20 ensures we can write at least one byte. */
618 #ifndef MIN_REMOTE_PACKET_SIZE
619 #define MIN_REMOTE_PACKET_SIZE 20
620 #endif
621 long what_they_get;
622 if (config->fixed_p)
623 {
624 if (config->size <= 0)
625 what_they_get = MAX_REMOTE_PACKET_SIZE;
626 else
627 what_they_get = config->size;
628 }
629 else
630 {
631 what_they_get = get_remote_packet_size ();
632 /* Limit the packet to the size specified by the user. */
633 if (config->size > 0
634 && what_they_get > config->size)
635 what_they_get = config->size;
636
637 /* Limit it to the size of the targets ``g'' response unless we have
638 permission from the stub to use a larger packet size. */
639 if (rs->explicit_packet_size == 0
640 && rsa->actual_register_packet_size > 0
641 && what_they_get > rsa->actual_register_packet_size)
642 what_they_get = rsa->actual_register_packet_size;
643 }
644 if (what_they_get > MAX_REMOTE_PACKET_SIZE)
645 what_they_get = MAX_REMOTE_PACKET_SIZE;
646 if (what_they_get < MIN_REMOTE_PACKET_SIZE)
647 what_they_get = MIN_REMOTE_PACKET_SIZE;
648
649 /* Make sure there is room in the global buffer for this packet
650 (including its trailing NUL byte). */
651 if (rs->buf_size < what_they_get + 1)
652 {
653 rs->buf_size = 2 * what_they_get;
654 rs->buf = xrealloc (rs->buf, 2 * what_they_get);
655 }
656
657 return what_they_get;
658 }
659
660 /* Update the size of a read/write packet. If they user wants
661 something really big then do a sanity check. */
662
663 static void
664 set_memory_packet_size (char *args, struct memory_packet_config *config)
665 {
666 int fixed_p = config->fixed_p;
667 long size = config->size;
668 if (args == NULL)
669 error (_("Argument required (integer, `fixed' or `limited')."));
670 else if (strcmp (args, "hard") == 0
671 || strcmp (args, "fixed") == 0)
672 fixed_p = 1;
673 else if (strcmp (args, "soft") == 0
674 || strcmp (args, "limit") == 0)
675 fixed_p = 0;
676 else
677 {
678 char *end;
679 size = strtoul (args, &end, 0);
680 if (args == end)
681 error (_("Invalid %s (bad syntax)."), config->name);
682 #if 0
683 /* Instead of explicitly capping the size of a packet to
684 MAX_REMOTE_PACKET_SIZE or dissallowing it, the user is
685 instead allowed to set the size to something arbitrarily
686 large. */
687 if (size > MAX_REMOTE_PACKET_SIZE)
688 error (_("Invalid %s (too large)."), config->name);
689 #endif
690 }
691 /* Extra checks? */
692 if (fixed_p && !config->fixed_p)
693 {
694 if (! query (_("The target may not be able to correctly handle a %s\n"
695 "of %ld bytes. Change the packet size? "),
696 config->name, size))
697 error (_("Packet size not changed."));
698 }
699 /* Update the config. */
700 config->fixed_p = fixed_p;
701 config->size = size;
702 }
703
704 static void
705 show_memory_packet_size (struct memory_packet_config *config)
706 {
707 printf_filtered (_("The %s is %ld. "), config->name, config->size);
708 if (config->fixed_p)
709 printf_filtered (_("Packets are fixed at %ld bytes.\n"),
710 get_memory_packet_size (config));
711 else
712 printf_filtered (_("Packets are limited to %ld bytes.\n"),
713 get_memory_packet_size (config));
714 }
715
716 static struct memory_packet_config memory_write_packet_config =
717 {
718 "memory-write-packet-size",
719 };
720
721 static void
722 set_memory_write_packet_size (char *args, int from_tty)
723 {
724 set_memory_packet_size (args, &memory_write_packet_config);
725 }
726
727 static void
728 show_memory_write_packet_size (char *args, int from_tty)
729 {
730 show_memory_packet_size (&memory_write_packet_config);
731 }
732
733 static long
734 get_memory_write_packet_size (void)
735 {
736 return get_memory_packet_size (&memory_write_packet_config);
737 }
738
739 static struct memory_packet_config memory_read_packet_config =
740 {
741 "memory-read-packet-size",
742 };
743
744 static void
745 set_memory_read_packet_size (char *args, int from_tty)
746 {
747 set_memory_packet_size (args, &memory_read_packet_config);
748 }
749
750 static void
751 show_memory_read_packet_size (char *args, int from_tty)
752 {
753 show_memory_packet_size (&memory_read_packet_config);
754 }
755
756 static long
757 get_memory_read_packet_size (void)
758 {
759 long size = get_memory_packet_size (&memory_read_packet_config);
760 /* FIXME: cagney/1999-11-07: Functions like getpkt() need to get an
761 extra buffer size argument before the memory read size can be
762 increased beyond this. */
763 if (size > get_remote_packet_size ())
764 size = get_remote_packet_size ();
765 return size;
766 }
767
768 \f
769 /* Generic configuration support for packets the stub optionally
770 supports. Allows the user to specify the use of the packet as well
771 as allowing GDB to auto-detect support in the remote stub. */
772
773 enum packet_support
774 {
775 PACKET_SUPPORT_UNKNOWN = 0,
776 PACKET_ENABLE,
777 PACKET_DISABLE
778 };
779
780 struct packet_config
781 {
782 const char *name;
783 const char *title;
784 enum auto_boolean detect;
785 enum packet_support support;
786 };
787
788 /* Analyze a packet's return value and update the packet config
789 accordingly. */
790
791 enum packet_result
792 {
793 PACKET_ERROR,
794 PACKET_OK,
795 PACKET_UNKNOWN
796 };
797
798 static void
799 update_packet_config (struct packet_config *config)
800 {
801 switch (config->detect)
802 {
803 case AUTO_BOOLEAN_TRUE:
804 config->support = PACKET_ENABLE;
805 break;
806 case AUTO_BOOLEAN_FALSE:
807 config->support = PACKET_DISABLE;
808 break;
809 case AUTO_BOOLEAN_AUTO:
810 config->support = PACKET_SUPPORT_UNKNOWN;
811 break;
812 }
813 }
814
815 static void
816 show_packet_config_cmd (struct packet_config *config)
817 {
818 char *support = "internal-error";
819 switch (config->support)
820 {
821 case PACKET_ENABLE:
822 support = "enabled";
823 break;
824 case PACKET_DISABLE:
825 support = "disabled";
826 break;
827 case PACKET_SUPPORT_UNKNOWN:
828 support = "unknown";
829 break;
830 }
831 switch (config->detect)
832 {
833 case AUTO_BOOLEAN_AUTO:
834 printf_filtered (_("Support for the `%s' packet is auto-detected, currently %s.\n"),
835 config->name, support);
836 break;
837 case AUTO_BOOLEAN_TRUE:
838 case AUTO_BOOLEAN_FALSE:
839 printf_filtered (_("Support for the `%s' packet is currently %s.\n"),
840 config->name, support);
841 break;
842 }
843 }
844
845 static void
846 add_packet_config_cmd (struct packet_config *config, const char *name,
847 const char *title, int legacy)
848 {
849 char *set_doc;
850 char *show_doc;
851 char *cmd_name;
852
853 config->name = name;
854 config->title = title;
855 config->detect = AUTO_BOOLEAN_AUTO;
856 config->support = PACKET_SUPPORT_UNKNOWN;
857 set_doc = xstrprintf ("Set use of remote protocol `%s' (%s) packet",
858 name, title);
859 show_doc = xstrprintf ("Show current use of remote protocol `%s' (%s) packet",
860 name, title);
861 /* set/show TITLE-packet {auto,on,off} */
862 cmd_name = xstrprintf ("%s-packet", title);
863 add_setshow_auto_boolean_cmd (cmd_name, class_obscure,
864 &config->detect, set_doc, show_doc, NULL, /* help_doc */
865 set_remote_protocol_packet_cmd,
866 show_remote_protocol_packet_cmd,
867 &remote_set_cmdlist, &remote_show_cmdlist);
868 /* set/show remote NAME-packet {auto,on,off} -- legacy. */
869 if (legacy)
870 {
871 char *legacy_name;
872 legacy_name = xstrprintf ("%s-packet", name);
873 add_alias_cmd (legacy_name, cmd_name, class_obscure, 0,
874 &remote_set_cmdlist);
875 add_alias_cmd (legacy_name, cmd_name, class_obscure, 0,
876 &remote_show_cmdlist);
877 }
878 }
879
880 static enum packet_result
881 packet_check_result (const char *buf)
882 {
883 if (buf[0] != '\0')
884 {
885 /* The stub recognized the packet request. Check that the
886 operation succeeded. */
887 if (buf[0] == 'E'
888 && isxdigit (buf[1]) && isxdigit (buf[2])
889 && buf[3] == '\0')
890 /* "Enn" - definitly an error. */
891 return PACKET_ERROR;
892
893 /* Always treat "E." as an error. This will be used for
894 more verbose error messages, such as E.memtypes. */
895 if (buf[0] == 'E' && buf[1] == '.')
896 return PACKET_ERROR;
897
898 /* The packet may or may not be OK. Just assume it is. */
899 return PACKET_OK;
900 }
901 else
902 /* The stub does not support the packet. */
903 return PACKET_UNKNOWN;
904 }
905
906 static enum packet_result
907 packet_ok (const char *buf, struct packet_config *config)
908 {
909 enum packet_result result;
910
911 result = packet_check_result (buf);
912 switch (result)
913 {
914 case PACKET_OK:
915 case PACKET_ERROR:
916 /* The stub recognized the packet request. */
917 switch (config->support)
918 {
919 case PACKET_SUPPORT_UNKNOWN:
920 if (remote_debug)
921 fprintf_unfiltered (gdb_stdlog,
922 "Packet %s (%s) is supported\n",
923 config->name, config->title);
924 config->support = PACKET_ENABLE;
925 break;
926 case PACKET_DISABLE:
927 internal_error (__FILE__, __LINE__,
928 _("packet_ok: attempt to use a disabled packet"));
929 break;
930 case PACKET_ENABLE:
931 break;
932 }
933 break;
934 case PACKET_UNKNOWN:
935 /* The stub does not support the packet. */
936 switch (config->support)
937 {
938 case PACKET_ENABLE:
939 if (config->detect == AUTO_BOOLEAN_AUTO)
940 /* If the stub previously indicated that the packet was
941 supported then there is a protocol error.. */
942 error (_("Protocol error: %s (%s) conflicting enabled responses."),
943 config->name, config->title);
944 else
945 /* The user set it wrong. */
946 error (_("Enabled packet %s (%s) not recognized by stub"),
947 config->name, config->title);
948 break;
949 case PACKET_SUPPORT_UNKNOWN:
950 if (remote_debug)
951 fprintf_unfiltered (gdb_stdlog,
952 "Packet %s (%s) is NOT supported\n",
953 config->name, config->title);
954 config->support = PACKET_DISABLE;
955 break;
956 case PACKET_DISABLE:
957 break;
958 }
959 break;
960 }
961
962 return result;
963 }
964
965 enum {
966 PACKET_vCont = 0,
967 PACKET_X,
968 PACKET_qSymbol,
969 PACKET_P,
970 PACKET_p,
971 PACKET_Z0,
972 PACKET_Z1,
973 PACKET_Z2,
974 PACKET_Z3,
975 PACKET_Z4,
976 PACKET_vFile_open,
977 PACKET_vFile_pread,
978 PACKET_vFile_pwrite,
979 PACKET_vFile_close,
980 PACKET_vFile_unlink,
981 PACKET_qXfer_auxv,
982 PACKET_qXfer_features,
983 PACKET_qXfer_libraries,
984 PACKET_qXfer_memory_map,
985 PACKET_qXfer_spu_read,
986 PACKET_qXfer_spu_write,
987 PACKET_qXfer_osdata,
988 PACKET_qGetTLSAddr,
989 PACKET_qSupported,
990 PACKET_QPassSignals,
991 PACKET_qSearch_memory,
992 PACKET_vAttach,
993 PACKET_vRun,
994 PACKET_QStartNoAckMode,
995 PACKET_vKill,
996 PACKET_qXfer_siginfo_read,
997 PACKET_qXfer_siginfo_write,
998 PACKET_qAttached,
999 PACKET_ConditionalTracepoints,
1000 PACKET_MAX
1001 };
1002
1003 static struct packet_config remote_protocol_packets[PACKET_MAX];
1004
1005 static void
1006 set_remote_protocol_packet_cmd (char *args, int from_tty,
1007 struct cmd_list_element *c)
1008 {
1009 struct packet_config *packet;
1010
1011 for (packet = remote_protocol_packets;
1012 packet < &remote_protocol_packets[PACKET_MAX];
1013 packet++)
1014 {
1015 if (&packet->detect == c->var)
1016 {
1017 update_packet_config (packet);
1018 return;
1019 }
1020 }
1021 internal_error (__FILE__, __LINE__, "Could not find config for %s",
1022 c->name);
1023 }
1024
1025 static void
1026 show_remote_protocol_packet_cmd (struct ui_file *file, int from_tty,
1027 struct cmd_list_element *c,
1028 const char *value)
1029 {
1030 struct packet_config *packet;
1031
1032 for (packet = remote_protocol_packets;
1033 packet < &remote_protocol_packets[PACKET_MAX];
1034 packet++)
1035 {
1036 if (&packet->detect == c->var)
1037 {
1038 show_packet_config_cmd (packet);
1039 return;
1040 }
1041 }
1042 internal_error (__FILE__, __LINE__, "Could not find config for %s",
1043 c->name);
1044 }
1045
1046 /* Should we try one of the 'Z' requests? */
1047
1048 enum Z_packet_type
1049 {
1050 Z_PACKET_SOFTWARE_BP,
1051 Z_PACKET_HARDWARE_BP,
1052 Z_PACKET_WRITE_WP,
1053 Z_PACKET_READ_WP,
1054 Z_PACKET_ACCESS_WP,
1055 NR_Z_PACKET_TYPES
1056 };
1057
1058 /* For compatibility with older distributions. Provide a ``set remote
1059 Z-packet ...'' command that updates all the Z packet types. */
1060
1061 static enum auto_boolean remote_Z_packet_detect;
1062
1063 static void
1064 set_remote_protocol_Z_packet_cmd (char *args, int from_tty,
1065 struct cmd_list_element *c)
1066 {
1067 int i;
1068 for (i = 0; i < NR_Z_PACKET_TYPES; i++)
1069 {
1070 remote_protocol_packets[PACKET_Z0 + i].detect = remote_Z_packet_detect;
1071 update_packet_config (&remote_protocol_packets[PACKET_Z0 + i]);
1072 }
1073 }
1074
1075 static void
1076 show_remote_protocol_Z_packet_cmd (struct ui_file *file, int from_tty,
1077 struct cmd_list_element *c,
1078 const char *value)
1079 {
1080 int i;
1081 for (i = 0; i < NR_Z_PACKET_TYPES; i++)
1082 {
1083 show_packet_config_cmd (&remote_protocol_packets[PACKET_Z0 + i]);
1084 }
1085 }
1086
1087 /* Should we try the 'ThreadInfo' query packet?
1088
1089 This variable (NOT available to the user: auto-detect only!)
1090 determines whether GDB will use the new, simpler "ThreadInfo"
1091 query or the older, more complex syntax for thread queries.
1092 This is an auto-detect variable (set to true at each connect,
1093 and set to false when the target fails to recognize it). */
1094
1095 static int use_threadinfo_query;
1096 static int use_threadextra_query;
1097
1098 /* Tokens for use by the asynchronous signal handlers for SIGINT. */
1099 static struct async_signal_handler *sigint_remote_twice_token;
1100 static struct async_signal_handler *sigint_remote_token;
1101
1102 \f
1103 /* Asynchronous signal handle registered as event loop source for
1104 when we have pending events ready to be passed to the core. */
1105
1106 static struct async_event_handler *remote_async_inferior_event_token;
1107
1108 /* Asynchronous signal handle registered as event loop source for when
1109 the remote sent us a %Stop notification. The registered callback
1110 will do a vStopped sequence to pull the rest of the events out of
1111 the remote side into our event queue. */
1112
1113 static struct async_event_handler *remote_async_get_pending_events_token;
1114 \f
1115
1116 static ptid_t magic_null_ptid;
1117 static ptid_t not_sent_ptid;
1118 static ptid_t any_thread_ptid;
1119
1120 /* These are the threads which we last sent to the remote system. The
1121 TID member will be -1 for all or -2 for not sent yet. */
1122
1123 static ptid_t general_thread;
1124 static ptid_t continue_thread;
1125
1126 /* Find out if the stub attached to PID (and hence GDB should offer to
1127 detach instead of killing it when bailing out). */
1128
1129 static int
1130 remote_query_attached (int pid)
1131 {
1132 struct remote_state *rs = get_remote_state ();
1133
1134 if (remote_protocol_packets[PACKET_qAttached].support == PACKET_DISABLE)
1135 return 0;
1136
1137 if (remote_multi_process_p (rs))
1138 sprintf (rs->buf, "qAttached:%x", pid);
1139 else
1140 sprintf (rs->buf, "qAttached");
1141
1142 putpkt (rs->buf);
1143 getpkt (&rs->buf, &rs->buf_size, 0);
1144
1145 switch (packet_ok (rs->buf,
1146 &remote_protocol_packets[PACKET_qAttached]))
1147 {
1148 case PACKET_OK:
1149 if (strcmp (rs->buf, "1") == 0)
1150 return 1;
1151 break;
1152 case PACKET_ERROR:
1153 warning (_("Remote failure reply: %s"), rs->buf);
1154 break;
1155 case PACKET_UNKNOWN:
1156 break;
1157 }
1158
1159 return 0;
1160 }
1161
1162 /* Add PID to GDB's inferior table. Since we can be connected to a
1163 remote system before before knowing about any inferior, mark the
1164 target with execution when we find the first inferior. If ATTACHED
1165 is 1, then we had just attached to this inferior. If it is 0, then
1166 we just created this inferior. If it is -1, then try querying the
1167 remote stub to find out if it had attached to the inferior or
1168 not. */
1169
1170 static struct inferior *
1171 remote_add_inferior (int pid, int attached)
1172 {
1173 struct inferior *inf;
1174
1175 /* Check whether this process we're learning about is to be
1176 considered attached, or if is to be considered to have been
1177 spawned by the stub. */
1178 if (attached == -1)
1179 attached = remote_query_attached (pid);
1180
1181 inf = add_inferior (pid);
1182
1183 inf->attach_flag = attached;
1184
1185 return inf;
1186 }
1187
1188 /* Add thread PTID to GDB's thread list. Tag it as executing/running
1189 according to RUNNING. */
1190
1191 static void
1192 remote_add_thread (ptid_t ptid, int running)
1193 {
1194 add_thread (ptid);
1195
1196 set_executing (ptid, running);
1197 set_running (ptid, running);
1198 }
1199
1200 /* Come here when we learn about a thread id from the remote target.
1201 It may be the first time we hear about such thread, so take the
1202 opportunity to add it to GDB's thread list. In case this is the
1203 first time we're noticing its corresponding inferior, add it to
1204 GDB's inferior list as well. */
1205
1206 static void
1207 remote_notice_new_inferior (ptid_t currthread, int running)
1208 {
1209 /* If this is a new thread, add it to GDB's thread list.
1210 If we leave it up to WFI to do this, bad things will happen. */
1211
1212 if (in_thread_list (currthread) && is_exited (currthread))
1213 {
1214 /* We're seeing an event on a thread id we knew had exited.
1215 This has to be a new thread reusing the old id. Add it. */
1216 remote_add_thread (currthread, running);
1217 return;
1218 }
1219
1220 if (!in_thread_list (currthread))
1221 {
1222 struct inferior *inf = NULL;
1223 int pid = ptid_get_pid (currthread);
1224
1225 if (ptid_is_pid (inferior_ptid)
1226 && pid == ptid_get_pid (inferior_ptid))
1227 {
1228 /* inferior_ptid has no thread member yet. This can happen
1229 with the vAttach -> remote_wait,"TAAthread:" path if the
1230 stub doesn't support qC. This is the first stop reported
1231 after an attach, so this is the main thread. Update the
1232 ptid in the thread list. */
1233 if (in_thread_list (pid_to_ptid (pid)))
1234 thread_change_ptid (inferior_ptid, currthread);
1235 else
1236 {
1237 remote_add_thread (currthread, running);
1238 inferior_ptid = currthread;
1239 }
1240 return;
1241 }
1242
1243 if (ptid_equal (magic_null_ptid, inferior_ptid))
1244 {
1245 /* inferior_ptid is not set yet. This can happen with the
1246 vRun -> remote_wait,"TAAthread:" path if the stub
1247 doesn't support qC. This is the first stop reported
1248 after an attach, so this is the main thread. Update the
1249 ptid in the thread list. */
1250 thread_change_ptid (inferior_ptid, currthread);
1251 return;
1252 }
1253
1254 /* When connecting to a target remote, or to a target
1255 extended-remote which already was debugging an inferior, we
1256 may not know about it yet. Add it before adding its child
1257 thread, so notifications are emitted in a sensible order. */
1258 if (!in_inferior_list (ptid_get_pid (currthread)))
1259 inf = remote_add_inferior (ptid_get_pid (currthread), -1);
1260
1261 /* This is really a new thread. Add it. */
1262 remote_add_thread (currthread, running);
1263
1264 /* If we found a new inferior, let the common code do whatever
1265 it needs to with it (e.g., read shared libraries, insert
1266 breakpoints). */
1267 if (inf != NULL)
1268 notice_new_inferior (currthread, running, 0);
1269 }
1270 }
1271
1272 /* Call this function as a result of
1273 1) A halt indication (T packet) containing a thread id
1274 2) A direct query of currthread
1275 3) Successful execution of set thread
1276 */
1277
1278 static void
1279 record_currthread (ptid_t currthread)
1280 {
1281 general_thread = currthread;
1282
1283 if (ptid_equal (currthread, minus_one_ptid))
1284 /* We're just invalidating the local thread mirror. */
1285 return;
1286
1287 remote_notice_new_inferior (currthread, 0);
1288 }
1289
1290 static char *last_pass_packet;
1291
1292 /* If 'QPassSignals' is supported, tell the remote stub what signals
1293 it can simply pass through to the inferior without reporting. */
1294
1295 static void
1296 remote_pass_signals (void)
1297 {
1298 if (remote_protocol_packets[PACKET_QPassSignals].support != PACKET_DISABLE)
1299 {
1300 char *pass_packet, *p;
1301 int numsigs = (int) TARGET_SIGNAL_LAST;
1302 int count = 0, i;
1303
1304 gdb_assert (numsigs < 256);
1305 for (i = 0; i < numsigs; i++)
1306 {
1307 if (signal_stop_state (i) == 0
1308 && signal_print_state (i) == 0
1309 && signal_pass_state (i) == 1)
1310 count++;
1311 }
1312 pass_packet = xmalloc (count * 3 + strlen ("QPassSignals:") + 1);
1313 strcpy (pass_packet, "QPassSignals:");
1314 p = pass_packet + strlen (pass_packet);
1315 for (i = 0; i < numsigs; i++)
1316 {
1317 if (signal_stop_state (i) == 0
1318 && signal_print_state (i) == 0
1319 && signal_pass_state (i) == 1)
1320 {
1321 if (i >= 16)
1322 *p++ = tohex (i >> 4);
1323 *p++ = tohex (i & 15);
1324 if (count)
1325 *p++ = ';';
1326 else
1327 break;
1328 count--;
1329 }
1330 }
1331 *p = 0;
1332 if (!last_pass_packet || strcmp (last_pass_packet, pass_packet))
1333 {
1334 struct remote_state *rs = get_remote_state ();
1335 char *buf = rs->buf;
1336
1337 putpkt (pass_packet);
1338 getpkt (&rs->buf, &rs->buf_size, 0);
1339 packet_ok (buf, &remote_protocol_packets[PACKET_QPassSignals]);
1340 if (last_pass_packet)
1341 xfree (last_pass_packet);
1342 last_pass_packet = pass_packet;
1343 }
1344 else
1345 xfree (pass_packet);
1346 }
1347 }
1348
1349 /* If PTID is MAGIC_NULL_PTID, don't set any thread. If PTID is
1350 MINUS_ONE_PTID, set the thread to -1, so the stub returns the
1351 thread. If GEN is set, set the general thread, if not, then set
1352 the step/continue thread. */
1353 static void
1354 set_thread (struct ptid ptid, int gen)
1355 {
1356 struct remote_state *rs = get_remote_state ();
1357 ptid_t state = gen ? general_thread : continue_thread;
1358 char *buf = rs->buf;
1359 char *endbuf = rs->buf + get_remote_packet_size ();
1360
1361 if (ptid_equal (state, ptid))
1362 return;
1363
1364 *buf++ = 'H';
1365 *buf++ = gen ? 'g' : 'c';
1366 if (ptid_equal (ptid, magic_null_ptid))
1367 xsnprintf (buf, endbuf - buf, "0");
1368 else if (ptid_equal (ptid, any_thread_ptid))
1369 xsnprintf (buf, endbuf - buf, "0");
1370 else if (ptid_equal (ptid, minus_one_ptid))
1371 xsnprintf (buf, endbuf - buf, "-1");
1372 else
1373 write_ptid (buf, endbuf, ptid);
1374 putpkt (rs->buf);
1375 getpkt (&rs->buf, &rs->buf_size, 0);
1376 if (gen)
1377 general_thread = ptid;
1378 else
1379 continue_thread = ptid;
1380 }
1381
1382 static void
1383 set_general_thread (struct ptid ptid)
1384 {
1385 set_thread (ptid, 1);
1386 }
1387
1388 static void
1389 set_continue_thread (struct ptid ptid)
1390 {
1391 set_thread (ptid, 0);
1392 }
1393
1394 /* Change the remote current process. Which thread within the process
1395 ends up selected isn't important, as long as it is the same process
1396 as what INFERIOR_PTID points to.
1397
1398 This comes from that fact that there is no explicit notion of
1399 "selected process" in the protocol. The selected process for
1400 general operations is the process the selected general thread
1401 belongs to. */
1402
1403 static void
1404 set_general_process (void)
1405 {
1406 struct remote_state *rs = get_remote_state ();
1407
1408 /* If the remote can't handle multiple processes, don't bother. */
1409 if (!remote_multi_process_p (rs))
1410 return;
1411
1412 /* We only need to change the remote current thread if it's pointing
1413 at some other process. */
1414 if (ptid_get_pid (general_thread) != ptid_get_pid (inferior_ptid))
1415 set_general_thread (inferior_ptid);
1416 }
1417
1418 \f
1419 /* Return nonzero if the thread PTID is still alive on the remote
1420 system. */
1421
1422 static int
1423 remote_thread_alive (struct target_ops *ops, ptid_t ptid)
1424 {
1425 struct remote_state *rs = get_remote_state ();
1426 char *p, *endp;
1427
1428 if (ptid_equal (ptid, magic_null_ptid))
1429 /* The main thread is always alive. */
1430 return 1;
1431
1432 if (ptid_get_pid (ptid) != 0 && ptid_get_tid (ptid) == 0)
1433 /* The main thread is always alive. This can happen after a
1434 vAttach, if the remote side doesn't support
1435 multi-threading. */
1436 return 1;
1437
1438 p = rs->buf;
1439 endp = rs->buf + get_remote_packet_size ();
1440
1441 *p++ = 'T';
1442 write_ptid (p, endp, ptid);
1443
1444 putpkt (rs->buf);
1445 getpkt (&rs->buf, &rs->buf_size, 0);
1446 return (rs->buf[0] == 'O' && rs->buf[1] == 'K');
1447 }
1448
1449 /* About these extended threadlist and threadinfo packets. They are
1450 variable length packets but, the fields within them are often fixed
1451 length. They are redundent enough to send over UDP as is the
1452 remote protocol in general. There is a matching unit test module
1453 in libstub. */
1454
1455 #define OPAQUETHREADBYTES 8
1456
1457 /* a 64 bit opaque identifier */
1458 typedef unsigned char threadref[OPAQUETHREADBYTES];
1459
1460 /* WARNING: This threadref data structure comes from the remote O.S.,
1461 libstub protocol encoding, and remote.c. it is not particularly
1462 changable. */
1463
1464 /* Right now, the internal structure is int. We want it to be bigger.
1465 Plan to fix this.
1466 */
1467
1468 typedef int gdb_threadref; /* Internal GDB thread reference. */
1469
1470 /* gdb_ext_thread_info is an internal GDB data structure which is
1471 equivalent to the reply of the remote threadinfo packet. */
1472
1473 struct gdb_ext_thread_info
1474 {
1475 threadref threadid; /* External form of thread reference. */
1476 int active; /* Has state interesting to GDB?
1477 regs, stack. */
1478 char display[256]; /* Brief state display, name,
1479 blocked/suspended. */
1480 char shortname[32]; /* To be used to name threads. */
1481 char more_display[256]; /* Long info, statistics, queue depth,
1482 whatever. */
1483 };
1484
1485 /* The volume of remote transfers can be limited by submitting
1486 a mask containing bits specifying the desired information.
1487 Use a union of these values as the 'selection' parameter to
1488 get_thread_info. FIXME: Make these TAG names more thread specific.
1489 */
1490
1491 #define TAG_THREADID 1
1492 #define TAG_EXISTS 2
1493 #define TAG_DISPLAY 4
1494 #define TAG_THREADNAME 8
1495 #define TAG_MOREDISPLAY 16
1496
1497 #define BUF_THREAD_ID_SIZE (OPAQUETHREADBYTES * 2)
1498
1499 char *unpack_varlen_hex (char *buff, ULONGEST *result);
1500
1501 static char *unpack_nibble (char *buf, int *val);
1502
1503 static char *pack_nibble (char *buf, int nibble);
1504
1505 static char *pack_hex_byte (char *pkt, int /* unsigned char */ byte);
1506
1507 static char *unpack_byte (char *buf, int *value);
1508
1509 static char *pack_int (char *buf, int value);
1510
1511 static char *unpack_int (char *buf, int *value);
1512
1513 static char *unpack_string (char *src, char *dest, int length);
1514
1515 static char *pack_threadid (char *pkt, threadref *id);
1516
1517 static char *unpack_threadid (char *inbuf, threadref *id);
1518
1519 void int_to_threadref (threadref *id, int value);
1520
1521 static int threadref_to_int (threadref *ref);
1522
1523 static void copy_threadref (threadref *dest, threadref *src);
1524
1525 static int threadmatch (threadref *dest, threadref *src);
1526
1527 static char *pack_threadinfo_request (char *pkt, int mode,
1528 threadref *id);
1529
1530 static int remote_unpack_thread_info_response (char *pkt,
1531 threadref *expectedref,
1532 struct gdb_ext_thread_info
1533 *info);
1534
1535
1536 static int remote_get_threadinfo (threadref *threadid,
1537 int fieldset, /*TAG mask */
1538 struct gdb_ext_thread_info *info);
1539
1540 static char *pack_threadlist_request (char *pkt, int startflag,
1541 int threadcount,
1542 threadref *nextthread);
1543
1544 static int parse_threadlist_response (char *pkt,
1545 int result_limit,
1546 threadref *original_echo,
1547 threadref *resultlist,
1548 int *doneflag);
1549
1550 static int remote_get_threadlist (int startflag,
1551 threadref *nextthread,
1552 int result_limit,
1553 int *done,
1554 int *result_count,
1555 threadref *threadlist);
1556
1557 typedef int (*rmt_thread_action) (threadref *ref, void *context);
1558
1559 static int remote_threadlist_iterator (rmt_thread_action stepfunction,
1560 void *context, int looplimit);
1561
1562 static int remote_newthread_step (threadref *ref, void *context);
1563
1564
1565 /* Write a PTID to BUF. ENDBUF points to one-passed-the-end of the
1566 buffer we're allowed to write to. Returns
1567 BUF+CHARACTERS_WRITTEN. */
1568
1569 static char *
1570 write_ptid (char *buf, const char *endbuf, ptid_t ptid)
1571 {
1572 int pid, tid;
1573 struct remote_state *rs = get_remote_state ();
1574
1575 if (remote_multi_process_p (rs))
1576 {
1577 pid = ptid_get_pid (ptid);
1578 if (pid < 0)
1579 buf += xsnprintf (buf, endbuf - buf, "p-%x.", -pid);
1580 else
1581 buf += xsnprintf (buf, endbuf - buf, "p%x.", pid);
1582 }
1583 tid = ptid_get_tid (ptid);
1584 if (tid < 0)
1585 buf += xsnprintf (buf, endbuf - buf, "-%x", -tid);
1586 else
1587 buf += xsnprintf (buf, endbuf - buf, "%x", tid);
1588
1589 return buf;
1590 }
1591
1592 /* Extract a PTID from BUF. If non-null, OBUF is set to the to one
1593 passed the last parsed char. Returns null_ptid on error. */
1594
1595 static ptid_t
1596 read_ptid (char *buf, char **obuf)
1597 {
1598 char *p = buf;
1599 char *pp;
1600 ULONGEST pid = 0, tid = 0;
1601
1602 if (*p == 'p')
1603 {
1604 /* Multi-process ptid. */
1605 pp = unpack_varlen_hex (p + 1, &pid);
1606 if (*pp != '.')
1607 error (_("invalid remote ptid: %s\n"), p);
1608
1609 p = pp;
1610 pp = unpack_varlen_hex (p + 1, &tid);
1611 if (obuf)
1612 *obuf = pp;
1613 return ptid_build (pid, 0, tid);
1614 }
1615
1616 /* No multi-process. Just a tid. */
1617 pp = unpack_varlen_hex (p, &tid);
1618
1619 /* Since the stub is not sending a process id, then default to
1620 what's in inferior_ptid, unless it's null at this point. If so,
1621 then since there's no way to know the pid of the reported
1622 threads, use the magic number. */
1623 if (ptid_equal (inferior_ptid, null_ptid))
1624 pid = ptid_get_pid (magic_null_ptid);
1625 else
1626 pid = ptid_get_pid (inferior_ptid);
1627
1628 if (obuf)
1629 *obuf = pp;
1630 return ptid_build (pid, 0, tid);
1631 }
1632
1633 /* Encode 64 bits in 16 chars of hex. */
1634
1635 static const char hexchars[] = "0123456789abcdef";
1636
1637 static int
1638 ishex (int ch, int *val)
1639 {
1640 if ((ch >= 'a') && (ch <= 'f'))
1641 {
1642 *val = ch - 'a' + 10;
1643 return 1;
1644 }
1645 if ((ch >= 'A') && (ch <= 'F'))
1646 {
1647 *val = ch - 'A' + 10;
1648 return 1;
1649 }
1650 if ((ch >= '0') && (ch <= '9'))
1651 {
1652 *val = ch - '0';
1653 return 1;
1654 }
1655 return 0;
1656 }
1657
1658 static int
1659 stubhex (int ch)
1660 {
1661 if (ch >= 'a' && ch <= 'f')
1662 return ch - 'a' + 10;
1663 if (ch >= '0' && ch <= '9')
1664 return ch - '0';
1665 if (ch >= 'A' && ch <= 'F')
1666 return ch - 'A' + 10;
1667 return -1;
1668 }
1669
1670 static int
1671 stub_unpack_int (char *buff, int fieldlength)
1672 {
1673 int nibble;
1674 int retval = 0;
1675
1676 while (fieldlength)
1677 {
1678 nibble = stubhex (*buff++);
1679 retval |= nibble;
1680 fieldlength--;
1681 if (fieldlength)
1682 retval = retval << 4;
1683 }
1684 return retval;
1685 }
1686
1687 char *
1688 unpack_varlen_hex (char *buff, /* packet to parse */
1689 ULONGEST *result)
1690 {
1691 int nibble;
1692 ULONGEST retval = 0;
1693
1694 while (ishex (*buff, &nibble))
1695 {
1696 buff++;
1697 retval = retval << 4;
1698 retval |= nibble & 0x0f;
1699 }
1700 *result = retval;
1701 return buff;
1702 }
1703
1704 static char *
1705 unpack_nibble (char *buf, int *val)
1706 {
1707 *val = fromhex (*buf++);
1708 return buf;
1709 }
1710
1711 static char *
1712 pack_nibble (char *buf, int nibble)
1713 {
1714 *buf++ = hexchars[(nibble & 0x0f)];
1715 return buf;
1716 }
1717
1718 static char *
1719 pack_hex_byte (char *pkt, int byte)
1720 {
1721 *pkt++ = hexchars[(byte >> 4) & 0xf];
1722 *pkt++ = hexchars[(byte & 0xf)];
1723 return pkt;
1724 }
1725
1726 static char *
1727 unpack_byte (char *buf, int *value)
1728 {
1729 *value = stub_unpack_int (buf, 2);
1730 return buf + 2;
1731 }
1732
1733 static char *
1734 pack_int (char *buf, int value)
1735 {
1736 buf = pack_hex_byte (buf, (value >> 24) & 0xff);
1737 buf = pack_hex_byte (buf, (value >> 16) & 0xff);
1738 buf = pack_hex_byte (buf, (value >> 8) & 0x0ff);
1739 buf = pack_hex_byte (buf, (value & 0xff));
1740 return buf;
1741 }
1742
1743 static char *
1744 unpack_int (char *buf, int *value)
1745 {
1746 *value = stub_unpack_int (buf, 8);
1747 return buf + 8;
1748 }
1749
1750 #if 0 /* Currently unused, uncomment when needed. */
1751 static char *pack_string (char *pkt, char *string);
1752
1753 static char *
1754 pack_string (char *pkt, char *string)
1755 {
1756 char ch;
1757 int len;
1758
1759 len = strlen (string);
1760 if (len > 200)
1761 len = 200; /* Bigger than most GDB packets, junk??? */
1762 pkt = pack_hex_byte (pkt, len);
1763 while (len-- > 0)
1764 {
1765 ch = *string++;
1766 if ((ch == '\0') || (ch == '#'))
1767 ch = '*'; /* Protect encapsulation. */
1768 *pkt++ = ch;
1769 }
1770 return pkt;
1771 }
1772 #endif /* 0 (unused) */
1773
1774 static char *
1775 unpack_string (char *src, char *dest, int length)
1776 {
1777 while (length--)
1778 *dest++ = *src++;
1779 *dest = '\0';
1780 return src;
1781 }
1782
1783 static char *
1784 pack_threadid (char *pkt, threadref *id)
1785 {
1786 char *limit;
1787 unsigned char *altid;
1788
1789 altid = (unsigned char *) id;
1790 limit = pkt + BUF_THREAD_ID_SIZE;
1791 while (pkt < limit)
1792 pkt = pack_hex_byte (pkt, *altid++);
1793 return pkt;
1794 }
1795
1796
1797 static char *
1798 unpack_threadid (char *inbuf, threadref *id)
1799 {
1800 char *altref;
1801 char *limit = inbuf + BUF_THREAD_ID_SIZE;
1802 int x, y;
1803
1804 altref = (char *) id;
1805
1806 while (inbuf < limit)
1807 {
1808 x = stubhex (*inbuf++);
1809 y = stubhex (*inbuf++);
1810 *altref++ = (x << 4) | y;
1811 }
1812 return inbuf;
1813 }
1814
1815 /* Externally, threadrefs are 64 bits but internally, they are still
1816 ints. This is due to a mismatch of specifications. We would like
1817 to use 64bit thread references internally. This is an adapter
1818 function. */
1819
1820 void
1821 int_to_threadref (threadref *id, int value)
1822 {
1823 unsigned char *scan;
1824
1825 scan = (unsigned char *) id;
1826 {
1827 int i = 4;
1828 while (i--)
1829 *scan++ = 0;
1830 }
1831 *scan++ = (value >> 24) & 0xff;
1832 *scan++ = (value >> 16) & 0xff;
1833 *scan++ = (value >> 8) & 0xff;
1834 *scan++ = (value & 0xff);
1835 }
1836
1837 static int
1838 threadref_to_int (threadref *ref)
1839 {
1840 int i, value = 0;
1841 unsigned char *scan;
1842
1843 scan = *ref;
1844 scan += 4;
1845 i = 4;
1846 while (i-- > 0)
1847 value = (value << 8) | ((*scan++) & 0xff);
1848 return value;
1849 }
1850
1851 static void
1852 copy_threadref (threadref *dest, threadref *src)
1853 {
1854 int i;
1855 unsigned char *csrc, *cdest;
1856
1857 csrc = (unsigned char *) src;
1858 cdest = (unsigned char *) dest;
1859 i = 8;
1860 while (i--)
1861 *cdest++ = *csrc++;
1862 }
1863
1864 static int
1865 threadmatch (threadref *dest, threadref *src)
1866 {
1867 /* Things are broken right now, so just assume we got a match. */
1868 #if 0
1869 unsigned char *srcp, *destp;
1870 int i, result;
1871 srcp = (char *) src;
1872 destp = (char *) dest;
1873
1874 result = 1;
1875 while (i-- > 0)
1876 result &= (*srcp++ == *destp++) ? 1 : 0;
1877 return result;
1878 #endif
1879 return 1;
1880 }
1881
1882 /*
1883 threadid:1, # always request threadid
1884 context_exists:2,
1885 display:4,
1886 unique_name:8,
1887 more_display:16
1888 */
1889
1890 /* Encoding: 'Q':8,'P':8,mask:32,threadid:64 */
1891
1892 static char *
1893 pack_threadinfo_request (char *pkt, int mode, threadref *id)
1894 {
1895 *pkt++ = 'q'; /* Info Query */
1896 *pkt++ = 'P'; /* process or thread info */
1897 pkt = pack_int (pkt, mode); /* mode */
1898 pkt = pack_threadid (pkt, id); /* threadid */
1899 *pkt = '\0'; /* terminate */
1900 return pkt;
1901 }
1902
1903 /* These values tag the fields in a thread info response packet. */
1904 /* Tagging the fields allows us to request specific fields and to
1905 add more fields as time goes by. */
1906
1907 #define TAG_THREADID 1 /* Echo the thread identifier. */
1908 #define TAG_EXISTS 2 /* Is this process defined enough to
1909 fetch registers and its stack? */
1910 #define TAG_DISPLAY 4 /* A short thing maybe to put on a window */
1911 #define TAG_THREADNAME 8 /* string, maps 1-to-1 with a thread is. */
1912 #define TAG_MOREDISPLAY 16 /* Whatever the kernel wants to say about
1913 the process. */
1914
1915 static int
1916 remote_unpack_thread_info_response (char *pkt, threadref *expectedref,
1917 struct gdb_ext_thread_info *info)
1918 {
1919 struct remote_state *rs = get_remote_state ();
1920 int mask, length;
1921 int tag;
1922 threadref ref;
1923 char *limit = pkt + rs->buf_size; /* Plausible parsing limit. */
1924 int retval = 1;
1925
1926 /* info->threadid = 0; FIXME: implement zero_threadref. */
1927 info->active = 0;
1928 info->display[0] = '\0';
1929 info->shortname[0] = '\0';
1930 info->more_display[0] = '\0';
1931
1932 /* Assume the characters indicating the packet type have been
1933 stripped. */
1934 pkt = unpack_int (pkt, &mask); /* arg mask */
1935 pkt = unpack_threadid (pkt, &ref);
1936
1937 if (mask == 0)
1938 warning (_("Incomplete response to threadinfo request."));
1939 if (!threadmatch (&ref, expectedref))
1940 { /* This is an answer to a different request. */
1941 warning (_("ERROR RMT Thread info mismatch."));
1942 return 0;
1943 }
1944 copy_threadref (&info->threadid, &ref);
1945
1946 /* Loop on tagged fields , try to bail if somthing goes wrong. */
1947
1948 /* Packets are terminated with nulls. */
1949 while ((pkt < limit) && mask && *pkt)
1950 {
1951 pkt = unpack_int (pkt, &tag); /* tag */
1952 pkt = unpack_byte (pkt, &length); /* length */
1953 if (!(tag & mask)) /* Tags out of synch with mask. */
1954 {
1955 warning (_("ERROR RMT: threadinfo tag mismatch."));
1956 retval = 0;
1957 break;
1958 }
1959 if (tag == TAG_THREADID)
1960 {
1961 if (length != 16)
1962 {
1963 warning (_("ERROR RMT: length of threadid is not 16."));
1964 retval = 0;
1965 break;
1966 }
1967 pkt = unpack_threadid (pkt, &ref);
1968 mask = mask & ~TAG_THREADID;
1969 continue;
1970 }
1971 if (tag == TAG_EXISTS)
1972 {
1973 info->active = stub_unpack_int (pkt, length);
1974 pkt += length;
1975 mask = mask & ~(TAG_EXISTS);
1976 if (length > 8)
1977 {
1978 warning (_("ERROR RMT: 'exists' length too long."));
1979 retval = 0;
1980 break;
1981 }
1982 continue;
1983 }
1984 if (tag == TAG_THREADNAME)
1985 {
1986 pkt = unpack_string (pkt, &info->shortname[0], length);
1987 mask = mask & ~TAG_THREADNAME;
1988 continue;
1989 }
1990 if (tag == TAG_DISPLAY)
1991 {
1992 pkt = unpack_string (pkt, &info->display[0], length);
1993 mask = mask & ~TAG_DISPLAY;
1994 continue;
1995 }
1996 if (tag == TAG_MOREDISPLAY)
1997 {
1998 pkt = unpack_string (pkt, &info->more_display[0], length);
1999 mask = mask & ~TAG_MOREDISPLAY;
2000 continue;
2001 }
2002 warning (_("ERROR RMT: unknown thread info tag."));
2003 break; /* Not a tag we know about. */
2004 }
2005 return retval;
2006 }
2007
2008 static int
2009 remote_get_threadinfo (threadref *threadid, int fieldset, /* TAG mask */
2010 struct gdb_ext_thread_info *info)
2011 {
2012 struct remote_state *rs = get_remote_state ();
2013 int result;
2014
2015 pack_threadinfo_request (rs->buf, fieldset, threadid);
2016 putpkt (rs->buf);
2017 getpkt (&rs->buf, &rs->buf_size, 0);
2018
2019 if (rs->buf[0] == '\0')
2020 return 0;
2021
2022 result = remote_unpack_thread_info_response (rs->buf + 2,
2023 threadid, info);
2024 return result;
2025 }
2026
2027 /* Format: i'Q':8,i"L":8,initflag:8,batchsize:16,lastthreadid:32 */
2028
2029 static char *
2030 pack_threadlist_request (char *pkt, int startflag, int threadcount,
2031 threadref *nextthread)
2032 {
2033 *pkt++ = 'q'; /* info query packet */
2034 *pkt++ = 'L'; /* Process LIST or threadLIST request */
2035 pkt = pack_nibble (pkt, startflag); /* initflag 1 bytes */
2036 pkt = pack_hex_byte (pkt, threadcount); /* threadcount 2 bytes */
2037 pkt = pack_threadid (pkt, nextthread); /* 64 bit thread identifier */
2038 *pkt = '\0';
2039 return pkt;
2040 }
2041
2042 /* Encoding: 'q':8,'M':8,count:16,done:8,argthreadid:64,(threadid:64)* */
2043
2044 static int
2045 parse_threadlist_response (char *pkt, int result_limit,
2046 threadref *original_echo, threadref *resultlist,
2047 int *doneflag)
2048 {
2049 struct remote_state *rs = get_remote_state ();
2050 char *limit;
2051 int count, resultcount, done;
2052
2053 resultcount = 0;
2054 /* Assume the 'q' and 'M chars have been stripped. */
2055 limit = pkt + (rs->buf_size - BUF_THREAD_ID_SIZE);
2056 /* done parse past here */
2057 pkt = unpack_byte (pkt, &count); /* count field */
2058 pkt = unpack_nibble (pkt, &done);
2059 /* The first threadid is the argument threadid. */
2060 pkt = unpack_threadid (pkt, original_echo); /* should match query packet */
2061 while ((count-- > 0) && (pkt < limit))
2062 {
2063 pkt = unpack_threadid (pkt, resultlist++);
2064 if (resultcount++ >= result_limit)
2065 break;
2066 }
2067 if (doneflag)
2068 *doneflag = done;
2069 return resultcount;
2070 }
2071
2072 static int
2073 remote_get_threadlist (int startflag, threadref *nextthread, int result_limit,
2074 int *done, int *result_count, threadref *threadlist)
2075 {
2076 struct remote_state *rs = get_remote_state ();
2077 static threadref echo_nextthread;
2078 int result = 1;
2079
2080 /* Trancate result limit to be smaller than the packet size. */
2081 if ((((result_limit + 1) * BUF_THREAD_ID_SIZE) + 10) >= get_remote_packet_size ())
2082 result_limit = (get_remote_packet_size () / BUF_THREAD_ID_SIZE) - 2;
2083
2084 pack_threadlist_request (rs->buf, startflag, result_limit, nextthread);
2085 putpkt (rs->buf);
2086 getpkt (&rs->buf, &rs->buf_size, 0);
2087
2088 if (*rs->buf == '\0')
2089 *result_count = 0;
2090 else
2091 *result_count =
2092 parse_threadlist_response (rs->buf + 2, result_limit, &echo_nextthread,
2093 threadlist, done);
2094
2095 if (!threadmatch (&echo_nextthread, nextthread))
2096 {
2097 /* FIXME: This is a good reason to drop the packet. */
2098 /* Possably, there is a duplicate response. */
2099 /* Possabilities :
2100 retransmit immediatly - race conditions
2101 retransmit after timeout - yes
2102 exit
2103 wait for packet, then exit
2104 */
2105 warning (_("HMM: threadlist did not echo arg thread, dropping it."));
2106 return 0; /* I choose simply exiting. */
2107 }
2108 if (*result_count <= 0)
2109 {
2110 if (*done != 1)
2111 {
2112 warning (_("RMT ERROR : failed to get remote thread list."));
2113 result = 0;
2114 }
2115 return result; /* break; */
2116 }
2117 if (*result_count > result_limit)
2118 {
2119 *result_count = 0;
2120 warning (_("RMT ERROR: threadlist response longer than requested."));
2121 return 0;
2122 }
2123 return result;
2124 }
2125
2126 /* This is the interface between remote and threads, remotes upper
2127 interface. */
2128
2129 /* remote_find_new_threads retrieves the thread list and for each
2130 thread in the list, looks up the thread in GDB's internal list,
2131 adding the thread if it does not already exist. This involves
2132 getting partial thread lists from the remote target so, polling the
2133 quit_flag is required. */
2134
2135
2136 /* About this many threadisds fit in a packet. */
2137
2138 #define MAXTHREADLISTRESULTS 32
2139
2140 static int
2141 remote_threadlist_iterator (rmt_thread_action stepfunction, void *context,
2142 int looplimit)
2143 {
2144 int done, i, result_count;
2145 int startflag = 1;
2146 int result = 1;
2147 int loopcount = 0;
2148 static threadref nextthread;
2149 static threadref resultthreadlist[MAXTHREADLISTRESULTS];
2150
2151 done = 0;
2152 while (!done)
2153 {
2154 if (loopcount++ > looplimit)
2155 {
2156 result = 0;
2157 warning (_("Remote fetch threadlist -infinite loop-."));
2158 break;
2159 }
2160 if (!remote_get_threadlist (startflag, &nextthread, MAXTHREADLISTRESULTS,
2161 &done, &result_count, resultthreadlist))
2162 {
2163 result = 0;
2164 break;
2165 }
2166 /* Clear for later iterations. */
2167 startflag = 0;
2168 /* Setup to resume next batch of thread references, set nextthread. */
2169 if (result_count >= 1)
2170 copy_threadref (&nextthread, &resultthreadlist[result_count - 1]);
2171 i = 0;
2172 while (result_count--)
2173 if (!(result = (*stepfunction) (&resultthreadlist[i++], context)))
2174 break;
2175 }
2176 return result;
2177 }
2178
2179 static int
2180 remote_newthread_step (threadref *ref, void *context)
2181 {
2182 int pid = ptid_get_pid (inferior_ptid);
2183 ptid_t ptid = ptid_build (pid, 0, threadref_to_int (ref));
2184
2185 if (!in_thread_list (ptid))
2186 add_thread (ptid);
2187 return 1; /* continue iterator */
2188 }
2189
2190 #define CRAZY_MAX_THREADS 1000
2191
2192 static ptid_t
2193 remote_current_thread (ptid_t oldpid)
2194 {
2195 struct remote_state *rs = get_remote_state ();
2196
2197 putpkt ("qC");
2198 getpkt (&rs->buf, &rs->buf_size, 0);
2199 if (rs->buf[0] == 'Q' && rs->buf[1] == 'C')
2200 return read_ptid (&rs->buf[2], NULL);
2201 else
2202 return oldpid;
2203 }
2204
2205 /* Find new threads for info threads command.
2206 * Original version, using John Metzler's thread protocol.
2207 */
2208
2209 static void
2210 remote_find_new_threads (void)
2211 {
2212 remote_threadlist_iterator (remote_newthread_step, 0,
2213 CRAZY_MAX_THREADS);
2214 }
2215
2216 /*
2217 * Find all threads for info threads command.
2218 * Uses new thread protocol contributed by Cisco.
2219 * Falls back and attempts to use the older method (above)
2220 * if the target doesn't respond to the new method.
2221 */
2222
2223 static void
2224 remote_threads_info (struct target_ops *ops)
2225 {
2226 struct remote_state *rs = get_remote_state ();
2227 char *bufp;
2228 ptid_t new_thread;
2229
2230 if (remote_desc == 0) /* paranoia */
2231 error (_("Command can only be used when connected to the remote target."));
2232
2233 if (use_threadinfo_query)
2234 {
2235 putpkt ("qfThreadInfo");
2236 getpkt (&rs->buf, &rs->buf_size, 0);
2237 bufp = rs->buf;
2238 if (bufp[0] != '\0') /* q packet recognized */
2239 {
2240 while (*bufp++ == 'm') /* reply contains one or more TID */
2241 {
2242 do
2243 {
2244 new_thread = read_ptid (bufp, &bufp);
2245 if (!ptid_equal (new_thread, null_ptid))
2246 {
2247 /* In non-stop mode, we assume new found threads
2248 are running until proven otherwise with a
2249 stop reply. In all-stop, we can only get
2250 here if all threads are stopped. */
2251 int running = non_stop ? 1 : 0;
2252
2253 remote_notice_new_inferior (new_thread, running);
2254 }
2255 }
2256 while (*bufp++ == ','); /* comma-separated list */
2257 putpkt ("qsThreadInfo");
2258 getpkt (&rs->buf, &rs->buf_size, 0);
2259 bufp = rs->buf;
2260 }
2261 return; /* done */
2262 }
2263 }
2264
2265 /* Only qfThreadInfo is supported in non-stop mode. */
2266 if (non_stop)
2267 return;
2268
2269 /* Else fall back to old method based on jmetzler protocol. */
2270 use_threadinfo_query = 0;
2271 remote_find_new_threads ();
2272 return;
2273 }
2274
2275 /*
2276 * Collect a descriptive string about the given thread.
2277 * The target may say anything it wants to about the thread
2278 * (typically info about its blocked / runnable state, name, etc.).
2279 * This string will appear in the info threads display.
2280 *
2281 * Optional: targets are not required to implement this function.
2282 */
2283
2284 static char *
2285 remote_threads_extra_info (struct thread_info *tp)
2286 {
2287 struct remote_state *rs = get_remote_state ();
2288 int result;
2289 int set;
2290 threadref id;
2291 struct gdb_ext_thread_info threadinfo;
2292 static char display_buf[100]; /* arbitrary... */
2293 int n = 0; /* position in display_buf */
2294
2295 if (remote_desc == 0) /* paranoia */
2296 internal_error (__FILE__, __LINE__,
2297 _("remote_threads_extra_info"));
2298
2299 if (ptid_equal (tp->ptid, magic_null_ptid)
2300 || (ptid_get_pid (tp->ptid) != 0 && ptid_get_tid (tp->ptid) == 0))
2301 /* This is the main thread which was added by GDB. The remote
2302 server doesn't know about it. */
2303 return NULL;
2304
2305 if (use_threadextra_query)
2306 {
2307 char *b = rs->buf;
2308 char *endb = rs->buf + get_remote_packet_size ();
2309
2310 xsnprintf (b, endb - b, "qThreadExtraInfo,");
2311 b += strlen (b);
2312 write_ptid (b, endb, tp->ptid);
2313
2314 putpkt (rs->buf);
2315 getpkt (&rs->buf, &rs->buf_size, 0);
2316 if (rs->buf[0] != 0)
2317 {
2318 n = min (strlen (rs->buf) / 2, sizeof (display_buf));
2319 result = hex2bin (rs->buf, (gdb_byte *) display_buf, n);
2320 display_buf [result] = '\0';
2321 return display_buf;
2322 }
2323 }
2324
2325 /* If the above query fails, fall back to the old method. */
2326 use_threadextra_query = 0;
2327 set = TAG_THREADID | TAG_EXISTS | TAG_THREADNAME
2328 | TAG_MOREDISPLAY | TAG_DISPLAY;
2329 int_to_threadref (&id, ptid_get_tid (tp->ptid));
2330 if (remote_get_threadinfo (&id, set, &threadinfo))
2331 if (threadinfo.active)
2332 {
2333 if (*threadinfo.shortname)
2334 n += xsnprintf (&display_buf[0], sizeof (display_buf) - n,
2335 " Name: %s,", threadinfo.shortname);
2336 if (*threadinfo.display)
2337 n += xsnprintf (&display_buf[n], sizeof (display_buf) - n,
2338 " State: %s,", threadinfo.display);
2339 if (*threadinfo.more_display)
2340 n += xsnprintf (&display_buf[n], sizeof (display_buf) - n,
2341 " Priority: %s", threadinfo.more_display);
2342
2343 if (n > 0)
2344 {
2345 /* For purely cosmetic reasons, clear up trailing commas. */
2346 if (',' == display_buf[n-1])
2347 display_buf[n-1] = ' ';
2348 return display_buf;
2349 }
2350 }
2351 return NULL;
2352 }
2353 \f
2354
2355 /* Restart the remote side; this is an extended protocol operation. */
2356
2357 static void
2358 extended_remote_restart (void)
2359 {
2360 struct remote_state *rs = get_remote_state ();
2361
2362 /* Send the restart command; for reasons I don't understand the
2363 remote side really expects a number after the "R". */
2364 xsnprintf (rs->buf, get_remote_packet_size (), "R%x", 0);
2365 putpkt (rs->buf);
2366
2367 remote_fileio_reset ();
2368 }
2369 \f
2370 /* Clean up connection to a remote debugger. */
2371
2372 static void
2373 remote_close (int quitting)
2374 {
2375 if (remote_desc == NULL)
2376 return; /* already closed */
2377
2378 /* Make sure we leave stdin registered in the event loop, and we
2379 don't leave the async SIGINT signal handler installed. */
2380 remote_terminal_ours ();
2381
2382 serial_close (remote_desc);
2383 remote_desc = NULL;
2384
2385 /* We don't have a connection to the remote stub anymore. Get rid
2386 of all the inferiors and their threads we were controlling. */
2387 discard_all_inferiors ();
2388
2389 /* We're no longer interested in any of these events. */
2390 discard_pending_stop_replies (-1);
2391
2392 if (remote_async_inferior_event_token)
2393 delete_async_event_handler (&remote_async_inferior_event_token);
2394 if (remote_async_get_pending_events_token)
2395 delete_async_event_handler (&remote_async_get_pending_events_token);
2396 }
2397
2398 /* Query the remote side for the text, data and bss offsets. */
2399
2400 static void
2401 get_offsets (void)
2402 {
2403 struct remote_state *rs = get_remote_state ();
2404 char *buf;
2405 char *ptr;
2406 int lose, num_segments = 0, do_sections, do_segments;
2407 CORE_ADDR text_addr, data_addr, bss_addr, segments[2];
2408 struct section_offsets *offs;
2409 struct symfile_segment_data *data;
2410
2411 if (symfile_objfile == NULL)
2412 return;
2413
2414 putpkt ("qOffsets");
2415 getpkt (&rs->buf, &rs->buf_size, 0);
2416 buf = rs->buf;
2417
2418 if (buf[0] == '\000')
2419 return; /* Return silently. Stub doesn't support
2420 this command. */
2421 if (buf[0] == 'E')
2422 {
2423 warning (_("Remote failure reply: %s"), buf);
2424 return;
2425 }
2426
2427 /* Pick up each field in turn. This used to be done with scanf, but
2428 scanf will make trouble if CORE_ADDR size doesn't match
2429 conversion directives correctly. The following code will work
2430 with any size of CORE_ADDR. */
2431 text_addr = data_addr = bss_addr = 0;
2432 ptr = buf;
2433 lose = 0;
2434
2435 if (strncmp (ptr, "Text=", 5) == 0)
2436 {
2437 ptr += 5;
2438 /* Don't use strtol, could lose on big values. */
2439 while (*ptr && *ptr != ';')
2440 text_addr = (text_addr << 4) + fromhex (*ptr++);
2441
2442 if (strncmp (ptr, ";Data=", 6) == 0)
2443 {
2444 ptr += 6;
2445 while (*ptr && *ptr != ';')
2446 data_addr = (data_addr << 4) + fromhex (*ptr++);
2447 }
2448 else
2449 lose = 1;
2450
2451 if (!lose && strncmp (ptr, ";Bss=", 5) == 0)
2452 {
2453 ptr += 5;
2454 while (*ptr && *ptr != ';')
2455 bss_addr = (bss_addr << 4) + fromhex (*ptr++);
2456
2457 if (bss_addr != data_addr)
2458 warning (_("Target reported unsupported offsets: %s"), buf);
2459 }
2460 else
2461 lose = 1;
2462 }
2463 else if (strncmp (ptr, "TextSeg=", 8) == 0)
2464 {
2465 ptr += 8;
2466 /* Don't use strtol, could lose on big values. */
2467 while (*ptr && *ptr != ';')
2468 text_addr = (text_addr << 4) + fromhex (*ptr++);
2469 num_segments = 1;
2470
2471 if (strncmp (ptr, ";DataSeg=", 9) == 0)
2472 {
2473 ptr += 9;
2474 while (*ptr && *ptr != ';')
2475 data_addr = (data_addr << 4) + fromhex (*ptr++);
2476 num_segments++;
2477 }
2478 }
2479 else
2480 lose = 1;
2481
2482 if (lose)
2483 error (_("Malformed response to offset query, %s"), buf);
2484 else if (*ptr != '\0')
2485 warning (_("Target reported unsupported offsets: %s"), buf);
2486
2487 offs = ((struct section_offsets *)
2488 alloca (SIZEOF_N_SECTION_OFFSETS (symfile_objfile->num_sections)));
2489 memcpy (offs, symfile_objfile->section_offsets,
2490 SIZEOF_N_SECTION_OFFSETS (symfile_objfile->num_sections));
2491
2492 data = get_symfile_segment_data (symfile_objfile->obfd);
2493 do_segments = (data != NULL);
2494 do_sections = num_segments == 0;
2495
2496 if (num_segments > 0)
2497 {
2498 segments[0] = text_addr;
2499 segments[1] = data_addr;
2500 }
2501 /* If we have two segments, we can still try to relocate everything
2502 by assuming that the .text and .data offsets apply to the whole
2503 text and data segments. Convert the offsets given in the packet
2504 to base addresses for symfile_map_offsets_to_segments. */
2505 else if (data && data->num_segments == 2)
2506 {
2507 segments[0] = data->segment_bases[0] + text_addr;
2508 segments[1] = data->segment_bases[1] + data_addr;
2509 num_segments = 2;
2510 }
2511 /* If the object file has only one segment, assume that it is text
2512 rather than data; main programs with no writable data are rare,
2513 but programs with no code are useless. Of course the code might
2514 have ended up in the data segment... to detect that we would need
2515 the permissions here. */
2516 else if (data && data->num_segments == 1)
2517 {
2518 segments[0] = data->segment_bases[0] + text_addr;
2519 num_segments = 1;
2520 }
2521 /* There's no way to relocate by segment. */
2522 else
2523 do_segments = 0;
2524
2525 if (do_segments)
2526 {
2527 int ret = symfile_map_offsets_to_segments (symfile_objfile->obfd, data,
2528 offs, num_segments, segments);
2529
2530 if (ret == 0 && !do_sections)
2531 error (_("Can not handle qOffsets TextSeg response with this symbol file"));
2532
2533 if (ret > 0)
2534 do_sections = 0;
2535 }
2536
2537 if (data)
2538 free_symfile_segment_data (data);
2539
2540 if (do_sections)
2541 {
2542 offs->offsets[SECT_OFF_TEXT (symfile_objfile)] = text_addr;
2543
2544 /* This is a temporary kludge to force data and bss to use the same offsets
2545 because that's what nlmconv does now. The real solution requires changes
2546 to the stub and remote.c that I don't have time to do right now. */
2547
2548 offs->offsets[SECT_OFF_DATA (symfile_objfile)] = data_addr;
2549 offs->offsets[SECT_OFF_BSS (symfile_objfile)] = data_addr;
2550 }
2551
2552 objfile_relocate (symfile_objfile, offs);
2553 }
2554
2555 /* Callback for iterate_over_threads. Set the STOP_REQUESTED flags in
2556 threads we know are stopped already. This is used during the
2557 initial remote connection in non-stop mode --- threads that are
2558 reported as already being stopped are left stopped. */
2559
2560 static int
2561 set_stop_requested_callback (struct thread_info *thread, void *data)
2562 {
2563 /* If we have a stop reply for this thread, it must be stopped. */
2564 if (peek_stop_reply (thread->ptid))
2565 set_stop_requested (thread->ptid, 1);
2566
2567 return 0;
2568 }
2569
2570 /* Stub for catch_exception. */
2571
2572 struct start_remote_args
2573 {
2574 int from_tty;
2575
2576 /* The current target. */
2577 struct target_ops *target;
2578
2579 /* Non-zero if this is an extended-remote target. */
2580 int extended_p;
2581 };
2582
2583 static void
2584 remote_start_remote (struct ui_out *uiout, void *opaque)
2585 {
2586 struct start_remote_args *args = opaque;
2587 struct remote_state *rs = get_remote_state ();
2588 struct packet_config *noack_config;
2589 char *wait_status = NULL;
2590
2591 immediate_quit++; /* Allow user to interrupt it. */
2592
2593 /* Ack any packet which the remote side has already sent. */
2594 serial_write (remote_desc, "+", 1);
2595
2596 /* The first packet we send to the target is the optional "supported
2597 packets" request. If the target can answer this, it will tell us
2598 which later probes to skip. */
2599 remote_query_supported ();
2600
2601 /* Next, we possibly activate noack mode.
2602
2603 If the QStartNoAckMode packet configuration is set to AUTO,
2604 enable noack mode if the stub reported a wish for it with
2605 qSupported.
2606
2607 If set to TRUE, then enable noack mode even if the stub didn't
2608 report it in qSupported. If the stub doesn't reply OK, the
2609 session ends with an error.
2610
2611 If FALSE, then don't activate noack mode, regardless of what the
2612 stub claimed should be the default with qSupported. */
2613
2614 noack_config = &remote_protocol_packets[PACKET_QStartNoAckMode];
2615
2616 if (noack_config->detect == AUTO_BOOLEAN_TRUE
2617 || (noack_config->detect == AUTO_BOOLEAN_AUTO
2618 && noack_config->support == PACKET_ENABLE))
2619 {
2620 putpkt ("QStartNoAckMode");
2621 getpkt (&rs->buf, &rs->buf_size, 0);
2622 if (packet_ok (rs->buf, noack_config) == PACKET_OK)
2623 rs->noack_mode = 1;
2624 }
2625
2626 if (args->extended_p)
2627 {
2628 /* Tell the remote that we are using the extended protocol. */
2629 putpkt ("!");
2630 getpkt (&rs->buf, &rs->buf_size, 0);
2631 }
2632
2633 /* Next, if the target can specify a description, read it. We do
2634 this before anything involving memory or registers. */
2635 target_find_description ();
2636
2637 /* On OSs where the list of libraries is global to all
2638 processes, we fetch them early. */
2639 if (gdbarch_has_global_solist (target_gdbarch))
2640 solib_add (NULL, args->from_tty, args->target, auto_solib_add);
2641
2642 if (non_stop)
2643 {
2644 if (!rs->non_stop_aware)
2645 error (_("Non-stop mode requested, but remote does not support non-stop"));
2646
2647 putpkt ("QNonStop:1");
2648 getpkt (&rs->buf, &rs->buf_size, 0);
2649
2650 if (strcmp (rs->buf, "OK") != 0)
2651 error ("Remote refused setting non-stop mode with: %s", rs->buf);
2652
2653 /* Find about threads and processes the stub is already
2654 controlling. We default to adding them in the running state.
2655 The '?' query below will then tell us about which threads are
2656 stopped. */
2657 remote_threads_info (args->target);
2658 }
2659 else if (rs->non_stop_aware)
2660 {
2661 /* Don't assume that the stub can operate in all-stop mode.
2662 Request it explicitely. */
2663 putpkt ("QNonStop:0");
2664 getpkt (&rs->buf, &rs->buf_size, 0);
2665
2666 if (strcmp (rs->buf, "OK") != 0)
2667 error ("Remote refused setting all-stop mode with: %s", rs->buf);
2668 }
2669
2670 /* Check whether the target is running now. */
2671 putpkt ("?");
2672 getpkt (&rs->buf, &rs->buf_size, 0);
2673
2674 if (!non_stop)
2675 {
2676 if (rs->buf[0] == 'W' || rs->buf[0] == 'X')
2677 {
2678 if (!args->extended_p)
2679 error (_("The target is not running (try extended-remote?)"));
2680
2681 /* We're connected, but not running. Drop out before we
2682 call start_remote. */
2683 return;
2684 }
2685 else
2686 {
2687 /* Save the reply for later. */
2688 wait_status = alloca (strlen (rs->buf) + 1);
2689 strcpy (wait_status, rs->buf);
2690 }
2691
2692 /* Let the stub know that we want it to return the thread. */
2693 set_continue_thread (minus_one_ptid);
2694
2695 /* Without this, some commands which require an active target
2696 (such as kill) won't work. This variable serves (at least)
2697 double duty as both the pid of the target process (if it has
2698 such), and as a flag indicating that a target is active.
2699 These functions should be split out into seperate variables,
2700 especially since GDB will someday have a notion of debugging
2701 several processes. */
2702 inferior_ptid = magic_null_ptid;
2703
2704 /* Now, if we have thread information, update inferior_ptid. */
2705 inferior_ptid = remote_current_thread (inferior_ptid);
2706
2707 remote_add_inferior (ptid_get_pid (inferior_ptid), -1);
2708
2709 /* Always add the main thread. */
2710 add_thread_silent (inferior_ptid);
2711
2712 get_offsets (); /* Get text, data & bss offsets. */
2713
2714 /* If we could not find a description using qXfer, and we know
2715 how to do it some other way, try again. This is not
2716 supported for non-stop; it could be, but it is tricky if
2717 there are no stopped threads when we connect. */
2718 if (remote_read_description_p (args->target)
2719 && gdbarch_target_desc (target_gdbarch) == NULL)
2720 {
2721 target_clear_description ();
2722 target_find_description ();
2723 }
2724
2725 /* Use the previously fetched status. */
2726 gdb_assert (wait_status != NULL);
2727 strcpy (rs->buf, wait_status);
2728 rs->cached_wait_status = 1;
2729
2730 immediate_quit--;
2731 start_remote (args->from_tty); /* Initialize gdb process mechanisms. */
2732 }
2733 else
2734 {
2735 /* Clear WFI global state. Do this before finding about new
2736 threads and inferiors, and setting the current inferior.
2737 Otherwise we would clear the proceed status of the current
2738 inferior when we want its stop_soon state to be preserved
2739 (see notice_new_inferior). */
2740 init_wait_for_inferior ();
2741
2742 /* In non-stop, we will either get an "OK", meaning that there
2743 are no stopped threads at this time; or, a regular stop
2744 reply. In the latter case, there may be more than one thread
2745 stopped --- we pull them all out using the vStopped
2746 mechanism. */
2747 if (strcmp (rs->buf, "OK") != 0)
2748 {
2749 struct stop_reply *stop_reply;
2750 struct cleanup *old_chain;
2751
2752 stop_reply = stop_reply_xmalloc ();
2753 old_chain = make_cleanup (do_stop_reply_xfree, stop_reply);
2754
2755 remote_parse_stop_reply (rs->buf, stop_reply);
2756 discard_cleanups (old_chain);
2757
2758 /* get_pending_stop_replies acks this one, and gets the rest
2759 out. */
2760 pending_stop_reply = stop_reply;
2761 remote_get_pending_stop_replies ();
2762
2763 /* Make sure that threads that were stopped remain
2764 stopped. */
2765 iterate_over_threads (set_stop_requested_callback, NULL);
2766 }
2767
2768 if (target_can_async_p ())
2769 target_async (inferior_event_handler, 0);
2770
2771 if (thread_count () == 0)
2772 {
2773 if (!args->extended_p)
2774 error (_("The target is not running (try extended-remote?)"));
2775
2776 /* We're connected, but not running. Drop out before we
2777 call start_remote. */
2778 return;
2779 }
2780
2781 /* Let the stub know that we want it to return the thread. */
2782
2783 /* Force the stub to choose a thread. */
2784 set_general_thread (null_ptid);
2785
2786 /* Query it. */
2787 inferior_ptid = remote_current_thread (minus_one_ptid);
2788 if (ptid_equal (inferior_ptid, minus_one_ptid))
2789 error (_("remote didn't report the current thread in non-stop mode"));
2790
2791 get_offsets (); /* Get text, data & bss offsets. */
2792
2793 /* In non-stop mode, any cached wait status will be stored in
2794 the stop reply queue. */
2795 gdb_assert (wait_status == NULL);
2796 }
2797
2798 /* If we connected to a live target, do some additional setup. */
2799 if (target_has_execution)
2800 {
2801 if (exec_bfd) /* No use without an exec file. */
2802 remote_check_symbols (symfile_objfile);
2803 }
2804
2805 /* If breakpoints are global, insert them now. */
2806 if (gdbarch_has_global_breakpoints (target_gdbarch)
2807 && breakpoints_always_inserted_mode ())
2808 insert_breakpoints ();
2809 }
2810
2811 /* Open a connection to a remote debugger.
2812 NAME is the filename used for communication. */
2813
2814 static void
2815 remote_open (char *name, int from_tty)
2816 {
2817 remote_open_1 (name, from_tty, &remote_ops, 0);
2818 }
2819
2820 /* Open a connection to a remote debugger using the extended
2821 remote gdb protocol. NAME is the filename used for communication. */
2822
2823 static void
2824 extended_remote_open (char *name, int from_tty)
2825 {
2826 remote_open_1 (name, from_tty, &extended_remote_ops, 1 /*extended_p */);
2827 }
2828
2829 /* Generic code for opening a connection to a remote target. */
2830
2831 static void
2832 init_all_packet_configs (void)
2833 {
2834 int i;
2835 for (i = 0; i < PACKET_MAX; i++)
2836 update_packet_config (&remote_protocol_packets[i]);
2837 }
2838
2839 /* Symbol look-up. */
2840
2841 static void
2842 remote_check_symbols (struct objfile *objfile)
2843 {
2844 struct remote_state *rs = get_remote_state ();
2845 char *msg, *reply, *tmp;
2846 struct minimal_symbol *sym;
2847 int end;
2848
2849 if (remote_protocol_packets[PACKET_qSymbol].support == PACKET_DISABLE)
2850 return;
2851
2852 /* Make sure the remote is pointing at the right process. */
2853 set_general_process ();
2854
2855 /* Allocate a message buffer. We can't reuse the input buffer in RS,
2856 because we need both at the same time. */
2857 msg = alloca (get_remote_packet_size ());
2858
2859 /* Invite target to request symbol lookups. */
2860
2861 putpkt ("qSymbol::");
2862 getpkt (&rs->buf, &rs->buf_size, 0);
2863 packet_ok (rs->buf, &remote_protocol_packets[PACKET_qSymbol]);
2864 reply = rs->buf;
2865
2866 while (strncmp (reply, "qSymbol:", 8) == 0)
2867 {
2868 tmp = &reply[8];
2869 end = hex2bin (tmp, (gdb_byte *) msg, strlen (tmp) / 2);
2870 msg[end] = '\0';
2871 sym = lookup_minimal_symbol (msg, NULL, NULL);
2872 if (sym == NULL)
2873 xsnprintf (msg, get_remote_packet_size (), "qSymbol::%s", &reply[8]);
2874 else
2875 {
2876 int addr_size = gdbarch_addr_bit (target_gdbarch) / 8;
2877 CORE_ADDR sym_addr = SYMBOL_VALUE_ADDRESS (sym);
2878
2879 /* If this is a function address, return the start of code
2880 instead of any data function descriptor. */
2881 sym_addr = gdbarch_convert_from_func_ptr_addr (target_gdbarch,
2882 sym_addr,
2883 &current_target);
2884
2885 xsnprintf (msg, get_remote_packet_size (), "qSymbol:%s:%s",
2886 phex_nz (sym_addr, addr_size), &reply[8]);
2887 }
2888
2889 putpkt (msg);
2890 getpkt (&rs->buf, &rs->buf_size, 0);
2891 reply = rs->buf;
2892 }
2893 }
2894
2895 static struct serial *
2896 remote_serial_open (char *name)
2897 {
2898 static int udp_warning = 0;
2899
2900 /* FIXME: Parsing NAME here is a hack. But we want to warn here instead
2901 of in ser-tcp.c, because it is the remote protocol assuming that the
2902 serial connection is reliable and not the serial connection promising
2903 to be. */
2904 if (!udp_warning && strncmp (name, "udp:", 4) == 0)
2905 {
2906 warning (_("\
2907 The remote protocol may be unreliable over UDP.\n\
2908 Some events may be lost, rendering further debugging impossible."));
2909 udp_warning = 1;
2910 }
2911
2912 return serial_open (name);
2913 }
2914
2915 /* This type describes each known response to the qSupported
2916 packet. */
2917 struct protocol_feature
2918 {
2919 /* The name of this protocol feature. */
2920 const char *name;
2921
2922 /* The default for this protocol feature. */
2923 enum packet_support default_support;
2924
2925 /* The function to call when this feature is reported, or after
2926 qSupported processing if the feature is not supported.
2927 The first argument points to this structure. The second
2928 argument indicates whether the packet requested support be
2929 enabled, disabled, or probed (or the default, if this function
2930 is being called at the end of processing and this feature was
2931 not reported). The third argument may be NULL; if not NULL, it
2932 is a NUL-terminated string taken from the packet following
2933 this feature's name and an equals sign. */
2934 void (*func) (const struct protocol_feature *, enum packet_support,
2935 const char *);
2936
2937 /* The corresponding packet for this feature. Only used if
2938 FUNC is remote_supported_packet. */
2939 int packet;
2940 };
2941
2942 static void
2943 remote_supported_packet (const struct protocol_feature *feature,
2944 enum packet_support support,
2945 const char *argument)
2946 {
2947 if (argument)
2948 {
2949 warning (_("Remote qSupported response supplied an unexpected value for"
2950 " \"%s\"."), feature->name);
2951 return;
2952 }
2953
2954 if (remote_protocol_packets[feature->packet].support
2955 == PACKET_SUPPORT_UNKNOWN)
2956 remote_protocol_packets[feature->packet].support = support;
2957 }
2958
2959 static void
2960 remote_packet_size (const struct protocol_feature *feature,
2961 enum packet_support support, const char *value)
2962 {
2963 struct remote_state *rs = get_remote_state ();
2964
2965 int packet_size;
2966 char *value_end;
2967
2968 if (support != PACKET_ENABLE)
2969 return;
2970
2971 if (value == NULL || *value == '\0')
2972 {
2973 warning (_("Remote target reported \"%s\" without a size."),
2974 feature->name);
2975 return;
2976 }
2977
2978 errno = 0;
2979 packet_size = strtol (value, &value_end, 16);
2980 if (errno != 0 || *value_end != '\0' || packet_size < 0)
2981 {
2982 warning (_("Remote target reported \"%s\" with a bad size: \"%s\"."),
2983 feature->name, value);
2984 return;
2985 }
2986
2987 if (packet_size > MAX_REMOTE_PACKET_SIZE)
2988 {
2989 warning (_("limiting remote suggested packet size (%d bytes) to %d"),
2990 packet_size, MAX_REMOTE_PACKET_SIZE);
2991 packet_size = MAX_REMOTE_PACKET_SIZE;
2992 }
2993
2994 /* Record the new maximum packet size. */
2995 rs->explicit_packet_size = packet_size;
2996 }
2997
2998 static void
2999 remote_multi_process_feature (const struct protocol_feature *feature,
3000 enum packet_support support, const char *value)
3001 {
3002 struct remote_state *rs = get_remote_state ();
3003 rs->multi_process_aware = (support == PACKET_ENABLE);
3004 }
3005
3006 static void
3007 remote_non_stop_feature (const struct protocol_feature *feature,
3008 enum packet_support support, const char *value)
3009 {
3010 struct remote_state *rs = get_remote_state ();
3011 rs->non_stop_aware = (support == PACKET_ENABLE);
3012 }
3013
3014 static void
3015 remote_cond_tracepoint_feature (const struct protocol_feature *feature,
3016 enum packet_support support,
3017 const char *value)
3018 {
3019 struct remote_state *rs = get_remote_state ();
3020 rs->cond_tracepoints = (support == PACKET_ENABLE);
3021 }
3022
3023 static struct protocol_feature remote_protocol_features[] = {
3024 { "PacketSize", PACKET_DISABLE, remote_packet_size, -1 },
3025 { "qXfer:auxv:read", PACKET_DISABLE, remote_supported_packet,
3026 PACKET_qXfer_auxv },
3027 { "qXfer:features:read", PACKET_DISABLE, remote_supported_packet,
3028 PACKET_qXfer_features },
3029 { "qXfer:libraries:read", PACKET_DISABLE, remote_supported_packet,
3030 PACKET_qXfer_libraries },
3031 { "qXfer:memory-map:read", PACKET_DISABLE, remote_supported_packet,
3032 PACKET_qXfer_memory_map },
3033 { "qXfer:spu:read", PACKET_DISABLE, remote_supported_packet,
3034 PACKET_qXfer_spu_read },
3035 { "qXfer:spu:write", PACKET_DISABLE, remote_supported_packet,
3036 PACKET_qXfer_spu_write },
3037 { "qXfer:osdata:read", PACKET_DISABLE, remote_supported_packet,
3038 PACKET_qXfer_osdata },
3039 { "QPassSignals", PACKET_DISABLE, remote_supported_packet,
3040 PACKET_QPassSignals },
3041 { "QStartNoAckMode", PACKET_DISABLE, remote_supported_packet,
3042 PACKET_QStartNoAckMode },
3043 { "multiprocess", PACKET_DISABLE, remote_multi_process_feature, -1 },
3044 { "QNonStop", PACKET_DISABLE, remote_non_stop_feature, -1 },
3045 { "qXfer:siginfo:read", PACKET_DISABLE, remote_supported_packet,
3046 PACKET_qXfer_siginfo_read },
3047 { "qXfer:siginfo:write", PACKET_DISABLE, remote_supported_packet,
3048 PACKET_qXfer_siginfo_write },
3049 { "ConditionalTracepoints", PACKET_DISABLE, remote_cond_tracepoint_feature,
3050 PACKET_ConditionalTracepoints },
3051 };
3052
3053 static void
3054 remote_query_supported (void)
3055 {
3056 struct remote_state *rs = get_remote_state ();
3057 char *next;
3058 int i;
3059 unsigned char seen [ARRAY_SIZE (remote_protocol_features)];
3060
3061 /* The packet support flags are handled differently for this packet
3062 than for most others. We treat an error, a disabled packet, and
3063 an empty response identically: any features which must be reported
3064 to be used will be automatically disabled. An empty buffer
3065 accomplishes this, since that is also the representation for a list
3066 containing no features. */
3067
3068 rs->buf[0] = 0;
3069 if (remote_protocol_packets[PACKET_qSupported].support != PACKET_DISABLE)
3070 {
3071 if (rs->extended)
3072 putpkt ("qSupported:multiprocess+");
3073 else
3074 putpkt ("qSupported");
3075
3076 getpkt (&rs->buf, &rs->buf_size, 0);
3077
3078 /* If an error occured, warn, but do not return - just reset the
3079 buffer to empty and go on to disable features. */
3080 if (packet_ok (rs->buf, &remote_protocol_packets[PACKET_qSupported])
3081 == PACKET_ERROR)
3082 {
3083 warning (_("Remote failure reply: %s"), rs->buf);
3084 rs->buf[0] = 0;
3085 }
3086 }
3087
3088 memset (seen, 0, sizeof (seen));
3089
3090 next = rs->buf;
3091 while (*next)
3092 {
3093 enum packet_support is_supported;
3094 char *p, *end, *name_end, *value;
3095
3096 /* First separate out this item from the rest of the packet. If
3097 there's another item after this, we overwrite the separator
3098 (terminated strings are much easier to work with). */
3099 p = next;
3100 end = strchr (p, ';');
3101 if (end == NULL)
3102 {
3103 end = p + strlen (p);
3104 next = end;
3105 }
3106 else
3107 {
3108 *end = '\0';
3109 next = end + 1;
3110
3111 if (end == p)
3112 {
3113 warning (_("empty item in \"qSupported\" response"));
3114 continue;
3115 }
3116 }
3117
3118 name_end = strchr (p, '=');
3119 if (name_end)
3120 {
3121 /* This is a name=value entry. */
3122 is_supported = PACKET_ENABLE;
3123 value = name_end + 1;
3124 *name_end = '\0';
3125 }
3126 else
3127 {
3128 value = NULL;
3129 switch (end[-1])
3130 {
3131 case '+':
3132 is_supported = PACKET_ENABLE;
3133 break;
3134
3135 case '-':
3136 is_supported = PACKET_DISABLE;
3137 break;
3138
3139 case '?':
3140 is_supported = PACKET_SUPPORT_UNKNOWN;
3141 break;
3142
3143 default:
3144 warning (_("unrecognized item \"%s\" in \"qSupported\" response"), p);
3145 continue;
3146 }
3147 end[-1] = '\0';
3148 }
3149
3150 for (i = 0; i < ARRAY_SIZE (remote_protocol_features); i++)
3151 if (strcmp (remote_protocol_features[i].name, p) == 0)
3152 {
3153 const struct protocol_feature *feature;
3154
3155 seen[i] = 1;
3156 feature = &remote_protocol_features[i];
3157 feature->func (feature, is_supported, value);
3158 break;
3159 }
3160 }
3161
3162 /* If we increased the packet size, make sure to increase the global
3163 buffer size also. We delay this until after parsing the entire
3164 qSupported packet, because this is the same buffer we were
3165 parsing. */
3166 if (rs->buf_size < rs->explicit_packet_size)
3167 {
3168 rs->buf_size = rs->explicit_packet_size;
3169 rs->buf = xrealloc (rs->buf, rs->buf_size);
3170 }
3171
3172 /* Handle the defaults for unmentioned features. */
3173 for (i = 0; i < ARRAY_SIZE (remote_protocol_features); i++)
3174 if (!seen[i])
3175 {
3176 const struct protocol_feature *feature;
3177
3178 feature = &remote_protocol_features[i];
3179 feature->func (feature, feature->default_support, NULL);
3180 }
3181 }
3182
3183
3184 static void
3185 remote_open_1 (char *name, int from_tty, struct target_ops *target, int extended_p)
3186 {
3187 struct remote_state *rs = get_remote_state ();
3188
3189 if (name == 0)
3190 error (_("To open a remote debug connection, you need to specify what\n"
3191 "serial device is attached to the remote system\n"
3192 "(e.g. /dev/ttyS0, /dev/ttya, COM1, etc.)."));
3193
3194 /* See FIXME above. */
3195 if (!target_async_permitted)
3196 wait_forever_enabled_p = 1;
3197
3198 /* If we're connected to a running target, target_preopen will kill it.
3199 But if we're connected to a target system with no running process,
3200 then we will still be connected when it returns. Ask this question
3201 first, before target_preopen has a chance to kill anything. */
3202 if (remote_desc != NULL && !have_inferiors ())
3203 {
3204 if (!from_tty
3205 || query (_("Already connected to a remote target. Disconnect? ")))
3206 pop_target ();
3207 else
3208 error (_("Still connected."));
3209 }
3210
3211 target_preopen (from_tty);
3212
3213 unpush_target (target);
3214
3215 /* This time without a query. If we were connected to an
3216 extended-remote target and target_preopen killed the running
3217 process, we may still be connected. If we are starting "target
3218 remote" now, the extended-remote target will not have been
3219 removed by unpush_target. */
3220 if (remote_desc != NULL && !have_inferiors ())
3221 pop_target ();
3222
3223 /* Make sure we send the passed signals list the next time we resume. */
3224 xfree (last_pass_packet);
3225 last_pass_packet = NULL;
3226
3227 remote_fileio_reset ();
3228 reopen_exec_file ();
3229 reread_symbols ();
3230
3231 remote_desc = remote_serial_open (name);
3232 if (!remote_desc)
3233 perror_with_name (name);
3234
3235 if (baud_rate != -1)
3236 {
3237 if (serial_setbaudrate (remote_desc, baud_rate))
3238 {
3239 /* The requested speed could not be set. Error out to
3240 top level after closing remote_desc. Take care to
3241 set remote_desc to NULL to avoid closing remote_desc
3242 more than once. */
3243 serial_close (remote_desc);
3244 remote_desc = NULL;
3245 perror_with_name (name);
3246 }
3247 }
3248
3249 serial_raw (remote_desc);
3250
3251 /* If there is something sitting in the buffer we might take it as a
3252 response to a command, which would be bad. */
3253 serial_flush_input (remote_desc);
3254
3255 if (from_tty)
3256 {
3257 puts_filtered ("Remote debugging using ");
3258 puts_filtered (name);
3259 puts_filtered ("\n");
3260 }
3261 push_target (target); /* Switch to using remote target now. */
3262
3263 /* Register extra event sources in the event loop. */
3264 remote_async_inferior_event_token
3265 = create_async_event_handler (remote_async_inferior_event_handler,
3266 NULL);
3267 remote_async_get_pending_events_token
3268 = create_async_event_handler (remote_async_get_pending_events_handler,
3269 NULL);
3270
3271 /* Reset the target state; these things will be queried either by
3272 remote_query_supported or as they are needed. */
3273 init_all_packet_configs ();
3274 rs->cached_wait_status = 0;
3275 rs->explicit_packet_size = 0;
3276 rs->noack_mode = 0;
3277 rs->multi_process_aware = 0;
3278 rs->extended = extended_p;
3279 rs->non_stop_aware = 0;
3280 rs->waiting_for_stop_reply = 0;
3281
3282 general_thread = not_sent_ptid;
3283 continue_thread = not_sent_ptid;
3284
3285 /* Probe for ability to use "ThreadInfo" query, as required. */
3286 use_threadinfo_query = 1;
3287 use_threadextra_query = 1;
3288
3289 if (target_async_permitted)
3290 {
3291 /* With this target we start out by owning the terminal. */
3292 remote_async_terminal_ours_p = 1;
3293
3294 /* FIXME: cagney/1999-09-23: During the initial connection it is
3295 assumed that the target is already ready and able to respond to
3296 requests. Unfortunately remote_start_remote() eventually calls
3297 wait_for_inferior() with no timeout. wait_forever_enabled_p gets
3298 around this. Eventually a mechanism that allows
3299 wait_for_inferior() to expect/get timeouts will be
3300 implemented. */
3301 wait_forever_enabled_p = 0;
3302 }
3303
3304 /* First delete any symbols previously loaded from shared libraries. */
3305 no_shared_libraries (NULL, 0);
3306
3307 /* Start afresh. */
3308 init_thread_list ();
3309
3310 /* Start the remote connection. If error() or QUIT, discard this
3311 target (we'd otherwise be in an inconsistent state) and then
3312 propogate the error on up the exception chain. This ensures that
3313 the caller doesn't stumble along blindly assuming that the
3314 function succeeded. The CLI doesn't have this problem but other
3315 UI's, such as MI do.
3316
3317 FIXME: cagney/2002-05-19: Instead of re-throwing the exception,
3318 this function should return an error indication letting the
3319 caller restore the previous state. Unfortunately the command
3320 ``target remote'' is directly wired to this function making that
3321 impossible. On a positive note, the CLI side of this problem has
3322 been fixed - the function set_cmd_context() makes it possible for
3323 all the ``target ....'' commands to share a common callback
3324 function. See cli-dump.c. */
3325 {
3326 struct gdb_exception ex;
3327 struct start_remote_args args;
3328
3329 args.from_tty = from_tty;
3330 args.target = target;
3331 args.extended_p = extended_p;
3332
3333 ex = catch_exception (uiout, remote_start_remote, &args, RETURN_MASK_ALL);
3334 if (ex.reason < 0)
3335 {
3336 /* Pop the partially set up target - unless something else did
3337 already before throwing the exception. */
3338 if (remote_desc != NULL)
3339 pop_target ();
3340 if (target_async_permitted)
3341 wait_forever_enabled_p = 1;
3342 throw_exception (ex);
3343 }
3344 }
3345
3346 if (target_async_permitted)
3347 wait_forever_enabled_p = 1;
3348 }
3349
3350 /* This takes a program previously attached to and detaches it. After
3351 this is done, GDB can be used to debug some other program. We
3352 better not have left any breakpoints in the target program or it'll
3353 die when it hits one. */
3354
3355 static void
3356 remote_detach_1 (char *args, int from_tty, int extended)
3357 {
3358 int pid = ptid_get_pid (inferior_ptid);
3359 struct remote_state *rs = get_remote_state ();
3360
3361 if (args)
3362 error (_("Argument given to \"detach\" when remotely debugging."));
3363
3364 if (!target_has_execution)
3365 error (_("No process to detach from."));
3366
3367 /* Tell the remote target to detach. */
3368 if (remote_multi_process_p (rs))
3369 sprintf (rs->buf, "D;%x", pid);
3370 else
3371 strcpy (rs->buf, "D");
3372
3373 putpkt (rs->buf);
3374 getpkt (&rs->buf, &rs->buf_size, 0);
3375
3376 if (rs->buf[0] == 'O' && rs->buf[1] == 'K')
3377 ;
3378 else if (rs->buf[0] == '\0')
3379 error (_("Remote doesn't know how to detach"));
3380 else
3381 error (_("Can't detach process."));
3382
3383 if (from_tty)
3384 {
3385 if (remote_multi_process_p (rs))
3386 printf_filtered (_("Detached from remote %s.\n"),
3387 target_pid_to_str (pid_to_ptid (pid)));
3388 else
3389 {
3390 if (extended)
3391 puts_filtered (_("Detached from remote process.\n"));
3392 else
3393 puts_filtered (_("Ending remote debugging.\n"));
3394 }
3395 }
3396
3397 discard_pending_stop_replies (pid);
3398 target_mourn_inferior ();
3399 }
3400
3401 static void
3402 remote_detach (struct target_ops *ops, char *args, int from_tty)
3403 {
3404 remote_detach_1 (args, from_tty, 0);
3405 }
3406
3407 static void
3408 extended_remote_detach (struct target_ops *ops, char *args, int from_tty)
3409 {
3410 remote_detach_1 (args, from_tty, 1);
3411 }
3412
3413 /* Same as remote_detach, but don't send the "D" packet; just disconnect. */
3414
3415 static void
3416 remote_disconnect (struct target_ops *target, char *args, int from_tty)
3417 {
3418 if (args)
3419 error (_("Argument given to \"disconnect\" when remotely debugging."));
3420
3421 /* Make sure we unpush even the extended remote targets; mourn
3422 won't do it. So call remote_mourn_1 directly instead of
3423 target_mourn_inferior. */
3424 remote_mourn_1 (target);
3425
3426 if (from_tty)
3427 puts_filtered ("Ending remote debugging.\n");
3428 }
3429
3430 /* Attach to the process specified by ARGS. If FROM_TTY is non-zero,
3431 be chatty about it. */
3432
3433 static void
3434 extended_remote_attach_1 (struct target_ops *target, char *args, int from_tty)
3435 {
3436 struct remote_state *rs = get_remote_state ();
3437 int pid;
3438 char *dummy;
3439 char *wait_status = NULL;
3440
3441 if (!args)
3442 error_no_arg (_("process-id to attach"));
3443
3444 dummy = args;
3445 pid = strtol (args, &dummy, 0);
3446 /* Some targets don't set errno on errors, grrr! */
3447 if (pid == 0 && args == dummy)
3448 error (_("Illegal process-id: %s."), args);
3449
3450 if (remote_protocol_packets[PACKET_vAttach].support == PACKET_DISABLE)
3451 error (_("This target does not support attaching to a process"));
3452
3453 sprintf (rs->buf, "vAttach;%x", pid);
3454 putpkt (rs->buf);
3455 getpkt (&rs->buf, &rs->buf_size, 0);
3456
3457 if (packet_ok (rs->buf, &remote_protocol_packets[PACKET_vAttach]) == PACKET_OK)
3458 {
3459 if (from_tty)
3460 printf_unfiltered (_("Attached to %s\n"),
3461 target_pid_to_str (pid_to_ptid (pid)));
3462
3463 if (!non_stop)
3464 {
3465 /* Save the reply for later. */
3466 wait_status = alloca (strlen (rs->buf) + 1);
3467 strcpy (wait_status, rs->buf);
3468 }
3469 else if (strcmp (rs->buf, "OK") != 0)
3470 error (_("Attaching to %s failed with: %s"),
3471 target_pid_to_str (pid_to_ptid (pid)),
3472 rs->buf);
3473 }
3474 else if (remote_protocol_packets[PACKET_vAttach].support == PACKET_DISABLE)
3475 error (_("This target does not support attaching to a process"));
3476 else
3477 error (_("Attaching to %s failed"),
3478 target_pid_to_str (pid_to_ptid (pid)));
3479
3480 remote_add_inferior (pid, 1);
3481
3482 inferior_ptid = pid_to_ptid (pid);
3483
3484 if (non_stop)
3485 {
3486 struct thread_info *thread;
3487
3488 /* Get list of threads. */
3489 remote_threads_info (target);
3490
3491 thread = first_thread_of_process (pid);
3492 if (thread)
3493 inferior_ptid = thread->ptid;
3494 else
3495 inferior_ptid = pid_to_ptid (pid);
3496
3497 /* Invalidate our notion of the remote current thread. */
3498 record_currthread (minus_one_ptid);
3499 }
3500 else
3501 {
3502 /* Now, if we have thread information, update inferior_ptid. */
3503 inferior_ptid = remote_current_thread (inferior_ptid);
3504
3505 /* Add the main thread to the thread list. */
3506 add_thread_silent (inferior_ptid);
3507 }
3508
3509 /* Next, if the target can specify a description, read it. We do
3510 this before anything involving memory or registers. */
3511 target_find_description ();
3512
3513 if (!non_stop)
3514 {
3515 /* Use the previously fetched status. */
3516 gdb_assert (wait_status != NULL);
3517
3518 if (target_can_async_p ())
3519 {
3520 struct stop_reply *stop_reply;
3521 struct cleanup *old_chain;
3522
3523 stop_reply = stop_reply_xmalloc ();
3524 old_chain = make_cleanup (do_stop_reply_xfree, stop_reply);
3525 remote_parse_stop_reply (wait_status, stop_reply);
3526 discard_cleanups (old_chain);
3527 push_stop_reply (stop_reply);
3528
3529 target_async (inferior_event_handler, 0);
3530 }
3531 else
3532 {
3533 gdb_assert (wait_status != NULL);
3534 strcpy (rs->buf, wait_status);
3535 rs->cached_wait_status = 1;
3536 }
3537 }
3538 else
3539 gdb_assert (wait_status == NULL);
3540 }
3541
3542 static void
3543 extended_remote_attach (struct target_ops *ops, char *args, int from_tty)
3544 {
3545 extended_remote_attach_1 (ops, args, from_tty);
3546 }
3547
3548 /* Convert hex digit A to a number. */
3549
3550 static int
3551 fromhex (int a)
3552 {
3553 if (a >= '0' && a <= '9')
3554 return a - '0';
3555 else if (a >= 'a' && a <= 'f')
3556 return a - 'a' + 10;
3557 else if (a >= 'A' && a <= 'F')
3558 return a - 'A' + 10;
3559 else
3560 error (_("Reply contains invalid hex digit %d"), a);
3561 }
3562
3563 static int
3564 hex2bin (const char *hex, gdb_byte *bin, int count)
3565 {
3566 int i;
3567
3568 for (i = 0; i < count; i++)
3569 {
3570 if (hex[0] == 0 || hex[1] == 0)
3571 {
3572 /* Hex string is short, or of uneven length.
3573 Return the count that has been converted so far. */
3574 return i;
3575 }
3576 *bin++ = fromhex (hex[0]) * 16 + fromhex (hex[1]);
3577 hex += 2;
3578 }
3579 return i;
3580 }
3581
3582 /* Convert number NIB to a hex digit. */
3583
3584 static int
3585 tohex (int nib)
3586 {
3587 if (nib < 10)
3588 return '0' + nib;
3589 else
3590 return 'a' + nib - 10;
3591 }
3592
3593 static int
3594 bin2hex (const gdb_byte *bin, char *hex, int count)
3595 {
3596 int i;
3597 /* May use a length, or a nul-terminated string as input. */
3598 if (count == 0)
3599 count = strlen ((char *) bin);
3600
3601 for (i = 0; i < count; i++)
3602 {
3603 *hex++ = tohex ((*bin >> 4) & 0xf);
3604 *hex++ = tohex (*bin++ & 0xf);
3605 }
3606 *hex = 0;
3607 return i;
3608 }
3609 \f
3610 /* Check for the availability of vCont. This function should also check
3611 the response. */
3612
3613 static void
3614 remote_vcont_probe (struct remote_state *rs)
3615 {
3616 char *buf;
3617
3618 strcpy (rs->buf, "vCont?");
3619 putpkt (rs->buf);
3620 getpkt (&rs->buf, &rs->buf_size, 0);
3621 buf = rs->buf;
3622
3623 /* Make sure that the features we assume are supported. */
3624 if (strncmp (buf, "vCont", 5) == 0)
3625 {
3626 char *p = &buf[5];
3627 int support_s, support_S, support_c, support_C;
3628
3629 support_s = 0;
3630 support_S = 0;
3631 support_c = 0;
3632 support_C = 0;
3633 rs->support_vCont_t = 0;
3634 while (p && *p == ';')
3635 {
3636 p++;
3637 if (*p == 's' && (*(p + 1) == ';' || *(p + 1) == 0))
3638 support_s = 1;
3639 else if (*p == 'S' && (*(p + 1) == ';' || *(p + 1) == 0))
3640 support_S = 1;
3641 else if (*p == 'c' && (*(p + 1) == ';' || *(p + 1) == 0))
3642 support_c = 1;
3643 else if (*p == 'C' && (*(p + 1) == ';' || *(p + 1) == 0))
3644 support_C = 1;
3645 else if (*p == 't' && (*(p + 1) == ';' || *(p + 1) == 0))
3646 rs->support_vCont_t = 1;
3647
3648 p = strchr (p, ';');
3649 }
3650
3651 /* If s, S, c, and C are not all supported, we can't use vCont. Clearing
3652 BUF will make packet_ok disable the packet. */
3653 if (!support_s || !support_S || !support_c || !support_C)
3654 buf[0] = 0;
3655 }
3656
3657 packet_ok (buf, &remote_protocol_packets[PACKET_vCont]);
3658 }
3659
3660 /* Helper function for building "vCont" resumptions. Write a
3661 resumption to P. ENDP points to one-passed-the-end of the buffer
3662 we're allowed to write to. Returns BUF+CHARACTERS_WRITTEN. The
3663 thread to be resumed is PTID; STEP and SIGGNAL indicate whether the
3664 resumed thread should be single-stepped and/or signalled. If PTID
3665 equals minus_one_ptid, then all threads are resumed; if PTID
3666 represents a process, then all threads of the process are resumed;
3667 the thread to be stepped and/or signalled is given in the global
3668 INFERIOR_PTID. */
3669
3670 static char *
3671 append_resumption (char *p, char *endp,
3672 ptid_t ptid, int step, enum target_signal siggnal)
3673 {
3674 struct remote_state *rs = get_remote_state ();
3675
3676 if (step && siggnal != TARGET_SIGNAL_0)
3677 p += xsnprintf (p, endp - p, ";S%02x", siggnal);
3678 else if (step)
3679 p += xsnprintf (p, endp - p, ";s");
3680 else if (siggnal != TARGET_SIGNAL_0)
3681 p += xsnprintf (p, endp - p, ";C%02x", siggnal);
3682 else
3683 p += xsnprintf (p, endp - p, ";c");
3684
3685 if (remote_multi_process_p (rs) && ptid_is_pid (ptid))
3686 {
3687 ptid_t nptid;
3688
3689 /* All (-1) threads of process. */
3690 nptid = ptid_build (ptid_get_pid (ptid), 0, -1);
3691
3692 p += xsnprintf (p, endp - p, ":");
3693 p = write_ptid (p, endp, nptid);
3694 }
3695 else if (!ptid_equal (ptid, minus_one_ptid))
3696 {
3697 p += xsnprintf (p, endp - p, ":");
3698 p = write_ptid (p, endp, ptid);
3699 }
3700
3701 return p;
3702 }
3703
3704 /* Resume the remote inferior by using a "vCont" packet. The thread
3705 to be resumed is PTID; STEP and SIGGNAL indicate whether the
3706 resumed thread should be single-stepped and/or signalled. If PTID
3707 equals minus_one_ptid, then all threads are resumed; the thread to
3708 be stepped and/or signalled is given in the global INFERIOR_PTID.
3709 This function returns non-zero iff it resumes the inferior.
3710
3711 This function issues a strict subset of all possible vCont commands at the
3712 moment. */
3713
3714 static int
3715 remote_vcont_resume (ptid_t ptid, int step, enum target_signal siggnal)
3716 {
3717 struct remote_state *rs = get_remote_state ();
3718 char *p;
3719 char *endp;
3720
3721 if (remote_protocol_packets[PACKET_vCont].support == PACKET_SUPPORT_UNKNOWN)
3722 remote_vcont_probe (rs);
3723
3724 if (remote_protocol_packets[PACKET_vCont].support == PACKET_DISABLE)
3725 return 0;
3726
3727 p = rs->buf;
3728 endp = rs->buf + get_remote_packet_size ();
3729
3730 /* If we could generate a wider range of packets, we'd have to worry
3731 about overflowing BUF. Should there be a generic
3732 "multi-part-packet" packet? */
3733
3734 p += xsnprintf (p, endp - p, "vCont");
3735
3736 if (ptid_equal (ptid, magic_null_ptid))
3737 {
3738 /* MAGIC_NULL_PTID means that we don't have any active threads,
3739 so we don't have any TID numbers the inferior will
3740 understand. Make sure to only send forms that do not specify
3741 a TID. */
3742 p = append_resumption (p, endp, minus_one_ptid, step, siggnal);
3743 }
3744 else if (ptid_equal (ptid, minus_one_ptid) || ptid_is_pid (ptid))
3745 {
3746 /* Resume all threads (of all processes, or of a single
3747 process), with preference for INFERIOR_PTID. This assumes
3748 inferior_ptid belongs to the set of all threads we are about
3749 to resume. */
3750 if (step || siggnal != TARGET_SIGNAL_0)
3751 {
3752 /* Step inferior_ptid, with or without signal. */
3753 p = append_resumption (p, endp, inferior_ptid, step, siggnal);
3754 }
3755
3756 /* And continue others without a signal. */
3757 p = append_resumption (p, endp, ptid, /*step=*/ 0, TARGET_SIGNAL_0);
3758 }
3759 else
3760 {
3761 /* Scheduler locking; resume only PTID. */
3762 p = append_resumption (p, endp, ptid, step, siggnal);
3763 }
3764
3765 gdb_assert (strlen (rs->buf) < get_remote_packet_size ());
3766 putpkt (rs->buf);
3767
3768 if (non_stop)
3769 {
3770 /* In non-stop, the stub replies to vCont with "OK". The stop
3771 reply will be reported asynchronously by means of a `%Stop'
3772 notification. */
3773 getpkt (&rs->buf, &rs->buf_size, 0);
3774 if (strcmp (rs->buf, "OK") != 0)
3775 error (_("Unexpected vCont reply in non-stop mode: %s"), rs->buf);
3776 }
3777
3778 return 1;
3779 }
3780
3781 /* Tell the remote machine to resume. */
3782
3783 static enum target_signal last_sent_signal = TARGET_SIGNAL_0;
3784
3785 static int last_sent_step;
3786
3787 static void
3788 remote_resume (struct target_ops *ops,
3789 ptid_t ptid, int step, enum target_signal siggnal)
3790 {
3791 struct remote_state *rs = get_remote_state ();
3792 char *buf;
3793
3794 last_sent_signal = siggnal;
3795 last_sent_step = step;
3796
3797 /* Update the inferior on signals to silently pass, if they've changed. */
3798 remote_pass_signals ();
3799
3800 /* The vCont packet doesn't need to specify threads via Hc. */
3801 if (remote_vcont_resume (ptid, step, siggnal))
3802 goto done;
3803
3804 /* All other supported resume packets do use Hc, so set the continue
3805 thread. */
3806 if (ptid_equal (ptid, minus_one_ptid))
3807 set_continue_thread (any_thread_ptid);
3808 else
3809 set_continue_thread (ptid);
3810
3811 buf = rs->buf;
3812 if (execution_direction == EXEC_REVERSE)
3813 {
3814 /* We don't pass signals to the target in reverse exec mode. */
3815 if (info_verbose && siggnal != TARGET_SIGNAL_0)
3816 warning (" - Can't pass signal %d to target in reverse: ignored.\n",
3817 siggnal);
3818 strcpy (buf, step ? "bs" : "bc");
3819 }
3820 else if (siggnal != TARGET_SIGNAL_0)
3821 {
3822 buf[0] = step ? 'S' : 'C';
3823 buf[1] = tohex (((int) siggnal >> 4) & 0xf);
3824 buf[2] = tohex (((int) siggnal) & 0xf);
3825 buf[3] = '\0';
3826 }
3827 else
3828 strcpy (buf, step ? "s" : "c");
3829
3830 putpkt (buf);
3831
3832 done:
3833 /* We are about to start executing the inferior, let's register it
3834 with the event loop. NOTE: this is the one place where all the
3835 execution commands end up. We could alternatively do this in each
3836 of the execution commands in infcmd.c. */
3837 /* FIXME: ezannoni 1999-09-28: We may need to move this out of here
3838 into infcmd.c in order to allow inferior function calls to work
3839 NOT asynchronously. */
3840 if (target_can_async_p ())
3841 target_async (inferior_event_handler, 0);
3842
3843 /* We've just told the target to resume. The remote server will
3844 wait for the inferior to stop, and then send a stop reply. In
3845 the mean time, we can't start another command/query ourselves
3846 because the stub wouldn't be ready to process it. This applies
3847 only to the base all-stop protocol, however. In non-stop (which
3848 only supports vCont), the stub replies with an "OK", and is
3849 immediate able to process further serial input. */
3850 if (!non_stop)
3851 rs->waiting_for_stop_reply = 1;
3852 }
3853 \f
3854
3855 /* Set up the signal handler for SIGINT, while the target is
3856 executing, ovewriting the 'regular' SIGINT signal handler. */
3857 static void
3858 initialize_sigint_signal_handler (void)
3859 {
3860 signal (SIGINT, handle_remote_sigint);
3861 }
3862
3863 /* Signal handler for SIGINT, while the target is executing. */
3864 static void
3865 handle_remote_sigint (int sig)
3866 {
3867 signal (sig, handle_remote_sigint_twice);
3868 mark_async_signal_handler_wrapper (sigint_remote_token);
3869 }
3870
3871 /* Signal handler for SIGINT, installed after SIGINT has already been
3872 sent once. It will take effect the second time that the user sends
3873 a ^C. */
3874 static void
3875 handle_remote_sigint_twice (int sig)
3876 {
3877 signal (sig, handle_remote_sigint);
3878 mark_async_signal_handler_wrapper (sigint_remote_twice_token);
3879 }
3880
3881 /* Perform the real interruption of the target execution, in response
3882 to a ^C. */
3883 static void
3884 async_remote_interrupt (gdb_client_data arg)
3885 {
3886 if (remote_debug)
3887 fprintf_unfiltered (gdb_stdlog, "remote_interrupt called\n");
3888
3889 target_stop (inferior_ptid);
3890 }
3891
3892 /* Perform interrupt, if the first attempt did not succeed. Just give
3893 up on the target alltogether. */
3894 void
3895 async_remote_interrupt_twice (gdb_client_data arg)
3896 {
3897 if (remote_debug)
3898 fprintf_unfiltered (gdb_stdlog, "remote_interrupt_twice called\n");
3899
3900 interrupt_query ();
3901 }
3902
3903 /* Reinstall the usual SIGINT handlers, after the target has
3904 stopped. */
3905 static void
3906 cleanup_sigint_signal_handler (void *dummy)
3907 {
3908 signal (SIGINT, handle_sigint);
3909 }
3910
3911 /* Send ^C to target to halt it. Target will respond, and send us a
3912 packet. */
3913 static void (*ofunc) (int);
3914
3915 /* The command line interface's stop routine. This function is installed
3916 as a signal handler for SIGINT. The first time a user requests a
3917 stop, we call remote_stop to send a break or ^C. If there is no
3918 response from the target (it didn't stop when the user requested it),
3919 we ask the user if he'd like to detach from the target. */
3920 static void
3921 remote_interrupt (int signo)
3922 {
3923 /* If this doesn't work, try more severe steps. */
3924 signal (signo, remote_interrupt_twice);
3925
3926 gdb_call_async_signal_handler (sigint_remote_token, 1);
3927 }
3928
3929 /* The user typed ^C twice. */
3930
3931 static void
3932 remote_interrupt_twice (int signo)
3933 {
3934 signal (signo, ofunc);
3935 gdb_call_async_signal_handler (sigint_remote_twice_token, 1);
3936 signal (signo, remote_interrupt);
3937 }
3938
3939 /* Non-stop version of target_stop. Uses `vCont;t' to stop a remote
3940 thread, all threads of a remote process, or all threads of all
3941 processes. */
3942
3943 static void
3944 remote_stop_ns (ptid_t ptid)
3945 {
3946 struct remote_state *rs = get_remote_state ();
3947 char *p = rs->buf;
3948 char *endp = rs->buf + get_remote_packet_size ();
3949
3950 if (remote_protocol_packets[PACKET_vCont].support == PACKET_SUPPORT_UNKNOWN)
3951 remote_vcont_probe (rs);
3952
3953 if (!rs->support_vCont_t)
3954 error (_("Remote server does not support stopping threads"));
3955
3956 if (ptid_equal (ptid, minus_one_ptid)
3957 || (!remote_multi_process_p (rs) && ptid_is_pid (ptid)))
3958 p += xsnprintf (p, endp - p, "vCont;t");
3959 else
3960 {
3961 ptid_t nptid;
3962
3963 p += xsnprintf (p, endp - p, "vCont;t:");
3964
3965 if (ptid_is_pid (ptid))
3966 /* All (-1) threads of process. */
3967 nptid = ptid_build (ptid_get_pid (ptid), 0, -1);
3968 else
3969 {
3970 /* Small optimization: if we already have a stop reply for
3971 this thread, no use in telling the stub we want this
3972 stopped. */
3973 if (peek_stop_reply (ptid))
3974 return;
3975
3976 nptid = ptid;
3977 }
3978
3979 p = write_ptid (p, endp, nptid);
3980 }
3981
3982 /* In non-stop, we get an immediate OK reply. The stop reply will
3983 come in asynchronously by notification. */
3984 putpkt (rs->buf);
3985 getpkt (&rs->buf, &rs->buf_size, 0);
3986 if (strcmp (rs->buf, "OK") != 0)
3987 error (_("Stopping %s failed: %s"), target_pid_to_str (ptid), rs->buf);
3988 }
3989
3990 /* All-stop version of target_stop. Sends a break or a ^C to stop the
3991 remote target. It is undefined which thread of which process
3992 reports the stop. */
3993
3994 static void
3995 remote_stop_as (ptid_t ptid)
3996 {
3997 struct remote_state *rs = get_remote_state ();
3998
3999 /* If the inferior is stopped already, but the core didn't know
4000 about it yet, just ignore the request. The cached wait status
4001 will be collected in remote_wait. */
4002 if (rs->cached_wait_status)
4003 return;
4004
4005 /* Send a break or a ^C, depending on user preference. */
4006
4007 if (remote_break)
4008 serial_send_break (remote_desc);
4009 else
4010 serial_write (remote_desc, "\003", 1);
4011 }
4012
4013 /* This is the generic stop called via the target vector. When a target
4014 interrupt is requested, either by the command line or the GUI, we
4015 will eventually end up here. */
4016
4017 static void
4018 remote_stop (ptid_t ptid)
4019 {
4020 if (remote_debug)
4021 fprintf_unfiltered (gdb_stdlog, "remote_stop called\n");
4022
4023 if (non_stop)
4024 remote_stop_ns (ptid);
4025 else
4026 remote_stop_as (ptid);
4027 }
4028
4029 /* Ask the user what to do when an interrupt is received. */
4030
4031 static void
4032 interrupt_query (void)
4033 {
4034 target_terminal_ours ();
4035
4036 if (target_can_async_p ())
4037 {
4038 signal (SIGINT, handle_sigint);
4039 deprecated_throw_reason (RETURN_QUIT);
4040 }
4041 else
4042 {
4043 if (query (_("Interrupted while waiting for the program.\n\
4044 Give up (and stop debugging it)? ")))
4045 {
4046 pop_target ();
4047 deprecated_throw_reason (RETURN_QUIT);
4048 }
4049 }
4050
4051 target_terminal_inferior ();
4052 }
4053
4054 /* Enable/disable target terminal ownership. Most targets can use
4055 terminal groups to control terminal ownership. Remote targets are
4056 different in that explicit transfer of ownership to/from GDB/target
4057 is required. */
4058
4059 static void
4060 remote_terminal_inferior (void)
4061 {
4062 if (!target_async_permitted)
4063 /* Nothing to do. */
4064 return;
4065
4066 /* FIXME: cagney/1999-09-27: Make calls to target_terminal_*()
4067 idempotent. The event-loop GDB talking to an asynchronous target
4068 with a synchronous command calls this function from both
4069 event-top.c and infrun.c/infcmd.c. Once GDB stops trying to
4070 transfer the terminal to the target when it shouldn't this guard
4071 can go away. */
4072 if (!remote_async_terminal_ours_p)
4073 return;
4074 delete_file_handler (input_fd);
4075 remote_async_terminal_ours_p = 0;
4076 initialize_sigint_signal_handler ();
4077 /* NOTE: At this point we could also register our selves as the
4078 recipient of all input. Any characters typed could then be
4079 passed on down to the target. */
4080 }
4081
4082 static void
4083 remote_terminal_ours (void)
4084 {
4085 if (!target_async_permitted)
4086 /* Nothing to do. */
4087 return;
4088
4089 /* See FIXME in remote_terminal_inferior. */
4090 if (remote_async_terminal_ours_p)
4091 return;
4092 cleanup_sigint_signal_handler (NULL);
4093 add_file_handler (input_fd, stdin_event_handler, 0);
4094 remote_async_terminal_ours_p = 1;
4095 }
4096
4097 void
4098 remote_console_output (char *msg)
4099 {
4100 char *p;
4101
4102 for (p = msg; p[0] && p[1]; p += 2)
4103 {
4104 char tb[2];
4105 char c = fromhex (p[0]) * 16 + fromhex (p[1]);
4106 tb[0] = c;
4107 tb[1] = 0;
4108 fputs_unfiltered (tb, gdb_stdtarg);
4109 }
4110 gdb_flush (gdb_stdtarg);
4111 }
4112
4113 typedef struct cached_reg
4114 {
4115 int num;
4116 gdb_byte data[MAX_REGISTER_SIZE];
4117 } cached_reg_t;
4118
4119 DEF_VEC_O(cached_reg_t);
4120
4121 struct stop_reply
4122 {
4123 struct stop_reply *next;
4124
4125 ptid_t ptid;
4126
4127 struct target_waitstatus ws;
4128
4129 VEC(cached_reg_t) *regcache;
4130
4131 int stopped_by_watchpoint_p;
4132 CORE_ADDR watch_data_address;
4133
4134 int solibs_changed;
4135 int replay_event;
4136 };
4137
4138 /* The list of already fetched and acknowledged stop events. */
4139 static struct stop_reply *stop_reply_queue;
4140
4141 static struct stop_reply *
4142 stop_reply_xmalloc (void)
4143 {
4144 struct stop_reply *r = XMALLOC (struct stop_reply);
4145 r->next = NULL;
4146 return r;
4147 }
4148
4149 static void
4150 stop_reply_xfree (struct stop_reply *r)
4151 {
4152 if (r != NULL)
4153 {
4154 VEC_free (cached_reg_t, r->regcache);
4155 xfree (r);
4156 }
4157 }
4158
4159 /* Discard all pending stop replies of inferior PID. If PID is -1,
4160 discard everything. */
4161
4162 static void
4163 discard_pending_stop_replies (int pid)
4164 {
4165 struct stop_reply *prev = NULL, *reply, *next;
4166
4167 /* Discard the in-flight notification. */
4168 if (pending_stop_reply != NULL
4169 && (pid == -1
4170 || ptid_get_pid (pending_stop_reply->ptid) == pid))
4171 {
4172 stop_reply_xfree (pending_stop_reply);
4173 pending_stop_reply = NULL;
4174 }
4175
4176 /* Discard the stop replies we have already pulled with
4177 vStopped. */
4178 for (reply = stop_reply_queue; reply; reply = next)
4179 {
4180 next = reply->next;
4181 if (pid == -1
4182 || ptid_get_pid (reply->ptid) == pid)
4183 {
4184 if (reply == stop_reply_queue)
4185 stop_reply_queue = reply->next;
4186 else
4187 prev->next = reply->next;
4188
4189 stop_reply_xfree (reply);
4190 }
4191 else
4192 prev = reply;
4193 }
4194 }
4195
4196 /* Cleanup wrapper. */
4197
4198 static void
4199 do_stop_reply_xfree (void *arg)
4200 {
4201 struct stop_reply *r = arg;
4202 stop_reply_xfree (r);
4203 }
4204
4205 /* Look for a queued stop reply belonging to PTID. If one is found,
4206 remove it from the queue, and return it. Returns NULL if none is
4207 found. If there are still queued events left to process, tell the
4208 event loop to get back to target_wait soon. */
4209
4210 static struct stop_reply *
4211 queued_stop_reply (ptid_t ptid)
4212 {
4213 struct stop_reply *it, *prev;
4214 struct stop_reply head;
4215
4216 head.next = stop_reply_queue;
4217 prev = &head;
4218
4219 it = head.next;
4220
4221 if (!ptid_equal (ptid, minus_one_ptid))
4222 for (; it; prev = it, it = it->next)
4223 if (ptid_equal (ptid, it->ptid))
4224 break;
4225
4226 if (it)
4227 {
4228 prev->next = it->next;
4229 it->next = NULL;
4230 }
4231
4232 stop_reply_queue = head.next;
4233
4234 if (stop_reply_queue)
4235 /* There's still at least an event left. */
4236 mark_async_event_handler (remote_async_inferior_event_token);
4237
4238 return it;
4239 }
4240
4241 /* Push a fully parsed stop reply in the stop reply queue. Since we
4242 know that we now have at least one queued event left to pass to the
4243 core side, tell the event loop to get back to target_wait soon. */
4244
4245 static void
4246 push_stop_reply (struct stop_reply *new_event)
4247 {
4248 struct stop_reply *event;
4249
4250 if (stop_reply_queue)
4251 {
4252 for (event = stop_reply_queue;
4253 event && event->next;
4254 event = event->next)
4255 ;
4256
4257 event->next = new_event;
4258 }
4259 else
4260 stop_reply_queue = new_event;
4261
4262 mark_async_event_handler (remote_async_inferior_event_token);
4263 }
4264
4265 /* Returns true if we have a stop reply for PTID. */
4266
4267 static int
4268 peek_stop_reply (ptid_t ptid)
4269 {
4270 struct stop_reply *it;
4271
4272 for (it = stop_reply_queue; it; it = it->next)
4273 if (ptid_equal (ptid, it->ptid))
4274 {
4275 if (it->ws.kind == TARGET_WAITKIND_STOPPED)
4276 return 1;
4277 }
4278
4279 return 0;
4280 }
4281
4282 /* Parse the stop reply in BUF. Either the function succeeds, and the
4283 result is stored in EVENT, or throws an error. */
4284
4285 static void
4286 remote_parse_stop_reply (char *buf, struct stop_reply *event)
4287 {
4288 struct remote_arch_state *rsa = get_remote_arch_state ();
4289 ULONGEST addr;
4290 char *p;
4291
4292 event->ptid = null_ptid;
4293 event->ws.kind = TARGET_WAITKIND_IGNORE;
4294 event->ws.value.integer = 0;
4295 event->solibs_changed = 0;
4296 event->replay_event = 0;
4297 event->stopped_by_watchpoint_p = 0;
4298 event->regcache = NULL;
4299
4300 switch (buf[0])
4301 {
4302 case 'T': /* Status with PC, SP, FP, ... */
4303 /* Expedited reply, containing Signal, {regno, reg} repeat. */
4304 /* format is: 'Tssn...:r...;n...:r...;n...:r...;#cc', where
4305 ss = signal number
4306 n... = register number
4307 r... = register contents
4308 */
4309
4310 p = &buf[3]; /* after Txx */
4311 while (*p)
4312 {
4313 char *p1;
4314 char *p_temp;
4315 int fieldsize;
4316 LONGEST pnum = 0;
4317
4318 /* If the packet contains a register number, save it in
4319 pnum and set p1 to point to the character following it.
4320 Otherwise p1 points to p. */
4321
4322 /* If this packet is an awatch packet, don't parse the 'a'
4323 as a register number. */
4324
4325 if (strncmp (p, "awatch", strlen("awatch")) != 0)
4326 {
4327 /* Read the ``P'' register number. */
4328 pnum = strtol (p, &p_temp, 16);
4329 p1 = p_temp;
4330 }
4331 else
4332 p1 = p;
4333
4334 if (p1 == p) /* No register number present here. */
4335 {
4336 p1 = strchr (p, ':');
4337 if (p1 == NULL)
4338 error (_("Malformed packet(a) (missing colon): %s\n\
4339 Packet: '%s'\n"),
4340 p, buf);
4341 if (strncmp (p, "thread", p1 - p) == 0)
4342 event->ptid = read_ptid (++p1, &p);
4343 else if ((strncmp (p, "watch", p1 - p) == 0)
4344 || (strncmp (p, "rwatch", p1 - p) == 0)
4345 || (strncmp (p, "awatch", p1 - p) == 0))
4346 {
4347 event->stopped_by_watchpoint_p = 1;
4348 p = unpack_varlen_hex (++p1, &addr);
4349 event->watch_data_address = (CORE_ADDR) addr;
4350 }
4351 else if (strncmp (p, "library", p1 - p) == 0)
4352 {
4353 p1++;
4354 p_temp = p1;
4355 while (*p_temp && *p_temp != ';')
4356 p_temp++;
4357
4358 event->solibs_changed = 1;
4359 p = p_temp;
4360 }
4361 else if (strncmp (p, "replaylog", p1 - p) == 0)
4362 {
4363 /* NO_HISTORY event.
4364 p1 will indicate "begin" or "end", but
4365 it makes no difference for now, so ignore it. */
4366 event->replay_event = 1;
4367 p_temp = strchr (p1 + 1, ';');
4368 if (p_temp)
4369 p = p_temp;
4370 }
4371 else
4372 {
4373 /* Silently skip unknown optional info. */
4374 p_temp = strchr (p1 + 1, ';');
4375 if (p_temp)
4376 p = p_temp;
4377 }
4378 }
4379 else
4380 {
4381 struct packet_reg *reg = packet_reg_from_pnum (rsa, pnum);
4382 cached_reg_t cached_reg;
4383
4384 p = p1;
4385
4386 if (*p != ':')
4387 error (_("Malformed packet(b) (missing colon): %s\n\
4388 Packet: '%s'\n"),
4389 p, buf);
4390 ++p;
4391
4392 if (reg == NULL)
4393 error (_("Remote sent bad register number %s: %s\n\
4394 Packet: '%s'\n"),
4395 phex_nz (pnum, 0), p, buf);
4396
4397 cached_reg.num = reg->regnum;
4398
4399 fieldsize = hex2bin (p, cached_reg.data,
4400 register_size (target_gdbarch,
4401 reg->regnum));
4402 p += 2 * fieldsize;
4403 if (fieldsize < register_size (target_gdbarch,
4404 reg->regnum))
4405 warning (_("Remote reply is too short: %s"), buf);
4406
4407 VEC_safe_push (cached_reg_t, event->regcache, &cached_reg);
4408 }
4409
4410 if (*p != ';')
4411 error (_("Remote register badly formatted: %s\nhere: %s"),
4412 buf, p);
4413 ++p;
4414 }
4415 /* fall through */
4416 case 'S': /* Old style status, just signal only. */
4417 if (event->solibs_changed)
4418 event->ws.kind = TARGET_WAITKIND_LOADED;
4419 else if (event->replay_event)
4420 event->ws.kind = TARGET_WAITKIND_NO_HISTORY;
4421 else
4422 {
4423 event->ws.kind = TARGET_WAITKIND_STOPPED;
4424 event->ws.value.sig = (enum target_signal)
4425 (((fromhex (buf[1])) << 4) + (fromhex (buf[2])));
4426 }
4427 break;
4428 case 'W': /* Target exited. */
4429 case 'X':
4430 {
4431 char *p;
4432 int pid;
4433 ULONGEST value;
4434
4435 /* GDB used to accept only 2 hex chars here. Stubs should
4436 only send more if they detect GDB supports multi-process
4437 support. */
4438 p = unpack_varlen_hex (&buf[1], &value);
4439
4440 if (buf[0] == 'W')
4441 {
4442 /* The remote process exited. */
4443 event->ws.kind = TARGET_WAITKIND_EXITED;
4444 event->ws.value.integer = value;
4445 }
4446 else
4447 {
4448 /* The remote process exited with a signal. */
4449 event->ws.kind = TARGET_WAITKIND_SIGNALLED;
4450 event->ws.value.sig = (enum target_signal) value;
4451 }
4452
4453 /* If no process is specified, assume inferior_ptid. */
4454 pid = ptid_get_pid (inferior_ptid);
4455 if (*p == '\0')
4456 ;
4457 else if (*p == ';')
4458 {
4459 p++;
4460
4461 if (p == '\0')
4462 ;
4463 else if (strncmp (p,
4464 "process:", sizeof ("process:") - 1) == 0)
4465 {
4466 ULONGEST upid;
4467 p += sizeof ("process:") - 1;
4468 unpack_varlen_hex (p, &upid);
4469 pid = upid;
4470 }
4471 else
4472 error (_("unknown stop reply packet: %s"), buf);
4473 }
4474 else
4475 error (_("unknown stop reply packet: %s"), buf);
4476 event->ptid = pid_to_ptid (pid);
4477 }
4478 break;
4479 }
4480
4481 if (non_stop && ptid_equal (event->ptid, null_ptid))
4482 error (_("No process or thread specified in stop reply: %s"), buf);
4483 }
4484
4485 /* When the stub wants to tell GDB about a new stop reply, it sends a
4486 stop notification (%Stop). Those can come it at any time, hence,
4487 we have to make sure that any pending putpkt/getpkt sequence we're
4488 making is finished, before querying the stub for more events with
4489 vStopped. E.g., if we started a vStopped sequence immediatelly
4490 upon receiving the %Stop notification, something like this could
4491 happen:
4492
4493 1.1) --> Hg 1
4494 1.2) <-- OK
4495 1.3) --> g
4496 1.4) <-- %Stop
4497 1.5) --> vStopped
4498 1.6) <-- (registers reply to step #1.3)
4499
4500 Obviously, the reply in step #1.6 would be unexpected to a vStopped
4501 query.
4502
4503 To solve this, whenever we parse a %Stop notification sucessfully,
4504 we mark the REMOTE_ASYNC_GET_PENDING_EVENTS_TOKEN, and carry on
4505 doing whatever we were doing:
4506
4507 2.1) --> Hg 1
4508 2.2) <-- OK
4509 2.3) --> g
4510 2.4) <-- %Stop
4511 <GDB marks the REMOTE_ASYNC_GET_PENDING_EVENTS_TOKEN>
4512 2.5) <-- (registers reply to step #2.3)
4513
4514 Eventualy after step #2.5, we return to the event loop, which
4515 notices there's an event on the
4516 REMOTE_ASYNC_GET_PENDING_EVENTS_TOKEN event and calls the
4517 associated callback --- the function below. At this point, we're
4518 always safe to start a vStopped sequence. :
4519
4520 2.6) --> vStopped
4521 2.7) <-- T05 thread:2
4522 2.8) --> vStopped
4523 2.9) --> OK
4524 */
4525
4526 static void
4527 remote_get_pending_stop_replies (void)
4528 {
4529 struct remote_state *rs = get_remote_state ();
4530
4531 if (pending_stop_reply)
4532 {
4533 /* acknowledge */
4534 putpkt ("vStopped");
4535
4536 /* Now we can rely on it. */
4537 push_stop_reply (pending_stop_reply);
4538 pending_stop_reply = NULL;
4539
4540 while (1)
4541 {
4542 getpkt (&rs->buf, &rs->buf_size, 0);
4543 if (strcmp (rs->buf, "OK") == 0)
4544 break;
4545 else
4546 {
4547 struct cleanup *old_chain;
4548 struct stop_reply *stop_reply = stop_reply_xmalloc ();
4549
4550 old_chain = make_cleanup (do_stop_reply_xfree, stop_reply);
4551 remote_parse_stop_reply (rs->buf, stop_reply);
4552
4553 /* acknowledge */
4554 putpkt ("vStopped");
4555
4556 if (stop_reply->ws.kind != TARGET_WAITKIND_IGNORE)
4557 {
4558 /* Now we can rely on it. */
4559 discard_cleanups (old_chain);
4560 push_stop_reply (stop_reply);
4561 }
4562 else
4563 /* We got an unknown stop reply. */
4564 do_cleanups (old_chain);
4565 }
4566 }
4567 }
4568 }
4569
4570
4571 /* Called when it is decided that STOP_REPLY holds the info of the
4572 event that is to be returned to the core. This function always
4573 destroys STOP_REPLY. */
4574
4575 static ptid_t
4576 process_stop_reply (struct stop_reply *stop_reply,
4577 struct target_waitstatus *status)
4578 {
4579 ptid_t ptid;
4580
4581 *status = stop_reply->ws;
4582 ptid = stop_reply->ptid;
4583
4584 /* If no thread/process was reported by the stub, assume the current
4585 inferior. */
4586 if (ptid_equal (ptid, null_ptid))
4587 ptid = inferior_ptid;
4588
4589 if (status->kind != TARGET_WAITKIND_EXITED
4590 && status->kind != TARGET_WAITKIND_SIGNALLED)
4591 {
4592 /* Expedited registers. */
4593 if (stop_reply->regcache)
4594 {
4595 struct regcache *regcache
4596 = get_thread_arch_regcache (ptid, target_gdbarch);
4597 cached_reg_t *reg;
4598 int ix;
4599
4600 for (ix = 0;
4601 VEC_iterate(cached_reg_t, stop_reply->regcache, ix, reg);
4602 ix++)
4603 regcache_raw_supply (regcache, reg->num, reg->data);
4604 VEC_free (cached_reg_t, stop_reply->regcache);
4605 }
4606
4607 remote_stopped_by_watchpoint_p = stop_reply->stopped_by_watchpoint_p;
4608 remote_watch_data_address = stop_reply->watch_data_address;
4609
4610 remote_notice_new_inferior (ptid, 0);
4611 }
4612
4613 stop_reply_xfree (stop_reply);
4614 return ptid;
4615 }
4616
4617 /* The non-stop mode version of target_wait. */
4618
4619 static ptid_t
4620 remote_wait_ns (ptid_t ptid, struct target_waitstatus *status, int options)
4621 {
4622 struct remote_state *rs = get_remote_state ();
4623 struct stop_reply *stop_reply;
4624 int ret;
4625
4626 /* If in non-stop mode, get out of getpkt even if a
4627 notification is received. */
4628
4629 ret = getpkt_or_notif_sane (&rs->buf, &rs->buf_size,
4630 0 /* forever */);
4631 while (1)
4632 {
4633 if (ret != -1)
4634 switch (rs->buf[0])
4635 {
4636 case 'E': /* Error of some sort. */
4637 /* We're out of sync with the target now. Did it continue
4638 or not? We can't tell which thread it was in non-stop,
4639 so just ignore this. */
4640 warning (_("Remote failure reply: %s"), rs->buf);
4641 break;
4642 case 'O': /* Console output. */
4643 remote_console_output (rs->buf + 1);
4644 break;
4645 default:
4646 warning (_("Invalid remote reply: %s"), rs->buf);
4647 break;
4648 }
4649
4650 /* Acknowledge a pending stop reply that may have arrived in the
4651 mean time. */
4652 if (pending_stop_reply != NULL)
4653 remote_get_pending_stop_replies ();
4654
4655 /* If indeed we noticed a stop reply, we're done. */
4656 stop_reply = queued_stop_reply (ptid);
4657 if (stop_reply != NULL)
4658 return process_stop_reply (stop_reply, status);
4659
4660 /* Still no event. If we're just polling for an event, then
4661 return to the event loop. */
4662 if (options & TARGET_WNOHANG)
4663 {
4664 status->kind = TARGET_WAITKIND_IGNORE;
4665 return minus_one_ptid;
4666 }
4667
4668 /* Otherwise do a blocking wait. */
4669 ret = getpkt_or_notif_sane (&rs->buf, &rs->buf_size,
4670 1 /* forever */);
4671 }
4672 }
4673
4674 /* Wait until the remote machine stops, then return, storing status in
4675 STATUS just as `wait' would. */
4676
4677 static ptid_t
4678 remote_wait_as (ptid_t ptid, struct target_waitstatus *status, int options)
4679 {
4680 struct remote_state *rs = get_remote_state ();
4681 ptid_t event_ptid = null_ptid;
4682 char *buf;
4683 struct stop_reply *stop_reply;
4684
4685 again:
4686
4687 status->kind = TARGET_WAITKIND_IGNORE;
4688 status->value.integer = 0;
4689
4690 stop_reply = queued_stop_reply (ptid);
4691 if (stop_reply != NULL)
4692 return process_stop_reply (stop_reply, status);
4693
4694 if (rs->cached_wait_status)
4695 /* Use the cached wait status, but only once. */
4696 rs->cached_wait_status = 0;
4697 else
4698 {
4699 int ret;
4700
4701 if (!target_is_async_p ())
4702 {
4703 ofunc = signal (SIGINT, remote_interrupt);
4704 /* If the user hit C-c before this packet, or between packets,
4705 pretend that it was hit right here. */
4706 if (quit_flag)
4707 {
4708 quit_flag = 0;
4709 remote_interrupt (SIGINT);
4710 }
4711 }
4712
4713 /* FIXME: cagney/1999-09-27: If we're in async mode we should
4714 _never_ wait for ever -> test on target_is_async_p().
4715 However, before we do that we need to ensure that the caller
4716 knows how to take the target into/out of async mode. */
4717 ret = getpkt_sane (&rs->buf, &rs->buf_size, wait_forever_enabled_p);
4718 if (!target_is_async_p ())
4719 signal (SIGINT, ofunc);
4720 }
4721
4722 buf = rs->buf;
4723
4724 remote_stopped_by_watchpoint_p = 0;
4725
4726 /* We got something. */
4727 rs->waiting_for_stop_reply = 0;
4728
4729 switch (buf[0])
4730 {
4731 case 'E': /* Error of some sort. */
4732 /* We're out of sync with the target now. Did it continue or
4733 not? Not is more likely, so report a stop. */
4734 warning (_("Remote failure reply: %s"), buf);
4735 status->kind = TARGET_WAITKIND_STOPPED;
4736 status->value.sig = TARGET_SIGNAL_0;
4737 break;
4738 case 'F': /* File-I/O request. */
4739 remote_fileio_request (buf);
4740 break;
4741 case 'T': case 'S': case 'X': case 'W':
4742 {
4743 struct stop_reply *stop_reply;
4744 struct cleanup *old_chain;
4745
4746 stop_reply = stop_reply_xmalloc ();
4747 old_chain = make_cleanup (do_stop_reply_xfree, stop_reply);
4748 remote_parse_stop_reply (buf, stop_reply);
4749 discard_cleanups (old_chain);
4750 event_ptid = process_stop_reply (stop_reply, status);
4751 break;
4752 }
4753 case 'O': /* Console output. */
4754 remote_console_output (buf + 1);
4755
4756 /* The target didn't really stop; keep waiting. */
4757 rs->waiting_for_stop_reply = 1;
4758
4759 break;
4760 case '\0':
4761 if (last_sent_signal != TARGET_SIGNAL_0)
4762 {
4763 /* Zero length reply means that we tried 'S' or 'C' and the
4764 remote system doesn't support it. */
4765 target_terminal_ours_for_output ();
4766 printf_filtered
4767 ("Can't send signals to this remote system. %s not sent.\n",
4768 target_signal_to_name (last_sent_signal));
4769 last_sent_signal = TARGET_SIGNAL_0;
4770 target_terminal_inferior ();
4771
4772 strcpy ((char *) buf, last_sent_step ? "s" : "c");
4773 putpkt ((char *) buf);
4774
4775 /* We just told the target to resume, so a stop reply is in
4776 order. */
4777 rs->waiting_for_stop_reply = 1;
4778 break;
4779 }
4780 /* else fallthrough */
4781 default:
4782 warning (_("Invalid remote reply: %s"), buf);
4783 /* Keep waiting. */
4784 rs->waiting_for_stop_reply = 1;
4785 break;
4786 }
4787
4788 if (status->kind == TARGET_WAITKIND_IGNORE)
4789 {
4790 /* Nothing interesting happened. If we're doing a non-blocking
4791 poll, we're done. Otherwise, go back to waiting. */
4792 if (options & TARGET_WNOHANG)
4793 return minus_one_ptid;
4794 else
4795 goto again;
4796 }
4797 else if (status->kind != TARGET_WAITKIND_EXITED
4798 && status->kind != TARGET_WAITKIND_SIGNALLED)
4799 {
4800 if (!ptid_equal (event_ptid, null_ptid))
4801 record_currthread (event_ptid);
4802 else
4803 event_ptid = inferior_ptid;
4804 }
4805 else
4806 /* A process exit. Invalidate our notion of current thread. */
4807 record_currthread (minus_one_ptid);
4808
4809 return event_ptid;
4810 }
4811
4812 /* Wait until the remote machine stops, then return, storing status in
4813 STATUS just as `wait' would. */
4814
4815 static ptid_t
4816 remote_wait (struct target_ops *ops,
4817 ptid_t ptid, struct target_waitstatus *status, int options)
4818 {
4819 ptid_t event_ptid;
4820
4821 if (non_stop)
4822 event_ptid = remote_wait_ns (ptid, status, options);
4823 else
4824 event_ptid = remote_wait_as (ptid, status, options);
4825
4826 if (target_can_async_p ())
4827 {
4828 /* If there are are events left in the queue tell the event loop
4829 to return here. */
4830 if (stop_reply_queue)
4831 mark_async_event_handler (remote_async_inferior_event_token);
4832 }
4833
4834 return event_ptid;
4835 }
4836
4837 /* Fetch a single register using a 'p' packet. */
4838
4839 static int
4840 fetch_register_using_p (struct regcache *regcache, struct packet_reg *reg)
4841 {
4842 struct remote_state *rs = get_remote_state ();
4843 char *buf, *p;
4844 char regp[MAX_REGISTER_SIZE];
4845 int i;
4846
4847 if (remote_protocol_packets[PACKET_p].support == PACKET_DISABLE)
4848 return 0;
4849
4850 if (reg->pnum == -1)
4851 return 0;
4852
4853 p = rs->buf;
4854 *p++ = 'p';
4855 p += hexnumstr (p, reg->pnum);
4856 *p++ = '\0';
4857 putpkt (rs->buf);
4858 getpkt (&rs->buf, &rs->buf_size, 0);
4859
4860 buf = rs->buf;
4861
4862 switch (packet_ok (buf, &remote_protocol_packets[PACKET_p]))
4863 {
4864 case PACKET_OK:
4865 break;
4866 case PACKET_UNKNOWN:
4867 return 0;
4868 case PACKET_ERROR:
4869 error (_("Could not fetch register \"%s\"; remote failure reply '%s'"),
4870 gdbarch_register_name (get_regcache_arch (regcache),
4871 reg->regnum),
4872 buf);
4873 }
4874
4875 /* If this register is unfetchable, tell the regcache. */
4876 if (buf[0] == 'x')
4877 {
4878 regcache_raw_supply (regcache, reg->regnum, NULL);
4879 return 1;
4880 }
4881
4882 /* Otherwise, parse and supply the value. */
4883 p = buf;
4884 i = 0;
4885 while (p[0] != 0)
4886 {
4887 if (p[1] == 0)
4888 error (_("fetch_register_using_p: early buf termination"));
4889
4890 regp[i++] = fromhex (p[0]) * 16 + fromhex (p[1]);
4891 p += 2;
4892 }
4893 regcache_raw_supply (regcache, reg->regnum, regp);
4894 return 1;
4895 }
4896
4897 /* Fetch the registers included in the target's 'g' packet. */
4898
4899 static int
4900 send_g_packet (void)
4901 {
4902 struct remote_state *rs = get_remote_state ();
4903 int buf_len;
4904
4905 sprintf (rs->buf, "g");
4906 remote_send (&rs->buf, &rs->buf_size);
4907
4908 /* We can get out of synch in various cases. If the first character
4909 in the buffer is not a hex character, assume that has happened
4910 and try to fetch another packet to read. */
4911 while ((rs->buf[0] < '0' || rs->buf[0] > '9')
4912 && (rs->buf[0] < 'A' || rs->buf[0] > 'F')
4913 && (rs->buf[0] < 'a' || rs->buf[0] > 'f')
4914 && rs->buf[0] != 'x') /* New: unavailable register value. */
4915 {
4916 if (remote_debug)
4917 fprintf_unfiltered (gdb_stdlog,
4918 "Bad register packet; fetching a new packet\n");
4919 getpkt (&rs->buf, &rs->buf_size, 0);
4920 }
4921
4922 buf_len = strlen (rs->buf);
4923
4924 /* Sanity check the received packet. */
4925 if (buf_len % 2 != 0)
4926 error (_("Remote 'g' packet reply is of odd length: %s"), rs->buf);
4927
4928 return buf_len / 2;
4929 }
4930
4931 static void
4932 process_g_packet (struct regcache *regcache)
4933 {
4934 struct gdbarch *gdbarch = get_regcache_arch (regcache);
4935 struct remote_state *rs = get_remote_state ();
4936 struct remote_arch_state *rsa = get_remote_arch_state ();
4937 int i, buf_len;
4938 char *p;
4939 char *regs;
4940
4941 buf_len = strlen (rs->buf);
4942
4943 /* Further sanity checks, with knowledge of the architecture. */
4944 if (buf_len > 2 * rsa->sizeof_g_packet)
4945 error (_("Remote 'g' packet reply is too long: %s"), rs->buf);
4946
4947 /* Save the size of the packet sent to us by the target. It is used
4948 as a heuristic when determining the max size of packets that the
4949 target can safely receive. */
4950 if (rsa->actual_register_packet_size == 0)
4951 rsa->actual_register_packet_size = buf_len;
4952
4953 /* If this is smaller than we guessed the 'g' packet would be,
4954 update our records. A 'g' reply that doesn't include a register's
4955 value implies either that the register is not available, or that
4956 the 'p' packet must be used. */
4957 if (buf_len < 2 * rsa->sizeof_g_packet)
4958 {
4959 rsa->sizeof_g_packet = buf_len / 2;
4960
4961 for (i = 0; i < gdbarch_num_regs (gdbarch); i++)
4962 {
4963 if (rsa->regs[i].pnum == -1)
4964 continue;
4965
4966 if (rsa->regs[i].offset >= rsa->sizeof_g_packet)
4967 rsa->regs[i].in_g_packet = 0;
4968 else
4969 rsa->regs[i].in_g_packet = 1;
4970 }
4971 }
4972
4973 regs = alloca (rsa->sizeof_g_packet);
4974
4975 /* Unimplemented registers read as all bits zero. */
4976 memset (regs, 0, rsa->sizeof_g_packet);
4977
4978 /* Reply describes registers byte by byte, each byte encoded as two
4979 hex characters. Suck them all up, then supply them to the
4980 register cacheing/storage mechanism. */
4981
4982 p = rs->buf;
4983 for (i = 0; i < rsa->sizeof_g_packet; i++)
4984 {
4985 if (p[0] == 0 || p[1] == 0)
4986 /* This shouldn't happen - we adjusted sizeof_g_packet above. */
4987 internal_error (__FILE__, __LINE__,
4988 "unexpected end of 'g' packet reply");
4989
4990 if (p[0] == 'x' && p[1] == 'x')
4991 regs[i] = 0; /* 'x' */
4992 else
4993 regs[i] = fromhex (p[0]) * 16 + fromhex (p[1]);
4994 p += 2;
4995 }
4996
4997 {
4998 int i;
4999 for (i = 0; i < gdbarch_num_regs (gdbarch); i++)
5000 {
5001 struct packet_reg *r = &rsa->regs[i];
5002 if (r->in_g_packet)
5003 {
5004 if (r->offset * 2 >= strlen (rs->buf))
5005 /* This shouldn't happen - we adjusted in_g_packet above. */
5006 internal_error (__FILE__, __LINE__,
5007 "unexpected end of 'g' packet reply");
5008 else if (rs->buf[r->offset * 2] == 'x')
5009 {
5010 gdb_assert (r->offset * 2 < strlen (rs->buf));
5011 /* The register isn't available, mark it as such (at
5012 the same time setting the value to zero). */
5013 regcache_raw_supply (regcache, r->regnum, NULL);
5014 }
5015 else
5016 regcache_raw_supply (regcache, r->regnum,
5017 regs + r->offset);
5018 }
5019 }
5020 }
5021 }
5022
5023 static void
5024 fetch_registers_using_g (struct regcache *regcache)
5025 {
5026 send_g_packet ();
5027 process_g_packet (regcache);
5028 }
5029
5030 static void
5031 remote_fetch_registers (struct target_ops *ops,
5032 struct regcache *regcache, int regnum)
5033 {
5034 struct remote_arch_state *rsa = get_remote_arch_state ();
5035 int i;
5036
5037 set_general_thread (inferior_ptid);
5038
5039 if (regnum >= 0)
5040 {
5041 struct packet_reg *reg = packet_reg_from_regnum (rsa, regnum);
5042 gdb_assert (reg != NULL);
5043
5044 /* If this register might be in the 'g' packet, try that first -
5045 we are likely to read more than one register. If this is the
5046 first 'g' packet, we might be overly optimistic about its
5047 contents, so fall back to 'p'. */
5048 if (reg->in_g_packet)
5049 {
5050 fetch_registers_using_g (regcache);
5051 if (reg->in_g_packet)
5052 return;
5053 }
5054
5055 if (fetch_register_using_p (regcache, reg))
5056 return;
5057
5058 /* This register is not available. */
5059 regcache_raw_supply (regcache, reg->regnum, NULL);
5060
5061 return;
5062 }
5063
5064 fetch_registers_using_g (regcache);
5065
5066 for (i = 0; i < gdbarch_num_regs (get_regcache_arch (regcache)); i++)
5067 if (!rsa->regs[i].in_g_packet)
5068 if (!fetch_register_using_p (regcache, &rsa->regs[i]))
5069 {
5070 /* This register is not available. */
5071 regcache_raw_supply (regcache, i, NULL);
5072 }
5073 }
5074
5075 /* Prepare to store registers. Since we may send them all (using a
5076 'G' request), we have to read out the ones we don't want to change
5077 first. */
5078
5079 static void
5080 remote_prepare_to_store (struct regcache *regcache)
5081 {
5082 struct remote_arch_state *rsa = get_remote_arch_state ();
5083 int i;
5084 gdb_byte buf[MAX_REGISTER_SIZE];
5085
5086 /* Make sure the entire registers array is valid. */
5087 switch (remote_protocol_packets[PACKET_P].support)
5088 {
5089 case PACKET_DISABLE:
5090 case PACKET_SUPPORT_UNKNOWN:
5091 /* Make sure all the necessary registers are cached. */
5092 for (i = 0; i < gdbarch_num_regs (get_regcache_arch (regcache)); i++)
5093 if (rsa->regs[i].in_g_packet)
5094 regcache_raw_read (regcache, rsa->regs[i].regnum, buf);
5095 break;
5096 case PACKET_ENABLE:
5097 break;
5098 }
5099 }
5100
5101 /* Helper: Attempt to store REGNUM using the P packet. Return fail IFF
5102 packet was not recognized. */
5103
5104 static int
5105 store_register_using_P (const struct regcache *regcache,
5106 struct packet_reg *reg)
5107 {
5108 struct gdbarch *gdbarch = get_regcache_arch (regcache);
5109 struct remote_state *rs = get_remote_state ();
5110 /* Try storing a single register. */
5111 char *buf = rs->buf;
5112 gdb_byte regp[MAX_REGISTER_SIZE];
5113 char *p;
5114
5115 if (remote_protocol_packets[PACKET_P].support == PACKET_DISABLE)
5116 return 0;
5117
5118 if (reg->pnum == -1)
5119 return 0;
5120
5121 xsnprintf (buf, get_remote_packet_size (), "P%s=", phex_nz (reg->pnum, 0));
5122 p = buf + strlen (buf);
5123 regcache_raw_collect (regcache, reg->regnum, regp);
5124 bin2hex (regp, p, register_size (gdbarch, reg->regnum));
5125 putpkt (rs->buf);
5126 getpkt (&rs->buf, &rs->buf_size, 0);
5127
5128 switch (packet_ok (rs->buf, &remote_protocol_packets[PACKET_P]))
5129 {
5130 case PACKET_OK:
5131 return 1;
5132 case PACKET_ERROR:
5133 error (_("Could not write register \"%s\"; remote failure reply '%s'"),
5134 gdbarch_register_name (gdbarch, reg->regnum), rs->buf);
5135 case PACKET_UNKNOWN:
5136 return 0;
5137 default:
5138 internal_error (__FILE__, __LINE__, _("Bad result from packet_ok"));
5139 }
5140 }
5141
5142 /* Store register REGNUM, or all registers if REGNUM == -1, from the
5143 contents of the register cache buffer. FIXME: ignores errors. */
5144
5145 static void
5146 store_registers_using_G (const struct regcache *regcache)
5147 {
5148 struct remote_state *rs = get_remote_state ();
5149 struct remote_arch_state *rsa = get_remote_arch_state ();
5150 gdb_byte *regs;
5151 char *p;
5152
5153 /* Extract all the registers in the regcache copying them into a
5154 local buffer. */
5155 {
5156 int i;
5157 regs = alloca (rsa->sizeof_g_packet);
5158 memset (regs, 0, rsa->sizeof_g_packet);
5159 for (i = 0; i < gdbarch_num_regs (get_regcache_arch (regcache)); i++)
5160 {
5161 struct packet_reg *r = &rsa->regs[i];
5162 if (r->in_g_packet)
5163 regcache_raw_collect (regcache, r->regnum, regs + r->offset);
5164 }
5165 }
5166
5167 /* Command describes registers byte by byte,
5168 each byte encoded as two hex characters. */
5169 p = rs->buf;
5170 *p++ = 'G';
5171 /* remote_prepare_to_store insures that rsa->sizeof_g_packet gets
5172 updated. */
5173 bin2hex (regs, p, rsa->sizeof_g_packet);
5174 putpkt (rs->buf);
5175 getpkt (&rs->buf, &rs->buf_size, 0);
5176 if (packet_check_result (rs->buf) == PACKET_ERROR)
5177 error (_("Could not write registers; remote failure reply '%s'"),
5178 rs->buf);
5179 }
5180
5181 /* Store register REGNUM, or all registers if REGNUM == -1, from the contents
5182 of the register cache buffer. FIXME: ignores errors. */
5183
5184 static void
5185 remote_store_registers (struct target_ops *ops,
5186 struct regcache *regcache, int regnum)
5187 {
5188 struct remote_arch_state *rsa = get_remote_arch_state ();
5189 int i;
5190
5191 set_general_thread (inferior_ptid);
5192
5193 if (regnum >= 0)
5194 {
5195 struct packet_reg *reg = packet_reg_from_regnum (rsa, regnum);
5196 gdb_assert (reg != NULL);
5197
5198 /* Always prefer to store registers using the 'P' packet if
5199 possible; we often change only a small number of registers.
5200 Sometimes we change a larger number; we'd need help from a
5201 higher layer to know to use 'G'. */
5202 if (store_register_using_P (regcache, reg))
5203 return;
5204
5205 /* For now, don't complain if we have no way to write the
5206 register. GDB loses track of unavailable registers too
5207 easily. Some day, this may be an error. We don't have
5208 any way to read the register, either... */
5209 if (!reg->in_g_packet)
5210 return;
5211
5212 store_registers_using_G (regcache);
5213 return;
5214 }
5215
5216 store_registers_using_G (regcache);
5217
5218 for (i = 0; i < gdbarch_num_regs (get_regcache_arch (regcache)); i++)
5219 if (!rsa->regs[i].in_g_packet)
5220 if (!store_register_using_P (regcache, &rsa->regs[i]))
5221 /* See above for why we do not issue an error here. */
5222 continue;
5223 }
5224 \f
5225
5226 /* Return the number of hex digits in num. */
5227
5228 static int
5229 hexnumlen (ULONGEST num)
5230 {
5231 int i;
5232
5233 for (i = 0; num != 0; i++)
5234 num >>= 4;
5235
5236 return max (i, 1);
5237 }
5238
5239 /* Set BUF to the minimum number of hex digits representing NUM. */
5240
5241 static int
5242 hexnumstr (char *buf, ULONGEST num)
5243 {
5244 int len = hexnumlen (num);
5245 return hexnumnstr (buf, num, len);
5246 }
5247
5248
5249 /* Set BUF to the hex digits representing NUM, padded to WIDTH characters. */
5250
5251 static int
5252 hexnumnstr (char *buf, ULONGEST num, int width)
5253 {
5254 int i;
5255
5256 buf[width] = '\0';
5257
5258 for (i = width - 1; i >= 0; i--)
5259 {
5260 buf[i] = "0123456789abcdef"[(num & 0xf)];
5261 num >>= 4;
5262 }
5263
5264 return width;
5265 }
5266
5267 /* Mask all but the least significant REMOTE_ADDRESS_SIZE bits. */
5268
5269 static CORE_ADDR
5270 remote_address_masked (CORE_ADDR addr)
5271 {
5272 int address_size = remote_address_size;
5273 /* If "remoteaddresssize" was not set, default to target address size. */
5274 if (!address_size)
5275 address_size = gdbarch_addr_bit (target_gdbarch);
5276
5277 if (address_size > 0
5278 && address_size < (sizeof (ULONGEST) * 8))
5279 {
5280 /* Only create a mask when that mask can safely be constructed
5281 in a ULONGEST variable. */
5282 ULONGEST mask = 1;
5283 mask = (mask << address_size) - 1;
5284 addr &= mask;
5285 }
5286 return addr;
5287 }
5288
5289 /* Convert BUFFER, binary data at least LEN bytes long, into escaped
5290 binary data in OUT_BUF. Set *OUT_LEN to the length of the data
5291 encoded in OUT_BUF, and return the number of bytes in OUT_BUF
5292 (which may be more than *OUT_LEN due to escape characters). The
5293 total number of bytes in the output buffer will be at most
5294 OUT_MAXLEN. */
5295
5296 static int
5297 remote_escape_output (const gdb_byte *buffer, int len,
5298 gdb_byte *out_buf, int *out_len,
5299 int out_maxlen)
5300 {
5301 int input_index, output_index;
5302
5303 output_index = 0;
5304 for (input_index = 0; input_index < len; input_index++)
5305 {
5306 gdb_byte b = buffer[input_index];
5307
5308 if (b == '$' || b == '#' || b == '}')
5309 {
5310 /* These must be escaped. */
5311 if (output_index + 2 > out_maxlen)
5312 break;
5313 out_buf[output_index++] = '}';
5314 out_buf[output_index++] = b ^ 0x20;
5315 }
5316 else
5317 {
5318 if (output_index + 1 > out_maxlen)
5319 break;
5320 out_buf[output_index++] = b;
5321 }
5322 }
5323
5324 *out_len = input_index;
5325 return output_index;
5326 }
5327
5328 /* Convert BUFFER, escaped data LEN bytes long, into binary data
5329 in OUT_BUF. Return the number of bytes written to OUT_BUF.
5330 Raise an error if the total number of bytes exceeds OUT_MAXLEN.
5331
5332 This function reverses remote_escape_output. It allows more
5333 escaped characters than that function does, in particular because
5334 '*' must be escaped to avoid the run-length encoding processing
5335 in reading packets. */
5336
5337 static int
5338 remote_unescape_input (const gdb_byte *buffer, int len,
5339 gdb_byte *out_buf, int out_maxlen)
5340 {
5341 int input_index, output_index;
5342 int escaped;
5343
5344 output_index = 0;
5345 escaped = 0;
5346 for (input_index = 0; input_index < len; input_index++)
5347 {
5348 gdb_byte b = buffer[input_index];
5349
5350 if (output_index + 1 > out_maxlen)
5351 {
5352 warning (_("Received too much data from remote target;"
5353 " ignoring overflow."));
5354 return output_index;
5355 }
5356
5357 if (escaped)
5358 {
5359 out_buf[output_index++] = b ^ 0x20;
5360 escaped = 0;
5361 }
5362 else if (b == '}')
5363 escaped = 1;
5364 else
5365 out_buf[output_index++] = b;
5366 }
5367
5368 if (escaped)
5369 error (_("Unmatched escape character in target response."));
5370
5371 return output_index;
5372 }
5373
5374 /* Determine whether the remote target supports binary downloading.
5375 This is accomplished by sending a no-op memory write of zero length
5376 to the target at the specified address. It does not suffice to send
5377 the whole packet, since many stubs strip the eighth bit and
5378 subsequently compute a wrong checksum, which causes real havoc with
5379 remote_write_bytes.
5380
5381 NOTE: This can still lose if the serial line is not eight-bit
5382 clean. In cases like this, the user should clear "remote
5383 X-packet". */
5384
5385 static void
5386 check_binary_download (CORE_ADDR addr)
5387 {
5388 struct remote_state *rs = get_remote_state ();
5389
5390 switch (remote_protocol_packets[PACKET_X].support)
5391 {
5392 case PACKET_DISABLE:
5393 break;
5394 case PACKET_ENABLE:
5395 break;
5396 case PACKET_SUPPORT_UNKNOWN:
5397 {
5398 char *p;
5399
5400 p = rs->buf;
5401 *p++ = 'X';
5402 p += hexnumstr (p, (ULONGEST) addr);
5403 *p++ = ',';
5404 p += hexnumstr (p, (ULONGEST) 0);
5405 *p++ = ':';
5406 *p = '\0';
5407
5408 putpkt_binary (rs->buf, (int) (p - rs->buf));
5409 getpkt (&rs->buf, &rs->buf_size, 0);
5410
5411 if (rs->buf[0] == '\0')
5412 {
5413 if (remote_debug)
5414 fprintf_unfiltered (gdb_stdlog,
5415 "binary downloading NOT suppported by target\n");
5416 remote_protocol_packets[PACKET_X].support = PACKET_DISABLE;
5417 }
5418 else
5419 {
5420 if (remote_debug)
5421 fprintf_unfiltered (gdb_stdlog,
5422 "binary downloading suppported by target\n");
5423 remote_protocol_packets[PACKET_X].support = PACKET_ENABLE;
5424 }
5425 break;
5426 }
5427 }
5428 }
5429
5430 /* Write memory data directly to the remote machine.
5431 This does not inform the data cache; the data cache uses this.
5432 HEADER is the starting part of the packet.
5433 MEMADDR is the address in the remote memory space.
5434 MYADDR is the address of the buffer in our space.
5435 LEN is the number of bytes.
5436 PACKET_FORMAT should be either 'X' or 'M', and indicates if we
5437 should send data as binary ('X'), or hex-encoded ('M').
5438
5439 The function creates packet of the form
5440 <HEADER><ADDRESS>,<LENGTH>:<DATA>
5441
5442 where encoding of <DATA> is termined by PACKET_FORMAT.
5443
5444 If USE_LENGTH is 0, then the <LENGTH> field and the preceding comma
5445 are omitted.
5446
5447 Returns the number of bytes transferred, or 0 (setting errno) for
5448 error. Only transfer a single packet. */
5449
5450 static int
5451 remote_write_bytes_aux (const char *header, CORE_ADDR memaddr,
5452 const gdb_byte *myaddr, int len,
5453 char packet_format, int use_length)
5454 {
5455 struct remote_state *rs = get_remote_state ();
5456 char *p;
5457 char *plen = NULL;
5458 int plenlen = 0;
5459 int todo;
5460 int nr_bytes;
5461 int payload_size;
5462 int payload_length;
5463 int header_length;
5464
5465 if (packet_format != 'X' && packet_format != 'M')
5466 internal_error (__FILE__, __LINE__,
5467 "remote_write_bytes_aux: bad packet format");
5468
5469 if (len <= 0)
5470 return 0;
5471
5472 payload_size = get_memory_write_packet_size ();
5473
5474 /* The packet buffer will be large enough for the payload;
5475 get_memory_packet_size ensures this. */
5476 rs->buf[0] = '\0';
5477
5478 /* Compute the size of the actual payload by subtracting out the
5479 packet header and footer overhead: "$M<memaddr>,<len>:...#nn".
5480 */
5481 payload_size -= strlen ("$,:#NN");
5482 if (!use_length)
5483 /* The comma won't be used. */
5484 payload_size += 1;
5485 header_length = strlen (header);
5486 payload_size -= header_length;
5487 payload_size -= hexnumlen (memaddr);
5488
5489 /* Construct the packet excluding the data: "<header><memaddr>,<len>:". */
5490
5491 strcat (rs->buf, header);
5492 p = rs->buf + strlen (header);
5493
5494 /* Compute a best guess of the number of bytes actually transfered. */
5495 if (packet_format == 'X')
5496 {
5497 /* Best guess at number of bytes that will fit. */
5498 todo = min (len, payload_size);
5499 if (use_length)
5500 payload_size -= hexnumlen (todo);
5501 todo = min (todo, payload_size);
5502 }
5503 else
5504 {
5505 /* Num bytes that will fit. */
5506 todo = min (len, payload_size / 2);
5507 if (use_length)
5508 payload_size -= hexnumlen (todo);
5509 todo = min (todo, payload_size / 2);
5510 }
5511
5512 if (todo <= 0)
5513 internal_error (__FILE__, __LINE__,
5514 _("minumum packet size too small to write data"));
5515
5516 /* If we already need another packet, then try to align the end
5517 of this packet to a useful boundary. */
5518 if (todo > 2 * REMOTE_ALIGN_WRITES && todo < len)
5519 todo = ((memaddr + todo) & ~(REMOTE_ALIGN_WRITES - 1)) - memaddr;
5520
5521 /* Append "<memaddr>". */
5522 memaddr = remote_address_masked (memaddr);
5523 p += hexnumstr (p, (ULONGEST) memaddr);
5524
5525 if (use_length)
5526 {
5527 /* Append ",". */
5528 *p++ = ',';
5529
5530 /* Append <len>. Retain the location/size of <len>. It may need to
5531 be adjusted once the packet body has been created. */
5532 plen = p;
5533 plenlen = hexnumstr (p, (ULONGEST) todo);
5534 p += plenlen;
5535 }
5536
5537 /* Append ":". */
5538 *p++ = ':';
5539 *p = '\0';
5540
5541 /* Append the packet body. */
5542 if (packet_format == 'X')
5543 {
5544 /* Binary mode. Send target system values byte by byte, in
5545 increasing byte addresses. Only escape certain critical
5546 characters. */
5547 payload_length = remote_escape_output (myaddr, todo, p, &nr_bytes,
5548 payload_size);
5549
5550 /* If not all TODO bytes fit, then we'll need another packet. Make
5551 a second try to keep the end of the packet aligned. Don't do
5552 this if the packet is tiny. */
5553 if (nr_bytes < todo && nr_bytes > 2 * REMOTE_ALIGN_WRITES)
5554 {
5555 int new_nr_bytes;
5556
5557 new_nr_bytes = (((memaddr + nr_bytes) & ~(REMOTE_ALIGN_WRITES - 1))
5558 - memaddr);
5559 if (new_nr_bytes != nr_bytes)
5560 payload_length = remote_escape_output (myaddr, new_nr_bytes,
5561 p, &nr_bytes,
5562 payload_size);
5563 }
5564
5565 p += payload_length;
5566 if (use_length && nr_bytes < todo)
5567 {
5568 /* Escape chars have filled up the buffer prematurely,
5569 and we have actually sent fewer bytes than planned.
5570 Fix-up the length field of the packet. Use the same
5571 number of characters as before. */
5572 plen += hexnumnstr (plen, (ULONGEST) nr_bytes, plenlen);
5573 *plen = ':'; /* overwrite \0 from hexnumnstr() */
5574 }
5575 }
5576 else
5577 {
5578 /* Normal mode: Send target system values byte by byte, in
5579 increasing byte addresses. Each byte is encoded as a two hex
5580 value. */
5581 nr_bytes = bin2hex (myaddr, p, todo);
5582 p += 2 * nr_bytes;
5583 }
5584
5585 putpkt_binary (rs->buf, (int) (p - rs->buf));
5586 getpkt (&rs->buf, &rs->buf_size, 0);
5587
5588 if (rs->buf[0] == 'E')
5589 {
5590 /* There is no correspondance between what the remote protocol
5591 uses for errors and errno codes. We would like a cleaner way
5592 of representing errors (big enough to include errno codes,
5593 bfd_error codes, and others). But for now just return EIO. */
5594 errno = EIO;
5595 return 0;
5596 }
5597
5598 /* Return NR_BYTES, not TODO, in case escape chars caused us to send
5599 fewer bytes than we'd planned. */
5600 return nr_bytes;
5601 }
5602
5603 /* Write memory data directly to the remote machine.
5604 This does not inform the data cache; the data cache uses this.
5605 MEMADDR is the address in the remote memory space.
5606 MYADDR is the address of the buffer in our space.
5607 LEN is the number of bytes.
5608
5609 Returns number of bytes transferred, or 0 (setting errno) for
5610 error. Only transfer a single packet. */
5611
5612 int
5613 remote_write_bytes (CORE_ADDR memaddr, const gdb_byte *myaddr, int len)
5614 {
5615 char *packet_format = 0;
5616
5617 /* Check whether the target supports binary download. */
5618 check_binary_download (memaddr);
5619
5620 switch (remote_protocol_packets[PACKET_X].support)
5621 {
5622 case PACKET_ENABLE:
5623 packet_format = "X";
5624 break;
5625 case PACKET_DISABLE:
5626 packet_format = "M";
5627 break;
5628 case PACKET_SUPPORT_UNKNOWN:
5629 internal_error (__FILE__, __LINE__,
5630 _("remote_write_bytes: bad internal state"));
5631 default:
5632 internal_error (__FILE__, __LINE__, _("bad switch"));
5633 }
5634
5635 return remote_write_bytes_aux (packet_format,
5636 memaddr, myaddr, len, packet_format[0], 1);
5637 }
5638
5639 /* Read memory data directly from the remote machine.
5640 This does not use the data cache; the data cache uses this.
5641 MEMADDR is the address in the remote memory space.
5642 MYADDR is the address of the buffer in our space.
5643 LEN is the number of bytes.
5644
5645 Returns number of bytes transferred, or 0 for error. */
5646
5647 /* NOTE: cagney/1999-10-18: This function (and its siblings in other
5648 remote targets) shouldn't attempt to read the entire buffer.
5649 Instead it should read a single packet worth of data and then
5650 return the byte size of that packet to the caller. The caller (its
5651 caller and its callers caller ;-) already contains code for
5652 handling partial reads. */
5653
5654 int
5655 remote_read_bytes (CORE_ADDR memaddr, gdb_byte *myaddr, int len)
5656 {
5657 struct remote_state *rs = get_remote_state ();
5658 int max_buf_size; /* Max size of packet output buffer. */
5659 int origlen;
5660
5661 if (len <= 0)
5662 return 0;
5663
5664 max_buf_size = get_memory_read_packet_size ();
5665 /* The packet buffer will be large enough for the payload;
5666 get_memory_packet_size ensures this. */
5667
5668 origlen = len;
5669 while (len > 0)
5670 {
5671 char *p;
5672 int todo;
5673 int i;
5674
5675 todo = min (len, max_buf_size / 2); /* num bytes that will fit */
5676
5677 /* construct "m"<memaddr>","<len>" */
5678 /* sprintf (rs->buf, "m%lx,%x", (unsigned long) memaddr, todo); */
5679 memaddr = remote_address_masked (memaddr);
5680 p = rs->buf;
5681 *p++ = 'm';
5682 p += hexnumstr (p, (ULONGEST) memaddr);
5683 *p++ = ',';
5684 p += hexnumstr (p, (ULONGEST) todo);
5685 *p = '\0';
5686
5687 putpkt (rs->buf);
5688 getpkt (&rs->buf, &rs->buf_size, 0);
5689
5690 if (rs->buf[0] == 'E'
5691 && isxdigit (rs->buf[1]) && isxdigit (rs->buf[2])
5692 && rs->buf[3] == '\0')
5693 {
5694 /* There is no correspondance between what the remote
5695 protocol uses for errors and errno codes. We would like
5696 a cleaner way of representing errors (big enough to
5697 include errno codes, bfd_error codes, and others). But
5698 for now just return EIO. */
5699 errno = EIO;
5700 return 0;
5701 }
5702
5703 /* Reply describes memory byte by byte,
5704 each byte encoded as two hex characters. */
5705
5706 p = rs->buf;
5707 if ((i = hex2bin (p, myaddr, todo)) < todo)
5708 {
5709 /* Reply is short. This means that we were able to read
5710 only part of what we wanted to. */
5711 return i + (origlen - len);
5712 }
5713 myaddr += todo;
5714 memaddr += todo;
5715 len -= todo;
5716 }
5717 return origlen;
5718 }
5719 \f
5720
5721 /* Remote notification handler. */
5722
5723 static void
5724 handle_notification (char *buf, size_t length)
5725 {
5726 if (strncmp (buf, "Stop:", 5) == 0)
5727 {
5728 if (pending_stop_reply)
5729 /* We've already parsed the in-flight stop-reply, but the stub
5730 for some reason thought we didn't, possibly due to timeout
5731 on its side. Just ignore it. */
5732 ;
5733 else
5734 {
5735 struct cleanup *old_chain;
5736 struct stop_reply *reply = stop_reply_xmalloc ();
5737 old_chain = make_cleanup (do_stop_reply_xfree, reply);
5738
5739 remote_parse_stop_reply (buf + 5, reply);
5740
5741 discard_cleanups (old_chain);
5742
5743 /* Be careful to only set it after parsing, since an error
5744 may be thrown then. */
5745 pending_stop_reply = reply;
5746
5747 /* Notify the event loop there's a stop reply to acknowledge
5748 and that there may be more events to fetch. */
5749 mark_async_event_handler (remote_async_get_pending_events_token);
5750 }
5751 }
5752 else
5753 /* We ignore notifications we don't recognize, for compatibility
5754 with newer stubs. */
5755 ;
5756 }
5757
5758 \f
5759 /* Read or write LEN bytes from inferior memory at MEMADDR,
5760 transferring to or from debugger address BUFFER. Write to inferior
5761 if SHOULD_WRITE is nonzero. Returns length of data written or
5762 read; 0 for error. TARGET is unused. */
5763
5764 static int
5765 remote_xfer_memory (CORE_ADDR mem_addr, gdb_byte *buffer, int mem_len,
5766 int should_write, struct mem_attrib *attrib,
5767 struct target_ops *target)
5768 {
5769 int res;
5770
5771 set_general_thread (inferior_ptid);
5772
5773 if (should_write)
5774 res = remote_write_bytes (mem_addr, buffer, mem_len);
5775 else
5776 res = remote_read_bytes (mem_addr, buffer, mem_len);
5777
5778 return res;
5779 }
5780
5781 /* Sends a packet with content determined by the printf format string
5782 FORMAT and the remaining arguments, then gets the reply. Returns
5783 whether the packet was a success, a failure, or unknown. */
5784
5785 static enum packet_result
5786 remote_send_printf (const char *format, ...)
5787 {
5788 struct remote_state *rs = get_remote_state ();
5789 int max_size = get_remote_packet_size ();
5790
5791 va_list ap;
5792 va_start (ap, format);
5793
5794 rs->buf[0] = '\0';
5795 if (vsnprintf (rs->buf, max_size, format, ap) >= max_size)
5796 internal_error (__FILE__, __LINE__, "Too long remote packet.");
5797
5798 if (putpkt (rs->buf) < 0)
5799 error (_("Communication problem with target."));
5800
5801 rs->buf[0] = '\0';
5802 getpkt (&rs->buf, &rs->buf_size, 0);
5803
5804 return packet_check_result (rs->buf);
5805 }
5806
5807 static void
5808 restore_remote_timeout (void *p)
5809 {
5810 int value = *(int *)p;
5811 remote_timeout = value;
5812 }
5813
5814 /* Flash writing can take quite some time. We'll set
5815 effectively infinite timeout for flash operations.
5816 In future, we'll need to decide on a better approach. */
5817 static const int remote_flash_timeout = 1000;
5818
5819 static void
5820 remote_flash_erase (struct target_ops *ops,
5821 ULONGEST address, LONGEST length)
5822 {
5823 int addr_size = gdbarch_addr_bit (target_gdbarch) / 8;
5824 int saved_remote_timeout = remote_timeout;
5825 enum packet_result ret;
5826
5827 struct cleanup *back_to = make_cleanup (restore_remote_timeout,
5828 &saved_remote_timeout);
5829 remote_timeout = remote_flash_timeout;
5830
5831 ret = remote_send_printf ("vFlashErase:%s,%s",
5832 phex (address, addr_size),
5833 phex (length, 4));
5834 switch (ret)
5835 {
5836 case PACKET_UNKNOWN:
5837 error (_("Remote target does not support flash erase"));
5838 case PACKET_ERROR:
5839 error (_("Error erasing flash with vFlashErase packet"));
5840 default:
5841 break;
5842 }
5843
5844 do_cleanups (back_to);
5845 }
5846
5847 static LONGEST
5848 remote_flash_write (struct target_ops *ops,
5849 ULONGEST address, LONGEST length,
5850 const gdb_byte *data)
5851 {
5852 int saved_remote_timeout = remote_timeout;
5853 int ret;
5854 struct cleanup *back_to = make_cleanup (restore_remote_timeout,
5855 &saved_remote_timeout);
5856
5857 remote_timeout = remote_flash_timeout;
5858 ret = remote_write_bytes_aux ("vFlashWrite:", address, data, length, 'X', 0);
5859 do_cleanups (back_to);
5860
5861 return ret;
5862 }
5863
5864 static void
5865 remote_flash_done (struct target_ops *ops)
5866 {
5867 int saved_remote_timeout = remote_timeout;
5868 int ret;
5869 struct cleanup *back_to = make_cleanup (restore_remote_timeout,
5870 &saved_remote_timeout);
5871
5872 remote_timeout = remote_flash_timeout;
5873 ret = remote_send_printf ("vFlashDone");
5874 do_cleanups (back_to);
5875
5876 switch (ret)
5877 {
5878 case PACKET_UNKNOWN:
5879 error (_("Remote target does not support vFlashDone"));
5880 case PACKET_ERROR:
5881 error (_("Error finishing flash operation"));
5882 default:
5883 break;
5884 }
5885 }
5886
5887 static void
5888 remote_files_info (struct target_ops *ignore)
5889 {
5890 puts_filtered ("Debugging a target over a serial line.\n");
5891 }
5892 \f
5893 /* Stuff for dealing with the packets which are part of this protocol.
5894 See comment at top of file for details. */
5895
5896 /* Read a single character from the remote end. */
5897
5898 static int
5899 readchar (int timeout)
5900 {
5901 int ch;
5902
5903 ch = serial_readchar (remote_desc, timeout);
5904
5905 if (ch >= 0)
5906 return ch;
5907
5908 switch ((enum serial_rc) ch)
5909 {
5910 case SERIAL_EOF:
5911 pop_target ();
5912 error (_("Remote connection closed"));
5913 /* no return */
5914 case SERIAL_ERROR:
5915 perror_with_name (_("Remote communication error"));
5916 /* no return */
5917 case SERIAL_TIMEOUT:
5918 break;
5919 }
5920 return ch;
5921 }
5922
5923 /* Send the command in *BUF to the remote machine, and read the reply
5924 into *BUF. Report an error if we get an error reply. Resize
5925 *BUF using xrealloc if necessary to hold the result, and update
5926 *SIZEOF_BUF. */
5927
5928 static void
5929 remote_send (char **buf,
5930 long *sizeof_buf)
5931 {
5932 putpkt (*buf);
5933 getpkt (buf, sizeof_buf, 0);
5934
5935 if ((*buf)[0] == 'E')
5936 error (_("Remote failure reply: %s"), *buf);
5937 }
5938
5939 /* Return a pointer to an xmalloc'ed string representing an escaped
5940 version of BUF, of len N. E.g. \n is converted to \\n, \t to \\t,
5941 etc. The caller is responsible for releasing the returned
5942 memory. */
5943
5944 static char *
5945 escape_buffer (const char *buf, int n)
5946 {
5947 struct cleanup *old_chain;
5948 struct ui_file *stb;
5949 char *str;
5950 long length;
5951
5952 stb = mem_fileopen ();
5953 old_chain = make_cleanup_ui_file_delete (stb);
5954
5955 fputstrn_unfiltered (buf, n, 0, stb);
5956 str = ui_file_xstrdup (stb, &length);
5957 do_cleanups (old_chain);
5958 return str;
5959 }
5960
5961 /* Display a null-terminated packet on stdout, for debugging, using C
5962 string notation. */
5963
5964 static void
5965 print_packet (char *buf)
5966 {
5967 puts_filtered ("\"");
5968 fputstr_filtered (buf, '"', gdb_stdout);
5969 puts_filtered ("\"");
5970 }
5971
5972 int
5973 putpkt (char *buf)
5974 {
5975 return putpkt_binary (buf, strlen (buf));
5976 }
5977
5978 /* Send a packet to the remote machine, with error checking. The data
5979 of the packet is in BUF. The string in BUF can be at most
5980 get_remote_packet_size () - 5 to account for the $, # and checksum,
5981 and for a possible /0 if we are debugging (remote_debug) and want
5982 to print the sent packet as a string. */
5983
5984 static int
5985 putpkt_binary (char *buf, int cnt)
5986 {
5987 struct remote_state *rs = get_remote_state ();
5988 int i;
5989 unsigned char csum = 0;
5990 char *buf2 = alloca (cnt + 6);
5991
5992 int ch;
5993 int tcount = 0;
5994 char *p;
5995
5996 /* Catch cases like trying to read memory or listing threads while
5997 we're waiting for a stop reply. The remote server wouldn't be
5998 ready to handle this request, so we'd hang and timeout. We don't
5999 have to worry about this in synchronous mode, because in that
6000 case it's not possible to issue a command while the target is
6001 running. This is not a problem in non-stop mode, because in that
6002 case, the stub is always ready to process serial input. */
6003 if (!non_stop && target_can_async_p () && rs->waiting_for_stop_reply)
6004 error (_("Cannot execute this command while the target is running."));
6005
6006 /* We're sending out a new packet. Make sure we don't look at a
6007 stale cached response. */
6008 rs->cached_wait_status = 0;
6009
6010 /* Copy the packet into buffer BUF2, encapsulating it
6011 and giving it a checksum. */
6012
6013 p = buf2;
6014 *p++ = '$';
6015
6016 for (i = 0; i < cnt; i++)
6017 {
6018 csum += buf[i];
6019 *p++ = buf[i];
6020 }
6021 *p++ = '#';
6022 *p++ = tohex ((csum >> 4) & 0xf);
6023 *p++ = tohex (csum & 0xf);
6024
6025 /* Send it over and over until we get a positive ack. */
6026
6027 while (1)
6028 {
6029 int started_error_output = 0;
6030
6031 if (remote_debug)
6032 {
6033 struct cleanup *old_chain;
6034 char *str;
6035
6036 *p = '\0';
6037 str = escape_buffer (buf2, p - buf2);
6038 old_chain = make_cleanup (xfree, str);
6039 fprintf_unfiltered (gdb_stdlog, "Sending packet: %s...", str);
6040 gdb_flush (gdb_stdlog);
6041 do_cleanups (old_chain);
6042 }
6043 if (serial_write (remote_desc, buf2, p - buf2))
6044 perror_with_name (_("putpkt: write failed"));
6045
6046 /* If this is a no acks version of the remote protocol, send the
6047 packet and move on. */
6048 if (rs->noack_mode)
6049 break;
6050
6051 /* Read until either a timeout occurs (-2) or '+' is read.
6052 Handle any notification that arrives in the mean time. */
6053 while (1)
6054 {
6055 ch = readchar (remote_timeout);
6056
6057 if (remote_debug)
6058 {
6059 switch (ch)
6060 {
6061 case '+':
6062 case '-':
6063 case SERIAL_TIMEOUT:
6064 case '$':
6065 case '%':
6066 if (started_error_output)
6067 {
6068 putchar_unfiltered ('\n');
6069 started_error_output = 0;
6070 }
6071 }
6072 }
6073
6074 switch (ch)
6075 {
6076 case '+':
6077 if (remote_debug)
6078 fprintf_unfiltered (gdb_stdlog, "Ack\n");
6079 return 1;
6080 case '-':
6081 if (remote_debug)
6082 fprintf_unfiltered (gdb_stdlog, "Nak\n");
6083 case SERIAL_TIMEOUT:
6084 tcount++;
6085 if (tcount > 3)
6086 return 0;
6087 break; /* Retransmit buffer. */
6088 case '$':
6089 {
6090 if (remote_debug)
6091 fprintf_unfiltered (gdb_stdlog,
6092 "Packet instead of Ack, ignoring it\n");
6093 /* It's probably an old response sent because an ACK
6094 was lost. Gobble up the packet and ack it so it
6095 doesn't get retransmitted when we resend this
6096 packet. */
6097 skip_frame ();
6098 serial_write (remote_desc, "+", 1);
6099 continue; /* Now, go look for +. */
6100 }
6101
6102 case '%':
6103 {
6104 int val;
6105
6106 /* If we got a notification, handle it, and go back to looking
6107 for an ack. */
6108 /* We've found the start of a notification. Now
6109 collect the data. */
6110 val = read_frame (&rs->buf, &rs->buf_size);
6111 if (val >= 0)
6112 {
6113 if (remote_debug)
6114 {
6115 struct cleanup *old_chain;
6116 char *str;
6117
6118 str = escape_buffer (rs->buf, val);
6119 old_chain = make_cleanup (xfree, str);
6120 fprintf_unfiltered (gdb_stdlog,
6121 " Notification received: %s\n",
6122 str);
6123 do_cleanups (old_chain);
6124 }
6125 handle_notification (rs->buf, val);
6126 /* We're in sync now, rewait for the ack. */
6127 tcount = 0;
6128 }
6129 else
6130 {
6131 if (remote_debug)
6132 {
6133 if (!started_error_output)
6134 {
6135 started_error_output = 1;
6136 fprintf_unfiltered (gdb_stdlog, "putpkt: Junk: ");
6137 }
6138 fputc_unfiltered (ch & 0177, gdb_stdlog);
6139 fprintf_unfiltered (gdb_stdlog, "%s", rs->buf);
6140 }
6141 }
6142 continue;
6143 }
6144 /* fall-through */
6145 default:
6146 if (remote_debug)
6147 {
6148 if (!started_error_output)
6149 {
6150 started_error_output = 1;
6151 fprintf_unfiltered (gdb_stdlog, "putpkt: Junk: ");
6152 }
6153 fputc_unfiltered (ch & 0177, gdb_stdlog);
6154 }
6155 continue;
6156 }
6157 break; /* Here to retransmit. */
6158 }
6159
6160 #if 0
6161 /* This is wrong. If doing a long backtrace, the user should be
6162 able to get out next time we call QUIT, without anything as
6163 violent as interrupt_query. If we want to provide a way out of
6164 here without getting to the next QUIT, it should be based on
6165 hitting ^C twice as in remote_wait. */
6166 if (quit_flag)
6167 {
6168 quit_flag = 0;
6169 interrupt_query ();
6170 }
6171 #endif
6172 }
6173 return 0;
6174 }
6175
6176 /* Come here after finding the start of a frame when we expected an
6177 ack. Do our best to discard the rest of this packet. */
6178
6179 static void
6180 skip_frame (void)
6181 {
6182 int c;
6183
6184 while (1)
6185 {
6186 c = readchar (remote_timeout);
6187 switch (c)
6188 {
6189 case SERIAL_TIMEOUT:
6190 /* Nothing we can do. */
6191 return;
6192 case '#':
6193 /* Discard the two bytes of checksum and stop. */
6194 c = readchar (remote_timeout);
6195 if (c >= 0)
6196 c = readchar (remote_timeout);
6197
6198 return;
6199 case '*': /* Run length encoding. */
6200 /* Discard the repeat count. */
6201 c = readchar (remote_timeout);
6202 if (c < 0)
6203 return;
6204 break;
6205 default:
6206 /* A regular character. */
6207 break;
6208 }
6209 }
6210 }
6211
6212 /* Come here after finding the start of the frame. Collect the rest
6213 into *BUF, verifying the checksum, length, and handling run-length
6214 compression. NUL terminate the buffer. If there is not enough room,
6215 expand *BUF using xrealloc.
6216
6217 Returns -1 on error, number of characters in buffer (ignoring the
6218 trailing NULL) on success. (could be extended to return one of the
6219 SERIAL status indications). */
6220
6221 static long
6222 read_frame (char **buf_p,
6223 long *sizeof_buf)
6224 {
6225 unsigned char csum;
6226 long bc;
6227 int c;
6228 char *buf = *buf_p;
6229 struct remote_state *rs = get_remote_state ();
6230
6231 csum = 0;
6232 bc = 0;
6233
6234 while (1)
6235 {
6236 c = readchar (remote_timeout);
6237 switch (c)
6238 {
6239 case SERIAL_TIMEOUT:
6240 if (remote_debug)
6241 fputs_filtered ("Timeout in mid-packet, retrying\n", gdb_stdlog);
6242 return -1;
6243 case '$':
6244 if (remote_debug)
6245 fputs_filtered ("Saw new packet start in middle of old one\n",
6246 gdb_stdlog);
6247 return -1; /* Start a new packet, count retries. */
6248 case '#':
6249 {
6250 unsigned char pktcsum;
6251 int check_0 = 0;
6252 int check_1 = 0;
6253
6254 buf[bc] = '\0';
6255
6256 check_0 = readchar (remote_timeout);
6257 if (check_0 >= 0)
6258 check_1 = readchar (remote_timeout);
6259
6260 if (check_0 == SERIAL_TIMEOUT || check_1 == SERIAL_TIMEOUT)
6261 {
6262 if (remote_debug)
6263 fputs_filtered ("Timeout in checksum, retrying\n",
6264 gdb_stdlog);
6265 return -1;
6266 }
6267 else if (check_0 < 0 || check_1 < 0)
6268 {
6269 if (remote_debug)
6270 fputs_filtered ("Communication error in checksum\n",
6271 gdb_stdlog);
6272 return -1;
6273 }
6274
6275 /* Don't recompute the checksum; with no ack packets we
6276 don't have any way to indicate a packet retransmission
6277 is necessary. */
6278 if (rs->noack_mode)
6279 return bc;
6280
6281 pktcsum = (fromhex (check_0) << 4) | fromhex (check_1);
6282 if (csum == pktcsum)
6283 return bc;
6284
6285 if (remote_debug)
6286 {
6287 struct cleanup *old_chain;
6288 char *str;
6289
6290 str = escape_buffer (buf, bc);
6291 old_chain = make_cleanup (xfree, str);
6292 fprintf_unfiltered (gdb_stdlog,
6293 "\
6294 Bad checksum, sentsum=0x%x, csum=0x%x, buf=%s\n",
6295 pktcsum, csum, str);
6296 do_cleanups (old_chain);
6297 }
6298 /* Number of characters in buffer ignoring trailing
6299 NULL. */
6300 return -1;
6301 }
6302 case '*': /* Run length encoding. */
6303 {
6304 int repeat;
6305 csum += c;
6306
6307 c = readchar (remote_timeout);
6308 csum += c;
6309 repeat = c - ' ' + 3; /* Compute repeat count. */
6310
6311 /* The character before ``*'' is repeated. */
6312
6313 if (repeat > 0 && repeat <= 255 && bc > 0)
6314 {
6315 if (bc + repeat - 1 >= *sizeof_buf - 1)
6316 {
6317 /* Make some more room in the buffer. */
6318 *sizeof_buf += repeat;
6319 *buf_p = xrealloc (*buf_p, *sizeof_buf);
6320 buf = *buf_p;
6321 }
6322
6323 memset (&buf[bc], buf[bc - 1], repeat);
6324 bc += repeat;
6325 continue;
6326 }
6327
6328 buf[bc] = '\0';
6329 printf_filtered (_("Invalid run length encoding: %s\n"), buf);
6330 return -1;
6331 }
6332 default:
6333 if (bc >= *sizeof_buf - 1)
6334 {
6335 /* Make some more room in the buffer. */
6336 *sizeof_buf *= 2;
6337 *buf_p = xrealloc (*buf_p, *sizeof_buf);
6338 buf = *buf_p;
6339 }
6340
6341 buf[bc++] = c;
6342 csum += c;
6343 continue;
6344 }
6345 }
6346 }
6347
6348 /* Read a packet from the remote machine, with error checking, and
6349 store it in *BUF. Resize *BUF using xrealloc if necessary to hold
6350 the result, and update *SIZEOF_BUF. If FOREVER, wait forever
6351 rather than timing out; this is used (in synchronous mode) to wait
6352 for a target that is is executing user code to stop. */
6353 /* FIXME: ezannoni 2000-02-01 this wrapper is necessary so that we
6354 don't have to change all the calls to getpkt to deal with the
6355 return value, because at the moment I don't know what the right
6356 thing to do it for those. */
6357 void
6358 getpkt (char **buf,
6359 long *sizeof_buf,
6360 int forever)
6361 {
6362 int timed_out;
6363
6364 timed_out = getpkt_sane (buf, sizeof_buf, forever);
6365 }
6366
6367
6368 /* Read a packet from the remote machine, with error checking, and
6369 store it in *BUF. Resize *BUF using xrealloc if necessary to hold
6370 the result, and update *SIZEOF_BUF. If FOREVER, wait forever
6371 rather than timing out; this is used (in synchronous mode) to wait
6372 for a target that is is executing user code to stop. If FOREVER ==
6373 0, this function is allowed to time out gracefully and return an
6374 indication of this to the caller. Otherwise return the number of
6375 bytes read. If EXPECTING_NOTIF, consider receiving a notification
6376 enough reason to return to the caller. */
6377
6378 static int
6379 getpkt_or_notif_sane_1 (char **buf, long *sizeof_buf, int forever,
6380 int expecting_notif)
6381 {
6382 struct remote_state *rs = get_remote_state ();
6383 int c;
6384 int tries;
6385 int timeout;
6386 int val = -1;
6387
6388 /* We're reading a new response. Make sure we don't look at a
6389 previously cached response. */
6390 rs->cached_wait_status = 0;
6391
6392 strcpy (*buf, "timeout");
6393
6394 if (forever)
6395 timeout = watchdog > 0 ? watchdog : -1;
6396 else if (expecting_notif)
6397 timeout = 0; /* There should already be a char in the buffer. If
6398 not, bail out. */
6399 else
6400 timeout = remote_timeout;
6401
6402 #define MAX_TRIES 3
6403
6404 /* Process any number of notifications, and then return when
6405 we get a packet. */
6406 for (;;)
6407 {
6408 /* If we get a timeout or bad checksm, retry up to MAX_TRIES
6409 times. */
6410 for (tries = 1; tries <= MAX_TRIES; tries++)
6411 {
6412 /* This can loop forever if the remote side sends us
6413 characters continuously, but if it pauses, we'll get
6414 SERIAL_TIMEOUT from readchar because of timeout. Then
6415 we'll count that as a retry.
6416
6417 Note that even when forever is set, we will only wait
6418 forever prior to the start of a packet. After that, we
6419 expect characters to arrive at a brisk pace. They should
6420 show up within remote_timeout intervals. */
6421 do
6422 c = readchar (timeout);
6423 while (c != SERIAL_TIMEOUT && c != '$' && c != '%');
6424
6425 if (c == SERIAL_TIMEOUT)
6426 {
6427 if (expecting_notif)
6428 return -1; /* Don't complain, it's normal to not get
6429 anything in this case. */
6430
6431 if (forever) /* Watchdog went off? Kill the target. */
6432 {
6433 QUIT;
6434 pop_target ();
6435 error (_("Watchdog timeout has expired. Target detached."));
6436 }
6437 if (remote_debug)
6438 fputs_filtered ("Timed out.\n", gdb_stdlog);
6439 }
6440 else
6441 {
6442 /* We've found the start of a packet or notification.
6443 Now collect the data. */
6444 val = read_frame (buf, sizeof_buf);
6445 if (val >= 0)
6446 break;
6447 }
6448
6449 serial_write (remote_desc, "-", 1);
6450 }
6451
6452 if (tries > MAX_TRIES)
6453 {
6454 /* We have tried hard enough, and just can't receive the
6455 packet/notification. Give up. */
6456 printf_unfiltered (_("Ignoring packet error, continuing...\n"));
6457
6458 /* Skip the ack char if we're in no-ack mode. */
6459 if (!rs->noack_mode)
6460 serial_write (remote_desc, "+", 1);
6461 return -1;
6462 }
6463
6464 /* If we got an ordinary packet, return that to our caller. */
6465 if (c == '$')
6466 {
6467 if (remote_debug)
6468 {
6469 struct cleanup *old_chain;
6470 char *str;
6471
6472 str = escape_buffer (*buf, val);
6473 old_chain = make_cleanup (xfree, str);
6474 fprintf_unfiltered (gdb_stdlog, "Packet received: %s\n", str);
6475 do_cleanups (old_chain);
6476 }
6477
6478 /* Skip the ack char if we're in no-ack mode. */
6479 if (!rs->noack_mode)
6480 serial_write (remote_desc, "+", 1);
6481 return val;
6482 }
6483
6484 /* If we got a notification, handle it, and go back to looking
6485 for a packet. */
6486 else
6487 {
6488 gdb_assert (c == '%');
6489
6490 if (remote_debug)
6491 {
6492 struct cleanup *old_chain;
6493 char *str;
6494
6495 str = escape_buffer (*buf, val);
6496 old_chain = make_cleanup (xfree, str);
6497 fprintf_unfiltered (gdb_stdlog,
6498 " Notification received: %s\n",
6499 str);
6500 do_cleanups (old_chain);
6501 }
6502
6503 handle_notification (*buf, val);
6504
6505 /* Notifications require no acknowledgement. */
6506
6507 if (expecting_notif)
6508 return -1;
6509 }
6510 }
6511 }
6512
6513 static int
6514 getpkt_sane (char **buf, long *sizeof_buf, int forever)
6515 {
6516 return getpkt_or_notif_sane_1 (buf, sizeof_buf, forever, 0);
6517 }
6518
6519 static int
6520 getpkt_or_notif_sane (char **buf, long *sizeof_buf, int forever)
6521 {
6522 return getpkt_or_notif_sane_1 (buf, sizeof_buf, forever, 1);
6523 }
6524
6525 \f
6526 static void
6527 remote_kill (struct target_ops *ops)
6528 {
6529 /* Use catch_errors so the user can quit from gdb even when we
6530 aren't on speaking terms with the remote system. */
6531 catch_errors ((catch_errors_ftype *) putpkt, "k", "", RETURN_MASK_ERROR);
6532
6533 /* Don't wait for it to die. I'm not really sure it matters whether
6534 we do or not. For the existing stubs, kill is a noop. */
6535 target_mourn_inferior ();
6536 }
6537
6538 static int
6539 remote_vkill (int pid, struct remote_state *rs)
6540 {
6541 if (remote_protocol_packets[PACKET_vKill].support == PACKET_DISABLE)
6542 return -1;
6543
6544 /* Tell the remote target to detach. */
6545 sprintf (rs->buf, "vKill;%x", pid);
6546 putpkt (rs->buf);
6547 getpkt (&rs->buf, &rs->buf_size, 0);
6548
6549 if (packet_ok (rs->buf,
6550 &remote_protocol_packets[PACKET_vKill]) == PACKET_OK)
6551 return 0;
6552 else if (remote_protocol_packets[PACKET_vKill].support == PACKET_DISABLE)
6553 return -1;
6554 else
6555 return 1;
6556 }
6557
6558 static void
6559 extended_remote_kill (struct target_ops *ops)
6560 {
6561 int res;
6562 int pid = ptid_get_pid (inferior_ptid);
6563 struct remote_state *rs = get_remote_state ();
6564
6565 res = remote_vkill (pid, rs);
6566 if (res == -1 && !remote_multi_process_p (rs))
6567 {
6568 /* Don't try 'k' on a multi-process aware stub -- it has no way
6569 to specify the pid. */
6570
6571 putpkt ("k");
6572 #if 0
6573 getpkt (&rs->buf, &rs->buf_size, 0);
6574 if (rs->buf[0] != 'O' || rs->buf[0] != 'K')
6575 res = 1;
6576 #else
6577 /* Don't wait for it to die. I'm not really sure it matters whether
6578 we do or not. For the existing stubs, kill is a noop. */
6579 res = 0;
6580 #endif
6581 }
6582
6583 if (res != 0)
6584 error (_("Can't kill process"));
6585
6586 target_mourn_inferior ();
6587 }
6588
6589 static void
6590 remote_mourn (struct target_ops *ops)
6591 {
6592 remote_mourn_1 (ops);
6593 }
6594
6595 /* Worker function for remote_mourn. */
6596 static void
6597 remote_mourn_1 (struct target_ops *target)
6598 {
6599 unpush_target (target);
6600
6601 /* remote_close takes care of doing most of the clean up. */
6602 generic_mourn_inferior ();
6603 }
6604
6605 static void
6606 extended_remote_mourn_1 (struct target_ops *target)
6607 {
6608 struct remote_state *rs = get_remote_state ();
6609
6610 /* In case we got here due to an error, but we're going to stay
6611 connected. */
6612 rs->waiting_for_stop_reply = 0;
6613
6614 /* We're no longer interested in these events. */
6615 discard_pending_stop_replies (ptid_get_pid (inferior_ptid));
6616
6617 /* If the current general thread belonged to the process we just
6618 detached from or has exited, the remote side current general
6619 thread becomes undefined. Considering a case like this:
6620
6621 - We just got here due to a detach.
6622 - The process that we're detaching from happens to immediately
6623 report a global breakpoint being hit in non-stop mode, in the
6624 same thread we had selected before.
6625 - GDB attaches to this process again.
6626 - This event happens to be the next event we handle.
6627
6628 GDB would consider that the current general thread didn't need to
6629 be set on the stub side (with Hg), since for all it knew,
6630 GENERAL_THREAD hadn't changed.
6631
6632 Notice that although in all-stop mode, the remote server always
6633 sets the current thread to the thread reporting the stop event,
6634 that doesn't happen in non-stop mode; in non-stop, the stub *must
6635 not* change the current thread when reporting a breakpoint hit,
6636 due to the decoupling of event reporting and event handling.
6637
6638 To keep things simple, we always invalidate our notion of the
6639 current thread. */
6640 record_currthread (minus_one_ptid);
6641
6642 /* Unlike "target remote", we do not want to unpush the target; then
6643 the next time the user says "run", we won't be connected. */
6644
6645 /* Call common code to mark the inferior as not running. */
6646 generic_mourn_inferior ();
6647
6648 if (!have_inferiors ())
6649 {
6650 if (!remote_multi_process_p (rs))
6651 {
6652 /* Check whether the target is running now - some remote stubs
6653 automatically restart after kill. */
6654 putpkt ("?");
6655 getpkt (&rs->buf, &rs->buf_size, 0);
6656
6657 if (rs->buf[0] == 'S' || rs->buf[0] == 'T')
6658 {
6659 /* Assume that the target has been restarted. Set inferior_ptid
6660 so that bits of core GDB realizes there's something here, e.g.,
6661 so that the user can say "kill" again. */
6662 inferior_ptid = magic_null_ptid;
6663 }
6664 }
6665 }
6666 }
6667
6668 static void
6669 extended_remote_mourn (struct target_ops *ops)
6670 {
6671 extended_remote_mourn_1 (ops);
6672 }
6673
6674 static int
6675 extended_remote_run (char *args)
6676 {
6677 struct remote_state *rs = get_remote_state ();
6678 int len;
6679
6680 /* If the user has disabled vRun support, or we have detected that
6681 support is not available, do not try it. */
6682 if (remote_protocol_packets[PACKET_vRun].support == PACKET_DISABLE)
6683 return -1;
6684
6685 strcpy (rs->buf, "vRun;");
6686 len = strlen (rs->buf);
6687
6688 if (strlen (remote_exec_file) * 2 + len >= get_remote_packet_size ())
6689 error (_("Remote file name too long for run packet"));
6690 len += 2 * bin2hex ((gdb_byte *) remote_exec_file, rs->buf + len, 0);
6691
6692 gdb_assert (args != NULL);
6693 if (*args)
6694 {
6695 struct cleanup *back_to;
6696 int i;
6697 char **argv;
6698
6699 argv = gdb_buildargv (args);
6700 back_to = make_cleanup ((void (*) (void *)) freeargv, argv);
6701 for (i = 0; argv[i] != NULL; i++)
6702 {
6703 if (strlen (argv[i]) * 2 + 1 + len >= get_remote_packet_size ())
6704 error (_("Argument list too long for run packet"));
6705 rs->buf[len++] = ';';
6706 len += 2 * bin2hex ((gdb_byte *) argv[i], rs->buf + len, 0);
6707 }
6708 do_cleanups (back_to);
6709 }
6710
6711 rs->buf[len++] = '\0';
6712
6713 putpkt (rs->buf);
6714 getpkt (&rs->buf, &rs->buf_size, 0);
6715
6716 if (packet_ok (rs->buf, &remote_protocol_packets[PACKET_vRun]) == PACKET_OK)
6717 {
6718 /* We have a wait response; we don't need it, though. All is well. */
6719 return 0;
6720 }
6721 else if (remote_protocol_packets[PACKET_vRun].support == PACKET_DISABLE)
6722 /* It wasn't disabled before, but it is now. */
6723 return -1;
6724 else
6725 {
6726 if (remote_exec_file[0] == '\0')
6727 error (_("Running the default executable on the remote target failed; "
6728 "try \"set remote exec-file\"?"));
6729 else
6730 error (_("Running \"%s\" on the remote target failed"),
6731 remote_exec_file);
6732 }
6733 }
6734
6735 /* In the extended protocol we want to be able to do things like
6736 "run" and have them basically work as expected. So we need
6737 a special create_inferior function. We support changing the
6738 executable file and the command line arguments, but not the
6739 environment. */
6740
6741 static void
6742 extended_remote_create_inferior_1 (char *exec_file, char *args,
6743 char **env, int from_tty)
6744 {
6745 /* If running asynchronously, register the target file descriptor
6746 with the event loop. */
6747 if (target_can_async_p ())
6748 target_async (inferior_event_handler, 0);
6749
6750 /* Now restart the remote server. */
6751 if (extended_remote_run (args) == -1)
6752 {
6753 /* vRun was not supported. Fail if we need it to do what the
6754 user requested. */
6755 if (remote_exec_file[0])
6756 error (_("Remote target does not support \"set remote exec-file\""));
6757 if (args[0])
6758 error (_("Remote target does not support \"set args\" or run <ARGS>"));
6759
6760 /* Fall back to "R". */
6761 extended_remote_restart ();
6762 }
6763
6764 /* Clean up from the last time we ran, before we mark the target
6765 running again. This will mark breakpoints uninserted, and
6766 get_offsets may insert breakpoints. */
6767 init_thread_list ();
6768 init_wait_for_inferior ();
6769
6770 /* Now mark the inferior as running before we do anything else. */
6771 inferior_ptid = magic_null_ptid;
6772
6773 /* Now, if we have thread information, update inferior_ptid. */
6774 inferior_ptid = remote_current_thread (inferior_ptid);
6775
6776 remote_add_inferior (ptid_get_pid (inferior_ptid), 0);
6777 add_thread_silent (inferior_ptid);
6778
6779 /* Get updated offsets, if the stub uses qOffsets. */
6780 get_offsets ();
6781 }
6782
6783 static void
6784 extended_remote_create_inferior (struct target_ops *ops,
6785 char *exec_file, char *args,
6786 char **env, int from_tty)
6787 {
6788 extended_remote_create_inferior_1 (exec_file, args, env, from_tty);
6789 }
6790 \f
6791
6792 /* Insert a breakpoint. On targets that have software breakpoint
6793 support, we ask the remote target to do the work; on targets
6794 which don't, we insert a traditional memory breakpoint. */
6795
6796 static int
6797 remote_insert_breakpoint (struct gdbarch *gdbarch,
6798 struct bp_target_info *bp_tgt)
6799 {
6800 /* Try the "Z" s/w breakpoint packet if it is not already disabled.
6801 If it succeeds, then set the support to PACKET_ENABLE. If it
6802 fails, and the user has explicitly requested the Z support then
6803 report an error, otherwise, mark it disabled and go on. */
6804
6805 if (remote_protocol_packets[PACKET_Z0].support != PACKET_DISABLE)
6806 {
6807 CORE_ADDR addr = bp_tgt->placed_address;
6808 struct remote_state *rs;
6809 char *p;
6810 int bpsize;
6811
6812 gdbarch_breakpoint_from_pc (gdbarch, &addr, &bpsize);
6813
6814 rs = get_remote_state ();
6815 p = rs->buf;
6816
6817 *(p++) = 'Z';
6818 *(p++) = '0';
6819 *(p++) = ',';
6820 addr = (ULONGEST) remote_address_masked (addr);
6821 p += hexnumstr (p, addr);
6822 sprintf (p, ",%d", bpsize);
6823
6824 putpkt (rs->buf);
6825 getpkt (&rs->buf, &rs->buf_size, 0);
6826
6827 switch (packet_ok (rs->buf, &remote_protocol_packets[PACKET_Z0]))
6828 {
6829 case PACKET_ERROR:
6830 return -1;
6831 case PACKET_OK:
6832 bp_tgt->placed_address = addr;
6833 bp_tgt->placed_size = bpsize;
6834 return 0;
6835 case PACKET_UNKNOWN:
6836 break;
6837 }
6838 }
6839
6840 return memory_insert_breakpoint (gdbarch, bp_tgt);
6841 }
6842
6843 static int
6844 remote_remove_breakpoint (struct gdbarch *gdbarch,
6845 struct bp_target_info *bp_tgt)
6846 {
6847 CORE_ADDR addr = bp_tgt->placed_address;
6848 struct remote_state *rs = get_remote_state ();
6849
6850 if (remote_protocol_packets[PACKET_Z0].support != PACKET_DISABLE)
6851 {
6852 char *p = rs->buf;
6853
6854 *(p++) = 'z';
6855 *(p++) = '0';
6856 *(p++) = ',';
6857
6858 addr = (ULONGEST) remote_address_masked (bp_tgt->placed_address);
6859 p += hexnumstr (p, addr);
6860 sprintf (p, ",%d", bp_tgt->placed_size);
6861
6862 putpkt (rs->buf);
6863 getpkt (&rs->buf, &rs->buf_size, 0);
6864
6865 return (rs->buf[0] == 'E');
6866 }
6867
6868 return memory_remove_breakpoint (gdbarch, bp_tgt);
6869 }
6870
6871 static int
6872 watchpoint_to_Z_packet (int type)
6873 {
6874 switch (type)
6875 {
6876 case hw_write:
6877 return Z_PACKET_WRITE_WP;
6878 break;
6879 case hw_read:
6880 return Z_PACKET_READ_WP;
6881 break;
6882 case hw_access:
6883 return Z_PACKET_ACCESS_WP;
6884 break;
6885 default:
6886 internal_error (__FILE__, __LINE__,
6887 _("hw_bp_to_z: bad watchpoint type %d"), type);
6888 }
6889 }
6890
6891 static int
6892 remote_insert_watchpoint (CORE_ADDR addr, int len, int type)
6893 {
6894 struct remote_state *rs = get_remote_state ();
6895 char *p;
6896 enum Z_packet_type packet = watchpoint_to_Z_packet (type);
6897
6898 if (remote_protocol_packets[PACKET_Z0 + packet].support == PACKET_DISABLE)
6899 return -1;
6900
6901 sprintf (rs->buf, "Z%x,", packet);
6902 p = strchr (rs->buf, '\0');
6903 addr = remote_address_masked (addr);
6904 p += hexnumstr (p, (ULONGEST) addr);
6905 sprintf (p, ",%x", len);
6906
6907 putpkt (rs->buf);
6908 getpkt (&rs->buf, &rs->buf_size, 0);
6909
6910 switch (packet_ok (rs->buf, &remote_protocol_packets[PACKET_Z0 + packet]))
6911 {
6912 case PACKET_ERROR:
6913 case PACKET_UNKNOWN:
6914 return -1;
6915 case PACKET_OK:
6916 return 0;
6917 }
6918 internal_error (__FILE__, __LINE__,
6919 _("remote_insert_watchpoint: reached end of function"));
6920 }
6921
6922
6923 static int
6924 remote_remove_watchpoint (CORE_ADDR addr, int len, int type)
6925 {
6926 struct remote_state *rs = get_remote_state ();
6927 char *p;
6928 enum Z_packet_type packet = watchpoint_to_Z_packet (type);
6929
6930 if (remote_protocol_packets[PACKET_Z0 + packet].support == PACKET_DISABLE)
6931 return -1;
6932
6933 sprintf (rs->buf, "z%x,", packet);
6934 p = strchr (rs->buf, '\0');
6935 addr = remote_address_masked (addr);
6936 p += hexnumstr (p, (ULONGEST) addr);
6937 sprintf (p, ",%x", len);
6938 putpkt (rs->buf);
6939 getpkt (&rs->buf, &rs->buf_size, 0);
6940
6941 switch (packet_ok (rs->buf, &remote_protocol_packets[PACKET_Z0 + packet]))
6942 {
6943 case PACKET_ERROR:
6944 case PACKET_UNKNOWN:
6945 return -1;
6946 case PACKET_OK:
6947 return 0;
6948 }
6949 internal_error (__FILE__, __LINE__,
6950 _("remote_remove_watchpoint: reached end of function"));
6951 }
6952
6953
6954 int remote_hw_watchpoint_limit = -1;
6955 int remote_hw_breakpoint_limit = -1;
6956
6957 static int
6958 remote_check_watch_resources (int type, int cnt, int ot)
6959 {
6960 if (type == bp_hardware_breakpoint)
6961 {
6962 if (remote_hw_breakpoint_limit == 0)
6963 return 0;
6964 else if (remote_hw_breakpoint_limit < 0)
6965 return 1;
6966 else if (cnt <= remote_hw_breakpoint_limit)
6967 return 1;
6968 }
6969 else
6970 {
6971 if (remote_hw_watchpoint_limit == 0)
6972 return 0;
6973 else if (remote_hw_watchpoint_limit < 0)
6974 return 1;
6975 else if (ot)
6976 return -1;
6977 else if (cnt <= remote_hw_watchpoint_limit)
6978 return 1;
6979 }
6980 return -1;
6981 }
6982
6983 static int
6984 remote_stopped_by_watchpoint (void)
6985 {
6986 return remote_stopped_by_watchpoint_p;
6987 }
6988
6989 static int
6990 remote_stopped_data_address (struct target_ops *target, CORE_ADDR *addr_p)
6991 {
6992 int rc = 0;
6993 if (remote_stopped_by_watchpoint ())
6994 {
6995 *addr_p = remote_watch_data_address;
6996 rc = 1;
6997 }
6998
6999 return rc;
7000 }
7001
7002
7003 static int
7004 remote_insert_hw_breakpoint (struct gdbarch *gdbarch,
7005 struct bp_target_info *bp_tgt)
7006 {
7007 CORE_ADDR addr;
7008 struct remote_state *rs;
7009 char *p;
7010
7011 /* The length field should be set to the size of a breakpoint
7012 instruction, even though we aren't inserting one ourselves. */
7013
7014 gdbarch_breakpoint_from_pc
7015 (gdbarch, &bp_tgt->placed_address, &bp_tgt->placed_size);
7016
7017 if (remote_protocol_packets[PACKET_Z1].support == PACKET_DISABLE)
7018 return -1;
7019
7020 rs = get_remote_state ();
7021 p = rs->buf;
7022
7023 *(p++) = 'Z';
7024 *(p++) = '1';
7025 *(p++) = ',';
7026
7027 addr = remote_address_masked (bp_tgt->placed_address);
7028 p += hexnumstr (p, (ULONGEST) addr);
7029 sprintf (p, ",%x", bp_tgt->placed_size);
7030
7031 putpkt (rs->buf);
7032 getpkt (&rs->buf, &rs->buf_size, 0);
7033
7034 switch (packet_ok (rs->buf, &remote_protocol_packets[PACKET_Z1]))
7035 {
7036 case PACKET_ERROR:
7037 case PACKET_UNKNOWN:
7038 return -1;
7039 case PACKET_OK:
7040 return 0;
7041 }
7042 internal_error (__FILE__, __LINE__,
7043 _("remote_insert_hw_breakpoint: reached end of function"));
7044 }
7045
7046
7047 static int
7048 remote_remove_hw_breakpoint (struct gdbarch *gdbarch,
7049 struct bp_target_info *bp_tgt)
7050 {
7051 CORE_ADDR addr;
7052 struct remote_state *rs = get_remote_state ();
7053 char *p = rs->buf;
7054
7055 if (remote_protocol_packets[PACKET_Z1].support == PACKET_DISABLE)
7056 return -1;
7057
7058 *(p++) = 'z';
7059 *(p++) = '1';
7060 *(p++) = ',';
7061
7062 addr = remote_address_masked (bp_tgt->placed_address);
7063 p += hexnumstr (p, (ULONGEST) addr);
7064 sprintf (p, ",%x", bp_tgt->placed_size);
7065
7066 putpkt (rs->buf);
7067 getpkt (&rs->buf, &rs->buf_size, 0);
7068
7069 switch (packet_ok (rs->buf, &remote_protocol_packets[PACKET_Z1]))
7070 {
7071 case PACKET_ERROR:
7072 case PACKET_UNKNOWN:
7073 return -1;
7074 case PACKET_OK:
7075 return 0;
7076 }
7077 internal_error (__FILE__, __LINE__,
7078 _("remote_remove_hw_breakpoint: reached end of function"));
7079 }
7080
7081 /* Table used by the crc32 function to calcuate the checksum. */
7082
7083 static unsigned long crc32_table[256] =
7084 {0, 0};
7085
7086 static unsigned long
7087 crc32 (unsigned char *buf, int len, unsigned int crc)
7088 {
7089 if (!crc32_table[1])
7090 {
7091 /* Initialize the CRC table and the decoding table. */
7092 int i, j;
7093 unsigned int c;
7094
7095 for (i = 0; i < 256; i++)
7096 {
7097 for (c = i << 24, j = 8; j > 0; --j)
7098 c = c & 0x80000000 ? (c << 1) ^ 0x04c11db7 : (c << 1);
7099 crc32_table[i] = c;
7100 }
7101 }
7102
7103 while (len--)
7104 {
7105 crc = (crc << 8) ^ crc32_table[((crc >> 24) ^ *buf) & 255];
7106 buf++;
7107 }
7108 return crc;
7109 }
7110
7111 /* compare-sections command
7112
7113 With no arguments, compares each loadable section in the exec bfd
7114 with the same memory range on the target, and reports mismatches.
7115 Useful for verifying the image on the target against the exec file.
7116 Depends on the target understanding the new "qCRC:" request. */
7117
7118 /* FIXME: cagney/1999-10-26: This command should be broken down into a
7119 target method (target verify memory) and generic version of the
7120 actual command. This will allow other high-level code (especially
7121 generic_load()) to make use of this target functionality. */
7122
7123 static void
7124 compare_sections_command (char *args, int from_tty)
7125 {
7126 struct remote_state *rs = get_remote_state ();
7127 asection *s;
7128 unsigned long host_crc, target_crc;
7129 struct cleanup *old_chain;
7130 char *tmp;
7131 char *sectdata;
7132 const char *sectname;
7133 bfd_size_type size;
7134 bfd_vma lma;
7135 int matched = 0;
7136 int mismatched = 0;
7137
7138 if (!exec_bfd)
7139 error (_("command cannot be used without an exec file"));
7140 if (!current_target.to_shortname ||
7141 strcmp (current_target.to_shortname, "remote") != 0)
7142 error (_("command can only be used with remote target"));
7143
7144 for (s = exec_bfd->sections; s; s = s->next)
7145 {
7146 if (!(s->flags & SEC_LOAD))
7147 continue; /* skip non-loadable section */
7148
7149 size = bfd_get_section_size (s);
7150 if (size == 0)
7151 continue; /* skip zero-length section */
7152
7153 sectname = bfd_get_section_name (exec_bfd, s);
7154 if (args && strcmp (args, sectname) != 0)
7155 continue; /* not the section selected by user */
7156
7157 matched = 1; /* do this section */
7158 lma = s->lma;
7159 /* FIXME: assumes lma can fit into long. */
7160 xsnprintf (rs->buf, get_remote_packet_size (), "qCRC:%lx,%lx",
7161 (long) lma, (long) size);
7162 putpkt (rs->buf);
7163
7164 /* Be clever; compute the host_crc before waiting for target
7165 reply. */
7166 sectdata = xmalloc (size);
7167 old_chain = make_cleanup (xfree, sectdata);
7168 bfd_get_section_contents (exec_bfd, s, sectdata, 0, size);
7169 host_crc = crc32 ((unsigned char *) sectdata, size, 0xffffffff);
7170
7171 getpkt (&rs->buf, &rs->buf_size, 0);
7172 if (rs->buf[0] == 'E')
7173 error (_("target memory fault, section %s, range %s -- %s"), sectname,
7174 paddress (target_gdbarch, lma),
7175 paddress (target_gdbarch, lma + size));
7176 if (rs->buf[0] != 'C')
7177 error (_("remote target does not support this operation"));
7178
7179 for (target_crc = 0, tmp = &rs->buf[1]; *tmp; tmp++)
7180 target_crc = target_crc * 16 + fromhex (*tmp);
7181
7182 printf_filtered ("Section %s, range %s -- %s: ", sectname,
7183 paddress (target_gdbarch, lma),
7184 paddress (target_gdbarch, lma + size));
7185 if (host_crc == target_crc)
7186 printf_filtered ("matched.\n");
7187 else
7188 {
7189 printf_filtered ("MIS-MATCHED!\n");
7190 mismatched++;
7191 }
7192
7193 do_cleanups (old_chain);
7194 }
7195 if (mismatched > 0)
7196 warning (_("One or more sections of the remote executable does not match\n\
7197 the loaded file\n"));
7198 if (args && !matched)
7199 printf_filtered (_("No loaded section named '%s'.\n"), args);
7200 }
7201
7202 /* Write LEN bytes from WRITEBUF into OBJECT_NAME/ANNEX at OFFSET
7203 into remote target. The number of bytes written to the remote
7204 target is returned, or -1 for error. */
7205
7206 static LONGEST
7207 remote_write_qxfer (struct target_ops *ops, const char *object_name,
7208 const char *annex, const gdb_byte *writebuf,
7209 ULONGEST offset, LONGEST len,
7210 struct packet_config *packet)
7211 {
7212 int i, buf_len;
7213 ULONGEST n;
7214 struct remote_state *rs = get_remote_state ();
7215 int max_size = get_memory_write_packet_size ();
7216
7217 if (packet->support == PACKET_DISABLE)
7218 return -1;
7219
7220 /* Insert header. */
7221 i = snprintf (rs->buf, max_size,
7222 "qXfer:%s:write:%s:%s:",
7223 object_name, annex ? annex : "",
7224 phex_nz (offset, sizeof offset));
7225 max_size -= (i + 1);
7226
7227 /* Escape as much data as fits into rs->buf. */
7228 buf_len = remote_escape_output
7229 (writebuf, len, (rs->buf + i), &max_size, max_size);
7230
7231 if (putpkt_binary (rs->buf, i + buf_len) < 0
7232 || getpkt_sane (&rs->buf, &rs->buf_size, 0) < 0
7233 || packet_ok (rs->buf, packet) != PACKET_OK)
7234 return -1;
7235
7236 unpack_varlen_hex (rs->buf, &n);
7237 return n;
7238 }
7239
7240 /* Read OBJECT_NAME/ANNEX from the remote target using a qXfer packet.
7241 Data at OFFSET, of up to LEN bytes, is read into READBUF; the
7242 number of bytes read is returned, or 0 for EOF, or -1 for error.
7243 The number of bytes read may be less than LEN without indicating an
7244 EOF. PACKET is checked and updated to indicate whether the remote
7245 target supports this object. */
7246
7247 static LONGEST
7248 remote_read_qxfer (struct target_ops *ops, const char *object_name,
7249 const char *annex,
7250 gdb_byte *readbuf, ULONGEST offset, LONGEST len,
7251 struct packet_config *packet)
7252 {
7253 static char *finished_object;
7254 static char *finished_annex;
7255 static ULONGEST finished_offset;
7256
7257 struct remote_state *rs = get_remote_state ();
7258 LONGEST i, n, packet_len;
7259
7260 if (packet->support == PACKET_DISABLE)
7261 return -1;
7262
7263 /* Check whether we've cached an end-of-object packet that matches
7264 this request. */
7265 if (finished_object)
7266 {
7267 if (strcmp (object_name, finished_object) == 0
7268 && strcmp (annex ? annex : "", finished_annex) == 0
7269 && offset == finished_offset)
7270 return 0;
7271
7272 /* Otherwise, we're now reading something different. Discard
7273 the cache. */
7274 xfree (finished_object);
7275 xfree (finished_annex);
7276 finished_object = NULL;
7277 finished_annex = NULL;
7278 }
7279
7280 /* Request only enough to fit in a single packet. The actual data
7281 may not, since we don't know how much of it will need to be escaped;
7282 the target is free to respond with slightly less data. We subtract
7283 five to account for the response type and the protocol frame. */
7284 n = min (get_remote_packet_size () - 5, len);
7285 snprintf (rs->buf, get_remote_packet_size () - 4, "qXfer:%s:read:%s:%s,%s",
7286 object_name, annex ? annex : "",
7287 phex_nz (offset, sizeof offset),
7288 phex_nz (n, sizeof n));
7289 i = putpkt (rs->buf);
7290 if (i < 0)
7291 return -1;
7292
7293 rs->buf[0] = '\0';
7294 packet_len = getpkt_sane (&rs->buf, &rs->buf_size, 0);
7295 if (packet_len < 0 || packet_ok (rs->buf, packet) != PACKET_OK)
7296 return -1;
7297
7298 if (rs->buf[0] != 'l' && rs->buf[0] != 'm')
7299 error (_("Unknown remote qXfer reply: %s"), rs->buf);
7300
7301 /* 'm' means there is (or at least might be) more data after this
7302 batch. That does not make sense unless there's at least one byte
7303 of data in this reply. */
7304 if (rs->buf[0] == 'm' && packet_len == 1)
7305 error (_("Remote qXfer reply contained no data."));
7306
7307 /* Got some data. */
7308 i = remote_unescape_input (rs->buf + 1, packet_len - 1, readbuf, n);
7309
7310 /* 'l' is an EOF marker, possibly including a final block of data,
7311 or possibly empty. If we have the final block of a non-empty
7312 object, record this fact to bypass a subsequent partial read. */
7313 if (rs->buf[0] == 'l' && offset + i > 0)
7314 {
7315 finished_object = xstrdup (object_name);
7316 finished_annex = xstrdup (annex ? annex : "");
7317 finished_offset = offset + i;
7318 }
7319
7320 return i;
7321 }
7322
7323 static LONGEST
7324 remote_xfer_partial (struct target_ops *ops, enum target_object object,
7325 const char *annex, gdb_byte *readbuf,
7326 const gdb_byte *writebuf, ULONGEST offset, LONGEST len)
7327 {
7328 struct remote_state *rs;
7329 int i;
7330 char *p2;
7331 char query_type;
7332
7333 set_general_thread (inferior_ptid);
7334
7335 rs = get_remote_state ();
7336
7337 /* Handle memory using the standard memory routines. */
7338 if (object == TARGET_OBJECT_MEMORY)
7339 {
7340 int xfered;
7341 errno = 0;
7342
7343 /* If the remote target is connected but not running, we should
7344 pass this request down to a lower stratum (e.g. the executable
7345 file). */
7346 if (!target_has_execution)
7347 return 0;
7348
7349 if (writebuf != NULL)
7350 xfered = remote_write_bytes (offset, writebuf, len);
7351 else
7352 xfered = remote_read_bytes (offset, readbuf, len);
7353
7354 if (xfered > 0)
7355 return xfered;
7356 else if (xfered == 0 && errno == 0)
7357 return 0;
7358 else
7359 return -1;
7360 }
7361
7362 /* Handle SPU memory using qxfer packets. */
7363 if (object == TARGET_OBJECT_SPU)
7364 {
7365 if (readbuf)
7366 return remote_read_qxfer (ops, "spu", annex, readbuf, offset, len,
7367 &remote_protocol_packets
7368 [PACKET_qXfer_spu_read]);
7369 else
7370 return remote_write_qxfer (ops, "spu", annex, writebuf, offset, len,
7371 &remote_protocol_packets
7372 [PACKET_qXfer_spu_write]);
7373 }
7374
7375 /* Handle extra signal info using qxfer packets. */
7376 if (object == TARGET_OBJECT_SIGNAL_INFO)
7377 {
7378 if (readbuf)
7379 return remote_read_qxfer (ops, "siginfo", annex, readbuf, offset, len,
7380 &remote_protocol_packets
7381 [PACKET_qXfer_siginfo_read]);
7382 else
7383 return remote_write_qxfer (ops, "siginfo", annex, writebuf, offset, len,
7384 &remote_protocol_packets
7385 [PACKET_qXfer_siginfo_write]);
7386 }
7387
7388 /* Only handle flash writes. */
7389 if (writebuf != NULL)
7390 {
7391 LONGEST xfered;
7392
7393 switch (object)
7394 {
7395 case TARGET_OBJECT_FLASH:
7396 xfered = remote_flash_write (ops, offset, len, writebuf);
7397
7398 if (xfered > 0)
7399 return xfered;
7400 else if (xfered == 0 && errno == 0)
7401 return 0;
7402 else
7403 return -1;
7404
7405 default:
7406 return -1;
7407 }
7408 }
7409
7410 /* Map pre-existing objects onto letters. DO NOT do this for new
7411 objects!!! Instead specify new query packets. */
7412 switch (object)
7413 {
7414 case TARGET_OBJECT_AVR:
7415 query_type = 'R';
7416 break;
7417
7418 case TARGET_OBJECT_AUXV:
7419 gdb_assert (annex == NULL);
7420 return remote_read_qxfer (ops, "auxv", annex, readbuf, offset, len,
7421 &remote_protocol_packets[PACKET_qXfer_auxv]);
7422
7423 case TARGET_OBJECT_AVAILABLE_FEATURES:
7424 return remote_read_qxfer
7425 (ops, "features", annex, readbuf, offset, len,
7426 &remote_protocol_packets[PACKET_qXfer_features]);
7427
7428 case TARGET_OBJECT_LIBRARIES:
7429 return remote_read_qxfer
7430 (ops, "libraries", annex, readbuf, offset, len,
7431 &remote_protocol_packets[PACKET_qXfer_libraries]);
7432
7433 case TARGET_OBJECT_MEMORY_MAP:
7434 gdb_assert (annex == NULL);
7435 return remote_read_qxfer (ops, "memory-map", annex, readbuf, offset, len,
7436 &remote_protocol_packets[PACKET_qXfer_memory_map]);
7437
7438 case TARGET_OBJECT_OSDATA:
7439 /* Should only get here if we're connected. */
7440 gdb_assert (remote_desc);
7441 return remote_read_qxfer
7442 (ops, "osdata", annex, readbuf, offset, len,
7443 &remote_protocol_packets[PACKET_qXfer_osdata]);
7444
7445 default:
7446 return -1;
7447 }
7448
7449 /* Note: a zero OFFSET and LEN can be used to query the minimum
7450 buffer size. */
7451 if (offset == 0 && len == 0)
7452 return (get_remote_packet_size ());
7453 /* Minimum outbuf size is get_remote_packet_size (). If LEN is not
7454 large enough let the caller deal with it. */
7455 if (len < get_remote_packet_size ())
7456 return -1;
7457 len = get_remote_packet_size ();
7458
7459 /* Except for querying the minimum buffer size, target must be open. */
7460 if (!remote_desc)
7461 error (_("remote query is only available after target open"));
7462
7463 gdb_assert (annex != NULL);
7464 gdb_assert (readbuf != NULL);
7465
7466 p2 = rs->buf;
7467 *p2++ = 'q';
7468 *p2++ = query_type;
7469
7470 /* We used one buffer char for the remote protocol q command and
7471 another for the query type. As the remote protocol encapsulation
7472 uses 4 chars plus one extra in case we are debugging
7473 (remote_debug), we have PBUFZIZ - 7 left to pack the query
7474 string. */
7475 i = 0;
7476 while (annex[i] && (i < (get_remote_packet_size () - 8)))
7477 {
7478 /* Bad caller may have sent forbidden characters. */
7479 gdb_assert (isprint (annex[i]) && annex[i] != '$' && annex[i] != '#');
7480 *p2++ = annex[i];
7481 i++;
7482 }
7483 *p2 = '\0';
7484 gdb_assert (annex[i] == '\0');
7485
7486 i = putpkt (rs->buf);
7487 if (i < 0)
7488 return i;
7489
7490 getpkt (&rs->buf, &rs->buf_size, 0);
7491 strcpy ((char *) readbuf, rs->buf);
7492
7493 return strlen ((char *) readbuf);
7494 }
7495
7496 static int
7497 remote_search_memory (struct target_ops* ops,
7498 CORE_ADDR start_addr, ULONGEST search_space_len,
7499 const gdb_byte *pattern, ULONGEST pattern_len,
7500 CORE_ADDR *found_addrp)
7501 {
7502 int addr_size = gdbarch_addr_bit (target_gdbarch) / 8;
7503 struct remote_state *rs = get_remote_state ();
7504 int max_size = get_memory_write_packet_size ();
7505 struct packet_config *packet =
7506 &remote_protocol_packets[PACKET_qSearch_memory];
7507 /* number of packet bytes used to encode the pattern,
7508 this could be more than PATTERN_LEN due to escape characters */
7509 int escaped_pattern_len;
7510 /* amount of pattern that was encodable in the packet */
7511 int used_pattern_len;
7512 int i;
7513 int found;
7514 ULONGEST found_addr;
7515
7516 /* Don't go to the target if we don't have to.
7517 This is done before checking packet->support to avoid the possibility that
7518 a success for this edge case means the facility works in general. */
7519 if (pattern_len > search_space_len)
7520 return 0;
7521 if (pattern_len == 0)
7522 {
7523 *found_addrp = start_addr;
7524 return 1;
7525 }
7526
7527 /* If we already know the packet isn't supported, fall back to the simple
7528 way of searching memory. */
7529
7530 if (packet->support == PACKET_DISABLE)
7531 {
7532 /* Target doesn't provided special support, fall back and use the
7533 standard support (copy memory and do the search here). */
7534 return simple_search_memory (ops, start_addr, search_space_len,
7535 pattern, pattern_len, found_addrp);
7536 }
7537
7538 /* Insert header. */
7539 i = snprintf (rs->buf, max_size,
7540 "qSearch:memory:%s;%s;",
7541 phex_nz (start_addr, addr_size),
7542 phex_nz (search_space_len, sizeof (search_space_len)));
7543 max_size -= (i + 1);
7544
7545 /* Escape as much data as fits into rs->buf. */
7546 escaped_pattern_len =
7547 remote_escape_output (pattern, pattern_len, (rs->buf + i),
7548 &used_pattern_len, max_size);
7549
7550 /* Bail if the pattern is too large. */
7551 if (used_pattern_len != pattern_len)
7552 error ("Pattern is too large to transmit to remote target.");
7553
7554 if (putpkt_binary (rs->buf, i + escaped_pattern_len) < 0
7555 || getpkt_sane (&rs->buf, &rs->buf_size, 0) < 0
7556 || packet_ok (rs->buf, packet) != PACKET_OK)
7557 {
7558 /* The request may not have worked because the command is not
7559 supported. If so, fall back to the simple way. */
7560 if (packet->support == PACKET_DISABLE)
7561 {
7562 return simple_search_memory (ops, start_addr, search_space_len,
7563 pattern, pattern_len, found_addrp);
7564 }
7565 return -1;
7566 }
7567
7568 if (rs->buf[0] == '0')
7569 found = 0;
7570 else if (rs->buf[0] == '1')
7571 {
7572 found = 1;
7573 if (rs->buf[1] != ',')
7574 error (_("Unknown qSearch:memory reply: %s"), rs->buf);
7575 unpack_varlen_hex (rs->buf + 2, &found_addr);
7576 *found_addrp = found_addr;
7577 }
7578 else
7579 error (_("Unknown qSearch:memory reply: %s"), rs->buf);
7580
7581 return found;
7582 }
7583
7584 static void
7585 remote_rcmd (char *command,
7586 struct ui_file *outbuf)
7587 {
7588 struct remote_state *rs = get_remote_state ();
7589 char *p = rs->buf;
7590
7591 if (!remote_desc)
7592 error (_("remote rcmd is only available after target open"));
7593
7594 /* Send a NULL command across as an empty command. */
7595 if (command == NULL)
7596 command = "";
7597
7598 /* The query prefix. */
7599 strcpy (rs->buf, "qRcmd,");
7600 p = strchr (rs->buf, '\0');
7601
7602 if ((strlen (rs->buf) + strlen (command) * 2 + 8/*misc*/) > get_remote_packet_size ())
7603 error (_("\"monitor\" command ``%s'' is too long."), command);
7604
7605 /* Encode the actual command. */
7606 bin2hex ((gdb_byte *) command, p, 0);
7607
7608 if (putpkt (rs->buf) < 0)
7609 error (_("Communication problem with target."));
7610
7611 /* get/display the response */
7612 while (1)
7613 {
7614 char *buf;
7615
7616 /* XXX - see also tracepoint.c:remote_get_noisy_reply(). */
7617 rs->buf[0] = '\0';
7618 getpkt (&rs->buf, &rs->buf_size, 0);
7619 buf = rs->buf;
7620 if (buf[0] == '\0')
7621 error (_("Target does not support this command."));
7622 if (buf[0] == 'O' && buf[1] != 'K')
7623 {
7624 remote_console_output (buf + 1); /* 'O' message from stub. */
7625 continue;
7626 }
7627 if (strcmp (buf, "OK") == 0)
7628 break;
7629 if (strlen (buf) == 3 && buf[0] == 'E'
7630 && isdigit (buf[1]) && isdigit (buf[2]))
7631 {
7632 error (_("Protocol error with Rcmd"));
7633 }
7634 for (p = buf; p[0] != '\0' && p[1] != '\0'; p += 2)
7635 {
7636 char c = (fromhex (p[0]) << 4) + fromhex (p[1]);
7637 fputc_unfiltered (c, outbuf);
7638 }
7639 break;
7640 }
7641 }
7642
7643 static VEC(mem_region_s) *
7644 remote_memory_map (struct target_ops *ops)
7645 {
7646 VEC(mem_region_s) *result = NULL;
7647 char *text = target_read_stralloc (&current_target,
7648 TARGET_OBJECT_MEMORY_MAP, NULL);
7649
7650 if (text)
7651 {
7652 struct cleanup *back_to = make_cleanup (xfree, text);
7653 result = parse_memory_map (text);
7654 do_cleanups (back_to);
7655 }
7656
7657 return result;
7658 }
7659
7660 static void
7661 packet_command (char *args, int from_tty)
7662 {
7663 struct remote_state *rs = get_remote_state ();
7664
7665 if (!remote_desc)
7666 error (_("command can only be used with remote target"));
7667
7668 if (!args)
7669 error (_("remote-packet command requires packet text as argument"));
7670
7671 puts_filtered ("sending: ");
7672 print_packet (args);
7673 puts_filtered ("\n");
7674 putpkt (args);
7675
7676 getpkt (&rs->buf, &rs->buf_size, 0);
7677 puts_filtered ("received: ");
7678 print_packet (rs->buf);
7679 puts_filtered ("\n");
7680 }
7681
7682 #if 0
7683 /* --------- UNIT_TEST for THREAD oriented PACKETS ------------------- */
7684
7685 static void display_thread_info (struct gdb_ext_thread_info *info);
7686
7687 static void threadset_test_cmd (char *cmd, int tty);
7688
7689 static void threadalive_test (char *cmd, int tty);
7690
7691 static void threadlist_test_cmd (char *cmd, int tty);
7692
7693 int get_and_display_threadinfo (threadref *ref);
7694
7695 static void threadinfo_test_cmd (char *cmd, int tty);
7696
7697 static int thread_display_step (threadref *ref, void *context);
7698
7699 static void threadlist_update_test_cmd (char *cmd, int tty);
7700
7701 static void init_remote_threadtests (void);
7702
7703 #define SAMPLE_THREAD 0x05060708 /* Truncated 64 bit threadid. */
7704
7705 static void
7706 threadset_test_cmd (char *cmd, int tty)
7707 {
7708 int sample_thread = SAMPLE_THREAD;
7709
7710 printf_filtered (_("Remote threadset test\n"));
7711 set_general_thread (sample_thread);
7712 }
7713
7714
7715 static void
7716 threadalive_test (char *cmd, int tty)
7717 {
7718 int sample_thread = SAMPLE_THREAD;
7719 int pid = ptid_get_pid (inferior_ptid);
7720 ptid_t ptid = ptid_build (pid, 0, sample_thread);
7721
7722 if (remote_thread_alive (ptid))
7723 printf_filtered ("PASS: Thread alive test\n");
7724 else
7725 printf_filtered ("FAIL: Thread alive test\n");
7726 }
7727
7728 void output_threadid (char *title, threadref *ref);
7729
7730 void
7731 output_threadid (char *title, threadref *ref)
7732 {
7733 char hexid[20];
7734
7735 pack_threadid (&hexid[0], ref); /* Convert threead id into hex. */
7736 hexid[16] = 0;
7737 printf_filtered ("%s %s\n", title, (&hexid[0]));
7738 }
7739
7740 static void
7741 threadlist_test_cmd (char *cmd, int tty)
7742 {
7743 int startflag = 1;
7744 threadref nextthread;
7745 int done, result_count;
7746 threadref threadlist[3];
7747
7748 printf_filtered ("Remote Threadlist test\n");
7749 if (!remote_get_threadlist (startflag, &nextthread, 3, &done,
7750 &result_count, &threadlist[0]))
7751 printf_filtered ("FAIL: threadlist test\n");
7752 else
7753 {
7754 threadref *scan = threadlist;
7755 threadref *limit = scan + result_count;
7756
7757 while (scan < limit)
7758 output_threadid (" thread ", scan++);
7759 }
7760 }
7761
7762 void
7763 display_thread_info (struct gdb_ext_thread_info *info)
7764 {
7765 output_threadid ("Threadid: ", &info->threadid);
7766 printf_filtered ("Name: %s\n ", info->shortname);
7767 printf_filtered ("State: %s\n", info->display);
7768 printf_filtered ("other: %s\n\n", info->more_display);
7769 }
7770
7771 int
7772 get_and_display_threadinfo (threadref *ref)
7773 {
7774 int result;
7775 int set;
7776 struct gdb_ext_thread_info threadinfo;
7777
7778 set = TAG_THREADID | TAG_EXISTS | TAG_THREADNAME
7779 | TAG_MOREDISPLAY | TAG_DISPLAY;
7780 if (0 != (result = remote_get_threadinfo (ref, set, &threadinfo)))
7781 display_thread_info (&threadinfo);
7782 return result;
7783 }
7784
7785 static void
7786 threadinfo_test_cmd (char *cmd, int tty)
7787 {
7788 int athread = SAMPLE_THREAD;
7789 threadref thread;
7790 int set;
7791
7792 int_to_threadref (&thread, athread);
7793 printf_filtered ("Remote Threadinfo test\n");
7794 if (!get_and_display_threadinfo (&thread))
7795 printf_filtered ("FAIL cannot get thread info\n");
7796 }
7797
7798 static int
7799 thread_display_step (threadref *ref, void *context)
7800 {
7801 /* output_threadid(" threadstep ",ref); *//* simple test */
7802 return get_and_display_threadinfo (ref);
7803 }
7804
7805 static void
7806 threadlist_update_test_cmd (char *cmd, int tty)
7807 {
7808 printf_filtered ("Remote Threadlist update test\n");
7809 remote_threadlist_iterator (thread_display_step, 0, CRAZY_MAX_THREADS);
7810 }
7811
7812 static void
7813 init_remote_threadtests (void)
7814 {
7815 add_com ("tlist", class_obscure, threadlist_test_cmd, _("\
7816 Fetch and print the remote list of thread identifiers, one pkt only"));
7817 add_com ("tinfo", class_obscure, threadinfo_test_cmd,
7818 _("Fetch and display info about one thread"));
7819 add_com ("tset", class_obscure, threadset_test_cmd,
7820 _("Test setting to a different thread"));
7821 add_com ("tupd", class_obscure, threadlist_update_test_cmd,
7822 _("Iterate through updating all remote thread info"));
7823 add_com ("talive", class_obscure, threadalive_test,
7824 _(" Remote thread alive test "));
7825 }
7826
7827 #endif /* 0 */
7828
7829 /* Convert a thread ID to a string. Returns the string in a static
7830 buffer. */
7831
7832 static char *
7833 remote_pid_to_str (struct target_ops *ops, ptid_t ptid)
7834 {
7835 static char buf[64];
7836 struct remote_state *rs = get_remote_state ();
7837
7838 if (ptid_equal (magic_null_ptid, ptid))
7839 {
7840 xsnprintf (buf, sizeof buf, "Thread <main>");
7841 return buf;
7842 }
7843 else if (remote_multi_process_p (rs)
7844 && ptid_get_tid (ptid) != 0 && ptid_get_pid (ptid) != 0)
7845 {
7846 xsnprintf (buf, sizeof buf, "Thread %d.%ld",
7847 ptid_get_pid (ptid), ptid_get_tid (ptid));
7848 return buf;
7849 }
7850 else if (ptid_get_tid (ptid) != 0)
7851 {
7852 xsnprintf (buf, sizeof buf, "Thread %ld",
7853 ptid_get_tid (ptid));
7854 return buf;
7855 }
7856
7857 return normal_pid_to_str (ptid);
7858 }
7859
7860 /* Get the address of the thread local variable in OBJFILE which is
7861 stored at OFFSET within the thread local storage for thread PTID. */
7862
7863 static CORE_ADDR
7864 remote_get_thread_local_address (struct target_ops *ops,
7865 ptid_t ptid, CORE_ADDR lm, CORE_ADDR offset)
7866 {
7867 if (remote_protocol_packets[PACKET_qGetTLSAddr].support != PACKET_DISABLE)
7868 {
7869 struct remote_state *rs = get_remote_state ();
7870 char *p = rs->buf;
7871 char *endp = rs->buf + get_remote_packet_size ();
7872 enum packet_result result;
7873
7874 strcpy (p, "qGetTLSAddr:");
7875 p += strlen (p);
7876 p = write_ptid (p, endp, ptid);
7877 *p++ = ',';
7878 p += hexnumstr (p, offset);
7879 *p++ = ',';
7880 p += hexnumstr (p, lm);
7881 *p++ = '\0';
7882
7883 putpkt (rs->buf);
7884 getpkt (&rs->buf, &rs->buf_size, 0);
7885 result = packet_ok (rs->buf, &remote_protocol_packets[PACKET_qGetTLSAddr]);
7886 if (result == PACKET_OK)
7887 {
7888 ULONGEST result;
7889
7890 unpack_varlen_hex (rs->buf, &result);
7891 return result;
7892 }
7893 else if (result == PACKET_UNKNOWN)
7894 throw_error (TLS_GENERIC_ERROR,
7895 _("Remote target doesn't support qGetTLSAddr packet"));
7896 else
7897 throw_error (TLS_GENERIC_ERROR,
7898 _("Remote target failed to process qGetTLSAddr request"));
7899 }
7900 else
7901 throw_error (TLS_GENERIC_ERROR,
7902 _("TLS not supported or disabled on this target"));
7903 /* Not reached. */
7904 return 0;
7905 }
7906
7907 /* Support for inferring a target description based on the current
7908 architecture and the size of a 'g' packet. While the 'g' packet
7909 can have any size (since optional registers can be left off the
7910 end), some sizes are easily recognizable given knowledge of the
7911 approximate architecture. */
7912
7913 struct remote_g_packet_guess
7914 {
7915 int bytes;
7916 const struct target_desc *tdesc;
7917 };
7918 typedef struct remote_g_packet_guess remote_g_packet_guess_s;
7919 DEF_VEC_O(remote_g_packet_guess_s);
7920
7921 struct remote_g_packet_data
7922 {
7923 VEC(remote_g_packet_guess_s) *guesses;
7924 };
7925
7926 static struct gdbarch_data *remote_g_packet_data_handle;
7927
7928 static void *
7929 remote_g_packet_data_init (struct obstack *obstack)
7930 {
7931 return OBSTACK_ZALLOC (obstack, struct remote_g_packet_data);
7932 }
7933
7934 void
7935 register_remote_g_packet_guess (struct gdbarch *gdbarch, int bytes,
7936 const struct target_desc *tdesc)
7937 {
7938 struct remote_g_packet_data *data
7939 = gdbarch_data (gdbarch, remote_g_packet_data_handle);
7940 struct remote_g_packet_guess new_guess, *guess;
7941 int ix;
7942
7943 gdb_assert (tdesc != NULL);
7944
7945 for (ix = 0;
7946 VEC_iterate (remote_g_packet_guess_s, data->guesses, ix, guess);
7947 ix++)
7948 if (guess->bytes == bytes)
7949 internal_error (__FILE__, __LINE__,
7950 "Duplicate g packet description added for size %d",
7951 bytes);
7952
7953 new_guess.bytes = bytes;
7954 new_guess.tdesc = tdesc;
7955 VEC_safe_push (remote_g_packet_guess_s, data->guesses, &new_guess);
7956 }
7957
7958 /* Return 1 if remote_read_description would do anything on this target
7959 and architecture, 0 otherwise. */
7960
7961 static int
7962 remote_read_description_p (struct target_ops *target)
7963 {
7964 struct remote_g_packet_data *data
7965 = gdbarch_data (target_gdbarch, remote_g_packet_data_handle);
7966
7967 if (!VEC_empty (remote_g_packet_guess_s, data->guesses))
7968 return 1;
7969
7970 return 0;
7971 }
7972
7973 static const struct target_desc *
7974 remote_read_description (struct target_ops *target)
7975 {
7976 struct remote_g_packet_data *data
7977 = gdbarch_data (target_gdbarch, remote_g_packet_data_handle);
7978
7979 /* Do not try this during initial connection, when we do not know
7980 whether there is a running but stopped thread. */
7981 if (!target_has_execution || ptid_equal (inferior_ptid, null_ptid))
7982 return NULL;
7983
7984 if (!VEC_empty (remote_g_packet_guess_s, data->guesses))
7985 {
7986 struct remote_g_packet_guess *guess;
7987 int ix;
7988 int bytes = send_g_packet ();
7989
7990 for (ix = 0;
7991 VEC_iterate (remote_g_packet_guess_s, data->guesses, ix, guess);
7992 ix++)
7993 if (guess->bytes == bytes)
7994 return guess->tdesc;
7995
7996 /* We discard the g packet. A minor optimization would be to
7997 hold on to it, and fill the register cache once we have selected
7998 an architecture, but it's too tricky to do safely. */
7999 }
8000
8001 return NULL;
8002 }
8003
8004 /* Remote file transfer support. This is host-initiated I/O, not
8005 target-initiated; for target-initiated, see remote-fileio.c. */
8006
8007 /* If *LEFT is at least the length of STRING, copy STRING to
8008 *BUFFER, update *BUFFER to point to the new end of the buffer, and
8009 decrease *LEFT. Otherwise raise an error. */
8010
8011 static void
8012 remote_buffer_add_string (char **buffer, int *left, char *string)
8013 {
8014 int len = strlen (string);
8015
8016 if (len > *left)
8017 error (_("Packet too long for target."));
8018
8019 memcpy (*buffer, string, len);
8020 *buffer += len;
8021 *left -= len;
8022
8023 /* NUL-terminate the buffer as a convenience, if there is
8024 room. */
8025 if (*left)
8026 **buffer = '\0';
8027 }
8028
8029 /* If *LEFT is large enough, hex encode LEN bytes from BYTES into
8030 *BUFFER, update *BUFFER to point to the new end of the buffer, and
8031 decrease *LEFT. Otherwise raise an error. */
8032
8033 static void
8034 remote_buffer_add_bytes (char **buffer, int *left, const gdb_byte *bytes,
8035 int len)
8036 {
8037 if (2 * len > *left)
8038 error (_("Packet too long for target."));
8039
8040 bin2hex (bytes, *buffer, len);
8041 *buffer += 2 * len;
8042 *left -= 2 * len;
8043
8044 /* NUL-terminate the buffer as a convenience, if there is
8045 room. */
8046 if (*left)
8047 **buffer = '\0';
8048 }
8049
8050 /* If *LEFT is large enough, convert VALUE to hex and add it to
8051 *BUFFER, update *BUFFER to point to the new end of the buffer, and
8052 decrease *LEFT. Otherwise raise an error. */
8053
8054 static void
8055 remote_buffer_add_int (char **buffer, int *left, ULONGEST value)
8056 {
8057 int len = hexnumlen (value);
8058
8059 if (len > *left)
8060 error (_("Packet too long for target."));
8061
8062 hexnumstr (*buffer, value);
8063 *buffer += len;
8064 *left -= len;
8065
8066 /* NUL-terminate the buffer as a convenience, if there is
8067 room. */
8068 if (*left)
8069 **buffer = '\0';
8070 }
8071
8072 /* Parse an I/O result packet from BUFFER. Set RETCODE to the return
8073 value, *REMOTE_ERRNO to the remote error number or zero if none
8074 was included, and *ATTACHMENT to point to the start of the annex
8075 if any. The length of the packet isn't needed here; there may
8076 be NUL bytes in BUFFER, but they will be after *ATTACHMENT.
8077
8078 Return 0 if the packet could be parsed, -1 if it could not. If
8079 -1 is returned, the other variables may not be initialized. */
8080
8081 static int
8082 remote_hostio_parse_result (char *buffer, int *retcode,
8083 int *remote_errno, char **attachment)
8084 {
8085 char *p, *p2;
8086
8087 *remote_errno = 0;
8088 *attachment = NULL;
8089
8090 if (buffer[0] != 'F')
8091 return -1;
8092
8093 errno = 0;
8094 *retcode = strtol (&buffer[1], &p, 16);
8095 if (errno != 0 || p == &buffer[1])
8096 return -1;
8097
8098 /* Check for ",errno". */
8099 if (*p == ',')
8100 {
8101 errno = 0;
8102 *remote_errno = strtol (p + 1, &p2, 16);
8103 if (errno != 0 || p + 1 == p2)
8104 return -1;
8105 p = p2;
8106 }
8107
8108 /* Check for ";attachment". If there is no attachment, the
8109 packet should end here. */
8110 if (*p == ';')
8111 {
8112 *attachment = p + 1;
8113 return 0;
8114 }
8115 else if (*p == '\0')
8116 return 0;
8117 else
8118 return -1;
8119 }
8120
8121 /* Send a prepared I/O packet to the target and read its response.
8122 The prepared packet is in the global RS->BUF before this function
8123 is called, and the answer is there when we return.
8124
8125 COMMAND_BYTES is the length of the request to send, which may include
8126 binary data. WHICH_PACKET is the packet configuration to check
8127 before attempting a packet. If an error occurs, *REMOTE_ERRNO
8128 is set to the error number and -1 is returned. Otherwise the value
8129 returned by the function is returned.
8130
8131 ATTACHMENT and ATTACHMENT_LEN should be non-NULL if and only if an
8132 attachment is expected; an error will be reported if there's a
8133 mismatch. If one is found, *ATTACHMENT will be set to point into
8134 the packet buffer and *ATTACHMENT_LEN will be set to the
8135 attachment's length. */
8136
8137 static int
8138 remote_hostio_send_command (int command_bytes, int which_packet,
8139 int *remote_errno, char **attachment,
8140 int *attachment_len)
8141 {
8142 struct remote_state *rs = get_remote_state ();
8143 int ret, bytes_read;
8144 char *attachment_tmp;
8145
8146 if (!remote_desc
8147 || remote_protocol_packets[which_packet].support == PACKET_DISABLE)
8148 {
8149 *remote_errno = FILEIO_ENOSYS;
8150 return -1;
8151 }
8152
8153 putpkt_binary (rs->buf, command_bytes);
8154 bytes_read = getpkt_sane (&rs->buf, &rs->buf_size, 0);
8155
8156 /* If it timed out, something is wrong. Don't try to parse the
8157 buffer. */
8158 if (bytes_read < 0)
8159 {
8160 *remote_errno = FILEIO_EINVAL;
8161 return -1;
8162 }
8163
8164 switch (packet_ok (rs->buf, &remote_protocol_packets[which_packet]))
8165 {
8166 case PACKET_ERROR:
8167 *remote_errno = FILEIO_EINVAL;
8168 return -1;
8169 case PACKET_UNKNOWN:
8170 *remote_errno = FILEIO_ENOSYS;
8171 return -1;
8172 case PACKET_OK:
8173 break;
8174 }
8175
8176 if (remote_hostio_parse_result (rs->buf, &ret, remote_errno,
8177 &attachment_tmp))
8178 {
8179 *remote_errno = FILEIO_EINVAL;
8180 return -1;
8181 }
8182
8183 /* Make sure we saw an attachment if and only if we expected one. */
8184 if ((attachment_tmp == NULL && attachment != NULL)
8185 || (attachment_tmp != NULL && attachment == NULL))
8186 {
8187 *remote_errno = FILEIO_EINVAL;
8188 return -1;
8189 }
8190
8191 /* If an attachment was found, it must point into the packet buffer;
8192 work out how many bytes there were. */
8193 if (attachment_tmp != NULL)
8194 {
8195 *attachment = attachment_tmp;
8196 *attachment_len = bytes_read - (*attachment - rs->buf);
8197 }
8198
8199 return ret;
8200 }
8201
8202 /* Open FILENAME on the remote target, using FLAGS and MODE. Return a
8203 remote file descriptor, or -1 if an error occurs (and set
8204 *REMOTE_ERRNO). */
8205
8206 static int
8207 remote_hostio_open (const char *filename, int flags, int mode,
8208 int *remote_errno)
8209 {
8210 struct remote_state *rs = get_remote_state ();
8211 char *p = rs->buf;
8212 int left = get_remote_packet_size () - 1;
8213
8214 remote_buffer_add_string (&p, &left, "vFile:open:");
8215
8216 remote_buffer_add_bytes (&p, &left, (const gdb_byte *) filename,
8217 strlen (filename));
8218 remote_buffer_add_string (&p, &left, ",");
8219
8220 remote_buffer_add_int (&p, &left, flags);
8221 remote_buffer_add_string (&p, &left, ",");
8222
8223 remote_buffer_add_int (&p, &left, mode);
8224
8225 return remote_hostio_send_command (p - rs->buf, PACKET_vFile_open,
8226 remote_errno, NULL, NULL);
8227 }
8228
8229 /* Write up to LEN bytes from WRITE_BUF to FD on the remote target.
8230 Return the number of bytes written, or -1 if an error occurs (and
8231 set *REMOTE_ERRNO). */
8232
8233 static int
8234 remote_hostio_pwrite (int fd, const gdb_byte *write_buf, int len,
8235 ULONGEST offset, int *remote_errno)
8236 {
8237 struct remote_state *rs = get_remote_state ();
8238 char *p = rs->buf;
8239 int left = get_remote_packet_size ();
8240 int out_len;
8241
8242 remote_buffer_add_string (&p, &left, "vFile:pwrite:");
8243
8244 remote_buffer_add_int (&p, &left, fd);
8245 remote_buffer_add_string (&p, &left, ",");
8246
8247 remote_buffer_add_int (&p, &left, offset);
8248 remote_buffer_add_string (&p, &left, ",");
8249
8250 p += remote_escape_output (write_buf, len, p, &out_len,
8251 get_remote_packet_size () - (p - rs->buf));
8252
8253 return remote_hostio_send_command (p - rs->buf, PACKET_vFile_pwrite,
8254 remote_errno, NULL, NULL);
8255 }
8256
8257 /* Read up to LEN bytes FD on the remote target into READ_BUF
8258 Return the number of bytes read, or -1 if an error occurs (and
8259 set *REMOTE_ERRNO). */
8260
8261 static int
8262 remote_hostio_pread (int fd, gdb_byte *read_buf, int len,
8263 ULONGEST offset, int *remote_errno)
8264 {
8265 struct remote_state *rs = get_remote_state ();
8266 char *p = rs->buf;
8267 char *attachment;
8268 int left = get_remote_packet_size ();
8269 int ret, attachment_len;
8270 int read_len;
8271
8272 remote_buffer_add_string (&p, &left, "vFile:pread:");
8273
8274 remote_buffer_add_int (&p, &left, fd);
8275 remote_buffer_add_string (&p, &left, ",");
8276
8277 remote_buffer_add_int (&p, &left, len);
8278 remote_buffer_add_string (&p, &left, ",");
8279
8280 remote_buffer_add_int (&p, &left, offset);
8281
8282 ret = remote_hostio_send_command (p - rs->buf, PACKET_vFile_pread,
8283 remote_errno, &attachment,
8284 &attachment_len);
8285
8286 if (ret < 0)
8287 return ret;
8288
8289 read_len = remote_unescape_input (attachment, attachment_len,
8290 read_buf, len);
8291 if (read_len != ret)
8292 error (_("Read returned %d, but %d bytes."), ret, (int) read_len);
8293
8294 return ret;
8295 }
8296
8297 /* Close FD on the remote target. Return 0, or -1 if an error occurs
8298 (and set *REMOTE_ERRNO). */
8299
8300 static int
8301 remote_hostio_close (int fd, int *remote_errno)
8302 {
8303 struct remote_state *rs = get_remote_state ();
8304 char *p = rs->buf;
8305 int left = get_remote_packet_size () - 1;
8306
8307 remote_buffer_add_string (&p, &left, "vFile:close:");
8308
8309 remote_buffer_add_int (&p, &left, fd);
8310
8311 return remote_hostio_send_command (p - rs->buf, PACKET_vFile_close,
8312 remote_errno, NULL, NULL);
8313 }
8314
8315 /* Unlink FILENAME on the remote target. Return 0, or -1 if an error
8316 occurs (and set *REMOTE_ERRNO). */
8317
8318 static int
8319 remote_hostio_unlink (const char *filename, int *remote_errno)
8320 {
8321 struct remote_state *rs = get_remote_state ();
8322 char *p = rs->buf;
8323 int left = get_remote_packet_size () - 1;
8324
8325 remote_buffer_add_string (&p, &left, "vFile:unlink:");
8326
8327 remote_buffer_add_bytes (&p, &left, (const gdb_byte *) filename,
8328 strlen (filename));
8329
8330 return remote_hostio_send_command (p - rs->buf, PACKET_vFile_unlink,
8331 remote_errno, NULL, NULL);
8332 }
8333
8334 static int
8335 remote_fileio_errno_to_host (int errnum)
8336 {
8337 switch (errnum)
8338 {
8339 case FILEIO_EPERM:
8340 return EPERM;
8341 case FILEIO_ENOENT:
8342 return ENOENT;
8343 case FILEIO_EINTR:
8344 return EINTR;
8345 case FILEIO_EIO:
8346 return EIO;
8347 case FILEIO_EBADF:
8348 return EBADF;
8349 case FILEIO_EACCES:
8350 return EACCES;
8351 case FILEIO_EFAULT:
8352 return EFAULT;
8353 case FILEIO_EBUSY:
8354 return EBUSY;
8355 case FILEIO_EEXIST:
8356 return EEXIST;
8357 case FILEIO_ENODEV:
8358 return ENODEV;
8359 case FILEIO_ENOTDIR:
8360 return ENOTDIR;
8361 case FILEIO_EISDIR:
8362 return EISDIR;
8363 case FILEIO_EINVAL:
8364 return EINVAL;
8365 case FILEIO_ENFILE:
8366 return ENFILE;
8367 case FILEIO_EMFILE:
8368 return EMFILE;
8369 case FILEIO_EFBIG:
8370 return EFBIG;
8371 case FILEIO_ENOSPC:
8372 return ENOSPC;
8373 case FILEIO_ESPIPE:
8374 return ESPIPE;
8375 case FILEIO_EROFS:
8376 return EROFS;
8377 case FILEIO_ENOSYS:
8378 return ENOSYS;
8379 case FILEIO_ENAMETOOLONG:
8380 return ENAMETOOLONG;
8381 }
8382 return -1;
8383 }
8384
8385 static char *
8386 remote_hostio_error (int errnum)
8387 {
8388 int host_error = remote_fileio_errno_to_host (errnum);
8389
8390 if (host_error == -1)
8391 error (_("Unknown remote I/O error %d"), errnum);
8392 else
8393 error (_("Remote I/O error: %s"), safe_strerror (host_error));
8394 }
8395
8396 static void
8397 remote_hostio_close_cleanup (void *opaque)
8398 {
8399 int fd = *(int *) opaque;
8400 int remote_errno;
8401
8402 remote_hostio_close (fd, &remote_errno);
8403 }
8404
8405
8406 static void *
8407 remote_bfd_iovec_open (struct bfd *abfd, void *open_closure)
8408 {
8409 const char *filename = bfd_get_filename (abfd);
8410 int fd, remote_errno;
8411 int *stream;
8412
8413 gdb_assert (remote_filename_p (filename));
8414
8415 fd = remote_hostio_open (filename + 7, FILEIO_O_RDONLY, 0, &remote_errno);
8416 if (fd == -1)
8417 {
8418 errno = remote_fileio_errno_to_host (remote_errno);
8419 bfd_set_error (bfd_error_system_call);
8420 return NULL;
8421 }
8422
8423 stream = xmalloc (sizeof (int));
8424 *stream = fd;
8425 return stream;
8426 }
8427
8428 static int
8429 remote_bfd_iovec_close (struct bfd *abfd, void *stream)
8430 {
8431 int fd = *(int *)stream;
8432 int remote_errno;
8433
8434 xfree (stream);
8435
8436 /* Ignore errors on close; these may happen if the remote
8437 connection was already torn down. */
8438 remote_hostio_close (fd, &remote_errno);
8439
8440 return 1;
8441 }
8442
8443 static file_ptr
8444 remote_bfd_iovec_pread (struct bfd *abfd, void *stream, void *buf,
8445 file_ptr nbytes, file_ptr offset)
8446 {
8447 int fd = *(int *)stream;
8448 int remote_errno;
8449 file_ptr pos, bytes;
8450
8451 pos = 0;
8452 while (nbytes > pos)
8453 {
8454 bytes = remote_hostio_pread (fd, (char *)buf + pos, nbytes - pos,
8455 offset + pos, &remote_errno);
8456 if (bytes == 0)
8457 /* Success, but no bytes, means end-of-file. */
8458 break;
8459 if (bytes == -1)
8460 {
8461 errno = remote_fileio_errno_to_host (remote_errno);
8462 bfd_set_error (bfd_error_system_call);
8463 return -1;
8464 }
8465
8466 pos += bytes;
8467 }
8468
8469 return pos;
8470 }
8471
8472 static int
8473 remote_bfd_iovec_stat (struct bfd *abfd, void *stream, struct stat *sb)
8474 {
8475 /* FIXME: We should probably implement remote_hostio_stat. */
8476 sb->st_size = INT_MAX;
8477 return 0;
8478 }
8479
8480 int
8481 remote_filename_p (const char *filename)
8482 {
8483 return strncmp (filename, "remote:", 7) == 0;
8484 }
8485
8486 bfd *
8487 remote_bfd_open (const char *remote_file, const char *target)
8488 {
8489 return bfd_openr_iovec (remote_file, target,
8490 remote_bfd_iovec_open, NULL,
8491 remote_bfd_iovec_pread,
8492 remote_bfd_iovec_close,
8493 remote_bfd_iovec_stat);
8494 }
8495
8496 void
8497 remote_file_put (const char *local_file, const char *remote_file, int from_tty)
8498 {
8499 struct cleanup *back_to, *close_cleanup;
8500 int retcode, fd, remote_errno, bytes, io_size;
8501 FILE *file;
8502 gdb_byte *buffer;
8503 int bytes_in_buffer;
8504 int saw_eof;
8505 ULONGEST offset;
8506
8507 if (!remote_desc)
8508 error (_("command can only be used with remote target"));
8509
8510 file = fopen (local_file, "rb");
8511 if (file == NULL)
8512 perror_with_name (local_file);
8513 back_to = make_cleanup_fclose (file);
8514
8515 fd = remote_hostio_open (remote_file, (FILEIO_O_WRONLY | FILEIO_O_CREAT
8516 | FILEIO_O_TRUNC),
8517 0700, &remote_errno);
8518 if (fd == -1)
8519 remote_hostio_error (remote_errno);
8520
8521 /* Send up to this many bytes at once. They won't all fit in the
8522 remote packet limit, so we'll transfer slightly fewer. */
8523 io_size = get_remote_packet_size ();
8524 buffer = xmalloc (io_size);
8525 make_cleanup (xfree, buffer);
8526
8527 close_cleanup = make_cleanup (remote_hostio_close_cleanup, &fd);
8528
8529 bytes_in_buffer = 0;
8530 saw_eof = 0;
8531 offset = 0;
8532 while (bytes_in_buffer || !saw_eof)
8533 {
8534 if (!saw_eof)
8535 {
8536 bytes = fread (buffer + bytes_in_buffer, 1, io_size - bytes_in_buffer,
8537 file);
8538 if (bytes == 0)
8539 {
8540 if (ferror (file))
8541 error (_("Error reading %s."), local_file);
8542 else
8543 {
8544 /* EOF. Unless there is something still in the
8545 buffer from the last iteration, we are done. */
8546 saw_eof = 1;
8547 if (bytes_in_buffer == 0)
8548 break;
8549 }
8550 }
8551 }
8552 else
8553 bytes = 0;
8554
8555 bytes += bytes_in_buffer;
8556 bytes_in_buffer = 0;
8557
8558 retcode = remote_hostio_pwrite (fd, buffer, bytes, offset, &remote_errno);
8559
8560 if (retcode < 0)
8561 remote_hostio_error (remote_errno);
8562 else if (retcode == 0)
8563 error (_("Remote write of %d bytes returned 0!"), bytes);
8564 else if (retcode < bytes)
8565 {
8566 /* Short write. Save the rest of the read data for the next
8567 write. */
8568 bytes_in_buffer = bytes - retcode;
8569 memmove (buffer, buffer + retcode, bytes_in_buffer);
8570 }
8571
8572 offset += retcode;
8573 }
8574
8575 discard_cleanups (close_cleanup);
8576 if (remote_hostio_close (fd, &remote_errno))
8577 remote_hostio_error (remote_errno);
8578
8579 if (from_tty)
8580 printf_filtered (_("Successfully sent file \"%s\".\n"), local_file);
8581 do_cleanups (back_to);
8582 }
8583
8584 void
8585 remote_file_get (const char *remote_file, const char *local_file, int from_tty)
8586 {
8587 struct cleanup *back_to, *close_cleanup;
8588 int fd, remote_errno, bytes, io_size;
8589 FILE *file;
8590 gdb_byte *buffer;
8591 ULONGEST offset;
8592
8593 if (!remote_desc)
8594 error (_("command can only be used with remote target"));
8595
8596 fd = remote_hostio_open (remote_file, FILEIO_O_RDONLY, 0, &remote_errno);
8597 if (fd == -1)
8598 remote_hostio_error (remote_errno);
8599
8600 file = fopen (local_file, "wb");
8601 if (file == NULL)
8602 perror_with_name (local_file);
8603 back_to = make_cleanup_fclose (file);
8604
8605 /* Send up to this many bytes at once. They won't all fit in the
8606 remote packet limit, so we'll transfer slightly fewer. */
8607 io_size = get_remote_packet_size ();
8608 buffer = xmalloc (io_size);
8609 make_cleanup (xfree, buffer);
8610
8611 close_cleanup = make_cleanup (remote_hostio_close_cleanup, &fd);
8612
8613 offset = 0;
8614 while (1)
8615 {
8616 bytes = remote_hostio_pread (fd, buffer, io_size, offset, &remote_errno);
8617 if (bytes == 0)
8618 /* Success, but no bytes, means end-of-file. */
8619 break;
8620 if (bytes == -1)
8621 remote_hostio_error (remote_errno);
8622
8623 offset += bytes;
8624
8625 bytes = fwrite (buffer, 1, bytes, file);
8626 if (bytes == 0)
8627 perror_with_name (local_file);
8628 }
8629
8630 discard_cleanups (close_cleanup);
8631 if (remote_hostio_close (fd, &remote_errno))
8632 remote_hostio_error (remote_errno);
8633
8634 if (from_tty)
8635 printf_filtered (_("Successfully fetched file \"%s\".\n"), remote_file);
8636 do_cleanups (back_to);
8637 }
8638
8639 void
8640 remote_file_delete (const char *remote_file, int from_tty)
8641 {
8642 int retcode, remote_errno;
8643
8644 if (!remote_desc)
8645 error (_("command can only be used with remote target"));
8646
8647 retcode = remote_hostio_unlink (remote_file, &remote_errno);
8648 if (retcode == -1)
8649 remote_hostio_error (remote_errno);
8650
8651 if (from_tty)
8652 printf_filtered (_("Successfully deleted file \"%s\".\n"), remote_file);
8653 }
8654
8655 static void
8656 remote_put_command (char *args, int from_tty)
8657 {
8658 struct cleanup *back_to;
8659 char **argv;
8660
8661 if (args == NULL)
8662 error_no_arg (_("file to put"));
8663
8664 argv = gdb_buildargv (args);
8665 back_to = make_cleanup_freeargv (argv);
8666 if (argv[0] == NULL || argv[1] == NULL || argv[2] != NULL)
8667 error (_("Invalid parameters to remote put"));
8668
8669 remote_file_put (argv[0], argv[1], from_tty);
8670
8671 do_cleanups (back_to);
8672 }
8673
8674 static void
8675 remote_get_command (char *args, int from_tty)
8676 {
8677 struct cleanup *back_to;
8678 char **argv;
8679
8680 if (args == NULL)
8681 error_no_arg (_("file to get"));
8682
8683 argv = gdb_buildargv (args);
8684 back_to = make_cleanup_freeargv (argv);
8685 if (argv[0] == NULL || argv[1] == NULL || argv[2] != NULL)
8686 error (_("Invalid parameters to remote get"));
8687
8688 remote_file_get (argv[0], argv[1], from_tty);
8689
8690 do_cleanups (back_to);
8691 }
8692
8693 static void
8694 remote_delete_command (char *args, int from_tty)
8695 {
8696 struct cleanup *back_to;
8697 char **argv;
8698
8699 if (args == NULL)
8700 error_no_arg (_("file to delete"));
8701
8702 argv = gdb_buildargv (args);
8703 back_to = make_cleanup_freeargv (argv);
8704 if (argv[0] == NULL || argv[1] != NULL)
8705 error (_("Invalid parameters to remote delete"));
8706
8707 remote_file_delete (argv[0], from_tty);
8708
8709 do_cleanups (back_to);
8710 }
8711
8712 static void
8713 remote_command (char *args, int from_tty)
8714 {
8715 help_list (remote_cmdlist, "remote ", -1, gdb_stdout);
8716 }
8717
8718 static int remote_target_can_reverse = 1;
8719
8720 static int
8721 remote_can_execute_reverse (void)
8722 {
8723 return remote_target_can_reverse;
8724 }
8725
8726 static int
8727 remote_supports_non_stop (void)
8728 {
8729 return 1;
8730 }
8731
8732 static int
8733 remote_supports_multi_process (void)
8734 {
8735 struct remote_state *rs = get_remote_state ();
8736 return remote_multi_process_p (rs);
8737 }
8738
8739 int
8740 remote_supports_cond_tracepoints (void)
8741 {
8742 struct remote_state *rs = get_remote_state ();
8743 return rs->cond_tracepoints;
8744 }
8745
8746 static void
8747 init_remote_ops (void)
8748 {
8749 remote_ops.to_shortname = "remote";
8750 remote_ops.to_longname = "Remote serial target in gdb-specific protocol";
8751 remote_ops.to_doc =
8752 "Use a remote computer via a serial line, using a gdb-specific protocol.\n\
8753 Specify the serial device it is connected to\n\
8754 (e.g. /dev/ttyS0, /dev/ttya, COM1, etc.).";
8755 remote_ops.to_open = remote_open;
8756 remote_ops.to_close = remote_close;
8757 remote_ops.to_detach = remote_detach;
8758 remote_ops.to_disconnect = remote_disconnect;
8759 remote_ops.to_resume = remote_resume;
8760 remote_ops.to_wait = remote_wait;
8761 remote_ops.to_fetch_registers = remote_fetch_registers;
8762 remote_ops.to_store_registers = remote_store_registers;
8763 remote_ops.to_prepare_to_store = remote_prepare_to_store;
8764 remote_ops.deprecated_xfer_memory = remote_xfer_memory;
8765 remote_ops.to_files_info = remote_files_info;
8766 remote_ops.to_insert_breakpoint = remote_insert_breakpoint;
8767 remote_ops.to_remove_breakpoint = remote_remove_breakpoint;
8768 remote_ops.to_stopped_by_watchpoint = remote_stopped_by_watchpoint;
8769 remote_ops.to_stopped_data_address = remote_stopped_data_address;
8770 remote_ops.to_can_use_hw_breakpoint = remote_check_watch_resources;
8771 remote_ops.to_insert_hw_breakpoint = remote_insert_hw_breakpoint;
8772 remote_ops.to_remove_hw_breakpoint = remote_remove_hw_breakpoint;
8773 remote_ops.to_insert_watchpoint = remote_insert_watchpoint;
8774 remote_ops.to_remove_watchpoint = remote_remove_watchpoint;
8775 remote_ops.to_kill = remote_kill;
8776 remote_ops.to_load = generic_load;
8777 remote_ops.to_mourn_inferior = remote_mourn;
8778 remote_ops.to_thread_alive = remote_thread_alive;
8779 remote_ops.to_find_new_threads = remote_threads_info;
8780 remote_ops.to_pid_to_str = remote_pid_to_str;
8781 remote_ops.to_extra_thread_info = remote_threads_extra_info;
8782 remote_ops.to_stop = remote_stop;
8783 remote_ops.to_xfer_partial = remote_xfer_partial;
8784 remote_ops.to_rcmd = remote_rcmd;
8785 remote_ops.to_log_command = serial_log_command;
8786 remote_ops.to_get_thread_local_address = remote_get_thread_local_address;
8787 remote_ops.to_stratum = process_stratum;
8788 remote_ops.to_has_all_memory = default_child_has_all_memory;
8789 remote_ops.to_has_memory = default_child_has_memory;
8790 remote_ops.to_has_stack = default_child_has_stack;
8791 remote_ops.to_has_registers = default_child_has_registers;
8792 remote_ops.to_has_execution = default_child_has_execution;
8793 remote_ops.to_has_thread_control = tc_schedlock; /* can lock scheduler */
8794 remote_ops.to_can_execute_reverse = remote_can_execute_reverse;
8795 remote_ops.to_magic = OPS_MAGIC;
8796 remote_ops.to_memory_map = remote_memory_map;
8797 remote_ops.to_flash_erase = remote_flash_erase;
8798 remote_ops.to_flash_done = remote_flash_done;
8799 remote_ops.to_read_description = remote_read_description;
8800 remote_ops.to_search_memory = remote_search_memory;
8801 remote_ops.to_can_async_p = remote_can_async_p;
8802 remote_ops.to_is_async_p = remote_is_async_p;
8803 remote_ops.to_async = remote_async;
8804 remote_ops.to_async_mask = remote_async_mask;
8805 remote_ops.to_terminal_inferior = remote_terminal_inferior;
8806 remote_ops.to_terminal_ours = remote_terminal_ours;
8807 remote_ops.to_supports_non_stop = remote_supports_non_stop;
8808 remote_ops.to_supports_multi_process = remote_supports_multi_process;
8809 }
8810
8811 /* Set up the extended remote vector by making a copy of the standard
8812 remote vector and adding to it. */
8813
8814 static void
8815 init_extended_remote_ops (void)
8816 {
8817 extended_remote_ops = remote_ops;
8818
8819 extended_remote_ops.to_shortname = "extended-remote";
8820 extended_remote_ops.to_longname =
8821 "Extended remote serial target in gdb-specific protocol";
8822 extended_remote_ops.to_doc =
8823 "Use a remote computer via a serial line, using a gdb-specific protocol.\n\
8824 Specify the serial device it is connected to (e.g. /dev/ttya).";
8825 extended_remote_ops.to_open = extended_remote_open;
8826 extended_remote_ops.to_create_inferior = extended_remote_create_inferior;
8827 extended_remote_ops.to_mourn_inferior = extended_remote_mourn;
8828 extended_remote_ops.to_detach = extended_remote_detach;
8829 extended_remote_ops.to_attach = extended_remote_attach;
8830 extended_remote_ops.to_kill = extended_remote_kill;
8831 }
8832
8833 static int
8834 remote_can_async_p (void)
8835 {
8836 if (!target_async_permitted)
8837 /* We only enable async when the user specifically asks for it. */
8838 return 0;
8839
8840 /* We're async whenever the serial device is. */
8841 return remote_async_mask_value && serial_can_async_p (remote_desc);
8842 }
8843
8844 static int
8845 remote_is_async_p (void)
8846 {
8847 if (!target_async_permitted)
8848 /* We only enable async when the user specifically asks for it. */
8849 return 0;
8850
8851 /* We're async whenever the serial device is. */
8852 return remote_async_mask_value && serial_is_async_p (remote_desc);
8853 }
8854
8855 /* Pass the SERIAL event on and up to the client. One day this code
8856 will be able to delay notifying the client of an event until the
8857 point where an entire packet has been received. */
8858
8859 static void (*async_client_callback) (enum inferior_event_type event_type,
8860 void *context);
8861 static void *async_client_context;
8862 static serial_event_ftype remote_async_serial_handler;
8863
8864 static void
8865 remote_async_serial_handler (struct serial *scb, void *context)
8866 {
8867 /* Don't propogate error information up to the client. Instead let
8868 the client find out about the error by querying the target. */
8869 async_client_callback (INF_REG_EVENT, async_client_context);
8870 }
8871
8872 static void
8873 remote_async_inferior_event_handler (gdb_client_data data)
8874 {
8875 inferior_event_handler (INF_REG_EVENT, NULL);
8876 }
8877
8878 static void
8879 remote_async_get_pending_events_handler (gdb_client_data data)
8880 {
8881 remote_get_pending_stop_replies ();
8882 }
8883
8884 static void
8885 remote_async (void (*callback) (enum inferior_event_type event_type,
8886 void *context), void *context)
8887 {
8888 if (remote_async_mask_value == 0)
8889 internal_error (__FILE__, __LINE__,
8890 _("Calling remote_async when async is masked"));
8891
8892 if (callback != NULL)
8893 {
8894 serial_async (remote_desc, remote_async_serial_handler, NULL);
8895 async_client_callback = callback;
8896 async_client_context = context;
8897 }
8898 else
8899 serial_async (remote_desc, NULL, NULL);
8900 }
8901
8902 static int
8903 remote_async_mask (int new_mask)
8904 {
8905 int curr_mask = remote_async_mask_value;
8906 remote_async_mask_value = new_mask;
8907 return curr_mask;
8908 }
8909
8910 static void
8911 set_remote_cmd (char *args, int from_tty)
8912 {
8913 help_list (remote_set_cmdlist, "set remote ", -1, gdb_stdout);
8914 }
8915
8916 static void
8917 show_remote_cmd (char *args, int from_tty)
8918 {
8919 /* We can't just use cmd_show_list here, because we want to skip
8920 the redundant "show remote Z-packet" and the legacy aliases. */
8921 struct cleanup *showlist_chain;
8922 struct cmd_list_element *list = remote_show_cmdlist;
8923
8924 showlist_chain = make_cleanup_ui_out_tuple_begin_end (uiout, "showlist");
8925 for (; list != NULL; list = list->next)
8926 if (strcmp (list->name, "Z-packet") == 0)
8927 continue;
8928 else if (list->type == not_set_cmd)
8929 /* Alias commands are exactly like the original, except they
8930 don't have the normal type. */
8931 continue;
8932 else
8933 {
8934 struct cleanup *option_chain
8935 = make_cleanup_ui_out_tuple_begin_end (uiout, "option");
8936 ui_out_field_string (uiout, "name", list->name);
8937 ui_out_text (uiout, ": ");
8938 if (list->type == show_cmd)
8939 do_setshow_command ((char *) NULL, from_tty, list);
8940 else
8941 cmd_func (list, NULL, from_tty);
8942 /* Close the tuple. */
8943 do_cleanups (option_chain);
8944 }
8945
8946 /* Close the tuple. */
8947 do_cleanups (showlist_chain);
8948 }
8949
8950
8951 /* Function to be called whenever a new objfile (shlib) is detected. */
8952 static void
8953 remote_new_objfile (struct objfile *objfile)
8954 {
8955 if (remote_desc != 0) /* Have a remote connection. */
8956 remote_check_symbols (objfile);
8957 }
8958
8959 void
8960 _initialize_remote (void)
8961 {
8962 struct remote_state *rs;
8963
8964 /* architecture specific data */
8965 remote_gdbarch_data_handle =
8966 gdbarch_data_register_post_init (init_remote_state);
8967 remote_g_packet_data_handle =
8968 gdbarch_data_register_pre_init (remote_g_packet_data_init);
8969
8970 /* Initialize the per-target state. At the moment there is only one
8971 of these, not one per target. Only one target is active at a
8972 time. The default buffer size is unimportant; it will be expanded
8973 whenever a larger buffer is needed. */
8974 rs = get_remote_state_raw ();
8975 rs->buf_size = 400;
8976 rs->buf = xmalloc (rs->buf_size);
8977
8978 init_remote_ops ();
8979 add_target (&remote_ops);
8980
8981 init_extended_remote_ops ();
8982 add_target (&extended_remote_ops);
8983
8984 /* Hook into new objfile notification. */
8985 observer_attach_new_objfile (remote_new_objfile);
8986
8987 /* Set up signal handlers. */
8988 sigint_remote_token =
8989 create_async_signal_handler (async_remote_interrupt, NULL);
8990 sigint_remote_twice_token =
8991 create_async_signal_handler (inferior_event_handler_wrapper, NULL);
8992
8993 #if 0
8994 init_remote_threadtests ();
8995 #endif
8996
8997 /* set/show remote ... */
8998
8999 add_prefix_cmd ("remote", class_maintenance, set_remote_cmd, _("\
9000 Remote protocol specific variables\n\
9001 Configure various remote-protocol specific variables such as\n\
9002 the packets being used"),
9003 &remote_set_cmdlist, "set remote ",
9004 0 /* allow-unknown */, &setlist);
9005 add_prefix_cmd ("remote", class_maintenance, show_remote_cmd, _("\
9006 Remote protocol specific variables\n\
9007 Configure various remote-protocol specific variables such as\n\
9008 the packets being used"),
9009 &remote_show_cmdlist, "show remote ",
9010 0 /* allow-unknown */, &showlist);
9011
9012 add_cmd ("compare-sections", class_obscure, compare_sections_command, _("\
9013 Compare section data on target to the exec file.\n\
9014 Argument is a single section name (default: all loaded sections)."),
9015 &cmdlist);
9016
9017 add_cmd ("packet", class_maintenance, packet_command, _("\
9018 Send an arbitrary packet to a remote target.\n\
9019 maintenance packet TEXT\n\
9020 If GDB is talking to an inferior via the GDB serial protocol, then\n\
9021 this command sends the string TEXT to the inferior, and displays the\n\
9022 response packet. GDB supplies the initial `$' character, and the\n\
9023 terminating `#' character and checksum."),
9024 &maintenancelist);
9025
9026 add_setshow_boolean_cmd ("remotebreak", no_class, &remote_break, _("\
9027 Set whether to send break if interrupted."), _("\
9028 Show whether to send break if interrupted."), _("\
9029 If set, a break, instead of a cntrl-c, is sent to the remote target."),
9030 NULL, NULL, /* FIXME: i18n: Whether to send break if interrupted is %s. */
9031 &setlist, &showlist);
9032
9033 /* Install commands for configuring memory read/write packets. */
9034
9035 add_cmd ("remotewritesize", no_class, set_memory_write_packet_size, _("\
9036 Set the maximum number of bytes per memory write packet (deprecated)."),
9037 &setlist);
9038 add_cmd ("remotewritesize", no_class, show_memory_write_packet_size, _("\
9039 Show the maximum number of bytes per memory write packet (deprecated)."),
9040 &showlist);
9041 add_cmd ("memory-write-packet-size", no_class,
9042 set_memory_write_packet_size, _("\
9043 Set the maximum number of bytes per memory-write packet.\n\
9044 Specify the number of bytes in a packet or 0 (zero) for the\n\
9045 default packet size. The actual limit is further reduced\n\
9046 dependent on the target. Specify ``fixed'' to disable the\n\
9047 further restriction and ``limit'' to enable that restriction."),
9048 &remote_set_cmdlist);
9049 add_cmd ("memory-read-packet-size", no_class,
9050 set_memory_read_packet_size, _("\
9051 Set the maximum number of bytes per memory-read packet.\n\
9052 Specify the number of bytes in a packet or 0 (zero) for the\n\
9053 default packet size. The actual limit is further reduced\n\
9054 dependent on the target. Specify ``fixed'' to disable the\n\
9055 further restriction and ``limit'' to enable that restriction."),
9056 &remote_set_cmdlist);
9057 add_cmd ("memory-write-packet-size", no_class,
9058 show_memory_write_packet_size,
9059 _("Show the maximum number of bytes per memory-write packet."),
9060 &remote_show_cmdlist);
9061 add_cmd ("memory-read-packet-size", no_class,
9062 show_memory_read_packet_size,
9063 _("Show the maximum number of bytes per memory-read packet."),
9064 &remote_show_cmdlist);
9065
9066 add_setshow_zinteger_cmd ("hardware-watchpoint-limit", no_class,
9067 &remote_hw_watchpoint_limit, _("\
9068 Set the maximum number of target hardware watchpoints."), _("\
9069 Show the maximum number of target hardware watchpoints."), _("\
9070 Specify a negative limit for unlimited."),
9071 NULL, NULL, /* FIXME: i18n: The maximum number of target hardware watchpoints is %s. */
9072 &remote_set_cmdlist, &remote_show_cmdlist);
9073 add_setshow_zinteger_cmd ("hardware-breakpoint-limit", no_class,
9074 &remote_hw_breakpoint_limit, _("\
9075 Set the maximum number of target hardware breakpoints."), _("\
9076 Show the maximum number of target hardware breakpoints."), _("\
9077 Specify a negative limit for unlimited."),
9078 NULL, NULL, /* FIXME: i18n: The maximum number of target hardware breakpoints is %s. */
9079 &remote_set_cmdlist, &remote_show_cmdlist);
9080
9081 add_setshow_integer_cmd ("remoteaddresssize", class_obscure,
9082 &remote_address_size, _("\
9083 Set the maximum size of the address (in bits) in a memory packet."), _("\
9084 Show the maximum size of the address (in bits) in a memory packet."), NULL,
9085 NULL,
9086 NULL, /* FIXME: i18n: */
9087 &setlist, &showlist);
9088
9089 add_packet_config_cmd (&remote_protocol_packets[PACKET_X],
9090 "X", "binary-download", 1);
9091
9092 add_packet_config_cmd (&remote_protocol_packets[PACKET_vCont],
9093 "vCont", "verbose-resume", 0);
9094
9095 add_packet_config_cmd (&remote_protocol_packets[PACKET_QPassSignals],
9096 "QPassSignals", "pass-signals", 0);
9097
9098 add_packet_config_cmd (&remote_protocol_packets[PACKET_qSymbol],
9099 "qSymbol", "symbol-lookup", 0);
9100
9101 add_packet_config_cmd (&remote_protocol_packets[PACKET_P],
9102 "P", "set-register", 1);
9103
9104 add_packet_config_cmd (&remote_protocol_packets[PACKET_p],
9105 "p", "fetch-register", 1);
9106
9107 add_packet_config_cmd (&remote_protocol_packets[PACKET_Z0],
9108 "Z0", "software-breakpoint", 0);
9109
9110 add_packet_config_cmd (&remote_protocol_packets[PACKET_Z1],
9111 "Z1", "hardware-breakpoint", 0);
9112
9113 add_packet_config_cmd (&remote_protocol_packets[PACKET_Z2],
9114 "Z2", "write-watchpoint", 0);
9115
9116 add_packet_config_cmd (&remote_protocol_packets[PACKET_Z3],
9117 "Z3", "read-watchpoint", 0);
9118
9119 add_packet_config_cmd (&remote_protocol_packets[PACKET_Z4],
9120 "Z4", "access-watchpoint", 0);
9121
9122 add_packet_config_cmd (&remote_protocol_packets[PACKET_qXfer_auxv],
9123 "qXfer:auxv:read", "read-aux-vector", 0);
9124
9125 add_packet_config_cmd (&remote_protocol_packets[PACKET_qXfer_features],
9126 "qXfer:features:read", "target-features", 0);
9127
9128 add_packet_config_cmd (&remote_protocol_packets[PACKET_qXfer_libraries],
9129 "qXfer:libraries:read", "library-info", 0);
9130
9131 add_packet_config_cmd (&remote_protocol_packets[PACKET_qXfer_memory_map],
9132 "qXfer:memory-map:read", "memory-map", 0);
9133
9134 add_packet_config_cmd (&remote_protocol_packets[PACKET_qXfer_spu_read],
9135 "qXfer:spu:read", "read-spu-object", 0);
9136
9137 add_packet_config_cmd (&remote_protocol_packets[PACKET_qXfer_spu_write],
9138 "qXfer:spu:write", "write-spu-object", 0);
9139
9140 add_packet_config_cmd (&remote_protocol_packets[PACKET_qXfer_osdata],
9141 "qXfer:osdata:read", "osdata", 0);
9142
9143 add_packet_config_cmd (&remote_protocol_packets[PACKET_qXfer_siginfo_read],
9144 "qXfer:siginfo:read", "read-siginfo-object", 0);
9145
9146 add_packet_config_cmd (&remote_protocol_packets[PACKET_qXfer_siginfo_write],
9147 "qXfer:siginfo:write", "write-siginfo-object", 0);
9148
9149 add_packet_config_cmd (&remote_protocol_packets[PACKET_qGetTLSAddr],
9150 "qGetTLSAddr", "get-thread-local-storage-address",
9151 0);
9152
9153 add_packet_config_cmd (&remote_protocol_packets[PACKET_qSupported],
9154 "qSupported", "supported-packets", 0);
9155
9156 add_packet_config_cmd (&remote_protocol_packets[PACKET_qSearch_memory],
9157 "qSearch:memory", "search-memory", 0);
9158
9159 add_packet_config_cmd (&remote_protocol_packets[PACKET_vFile_open],
9160 "vFile:open", "hostio-open", 0);
9161
9162 add_packet_config_cmd (&remote_protocol_packets[PACKET_vFile_pread],
9163 "vFile:pread", "hostio-pread", 0);
9164
9165 add_packet_config_cmd (&remote_protocol_packets[PACKET_vFile_pwrite],
9166 "vFile:pwrite", "hostio-pwrite", 0);
9167
9168 add_packet_config_cmd (&remote_protocol_packets[PACKET_vFile_close],
9169 "vFile:close", "hostio-close", 0);
9170
9171 add_packet_config_cmd (&remote_protocol_packets[PACKET_vFile_unlink],
9172 "vFile:unlink", "hostio-unlink", 0);
9173
9174 add_packet_config_cmd (&remote_protocol_packets[PACKET_vAttach],
9175 "vAttach", "attach", 0);
9176
9177 add_packet_config_cmd (&remote_protocol_packets[PACKET_vRun],
9178 "vRun", "run", 0);
9179
9180 add_packet_config_cmd (&remote_protocol_packets[PACKET_QStartNoAckMode],
9181 "QStartNoAckMode", "noack", 0);
9182
9183 add_packet_config_cmd (&remote_protocol_packets[PACKET_vKill],
9184 "vKill", "kill", 0);
9185
9186 add_packet_config_cmd (&remote_protocol_packets[PACKET_qAttached],
9187 "qAttached", "query-attached", 0);
9188
9189 add_packet_config_cmd (&remote_protocol_packets[PACKET_ConditionalTracepoints],
9190 "ConditionalTracepoints", "conditional-tracepoints", 0);
9191
9192 /* Keep the old ``set remote Z-packet ...'' working. Each individual
9193 Z sub-packet has its own set and show commands, but users may
9194 have sets to this variable in their .gdbinit files (or in their
9195 documentation). */
9196 add_setshow_auto_boolean_cmd ("Z-packet", class_obscure,
9197 &remote_Z_packet_detect, _("\
9198 Set use of remote protocol `Z' packets"), _("\
9199 Show use of remote protocol `Z' packets "), _("\
9200 When set, GDB will attempt to use the remote breakpoint and watchpoint\n\
9201 packets."),
9202 set_remote_protocol_Z_packet_cmd,
9203 show_remote_protocol_Z_packet_cmd, /* FIXME: i18n: Use of remote protocol `Z' packets is %s. */
9204 &remote_set_cmdlist, &remote_show_cmdlist);
9205
9206 add_prefix_cmd ("remote", class_files, remote_command, _("\
9207 Manipulate files on the remote system\n\
9208 Transfer files to and from the remote target system."),
9209 &remote_cmdlist, "remote ",
9210 0 /* allow-unknown */, &cmdlist);
9211
9212 add_cmd ("put", class_files, remote_put_command,
9213 _("Copy a local file to the remote system."),
9214 &remote_cmdlist);
9215
9216 add_cmd ("get", class_files, remote_get_command,
9217 _("Copy a remote file to the local system."),
9218 &remote_cmdlist);
9219
9220 add_cmd ("delete", class_files, remote_delete_command,
9221 _("Delete a remote file."),
9222 &remote_cmdlist);
9223
9224 remote_exec_file = xstrdup ("");
9225 add_setshow_string_noescape_cmd ("exec-file", class_files,
9226 &remote_exec_file, _("\
9227 Set the remote pathname for \"run\""), _("\
9228 Show the remote pathname for \"run\""), NULL, NULL, NULL,
9229 &remote_set_cmdlist, &remote_show_cmdlist);
9230
9231 /* Eventually initialize fileio. See fileio.c */
9232 initialize_remote_fileio (remote_set_cmdlist, remote_show_cmdlist);
9233
9234 /* Take advantage of the fact that the LWP field is not used, to tag
9235 special ptids with it set to != 0. */
9236 magic_null_ptid = ptid_build (42000, 1, -1);
9237 not_sent_ptid = ptid_build (42000, 1, -2);
9238 any_thread_ptid = ptid_build (42000, 1, 0);
9239 }