* infrun.c (normal_stop): Use has_stack_frames instead of
[binutils-gdb.git] / gdb / remote.c
1 /* Remote target communications for serial-line targets in custom GDB protocol
2
3 Copyright (C) 1988, 1989, 1990, 1991, 1992, 1993, 1994, 1995, 1996, 1997,
4 1998, 1999, 2000, 2001, 2002, 2003, 2004, 2005, 2006, 2007, 2008, 2009
5 Free Software Foundation, Inc.
6
7 This file is part of GDB.
8
9 This program is free software; you can redistribute it and/or modify
10 it under the terms of the GNU General Public License as published by
11 the Free Software Foundation; either version 3 of the License, or
12 (at your option) any later version.
13
14 This program is distributed in the hope that it will be useful,
15 but WITHOUT ANY WARRANTY; without even the implied warranty of
16 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
17 GNU General Public License for more details.
18
19 You should have received a copy of the GNU General Public License
20 along with this program. If not, see <http://www.gnu.org/licenses/>. */
21
22 /* See the GDB User Guide for details of the GDB remote protocol. */
23
24 #include "defs.h"
25 #include "gdb_string.h"
26 #include <ctype.h>
27 #include <fcntl.h>
28 #include "inferior.h"
29 #include "bfd.h"
30 #include "symfile.h"
31 #include "exceptions.h"
32 #include "target.h"
33 /*#include "terminal.h" */
34 #include "gdbcmd.h"
35 #include "objfiles.h"
36 #include "gdb-stabs.h"
37 #include "gdbthread.h"
38 #include "remote.h"
39 #include "regcache.h"
40 #include "value.h"
41 #include "gdb_assert.h"
42 #include "observer.h"
43 #include "solib.h"
44 #include "cli/cli-decode.h"
45 #include "cli/cli-setshow.h"
46 #include "target-descriptions.h"
47
48 #include <ctype.h>
49 #include <sys/time.h>
50
51 #include "event-loop.h"
52 #include "event-top.h"
53 #include "inf-loop.h"
54
55 #include <signal.h>
56 #include "serial.h"
57
58 #include "gdbcore.h" /* for exec_bfd */
59
60 #include "remote-fileio.h"
61 #include "gdb/fileio.h"
62 #include "gdb_stat.h"
63
64 #include "memory-map.h"
65
66 /* The size to align memory write packets, when practical. The protocol
67 does not guarantee any alignment, and gdb will generate short
68 writes and unaligned writes, but even as a best-effort attempt this
69 can improve bulk transfers. For instance, if a write is misaligned
70 relative to the target's data bus, the stub may need to make an extra
71 round trip fetching data from the target. This doesn't make a
72 huge difference, but it's easy to do, so we try to be helpful.
73
74 The alignment chosen is arbitrary; usually data bus width is
75 important here, not the possibly larger cache line size. */
76 enum { REMOTE_ALIGN_WRITES = 16 };
77
78 /* Prototypes for local functions. */
79 static void cleanup_sigint_signal_handler (void *dummy);
80 static void initialize_sigint_signal_handler (void);
81 static int getpkt_sane (char **buf, long *sizeof_buf, int forever);
82 static int getpkt_or_notif_sane (char **buf, long *sizeof_buf,
83 int forever);
84
85 static void handle_remote_sigint (int);
86 static void handle_remote_sigint_twice (int);
87 static void async_remote_interrupt (gdb_client_data);
88 void async_remote_interrupt_twice (gdb_client_data);
89
90 static void remote_files_info (struct target_ops *ignore);
91
92 static void remote_prepare_to_store (struct regcache *regcache);
93
94 static void remote_open (char *name, int from_tty);
95
96 static void extended_remote_open (char *name, int from_tty);
97
98 static void remote_open_1 (char *, int, struct target_ops *, int extended_p);
99
100 static void remote_close (int quitting);
101
102 static void remote_mourn (struct target_ops *ops);
103
104 static void extended_remote_restart (void);
105
106 static void extended_remote_mourn (struct target_ops *);
107
108 static void remote_mourn_1 (struct target_ops *);
109
110 static void remote_send (char **buf, long *sizeof_buf_p);
111
112 static int readchar (int timeout);
113
114 static void remote_kill (struct target_ops *ops);
115
116 static int tohex (int nib);
117
118 static int remote_can_async_p (void);
119
120 static int remote_is_async_p (void);
121
122 static void remote_async (void (*callback) (enum inferior_event_type event_type,
123 void *context), void *context);
124
125 static int remote_async_mask (int new_mask);
126
127 static void remote_detach (struct target_ops *ops, char *args, int from_tty);
128
129 static void remote_interrupt (int signo);
130
131 static void remote_interrupt_twice (int signo);
132
133 static void interrupt_query (void);
134
135 static void set_general_thread (struct ptid ptid);
136 static void set_continue_thread (struct ptid ptid);
137
138 static void get_offsets (void);
139
140 static void skip_frame (void);
141
142 static long read_frame (char **buf_p, long *sizeof_buf);
143
144 static int hexnumlen (ULONGEST num);
145
146 static void init_remote_ops (void);
147
148 static void init_extended_remote_ops (void);
149
150 static void remote_stop (ptid_t);
151
152 static int ishex (int ch, int *val);
153
154 static int stubhex (int ch);
155
156 static int hexnumstr (char *, ULONGEST);
157
158 static int hexnumnstr (char *, ULONGEST, int);
159
160 static CORE_ADDR remote_address_masked (CORE_ADDR);
161
162 static void print_packet (char *);
163
164 static unsigned long crc32 (unsigned char *, int, unsigned int);
165
166 static void compare_sections_command (char *, int);
167
168 static void packet_command (char *, int);
169
170 static int stub_unpack_int (char *buff, int fieldlength);
171
172 static ptid_t remote_current_thread (ptid_t oldptid);
173
174 static void remote_find_new_threads (void);
175
176 static void record_currthread (ptid_t currthread);
177
178 static int fromhex (int a);
179
180 static int hex2bin (const char *hex, gdb_byte *bin, int count);
181
182 static int bin2hex (const gdb_byte *bin, char *hex, int count);
183
184 static int putpkt_binary (char *buf, int cnt);
185
186 static void check_binary_download (CORE_ADDR addr);
187
188 struct packet_config;
189
190 static void show_packet_config_cmd (struct packet_config *config);
191
192 static void update_packet_config (struct packet_config *config);
193
194 static void set_remote_protocol_packet_cmd (char *args, int from_tty,
195 struct cmd_list_element *c);
196
197 static void show_remote_protocol_packet_cmd (struct ui_file *file,
198 int from_tty,
199 struct cmd_list_element *c,
200 const char *value);
201
202 static char *write_ptid (char *buf, const char *endbuf, ptid_t ptid);
203 static ptid_t read_ptid (char *buf, char **obuf);
204
205 static void remote_query_supported (void);
206
207 static void remote_check_symbols (struct objfile *objfile);
208
209 void _initialize_remote (void);
210
211 struct stop_reply;
212 static struct stop_reply *stop_reply_xmalloc (void);
213 static void stop_reply_xfree (struct stop_reply *);
214 static void do_stop_reply_xfree (void *arg);
215 static void remote_parse_stop_reply (char *buf, struct stop_reply *);
216 static void push_stop_reply (struct stop_reply *);
217 static void remote_get_pending_stop_replies (void);
218 static void discard_pending_stop_replies (int pid);
219 static int peek_stop_reply (ptid_t ptid);
220
221 static void remote_async_inferior_event_handler (gdb_client_data);
222 static void remote_async_get_pending_events_handler (gdb_client_data);
223
224 static void remote_terminal_ours (void);
225
226 static int remote_read_description_p (struct target_ops *target);
227
228 /* The non-stop remote protocol provisions for one pending stop reply.
229 This is where we keep it until it is acknowledged. */
230
231 static struct stop_reply *pending_stop_reply = NULL;
232
233 /* For "remote". */
234
235 static struct cmd_list_element *remote_cmdlist;
236
237 /* For "set remote" and "show remote". */
238
239 static struct cmd_list_element *remote_set_cmdlist;
240 static struct cmd_list_element *remote_show_cmdlist;
241
242 /* Description of the remote protocol state for the currently
243 connected target. This is per-target state, and independent of the
244 selected architecture. */
245
246 struct remote_state
247 {
248 /* A buffer to use for incoming packets, and its current size. The
249 buffer is grown dynamically for larger incoming packets.
250 Outgoing packets may also be constructed in this buffer.
251 BUF_SIZE is always at least REMOTE_PACKET_SIZE;
252 REMOTE_PACKET_SIZE should be used to limit the length of outgoing
253 packets. */
254 char *buf;
255 long buf_size;
256
257 /* If we negotiated packet size explicitly (and thus can bypass
258 heuristics for the largest packet size that will not overflow
259 a buffer in the stub), this will be set to that packet size.
260 Otherwise zero, meaning to use the guessed size. */
261 long explicit_packet_size;
262
263 /* remote_wait is normally called when the target is running and
264 waits for a stop reply packet. But sometimes we need to call it
265 when the target is already stopped. We can send a "?" packet
266 and have remote_wait read the response. Or, if we already have
267 the response, we can stash it in BUF and tell remote_wait to
268 skip calling getpkt. This flag is set when BUF contains a
269 stop reply packet and the target is not waiting. */
270 int cached_wait_status;
271
272 /* True, if in no ack mode. That is, neither GDB nor the stub will
273 expect acks from each other. The connection is assumed to be
274 reliable. */
275 int noack_mode;
276
277 /* True if we're connected in extended remote mode. */
278 int extended;
279
280 /* True if the stub reported support for multi-process
281 extensions. */
282 int multi_process_aware;
283
284 /* True if we resumed the target and we're waiting for the target to
285 stop. In the mean time, we can't start another command/query.
286 The remote server wouldn't be ready to process it, so we'd
287 timeout waiting for a reply that would never come and eventually
288 we'd close the connection. This can happen in asynchronous mode
289 because we allow GDB commands while the target is running. */
290 int waiting_for_stop_reply;
291
292 /* True if the stub reports support for non-stop mode. */
293 int non_stop_aware;
294
295 /* True if the stub reports support for vCont;t. */
296 int support_vCont_t;
297 };
298
299 /* Returns true if the multi-process extensions are in effect. */
300 static int
301 remote_multi_process_p (struct remote_state *rs)
302 {
303 return rs->extended && rs->multi_process_aware;
304 }
305
306 /* This data could be associated with a target, but we do not always
307 have access to the current target when we need it, so for now it is
308 static. This will be fine for as long as only one target is in use
309 at a time. */
310 static struct remote_state remote_state;
311
312 static struct remote_state *
313 get_remote_state_raw (void)
314 {
315 return &remote_state;
316 }
317
318 /* Description of the remote protocol for a given architecture. */
319
320 struct packet_reg
321 {
322 long offset; /* Offset into G packet. */
323 long regnum; /* GDB's internal register number. */
324 LONGEST pnum; /* Remote protocol register number. */
325 int in_g_packet; /* Always part of G packet. */
326 /* long size in bytes; == register_size (target_gdbarch, regnum);
327 at present. */
328 /* char *name; == gdbarch_register_name (target_gdbarch, regnum);
329 at present. */
330 };
331
332 struct remote_arch_state
333 {
334 /* Description of the remote protocol registers. */
335 long sizeof_g_packet;
336
337 /* Description of the remote protocol registers indexed by REGNUM
338 (making an array gdbarch_num_regs in size). */
339 struct packet_reg *regs;
340
341 /* This is the size (in chars) of the first response to the ``g''
342 packet. It is used as a heuristic when determining the maximum
343 size of memory-read and memory-write packets. A target will
344 typically only reserve a buffer large enough to hold the ``g''
345 packet. The size does not include packet overhead (headers and
346 trailers). */
347 long actual_register_packet_size;
348
349 /* This is the maximum size (in chars) of a non read/write packet.
350 It is also used as a cap on the size of read/write packets. */
351 long remote_packet_size;
352 };
353
354
355 /* Handle for retreving the remote protocol data from gdbarch. */
356 static struct gdbarch_data *remote_gdbarch_data_handle;
357
358 static struct remote_arch_state *
359 get_remote_arch_state (void)
360 {
361 return gdbarch_data (target_gdbarch, remote_gdbarch_data_handle);
362 }
363
364 /* Fetch the global remote target state. */
365
366 static struct remote_state *
367 get_remote_state (void)
368 {
369 /* Make sure that the remote architecture state has been
370 initialized, because doing so might reallocate rs->buf. Any
371 function which calls getpkt also needs to be mindful of changes
372 to rs->buf, but this call limits the number of places which run
373 into trouble. */
374 get_remote_arch_state ();
375
376 return get_remote_state_raw ();
377 }
378
379 static int
380 compare_pnums (const void *lhs_, const void *rhs_)
381 {
382 const struct packet_reg * const *lhs = lhs_;
383 const struct packet_reg * const *rhs = rhs_;
384
385 if ((*lhs)->pnum < (*rhs)->pnum)
386 return -1;
387 else if ((*lhs)->pnum == (*rhs)->pnum)
388 return 0;
389 else
390 return 1;
391 }
392
393 static void *
394 init_remote_state (struct gdbarch *gdbarch)
395 {
396 int regnum, num_remote_regs, offset;
397 struct remote_state *rs = get_remote_state_raw ();
398 struct remote_arch_state *rsa;
399 struct packet_reg **remote_regs;
400
401 rsa = GDBARCH_OBSTACK_ZALLOC (gdbarch, struct remote_arch_state);
402
403 /* Use the architecture to build a regnum<->pnum table, which will be
404 1:1 unless a feature set specifies otherwise. */
405 rsa->regs = GDBARCH_OBSTACK_CALLOC (gdbarch,
406 gdbarch_num_regs (gdbarch),
407 struct packet_reg);
408 for (regnum = 0; regnum < gdbarch_num_regs (gdbarch); regnum++)
409 {
410 struct packet_reg *r = &rsa->regs[regnum];
411
412 if (register_size (gdbarch, regnum) == 0)
413 /* Do not try to fetch zero-sized (placeholder) registers. */
414 r->pnum = -1;
415 else
416 r->pnum = gdbarch_remote_register_number (gdbarch, regnum);
417
418 r->regnum = regnum;
419 }
420
421 /* Define the g/G packet format as the contents of each register
422 with a remote protocol number, in order of ascending protocol
423 number. */
424
425 remote_regs = alloca (gdbarch_num_regs (gdbarch)
426 * sizeof (struct packet_reg *));
427 for (num_remote_regs = 0, regnum = 0;
428 regnum < gdbarch_num_regs (gdbarch);
429 regnum++)
430 if (rsa->regs[regnum].pnum != -1)
431 remote_regs[num_remote_regs++] = &rsa->regs[regnum];
432
433 qsort (remote_regs, num_remote_regs, sizeof (struct packet_reg *),
434 compare_pnums);
435
436 for (regnum = 0, offset = 0; regnum < num_remote_regs; regnum++)
437 {
438 remote_regs[regnum]->in_g_packet = 1;
439 remote_regs[regnum]->offset = offset;
440 offset += register_size (gdbarch, remote_regs[regnum]->regnum);
441 }
442
443 /* Record the maximum possible size of the g packet - it may turn out
444 to be smaller. */
445 rsa->sizeof_g_packet = offset;
446
447 /* Default maximum number of characters in a packet body. Many
448 remote stubs have a hardwired buffer size of 400 bytes
449 (c.f. BUFMAX in m68k-stub.c and i386-stub.c). BUFMAX-1 is used
450 as the maximum packet-size to ensure that the packet and an extra
451 NUL character can always fit in the buffer. This stops GDB
452 trashing stubs that try to squeeze an extra NUL into what is
453 already a full buffer (As of 1999-12-04 that was most stubs). */
454 rsa->remote_packet_size = 400 - 1;
455
456 /* This one is filled in when a ``g'' packet is received. */
457 rsa->actual_register_packet_size = 0;
458
459 /* Should rsa->sizeof_g_packet needs more space than the
460 default, adjust the size accordingly. Remember that each byte is
461 encoded as two characters. 32 is the overhead for the packet
462 header / footer. NOTE: cagney/1999-10-26: I suspect that 8
463 (``$NN:G...#NN'') is a better guess, the below has been padded a
464 little. */
465 if (rsa->sizeof_g_packet > ((rsa->remote_packet_size - 32) / 2))
466 rsa->remote_packet_size = (rsa->sizeof_g_packet * 2 + 32);
467
468 /* Make sure that the packet buffer is plenty big enough for
469 this architecture. */
470 if (rs->buf_size < rsa->remote_packet_size)
471 {
472 rs->buf_size = 2 * rsa->remote_packet_size;
473 rs->buf = xrealloc (rs->buf, rs->buf_size);
474 }
475
476 return rsa;
477 }
478
479 /* Return the current allowed size of a remote packet. This is
480 inferred from the current architecture, and should be used to
481 limit the length of outgoing packets. */
482 static long
483 get_remote_packet_size (void)
484 {
485 struct remote_state *rs = get_remote_state ();
486 struct remote_arch_state *rsa = get_remote_arch_state ();
487
488 if (rs->explicit_packet_size)
489 return rs->explicit_packet_size;
490
491 return rsa->remote_packet_size;
492 }
493
494 static struct packet_reg *
495 packet_reg_from_regnum (struct remote_arch_state *rsa, long regnum)
496 {
497 if (regnum < 0 && regnum >= gdbarch_num_regs (target_gdbarch))
498 return NULL;
499 else
500 {
501 struct packet_reg *r = &rsa->regs[regnum];
502 gdb_assert (r->regnum == regnum);
503 return r;
504 }
505 }
506
507 static struct packet_reg *
508 packet_reg_from_pnum (struct remote_arch_state *rsa, LONGEST pnum)
509 {
510 int i;
511 for (i = 0; i < gdbarch_num_regs (target_gdbarch); i++)
512 {
513 struct packet_reg *r = &rsa->regs[i];
514 if (r->pnum == pnum)
515 return r;
516 }
517 return NULL;
518 }
519
520 /* FIXME: graces/2002-08-08: These variables should eventually be
521 bound to an instance of the target object (as in gdbarch-tdep()),
522 when such a thing exists. */
523
524 /* This is set to the data address of the access causing the target
525 to stop for a watchpoint. */
526 static CORE_ADDR remote_watch_data_address;
527
528 /* This is non-zero if target stopped for a watchpoint. */
529 static int remote_stopped_by_watchpoint_p;
530
531 static struct target_ops remote_ops;
532
533 static struct target_ops extended_remote_ops;
534
535 static int remote_async_mask_value = 1;
536
537 /* FIXME: cagney/1999-09-23: Even though getpkt was called with
538 ``forever'' still use the normal timeout mechanism. This is
539 currently used by the ASYNC code to guarentee that target reads
540 during the initial connect always time-out. Once getpkt has been
541 modified to return a timeout indication and, in turn
542 remote_wait()/wait_for_inferior() have gained a timeout parameter
543 this can go away. */
544 static int wait_forever_enabled_p = 1;
545
546
547 /* This variable chooses whether to send a ^C or a break when the user
548 requests program interruption. Although ^C is usually what remote
549 systems expect, and that is the default here, sometimes a break is
550 preferable instead. */
551
552 static int remote_break;
553
554 /* Descriptor for I/O to remote machine. Initialize it to NULL so that
555 remote_open knows that we don't have a file open when the program
556 starts. */
557 static struct serial *remote_desc = NULL;
558
559 /* This variable sets the number of bits in an address that are to be
560 sent in a memory ("M" or "m") packet. Normally, after stripping
561 leading zeros, the entire address would be sent. This variable
562 restricts the address to REMOTE_ADDRESS_SIZE bits. HISTORY: The
563 initial implementation of remote.c restricted the address sent in
564 memory packets to ``host::sizeof long'' bytes - (typically 32
565 bits). Consequently, for 64 bit targets, the upper 32 bits of an
566 address was never sent. Since fixing this bug may cause a break in
567 some remote targets this variable is principly provided to
568 facilitate backward compatibility. */
569
570 static int remote_address_size;
571
572 /* Temporary to track who currently owns the terminal. See
573 remote_terminal_* for more details. */
574
575 static int remote_async_terminal_ours_p;
576
577 /* The executable file to use for "run" on the remote side. */
578
579 static char *remote_exec_file = "";
580
581 \f
582 /* User configurable variables for the number of characters in a
583 memory read/write packet. MIN (rsa->remote_packet_size,
584 rsa->sizeof_g_packet) is the default. Some targets need smaller
585 values (fifo overruns, et.al.) and some users need larger values
586 (speed up transfers). The variables ``preferred_*'' (the user
587 request), ``current_*'' (what was actually set) and ``forced_*''
588 (Positive - a soft limit, negative - a hard limit). */
589
590 struct memory_packet_config
591 {
592 char *name;
593 long size;
594 int fixed_p;
595 };
596
597 /* Compute the current size of a read/write packet. Since this makes
598 use of ``actual_register_packet_size'' the computation is dynamic. */
599
600 static long
601 get_memory_packet_size (struct memory_packet_config *config)
602 {
603 struct remote_state *rs = get_remote_state ();
604 struct remote_arch_state *rsa = get_remote_arch_state ();
605
606 /* NOTE: The somewhat arbitrary 16k comes from the knowledge (folk
607 law?) that some hosts don't cope very well with large alloca()
608 calls. Eventually the alloca() code will be replaced by calls to
609 xmalloc() and make_cleanups() allowing this restriction to either
610 be lifted or removed. */
611 #ifndef MAX_REMOTE_PACKET_SIZE
612 #define MAX_REMOTE_PACKET_SIZE 16384
613 #endif
614 /* NOTE: 20 ensures we can write at least one byte. */
615 #ifndef MIN_REMOTE_PACKET_SIZE
616 #define MIN_REMOTE_PACKET_SIZE 20
617 #endif
618 long what_they_get;
619 if (config->fixed_p)
620 {
621 if (config->size <= 0)
622 what_they_get = MAX_REMOTE_PACKET_SIZE;
623 else
624 what_they_get = config->size;
625 }
626 else
627 {
628 what_they_get = get_remote_packet_size ();
629 /* Limit the packet to the size specified by the user. */
630 if (config->size > 0
631 && what_they_get > config->size)
632 what_they_get = config->size;
633
634 /* Limit it to the size of the targets ``g'' response unless we have
635 permission from the stub to use a larger packet size. */
636 if (rs->explicit_packet_size == 0
637 && rsa->actual_register_packet_size > 0
638 && what_they_get > rsa->actual_register_packet_size)
639 what_they_get = rsa->actual_register_packet_size;
640 }
641 if (what_they_get > MAX_REMOTE_PACKET_SIZE)
642 what_they_get = MAX_REMOTE_PACKET_SIZE;
643 if (what_they_get < MIN_REMOTE_PACKET_SIZE)
644 what_they_get = MIN_REMOTE_PACKET_SIZE;
645
646 /* Make sure there is room in the global buffer for this packet
647 (including its trailing NUL byte). */
648 if (rs->buf_size < what_they_get + 1)
649 {
650 rs->buf_size = 2 * what_they_get;
651 rs->buf = xrealloc (rs->buf, 2 * what_they_get);
652 }
653
654 return what_they_get;
655 }
656
657 /* Update the size of a read/write packet. If they user wants
658 something really big then do a sanity check. */
659
660 static void
661 set_memory_packet_size (char *args, struct memory_packet_config *config)
662 {
663 int fixed_p = config->fixed_p;
664 long size = config->size;
665 if (args == NULL)
666 error (_("Argument required (integer, `fixed' or `limited')."));
667 else if (strcmp (args, "hard") == 0
668 || strcmp (args, "fixed") == 0)
669 fixed_p = 1;
670 else if (strcmp (args, "soft") == 0
671 || strcmp (args, "limit") == 0)
672 fixed_p = 0;
673 else
674 {
675 char *end;
676 size = strtoul (args, &end, 0);
677 if (args == end)
678 error (_("Invalid %s (bad syntax)."), config->name);
679 #if 0
680 /* Instead of explicitly capping the size of a packet to
681 MAX_REMOTE_PACKET_SIZE or dissallowing it, the user is
682 instead allowed to set the size to something arbitrarily
683 large. */
684 if (size > MAX_REMOTE_PACKET_SIZE)
685 error (_("Invalid %s (too large)."), config->name);
686 #endif
687 }
688 /* Extra checks? */
689 if (fixed_p && !config->fixed_p)
690 {
691 if (! query (_("The target may not be able to correctly handle a %s\n"
692 "of %ld bytes. Change the packet size? "),
693 config->name, size))
694 error (_("Packet size not changed."));
695 }
696 /* Update the config. */
697 config->fixed_p = fixed_p;
698 config->size = size;
699 }
700
701 static void
702 show_memory_packet_size (struct memory_packet_config *config)
703 {
704 printf_filtered (_("The %s is %ld. "), config->name, config->size);
705 if (config->fixed_p)
706 printf_filtered (_("Packets are fixed at %ld bytes.\n"),
707 get_memory_packet_size (config));
708 else
709 printf_filtered (_("Packets are limited to %ld bytes.\n"),
710 get_memory_packet_size (config));
711 }
712
713 static struct memory_packet_config memory_write_packet_config =
714 {
715 "memory-write-packet-size",
716 };
717
718 static void
719 set_memory_write_packet_size (char *args, int from_tty)
720 {
721 set_memory_packet_size (args, &memory_write_packet_config);
722 }
723
724 static void
725 show_memory_write_packet_size (char *args, int from_tty)
726 {
727 show_memory_packet_size (&memory_write_packet_config);
728 }
729
730 static long
731 get_memory_write_packet_size (void)
732 {
733 return get_memory_packet_size (&memory_write_packet_config);
734 }
735
736 static struct memory_packet_config memory_read_packet_config =
737 {
738 "memory-read-packet-size",
739 };
740
741 static void
742 set_memory_read_packet_size (char *args, int from_tty)
743 {
744 set_memory_packet_size (args, &memory_read_packet_config);
745 }
746
747 static void
748 show_memory_read_packet_size (char *args, int from_tty)
749 {
750 show_memory_packet_size (&memory_read_packet_config);
751 }
752
753 static long
754 get_memory_read_packet_size (void)
755 {
756 long size = get_memory_packet_size (&memory_read_packet_config);
757 /* FIXME: cagney/1999-11-07: Functions like getpkt() need to get an
758 extra buffer size argument before the memory read size can be
759 increased beyond this. */
760 if (size > get_remote_packet_size ())
761 size = get_remote_packet_size ();
762 return size;
763 }
764
765 \f
766 /* Generic configuration support for packets the stub optionally
767 supports. Allows the user to specify the use of the packet as well
768 as allowing GDB to auto-detect support in the remote stub. */
769
770 enum packet_support
771 {
772 PACKET_SUPPORT_UNKNOWN = 0,
773 PACKET_ENABLE,
774 PACKET_DISABLE
775 };
776
777 struct packet_config
778 {
779 const char *name;
780 const char *title;
781 enum auto_boolean detect;
782 enum packet_support support;
783 };
784
785 /* Analyze a packet's return value and update the packet config
786 accordingly. */
787
788 enum packet_result
789 {
790 PACKET_ERROR,
791 PACKET_OK,
792 PACKET_UNKNOWN
793 };
794
795 static void
796 update_packet_config (struct packet_config *config)
797 {
798 switch (config->detect)
799 {
800 case AUTO_BOOLEAN_TRUE:
801 config->support = PACKET_ENABLE;
802 break;
803 case AUTO_BOOLEAN_FALSE:
804 config->support = PACKET_DISABLE;
805 break;
806 case AUTO_BOOLEAN_AUTO:
807 config->support = PACKET_SUPPORT_UNKNOWN;
808 break;
809 }
810 }
811
812 static void
813 show_packet_config_cmd (struct packet_config *config)
814 {
815 char *support = "internal-error";
816 switch (config->support)
817 {
818 case PACKET_ENABLE:
819 support = "enabled";
820 break;
821 case PACKET_DISABLE:
822 support = "disabled";
823 break;
824 case PACKET_SUPPORT_UNKNOWN:
825 support = "unknown";
826 break;
827 }
828 switch (config->detect)
829 {
830 case AUTO_BOOLEAN_AUTO:
831 printf_filtered (_("Support for the `%s' packet is auto-detected, currently %s.\n"),
832 config->name, support);
833 break;
834 case AUTO_BOOLEAN_TRUE:
835 case AUTO_BOOLEAN_FALSE:
836 printf_filtered (_("Support for the `%s' packet is currently %s.\n"),
837 config->name, support);
838 break;
839 }
840 }
841
842 static void
843 add_packet_config_cmd (struct packet_config *config, const char *name,
844 const char *title, int legacy)
845 {
846 char *set_doc;
847 char *show_doc;
848 char *cmd_name;
849
850 config->name = name;
851 config->title = title;
852 config->detect = AUTO_BOOLEAN_AUTO;
853 config->support = PACKET_SUPPORT_UNKNOWN;
854 set_doc = xstrprintf ("Set use of remote protocol `%s' (%s) packet",
855 name, title);
856 show_doc = xstrprintf ("Show current use of remote protocol `%s' (%s) packet",
857 name, title);
858 /* set/show TITLE-packet {auto,on,off} */
859 cmd_name = xstrprintf ("%s-packet", title);
860 add_setshow_auto_boolean_cmd (cmd_name, class_obscure,
861 &config->detect, set_doc, show_doc, NULL, /* help_doc */
862 set_remote_protocol_packet_cmd,
863 show_remote_protocol_packet_cmd,
864 &remote_set_cmdlist, &remote_show_cmdlist);
865 /* set/show remote NAME-packet {auto,on,off} -- legacy. */
866 if (legacy)
867 {
868 char *legacy_name;
869 legacy_name = xstrprintf ("%s-packet", name);
870 add_alias_cmd (legacy_name, cmd_name, class_obscure, 0,
871 &remote_set_cmdlist);
872 add_alias_cmd (legacy_name, cmd_name, class_obscure, 0,
873 &remote_show_cmdlist);
874 }
875 }
876
877 static enum packet_result
878 packet_check_result (const char *buf)
879 {
880 if (buf[0] != '\0')
881 {
882 /* The stub recognized the packet request. Check that the
883 operation succeeded. */
884 if (buf[0] == 'E'
885 && isxdigit (buf[1]) && isxdigit (buf[2])
886 && buf[3] == '\0')
887 /* "Enn" - definitly an error. */
888 return PACKET_ERROR;
889
890 /* Always treat "E." as an error. This will be used for
891 more verbose error messages, such as E.memtypes. */
892 if (buf[0] == 'E' && buf[1] == '.')
893 return PACKET_ERROR;
894
895 /* The packet may or may not be OK. Just assume it is. */
896 return PACKET_OK;
897 }
898 else
899 /* The stub does not support the packet. */
900 return PACKET_UNKNOWN;
901 }
902
903 static enum packet_result
904 packet_ok (const char *buf, struct packet_config *config)
905 {
906 enum packet_result result;
907
908 result = packet_check_result (buf);
909 switch (result)
910 {
911 case PACKET_OK:
912 case PACKET_ERROR:
913 /* The stub recognized the packet request. */
914 switch (config->support)
915 {
916 case PACKET_SUPPORT_UNKNOWN:
917 if (remote_debug)
918 fprintf_unfiltered (gdb_stdlog,
919 "Packet %s (%s) is supported\n",
920 config->name, config->title);
921 config->support = PACKET_ENABLE;
922 break;
923 case PACKET_DISABLE:
924 internal_error (__FILE__, __LINE__,
925 _("packet_ok: attempt to use a disabled packet"));
926 break;
927 case PACKET_ENABLE:
928 break;
929 }
930 break;
931 case PACKET_UNKNOWN:
932 /* The stub does not support the packet. */
933 switch (config->support)
934 {
935 case PACKET_ENABLE:
936 if (config->detect == AUTO_BOOLEAN_AUTO)
937 /* If the stub previously indicated that the packet was
938 supported then there is a protocol error.. */
939 error (_("Protocol error: %s (%s) conflicting enabled responses."),
940 config->name, config->title);
941 else
942 /* The user set it wrong. */
943 error (_("Enabled packet %s (%s) not recognized by stub"),
944 config->name, config->title);
945 break;
946 case PACKET_SUPPORT_UNKNOWN:
947 if (remote_debug)
948 fprintf_unfiltered (gdb_stdlog,
949 "Packet %s (%s) is NOT supported\n",
950 config->name, config->title);
951 config->support = PACKET_DISABLE;
952 break;
953 case PACKET_DISABLE:
954 break;
955 }
956 break;
957 }
958
959 return result;
960 }
961
962 enum {
963 PACKET_vCont = 0,
964 PACKET_X,
965 PACKET_qSymbol,
966 PACKET_P,
967 PACKET_p,
968 PACKET_Z0,
969 PACKET_Z1,
970 PACKET_Z2,
971 PACKET_Z3,
972 PACKET_Z4,
973 PACKET_vFile_open,
974 PACKET_vFile_pread,
975 PACKET_vFile_pwrite,
976 PACKET_vFile_close,
977 PACKET_vFile_unlink,
978 PACKET_qXfer_auxv,
979 PACKET_qXfer_features,
980 PACKET_qXfer_libraries,
981 PACKET_qXfer_memory_map,
982 PACKET_qXfer_spu_read,
983 PACKET_qXfer_spu_write,
984 PACKET_qXfer_osdata,
985 PACKET_qGetTLSAddr,
986 PACKET_qSupported,
987 PACKET_QPassSignals,
988 PACKET_qSearch_memory,
989 PACKET_vAttach,
990 PACKET_vRun,
991 PACKET_QStartNoAckMode,
992 PACKET_vKill,
993 PACKET_qXfer_siginfo_read,
994 PACKET_qXfer_siginfo_write,
995 PACKET_qAttached,
996 PACKET_MAX
997 };
998
999 static struct packet_config remote_protocol_packets[PACKET_MAX];
1000
1001 static void
1002 set_remote_protocol_packet_cmd (char *args, int from_tty,
1003 struct cmd_list_element *c)
1004 {
1005 struct packet_config *packet;
1006
1007 for (packet = remote_protocol_packets;
1008 packet < &remote_protocol_packets[PACKET_MAX];
1009 packet++)
1010 {
1011 if (&packet->detect == c->var)
1012 {
1013 update_packet_config (packet);
1014 return;
1015 }
1016 }
1017 internal_error (__FILE__, __LINE__, "Could not find config for %s",
1018 c->name);
1019 }
1020
1021 static void
1022 show_remote_protocol_packet_cmd (struct ui_file *file, int from_tty,
1023 struct cmd_list_element *c,
1024 const char *value)
1025 {
1026 struct packet_config *packet;
1027
1028 for (packet = remote_protocol_packets;
1029 packet < &remote_protocol_packets[PACKET_MAX];
1030 packet++)
1031 {
1032 if (&packet->detect == c->var)
1033 {
1034 show_packet_config_cmd (packet);
1035 return;
1036 }
1037 }
1038 internal_error (__FILE__, __LINE__, "Could not find config for %s",
1039 c->name);
1040 }
1041
1042 /* Should we try one of the 'Z' requests? */
1043
1044 enum Z_packet_type
1045 {
1046 Z_PACKET_SOFTWARE_BP,
1047 Z_PACKET_HARDWARE_BP,
1048 Z_PACKET_WRITE_WP,
1049 Z_PACKET_READ_WP,
1050 Z_PACKET_ACCESS_WP,
1051 NR_Z_PACKET_TYPES
1052 };
1053
1054 /* For compatibility with older distributions. Provide a ``set remote
1055 Z-packet ...'' command that updates all the Z packet types. */
1056
1057 static enum auto_boolean remote_Z_packet_detect;
1058
1059 static void
1060 set_remote_protocol_Z_packet_cmd (char *args, int from_tty,
1061 struct cmd_list_element *c)
1062 {
1063 int i;
1064 for (i = 0; i < NR_Z_PACKET_TYPES; i++)
1065 {
1066 remote_protocol_packets[PACKET_Z0 + i].detect = remote_Z_packet_detect;
1067 update_packet_config (&remote_protocol_packets[PACKET_Z0 + i]);
1068 }
1069 }
1070
1071 static void
1072 show_remote_protocol_Z_packet_cmd (struct ui_file *file, int from_tty,
1073 struct cmd_list_element *c,
1074 const char *value)
1075 {
1076 int i;
1077 for (i = 0; i < NR_Z_PACKET_TYPES; i++)
1078 {
1079 show_packet_config_cmd (&remote_protocol_packets[PACKET_Z0 + i]);
1080 }
1081 }
1082
1083 /* Should we try the 'ThreadInfo' query packet?
1084
1085 This variable (NOT available to the user: auto-detect only!)
1086 determines whether GDB will use the new, simpler "ThreadInfo"
1087 query or the older, more complex syntax for thread queries.
1088 This is an auto-detect variable (set to true at each connect,
1089 and set to false when the target fails to recognize it). */
1090
1091 static int use_threadinfo_query;
1092 static int use_threadextra_query;
1093
1094 /* Tokens for use by the asynchronous signal handlers for SIGINT. */
1095 static struct async_signal_handler *sigint_remote_twice_token;
1096 static struct async_signal_handler *sigint_remote_token;
1097
1098 \f
1099 /* Asynchronous signal handle registered as event loop source for
1100 when we have pending events ready to be passed to the core. */
1101
1102 static struct async_event_handler *remote_async_inferior_event_token;
1103
1104 /* Asynchronous signal handle registered as event loop source for when
1105 the remote sent us a %Stop notification. The registered callback
1106 will do a vStopped sequence to pull the rest of the events out of
1107 the remote side into our event queue. */
1108
1109 static struct async_event_handler *remote_async_get_pending_events_token;
1110 \f
1111
1112 static ptid_t magic_null_ptid;
1113 static ptid_t not_sent_ptid;
1114 static ptid_t any_thread_ptid;
1115
1116 /* These are the threads which we last sent to the remote system. The
1117 TID member will be -1 for all or -2 for not sent yet. */
1118
1119 static ptid_t general_thread;
1120 static ptid_t continue_thread;
1121
1122 /* Find out if the stub attached to PID (and hence GDB should offer to
1123 detach instead of killing it when bailing out). */
1124
1125 static int
1126 remote_query_attached (int pid)
1127 {
1128 struct remote_state *rs = get_remote_state ();
1129
1130 if (remote_protocol_packets[PACKET_qAttached].support == PACKET_DISABLE)
1131 return 0;
1132
1133 if (remote_multi_process_p (rs))
1134 sprintf (rs->buf, "qAttached:%x", pid);
1135 else
1136 sprintf (rs->buf, "qAttached");
1137
1138 putpkt (rs->buf);
1139 getpkt (&rs->buf, &rs->buf_size, 0);
1140
1141 switch (packet_ok (rs->buf,
1142 &remote_protocol_packets[PACKET_qAttached]) == PACKET_OK)
1143 {
1144 case PACKET_OK:
1145 if (strcmp (rs->buf, "1") == 0)
1146 return 1;
1147 break;
1148 case PACKET_ERROR:
1149 warning (_("Remote failure reply: %s"), rs->buf);
1150 break;
1151 case PACKET_UNKNOWN:
1152 break;
1153 }
1154
1155 return 0;
1156 }
1157
1158 /* Add PID to GDB's inferior table. Since we can be connected to a
1159 remote system before before knowing about any inferior, mark the
1160 target with execution when we find the first inferior. If ATTACHED
1161 is 1, then we had just attached to this inferior. If it is 0, then
1162 we just created this inferior. If it is -1, then try querying the
1163 remote stub to find out if it had attached to the inferior or
1164 not. */
1165
1166 static struct inferior *
1167 remote_add_inferior (int pid, int attached)
1168 {
1169 struct remote_state *rs = get_remote_state ();
1170 struct inferior *inf;
1171
1172 /* Check whether this process we're learning about is to be
1173 considered attached, or if is to be considered to have been
1174 spawned by the stub. */
1175 if (attached == -1)
1176 attached = remote_query_attached (pid);
1177
1178 inf = add_inferior (pid);
1179
1180 inf->attach_flag = attached;
1181
1182 /* This may be the first inferior we hear about. */
1183 if (!target_has_execution)
1184 {
1185 if (rs->extended)
1186 target_mark_running (&extended_remote_ops);
1187 else
1188 target_mark_running (&remote_ops);
1189 }
1190
1191 return inf;
1192 }
1193
1194 /* Add thread PTID to GDB's thread list. Tag it as executing/running
1195 according to RUNNING. */
1196
1197 static void
1198 remote_add_thread (ptid_t ptid, int running)
1199 {
1200 add_thread (ptid);
1201
1202 set_executing (ptid, running);
1203 set_running (ptid, running);
1204 }
1205
1206 /* Come here when we learn about a thread id from the remote target.
1207 It may be the first time we hear about such thread, so take the
1208 opportunity to add it to GDB's thread list. In case this is the
1209 first time we're noticing its corresponding inferior, add it to
1210 GDB's inferior list as well. */
1211
1212 static void
1213 remote_notice_new_inferior (ptid_t currthread, int running)
1214 {
1215 struct remote_state *rs = get_remote_state ();
1216
1217 /* If this is a new thread, add it to GDB's thread list.
1218 If we leave it up to WFI to do this, bad things will happen. */
1219
1220 if (in_thread_list (currthread) && is_exited (currthread))
1221 {
1222 /* We're seeing an event on a thread id we knew had exited.
1223 This has to be a new thread reusing the old id. Add it. */
1224 remote_add_thread (currthread, running);
1225 return;
1226 }
1227
1228 if (!in_thread_list (currthread))
1229 {
1230 struct inferior *inf = NULL;
1231
1232 if (ptid_equal (pid_to_ptid (ptid_get_pid (currthread)), inferior_ptid))
1233 {
1234 /* inferior_ptid has no thread member yet. This can happen
1235 with the vAttach -> remote_wait,"TAAthread:" path if the
1236 stub doesn't support qC. This is the first stop reported
1237 after an attach, so this is the main thread. Update the
1238 ptid in the thread list. */
1239 thread_change_ptid (inferior_ptid, currthread);
1240 return;
1241 }
1242
1243 if (ptid_equal (magic_null_ptid, inferior_ptid))
1244 {
1245 /* inferior_ptid is not set yet. This can happen with the
1246 vRun -> remote_wait,"TAAthread:" path if the stub
1247 doesn't support qC. This is the first stop reported
1248 after an attach, so this is the main thread. Update the
1249 ptid in the thread list. */
1250 thread_change_ptid (inferior_ptid, currthread);
1251 return;
1252 }
1253
1254 /* When connecting to a target remote, or to a target
1255 extended-remote which already was debugging an inferior, we
1256 may not know about it yet. Add it before adding its child
1257 thread, so notifications are emitted in a sensible order. */
1258 if (!in_inferior_list (ptid_get_pid (currthread)))
1259 inf = remote_add_inferior (ptid_get_pid (currthread), -1);
1260
1261 /* This is really a new thread. Add it. */
1262 remote_add_thread (currthread, running);
1263
1264 /* If we found a new inferior, let the common code do whatever
1265 it needs to with it (e.g., read shared libraries, insert
1266 breakpoints). */
1267 if (inf != NULL)
1268 notice_new_inferior (currthread, running, 0);
1269 }
1270 }
1271
1272 /* Call this function as a result of
1273 1) A halt indication (T packet) containing a thread id
1274 2) A direct query of currthread
1275 3) Successful execution of set thread
1276 */
1277
1278 static void
1279 record_currthread (ptid_t currthread)
1280 {
1281 general_thread = currthread;
1282
1283 if (ptid_equal (currthread, minus_one_ptid))
1284 /* We're just invalidating the local thread mirror. */
1285 return;
1286
1287 remote_notice_new_inferior (currthread, 0);
1288 }
1289
1290 static char *last_pass_packet;
1291
1292 /* If 'QPassSignals' is supported, tell the remote stub what signals
1293 it can simply pass through to the inferior without reporting. */
1294
1295 static void
1296 remote_pass_signals (void)
1297 {
1298 if (remote_protocol_packets[PACKET_QPassSignals].support != PACKET_DISABLE)
1299 {
1300 char *pass_packet, *p;
1301 int numsigs = (int) TARGET_SIGNAL_LAST;
1302 int count = 0, i;
1303
1304 gdb_assert (numsigs < 256);
1305 for (i = 0; i < numsigs; i++)
1306 {
1307 if (signal_stop_state (i) == 0
1308 && signal_print_state (i) == 0
1309 && signal_pass_state (i) == 1)
1310 count++;
1311 }
1312 pass_packet = xmalloc (count * 3 + strlen ("QPassSignals:") + 1);
1313 strcpy (pass_packet, "QPassSignals:");
1314 p = pass_packet + strlen (pass_packet);
1315 for (i = 0; i < numsigs; i++)
1316 {
1317 if (signal_stop_state (i) == 0
1318 && signal_print_state (i) == 0
1319 && signal_pass_state (i) == 1)
1320 {
1321 if (i >= 16)
1322 *p++ = tohex (i >> 4);
1323 *p++ = tohex (i & 15);
1324 if (count)
1325 *p++ = ';';
1326 else
1327 break;
1328 count--;
1329 }
1330 }
1331 *p = 0;
1332 if (!last_pass_packet || strcmp (last_pass_packet, pass_packet))
1333 {
1334 struct remote_state *rs = get_remote_state ();
1335 char *buf = rs->buf;
1336
1337 putpkt (pass_packet);
1338 getpkt (&rs->buf, &rs->buf_size, 0);
1339 packet_ok (buf, &remote_protocol_packets[PACKET_QPassSignals]);
1340 if (last_pass_packet)
1341 xfree (last_pass_packet);
1342 last_pass_packet = pass_packet;
1343 }
1344 else
1345 xfree (pass_packet);
1346 }
1347 }
1348
1349 /* If PTID is MAGIC_NULL_PTID, don't set any thread. If PTID is
1350 MINUS_ONE_PTID, set the thread to -1, so the stub returns the
1351 thread. If GEN is set, set the general thread, if not, then set
1352 the step/continue thread. */
1353 static void
1354 set_thread (struct ptid ptid, int gen)
1355 {
1356 struct remote_state *rs = get_remote_state ();
1357 ptid_t state = gen ? general_thread : continue_thread;
1358 char *buf = rs->buf;
1359 char *endbuf = rs->buf + get_remote_packet_size ();
1360
1361 if (ptid_equal (state, ptid))
1362 return;
1363
1364 *buf++ = 'H';
1365 *buf++ = gen ? 'g' : 'c';
1366 if (ptid_equal (ptid, magic_null_ptid))
1367 xsnprintf (buf, endbuf - buf, "0");
1368 else if (ptid_equal (ptid, any_thread_ptid))
1369 xsnprintf (buf, endbuf - buf, "0");
1370 else if (ptid_equal (ptid, minus_one_ptid))
1371 xsnprintf (buf, endbuf - buf, "-1");
1372 else
1373 write_ptid (buf, endbuf, ptid);
1374 putpkt (rs->buf);
1375 getpkt (&rs->buf, &rs->buf_size, 0);
1376 if (gen)
1377 general_thread = ptid;
1378 else
1379 continue_thread = ptid;
1380 }
1381
1382 static void
1383 set_general_thread (struct ptid ptid)
1384 {
1385 set_thread (ptid, 1);
1386 }
1387
1388 static void
1389 set_continue_thread (struct ptid ptid)
1390 {
1391 set_thread (ptid, 0);
1392 }
1393
1394 /* Change the remote current process. Which thread within the process
1395 ends up selected isn't important, as long as it is the same process
1396 as what INFERIOR_PTID points to.
1397
1398 This comes from that fact that there is no explicit notion of
1399 "selected process" in the protocol. The selected process for
1400 general operations is the process the selected general thread
1401 belongs to. */
1402
1403 static void
1404 set_general_process (void)
1405 {
1406 struct remote_state *rs = get_remote_state ();
1407
1408 /* If the remote can't handle multiple processes, don't bother. */
1409 if (!remote_multi_process_p (rs))
1410 return;
1411
1412 /* We only need to change the remote current thread if it's pointing
1413 at some other process. */
1414 if (ptid_get_pid (general_thread) != ptid_get_pid (inferior_ptid))
1415 set_general_thread (inferior_ptid);
1416 }
1417
1418 \f
1419 /* Return nonzero if the thread PTID is still alive on the remote
1420 system. */
1421
1422 static int
1423 remote_thread_alive (struct target_ops *ops, ptid_t ptid)
1424 {
1425 struct remote_state *rs = get_remote_state ();
1426 int tid = ptid_get_tid (ptid);
1427 char *p, *endp;
1428
1429 if (ptid_equal (ptid, magic_null_ptid))
1430 /* The main thread is always alive. */
1431 return 1;
1432
1433 if (ptid_get_pid (ptid) != 0 && ptid_get_tid (ptid) == 0)
1434 /* The main thread is always alive. This can happen after a
1435 vAttach, if the remote side doesn't support
1436 multi-threading. */
1437 return 1;
1438
1439 p = rs->buf;
1440 endp = rs->buf + get_remote_packet_size ();
1441
1442 *p++ = 'T';
1443 write_ptid (p, endp, ptid);
1444
1445 putpkt (rs->buf);
1446 getpkt (&rs->buf, &rs->buf_size, 0);
1447 return (rs->buf[0] == 'O' && rs->buf[1] == 'K');
1448 }
1449
1450 /* About these extended threadlist and threadinfo packets. They are
1451 variable length packets but, the fields within them are often fixed
1452 length. They are redundent enough to send over UDP as is the
1453 remote protocol in general. There is a matching unit test module
1454 in libstub. */
1455
1456 #define OPAQUETHREADBYTES 8
1457
1458 /* a 64 bit opaque identifier */
1459 typedef unsigned char threadref[OPAQUETHREADBYTES];
1460
1461 /* WARNING: This threadref data structure comes from the remote O.S.,
1462 libstub protocol encoding, and remote.c. it is not particularly
1463 changable. */
1464
1465 /* Right now, the internal structure is int. We want it to be bigger.
1466 Plan to fix this.
1467 */
1468
1469 typedef int gdb_threadref; /* Internal GDB thread reference. */
1470
1471 /* gdb_ext_thread_info is an internal GDB data structure which is
1472 equivalent to the reply of the remote threadinfo packet. */
1473
1474 struct gdb_ext_thread_info
1475 {
1476 threadref threadid; /* External form of thread reference. */
1477 int active; /* Has state interesting to GDB?
1478 regs, stack. */
1479 char display[256]; /* Brief state display, name,
1480 blocked/suspended. */
1481 char shortname[32]; /* To be used to name threads. */
1482 char more_display[256]; /* Long info, statistics, queue depth,
1483 whatever. */
1484 };
1485
1486 /* The volume of remote transfers can be limited by submitting
1487 a mask containing bits specifying the desired information.
1488 Use a union of these values as the 'selection' parameter to
1489 get_thread_info. FIXME: Make these TAG names more thread specific.
1490 */
1491
1492 #define TAG_THREADID 1
1493 #define TAG_EXISTS 2
1494 #define TAG_DISPLAY 4
1495 #define TAG_THREADNAME 8
1496 #define TAG_MOREDISPLAY 16
1497
1498 #define BUF_THREAD_ID_SIZE (OPAQUETHREADBYTES * 2)
1499
1500 char *unpack_varlen_hex (char *buff, ULONGEST *result);
1501
1502 static char *unpack_nibble (char *buf, int *val);
1503
1504 static char *pack_nibble (char *buf, int nibble);
1505
1506 static char *pack_hex_byte (char *pkt, int /* unsigned char */ byte);
1507
1508 static char *unpack_byte (char *buf, int *value);
1509
1510 static char *pack_int (char *buf, int value);
1511
1512 static char *unpack_int (char *buf, int *value);
1513
1514 static char *unpack_string (char *src, char *dest, int length);
1515
1516 static char *pack_threadid (char *pkt, threadref *id);
1517
1518 static char *unpack_threadid (char *inbuf, threadref *id);
1519
1520 void int_to_threadref (threadref *id, int value);
1521
1522 static int threadref_to_int (threadref *ref);
1523
1524 static void copy_threadref (threadref *dest, threadref *src);
1525
1526 static int threadmatch (threadref *dest, threadref *src);
1527
1528 static char *pack_threadinfo_request (char *pkt, int mode,
1529 threadref *id);
1530
1531 static int remote_unpack_thread_info_response (char *pkt,
1532 threadref *expectedref,
1533 struct gdb_ext_thread_info
1534 *info);
1535
1536
1537 static int remote_get_threadinfo (threadref *threadid,
1538 int fieldset, /*TAG mask */
1539 struct gdb_ext_thread_info *info);
1540
1541 static char *pack_threadlist_request (char *pkt, int startflag,
1542 int threadcount,
1543 threadref *nextthread);
1544
1545 static int parse_threadlist_response (char *pkt,
1546 int result_limit,
1547 threadref *original_echo,
1548 threadref *resultlist,
1549 int *doneflag);
1550
1551 static int remote_get_threadlist (int startflag,
1552 threadref *nextthread,
1553 int result_limit,
1554 int *done,
1555 int *result_count,
1556 threadref *threadlist);
1557
1558 typedef int (*rmt_thread_action) (threadref *ref, void *context);
1559
1560 static int remote_threadlist_iterator (rmt_thread_action stepfunction,
1561 void *context, int looplimit);
1562
1563 static int remote_newthread_step (threadref *ref, void *context);
1564
1565
1566 /* Write a PTID to BUF. ENDBUF points to one-passed-the-end of the
1567 buffer we're allowed to write to. Returns
1568 BUF+CHARACTERS_WRITTEN. */
1569
1570 static char *
1571 write_ptid (char *buf, const char *endbuf, ptid_t ptid)
1572 {
1573 int pid, tid;
1574 struct remote_state *rs = get_remote_state ();
1575
1576 if (remote_multi_process_p (rs))
1577 {
1578 pid = ptid_get_pid (ptid);
1579 if (pid < 0)
1580 buf += xsnprintf (buf, endbuf - buf, "p-%x.", -pid);
1581 else
1582 buf += xsnprintf (buf, endbuf - buf, "p%x.", pid);
1583 }
1584 tid = ptid_get_tid (ptid);
1585 if (tid < 0)
1586 buf += xsnprintf (buf, endbuf - buf, "-%x", -tid);
1587 else
1588 buf += xsnprintf (buf, endbuf - buf, "%x", tid);
1589
1590 return buf;
1591 }
1592
1593 /* Extract a PTID from BUF. If non-null, OBUF is set to the to one
1594 passed the last parsed char. Returns null_ptid on error. */
1595
1596 static ptid_t
1597 read_ptid (char *buf, char **obuf)
1598 {
1599 char *p = buf;
1600 char *pp;
1601 ULONGEST pid = 0, tid = 0;
1602 ptid_t ptid;
1603
1604 if (*p == 'p')
1605 {
1606 /* Multi-process ptid. */
1607 pp = unpack_varlen_hex (p + 1, &pid);
1608 if (*pp != '.')
1609 error (_("invalid remote ptid: %s\n"), p);
1610
1611 p = pp;
1612 pp = unpack_varlen_hex (p + 1, &tid);
1613 if (obuf)
1614 *obuf = pp;
1615 return ptid_build (pid, 0, tid);
1616 }
1617
1618 /* No multi-process. Just a tid. */
1619 pp = unpack_varlen_hex (p, &tid);
1620
1621 /* Since the stub is not sending a process id, then default to
1622 what's in inferior_ptid, unless it's null at this point. If so,
1623 then since there's no way to know the pid of the reported
1624 threads, use the magic number. */
1625 if (ptid_equal (inferior_ptid, null_ptid))
1626 pid = ptid_get_pid (magic_null_ptid);
1627 else
1628 pid = ptid_get_pid (inferior_ptid);
1629
1630 if (obuf)
1631 *obuf = pp;
1632 return ptid_build (pid, 0, tid);
1633 }
1634
1635 /* Encode 64 bits in 16 chars of hex. */
1636
1637 static const char hexchars[] = "0123456789abcdef";
1638
1639 static int
1640 ishex (int ch, int *val)
1641 {
1642 if ((ch >= 'a') && (ch <= 'f'))
1643 {
1644 *val = ch - 'a' + 10;
1645 return 1;
1646 }
1647 if ((ch >= 'A') && (ch <= 'F'))
1648 {
1649 *val = ch - 'A' + 10;
1650 return 1;
1651 }
1652 if ((ch >= '0') && (ch <= '9'))
1653 {
1654 *val = ch - '0';
1655 return 1;
1656 }
1657 return 0;
1658 }
1659
1660 static int
1661 stubhex (int ch)
1662 {
1663 if (ch >= 'a' && ch <= 'f')
1664 return ch - 'a' + 10;
1665 if (ch >= '0' && ch <= '9')
1666 return ch - '0';
1667 if (ch >= 'A' && ch <= 'F')
1668 return ch - 'A' + 10;
1669 return -1;
1670 }
1671
1672 static int
1673 stub_unpack_int (char *buff, int fieldlength)
1674 {
1675 int nibble;
1676 int retval = 0;
1677
1678 while (fieldlength)
1679 {
1680 nibble = stubhex (*buff++);
1681 retval |= nibble;
1682 fieldlength--;
1683 if (fieldlength)
1684 retval = retval << 4;
1685 }
1686 return retval;
1687 }
1688
1689 char *
1690 unpack_varlen_hex (char *buff, /* packet to parse */
1691 ULONGEST *result)
1692 {
1693 int nibble;
1694 ULONGEST retval = 0;
1695
1696 while (ishex (*buff, &nibble))
1697 {
1698 buff++;
1699 retval = retval << 4;
1700 retval |= nibble & 0x0f;
1701 }
1702 *result = retval;
1703 return buff;
1704 }
1705
1706 static char *
1707 unpack_nibble (char *buf, int *val)
1708 {
1709 *val = fromhex (*buf++);
1710 return buf;
1711 }
1712
1713 static char *
1714 pack_nibble (char *buf, int nibble)
1715 {
1716 *buf++ = hexchars[(nibble & 0x0f)];
1717 return buf;
1718 }
1719
1720 static char *
1721 pack_hex_byte (char *pkt, int byte)
1722 {
1723 *pkt++ = hexchars[(byte >> 4) & 0xf];
1724 *pkt++ = hexchars[(byte & 0xf)];
1725 return pkt;
1726 }
1727
1728 static char *
1729 unpack_byte (char *buf, int *value)
1730 {
1731 *value = stub_unpack_int (buf, 2);
1732 return buf + 2;
1733 }
1734
1735 static char *
1736 pack_int (char *buf, int value)
1737 {
1738 buf = pack_hex_byte (buf, (value >> 24) & 0xff);
1739 buf = pack_hex_byte (buf, (value >> 16) & 0xff);
1740 buf = pack_hex_byte (buf, (value >> 8) & 0x0ff);
1741 buf = pack_hex_byte (buf, (value & 0xff));
1742 return buf;
1743 }
1744
1745 static char *
1746 unpack_int (char *buf, int *value)
1747 {
1748 *value = stub_unpack_int (buf, 8);
1749 return buf + 8;
1750 }
1751
1752 #if 0 /* Currently unused, uncomment when needed. */
1753 static char *pack_string (char *pkt, char *string);
1754
1755 static char *
1756 pack_string (char *pkt, char *string)
1757 {
1758 char ch;
1759 int len;
1760
1761 len = strlen (string);
1762 if (len > 200)
1763 len = 200; /* Bigger than most GDB packets, junk??? */
1764 pkt = pack_hex_byte (pkt, len);
1765 while (len-- > 0)
1766 {
1767 ch = *string++;
1768 if ((ch == '\0') || (ch == '#'))
1769 ch = '*'; /* Protect encapsulation. */
1770 *pkt++ = ch;
1771 }
1772 return pkt;
1773 }
1774 #endif /* 0 (unused) */
1775
1776 static char *
1777 unpack_string (char *src, char *dest, int length)
1778 {
1779 while (length--)
1780 *dest++ = *src++;
1781 *dest = '\0';
1782 return src;
1783 }
1784
1785 static char *
1786 pack_threadid (char *pkt, threadref *id)
1787 {
1788 char *limit;
1789 unsigned char *altid;
1790
1791 altid = (unsigned char *) id;
1792 limit = pkt + BUF_THREAD_ID_SIZE;
1793 while (pkt < limit)
1794 pkt = pack_hex_byte (pkt, *altid++);
1795 return pkt;
1796 }
1797
1798
1799 static char *
1800 unpack_threadid (char *inbuf, threadref *id)
1801 {
1802 char *altref;
1803 char *limit = inbuf + BUF_THREAD_ID_SIZE;
1804 int x, y;
1805
1806 altref = (char *) id;
1807
1808 while (inbuf < limit)
1809 {
1810 x = stubhex (*inbuf++);
1811 y = stubhex (*inbuf++);
1812 *altref++ = (x << 4) | y;
1813 }
1814 return inbuf;
1815 }
1816
1817 /* Externally, threadrefs are 64 bits but internally, they are still
1818 ints. This is due to a mismatch of specifications. We would like
1819 to use 64bit thread references internally. This is an adapter
1820 function. */
1821
1822 void
1823 int_to_threadref (threadref *id, int value)
1824 {
1825 unsigned char *scan;
1826
1827 scan = (unsigned char *) id;
1828 {
1829 int i = 4;
1830 while (i--)
1831 *scan++ = 0;
1832 }
1833 *scan++ = (value >> 24) & 0xff;
1834 *scan++ = (value >> 16) & 0xff;
1835 *scan++ = (value >> 8) & 0xff;
1836 *scan++ = (value & 0xff);
1837 }
1838
1839 static int
1840 threadref_to_int (threadref *ref)
1841 {
1842 int i, value = 0;
1843 unsigned char *scan;
1844
1845 scan = *ref;
1846 scan += 4;
1847 i = 4;
1848 while (i-- > 0)
1849 value = (value << 8) | ((*scan++) & 0xff);
1850 return value;
1851 }
1852
1853 static void
1854 copy_threadref (threadref *dest, threadref *src)
1855 {
1856 int i;
1857 unsigned char *csrc, *cdest;
1858
1859 csrc = (unsigned char *) src;
1860 cdest = (unsigned char *) dest;
1861 i = 8;
1862 while (i--)
1863 *cdest++ = *csrc++;
1864 }
1865
1866 static int
1867 threadmatch (threadref *dest, threadref *src)
1868 {
1869 /* Things are broken right now, so just assume we got a match. */
1870 #if 0
1871 unsigned char *srcp, *destp;
1872 int i, result;
1873 srcp = (char *) src;
1874 destp = (char *) dest;
1875
1876 result = 1;
1877 while (i-- > 0)
1878 result &= (*srcp++ == *destp++) ? 1 : 0;
1879 return result;
1880 #endif
1881 return 1;
1882 }
1883
1884 /*
1885 threadid:1, # always request threadid
1886 context_exists:2,
1887 display:4,
1888 unique_name:8,
1889 more_display:16
1890 */
1891
1892 /* Encoding: 'Q':8,'P':8,mask:32,threadid:64 */
1893
1894 static char *
1895 pack_threadinfo_request (char *pkt, int mode, threadref *id)
1896 {
1897 *pkt++ = 'q'; /* Info Query */
1898 *pkt++ = 'P'; /* process or thread info */
1899 pkt = pack_int (pkt, mode); /* mode */
1900 pkt = pack_threadid (pkt, id); /* threadid */
1901 *pkt = '\0'; /* terminate */
1902 return pkt;
1903 }
1904
1905 /* These values tag the fields in a thread info response packet. */
1906 /* Tagging the fields allows us to request specific fields and to
1907 add more fields as time goes by. */
1908
1909 #define TAG_THREADID 1 /* Echo the thread identifier. */
1910 #define TAG_EXISTS 2 /* Is this process defined enough to
1911 fetch registers and its stack? */
1912 #define TAG_DISPLAY 4 /* A short thing maybe to put on a window */
1913 #define TAG_THREADNAME 8 /* string, maps 1-to-1 with a thread is. */
1914 #define TAG_MOREDISPLAY 16 /* Whatever the kernel wants to say about
1915 the process. */
1916
1917 static int
1918 remote_unpack_thread_info_response (char *pkt, threadref *expectedref,
1919 struct gdb_ext_thread_info *info)
1920 {
1921 struct remote_state *rs = get_remote_state ();
1922 int mask, length;
1923 int tag;
1924 threadref ref;
1925 char *limit = pkt + rs->buf_size; /* Plausible parsing limit. */
1926 int retval = 1;
1927
1928 /* info->threadid = 0; FIXME: implement zero_threadref. */
1929 info->active = 0;
1930 info->display[0] = '\0';
1931 info->shortname[0] = '\0';
1932 info->more_display[0] = '\0';
1933
1934 /* Assume the characters indicating the packet type have been
1935 stripped. */
1936 pkt = unpack_int (pkt, &mask); /* arg mask */
1937 pkt = unpack_threadid (pkt, &ref);
1938
1939 if (mask == 0)
1940 warning (_("Incomplete response to threadinfo request."));
1941 if (!threadmatch (&ref, expectedref))
1942 { /* This is an answer to a different request. */
1943 warning (_("ERROR RMT Thread info mismatch."));
1944 return 0;
1945 }
1946 copy_threadref (&info->threadid, &ref);
1947
1948 /* Loop on tagged fields , try to bail if somthing goes wrong. */
1949
1950 /* Packets are terminated with nulls. */
1951 while ((pkt < limit) && mask && *pkt)
1952 {
1953 pkt = unpack_int (pkt, &tag); /* tag */
1954 pkt = unpack_byte (pkt, &length); /* length */
1955 if (!(tag & mask)) /* Tags out of synch with mask. */
1956 {
1957 warning (_("ERROR RMT: threadinfo tag mismatch."));
1958 retval = 0;
1959 break;
1960 }
1961 if (tag == TAG_THREADID)
1962 {
1963 if (length != 16)
1964 {
1965 warning (_("ERROR RMT: length of threadid is not 16."));
1966 retval = 0;
1967 break;
1968 }
1969 pkt = unpack_threadid (pkt, &ref);
1970 mask = mask & ~TAG_THREADID;
1971 continue;
1972 }
1973 if (tag == TAG_EXISTS)
1974 {
1975 info->active = stub_unpack_int (pkt, length);
1976 pkt += length;
1977 mask = mask & ~(TAG_EXISTS);
1978 if (length > 8)
1979 {
1980 warning (_("ERROR RMT: 'exists' length too long."));
1981 retval = 0;
1982 break;
1983 }
1984 continue;
1985 }
1986 if (tag == TAG_THREADNAME)
1987 {
1988 pkt = unpack_string (pkt, &info->shortname[0], length);
1989 mask = mask & ~TAG_THREADNAME;
1990 continue;
1991 }
1992 if (tag == TAG_DISPLAY)
1993 {
1994 pkt = unpack_string (pkt, &info->display[0], length);
1995 mask = mask & ~TAG_DISPLAY;
1996 continue;
1997 }
1998 if (tag == TAG_MOREDISPLAY)
1999 {
2000 pkt = unpack_string (pkt, &info->more_display[0], length);
2001 mask = mask & ~TAG_MOREDISPLAY;
2002 continue;
2003 }
2004 warning (_("ERROR RMT: unknown thread info tag."));
2005 break; /* Not a tag we know about. */
2006 }
2007 return retval;
2008 }
2009
2010 static int
2011 remote_get_threadinfo (threadref *threadid, int fieldset, /* TAG mask */
2012 struct gdb_ext_thread_info *info)
2013 {
2014 struct remote_state *rs = get_remote_state ();
2015 int result;
2016
2017 pack_threadinfo_request (rs->buf, fieldset, threadid);
2018 putpkt (rs->buf);
2019 getpkt (&rs->buf, &rs->buf_size, 0);
2020
2021 if (rs->buf[0] == '\0')
2022 return 0;
2023
2024 result = remote_unpack_thread_info_response (rs->buf + 2,
2025 threadid, info);
2026 return result;
2027 }
2028
2029 /* Format: i'Q':8,i"L":8,initflag:8,batchsize:16,lastthreadid:32 */
2030
2031 static char *
2032 pack_threadlist_request (char *pkt, int startflag, int threadcount,
2033 threadref *nextthread)
2034 {
2035 *pkt++ = 'q'; /* info query packet */
2036 *pkt++ = 'L'; /* Process LIST or threadLIST request */
2037 pkt = pack_nibble (pkt, startflag); /* initflag 1 bytes */
2038 pkt = pack_hex_byte (pkt, threadcount); /* threadcount 2 bytes */
2039 pkt = pack_threadid (pkt, nextthread); /* 64 bit thread identifier */
2040 *pkt = '\0';
2041 return pkt;
2042 }
2043
2044 /* Encoding: 'q':8,'M':8,count:16,done:8,argthreadid:64,(threadid:64)* */
2045
2046 static int
2047 parse_threadlist_response (char *pkt, int result_limit,
2048 threadref *original_echo, threadref *resultlist,
2049 int *doneflag)
2050 {
2051 struct remote_state *rs = get_remote_state ();
2052 char *limit;
2053 int count, resultcount, done;
2054
2055 resultcount = 0;
2056 /* Assume the 'q' and 'M chars have been stripped. */
2057 limit = pkt + (rs->buf_size - BUF_THREAD_ID_SIZE);
2058 /* done parse past here */
2059 pkt = unpack_byte (pkt, &count); /* count field */
2060 pkt = unpack_nibble (pkt, &done);
2061 /* The first threadid is the argument threadid. */
2062 pkt = unpack_threadid (pkt, original_echo); /* should match query packet */
2063 while ((count-- > 0) && (pkt < limit))
2064 {
2065 pkt = unpack_threadid (pkt, resultlist++);
2066 if (resultcount++ >= result_limit)
2067 break;
2068 }
2069 if (doneflag)
2070 *doneflag = done;
2071 return resultcount;
2072 }
2073
2074 static int
2075 remote_get_threadlist (int startflag, threadref *nextthread, int result_limit,
2076 int *done, int *result_count, threadref *threadlist)
2077 {
2078 struct remote_state *rs = get_remote_state ();
2079 static threadref echo_nextthread;
2080 int result = 1;
2081
2082 /* Trancate result limit to be smaller than the packet size. */
2083 if ((((result_limit + 1) * BUF_THREAD_ID_SIZE) + 10) >= get_remote_packet_size ())
2084 result_limit = (get_remote_packet_size () / BUF_THREAD_ID_SIZE) - 2;
2085
2086 pack_threadlist_request (rs->buf, startflag, result_limit, nextthread);
2087 putpkt (rs->buf);
2088 getpkt (&rs->buf, &rs->buf_size, 0);
2089
2090 if (*rs->buf == '\0')
2091 *result_count = 0;
2092 else
2093 *result_count =
2094 parse_threadlist_response (rs->buf + 2, result_limit, &echo_nextthread,
2095 threadlist, done);
2096
2097 if (!threadmatch (&echo_nextthread, nextthread))
2098 {
2099 /* FIXME: This is a good reason to drop the packet. */
2100 /* Possably, there is a duplicate response. */
2101 /* Possabilities :
2102 retransmit immediatly - race conditions
2103 retransmit after timeout - yes
2104 exit
2105 wait for packet, then exit
2106 */
2107 warning (_("HMM: threadlist did not echo arg thread, dropping it."));
2108 return 0; /* I choose simply exiting. */
2109 }
2110 if (*result_count <= 0)
2111 {
2112 if (*done != 1)
2113 {
2114 warning (_("RMT ERROR : failed to get remote thread list."));
2115 result = 0;
2116 }
2117 return result; /* break; */
2118 }
2119 if (*result_count > result_limit)
2120 {
2121 *result_count = 0;
2122 warning (_("RMT ERROR: threadlist response longer than requested."));
2123 return 0;
2124 }
2125 return result;
2126 }
2127
2128 /* This is the interface between remote and threads, remotes upper
2129 interface. */
2130
2131 /* remote_find_new_threads retrieves the thread list and for each
2132 thread in the list, looks up the thread in GDB's internal list,
2133 adding the thread if it does not already exist. This involves
2134 getting partial thread lists from the remote target so, polling the
2135 quit_flag is required. */
2136
2137
2138 /* About this many threadisds fit in a packet. */
2139
2140 #define MAXTHREADLISTRESULTS 32
2141
2142 static int
2143 remote_threadlist_iterator (rmt_thread_action stepfunction, void *context,
2144 int looplimit)
2145 {
2146 int done, i, result_count;
2147 int startflag = 1;
2148 int result = 1;
2149 int loopcount = 0;
2150 static threadref nextthread;
2151 static threadref resultthreadlist[MAXTHREADLISTRESULTS];
2152
2153 done = 0;
2154 while (!done)
2155 {
2156 if (loopcount++ > looplimit)
2157 {
2158 result = 0;
2159 warning (_("Remote fetch threadlist -infinite loop-."));
2160 break;
2161 }
2162 if (!remote_get_threadlist (startflag, &nextthread, MAXTHREADLISTRESULTS,
2163 &done, &result_count, resultthreadlist))
2164 {
2165 result = 0;
2166 break;
2167 }
2168 /* Clear for later iterations. */
2169 startflag = 0;
2170 /* Setup to resume next batch of thread references, set nextthread. */
2171 if (result_count >= 1)
2172 copy_threadref (&nextthread, &resultthreadlist[result_count - 1]);
2173 i = 0;
2174 while (result_count--)
2175 if (!(result = (*stepfunction) (&resultthreadlist[i++], context)))
2176 break;
2177 }
2178 return result;
2179 }
2180
2181 static int
2182 remote_newthread_step (threadref *ref, void *context)
2183 {
2184 int pid = ptid_get_pid (inferior_ptid);
2185 ptid_t ptid = ptid_build (pid, 0, threadref_to_int (ref));
2186
2187 if (!in_thread_list (ptid))
2188 add_thread (ptid);
2189 return 1; /* continue iterator */
2190 }
2191
2192 #define CRAZY_MAX_THREADS 1000
2193
2194 static ptid_t
2195 remote_current_thread (ptid_t oldpid)
2196 {
2197 struct remote_state *rs = get_remote_state ();
2198 char *p = rs->buf;
2199 int tid;
2200 int pid;
2201
2202 putpkt ("qC");
2203 getpkt (&rs->buf, &rs->buf_size, 0);
2204 if (rs->buf[0] == 'Q' && rs->buf[1] == 'C')
2205 return read_ptid (&rs->buf[2], NULL);
2206 else
2207 return oldpid;
2208 }
2209
2210 /* Find new threads for info threads command.
2211 * Original version, using John Metzler's thread protocol.
2212 */
2213
2214 static void
2215 remote_find_new_threads (void)
2216 {
2217 remote_threadlist_iterator (remote_newthread_step, 0,
2218 CRAZY_MAX_THREADS);
2219 }
2220
2221 /*
2222 * Find all threads for info threads command.
2223 * Uses new thread protocol contributed by Cisco.
2224 * Falls back and attempts to use the older method (above)
2225 * if the target doesn't respond to the new method.
2226 */
2227
2228 static void
2229 remote_threads_info (struct target_ops *ops)
2230 {
2231 struct remote_state *rs = get_remote_state ();
2232 char *bufp;
2233 ptid_t new_thread;
2234
2235 if (remote_desc == 0) /* paranoia */
2236 error (_("Command can only be used when connected to the remote target."));
2237
2238 if (use_threadinfo_query)
2239 {
2240 putpkt ("qfThreadInfo");
2241 getpkt (&rs->buf, &rs->buf_size, 0);
2242 bufp = rs->buf;
2243 if (bufp[0] != '\0') /* q packet recognized */
2244 {
2245 while (*bufp++ == 'm') /* reply contains one or more TID */
2246 {
2247 do
2248 {
2249 new_thread = read_ptid (bufp, &bufp);
2250 if (!ptid_equal (new_thread, null_ptid))
2251 {
2252 /* In non-stop mode, we assume new found threads
2253 are running until proven otherwise with a
2254 stop reply. In all-stop, we can only get
2255 here if all threads are stopped. */
2256 int running = non_stop ? 1 : 0;
2257
2258 remote_notice_new_inferior (new_thread, running);
2259 }
2260 }
2261 while (*bufp++ == ','); /* comma-separated list */
2262 putpkt ("qsThreadInfo");
2263 getpkt (&rs->buf, &rs->buf_size, 0);
2264 bufp = rs->buf;
2265 }
2266 return; /* done */
2267 }
2268 }
2269
2270 /* Only qfThreadInfo is supported in non-stop mode. */
2271 if (non_stop)
2272 return;
2273
2274 /* Else fall back to old method based on jmetzler protocol. */
2275 use_threadinfo_query = 0;
2276 remote_find_new_threads ();
2277 return;
2278 }
2279
2280 /*
2281 * Collect a descriptive string about the given thread.
2282 * The target may say anything it wants to about the thread
2283 * (typically info about its blocked / runnable state, name, etc.).
2284 * This string will appear in the info threads display.
2285 *
2286 * Optional: targets are not required to implement this function.
2287 */
2288
2289 static char *
2290 remote_threads_extra_info (struct thread_info *tp)
2291 {
2292 struct remote_state *rs = get_remote_state ();
2293 int result;
2294 int set;
2295 threadref id;
2296 struct gdb_ext_thread_info threadinfo;
2297 static char display_buf[100]; /* arbitrary... */
2298 int n = 0; /* position in display_buf */
2299
2300 if (remote_desc == 0) /* paranoia */
2301 internal_error (__FILE__, __LINE__,
2302 _("remote_threads_extra_info"));
2303
2304 if (ptid_equal (tp->ptid, magic_null_ptid)
2305 || (ptid_get_pid (tp->ptid) != 0 && ptid_get_tid (tp->ptid) == 0))
2306 /* This is the main thread which was added by GDB. The remote
2307 server doesn't know about it. */
2308 return NULL;
2309
2310 if (use_threadextra_query)
2311 {
2312 char *b = rs->buf;
2313 char *endb = rs->buf + get_remote_packet_size ();
2314
2315 xsnprintf (b, endb - b, "qThreadExtraInfo,");
2316 b += strlen (b);
2317 write_ptid (b, endb, tp->ptid);
2318
2319 putpkt (rs->buf);
2320 getpkt (&rs->buf, &rs->buf_size, 0);
2321 if (rs->buf[0] != 0)
2322 {
2323 n = min (strlen (rs->buf) / 2, sizeof (display_buf));
2324 result = hex2bin (rs->buf, (gdb_byte *) display_buf, n);
2325 display_buf [result] = '\0';
2326 return display_buf;
2327 }
2328 }
2329
2330 /* If the above query fails, fall back to the old method. */
2331 use_threadextra_query = 0;
2332 set = TAG_THREADID | TAG_EXISTS | TAG_THREADNAME
2333 | TAG_MOREDISPLAY | TAG_DISPLAY;
2334 int_to_threadref (&id, ptid_get_tid (tp->ptid));
2335 if (remote_get_threadinfo (&id, set, &threadinfo))
2336 if (threadinfo.active)
2337 {
2338 if (*threadinfo.shortname)
2339 n += xsnprintf (&display_buf[0], sizeof (display_buf) - n,
2340 " Name: %s,", threadinfo.shortname);
2341 if (*threadinfo.display)
2342 n += xsnprintf (&display_buf[n], sizeof (display_buf) - n,
2343 " State: %s,", threadinfo.display);
2344 if (*threadinfo.more_display)
2345 n += xsnprintf (&display_buf[n], sizeof (display_buf) - n,
2346 " Priority: %s", threadinfo.more_display);
2347
2348 if (n > 0)
2349 {
2350 /* For purely cosmetic reasons, clear up trailing commas. */
2351 if (',' == display_buf[n-1])
2352 display_buf[n-1] = ' ';
2353 return display_buf;
2354 }
2355 }
2356 return NULL;
2357 }
2358 \f
2359
2360 /* Restart the remote side; this is an extended protocol operation. */
2361
2362 static void
2363 extended_remote_restart (void)
2364 {
2365 struct remote_state *rs = get_remote_state ();
2366
2367 /* Send the restart command; for reasons I don't understand the
2368 remote side really expects a number after the "R". */
2369 xsnprintf (rs->buf, get_remote_packet_size (), "R%x", 0);
2370 putpkt (rs->buf);
2371
2372 remote_fileio_reset ();
2373 }
2374 \f
2375 /* Clean up connection to a remote debugger. */
2376
2377 static void
2378 remote_close (int quitting)
2379 {
2380 if (remote_desc == NULL)
2381 return; /* already closed */
2382
2383 /* Make sure we leave stdin registered in the event loop, and we
2384 don't leave the async SIGINT signal handler installed. */
2385 remote_terminal_ours ();
2386
2387 serial_close (remote_desc);
2388 remote_desc = NULL;
2389
2390 /* We don't have a connection to the remote stub anymore. Get rid
2391 of all the inferiors and their threads we were controlling. */
2392 discard_all_inferiors ();
2393
2394 /* We're no longer interested in any of these events. */
2395 discard_pending_stop_replies (-1);
2396
2397 if (remote_async_inferior_event_token)
2398 delete_async_event_handler (&remote_async_inferior_event_token);
2399 if (remote_async_get_pending_events_token)
2400 delete_async_event_handler (&remote_async_get_pending_events_token);
2401 }
2402
2403 /* Query the remote side for the text, data and bss offsets. */
2404
2405 static void
2406 get_offsets (void)
2407 {
2408 struct remote_state *rs = get_remote_state ();
2409 char *buf;
2410 char *ptr;
2411 int lose, num_segments = 0, do_sections, do_segments;
2412 CORE_ADDR text_addr, data_addr, bss_addr, segments[2];
2413 struct section_offsets *offs;
2414 struct symfile_segment_data *data;
2415
2416 if (symfile_objfile == NULL)
2417 return;
2418
2419 putpkt ("qOffsets");
2420 getpkt (&rs->buf, &rs->buf_size, 0);
2421 buf = rs->buf;
2422
2423 if (buf[0] == '\000')
2424 return; /* Return silently. Stub doesn't support
2425 this command. */
2426 if (buf[0] == 'E')
2427 {
2428 warning (_("Remote failure reply: %s"), buf);
2429 return;
2430 }
2431
2432 /* Pick up each field in turn. This used to be done with scanf, but
2433 scanf will make trouble if CORE_ADDR size doesn't match
2434 conversion directives correctly. The following code will work
2435 with any size of CORE_ADDR. */
2436 text_addr = data_addr = bss_addr = 0;
2437 ptr = buf;
2438 lose = 0;
2439
2440 if (strncmp (ptr, "Text=", 5) == 0)
2441 {
2442 ptr += 5;
2443 /* Don't use strtol, could lose on big values. */
2444 while (*ptr && *ptr != ';')
2445 text_addr = (text_addr << 4) + fromhex (*ptr++);
2446
2447 if (strncmp (ptr, ";Data=", 6) == 0)
2448 {
2449 ptr += 6;
2450 while (*ptr && *ptr != ';')
2451 data_addr = (data_addr << 4) + fromhex (*ptr++);
2452 }
2453 else
2454 lose = 1;
2455
2456 if (!lose && strncmp (ptr, ";Bss=", 5) == 0)
2457 {
2458 ptr += 5;
2459 while (*ptr && *ptr != ';')
2460 bss_addr = (bss_addr << 4) + fromhex (*ptr++);
2461
2462 if (bss_addr != data_addr)
2463 warning (_("Target reported unsupported offsets: %s"), buf);
2464 }
2465 else
2466 lose = 1;
2467 }
2468 else if (strncmp (ptr, "TextSeg=", 8) == 0)
2469 {
2470 ptr += 8;
2471 /* Don't use strtol, could lose on big values. */
2472 while (*ptr && *ptr != ';')
2473 text_addr = (text_addr << 4) + fromhex (*ptr++);
2474 num_segments = 1;
2475
2476 if (strncmp (ptr, ";DataSeg=", 9) == 0)
2477 {
2478 ptr += 9;
2479 while (*ptr && *ptr != ';')
2480 data_addr = (data_addr << 4) + fromhex (*ptr++);
2481 num_segments++;
2482 }
2483 }
2484 else
2485 lose = 1;
2486
2487 if (lose)
2488 error (_("Malformed response to offset query, %s"), buf);
2489 else if (*ptr != '\0')
2490 warning (_("Target reported unsupported offsets: %s"), buf);
2491
2492 offs = ((struct section_offsets *)
2493 alloca (SIZEOF_N_SECTION_OFFSETS (symfile_objfile->num_sections)));
2494 memcpy (offs, symfile_objfile->section_offsets,
2495 SIZEOF_N_SECTION_OFFSETS (symfile_objfile->num_sections));
2496
2497 data = get_symfile_segment_data (symfile_objfile->obfd);
2498 do_segments = (data != NULL);
2499 do_sections = num_segments == 0;
2500
2501 if (num_segments > 0)
2502 {
2503 segments[0] = text_addr;
2504 segments[1] = data_addr;
2505 }
2506 /* If we have two segments, we can still try to relocate everything
2507 by assuming that the .text and .data offsets apply to the whole
2508 text and data segments. Convert the offsets given in the packet
2509 to base addresses for symfile_map_offsets_to_segments. */
2510 else if (data && data->num_segments == 2)
2511 {
2512 segments[0] = data->segment_bases[0] + text_addr;
2513 segments[1] = data->segment_bases[1] + data_addr;
2514 num_segments = 2;
2515 }
2516 /* If the object file has only one segment, assume that it is text
2517 rather than data; main programs with no writable data are rare,
2518 but programs with no code are useless. Of course the code might
2519 have ended up in the data segment... to detect that we would need
2520 the permissions here. */
2521 else if (data && data->num_segments == 1)
2522 {
2523 segments[0] = data->segment_bases[0] + text_addr;
2524 num_segments = 1;
2525 }
2526 /* There's no way to relocate by segment. */
2527 else
2528 do_segments = 0;
2529
2530 if (do_segments)
2531 {
2532 int ret = symfile_map_offsets_to_segments (symfile_objfile->obfd, data,
2533 offs, num_segments, segments);
2534
2535 if (ret == 0 && !do_sections)
2536 error (_("Can not handle qOffsets TextSeg response with this symbol file"));
2537
2538 if (ret > 0)
2539 do_sections = 0;
2540 }
2541
2542 if (data)
2543 free_symfile_segment_data (data);
2544
2545 if (do_sections)
2546 {
2547 offs->offsets[SECT_OFF_TEXT (symfile_objfile)] = text_addr;
2548
2549 /* This is a temporary kludge to force data and bss to use the same offsets
2550 because that's what nlmconv does now. The real solution requires changes
2551 to the stub and remote.c that I don't have time to do right now. */
2552
2553 offs->offsets[SECT_OFF_DATA (symfile_objfile)] = data_addr;
2554 offs->offsets[SECT_OFF_BSS (symfile_objfile)] = data_addr;
2555 }
2556
2557 objfile_relocate (symfile_objfile, offs);
2558 }
2559
2560 /* Callback for iterate_over_threads. Set the STOP_REQUESTED flags in
2561 threads we know are stopped already. This is used during the
2562 initial remote connection in non-stop mode --- threads that are
2563 reported as already being stopped are left stopped. */
2564
2565 static int
2566 set_stop_requested_callback (struct thread_info *thread, void *data)
2567 {
2568 /* If we have a stop reply for this thread, it must be stopped. */
2569 if (peek_stop_reply (thread->ptid))
2570 set_stop_requested (thread->ptid, 1);
2571
2572 return 0;
2573 }
2574
2575 /* Stub for catch_exception. */
2576
2577 struct start_remote_args
2578 {
2579 int from_tty;
2580
2581 /* The current target. */
2582 struct target_ops *target;
2583
2584 /* Non-zero if this is an extended-remote target. */
2585 int extended_p;
2586 };
2587
2588 static void
2589 remote_start_remote (struct ui_out *uiout, void *opaque)
2590 {
2591 struct start_remote_args *args = opaque;
2592 struct remote_state *rs = get_remote_state ();
2593 struct packet_config *noack_config;
2594 char *wait_status = NULL;
2595
2596 immediate_quit++; /* Allow user to interrupt it. */
2597
2598 /* Ack any packet which the remote side has already sent. */
2599 serial_write (remote_desc, "+", 1);
2600
2601 /* The first packet we send to the target is the optional "supported
2602 packets" request. If the target can answer this, it will tell us
2603 which later probes to skip. */
2604 remote_query_supported ();
2605
2606 /* Next, we possibly activate noack mode.
2607
2608 If the QStartNoAckMode packet configuration is set to AUTO,
2609 enable noack mode if the stub reported a wish for it with
2610 qSupported.
2611
2612 If set to TRUE, then enable noack mode even if the stub didn't
2613 report it in qSupported. If the stub doesn't reply OK, the
2614 session ends with an error.
2615
2616 If FALSE, then don't activate noack mode, regardless of what the
2617 stub claimed should be the default with qSupported. */
2618
2619 noack_config = &remote_protocol_packets[PACKET_QStartNoAckMode];
2620
2621 if (noack_config->detect == AUTO_BOOLEAN_TRUE
2622 || (noack_config->detect == AUTO_BOOLEAN_AUTO
2623 && noack_config->support == PACKET_ENABLE))
2624 {
2625 putpkt ("QStartNoAckMode");
2626 getpkt (&rs->buf, &rs->buf_size, 0);
2627 if (packet_ok (rs->buf, noack_config) == PACKET_OK)
2628 rs->noack_mode = 1;
2629 }
2630
2631 if (args->extended_p)
2632 {
2633 /* Tell the remote that we are using the extended protocol. */
2634 putpkt ("!");
2635 getpkt (&rs->buf, &rs->buf_size, 0);
2636 }
2637
2638 /* Next, if the target can specify a description, read it. We do
2639 this before anything involving memory or registers. */
2640 target_find_description ();
2641
2642 /* On OSs where the list of libraries is global to all
2643 processes, we fetch them early. */
2644 if (gdbarch_has_global_solist (target_gdbarch))
2645 solib_add (NULL, args->from_tty, args->target, auto_solib_add);
2646
2647 if (non_stop)
2648 {
2649 if (!rs->non_stop_aware)
2650 error (_("Non-stop mode requested, but remote does not support non-stop"));
2651
2652 putpkt ("QNonStop:1");
2653 getpkt (&rs->buf, &rs->buf_size, 0);
2654
2655 if (strcmp (rs->buf, "OK") != 0)
2656 error ("Remote refused setting non-stop mode with: %s", rs->buf);
2657
2658 /* Find about threads and processes the stub is already
2659 controlling. We default to adding them in the running state.
2660 The '?' query below will then tell us about which threads are
2661 stopped. */
2662 remote_threads_info (args->target);
2663 }
2664 else if (rs->non_stop_aware)
2665 {
2666 /* Don't assume that the stub can operate in all-stop mode.
2667 Request it explicitely. */
2668 putpkt ("QNonStop:0");
2669 getpkt (&rs->buf, &rs->buf_size, 0);
2670
2671 if (strcmp (rs->buf, "OK") != 0)
2672 error ("Remote refused setting all-stop mode with: %s", rs->buf);
2673 }
2674
2675 /* Check whether the target is running now. */
2676 putpkt ("?");
2677 getpkt (&rs->buf, &rs->buf_size, 0);
2678
2679 if (!non_stop)
2680 {
2681 if (rs->buf[0] == 'W' || rs->buf[0] == 'X')
2682 {
2683 if (args->extended_p)
2684 {
2685 /* We're connected, but not running. Drop out before we
2686 call start_remote. */
2687 target_mark_exited (args->target);
2688 return;
2689 }
2690 else
2691 error (_("The target is not running (try extended-remote?)"));
2692 }
2693 else
2694 {
2695 /* Save the reply for later. */
2696 wait_status = alloca (strlen (rs->buf) + 1);
2697 strcpy (wait_status, rs->buf);
2698 }
2699
2700 /* Let the stub know that we want it to return the thread. */
2701 set_continue_thread (minus_one_ptid);
2702
2703 /* Without this, some commands which require an active target
2704 (such as kill) won't work. This variable serves (at least)
2705 double duty as both the pid of the target process (if it has
2706 such), and as a flag indicating that a target is active.
2707 These functions should be split out into seperate variables,
2708 especially since GDB will someday have a notion of debugging
2709 several processes. */
2710 inferior_ptid = magic_null_ptid;
2711
2712 /* Now, if we have thread information, update inferior_ptid. */
2713 inferior_ptid = remote_current_thread (inferior_ptid);
2714
2715 remote_add_inferior (ptid_get_pid (inferior_ptid), -1);
2716
2717 /* Always add the main thread. */
2718 add_thread_silent (inferior_ptid);
2719
2720 get_offsets (); /* Get text, data & bss offsets. */
2721
2722 /* If we could not find a description using qXfer, and we know
2723 how to do it some other way, try again. This is not
2724 supported for non-stop; it could be, but it is tricky if
2725 there are no stopped threads when we connect. */
2726 if (remote_read_description_p (args->target)
2727 && gdbarch_target_desc (target_gdbarch) == NULL)
2728 {
2729 target_clear_description ();
2730 target_find_description ();
2731 }
2732
2733 /* Use the previously fetched status. */
2734 gdb_assert (wait_status != NULL);
2735 strcpy (rs->buf, wait_status);
2736 rs->cached_wait_status = 1;
2737
2738 immediate_quit--;
2739 start_remote (args->from_tty); /* Initialize gdb process mechanisms. */
2740 }
2741 else
2742 {
2743 /* In non-stop, we will either get an "OK", meaning that there
2744 are no stopped threads at this time; or, a regular stop
2745 reply. In the latter case, there may be more than one thread
2746 stopped --- we pull them all out using the vStopped
2747 mechanism. */
2748 if (strcmp (rs->buf, "OK") != 0)
2749 {
2750 struct stop_reply *stop_reply;
2751 struct cleanup *old_chain;
2752
2753 stop_reply = stop_reply_xmalloc ();
2754 old_chain = make_cleanup (do_stop_reply_xfree, stop_reply);
2755
2756 remote_parse_stop_reply (rs->buf, stop_reply);
2757 discard_cleanups (old_chain);
2758
2759 /* get_pending_stop_replies acks this one, and gets the rest
2760 out. */
2761 pending_stop_reply = stop_reply;
2762 remote_get_pending_stop_replies ();
2763
2764 /* Make sure that threads that were stopped remain
2765 stopped. */
2766 iterate_over_threads (set_stop_requested_callback, NULL);
2767 }
2768
2769 if (target_can_async_p ())
2770 target_async (inferior_event_handler, 0);
2771
2772 if (thread_count () == 0)
2773 {
2774 if (args->extended_p)
2775 {
2776 /* We're connected, but not running. Drop out before we
2777 call start_remote. */
2778 target_mark_exited (args->target);
2779 return;
2780 }
2781 else
2782 error (_("The target is not running (try extended-remote?)"));
2783 }
2784
2785 if (args->extended_p)
2786 target_mark_running (args->target);
2787
2788 /* Let the stub know that we want it to return the thread. */
2789
2790 /* Force the stub to choose a thread. */
2791 set_general_thread (null_ptid);
2792
2793 /* Query it. */
2794 inferior_ptid = remote_current_thread (minus_one_ptid);
2795 if (ptid_equal (inferior_ptid, minus_one_ptid))
2796 error (_("remote didn't report the current thread in non-stop mode"));
2797
2798 get_offsets (); /* Get text, data & bss offsets. */
2799
2800 /* In non-stop mode, any cached wait status will be stored in
2801 the stop reply queue. */
2802 gdb_assert (wait_status == NULL);
2803
2804 init_wait_for_inferior ();
2805 }
2806
2807 /* If we connected to a live target, do some additional setup. */
2808 if (target_has_execution)
2809 {
2810 if (exec_bfd) /* No use without an exec file. */
2811 remote_check_symbols (symfile_objfile);
2812 }
2813
2814 /* If code is shared between processes, then breakpoints are global
2815 too; Insert them now. */
2816 if (gdbarch_has_global_solist (target_gdbarch)
2817 && breakpoints_always_inserted_mode ())
2818 insert_breakpoints ();
2819 }
2820
2821 /* Open a connection to a remote debugger.
2822 NAME is the filename used for communication. */
2823
2824 static void
2825 remote_open (char *name, int from_tty)
2826 {
2827 remote_open_1 (name, from_tty, &remote_ops, 0);
2828 }
2829
2830 /* Open a connection to a remote debugger using the extended
2831 remote gdb protocol. NAME is the filename used for communication. */
2832
2833 static void
2834 extended_remote_open (char *name, int from_tty)
2835 {
2836 remote_open_1 (name, from_tty, &extended_remote_ops, 1 /*extended_p */);
2837 }
2838
2839 /* Generic code for opening a connection to a remote target. */
2840
2841 static void
2842 init_all_packet_configs (void)
2843 {
2844 int i;
2845 for (i = 0; i < PACKET_MAX; i++)
2846 update_packet_config (&remote_protocol_packets[i]);
2847 }
2848
2849 /* Symbol look-up. */
2850
2851 static void
2852 remote_check_symbols (struct objfile *objfile)
2853 {
2854 struct remote_state *rs = get_remote_state ();
2855 char *msg, *reply, *tmp;
2856 struct minimal_symbol *sym;
2857 int end;
2858
2859 if (remote_protocol_packets[PACKET_qSymbol].support == PACKET_DISABLE)
2860 return;
2861
2862 /* Make sure the remote is pointing at the right process. */
2863 set_general_process ();
2864
2865 /* Allocate a message buffer. We can't reuse the input buffer in RS,
2866 because we need both at the same time. */
2867 msg = alloca (get_remote_packet_size ());
2868
2869 /* Invite target to request symbol lookups. */
2870
2871 putpkt ("qSymbol::");
2872 getpkt (&rs->buf, &rs->buf_size, 0);
2873 packet_ok (rs->buf, &remote_protocol_packets[PACKET_qSymbol]);
2874 reply = rs->buf;
2875
2876 while (strncmp (reply, "qSymbol:", 8) == 0)
2877 {
2878 tmp = &reply[8];
2879 end = hex2bin (tmp, (gdb_byte *) msg, strlen (tmp) / 2);
2880 msg[end] = '\0';
2881 sym = lookup_minimal_symbol (msg, NULL, NULL);
2882 if (sym == NULL)
2883 xsnprintf (msg, get_remote_packet_size (), "qSymbol::%s", &reply[8]);
2884 else
2885 {
2886 CORE_ADDR sym_addr = SYMBOL_VALUE_ADDRESS (sym);
2887
2888 /* If this is a function address, return the start of code
2889 instead of any data function descriptor. */
2890 sym_addr = gdbarch_convert_from_func_ptr_addr (target_gdbarch,
2891 sym_addr,
2892 &current_target);
2893
2894 xsnprintf (msg, get_remote_packet_size (), "qSymbol:%s:%s",
2895 paddr_nz (sym_addr), &reply[8]);
2896 }
2897
2898 putpkt (msg);
2899 getpkt (&rs->buf, &rs->buf_size, 0);
2900 reply = rs->buf;
2901 }
2902 }
2903
2904 static struct serial *
2905 remote_serial_open (char *name)
2906 {
2907 static int udp_warning = 0;
2908
2909 /* FIXME: Parsing NAME here is a hack. But we want to warn here instead
2910 of in ser-tcp.c, because it is the remote protocol assuming that the
2911 serial connection is reliable and not the serial connection promising
2912 to be. */
2913 if (!udp_warning && strncmp (name, "udp:", 4) == 0)
2914 {
2915 warning (_("\
2916 The remote protocol may be unreliable over UDP.\n\
2917 Some events may be lost, rendering further debugging impossible."));
2918 udp_warning = 1;
2919 }
2920
2921 return serial_open (name);
2922 }
2923
2924 /* This type describes each known response to the qSupported
2925 packet. */
2926 struct protocol_feature
2927 {
2928 /* The name of this protocol feature. */
2929 const char *name;
2930
2931 /* The default for this protocol feature. */
2932 enum packet_support default_support;
2933
2934 /* The function to call when this feature is reported, or after
2935 qSupported processing if the feature is not supported.
2936 The first argument points to this structure. The second
2937 argument indicates whether the packet requested support be
2938 enabled, disabled, or probed (or the default, if this function
2939 is being called at the end of processing and this feature was
2940 not reported). The third argument may be NULL; if not NULL, it
2941 is a NUL-terminated string taken from the packet following
2942 this feature's name and an equals sign. */
2943 void (*func) (const struct protocol_feature *, enum packet_support,
2944 const char *);
2945
2946 /* The corresponding packet for this feature. Only used if
2947 FUNC is remote_supported_packet. */
2948 int packet;
2949 };
2950
2951 static void
2952 remote_supported_packet (const struct protocol_feature *feature,
2953 enum packet_support support,
2954 const char *argument)
2955 {
2956 if (argument)
2957 {
2958 warning (_("Remote qSupported response supplied an unexpected value for"
2959 " \"%s\"."), feature->name);
2960 return;
2961 }
2962
2963 if (remote_protocol_packets[feature->packet].support
2964 == PACKET_SUPPORT_UNKNOWN)
2965 remote_protocol_packets[feature->packet].support = support;
2966 }
2967
2968 static void
2969 remote_packet_size (const struct protocol_feature *feature,
2970 enum packet_support support, const char *value)
2971 {
2972 struct remote_state *rs = get_remote_state ();
2973
2974 int packet_size;
2975 char *value_end;
2976
2977 if (support != PACKET_ENABLE)
2978 return;
2979
2980 if (value == NULL || *value == '\0')
2981 {
2982 warning (_("Remote target reported \"%s\" without a size."),
2983 feature->name);
2984 return;
2985 }
2986
2987 errno = 0;
2988 packet_size = strtol (value, &value_end, 16);
2989 if (errno != 0 || *value_end != '\0' || packet_size < 0)
2990 {
2991 warning (_("Remote target reported \"%s\" with a bad size: \"%s\"."),
2992 feature->name, value);
2993 return;
2994 }
2995
2996 if (packet_size > MAX_REMOTE_PACKET_SIZE)
2997 {
2998 warning (_("limiting remote suggested packet size (%d bytes) to %d"),
2999 packet_size, MAX_REMOTE_PACKET_SIZE);
3000 packet_size = MAX_REMOTE_PACKET_SIZE;
3001 }
3002
3003 /* Record the new maximum packet size. */
3004 rs->explicit_packet_size = packet_size;
3005 }
3006
3007 static void
3008 remote_multi_process_feature (const struct protocol_feature *feature,
3009 enum packet_support support, const char *value)
3010 {
3011 struct remote_state *rs = get_remote_state ();
3012 rs->multi_process_aware = (support == PACKET_ENABLE);
3013 }
3014
3015 static void
3016 remote_non_stop_feature (const struct protocol_feature *feature,
3017 enum packet_support support, const char *value)
3018 {
3019 struct remote_state *rs = get_remote_state ();
3020 rs->non_stop_aware = (support == PACKET_ENABLE);
3021 }
3022
3023 static struct protocol_feature remote_protocol_features[] = {
3024 { "PacketSize", PACKET_DISABLE, remote_packet_size, -1 },
3025 { "qXfer:auxv:read", PACKET_DISABLE, remote_supported_packet,
3026 PACKET_qXfer_auxv },
3027 { "qXfer:features:read", PACKET_DISABLE, remote_supported_packet,
3028 PACKET_qXfer_features },
3029 { "qXfer:libraries:read", PACKET_DISABLE, remote_supported_packet,
3030 PACKET_qXfer_libraries },
3031 { "qXfer:memory-map:read", PACKET_DISABLE, remote_supported_packet,
3032 PACKET_qXfer_memory_map },
3033 { "qXfer:spu:read", PACKET_DISABLE, remote_supported_packet,
3034 PACKET_qXfer_spu_read },
3035 { "qXfer:spu:write", PACKET_DISABLE, remote_supported_packet,
3036 PACKET_qXfer_spu_write },
3037 { "qXfer:osdata:read", PACKET_DISABLE, remote_supported_packet,
3038 PACKET_qXfer_osdata },
3039 { "QPassSignals", PACKET_DISABLE, remote_supported_packet,
3040 PACKET_QPassSignals },
3041 { "QStartNoAckMode", PACKET_DISABLE, remote_supported_packet,
3042 PACKET_QStartNoAckMode },
3043 { "multiprocess", PACKET_DISABLE, remote_multi_process_feature, -1 },
3044 { "QNonStop", PACKET_DISABLE, remote_non_stop_feature, -1 },
3045 { "qXfer:siginfo:read", PACKET_DISABLE, remote_supported_packet,
3046 PACKET_qXfer_siginfo_read },
3047 { "qXfer:siginfo:write", PACKET_DISABLE, remote_supported_packet,
3048 PACKET_qXfer_siginfo_write },
3049 };
3050
3051 static void
3052 remote_query_supported (void)
3053 {
3054 struct remote_state *rs = get_remote_state ();
3055 char *next;
3056 int i;
3057 unsigned char seen [ARRAY_SIZE (remote_protocol_features)];
3058
3059 /* The packet support flags are handled differently for this packet
3060 than for most others. We treat an error, a disabled packet, and
3061 an empty response identically: any features which must be reported
3062 to be used will be automatically disabled. An empty buffer
3063 accomplishes this, since that is also the representation for a list
3064 containing no features. */
3065
3066 rs->buf[0] = 0;
3067 if (remote_protocol_packets[PACKET_qSupported].support != PACKET_DISABLE)
3068 {
3069 if (rs->extended)
3070 putpkt ("qSupported:multiprocess+");
3071 else
3072 putpkt ("qSupported");
3073
3074 getpkt (&rs->buf, &rs->buf_size, 0);
3075
3076 /* If an error occured, warn, but do not return - just reset the
3077 buffer to empty and go on to disable features. */
3078 if (packet_ok (rs->buf, &remote_protocol_packets[PACKET_qSupported])
3079 == PACKET_ERROR)
3080 {
3081 warning (_("Remote failure reply: %s"), rs->buf);
3082 rs->buf[0] = 0;
3083 }
3084 }
3085
3086 memset (seen, 0, sizeof (seen));
3087
3088 next = rs->buf;
3089 while (*next)
3090 {
3091 enum packet_support is_supported;
3092 char *p, *end, *name_end, *value;
3093
3094 /* First separate out this item from the rest of the packet. If
3095 there's another item after this, we overwrite the separator
3096 (terminated strings are much easier to work with). */
3097 p = next;
3098 end = strchr (p, ';');
3099 if (end == NULL)
3100 {
3101 end = p + strlen (p);
3102 next = end;
3103 }
3104 else
3105 {
3106 *end = '\0';
3107 next = end + 1;
3108
3109 if (end == p)
3110 {
3111 warning (_("empty item in \"qSupported\" response"));
3112 continue;
3113 }
3114 }
3115
3116 name_end = strchr (p, '=');
3117 if (name_end)
3118 {
3119 /* This is a name=value entry. */
3120 is_supported = PACKET_ENABLE;
3121 value = name_end + 1;
3122 *name_end = '\0';
3123 }
3124 else
3125 {
3126 value = NULL;
3127 switch (end[-1])
3128 {
3129 case '+':
3130 is_supported = PACKET_ENABLE;
3131 break;
3132
3133 case '-':
3134 is_supported = PACKET_DISABLE;
3135 break;
3136
3137 case '?':
3138 is_supported = PACKET_SUPPORT_UNKNOWN;
3139 break;
3140
3141 default:
3142 warning (_("unrecognized item \"%s\" in \"qSupported\" response"), p);
3143 continue;
3144 }
3145 end[-1] = '\0';
3146 }
3147
3148 for (i = 0; i < ARRAY_SIZE (remote_protocol_features); i++)
3149 if (strcmp (remote_protocol_features[i].name, p) == 0)
3150 {
3151 const struct protocol_feature *feature;
3152
3153 seen[i] = 1;
3154 feature = &remote_protocol_features[i];
3155 feature->func (feature, is_supported, value);
3156 break;
3157 }
3158 }
3159
3160 /* If we increased the packet size, make sure to increase the global
3161 buffer size also. We delay this until after parsing the entire
3162 qSupported packet, because this is the same buffer we were
3163 parsing. */
3164 if (rs->buf_size < rs->explicit_packet_size)
3165 {
3166 rs->buf_size = rs->explicit_packet_size;
3167 rs->buf = xrealloc (rs->buf, rs->buf_size);
3168 }
3169
3170 /* Handle the defaults for unmentioned features. */
3171 for (i = 0; i < ARRAY_SIZE (remote_protocol_features); i++)
3172 if (!seen[i])
3173 {
3174 const struct protocol_feature *feature;
3175
3176 feature = &remote_protocol_features[i];
3177 feature->func (feature, feature->default_support, NULL);
3178 }
3179 }
3180
3181
3182 static void
3183 remote_open_1 (char *name, int from_tty, struct target_ops *target, int extended_p)
3184 {
3185 struct remote_state *rs = get_remote_state ();
3186
3187 if (name == 0)
3188 error (_("To open a remote debug connection, you need to specify what\n"
3189 "serial device is attached to the remote system\n"
3190 "(e.g. /dev/ttyS0, /dev/ttya, COM1, etc.)."));
3191
3192 /* See FIXME above. */
3193 if (!target_async_permitted)
3194 wait_forever_enabled_p = 1;
3195
3196 /* If we're connected to a running target, target_preopen will kill it.
3197 But if we're connected to a target system with no running process,
3198 then we will still be connected when it returns. Ask this question
3199 first, before target_preopen has a chance to kill anything. */
3200 if (remote_desc != NULL && !target_has_execution)
3201 {
3202 if (!from_tty
3203 || query (_("Already connected to a remote target. Disconnect? ")))
3204 pop_target ();
3205 else
3206 error (_("Still connected."));
3207 }
3208
3209 target_preopen (from_tty);
3210
3211 unpush_target (target);
3212
3213 /* This time without a query. If we were connected to an
3214 extended-remote target and target_preopen killed the running
3215 process, we may still be connected. If we are starting "target
3216 remote" now, the extended-remote target will not have been
3217 removed by unpush_target. */
3218 if (remote_desc != NULL && !target_has_execution)
3219 pop_target ();
3220
3221 /* Make sure we send the passed signals list the next time we resume. */
3222 xfree (last_pass_packet);
3223 last_pass_packet = NULL;
3224
3225 remote_fileio_reset ();
3226 reopen_exec_file ();
3227 reread_symbols ();
3228
3229 remote_desc = remote_serial_open (name);
3230 if (!remote_desc)
3231 perror_with_name (name);
3232
3233 if (baud_rate != -1)
3234 {
3235 if (serial_setbaudrate (remote_desc, baud_rate))
3236 {
3237 /* The requested speed could not be set. Error out to
3238 top level after closing remote_desc. Take care to
3239 set remote_desc to NULL to avoid closing remote_desc
3240 more than once. */
3241 serial_close (remote_desc);
3242 remote_desc = NULL;
3243 perror_with_name (name);
3244 }
3245 }
3246
3247 serial_raw (remote_desc);
3248
3249 /* If there is something sitting in the buffer we might take it as a
3250 response to a command, which would be bad. */
3251 serial_flush_input (remote_desc);
3252
3253 if (from_tty)
3254 {
3255 puts_filtered ("Remote debugging using ");
3256 puts_filtered (name);
3257 puts_filtered ("\n");
3258 }
3259 push_target (target); /* Switch to using remote target now. */
3260
3261 /* Assume that the target is not running, until we learn otherwise. */
3262 if (extended_p)
3263 target_mark_exited (target);
3264
3265 /* Register extra event sources in the event loop. */
3266 remote_async_inferior_event_token
3267 = create_async_event_handler (remote_async_inferior_event_handler,
3268 NULL);
3269 remote_async_get_pending_events_token
3270 = create_async_event_handler (remote_async_get_pending_events_handler,
3271 NULL);
3272
3273 /* Reset the target state; these things will be queried either by
3274 remote_query_supported or as they are needed. */
3275 init_all_packet_configs ();
3276 rs->cached_wait_status = 0;
3277 rs->explicit_packet_size = 0;
3278 rs->noack_mode = 0;
3279 rs->multi_process_aware = 0;
3280 rs->extended = extended_p;
3281 rs->non_stop_aware = 0;
3282 rs->waiting_for_stop_reply = 0;
3283
3284 general_thread = not_sent_ptid;
3285 continue_thread = not_sent_ptid;
3286
3287 /* Probe for ability to use "ThreadInfo" query, as required. */
3288 use_threadinfo_query = 1;
3289 use_threadextra_query = 1;
3290
3291 if (target_async_permitted)
3292 {
3293 /* With this target we start out by owning the terminal. */
3294 remote_async_terminal_ours_p = 1;
3295
3296 /* FIXME: cagney/1999-09-23: During the initial connection it is
3297 assumed that the target is already ready and able to respond to
3298 requests. Unfortunately remote_start_remote() eventually calls
3299 wait_for_inferior() with no timeout. wait_forever_enabled_p gets
3300 around this. Eventually a mechanism that allows
3301 wait_for_inferior() to expect/get timeouts will be
3302 implemented. */
3303 wait_forever_enabled_p = 0;
3304 }
3305
3306 /* First delete any symbols previously loaded from shared libraries. */
3307 no_shared_libraries (NULL, 0);
3308
3309 /* Start afresh. */
3310 init_thread_list ();
3311
3312 /* Start the remote connection. If error() or QUIT, discard this
3313 target (we'd otherwise be in an inconsistent state) and then
3314 propogate the error on up the exception chain. This ensures that
3315 the caller doesn't stumble along blindly assuming that the
3316 function succeeded. The CLI doesn't have this problem but other
3317 UI's, such as MI do.
3318
3319 FIXME: cagney/2002-05-19: Instead of re-throwing the exception,
3320 this function should return an error indication letting the
3321 caller restore the previous state. Unfortunately the command
3322 ``target remote'' is directly wired to this function making that
3323 impossible. On a positive note, the CLI side of this problem has
3324 been fixed - the function set_cmd_context() makes it possible for
3325 all the ``target ....'' commands to share a common callback
3326 function. See cli-dump.c. */
3327 {
3328 struct gdb_exception ex;
3329 struct start_remote_args args;
3330
3331 args.from_tty = from_tty;
3332 args.target = target;
3333 args.extended_p = extended_p;
3334
3335 ex = catch_exception (uiout, remote_start_remote, &args, RETURN_MASK_ALL);
3336 if (ex.reason < 0)
3337 {
3338 /* Pop the partially set up target - unless something else did
3339 already before throwing the exception. */
3340 if (remote_desc != NULL)
3341 pop_target ();
3342 if (target_async_permitted)
3343 wait_forever_enabled_p = 1;
3344 throw_exception (ex);
3345 }
3346 }
3347
3348 if (target_async_permitted)
3349 wait_forever_enabled_p = 1;
3350 }
3351
3352 /* This takes a program previously attached to and detaches it. After
3353 this is done, GDB can be used to debug some other program. We
3354 better not have left any breakpoints in the target program or it'll
3355 die when it hits one. */
3356
3357 static void
3358 remote_detach_1 (char *args, int from_tty, int extended)
3359 {
3360 int pid = ptid_get_pid (inferior_ptid);
3361 struct remote_state *rs = get_remote_state ();
3362
3363 if (args)
3364 error (_("Argument given to \"detach\" when remotely debugging."));
3365
3366 if (!target_has_execution)
3367 error (_("No process to detach from."));
3368
3369 /* Tell the remote target to detach. */
3370 if (remote_multi_process_p (rs))
3371 sprintf (rs->buf, "D;%x", pid);
3372 else
3373 strcpy (rs->buf, "D");
3374
3375 putpkt (rs->buf);
3376 getpkt (&rs->buf, &rs->buf_size, 0);
3377
3378 if (rs->buf[0] == 'O' && rs->buf[1] == 'K')
3379 ;
3380 else if (rs->buf[0] == '\0')
3381 error (_("Remote doesn't know how to detach"));
3382 else
3383 error (_("Can't detach process."));
3384
3385 if (from_tty)
3386 {
3387 if (remote_multi_process_p (rs))
3388 printf_filtered (_("Detached from remote %s.\n"),
3389 target_pid_to_str (pid_to_ptid (pid)));
3390 else
3391 {
3392 if (extended)
3393 puts_filtered (_("Detached from remote process.\n"));
3394 else
3395 puts_filtered (_("Ending remote debugging.\n"));
3396 }
3397 }
3398
3399 discard_pending_stop_replies (pid);
3400 target_mourn_inferior ();
3401 }
3402
3403 static void
3404 remote_detach (struct target_ops *ops, char *args, int from_tty)
3405 {
3406 remote_detach_1 (args, from_tty, 0);
3407 }
3408
3409 static void
3410 extended_remote_detach (struct target_ops *ops, char *args, int from_tty)
3411 {
3412 remote_detach_1 (args, from_tty, 1);
3413 }
3414
3415 /* Same as remote_detach, but don't send the "D" packet; just disconnect. */
3416
3417 static void
3418 remote_disconnect (struct target_ops *target, char *args, int from_tty)
3419 {
3420 if (args)
3421 error (_("Argument given to \"disconnect\" when remotely debugging."));
3422
3423 /* Make sure we unpush even the extended remote targets; mourn
3424 won't do it. So call remote_mourn_1 directly instead of
3425 target_mourn_inferior. */
3426 remote_mourn_1 (target);
3427
3428 if (from_tty)
3429 puts_filtered ("Ending remote debugging.\n");
3430 }
3431
3432 /* Attach to the process specified by ARGS. If FROM_TTY is non-zero,
3433 be chatty about it. */
3434
3435 static void
3436 extended_remote_attach_1 (struct target_ops *target, char *args, int from_tty)
3437 {
3438 struct remote_state *rs = get_remote_state ();
3439 int pid;
3440 char *dummy;
3441 char *wait_status = NULL;
3442
3443 if (!args)
3444 error_no_arg (_("process-id to attach"));
3445
3446 dummy = args;
3447 pid = strtol (args, &dummy, 0);
3448 /* Some targets don't set errno on errors, grrr! */
3449 if (pid == 0 && args == dummy)
3450 error (_("Illegal process-id: %s."), args);
3451
3452 if (remote_protocol_packets[PACKET_vAttach].support == PACKET_DISABLE)
3453 error (_("This target does not support attaching to a process"));
3454
3455 sprintf (rs->buf, "vAttach;%x", pid);
3456 putpkt (rs->buf);
3457 getpkt (&rs->buf, &rs->buf_size, 0);
3458
3459 if (packet_ok (rs->buf, &remote_protocol_packets[PACKET_vAttach]) == PACKET_OK)
3460 {
3461 if (from_tty)
3462 printf_unfiltered (_("Attached to %s\n"),
3463 target_pid_to_str (pid_to_ptid (pid)));
3464
3465 if (!non_stop)
3466 {
3467 /* Save the reply for later. */
3468 wait_status = alloca (strlen (rs->buf) + 1);
3469 strcpy (wait_status, rs->buf);
3470 }
3471 else if (strcmp (rs->buf, "OK") != 0)
3472 error (_("Attaching to %s failed with: %s"),
3473 target_pid_to_str (pid_to_ptid (pid)),
3474 rs->buf);
3475 }
3476 else if (remote_protocol_packets[PACKET_vAttach].support == PACKET_DISABLE)
3477 error (_("This target does not support attaching to a process"));
3478 else
3479 error (_("Attaching to %s failed"),
3480 target_pid_to_str (pid_to_ptid (pid)));
3481
3482 inferior_ptid = pid_to_ptid (pid);
3483
3484 /* Now, if we have thread information, update inferior_ptid. */
3485 inferior_ptid = remote_current_thread (inferior_ptid);
3486
3487 remote_add_inferior (pid, 1);
3488
3489 if (non_stop)
3490 /* Get list of threads. */
3491 remote_threads_info (target);
3492 else
3493 /* Add the main thread to the thread list. */
3494 add_thread_silent (inferior_ptid);
3495
3496 /* Next, if the target can specify a description, read it. We do
3497 this before anything involving memory or registers. */
3498 target_find_description ();
3499
3500 if (!non_stop)
3501 {
3502 /* Use the previously fetched status. */
3503 gdb_assert (wait_status != NULL);
3504
3505 if (target_can_async_p ())
3506 {
3507 struct stop_reply *stop_reply;
3508 struct cleanup *old_chain;
3509
3510 stop_reply = stop_reply_xmalloc ();
3511 old_chain = make_cleanup (do_stop_reply_xfree, stop_reply);
3512 remote_parse_stop_reply (wait_status, stop_reply);
3513 discard_cleanups (old_chain);
3514 push_stop_reply (stop_reply);
3515
3516 target_async (inferior_event_handler, 0);
3517 }
3518 else
3519 {
3520 gdb_assert (wait_status != NULL);
3521 strcpy (rs->buf, wait_status);
3522 rs->cached_wait_status = 1;
3523 }
3524 }
3525 else
3526 gdb_assert (wait_status == NULL);
3527 }
3528
3529 static void
3530 extended_remote_attach (struct target_ops *ops, char *args, int from_tty)
3531 {
3532 extended_remote_attach_1 (ops, args, from_tty);
3533 }
3534
3535 /* Convert hex digit A to a number. */
3536
3537 static int
3538 fromhex (int a)
3539 {
3540 if (a >= '0' && a <= '9')
3541 return a - '0';
3542 else if (a >= 'a' && a <= 'f')
3543 return a - 'a' + 10;
3544 else if (a >= 'A' && a <= 'F')
3545 return a - 'A' + 10;
3546 else
3547 error (_("Reply contains invalid hex digit %d"), a);
3548 }
3549
3550 static int
3551 hex2bin (const char *hex, gdb_byte *bin, int count)
3552 {
3553 int i;
3554
3555 for (i = 0; i < count; i++)
3556 {
3557 if (hex[0] == 0 || hex[1] == 0)
3558 {
3559 /* Hex string is short, or of uneven length.
3560 Return the count that has been converted so far. */
3561 return i;
3562 }
3563 *bin++ = fromhex (hex[0]) * 16 + fromhex (hex[1]);
3564 hex += 2;
3565 }
3566 return i;
3567 }
3568
3569 /* Convert number NIB to a hex digit. */
3570
3571 static int
3572 tohex (int nib)
3573 {
3574 if (nib < 10)
3575 return '0' + nib;
3576 else
3577 return 'a' + nib - 10;
3578 }
3579
3580 static int
3581 bin2hex (const gdb_byte *bin, char *hex, int count)
3582 {
3583 int i;
3584 /* May use a length, or a nul-terminated string as input. */
3585 if (count == 0)
3586 count = strlen ((char *) bin);
3587
3588 for (i = 0; i < count; i++)
3589 {
3590 *hex++ = tohex ((*bin >> 4) & 0xf);
3591 *hex++ = tohex (*bin++ & 0xf);
3592 }
3593 *hex = 0;
3594 return i;
3595 }
3596 \f
3597 /* Check for the availability of vCont. This function should also check
3598 the response. */
3599
3600 static void
3601 remote_vcont_probe (struct remote_state *rs)
3602 {
3603 char *buf;
3604
3605 strcpy (rs->buf, "vCont?");
3606 putpkt (rs->buf);
3607 getpkt (&rs->buf, &rs->buf_size, 0);
3608 buf = rs->buf;
3609
3610 /* Make sure that the features we assume are supported. */
3611 if (strncmp (buf, "vCont", 5) == 0)
3612 {
3613 char *p = &buf[5];
3614 int support_s, support_S, support_c, support_C;
3615
3616 support_s = 0;
3617 support_S = 0;
3618 support_c = 0;
3619 support_C = 0;
3620 rs->support_vCont_t = 0;
3621 while (p && *p == ';')
3622 {
3623 p++;
3624 if (*p == 's' && (*(p + 1) == ';' || *(p + 1) == 0))
3625 support_s = 1;
3626 else if (*p == 'S' && (*(p + 1) == ';' || *(p + 1) == 0))
3627 support_S = 1;
3628 else if (*p == 'c' && (*(p + 1) == ';' || *(p + 1) == 0))
3629 support_c = 1;
3630 else if (*p == 'C' && (*(p + 1) == ';' || *(p + 1) == 0))
3631 support_C = 1;
3632 else if (*p == 't' && (*(p + 1) == ';' || *(p + 1) == 0))
3633 rs->support_vCont_t = 1;
3634
3635 p = strchr (p, ';');
3636 }
3637
3638 /* If s, S, c, and C are not all supported, we can't use vCont. Clearing
3639 BUF will make packet_ok disable the packet. */
3640 if (!support_s || !support_S || !support_c || !support_C)
3641 buf[0] = 0;
3642 }
3643
3644 packet_ok (buf, &remote_protocol_packets[PACKET_vCont]);
3645 }
3646
3647 /* Resume the remote inferior by using a "vCont" packet. The thread
3648 to be resumed is PTID; STEP and SIGGNAL indicate whether the
3649 resumed thread should be single-stepped and/or signalled. If PTID
3650 equals minus_one_ptid, then all threads are resumed; the thread to
3651 be stepped and/or signalled is given in the global INFERIOR_PTID.
3652 This function returns non-zero iff it resumes the inferior.
3653
3654 This function issues a strict subset of all possible vCont commands at the
3655 moment. */
3656
3657 static int
3658 remote_vcont_resume (ptid_t ptid, int step, enum target_signal siggnal)
3659 {
3660 struct remote_state *rs = get_remote_state ();
3661 char *p;
3662 char *endp;
3663
3664 if (remote_protocol_packets[PACKET_vCont].support == PACKET_SUPPORT_UNKNOWN)
3665 remote_vcont_probe (rs);
3666
3667 if (remote_protocol_packets[PACKET_vCont].support == PACKET_DISABLE)
3668 return 0;
3669
3670 p = rs->buf;
3671 endp = rs->buf + get_remote_packet_size ();
3672
3673 /* If we could generate a wider range of packets, we'd have to worry
3674 about overflowing BUF. Should there be a generic
3675 "multi-part-packet" packet? */
3676
3677 if (ptid_equal (ptid, magic_null_ptid))
3678 {
3679 /* MAGIC_NULL_PTID means that we don't have any active threads,
3680 so we don't have any TID numbers the inferior will
3681 understand. Make sure to only send forms that do not specify
3682 a TID. */
3683 if (step && siggnal != TARGET_SIGNAL_0)
3684 xsnprintf (p, endp - p, "vCont;S%02x", siggnal);
3685 else if (step)
3686 xsnprintf (p, endp - p, "vCont;s");
3687 else if (siggnal != TARGET_SIGNAL_0)
3688 xsnprintf (p, endp - p, "vCont;C%02x", siggnal);
3689 else
3690 xsnprintf (p, endp - p, "vCont;c");
3691 }
3692 else if (ptid_equal (ptid, minus_one_ptid))
3693 {
3694 /* Resume all threads, with preference for INFERIOR_PTID. */
3695 if (step && siggnal != TARGET_SIGNAL_0)
3696 {
3697 /* Step inferior_ptid with signal. */
3698 p += xsnprintf (p, endp - p, "vCont;S%02x:", siggnal);
3699 p = write_ptid (p, endp, inferior_ptid);
3700 /* And continue others. */
3701 p += xsnprintf (p, endp - p, ";c");
3702 }
3703 else if (step)
3704 {
3705 /* Step inferior_ptid. */
3706 p += xsnprintf (p, endp - p, "vCont;s:");
3707 p = write_ptid (p, endp, inferior_ptid);
3708 /* And continue others. */
3709 p += xsnprintf (p, endp - p, ";c");
3710 }
3711 else if (siggnal != TARGET_SIGNAL_0)
3712 {
3713 /* Continue inferior_ptid with signal. */
3714 p += xsnprintf (p, endp - p, "vCont;C%02x:", siggnal);
3715 p = write_ptid (p, endp, inferior_ptid);
3716 /* And continue others. */
3717 p += xsnprintf (p, endp - p, ";c");
3718 }
3719 else
3720 xsnprintf (p, endp - p, "vCont;c");
3721 }
3722 else
3723 {
3724 /* Scheduler locking; resume only PTID. */
3725 if (step && siggnal != TARGET_SIGNAL_0)
3726 {
3727 /* Step ptid with signal. */
3728 p += xsnprintf (p, endp - p, "vCont;S%02x:", siggnal);
3729 p = write_ptid (p, endp, ptid);
3730 }
3731 else if (step)
3732 {
3733 /* Step ptid. */
3734 p += xsnprintf (p, endp - p, "vCont;s:");
3735 p = write_ptid (p, endp, ptid);
3736 }
3737 else if (siggnal != TARGET_SIGNAL_0)
3738 {
3739 /* Continue ptid with signal. */
3740 p += xsnprintf (p, endp - p, "vCont;C%02x:", siggnal);
3741 p = write_ptid (p, endp, ptid);
3742 }
3743 else
3744 {
3745 /* Continue ptid. */
3746 p += xsnprintf (p, endp - p, "vCont;c:");
3747 p = write_ptid (p, endp, ptid);
3748 }
3749 }
3750
3751 gdb_assert (strlen (rs->buf) < get_remote_packet_size ());
3752 putpkt (rs->buf);
3753
3754 if (non_stop)
3755 {
3756 /* In non-stop, the stub replies to vCont with "OK". The stop
3757 reply will be reported asynchronously by means of a `%Stop'
3758 notification. */
3759 getpkt (&rs->buf, &rs->buf_size, 0);
3760 if (strcmp (rs->buf, "OK") != 0)
3761 error (_("Unexpected vCont reply in non-stop mode: %s"), rs->buf);
3762 }
3763
3764 return 1;
3765 }
3766
3767 /* Tell the remote machine to resume. */
3768
3769 static enum target_signal last_sent_signal = TARGET_SIGNAL_0;
3770
3771 static int last_sent_step;
3772
3773 static void
3774 remote_resume (struct target_ops *ops,
3775 ptid_t ptid, int step, enum target_signal siggnal)
3776 {
3777 struct remote_state *rs = get_remote_state ();
3778 char *buf;
3779
3780 last_sent_signal = siggnal;
3781 last_sent_step = step;
3782
3783 /* Update the inferior on signals to silently pass, if they've changed. */
3784 remote_pass_signals ();
3785
3786 /* The vCont packet doesn't need to specify threads via Hc. */
3787 if (remote_vcont_resume (ptid, step, siggnal))
3788 goto done;
3789
3790 /* All other supported resume packets do use Hc, so set the continue
3791 thread. */
3792 if (ptid_equal (ptid, minus_one_ptid))
3793 set_continue_thread (any_thread_ptid);
3794 else
3795 set_continue_thread (ptid);
3796
3797 buf = rs->buf;
3798 if (execution_direction == EXEC_REVERSE)
3799 {
3800 /* We don't pass signals to the target in reverse exec mode. */
3801 if (info_verbose && siggnal != TARGET_SIGNAL_0)
3802 warning (" - Can't pass signal %d to target in reverse: ignored.\n",
3803 siggnal);
3804 strcpy (buf, step ? "bs" : "bc");
3805 }
3806 else if (siggnal != TARGET_SIGNAL_0)
3807 {
3808 buf[0] = step ? 'S' : 'C';
3809 buf[1] = tohex (((int) siggnal >> 4) & 0xf);
3810 buf[2] = tohex (((int) siggnal) & 0xf);
3811 buf[3] = '\0';
3812 }
3813 else
3814 strcpy (buf, step ? "s" : "c");
3815
3816 putpkt (buf);
3817
3818 done:
3819 /* We are about to start executing the inferior, let's register it
3820 with the event loop. NOTE: this is the one place where all the
3821 execution commands end up. We could alternatively do this in each
3822 of the execution commands in infcmd.c. */
3823 /* FIXME: ezannoni 1999-09-28: We may need to move this out of here
3824 into infcmd.c in order to allow inferior function calls to work
3825 NOT asynchronously. */
3826 if (target_can_async_p ())
3827 target_async (inferior_event_handler, 0);
3828
3829 /* We've just told the target to resume. The remote server will
3830 wait for the inferior to stop, and then send a stop reply. In
3831 the mean time, we can't start another command/query ourselves
3832 because the stub wouldn't be ready to process it. This applies
3833 only to the base all-stop protocol, however. In non-stop (which
3834 only supports vCont), the stub replies with an "OK", and is
3835 immediate able to process further serial input. */
3836 if (!non_stop)
3837 rs->waiting_for_stop_reply = 1;
3838 }
3839 \f
3840
3841 /* Set up the signal handler for SIGINT, while the target is
3842 executing, ovewriting the 'regular' SIGINT signal handler. */
3843 static void
3844 initialize_sigint_signal_handler (void)
3845 {
3846 signal (SIGINT, handle_remote_sigint);
3847 }
3848
3849 /* Signal handler for SIGINT, while the target is executing. */
3850 static void
3851 handle_remote_sigint (int sig)
3852 {
3853 signal (sig, handle_remote_sigint_twice);
3854 mark_async_signal_handler_wrapper (sigint_remote_token);
3855 }
3856
3857 /* Signal handler for SIGINT, installed after SIGINT has already been
3858 sent once. It will take effect the second time that the user sends
3859 a ^C. */
3860 static void
3861 handle_remote_sigint_twice (int sig)
3862 {
3863 signal (sig, handle_remote_sigint);
3864 mark_async_signal_handler_wrapper (sigint_remote_twice_token);
3865 }
3866
3867 /* Perform the real interruption of the target execution, in response
3868 to a ^C. */
3869 static void
3870 async_remote_interrupt (gdb_client_data arg)
3871 {
3872 if (remote_debug)
3873 fprintf_unfiltered (gdb_stdlog, "remote_interrupt called\n");
3874
3875 target_stop (inferior_ptid);
3876 }
3877
3878 /* Perform interrupt, if the first attempt did not succeed. Just give
3879 up on the target alltogether. */
3880 void
3881 async_remote_interrupt_twice (gdb_client_data arg)
3882 {
3883 if (remote_debug)
3884 fprintf_unfiltered (gdb_stdlog, "remote_interrupt_twice called\n");
3885
3886 interrupt_query ();
3887 }
3888
3889 /* Reinstall the usual SIGINT handlers, after the target has
3890 stopped. */
3891 static void
3892 cleanup_sigint_signal_handler (void *dummy)
3893 {
3894 signal (SIGINT, handle_sigint);
3895 }
3896
3897 /* Send ^C to target to halt it. Target will respond, and send us a
3898 packet. */
3899 static void (*ofunc) (int);
3900
3901 /* The command line interface's stop routine. This function is installed
3902 as a signal handler for SIGINT. The first time a user requests a
3903 stop, we call remote_stop to send a break or ^C. If there is no
3904 response from the target (it didn't stop when the user requested it),
3905 we ask the user if he'd like to detach from the target. */
3906 static void
3907 remote_interrupt (int signo)
3908 {
3909 /* If this doesn't work, try more severe steps. */
3910 signal (signo, remote_interrupt_twice);
3911
3912 gdb_call_async_signal_handler (sigint_remote_token, 1);
3913 }
3914
3915 /* The user typed ^C twice. */
3916
3917 static void
3918 remote_interrupt_twice (int signo)
3919 {
3920 signal (signo, ofunc);
3921 gdb_call_async_signal_handler (sigint_remote_twice_token, 1);
3922 signal (signo, remote_interrupt);
3923 }
3924
3925 /* Non-stop version of target_stop. Uses `vCont;t' to stop a remote
3926 thread, all threads of a remote process, or all threads of all
3927 processes. */
3928
3929 static void
3930 remote_stop_ns (ptid_t ptid)
3931 {
3932 struct remote_state *rs = get_remote_state ();
3933 char *p = rs->buf;
3934 char *endp = rs->buf + get_remote_packet_size ();
3935 struct stop_reply *reply, *next;
3936
3937 if (remote_protocol_packets[PACKET_vCont].support == PACKET_SUPPORT_UNKNOWN)
3938 remote_vcont_probe (rs);
3939
3940 if (!rs->support_vCont_t)
3941 error (_("Remote server does not support stopping threads"));
3942
3943 if (ptid_equal (ptid, minus_one_ptid))
3944 p += xsnprintf (p, endp - p, "vCont;t");
3945 else
3946 {
3947 ptid_t nptid;
3948
3949 /* Step inferior_ptid. */
3950 p += xsnprintf (p, endp - p, "vCont;t:");
3951
3952 if (ptid_is_pid (ptid))
3953 /* All (-1) threads of process. */
3954 nptid = ptid_build (ptid_get_pid (ptid), 0, -1);
3955 else
3956 {
3957 /* Small optimization: if we already have a stop reply for
3958 this thread, no use in telling the stub we want this
3959 stopped. */
3960 if (peek_stop_reply (ptid))
3961 return;
3962
3963 nptid = ptid;
3964 }
3965
3966 p = write_ptid (p, endp, nptid);
3967 }
3968
3969 /* In non-stop, we get an immediate OK reply. The stop reply will
3970 come in asynchronously by notification. */
3971 putpkt (rs->buf);
3972 getpkt (&rs->buf, &rs->buf_size, 0);
3973 if (strcmp (rs->buf, "OK") != 0)
3974 error (_("Stopping %s failed: %s"), target_pid_to_str (ptid), rs->buf);
3975 }
3976
3977 /* All-stop version of target_stop. Sends a break or a ^C to stop the
3978 remote target. It is undefined which thread of which process
3979 reports the stop. */
3980
3981 static void
3982 remote_stop_as (ptid_t ptid)
3983 {
3984 struct remote_state *rs = get_remote_state ();
3985
3986 /* If the inferior is stopped already, but the core didn't know
3987 about it yet, just ignore the request. The cached wait status
3988 will be collected in remote_wait. */
3989 if (rs->cached_wait_status)
3990 return;
3991
3992 /* Send a break or a ^C, depending on user preference. */
3993
3994 if (remote_break)
3995 serial_send_break (remote_desc);
3996 else
3997 serial_write (remote_desc, "\003", 1);
3998 }
3999
4000 /* This is the generic stop called via the target vector. When a target
4001 interrupt is requested, either by the command line or the GUI, we
4002 will eventually end up here. */
4003
4004 static void
4005 remote_stop (ptid_t ptid)
4006 {
4007 if (remote_debug)
4008 fprintf_unfiltered (gdb_stdlog, "remote_stop called\n");
4009
4010 if (non_stop)
4011 remote_stop_ns (ptid);
4012 else
4013 remote_stop_as (ptid);
4014 }
4015
4016 /* Ask the user what to do when an interrupt is received. */
4017
4018 static void
4019 interrupt_query (void)
4020 {
4021 target_terminal_ours ();
4022
4023 if (target_can_async_p ())
4024 {
4025 signal (SIGINT, handle_sigint);
4026 deprecated_throw_reason (RETURN_QUIT);
4027 }
4028 else
4029 {
4030 if (query (_("Interrupted while waiting for the program.\n\
4031 Give up (and stop debugging it)? ")))
4032 {
4033 pop_target ();
4034 deprecated_throw_reason (RETURN_QUIT);
4035 }
4036 }
4037
4038 target_terminal_inferior ();
4039 }
4040
4041 /* Enable/disable target terminal ownership. Most targets can use
4042 terminal groups to control terminal ownership. Remote targets are
4043 different in that explicit transfer of ownership to/from GDB/target
4044 is required. */
4045
4046 static void
4047 remote_terminal_inferior (void)
4048 {
4049 if (!target_async_permitted)
4050 /* Nothing to do. */
4051 return;
4052
4053 /* FIXME: cagney/1999-09-27: Shouldn't need to test for
4054 sync_execution here. This function should only be called when
4055 GDB is resuming the inferior in the forground. A background
4056 resume (``run&'') should leave GDB in control of the terminal and
4057 consequently should not call this code. */
4058 if (!sync_execution)
4059 return;
4060 /* FIXME: cagney/1999-09-27: Closely related to the above. Make
4061 calls target_terminal_*() idenpotent. The event-loop GDB talking
4062 to an asynchronous target with a synchronous command calls this
4063 function from both event-top.c and infrun.c/infcmd.c. Once GDB
4064 stops trying to transfer the terminal to the target when it
4065 shouldn't this guard can go away. */
4066 if (!remote_async_terminal_ours_p)
4067 return;
4068 delete_file_handler (input_fd);
4069 remote_async_terminal_ours_p = 0;
4070 initialize_sigint_signal_handler ();
4071 /* NOTE: At this point we could also register our selves as the
4072 recipient of all input. Any characters typed could then be
4073 passed on down to the target. */
4074 }
4075
4076 static void
4077 remote_terminal_ours (void)
4078 {
4079 if (!target_async_permitted)
4080 /* Nothing to do. */
4081 return;
4082
4083 /* See FIXME in remote_terminal_inferior. */
4084 if (!sync_execution)
4085 return;
4086 /* See FIXME in remote_terminal_inferior. */
4087 if (remote_async_terminal_ours_p)
4088 return;
4089 cleanup_sigint_signal_handler (NULL);
4090 add_file_handler (input_fd, stdin_event_handler, 0);
4091 remote_async_terminal_ours_p = 1;
4092 }
4093
4094 void
4095 remote_console_output (char *msg)
4096 {
4097 char *p;
4098
4099 for (p = msg; p[0] && p[1]; p += 2)
4100 {
4101 char tb[2];
4102 char c = fromhex (p[0]) * 16 + fromhex (p[1]);
4103 tb[0] = c;
4104 tb[1] = 0;
4105 fputs_unfiltered (tb, gdb_stdtarg);
4106 }
4107 gdb_flush (gdb_stdtarg);
4108 }
4109
4110 typedef struct cached_reg
4111 {
4112 int num;
4113 gdb_byte data[MAX_REGISTER_SIZE];
4114 } cached_reg_t;
4115
4116 DEF_VEC_O(cached_reg_t);
4117
4118 struct stop_reply
4119 {
4120 struct stop_reply *next;
4121
4122 ptid_t ptid;
4123
4124 struct target_waitstatus ws;
4125
4126 VEC(cached_reg_t) *regcache;
4127
4128 int stopped_by_watchpoint_p;
4129 CORE_ADDR watch_data_address;
4130
4131 int solibs_changed;
4132 int replay_event;
4133 };
4134
4135 /* The list of already fetched and acknowledged stop events. */
4136 static struct stop_reply *stop_reply_queue;
4137
4138 static struct stop_reply *
4139 stop_reply_xmalloc (void)
4140 {
4141 struct stop_reply *r = XMALLOC (struct stop_reply);
4142 r->next = NULL;
4143 return r;
4144 }
4145
4146 static void
4147 stop_reply_xfree (struct stop_reply *r)
4148 {
4149 if (r != NULL)
4150 {
4151 VEC_free (cached_reg_t, r->regcache);
4152 xfree (r);
4153 }
4154 }
4155
4156 /* Discard all pending stop replies of inferior PID. If PID is -1,
4157 discard everything. */
4158
4159 static void
4160 discard_pending_stop_replies (int pid)
4161 {
4162 struct stop_reply *prev = NULL, *reply, *next;
4163
4164 /* Discard the in-flight notification. */
4165 if (pending_stop_reply != NULL
4166 && (pid == -1
4167 || ptid_get_pid (pending_stop_reply->ptid) == pid))
4168 {
4169 stop_reply_xfree (pending_stop_reply);
4170 pending_stop_reply = NULL;
4171 }
4172
4173 /* Discard the stop replies we have already pulled with
4174 vStopped. */
4175 for (reply = stop_reply_queue; reply; reply = next)
4176 {
4177 next = reply->next;
4178 if (pid == -1
4179 || ptid_get_pid (reply->ptid) == pid)
4180 {
4181 if (reply == stop_reply_queue)
4182 stop_reply_queue = reply->next;
4183 else
4184 prev->next = reply->next;
4185
4186 stop_reply_xfree (reply);
4187 }
4188 else
4189 prev = reply;
4190 }
4191 }
4192
4193 /* Cleanup wrapper. */
4194
4195 static void
4196 do_stop_reply_xfree (void *arg)
4197 {
4198 struct stop_reply *r = arg;
4199 stop_reply_xfree (r);
4200 }
4201
4202 /* Look for a queued stop reply belonging to PTID. If one is found,
4203 remove it from the queue, and return it. Returns NULL if none is
4204 found. If there are still queued events left to process, tell the
4205 event loop to get back to target_wait soon. */
4206
4207 static struct stop_reply *
4208 queued_stop_reply (ptid_t ptid)
4209 {
4210 struct stop_reply *it, *prev;
4211 struct stop_reply head;
4212
4213 head.next = stop_reply_queue;
4214 prev = &head;
4215
4216 it = head.next;
4217
4218 if (!ptid_equal (ptid, minus_one_ptid))
4219 for (; it; prev = it, it = it->next)
4220 if (ptid_equal (ptid, it->ptid))
4221 break;
4222
4223 if (it)
4224 {
4225 prev->next = it->next;
4226 it->next = NULL;
4227 }
4228
4229 stop_reply_queue = head.next;
4230
4231 if (stop_reply_queue)
4232 /* There's still at least an event left. */
4233 mark_async_event_handler (remote_async_inferior_event_token);
4234
4235 return it;
4236 }
4237
4238 /* Push a fully parsed stop reply in the stop reply queue. Since we
4239 know that we now have at least one queued event left to pass to the
4240 core side, tell the event loop to get back to target_wait soon. */
4241
4242 static void
4243 push_stop_reply (struct stop_reply *new_event)
4244 {
4245 struct stop_reply *event;
4246
4247 if (stop_reply_queue)
4248 {
4249 for (event = stop_reply_queue;
4250 event && event->next;
4251 event = event->next)
4252 ;
4253
4254 event->next = new_event;
4255 }
4256 else
4257 stop_reply_queue = new_event;
4258
4259 mark_async_event_handler (remote_async_inferior_event_token);
4260 }
4261
4262 /* Returns true if we have a stop reply for PTID. */
4263
4264 static int
4265 peek_stop_reply (ptid_t ptid)
4266 {
4267 struct stop_reply *it;
4268
4269 for (it = stop_reply_queue; it; it = it->next)
4270 if (ptid_equal (ptid, it->ptid))
4271 {
4272 if (it->ws.kind == TARGET_WAITKIND_STOPPED)
4273 return 1;
4274 }
4275
4276 return 0;
4277 }
4278
4279 /* Parse the stop reply in BUF. Either the function succeeds, and the
4280 result is stored in EVENT, or throws an error. */
4281
4282 static void
4283 remote_parse_stop_reply (char *buf, struct stop_reply *event)
4284 {
4285 struct remote_arch_state *rsa = get_remote_arch_state ();
4286 ULONGEST addr;
4287 char *p;
4288
4289 event->ptid = null_ptid;
4290 event->ws.kind = TARGET_WAITKIND_IGNORE;
4291 event->ws.value.integer = 0;
4292 event->solibs_changed = 0;
4293 event->replay_event = 0;
4294 event->stopped_by_watchpoint_p = 0;
4295 event->regcache = NULL;
4296
4297 switch (buf[0])
4298 {
4299 case 'T': /* Status with PC, SP, FP, ... */
4300 {
4301 gdb_byte regs[MAX_REGISTER_SIZE];
4302
4303 /* Expedited reply, containing Signal, {regno, reg} repeat. */
4304 /* format is: 'Tssn...:r...;n...:r...;n...:r...;#cc', where
4305 ss = signal number
4306 n... = register number
4307 r... = register contents
4308 */
4309
4310 p = &buf[3]; /* after Txx */
4311 while (*p)
4312 {
4313 char *p1;
4314 char *p_temp;
4315 int fieldsize;
4316 LONGEST pnum = 0;
4317
4318 /* If the packet contains a register number, save it in
4319 pnum and set p1 to point to the character following it.
4320 Otherwise p1 points to p. */
4321
4322 /* If this packet is an awatch packet, don't parse the 'a'
4323 as a register number. */
4324
4325 if (strncmp (p, "awatch", strlen("awatch")) != 0)
4326 {
4327 /* Read the ``P'' register number. */
4328 pnum = strtol (p, &p_temp, 16);
4329 p1 = p_temp;
4330 }
4331 else
4332 p1 = p;
4333
4334 if (p1 == p) /* No register number present here. */
4335 {
4336 p1 = strchr (p, ':');
4337 if (p1 == NULL)
4338 error (_("Malformed packet(a) (missing colon): %s\n\
4339 Packet: '%s'\n"),
4340 p, buf);
4341 if (strncmp (p, "thread", p1 - p) == 0)
4342 event->ptid = read_ptid (++p1, &p);
4343 else if ((strncmp (p, "watch", p1 - p) == 0)
4344 || (strncmp (p, "rwatch", p1 - p) == 0)
4345 || (strncmp (p, "awatch", p1 - p) == 0))
4346 {
4347 event->stopped_by_watchpoint_p = 1;
4348 p = unpack_varlen_hex (++p1, &addr);
4349 event->watch_data_address = (CORE_ADDR) addr;
4350 }
4351 else if (strncmp (p, "library", p1 - p) == 0)
4352 {
4353 p1++;
4354 p_temp = p1;
4355 while (*p_temp && *p_temp != ';')
4356 p_temp++;
4357
4358 event->solibs_changed = 1;
4359 p = p_temp;
4360 }
4361 else if (strncmp (p, "replaylog", p1 - p) == 0)
4362 {
4363 /* NO_HISTORY event.
4364 p1 will indicate "begin" or "end", but
4365 it makes no difference for now, so ignore it. */
4366 event->replay_event = 1;
4367 p_temp = strchr (p1 + 1, ';');
4368 if (p_temp)
4369 p = p_temp;
4370 }
4371 else
4372 {
4373 /* Silently skip unknown optional info. */
4374 p_temp = strchr (p1 + 1, ';');
4375 if (p_temp)
4376 p = p_temp;
4377 }
4378 }
4379 else
4380 {
4381 struct packet_reg *reg = packet_reg_from_pnum (rsa, pnum);
4382 cached_reg_t cached_reg;
4383
4384 p = p1;
4385
4386 if (*p != ':')
4387 error (_("Malformed packet(b) (missing colon): %s\n\
4388 Packet: '%s'\n"),
4389 p, buf);
4390 ++p;
4391
4392 if (reg == NULL)
4393 error (_("Remote sent bad register number %s: %s\n\
4394 Packet: '%s'\n"),
4395 phex_nz (pnum, 0), p, buf);
4396
4397 cached_reg.num = reg->regnum;
4398
4399 fieldsize = hex2bin (p, cached_reg.data,
4400 register_size (target_gdbarch,
4401 reg->regnum));
4402 p += 2 * fieldsize;
4403 if (fieldsize < register_size (target_gdbarch,
4404 reg->regnum))
4405 warning (_("Remote reply is too short: %s"), buf);
4406
4407 VEC_safe_push (cached_reg_t, event->regcache, &cached_reg);
4408 }
4409
4410 if (*p != ';')
4411 error (_("Remote register badly formatted: %s\nhere: %s"),
4412 buf, p);
4413 ++p;
4414 }
4415 }
4416 /* fall through */
4417 case 'S': /* Old style status, just signal only. */
4418 if (event->solibs_changed)
4419 event->ws.kind = TARGET_WAITKIND_LOADED;
4420 else if (event->replay_event)
4421 event->ws.kind = TARGET_WAITKIND_NO_HISTORY;
4422 else
4423 {
4424 event->ws.kind = TARGET_WAITKIND_STOPPED;
4425 event->ws.value.sig = (enum target_signal)
4426 (((fromhex (buf[1])) << 4) + (fromhex (buf[2])));
4427 }
4428 break;
4429 case 'W': /* Target exited. */
4430 case 'X':
4431 {
4432 char *p;
4433 int pid;
4434 ULONGEST value;
4435
4436 /* GDB used to accept only 2 hex chars here. Stubs should
4437 only send more if they detect GDB supports multi-process
4438 support. */
4439 p = unpack_varlen_hex (&buf[1], &value);
4440
4441 if (buf[0] == 'W')
4442 {
4443 /* The remote process exited. */
4444 event->ws.kind = TARGET_WAITKIND_EXITED;
4445 event->ws.value.integer = value;
4446 }
4447 else
4448 {
4449 /* The remote process exited with a signal. */
4450 event->ws.kind = TARGET_WAITKIND_SIGNALLED;
4451 event->ws.value.sig = (enum target_signal) value;
4452 }
4453
4454 /* If no process is specified, assume inferior_ptid. */
4455 pid = ptid_get_pid (inferior_ptid);
4456 if (*p == '\0')
4457 ;
4458 else if (*p == ';')
4459 {
4460 p++;
4461
4462 if (p == '\0')
4463 ;
4464 else if (strncmp (p,
4465 "process:", sizeof ("process:") - 1) == 0)
4466 {
4467 ULONGEST upid;
4468 p += sizeof ("process:") - 1;
4469 unpack_varlen_hex (p, &upid);
4470 pid = upid;
4471 }
4472 else
4473 error (_("unknown stop reply packet: %s"), buf);
4474 }
4475 else
4476 error (_("unknown stop reply packet: %s"), buf);
4477 event->ptid = pid_to_ptid (pid);
4478 }
4479 break;
4480 }
4481
4482 if (non_stop && ptid_equal (event->ptid, null_ptid))
4483 error (_("No process or thread specified in stop reply: %s"), buf);
4484 }
4485
4486 /* When the stub wants to tell GDB about a new stop reply, it sends a
4487 stop notification (%Stop). Those can come it at any time, hence,
4488 we have to make sure that any pending putpkt/getpkt sequence we're
4489 making is finished, before querying the stub for more events with
4490 vStopped. E.g., if we started a vStopped sequence immediatelly
4491 upon receiving the %Stop notification, something like this could
4492 happen:
4493
4494 1.1) --> Hg 1
4495 1.2) <-- OK
4496 1.3) --> g
4497 1.4) <-- %Stop
4498 1.5) --> vStopped
4499 1.6) <-- (registers reply to step #1.3)
4500
4501 Obviously, the reply in step #1.6 would be unexpected to a vStopped
4502 query.
4503
4504 To solve this, whenever we parse a %Stop notification sucessfully,
4505 we mark the REMOTE_ASYNC_GET_PENDING_EVENTS_TOKEN, and carry on
4506 doing whatever we were doing:
4507
4508 2.1) --> Hg 1
4509 2.2) <-- OK
4510 2.3) --> g
4511 2.4) <-- %Stop
4512 <GDB marks the REMOTE_ASYNC_GET_PENDING_EVENTS_TOKEN>
4513 2.5) <-- (registers reply to step #2.3)
4514
4515 Eventualy after step #2.5, we return to the event loop, which
4516 notices there's an event on the
4517 REMOTE_ASYNC_GET_PENDING_EVENTS_TOKEN event and calls the
4518 associated callback --- the function below. At this point, we're
4519 always safe to start a vStopped sequence. :
4520
4521 2.6) --> vStopped
4522 2.7) <-- T05 thread:2
4523 2.8) --> vStopped
4524 2.9) --> OK
4525 */
4526
4527 static void
4528 remote_get_pending_stop_replies (void)
4529 {
4530 struct remote_state *rs = get_remote_state ();
4531 int ret;
4532
4533 if (pending_stop_reply)
4534 {
4535 /* acknowledge */
4536 putpkt ("vStopped");
4537
4538 /* Now we can rely on it. */
4539 push_stop_reply (pending_stop_reply);
4540 pending_stop_reply = NULL;
4541
4542 while (1)
4543 {
4544 getpkt (&rs->buf, &rs->buf_size, 0);
4545 if (strcmp (rs->buf, "OK") == 0)
4546 break;
4547 else
4548 {
4549 struct cleanup *old_chain;
4550 struct stop_reply *stop_reply = stop_reply_xmalloc ();
4551
4552 old_chain = make_cleanup (do_stop_reply_xfree, stop_reply);
4553 remote_parse_stop_reply (rs->buf, stop_reply);
4554
4555 /* acknowledge */
4556 putpkt ("vStopped");
4557
4558 if (stop_reply->ws.kind != TARGET_WAITKIND_IGNORE)
4559 {
4560 /* Now we can rely on it. */
4561 discard_cleanups (old_chain);
4562 push_stop_reply (stop_reply);
4563 }
4564 else
4565 /* We got an unknown stop reply. */
4566 do_cleanups (old_chain);
4567 }
4568 }
4569 }
4570 }
4571
4572
4573 /* Called when it is decided that STOP_REPLY holds the info of the
4574 event that is to be returned to the core. This function always
4575 destroys STOP_REPLY. */
4576
4577 static ptid_t
4578 process_stop_reply (struct stop_reply *stop_reply,
4579 struct target_waitstatus *status)
4580 {
4581 ptid_t ptid;
4582
4583 *status = stop_reply->ws;
4584 ptid = stop_reply->ptid;
4585
4586 /* If no thread/process was reported by the stub, assume the current
4587 inferior. */
4588 if (ptid_equal (ptid, null_ptid))
4589 ptid = inferior_ptid;
4590
4591 if (status->kind != TARGET_WAITKIND_EXITED
4592 && status->kind != TARGET_WAITKIND_SIGNALLED)
4593 {
4594 /* Expedited registers. */
4595 if (stop_reply->regcache)
4596 {
4597 cached_reg_t *reg;
4598 int ix;
4599
4600 for (ix = 0;
4601 VEC_iterate(cached_reg_t, stop_reply->regcache, ix, reg);
4602 ix++)
4603 regcache_raw_supply (get_thread_regcache (ptid),
4604 reg->num, reg->data);
4605 VEC_free (cached_reg_t, stop_reply->regcache);
4606 }
4607
4608 remote_stopped_by_watchpoint_p = stop_reply->stopped_by_watchpoint_p;
4609 remote_watch_data_address = stop_reply->watch_data_address;
4610
4611 remote_notice_new_inferior (ptid, 0);
4612 }
4613
4614 stop_reply_xfree (stop_reply);
4615 return ptid;
4616 }
4617
4618 /* The non-stop mode version of target_wait. */
4619
4620 static ptid_t
4621 remote_wait_ns (ptid_t ptid, struct target_waitstatus *status)
4622 {
4623 struct remote_state *rs = get_remote_state ();
4624 struct remote_arch_state *rsa = get_remote_arch_state ();
4625 ptid_t event_ptid = null_ptid;
4626 struct stop_reply *stop_reply;
4627 int ret;
4628
4629 /* If in non-stop mode, get out of getpkt even if a
4630 notification is received. */
4631
4632 ret = getpkt_or_notif_sane (&rs->buf, &rs->buf_size,
4633 0 /* forever */);
4634 while (1)
4635 {
4636 if (ret != -1)
4637 switch (rs->buf[0])
4638 {
4639 case 'E': /* Error of some sort. */
4640 /* We're out of sync with the target now. Did it continue
4641 or not? We can't tell which thread it was in non-stop,
4642 so just ignore this. */
4643 warning (_("Remote failure reply: %s"), rs->buf);
4644 break;
4645 case 'O': /* Console output. */
4646 remote_console_output (rs->buf + 1);
4647 break;
4648 default:
4649 warning (_("Invalid remote reply: %s"), rs->buf);
4650 break;
4651 }
4652
4653 /* Acknowledge a pending stop reply that may have arrived in the
4654 mean time. */
4655 if (pending_stop_reply != NULL)
4656 remote_get_pending_stop_replies ();
4657
4658 /* If indeed we noticed a stop reply, we're done. */
4659 stop_reply = queued_stop_reply (ptid);
4660 if (stop_reply != NULL)
4661 return process_stop_reply (stop_reply, status);
4662
4663 /* Still no event. If we're in asynchronous mode, then just
4664 return to the event loop. */
4665 if (remote_is_async_p ())
4666 {
4667 status->kind = TARGET_WAITKIND_IGNORE;
4668 return minus_one_ptid;
4669 }
4670
4671 /* Otherwise, asynchronous mode is masked, so do a blocking
4672 wait. */
4673 ret = getpkt_or_notif_sane (&rs->buf, &rs->buf_size,
4674 1 /* forever */);
4675 }
4676 }
4677
4678 /* Wait until the remote machine stops, then return, storing status in
4679 STATUS just as `wait' would. */
4680
4681 static ptid_t
4682 remote_wait_as (ptid_t ptid, struct target_waitstatus *status)
4683 {
4684 struct remote_state *rs = get_remote_state ();
4685 struct remote_arch_state *rsa = get_remote_arch_state ();
4686 ptid_t event_ptid = null_ptid;
4687 ULONGEST addr;
4688 int solibs_changed = 0;
4689 char *buf, *p;
4690 struct stop_reply *stop_reply;
4691
4692 status->kind = TARGET_WAITKIND_IGNORE;
4693 status->value.integer = 0;
4694
4695 stop_reply = queued_stop_reply (ptid);
4696 if (stop_reply != NULL)
4697 return process_stop_reply (stop_reply, status);
4698
4699 if (rs->cached_wait_status)
4700 /* Use the cached wait status, but only once. */
4701 rs->cached_wait_status = 0;
4702 else
4703 {
4704 int ret;
4705
4706 if (!target_is_async_p ())
4707 {
4708 ofunc = signal (SIGINT, remote_interrupt);
4709 /* If the user hit C-c before this packet, or between packets,
4710 pretend that it was hit right here. */
4711 if (quit_flag)
4712 {
4713 quit_flag = 0;
4714 remote_interrupt (SIGINT);
4715 }
4716 }
4717
4718 /* FIXME: cagney/1999-09-27: If we're in async mode we should
4719 _never_ wait for ever -> test on target_is_async_p().
4720 However, before we do that we need to ensure that the caller
4721 knows how to take the target into/out of async mode. */
4722 ret = getpkt_sane (&rs->buf, &rs->buf_size, wait_forever_enabled_p);
4723 if (!target_is_async_p ())
4724 signal (SIGINT, ofunc);
4725 }
4726
4727 buf = rs->buf;
4728
4729 remote_stopped_by_watchpoint_p = 0;
4730
4731 /* We got something. */
4732 rs->waiting_for_stop_reply = 0;
4733
4734 switch (buf[0])
4735 {
4736 case 'E': /* Error of some sort. */
4737 /* We're out of sync with the target now. Did it continue or
4738 not? Not is more likely, so report a stop. */
4739 warning (_("Remote failure reply: %s"), buf);
4740 status->kind = TARGET_WAITKIND_STOPPED;
4741 status->value.sig = TARGET_SIGNAL_0;
4742 break;
4743 case 'F': /* File-I/O request. */
4744 remote_fileio_request (buf);
4745 break;
4746 case 'T': case 'S': case 'X': case 'W':
4747 {
4748 struct stop_reply *stop_reply;
4749 struct cleanup *old_chain;
4750
4751 stop_reply = stop_reply_xmalloc ();
4752 old_chain = make_cleanup (do_stop_reply_xfree, stop_reply);
4753 remote_parse_stop_reply (buf, stop_reply);
4754 discard_cleanups (old_chain);
4755 event_ptid = process_stop_reply (stop_reply, status);
4756 break;
4757 }
4758 case 'O': /* Console output. */
4759 remote_console_output (buf + 1);
4760
4761 /* The target didn't really stop; keep waiting. */
4762 rs->waiting_for_stop_reply = 1;
4763
4764 break;
4765 case '\0':
4766 if (last_sent_signal != TARGET_SIGNAL_0)
4767 {
4768 /* Zero length reply means that we tried 'S' or 'C' and the
4769 remote system doesn't support it. */
4770 target_terminal_ours_for_output ();
4771 printf_filtered
4772 ("Can't send signals to this remote system. %s not sent.\n",
4773 target_signal_to_name (last_sent_signal));
4774 last_sent_signal = TARGET_SIGNAL_0;
4775 target_terminal_inferior ();
4776
4777 strcpy ((char *) buf, last_sent_step ? "s" : "c");
4778 putpkt ((char *) buf);
4779
4780 /* We just told the target to resume, so a stop reply is in
4781 order. */
4782 rs->waiting_for_stop_reply = 1;
4783 break;
4784 }
4785 /* else fallthrough */
4786 default:
4787 warning (_("Invalid remote reply: %s"), buf);
4788 /* Keep waiting. */
4789 rs->waiting_for_stop_reply = 1;
4790 break;
4791 }
4792
4793 if (status->kind == TARGET_WAITKIND_IGNORE)
4794 /* Nothing interesting happened. */
4795 return minus_one_ptid;
4796 else if (status->kind != TARGET_WAITKIND_EXITED
4797 && status->kind != TARGET_WAITKIND_SIGNALLED)
4798 {
4799 if (!ptid_equal (event_ptid, null_ptid))
4800 record_currthread (event_ptid);
4801 else
4802 event_ptid = inferior_ptid;
4803 }
4804 else
4805 /* A process exit. Invalidate our notion of current thread. */
4806 record_currthread (minus_one_ptid);
4807
4808 return event_ptid;
4809 }
4810
4811 /* Wait until the remote machine stops, then return, storing status in
4812 STATUS just as `wait' would. */
4813
4814 static ptid_t
4815 remote_wait (struct target_ops *ops,
4816 ptid_t ptid, struct target_waitstatus *status)
4817 {
4818 ptid_t event_ptid;
4819
4820 if (non_stop)
4821 event_ptid = remote_wait_ns (ptid, status);
4822 else
4823 {
4824 /* In synchronous mode, keep waiting until the target stops. In
4825 asynchronous mode, always return to the event loop. */
4826
4827 do
4828 {
4829 event_ptid = remote_wait_as (ptid, status);
4830 }
4831 while (status->kind == TARGET_WAITKIND_IGNORE
4832 && !target_can_async_p ());
4833 }
4834
4835 if (target_can_async_p ())
4836 {
4837 /* If there are are events left in the queue tell the event loop
4838 to return here. */
4839 if (stop_reply_queue)
4840 mark_async_event_handler (remote_async_inferior_event_token);
4841 }
4842
4843 return event_ptid;
4844 }
4845
4846 /* Fetch a single register using a 'p' packet. */
4847
4848 static int
4849 fetch_register_using_p (struct regcache *regcache, struct packet_reg *reg)
4850 {
4851 struct remote_state *rs = get_remote_state ();
4852 char *buf, *p;
4853 char regp[MAX_REGISTER_SIZE];
4854 int i;
4855
4856 if (remote_protocol_packets[PACKET_p].support == PACKET_DISABLE)
4857 return 0;
4858
4859 if (reg->pnum == -1)
4860 return 0;
4861
4862 p = rs->buf;
4863 *p++ = 'p';
4864 p += hexnumstr (p, reg->pnum);
4865 *p++ = '\0';
4866 remote_send (&rs->buf, &rs->buf_size);
4867
4868 buf = rs->buf;
4869
4870 switch (packet_ok (buf, &remote_protocol_packets[PACKET_p]))
4871 {
4872 case PACKET_OK:
4873 break;
4874 case PACKET_UNKNOWN:
4875 return 0;
4876 case PACKET_ERROR:
4877 error (_("Could not fetch register \"%s\""),
4878 gdbarch_register_name (get_regcache_arch (regcache), reg->regnum));
4879 }
4880
4881 /* If this register is unfetchable, tell the regcache. */
4882 if (buf[0] == 'x')
4883 {
4884 regcache_raw_supply (regcache, reg->regnum, NULL);
4885 return 1;
4886 }
4887
4888 /* Otherwise, parse and supply the value. */
4889 p = buf;
4890 i = 0;
4891 while (p[0] != 0)
4892 {
4893 if (p[1] == 0)
4894 error (_("fetch_register_using_p: early buf termination"));
4895
4896 regp[i++] = fromhex (p[0]) * 16 + fromhex (p[1]);
4897 p += 2;
4898 }
4899 regcache_raw_supply (regcache, reg->regnum, regp);
4900 return 1;
4901 }
4902
4903 /* Fetch the registers included in the target's 'g' packet. */
4904
4905 static int
4906 send_g_packet (void)
4907 {
4908 struct remote_state *rs = get_remote_state ();
4909 int i, buf_len;
4910 char *p;
4911 char *regs;
4912
4913 sprintf (rs->buf, "g");
4914 remote_send (&rs->buf, &rs->buf_size);
4915
4916 /* We can get out of synch in various cases. If the first character
4917 in the buffer is not a hex character, assume that has happened
4918 and try to fetch another packet to read. */
4919 while ((rs->buf[0] < '0' || rs->buf[0] > '9')
4920 && (rs->buf[0] < 'A' || rs->buf[0] > 'F')
4921 && (rs->buf[0] < 'a' || rs->buf[0] > 'f')
4922 && rs->buf[0] != 'x') /* New: unavailable register value. */
4923 {
4924 if (remote_debug)
4925 fprintf_unfiltered (gdb_stdlog,
4926 "Bad register packet; fetching a new packet\n");
4927 getpkt (&rs->buf, &rs->buf_size, 0);
4928 }
4929
4930 buf_len = strlen (rs->buf);
4931
4932 /* Sanity check the received packet. */
4933 if (buf_len % 2 != 0)
4934 error (_("Remote 'g' packet reply is of odd length: %s"), rs->buf);
4935
4936 return buf_len / 2;
4937 }
4938
4939 static void
4940 process_g_packet (struct regcache *regcache)
4941 {
4942 struct gdbarch *gdbarch = get_regcache_arch (regcache);
4943 struct remote_state *rs = get_remote_state ();
4944 struct remote_arch_state *rsa = get_remote_arch_state ();
4945 int i, buf_len;
4946 char *p;
4947 char *regs;
4948
4949 buf_len = strlen (rs->buf);
4950
4951 /* Further sanity checks, with knowledge of the architecture. */
4952 if (buf_len > 2 * rsa->sizeof_g_packet)
4953 error (_("Remote 'g' packet reply is too long: %s"), rs->buf);
4954
4955 /* Save the size of the packet sent to us by the target. It is used
4956 as a heuristic when determining the max size of packets that the
4957 target can safely receive. */
4958 if (rsa->actual_register_packet_size == 0)
4959 rsa->actual_register_packet_size = buf_len;
4960
4961 /* If this is smaller than we guessed the 'g' packet would be,
4962 update our records. A 'g' reply that doesn't include a register's
4963 value implies either that the register is not available, or that
4964 the 'p' packet must be used. */
4965 if (buf_len < 2 * rsa->sizeof_g_packet)
4966 {
4967 rsa->sizeof_g_packet = buf_len / 2;
4968
4969 for (i = 0; i < gdbarch_num_regs (gdbarch); i++)
4970 {
4971 if (rsa->regs[i].pnum == -1)
4972 continue;
4973
4974 if (rsa->regs[i].offset >= rsa->sizeof_g_packet)
4975 rsa->regs[i].in_g_packet = 0;
4976 else
4977 rsa->regs[i].in_g_packet = 1;
4978 }
4979 }
4980
4981 regs = alloca (rsa->sizeof_g_packet);
4982
4983 /* Unimplemented registers read as all bits zero. */
4984 memset (regs, 0, rsa->sizeof_g_packet);
4985
4986 /* Reply describes registers byte by byte, each byte encoded as two
4987 hex characters. Suck them all up, then supply them to the
4988 register cacheing/storage mechanism. */
4989
4990 p = rs->buf;
4991 for (i = 0; i < rsa->sizeof_g_packet; i++)
4992 {
4993 if (p[0] == 0 || p[1] == 0)
4994 /* This shouldn't happen - we adjusted sizeof_g_packet above. */
4995 internal_error (__FILE__, __LINE__,
4996 "unexpected end of 'g' packet reply");
4997
4998 if (p[0] == 'x' && p[1] == 'x')
4999 regs[i] = 0; /* 'x' */
5000 else
5001 regs[i] = fromhex (p[0]) * 16 + fromhex (p[1]);
5002 p += 2;
5003 }
5004
5005 {
5006 int i;
5007 for (i = 0; i < gdbarch_num_regs (gdbarch); i++)
5008 {
5009 struct packet_reg *r = &rsa->regs[i];
5010 if (r->in_g_packet)
5011 {
5012 if (r->offset * 2 >= strlen (rs->buf))
5013 /* This shouldn't happen - we adjusted in_g_packet above. */
5014 internal_error (__FILE__, __LINE__,
5015 "unexpected end of 'g' packet reply");
5016 else if (rs->buf[r->offset * 2] == 'x')
5017 {
5018 gdb_assert (r->offset * 2 < strlen (rs->buf));
5019 /* The register isn't available, mark it as such (at
5020 the same time setting the value to zero). */
5021 regcache_raw_supply (regcache, r->regnum, NULL);
5022 }
5023 else
5024 regcache_raw_supply (regcache, r->regnum,
5025 regs + r->offset);
5026 }
5027 }
5028 }
5029 }
5030
5031 static void
5032 fetch_registers_using_g (struct regcache *regcache)
5033 {
5034 send_g_packet ();
5035 process_g_packet (regcache);
5036 }
5037
5038 static void
5039 remote_fetch_registers (struct target_ops *ops,
5040 struct regcache *regcache, int regnum)
5041 {
5042 struct remote_state *rs = get_remote_state ();
5043 struct remote_arch_state *rsa = get_remote_arch_state ();
5044 int i;
5045
5046 set_general_thread (inferior_ptid);
5047
5048 if (regnum >= 0)
5049 {
5050 struct packet_reg *reg = packet_reg_from_regnum (rsa, regnum);
5051 gdb_assert (reg != NULL);
5052
5053 /* If this register might be in the 'g' packet, try that first -
5054 we are likely to read more than one register. If this is the
5055 first 'g' packet, we might be overly optimistic about its
5056 contents, so fall back to 'p'. */
5057 if (reg->in_g_packet)
5058 {
5059 fetch_registers_using_g (regcache);
5060 if (reg->in_g_packet)
5061 return;
5062 }
5063
5064 if (fetch_register_using_p (regcache, reg))
5065 return;
5066
5067 /* This register is not available. */
5068 regcache_raw_supply (regcache, reg->regnum, NULL);
5069
5070 return;
5071 }
5072
5073 fetch_registers_using_g (regcache);
5074
5075 for (i = 0; i < gdbarch_num_regs (get_regcache_arch (regcache)); i++)
5076 if (!rsa->regs[i].in_g_packet)
5077 if (!fetch_register_using_p (regcache, &rsa->regs[i]))
5078 {
5079 /* This register is not available. */
5080 regcache_raw_supply (regcache, i, NULL);
5081 }
5082 }
5083
5084 /* Prepare to store registers. Since we may send them all (using a
5085 'G' request), we have to read out the ones we don't want to change
5086 first. */
5087
5088 static void
5089 remote_prepare_to_store (struct regcache *regcache)
5090 {
5091 struct remote_arch_state *rsa = get_remote_arch_state ();
5092 int i;
5093 gdb_byte buf[MAX_REGISTER_SIZE];
5094
5095 /* Make sure the entire registers array is valid. */
5096 switch (remote_protocol_packets[PACKET_P].support)
5097 {
5098 case PACKET_DISABLE:
5099 case PACKET_SUPPORT_UNKNOWN:
5100 /* Make sure all the necessary registers are cached. */
5101 for (i = 0; i < gdbarch_num_regs (get_regcache_arch (regcache)); i++)
5102 if (rsa->regs[i].in_g_packet)
5103 regcache_raw_read (regcache, rsa->regs[i].regnum, buf);
5104 break;
5105 case PACKET_ENABLE:
5106 break;
5107 }
5108 }
5109
5110 /* Helper: Attempt to store REGNUM using the P packet. Return fail IFF
5111 packet was not recognized. */
5112
5113 static int
5114 store_register_using_P (const struct regcache *regcache, struct packet_reg *reg)
5115 {
5116 struct gdbarch *gdbarch = get_regcache_arch (regcache);
5117 struct remote_state *rs = get_remote_state ();
5118 struct remote_arch_state *rsa = get_remote_arch_state ();
5119 /* Try storing a single register. */
5120 char *buf = rs->buf;
5121 gdb_byte regp[MAX_REGISTER_SIZE];
5122 char *p;
5123
5124 if (remote_protocol_packets[PACKET_P].support == PACKET_DISABLE)
5125 return 0;
5126
5127 if (reg->pnum == -1)
5128 return 0;
5129
5130 xsnprintf (buf, get_remote_packet_size (), "P%s=", phex_nz (reg->pnum, 0));
5131 p = buf + strlen (buf);
5132 regcache_raw_collect (regcache, reg->regnum, regp);
5133 bin2hex (regp, p, register_size (gdbarch, reg->regnum));
5134 remote_send (&rs->buf, &rs->buf_size);
5135
5136 switch (packet_ok (rs->buf, &remote_protocol_packets[PACKET_P]))
5137 {
5138 case PACKET_OK:
5139 return 1;
5140 case PACKET_ERROR:
5141 error (_("Could not write register \"%s\""),
5142 gdbarch_register_name (gdbarch, reg->regnum));
5143 case PACKET_UNKNOWN:
5144 return 0;
5145 default:
5146 internal_error (__FILE__, __LINE__, _("Bad result from packet_ok"));
5147 }
5148 }
5149
5150 /* Store register REGNUM, or all registers if REGNUM == -1, from the
5151 contents of the register cache buffer. FIXME: ignores errors. */
5152
5153 static void
5154 store_registers_using_G (const struct regcache *regcache)
5155 {
5156 struct remote_state *rs = get_remote_state ();
5157 struct remote_arch_state *rsa = get_remote_arch_state ();
5158 gdb_byte *regs;
5159 char *p;
5160
5161 /* Extract all the registers in the regcache copying them into a
5162 local buffer. */
5163 {
5164 int i;
5165 regs = alloca (rsa->sizeof_g_packet);
5166 memset (regs, 0, rsa->sizeof_g_packet);
5167 for (i = 0; i < gdbarch_num_regs (get_regcache_arch (regcache)); i++)
5168 {
5169 struct packet_reg *r = &rsa->regs[i];
5170 if (r->in_g_packet)
5171 regcache_raw_collect (regcache, r->regnum, regs + r->offset);
5172 }
5173 }
5174
5175 /* Command describes registers byte by byte,
5176 each byte encoded as two hex characters. */
5177 p = rs->buf;
5178 *p++ = 'G';
5179 /* remote_prepare_to_store insures that rsa->sizeof_g_packet gets
5180 updated. */
5181 bin2hex (regs, p, rsa->sizeof_g_packet);
5182 remote_send (&rs->buf, &rs->buf_size);
5183 }
5184
5185 /* Store register REGNUM, or all registers if REGNUM == -1, from the contents
5186 of the register cache buffer. FIXME: ignores errors. */
5187
5188 static void
5189 remote_store_registers (struct target_ops *ops,
5190 struct regcache *regcache, int regnum)
5191 {
5192 struct remote_state *rs = get_remote_state ();
5193 struct remote_arch_state *rsa = get_remote_arch_state ();
5194 int i;
5195
5196 set_general_thread (inferior_ptid);
5197
5198 if (regnum >= 0)
5199 {
5200 struct packet_reg *reg = packet_reg_from_regnum (rsa, regnum);
5201 gdb_assert (reg != NULL);
5202
5203 /* Always prefer to store registers using the 'P' packet if
5204 possible; we often change only a small number of registers.
5205 Sometimes we change a larger number; we'd need help from a
5206 higher layer to know to use 'G'. */
5207 if (store_register_using_P (regcache, reg))
5208 return;
5209
5210 /* For now, don't complain if we have no way to write the
5211 register. GDB loses track of unavailable registers too
5212 easily. Some day, this may be an error. We don't have
5213 any way to read the register, either... */
5214 if (!reg->in_g_packet)
5215 return;
5216
5217 store_registers_using_G (regcache);
5218 return;
5219 }
5220
5221 store_registers_using_G (regcache);
5222
5223 for (i = 0; i < gdbarch_num_regs (get_regcache_arch (regcache)); i++)
5224 if (!rsa->regs[i].in_g_packet)
5225 if (!store_register_using_P (regcache, &rsa->regs[i]))
5226 /* See above for why we do not issue an error here. */
5227 continue;
5228 }
5229 \f
5230
5231 /* Return the number of hex digits in num. */
5232
5233 static int
5234 hexnumlen (ULONGEST num)
5235 {
5236 int i;
5237
5238 for (i = 0; num != 0; i++)
5239 num >>= 4;
5240
5241 return max (i, 1);
5242 }
5243
5244 /* Set BUF to the minimum number of hex digits representing NUM. */
5245
5246 static int
5247 hexnumstr (char *buf, ULONGEST num)
5248 {
5249 int len = hexnumlen (num);
5250 return hexnumnstr (buf, num, len);
5251 }
5252
5253
5254 /* Set BUF to the hex digits representing NUM, padded to WIDTH characters. */
5255
5256 static int
5257 hexnumnstr (char *buf, ULONGEST num, int width)
5258 {
5259 int i;
5260
5261 buf[width] = '\0';
5262
5263 for (i = width - 1; i >= 0; i--)
5264 {
5265 buf[i] = "0123456789abcdef"[(num & 0xf)];
5266 num >>= 4;
5267 }
5268
5269 return width;
5270 }
5271
5272 /* Mask all but the least significant REMOTE_ADDRESS_SIZE bits. */
5273
5274 static CORE_ADDR
5275 remote_address_masked (CORE_ADDR addr)
5276 {
5277 int address_size = remote_address_size;
5278 /* If "remoteaddresssize" was not set, default to target address size. */
5279 if (!address_size)
5280 address_size = gdbarch_addr_bit (target_gdbarch);
5281
5282 if (address_size > 0
5283 && address_size < (sizeof (ULONGEST) * 8))
5284 {
5285 /* Only create a mask when that mask can safely be constructed
5286 in a ULONGEST variable. */
5287 ULONGEST mask = 1;
5288 mask = (mask << address_size) - 1;
5289 addr &= mask;
5290 }
5291 return addr;
5292 }
5293
5294 /* Convert BUFFER, binary data at least LEN bytes long, into escaped
5295 binary data in OUT_BUF. Set *OUT_LEN to the length of the data
5296 encoded in OUT_BUF, and return the number of bytes in OUT_BUF
5297 (which may be more than *OUT_LEN due to escape characters). The
5298 total number of bytes in the output buffer will be at most
5299 OUT_MAXLEN. */
5300
5301 static int
5302 remote_escape_output (const gdb_byte *buffer, int len,
5303 gdb_byte *out_buf, int *out_len,
5304 int out_maxlen)
5305 {
5306 int input_index, output_index;
5307
5308 output_index = 0;
5309 for (input_index = 0; input_index < len; input_index++)
5310 {
5311 gdb_byte b = buffer[input_index];
5312
5313 if (b == '$' || b == '#' || b == '}')
5314 {
5315 /* These must be escaped. */
5316 if (output_index + 2 > out_maxlen)
5317 break;
5318 out_buf[output_index++] = '}';
5319 out_buf[output_index++] = b ^ 0x20;
5320 }
5321 else
5322 {
5323 if (output_index + 1 > out_maxlen)
5324 break;
5325 out_buf[output_index++] = b;
5326 }
5327 }
5328
5329 *out_len = input_index;
5330 return output_index;
5331 }
5332
5333 /* Convert BUFFER, escaped data LEN bytes long, into binary data
5334 in OUT_BUF. Return the number of bytes written to OUT_BUF.
5335 Raise an error if the total number of bytes exceeds OUT_MAXLEN.
5336
5337 This function reverses remote_escape_output. It allows more
5338 escaped characters than that function does, in particular because
5339 '*' must be escaped to avoid the run-length encoding processing
5340 in reading packets. */
5341
5342 static int
5343 remote_unescape_input (const gdb_byte *buffer, int len,
5344 gdb_byte *out_buf, int out_maxlen)
5345 {
5346 int input_index, output_index;
5347 int escaped;
5348
5349 output_index = 0;
5350 escaped = 0;
5351 for (input_index = 0; input_index < len; input_index++)
5352 {
5353 gdb_byte b = buffer[input_index];
5354
5355 if (output_index + 1 > out_maxlen)
5356 {
5357 warning (_("Received too much data from remote target;"
5358 " ignoring overflow."));
5359 return output_index;
5360 }
5361
5362 if (escaped)
5363 {
5364 out_buf[output_index++] = b ^ 0x20;
5365 escaped = 0;
5366 }
5367 else if (b == '}')
5368 escaped = 1;
5369 else
5370 out_buf[output_index++] = b;
5371 }
5372
5373 if (escaped)
5374 error (_("Unmatched escape character in target response."));
5375
5376 return output_index;
5377 }
5378
5379 /* Determine whether the remote target supports binary downloading.
5380 This is accomplished by sending a no-op memory write of zero length
5381 to the target at the specified address. It does not suffice to send
5382 the whole packet, since many stubs strip the eighth bit and
5383 subsequently compute a wrong checksum, which causes real havoc with
5384 remote_write_bytes.
5385
5386 NOTE: This can still lose if the serial line is not eight-bit
5387 clean. In cases like this, the user should clear "remote
5388 X-packet". */
5389
5390 static void
5391 check_binary_download (CORE_ADDR addr)
5392 {
5393 struct remote_state *rs = get_remote_state ();
5394
5395 switch (remote_protocol_packets[PACKET_X].support)
5396 {
5397 case PACKET_DISABLE:
5398 break;
5399 case PACKET_ENABLE:
5400 break;
5401 case PACKET_SUPPORT_UNKNOWN:
5402 {
5403 char *p;
5404
5405 p = rs->buf;
5406 *p++ = 'X';
5407 p += hexnumstr (p, (ULONGEST) addr);
5408 *p++ = ',';
5409 p += hexnumstr (p, (ULONGEST) 0);
5410 *p++ = ':';
5411 *p = '\0';
5412
5413 putpkt_binary (rs->buf, (int) (p - rs->buf));
5414 getpkt (&rs->buf, &rs->buf_size, 0);
5415
5416 if (rs->buf[0] == '\0')
5417 {
5418 if (remote_debug)
5419 fprintf_unfiltered (gdb_stdlog,
5420 "binary downloading NOT suppported by target\n");
5421 remote_protocol_packets[PACKET_X].support = PACKET_DISABLE;
5422 }
5423 else
5424 {
5425 if (remote_debug)
5426 fprintf_unfiltered (gdb_stdlog,
5427 "binary downloading suppported by target\n");
5428 remote_protocol_packets[PACKET_X].support = PACKET_ENABLE;
5429 }
5430 break;
5431 }
5432 }
5433 }
5434
5435 /* Write memory data directly to the remote machine.
5436 This does not inform the data cache; the data cache uses this.
5437 HEADER is the starting part of the packet.
5438 MEMADDR is the address in the remote memory space.
5439 MYADDR is the address of the buffer in our space.
5440 LEN is the number of bytes.
5441 PACKET_FORMAT should be either 'X' or 'M', and indicates if we
5442 should send data as binary ('X'), or hex-encoded ('M').
5443
5444 The function creates packet of the form
5445 <HEADER><ADDRESS>,<LENGTH>:<DATA>
5446
5447 where encoding of <DATA> is termined by PACKET_FORMAT.
5448
5449 If USE_LENGTH is 0, then the <LENGTH> field and the preceding comma
5450 are omitted.
5451
5452 Returns the number of bytes transferred, or 0 (setting errno) for
5453 error. Only transfer a single packet. */
5454
5455 static int
5456 remote_write_bytes_aux (const char *header, CORE_ADDR memaddr,
5457 const gdb_byte *myaddr, int len,
5458 char packet_format, int use_length)
5459 {
5460 struct remote_state *rs = get_remote_state ();
5461 char *p;
5462 char *plen = NULL;
5463 int plenlen = 0;
5464 int todo;
5465 int nr_bytes;
5466 int payload_size;
5467 int payload_length;
5468 int header_length;
5469
5470 if (packet_format != 'X' && packet_format != 'M')
5471 internal_error (__FILE__, __LINE__,
5472 "remote_write_bytes_aux: bad packet format");
5473
5474 if (len <= 0)
5475 return 0;
5476
5477 payload_size = get_memory_write_packet_size ();
5478
5479 /* The packet buffer will be large enough for the payload;
5480 get_memory_packet_size ensures this. */
5481 rs->buf[0] = '\0';
5482
5483 /* Compute the size of the actual payload by subtracting out the
5484 packet header and footer overhead: "$M<memaddr>,<len>:...#nn".
5485 */
5486 payload_size -= strlen ("$,:#NN");
5487 if (!use_length)
5488 /* The comma won't be used. */
5489 payload_size += 1;
5490 header_length = strlen (header);
5491 payload_size -= header_length;
5492 payload_size -= hexnumlen (memaddr);
5493
5494 /* Construct the packet excluding the data: "<header><memaddr>,<len>:". */
5495
5496 strcat (rs->buf, header);
5497 p = rs->buf + strlen (header);
5498
5499 /* Compute a best guess of the number of bytes actually transfered. */
5500 if (packet_format == 'X')
5501 {
5502 /* Best guess at number of bytes that will fit. */
5503 todo = min (len, payload_size);
5504 if (use_length)
5505 payload_size -= hexnumlen (todo);
5506 todo = min (todo, payload_size);
5507 }
5508 else
5509 {
5510 /* Num bytes that will fit. */
5511 todo = min (len, payload_size / 2);
5512 if (use_length)
5513 payload_size -= hexnumlen (todo);
5514 todo = min (todo, payload_size / 2);
5515 }
5516
5517 if (todo <= 0)
5518 internal_error (__FILE__, __LINE__,
5519 _("minumum packet size too small to write data"));
5520
5521 /* If we already need another packet, then try to align the end
5522 of this packet to a useful boundary. */
5523 if (todo > 2 * REMOTE_ALIGN_WRITES && todo < len)
5524 todo = ((memaddr + todo) & ~(REMOTE_ALIGN_WRITES - 1)) - memaddr;
5525
5526 /* Append "<memaddr>". */
5527 memaddr = remote_address_masked (memaddr);
5528 p += hexnumstr (p, (ULONGEST) memaddr);
5529
5530 if (use_length)
5531 {
5532 /* Append ",". */
5533 *p++ = ',';
5534
5535 /* Append <len>. Retain the location/size of <len>. It may need to
5536 be adjusted once the packet body has been created. */
5537 plen = p;
5538 plenlen = hexnumstr (p, (ULONGEST) todo);
5539 p += plenlen;
5540 }
5541
5542 /* Append ":". */
5543 *p++ = ':';
5544 *p = '\0';
5545
5546 /* Append the packet body. */
5547 if (packet_format == 'X')
5548 {
5549 /* Binary mode. Send target system values byte by byte, in
5550 increasing byte addresses. Only escape certain critical
5551 characters. */
5552 payload_length = remote_escape_output (myaddr, todo, p, &nr_bytes,
5553 payload_size);
5554
5555 /* If not all TODO bytes fit, then we'll need another packet. Make
5556 a second try to keep the end of the packet aligned. Don't do
5557 this if the packet is tiny. */
5558 if (nr_bytes < todo && nr_bytes > 2 * REMOTE_ALIGN_WRITES)
5559 {
5560 int new_nr_bytes;
5561
5562 new_nr_bytes = (((memaddr + nr_bytes) & ~(REMOTE_ALIGN_WRITES - 1))
5563 - memaddr);
5564 if (new_nr_bytes != nr_bytes)
5565 payload_length = remote_escape_output (myaddr, new_nr_bytes,
5566 p, &nr_bytes,
5567 payload_size);
5568 }
5569
5570 p += payload_length;
5571 if (use_length && nr_bytes < todo)
5572 {
5573 /* Escape chars have filled up the buffer prematurely,
5574 and we have actually sent fewer bytes than planned.
5575 Fix-up the length field of the packet. Use the same
5576 number of characters as before. */
5577 plen += hexnumnstr (plen, (ULONGEST) nr_bytes, plenlen);
5578 *plen = ':'; /* overwrite \0 from hexnumnstr() */
5579 }
5580 }
5581 else
5582 {
5583 /* Normal mode: Send target system values byte by byte, in
5584 increasing byte addresses. Each byte is encoded as a two hex
5585 value. */
5586 nr_bytes = bin2hex (myaddr, p, todo);
5587 p += 2 * nr_bytes;
5588 }
5589
5590 putpkt_binary (rs->buf, (int) (p - rs->buf));
5591 getpkt (&rs->buf, &rs->buf_size, 0);
5592
5593 if (rs->buf[0] == 'E')
5594 {
5595 /* There is no correspondance between what the remote protocol
5596 uses for errors and errno codes. We would like a cleaner way
5597 of representing errors (big enough to include errno codes,
5598 bfd_error codes, and others). But for now just return EIO. */
5599 errno = EIO;
5600 return 0;
5601 }
5602
5603 /* Return NR_BYTES, not TODO, in case escape chars caused us to send
5604 fewer bytes than we'd planned. */
5605 return nr_bytes;
5606 }
5607
5608 /* Write memory data directly to the remote machine.
5609 This does not inform the data cache; the data cache uses this.
5610 MEMADDR is the address in the remote memory space.
5611 MYADDR is the address of the buffer in our space.
5612 LEN is the number of bytes.
5613
5614 Returns number of bytes transferred, or 0 (setting errno) for
5615 error. Only transfer a single packet. */
5616
5617 int
5618 remote_write_bytes (CORE_ADDR memaddr, const gdb_byte *myaddr, int len)
5619 {
5620 char *packet_format = 0;
5621
5622 /* Check whether the target supports binary download. */
5623 check_binary_download (memaddr);
5624
5625 switch (remote_protocol_packets[PACKET_X].support)
5626 {
5627 case PACKET_ENABLE:
5628 packet_format = "X";
5629 break;
5630 case PACKET_DISABLE:
5631 packet_format = "M";
5632 break;
5633 case PACKET_SUPPORT_UNKNOWN:
5634 internal_error (__FILE__, __LINE__,
5635 _("remote_write_bytes: bad internal state"));
5636 default:
5637 internal_error (__FILE__, __LINE__, _("bad switch"));
5638 }
5639
5640 return remote_write_bytes_aux (packet_format,
5641 memaddr, myaddr, len, packet_format[0], 1);
5642 }
5643
5644 /* Read memory data directly from the remote machine.
5645 This does not use the data cache; the data cache uses this.
5646 MEMADDR is the address in the remote memory space.
5647 MYADDR is the address of the buffer in our space.
5648 LEN is the number of bytes.
5649
5650 Returns number of bytes transferred, or 0 for error. */
5651
5652 /* NOTE: cagney/1999-10-18: This function (and its siblings in other
5653 remote targets) shouldn't attempt to read the entire buffer.
5654 Instead it should read a single packet worth of data and then
5655 return the byte size of that packet to the caller. The caller (its
5656 caller and its callers caller ;-) already contains code for
5657 handling partial reads. */
5658
5659 int
5660 remote_read_bytes (CORE_ADDR memaddr, gdb_byte *myaddr, int len)
5661 {
5662 struct remote_state *rs = get_remote_state ();
5663 int max_buf_size; /* Max size of packet output buffer. */
5664 int origlen;
5665
5666 if (len <= 0)
5667 return 0;
5668
5669 max_buf_size = get_memory_read_packet_size ();
5670 /* The packet buffer will be large enough for the payload;
5671 get_memory_packet_size ensures this. */
5672
5673 origlen = len;
5674 while (len > 0)
5675 {
5676 char *p;
5677 int todo;
5678 int i;
5679
5680 todo = min (len, max_buf_size / 2); /* num bytes that will fit */
5681
5682 /* construct "m"<memaddr>","<len>" */
5683 /* sprintf (rs->buf, "m%lx,%x", (unsigned long) memaddr, todo); */
5684 memaddr = remote_address_masked (memaddr);
5685 p = rs->buf;
5686 *p++ = 'm';
5687 p += hexnumstr (p, (ULONGEST) memaddr);
5688 *p++ = ',';
5689 p += hexnumstr (p, (ULONGEST) todo);
5690 *p = '\0';
5691
5692 putpkt (rs->buf);
5693 getpkt (&rs->buf, &rs->buf_size, 0);
5694
5695 if (rs->buf[0] == 'E'
5696 && isxdigit (rs->buf[1]) && isxdigit (rs->buf[2])
5697 && rs->buf[3] == '\0')
5698 {
5699 /* There is no correspondance between what the remote
5700 protocol uses for errors and errno codes. We would like
5701 a cleaner way of representing errors (big enough to
5702 include errno codes, bfd_error codes, and others). But
5703 for now just return EIO. */
5704 errno = EIO;
5705 return 0;
5706 }
5707
5708 /* Reply describes memory byte by byte,
5709 each byte encoded as two hex characters. */
5710
5711 p = rs->buf;
5712 if ((i = hex2bin (p, myaddr, todo)) < todo)
5713 {
5714 /* Reply is short. This means that we were able to read
5715 only part of what we wanted to. */
5716 return i + (origlen - len);
5717 }
5718 myaddr += todo;
5719 memaddr += todo;
5720 len -= todo;
5721 }
5722 return origlen;
5723 }
5724 \f
5725
5726 /* Remote notification handler. */
5727
5728 static void
5729 handle_notification (char *buf, size_t length)
5730 {
5731 if (strncmp (buf, "Stop:", 5) == 0)
5732 {
5733 if (pending_stop_reply)
5734 /* We've already parsed the in-flight stop-reply, but the stub
5735 for some reason thought we didn't, possibly due to timeout
5736 on its side. Just ignore it. */
5737 ;
5738 else
5739 {
5740 struct cleanup *old_chain;
5741 struct stop_reply *reply = stop_reply_xmalloc ();
5742 old_chain = make_cleanup (do_stop_reply_xfree, reply);
5743
5744 remote_parse_stop_reply (buf + 5, reply);
5745
5746 discard_cleanups (old_chain);
5747
5748 /* Be careful to only set it after parsing, since an error
5749 may be thrown then. */
5750 pending_stop_reply = reply;
5751
5752 /* Notify the event loop there's a stop reply to acknowledge
5753 and that there may be more events to fetch. */
5754 mark_async_event_handler (remote_async_get_pending_events_token);
5755 }
5756 }
5757 else
5758 /* We ignore notifications we don't recognize, for compatibility
5759 with newer stubs. */
5760 ;
5761 }
5762
5763 \f
5764 /* Read or write LEN bytes from inferior memory at MEMADDR,
5765 transferring to or from debugger address BUFFER. Write to inferior
5766 if SHOULD_WRITE is nonzero. Returns length of data written or
5767 read; 0 for error. TARGET is unused. */
5768
5769 static int
5770 remote_xfer_memory (CORE_ADDR mem_addr, gdb_byte *buffer, int mem_len,
5771 int should_write, struct mem_attrib *attrib,
5772 struct target_ops *target)
5773 {
5774 int res;
5775
5776 set_general_thread (inferior_ptid);
5777
5778 if (should_write)
5779 res = remote_write_bytes (mem_addr, buffer, mem_len);
5780 else
5781 res = remote_read_bytes (mem_addr, buffer, mem_len);
5782
5783 return res;
5784 }
5785
5786 /* Sends a packet with content determined by the printf format string
5787 FORMAT and the remaining arguments, then gets the reply. Returns
5788 whether the packet was a success, a failure, or unknown. */
5789
5790 static enum packet_result
5791 remote_send_printf (const char *format, ...)
5792 {
5793 struct remote_state *rs = get_remote_state ();
5794 int max_size = get_remote_packet_size ();
5795
5796 va_list ap;
5797 va_start (ap, format);
5798
5799 rs->buf[0] = '\0';
5800 if (vsnprintf (rs->buf, max_size, format, ap) >= max_size)
5801 internal_error (__FILE__, __LINE__, "Too long remote packet.");
5802
5803 if (putpkt (rs->buf) < 0)
5804 error (_("Communication problem with target."));
5805
5806 rs->buf[0] = '\0';
5807 getpkt (&rs->buf, &rs->buf_size, 0);
5808
5809 return packet_check_result (rs->buf);
5810 }
5811
5812 static void
5813 restore_remote_timeout (void *p)
5814 {
5815 int value = *(int *)p;
5816 remote_timeout = value;
5817 }
5818
5819 /* Flash writing can take quite some time. We'll set
5820 effectively infinite timeout for flash operations.
5821 In future, we'll need to decide on a better approach. */
5822 static const int remote_flash_timeout = 1000;
5823
5824 static void
5825 remote_flash_erase (struct target_ops *ops,
5826 ULONGEST address, LONGEST length)
5827 {
5828 int saved_remote_timeout = remote_timeout;
5829 enum packet_result ret;
5830
5831 struct cleanup *back_to = make_cleanup (restore_remote_timeout,
5832 &saved_remote_timeout);
5833 remote_timeout = remote_flash_timeout;
5834
5835 ret = remote_send_printf ("vFlashErase:%s,%s",
5836 paddr (address),
5837 phex (length, 4));
5838 switch (ret)
5839 {
5840 case PACKET_UNKNOWN:
5841 error (_("Remote target does not support flash erase"));
5842 case PACKET_ERROR:
5843 error (_("Error erasing flash with vFlashErase packet"));
5844 default:
5845 break;
5846 }
5847
5848 do_cleanups (back_to);
5849 }
5850
5851 static LONGEST
5852 remote_flash_write (struct target_ops *ops,
5853 ULONGEST address, LONGEST length,
5854 const gdb_byte *data)
5855 {
5856 int saved_remote_timeout = remote_timeout;
5857 int ret;
5858 struct cleanup *back_to = make_cleanup (restore_remote_timeout,
5859 &saved_remote_timeout);
5860
5861 remote_timeout = remote_flash_timeout;
5862 ret = remote_write_bytes_aux ("vFlashWrite:", address, data, length, 'X', 0);
5863 do_cleanups (back_to);
5864
5865 return ret;
5866 }
5867
5868 static void
5869 remote_flash_done (struct target_ops *ops)
5870 {
5871 int saved_remote_timeout = remote_timeout;
5872 int ret;
5873 struct cleanup *back_to = make_cleanup (restore_remote_timeout,
5874 &saved_remote_timeout);
5875
5876 remote_timeout = remote_flash_timeout;
5877 ret = remote_send_printf ("vFlashDone");
5878 do_cleanups (back_to);
5879
5880 switch (ret)
5881 {
5882 case PACKET_UNKNOWN:
5883 error (_("Remote target does not support vFlashDone"));
5884 case PACKET_ERROR:
5885 error (_("Error finishing flash operation"));
5886 default:
5887 break;
5888 }
5889 }
5890
5891 static void
5892 remote_files_info (struct target_ops *ignore)
5893 {
5894 puts_filtered ("Debugging a target over a serial line.\n");
5895 }
5896 \f
5897 /* Stuff for dealing with the packets which are part of this protocol.
5898 See comment at top of file for details. */
5899
5900 /* Read a single character from the remote end. */
5901
5902 static int
5903 readchar (int timeout)
5904 {
5905 int ch;
5906
5907 ch = serial_readchar (remote_desc, timeout);
5908
5909 if (ch >= 0)
5910 return ch;
5911
5912 switch ((enum serial_rc) ch)
5913 {
5914 case SERIAL_EOF:
5915 pop_target ();
5916 error (_("Remote connection closed"));
5917 /* no return */
5918 case SERIAL_ERROR:
5919 perror_with_name (_("Remote communication error"));
5920 /* no return */
5921 case SERIAL_TIMEOUT:
5922 break;
5923 }
5924 return ch;
5925 }
5926
5927 /* Send the command in *BUF to the remote machine, and read the reply
5928 into *BUF. Report an error if we get an error reply. Resize
5929 *BUF using xrealloc if necessary to hold the result, and update
5930 *SIZEOF_BUF. */
5931
5932 static void
5933 remote_send (char **buf,
5934 long *sizeof_buf)
5935 {
5936 putpkt (*buf);
5937 getpkt (buf, sizeof_buf, 0);
5938
5939 if ((*buf)[0] == 'E')
5940 error (_("Remote failure reply: %s"), *buf);
5941 }
5942
5943 /* Return a pointer to an xmalloc'ed string representing an escaped
5944 version of BUF, of len N. E.g. \n is converted to \\n, \t to \\t,
5945 etc. The caller is responsible for releasing the returned
5946 memory. */
5947
5948 static char *
5949 escape_buffer (const char *buf, int n)
5950 {
5951 struct cleanup *old_chain;
5952 struct ui_file *stb;
5953 char *str;
5954 long length;
5955
5956 stb = mem_fileopen ();
5957 old_chain = make_cleanup_ui_file_delete (stb);
5958
5959 fputstrn_unfiltered (buf, n, 0, stb);
5960 str = ui_file_xstrdup (stb, &length);
5961 do_cleanups (old_chain);
5962 return str;
5963 }
5964
5965 /* Display a null-terminated packet on stdout, for debugging, using C
5966 string notation. */
5967
5968 static void
5969 print_packet (char *buf)
5970 {
5971 puts_filtered ("\"");
5972 fputstr_filtered (buf, '"', gdb_stdout);
5973 puts_filtered ("\"");
5974 }
5975
5976 int
5977 putpkt (char *buf)
5978 {
5979 return putpkt_binary (buf, strlen (buf));
5980 }
5981
5982 /* Send a packet to the remote machine, with error checking. The data
5983 of the packet is in BUF. The string in BUF can be at most
5984 get_remote_packet_size () - 5 to account for the $, # and checksum,
5985 and for a possible /0 if we are debugging (remote_debug) and want
5986 to print the sent packet as a string. */
5987
5988 static int
5989 putpkt_binary (char *buf, int cnt)
5990 {
5991 struct remote_state *rs = get_remote_state ();
5992 int i;
5993 unsigned char csum = 0;
5994 char *buf2 = alloca (cnt + 6);
5995
5996 int ch;
5997 int tcount = 0;
5998 char *p;
5999
6000 /* Catch cases like trying to read memory or listing threads while
6001 we're waiting for a stop reply. The remote server wouldn't be
6002 ready to handle this request, so we'd hang and timeout. We don't
6003 have to worry about this in synchronous mode, because in that
6004 case it's not possible to issue a command while the target is
6005 running. This is not a problem in non-stop mode, because in that
6006 case, the stub is always ready to process serial input. */
6007 if (!non_stop && target_can_async_p () && rs->waiting_for_stop_reply)
6008 error (_("Cannot execute this command while the target is running."));
6009
6010 /* We're sending out a new packet. Make sure we don't look at a
6011 stale cached response. */
6012 rs->cached_wait_status = 0;
6013
6014 /* Copy the packet into buffer BUF2, encapsulating it
6015 and giving it a checksum. */
6016
6017 p = buf2;
6018 *p++ = '$';
6019
6020 for (i = 0; i < cnt; i++)
6021 {
6022 csum += buf[i];
6023 *p++ = buf[i];
6024 }
6025 *p++ = '#';
6026 *p++ = tohex ((csum >> 4) & 0xf);
6027 *p++ = tohex (csum & 0xf);
6028
6029 /* Send it over and over until we get a positive ack. */
6030
6031 while (1)
6032 {
6033 int started_error_output = 0;
6034
6035 if (remote_debug)
6036 {
6037 struct cleanup *old_chain;
6038 char *str;
6039
6040 *p = '\0';
6041 str = escape_buffer (buf2, p - buf2);
6042 old_chain = make_cleanup (xfree, str);
6043 fprintf_unfiltered (gdb_stdlog, "Sending packet: %s...", str);
6044 gdb_flush (gdb_stdlog);
6045 do_cleanups (old_chain);
6046 }
6047 if (serial_write (remote_desc, buf2, p - buf2))
6048 perror_with_name (_("putpkt: write failed"));
6049
6050 /* If this is a no acks version of the remote protocol, send the
6051 packet and move on. */
6052 if (rs->noack_mode)
6053 break;
6054
6055 /* Read until either a timeout occurs (-2) or '+' is read.
6056 Handle any notification that arrives in the mean time. */
6057 while (1)
6058 {
6059 ch = readchar (remote_timeout);
6060
6061 if (remote_debug)
6062 {
6063 switch (ch)
6064 {
6065 case '+':
6066 case '-':
6067 case SERIAL_TIMEOUT:
6068 case '$':
6069 case '%':
6070 if (started_error_output)
6071 {
6072 putchar_unfiltered ('\n');
6073 started_error_output = 0;
6074 }
6075 }
6076 }
6077
6078 switch (ch)
6079 {
6080 case '+':
6081 if (remote_debug)
6082 fprintf_unfiltered (gdb_stdlog, "Ack\n");
6083 return 1;
6084 case '-':
6085 if (remote_debug)
6086 fprintf_unfiltered (gdb_stdlog, "Nak\n");
6087 case SERIAL_TIMEOUT:
6088 tcount++;
6089 if (tcount > 3)
6090 return 0;
6091 break; /* Retransmit buffer. */
6092 case '$':
6093 {
6094 if (remote_debug)
6095 fprintf_unfiltered (gdb_stdlog,
6096 "Packet instead of Ack, ignoring it\n");
6097 /* It's probably an old response sent because an ACK
6098 was lost. Gobble up the packet and ack it so it
6099 doesn't get retransmitted when we resend this
6100 packet. */
6101 skip_frame ();
6102 serial_write (remote_desc, "+", 1);
6103 continue; /* Now, go look for +. */
6104 }
6105
6106 case '%':
6107 {
6108 int val;
6109
6110 /* If we got a notification, handle it, and go back to looking
6111 for an ack. */
6112 /* We've found the start of a notification. Now
6113 collect the data. */
6114 val = read_frame (&rs->buf, &rs->buf_size);
6115 if (val >= 0)
6116 {
6117 if (remote_debug)
6118 {
6119 struct cleanup *old_chain;
6120 char *str;
6121
6122 str = escape_buffer (rs->buf, val);
6123 old_chain = make_cleanup (xfree, str);
6124 fprintf_unfiltered (gdb_stdlog,
6125 " Notification received: %s\n",
6126 str);
6127 do_cleanups (old_chain);
6128 }
6129 handle_notification (rs->buf, val);
6130 /* We're in sync now, rewait for the ack. */
6131 tcount = 0;
6132 }
6133 else
6134 {
6135 if (remote_debug)
6136 {
6137 if (!started_error_output)
6138 {
6139 started_error_output = 1;
6140 fprintf_unfiltered (gdb_stdlog, "putpkt: Junk: ");
6141 }
6142 fputc_unfiltered (ch & 0177, gdb_stdlog);
6143 fprintf_unfiltered (gdb_stdlog, "%s", rs->buf);
6144 }
6145 }
6146 continue;
6147 }
6148 /* fall-through */
6149 default:
6150 if (remote_debug)
6151 {
6152 if (!started_error_output)
6153 {
6154 started_error_output = 1;
6155 fprintf_unfiltered (gdb_stdlog, "putpkt: Junk: ");
6156 }
6157 fputc_unfiltered (ch & 0177, gdb_stdlog);
6158 }
6159 continue;
6160 }
6161 break; /* Here to retransmit. */
6162 }
6163
6164 #if 0
6165 /* This is wrong. If doing a long backtrace, the user should be
6166 able to get out next time we call QUIT, without anything as
6167 violent as interrupt_query. If we want to provide a way out of
6168 here without getting to the next QUIT, it should be based on
6169 hitting ^C twice as in remote_wait. */
6170 if (quit_flag)
6171 {
6172 quit_flag = 0;
6173 interrupt_query ();
6174 }
6175 #endif
6176 }
6177 return 0;
6178 }
6179
6180 /* Come here after finding the start of a frame when we expected an
6181 ack. Do our best to discard the rest of this packet. */
6182
6183 static void
6184 skip_frame (void)
6185 {
6186 int c;
6187
6188 while (1)
6189 {
6190 c = readchar (remote_timeout);
6191 switch (c)
6192 {
6193 case SERIAL_TIMEOUT:
6194 /* Nothing we can do. */
6195 return;
6196 case '#':
6197 /* Discard the two bytes of checksum and stop. */
6198 c = readchar (remote_timeout);
6199 if (c >= 0)
6200 c = readchar (remote_timeout);
6201
6202 return;
6203 case '*': /* Run length encoding. */
6204 /* Discard the repeat count. */
6205 c = readchar (remote_timeout);
6206 if (c < 0)
6207 return;
6208 break;
6209 default:
6210 /* A regular character. */
6211 break;
6212 }
6213 }
6214 }
6215
6216 /* Come here after finding the start of the frame. Collect the rest
6217 into *BUF, verifying the checksum, length, and handling run-length
6218 compression. NUL terminate the buffer. If there is not enough room,
6219 expand *BUF using xrealloc.
6220
6221 Returns -1 on error, number of characters in buffer (ignoring the
6222 trailing NULL) on success. (could be extended to return one of the
6223 SERIAL status indications). */
6224
6225 static long
6226 read_frame (char **buf_p,
6227 long *sizeof_buf)
6228 {
6229 unsigned char csum;
6230 long bc;
6231 int c;
6232 char *buf = *buf_p;
6233 struct remote_state *rs = get_remote_state ();
6234
6235 csum = 0;
6236 bc = 0;
6237
6238 while (1)
6239 {
6240 c = readchar (remote_timeout);
6241 switch (c)
6242 {
6243 case SERIAL_TIMEOUT:
6244 if (remote_debug)
6245 fputs_filtered ("Timeout in mid-packet, retrying\n", gdb_stdlog);
6246 return -1;
6247 case '$':
6248 if (remote_debug)
6249 fputs_filtered ("Saw new packet start in middle of old one\n",
6250 gdb_stdlog);
6251 return -1; /* Start a new packet, count retries. */
6252 case '#':
6253 {
6254 unsigned char pktcsum;
6255 int check_0 = 0;
6256 int check_1 = 0;
6257
6258 buf[bc] = '\0';
6259
6260 check_0 = readchar (remote_timeout);
6261 if (check_0 >= 0)
6262 check_1 = readchar (remote_timeout);
6263
6264 if (check_0 == SERIAL_TIMEOUT || check_1 == SERIAL_TIMEOUT)
6265 {
6266 if (remote_debug)
6267 fputs_filtered ("Timeout in checksum, retrying\n",
6268 gdb_stdlog);
6269 return -1;
6270 }
6271 else if (check_0 < 0 || check_1 < 0)
6272 {
6273 if (remote_debug)
6274 fputs_filtered ("Communication error in checksum\n",
6275 gdb_stdlog);
6276 return -1;
6277 }
6278
6279 /* Don't recompute the checksum; with no ack packets we
6280 don't have any way to indicate a packet retransmission
6281 is necessary. */
6282 if (rs->noack_mode)
6283 return bc;
6284
6285 pktcsum = (fromhex (check_0) << 4) | fromhex (check_1);
6286 if (csum == pktcsum)
6287 return bc;
6288
6289 if (remote_debug)
6290 {
6291 struct cleanup *old_chain;
6292 char *str;
6293
6294 str = escape_buffer (buf, bc);
6295 old_chain = make_cleanup (xfree, str);
6296 fprintf_unfiltered (gdb_stdlog,
6297 "\
6298 Bad checksum, sentsum=0x%x, csum=0x%x, buf=%s\n",
6299 pktcsum, csum, str);
6300 do_cleanups (old_chain);
6301 }
6302 /* Number of characters in buffer ignoring trailing
6303 NULL. */
6304 return -1;
6305 }
6306 case '*': /* Run length encoding. */
6307 {
6308 int repeat;
6309 csum += c;
6310
6311 c = readchar (remote_timeout);
6312 csum += c;
6313 repeat = c - ' ' + 3; /* Compute repeat count. */
6314
6315 /* The character before ``*'' is repeated. */
6316
6317 if (repeat > 0 && repeat <= 255 && bc > 0)
6318 {
6319 if (bc + repeat - 1 >= *sizeof_buf - 1)
6320 {
6321 /* Make some more room in the buffer. */
6322 *sizeof_buf += repeat;
6323 *buf_p = xrealloc (*buf_p, *sizeof_buf);
6324 buf = *buf_p;
6325 }
6326
6327 memset (&buf[bc], buf[bc - 1], repeat);
6328 bc += repeat;
6329 continue;
6330 }
6331
6332 buf[bc] = '\0';
6333 printf_filtered (_("Invalid run length encoding: %s\n"), buf);
6334 return -1;
6335 }
6336 default:
6337 if (bc >= *sizeof_buf - 1)
6338 {
6339 /* Make some more room in the buffer. */
6340 *sizeof_buf *= 2;
6341 *buf_p = xrealloc (*buf_p, *sizeof_buf);
6342 buf = *buf_p;
6343 }
6344
6345 buf[bc++] = c;
6346 csum += c;
6347 continue;
6348 }
6349 }
6350 }
6351
6352 /* Read a packet from the remote machine, with error checking, and
6353 store it in *BUF. Resize *BUF using xrealloc if necessary to hold
6354 the result, and update *SIZEOF_BUF. If FOREVER, wait forever
6355 rather than timing out; this is used (in synchronous mode) to wait
6356 for a target that is is executing user code to stop. */
6357 /* FIXME: ezannoni 2000-02-01 this wrapper is necessary so that we
6358 don't have to change all the calls to getpkt to deal with the
6359 return value, because at the moment I don't know what the right
6360 thing to do it for those. */
6361 void
6362 getpkt (char **buf,
6363 long *sizeof_buf,
6364 int forever)
6365 {
6366 int timed_out;
6367
6368 timed_out = getpkt_sane (buf, sizeof_buf, forever);
6369 }
6370
6371
6372 /* Read a packet from the remote machine, with error checking, and
6373 store it in *BUF. Resize *BUF using xrealloc if necessary to hold
6374 the result, and update *SIZEOF_BUF. If FOREVER, wait forever
6375 rather than timing out; this is used (in synchronous mode) to wait
6376 for a target that is is executing user code to stop. If FOREVER ==
6377 0, this function is allowed to time out gracefully and return an
6378 indication of this to the caller. Otherwise return the number of
6379 bytes read. If EXPECTING_NOTIF, consider receiving a notification
6380 enough reason to return to the caller. */
6381
6382 static int
6383 getpkt_or_notif_sane_1 (char **buf, long *sizeof_buf, int forever,
6384 int expecting_notif)
6385 {
6386 struct remote_state *rs = get_remote_state ();
6387 int c;
6388 int tries;
6389 int timeout;
6390 int val;
6391
6392 /* We're reading a new response. Make sure we don't look at a
6393 previously cached response. */
6394 rs->cached_wait_status = 0;
6395
6396 strcpy (*buf, "timeout");
6397
6398 if (forever)
6399 timeout = watchdog > 0 ? watchdog : -1;
6400 else if (expecting_notif)
6401 timeout = 0; /* There should already be a char in the buffer. If
6402 not, bail out. */
6403 else
6404 timeout = remote_timeout;
6405
6406 #define MAX_TRIES 3
6407
6408 /* Process any number of notifications, and then return when
6409 we get a packet. */
6410 for (;;)
6411 {
6412 /* If we get a timeout or bad checksm, retry up to MAX_TRIES
6413 times. */
6414 for (tries = 1; tries <= MAX_TRIES; tries++)
6415 {
6416 /* This can loop forever if the remote side sends us
6417 characters continuously, but if it pauses, we'll get
6418 SERIAL_TIMEOUT from readchar because of timeout. Then
6419 we'll count that as a retry.
6420
6421 Note that even when forever is set, we will only wait
6422 forever prior to the start of a packet. After that, we
6423 expect characters to arrive at a brisk pace. They should
6424 show up within remote_timeout intervals. */
6425 do
6426 c = readchar (timeout);
6427 while (c != SERIAL_TIMEOUT && c != '$' && c != '%');
6428
6429 if (c == SERIAL_TIMEOUT)
6430 {
6431 if (expecting_notif)
6432 return -1; /* Don't complain, it's normal to not get
6433 anything in this case. */
6434
6435 if (forever) /* Watchdog went off? Kill the target. */
6436 {
6437 QUIT;
6438 pop_target ();
6439 error (_("Watchdog timeout has expired. Target detached."));
6440 }
6441 if (remote_debug)
6442 fputs_filtered ("Timed out.\n", gdb_stdlog);
6443 }
6444 else
6445 {
6446 /* We've found the start of a packet or notification.
6447 Now collect the data. */
6448 val = read_frame (buf, sizeof_buf);
6449 if (val >= 0)
6450 break;
6451 }
6452
6453 serial_write (remote_desc, "-", 1);
6454 }
6455
6456 if (tries > MAX_TRIES)
6457 {
6458 /* We have tried hard enough, and just can't receive the
6459 packet/notification. Give up. */
6460 printf_unfiltered (_("Ignoring packet error, continuing...\n"));
6461
6462 /* Skip the ack char if we're in no-ack mode. */
6463 if (!rs->noack_mode)
6464 serial_write (remote_desc, "+", 1);
6465 return -1;
6466 }
6467
6468 /* If we got an ordinary packet, return that to our caller. */
6469 if (c == '$')
6470 {
6471 if (remote_debug)
6472 {
6473 struct cleanup *old_chain;
6474 char *str;
6475
6476 str = escape_buffer (*buf, val);
6477 old_chain = make_cleanup (xfree, str);
6478 fprintf_unfiltered (gdb_stdlog, "Packet received: %s\n", str);
6479 do_cleanups (old_chain);
6480 }
6481
6482 /* Skip the ack char if we're in no-ack mode. */
6483 if (!rs->noack_mode)
6484 serial_write (remote_desc, "+", 1);
6485 return val;
6486 }
6487
6488 /* If we got a notification, handle it, and go back to looking
6489 for a packet. */
6490 else
6491 {
6492 gdb_assert (c == '%');
6493
6494 if (remote_debug)
6495 {
6496 struct cleanup *old_chain;
6497 char *str;
6498
6499 str = escape_buffer (*buf, val);
6500 old_chain = make_cleanup (xfree, str);
6501 fprintf_unfiltered (gdb_stdlog,
6502 " Notification received: %s\n",
6503 str);
6504 do_cleanups (old_chain);
6505 }
6506
6507 handle_notification (*buf, val);
6508
6509 /* Notifications require no acknowledgement. */
6510
6511 if (expecting_notif)
6512 return -1;
6513 }
6514 }
6515 }
6516
6517 static int
6518 getpkt_sane (char **buf, long *sizeof_buf, int forever)
6519 {
6520 return getpkt_or_notif_sane_1 (buf, sizeof_buf, forever, 0);
6521 }
6522
6523 static int
6524 getpkt_or_notif_sane (char **buf, long *sizeof_buf, int forever)
6525 {
6526 return getpkt_or_notif_sane_1 (buf, sizeof_buf, forever, 1);
6527 }
6528
6529 \f
6530 static void
6531 remote_kill (struct target_ops *ops)
6532 {
6533 /* Use catch_errors so the user can quit from gdb even when we
6534 aren't on speaking terms with the remote system. */
6535 catch_errors ((catch_errors_ftype *) putpkt, "k", "", RETURN_MASK_ERROR);
6536
6537 /* Don't wait for it to die. I'm not really sure it matters whether
6538 we do or not. For the existing stubs, kill is a noop. */
6539 target_mourn_inferior ();
6540 }
6541
6542 static int
6543 remote_vkill (int pid, struct remote_state *rs)
6544 {
6545 if (remote_protocol_packets[PACKET_vKill].support == PACKET_DISABLE)
6546 return -1;
6547
6548 /* Tell the remote target to detach. */
6549 sprintf (rs->buf, "vKill;%x", pid);
6550 putpkt (rs->buf);
6551 getpkt (&rs->buf, &rs->buf_size, 0);
6552
6553 if (packet_ok (rs->buf,
6554 &remote_protocol_packets[PACKET_vKill]) == PACKET_OK)
6555 return 0;
6556 else if (remote_protocol_packets[PACKET_vKill].support == PACKET_DISABLE)
6557 return -1;
6558 else
6559 return 1;
6560 }
6561
6562 static void
6563 extended_remote_kill (struct target_ops *ops)
6564 {
6565 int res;
6566 int pid = ptid_get_pid (inferior_ptid);
6567 struct remote_state *rs = get_remote_state ();
6568
6569 res = remote_vkill (pid, rs);
6570 if (res == -1 && !remote_multi_process_p (rs))
6571 {
6572 /* Don't try 'k' on a multi-process aware stub -- it has no way
6573 to specify the pid. */
6574
6575 putpkt ("k");
6576 #if 0
6577 getpkt (&rs->buf, &rs->buf_size, 0);
6578 if (rs->buf[0] != 'O' || rs->buf[0] != 'K')
6579 res = 1;
6580 #else
6581 /* Don't wait for it to die. I'm not really sure it matters whether
6582 we do or not. For the existing stubs, kill is a noop. */
6583 res = 0;
6584 #endif
6585 }
6586
6587 if (res != 0)
6588 error (_("Can't kill process"));
6589
6590 target_mourn_inferior ();
6591 }
6592
6593 static void
6594 remote_mourn (struct target_ops *ops)
6595 {
6596 remote_mourn_1 (ops);
6597 }
6598
6599 /* Worker function for remote_mourn. */
6600 static void
6601 remote_mourn_1 (struct target_ops *target)
6602 {
6603 unpush_target (target);
6604
6605 /* remote_close takes care of doing most of the clean up. */
6606 generic_mourn_inferior ();
6607 }
6608
6609 static void
6610 extended_remote_mourn_1 (struct target_ops *target)
6611 {
6612 struct remote_state *rs = get_remote_state ();
6613
6614 /* In case we got here due to an error, but we're going to stay
6615 connected. */
6616 rs->waiting_for_stop_reply = 0;
6617
6618 /* We're no longer interested in these events. */
6619 discard_pending_stop_replies (ptid_get_pid (inferior_ptid));
6620
6621 /* If the current general thread belonged to the process we just
6622 detached from or has exited, the remote side current general
6623 thread becomes undefined. Considering a case like this:
6624
6625 - We just got here due to a detach.
6626 - The process that we're detaching from happens to immediately
6627 report a global breakpoint being hit in non-stop mode, in the
6628 same thread we had selected before.
6629 - GDB attaches to this process again.
6630 - This event happens to be the next event we handle.
6631
6632 GDB would consider that the current general thread didn't need to
6633 be set on the stub side (with Hg), since for all it knew,
6634 GENERAL_THREAD hadn't changed.
6635
6636 Notice that although in all-stop mode, the remote server always
6637 sets the current thread to the thread reporting the stop event,
6638 that doesn't happen in non-stop mode; in non-stop, the stub *must
6639 not* change the current thread when reporting a breakpoint hit,
6640 due to the decoupling of event reporting and event handling.
6641
6642 To keep things simple, we always invalidate our notion of the
6643 current thread. */
6644 record_currthread (minus_one_ptid);
6645
6646 /* Unlike "target remote", we do not want to unpush the target; then
6647 the next time the user says "run", we won't be connected. */
6648
6649 /* Call common code to mark the inferior as not running. */
6650 generic_mourn_inferior ();
6651
6652 if (!have_inferiors ())
6653 {
6654 if (!remote_multi_process_p (rs))
6655 {
6656 /* Check whether the target is running now - some remote stubs
6657 automatically restart after kill. */
6658 putpkt ("?");
6659 getpkt (&rs->buf, &rs->buf_size, 0);
6660
6661 if (rs->buf[0] == 'S' || rs->buf[0] == 'T')
6662 {
6663 /* Assume that the target has been restarted. Set inferior_ptid
6664 so that bits of core GDB realizes there's something here, e.g.,
6665 so that the user can say "kill" again. */
6666 inferior_ptid = magic_null_ptid;
6667 }
6668 else
6669 {
6670 /* Mark this (still pushed) target as not executable until we
6671 restart it. */
6672 target_mark_exited (target);
6673 }
6674 }
6675 else
6676 /* Always remove execution if this was the last process. */
6677 target_mark_exited (target);
6678 }
6679 }
6680
6681 static void
6682 extended_remote_mourn (struct target_ops *ops)
6683 {
6684 extended_remote_mourn_1 (ops);
6685 }
6686
6687 static int
6688 extended_remote_run (char *args)
6689 {
6690 struct remote_state *rs = get_remote_state ();
6691 char *p;
6692 int len;
6693
6694 /* If the user has disabled vRun support, or we have detected that
6695 support is not available, do not try it. */
6696 if (remote_protocol_packets[PACKET_vRun].support == PACKET_DISABLE)
6697 return -1;
6698
6699 strcpy (rs->buf, "vRun;");
6700 len = strlen (rs->buf);
6701
6702 if (strlen (remote_exec_file) * 2 + len >= get_remote_packet_size ())
6703 error (_("Remote file name too long for run packet"));
6704 len += 2 * bin2hex ((gdb_byte *) remote_exec_file, rs->buf + len, 0);
6705
6706 gdb_assert (args != NULL);
6707 if (*args)
6708 {
6709 struct cleanup *back_to;
6710 int i;
6711 char **argv;
6712
6713 argv = gdb_buildargv (args);
6714 back_to = make_cleanup ((void (*) (void *)) freeargv, argv);
6715 for (i = 0; argv[i] != NULL; i++)
6716 {
6717 if (strlen (argv[i]) * 2 + 1 + len >= get_remote_packet_size ())
6718 error (_("Argument list too long for run packet"));
6719 rs->buf[len++] = ';';
6720 len += 2 * bin2hex ((gdb_byte *) argv[i], rs->buf + len, 0);
6721 }
6722 do_cleanups (back_to);
6723 }
6724
6725 rs->buf[len++] = '\0';
6726
6727 putpkt (rs->buf);
6728 getpkt (&rs->buf, &rs->buf_size, 0);
6729
6730 if (packet_ok (rs->buf, &remote_protocol_packets[PACKET_vRun]) == PACKET_OK)
6731 {
6732 /* We have a wait response; we don't need it, though. All is well. */
6733 return 0;
6734 }
6735 else if (remote_protocol_packets[PACKET_vRun].support == PACKET_DISABLE)
6736 /* It wasn't disabled before, but it is now. */
6737 return -1;
6738 else
6739 {
6740 if (remote_exec_file[0] == '\0')
6741 error (_("Running the default executable on the remote target failed; "
6742 "try \"set remote exec-file\"?"));
6743 else
6744 error (_("Running \"%s\" on the remote target failed"),
6745 remote_exec_file);
6746 }
6747 }
6748
6749 /* In the extended protocol we want to be able to do things like
6750 "run" and have them basically work as expected. So we need
6751 a special create_inferior function. We support changing the
6752 executable file and the command line arguments, but not the
6753 environment. */
6754
6755 static void
6756 extended_remote_create_inferior_1 (char *exec_file, char *args,
6757 char **env, int from_tty)
6758 {
6759 /* If running asynchronously, register the target file descriptor
6760 with the event loop. */
6761 if (target_can_async_p ())
6762 target_async (inferior_event_handler, 0);
6763
6764 /* Now restart the remote server. */
6765 if (extended_remote_run (args) == -1)
6766 {
6767 /* vRun was not supported. Fail if we need it to do what the
6768 user requested. */
6769 if (remote_exec_file[0])
6770 error (_("Remote target does not support \"set remote exec-file\""));
6771 if (args[0])
6772 error (_("Remote target does not support \"set args\" or run <ARGS>"));
6773
6774 /* Fall back to "R". */
6775 extended_remote_restart ();
6776 }
6777
6778 /* Clean up from the last time we ran, before we mark the target
6779 running again. This will mark breakpoints uninserted, and
6780 get_offsets may insert breakpoints. */
6781 init_thread_list ();
6782 init_wait_for_inferior ();
6783
6784 /* Now mark the inferior as running before we do anything else. */
6785 inferior_ptid = magic_null_ptid;
6786
6787 /* Now, if we have thread information, update inferior_ptid. */
6788 inferior_ptid = remote_current_thread (inferior_ptid);
6789
6790 remote_add_inferior (ptid_get_pid (inferior_ptid), 0);
6791 add_thread_silent (inferior_ptid);
6792
6793 /* Get updated offsets, if the stub uses qOffsets. */
6794 get_offsets ();
6795 }
6796
6797 static void
6798 extended_remote_create_inferior (struct target_ops *ops,
6799 char *exec_file, char *args,
6800 char **env, int from_tty)
6801 {
6802 extended_remote_create_inferior_1 (exec_file, args, env, from_tty);
6803 }
6804 \f
6805
6806 /* Insert a breakpoint. On targets that have software breakpoint
6807 support, we ask the remote target to do the work; on targets
6808 which don't, we insert a traditional memory breakpoint. */
6809
6810 static int
6811 remote_insert_breakpoint (struct bp_target_info *bp_tgt)
6812 {
6813 /* Try the "Z" s/w breakpoint packet if it is not already disabled.
6814 If it succeeds, then set the support to PACKET_ENABLE. If it
6815 fails, and the user has explicitly requested the Z support then
6816 report an error, otherwise, mark it disabled and go on. */
6817
6818 if (remote_protocol_packets[PACKET_Z0].support != PACKET_DISABLE)
6819 {
6820 CORE_ADDR addr = bp_tgt->placed_address;
6821 struct remote_state *rs;
6822 char *p;
6823 int bpsize;
6824
6825 gdbarch_breakpoint_from_pc (target_gdbarch, &addr, &bpsize);
6826
6827 rs = get_remote_state ();
6828 p = rs->buf;
6829
6830 *(p++) = 'Z';
6831 *(p++) = '0';
6832 *(p++) = ',';
6833 addr = (ULONGEST) remote_address_masked (addr);
6834 p += hexnumstr (p, addr);
6835 sprintf (p, ",%d", bpsize);
6836
6837 putpkt (rs->buf);
6838 getpkt (&rs->buf, &rs->buf_size, 0);
6839
6840 switch (packet_ok (rs->buf, &remote_protocol_packets[PACKET_Z0]))
6841 {
6842 case PACKET_ERROR:
6843 return -1;
6844 case PACKET_OK:
6845 bp_tgt->placed_address = addr;
6846 bp_tgt->placed_size = bpsize;
6847 return 0;
6848 case PACKET_UNKNOWN:
6849 break;
6850 }
6851 }
6852
6853 return memory_insert_breakpoint (bp_tgt);
6854 }
6855
6856 static int
6857 remote_remove_breakpoint (struct bp_target_info *bp_tgt)
6858 {
6859 CORE_ADDR addr = bp_tgt->placed_address;
6860 struct remote_state *rs = get_remote_state ();
6861 int bp_size;
6862
6863 if (remote_protocol_packets[PACKET_Z0].support != PACKET_DISABLE)
6864 {
6865 char *p = rs->buf;
6866
6867 *(p++) = 'z';
6868 *(p++) = '0';
6869 *(p++) = ',';
6870
6871 addr = (ULONGEST) remote_address_masked (bp_tgt->placed_address);
6872 p += hexnumstr (p, addr);
6873 sprintf (p, ",%d", bp_tgt->placed_size);
6874
6875 putpkt (rs->buf);
6876 getpkt (&rs->buf, &rs->buf_size, 0);
6877
6878 return (rs->buf[0] == 'E');
6879 }
6880
6881 return memory_remove_breakpoint (bp_tgt);
6882 }
6883
6884 static int
6885 watchpoint_to_Z_packet (int type)
6886 {
6887 switch (type)
6888 {
6889 case hw_write:
6890 return Z_PACKET_WRITE_WP;
6891 break;
6892 case hw_read:
6893 return Z_PACKET_READ_WP;
6894 break;
6895 case hw_access:
6896 return Z_PACKET_ACCESS_WP;
6897 break;
6898 default:
6899 internal_error (__FILE__, __LINE__,
6900 _("hw_bp_to_z: bad watchpoint type %d"), type);
6901 }
6902 }
6903
6904 static int
6905 remote_insert_watchpoint (CORE_ADDR addr, int len, int type)
6906 {
6907 struct remote_state *rs = get_remote_state ();
6908 char *p;
6909 enum Z_packet_type packet = watchpoint_to_Z_packet (type);
6910
6911 if (remote_protocol_packets[PACKET_Z0 + packet].support == PACKET_DISABLE)
6912 return -1;
6913
6914 sprintf (rs->buf, "Z%x,", packet);
6915 p = strchr (rs->buf, '\0');
6916 addr = remote_address_masked (addr);
6917 p += hexnumstr (p, (ULONGEST) addr);
6918 sprintf (p, ",%x", len);
6919
6920 putpkt (rs->buf);
6921 getpkt (&rs->buf, &rs->buf_size, 0);
6922
6923 switch (packet_ok (rs->buf, &remote_protocol_packets[PACKET_Z0 + packet]))
6924 {
6925 case PACKET_ERROR:
6926 case PACKET_UNKNOWN:
6927 return -1;
6928 case PACKET_OK:
6929 return 0;
6930 }
6931 internal_error (__FILE__, __LINE__,
6932 _("remote_insert_watchpoint: reached end of function"));
6933 }
6934
6935
6936 static int
6937 remote_remove_watchpoint (CORE_ADDR addr, int len, int type)
6938 {
6939 struct remote_state *rs = get_remote_state ();
6940 char *p;
6941 enum Z_packet_type packet = watchpoint_to_Z_packet (type);
6942
6943 if (remote_protocol_packets[PACKET_Z0 + packet].support == PACKET_DISABLE)
6944 return -1;
6945
6946 sprintf (rs->buf, "z%x,", packet);
6947 p = strchr (rs->buf, '\0');
6948 addr = remote_address_masked (addr);
6949 p += hexnumstr (p, (ULONGEST) addr);
6950 sprintf (p, ",%x", len);
6951 putpkt (rs->buf);
6952 getpkt (&rs->buf, &rs->buf_size, 0);
6953
6954 switch (packet_ok (rs->buf, &remote_protocol_packets[PACKET_Z0 + packet]))
6955 {
6956 case PACKET_ERROR:
6957 case PACKET_UNKNOWN:
6958 return -1;
6959 case PACKET_OK:
6960 return 0;
6961 }
6962 internal_error (__FILE__, __LINE__,
6963 _("remote_remove_watchpoint: reached end of function"));
6964 }
6965
6966
6967 int remote_hw_watchpoint_limit = -1;
6968 int remote_hw_breakpoint_limit = -1;
6969
6970 static int
6971 remote_check_watch_resources (int type, int cnt, int ot)
6972 {
6973 if (type == bp_hardware_breakpoint)
6974 {
6975 if (remote_hw_breakpoint_limit == 0)
6976 return 0;
6977 else if (remote_hw_breakpoint_limit < 0)
6978 return 1;
6979 else if (cnt <= remote_hw_breakpoint_limit)
6980 return 1;
6981 }
6982 else
6983 {
6984 if (remote_hw_watchpoint_limit == 0)
6985 return 0;
6986 else if (remote_hw_watchpoint_limit < 0)
6987 return 1;
6988 else if (ot)
6989 return -1;
6990 else if (cnt <= remote_hw_watchpoint_limit)
6991 return 1;
6992 }
6993 return -1;
6994 }
6995
6996 static int
6997 remote_stopped_by_watchpoint (void)
6998 {
6999 return remote_stopped_by_watchpoint_p;
7000 }
7001
7002 static int
7003 remote_stopped_data_address (struct target_ops *target, CORE_ADDR *addr_p)
7004 {
7005 int rc = 0;
7006 if (remote_stopped_by_watchpoint ())
7007 {
7008 *addr_p = remote_watch_data_address;
7009 rc = 1;
7010 }
7011
7012 return rc;
7013 }
7014
7015
7016 static int
7017 remote_insert_hw_breakpoint (struct bp_target_info *bp_tgt)
7018 {
7019 CORE_ADDR addr;
7020 struct remote_state *rs;
7021 char *p;
7022
7023 /* The length field should be set to the size of a breakpoint
7024 instruction, even though we aren't inserting one ourselves. */
7025
7026 gdbarch_breakpoint_from_pc
7027 (target_gdbarch, &bp_tgt->placed_address, &bp_tgt->placed_size);
7028
7029 if (remote_protocol_packets[PACKET_Z1].support == PACKET_DISABLE)
7030 return -1;
7031
7032 rs = get_remote_state ();
7033 p = rs->buf;
7034
7035 *(p++) = 'Z';
7036 *(p++) = '1';
7037 *(p++) = ',';
7038
7039 addr = remote_address_masked (bp_tgt->placed_address);
7040 p += hexnumstr (p, (ULONGEST) addr);
7041 sprintf (p, ",%x", bp_tgt->placed_size);
7042
7043 putpkt (rs->buf);
7044 getpkt (&rs->buf, &rs->buf_size, 0);
7045
7046 switch (packet_ok (rs->buf, &remote_protocol_packets[PACKET_Z1]))
7047 {
7048 case PACKET_ERROR:
7049 case PACKET_UNKNOWN:
7050 return -1;
7051 case PACKET_OK:
7052 return 0;
7053 }
7054 internal_error (__FILE__, __LINE__,
7055 _("remote_insert_hw_breakpoint: reached end of function"));
7056 }
7057
7058
7059 static int
7060 remote_remove_hw_breakpoint (struct bp_target_info *bp_tgt)
7061 {
7062 CORE_ADDR addr;
7063 struct remote_state *rs = get_remote_state ();
7064 char *p = rs->buf;
7065
7066 if (remote_protocol_packets[PACKET_Z1].support == PACKET_DISABLE)
7067 return -1;
7068
7069 *(p++) = 'z';
7070 *(p++) = '1';
7071 *(p++) = ',';
7072
7073 addr = remote_address_masked (bp_tgt->placed_address);
7074 p += hexnumstr (p, (ULONGEST) addr);
7075 sprintf (p, ",%x", bp_tgt->placed_size);
7076
7077 putpkt (rs->buf);
7078 getpkt (&rs->buf, &rs->buf_size, 0);
7079
7080 switch (packet_ok (rs->buf, &remote_protocol_packets[PACKET_Z1]))
7081 {
7082 case PACKET_ERROR:
7083 case PACKET_UNKNOWN:
7084 return -1;
7085 case PACKET_OK:
7086 return 0;
7087 }
7088 internal_error (__FILE__, __LINE__,
7089 _("remote_remove_hw_breakpoint: reached end of function"));
7090 }
7091
7092 /* Table used by the crc32 function to calcuate the checksum. */
7093
7094 static unsigned long crc32_table[256] =
7095 {0, 0};
7096
7097 static unsigned long
7098 crc32 (unsigned char *buf, int len, unsigned int crc)
7099 {
7100 if (!crc32_table[1])
7101 {
7102 /* Initialize the CRC table and the decoding table. */
7103 int i, j;
7104 unsigned int c;
7105
7106 for (i = 0; i < 256; i++)
7107 {
7108 for (c = i << 24, j = 8; j > 0; --j)
7109 c = c & 0x80000000 ? (c << 1) ^ 0x04c11db7 : (c << 1);
7110 crc32_table[i] = c;
7111 }
7112 }
7113
7114 while (len--)
7115 {
7116 crc = (crc << 8) ^ crc32_table[((crc >> 24) ^ *buf) & 255];
7117 buf++;
7118 }
7119 return crc;
7120 }
7121
7122 /* compare-sections command
7123
7124 With no arguments, compares each loadable section in the exec bfd
7125 with the same memory range on the target, and reports mismatches.
7126 Useful for verifying the image on the target against the exec file.
7127 Depends on the target understanding the new "qCRC:" request. */
7128
7129 /* FIXME: cagney/1999-10-26: This command should be broken down into a
7130 target method (target verify memory) and generic version of the
7131 actual command. This will allow other high-level code (especially
7132 generic_load()) to make use of this target functionality. */
7133
7134 static void
7135 compare_sections_command (char *args, int from_tty)
7136 {
7137 struct remote_state *rs = get_remote_state ();
7138 asection *s;
7139 unsigned long host_crc, target_crc;
7140 extern bfd *exec_bfd;
7141 struct cleanup *old_chain;
7142 char *tmp;
7143 char *sectdata;
7144 const char *sectname;
7145 bfd_size_type size;
7146 bfd_vma lma;
7147 int matched = 0;
7148 int mismatched = 0;
7149
7150 if (!exec_bfd)
7151 error (_("command cannot be used without an exec file"));
7152 if (!current_target.to_shortname ||
7153 strcmp (current_target.to_shortname, "remote") != 0)
7154 error (_("command can only be used with remote target"));
7155
7156 for (s = exec_bfd->sections; s; s = s->next)
7157 {
7158 if (!(s->flags & SEC_LOAD))
7159 continue; /* skip non-loadable section */
7160
7161 size = bfd_get_section_size (s);
7162 if (size == 0)
7163 continue; /* skip zero-length section */
7164
7165 sectname = bfd_get_section_name (exec_bfd, s);
7166 if (args && strcmp (args, sectname) != 0)
7167 continue; /* not the section selected by user */
7168
7169 matched = 1; /* do this section */
7170 lma = s->lma;
7171 /* FIXME: assumes lma can fit into long. */
7172 xsnprintf (rs->buf, get_remote_packet_size (), "qCRC:%lx,%lx",
7173 (long) lma, (long) size);
7174 putpkt (rs->buf);
7175
7176 /* Be clever; compute the host_crc before waiting for target
7177 reply. */
7178 sectdata = xmalloc (size);
7179 old_chain = make_cleanup (xfree, sectdata);
7180 bfd_get_section_contents (exec_bfd, s, sectdata, 0, size);
7181 host_crc = crc32 ((unsigned char *) sectdata, size, 0xffffffff);
7182
7183 getpkt (&rs->buf, &rs->buf_size, 0);
7184 if (rs->buf[0] == 'E')
7185 error (_("target memory fault, section %s, range 0x%s -- 0x%s"),
7186 sectname, paddr (lma), paddr (lma + size));
7187 if (rs->buf[0] != 'C')
7188 error (_("remote target does not support this operation"));
7189
7190 for (target_crc = 0, tmp = &rs->buf[1]; *tmp; tmp++)
7191 target_crc = target_crc * 16 + fromhex (*tmp);
7192
7193 printf_filtered ("Section %s, range 0x%s -- 0x%s: ",
7194 sectname, paddr (lma), paddr (lma + size));
7195 if (host_crc == target_crc)
7196 printf_filtered ("matched.\n");
7197 else
7198 {
7199 printf_filtered ("MIS-MATCHED!\n");
7200 mismatched++;
7201 }
7202
7203 do_cleanups (old_chain);
7204 }
7205 if (mismatched > 0)
7206 warning (_("One or more sections of the remote executable does not match\n\
7207 the loaded file\n"));
7208 if (args && !matched)
7209 printf_filtered (_("No loaded section named '%s'.\n"), args);
7210 }
7211
7212 /* Write LEN bytes from WRITEBUF into OBJECT_NAME/ANNEX at OFFSET
7213 into remote target. The number of bytes written to the remote
7214 target is returned, or -1 for error. */
7215
7216 static LONGEST
7217 remote_write_qxfer (struct target_ops *ops, const char *object_name,
7218 const char *annex, const gdb_byte *writebuf,
7219 ULONGEST offset, LONGEST len,
7220 struct packet_config *packet)
7221 {
7222 int i, buf_len;
7223 ULONGEST n;
7224 gdb_byte *wbuf;
7225 struct remote_state *rs = get_remote_state ();
7226 int max_size = get_memory_write_packet_size ();
7227
7228 if (packet->support == PACKET_DISABLE)
7229 return -1;
7230
7231 /* Insert header. */
7232 i = snprintf (rs->buf, max_size,
7233 "qXfer:%s:write:%s:%s:",
7234 object_name, annex ? annex : "",
7235 phex_nz (offset, sizeof offset));
7236 max_size -= (i + 1);
7237
7238 /* Escape as much data as fits into rs->buf. */
7239 buf_len = remote_escape_output
7240 (writebuf, len, (rs->buf + i), &max_size, max_size);
7241
7242 if (putpkt_binary (rs->buf, i + buf_len) < 0
7243 || getpkt_sane (&rs->buf, &rs->buf_size, 0) < 0
7244 || packet_ok (rs->buf, packet) != PACKET_OK)
7245 return -1;
7246
7247 unpack_varlen_hex (rs->buf, &n);
7248 return n;
7249 }
7250
7251 /* Read OBJECT_NAME/ANNEX from the remote target using a qXfer packet.
7252 Data at OFFSET, of up to LEN bytes, is read into READBUF; the
7253 number of bytes read is returned, or 0 for EOF, or -1 for error.
7254 The number of bytes read may be less than LEN without indicating an
7255 EOF. PACKET is checked and updated to indicate whether the remote
7256 target supports this object. */
7257
7258 static LONGEST
7259 remote_read_qxfer (struct target_ops *ops, const char *object_name,
7260 const char *annex,
7261 gdb_byte *readbuf, ULONGEST offset, LONGEST len,
7262 struct packet_config *packet)
7263 {
7264 static char *finished_object;
7265 static char *finished_annex;
7266 static ULONGEST finished_offset;
7267
7268 struct remote_state *rs = get_remote_state ();
7269 unsigned int total = 0;
7270 LONGEST i, n, packet_len;
7271
7272 if (packet->support == PACKET_DISABLE)
7273 return -1;
7274
7275 /* Check whether we've cached an end-of-object packet that matches
7276 this request. */
7277 if (finished_object)
7278 {
7279 if (strcmp (object_name, finished_object) == 0
7280 && strcmp (annex ? annex : "", finished_annex) == 0
7281 && offset == finished_offset)
7282 return 0;
7283
7284 /* Otherwise, we're now reading something different. Discard
7285 the cache. */
7286 xfree (finished_object);
7287 xfree (finished_annex);
7288 finished_object = NULL;
7289 finished_annex = NULL;
7290 }
7291
7292 /* Request only enough to fit in a single packet. The actual data
7293 may not, since we don't know how much of it will need to be escaped;
7294 the target is free to respond with slightly less data. We subtract
7295 five to account for the response type and the protocol frame. */
7296 n = min (get_remote_packet_size () - 5, len);
7297 snprintf (rs->buf, get_remote_packet_size () - 4, "qXfer:%s:read:%s:%s,%s",
7298 object_name, annex ? annex : "",
7299 phex_nz (offset, sizeof offset),
7300 phex_nz (n, sizeof n));
7301 i = putpkt (rs->buf);
7302 if (i < 0)
7303 return -1;
7304
7305 rs->buf[0] = '\0';
7306 packet_len = getpkt_sane (&rs->buf, &rs->buf_size, 0);
7307 if (packet_len < 0 || packet_ok (rs->buf, packet) != PACKET_OK)
7308 return -1;
7309
7310 if (rs->buf[0] != 'l' && rs->buf[0] != 'm')
7311 error (_("Unknown remote qXfer reply: %s"), rs->buf);
7312
7313 /* 'm' means there is (or at least might be) more data after this
7314 batch. That does not make sense unless there's at least one byte
7315 of data in this reply. */
7316 if (rs->buf[0] == 'm' && packet_len == 1)
7317 error (_("Remote qXfer reply contained no data."));
7318
7319 /* Got some data. */
7320 i = remote_unescape_input (rs->buf + 1, packet_len - 1, readbuf, n);
7321
7322 /* 'l' is an EOF marker, possibly including a final block of data,
7323 or possibly empty. If we have the final block of a non-empty
7324 object, record this fact to bypass a subsequent partial read. */
7325 if (rs->buf[0] == 'l' && offset + i > 0)
7326 {
7327 finished_object = xstrdup (object_name);
7328 finished_annex = xstrdup (annex ? annex : "");
7329 finished_offset = offset + i;
7330 }
7331
7332 return i;
7333 }
7334
7335 static LONGEST
7336 remote_xfer_partial (struct target_ops *ops, enum target_object object,
7337 const char *annex, gdb_byte *readbuf,
7338 const gdb_byte *writebuf, ULONGEST offset, LONGEST len)
7339 {
7340 struct remote_state *rs;
7341 int i;
7342 char *p2;
7343 char query_type;
7344
7345 set_general_thread (inferior_ptid);
7346
7347 rs = get_remote_state ();
7348
7349 /* Handle memory using the standard memory routines. */
7350 if (object == TARGET_OBJECT_MEMORY)
7351 {
7352 int xfered;
7353 errno = 0;
7354
7355 /* If the remote target is connected but not running, we should
7356 pass this request down to a lower stratum (e.g. the executable
7357 file). */
7358 if (!target_has_execution)
7359 return 0;
7360
7361 if (writebuf != NULL)
7362 xfered = remote_write_bytes (offset, writebuf, len);
7363 else
7364 xfered = remote_read_bytes (offset, readbuf, len);
7365
7366 if (xfered > 0)
7367 return xfered;
7368 else if (xfered == 0 && errno == 0)
7369 return 0;
7370 else
7371 return -1;
7372 }
7373
7374 /* Handle SPU memory using qxfer packets. */
7375 if (object == TARGET_OBJECT_SPU)
7376 {
7377 if (readbuf)
7378 return remote_read_qxfer (ops, "spu", annex, readbuf, offset, len,
7379 &remote_protocol_packets
7380 [PACKET_qXfer_spu_read]);
7381 else
7382 return remote_write_qxfer (ops, "spu", annex, writebuf, offset, len,
7383 &remote_protocol_packets
7384 [PACKET_qXfer_spu_write]);
7385 }
7386
7387 /* Handle extra signal info using qxfer packets. */
7388 if (object == TARGET_OBJECT_SIGNAL_INFO)
7389 {
7390 if (readbuf)
7391 return remote_read_qxfer (ops, "siginfo", annex, readbuf, offset, len,
7392 &remote_protocol_packets
7393 [PACKET_qXfer_siginfo_read]);
7394 else
7395 return remote_write_qxfer (ops, "siginfo", annex, writebuf, offset, len,
7396 &remote_protocol_packets
7397 [PACKET_qXfer_siginfo_write]);
7398 }
7399
7400 /* Only handle flash writes. */
7401 if (writebuf != NULL)
7402 {
7403 LONGEST xfered;
7404
7405 switch (object)
7406 {
7407 case TARGET_OBJECT_FLASH:
7408 xfered = remote_flash_write (ops, offset, len, writebuf);
7409
7410 if (xfered > 0)
7411 return xfered;
7412 else if (xfered == 0 && errno == 0)
7413 return 0;
7414 else
7415 return -1;
7416
7417 default:
7418 return -1;
7419 }
7420 }
7421
7422 /* Map pre-existing objects onto letters. DO NOT do this for new
7423 objects!!! Instead specify new query packets. */
7424 switch (object)
7425 {
7426 case TARGET_OBJECT_AVR:
7427 query_type = 'R';
7428 break;
7429
7430 case TARGET_OBJECT_AUXV:
7431 gdb_assert (annex == NULL);
7432 return remote_read_qxfer (ops, "auxv", annex, readbuf, offset, len,
7433 &remote_protocol_packets[PACKET_qXfer_auxv]);
7434
7435 case TARGET_OBJECT_AVAILABLE_FEATURES:
7436 return remote_read_qxfer
7437 (ops, "features", annex, readbuf, offset, len,
7438 &remote_protocol_packets[PACKET_qXfer_features]);
7439
7440 case TARGET_OBJECT_LIBRARIES:
7441 return remote_read_qxfer
7442 (ops, "libraries", annex, readbuf, offset, len,
7443 &remote_protocol_packets[PACKET_qXfer_libraries]);
7444
7445 case TARGET_OBJECT_MEMORY_MAP:
7446 gdb_assert (annex == NULL);
7447 return remote_read_qxfer (ops, "memory-map", annex, readbuf, offset, len,
7448 &remote_protocol_packets[PACKET_qXfer_memory_map]);
7449
7450 case TARGET_OBJECT_OSDATA:
7451 /* Should only get here if we're connected. */
7452 gdb_assert (remote_desc);
7453 return remote_read_qxfer
7454 (ops, "osdata", annex, readbuf, offset, len,
7455 &remote_protocol_packets[PACKET_qXfer_osdata]);
7456
7457 default:
7458 return -1;
7459 }
7460
7461 /* Note: a zero OFFSET and LEN can be used to query the minimum
7462 buffer size. */
7463 if (offset == 0 && len == 0)
7464 return (get_remote_packet_size ());
7465 /* Minimum outbuf size is get_remote_packet_size (). If LEN is not
7466 large enough let the caller deal with it. */
7467 if (len < get_remote_packet_size ())
7468 return -1;
7469 len = get_remote_packet_size ();
7470
7471 /* Except for querying the minimum buffer size, target must be open. */
7472 if (!remote_desc)
7473 error (_("remote query is only available after target open"));
7474
7475 gdb_assert (annex != NULL);
7476 gdb_assert (readbuf != NULL);
7477
7478 p2 = rs->buf;
7479 *p2++ = 'q';
7480 *p2++ = query_type;
7481
7482 /* We used one buffer char for the remote protocol q command and
7483 another for the query type. As the remote protocol encapsulation
7484 uses 4 chars plus one extra in case we are debugging
7485 (remote_debug), we have PBUFZIZ - 7 left to pack the query
7486 string. */
7487 i = 0;
7488 while (annex[i] && (i < (get_remote_packet_size () - 8)))
7489 {
7490 /* Bad caller may have sent forbidden characters. */
7491 gdb_assert (isprint (annex[i]) && annex[i] != '$' && annex[i] != '#');
7492 *p2++ = annex[i];
7493 i++;
7494 }
7495 *p2 = '\0';
7496 gdb_assert (annex[i] == '\0');
7497
7498 i = putpkt (rs->buf);
7499 if (i < 0)
7500 return i;
7501
7502 getpkt (&rs->buf, &rs->buf_size, 0);
7503 strcpy ((char *) readbuf, rs->buf);
7504
7505 return strlen ((char *) readbuf);
7506 }
7507
7508 static int
7509 remote_search_memory (struct target_ops* ops,
7510 CORE_ADDR start_addr, ULONGEST search_space_len,
7511 const gdb_byte *pattern, ULONGEST pattern_len,
7512 CORE_ADDR *found_addrp)
7513 {
7514 struct remote_state *rs = get_remote_state ();
7515 int max_size = get_memory_write_packet_size ();
7516 struct packet_config *packet =
7517 &remote_protocol_packets[PACKET_qSearch_memory];
7518 /* number of packet bytes used to encode the pattern,
7519 this could be more than PATTERN_LEN due to escape characters */
7520 int escaped_pattern_len;
7521 /* amount of pattern that was encodable in the packet */
7522 int used_pattern_len;
7523 int i;
7524 int found;
7525 ULONGEST found_addr;
7526
7527 /* Don't go to the target if we don't have to.
7528 This is done before checking packet->support to avoid the possibility that
7529 a success for this edge case means the facility works in general. */
7530 if (pattern_len > search_space_len)
7531 return 0;
7532 if (pattern_len == 0)
7533 {
7534 *found_addrp = start_addr;
7535 return 1;
7536 }
7537
7538 /* If we already know the packet isn't supported, fall back to the simple
7539 way of searching memory. */
7540
7541 if (packet->support == PACKET_DISABLE)
7542 {
7543 /* Target doesn't provided special support, fall back and use the
7544 standard support (copy memory and do the search here). */
7545 return simple_search_memory (ops, start_addr, search_space_len,
7546 pattern, pattern_len, found_addrp);
7547 }
7548
7549 /* Insert header. */
7550 i = snprintf (rs->buf, max_size,
7551 "qSearch:memory:%s;%s;",
7552 paddr_nz (start_addr),
7553 phex_nz (search_space_len, sizeof (search_space_len)));
7554 max_size -= (i + 1);
7555
7556 /* Escape as much data as fits into rs->buf. */
7557 escaped_pattern_len =
7558 remote_escape_output (pattern, pattern_len, (rs->buf + i),
7559 &used_pattern_len, max_size);
7560
7561 /* Bail if the pattern is too large. */
7562 if (used_pattern_len != pattern_len)
7563 error ("Pattern is too large to transmit to remote target.");
7564
7565 if (putpkt_binary (rs->buf, i + escaped_pattern_len) < 0
7566 || getpkt_sane (&rs->buf, &rs->buf_size, 0) < 0
7567 || packet_ok (rs->buf, packet) != PACKET_OK)
7568 {
7569 /* The request may not have worked because the command is not
7570 supported. If so, fall back to the simple way. */
7571 if (packet->support == PACKET_DISABLE)
7572 {
7573 return simple_search_memory (ops, start_addr, search_space_len,
7574 pattern, pattern_len, found_addrp);
7575 }
7576 return -1;
7577 }
7578
7579 if (rs->buf[0] == '0')
7580 found = 0;
7581 else if (rs->buf[0] == '1')
7582 {
7583 found = 1;
7584 if (rs->buf[1] != ',')
7585 error (_("Unknown qSearch:memory reply: %s"), rs->buf);
7586 unpack_varlen_hex (rs->buf + 2, &found_addr);
7587 *found_addrp = found_addr;
7588 }
7589 else
7590 error (_("Unknown qSearch:memory reply: %s"), rs->buf);
7591
7592 return found;
7593 }
7594
7595 static void
7596 remote_rcmd (char *command,
7597 struct ui_file *outbuf)
7598 {
7599 struct remote_state *rs = get_remote_state ();
7600 char *p = rs->buf;
7601
7602 if (!remote_desc)
7603 error (_("remote rcmd is only available after target open"));
7604
7605 /* Send a NULL command across as an empty command. */
7606 if (command == NULL)
7607 command = "";
7608
7609 /* The query prefix. */
7610 strcpy (rs->buf, "qRcmd,");
7611 p = strchr (rs->buf, '\0');
7612
7613 if ((strlen (rs->buf) + strlen (command) * 2 + 8/*misc*/) > get_remote_packet_size ())
7614 error (_("\"monitor\" command ``%s'' is too long."), command);
7615
7616 /* Encode the actual command. */
7617 bin2hex ((gdb_byte *) command, p, 0);
7618
7619 if (putpkt (rs->buf) < 0)
7620 error (_("Communication problem with target."));
7621
7622 /* get/display the response */
7623 while (1)
7624 {
7625 char *buf;
7626
7627 /* XXX - see also tracepoint.c:remote_get_noisy_reply(). */
7628 rs->buf[0] = '\0';
7629 getpkt (&rs->buf, &rs->buf_size, 0);
7630 buf = rs->buf;
7631 if (buf[0] == '\0')
7632 error (_("Target does not support this command."));
7633 if (buf[0] == 'O' && buf[1] != 'K')
7634 {
7635 remote_console_output (buf + 1); /* 'O' message from stub. */
7636 continue;
7637 }
7638 if (strcmp (buf, "OK") == 0)
7639 break;
7640 if (strlen (buf) == 3 && buf[0] == 'E'
7641 && isdigit (buf[1]) && isdigit (buf[2]))
7642 {
7643 error (_("Protocol error with Rcmd"));
7644 }
7645 for (p = buf; p[0] != '\0' && p[1] != '\0'; p += 2)
7646 {
7647 char c = (fromhex (p[0]) << 4) + fromhex (p[1]);
7648 fputc_unfiltered (c, outbuf);
7649 }
7650 break;
7651 }
7652 }
7653
7654 static VEC(mem_region_s) *
7655 remote_memory_map (struct target_ops *ops)
7656 {
7657 VEC(mem_region_s) *result = NULL;
7658 char *text = target_read_stralloc (&current_target,
7659 TARGET_OBJECT_MEMORY_MAP, NULL);
7660
7661 if (text)
7662 {
7663 struct cleanup *back_to = make_cleanup (xfree, text);
7664 result = parse_memory_map (text);
7665 do_cleanups (back_to);
7666 }
7667
7668 return result;
7669 }
7670
7671 static void
7672 packet_command (char *args, int from_tty)
7673 {
7674 struct remote_state *rs = get_remote_state ();
7675
7676 if (!remote_desc)
7677 error (_("command can only be used with remote target"));
7678
7679 if (!args)
7680 error (_("remote-packet command requires packet text as argument"));
7681
7682 puts_filtered ("sending: ");
7683 print_packet (args);
7684 puts_filtered ("\n");
7685 putpkt (args);
7686
7687 getpkt (&rs->buf, &rs->buf_size, 0);
7688 puts_filtered ("received: ");
7689 print_packet (rs->buf);
7690 puts_filtered ("\n");
7691 }
7692
7693 #if 0
7694 /* --------- UNIT_TEST for THREAD oriented PACKETS ------------------- */
7695
7696 static void display_thread_info (struct gdb_ext_thread_info *info);
7697
7698 static void threadset_test_cmd (char *cmd, int tty);
7699
7700 static void threadalive_test (char *cmd, int tty);
7701
7702 static void threadlist_test_cmd (char *cmd, int tty);
7703
7704 int get_and_display_threadinfo (threadref *ref);
7705
7706 static void threadinfo_test_cmd (char *cmd, int tty);
7707
7708 static int thread_display_step (threadref *ref, void *context);
7709
7710 static void threadlist_update_test_cmd (char *cmd, int tty);
7711
7712 static void init_remote_threadtests (void);
7713
7714 #define SAMPLE_THREAD 0x05060708 /* Truncated 64 bit threadid. */
7715
7716 static void
7717 threadset_test_cmd (char *cmd, int tty)
7718 {
7719 int sample_thread = SAMPLE_THREAD;
7720
7721 printf_filtered (_("Remote threadset test\n"));
7722 set_general_thread (sample_thread);
7723 }
7724
7725
7726 static void
7727 threadalive_test (char *cmd, int tty)
7728 {
7729 int sample_thread = SAMPLE_THREAD;
7730 int pid = ptid_get_pid (inferior_ptid);
7731 ptid_t ptid = ptid_build (pid, 0, sample_thread);
7732
7733 if (remote_thread_alive (ptid))
7734 printf_filtered ("PASS: Thread alive test\n");
7735 else
7736 printf_filtered ("FAIL: Thread alive test\n");
7737 }
7738
7739 void output_threadid (char *title, threadref *ref);
7740
7741 void
7742 output_threadid (char *title, threadref *ref)
7743 {
7744 char hexid[20];
7745
7746 pack_threadid (&hexid[0], ref); /* Convert threead id into hex. */
7747 hexid[16] = 0;
7748 printf_filtered ("%s %s\n", title, (&hexid[0]));
7749 }
7750
7751 static void
7752 threadlist_test_cmd (char *cmd, int tty)
7753 {
7754 int startflag = 1;
7755 threadref nextthread;
7756 int done, result_count;
7757 threadref threadlist[3];
7758
7759 printf_filtered ("Remote Threadlist test\n");
7760 if (!remote_get_threadlist (startflag, &nextthread, 3, &done,
7761 &result_count, &threadlist[0]))
7762 printf_filtered ("FAIL: threadlist test\n");
7763 else
7764 {
7765 threadref *scan = threadlist;
7766 threadref *limit = scan + result_count;
7767
7768 while (scan < limit)
7769 output_threadid (" thread ", scan++);
7770 }
7771 }
7772
7773 void
7774 display_thread_info (struct gdb_ext_thread_info *info)
7775 {
7776 output_threadid ("Threadid: ", &info->threadid);
7777 printf_filtered ("Name: %s\n ", info->shortname);
7778 printf_filtered ("State: %s\n", info->display);
7779 printf_filtered ("other: %s\n\n", info->more_display);
7780 }
7781
7782 int
7783 get_and_display_threadinfo (threadref *ref)
7784 {
7785 int result;
7786 int set;
7787 struct gdb_ext_thread_info threadinfo;
7788
7789 set = TAG_THREADID | TAG_EXISTS | TAG_THREADNAME
7790 | TAG_MOREDISPLAY | TAG_DISPLAY;
7791 if (0 != (result = remote_get_threadinfo (ref, set, &threadinfo)))
7792 display_thread_info (&threadinfo);
7793 return result;
7794 }
7795
7796 static void
7797 threadinfo_test_cmd (char *cmd, int tty)
7798 {
7799 int athread = SAMPLE_THREAD;
7800 threadref thread;
7801 int set;
7802
7803 int_to_threadref (&thread, athread);
7804 printf_filtered ("Remote Threadinfo test\n");
7805 if (!get_and_display_threadinfo (&thread))
7806 printf_filtered ("FAIL cannot get thread info\n");
7807 }
7808
7809 static int
7810 thread_display_step (threadref *ref, void *context)
7811 {
7812 /* output_threadid(" threadstep ",ref); *//* simple test */
7813 return get_and_display_threadinfo (ref);
7814 }
7815
7816 static void
7817 threadlist_update_test_cmd (char *cmd, int tty)
7818 {
7819 printf_filtered ("Remote Threadlist update test\n");
7820 remote_threadlist_iterator (thread_display_step, 0, CRAZY_MAX_THREADS);
7821 }
7822
7823 static void
7824 init_remote_threadtests (void)
7825 {
7826 add_com ("tlist", class_obscure, threadlist_test_cmd, _("\
7827 Fetch and print the remote list of thread identifiers, one pkt only"));
7828 add_com ("tinfo", class_obscure, threadinfo_test_cmd,
7829 _("Fetch and display info about one thread"));
7830 add_com ("tset", class_obscure, threadset_test_cmd,
7831 _("Test setting to a different thread"));
7832 add_com ("tupd", class_obscure, threadlist_update_test_cmd,
7833 _("Iterate through updating all remote thread info"));
7834 add_com ("talive", class_obscure, threadalive_test,
7835 _(" Remote thread alive test "));
7836 }
7837
7838 #endif /* 0 */
7839
7840 /* Convert a thread ID to a string. Returns the string in a static
7841 buffer. */
7842
7843 static char *
7844 remote_pid_to_str (struct target_ops *ops, ptid_t ptid)
7845 {
7846 static char buf[64];
7847 struct remote_state *rs = get_remote_state ();
7848
7849 if (ptid_equal (magic_null_ptid, ptid))
7850 {
7851 xsnprintf (buf, sizeof buf, "Thread <main>");
7852 return buf;
7853 }
7854 else if (remote_multi_process_p (rs)
7855 && ptid_get_tid (ptid) != 0 && ptid_get_pid (ptid) != 0)
7856 {
7857 xsnprintf (buf, sizeof buf, "Thread %d.%ld",
7858 ptid_get_pid (ptid), ptid_get_tid (ptid));
7859 return buf;
7860 }
7861 else if (ptid_get_tid (ptid) != 0)
7862 {
7863 xsnprintf (buf, sizeof buf, "Thread %ld",
7864 ptid_get_tid (ptid));
7865 return buf;
7866 }
7867
7868 return normal_pid_to_str (ptid);
7869 }
7870
7871 /* Get the address of the thread local variable in OBJFILE which is
7872 stored at OFFSET within the thread local storage for thread PTID. */
7873
7874 static CORE_ADDR
7875 remote_get_thread_local_address (struct target_ops *ops,
7876 ptid_t ptid, CORE_ADDR lm, CORE_ADDR offset)
7877 {
7878 if (remote_protocol_packets[PACKET_qGetTLSAddr].support != PACKET_DISABLE)
7879 {
7880 struct remote_state *rs = get_remote_state ();
7881 char *p = rs->buf;
7882 char *endp = rs->buf + get_remote_packet_size ();
7883 enum packet_result result;
7884
7885 strcpy (p, "qGetTLSAddr:");
7886 p += strlen (p);
7887 p = write_ptid (p, endp, ptid);
7888 *p++ = ',';
7889 p += hexnumstr (p, offset);
7890 *p++ = ',';
7891 p += hexnumstr (p, lm);
7892 *p++ = '\0';
7893
7894 putpkt (rs->buf);
7895 getpkt (&rs->buf, &rs->buf_size, 0);
7896 result = packet_ok (rs->buf, &remote_protocol_packets[PACKET_qGetTLSAddr]);
7897 if (result == PACKET_OK)
7898 {
7899 ULONGEST result;
7900
7901 unpack_varlen_hex (rs->buf, &result);
7902 return result;
7903 }
7904 else if (result == PACKET_UNKNOWN)
7905 throw_error (TLS_GENERIC_ERROR,
7906 _("Remote target doesn't support qGetTLSAddr packet"));
7907 else
7908 throw_error (TLS_GENERIC_ERROR,
7909 _("Remote target failed to process qGetTLSAddr request"));
7910 }
7911 else
7912 throw_error (TLS_GENERIC_ERROR,
7913 _("TLS not supported or disabled on this target"));
7914 /* Not reached. */
7915 return 0;
7916 }
7917
7918 /* Support for inferring a target description based on the current
7919 architecture and the size of a 'g' packet. While the 'g' packet
7920 can have any size (since optional registers can be left off the
7921 end), some sizes are easily recognizable given knowledge of the
7922 approximate architecture. */
7923
7924 struct remote_g_packet_guess
7925 {
7926 int bytes;
7927 const struct target_desc *tdesc;
7928 };
7929 typedef struct remote_g_packet_guess remote_g_packet_guess_s;
7930 DEF_VEC_O(remote_g_packet_guess_s);
7931
7932 struct remote_g_packet_data
7933 {
7934 VEC(remote_g_packet_guess_s) *guesses;
7935 };
7936
7937 static struct gdbarch_data *remote_g_packet_data_handle;
7938
7939 static void *
7940 remote_g_packet_data_init (struct obstack *obstack)
7941 {
7942 return OBSTACK_ZALLOC (obstack, struct remote_g_packet_data);
7943 }
7944
7945 void
7946 register_remote_g_packet_guess (struct gdbarch *gdbarch, int bytes,
7947 const struct target_desc *tdesc)
7948 {
7949 struct remote_g_packet_data *data
7950 = gdbarch_data (gdbarch, remote_g_packet_data_handle);
7951 struct remote_g_packet_guess new_guess, *guess;
7952 int ix;
7953
7954 gdb_assert (tdesc != NULL);
7955
7956 for (ix = 0;
7957 VEC_iterate (remote_g_packet_guess_s, data->guesses, ix, guess);
7958 ix++)
7959 if (guess->bytes == bytes)
7960 internal_error (__FILE__, __LINE__,
7961 "Duplicate g packet description added for size %d",
7962 bytes);
7963
7964 new_guess.bytes = bytes;
7965 new_guess.tdesc = tdesc;
7966 VEC_safe_push (remote_g_packet_guess_s, data->guesses, &new_guess);
7967 }
7968
7969 /* Return 1 if remote_read_description would do anything on this target
7970 and architecture, 0 otherwise. */
7971
7972 static int
7973 remote_read_description_p (struct target_ops *target)
7974 {
7975 struct remote_g_packet_data *data
7976 = gdbarch_data (target_gdbarch, remote_g_packet_data_handle);
7977
7978 if (!VEC_empty (remote_g_packet_guess_s, data->guesses))
7979 return 1;
7980
7981 return 0;
7982 }
7983
7984 static const struct target_desc *
7985 remote_read_description (struct target_ops *target)
7986 {
7987 struct remote_g_packet_data *data
7988 = gdbarch_data (target_gdbarch, remote_g_packet_data_handle);
7989
7990 /* Do not try this during initial connection, when we do not know
7991 whether there is a running but stopped thread. */
7992 if (!target_has_execution || ptid_equal (inferior_ptid, null_ptid))
7993 return NULL;
7994
7995 if (!VEC_empty (remote_g_packet_guess_s, data->guesses))
7996 {
7997 struct remote_g_packet_guess *guess;
7998 int ix;
7999 int bytes = send_g_packet ();
8000
8001 for (ix = 0;
8002 VEC_iterate (remote_g_packet_guess_s, data->guesses, ix, guess);
8003 ix++)
8004 if (guess->bytes == bytes)
8005 return guess->tdesc;
8006
8007 /* We discard the g packet. A minor optimization would be to
8008 hold on to it, and fill the register cache once we have selected
8009 an architecture, but it's too tricky to do safely. */
8010 }
8011
8012 return NULL;
8013 }
8014
8015 /* Remote file transfer support. This is host-initiated I/O, not
8016 target-initiated; for target-initiated, see remote-fileio.c. */
8017
8018 /* If *LEFT is at least the length of STRING, copy STRING to
8019 *BUFFER, update *BUFFER to point to the new end of the buffer, and
8020 decrease *LEFT. Otherwise raise an error. */
8021
8022 static void
8023 remote_buffer_add_string (char **buffer, int *left, char *string)
8024 {
8025 int len = strlen (string);
8026
8027 if (len > *left)
8028 error (_("Packet too long for target."));
8029
8030 memcpy (*buffer, string, len);
8031 *buffer += len;
8032 *left -= len;
8033
8034 /* NUL-terminate the buffer as a convenience, if there is
8035 room. */
8036 if (*left)
8037 **buffer = '\0';
8038 }
8039
8040 /* If *LEFT is large enough, hex encode LEN bytes from BYTES into
8041 *BUFFER, update *BUFFER to point to the new end of the buffer, and
8042 decrease *LEFT. Otherwise raise an error. */
8043
8044 static void
8045 remote_buffer_add_bytes (char **buffer, int *left, const gdb_byte *bytes,
8046 int len)
8047 {
8048 if (2 * len > *left)
8049 error (_("Packet too long for target."));
8050
8051 bin2hex (bytes, *buffer, len);
8052 *buffer += 2 * len;
8053 *left -= 2 * len;
8054
8055 /* NUL-terminate the buffer as a convenience, if there is
8056 room. */
8057 if (*left)
8058 **buffer = '\0';
8059 }
8060
8061 /* If *LEFT is large enough, convert VALUE to hex and add it to
8062 *BUFFER, update *BUFFER to point to the new end of the buffer, and
8063 decrease *LEFT. Otherwise raise an error. */
8064
8065 static void
8066 remote_buffer_add_int (char **buffer, int *left, ULONGEST value)
8067 {
8068 int len = hexnumlen (value);
8069
8070 if (len > *left)
8071 error (_("Packet too long for target."));
8072
8073 hexnumstr (*buffer, value);
8074 *buffer += len;
8075 *left -= len;
8076
8077 /* NUL-terminate the buffer as a convenience, if there is
8078 room. */
8079 if (*left)
8080 **buffer = '\0';
8081 }
8082
8083 /* Parse an I/O result packet from BUFFER. Set RETCODE to the return
8084 value, *REMOTE_ERRNO to the remote error number or zero if none
8085 was included, and *ATTACHMENT to point to the start of the annex
8086 if any. The length of the packet isn't needed here; there may
8087 be NUL bytes in BUFFER, but they will be after *ATTACHMENT.
8088
8089 Return 0 if the packet could be parsed, -1 if it could not. If
8090 -1 is returned, the other variables may not be initialized. */
8091
8092 static int
8093 remote_hostio_parse_result (char *buffer, int *retcode,
8094 int *remote_errno, char **attachment)
8095 {
8096 char *p, *p2;
8097
8098 *remote_errno = 0;
8099 *attachment = NULL;
8100
8101 if (buffer[0] != 'F')
8102 return -1;
8103
8104 errno = 0;
8105 *retcode = strtol (&buffer[1], &p, 16);
8106 if (errno != 0 || p == &buffer[1])
8107 return -1;
8108
8109 /* Check for ",errno". */
8110 if (*p == ',')
8111 {
8112 errno = 0;
8113 *remote_errno = strtol (p + 1, &p2, 16);
8114 if (errno != 0 || p + 1 == p2)
8115 return -1;
8116 p = p2;
8117 }
8118
8119 /* Check for ";attachment". If there is no attachment, the
8120 packet should end here. */
8121 if (*p == ';')
8122 {
8123 *attachment = p + 1;
8124 return 0;
8125 }
8126 else if (*p == '\0')
8127 return 0;
8128 else
8129 return -1;
8130 }
8131
8132 /* Send a prepared I/O packet to the target and read its response.
8133 The prepared packet is in the global RS->BUF before this function
8134 is called, and the answer is there when we return.
8135
8136 COMMAND_BYTES is the length of the request to send, which may include
8137 binary data. WHICH_PACKET is the packet configuration to check
8138 before attempting a packet. If an error occurs, *REMOTE_ERRNO
8139 is set to the error number and -1 is returned. Otherwise the value
8140 returned by the function is returned.
8141
8142 ATTACHMENT and ATTACHMENT_LEN should be non-NULL if and only if an
8143 attachment is expected; an error will be reported if there's a
8144 mismatch. If one is found, *ATTACHMENT will be set to point into
8145 the packet buffer and *ATTACHMENT_LEN will be set to the
8146 attachment's length. */
8147
8148 static int
8149 remote_hostio_send_command (int command_bytes, int which_packet,
8150 int *remote_errno, char **attachment,
8151 int *attachment_len)
8152 {
8153 struct remote_state *rs = get_remote_state ();
8154 int ret, bytes_read;
8155 char *attachment_tmp;
8156
8157 if (!remote_desc
8158 || remote_protocol_packets[which_packet].support == PACKET_DISABLE)
8159 {
8160 *remote_errno = FILEIO_ENOSYS;
8161 return -1;
8162 }
8163
8164 putpkt_binary (rs->buf, command_bytes);
8165 bytes_read = getpkt_sane (&rs->buf, &rs->buf_size, 0);
8166
8167 /* If it timed out, something is wrong. Don't try to parse the
8168 buffer. */
8169 if (bytes_read < 0)
8170 {
8171 *remote_errno = FILEIO_EINVAL;
8172 return -1;
8173 }
8174
8175 switch (packet_ok (rs->buf, &remote_protocol_packets[which_packet]))
8176 {
8177 case PACKET_ERROR:
8178 *remote_errno = FILEIO_EINVAL;
8179 return -1;
8180 case PACKET_UNKNOWN:
8181 *remote_errno = FILEIO_ENOSYS;
8182 return -1;
8183 case PACKET_OK:
8184 break;
8185 }
8186
8187 if (remote_hostio_parse_result (rs->buf, &ret, remote_errno,
8188 &attachment_tmp))
8189 {
8190 *remote_errno = FILEIO_EINVAL;
8191 return -1;
8192 }
8193
8194 /* Make sure we saw an attachment if and only if we expected one. */
8195 if ((attachment_tmp == NULL && attachment != NULL)
8196 || (attachment_tmp != NULL && attachment == NULL))
8197 {
8198 *remote_errno = FILEIO_EINVAL;
8199 return -1;
8200 }
8201
8202 /* If an attachment was found, it must point into the packet buffer;
8203 work out how many bytes there were. */
8204 if (attachment_tmp != NULL)
8205 {
8206 *attachment = attachment_tmp;
8207 *attachment_len = bytes_read - (*attachment - rs->buf);
8208 }
8209
8210 return ret;
8211 }
8212
8213 /* Open FILENAME on the remote target, using FLAGS and MODE. Return a
8214 remote file descriptor, or -1 if an error occurs (and set
8215 *REMOTE_ERRNO). */
8216
8217 static int
8218 remote_hostio_open (const char *filename, int flags, int mode,
8219 int *remote_errno)
8220 {
8221 struct remote_state *rs = get_remote_state ();
8222 char *p = rs->buf;
8223 int left = get_remote_packet_size () - 1;
8224
8225 remote_buffer_add_string (&p, &left, "vFile:open:");
8226
8227 remote_buffer_add_bytes (&p, &left, (const gdb_byte *) filename,
8228 strlen (filename));
8229 remote_buffer_add_string (&p, &left, ",");
8230
8231 remote_buffer_add_int (&p, &left, flags);
8232 remote_buffer_add_string (&p, &left, ",");
8233
8234 remote_buffer_add_int (&p, &left, mode);
8235
8236 return remote_hostio_send_command (p - rs->buf, PACKET_vFile_open,
8237 remote_errno, NULL, NULL);
8238 }
8239
8240 /* Write up to LEN bytes from WRITE_BUF to FD on the remote target.
8241 Return the number of bytes written, or -1 if an error occurs (and
8242 set *REMOTE_ERRNO). */
8243
8244 static int
8245 remote_hostio_pwrite (int fd, const gdb_byte *write_buf, int len,
8246 ULONGEST offset, int *remote_errno)
8247 {
8248 struct remote_state *rs = get_remote_state ();
8249 char *p = rs->buf;
8250 int left = get_remote_packet_size ();
8251 int out_len;
8252
8253 remote_buffer_add_string (&p, &left, "vFile:pwrite:");
8254
8255 remote_buffer_add_int (&p, &left, fd);
8256 remote_buffer_add_string (&p, &left, ",");
8257
8258 remote_buffer_add_int (&p, &left, offset);
8259 remote_buffer_add_string (&p, &left, ",");
8260
8261 p += remote_escape_output (write_buf, len, p, &out_len,
8262 get_remote_packet_size () - (p - rs->buf));
8263
8264 return remote_hostio_send_command (p - rs->buf, PACKET_vFile_pwrite,
8265 remote_errno, NULL, NULL);
8266 }
8267
8268 /* Read up to LEN bytes FD on the remote target into READ_BUF
8269 Return the number of bytes read, or -1 if an error occurs (and
8270 set *REMOTE_ERRNO). */
8271
8272 static int
8273 remote_hostio_pread (int fd, gdb_byte *read_buf, int len,
8274 ULONGEST offset, int *remote_errno)
8275 {
8276 struct remote_state *rs = get_remote_state ();
8277 char *p = rs->buf;
8278 char *attachment;
8279 int left = get_remote_packet_size ();
8280 int ret, attachment_len;
8281 int read_len;
8282
8283 remote_buffer_add_string (&p, &left, "vFile:pread:");
8284
8285 remote_buffer_add_int (&p, &left, fd);
8286 remote_buffer_add_string (&p, &left, ",");
8287
8288 remote_buffer_add_int (&p, &left, len);
8289 remote_buffer_add_string (&p, &left, ",");
8290
8291 remote_buffer_add_int (&p, &left, offset);
8292
8293 ret = remote_hostio_send_command (p - rs->buf, PACKET_vFile_pread,
8294 remote_errno, &attachment,
8295 &attachment_len);
8296
8297 if (ret < 0)
8298 return ret;
8299
8300 read_len = remote_unescape_input (attachment, attachment_len,
8301 read_buf, len);
8302 if (read_len != ret)
8303 error (_("Read returned %d, but %d bytes."), ret, (int) read_len);
8304
8305 return ret;
8306 }
8307
8308 /* Close FD on the remote target. Return 0, or -1 if an error occurs
8309 (and set *REMOTE_ERRNO). */
8310
8311 static int
8312 remote_hostio_close (int fd, int *remote_errno)
8313 {
8314 struct remote_state *rs = get_remote_state ();
8315 char *p = rs->buf;
8316 int left = get_remote_packet_size () - 1;
8317
8318 remote_buffer_add_string (&p, &left, "vFile:close:");
8319
8320 remote_buffer_add_int (&p, &left, fd);
8321
8322 return remote_hostio_send_command (p - rs->buf, PACKET_vFile_close,
8323 remote_errno, NULL, NULL);
8324 }
8325
8326 /* Unlink FILENAME on the remote target. Return 0, or -1 if an error
8327 occurs (and set *REMOTE_ERRNO). */
8328
8329 static int
8330 remote_hostio_unlink (const char *filename, int *remote_errno)
8331 {
8332 struct remote_state *rs = get_remote_state ();
8333 char *p = rs->buf;
8334 int left = get_remote_packet_size () - 1;
8335
8336 remote_buffer_add_string (&p, &left, "vFile:unlink:");
8337
8338 remote_buffer_add_bytes (&p, &left, (const gdb_byte *) filename,
8339 strlen (filename));
8340
8341 return remote_hostio_send_command (p - rs->buf, PACKET_vFile_unlink,
8342 remote_errno, NULL, NULL);
8343 }
8344
8345 static int
8346 remote_fileio_errno_to_host (int errnum)
8347 {
8348 switch (errnum)
8349 {
8350 case FILEIO_EPERM:
8351 return EPERM;
8352 case FILEIO_ENOENT:
8353 return ENOENT;
8354 case FILEIO_EINTR:
8355 return EINTR;
8356 case FILEIO_EIO:
8357 return EIO;
8358 case FILEIO_EBADF:
8359 return EBADF;
8360 case FILEIO_EACCES:
8361 return EACCES;
8362 case FILEIO_EFAULT:
8363 return EFAULT;
8364 case FILEIO_EBUSY:
8365 return EBUSY;
8366 case FILEIO_EEXIST:
8367 return EEXIST;
8368 case FILEIO_ENODEV:
8369 return ENODEV;
8370 case FILEIO_ENOTDIR:
8371 return ENOTDIR;
8372 case FILEIO_EISDIR:
8373 return EISDIR;
8374 case FILEIO_EINVAL:
8375 return EINVAL;
8376 case FILEIO_ENFILE:
8377 return ENFILE;
8378 case FILEIO_EMFILE:
8379 return EMFILE;
8380 case FILEIO_EFBIG:
8381 return EFBIG;
8382 case FILEIO_ENOSPC:
8383 return ENOSPC;
8384 case FILEIO_ESPIPE:
8385 return ESPIPE;
8386 case FILEIO_EROFS:
8387 return EROFS;
8388 case FILEIO_ENOSYS:
8389 return ENOSYS;
8390 case FILEIO_ENAMETOOLONG:
8391 return ENAMETOOLONG;
8392 }
8393 return -1;
8394 }
8395
8396 static char *
8397 remote_hostio_error (int errnum)
8398 {
8399 int host_error = remote_fileio_errno_to_host (errnum);
8400
8401 if (host_error == -1)
8402 error (_("Unknown remote I/O error %d"), errnum);
8403 else
8404 error (_("Remote I/O error: %s"), safe_strerror (host_error));
8405 }
8406
8407 static void
8408 remote_hostio_close_cleanup (void *opaque)
8409 {
8410 int fd = *(int *) opaque;
8411 int remote_errno;
8412
8413 remote_hostio_close (fd, &remote_errno);
8414 }
8415
8416
8417 static void *
8418 remote_bfd_iovec_open (struct bfd *abfd, void *open_closure)
8419 {
8420 const char *filename = bfd_get_filename (abfd);
8421 int fd, remote_errno;
8422 int *stream;
8423
8424 gdb_assert (remote_filename_p (filename));
8425
8426 fd = remote_hostio_open (filename + 7, FILEIO_O_RDONLY, 0, &remote_errno);
8427 if (fd == -1)
8428 {
8429 errno = remote_fileio_errno_to_host (remote_errno);
8430 bfd_set_error (bfd_error_system_call);
8431 return NULL;
8432 }
8433
8434 stream = xmalloc (sizeof (int));
8435 *stream = fd;
8436 return stream;
8437 }
8438
8439 static int
8440 remote_bfd_iovec_close (struct bfd *abfd, void *stream)
8441 {
8442 int fd = *(int *)stream;
8443 int remote_errno;
8444
8445 xfree (stream);
8446
8447 /* Ignore errors on close; these may happen if the remote
8448 connection was already torn down. */
8449 remote_hostio_close (fd, &remote_errno);
8450
8451 return 1;
8452 }
8453
8454 static file_ptr
8455 remote_bfd_iovec_pread (struct bfd *abfd, void *stream, void *buf,
8456 file_ptr nbytes, file_ptr offset)
8457 {
8458 int fd = *(int *)stream;
8459 int remote_errno;
8460 file_ptr pos, bytes;
8461
8462 pos = 0;
8463 while (nbytes > pos)
8464 {
8465 bytes = remote_hostio_pread (fd, (char *)buf + pos, nbytes - pos,
8466 offset + pos, &remote_errno);
8467 if (bytes == 0)
8468 /* Success, but no bytes, means end-of-file. */
8469 break;
8470 if (bytes == -1)
8471 {
8472 errno = remote_fileio_errno_to_host (remote_errno);
8473 bfd_set_error (bfd_error_system_call);
8474 return -1;
8475 }
8476
8477 pos += bytes;
8478 }
8479
8480 return pos;
8481 }
8482
8483 static int
8484 remote_bfd_iovec_stat (struct bfd *abfd, void *stream, struct stat *sb)
8485 {
8486 /* FIXME: We should probably implement remote_hostio_stat. */
8487 sb->st_size = INT_MAX;
8488 return 0;
8489 }
8490
8491 int
8492 remote_filename_p (const char *filename)
8493 {
8494 return strncmp (filename, "remote:", 7) == 0;
8495 }
8496
8497 bfd *
8498 remote_bfd_open (const char *remote_file, const char *target)
8499 {
8500 return bfd_openr_iovec (remote_file, target,
8501 remote_bfd_iovec_open, NULL,
8502 remote_bfd_iovec_pread,
8503 remote_bfd_iovec_close,
8504 remote_bfd_iovec_stat);
8505 }
8506
8507 void
8508 remote_file_put (const char *local_file, const char *remote_file, int from_tty)
8509 {
8510 struct cleanup *back_to, *close_cleanup;
8511 int retcode, fd, remote_errno, bytes, io_size;
8512 FILE *file;
8513 gdb_byte *buffer;
8514 int bytes_in_buffer;
8515 int saw_eof;
8516 ULONGEST offset;
8517
8518 if (!remote_desc)
8519 error (_("command can only be used with remote target"));
8520
8521 file = fopen (local_file, "rb");
8522 if (file == NULL)
8523 perror_with_name (local_file);
8524 back_to = make_cleanup_fclose (file);
8525
8526 fd = remote_hostio_open (remote_file, (FILEIO_O_WRONLY | FILEIO_O_CREAT
8527 | FILEIO_O_TRUNC),
8528 0700, &remote_errno);
8529 if (fd == -1)
8530 remote_hostio_error (remote_errno);
8531
8532 /* Send up to this many bytes at once. They won't all fit in the
8533 remote packet limit, so we'll transfer slightly fewer. */
8534 io_size = get_remote_packet_size ();
8535 buffer = xmalloc (io_size);
8536 make_cleanup (xfree, buffer);
8537
8538 close_cleanup = make_cleanup (remote_hostio_close_cleanup, &fd);
8539
8540 bytes_in_buffer = 0;
8541 saw_eof = 0;
8542 offset = 0;
8543 while (bytes_in_buffer || !saw_eof)
8544 {
8545 if (!saw_eof)
8546 {
8547 bytes = fread (buffer + bytes_in_buffer, 1, io_size - bytes_in_buffer,
8548 file);
8549 if (bytes == 0)
8550 {
8551 if (ferror (file))
8552 error (_("Error reading %s."), local_file);
8553 else
8554 {
8555 /* EOF. Unless there is something still in the
8556 buffer from the last iteration, we are done. */
8557 saw_eof = 1;
8558 if (bytes_in_buffer == 0)
8559 break;
8560 }
8561 }
8562 }
8563 else
8564 bytes = 0;
8565
8566 bytes += bytes_in_buffer;
8567 bytes_in_buffer = 0;
8568
8569 retcode = remote_hostio_pwrite (fd, buffer, bytes, offset, &remote_errno);
8570
8571 if (retcode < 0)
8572 remote_hostio_error (remote_errno);
8573 else if (retcode == 0)
8574 error (_("Remote write of %d bytes returned 0!"), bytes);
8575 else if (retcode < bytes)
8576 {
8577 /* Short write. Save the rest of the read data for the next
8578 write. */
8579 bytes_in_buffer = bytes - retcode;
8580 memmove (buffer, buffer + retcode, bytes_in_buffer);
8581 }
8582
8583 offset += retcode;
8584 }
8585
8586 discard_cleanups (close_cleanup);
8587 if (remote_hostio_close (fd, &remote_errno))
8588 remote_hostio_error (remote_errno);
8589
8590 if (from_tty)
8591 printf_filtered (_("Successfully sent file \"%s\".\n"), local_file);
8592 do_cleanups (back_to);
8593 }
8594
8595 void
8596 remote_file_get (const char *remote_file, const char *local_file, int from_tty)
8597 {
8598 struct cleanup *back_to, *close_cleanup;
8599 int retcode, fd, remote_errno, bytes, io_size;
8600 FILE *file;
8601 gdb_byte *buffer;
8602 ULONGEST offset;
8603
8604 if (!remote_desc)
8605 error (_("command can only be used with remote target"));
8606
8607 fd = remote_hostio_open (remote_file, FILEIO_O_RDONLY, 0, &remote_errno);
8608 if (fd == -1)
8609 remote_hostio_error (remote_errno);
8610
8611 file = fopen (local_file, "wb");
8612 if (file == NULL)
8613 perror_with_name (local_file);
8614 back_to = make_cleanup_fclose (file);
8615
8616 /* Send up to this many bytes at once. They won't all fit in the
8617 remote packet limit, so we'll transfer slightly fewer. */
8618 io_size = get_remote_packet_size ();
8619 buffer = xmalloc (io_size);
8620 make_cleanup (xfree, buffer);
8621
8622 close_cleanup = make_cleanup (remote_hostio_close_cleanup, &fd);
8623
8624 offset = 0;
8625 while (1)
8626 {
8627 bytes = remote_hostio_pread (fd, buffer, io_size, offset, &remote_errno);
8628 if (bytes == 0)
8629 /* Success, but no bytes, means end-of-file. */
8630 break;
8631 if (bytes == -1)
8632 remote_hostio_error (remote_errno);
8633
8634 offset += bytes;
8635
8636 bytes = fwrite (buffer, 1, bytes, file);
8637 if (bytes == 0)
8638 perror_with_name (local_file);
8639 }
8640
8641 discard_cleanups (close_cleanup);
8642 if (remote_hostio_close (fd, &remote_errno))
8643 remote_hostio_error (remote_errno);
8644
8645 if (from_tty)
8646 printf_filtered (_("Successfully fetched file \"%s\".\n"), remote_file);
8647 do_cleanups (back_to);
8648 }
8649
8650 void
8651 remote_file_delete (const char *remote_file, int from_tty)
8652 {
8653 int retcode, remote_errno;
8654
8655 if (!remote_desc)
8656 error (_("command can only be used with remote target"));
8657
8658 retcode = remote_hostio_unlink (remote_file, &remote_errno);
8659 if (retcode == -1)
8660 remote_hostio_error (remote_errno);
8661
8662 if (from_tty)
8663 printf_filtered (_("Successfully deleted file \"%s\".\n"), remote_file);
8664 }
8665
8666 static void
8667 remote_put_command (char *args, int from_tty)
8668 {
8669 struct cleanup *back_to;
8670 char **argv;
8671
8672 if (args == NULL)
8673 error_no_arg (_("file to put"));
8674
8675 argv = gdb_buildargv (args);
8676 back_to = make_cleanup_freeargv (argv);
8677 if (argv[0] == NULL || argv[1] == NULL || argv[2] != NULL)
8678 error (_("Invalid parameters to remote put"));
8679
8680 remote_file_put (argv[0], argv[1], from_tty);
8681
8682 do_cleanups (back_to);
8683 }
8684
8685 static void
8686 remote_get_command (char *args, int from_tty)
8687 {
8688 struct cleanup *back_to;
8689 char **argv;
8690
8691 if (args == NULL)
8692 error_no_arg (_("file to get"));
8693
8694 argv = gdb_buildargv (args);
8695 back_to = make_cleanup_freeargv (argv);
8696 if (argv[0] == NULL || argv[1] == NULL || argv[2] != NULL)
8697 error (_("Invalid parameters to remote get"));
8698
8699 remote_file_get (argv[0], argv[1], from_tty);
8700
8701 do_cleanups (back_to);
8702 }
8703
8704 static void
8705 remote_delete_command (char *args, int from_tty)
8706 {
8707 struct cleanup *back_to;
8708 char **argv;
8709
8710 if (args == NULL)
8711 error_no_arg (_("file to delete"));
8712
8713 argv = gdb_buildargv (args);
8714 back_to = make_cleanup_freeargv (argv);
8715 if (argv[0] == NULL || argv[1] != NULL)
8716 error (_("Invalid parameters to remote delete"));
8717
8718 remote_file_delete (argv[0], from_tty);
8719
8720 do_cleanups (back_to);
8721 }
8722
8723 static void
8724 remote_command (char *args, int from_tty)
8725 {
8726 help_list (remote_cmdlist, "remote ", -1, gdb_stdout);
8727 }
8728
8729 static int remote_target_can_reverse = 1;
8730
8731 static int
8732 remote_can_execute_reverse (void)
8733 {
8734 return remote_target_can_reverse;
8735 }
8736
8737 static int
8738 remote_supports_non_stop (void)
8739 {
8740 return 1;
8741 }
8742
8743 static int
8744 remote_supports_multi_process (void)
8745 {
8746 struct remote_state *rs = get_remote_state ();
8747 return remote_multi_process_p (rs);
8748 }
8749
8750 static void
8751 init_remote_ops (void)
8752 {
8753 remote_ops.to_shortname = "remote";
8754 remote_ops.to_longname = "Remote serial target in gdb-specific protocol";
8755 remote_ops.to_doc =
8756 "Use a remote computer via a serial line, using a gdb-specific protocol.\n\
8757 Specify the serial device it is connected to\n\
8758 (e.g. /dev/ttyS0, /dev/ttya, COM1, etc.).";
8759 remote_ops.to_open = remote_open;
8760 remote_ops.to_close = remote_close;
8761 remote_ops.to_detach = remote_detach;
8762 remote_ops.to_disconnect = remote_disconnect;
8763 remote_ops.to_resume = remote_resume;
8764 remote_ops.to_wait = remote_wait;
8765 remote_ops.to_fetch_registers = remote_fetch_registers;
8766 remote_ops.to_store_registers = remote_store_registers;
8767 remote_ops.to_prepare_to_store = remote_prepare_to_store;
8768 remote_ops.deprecated_xfer_memory = remote_xfer_memory;
8769 remote_ops.to_files_info = remote_files_info;
8770 remote_ops.to_insert_breakpoint = remote_insert_breakpoint;
8771 remote_ops.to_remove_breakpoint = remote_remove_breakpoint;
8772 remote_ops.to_stopped_by_watchpoint = remote_stopped_by_watchpoint;
8773 remote_ops.to_stopped_data_address = remote_stopped_data_address;
8774 remote_ops.to_can_use_hw_breakpoint = remote_check_watch_resources;
8775 remote_ops.to_insert_hw_breakpoint = remote_insert_hw_breakpoint;
8776 remote_ops.to_remove_hw_breakpoint = remote_remove_hw_breakpoint;
8777 remote_ops.to_insert_watchpoint = remote_insert_watchpoint;
8778 remote_ops.to_remove_watchpoint = remote_remove_watchpoint;
8779 remote_ops.to_kill = remote_kill;
8780 remote_ops.to_load = generic_load;
8781 remote_ops.to_mourn_inferior = remote_mourn;
8782 remote_ops.to_thread_alive = remote_thread_alive;
8783 remote_ops.to_find_new_threads = remote_threads_info;
8784 remote_ops.to_pid_to_str = remote_pid_to_str;
8785 remote_ops.to_extra_thread_info = remote_threads_extra_info;
8786 remote_ops.to_stop = remote_stop;
8787 remote_ops.to_xfer_partial = remote_xfer_partial;
8788 remote_ops.to_rcmd = remote_rcmd;
8789 remote_ops.to_log_command = serial_log_command;
8790 remote_ops.to_get_thread_local_address = remote_get_thread_local_address;
8791 remote_ops.to_stratum = process_stratum;
8792 remote_ops.to_has_all_memory = 1;
8793 remote_ops.to_has_memory = 1;
8794 remote_ops.to_has_stack = 1;
8795 remote_ops.to_has_registers = 1;
8796 remote_ops.to_has_execution = 1;
8797 remote_ops.to_has_thread_control = tc_schedlock; /* can lock scheduler */
8798 remote_ops.to_can_execute_reverse = remote_can_execute_reverse;
8799 remote_ops.to_magic = OPS_MAGIC;
8800 remote_ops.to_memory_map = remote_memory_map;
8801 remote_ops.to_flash_erase = remote_flash_erase;
8802 remote_ops.to_flash_done = remote_flash_done;
8803 remote_ops.to_read_description = remote_read_description;
8804 remote_ops.to_search_memory = remote_search_memory;
8805 remote_ops.to_can_async_p = remote_can_async_p;
8806 remote_ops.to_is_async_p = remote_is_async_p;
8807 remote_ops.to_async = remote_async;
8808 remote_ops.to_async_mask = remote_async_mask;
8809 remote_ops.to_terminal_inferior = remote_terminal_inferior;
8810 remote_ops.to_terminal_ours = remote_terminal_ours;
8811 remote_ops.to_supports_non_stop = remote_supports_non_stop;
8812 remote_ops.to_supports_multi_process = remote_supports_multi_process;
8813 }
8814
8815 /* Set up the extended remote vector by making a copy of the standard
8816 remote vector and adding to it. */
8817
8818 static void
8819 init_extended_remote_ops (void)
8820 {
8821 extended_remote_ops = remote_ops;
8822
8823 extended_remote_ops.to_shortname = "extended-remote";
8824 extended_remote_ops.to_longname =
8825 "Extended remote serial target in gdb-specific protocol";
8826 extended_remote_ops.to_doc =
8827 "Use a remote computer via a serial line, using a gdb-specific protocol.\n\
8828 Specify the serial device it is connected to (e.g. /dev/ttya).";
8829 extended_remote_ops.to_open = extended_remote_open;
8830 extended_remote_ops.to_create_inferior = extended_remote_create_inferior;
8831 extended_remote_ops.to_mourn_inferior = extended_remote_mourn;
8832 extended_remote_ops.to_detach = extended_remote_detach;
8833 extended_remote_ops.to_attach = extended_remote_attach;
8834 extended_remote_ops.to_kill = extended_remote_kill;
8835 }
8836
8837 static int
8838 remote_can_async_p (void)
8839 {
8840 if (!target_async_permitted)
8841 /* We only enable async when the user specifically asks for it. */
8842 return 0;
8843
8844 /* We're async whenever the serial device is. */
8845 return remote_async_mask_value && serial_can_async_p (remote_desc);
8846 }
8847
8848 static int
8849 remote_is_async_p (void)
8850 {
8851 if (!target_async_permitted)
8852 /* We only enable async when the user specifically asks for it. */
8853 return 0;
8854
8855 /* We're async whenever the serial device is. */
8856 return remote_async_mask_value && serial_is_async_p (remote_desc);
8857 }
8858
8859 /* Pass the SERIAL event on and up to the client. One day this code
8860 will be able to delay notifying the client of an event until the
8861 point where an entire packet has been received. */
8862
8863 static void (*async_client_callback) (enum inferior_event_type event_type,
8864 void *context);
8865 static void *async_client_context;
8866 static serial_event_ftype remote_async_serial_handler;
8867
8868 static void
8869 remote_async_serial_handler (struct serial *scb, void *context)
8870 {
8871 /* Don't propogate error information up to the client. Instead let
8872 the client find out about the error by querying the target. */
8873 async_client_callback (INF_REG_EVENT, async_client_context);
8874 }
8875
8876 static void
8877 remote_async_inferior_event_handler (gdb_client_data data)
8878 {
8879 inferior_event_handler (INF_REG_EVENT, NULL);
8880 }
8881
8882 static void
8883 remote_async_get_pending_events_handler (gdb_client_data data)
8884 {
8885 remote_get_pending_stop_replies ();
8886 }
8887
8888 static void
8889 remote_async (void (*callback) (enum inferior_event_type event_type,
8890 void *context), void *context)
8891 {
8892 if (remote_async_mask_value == 0)
8893 internal_error (__FILE__, __LINE__,
8894 _("Calling remote_async when async is masked"));
8895
8896 if (callback != NULL)
8897 {
8898 serial_async (remote_desc, remote_async_serial_handler, NULL);
8899 async_client_callback = callback;
8900 async_client_context = context;
8901 }
8902 else
8903 serial_async (remote_desc, NULL, NULL);
8904 }
8905
8906 static int
8907 remote_async_mask (int new_mask)
8908 {
8909 int curr_mask = remote_async_mask_value;
8910 remote_async_mask_value = new_mask;
8911 return curr_mask;
8912 }
8913
8914 static void
8915 set_remote_cmd (char *args, int from_tty)
8916 {
8917 help_list (remote_set_cmdlist, "set remote ", -1, gdb_stdout);
8918 }
8919
8920 static void
8921 show_remote_cmd (char *args, int from_tty)
8922 {
8923 /* We can't just use cmd_show_list here, because we want to skip
8924 the redundant "show remote Z-packet" and the legacy aliases. */
8925 struct cleanup *showlist_chain;
8926 struct cmd_list_element *list = remote_show_cmdlist;
8927
8928 showlist_chain = make_cleanup_ui_out_tuple_begin_end (uiout, "showlist");
8929 for (; list != NULL; list = list->next)
8930 if (strcmp (list->name, "Z-packet") == 0)
8931 continue;
8932 else if (list->type == not_set_cmd)
8933 /* Alias commands are exactly like the original, except they
8934 don't have the normal type. */
8935 continue;
8936 else
8937 {
8938 struct cleanup *option_chain
8939 = make_cleanup_ui_out_tuple_begin_end (uiout, "option");
8940 ui_out_field_string (uiout, "name", list->name);
8941 ui_out_text (uiout, ": ");
8942 if (list->type == show_cmd)
8943 do_setshow_command ((char *) NULL, from_tty, list);
8944 else
8945 cmd_func (list, NULL, from_tty);
8946 /* Close the tuple. */
8947 do_cleanups (option_chain);
8948 }
8949
8950 /* Close the tuple. */
8951 do_cleanups (showlist_chain);
8952 }
8953
8954
8955 /* Function to be called whenever a new objfile (shlib) is detected. */
8956 static void
8957 remote_new_objfile (struct objfile *objfile)
8958 {
8959 if (remote_desc != 0) /* Have a remote connection. */
8960 remote_check_symbols (objfile);
8961 }
8962
8963 void
8964 _initialize_remote (void)
8965 {
8966 struct remote_state *rs;
8967
8968 /* architecture specific data */
8969 remote_gdbarch_data_handle =
8970 gdbarch_data_register_post_init (init_remote_state);
8971 remote_g_packet_data_handle =
8972 gdbarch_data_register_pre_init (remote_g_packet_data_init);
8973
8974 /* Initialize the per-target state. At the moment there is only one
8975 of these, not one per target. Only one target is active at a
8976 time. The default buffer size is unimportant; it will be expanded
8977 whenever a larger buffer is needed. */
8978 rs = get_remote_state_raw ();
8979 rs->buf_size = 400;
8980 rs->buf = xmalloc (rs->buf_size);
8981
8982 init_remote_ops ();
8983 add_target (&remote_ops);
8984
8985 init_extended_remote_ops ();
8986 add_target (&extended_remote_ops);
8987
8988 /* Hook into new objfile notification. */
8989 observer_attach_new_objfile (remote_new_objfile);
8990
8991 /* Set up signal handlers. */
8992 sigint_remote_token =
8993 create_async_signal_handler (async_remote_interrupt, NULL);
8994 sigint_remote_twice_token =
8995 create_async_signal_handler (inferior_event_handler_wrapper, NULL);
8996
8997 #if 0
8998 init_remote_threadtests ();
8999 #endif
9000
9001 /* set/show remote ... */
9002
9003 add_prefix_cmd ("remote", class_maintenance, set_remote_cmd, _("\
9004 Remote protocol specific variables\n\
9005 Configure various remote-protocol specific variables such as\n\
9006 the packets being used"),
9007 &remote_set_cmdlist, "set remote ",
9008 0 /* allow-unknown */, &setlist);
9009 add_prefix_cmd ("remote", class_maintenance, show_remote_cmd, _("\
9010 Remote protocol specific variables\n\
9011 Configure various remote-protocol specific variables such as\n\
9012 the packets being used"),
9013 &remote_show_cmdlist, "show remote ",
9014 0 /* allow-unknown */, &showlist);
9015
9016 add_cmd ("compare-sections", class_obscure, compare_sections_command, _("\
9017 Compare section data on target to the exec file.\n\
9018 Argument is a single section name (default: all loaded sections)."),
9019 &cmdlist);
9020
9021 add_cmd ("packet", class_maintenance, packet_command, _("\
9022 Send an arbitrary packet to a remote target.\n\
9023 maintenance packet TEXT\n\
9024 If GDB is talking to an inferior via the GDB serial protocol, then\n\
9025 this command sends the string TEXT to the inferior, and displays the\n\
9026 response packet. GDB supplies the initial `$' character, and the\n\
9027 terminating `#' character and checksum."),
9028 &maintenancelist);
9029
9030 add_setshow_boolean_cmd ("remotebreak", no_class, &remote_break, _("\
9031 Set whether to send break if interrupted."), _("\
9032 Show whether to send break if interrupted."), _("\
9033 If set, a break, instead of a cntrl-c, is sent to the remote target."),
9034 NULL, NULL, /* FIXME: i18n: Whether to send break if interrupted is %s. */
9035 &setlist, &showlist);
9036
9037 /* Install commands for configuring memory read/write packets. */
9038
9039 add_cmd ("remotewritesize", no_class, set_memory_write_packet_size, _("\
9040 Set the maximum number of bytes per memory write packet (deprecated)."),
9041 &setlist);
9042 add_cmd ("remotewritesize", no_class, show_memory_write_packet_size, _("\
9043 Show the maximum number of bytes per memory write packet (deprecated)."),
9044 &showlist);
9045 add_cmd ("memory-write-packet-size", no_class,
9046 set_memory_write_packet_size, _("\
9047 Set the maximum number of bytes per memory-write packet.\n\
9048 Specify the number of bytes in a packet or 0 (zero) for the\n\
9049 default packet size. The actual limit is further reduced\n\
9050 dependent on the target. Specify ``fixed'' to disable the\n\
9051 further restriction and ``limit'' to enable that restriction."),
9052 &remote_set_cmdlist);
9053 add_cmd ("memory-read-packet-size", no_class,
9054 set_memory_read_packet_size, _("\
9055 Set the maximum number of bytes per memory-read packet.\n\
9056 Specify the number of bytes in a packet or 0 (zero) for the\n\
9057 default packet size. The actual limit is further reduced\n\
9058 dependent on the target. Specify ``fixed'' to disable the\n\
9059 further restriction and ``limit'' to enable that restriction."),
9060 &remote_set_cmdlist);
9061 add_cmd ("memory-write-packet-size", no_class,
9062 show_memory_write_packet_size,
9063 _("Show the maximum number of bytes per memory-write packet."),
9064 &remote_show_cmdlist);
9065 add_cmd ("memory-read-packet-size", no_class,
9066 show_memory_read_packet_size,
9067 _("Show the maximum number of bytes per memory-read packet."),
9068 &remote_show_cmdlist);
9069
9070 add_setshow_zinteger_cmd ("hardware-watchpoint-limit", no_class,
9071 &remote_hw_watchpoint_limit, _("\
9072 Set the maximum number of target hardware watchpoints."), _("\
9073 Show the maximum number of target hardware watchpoints."), _("\
9074 Specify a negative limit for unlimited."),
9075 NULL, NULL, /* FIXME: i18n: The maximum number of target hardware watchpoints is %s. */
9076 &remote_set_cmdlist, &remote_show_cmdlist);
9077 add_setshow_zinteger_cmd ("hardware-breakpoint-limit", no_class,
9078 &remote_hw_breakpoint_limit, _("\
9079 Set the maximum number of target hardware breakpoints."), _("\
9080 Show the maximum number of target hardware breakpoints."), _("\
9081 Specify a negative limit for unlimited."),
9082 NULL, NULL, /* FIXME: i18n: The maximum number of target hardware breakpoints is %s. */
9083 &remote_set_cmdlist, &remote_show_cmdlist);
9084
9085 add_setshow_integer_cmd ("remoteaddresssize", class_obscure,
9086 &remote_address_size, _("\
9087 Set the maximum size of the address (in bits) in a memory packet."), _("\
9088 Show the maximum size of the address (in bits) in a memory packet."), NULL,
9089 NULL,
9090 NULL, /* FIXME: i18n: */
9091 &setlist, &showlist);
9092
9093 add_packet_config_cmd (&remote_protocol_packets[PACKET_X],
9094 "X", "binary-download", 1);
9095
9096 add_packet_config_cmd (&remote_protocol_packets[PACKET_vCont],
9097 "vCont", "verbose-resume", 0);
9098
9099 add_packet_config_cmd (&remote_protocol_packets[PACKET_QPassSignals],
9100 "QPassSignals", "pass-signals", 0);
9101
9102 add_packet_config_cmd (&remote_protocol_packets[PACKET_qSymbol],
9103 "qSymbol", "symbol-lookup", 0);
9104
9105 add_packet_config_cmd (&remote_protocol_packets[PACKET_P],
9106 "P", "set-register", 1);
9107
9108 add_packet_config_cmd (&remote_protocol_packets[PACKET_p],
9109 "p", "fetch-register", 1);
9110
9111 add_packet_config_cmd (&remote_protocol_packets[PACKET_Z0],
9112 "Z0", "software-breakpoint", 0);
9113
9114 add_packet_config_cmd (&remote_protocol_packets[PACKET_Z1],
9115 "Z1", "hardware-breakpoint", 0);
9116
9117 add_packet_config_cmd (&remote_protocol_packets[PACKET_Z2],
9118 "Z2", "write-watchpoint", 0);
9119
9120 add_packet_config_cmd (&remote_protocol_packets[PACKET_Z3],
9121 "Z3", "read-watchpoint", 0);
9122
9123 add_packet_config_cmd (&remote_protocol_packets[PACKET_Z4],
9124 "Z4", "access-watchpoint", 0);
9125
9126 add_packet_config_cmd (&remote_protocol_packets[PACKET_qXfer_auxv],
9127 "qXfer:auxv:read", "read-aux-vector", 0);
9128
9129 add_packet_config_cmd (&remote_protocol_packets[PACKET_qXfer_features],
9130 "qXfer:features:read", "target-features", 0);
9131
9132 add_packet_config_cmd (&remote_protocol_packets[PACKET_qXfer_libraries],
9133 "qXfer:libraries:read", "library-info", 0);
9134
9135 add_packet_config_cmd (&remote_protocol_packets[PACKET_qXfer_memory_map],
9136 "qXfer:memory-map:read", "memory-map", 0);
9137
9138 add_packet_config_cmd (&remote_protocol_packets[PACKET_qXfer_spu_read],
9139 "qXfer:spu:read", "read-spu-object", 0);
9140
9141 add_packet_config_cmd (&remote_protocol_packets[PACKET_qXfer_spu_write],
9142 "qXfer:spu:write", "write-spu-object", 0);
9143
9144 add_packet_config_cmd (&remote_protocol_packets[PACKET_qXfer_osdata],
9145 "qXfer:osdata:read", "osdata", 0);
9146
9147 add_packet_config_cmd (&remote_protocol_packets[PACKET_qXfer_siginfo_read],
9148 "qXfer:siginfo:read", "read-siginfo-object", 0);
9149
9150 add_packet_config_cmd (&remote_protocol_packets[PACKET_qXfer_siginfo_write],
9151 "qXfer:siginfo:write", "write-siginfo-object", 0);
9152
9153 add_packet_config_cmd (&remote_protocol_packets[PACKET_qGetTLSAddr],
9154 "qGetTLSAddr", "get-thread-local-storage-address",
9155 0);
9156
9157 add_packet_config_cmd (&remote_protocol_packets[PACKET_qSupported],
9158 "qSupported", "supported-packets", 0);
9159
9160 add_packet_config_cmd (&remote_protocol_packets[PACKET_qSearch_memory],
9161 "qSearch:memory", "search-memory", 0);
9162
9163 add_packet_config_cmd (&remote_protocol_packets[PACKET_vFile_open],
9164 "vFile:open", "hostio-open", 0);
9165
9166 add_packet_config_cmd (&remote_protocol_packets[PACKET_vFile_pread],
9167 "vFile:pread", "hostio-pread", 0);
9168
9169 add_packet_config_cmd (&remote_protocol_packets[PACKET_vFile_pwrite],
9170 "vFile:pwrite", "hostio-pwrite", 0);
9171
9172 add_packet_config_cmd (&remote_protocol_packets[PACKET_vFile_close],
9173 "vFile:close", "hostio-close", 0);
9174
9175 add_packet_config_cmd (&remote_protocol_packets[PACKET_vFile_unlink],
9176 "vFile:unlink", "hostio-unlink", 0);
9177
9178 add_packet_config_cmd (&remote_protocol_packets[PACKET_vAttach],
9179 "vAttach", "attach", 0);
9180
9181 add_packet_config_cmd (&remote_protocol_packets[PACKET_vRun],
9182 "vRun", "run", 0);
9183
9184 add_packet_config_cmd (&remote_protocol_packets[PACKET_QStartNoAckMode],
9185 "QStartNoAckMode", "noack", 0);
9186
9187 add_packet_config_cmd (&remote_protocol_packets[PACKET_vKill],
9188 "vKill", "kill", 0);
9189
9190 add_packet_config_cmd (&remote_protocol_packets[PACKET_qAttached],
9191 "qAttached", "query-attached", 0);
9192
9193 /* Keep the old ``set remote Z-packet ...'' working. Each individual
9194 Z sub-packet has its own set and show commands, but users may
9195 have sets to this variable in their .gdbinit files (or in their
9196 documentation). */
9197 add_setshow_auto_boolean_cmd ("Z-packet", class_obscure,
9198 &remote_Z_packet_detect, _("\
9199 Set use of remote protocol `Z' packets"), _("\
9200 Show use of remote protocol `Z' packets "), _("\
9201 When set, GDB will attempt to use the remote breakpoint and watchpoint\n\
9202 packets."),
9203 set_remote_protocol_Z_packet_cmd,
9204 show_remote_protocol_Z_packet_cmd, /* FIXME: i18n: Use of remote protocol `Z' packets is %s. */
9205 &remote_set_cmdlist, &remote_show_cmdlist);
9206
9207 add_prefix_cmd ("remote", class_files, remote_command, _("\
9208 Manipulate files on the remote system\n\
9209 Transfer files to and from the remote target system."),
9210 &remote_cmdlist, "remote ",
9211 0 /* allow-unknown */, &cmdlist);
9212
9213 add_cmd ("put", class_files, remote_put_command,
9214 _("Copy a local file to the remote system."),
9215 &remote_cmdlist);
9216
9217 add_cmd ("get", class_files, remote_get_command,
9218 _("Copy a remote file to the local system."),
9219 &remote_cmdlist);
9220
9221 add_cmd ("delete", class_files, remote_delete_command,
9222 _("Delete a remote file."),
9223 &remote_cmdlist);
9224
9225 remote_exec_file = xstrdup ("");
9226 add_setshow_string_noescape_cmd ("exec-file", class_files,
9227 &remote_exec_file, _("\
9228 Set the remote pathname for \"run\""), _("\
9229 Show the remote pathname for \"run\""), NULL, NULL, NULL,
9230 &remote_set_cmdlist, &remote_show_cmdlist);
9231
9232 /* Eventually initialize fileio. See fileio.c */
9233 initialize_remote_fileio (remote_set_cmdlist, remote_show_cmdlist);
9234
9235 /* Take advantage of the fact that the LWP field is not used, to tag
9236 special ptids with it set to != 0. */
9237 magic_null_ptid = ptid_build (42000, 1, -1);
9238 not_sent_ptid = ptid_build (42000, 1, -2);
9239 any_thread_ptid = ptid_build (42000, 1, 0);
9240 }