* remote.c (remote_get_threadlist): If the response
[binutils-gdb.git] / gdb / remote.c
1 /* Remote target communications for serial-line targets in custom GDB protocol
2
3 Copyright (C) 1988, 1989, 1990, 1991, 1992, 1993, 1994, 1995, 1996, 1997,
4 1998, 1999, 2000, 2001, 2002, 2003, 2004, 2005, 2006, 2007, 2008
5 Free Software Foundation, Inc.
6
7 This file is part of GDB.
8
9 This program is free software; you can redistribute it and/or modify
10 it under the terms of the GNU General Public License as published by
11 the Free Software Foundation; either version 3 of the License, or
12 (at your option) any later version.
13
14 This program is distributed in the hope that it will be useful,
15 but WITHOUT ANY WARRANTY; without even the implied warranty of
16 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
17 GNU General Public License for more details.
18
19 You should have received a copy of the GNU General Public License
20 along with this program. If not, see <http://www.gnu.org/licenses/>. */
21
22 /* See the GDB User Guide for details of the GDB remote protocol. */
23
24 #include "defs.h"
25 #include "gdb_string.h"
26 #include <ctype.h>
27 #include <fcntl.h>
28 #include "inferior.h"
29 #include "bfd.h"
30 #include "symfile.h"
31 #include "exceptions.h"
32 #include "target.h"
33 /*#include "terminal.h" */
34 #include "gdbcmd.h"
35 #include "objfiles.h"
36 #include "gdb-stabs.h"
37 #include "gdbthread.h"
38 #include "remote.h"
39 #include "regcache.h"
40 #include "value.h"
41 #include "gdb_assert.h"
42 #include "observer.h"
43 #include "solib.h"
44 #include "cli/cli-decode.h"
45 #include "cli/cli-setshow.h"
46 #include "target-descriptions.h"
47
48 #include <ctype.h>
49 #include <sys/time.h>
50
51 #include "event-loop.h"
52 #include "event-top.h"
53 #include "inf-loop.h"
54
55 #include <signal.h>
56 #include "serial.h"
57
58 #include "gdbcore.h" /* for exec_bfd */
59
60 #include "remote-fileio.h"
61 #include "gdb/fileio.h"
62
63 #include "memory-map.h"
64
65 /* The size to align memory write packets, when practical. The protocol
66 does not guarantee any alignment, and gdb will generate short
67 writes and unaligned writes, but even as a best-effort attempt this
68 can improve bulk transfers. For instance, if a write is misaligned
69 relative to the target's data bus, the stub may need to make an extra
70 round trip fetching data from the target. This doesn't make a
71 huge difference, but it's easy to do, so we try to be helpful.
72
73 The alignment chosen is arbitrary; usually data bus width is
74 important here, not the possibly larger cache line size. */
75 enum { REMOTE_ALIGN_WRITES = 16 };
76
77 /* Prototypes for local functions. */
78 static void cleanup_sigint_signal_handler (void *dummy);
79 static void initialize_sigint_signal_handler (void);
80 static int getpkt_sane (char **buf, long *sizeof_buf, int forever);
81
82 static void handle_remote_sigint (int);
83 static void handle_remote_sigint_twice (int);
84 static void async_remote_interrupt (gdb_client_data);
85 void async_remote_interrupt_twice (gdb_client_data);
86
87 static void remote_files_info (struct target_ops *ignore);
88
89 static void remote_prepare_to_store (struct regcache *regcache);
90
91 static void remote_fetch_registers (struct regcache *regcache, int regno);
92
93 static void remote_resume (ptid_t ptid, int step,
94 enum target_signal siggnal);
95 static void remote_async_resume (ptid_t ptid, int step,
96 enum target_signal siggnal);
97 static void remote_open (char *name, int from_tty);
98 static void remote_async_open (char *name, int from_tty);
99
100 static void extended_remote_open (char *name, int from_tty);
101 static void extended_remote_async_open (char *name, int from_tty);
102
103 static void remote_open_1 (char *, int, struct target_ops *, int extended_p,
104 int async_p);
105
106 static void remote_close (int quitting);
107
108 static void remote_store_registers (struct regcache *regcache, int regno);
109
110 static void remote_mourn (void);
111 static void remote_async_mourn (void);
112
113 static void extended_remote_restart (void);
114
115 static void extended_remote_mourn (void);
116
117 static void remote_mourn_1 (struct target_ops *);
118
119 static void remote_send (char **buf, long *sizeof_buf_p);
120
121 static int readchar (int timeout);
122
123 static ptid_t remote_wait (ptid_t ptid,
124 struct target_waitstatus *status);
125 static ptid_t remote_async_wait (ptid_t ptid,
126 struct target_waitstatus *status);
127
128 static void remote_kill (void);
129 static void remote_async_kill (void);
130
131 static int tohex (int nib);
132
133 static void remote_detach (char *args, int from_tty);
134
135 static void remote_interrupt (int signo);
136
137 static void remote_interrupt_twice (int signo);
138
139 static void interrupt_query (void);
140
141 static void set_thread (int, int);
142
143 static int remote_thread_alive (ptid_t);
144
145 static void get_offsets (void);
146
147 static void skip_frame (void);
148
149 static long read_frame (char **buf_p, long *sizeof_buf);
150
151 static int hexnumlen (ULONGEST num);
152
153 static void init_remote_ops (void);
154
155 static void init_extended_remote_ops (void);
156
157 static void remote_stop (void);
158
159 static int ishex (int ch, int *val);
160
161 static int stubhex (int ch);
162
163 static int hexnumstr (char *, ULONGEST);
164
165 static int hexnumnstr (char *, ULONGEST, int);
166
167 static CORE_ADDR remote_address_masked (CORE_ADDR);
168
169 static void print_packet (char *);
170
171 static unsigned long crc32 (unsigned char *, int, unsigned int);
172
173 static void compare_sections_command (char *, int);
174
175 static void packet_command (char *, int);
176
177 static int stub_unpack_int (char *buff, int fieldlength);
178
179 static ptid_t remote_current_thread (ptid_t oldptid);
180
181 static void remote_find_new_threads (void);
182
183 static void record_currthread (int currthread);
184
185 static int fromhex (int a);
186
187 static int hex2bin (const char *hex, gdb_byte *bin, int count);
188
189 static int bin2hex (const gdb_byte *bin, char *hex, int count);
190
191 static int putpkt_binary (char *buf, int cnt);
192
193 static void check_binary_download (CORE_ADDR addr);
194
195 struct packet_config;
196
197 static void show_packet_config_cmd (struct packet_config *config);
198
199 static void update_packet_config (struct packet_config *config);
200
201 static void set_remote_protocol_packet_cmd (char *args, int from_tty,
202 struct cmd_list_element *c);
203
204 static void show_remote_protocol_packet_cmd (struct ui_file *file,
205 int from_tty,
206 struct cmd_list_element *c,
207 const char *value);
208
209 void _initialize_remote (void);
210
211 /* For "remote". */
212
213 static struct cmd_list_element *remote_cmdlist;
214
215 /* For "set remote" and "show remote". */
216
217 static struct cmd_list_element *remote_set_cmdlist;
218 static struct cmd_list_element *remote_show_cmdlist;
219
220 /* Description of the remote protocol state for the currently
221 connected target. This is per-target state, and independent of the
222 selected architecture. */
223
224 struct remote_state
225 {
226 /* A buffer to use for incoming packets, and its current size. The
227 buffer is grown dynamically for larger incoming packets.
228 Outgoing packets may also be constructed in this buffer.
229 BUF_SIZE is always at least REMOTE_PACKET_SIZE;
230 REMOTE_PACKET_SIZE should be used to limit the length of outgoing
231 packets. */
232 char *buf;
233 long buf_size;
234
235 /* If we negotiated packet size explicitly (and thus can bypass
236 heuristics for the largest packet size that will not overflow
237 a buffer in the stub), this will be set to that packet size.
238 Otherwise zero, meaning to use the guessed size. */
239 long explicit_packet_size;
240
241 /* remote_wait is normally called when the target is running and
242 waits for a stop reply packet. But sometimes we need to call it
243 when the target is already stopped. We can send a "?" packet
244 and have remote_wait read the response. Or, if we already have
245 the response, we can stash it in BUF and tell remote_wait to
246 skip calling getpkt. This flag is set when BUF contains a
247 stop reply packet and the target is not waiting. */
248 int cached_wait_status;
249 };
250
251 /* This data could be associated with a target, but we do not always
252 have access to the current target when we need it, so for now it is
253 static. This will be fine for as long as only one target is in use
254 at a time. */
255 static struct remote_state remote_state;
256
257 static struct remote_state *
258 get_remote_state_raw (void)
259 {
260 return &remote_state;
261 }
262
263 /* Description of the remote protocol for a given architecture. */
264
265 struct packet_reg
266 {
267 long offset; /* Offset into G packet. */
268 long regnum; /* GDB's internal register number. */
269 LONGEST pnum; /* Remote protocol register number. */
270 int in_g_packet; /* Always part of G packet. */
271 /* long size in bytes; == register_size (current_gdbarch, regnum);
272 at present. */
273 /* char *name; == gdbarch_register_name (current_gdbarch, regnum);
274 at present. */
275 };
276
277 struct remote_arch_state
278 {
279 /* Description of the remote protocol registers. */
280 long sizeof_g_packet;
281
282 /* Description of the remote protocol registers indexed by REGNUM
283 (making an array gdbarch_num_regs in size). */
284 struct packet_reg *regs;
285
286 /* This is the size (in chars) of the first response to the ``g''
287 packet. It is used as a heuristic when determining the maximum
288 size of memory-read and memory-write packets. A target will
289 typically only reserve a buffer large enough to hold the ``g''
290 packet. The size does not include packet overhead (headers and
291 trailers). */
292 long actual_register_packet_size;
293
294 /* This is the maximum size (in chars) of a non read/write packet.
295 It is also used as a cap on the size of read/write packets. */
296 long remote_packet_size;
297 };
298
299
300 /* Handle for retreving the remote protocol data from gdbarch. */
301 static struct gdbarch_data *remote_gdbarch_data_handle;
302
303 static struct remote_arch_state *
304 get_remote_arch_state (void)
305 {
306 return gdbarch_data (current_gdbarch, remote_gdbarch_data_handle);
307 }
308
309 /* Fetch the global remote target state. */
310
311 static struct remote_state *
312 get_remote_state (void)
313 {
314 /* Make sure that the remote architecture state has been
315 initialized, because doing so might reallocate rs->buf. Any
316 function which calls getpkt also needs to be mindful of changes
317 to rs->buf, but this call limits the number of places which run
318 into trouble. */
319 get_remote_arch_state ();
320
321 return get_remote_state_raw ();
322 }
323
324 static int
325 compare_pnums (const void *lhs_, const void *rhs_)
326 {
327 const struct packet_reg * const *lhs = lhs_;
328 const struct packet_reg * const *rhs = rhs_;
329
330 if ((*lhs)->pnum < (*rhs)->pnum)
331 return -1;
332 else if ((*lhs)->pnum == (*rhs)->pnum)
333 return 0;
334 else
335 return 1;
336 }
337
338 static void *
339 init_remote_state (struct gdbarch *gdbarch)
340 {
341 int regnum, num_remote_regs, offset;
342 struct remote_state *rs = get_remote_state_raw ();
343 struct remote_arch_state *rsa;
344 struct packet_reg **remote_regs;
345
346 rsa = GDBARCH_OBSTACK_ZALLOC (gdbarch, struct remote_arch_state);
347
348 /* Use the architecture to build a regnum<->pnum table, which will be
349 1:1 unless a feature set specifies otherwise. */
350 rsa->regs = GDBARCH_OBSTACK_CALLOC (gdbarch,
351 gdbarch_num_regs (gdbarch),
352 struct packet_reg);
353 for (regnum = 0; regnum < gdbarch_num_regs (gdbarch); regnum++)
354 {
355 struct packet_reg *r = &rsa->regs[regnum];
356
357 if (register_size (gdbarch, regnum) == 0)
358 /* Do not try to fetch zero-sized (placeholder) registers. */
359 r->pnum = -1;
360 else
361 r->pnum = gdbarch_remote_register_number (gdbarch, regnum);
362
363 r->regnum = regnum;
364 }
365
366 /* Define the g/G packet format as the contents of each register
367 with a remote protocol number, in order of ascending protocol
368 number. */
369
370 remote_regs = alloca (gdbarch_num_regs (gdbarch)
371 * sizeof (struct packet_reg *));
372 for (num_remote_regs = 0, regnum = 0;
373 regnum < gdbarch_num_regs (gdbarch);
374 regnum++)
375 if (rsa->regs[regnum].pnum != -1)
376 remote_regs[num_remote_regs++] = &rsa->regs[regnum];
377
378 qsort (remote_regs, num_remote_regs, sizeof (struct packet_reg *),
379 compare_pnums);
380
381 for (regnum = 0, offset = 0; regnum < num_remote_regs; regnum++)
382 {
383 remote_regs[regnum]->in_g_packet = 1;
384 remote_regs[regnum]->offset = offset;
385 offset += register_size (gdbarch, remote_regs[regnum]->regnum);
386 }
387
388 /* Record the maximum possible size of the g packet - it may turn out
389 to be smaller. */
390 rsa->sizeof_g_packet = offset;
391
392 /* Default maximum number of characters in a packet body. Many
393 remote stubs have a hardwired buffer size of 400 bytes
394 (c.f. BUFMAX in m68k-stub.c and i386-stub.c). BUFMAX-1 is used
395 as the maximum packet-size to ensure that the packet and an extra
396 NUL character can always fit in the buffer. This stops GDB
397 trashing stubs that try to squeeze an extra NUL into what is
398 already a full buffer (As of 1999-12-04 that was most stubs). */
399 rsa->remote_packet_size = 400 - 1;
400
401 /* This one is filled in when a ``g'' packet is received. */
402 rsa->actual_register_packet_size = 0;
403
404 /* Should rsa->sizeof_g_packet needs more space than the
405 default, adjust the size accordingly. Remember that each byte is
406 encoded as two characters. 32 is the overhead for the packet
407 header / footer. NOTE: cagney/1999-10-26: I suspect that 8
408 (``$NN:G...#NN'') is a better guess, the below has been padded a
409 little. */
410 if (rsa->sizeof_g_packet > ((rsa->remote_packet_size - 32) / 2))
411 rsa->remote_packet_size = (rsa->sizeof_g_packet * 2 + 32);
412
413 /* Make sure that the packet buffer is plenty big enough for
414 this architecture. */
415 if (rs->buf_size < rsa->remote_packet_size)
416 {
417 rs->buf_size = 2 * rsa->remote_packet_size;
418 rs->buf = xrealloc (rs->buf, rs->buf_size);
419 }
420
421 return rsa;
422 }
423
424 /* Return the current allowed size of a remote packet. This is
425 inferred from the current architecture, and should be used to
426 limit the length of outgoing packets. */
427 static long
428 get_remote_packet_size (void)
429 {
430 struct remote_state *rs = get_remote_state ();
431 struct remote_arch_state *rsa = get_remote_arch_state ();
432
433 if (rs->explicit_packet_size)
434 return rs->explicit_packet_size;
435
436 return rsa->remote_packet_size;
437 }
438
439 static struct packet_reg *
440 packet_reg_from_regnum (struct remote_arch_state *rsa, long regnum)
441 {
442 if (regnum < 0 && regnum >= gdbarch_num_regs (current_gdbarch))
443 return NULL;
444 else
445 {
446 struct packet_reg *r = &rsa->regs[regnum];
447 gdb_assert (r->regnum == regnum);
448 return r;
449 }
450 }
451
452 static struct packet_reg *
453 packet_reg_from_pnum (struct remote_arch_state *rsa, LONGEST pnum)
454 {
455 int i;
456 for (i = 0; i < gdbarch_num_regs (current_gdbarch); i++)
457 {
458 struct packet_reg *r = &rsa->regs[i];
459 if (r->pnum == pnum)
460 return r;
461 }
462 return NULL;
463 }
464
465 /* FIXME: graces/2002-08-08: These variables should eventually be
466 bound to an instance of the target object (as in gdbarch-tdep()),
467 when such a thing exists. */
468
469 /* This is set to the data address of the access causing the target
470 to stop for a watchpoint. */
471 static CORE_ADDR remote_watch_data_address;
472
473 /* This is non-zero if target stopped for a watchpoint. */
474 static int remote_stopped_by_watchpoint_p;
475
476 static struct target_ops remote_ops;
477
478 static struct target_ops extended_remote_ops;
479
480 /* Temporary target ops. Just like the remote_ops and
481 extended_remote_ops, but with asynchronous support. */
482 static struct target_ops remote_async_ops;
483
484 static struct target_ops extended_async_remote_ops;
485
486 /* FIXME: cagney/1999-09-23: Even though getpkt was called with
487 ``forever'' still use the normal timeout mechanism. This is
488 currently used by the ASYNC code to guarentee that target reads
489 during the initial connect always time-out. Once getpkt has been
490 modified to return a timeout indication and, in turn
491 remote_wait()/wait_for_inferior() have gained a timeout parameter
492 this can go away. */
493 static int wait_forever_enabled_p = 1;
494
495
496 /* This variable chooses whether to send a ^C or a break when the user
497 requests program interruption. Although ^C is usually what remote
498 systems expect, and that is the default here, sometimes a break is
499 preferable instead. */
500
501 static int remote_break;
502
503 /* Descriptor for I/O to remote machine. Initialize it to NULL so that
504 remote_open knows that we don't have a file open when the program
505 starts. */
506 static struct serial *remote_desc = NULL;
507
508 /* This variable sets the number of bits in an address that are to be
509 sent in a memory ("M" or "m") packet. Normally, after stripping
510 leading zeros, the entire address would be sent. This variable
511 restricts the address to REMOTE_ADDRESS_SIZE bits. HISTORY: The
512 initial implementation of remote.c restricted the address sent in
513 memory packets to ``host::sizeof long'' bytes - (typically 32
514 bits). Consequently, for 64 bit targets, the upper 32 bits of an
515 address was never sent. Since fixing this bug may cause a break in
516 some remote targets this variable is principly provided to
517 facilitate backward compatibility. */
518
519 static int remote_address_size;
520
521 /* Tempoary to track who currently owns the terminal. See
522 target_async_terminal_* for more details. */
523
524 static int remote_async_terminal_ours_p;
525
526 /* The executable file to use for "run" on the remote side. */
527
528 static char *remote_exec_file = "";
529
530 \f
531 /* User configurable variables for the number of characters in a
532 memory read/write packet. MIN (rsa->remote_packet_size,
533 rsa->sizeof_g_packet) is the default. Some targets need smaller
534 values (fifo overruns, et.al.) and some users need larger values
535 (speed up transfers). The variables ``preferred_*'' (the user
536 request), ``current_*'' (what was actually set) and ``forced_*''
537 (Positive - a soft limit, negative - a hard limit). */
538
539 struct memory_packet_config
540 {
541 char *name;
542 long size;
543 int fixed_p;
544 };
545
546 /* Compute the current size of a read/write packet. Since this makes
547 use of ``actual_register_packet_size'' the computation is dynamic. */
548
549 static long
550 get_memory_packet_size (struct memory_packet_config *config)
551 {
552 struct remote_state *rs = get_remote_state ();
553 struct remote_arch_state *rsa = get_remote_arch_state ();
554
555 /* NOTE: The somewhat arbitrary 16k comes from the knowledge (folk
556 law?) that some hosts don't cope very well with large alloca()
557 calls. Eventually the alloca() code will be replaced by calls to
558 xmalloc() and make_cleanups() allowing this restriction to either
559 be lifted or removed. */
560 #ifndef MAX_REMOTE_PACKET_SIZE
561 #define MAX_REMOTE_PACKET_SIZE 16384
562 #endif
563 /* NOTE: 20 ensures we can write at least one byte. */
564 #ifndef MIN_REMOTE_PACKET_SIZE
565 #define MIN_REMOTE_PACKET_SIZE 20
566 #endif
567 long what_they_get;
568 if (config->fixed_p)
569 {
570 if (config->size <= 0)
571 what_they_get = MAX_REMOTE_PACKET_SIZE;
572 else
573 what_they_get = config->size;
574 }
575 else
576 {
577 what_they_get = get_remote_packet_size ();
578 /* Limit the packet to the size specified by the user. */
579 if (config->size > 0
580 && what_they_get > config->size)
581 what_they_get = config->size;
582
583 /* Limit it to the size of the targets ``g'' response unless we have
584 permission from the stub to use a larger packet size. */
585 if (rs->explicit_packet_size == 0
586 && rsa->actual_register_packet_size > 0
587 && what_they_get > rsa->actual_register_packet_size)
588 what_they_get = rsa->actual_register_packet_size;
589 }
590 if (what_they_get > MAX_REMOTE_PACKET_SIZE)
591 what_they_get = MAX_REMOTE_PACKET_SIZE;
592 if (what_they_get < MIN_REMOTE_PACKET_SIZE)
593 what_they_get = MIN_REMOTE_PACKET_SIZE;
594
595 /* Make sure there is room in the global buffer for this packet
596 (including its trailing NUL byte). */
597 if (rs->buf_size < what_they_get + 1)
598 {
599 rs->buf_size = 2 * what_they_get;
600 rs->buf = xrealloc (rs->buf, 2 * what_they_get);
601 }
602
603 return what_they_get;
604 }
605
606 /* Update the size of a read/write packet. If they user wants
607 something really big then do a sanity check. */
608
609 static void
610 set_memory_packet_size (char *args, struct memory_packet_config *config)
611 {
612 int fixed_p = config->fixed_p;
613 long size = config->size;
614 if (args == NULL)
615 error (_("Argument required (integer, `fixed' or `limited')."));
616 else if (strcmp (args, "hard") == 0
617 || strcmp (args, "fixed") == 0)
618 fixed_p = 1;
619 else if (strcmp (args, "soft") == 0
620 || strcmp (args, "limit") == 0)
621 fixed_p = 0;
622 else
623 {
624 char *end;
625 size = strtoul (args, &end, 0);
626 if (args == end)
627 error (_("Invalid %s (bad syntax)."), config->name);
628 #if 0
629 /* Instead of explicitly capping the size of a packet to
630 MAX_REMOTE_PACKET_SIZE or dissallowing it, the user is
631 instead allowed to set the size to something arbitrarily
632 large. */
633 if (size > MAX_REMOTE_PACKET_SIZE)
634 error (_("Invalid %s (too large)."), config->name);
635 #endif
636 }
637 /* Extra checks? */
638 if (fixed_p && !config->fixed_p)
639 {
640 if (! query (_("The target may not be able to correctly handle a %s\n"
641 "of %ld bytes. Change the packet size? "),
642 config->name, size))
643 error (_("Packet size not changed."));
644 }
645 /* Update the config. */
646 config->fixed_p = fixed_p;
647 config->size = size;
648 }
649
650 static void
651 show_memory_packet_size (struct memory_packet_config *config)
652 {
653 printf_filtered (_("The %s is %ld. "), config->name, config->size);
654 if (config->fixed_p)
655 printf_filtered (_("Packets are fixed at %ld bytes.\n"),
656 get_memory_packet_size (config));
657 else
658 printf_filtered (_("Packets are limited to %ld bytes.\n"),
659 get_memory_packet_size (config));
660 }
661
662 static struct memory_packet_config memory_write_packet_config =
663 {
664 "memory-write-packet-size",
665 };
666
667 static void
668 set_memory_write_packet_size (char *args, int from_tty)
669 {
670 set_memory_packet_size (args, &memory_write_packet_config);
671 }
672
673 static void
674 show_memory_write_packet_size (char *args, int from_tty)
675 {
676 show_memory_packet_size (&memory_write_packet_config);
677 }
678
679 static long
680 get_memory_write_packet_size (void)
681 {
682 return get_memory_packet_size (&memory_write_packet_config);
683 }
684
685 static struct memory_packet_config memory_read_packet_config =
686 {
687 "memory-read-packet-size",
688 };
689
690 static void
691 set_memory_read_packet_size (char *args, int from_tty)
692 {
693 set_memory_packet_size (args, &memory_read_packet_config);
694 }
695
696 static void
697 show_memory_read_packet_size (char *args, int from_tty)
698 {
699 show_memory_packet_size (&memory_read_packet_config);
700 }
701
702 static long
703 get_memory_read_packet_size (void)
704 {
705 long size = get_memory_packet_size (&memory_read_packet_config);
706 /* FIXME: cagney/1999-11-07: Functions like getpkt() need to get an
707 extra buffer size argument before the memory read size can be
708 increased beyond this. */
709 if (size > get_remote_packet_size ())
710 size = get_remote_packet_size ();
711 return size;
712 }
713
714 \f
715 /* Generic configuration support for packets the stub optionally
716 supports. Allows the user to specify the use of the packet as well
717 as allowing GDB to auto-detect support in the remote stub. */
718
719 enum packet_support
720 {
721 PACKET_SUPPORT_UNKNOWN = 0,
722 PACKET_ENABLE,
723 PACKET_DISABLE
724 };
725
726 struct packet_config
727 {
728 const char *name;
729 const char *title;
730 enum auto_boolean detect;
731 enum packet_support support;
732 };
733
734 /* Analyze a packet's return value and update the packet config
735 accordingly. */
736
737 enum packet_result
738 {
739 PACKET_ERROR,
740 PACKET_OK,
741 PACKET_UNKNOWN
742 };
743
744 static void
745 update_packet_config (struct packet_config *config)
746 {
747 switch (config->detect)
748 {
749 case AUTO_BOOLEAN_TRUE:
750 config->support = PACKET_ENABLE;
751 break;
752 case AUTO_BOOLEAN_FALSE:
753 config->support = PACKET_DISABLE;
754 break;
755 case AUTO_BOOLEAN_AUTO:
756 config->support = PACKET_SUPPORT_UNKNOWN;
757 break;
758 }
759 }
760
761 static void
762 show_packet_config_cmd (struct packet_config *config)
763 {
764 char *support = "internal-error";
765 switch (config->support)
766 {
767 case PACKET_ENABLE:
768 support = "enabled";
769 break;
770 case PACKET_DISABLE:
771 support = "disabled";
772 break;
773 case PACKET_SUPPORT_UNKNOWN:
774 support = "unknown";
775 break;
776 }
777 switch (config->detect)
778 {
779 case AUTO_BOOLEAN_AUTO:
780 printf_filtered (_("Support for the `%s' packet is auto-detected, currently %s.\n"),
781 config->name, support);
782 break;
783 case AUTO_BOOLEAN_TRUE:
784 case AUTO_BOOLEAN_FALSE:
785 printf_filtered (_("Support for the `%s' packet is currently %s.\n"),
786 config->name, support);
787 break;
788 }
789 }
790
791 static void
792 add_packet_config_cmd (struct packet_config *config, const char *name,
793 const char *title, int legacy)
794 {
795 char *set_doc;
796 char *show_doc;
797 char *cmd_name;
798
799 config->name = name;
800 config->title = title;
801 config->detect = AUTO_BOOLEAN_AUTO;
802 config->support = PACKET_SUPPORT_UNKNOWN;
803 set_doc = xstrprintf ("Set use of remote protocol `%s' (%s) packet",
804 name, title);
805 show_doc = xstrprintf ("Show current use of remote protocol `%s' (%s) packet",
806 name, title);
807 /* set/show TITLE-packet {auto,on,off} */
808 cmd_name = xstrprintf ("%s-packet", title);
809 add_setshow_auto_boolean_cmd (cmd_name, class_obscure,
810 &config->detect, set_doc, show_doc, NULL, /* help_doc */
811 set_remote_protocol_packet_cmd,
812 show_remote_protocol_packet_cmd,
813 &remote_set_cmdlist, &remote_show_cmdlist);
814 /* set/show remote NAME-packet {auto,on,off} -- legacy. */
815 if (legacy)
816 {
817 char *legacy_name;
818 legacy_name = xstrprintf ("%s-packet", name);
819 add_alias_cmd (legacy_name, cmd_name, class_obscure, 0,
820 &remote_set_cmdlist);
821 add_alias_cmd (legacy_name, cmd_name, class_obscure, 0,
822 &remote_show_cmdlist);
823 }
824 }
825
826 static enum packet_result
827 packet_check_result (const char *buf)
828 {
829 if (buf[0] != '\0')
830 {
831 /* The stub recognized the packet request. Check that the
832 operation succeeded. */
833 if (buf[0] == 'E'
834 && isxdigit (buf[1]) && isxdigit (buf[2])
835 && buf[3] == '\0')
836 /* "Enn" - definitly an error. */
837 return PACKET_ERROR;
838
839 /* Always treat "E." as an error. This will be used for
840 more verbose error messages, such as E.memtypes. */
841 if (buf[0] == 'E' && buf[1] == '.')
842 return PACKET_ERROR;
843
844 /* The packet may or may not be OK. Just assume it is. */
845 return PACKET_OK;
846 }
847 else
848 /* The stub does not support the packet. */
849 return PACKET_UNKNOWN;
850 }
851
852 static enum packet_result
853 packet_ok (const char *buf, struct packet_config *config)
854 {
855 enum packet_result result;
856
857 result = packet_check_result (buf);
858 switch (result)
859 {
860 case PACKET_OK:
861 case PACKET_ERROR:
862 /* The stub recognized the packet request. */
863 switch (config->support)
864 {
865 case PACKET_SUPPORT_UNKNOWN:
866 if (remote_debug)
867 fprintf_unfiltered (gdb_stdlog,
868 "Packet %s (%s) is supported\n",
869 config->name, config->title);
870 config->support = PACKET_ENABLE;
871 break;
872 case PACKET_DISABLE:
873 internal_error (__FILE__, __LINE__,
874 _("packet_ok: attempt to use a disabled packet"));
875 break;
876 case PACKET_ENABLE:
877 break;
878 }
879 break;
880 case PACKET_UNKNOWN:
881 /* The stub does not support the packet. */
882 switch (config->support)
883 {
884 case PACKET_ENABLE:
885 if (config->detect == AUTO_BOOLEAN_AUTO)
886 /* If the stub previously indicated that the packet was
887 supported then there is a protocol error.. */
888 error (_("Protocol error: %s (%s) conflicting enabled responses."),
889 config->name, config->title);
890 else
891 /* The user set it wrong. */
892 error (_("Enabled packet %s (%s) not recognized by stub"),
893 config->name, config->title);
894 break;
895 case PACKET_SUPPORT_UNKNOWN:
896 if (remote_debug)
897 fprintf_unfiltered (gdb_stdlog,
898 "Packet %s (%s) is NOT supported\n",
899 config->name, config->title);
900 config->support = PACKET_DISABLE;
901 break;
902 case PACKET_DISABLE:
903 break;
904 }
905 break;
906 }
907
908 return result;
909 }
910
911 enum {
912 PACKET_vCont = 0,
913 PACKET_X,
914 PACKET_qSymbol,
915 PACKET_P,
916 PACKET_p,
917 PACKET_Z0,
918 PACKET_Z1,
919 PACKET_Z2,
920 PACKET_Z3,
921 PACKET_Z4,
922 PACKET_vFile_open,
923 PACKET_vFile_pread,
924 PACKET_vFile_pwrite,
925 PACKET_vFile_close,
926 PACKET_vFile_unlink,
927 PACKET_qXfer_auxv,
928 PACKET_qXfer_features,
929 PACKET_qXfer_libraries,
930 PACKET_qXfer_memory_map,
931 PACKET_qXfer_spu_read,
932 PACKET_qXfer_spu_write,
933 PACKET_qGetTLSAddr,
934 PACKET_qSupported,
935 PACKET_QPassSignals,
936 PACKET_vAttach,
937 PACKET_vRun,
938 PACKET_MAX
939 };
940
941 static struct packet_config remote_protocol_packets[PACKET_MAX];
942
943 static void
944 set_remote_protocol_packet_cmd (char *args, int from_tty,
945 struct cmd_list_element *c)
946 {
947 struct packet_config *packet;
948
949 for (packet = remote_protocol_packets;
950 packet < &remote_protocol_packets[PACKET_MAX];
951 packet++)
952 {
953 if (&packet->detect == c->var)
954 {
955 update_packet_config (packet);
956 return;
957 }
958 }
959 internal_error (__FILE__, __LINE__, "Could not find config for %s",
960 c->name);
961 }
962
963 static void
964 show_remote_protocol_packet_cmd (struct ui_file *file, int from_tty,
965 struct cmd_list_element *c,
966 const char *value)
967 {
968 struct packet_config *packet;
969
970 for (packet = remote_protocol_packets;
971 packet < &remote_protocol_packets[PACKET_MAX];
972 packet++)
973 {
974 if (&packet->detect == c->var)
975 {
976 show_packet_config_cmd (packet);
977 return;
978 }
979 }
980 internal_error (__FILE__, __LINE__, "Could not find config for %s",
981 c->name);
982 }
983
984 /* Should we try one of the 'Z' requests? */
985
986 enum Z_packet_type
987 {
988 Z_PACKET_SOFTWARE_BP,
989 Z_PACKET_HARDWARE_BP,
990 Z_PACKET_WRITE_WP,
991 Z_PACKET_READ_WP,
992 Z_PACKET_ACCESS_WP,
993 NR_Z_PACKET_TYPES
994 };
995
996 /* For compatibility with older distributions. Provide a ``set remote
997 Z-packet ...'' command that updates all the Z packet types. */
998
999 static enum auto_boolean remote_Z_packet_detect;
1000
1001 static void
1002 set_remote_protocol_Z_packet_cmd (char *args, int from_tty,
1003 struct cmd_list_element *c)
1004 {
1005 int i;
1006 for (i = 0; i < NR_Z_PACKET_TYPES; i++)
1007 {
1008 remote_protocol_packets[PACKET_Z0 + i].detect = remote_Z_packet_detect;
1009 update_packet_config (&remote_protocol_packets[PACKET_Z0 + i]);
1010 }
1011 }
1012
1013 static void
1014 show_remote_protocol_Z_packet_cmd (struct ui_file *file, int from_tty,
1015 struct cmd_list_element *c,
1016 const char *value)
1017 {
1018 int i;
1019 for (i = 0; i < NR_Z_PACKET_TYPES; i++)
1020 {
1021 show_packet_config_cmd (&remote_protocol_packets[PACKET_Z0 + i]);
1022 }
1023 }
1024
1025 /* Should we try the 'ThreadInfo' query packet?
1026
1027 This variable (NOT available to the user: auto-detect only!)
1028 determines whether GDB will use the new, simpler "ThreadInfo"
1029 query or the older, more complex syntax for thread queries.
1030 This is an auto-detect variable (set to true at each connect,
1031 and set to false when the target fails to recognize it). */
1032
1033 static int use_threadinfo_query;
1034 static int use_threadextra_query;
1035
1036 /* Tokens for use by the asynchronous signal handlers for SIGINT. */
1037 static struct async_signal_handler *sigint_remote_twice_token;
1038 static struct async_signal_handler *sigint_remote_token;
1039
1040 /* These are pointers to hook functions that may be set in order to
1041 modify resume/wait behavior for a particular architecture. */
1042
1043 void (*deprecated_target_resume_hook) (void);
1044 void (*deprecated_target_wait_loop_hook) (void);
1045 \f
1046
1047
1048 /* These are the threads which we last sent to the remote system.
1049 -1 for all or -2 for not sent yet. */
1050 static int general_thread;
1051 static int continue_thread;
1052
1053 /* Call this function as a result of
1054 1) A halt indication (T packet) containing a thread id
1055 2) A direct query of currthread
1056 3) Successful execution of set thread
1057 */
1058
1059 static void
1060 record_currthread (int currthread)
1061 {
1062 general_thread = currthread;
1063
1064 /* If this is a new thread, add it to GDB's thread list.
1065 If we leave it up to WFI to do this, bad things will happen. */
1066 if (!in_thread_list (pid_to_ptid (currthread)))
1067 add_thread (pid_to_ptid (currthread));
1068 }
1069
1070 static char *last_pass_packet;
1071
1072 /* If 'QPassSignals' is supported, tell the remote stub what signals
1073 it can simply pass through to the inferior without reporting. */
1074
1075 static void
1076 remote_pass_signals (void)
1077 {
1078 if (remote_protocol_packets[PACKET_QPassSignals].support != PACKET_DISABLE)
1079 {
1080 char *pass_packet, *p;
1081 int numsigs = (int) TARGET_SIGNAL_LAST;
1082 int count = 0, i;
1083
1084 gdb_assert (numsigs < 256);
1085 for (i = 0; i < numsigs; i++)
1086 {
1087 if (signal_stop_state (i) == 0
1088 && signal_print_state (i) == 0
1089 && signal_pass_state (i) == 1)
1090 count++;
1091 }
1092 pass_packet = xmalloc (count * 3 + strlen ("QPassSignals:") + 1);
1093 strcpy (pass_packet, "QPassSignals:");
1094 p = pass_packet + strlen (pass_packet);
1095 for (i = 0; i < numsigs; i++)
1096 {
1097 if (signal_stop_state (i) == 0
1098 && signal_print_state (i) == 0
1099 && signal_pass_state (i) == 1)
1100 {
1101 if (i >= 16)
1102 *p++ = tohex (i >> 4);
1103 *p++ = tohex (i & 15);
1104 if (count)
1105 *p++ = ';';
1106 else
1107 break;
1108 count--;
1109 }
1110 }
1111 *p = 0;
1112 if (!last_pass_packet || strcmp (last_pass_packet, pass_packet))
1113 {
1114 struct remote_state *rs = get_remote_state ();
1115 char *buf = rs->buf;
1116
1117 putpkt (pass_packet);
1118 getpkt (&rs->buf, &rs->buf_size, 0);
1119 packet_ok (buf, &remote_protocol_packets[PACKET_QPassSignals]);
1120 if (last_pass_packet)
1121 xfree (last_pass_packet);
1122 last_pass_packet = pass_packet;
1123 }
1124 else
1125 xfree (pass_packet);
1126 }
1127 }
1128
1129 #define MAGIC_NULL_PID 42000
1130
1131 static void
1132 set_thread (int th, int gen)
1133 {
1134 struct remote_state *rs = get_remote_state ();
1135 char *buf = rs->buf;
1136 int state = gen ? general_thread : continue_thread;
1137
1138 if (state == th)
1139 return;
1140
1141 buf[0] = 'H';
1142 buf[1] = gen ? 'g' : 'c';
1143 if (th == MAGIC_NULL_PID)
1144 {
1145 buf[2] = '0';
1146 buf[3] = '\0';
1147 }
1148 else if (th < 0)
1149 xsnprintf (&buf[2], get_remote_packet_size () - 2, "-%x", -th);
1150 else
1151 xsnprintf (&buf[2], get_remote_packet_size () - 2, "%x", th);
1152 putpkt (buf);
1153 getpkt (&rs->buf, &rs->buf_size, 0);
1154 if (gen)
1155 general_thread = th;
1156 else
1157 continue_thread = th;
1158 }
1159 \f
1160 /* Return nonzero if the thread TH is still alive on the remote system. */
1161
1162 static int
1163 remote_thread_alive (ptid_t ptid)
1164 {
1165 struct remote_state *rs = get_remote_state ();
1166 int tid = PIDGET (ptid);
1167
1168 if (tid < 0)
1169 xsnprintf (rs->buf, get_remote_packet_size (), "T-%08x", -tid);
1170 else
1171 xsnprintf (rs->buf, get_remote_packet_size (), "T%08x", tid);
1172 putpkt (rs->buf);
1173 getpkt (&rs->buf, &rs->buf_size, 0);
1174 return (rs->buf[0] == 'O' && rs->buf[1] == 'K');
1175 }
1176
1177 /* About these extended threadlist and threadinfo packets. They are
1178 variable length packets but, the fields within them are often fixed
1179 length. They are redundent enough to send over UDP as is the
1180 remote protocol in general. There is a matching unit test module
1181 in libstub. */
1182
1183 #define OPAQUETHREADBYTES 8
1184
1185 /* a 64 bit opaque identifier */
1186 typedef unsigned char threadref[OPAQUETHREADBYTES];
1187
1188 /* WARNING: This threadref data structure comes from the remote O.S.,
1189 libstub protocol encoding, and remote.c. it is not particularly
1190 changable. */
1191
1192 /* Right now, the internal structure is int. We want it to be bigger.
1193 Plan to fix this.
1194 */
1195
1196 typedef int gdb_threadref; /* Internal GDB thread reference. */
1197
1198 /* gdb_ext_thread_info is an internal GDB data structure which is
1199 equivalent to the reply of the remote threadinfo packet. */
1200
1201 struct gdb_ext_thread_info
1202 {
1203 threadref threadid; /* External form of thread reference. */
1204 int active; /* Has state interesting to GDB?
1205 regs, stack. */
1206 char display[256]; /* Brief state display, name,
1207 blocked/suspended. */
1208 char shortname[32]; /* To be used to name threads. */
1209 char more_display[256]; /* Long info, statistics, queue depth,
1210 whatever. */
1211 };
1212
1213 /* The volume of remote transfers can be limited by submitting
1214 a mask containing bits specifying the desired information.
1215 Use a union of these values as the 'selection' parameter to
1216 get_thread_info. FIXME: Make these TAG names more thread specific.
1217 */
1218
1219 #define TAG_THREADID 1
1220 #define TAG_EXISTS 2
1221 #define TAG_DISPLAY 4
1222 #define TAG_THREADNAME 8
1223 #define TAG_MOREDISPLAY 16
1224
1225 #define BUF_THREAD_ID_SIZE (OPAQUETHREADBYTES * 2)
1226
1227 char *unpack_varlen_hex (char *buff, ULONGEST *result);
1228
1229 static char *unpack_nibble (char *buf, int *val);
1230
1231 static char *pack_nibble (char *buf, int nibble);
1232
1233 static char *pack_hex_byte (char *pkt, int /* unsigned char */ byte);
1234
1235 static char *unpack_byte (char *buf, int *value);
1236
1237 static char *pack_int (char *buf, int value);
1238
1239 static char *unpack_int (char *buf, int *value);
1240
1241 static char *unpack_string (char *src, char *dest, int length);
1242
1243 static char *pack_threadid (char *pkt, threadref *id);
1244
1245 static char *unpack_threadid (char *inbuf, threadref *id);
1246
1247 void int_to_threadref (threadref *id, int value);
1248
1249 static int threadref_to_int (threadref *ref);
1250
1251 static void copy_threadref (threadref *dest, threadref *src);
1252
1253 static int threadmatch (threadref *dest, threadref *src);
1254
1255 static char *pack_threadinfo_request (char *pkt, int mode,
1256 threadref *id);
1257
1258 static int remote_unpack_thread_info_response (char *pkt,
1259 threadref *expectedref,
1260 struct gdb_ext_thread_info
1261 *info);
1262
1263
1264 static int remote_get_threadinfo (threadref *threadid,
1265 int fieldset, /*TAG mask */
1266 struct gdb_ext_thread_info *info);
1267
1268 static char *pack_threadlist_request (char *pkt, int startflag,
1269 int threadcount,
1270 threadref *nextthread);
1271
1272 static int parse_threadlist_response (char *pkt,
1273 int result_limit,
1274 threadref *original_echo,
1275 threadref *resultlist,
1276 int *doneflag);
1277
1278 static int remote_get_threadlist (int startflag,
1279 threadref *nextthread,
1280 int result_limit,
1281 int *done,
1282 int *result_count,
1283 threadref *threadlist);
1284
1285 typedef int (*rmt_thread_action) (threadref *ref, void *context);
1286
1287 static int remote_threadlist_iterator (rmt_thread_action stepfunction,
1288 void *context, int looplimit);
1289
1290 static int remote_newthread_step (threadref *ref, void *context);
1291
1292 /* Encode 64 bits in 16 chars of hex. */
1293
1294 static const char hexchars[] = "0123456789abcdef";
1295
1296 static int
1297 ishex (int ch, int *val)
1298 {
1299 if ((ch >= 'a') && (ch <= 'f'))
1300 {
1301 *val = ch - 'a' + 10;
1302 return 1;
1303 }
1304 if ((ch >= 'A') && (ch <= 'F'))
1305 {
1306 *val = ch - 'A' + 10;
1307 return 1;
1308 }
1309 if ((ch >= '0') && (ch <= '9'))
1310 {
1311 *val = ch - '0';
1312 return 1;
1313 }
1314 return 0;
1315 }
1316
1317 static int
1318 stubhex (int ch)
1319 {
1320 if (ch >= 'a' && ch <= 'f')
1321 return ch - 'a' + 10;
1322 if (ch >= '0' && ch <= '9')
1323 return ch - '0';
1324 if (ch >= 'A' && ch <= 'F')
1325 return ch - 'A' + 10;
1326 return -1;
1327 }
1328
1329 static int
1330 stub_unpack_int (char *buff, int fieldlength)
1331 {
1332 int nibble;
1333 int retval = 0;
1334
1335 while (fieldlength)
1336 {
1337 nibble = stubhex (*buff++);
1338 retval |= nibble;
1339 fieldlength--;
1340 if (fieldlength)
1341 retval = retval << 4;
1342 }
1343 return retval;
1344 }
1345
1346 char *
1347 unpack_varlen_hex (char *buff, /* packet to parse */
1348 ULONGEST *result)
1349 {
1350 int nibble;
1351 ULONGEST retval = 0;
1352
1353 while (ishex (*buff, &nibble))
1354 {
1355 buff++;
1356 retval = retval << 4;
1357 retval |= nibble & 0x0f;
1358 }
1359 *result = retval;
1360 return buff;
1361 }
1362
1363 static char *
1364 unpack_nibble (char *buf, int *val)
1365 {
1366 *val = fromhex (*buf++);
1367 return buf;
1368 }
1369
1370 static char *
1371 pack_nibble (char *buf, int nibble)
1372 {
1373 *buf++ = hexchars[(nibble & 0x0f)];
1374 return buf;
1375 }
1376
1377 static char *
1378 pack_hex_byte (char *pkt, int byte)
1379 {
1380 *pkt++ = hexchars[(byte >> 4) & 0xf];
1381 *pkt++ = hexchars[(byte & 0xf)];
1382 return pkt;
1383 }
1384
1385 static char *
1386 unpack_byte (char *buf, int *value)
1387 {
1388 *value = stub_unpack_int (buf, 2);
1389 return buf + 2;
1390 }
1391
1392 static char *
1393 pack_int (char *buf, int value)
1394 {
1395 buf = pack_hex_byte (buf, (value >> 24) & 0xff);
1396 buf = pack_hex_byte (buf, (value >> 16) & 0xff);
1397 buf = pack_hex_byte (buf, (value >> 8) & 0x0ff);
1398 buf = pack_hex_byte (buf, (value & 0xff));
1399 return buf;
1400 }
1401
1402 static char *
1403 unpack_int (char *buf, int *value)
1404 {
1405 *value = stub_unpack_int (buf, 8);
1406 return buf + 8;
1407 }
1408
1409 #if 0 /* Currently unused, uncomment when needed. */
1410 static char *pack_string (char *pkt, char *string);
1411
1412 static char *
1413 pack_string (char *pkt, char *string)
1414 {
1415 char ch;
1416 int len;
1417
1418 len = strlen (string);
1419 if (len > 200)
1420 len = 200; /* Bigger than most GDB packets, junk??? */
1421 pkt = pack_hex_byte (pkt, len);
1422 while (len-- > 0)
1423 {
1424 ch = *string++;
1425 if ((ch == '\0') || (ch == '#'))
1426 ch = '*'; /* Protect encapsulation. */
1427 *pkt++ = ch;
1428 }
1429 return pkt;
1430 }
1431 #endif /* 0 (unused) */
1432
1433 static char *
1434 unpack_string (char *src, char *dest, int length)
1435 {
1436 while (length--)
1437 *dest++ = *src++;
1438 *dest = '\0';
1439 return src;
1440 }
1441
1442 static char *
1443 pack_threadid (char *pkt, threadref *id)
1444 {
1445 char *limit;
1446 unsigned char *altid;
1447
1448 altid = (unsigned char *) id;
1449 limit = pkt + BUF_THREAD_ID_SIZE;
1450 while (pkt < limit)
1451 pkt = pack_hex_byte (pkt, *altid++);
1452 return pkt;
1453 }
1454
1455
1456 static char *
1457 unpack_threadid (char *inbuf, threadref *id)
1458 {
1459 char *altref;
1460 char *limit = inbuf + BUF_THREAD_ID_SIZE;
1461 int x, y;
1462
1463 altref = (char *) id;
1464
1465 while (inbuf < limit)
1466 {
1467 x = stubhex (*inbuf++);
1468 y = stubhex (*inbuf++);
1469 *altref++ = (x << 4) | y;
1470 }
1471 return inbuf;
1472 }
1473
1474 /* Externally, threadrefs are 64 bits but internally, they are still
1475 ints. This is due to a mismatch of specifications. We would like
1476 to use 64bit thread references internally. This is an adapter
1477 function. */
1478
1479 void
1480 int_to_threadref (threadref *id, int value)
1481 {
1482 unsigned char *scan;
1483
1484 scan = (unsigned char *) id;
1485 {
1486 int i = 4;
1487 while (i--)
1488 *scan++ = 0;
1489 }
1490 *scan++ = (value >> 24) & 0xff;
1491 *scan++ = (value >> 16) & 0xff;
1492 *scan++ = (value >> 8) & 0xff;
1493 *scan++ = (value & 0xff);
1494 }
1495
1496 static int
1497 threadref_to_int (threadref *ref)
1498 {
1499 int i, value = 0;
1500 unsigned char *scan;
1501
1502 scan = *ref;
1503 scan += 4;
1504 i = 4;
1505 while (i-- > 0)
1506 value = (value << 8) | ((*scan++) & 0xff);
1507 return value;
1508 }
1509
1510 static void
1511 copy_threadref (threadref *dest, threadref *src)
1512 {
1513 int i;
1514 unsigned char *csrc, *cdest;
1515
1516 csrc = (unsigned char *) src;
1517 cdest = (unsigned char *) dest;
1518 i = 8;
1519 while (i--)
1520 *cdest++ = *csrc++;
1521 }
1522
1523 static int
1524 threadmatch (threadref *dest, threadref *src)
1525 {
1526 /* Things are broken right now, so just assume we got a match. */
1527 #if 0
1528 unsigned char *srcp, *destp;
1529 int i, result;
1530 srcp = (char *) src;
1531 destp = (char *) dest;
1532
1533 result = 1;
1534 while (i-- > 0)
1535 result &= (*srcp++ == *destp++) ? 1 : 0;
1536 return result;
1537 #endif
1538 return 1;
1539 }
1540
1541 /*
1542 threadid:1, # always request threadid
1543 context_exists:2,
1544 display:4,
1545 unique_name:8,
1546 more_display:16
1547 */
1548
1549 /* Encoding: 'Q':8,'P':8,mask:32,threadid:64 */
1550
1551 static char *
1552 pack_threadinfo_request (char *pkt, int mode, threadref *id)
1553 {
1554 *pkt++ = 'q'; /* Info Query */
1555 *pkt++ = 'P'; /* process or thread info */
1556 pkt = pack_int (pkt, mode); /* mode */
1557 pkt = pack_threadid (pkt, id); /* threadid */
1558 *pkt = '\0'; /* terminate */
1559 return pkt;
1560 }
1561
1562 /* These values tag the fields in a thread info response packet. */
1563 /* Tagging the fields allows us to request specific fields and to
1564 add more fields as time goes by. */
1565
1566 #define TAG_THREADID 1 /* Echo the thread identifier. */
1567 #define TAG_EXISTS 2 /* Is this process defined enough to
1568 fetch registers and its stack? */
1569 #define TAG_DISPLAY 4 /* A short thing maybe to put on a window */
1570 #define TAG_THREADNAME 8 /* string, maps 1-to-1 with a thread is. */
1571 #define TAG_MOREDISPLAY 16 /* Whatever the kernel wants to say about
1572 the process. */
1573
1574 static int
1575 remote_unpack_thread_info_response (char *pkt, threadref *expectedref,
1576 struct gdb_ext_thread_info *info)
1577 {
1578 struct remote_state *rs = get_remote_state ();
1579 int mask, length;
1580 int tag;
1581 threadref ref;
1582 char *limit = pkt + rs->buf_size; /* Plausible parsing limit. */
1583 int retval = 1;
1584
1585 /* info->threadid = 0; FIXME: implement zero_threadref. */
1586 info->active = 0;
1587 info->display[0] = '\0';
1588 info->shortname[0] = '\0';
1589 info->more_display[0] = '\0';
1590
1591 /* Assume the characters indicating the packet type have been
1592 stripped. */
1593 pkt = unpack_int (pkt, &mask); /* arg mask */
1594 pkt = unpack_threadid (pkt, &ref);
1595
1596 if (mask == 0)
1597 warning (_("Incomplete response to threadinfo request."));
1598 if (!threadmatch (&ref, expectedref))
1599 { /* This is an answer to a different request. */
1600 warning (_("ERROR RMT Thread info mismatch."));
1601 return 0;
1602 }
1603 copy_threadref (&info->threadid, &ref);
1604
1605 /* Loop on tagged fields , try to bail if somthing goes wrong. */
1606
1607 /* Packets are terminated with nulls. */
1608 while ((pkt < limit) && mask && *pkt)
1609 {
1610 pkt = unpack_int (pkt, &tag); /* tag */
1611 pkt = unpack_byte (pkt, &length); /* length */
1612 if (!(tag & mask)) /* Tags out of synch with mask. */
1613 {
1614 warning (_("ERROR RMT: threadinfo tag mismatch."));
1615 retval = 0;
1616 break;
1617 }
1618 if (tag == TAG_THREADID)
1619 {
1620 if (length != 16)
1621 {
1622 warning (_("ERROR RMT: length of threadid is not 16."));
1623 retval = 0;
1624 break;
1625 }
1626 pkt = unpack_threadid (pkt, &ref);
1627 mask = mask & ~TAG_THREADID;
1628 continue;
1629 }
1630 if (tag == TAG_EXISTS)
1631 {
1632 info->active = stub_unpack_int (pkt, length);
1633 pkt += length;
1634 mask = mask & ~(TAG_EXISTS);
1635 if (length > 8)
1636 {
1637 warning (_("ERROR RMT: 'exists' length too long."));
1638 retval = 0;
1639 break;
1640 }
1641 continue;
1642 }
1643 if (tag == TAG_THREADNAME)
1644 {
1645 pkt = unpack_string (pkt, &info->shortname[0], length);
1646 mask = mask & ~TAG_THREADNAME;
1647 continue;
1648 }
1649 if (tag == TAG_DISPLAY)
1650 {
1651 pkt = unpack_string (pkt, &info->display[0], length);
1652 mask = mask & ~TAG_DISPLAY;
1653 continue;
1654 }
1655 if (tag == TAG_MOREDISPLAY)
1656 {
1657 pkt = unpack_string (pkt, &info->more_display[0], length);
1658 mask = mask & ~TAG_MOREDISPLAY;
1659 continue;
1660 }
1661 warning (_("ERROR RMT: unknown thread info tag."));
1662 break; /* Not a tag we know about. */
1663 }
1664 return retval;
1665 }
1666
1667 static int
1668 remote_get_threadinfo (threadref *threadid, int fieldset, /* TAG mask */
1669 struct gdb_ext_thread_info *info)
1670 {
1671 struct remote_state *rs = get_remote_state ();
1672 int result;
1673
1674 pack_threadinfo_request (rs->buf, fieldset, threadid);
1675 putpkt (rs->buf);
1676 getpkt (&rs->buf, &rs->buf_size, 0);
1677 result = remote_unpack_thread_info_response (rs->buf + 2,
1678 threadid, info);
1679 return result;
1680 }
1681
1682 /* Format: i'Q':8,i"L":8,initflag:8,batchsize:16,lastthreadid:32 */
1683
1684 static char *
1685 pack_threadlist_request (char *pkt, int startflag, int threadcount,
1686 threadref *nextthread)
1687 {
1688 *pkt++ = 'q'; /* info query packet */
1689 *pkt++ = 'L'; /* Process LIST or threadLIST request */
1690 pkt = pack_nibble (pkt, startflag); /* initflag 1 bytes */
1691 pkt = pack_hex_byte (pkt, threadcount); /* threadcount 2 bytes */
1692 pkt = pack_threadid (pkt, nextthread); /* 64 bit thread identifier */
1693 *pkt = '\0';
1694 return pkt;
1695 }
1696
1697 /* Encoding: 'q':8,'M':8,count:16,done:8,argthreadid:64,(threadid:64)* */
1698
1699 static int
1700 parse_threadlist_response (char *pkt, int result_limit,
1701 threadref *original_echo, threadref *resultlist,
1702 int *doneflag)
1703 {
1704 struct remote_state *rs = get_remote_state ();
1705 char *limit;
1706 int count, resultcount, done;
1707
1708 resultcount = 0;
1709 /* Assume the 'q' and 'M chars have been stripped. */
1710 limit = pkt + (rs->buf_size - BUF_THREAD_ID_SIZE);
1711 /* done parse past here */
1712 pkt = unpack_byte (pkt, &count); /* count field */
1713 pkt = unpack_nibble (pkt, &done);
1714 /* The first threadid is the argument threadid. */
1715 pkt = unpack_threadid (pkt, original_echo); /* should match query packet */
1716 while ((count-- > 0) && (pkt < limit))
1717 {
1718 pkt = unpack_threadid (pkt, resultlist++);
1719 if (resultcount++ >= result_limit)
1720 break;
1721 }
1722 if (doneflag)
1723 *doneflag = done;
1724 return resultcount;
1725 }
1726
1727 static int
1728 remote_get_threadlist (int startflag, threadref *nextthread, int result_limit,
1729 int *done, int *result_count, threadref *threadlist)
1730 {
1731 struct remote_state *rs = get_remote_state ();
1732 static threadref echo_nextthread;
1733 int result = 1;
1734
1735 /* Trancate result limit to be smaller than the packet size. */
1736 if ((((result_limit + 1) * BUF_THREAD_ID_SIZE) + 10) >= get_remote_packet_size ())
1737 result_limit = (get_remote_packet_size () / BUF_THREAD_ID_SIZE) - 2;
1738
1739 pack_threadlist_request (rs->buf, startflag, result_limit, nextthread);
1740 putpkt (rs->buf);
1741 getpkt (&rs->buf, &rs->buf_size, 0);
1742
1743 if (*rs->buf == '\0')
1744 *result_count = 0;
1745 else
1746 *result_count =
1747 parse_threadlist_response (rs->buf + 2, result_limit, &echo_nextthread,
1748 threadlist, done);
1749
1750 if (!threadmatch (&echo_nextthread, nextthread))
1751 {
1752 /* FIXME: This is a good reason to drop the packet. */
1753 /* Possably, there is a duplicate response. */
1754 /* Possabilities :
1755 retransmit immediatly - race conditions
1756 retransmit after timeout - yes
1757 exit
1758 wait for packet, then exit
1759 */
1760 warning (_("HMM: threadlist did not echo arg thread, dropping it."));
1761 return 0; /* I choose simply exiting. */
1762 }
1763 if (*result_count <= 0)
1764 {
1765 if (*done != 1)
1766 {
1767 warning (_("RMT ERROR : failed to get remote thread list."));
1768 result = 0;
1769 }
1770 return result; /* break; */
1771 }
1772 if (*result_count > result_limit)
1773 {
1774 *result_count = 0;
1775 warning (_("RMT ERROR: threadlist response longer than requested."));
1776 return 0;
1777 }
1778 return result;
1779 }
1780
1781 /* This is the interface between remote and threads, remotes upper
1782 interface. */
1783
1784 /* remote_find_new_threads retrieves the thread list and for each
1785 thread in the list, looks up the thread in GDB's internal list,
1786 ading the thread if it does not already exist. This involves
1787 getting partial thread lists from the remote target so, polling the
1788 quit_flag is required. */
1789
1790
1791 /* About this many threadisds fit in a packet. */
1792
1793 #define MAXTHREADLISTRESULTS 32
1794
1795 static int
1796 remote_threadlist_iterator (rmt_thread_action stepfunction, void *context,
1797 int looplimit)
1798 {
1799 int done, i, result_count;
1800 int startflag = 1;
1801 int result = 1;
1802 int loopcount = 0;
1803 static threadref nextthread;
1804 static threadref resultthreadlist[MAXTHREADLISTRESULTS];
1805
1806 done = 0;
1807 while (!done)
1808 {
1809 if (loopcount++ > looplimit)
1810 {
1811 result = 0;
1812 warning (_("Remote fetch threadlist -infinite loop-."));
1813 break;
1814 }
1815 if (!remote_get_threadlist (startflag, &nextthread, MAXTHREADLISTRESULTS,
1816 &done, &result_count, resultthreadlist))
1817 {
1818 result = 0;
1819 break;
1820 }
1821 /* Clear for later iterations. */
1822 startflag = 0;
1823 /* Setup to resume next batch of thread references, set nextthread. */
1824 if (result_count >= 1)
1825 copy_threadref (&nextthread, &resultthreadlist[result_count - 1]);
1826 i = 0;
1827 while (result_count--)
1828 if (!(result = (*stepfunction) (&resultthreadlist[i++], context)))
1829 break;
1830 }
1831 return result;
1832 }
1833
1834 static int
1835 remote_newthread_step (threadref *ref, void *context)
1836 {
1837 ptid_t ptid;
1838
1839 ptid = pid_to_ptid (threadref_to_int (ref));
1840
1841 if (!in_thread_list (ptid))
1842 add_thread (ptid);
1843 return 1; /* continue iterator */
1844 }
1845
1846 #define CRAZY_MAX_THREADS 1000
1847
1848 static ptid_t
1849 remote_current_thread (ptid_t oldpid)
1850 {
1851 struct remote_state *rs = get_remote_state ();
1852
1853 putpkt ("qC");
1854 getpkt (&rs->buf, &rs->buf_size, 0);
1855 if (rs->buf[0] == 'Q' && rs->buf[1] == 'C')
1856 /* Use strtoul here, so we'll correctly parse values whose highest
1857 bit is set. The protocol carries them as a simple series of
1858 hex digits; in the absence of a sign, strtol will see such
1859 values as positive numbers out of range for signed 'long', and
1860 return LONG_MAX to indicate an overflow. */
1861 return pid_to_ptid (strtoul (&rs->buf[2], NULL, 16));
1862 else
1863 return oldpid;
1864 }
1865
1866 /* Find new threads for info threads command.
1867 * Original version, using John Metzler's thread protocol.
1868 */
1869
1870 static void
1871 remote_find_new_threads (void)
1872 {
1873 remote_threadlist_iterator (remote_newthread_step, 0,
1874 CRAZY_MAX_THREADS);
1875 if (PIDGET (inferior_ptid) == MAGIC_NULL_PID) /* ack ack ack */
1876 inferior_ptid = remote_current_thread (inferior_ptid);
1877 }
1878
1879 /*
1880 * Find all threads for info threads command.
1881 * Uses new thread protocol contributed by Cisco.
1882 * Falls back and attempts to use the older method (above)
1883 * if the target doesn't respond to the new method.
1884 */
1885
1886 static void
1887 remote_threads_info (void)
1888 {
1889 struct remote_state *rs = get_remote_state ();
1890 char *bufp;
1891 int tid;
1892
1893 if (remote_desc == 0) /* paranoia */
1894 error (_("Command can only be used when connected to the remote target."));
1895
1896 if (use_threadinfo_query)
1897 {
1898 putpkt ("qfThreadInfo");
1899 getpkt (&rs->buf, &rs->buf_size, 0);
1900 bufp = rs->buf;
1901 if (bufp[0] != '\0') /* q packet recognized */
1902 {
1903 while (*bufp++ == 'm') /* reply contains one or more TID */
1904 {
1905 do
1906 {
1907 /* Use strtoul here, so we'll correctly parse values
1908 whose highest bit is set. The protocol carries
1909 them as a simple series of hex digits; in the
1910 absence of a sign, strtol will see such values as
1911 positive numbers out of range for signed 'long',
1912 and return LONG_MAX to indicate an overflow. */
1913 tid = strtoul (bufp, &bufp, 16);
1914 if (tid != 0 && !in_thread_list (pid_to_ptid (tid)))
1915 add_thread (pid_to_ptid (tid));
1916 }
1917 while (*bufp++ == ','); /* comma-separated list */
1918 putpkt ("qsThreadInfo");
1919 getpkt (&rs->buf, &rs->buf_size, 0);
1920 bufp = rs->buf;
1921 }
1922 return; /* done */
1923 }
1924 }
1925
1926 /* Else fall back to old method based on jmetzler protocol. */
1927 use_threadinfo_query = 0;
1928 remote_find_new_threads ();
1929 return;
1930 }
1931
1932 /*
1933 * Collect a descriptive string about the given thread.
1934 * The target may say anything it wants to about the thread
1935 * (typically info about its blocked / runnable state, name, etc.).
1936 * This string will appear in the info threads display.
1937 *
1938 * Optional: targets are not required to implement this function.
1939 */
1940
1941 static char *
1942 remote_threads_extra_info (struct thread_info *tp)
1943 {
1944 struct remote_state *rs = get_remote_state ();
1945 int result;
1946 int set;
1947 threadref id;
1948 struct gdb_ext_thread_info threadinfo;
1949 static char display_buf[100]; /* arbitrary... */
1950 int n = 0; /* position in display_buf */
1951
1952 if (remote_desc == 0) /* paranoia */
1953 internal_error (__FILE__, __LINE__,
1954 _("remote_threads_extra_info"));
1955
1956 if (use_threadextra_query)
1957 {
1958 xsnprintf (rs->buf, get_remote_packet_size (), "qThreadExtraInfo,%x",
1959 PIDGET (tp->ptid));
1960 putpkt (rs->buf);
1961 getpkt (&rs->buf, &rs->buf_size, 0);
1962 if (rs->buf[0] != 0)
1963 {
1964 n = min (strlen (rs->buf) / 2, sizeof (display_buf));
1965 result = hex2bin (rs->buf, (gdb_byte *) display_buf, n);
1966 display_buf [result] = '\0';
1967 return display_buf;
1968 }
1969 }
1970
1971 /* If the above query fails, fall back to the old method. */
1972 use_threadextra_query = 0;
1973 set = TAG_THREADID | TAG_EXISTS | TAG_THREADNAME
1974 | TAG_MOREDISPLAY | TAG_DISPLAY;
1975 int_to_threadref (&id, PIDGET (tp->ptid));
1976 if (remote_get_threadinfo (&id, set, &threadinfo))
1977 if (threadinfo.active)
1978 {
1979 if (*threadinfo.shortname)
1980 n += xsnprintf (&display_buf[0], sizeof (display_buf) - n,
1981 " Name: %s,", threadinfo.shortname);
1982 if (*threadinfo.display)
1983 n += xsnprintf (&display_buf[n], sizeof (display_buf) - n,
1984 " State: %s,", threadinfo.display);
1985 if (*threadinfo.more_display)
1986 n += xsnprintf (&display_buf[n], sizeof (display_buf) - n,
1987 " Priority: %s", threadinfo.more_display);
1988
1989 if (n > 0)
1990 {
1991 /* For purely cosmetic reasons, clear up trailing commas. */
1992 if (',' == display_buf[n-1])
1993 display_buf[n-1] = ' ';
1994 return display_buf;
1995 }
1996 }
1997 return NULL;
1998 }
1999 \f
2000
2001 /* Restart the remote side; this is an extended protocol operation. */
2002
2003 static void
2004 extended_remote_restart (void)
2005 {
2006 struct remote_state *rs = get_remote_state ();
2007
2008 /* Send the restart command; for reasons I don't understand the
2009 remote side really expects a number after the "R". */
2010 xsnprintf (rs->buf, get_remote_packet_size (), "R%x", 0);
2011 putpkt (rs->buf);
2012
2013 remote_fileio_reset ();
2014 }
2015 \f
2016 /* Clean up connection to a remote debugger. */
2017
2018 static void
2019 remote_close (int quitting)
2020 {
2021 if (remote_desc)
2022 serial_close (remote_desc);
2023 remote_desc = NULL;
2024 }
2025
2026 /* Query the remote side for the text, data and bss offsets. */
2027
2028 static void
2029 get_offsets (void)
2030 {
2031 struct remote_state *rs = get_remote_state ();
2032 char *buf;
2033 char *ptr;
2034 int lose, num_segments = 0, do_sections, do_segments;
2035 CORE_ADDR text_addr, data_addr, bss_addr, segments[2];
2036 struct section_offsets *offs;
2037 struct symfile_segment_data *data;
2038
2039 if (symfile_objfile == NULL)
2040 return;
2041
2042 putpkt ("qOffsets");
2043 getpkt (&rs->buf, &rs->buf_size, 0);
2044 buf = rs->buf;
2045
2046 if (buf[0] == '\000')
2047 return; /* Return silently. Stub doesn't support
2048 this command. */
2049 if (buf[0] == 'E')
2050 {
2051 warning (_("Remote failure reply: %s"), buf);
2052 return;
2053 }
2054
2055 /* Pick up each field in turn. This used to be done with scanf, but
2056 scanf will make trouble if CORE_ADDR size doesn't match
2057 conversion directives correctly. The following code will work
2058 with any size of CORE_ADDR. */
2059 text_addr = data_addr = bss_addr = 0;
2060 ptr = buf;
2061 lose = 0;
2062
2063 if (strncmp (ptr, "Text=", 5) == 0)
2064 {
2065 ptr += 5;
2066 /* Don't use strtol, could lose on big values. */
2067 while (*ptr && *ptr != ';')
2068 text_addr = (text_addr << 4) + fromhex (*ptr++);
2069
2070 if (strncmp (ptr, ";Data=", 6) == 0)
2071 {
2072 ptr += 6;
2073 while (*ptr && *ptr != ';')
2074 data_addr = (data_addr << 4) + fromhex (*ptr++);
2075 }
2076 else
2077 lose = 1;
2078
2079 if (!lose && strncmp (ptr, ";Bss=", 5) == 0)
2080 {
2081 ptr += 5;
2082 while (*ptr && *ptr != ';')
2083 bss_addr = (bss_addr << 4) + fromhex (*ptr++);
2084
2085 if (bss_addr != data_addr)
2086 warning (_("Target reported unsupported offsets: %s"), buf);
2087 }
2088 else
2089 lose = 1;
2090 }
2091 else if (strncmp (ptr, "TextSeg=", 8) == 0)
2092 {
2093 ptr += 8;
2094 /* Don't use strtol, could lose on big values. */
2095 while (*ptr && *ptr != ';')
2096 text_addr = (text_addr << 4) + fromhex (*ptr++);
2097 num_segments = 1;
2098
2099 if (strncmp (ptr, ";DataSeg=", 9) == 0)
2100 {
2101 ptr += 9;
2102 while (*ptr && *ptr != ';')
2103 data_addr = (data_addr << 4) + fromhex (*ptr++);
2104 num_segments++;
2105 }
2106 }
2107 else
2108 lose = 1;
2109
2110 if (lose)
2111 error (_("Malformed response to offset query, %s"), buf);
2112 else if (*ptr != '\0')
2113 warning (_("Target reported unsupported offsets: %s"), buf);
2114
2115 offs = ((struct section_offsets *)
2116 alloca (SIZEOF_N_SECTION_OFFSETS (symfile_objfile->num_sections)));
2117 memcpy (offs, symfile_objfile->section_offsets,
2118 SIZEOF_N_SECTION_OFFSETS (symfile_objfile->num_sections));
2119
2120 data = get_symfile_segment_data (symfile_objfile->obfd);
2121 do_segments = (data != NULL);
2122 do_sections = num_segments == 0;
2123
2124 if (num_segments > 0)
2125 {
2126 segments[0] = text_addr;
2127 segments[1] = data_addr;
2128 }
2129 /* If we have two segments, we can still try to relocate everything
2130 by assuming that the .text and .data offsets apply to the whole
2131 text and data segments. Convert the offsets given in the packet
2132 to base addresses for symfile_map_offsets_to_segments. */
2133 else if (data && data->num_segments == 2)
2134 {
2135 segments[0] = data->segment_bases[0] + text_addr;
2136 segments[1] = data->segment_bases[1] + data_addr;
2137 num_segments = 2;
2138 }
2139 /* There's no way to relocate by segment. */
2140 else
2141 do_segments = 0;
2142
2143 if (do_segments)
2144 {
2145 int ret = symfile_map_offsets_to_segments (symfile_objfile->obfd, data,
2146 offs, num_segments, segments);
2147
2148 if (ret == 0 && !do_sections)
2149 error (_("Can not handle qOffsets TextSeg response with this symbol file"));
2150
2151 if (ret > 0)
2152 do_sections = 0;
2153 }
2154
2155 if (data)
2156 free_symfile_segment_data (data);
2157
2158 if (do_sections)
2159 {
2160 offs->offsets[SECT_OFF_TEXT (symfile_objfile)] = text_addr;
2161
2162 /* This is a temporary kludge to force data and bss to use the same offsets
2163 because that's what nlmconv does now. The real solution requires changes
2164 to the stub and remote.c that I don't have time to do right now. */
2165
2166 offs->offsets[SECT_OFF_DATA (symfile_objfile)] = data_addr;
2167 offs->offsets[SECT_OFF_BSS (symfile_objfile)] = data_addr;
2168 }
2169
2170 objfile_relocate (symfile_objfile, offs);
2171 }
2172
2173 /* Stub for catch_exception. */
2174
2175 struct start_remote_args
2176 {
2177 int from_tty;
2178
2179 /* The current target. */
2180 struct target_ops *target;
2181
2182 /* Non-zero if this is an extended-remote target. */
2183 int extended_p;
2184 };
2185
2186 static void
2187 remote_start_remote (struct ui_out *uiout, void *opaque)
2188 {
2189 struct remote_state *rs = get_remote_state ();
2190 struct start_remote_args *args = opaque;
2191 char *wait_status = NULL;
2192
2193 immediate_quit++; /* Allow user to interrupt it. */
2194
2195 /* Ack any packet which the remote side has already sent. */
2196 serial_write (remote_desc, "+", 1);
2197
2198 /* Check whether the target is running now. */
2199 putpkt ("?");
2200 getpkt (&rs->buf, &rs->buf_size, 0);
2201
2202 if (rs->buf[0] == 'W' || rs->buf[0] == 'X')
2203 {
2204 if (args->extended_p)
2205 {
2206 /* We're connected, but not running. Drop out before we
2207 call start_remote. */
2208 target_mark_exited (args->target);
2209 return;
2210 }
2211 else
2212 error (_("The target is not running (try extended-remote?)"));
2213 }
2214 else
2215 {
2216 if (args->extended_p)
2217 target_mark_running (args->target);
2218
2219 /* Save the reply for later. */
2220 wait_status = alloca (strlen (rs->buf) + 1);
2221 strcpy (wait_status, rs->buf);
2222 }
2223
2224 /* Let the stub know that we want it to return the thread. */
2225 set_thread (-1, 0);
2226
2227 /* Without this, some commands which require an active target
2228 (such as kill) won't work. This variable serves (at least)
2229 double duty as both the pid of the target process (if it has
2230 such), and as a flag indicating that a target is active.
2231 These functions should be split out into seperate variables,
2232 especially since GDB will someday have a notion of debugging
2233 several processes. */
2234 inferior_ptid = pid_to_ptid (MAGIC_NULL_PID);
2235
2236 /* Now, if we have thread information, update inferior_ptid. */
2237 inferior_ptid = remote_current_thread (inferior_ptid);
2238
2239 get_offsets (); /* Get text, data & bss offsets. */
2240
2241 /* Use the previously fetched status. */
2242 gdb_assert (wait_status != NULL);
2243 strcpy (rs->buf, wait_status);
2244 rs->cached_wait_status = 1;
2245
2246 immediate_quit--;
2247 start_remote (args->from_tty); /* Initialize gdb process mechanisms. */
2248 }
2249
2250 /* Open a connection to a remote debugger.
2251 NAME is the filename used for communication. */
2252
2253 static void
2254 remote_open (char *name, int from_tty)
2255 {
2256 remote_open_1 (name, from_tty, &remote_ops, 0, 0);
2257 }
2258
2259 /* Just like remote_open, but with asynchronous support. */
2260 static void
2261 remote_async_open (char *name, int from_tty)
2262 {
2263 remote_open_1 (name, from_tty, &remote_async_ops, 0, 1);
2264 }
2265
2266 /* Open a connection to a remote debugger using the extended
2267 remote gdb protocol. NAME is the filename used for communication. */
2268
2269 static void
2270 extended_remote_open (char *name, int from_tty)
2271 {
2272 remote_open_1 (name, from_tty, &extended_remote_ops, 1 /*extended_p */,
2273 0 /* async_p */);
2274 }
2275
2276 /* Just like extended_remote_open, but with asynchronous support. */
2277 static void
2278 extended_remote_async_open (char *name, int from_tty)
2279 {
2280 remote_open_1 (name, from_tty, &extended_async_remote_ops,
2281 1 /*extended_p */, 1 /* async_p */);
2282 }
2283
2284 /* Generic code for opening a connection to a remote target. */
2285
2286 static void
2287 init_all_packet_configs (void)
2288 {
2289 int i;
2290 for (i = 0; i < PACKET_MAX; i++)
2291 update_packet_config (&remote_protocol_packets[i]);
2292 }
2293
2294 /* Symbol look-up. */
2295
2296 static void
2297 remote_check_symbols (struct objfile *objfile)
2298 {
2299 struct remote_state *rs = get_remote_state ();
2300 char *msg, *reply, *tmp;
2301 struct minimal_symbol *sym;
2302 int end;
2303
2304 if (remote_protocol_packets[PACKET_qSymbol].support == PACKET_DISABLE)
2305 return;
2306
2307 /* Allocate a message buffer. We can't reuse the input buffer in RS,
2308 because we need both at the same time. */
2309 msg = alloca (get_remote_packet_size ());
2310
2311 /* Invite target to request symbol lookups. */
2312
2313 putpkt ("qSymbol::");
2314 getpkt (&rs->buf, &rs->buf_size, 0);
2315 packet_ok (rs->buf, &remote_protocol_packets[PACKET_qSymbol]);
2316 reply = rs->buf;
2317
2318 while (strncmp (reply, "qSymbol:", 8) == 0)
2319 {
2320 tmp = &reply[8];
2321 end = hex2bin (tmp, (gdb_byte *) msg, strlen (tmp) / 2);
2322 msg[end] = '\0';
2323 sym = lookup_minimal_symbol (msg, NULL, NULL);
2324 if (sym == NULL)
2325 xsnprintf (msg, get_remote_packet_size (), "qSymbol::%s", &reply[8]);
2326 else
2327 {
2328 CORE_ADDR sym_addr = SYMBOL_VALUE_ADDRESS (sym);
2329
2330 /* If this is a function address, return the start of code
2331 instead of any data function descriptor. */
2332 sym_addr = gdbarch_convert_from_func_ptr_addr (current_gdbarch,
2333 sym_addr,
2334 &current_target);
2335
2336 xsnprintf (msg, get_remote_packet_size (), "qSymbol:%s:%s",
2337 paddr_nz (sym_addr), &reply[8]);
2338 }
2339
2340 putpkt (msg);
2341 getpkt (&rs->buf, &rs->buf_size, 0);
2342 reply = rs->buf;
2343 }
2344 }
2345
2346 static struct serial *
2347 remote_serial_open (char *name)
2348 {
2349 static int udp_warning = 0;
2350
2351 /* FIXME: Parsing NAME here is a hack. But we want to warn here instead
2352 of in ser-tcp.c, because it is the remote protocol assuming that the
2353 serial connection is reliable and not the serial connection promising
2354 to be. */
2355 if (!udp_warning && strncmp (name, "udp:", 4) == 0)
2356 {
2357 warning (_("\
2358 The remote protocol may be unreliable over UDP.\n\
2359 Some events may be lost, rendering further debugging impossible."));
2360 udp_warning = 1;
2361 }
2362
2363 return serial_open (name);
2364 }
2365
2366 /* This type describes each known response to the qSupported
2367 packet. */
2368 struct protocol_feature
2369 {
2370 /* The name of this protocol feature. */
2371 const char *name;
2372
2373 /* The default for this protocol feature. */
2374 enum packet_support default_support;
2375
2376 /* The function to call when this feature is reported, or after
2377 qSupported processing if the feature is not supported.
2378 The first argument points to this structure. The second
2379 argument indicates whether the packet requested support be
2380 enabled, disabled, or probed (or the default, if this function
2381 is being called at the end of processing and this feature was
2382 not reported). The third argument may be NULL; if not NULL, it
2383 is a NUL-terminated string taken from the packet following
2384 this feature's name and an equals sign. */
2385 void (*func) (const struct protocol_feature *, enum packet_support,
2386 const char *);
2387
2388 /* The corresponding packet for this feature. Only used if
2389 FUNC is remote_supported_packet. */
2390 int packet;
2391 };
2392
2393 static void
2394 remote_supported_packet (const struct protocol_feature *feature,
2395 enum packet_support support,
2396 const char *argument)
2397 {
2398 if (argument)
2399 {
2400 warning (_("Remote qSupported response supplied an unexpected value for"
2401 " \"%s\"."), feature->name);
2402 return;
2403 }
2404
2405 if (remote_protocol_packets[feature->packet].support
2406 == PACKET_SUPPORT_UNKNOWN)
2407 remote_protocol_packets[feature->packet].support = support;
2408 }
2409
2410 static void
2411 remote_packet_size (const struct protocol_feature *feature,
2412 enum packet_support support, const char *value)
2413 {
2414 struct remote_state *rs = get_remote_state ();
2415
2416 int packet_size;
2417 char *value_end;
2418
2419 if (support != PACKET_ENABLE)
2420 return;
2421
2422 if (value == NULL || *value == '\0')
2423 {
2424 warning (_("Remote target reported \"%s\" without a size."),
2425 feature->name);
2426 return;
2427 }
2428
2429 errno = 0;
2430 packet_size = strtol (value, &value_end, 16);
2431 if (errno != 0 || *value_end != '\0' || packet_size < 0)
2432 {
2433 warning (_("Remote target reported \"%s\" with a bad size: \"%s\"."),
2434 feature->name, value);
2435 return;
2436 }
2437
2438 if (packet_size > MAX_REMOTE_PACKET_SIZE)
2439 {
2440 warning (_("limiting remote suggested packet size (%d bytes) to %d"),
2441 packet_size, MAX_REMOTE_PACKET_SIZE);
2442 packet_size = MAX_REMOTE_PACKET_SIZE;
2443 }
2444
2445 /* Record the new maximum packet size. */
2446 rs->explicit_packet_size = packet_size;
2447 }
2448
2449 static struct protocol_feature remote_protocol_features[] = {
2450 { "PacketSize", PACKET_DISABLE, remote_packet_size, -1 },
2451 { "qXfer:auxv:read", PACKET_DISABLE, remote_supported_packet,
2452 PACKET_qXfer_auxv },
2453 { "qXfer:features:read", PACKET_DISABLE, remote_supported_packet,
2454 PACKET_qXfer_features },
2455 { "qXfer:libraries:read", PACKET_DISABLE, remote_supported_packet,
2456 PACKET_qXfer_libraries },
2457 { "qXfer:memory-map:read", PACKET_DISABLE, remote_supported_packet,
2458 PACKET_qXfer_memory_map },
2459 { "qXfer:spu:read", PACKET_DISABLE, remote_supported_packet,
2460 PACKET_qXfer_spu_read },
2461 { "qXfer:spu:write", PACKET_DISABLE, remote_supported_packet,
2462 PACKET_qXfer_spu_write },
2463 { "QPassSignals", PACKET_DISABLE, remote_supported_packet,
2464 PACKET_QPassSignals },
2465 };
2466
2467 static void
2468 remote_query_supported (void)
2469 {
2470 struct remote_state *rs = get_remote_state ();
2471 char *next;
2472 int i;
2473 unsigned char seen [ARRAY_SIZE (remote_protocol_features)];
2474
2475 /* The packet support flags are handled differently for this packet
2476 than for most others. We treat an error, a disabled packet, and
2477 an empty response identically: any features which must be reported
2478 to be used will be automatically disabled. An empty buffer
2479 accomplishes this, since that is also the representation for a list
2480 containing no features. */
2481
2482 rs->buf[0] = 0;
2483 if (remote_protocol_packets[PACKET_qSupported].support != PACKET_DISABLE)
2484 {
2485 putpkt ("qSupported");
2486 getpkt (&rs->buf, &rs->buf_size, 0);
2487
2488 /* If an error occured, warn, but do not return - just reset the
2489 buffer to empty and go on to disable features. */
2490 if (packet_ok (rs->buf, &remote_protocol_packets[PACKET_qSupported])
2491 == PACKET_ERROR)
2492 {
2493 warning (_("Remote failure reply: %s"), rs->buf);
2494 rs->buf[0] = 0;
2495 }
2496 }
2497
2498 memset (seen, 0, sizeof (seen));
2499
2500 next = rs->buf;
2501 while (*next)
2502 {
2503 enum packet_support is_supported;
2504 char *p, *end, *name_end, *value;
2505
2506 /* First separate out this item from the rest of the packet. If
2507 there's another item after this, we overwrite the separator
2508 (terminated strings are much easier to work with). */
2509 p = next;
2510 end = strchr (p, ';');
2511 if (end == NULL)
2512 {
2513 end = p + strlen (p);
2514 next = end;
2515 }
2516 else
2517 {
2518 *end = '\0';
2519 next = end + 1;
2520
2521 if (end == p)
2522 {
2523 warning (_("empty item in \"qSupported\" response"));
2524 continue;
2525 }
2526 }
2527
2528 name_end = strchr (p, '=');
2529 if (name_end)
2530 {
2531 /* This is a name=value entry. */
2532 is_supported = PACKET_ENABLE;
2533 value = name_end + 1;
2534 *name_end = '\0';
2535 }
2536 else
2537 {
2538 value = NULL;
2539 switch (end[-1])
2540 {
2541 case '+':
2542 is_supported = PACKET_ENABLE;
2543 break;
2544
2545 case '-':
2546 is_supported = PACKET_DISABLE;
2547 break;
2548
2549 case '?':
2550 is_supported = PACKET_SUPPORT_UNKNOWN;
2551 break;
2552
2553 default:
2554 warning (_("unrecognized item \"%s\" in \"qSupported\" response"), p);
2555 continue;
2556 }
2557 end[-1] = '\0';
2558 }
2559
2560 for (i = 0; i < ARRAY_SIZE (remote_protocol_features); i++)
2561 if (strcmp (remote_protocol_features[i].name, p) == 0)
2562 {
2563 const struct protocol_feature *feature;
2564
2565 seen[i] = 1;
2566 feature = &remote_protocol_features[i];
2567 feature->func (feature, is_supported, value);
2568 break;
2569 }
2570 }
2571
2572 /* If we increased the packet size, make sure to increase the global
2573 buffer size also. We delay this until after parsing the entire
2574 qSupported packet, because this is the same buffer we were
2575 parsing. */
2576 if (rs->buf_size < rs->explicit_packet_size)
2577 {
2578 rs->buf_size = rs->explicit_packet_size;
2579 rs->buf = xrealloc (rs->buf, rs->buf_size);
2580 }
2581
2582 /* Handle the defaults for unmentioned features. */
2583 for (i = 0; i < ARRAY_SIZE (remote_protocol_features); i++)
2584 if (!seen[i])
2585 {
2586 const struct protocol_feature *feature;
2587
2588 feature = &remote_protocol_features[i];
2589 feature->func (feature, feature->default_support, NULL);
2590 }
2591 }
2592
2593
2594 static void
2595 remote_open_1 (char *name, int from_tty, struct target_ops *target,
2596 int extended_p, int async_p)
2597 {
2598 struct remote_state *rs = get_remote_state ();
2599 if (name == 0)
2600 error (_("To open a remote debug connection, you need to specify what\n"
2601 "serial device is attached to the remote system\n"
2602 "(e.g. /dev/ttyS0, /dev/ttya, COM1, etc.)."));
2603
2604 /* See FIXME above. */
2605 if (!async_p)
2606 wait_forever_enabled_p = 1;
2607
2608 /* If we're connected to a running target, target_preopen will kill it.
2609 But if we're connected to a target system with no running process,
2610 then we will still be connected when it returns. Ask this question
2611 first, before target_preopen has a chance to kill anything. */
2612 if (remote_desc != NULL && !target_has_execution)
2613 {
2614 if (!from_tty
2615 || query (_("Already connected to a remote target. Disconnect? ")))
2616 pop_target ();
2617 else
2618 error (_("Still connected."));
2619 }
2620
2621 target_preopen (from_tty);
2622
2623 unpush_target (target);
2624
2625 /* This time without a query. If we were connected to an
2626 extended-remote target and target_preopen killed the running
2627 process, we may still be connected. If we are starting "target
2628 remote" now, the extended-remote target will not have been
2629 removed by unpush_target. */
2630 if (remote_desc != NULL && !target_has_execution)
2631 pop_target ();
2632
2633 /* Make sure we send the passed signals list the next time we resume. */
2634 xfree (last_pass_packet);
2635 last_pass_packet = NULL;
2636
2637 remote_fileio_reset ();
2638 reopen_exec_file ();
2639 reread_symbols ();
2640
2641 remote_desc = remote_serial_open (name);
2642 if (!remote_desc)
2643 perror_with_name (name);
2644
2645 if (baud_rate != -1)
2646 {
2647 if (serial_setbaudrate (remote_desc, baud_rate))
2648 {
2649 /* The requested speed could not be set. Error out to
2650 top level after closing remote_desc. Take care to
2651 set remote_desc to NULL to avoid closing remote_desc
2652 more than once. */
2653 serial_close (remote_desc);
2654 remote_desc = NULL;
2655 perror_with_name (name);
2656 }
2657 }
2658
2659 serial_raw (remote_desc);
2660
2661 /* If there is something sitting in the buffer we might take it as a
2662 response to a command, which would be bad. */
2663 serial_flush_input (remote_desc);
2664
2665 if (from_tty)
2666 {
2667 puts_filtered ("Remote debugging using ");
2668 puts_filtered (name);
2669 puts_filtered ("\n");
2670 }
2671 push_target (target); /* Switch to using remote target now. */
2672
2673 /* Assume that the target is running, unless we learn otherwise. */
2674 target_mark_running (target);
2675
2676 /* Reset the target state; these things will be queried either by
2677 remote_query_supported or as they are needed. */
2678 init_all_packet_configs ();
2679 rs->explicit_packet_size = 0;
2680
2681 general_thread = -2;
2682 continue_thread = -2;
2683
2684 /* Probe for ability to use "ThreadInfo" query, as required. */
2685 use_threadinfo_query = 1;
2686 use_threadextra_query = 1;
2687
2688 /* The first packet we send to the target is the optional "supported
2689 packets" request. If the target can answer this, it will tell us
2690 which later probes to skip. */
2691 remote_query_supported ();
2692
2693 /* Next, if the target can specify a description, read it. We do
2694 this before anything involving memory or registers. */
2695 target_find_description ();
2696
2697 if (async_p)
2698 {
2699 /* With this target we start out by owning the terminal. */
2700 remote_async_terminal_ours_p = 1;
2701
2702 /* FIXME: cagney/1999-09-23: During the initial connection it is
2703 assumed that the target is already ready and able to respond to
2704 requests. Unfortunately remote_start_remote() eventually calls
2705 wait_for_inferior() with no timeout. wait_forever_enabled_p gets
2706 around this. Eventually a mechanism that allows
2707 wait_for_inferior() to expect/get timeouts will be
2708 implemented. */
2709 wait_forever_enabled_p = 0;
2710 }
2711
2712 /* First delete any symbols previously loaded from shared libraries. */
2713 no_shared_libraries (NULL, 0);
2714
2715 /* Start the remote connection. If error() or QUIT, discard this
2716 target (we'd otherwise be in an inconsistent state) and then
2717 propogate the error on up the exception chain. This ensures that
2718 the caller doesn't stumble along blindly assuming that the
2719 function succeeded. The CLI doesn't have this problem but other
2720 UI's, such as MI do.
2721
2722 FIXME: cagney/2002-05-19: Instead of re-throwing the exception,
2723 this function should return an error indication letting the
2724 caller restore the previous state. Unfortunately the command
2725 ``target remote'' is directly wired to this function making that
2726 impossible. On a positive note, the CLI side of this problem has
2727 been fixed - the function set_cmd_context() makes it possible for
2728 all the ``target ....'' commands to share a common callback
2729 function. See cli-dump.c. */
2730 {
2731 struct gdb_exception ex;
2732 struct start_remote_args args;
2733
2734 args.from_tty = from_tty;
2735 args.target = target;
2736 args.extended_p = extended_p;
2737
2738 ex = catch_exception (uiout, remote_start_remote, &args, RETURN_MASK_ALL);
2739 if (ex.reason < 0)
2740 {
2741 pop_target ();
2742 if (async_p)
2743 wait_forever_enabled_p = 1;
2744 throw_exception (ex);
2745 }
2746 }
2747
2748 if (async_p)
2749 wait_forever_enabled_p = 1;
2750
2751 if (extended_p)
2752 {
2753 /* Tell the remote that we are using the extended protocol. */
2754 putpkt ("!");
2755 getpkt (&rs->buf, &rs->buf_size, 0);
2756 }
2757
2758 /* If we connected to a live target, do some additional setup. */
2759 if (target_has_execution)
2760 {
2761 if (exec_bfd) /* No use without an exec file. */
2762 remote_check_symbols (symfile_objfile);
2763 }
2764 }
2765
2766 /* This takes a program previously attached to and detaches it. After
2767 this is done, GDB can be used to debug some other program. We
2768 better not have left any breakpoints in the target program or it'll
2769 die when it hits one. */
2770
2771 static void
2772 remote_detach_1 (char *args, int from_tty, int extended)
2773 {
2774 struct remote_state *rs = get_remote_state ();
2775
2776 if (args)
2777 error (_("Argument given to \"detach\" when remotely debugging."));
2778
2779 if (!target_has_execution)
2780 error (_("No process to detach from."));
2781
2782 /* Tell the remote target to detach. */
2783 strcpy (rs->buf, "D");
2784 putpkt (rs->buf);
2785 getpkt (&rs->buf, &rs->buf_size, 0);
2786
2787 if (rs->buf[0] == 'E')
2788 error (_("Can't detach process."));
2789
2790 /* Unregister the file descriptor from the event loop. */
2791 if (target_is_async_p ())
2792 serial_async (remote_desc, NULL, 0);
2793
2794 target_mourn_inferior ();
2795 if (from_tty)
2796 {
2797 if (extended)
2798 puts_filtered ("Detached from remote process.\n");
2799 else
2800 puts_filtered ("Ending remote debugging.\n");
2801 }
2802 }
2803
2804 static void
2805 remote_detach (char *args, int from_tty)
2806 {
2807 remote_detach_1 (args, from_tty, 0);
2808 }
2809
2810 static void
2811 extended_remote_detach (char *args, int from_tty)
2812 {
2813 remote_detach_1 (args, from_tty, 1);
2814 }
2815
2816 /* Same as remote_detach, but don't send the "D" packet; just disconnect. */
2817
2818 static void
2819 remote_disconnect (struct target_ops *target, char *args, int from_tty)
2820 {
2821 if (args)
2822 error (_("Argument given to \"disconnect\" when remotely debugging."));
2823
2824 /* Unregister the file descriptor from the event loop. */
2825 if (target_is_async_p ())
2826 serial_async (remote_desc, NULL, 0);
2827
2828 /* Make sure we unpush even the extended remote targets; mourn
2829 won't do it. So call remote_mourn_1 directly instead of
2830 target_mourn_inferior. */
2831 remote_mourn_1 (target);
2832
2833 if (from_tty)
2834 puts_filtered ("Ending remote debugging.\n");
2835 }
2836
2837 /* Attach to the process specified by ARGS. If FROM_TTY is non-zero,
2838 be chatty about it. */
2839
2840 static void
2841 extended_remote_attach_1 (struct target_ops *target, char *args, int from_tty)
2842 {
2843 struct remote_state *rs = get_remote_state ();
2844 pid_t pid;
2845 char *dummy;
2846
2847 if (!args)
2848 error_no_arg (_("process-id to attach"));
2849
2850 dummy = args;
2851 pid = strtol (args, &dummy, 0);
2852 /* Some targets don't set errno on errors, grrr! */
2853 if (pid == 0 && args == dummy)
2854 error (_("Illegal process-id: %s."), args);
2855
2856 if (remote_protocol_packets[PACKET_vAttach].support == PACKET_DISABLE)
2857 error (_("This target does not support attaching to a process"));
2858
2859 sprintf (rs->buf, "vAttach;%x", pid);
2860 putpkt (rs->buf);
2861 getpkt (&rs->buf, &rs->buf_size, 0);
2862
2863 if (packet_ok (rs->buf, &remote_protocol_packets[PACKET_vAttach]) == PACKET_OK)
2864 {
2865 if (from_tty)
2866 printf_unfiltered (_("Attached to %s\n"),
2867 target_pid_to_str (pid_to_ptid (pid)));
2868
2869 /* We have a wait response; reuse it. */
2870 rs->cached_wait_status = 1;
2871 }
2872 else if (remote_protocol_packets[PACKET_vAttach].support == PACKET_DISABLE)
2873 error (_("This target does not support attaching to a process"));
2874 else
2875 error (_("Attaching to %s failed"),
2876 target_pid_to_str (pid_to_ptid (pid)));
2877
2878 target_mark_running (target);
2879 inferior_ptid = pid_to_ptid (pid);
2880 attach_flag = 1;
2881 }
2882
2883 static void
2884 extended_remote_attach (char *args, int from_tty)
2885 {
2886 extended_remote_attach_1 (&extended_remote_ops, args, from_tty);
2887 }
2888
2889 static void
2890 extended_async_remote_attach (char *args, int from_tty)
2891 {
2892 extended_remote_attach_1 (&extended_async_remote_ops, args, from_tty);
2893 }
2894
2895 /* Convert hex digit A to a number. */
2896
2897 static int
2898 fromhex (int a)
2899 {
2900 if (a >= '0' && a <= '9')
2901 return a - '0';
2902 else if (a >= 'a' && a <= 'f')
2903 return a - 'a' + 10;
2904 else if (a >= 'A' && a <= 'F')
2905 return a - 'A' + 10;
2906 else
2907 error (_("Reply contains invalid hex digit %d"), a);
2908 }
2909
2910 static int
2911 hex2bin (const char *hex, gdb_byte *bin, int count)
2912 {
2913 int i;
2914
2915 for (i = 0; i < count; i++)
2916 {
2917 if (hex[0] == 0 || hex[1] == 0)
2918 {
2919 /* Hex string is short, or of uneven length.
2920 Return the count that has been converted so far. */
2921 return i;
2922 }
2923 *bin++ = fromhex (hex[0]) * 16 + fromhex (hex[1]);
2924 hex += 2;
2925 }
2926 return i;
2927 }
2928
2929 /* Convert number NIB to a hex digit. */
2930
2931 static int
2932 tohex (int nib)
2933 {
2934 if (nib < 10)
2935 return '0' + nib;
2936 else
2937 return 'a' + nib - 10;
2938 }
2939
2940 static int
2941 bin2hex (const gdb_byte *bin, char *hex, int count)
2942 {
2943 int i;
2944 /* May use a length, or a nul-terminated string as input. */
2945 if (count == 0)
2946 count = strlen ((char *) bin);
2947
2948 for (i = 0; i < count; i++)
2949 {
2950 *hex++ = tohex ((*bin >> 4) & 0xf);
2951 *hex++ = tohex (*bin++ & 0xf);
2952 }
2953 *hex = 0;
2954 return i;
2955 }
2956 \f
2957 /* Check for the availability of vCont. This function should also check
2958 the response. */
2959
2960 static void
2961 remote_vcont_probe (struct remote_state *rs)
2962 {
2963 char *buf;
2964
2965 strcpy (rs->buf, "vCont?");
2966 putpkt (rs->buf);
2967 getpkt (&rs->buf, &rs->buf_size, 0);
2968 buf = rs->buf;
2969
2970 /* Make sure that the features we assume are supported. */
2971 if (strncmp (buf, "vCont", 5) == 0)
2972 {
2973 char *p = &buf[5];
2974 int support_s, support_S, support_c, support_C;
2975
2976 support_s = 0;
2977 support_S = 0;
2978 support_c = 0;
2979 support_C = 0;
2980 while (p && *p == ';')
2981 {
2982 p++;
2983 if (*p == 's' && (*(p + 1) == ';' || *(p + 1) == 0))
2984 support_s = 1;
2985 else if (*p == 'S' && (*(p + 1) == ';' || *(p + 1) == 0))
2986 support_S = 1;
2987 else if (*p == 'c' && (*(p + 1) == ';' || *(p + 1) == 0))
2988 support_c = 1;
2989 else if (*p == 'C' && (*(p + 1) == ';' || *(p + 1) == 0))
2990 support_C = 1;
2991
2992 p = strchr (p, ';');
2993 }
2994
2995 /* If s, S, c, and C are not all supported, we can't use vCont. Clearing
2996 BUF will make packet_ok disable the packet. */
2997 if (!support_s || !support_S || !support_c || !support_C)
2998 buf[0] = 0;
2999 }
3000
3001 packet_ok (buf, &remote_protocol_packets[PACKET_vCont]);
3002 }
3003
3004 /* Resume the remote inferior by using a "vCont" packet. The thread
3005 to be resumed is PTID; STEP and SIGGNAL indicate whether the
3006 resumed thread should be single-stepped and/or signalled. If PTID's
3007 PID is -1, then all threads are resumed; the thread to be stepped and/or
3008 signalled is given in the global INFERIOR_PTID. This function returns
3009 non-zero iff it resumes the inferior.
3010
3011 This function issues a strict subset of all possible vCont commands at the
3012 moment. */
3013
3014 static int
3015 remote_vcont_resume (ptid_t ptid, int step, enum target_signal siggnal)
3016 {
3017 struct remote_state *rs = get_remote_state ();
3018 int pid = PIDGET (ptid);
3019 char *outbuf;
3020 struct cleanup *old_cleanup;
3021
3022 if (remote_protocol_packets[PACKET_vCont].support == PACKET_SUPPORT_UNKNOWN)
3023 remote_vcont_probe (rs);
3024
3025 if (remote_protocol_packets[PACKET_vCont].support == PACKET_DISABLE)
3026 return 0;
3027
3028 /* If we could generate a wider range of packets, we'd have to worry
3029 about overflowing BUF. Should there be a generic
3030 "multi-part-packet" packet? */
3031
3032 if (PIDGET (inferior_ptid) == MAGIC_NULL_PID)
3033 {
3034 /* MAGIC_NULL_PTID means that we don't have any active threads, so we
3035 don't have any PID numbers the inferior will understand. Make sure
3036 to only send forms that do not specify a PID. */
3037 if (step && siggnal != TARGET_SIGNAL_0)
3038 outbuf = xstrprintf ("vCont;S%02x", siggnal);
3039 else if (step)
3040 outbuf = xstrprintf ("vCont;s");
3041 else if (siggnal != TARGET_SIGNAL_0)
3042 outbuf = xstrprintf ("vCont;C%02x", siggnal);
3043 else
3044 outbuf = xstrprintf ("vCont;c");
3045 }
3046 else if (pid == -1)
3047 {
3048 /* Resume all threads, with preference for INFERIOR_PTID. */
3049 if (step && siggnal != TARGET_SIGNAL_0)
3050 outbuf = xstrprintf ("vCont;S%02x:%x;c", siggnal,
3051 PIDGET (inferior_ptid));
3052 else if (step)
3053 outbuf = xstrprintf ("vCont;s:%x;c", PIDGET (inferior_ptid));
3054 else if (siggnal != TARGET_SIGNAL_0)
3055 outbuf = xstrprintf ("vCont;C%02x:%x;c", siggnal,
3056 PIDGET (inferior_ptid));
3057 else
3058 outbuf = xstrprintf ("vCont;c");
3059 }
3060 else
3061 {
3062 /* Scheduler locking; resume only PTID. */
3063 if (step && siggnal != TARGET_SIGNAL_0)
3064 outbuf = xstrprintf ("vCont;S%02x:%x", siggnal, pid);
3065 else if (step)
3066 outbuf = xstrprintf ("vCont;s:%x", pid);
3067 else if (siggnal != TARGET_SIGNAL_0)
3068 outbuf = xstrprintf ("vCont;C%02x:%x", siggnal, pid);
3069 else
3070 outbuf = xstrprintf ("vCont;c:%x", pid);
3071 }
3072
3073 gdb_assert (outbuf && strlen (outbuf) < get_remote_packet_size ());
3074 old_cleanup = make_cleanup (xfree, outbuf);
3075
3076 putpkt (outbuf);
3077
3078 do_cleanups (old_cleanup);
3079
3080 return 1;
3081 }
3082
3083 /* Tell the remote machine to resume. */
3084
3085 static enum target_signal last_sent_signal = TARGET_SIGNAL_0;
3086
3087 static int last_sent_step;
3088
3089 static void
3090 remote_resume (ptid_t ptid, int step, enum target_signal siggnal)
3091 {
3092 struct remote_state *rs = get_remote_state ();
3093 char *buf;
3094 int pid = PIDGET (ptid);
3095
3096 last_sent_signal = siggnal;
3097 last_sent_step = step;
3098
3099 /* A hook for when we need to do something at the last moment before
3100 resumption. */
3101 if (deprecated_target_resume_hook)
3102 (*deprecated_target_resume_hook) ();
3103
3104 /* Update the inferior on signals to silently pass, if they've changed. */
3105 remote_pass_signals ();
3106
3107 /* The vCont packet doesn't need to specify threads via Hc. */
3108 if (remote_vcont_resume (ptid, step, siggnal))
3109 return;
3110
3111 /* All other supported resume packets do use Hc, so call set_thread. */
3112 if (pid == -1)
3113 set_thread (0, 0); /* Run any thread. */
3114 else
3115 set_thread (pid, 0); /* Run this thread. */
3116
3117 buf = rs->buf;
3118 if (siggnal != TARGET_SIGNAL_0)
3119 {
3120 buf[0] = step ? 'S' : 'C';
3121 buf[1] = tohex (((int) siggnal >> 4) & 0xf);
3122 buf[2] = tohex (((int) siggnal) & 0xf);
3123 buf[3] = '\0';
3124 }
3125 else
3126 strcpy (buf, step ? "s" : "c");
3127
3128 putpkt (buf);
3129 }
3130
3131 /* Same as remote_resume, but with async support. */
3132 static void
3133 remote_async_resume (ptid_t ptid, int step, enum target_signal siggnal)
3134 {
3135 remote_resume (ptid, step, siggnal);
3136
3137 /* We are about to start executing the inferior, let's register it
3138 with the event loop. NOTE: this is the one place where all the
3139 execution commands end up. We could alternatively do this in each
3140 of the execution commands in infcmd.c. */
3141 /* FIXME: ezannoni 1999-09-28: We may need to move this out of here
3142 into infcmd.c in order to allow inferior function calls to work
3143 NOT asynchronously. */
3144 if (target_can_async_p ())
3145 target_async (inferior_event_handler, 0);
3146 /* Tell the world that the target is now executing. */
3147 /* FIXME: cagney/1999-09-23: Is it the targets responsibility to set
3148 this? Instead, should the client of target just assume (for
3149 async targets) that the target is going to start executing? Is
3150 this information already found in the continuation block? */
3151 if (target_is_async_p ())
3152 target_executing = 1;
3153 }
3154 \f
3155
3156 /* Set up the signal handler for SIGINT, while the target is
3157 executing, ovewriting the 'regular' SIGINT signal handler. */
3158 static void
3159 initialize_sigint_signal_handler (void)
3160 {
3161 sigint_remote_token =
3162 create_async_signal_handler (async_remote_interrupt, NULL);
3163 signal (SIGINT, handle_remote_sigint);
3164 }
3165
3166 /* Signal handler for SIGINT, while the target is executing. */
3167 static void
3168 handle_remote_sigint (int sig)
3169 {
3170 signal (sig, handle_remote_sigint_twice);
3171 sigint_remote_twice_token =
3172 create_async_signal_handler (async_remote_interrupt_twice, NULL);
3173 mark_async_signal_handler_wrapper (sigint_remote_token);
3174 }
3175
3176 /* Signal handler for SIGINT, installed after SIGINT has already been
3177 sent once. It will take effect the second time that the user sends
3178 a ^C. */
3179 static void
3180 handle_remote_sigint_twice (int sig)
3181 {
3182 signal (sig, handle_sigint);
3183 sigint_remote_twice_token =
3184 create_async_signal_handler (inferior_event_handler_wrapper, NULL);
3185 mark_async_signal_handler_wrapper (sigint_remote_twice_token);
3186 }
3187
3188 /* Perform the real interruption of the target execution, in response
3189 to a ^C. */
3190 static void
3191 async_remote_interrupt (gdb_client_data arg)
3192 {
3193 if (remote_debug)
3194 fprintf_unfiltered (gdb_stdlog, "remote_interrupt called\n");
3195
3196 target_stop ();
3197 }
3198
3199 /* Perform interrupt, if the first attempt did not succeed. Just give
3200 up on the target alltogether. */
3201 void
3202 async_remote_interrupt_twice (gdb_client_data arg)
3203 {
3204 if (remote_debug)
3205 fprintf_unfiltered (gdb_stdlog, "remote_interrupt_twice called\n");
3206 /* Do something only if the target was not killed by the previous
3207 cntl-C. */
3208 if (target_executing)
3209 {
3210 interrupt_query ();
3211 signal (SIGINT, handle_remote_sigint);
3212 }
3213 }
3214
3215 /* Reinstall the usual SIGINT handlers, after the target has
3216 stopped. */
3217 static void
3218 cleanup_sigint_signal_handler (void *dummy)
3219 {
3220 signal (SIGINT, handle_sigint);
3221 if (sigint_remote_twice_token)
3222 delete_async_signal_handler (&sigint_remote_twice_token);
3223 if (sigint_remote_token)
3224 delete_async_signal_handler (&sigint_remote_token);
3225 }
3226
3227 /* Send ^C to target to halt it. Target will respond, and send us a
3228 packet. */
3229 static void (*ofunc) (int);
3230
3231 /* The command line interface's stop routine. This function is installed
3232 as a signal handler for SIGINT. The first time a user requests a
3233 stop, we call remote_stop to send a break or ^C. If there is no
3234 response from the target (it didn't stop when the user requested it),
3235 we ask the user if he'd like to detach from the target. */
3236 static void
3237 remote_interrupt (int signo)
3238 {
3239 /* If this doesn't work, try more severe steps. */
3240 signal (signo, remote_interrupt_twice);
3241
3242 if (remote_debug)
3243 fprintf_unfiltered (gdb_stdlog, "remote_interrupt called\n");
3244
3245 target_stop ();
3246 }
3247
3248 /* The user typed ^C twice. */
3249
3250 static void
3251 remote_interrupt_twice (int signo)
3252 {
3253 signal (signo, ofunc);
3254 interrupt_query ();
3255 signal (signo, remote_interrupt);
3256 }
3257
3258 /* This is the generic stop called via the target vector. When a target
3259 interrupt is requested, either by the command line or the GUI, we
3260 will eventually end up here. */
3261 static void
3262 remote_stop (void)
3263 {
3264 /* Send a break or a ^C, depending on user preference. */
3265 if (remote_debug)
3266 fprintf_unfiltered (gdb_stdlog, "remote_stop called\n");
3267
3268 if (remote_break)
3269 serial_send_break (remote_desc);
3270 else
3271 serial_write (remote_desc, "\003", 1);
3272 }
3273
3274 /* Ask the user what to do when an interrupt is received. */
3275
3276 static void
3277 interrupt_query (void)
3278 {
3279 target_terminal_ours ();
3280
3281 if (query ("Interrupted while waiting for the program.\n\
3282 Give up (and stop debugging it)? "))
3283 {
3284 target_mourn_inferior ();
3285 deprecated_throw_reason (RETURN_QUIT);
3286 }
3287
3288 target_terminal_inferior ();
3289 }
3290
3291 /* Enable/disable target terminal ownership. Most targets can use
3292 terminal groups to control terminal ownership. Remote targets are
3293 different in that explicit transfer of ownership to/from GDB/target
3294 is required. */
3295
3296 static void
3297 remote_async_terminal_inferior (void)
3298 {
3299 /* FIXME: cagney/1999-09-27: Shouldn't need to test for
3300 sync_execution here. This function should only be called when
3301 GDB is resuming the inferior in the forground. A background
3302 resume (``run&'') should leave GDB in control of the terminal and
3303 consequently should not call this code. */
3304 if (!sync_execution)
3305 return;
3306 /* FIXME: cagney/1999-09-27: Closely related to the above. Make
3307 calls target_terminal_*() idenpotent. The event-loop GDB talking
3308 to an asynchronous target with a synchronous command calls this
3309 function from both event-top.c and infrun.c/infcmd.c. Once GDB
3310 stops trying to transfer the terminal to the target when it
3311 shouldn't this guard can go away. */
3312 if (!remote_async_terminal_ours_p)
3313 return;
3314 delete_file_handler (input_fd);
3315 remote_async_terminal_ours_p = 0;
3316 initialize_sigint_signal_handler ();
3317 /* NOTE: At this point we could also register our selves as the
3318 recipient of all input. Any characters typed could then be
3319 passed on down to the target. */
3320 }
3321
3322 static void
3323 remote_async_terminal_ours (void)
3324 {
3325 /* See FIXME in remote_async_terminal_inferior. */
3326 if (!sync_execution)
3327 return;
3328 /* See FIXME in remote_async_terminal_inferior. */
3329 if (remote_async_terminal_ours_p)
3330 return;
3331 cleanup_sigint_signal_handler (NULL);
3332 add_file_handler (input_fd, stdin_event_handler, 0);
3333 remote_async_terminal_ours_p = 1;
3334 }
3335
3336 /* If nonzero, ignore the next kill. */
3337
3338 int kill_kludge;
3339
3340 void
3341 remote_console_output (char *msg)
3342 {
3343 char *p;
3344
3345 for (p = msg; p[0] && p[1]; p += 2)
3346 {
3347 char tb[2];
3348 char c = fromhex (p[0]) * 16 + fromhex (p[1]);
3349 tb[0] = c;
3350 tb[1] = 0;
3351 fputs_unfiltered (tb, gdb_stdtarg);
3352 }
3353 gdb_flush (gdb_stdtarg);
3354 }
3355
3356 /* Wait until the remote machine stops, then return,
3357 storing status in STATUS just as `wait' would.
3358 Returns "pid", which in the case of a multi-threaded
3359 remote OS, is the thread-id. */
3360
3361 static ptid_t
3362 remote_wait (ptid_t ptid, struct target_waitstatus *status)
3363 {
3364 struct remote_state *rs = get_remote_state ();
3365 struct remote_arch_state *rsa = get_remote_arch_state ();
3366 ULONGEST thread_num = -1;
3367 ULONGEST addr;
3368 int solibs_changed = 0;
3369
3370 status->kind = TARGET_WAITKIND_EXITED;
3371 status->value.integer = 0;
3372
3373 while (1)
3374 {
3375 char *buf, *p;
3376
3377 if (rs->cached_wait_status)
3378 /* Use the cached wait status, but only once. */
3379 rs->cached_wait_status = 0;
3380 else
3381 {
3382 ofunc = signal (SIGINT, remote_interrupt);
3383 /* If the user hit C-c before this packet, or between packets,
3384 pretend that it was hit right here. */
3385 if (quit_flag)
3386 {
3387 quit_flag = 0;
3388 remote_interrupt (SIGINT);
3389 }
3390 getpkt (&rs->buf, &rs->buf_size, 1);
3391 signal (SIGINT, ofunc);
3392 }
3393
3394 buf = rs->buf;
3395
3396 /* This is a hook for when we need to do something (perhaps the
3397 collection of trace data) every time the target stops. */
3398 if (deprecated_target_wait_loop_hook)
3399 (*deprecated_target_wait_loop_hook) ();
3400
3401 remote_stopped_by_watchpoint_p = 0;
3402
3403 switch (buf[0])
3404 {
3405 case 'E': /* Error of some sort. */
3406 warning (_("Remote failure reply: %s"), buf);
3407 continue;
3408 case 'F': /* File-I/O request. */
3409 remote_fileio_request (buf);
3410 continue;
3411 case 'T': /* Status with PC, SP, FP, ... */
3412 {
3413 gdb_byte regs[MAX_REGISTER_SIZE];
3414
3415 /* Expedited reply, containing Signal, {regno, reg} repeat. */
3416 /* format is: 'Tssn...:r...;n...:r...;n...:r...;#cc', where
3417 ss = signal number
3418 n... = register number
3419 r... = register contents
3420 */
3421 p = &buf[3]; /* after Txx */
3422
3423 while (*p)
3424 {
3425 char *p1;
3426 char *p_temp;
3427 int fieldsize;
3428 LONGEST pnum = 0;
3429
3430 /* If the packet contains a register number save it in
3431 pnum and set p1 to point to the character following
3432 it. Otherwise p1 points to p. */
3433
3434 /* If this packet is an awatch packet, don't parse the
3435 'a' as a register number. */
3436
3437 if (strncmp (p, "awatch", strlen("awatch")) != 0)
3438 {
3439 /* Read the ``P'' register number. */
3440 pnum = strtol (p, &p_temp, 16);
3441 p1 = p_temp;
3442 }
3443 else
3444 p1 = p;
3445
3446 if (p1 == p) /* No register number present here. */
3447 {
3448 p1 = strchr (p, ':');
3449 if (p1 == NULL)
3450 error (_("Malformed packet(a) (missing colon): %s\n\
3451 Packet: '%s'\n"),
3452 p, buf);
3453 if (strncmp (p, "thread", p1 - p) == 0)
3454 {
3455 p_temp = unpack_varlen_hex (++p1, &thread_num);
3456 record_currthread (thread_num);
3457 p = p_temp;
3458 }
3459 else if ((strncmp (p, "watch", p1 - p) == 0)
3460 || (strncmp (p, "rwatch", p1 - p) == 0)
3461 || (strncmp (p, "awatch", p1 - p) == 0))
3462 {
3463 remote_stopped_by_watchpoint_p = 1;
3464 p = unpack_varlen_hex (++p1, &addr);
3465 remote_watch_data_address = (CORE_ADDR)addr;
3466 }
3467 else if (strncmp (p, "library", p1 - p) == 0)
3468 {
3469 p1++;
3470 p_temp = p1;
3471 while (*p_temp && *p_temp != ';')
3472 p_temp++;
3473
3474 solibs_changed = 1;
3475 p = p_temp;
3476 }
3477 else
3478 {
3479 /* Silently skip unknown optional info. */
3480 p_temp = strchr (p1 + 1, ';');
3481 if (p_temp)
3482 p = p_temp;
3483 }
3484 }
3485 else
3486 {
3487 struct packet_reg *reg = packet_reg_from_pnum (rsa, pnum);
3488 p = p1;
3489
3490 if (*p++ != ':')
3491 error (_("Malformed packet(b) (missing colon): %s\n\
3492 Packet: '%s'\n"),
3493 p, buf);
3494
3495 if (reg == NULL)
3496 error (_("Remote sent bad register number %s: %s\n\
3497 Packet: '%s'\n"),
3498 phex_nz (pnum, 0), p, buf);
3499
3500 fieldsize = hex2bin (p, regs,
3501 register_size (current_gdbarch,
3502 reg->regnum));
3503 p += 2 * fieldsize;
3504 if (fieldsize < register_size (current_gdbarch,
3505 reg->regnum))
3506 warning (_("Remote reply is too short: %s"), buf);
3507 regcache_raw_supply (get_current_regcache (),
3508 reg->regnum, regs);
3509 }
3510
3511 if (*p++ != ';')
3512 error (_("Remote register badly formatted: %s\nhere: %s"),
3513 buf, p);
3514 }
3515 }
3516 /* fall through */
3517 case 'S': /* Old style status, just signal only. */
3518 if (solibs_changed)
3519 status->kind = TARGET_WAITKIND_LOADED;
3520 else
3521 {
3522 status->kind = TARGET_WAITKIND_STOPPED;
3523 status->value.sig = (enum target_signal)
3524 (((fromhex (buf[1])) << 4) + (fromhex (buf[2])));
3525 }
3526
3527 if (buf[3] == 'p')
3528 {
3529 thread_num = strtol ((const char *) &buf[4], NULL, 16);
3530 record_currthread (thread_num);
3531 }
3532 goto got_status;
3533 case 'W': /* Target exited. */
3534 {
3535 /* The remote process exited. */
3536 status->kind = TARGET_WAITKIND_EXITED;
3537 status->value.integer = (fromhex (buf[1]) << 4) + fromhex (buf[2]);
3538 goto got_status;
3539 }
3540 case 'X':
3541 status->kind = TARGET_WAITKIND_SIGNALLED;
3542 status->value.sig = (enum target_signal)
3543 (((fromhex (buf[1])) << 4) + (fromhex (buf[2])));
3544 kill_kludge = 1;
3545
3546 goto got_status;
3547 case 'O': /* Console output. */
3548 remote_console_output (buf + 1);
3549 continue;
3550 case '\0':
3551 if (last_sent_signal != TARGET_SIGNAL_0)
3552 {
3553 /* Zero length reply means that we tried 'S' or 'C' and
3554 the remote system doesn't support it. */
3555 target_terminal_ours_for_output ();
3556 printf_filtered
3557 ("Can't send signals to this remote system. %s not sent.\n",
3558 target_signal_to_name (last_sent_signal));
3559 last_sent_signal = TARGET_SIGNAL_0;
3560 target_terminal_inferior ();
3561
3562 strcpy ((char *) buf, last_sent_step ? "s" : "c");
3563 putpkt ((char *) buf);
3564 continue;
3565 }
3566 /* else fallthrough */
3567 default:
3568 warning (_("Invalid remote reply: %s"), buf);
3569 continue;
3570 }
3571 }
3572 got_status:
3573 if (thread_num != -1)
3574 {
3575 return pid_to_ptid (thread_num);
3576 }
3577 return inferior_ptid;
3578 }
3579
3580 /* Async version of remote_wait. */
3581 static ptid_t
3582 remote_async_wait (ptid_t ptid, struct target_waitstatus *status)
3583 {
3584 struct remote_state *rs = get_remote_state ();
3585 struct remote_arch_state *rsa = get_remote_arch_state ();
3586 ULONGEST thread_num = -1;
3587 ULONGEST addr;
3588 int solibs_changed = 0;
3589
3590 status->kind = TARGET_WAITKIND_EXITED;
3591 status->value.integer = 0;
3592
3593 remote_stopped_by_watchpoint_p = 0;
3594
3595 while (1)
3596 {
3597 char *buf, *p;
3598
3599 if (rs->cached_wait_status)
3600 /* Use the cached wait status, but only once. */
3601 rs->cached_wait_status = 0;
3602 else
3603 {
3604 if (!target_is_async_p ())
3605 {
3606 ofunc = signal (SIGINT, remote_interrupt);
3607 /* If the user hit C-c before this packet, or between packets,
3608 pretend that it was hit right here. */
3609 if (quit_flag)
3610 {
3611 quit_flag = 0;
3612 remote_interrupt (SIGINT);
3613 }
3614 }
3615 /* FIXME: cagney/1999-09-27: If we're in async mode we should
3616 _never_ wait for ever -> test on target_is_async_p().
3617 However, before we do that we need to ensure that the caller
3618 knows how to take the target into/out of async mode. */
3619 getpkt (&rs->buf, &rs->buf_size, wait_forever_enabled_p);
3620 if (!target_is_async_p ())
3621 signal (SIGINT, ofunc);
3622 }
3623
3624 buf = rs->buf;
3625
3626 /* This is a hook for when we need to do something (perhaps the
3627 collection of trace data) every time the target stops. */
3628 if (deprecated_target_wait_loop_hook)
3629 (*deprecated_target_wait_loop_hook) ();
3630
3631 switch (buf[0])
3632 {
3633 case 'E': /* Error of some sort. */
3634 warning (_("Remote failure reply: %s"), buf);
3635 continue;
3636 case 'F': /* File-I/O request. */
3637 remote_fileio_request (buf);
3638 continue;
3639 case 'T': /* Status with PC, SP, FP, ... */
3640 {
3641 gdb_byte regs[MAX_REGISTER_SIZE];
3642
3643 /* Expedited reply, containing Signal, {regno, reg} repeat. */
3644 /* format is: 'Tssn...:r...;n...:r...;n...:r...;#cc', where
3645 ss = signal number
3646 n... = register number
3647 r... = register contents
3648 */
3649 p = &buf[3]; /* after Txx */
3650
3651 while (*p)
3652 {
3653 char *p1;
3654 char *p_temp;
3655 int fieldsize;
3656 long pnum = 0;
3657
3658 /* If the packet contains a register number, save it
3659 in pnum and set p1 to point to the character
3660 following it. Otherwise p1 points to p. */
3661
3662 /* If this packet is an awatch packet, don't parse the 'a'
3663 as a register number. */
3664
3665 if (strncmp (p, "awatch", strlen("awatch")) != 0)
3666 {
3667 /* Read the register number. */
3668 pnum = strtol (p, &p_temp, 16);
3669 p1 = p_temp;
3670 }
3671 else
3672 p1 = p;
3673
3674 if (p1 == p) /* No register number present here. */
3675 {
3676 p1 = strchr (p, ':');
3677 if (p1 == NULL)
3678 error (_("Malformed packet(a) (missing colon): %s\n\
3679 Packet: '%s'\n"),
3680 p, buf);
3681 if (strncmp (p, "thread", p1 - p) == 0)
3682 {
3683 p_temp = unpack_varlen_hex (++p1, &thread_num);
3684 record_currthread (thread_num);
3685 p = p_temp;
3686 }
3687 else if ((strncmp (p, "watch", p1 - p) == 0)
3688 || (strncmp (p, "rwatch", p1 - p) == 0)
3689 || (strncmp (p, "awatch", p1 - p) == 0))
3690 {
3691 remote_stopped_by_watchpoint_p = 1;
3692 p = unpack_varlen_hex (++p1, &addr);
3693 remote_watch_data_address = (CORE_ADDR)addr;
3694 }
3695 else if (strncmp (p, "library", p1 - p) == 0)
3696 {
3697 p1++;
3698 p_temp = p1;
3699 while (*p_temp && *p_temp != ';')
3700 p_temp++;
3701
3702 solibs_changed = 1;
3703 p = p_temp;
3704 }
3705 else
3706 {
3707 /* Silently skip unknown optional info. */
3708 p_temp = strchr (p1 + 1, ';');
3709 if (p_temp)
3710 p = p_temp;
3711 }
3712 }
3713
3714 else
3715 {
3716 struct packet_reg *reg = packet_reg_from_pnum (rsa, pnum);
3717 p = p1;
3718 if (*p++ != ':')
3719 error (_("Malformed packet(b) (missing colon): %s\n\
3720 Packet: '%s'\n"),
3721 p, buf);
3722
3723 if (reg == NULL)
3724 error (_("Remote sent bad register number %ld: %s\n\
3725 Packet: '%s'\n"),
3726 pnum, p, buf);
3727
3728 fieldsize = hex2bin (p, regs,
3729 register_size (current_gdbarch,
3730 reg->regnum));
3731 p += 2 * fieldsize;
3732 if (fieldsize < register_size (current_gdbarch,
3733 reg->regnum))
3734 warning (_("Remote reply is too short: %s"), buf);
3735 regcache_raw_supply (get_current_regcache (),
3736 reg->regnum, regs);
3737 }
3738
3739 if (*p++ != ';')
3740 error (_("Remote register badly formatted: %s\nhere: %s"),
3741 buf, p);
3742 }
3743 }
3744 /* fall through */
3745 case 'S': /* Old style status, just signal only. */
3746 if (solibs_changed)
3747 status->kind = TARGET_WAITKIND_LOADED;
3748 else
3749 {
3750 status->kind = TARGET_WAITKIND_STOPPED;
3751 status->value.sig = (enum target_signal)
3752 (((fromhex (buf[1])) << 4) + (fromhex (buf[2])));
3753 }
3754
3755 if (buf[3] == 'p')
3756 {
3757 thread_num = strtol ((const char *) &buf[4], NULL, 16);
3758 record_currthread (thread_num);
3759 }
3760 goto got_status;
3761 case 'W': /* Target exited. */
3762 {
3763 /* The remote process exited. */
3764 status->kind = TARGET_WAITKIND_EXITED;
3765 status->value.integer = (fromhex (buf[1]) << 4) + fromhex (buf[2]);
3766 goto got_status;
3767 }
3768 case 'X':
3769 status->kind = TARGET_WAITKIND_SIGNALLED;
3770 status->value.sig = (enum target_signal)
3771 (((fromhex (buf[1])) << 4) + (fromhex (buf[2])));
3772 kill_kludge = 1;
3773
3774 goto got_status;
3775 case 'O': /* Console output. */
3776 remote_console_output (buf + 1);
3777 /* Return immediately to the event loop. The event loop will
3778 still be waiting on the inferior afterwards. */
3779 status->kind = TARGET_WAITKIND_IGNORE;
3780 goto got_status;
3781 case '\0':
3782 if (last_sent_signal != TARGET_SIGNAL_0)
3783 {
3784 /* Zero length reply means that we tried 'S' or 'C' and
3785 the remote system doesn't support it. */
3786 target_terminal_ours_for_output ();
3787 printf_filtered
3788 ("Can't send signals to this remote system. %s not sent.\n",
3789 target_signal_to_name (last_sent_signal));
3790 last_sent_signal = TARGET_SIGNAL_0;
3791 target_terminal_inferior ();
3792
3793 strcpy ((char *) buf, last_sent_step ? "s" : "c");
3794 putpkt ((char *) buf);
3795 continue;
3796 }
3797 /* else fallthrough */
3798 default:
3799 warning (_("Invalid remote reply: %s"), buf);
3800 continue;
3801 }
3802 }
3803 got_status:
3804 if (thread_num != -1)
3805 {
3806 return pid_to_ptid (thread_num);
3807 }
3808 return inferior_ptid;
3809 }
3810
3811 /* Fetch a single register using a 'p' packet. */
3812
3813 static int
3814 fetch_register_using_p (struct regcache *regcache, struct packet_reg *reg)
3815 {
3816 struct remote_state *rs = get_remote_state ();
3817 char *buf, *p;
3818 char regp[MAX_REGISTER_SIZE];
3819 int i;
3820
3821 if (remote_protocol_packets[PACKET_p].support == PACKET_DISABLE)
3822 return 0;
3823
3824 if (reg->pnum == -1)
3825 return 0;
3826
3827 p = rs->buf;
3828 *p++ = 'p';
3829 p += hexnumstr (p, reg->pnum);
3830 *p++ = '\0';
3831 remote_send (&rs->buf, &rs->buf_size);
3832
3833 buf = rs->buf;
3834
3835 switch (packet_ok (buf, &remote_protocol_packets[PACKET_p]))
3836 {
3837 case PACKET_OK:
3838 break;
3839 case PACKET_UNKNOWN:
3840 return 0;
3841 case PACKET_ERROR:
3842 error (_("Could not fetch register \"%s\""),
3843 gdbarch_register_name (get_regcache_arch (regcache), reg->regnum));
3844 }
3845
3846 /* If this register is unfetchable, tell the regcache. */
3847 if (buf[0] == 'x')
3848 {
3849 regcache_raw_supply (regcache, reg->regnum, NULL);
3850 return 1;
3851 }
3852
3853 /* Otherwise, parse and supply the value. */
3854 p = buf;
3855 i = 0;
3856 while (p[0] != 0)
3857 {
3858 if (p[1] == 0)
3859 error (_("fetch_register_using_p: early buf termination"));
3860
3861 regp[i++] = fromhex (p[0]) * 16 + fromhex (p[1]);
3862 p += 2;
3863 }
3864 regcache_raw_supply (regcache, reg->regnum, regp);
3865 return 1;
3866 }
3867
3868 /* Fetch the registers included in the target's 'g' packet. */
3869
3870 static int
3871 send_g_packet (void)
3872 {
3873 struct remote_state *rs = get_remote_state ();
3874 int i, buf_len;
3875 char *p;
3876 char *regs;
3877
3878 sprintf (rs->buf, "g");
3879 remote_send (&rs->buf, &rs->buf_size);
3880
3881 /* We can get out of synch in various cases. If the first character
3882 in the buffer is not a hex character, assume that has happened
3883 and try to fetch another packet to read. */
3884 while ((rs->buf[0] < '0' || rs->buf[0] > '9')
3885 && (rs->buf[0] < 'A' || rs->buf[0] > 'F')
3886 && (rs->buf[0] < 'a' || rs->buf[0] > 'f')
3887 && rs->buf[0] != 'x') /* New: unavailable register value. */
3888 {
3889 if (remote_debug)
3890 fprintf_unfiltered (gdb_stdlog,
3891 "Bad register packet; fetching a new packet\n");
3892 getpkt (&rs->buf, &rs->buf_size, 0);
3893 }
3894
3895 buf_len = strlen (rs->buf);
3896
3897 /* Sanity check the received packet. */
3898 if (buf_len % 2 != 0)
3899 error (_("Remote 'g' packet reply is of odd length: %s"), rs->buf);
3900
3901 return buf_len / 2;
3902 }
3903
3904 static void
3905 process_g_packet (struct regcache *regcache)
3906 {
3907 struct gdbarch *gdbarch = get_regcache_arch (regcache);
3908 struct remote_state *rs = get_remote_state ();
3909 struct remote_arch_state *rsa = get_remote_arch_state ();
3910 int i, buf_len;
3911 char *p;
3912 char *regs;
3913
3914 buf_len = strlen (rs->buf);
3915
3916 /* Further sanity checks, with knowledge of the architecture. */
3917 if (buf_len > 2 * rsa->sizeof_g_packet)
3918 error (_("Remote 'g' packet reply is too long: %s"), rs->buf);
3919
3920 /* Save the size of the packet sent to us by the target. It is used
3921 as a heuristic when determining the max size of packets that the
3922 target can safely receive. */
3923 if (rsa->actual_register_packet_size == 0)
3924 rsa->actual_register_packet_size = buf_len;
3925
3926 /* If this is smaller than we guessed the 'g' packet would be,
3927 update our records. A 'g' reply that doesn't include a register's
3928 value implies either that the register is not available, or that
3929 the 'p' packet must be used. */
3930 if (buf_len < 2 * rsa->sizeof_g_packet)
3931 {
3932 rsa->sizeof_g_packet = buf_len / 2;
3933
3934 for (i = 0; i < gdbarch_num_regs (gdbarch); i++)
3935 {
3936 if (rsa->regs[i].pnum == -1)
3937 continue;
3938
3939 if (rsa->regs[i].offset >= rsa->sizeof_g_packet)
3940 rsa->regs[i].in_g_packet = 0;
3941 else
3942 rsa->regs[i].in_g_packet = 1;
3943 }
3944 }
3945
3946 regs = alloca (rsa->sizeof_g_packet);
3947
3948 /* Unimplemented registers read as all bits zero. */
3949 memset (regs, 0, rsa->sizeof_g_packet);
3950
3951 /* Reply describes registers byte by byte, each byte encoded as two
3952 hex characters. Suck them all up, then supply them to the
3953 register cacheing/storage mechanism. */
3954
3955 p = rs->buf;
3956 for (i = 0; i < rsa->sizeof_g_packet; i++)
3957 {
3958 if (p[0] == 0 || p[1] == 0)
3959 /* This shouldn't happen - we adjusted sizeof_g_packet above. */
3960 internal_error (__FILE__, __LINE__,
3961 "unexpected end of 'g' packet reply");
3962
3963 if (p[0] == 'x' && p[1] == 'x')
3964 regs[i] = 0; /* 'x' */
3965 else
3966 regs[i] = fromhex (p[0]) * 16 + fromhex (p[1]);
3967 p += 2;
3968 }
3969
3970 {
3971 int i;
3972 for (i = 0; i < gdbarch_num_regs (gdbarch); i++)
3973 {
3974 struct packet_reg *r = &rsa->regs[i];
3975 if (r->in_g_packet)
3976 {
3977 if (r->offset * 2 >= strlen (rs->buf))
3978 /* This shouldn't happen - we adjusted in_g_packet above. */
3979 internal_error (__FILE__, __LINE__,
3980 "unexpected end of 'g' packet reply");
3981 else if (rs->buf[r->offset * 2] == 'x')
3982 {
3983 gdb_assert (r->offset * 2 < strlen (rs->buf));
3984 /* The register isn't available, mark it as such (at
3985 the same time setting the value to zero). */
3986 regcache_raw_supply (regcache, r->regnum, NULL);
3987 }
3988 else
3989 regcache_raw_supply (regcache, r->regnum,
3990 regs + r->offset);
3991 }
3992 }
3993 }
3994 }
3995
3996 static void
3997 fetch_registers_using_g (struct regcache *regcache)
3998 {
3999 send_g_packet ();
4000 process_g_packet (regcache);
4001 }
4002
4003 static void
4004 remote_fetch_registers (struct regcache *regcache, int regnum)
4005 {
4006 struct remote_state *rs = get_remote_state ();
4007 struct remote_arch_state *rsa = get_remote_arch_state ();
4008 int i;
4009
4010 set_thread (PIDGET (inferior_ptid), 1);
4011
4012 if (regnum >= 0)
4013 {
4014 struct packet_reg *reg = packet_reg_from_regnum (rsa, regnum);
4015 gdb_assert (reg != NULL);
4016
4017 /* If this register might be in the 'g' packet, try that first -
4018 we are likely to read more than one register. If this is the
4019 first 'g' packet, we might be overly optimistic about its
4020 contents, so fall back to 'p'. */
4021 if (reg->in_g_packet)
4022 {
4023 fetch_registers_using_g (regcache);
4024 if (reg->in_g_packet)
4025 return;
4026 }
4027
4028 if (fetch_register_using_p (regcache, reg))
4029 return;
4030
4031 /* This register is not available. */
4032 regcache_raw_supply (regcache, reg->regnum, NULL);
4033
4034 return;
4035 }
4036
4037 fetch_registers_using_g (regcache);
4038
4039 for (i = 0; i < gdbarch_num_regs (get_regcache_arch (regcache)); i++)
4040 if (!rsa->regs[i].in_g_packet)
4041 if (!fetch_register_using_p (regcache, &rsa->regs[i]))
4042 {
4043 /* This register is not available. */
4044 regcache_raw_supply (regcache, i, NULL);
4045 }
4046 }
4047
4048 /* Prepare to store registers. Since we may send them all (using a
4049 'G' request), we have to read out the ones we don't want to change
4050 first. */
4051
4052 static void
4053 remote_prepare_to_store (struct regcache *regcache)
4054 {
4055 struct remote_arch_state *rsa = get_remote_arch_state ();
4056 int i;
4057 gdb_byte buf[MAX_REGISTER_SIZE];
4058
4059 /* Make sure the entire registers array is valid. */
4060 switch (remote_protocol_packets[PACKET_P].support)
4061 {
4062 case PACKET_DISABLE:
4063 case PACKET_SUPPORT_UNKNOWN:
4064 /* Make sure all the necessary registers are cached. */
4065 for (i = 0; i < gdbarch_num_regs (get_regcache_arch (regcache)); i++)
4066 if (rsa->regs[i].in_g_packet)
4067 regcache_raw_read (regcache, rsa->regs[i].regnum, buf);
4068 break;
4069 case PACKET_ENABLE:
4070 break;
4071 }
4072 }
4073
4074 /* Helper: Attempt to store REGNUM using the P packet. Return fail IFF
4075 packet was not recognized. */
4076
4077 static int
4078 store_register_using_P (const struct regcache *regcache, struct packet_reg *reg)
4079 {
4080 struct gdbarch *gdbarch = get_regcache_arch (regcache);
4081 struct remote_state *rs = get_remote_state ();
4082 struct remote_arch_state *rsa = get_remote_arch_state ();
4083 /* Try storing a single register. */
4084 char *buf = rs->buf;
4085 gdb_byte regp[MAX_REGISTER_SIZE];
4086 char *p;
4087
4088 if (remote_protocol_packets[PACKET_P].support == PACKET_DISABLE)
4089 return 0;
4090
4091 if (reg->pnum == -1)
4092 return 0;
4093
4094 xsnprintf (buf, get_remote_packet_size (), "P%s=", phex_nz (reg->pnum, 0));
4095 p = buf + strlen (buf);
4096 regcache_raw_collect (regcache, reg->regnum, regp);
4097 bin2hex (regp, p, register_size (gdbarch, reg->regnum));
4098 remote_send (&rs->buf, &rs->buf_size);
4099
4100 switch (packet_ok (rs->buf, &remote_protocol_packets[PACKET_P]))
4101 {
4102 case PACKET_OK:
4103 return 1;
4104 case PACKET_ERROR:
4105 error (_("Could not write register \"%s\""),
4106 gdbarch_register_name (gdbarch, reg->regnum));
4107 case PACKET_UNKNOWN:
4108 return 0;
4109 default:
4110 internal_error (__FILE__, __LINE__, _("Bad result from packet_ok"));
4111 }
4112 }
4113
4114 /* Store register REGNUM, or all registers if REGNUM == -1, from the
4115 contents of the register cache buffer. FIXME: ignores errors. */
4116
4117 static void
4118 store_registers_using_G (const struct regcache *regcache)
4119 {
4120 struct remote_state *rs = get_remote_state ();
4121 struct remote_arch_state *rsa = get_remote_arch_state ();
4122 gdb_byte *regs;
4123 char *p;
4124
4125 /* Extract all the registers in the regcache copying them into a
4126 local buffer. */
4127 {
4128 int i;
4129 regs = alloca (rsa->sizeof_g_packet);
4130 memset (regs, 0, rsa->sizeof_g_packet);
4131 for (i = 0; i < gdbarch_num_regs (get_regcache_arch (regcache)); i++)
4132 {
4133 struct packet_reg *r = &rsa->regs[i];
4134 if (r->in_g_packet)
4135 regcache_raw_collect (regcache, r->regnum, regs + r->offset);
4136 }
4137 }
4138
4139 /* Command describes registers byte by byte,
4140 each byte encoded as two hex characters. */
4141 p = rs->buf;
4142 *p++ = 'G';
4143 /* remote_prepare_to_store insures that rsa->sizeof_g_packet gets
4144 updated. */
4145 bin2hex (regs, p, rsa->sizeof_g_packet);
4146 remote_send (&rs->buf, &rs->buf_size);
4147 }
4148
4149 /* Store register REGNUM, or all registers if REGNUM == -1, from the contents
4150 of the register cache buffer. FIXME: ignores errors. */
4151
4152 static void
4153 remote_store_registers (struct regcache *regcache, int regnum)
4154 {
4155 struct remote_state *rs = get_remote_state ();
4156 struct remote_arch_state *rsa = get_remote_arch_state ();
4157 int i;
4158
4159 set_thread (PIDGET (inferior_ptid), 1);
4160
4161 if (regnum >= 0)
4162 {
4163 struct packet_reg *reg = packet_reg_from_regnum (rsa, regnum);
4164 gdb_assert (reg != NULL);
4165
4166 /* Always prefer to store registers using the 'P' packet if
4167 possible; we often change only a small number of registers.
4168 Sometimes we change a larger number; we'd need help from a
4169 higher layer to know to use 'G'. */
4170 if (store_register_using_P (regcache, reg))
4171 return;
4172
4173 /* For now, don't complain if we have no way to write the
4174 register. GDB loses track of unavailable registers too
4175 easily. Some day, this may be an error. We don't have
4176 any way to read the register, either... */
4177 if (!reg->in_g_packet)
4178 return;
4179
4180 store_registers_using_G (regcache);
4181 return;
4182 }
4183
4184 store_registers_using_G (regcache);
4185
4186 for (i = 0; i < gdbarch_num_regs (get_regcache_arch (regcache)); i++)
4187 if (!rsa->regs[i].in_g_packet)
4188 if (!store_register_using_P (regcache, &rsa->regs[i]))
4189 /* See above for why we do not issue an error here. */
4190 continue;
4191 }
4192 \f
4193
4194 /* Return the number of hex digits in num. */
4195
4196 static int
4197 hexnumlen (ULONGEST num)
4198 {
4199 int i;
4200
4201 for (i = 0; num != 0; i++)
4202 num >>= 4;
4203
4204 return max (i, 1);
4205 }
4206
4207 /* Set BUF to the minimum number of hex digits representing NUM. */
4208
4209 static int
4210 hexnumstr (char *buf, ULONGEST num)
4211 {
4212 int len = hexnumlen (num);
4213 return hexnumnstr (buf, num, len);
4214 }
4215
4216
4217 /* Set BUF to the hex digits representing NUM, padded to WIDTH characters. */
4218
4219 static int
4220 hexnumnstr (char *buf, ULONGEST num, int width)
4221 {
4222 int i;
4223
4224 buf[width] = '\0';
4225
4226 for (i = width - 1; i >= 0; i--)
4227 {
4228 buf[i] = "0123456789abcdef"[(num & 0xf)];
4229 num >>= 4;
4230 }
4231
4232 return width;
4233 }
4234
4235 /* Mask all but the least significant REMOTE_ADDRESS_SIZE bits. */
4236
4237 static CORE_ADDR
4238 remote_address_masked (CORE_ADDR addr)
4239 {
4240 int address_size = remote_address_size;
4241 /* If "remoteaddresssize" was not set, default to target address size. */
4242 if (!address_size)
4243 address_size = gdbarch_addr_bit (current_gdbarch);
4244
4245 if (address_size > 0
4246 && address_size < (sizeof (ULONGEST) * 8))
4247 {
4248 /* Only create a mask when that mask can safely be constructed
4249 in a ULONGEST variable. */
4250 ULONGEST mask = 1;
4251 mask = (mask << address_size) - 1;
4252 addr &= mask;
4253 }
4254 return addr;
4255 }
4256
4257 /* Convert BUFFER, binary data at least LEN bytes long, into escaped
4258 binary data in OUT_BUF. Set *OUT_LEN to the length of the data
4259 encoded in OUT_BUF, and return the number of bytes in OUT_BUF
4260 (which may be more than *OUT_LEN due to escape characters). The
4261 total number of bytes in the output buffer will be at most
4262 OUT_MAXLEN. */
4263
4264 static int
4265 remote_escape_output (const gdb_byte *buffer, int len,
4266 gdb_byte *out_buf, int *out_len,
4267 int out_maxlen)
4268 {
4269 int input_index, output_index;
4270
4271 output_index = 0;
4272 for (input_index = 0; input_index < len; input_index++)
4273 {
4274 gdb_byte b = buffer[input_index];
4275
4276 if (b == '$' || b == '#' || b == '}')
4277 {
4278 /* These must be escaped. */
4279 if (output_index + 2 > out_maxlen)
4280 break;
4281 out_buf[output_index++] = '}';
4282 out_buf[output_index++] = b ^ 0x20;
4283 }
4284 else
4285 {
4286 if (output_index + 1 > out_maxlen)
4287 break;
4288 out_buf[output_index++] = b;
4289 }
4290 }
4291
4292 *out_len = input_index;
4293 return output_index;
4294 }
4295
4296 /* Convert BUFFER, escaped data LEN bytes long, into binary data
4297 in OUT_BUF. Return the number of bytes written to OUT_BUF.
4298 Raise an error if the total number of bytes exceeds OUT_MAXLEN.
4299
4300 This function reverses remote_escape_output. It allows more
4301 escaped characters than that function does, in particular because
4302 '*' must be escaped to avoid the run-length encoding processing
4303 in reading packets. */
4304
4305 static int
4306 remote_unescape_input (const gdb_byte *buffer, int len,
4307 gdb_byte *out_buf, int out_maxlen)
4308 {
4309 int input_index, output_index;
4310 int escaped;
4311
4312 output_index = 0;
4313 escaped = 0;
4314 for (input_index = 0; input_index < len; input_index++)
4315 {
4316 gdb_byte b = buffer[input_index];
4317
4318 if (output_index + 1 > out_maxlen)
4319 {
4320 warning (_("Received too much data from remote target;"
4321 " ignoring overflow."));
4322 return output_index;
4323 }
4324
4325 if (escaped)
4326 {
4327 out_buf[output_index++] = b ^ 0x20;
4328 escaped = 0;
4329 }
4330 else if (b == '}')
4331 escaped = 1;
4332 else
4333 out_buf[output_index++] = b;
4334 }
4335
4336 if (escaped)
4337 error (_("Unmatched escape character in target response."));
4338
4339 return output_index;
4340 }
4341
4342 /* Determine whether the remote target supports binary downloading.
4343 This is accomplished by sending a no-op memory write of zero length
4344 to the target at the specified address. It does not suffice to send
4345 the whole packet, since many stubs strip the eighth bit and
4346 subsequently compute a wrong checksum, which causes real havoc with
4347 remote_write_bytes.
4348
4349 NOTE: This can still lose if the serial line is not eight-bit
4350 clean. In cases like this, the user should clear "remote
4351 X-packet". */
4352
4353 static void
4354 check_binary_download (CORE_ADDR addr)
4355 {
4356 struct remote_state *rs = get_remote_state ();
4357
4358 switch (remote_protocol_packets[PACKET_X].support)
4359 {
4360 case PACKET_DISABLE:
4361 break;
4362 case PACKET_ENABLE:
4363 break;
4364 case PACKET_SUPPORT_UNKNOWN:
4365 {
4366 char *p;
4367
4368 p = rs->buf;
4369 *p++ = 'X';
4370 p += hexnumstr (p, (ULONGEST) addr);
4371 *p++ = ',';
4372 p += hexnumstr (p, (ULONGEST) 0);
4373 *p++ = ':';
4374 *p = '\0';
4375
4376 putpkt_binary (rs->buf, (int) (p - rs->buf));
4377 getpkt (&rs->buf, &rs->buf_size, 0);
4378
4379 if (rs->buf[0] == '\0')
4380 {
4381 if (remote_debug)
4382 fprintf_unfiltered (gdb_stdlog,
4383 "binary downloading NOT suppported by target\n");
4384 remote_protocol_packets[PACKET_X].support = PACKET_DISABLE;
4385 }
4386 else
4387 {
4388 if (remote_debug)
4389 fprintf_unfiltered (gdb_stdlog,
4390 "binary downloading suppported by target\n");
4391 remote_protocol_packets[PACKET_X].support = PACKET_ENABLE;
4392 }
4393 break;
4394 }
4395 }
4396 }
4397
4398 /* Write memory data directly to the remote machine.
4399 This does not inform the data cache; the data cache uses this.
4400 HEADER is the starting part of the packet.
4401 MEMADDR is the address in the remote memory space.
4402 MYADDR is the address of the buffer in our space.
4403 LEN is the number of bytes.
4404 PACKET_FORMAT should be either 'X' or 'M', and indicates if we
4405 should send data as binary ('X'), or hex-encoded ('M').
4406
4407 The function creates packet of the form
4408 <HEADER><ADDRESS>,<LENGTH>:<DATA>
4409
4410 where encoding of <DATA> is termined by PACKET_FORMAT.
4411
4412 If USE_LENGTH is 0, then the <LENGTH> field and the preceding comma
4413 are omitted.
4414
4415 Returns the number of bytes transferred, or 0 (setting errno) for
4416 error. Only transfer a single packet. */
4417
4418 static int
4419 remote_write_bytes_aux (const char *header, CORE_ADDR memaddr,
4420 const gdb_byte *myaddr, int len,
4421 char packet_format, int use_length)
4422 {
4423 struct remote_state *rs = get_remote_state ();
4424 char *p;
4425 char *plen = NULL;
4426 int plenlen = 0;
4427 int todo;
4428 int nr_bytes;
4429 int payload_size;
4430 int payload_length;
4431 int header_length;
4432
4433 if (packet_format != 'X' && packet_format != 'M')
4434 internal_error (__FILE__, __LINE__,
4435 "remote_write_bytes_aux: bad packet format");
4436
4437 if (len <= 0)
4438 return 0;
4439
4440 payload_size = get_memory_write_packet_size ();
4441
4442 /* The packet buffer will be large enough for the payload;
4443 get_memory_packet_size ensures this. */
4444 rs->buf[0] = '\0';
4445
4446 /* Compute the size of the actual payload by subtracting out the
4447 packet header and footer overhead: "$M<memaddr>,<len>:...#nn".
4448 */
4449 payload_size -= strlen ("$,:#NN");
4450 if (!use_length)
4451 /* The comma won't be used. */
4452 payload_size += 1;
4453 header_length = strlen (header);
4454 payload_size -= header_length;
4455 payload_size -= hexnumlen (memaddr);
4456
4457 /* Construct the packet excluding the data: "<header><memaddr>,<len>:". */
4458
4459 strcat (rs->buf, header);
4460 p = rs->buf + strlen (header);
4461
4462 /* Compute a best guess of the number of bytes actually transfered. */
4463 if (packet_format == 'X')
4464 {
4465 /* Best guess at number of bytes that will fit. */
4466 todo = min (len, payload_size);
4467 if (use_length)
4468 payload_size -= hexnumlen (todo);
4469 todo = min (todo, payload_size);
4470 }
4471 else
4472 {
4473 /* Num bytes that will fit. */
4474 todo = min (len, payload_size / 2);
4475 if (use_length)
4476 payload_size -= hexnumlen (todo);
4477 todo = min (todo, payload_size / 2);
4478 }
4479
4480 if (todo <= 0)
4481 internal_error (__FILE__, __LINE__,
4482 _("minumum packet size too small to write data"));
4483
4484 /* If we already need another packet, then try to align the end
4485 of this packet to a useful boundary. */
4486 if (todo > 2 * REMOTE_ALIGN_WRITES && todo < len)
4487 todo = ((memaddr + todo) & ~(REMOTE_ALIGN_WRITES - 1)) - memaddr;
4488
4489 /* Append "<memaddr>". */
4490 memaddr = remote_address_masked (memaddr);
4491 p += hexnumstr (p, (ULONGEST) memaddr);
4492
4493 if (use_length)
4494 {
4495 /* Append ",". */
4496 *p++ = ',';
4497
4498 /* Append <len>. Retain the location/size of <len>. It may need to
4499 be adjusted once the packet body has been created. */
4500 plen = p;
4501 plenlen = hexnumstr (p, (ULONGEST) todo);
4502 p += plenlen;
4503 }
4504
4505 /* Append ":". */
4506 *p++ = ':';
4507 *p = '\0';
4508
4509 /* Append the packet body. */
4510 if (packet_format == 'X')
4511 {
4512 /* Binary mode. Send target system values byte by byte, in
4513 increasing byte addresses. Only escape certain critical
4514 characters. */
4515 payload_length = remote_escape_output (myaddr, todo, p, &nr_bytes,
4516 payload_size);
4517
4518 /* If not all TODO bytes fit, then we'll need another packet. Make
4519 a second try to keep the end of the packet aligned. Don't do
4520 this if the packet is tiny. */
4521 if (nr_bytes < todo && nr_bytes > 2 * REMOTE_ALIGN_WRITES)
4522 {
4523 int new_nr_bytes;
4524
4525 new_nr_bytes = (((memaddr + nr_bytes) & ~(REMOTE_ALIGN_WRITES - 1))
4526 - memaddr);
4527 if (new_nr_bytes != nr_bytes)
4528 payload_length = remote_escape_output (myaddr, new_nr_bytes,
4529 p, &nr_bytes,
4530 payload_size);
4531 }
4532
4533 p += payload_length;
4534 if (use_length && nr_bytes < todo)
4535 {
4536 /* Escape chars have filled up the buffer prematurely,
4537 and we have actually sent fewer bytes than planned.
4538 Fix-up the length field of the packet. Use the same
4539 number of characters as before. */
4540 plen += hexnumnstr (plen, (ULONGEST) nr_bytes, plenlen);
4541 *plen = ':'; /* overwrite \0 from hexnumnstr() */
4542 }
4543 }
4544 else
4545 {
4546 /* Normal mode: Send target system values byte by byte, in
4547 increasing byte addresses. Each byte is encoded as a two hex
4548 value. */
4549 nr_bytes = bin2hex (myaddr, p, todo);
4550 p += 2 * nr_bytes;
4551 }
4552
4553 putpkt_binary (rs->buf, (int) (p - rs->buf));
4554 getpkt (&rs->buf, &rs->buf_size, 0);
4555
4556 if (rs->buf[0] == 'E')
4557 {
4558 /* There is no correspondance between what the remote protocol
4559 uses for errors and errno codes. We would like a cleaner way
4560 of representing errors (big enough to include errno codes,
4561 bfd_error codes, and others). But for now just return EIO. */
4562 errno = EIO;
4563 return 0;
4564 }
4565
4566 /* Return NR_BYTES, not TODO, in case escape chars caused us to send
4567 fewer bytes than we'd planned. */
4568 return nr_bytes;
4569 }
4570
4571 /* Write memory data directly to the remote machine.
4572 This does not inform the data cache; the data cache uses this.
4573 MEMADDR is the address in the remote memory space.
4574 MYADDR is the address of the buffer in our space.
4575 LEN is the number of bytes.
4576
4577 Returns number of bytes transferred, or 0 (setting errno) for
4578 error. Only transfer a single packet. */
4579
4580 int
4581 remote_write_bytes (CORE_ADDR memaddr, const gdb_byte *myaddr, int len)
4582 {
4583 char *packet_format = 0;
4584
4585 /* Check whether the target supports binary download. */
4586 check_binary_download (memaddr);
4587
4588 switch (remote_protocol_packets[PACKET_X].support)
4589 {
4590 case PACKET_ENABLE:
4591 packet_format = "X";
4592 break;
4593 case PACKET_DISABLE:
4594 packet_format = "M";
4595 break;
4596 case PACKET_SUPPORT_UNKNOWN:
4597 internal_error (__FILE__, __LINE__,
4598 _("remote_write_bytes: bad internal state"));
4599 default:
4600 internal_error (__FILE__, __LINE__, _("bad switch"));
4601 }
4602
4603 return remote_write_bytes_aux (packet_format,
4604 memaddr, myaddr, len, packet_format[0], 1);
4605 }
4606
4607 /* Read memory data directly from the remote machine.
4608 This does not use the data cache; the data cache uses this.
4609 MEMADDR is the address in the remote memory space.
4610 MYADDR is the address of the buffer in our space.
4611 LEN is the number of bytes.
4612
4613 Returns number of bytes transferred, or 0 for error. */
4614
4615 /* NOTE: cagney/1999-10-18: This function (and its siblings in other
4616 remote targets) shouldn't attempt to read the entire buffer.
4617 Instead it should read a single packet worth of data and then
4618 return the byte size of that packet to the caller. The caller (its
4619 caller and its callers caller ;-) already contains code for
4620 handling partial reads. */
4621
4622 int
4623 remote_read_bytes (CORE_ADDR memaddr, gdb_byte *myaddr, int len)
4624 {
4625 struct remote_state *rs = get_remote_state ();
4626 int max_buf_size; /* Max size of packet output buffer. */
4627 int origlen;
4628
4629 if (len <= 0)
4630 return 0;
4631
4632 max_buf_size = get_memory_read_packet_size ();
4633 /* The packet buffer will be large enough for the payload;
4634 get_memory_packet_size ensures this. */
4635
4636 origlen = len;
4637 while (len > 0)
4638 {
4639 char *p;
4640 int todo;
4641 int i;
4642
4643 todo = min (len, max_buf_size / 2); /* num bytes that will fit */
4644
4645 /* construct "m"<memaddr>","<len>" */
4646 /* sprintf (rs->buf, "m%lx,%x", (unsigned long) memaddr, todo); */
4647 memaddr = remote_address_masked (memaddr);
4648 p = rs->buf;
4649 *p++ = 'm';
4650 p += hexnumstr (p, (ULONGEST) memaddr);
4651 *p++ = ',';
4652 p += hexnumstr (p, (ULONGEST) todo);
4653 *p = '\0';
4654
4655 putpkt (rs->buf);
4656 getpkt (&rs->buf, &rs->buf_size, 0);
4657
4658 if (rs->buf[0] == 'E'
4659 && isxdigit (rs->buf[1]) && isxdigit (rs->buf[2])
4660 && rs->buf[3] == '\0')
4661 {
4662 /* There is no correspondance between what the remote
4663 protocol uses for errors and errno codes. We would like
4664 a cleaner way of representing errors (big enough to
4665 include errno codes, bfd_error codes, and others). But
4666 for now just return EIO. */
4667 errno = EIO;
4668 return 0;
4669 }
4670
4671 /* Reply describes memory byte by byte,
4672 each byte encoded as two hex characters. */
4673
4674 p = rs->buf;
4675 if ((i = hex2bin (p, myaddr, todo)) < todo)
4676 {
4677 /* Reply is short. This means that we were able to read
4678 only part of what we wanted to. */
4679 return i + (origlen - len);
4680 }
4681 myaddr += todo;
4682 memaddr += todo;
4683 len -= todo;
4684 }
4685 return origlen;
4686 }
4687 \f
4688 /* Read or write LEN bytes from inferior memory at MEMADDR,
4689 transferring to or from debugger address BUFFER. Write to inferior
4690 if SHOULD_WRITE is nonzero. Returns length of data written or
4691 read; 0 for error. TARGET is unused. */
4692
4693 static int
4694 remote_xfer_memory (CORE_ADDR mem_addr, gdb_byte *buffer, int mem_len,
4695 int should_write, struct mem_attrib *attrib,
4696 struct target_ops *target)
4697 {
4698 int res;
4699
4700 if (should_write)
4701 res = remote_write_bytes (mem_addr, buffer, mem_len);
4702 else
4703 res = remote_read_bytes (mem_addr, buffer, mem_len);
4704
4705 return res;
4706 }
4707
4708 /* Sends a packet with content determined by the printf format string
4709 FORMAT and the remaining arguments, then gets the reply. Returns
4710 whether the packet was a success, a failure, or unknown. */
4711
4712 enum packet_result
4713 remote_send_printf (const char *format, ...)
4714 {
4715 struct remote_state *rs = get_remote_state ();
4716 int max_size = get_remote_packet_size ();
4717
4718 va_list ap;
4719 va_start (ap, format);
4720
4721 rs->buf[0] = '\0';
4722 if (vsnprintf (rs->buf, max_size, format, ap) >= max_size)
4723 internal_error (__FILE__, __LINE__, "Too long remote packet.");
4724
4725 if (putpkt (rs->buf) < 0)
4726 error (_("Communication problem with target."));
4727
4728 rs->buf[0] = '\0';
4729 getpkt (&rs->buf, &rs->buf_size, 0);
4730
4731 return packet_check_result (rs->buf);
4732 }
4733
4734 static void
4735 restore_remote_timeout (void *p)
4736 {
4737 int value = *(int *)p;
4738 remote_timeout = value;
4739 }
4740
4741 /* Flash writing can take quite some time. We'll set
4742 effectively infinite timeout for flash operations.
4743 In future, we'll need to decide on a better approach. */
4744 static const int remote_flash_timeout = 1000;
4745
4746 static void
4747 remote_flash_erase (struct target_ops *ops,
4748 ULONGEST address, LONGEST length)
4749 {
4750 int saved_remote_timeout = remote_timeout;
4751 enum packet_result ret;
4752
4753 struct cleanup *back_to = make_cleanup (restore_remote_timeout,
4754 &saved_remote_timeout);
4755 remote_timeout = remote_flash_timeout;
4756
4757 ret = remote_send_printf ("vFlashErase:%s,%s",
4758 paddr (address),
4759 phex (length, 4));
4760 switch (ret)
4761 {
4762 case PACKET_UNKNOWN:
4763 error (_("Remote target does not support flash erase"));
4764 case PACKET_ERROR:
4765 error (_("Error erasing flash with vFlashErase packet"));
4766 default:
4767 break;
4768 }
4769
4770 do_cleanups (back_to);
4771 }
4772
4773 static LONGEST
4774 remote_flash_write (struct target_ops *ops,
4775 ULONGEST address, LONGEST length,
4776 const gdb_byte *data)
4777 {
4778 int saved_remote_timeout = remote_timeout;
4779 int ret;
4780 struct cleanup *back_to = make_cleanup (restore_remote_timeout,
4781 &saved_remote_timeout);
4782
4783 remote_timeout = remote_flash_timeout;
4784 ret = remote_write_bytes_aux ("vFlashWrite:", address, data, length, 'X', 0);
4785 do_cleanups (back_to);
4786
4787 return ret;
4788 }
4789
4790 static void
4791 remote_flash_done (struct target_ops *ops)
4792 {
4793 int saved_remote_timeout = remote_timeout;
4794 int ret;
4795 struct cleanup *back_to = make_cleanup (restore_remote_timeout,
4796 &saved_remote_timeout);
4797
4798 remote_timeout = remote_flash_timeout;
4799 ret = remote_send_printf ("vFlashDone");
4800 do_cleanups (back_to);
4801
4802 switch (ret)
4803 {
4804 case PACKET_UNKNOWN:
4805 error (_("Remote target does not support vFlashDone"));
4806 case PACKET_ERROR:
4807 error (_("Error finishing flash operation"));
4808 default:
4809 break;
4810 }
4811 }
4812
4813 static void
4814 remote_files_info (struct target_ops *ignore)
4815 {
4816 puts_filtered ("Debugging a target over a serial line.\n");
4817 }
4818 \f
4819 /* Stuff for dealing with the packets which are part of this protocol.
4820 See comment at top of file for details. */
4821
4822 /* Read a single character from the remote end. */
4823
4824 static int
4825 readchar (int timeout)
4826 {
4827 int ch;
4828
4829 ch = serial_readchar (remote_desc, timeout);
4830
4831 if (ch >= 0)
4832 return ch;
4833
4834 switch ((enum serial_rc) ch)
4835 {
4836 case SERIAL_EOF:
4837 target_mourn_inferior ();
4838 error (_("Remote connection closed"));
4839 /* no return */
4840 case SERIAL_ERROR:
4841 perror_with_name (_("Remote communication error"));
4842 /* no return */
4843 case SERIAL_TIMEOUT:
4844 break;
4845 }
4846 return ch;
4847 }
4848
4849 /* Send the command in *BUF to the remote machine, and read the reply
4850 into *BUF. Report an error if we get an error reply. Resize
4851 *BUF using xrealloc if necessary to hold the result, and update
4852 *SIZEOF_BUF. */
4853
4854 static void
4855 remote_send (char **buf,
4856 long *sizeof_buf)
4857 {
4858 putpkt (*buf);
4859 getpkt (buf, sizeof_buf, 0);
4860
4861 if ((*buf)[0] == 'E')
4862 error (_("Remote failure reply: %s"), *buf);
4863 }
4864
4865 /* Display a null-terminated packet on stdout, for debugging, using C
4866 string notation. */
4867
4868 static void
4869 print_packet (char *buf)
4870 {
4871 puts_filtered ("\"");
4872 fputstr_filtered (buf, '"', gdb_stdout);
4873 puts_filtered ("\"");
4874 }
4875
4876 int
4877 putpkt (char *buf)
4878 {
4879 return putpkt_binary (buf, strlen (buf));
4880 }
4881
4882 /* Send a packet to the remote machine, with error checking. The data
4883 of the packet is in BUF. The string in BUF can be at most
4884 get_remote_packet_size () - 5 to account for the $, # and checksum,
4885 and for a possible /0 if we are debugging (remote_debug) and want
4886 to print the sent packet as a string. */
4887
4888 static int
4889 putpkt_binary (char *buf, int cnt)
4890 {
4891 struct remote_state *rs = get_remote_state ();
4892 int i;
4893 unsigned char csum = 0;
4894 char *buf2 = alloca (cnt + 6);
4895
4896 int ch;
4897 int tcount = 0;
4898 char *p;
4899
4900 /* We're sending out a new packet. Make sure we don't look at a
4901 stale cached response. */
4902 rs->cached_wait_status = 0;
4903
4904 /* Copy the packet into buffer BUF2, encapsulating it
4905 and giving it a checksum. */
4906
4907 p = buf2;
4908 *p++ = '$';
4909
4910 for (i = 0; i < cnt; i++)
4911 {
4912 csum += buf[i];
4913 *p++ = buf[i];
4914 }
4915 *p++ = '#';
4916 *p++ = tohex ((csum >> 4) & 0xf);
4917 *p++ = tohex (csum & 0xf);
4918
4919 /* Send it over and over until we get a positive ack. */
4920
4921 while (1)
4922 {
4923 int started_error_output = 0;
4924
4925 if (remote_debug)
4926 {
4927 *p = '\0';
4928 fprintf_unfiltered (gdb_stdlog, "Sending packet: ");
4929 fputstrn_unfiltered (buf2, p - buf2, 0, gdb_stdlog);
4930 fprintf_unfiltered (gdb_stdlog, "...");
4931 gdb_flush (gdb_stdlog);
4932 }
4933 if (serial_write (remote_desc, buf2, p - buf2))
4934 perror_with_name (_("putpkt: write failed"));
4935
4936 /* Read until either a timeout occurs (-2) or '+' is read. */
4937 while (1)
4938 {
4939 ch = readchar (remote_timeout);
4940
4941 if (remote_debug)
4942 {
4943 switch (ch)
4944 {
4945 case '+':
4946 case '-':
4947 case SERIAL_TIMEOUT:
4948 case '$':
4949 if (started_error_output)
4950 {
4951 putchar_unfiltered ('\n');
4952 started_error_output = 0;
4953 }
4954 }
4955 }
4956
4957 switch (ch)
4958 {
4959 case '+':
4960 if (remote_debug)
4961 fprintf_unfiltered (gdb_stdlog, "Ack\n");
4962 return 1;
4963 case '-':
4964 if (remote_debug)
4965 fprintf_unfiltered (gdb_stdlog, "Nak\n");
4966 case SERIAL_TIMEOUT:
4967 tcount++;
4968 if (tcount > 3)
4969 return 0;
4970 break; /* Retransmit buffer. */
4971 case '$':
4972 {
4973 if (remote_debug)
4974 fprintf_unfiltered (gdb_stdlog,
4975 "Packet instead of Ack, ignoring it\n");
4976 /* It's probably an old response sent because an ACK
4977 was lost. Gobble up the packet and ack it so it
4978 doesn't get retransmitted when we resend this
4979 packet. */
4980 skip_frame ();
4981 serial_write (remote_desc, "+", 1);
4982 continue; /* Now, go look for +. */
4983 }
4984 default:
4985 if (remote_debug)
4986 {
4987 if (!started_error_output)
4988 {
4989 started_error_output = 1;
4990 fprintf_unfiltered (gdb_stdlog, "putpkt: Junk: ");
4991 }
4992 fputc_unfiltered (ch & 0177, gdb_stdlog);
4993 }
4994 continue;
4995 }
4996 break; /* Here to retransmit. */
4997 }
4998
4999 #if 0
5000 /* This is wrong. If doing a long backtrace, the user should be
5001 able to get out next time we call QUIT, without anything as
5002 violent as interrupt_query. If we want to provide a way out of
5003 here without getting to the next QUIT, it should be based on
5004 hitting ^C twice as in remote_wait. */
5005 if (quit_flag)
5006 {
5007 quit_flag = 0;
5008 interrupt_query ();
5009 }
5010 #endif
5011 }
5012 }
5013
5014 /* Come here after finding the start of a frame when we expected an
5015 ack. Do our best to discard the rest of this packet. */
5016
5017 static void
5018 skip_frame (void)
5019 {
5020 int c;
5021
5022 while (1)
5023 {
5024 c = readchar (remote_timeout);
5025 switch (c)
5026 {
5027 case SERIAL_TIMEOUT:
5028 /* Nothing we can do. */
5029 return;
5030 case '#':
5031 /* Discard the two bytes of checksum and stop. */
5032 c = readchar (remote_timeout);
5033 if (c >= 0)
5034 c = readchar (remote_timeout);
5035
5036 return;
5037 case '*': /* Run length encoding. */
5038 /* Discard the repeat count. */
5039 c = readchar (remote_timeout);
5040 if (c < 0)
5041 return;
5042 break;
5043 default:
5044 /* A regular character. */
5045 break;
5046 }
5047 }
5048 }
5049
5050 /* Come here after finding the start of the frame. Collect the rest
5051 into *BUF, verifying the checksum, length, and handling run-length
5052 compression. NUL terminate the buffer. If there is not enough room,
5053 expand *BUF using xrealloc.
5054
5055 Returns -1 on error, number of characters in buffer (ignoring the
5056 trailing NULL) on success. (could be extended to return one of the
5057 SERIAL status indications). */
5058
5059 static long
5060 read_frame (char **buf_p,
5061 long *sizeof_buf)
5062 {
5063 unsigned char csum;
5064 long bc;
5065 int c;
5066 char *buf = *buf_p;
5067
5068 csum = 0;
5069 bc = 0;
5070
5071 while (1)
5072 {
5073 c = readchar (remote_timeout);
5074 switch (c)
5075 {
5076 case SERIAL_TIMEOUT:
5077 if (remote_debug)
5078 fputs_filtered ("Timeout in mid-packet, retrying\n", gdb_stdlog);
5079 return -1;
5080 case '$':
5081 if (remote_debug)
5082 fputs_filtered ("Saw new packet start in middle of old one\n",
5083 gdb_stdlog);
5084 return -1; /* Start a new packet, count retries. */
5085 case '#':
5086 {
5087 unsigned char pktcsum;
5088 int check_0 = 0;
5089 int check_1 = 0;
5090
5091 buf[bc] = '\0';
5092
5093 check_0 = readchar (remote_timeout);
5094 if (check_0 >= 0)
5095 check_1 = readchar (remote_timeout);
5096
5097 if (check_0 == SERIAL_TIMEOUT || check_1 == SERIAL_TIMEOUT)
5098 {
5099 if (remote_debug)
5100 fputs_filtered ("Timeout in checksum, retrying\n",
5101 gdb_stdlog);
5102 return -1;
5103 }
5104 else if (check_0 < 0 || check_1 < 0)
5105 {
5106 if (remote_debug)
5107 fputs_filtered ("Communication error in checksum\n",
5108 gdb_stdlog);
5109 return -1;
5110 }
5111
5112 pktcsum = (fromhex (check_0) << 4) | fromhex (check_1);
5113 if (csum == pktcsum)
5114 return bc;
5115
5116 if (remote_debug)
5117 {
5118 fprintf_filtered (gdb_stdlog,
5119 "Bad checksum, sentsum=0x%x, csum=0x%x, buf=",
5120 pktcsum, csum);
5121 fputstrn_filtered (buf, bc, 0, gdb_stdlog);
5122 fputs_filtered ("\n", gdb_stdlog);
5123 }
5124 /* Number of characters in buffer ignoring trailing
5125 NULL. */
5126 return -1;
5127 }
5128 case '*': /* Run length encoding. */
5129 {
5130 int repeat;
5131 csum += c;
5132
5133 c = readchar (remote_timeout);
5134 csum += c;
5135 repeat = c - ' ' + 3; /* Compute repeat count. */
5136
5137 /* The character before ``*'' is repeated. */
5138
5139 if (repeat > 0 && repeat <= 255 && bc > 0)
5140 {
5141 if (bc + repeat - 1 >= *sizeof_buf - 1)
5142 {
5143 /* Make some more room in the buffer. */
5144 *sizeof_buf += repeat;
5145 *buf_p = xrealloc (*buf_p, *sizeof_buf);
5146 buf = *buf_p;
5147 }
5148
5149 memset (&buf[bc], buf[bc - 1], repeat);
5150 bc += repeat;
5151 continue;
5152 }
5153
5154 buf[bc] = '\0';
5155 printf_filtered (_("Invalid run length encoding: %s\n"), buf);
5156 return -1;
5157 }
5158 default:
5159 if (bc >= *sizeof_buf - 1)
5160 {
5161 /* Make some more room in the buffer. */
5162 *sizeof_buf *= 2;
5163 *buf_p = xrealloc (*buf_p, *sizeof_buf);
5164 buf = *buf_p;
5165 }
5166
5167 buf[bc++] = c;
5168 csum += c;
5169 continue;
5170 }
5171 }
5172 }
5173
5174 /* Read a packet from the remote machine, with error checking, and
5175 store it in *BUF. Resize *BUF using xrealloc if necessary to hold
5176 the result, and update *SIZEOF_BUF. If FOREVER, wait forever
5177 rather than timing out; this is used (in synchronous mode) to wait
5178 for a target that is is executing user code to stop. */
5179 /* FIXME: ezannoni 2000-02-01 this wrapper is necessary so that we
5180 don't have to change all the calls to getpkt to deal with the
5181 return value, because at the moment I don't know what the right
5182 thing to do it for those. */
5183 void
5184 getpkt (char **buf,
5185 long *sizeof_buf,
5186 int forever)
5187 {
5188 int timed_out;
5189
5190 timed_out = getpkt_sane (buf, sizeof_buf, forever);
5191 }
5192
5193
5194 /* Read a packet from the remote machine, with error checking, and
5195 store it in *BUF. Resize *BUF using xrealloc if necessary to hold
5196 the result, and update *SIZEOF_BUF. If FOREVER, wait forever
5197 rather than timing out; this is used (in synchronous mode) to wait
5198 for a target that is is executing user code to stop. If FOREVER ==
5199 0, this function is allowed to time out gracefully and return an
5200 indication of this to the caller. Otherwise return the number
5201 of bytes read. */
5202 static int
5203 getpkt_sane (char **buf, long *sizeof_buf, int forever)
5204 {
5205 struct remote_state *rs = get_remote_state ();
5206 int c;
5207 int tries;
5208 int timeout;
5209 int val;
5210
5211 /* We're reading a new response. Make sure we don't look at a
5212 previously cached response. */
5213 rs->cached_wait_status = 0;
5214
5215 strcpy (*buf, "timeout");
5216
5217 if (forever)
5218 {
5219 timeout = watchdog > 0 ? watchdog : -1;
5220 }
5221
5222 else
5223 timeout = remote_timeout;
5224
5225 #define MAX_TRIES 3
5226
5227 for (tries = 1; tries <= MAX_TRIES; tries++)
5228 {
5229 /* This can loop forever if the remote side sends us characters
5230 continuously, but if it pauses, we'll get a zero from
5231 readchar because of timeout. Then we'll count that as a
5232 retry. */
5233
5234 /* Note that we will only wait forever prior to the start of a
5235 packet. After that, we expect characters to arrive at a
5236 brisk pace. They should show up within remote_timeout
5237 intervals. */
5238
5239 do
5240 {
5241 c = readchar (timeout);
5242
5243 if (c == SERIAL_TIMEOUT)
5244 {
5245 if (forever) /* Watchdog went off? Kill the target. */
5246 {
5247 QUIT;
5248 target_mourn_inferior ();
5249 error (_("Watchdog timeout has expired. Target detached."));
5250 }
5251 if (remote_debug)
5252 fputs_filtered ("Timed out.\n", gdb_stdlog);
5253 goto retry;
5254 }
5255 }
5256 while (c != '$');
5257
5258 /* We've found the start of a packet, now collect the data. */
5259
5260 val = read_frame (buf, sizeof_buf);
5261
5262 if (val >= 0)
5263 {
5264 if (remote_debug)
5265 {
5266 fprintf_unfiltered (gdb_stdlog, "Packet received: ");
5267 fputstrn_unfiltered (*buf, val, 0, gdb_stdlog);
5268 fprintf_unfiltered (gdb_stdlog, "\n");
5269 }
5270 serial_write (remote_desc, "+", 1);
5271 return val;
5272 }
5273
5274 /* Try the whole thing again. */
5275 retry:
5276 serial_write (remote_desc, "-", 1);
5277 }
5278
5279 /* We have tried hard enough, and just can't receive the packet.
5280 Give up. */
5281
5282 printf_unfiltered (_("Ignoring packet error, continuing...\n"));
5283 serial_write (remote_desc, "+", 1);
5284 return -1;
5285 }
5286 \f
5287 static void
5288 remote_kill (void)
5289 {
5290 /* For some mysterious reason, wait_for_inferior calls kill instead of
5291 mourn after it gets TARGET_WAITKIND_SIGNALLED. Work around it. */
5292 if (kill_kludge)
5293 {
5294 kill_kludge = 0;
5295 target_mourn_inferior ();
5296 return;
5297 }
5298
5299 /* Use catch_errors so the user can quit from gdb even when we aren't on
5300 speaking terms with the remote system. */
5301 catch_errors ((catch_errors_ftype *) putpkt, "k", "", RETURN_MASK_ERROR);
5302
5303 /* Don't wait for it to die. I'm not really sure it matters whether
5304 we do or not. For the existing stubs, kill is a noop. */
5305 target_mourn_inferior ();
5306 }
5307
5308 /* Async version of remote_kill. */
5309 static void
5310 remote_async_kill (void)
5311 {
5312 /* Unregister the file descriptor from the event loop. */
5313 if (target_is_async_p ())
5314 serial_async (remote_desc, NULL, 0);
5315
5316 /* For some mysterious reason, wait_for_inferior calls kill instead of
5317 mourn after it gets TARGET_WAITKIND_SIGNALLED. Work around it. */
5318 if (kill_kludge)
5319 {
5320 kill_kludge = 0;
5321 target_mourn_inferior ();
5322 return;
5323 }
5324
5325 /* Use catch_errors so the user can quit from gdb even when we
5326 aren't on speaking terms with the remote system. */
5327 catch_errors ((catch_errors_ftype *) putpkt, "k", "", RETURN_MASK_ERROR);
5328
5329 /* Don't wait for it to die. I'm not really sure it matters whether
5330 we do or not. For the existing stubs, kill is a noop. */
5331 target_mourn_inferior ();
5332 }
5333
5334 static void
5335 remote_mourn (void)
5336 {
5337 remote_mourn_1 (&remote_ops);
5338 }
5339
5340 static void
5341 remote_async_mourn (void)
5342 {
5343 remote_mourn_1 (&remote_async_ops);
5344 }
5345
5346 /* Worker function for remote_mourn. */
5347 static void
5348 remote_mourn_1 (struct target_ops *target)
5349 {
5350 unpush_target (target);
5351 generic_mourn_inferior ();
5352 }
5353
5354 static void
5355 extended_remote_mourn_1 (struct target_ops *target)
5356 {
5357 struct remote_state *rs = get_remote_state ();
5358
5359 /* Unlike "target remote", we do not want to unpush the target; then
5360 the next time the user says "run", we won't be connected. */
5361
5362 /* Call common code to mark the inferior as not running. */
5363 generic_mourn_inferior ();
5364
5365 /* Check whether the target is running now - some remote stubs
5366 automatically restart after kill. */
5367 putpkt ("?");
5368 getpkt (&rs->buf, &rs->buf_size, 0);
5369
5370 if (rs->buf[0] == 'S' || rs->buf[0] == 'T')
5371 {
5372 /* Assume that the target has been restarted. Set inferior_ptid
5373 so that bits of core GDB realizes there's something here, e.g.,
5374 so that the user can say "kill" again. */
5375 inferior_ptid = pid_to_ptid (MAGIC_NULL_PID);
5376 }
5377 else
5378 {
5379 /* Mark this (still pushed) target as not executable until we
5380 restart it. */
5381 target_mark_exited (target);
5382 }
5383 }
5384
5385 static void
5386 extended_remote_mourn (void)
5387 {
5388 extended_remote_mourn_1 (&extended_remote_ops);
5389 }
5390
5391 static void
5392 extended_async_remote_mourn (void)
5393 {
5394 extended_remote_mourn_1 (&extended_async_remote_ops);
5395 }
5396
5397 static int
5398 extended_remote_run (char *args)
5399 {
5400 struct remote_state *rs = get_remote_state ();
5401 char *p;
5402 int len;
5403
5404 /* If the user has disabled vRun support, or we have detected that
5405 support is not available, do not try it. */
5406 if (remote_protocol_packets[PACKET_vRun].support == PACKET_DISABLE)
5407 return -1;
5408
5409 strcpy (rs->buf, "vRun;");
5410 len = strlen (rs->buf);
5411
5412 if (strlen (remote_exec_file) * 2 + len >= get_remote_packet_size ())
5413 error (_("Remote file name too long for run packet"));
5414 len += 2 * bin2hex ((gdb_byte *) remote_exec_file, rs->buf + len, 0);
5415
5416 if (*args)
5417 {
5418 struct cleanup *back_to;
5419 int i;
5420 char **argv;
5421
5422 argv = buildargv (args);
5423 back_to = make_cleanup ((void (*) (void *)) freeargv, argv);
5424 for (i = 0; argv[i] != NULL; i++)
5425 {
5426 if (strlen (argv[i]) * 2 + 1 + len >= get_remote_packet_size ())
5427 error (_("Argument list too long for run packet"));
5428 rs->buf[len++] = ';';
5429 len += 2 * bin2hex ((gdb_byte *) argv[i], rs->buf + len, 0);
5430 }
5431 do_cleanups (back_to);
5432 }
5433
5434 rs->buf[len++] = '\0';
5435
5436 putpkt (rs->buf);
5437 getpkt (&rs->buf, &rs->buf_size, 0);
5438
5439 if (packet_ok (rs->buf, &remote_protocol_packets[PACKET_vRun]) == PACKET_OK)
5440 {
5441 /* We have a wait response; we don't need it, though. All is well. */
5442 return 0;
5443 }
5444 else if (remote_protocol_packets[PACKET_vRun].support == PACKET_DISABLE)
5445 /* It wasn't disabled before, but it is now. */
5446 return -1;
5447 else
5448 {
5449 if (remote_exec_file[0] == '\0')
5450 error (_("Running the default executable on the remote target failed; "
5451 "try \"set remote exec-file\"?"));
5452 else
5453 error (_("Running \"%s\" on the remote target failed"),
5454 remote_exec_file);
5455 }
5456 }
5457
5458 /* In the extended protocol we want to be able to do things like
5459 "run" and have them basically work as expected. So we need
5460 a special create_inferior function. We support changing the
5461 executable file and the command line arguments, but not the
5462 environment. */
5463
5464 static void
5465 extended_remote_create_inferior_1 (char *exec_file, char *args,
5466 char **env, int from_tty,
5467 int async_p)
5468 {
5469 /* If running asynchronously, register the target file descriptor
5470 with the event loop. */
5471 if (async_p && target_can_async_p ())
5472 target_async (inferior_event_handler, 0);
5473
5474 /* Now restart the remote server. */
5475 if (extended_remote_run (args) == -1)
5476 {
5477 /* vRun was not supported. Fail if we need it to do what the
5478 user requested. */
5479 if (remote_exec_file[0])
5480 error (_("Remote target does not support \"set remote exec-file\""));
5481 if (args[0])
5482 error (_("Remote target does not support \"set args\" or run <ARGS>"));
5483
5484 /* Fall back to "R". */
5485 extended_remote_restart ();
5486 }
5487
5488 /* Now mark the inferior as running before we do anything else. */
5489 attach_flag = 0;
5490 inferior_ptid = pid_to_ptid (MAGIC_NULL_PID);
5491 if (async_p)
5492 target_mark_running (&extended_async_remote_ops);
5493 else
5494 target_mark_running (&extended_remote_ops);
5495
5496 /* Get updated offsets, if the stub uses qOffsets. */
5497 get_offsets ();
5498
5499 /* Clean up from the last time we were running. */
5500 init_thread_list ();
5501 init_wait_for_inferior ();
5502 }
5503
5504 static void
5505 extended_remote_create_inferior (char *exec_file, char *args,
5506 char **env, int from_tty)
5507 {
5508 extended_remote_create_inferior_1 (exec_file, args, env, from_tty, 0);
5509 }
5510
5511 static void
5512 extended_remote_async_create_inferior (char *exec_file, char *args,
5513 char **env, int from_tty)
5514 {
5515 extended_remote_create_inferior_1 (exec_file, args, env, from_tty, 1);
5516 }
5517 \f
5518
5519 /* Insert a breakpoint. On targets that have software breakpoint
5520 support, we ask the remote target to do the work; on targets
5521 which don't, we insert a traditional memory breakpoint. */
5522
5523 static int
5524 remote_insert_breakpoint (struct bp_target_info *bp_tgt)
5525 {
5526 CORE_ADDR addr = bp_tgt->placed_address;
5527 struct remote_state *rs = get_remote_state ();
5528
5529 /* Try the "Z" s/w breakpoint packet if it is not already disabled.
5530 If it succeeds, then set the support to PACKET_ENABLE. If it
5531 fails, and the user has explicitly requested the Z support then
5532 report an error, otherwise, mark it disabled and go on. */
5533
5534 if (remote_protocol_packets[PACKET_Z0].support != PACKET_DISABLE)
5535 {
5536 char *p = rs->buf;
5537
5538 *(p++) = 'Z';
5539 *(p++) = '0';
5540 *(p++) = ',';
5541 gdbarch_breakpoint_from_pc
5542 (current_gdbarch, &bp_tgt->placed_address, &bp_tgt->placed_size);
5543 addr = (ULONGEST) remote_address_masked (bp_tgt->placed_address);
5544 p += hexnumstr (p, addr);
5545 sprintf (p, ",%d", bp_tgt->placed_size);
5546
5547 putpkt (rs->buf);
5548 getpkt (&rs->buf, &rs->buf_size, 0);
5549
5550 switch (packet_ok (rs->buf, &remote_protocol_packets[PACKET_Z0]))
5551 {
5552 case PACKET_ERROR:
5553 return -1;
5554 case PACKET_OK:
5555 return 0;
5556 case PACKET_UNKNOWN:
5557 break;
5558 }
5559 }
5560
5561 return memory_insert_breakpoint (bp_tgt);
5562 }
5563
5564 static int
5565 remote_remove_breakpoint (struct bp_target_info *bp_tgt)
5566 {
5567 CORE_ADDR addr = bp_tgt->placed_address;
5568 struct remote_state *rs = get_remote_state ();
5569 int bp_size;
5570
5571 if (remote_protocol_packets[PACKET_Z0].support != PACKET_DISABLE)
5572 {
5573 char *p = rs->buf;
5574
5575 *(p++) = 'z';
5576 *(p++) = '0';
5577 *(p++) = ',';
5578
5579 addr = (ULONGEST) remote_address_masked (bp_tgt->placed_address);
5580 p += hexnumstr (p, addr);
5581 sprintf (p, ",%d", bp_tgt->placed_size);
5582
5583 putpkt (rs->buf);
5584 getpkt (&rs->buf, &rs->buf_size, 0);
5585
5586 return (rs->buf[0] == 'E');
5587 }
5588
5589 return memory_remove_breakpoint (bp_tgt);
5590 }
5591
5592 static int
5593 watchpoint_to_Z_packet (int type)
5594 {
5595 switch (type)
5596 {
5597 case hw_write:
5598 return Z_PACKET_WRITE_WP;
5599 break;
5600 case hw_read:
5601 return Z_PACKET_READ_WP;
5602 break;
5603 case hw_access:
5604 return Z_PACKET_ACCESS_WP;
5605 break;
5606 default:
5607 internal_error (__FILE__, __LINE__,
5608 _("hw_bp_to_z: bad watchpoint type %d"), type);
5609 }
5610 }
5611
5612 static int
5613 remote_insert_watchpoint (CORE_ADDR addr, int len, int type)
5614 {
5615 struct remote_state *rs = get_remote_state ();
5616 char *p;
5617 enum Z_packet_type packet = watchpoint_to_Z_packet (type);
5618
5619 if (remote_protocol_packets[PACKET_Z0 + packet].support == PACKET_DISABLE)
5620 return -1;
5621
5622 sprintf (rs->buf, "Z%x,", packet);
5623 p = strchr (rs->buf, '\0');
5624 addr = remote_address_masked (addr);
5625 p += hexnumstr (p, (ULONGEST) addr);
5626 sprintf (p, ",%x", len);
5627
5628 putpkt (rs->buf);
5629 getpkt (&rs->buf, &rs->buf_size, 0);
5630
5631 switch (packet_ok (rs->buf, &remote_protocol_packets[PACKET_Z0 + packet]))
5632 {
5633 case PACKET_ERROR:
5634 case PACKET_UNKNOWN:
5635 return -1;
5636 case PACKET_OK:
5637 return 0;
5638 }
5639 internal_error (__FILE__, __LINE__,
5640 _("remote_insert_watchpoint: reached end of function"));
5641 }
5642
5643
5644 static int
5645 remote_remove_watchpoint (CORE_ADDR addr, int len, int type)
5646 {
5647 struct remote_state *rs = get_remote_state ();
5648 char *p;
5649 enum Z_packet_type packet = watchpoint_to_Z_packet (type);
5650
5651 if (remote_protocol_packets[PACKET_Z0 + packet].support == PACKET_DISABLE)
5652 return -1;
5653
5654 sprintf (rs->buf, "z%x,", packet);
5655 p = strchr (rs->buf, '\0');
5656 addr = remote_address_masked (addr);
5657 p += hexnumstr (p, (ULONGEST) addr);
5658 sprintf (p, ",%x", len);
5659 putpkt (rs->buf);
5660 getpkt (&rs->buf, &rs->buf_size, 0);
5661
5662 switch (packet_ok (rs->buf, &remote_protocol_packets[PACKET_Z0 + packet]))
5663 {
5664 case PACKET_ERROR:
5665 case PACKET_UNKNOWN:
5666 return -1;
5667 case PACKET_OK:
5668 return 0;
5669 }
5670 internal_error (__FILE__, __LINE__,
5671 _("remote_remove_watchpoint: reached end of function"));
5672 }
5673
5674
5675 int remote_hw_watchpoint_limit = -1;
5676 int remote_hw_breakpoint_limit = -1;
5677
5678 static int
5679 remote_check_watch_resources (int type, int cnt, int ot)
5680 {
5681 if (type == bp_hardware_breakpoint)
5682 {
5683 if (remote_hw_breakpoint_limit == 0)
5684 return 0;
5685 else if (remote_hw_breakpoint_limit < 0)
5686 return 1;
5687 else if (cnt <= remote_hw_breakpoint_limit)
5688 return 1;
5689 }
5690 else
5691 {
5692 if (remote_hw_watchpoint_limit == 0)
5693 return 0;
5694 else if (remote_hw_watchpoint_limit < 0)
5695 return 1;
5696 else if (ot)
5697 return -1;
5698 else if (cnt <= remote_hw_watchpoint_limit)
5699 return 1;
5700 }
5701 return -1;
5702 }
5703
5704 static int
5705 remote_stopped_by_watchpoint (void)
5706 {
5707 return remote_stopped_by_watchpoint_p;
5708 }
5709
5710 static int
5711 remote_stopped_data_address (struct target_ops *target, CORE_ADDR *addr_p)
5712 {
5713 int rc = 0;
5714 if (remote_stopped_by_watchpoint ())
5715 {
5716 *addr_p = remote_watch_data_address;
5717 rc = 1;
5718 }
5719
5720 return rc;
5721 }
5722
5723
5724 static int
5725 remote_insert_hw_breakpoint (struct bp_target_info *bp_tgt)
5726 {
5727 CORE_ADDR addr;
5728 struct remote_state *rs = get_remote_state ();
5729 char *p = rs->buf;
5730
5731 /* The length field should be set to the size of a breakpoint
5732 instruction, even though we aren't inserting one ourselves. */
5733
5734 gdbarch_breakpoint_from_pc
5735 (current_gdbarch, &bp_tgt->placed_address, &bp_tgt->placed_size);
5736
5737 if (remote_protocol_packets[PACKET_Z1].support == PACKET_DISABLE)
5738 return -1;
5739
5740 *(p++) = 'Z';
5741 *(p++) = '1';
5742 *(p++) = ',';
5743
5744 addr = remote_address_masked (bp_tgt->placed_address);
5745 p += hexnumstr (p, (ULONGEST) addr);
5746 sprintf (p, ",%x", bp_tgt->placed_size);
5747
5748 putpkt (rs->buf);
5749 getpkt (&rs->buf, &rs->buf_size, 0);
5750
5751 switch (packet_ok (rs->buf, &remote_protocol_packets[PACKET_Z1]))
5752 {
5753 case PACKET_ERROR:
5754 case PACKET_UNKNOWN:
5755 return -1;
5756 case PACKET_OK:
5757 return 0;
5758 }
5759 internal_error (__FILE__, __LINE__,
5760 _("remote_insert_hw_breakpoint: reached end of function"));
5761 }
5762
5763
5764 static int
5765 remote_remove_hw_breakpoint (struct bp_target_info *bp_tgt)
5766 {
5767 CORE_ADDR addr;
5768 struct remote_state *rs = get_remote_state ();
5769 char *p = rs->buf;
5770
5771 if (remote_protocol_packets[PACKET_Z1].support == PACKET_DISABLE)
5772 return -1;
5773
5774 *(p++) = 'z';
5775 *(p++) = '1';
5776 *(p++) = ',';
5777
5778 addr = remote_address_masked (bp_tgt->placed_address);
5779 p += hexnumstr (p, (ULONGEST) addr);
5780 sprintf (p, ",%x", bp_tgt->placed_size);
5781
5782 putpkt (rs->buf);
5783 getpkt (&rs->buf, &rs->buf_size, 0);
5784
5785 switch (packet_ok (rs->buf, &remote_protocol_packets[PACKET_Z1]))
5786 {
5787 case PACKET_ERROR:
5788 case PACKET_UNKNOWN:
5789 return -1;
5790 case PACKET_OK:
5791 return 0;
5792 }
5793 internal_error (__FILE__, __LINE__,
5794 _("remote_remove_hw_breakpoint: reached end of function"));
5795 }
5796
5797 /* Some targets are only capable of doing downloads, and afterwards
5798 they switch to the remote serial protocol. This function provides
5799 a clean way to get from the download target to the remote target.
5800 It's basically just a wrapper so that we don't have to expose any
5801 of the internal workings of remote.c.
5802
5803 Prior to calling this routine, you should shutdown the current
5804 target code, else you will get the "A program is being debugged
5805 already..." message. Usually a call to pop_target() suffices. */
5806
5807 void
5808 push_remote_target (char *name, int from_tty)
5809 {
5810 printf_filtered (_("Switching to remote protocol\n"));
5811 remote_open (name, from_tty);
5812 }
5813
5814 /* Table used by the crc32 function to calcuate the checksum. */
5815
5816 static unsigned long crc32_table[256] =
5817 {0, 0};
5818
5819 static unsigned long
5820 crc32 (unsigned char *buf, int len, unsigned int crc)
5821 {
5822 if (!crc32_table[1])
5823 {
5824 /* Initialize the CRC table and the decoding table. */
5825 int i, j;
5826 unsigned int c;
5827
5828 for (i = 0; i < 256; i++)
5829 {
5830 for (c = i << 24, j = 8; j > 0; --j)
5831 c = c & 0x80000000 ? (c << 1) ^ 0x04c11db7 : (c << 1);
5832 crc32_table[i] = c;
5833 }
5834 }
5835
5836 while (len--)
5837 {
5838 crc = (crc << 8) ^ crc32_table[((crc >> 24) ^ *buf) & 255];
5839 buf++;
5840 }
5841 return crc;
5842 }
5843
5844 /* compare-sections command
5845
5846 With no arguments, compares each loadable section in the exec bfd
5847 with the same memory range on the target, and reports mismatches.
5848 Useful for verifying the image on the target against the exec file.
5849 Depends on the target understanding the new "qCRC:" request. */
5850
5851 /* FIXME: cagney/1999-10-26: This command should be broken down into a
5852 target method (target verify memory) and generic version of the
5853 actual command. This will allow other high-level code (especially
5854 generic_load()) to make use of this target functionality. */
5855
5856 static void
5857 compare_sections_command (char *args, int from_tty)
5858 {
5859 struct remote_state *rs = get_remote_state ();
5860 asection *s;
5861 unsigned long host_crc, target_crc;
5862 extern bfd *exec_bfd;
5863 struct cleanup *old_chain;
5864 char *tmp;
5865 char *sectdata;
5866 const char *sectname;
5867 bfd_size_type size;
5868 bfd_vma lma;
5869 int matched = 0;
5870 int mismatched = 0;
5871
5872 if (!exec_bfd)
5873 error (_("command cannot be used without an exec file"));
5874 if (!current_target.to_shortname ||
5875 strcmp (current_target.to_shortname, "remote") != 0)
5876 error (_("command can only be used with remote target"));
5877
5878 for (s = exec_bfd->sections; s; s = s->next)
5879 {
5880 if (!(s->flags & SEC_LOAD))
5881 continue; /* skip non-loadable section */
5882
5883 size = bfd_get_section_size (s);
5884 if (size == 0)
5885 continue; /* skip zero-length section */
5886
5887 sectname = bfd_get_section_name (exec_bfd, s);
5888 if (args && strcmp (args, sectname) != 0)
5889 continue; /* not the section selected by user */
5890
5891 matched = 1; /* do this section */
5892 lma = s->lma;
5893 /* FIXME: assumes lma can fit into long. */
5894 xsnprintf (rs->buf, get_remote_packet_size (), "qCRC:%lx,%lx",
5895 (long) lma, (long) size);
5896 putpkt (rs->buf);
5897
5898 /* Be clever; compute the host_crc before waiting for target
5899 reply. */
5900 sectdata = xmalloc (size);
5901 old_chain = make_cleanup (xfree, sectdata);
5902 bfd_get_section_contents (exec_bfd, s, sectdata, 0, size);
5903 host_crc = crc32 ((unsigned char *) sectdata, size, 0xffffffff);
5904
5905 getpkt (&rs->buf, &rs->buf_size, 0);
5906 if (rs->buf[0] == 'E')
5907 error (_("target memory fault, section %s, range 0x%s -- 0x%s"),
5908 sectname, paddr (lma), paddr (lma + size));
5909 if (rs->buf[0] != 'C')
5910 error (_("remote target does not support this operation"));
5911
5912 for (target_crc = 0, tmp = &rs->buf[1]; *tmp; tmp++)
5913 target_crc = target_crc * 16 + fromhex (*tmp);
5914
5915 printf_filtered ("Section %s, range 0x%s -- 0x%s: ",
5916 sectname, paddr (lma), paddr (lma + size));
5917 if (host_crc == target_crc)
5918 printf_filtered ("matched.\n");
5919 else
5920 {
5921 printf_filtered ("MIS-MATCHED!\n");
5922 mismatched++;
5923 }
5924
5925 do_cleanups (old_chain);
5926 }
5927 if (mismatched > 0)
5928 warning (_("One or more sections of the remote executable does not match\n\
5929 the loaded file\n"));
5930 if (args && !matched)
5931 printf_filtered (_("No loaded section named '%s'.\n"), args);
5932 }
5933
5934 /* Write LEN bytes from WRITEBUF into OBJECT_NAME/ANNEX at OFFSET
5935 into remote target. The number of bytes written to the remote
5936 target is returned, or -1 for error. */
5937
5938 static LONGEST
5939 remote_write_qxfer (struct target_ops *ops, const char *object_name,
5940 const char *annex, const gdb_byte *writebuf,
5941 ULONGEST offset, LONGEST len,
5942 struct packet_config *packet)
5943 {
5944 int i, buf_len;
5945 ULONGEST n;
5946 gdb_byte *wbuf;
5947 struct remote_state *rs = get_remote_state ();
5948 int max_size = get_memory_write_packet_size ();
5949
5950 if (packet->support == PACKET_DISABLE)
5951 return -1;
5952
5953 /* Insert header. */
5954 i = snprintf (rs->buf, max_size,
5955 "qXfer:%s:write:%s:%s:",
5956 object_name, annex ? annex : "",
5957 phex_nz (offset, sizeof offset));
5958 max_size -= (i + 1);
5959
5960 /* Escape as much data as fits into rs->buf. */
5961 buf_len = remote_escape_output
5962 (writebuf, len, (rs->buf + i), &max_size, max_size);
5963
5964 if (putpkt_binary (rs->buf, i + buf_len) < 0
5965 || getpkt_sane (&rs->buf, &rs->buf_size, 0) < 0
5966 || packet_ok (rs->buf, packet) != PACKET_OK)
5967 return -1;
5968
5969 unpack_varlen_hex (rs->buf, &n);
5970 return n;
5971 }
5972
5973 /* Read OBJECT_NAME/ANNEX from the remote target using a qXfer packet.
5974 Data at OFFSET, of up to LEN bytes, is read into READBUF; the
5975 number of bytes read is returned, or 0 for EOF, or -1 for error.
5976 The number of bytes read may be less than LEN without indicating an
5977 EOF. PACKET is checked and updated to indicate whether the remote
5978 target supports this object. */
5979
5980 static LONGEST
5981 remote_read_qxfer (struct target_ops *ops, const char *object_name,
5982 const char *annex,
5983 gdb_byte *readbuf, ULONGEST offset, LONGEST len,
5984 struct packet_config *packet)
5985 {
5986 static char *finished_object;
5987 static char *finished_annex;
5988 static ULONGEST finished_offset;
5989
5990 struct remote_state *rs = get_remote_state ();
5991 unsigned int total = 0;
5992 LONGEST i, n, packet_len;
5993
5994 if (packet->support == PACKET_DISABLE)
5995 return -1;
5996
5997 /* Check whether we've cached an end-of-object packet that matches
5998 this request. */
5999 if (finished_object)
6000 {
6001 if (strcmp (object_name, finished_object) == 0
6002 && strcmp (annex ? annex : "", finished_annex) == 0
6003 && offset == finished_offset)
6004 return 0;
6005
6006 /* Otherwise, we're now reading something different. Discard
6007 the cache. */
6008 xfree (finished_object);
6009 xfree (finished_annex);
6010 finished_object = NULL;
6011 finished_annex = NULL;
6012 }
6013
6014 /* Request only enough to fit in a single packet. The actual data
6015 may not, since we don't know how much of it will need to be escaped;
6016 the target is free to respond with slightly less data. We subtract
6017 five to account for the response type and the protocol frame. */
6018 n = min (get_remote_packet_size () - 5, len);
6019 snprintf (rs->buf, get_remote_packet_size () - 4, "qXfer:%s:read:%s:%s,%s",
6020 object_name, annex ? annex : "",
6021 phex_nz (offset, sizeof offset),
6022 phex_nz (n, sizeof n));
6023 i = putpkt (rs->buf);
6024 if (i < 0)
6025 return -1;
6026
6027 rs->buf[0] = '\0';
6028 packet_len = getpkt_sane (&rs->buf, &rs->buf_size, 0);
6029 if (packet_len < 0 || packet_ok (rs->buf, packet) != PACKET_OK)
6030 return -1;
6031
6032 if (rs->buf[0] != 'l' && rs->buf[0] != 'm')
6033 error (_("Unknown remote qXfer reply: %s"), rs->buf);
6034
6035 /* 'm' means there is (or at least might be) more data after this
6036 batch. That does not make sense unless there's at least one byte
6037 of data in this reply. */
6038 if (rs->buf[0] == 'm' && packet_len == 1)
6039 error (_("Remote qXfer reply contained no data."));
6040
6041 /* Got some data. */
6042 i = remote_unescape_input (rs->buf + 1, packet_len - 1, readbuf, n);
6043
6044 /* 'l' is an EOF marker, possibly including a final block of data,
6045 or possibly empty. If we have the final block of a non-empty
6046 object, record this fact to bypass a subsequent partial read. */
6047 if (rs->buf[0] == 'l' && offset + i > 0)
6048 {
6049 finished_object = xstrdup (object_name);
6050 finished_annex = xstrdup (annex ? annex : "");
6051 finished_offset = offset + i;
6052 }
6053
6054 return i;
6055 }
6056
6057 static LONGEST
6058 remote_xfer_partial (struct target_ops *ops, enum target_object object,
6059 const char *annex, gdb_byte *readbuf,
6060 const gdb_byte *writebuf, ULONGEST offset, LONGEST len)
6061 {
6062 struct remote_state *rs = get_remote_state ();
6063 int i;
6064 char *p2;
6065 char query_type;
6066
6067 /* Handle memory using the standard memory routines. */
6068 if (object == TARGET_OBJECT_MEMORY)
6069 {
6070 int xfered;
6071 errno = 0;
6072
6073 /* If the remote target is connected but not running, we should
6074 pass this request down to a lower stratum (e.g. the executable
6075 file). */
6076 if (!target_has_execution)
6077 return 0;
6078
6079 if (writebuf != NULL)
6080 xfered = remote_write_bytes (offset, writebuf, len);
6081 else
6082 xfered = remote_read_bytes (offset, readbuf, len);
6083
6084 if (xfered > 0)
6085 return xfered;
6086 else if (xfered == 0 && errno == 0)
6087 return 0;
6088 else
6089 return -1;
6090 }
6091
6092 /* Handle SPU memory using qxfer packets. */
6093 if (object == TARGET_OBJECT_SPU)
6094 {
6095 if (readbuf)
6096 return remote_read_qxfer (ops, "spu", annex, readbuf, offset, len,
6097 &remote_protocol_packets
6098 [PACKET_qXfer_spu_read]);
6099 else
6100 return remote_write_qxfer (ops, "spu", annex, writebuf, offset, len,
6101 &remote_protocol_packets
6102 [PACKET_qXfer_spu_write]);
6103 }
6104
6105 /* Only handle flash writes. */
6106 if (writebuf != NULL)
6107 {
6108 LONGEST xfered;
6109
6110 switch (object)
6111 {
6112 case TARGET_OBJECT_FLASH:
6113 xfered = remote_flash_write (ops, offset, len, writebuf);
6114
6115 if (xfered > 0)
6116 return xfered;
6117 else if (xfered == 0 && errno == 0)
6118 return 0;
6119 else
6120 return -1;
6121
6122 default:
6123 return -1;
6124 }
6125 }
6126
6127 /* Map pre-existing objects onto letters. DO NOT do this for new
6128 objects!!! Instead specify new query packets. */
6129 switch (object)
6130 {
6131 case TARGET_OBJECT_AVR:
6132 query_type = 'R';
6133 break;
6134
6135 case TARGET_OBJECT_AUXV:
6136 gdb_assert (annex == NULL);
6137 return remote_read_qxfer (ops, "auxv", annex, readbuf, offset, len,
6138 &remote_protocol_packets[PACKET_qXfer_auxv]);
6139
6140 case TARGET_OBJECT_AVAILABLE_FEATURES:
6141 return remote_read_qxfer
6142 (ops, "features", annex, readbuf, offset, len,
6143 &remote_protocol_packets[PACKET_qXfer_features]);
6144
6145 case TARGET_OBJECT_LIBRARIES:
6146 return remote_read_qxfer
6147 (ops, "libraries", annex, readbuf, offset, len,
6148 &remote_protocol_packets[PACKET_qXfer_libraries]);
6149
6150 case TARGET_OBJECT_MEMORY_MAP:
6151 gdb_assert (annex == NULL);
6152 return remote_read_qxfer (ops, "memory-map", annex, readbuf, offset, len,
6153 &remote_protocol_packets[PACKET_qXfer_memory_map]);
6154
6155 default:
6156 return -1;
6157 }
6158
6159 /* Note: a zero OFFSET and LEN can be used to query the minimum
6160 buffer size. */
6161 if (offset == 0 && len == 0)
6162 return (get_remote_packet_size ());
6163 /* Minimum outbuf size is get_remote_packet_size (). If LEN is not
6164 large enough let the caller deal with it. */
6165 if (len < get_remote_packet_size ())
6166 return -1;
6167 len = get_remote_packet_size ();
6168
6169 /* Except for querying the minimum buffer size, target must be open. */
6170 if (!remote_desc)
6171 error (_("remote query is only available after target open"));
6172
6173 gdb_assert (annex != NULL);
6174 gdb_assert (readbuf != NULL);
6175
6176 p2 = rs->buf;
6177 *p2++ = 'q';
6178 *p2++ = query_type;
6179
6180 /* We used one buffer char for the remote protocol q command and
6181 another for the query type. As the remote protocol encapsulation
6182 uses 4 chars plus one extra in case we are debugging
6183 (remote_debug), we have PBUFZIZ - 7 left to pack the query
6184 string. */
6185 i = 0;
6186 while (annex[i] && (i < (get_remote_packet_size () - 8)))
6187 {
6188 /* Bad caller may have sent forbidden characters. */
6189 gdb_assert (isprint (annex[i]) && annex[i] != '$' && annex[i] != '#');
6190 *p2++ = annex[i];
6191 i++;
6192 }
6193 *p2 = '\0';
6194 gdb_assert (annex[i] == '\0');
6195
6196 i = putpkt (rs->buf);
6197 if (i < 0)
6198 return i;
6199
6200 getpkt (&rs->buf, &rs->buf_size, 0);
6201 strcpy ((char *) readbuf, rs->buf);
6202
6203 return strlen ((char *) readbuf);
6204 }
6205
6206 static void
6207 remote_rcmd (char *command,
6208 struct ui_file *outbuf)
6209 {
6210 struct remote_state *rs = get_remote_state ();
6211 char *p = rs->buf;
6212
6213 if (!remote_desc)
6214 error (_("remote rcmd is only available after target open"));
6215
6216 /* Send a NULL command across as an empty command. */
6217 if (command == NULL)
6218 command = "";
6219
6220 /* The query prefix. */
6221 strcpy (rs->buf, "qRcmd,");
6222 p = strchr (rs->buf, '\0');
6223
6224 if ((strlen (rs->buf) + strlen (command) * 2 + 8/*misc*/) > get_remote_packet_size ())
6225 error (_("\"monitor\" command ``%s'' is too long."), command);
6226
6227 /* Encode the actual command. */
6228 bin2hex ((gdb_byte *) command, p, 0);
6229
6230 if (putpkt (rs->buf) < 0)
6231 error (_("Communication problem with target."));
6232
6233 /* get/display the response */
6234 while (1)
6235 {
6236 char *buf;
6237
6238 /* XXX - see also tracepoint.c:remote_get_noisy_reply(). */
6239 rs->buf[0] = '\0';
6240 getpkt (&rs->buf, &rs->buf_size, 0);
6241 buf = rs->buf;
6242 if (buf[0] == '\0')
6243 error (_("Target does not support this command."));
6244 if (buf[0] == 'O' && buf[1] != 'K')
6245 {
6246 remote_console_output (buf + 1); /* 'O' message from stub. */
6247 continue;
6248 }
6249 if (strcmp (buf, "OK") == 0)
6250 break;
6251 if (strlen (buf) == 3 && buf[0] == 'E'
6252 && isdigit (buf[1]) && isdigit (buf[2]))
6253 {
6254 error (_("Protocol error with Rcmd"));
6255 }
6256 for (p = buf; p[0] != '\0' && p[1] != '\0'; p += 2)
6257 {
6258 char c = (fromhex (p[0]) << 4) + fromhex (p[1]);
6259 fputc_unfiltered (c, outbuf);
6260 }
6261 break;
6262 }
6263 }
6264
6265 static VEC(mem_region_s) *
6266 remote_memory_map (struct target_ops *ops)
6267 {
6268 VEC(mem_region_s) *result = NULL;
6269 char *text = target_read_stralloc (&current_target,
6270 TARGET_OBJECT_MEMORY_MAP, NULL);
6271
6272 if (text)
6273 {
6274 struct cleanup *back_to = make_cleanup (xfree, text);
6275 result = parse_memory_map (text);
6276 do_cleanups (back_to);
6277 }
6278
6279 return result;
6280 }
6281
6282 static void
6283 packet_command (char *args, int from_tty)
6284 {
6285 struct remote_state *rs = get_remote_state ();
6286
6287 if (!remote_desc)
6288 error (_("command can only be used with remote target"));
6289
6290 if (!args)
6291 error (_("remote-packet command requires packet text as argument"));
6292
6293 puts_filtered ("sending: ");
6294 print_packet (args);
6295 puts_filtered ("\n");
6296 putpkt (args);
6297
6298 getpkt (&rs->buf, &rs->buf_size, 0);
6299 puts_filtered ("received: ");
6300 print_packet (rs->buf);
6301 puts_filtered ("\n");
6302 }
6303
6304 #if 0
6305 /* --------- UNIT_TEST for THREAD oriented PACKETS ------------------- */
6306
6307 static void display_thread_info (struct gdb_ext_thread_info *info);
6308
6309 static void threadset_test_cmd (char *cmd, int tty);
6310
6311 static void threadalive_test (char *cmd, int tty);
6312
6313 static void threadlist_test_cmd (char *cmd, int tty);
6314
6315 int get_and_display_threadinfo (threadref *ref);
6316
6317 static void threadinfo_test_cmd (char *cmd, int tty);
6318
6319 static int thread_display_step (threadref *ref, void *context);
6320
6321 static void threadlist_update_test_cmd (char *cmd, int tty);
6322
6323 static void init_remote_threadtests (void);
6324
6325 #define SAMPLE_THREAD 0x05060708 /* Truncated 64 bit threadid. */
6326
6327 static void
6328 threadset_test_cmd (char *cmd, int tty)
6329 {
6330 int sample_thread = SAMPLE_THREAD;
6331
6332 printf_filtered (_("Remote threadset test\n"));
6333 set_thread (sample_thread, 1);
6334 }
6335
6336
6337 static void
6338 threadalive_test (char *cmd, int tty)
6339 {
6340 int sample_thread = SAMPLE_THREAD;
6341
6342 if (remote_thread_alive (pid_to_ptid (sample_thread)))
6343 printf_filtered ("PASS: Thread alive test\n");
6344 else
6345 printf_filtered ("FAIL: Thread alive test\n");
6346 }
6347
6348 void output_threadid (char *title, threadref *ref);
6349
6350 void
6351 output_threadid (char *title, threadref *ref)
6352 {
6353 char hexid[20];
6354
6355 pack_threadid (&hexid[0], ref); /* Convert threead id into hex. */
6356 hexid[16] = 0;
6357 printf_filtered ("%s %s\n", title, (&hexid[0]));
6358 }
6359
6360 static void
6361 threadlist_test_cmd (char *cmd, int tty)
6362 {
6363 int startflag = 1;
6364 threadref nextthread;
6365 int done, result_count;
6366 threadref threadlist[3];
6367
6368 printf_filtered ("Remote Threadlist test\n");
6369 if (!remote_get_threadlist (startflag, &nextthread, 3, &done,
6370 &result_count, &threadlist[0]))
6371 printf_filtered ("FAIL: threadlist test\n");
6372 else
6373 {
6374 threadref *scan = threadlist;
6375 threadref *limit = scan + result_count;
6376
6377 while (scan < limit)
6378 output_threadid (" thread ", scan++);
6379 }
6380 }
6381
6382 void
6383 display_thread_info (struct gdb_ext_thread_info *info)
6384 {
6385 output_threadid ("Threadid: ", &info->threadid);
6386 printf_filtered ("Name: %s\n ", info->shortname);
6387 printf_filtered ("State: %s\n", info->display);
6388 printf_filtered ("other: %s\n\n", info->more_display);
6389 }
6390
6391 int
6392 get_and_display_threadinfo (threadref *ref)
6393 {
6394 int result;
6395 int set;
6396 struct gdb_ext_thread_info threadinfo;
6397
6398 set = TAG_THREADID | TAG_EXISTS | TAG_THREADNAME
6399 | TAG_MOREDISPLAY | TAG_DISPLAY;
6400 if (0 != (result = remote_get_threadinfo (ref, set, &threadinfo)))
6401 display_thread_info (&threadinfo);
6402 return result;
6403 }
6404
6405 static void
6406 threadinfo_test_cmd (char *cmd, int tty)
6407 {
6408 int athread = SAMPLE_THREAD;
6409 threadref thread;
6410 int set;
6411
6412 int_to_threadref (&thread, athread);
6413 printf_filtered ("Remote Threadinfo test\n");
6414 if (!get_and_display_threadinfo (&thread))
6415 printf_filtered ("FAIL cannot get thread info\n");
6416 }
6417
6418 static int
6419 thread_display_step (threadref *ref, void *context)
6420 {
6421 /* output_threadid(" threadstep ",ref); *//* simple test */
6422 return get_and_display_threadinfo (ref);
6423 }
6424
6425 static void
6426 threadlist_update_test_cmd (char *cmd, int tty)
6427 {
6428 printf_filtered ("Remote Threadlist update test\n");
6429 remote_threadlist_iterator (thread_display_step, 0, CRAZY_MAX_THREADS);
6430 }
6431
6432 static void
6433 init_remote_threadtests (void)
6434 {
6435 add_com ("tlist", class_obscure, threadlist_test_cmd, _("\
6436 Fetch and print the remote list of thread identifiers, one pkt only"));
6437 add_com ("tinfo", class_obscure, threadinfo_test_cmd,
6438 _("Fetch and display info about one thread"));
6439 add_com ("tset", class_obscure, threadset_test_cmd,
6440 _("Test setting to a different thread"));
6441 add_com ("tupd", class_obscure, threadlist_update_test_cmd,
6442 _("Iterate through updating all remote thread info"));
6443 add_com ("talive", class_obscure, threadalive_test,
6444 _(" Remote thread alive test "));
6445 }
6446
6447 #endif /* 0 */
6448
6449 /* Convert a thread ID to a string. Returns the string in a static
6450 buffer. */
6451
6452 static char *
6453 remote_pid_to_str (ptid_t ptid)
6454 {
6455 static char buf[32];
6456
6457 xsnprintf (buf, sizeof buf, "Thread %d", ptid_get_pid (ptid));
6458 return buf;
6459 }
6460
6461 /* Get the address of the thread local variable in OBJFILE which is
6462 stored at OFFSET within the thread local storage for thread PTID. */
6463
6464 static CORE_ADDR
6465 remote_get_thread_local_address (ptid_t ptid, CORE_ADDR lm, CORE_ADDR offset)
6466 {
6467 if (remote_protocol_packets[PACKET_qGetTLSAddr].support != PACKET_DISABLE)
6468 {
6469 struct remote_state *rs = get_remote_state ();
6470 char *p = rs->buf;
6471 enum packet_result result;
6472
6473 strcpy (p, "qGetTLSAddr:");
6474 p += strlen (p);
6475 p += hexnumstr (p, PIDGET (ptid));
6476 *p++ = ',';
6477 p += hexnumstr (p, offset);
6478 *p++ = ',';
6479 p += hexnumstr (p, lm);
6480 *p++ = '\0';
6481
6482 putpkt (rs->buf);
6483 getpkt (&rs->buf, &rs->buf_size, 0);
6484 result = packet_ok (rs->buf, &remote_protocol_packets[PACKET_qGetTLSAddr]);
6485 if (result == PACKET_OK)
6486 {
6487 ULONGEST result;
6488
6489 unpack_varlen_hex (rs->buf, &result);
6490 return result;
6491 }
6492 else if (result == PACKET_UNKNOWN)
6493 throw_error (TLS_GENERIC_ERROR,
6494 _("Remote target doesn't support qGetTLSAddr packet"));
6495 else
6496 throw_error (TLS_GENERIC_ERROR,
6497 _("Remote target failed to process qGetTLSAddr request"));
6498 }
6499 else
6500 throw_error (TLS_GENERIC_ERROR,
6501 _("TLS not supported or disabled on this target"));
6502 /* Not reached. */
6503 return 0;
6504 }
6505
6506 /* Support for inferring a target description based on the current
6507 architecture and the size of a 'g' packet. While the 'g' packet
6508 can have any size (since optional registers can be left off the
6509 end), some sizes are easily recognizable given knowledge of the
6510 approximate architecture. */
6511
6512 struct remote_g_packet_guess
6513 {
6514 int bytes;
6515 const struct target_desc *tdesc;
6516 };
6517 typedef struct remote_g_packet_guess remote_g_packet_guess_s;
6518 DEF_VEC_O(remote_g_packet_guess_s);
6519
6520 struct remote_g_packet_data
6521 {
6522 VEC(remote_g_packet_guess_s) *guesses;
6523 };
6524
6525 static struct gdbarch_data *remote_g_packet_data_handle;
6526
6527 static void *
6528 remote_g_packet_data_init (struct obstack *obstack)
6529 {
6530 return OBSTACK_ZALLOC (obstack, struct remote_g_packet_data);
6531 }
6532
6533 void
6534 register_remote_g_packet_guess (struct gdbarch *gdbarch, int bytes,
6535 const struct target_desc *tdesc)
6536 {
6537 struct remote_g_packet_data *data
6538 = gdbarch_data (gdbarch, remote_g_packet_data_handle);
6539 struct remote_g_packet_guess new_guess, *guess;
6540 int ix;
6541
6542 gdb_assert (tdesc != NULL);
6543
6544 for (ix = 0;
6545 VEC_iterate (remote_g_packet_guess_s, data->guesses, ix, guess);
6546 ix++)
6547 if (guess->bytes == bytes)
6548 internal_error (__FILE__, __LINE__,
6549 "Duplicate g packet description added for size %d",
6550 bytes);
6551
6552 new_guess.bytes = bytes;
6553 new_guess.tdesc = tdesc;
6554 VEC_safe_push (remote_g_packet_guess_s, data->guesses, &new_guess);
6555 }
6556
6557 static const struct target_desc *
6558 remote_read_description (struct target_ops *target)
6559 {
6560 struct remote_g_packet_data *data
6561 = gdbarch_data (current_gdbarch, remote_g_packet_data_handle);
6562
6563 if (!VEC_empty (remote_g_packet_guess_s, data->guesses))
6564 {
6565 struct remote_g_packet_guess *guess;
6566 int ix;
6567 int bytes = send_g_packet ();
6568
6569 for (ix = 0;
6570 VEC_iterate (remote_g_packet_guess_s, data->guesses, ix, guess);
6571 ix++)
6572 if (guess->bytes == bytes)
6573 return guess->tdesc;
6574
6575 /* We discard the g packet. A minor optimization would be to
6576 hold on to it, and fill the register cache once we have selected
6577 an architecture, but it's too tricky to do safely. */
6578 }
6579
6580 return NULL;
6581 }
6582
6583 /* Remote file transfer support. This is host-initiated I/O, not
6584 target-initiated; for target-initiated, see remote-fileio.c. */
6585
6586 /* If *LEFT is at least the length of STRING, copy STRING to
6587 *BUFFER, update *BUFFER to point to the new end of the buffer, and
6588 decrease *LEFT. Otherwise raise an error. */
6589
6590 static void
6591 remote_buffer_add_string (char **buffer, int *left, char *string)
6592 {
6593 int len = strlen (string);
6594
6595 if (len > *left)
6596 error (_("Packet too long for target."));
6597
6598 memcpy (*buffer, string, len);
6599 *buffer += len;
6600 *left -= len;
6601
6602 /* NUL-terminate the buffer as a convenience, if there is
6603 room. */
6604 if (*left)
6605 **buffer = '\0';
6606 }
6607
6608 /* If *LEFT is large enough, hex encode LEN bytes from BYTES into
6609 *BUFFER, update *BUFFER to point to the new end of the buffer, and
6610 decrease *LEFT. Otherwise raise an error. */
6611
6612 static void
6613 remote_buffer_add_bytes (char **buffer, int *left, const gdb_byte *bytes,
6614 int len)
6615 {
6616 if (2 * len > *left)
6617 error (_("Packet too long for target."));
6618
6619 bin2hex (bytes, *buffer, len);
6620 *buffer += 2 * len;
6621 *left -= 2 * len;
6622
6623 /* NUL-terminate the buffer as a convenience, if there is
6624 room. */
6625 if (*left)
6626 **buffer = '\0';
6627 }
6628
6629 /* If *LEFT is large enough, convert VALUE to hex and add it to
6630 *BUFFER, update *BUFFER to point to the new end of the buffer, and
6631 decrease *LEFT. Otherwise raise an error. */
6632
6633 static void
6634 remote_buffer_add_int (char **buffer, int *left, ULONGEST value)
6635 {
6636 int len = hexnumlen (value);
6637
6638 if (len > *left)
6639 error (_("Packet too long for target."));
6640
6641 hexnumstr (*buffer, value);
6642 *buffer += len;
6643 *left -= len;
6644
6645 /* NUL-terminate the buffer as a convenience, if there is
6646 room. */
6647 if (*left)
6648 **buffer = '\0';
6649 }
6650
6651 /* Parse an I/O result packet from BUFFER. Set RETCODE to the return
6652 value, *REMOTE_ERRNO to the remote error number or zero if none
6653 was included, and *ATTACHMENT to point to the start of the annex
6654 if any. The length of the packet isn't needed here; there may
6655 be NUL bytes in BUFFER, but they will be after *ATTACHMENT.
6656
6657 Return 0 if the packet could be parsed, -1 if it could not. If
6658 -1 is returned, the other variables may not be initialized. */
6659
6660 static int
6661 remote_hostio_parse_result (char *buffer, int *retcode,
6662 int *remote_errno, char **attachment)
6663 {
6664 char *p, *p2;
6665
6666 *remote_errno = 0;
6667 *attachment = NULL;
6668
6669 if (buffer[0] != 'F')
6670 return -1;
6671
6672 errno = 0;
6673 *retcode = strtol (&buffer[1], &p, 16);
6674 if (errno != 0 || p == &buffer[1])
6675 return -1;
6676
6677 /* Check for ",errno". */
6678 if (*p == ',')
6679 {
6680 errno = 0;
6681 *remote_errno = strtol (p + 1, &p2, 16);
6682 if (errno != 0 || p + 1 == p2)
6683 return -1;
6684 p = p2;
6685 }
6686
6687 /* Check for ";attachment". If there is no attachment, the
6688 packet should end here. */
6689 if (*p == ';')
6690 {
6691 *attachment = p + 1;
6692 return 0;
6693 }
6694 else if (*p == '\0')
6695 return 0;
6696 else
6697 return -1;
6698 }
6699
6700 /* Send a prepared I/O packet to the target and read its response.
6701 The prepared packet is in the global RS->BUF before this function
6702 is called, and the answer is there when we return.
6703
6704 COMMAND_BYTES is the length of the request to send, which may include
6705 binary data. WHICH_PACKET is the packet configuration to check
6706 before attempting a packet. If an error occurs, *REMOTE_ERRNO
6707 is set to the error number and -1 is returned. Otherwise the value
6708 returned by the function is returned.
6709
6710 ATTACHMENT and ATTACHMENT_LEN should be non-NULL if and only if an
6711 attachment is expected; an error will be reported if there's a
6712 mismatch. If one is found, *ATTACHMENT will be set to point into
6713 the packet buffer and *ATTACHMENT_LEN will be set to the
6714 attachment's length. */
6715
6716 static int
6717 remote_hostio_send_command (int command_bytes, int which_packet,
6718 int *remote_errno, char **attachment,
6719 int *attachment_len)
6720 {
6721 struct remote_state *rs = get_remote_state ();
6722 int ret, bytes_read;
6723 char *attachment_tmp;
6724
6725 if (remote_protocol_packets[which_packet].support == PACKET_DISABLE)
6726 {
6727 *remote_errno = FILEIO_ENOSYS;
6728 return -1;
6729 }
6730
6731 putpkt_binary (rs->buf, command_bytes);
6732 bytes_read = getpkt_sane (&rs->buf, &rs->buf_size, 0);
6733
6734 /* If it timed out, something is wrong. Don't try to parse the
6735 buffer. */
6736 if (bytes_read < 0)
6737 {
6738 *remote_errno = FILEIO_EINVAL;
6739 return -1;
6740 }
6741
6742 switch (packet_ok (rs->buf, &remote_protocol_packets[which_packet]))
6743 {
6744 case PACKET_ERROR:
6745 *remote_errno = FILEIO_EINVAL;
6746 return -1;
6747 case PACKET_UNKNOWN:
6748 *remote_errno = FILEIO_ENOSYS;
6749 return -1;
6750 case PACKET_OK:
6751 break;
6752 }
6753
6754 if (remote_hostio_parse_result (rs->buf, &ret, remote_errno,
6755 &attachment_tmp))
6756 {
6757 *remote_errno = FILEIO_EINVAL;
6758 return -1;
6759 }
6760
6761 /* Make sure we saw an attachment if and only if we expected one. */
6762 if ((attachment_tmp == NULL && attachment != NULL)
6763 || (attachment_tmp != NULL && attachment == NULL))
6764 {
6765 *remote_errno = FILEIO_EINVAL;
6766 return -1;
6767 }
6768
6769 /* If an attachment was found, it must point into the packet buffer;
6770 work out how many bytes there were. */
6771 if (attachment_tmp != NULL)
6772 {
6773 *attachment = attachment_tmp;
6774 *attachment_len = bytes_read - (*attachment - rs->buf);
6775 }
6776
6777 return ret;
6778 }
6779
6780 /* Open FILENAME on the remote target, using FLAGS and MODE. Return a
6781 remote file descriptor, or -1 if an error occurs (and set
6782 *REMOTE_ERRNO). */
6783
6784 static int
6785 remote_hostio_open (const char *filename, int flags, int mode,
6786 int *remote_errno)
6787 {
6788 struct remote_state *rs = get_remote_state ();
6789 char *p = rs->buf;
6790 int left = get_remote_packet_size () - 1;
6791
6792 remote_buffer_add_string (&p, &left, "vFile:open:");
6793
6794 remote_buffer_add_bytes (&p, &left, (const gdb_byte *) filename,
6795 strlen (filename));
6796 remote_buffer_add_string (&p, &left, ",");
6797
6798 remote_buffer_add_int (&p, &left, flags);
6799 remote_buffer_add_string (&p, &left, ",");
6800
6801 remote_buffer_add_int (&p, &left, mode);
6802
6803 return remote_hostio_send_command (p - rs->buf, PACKET_vFile_open,
6804 remote_errno, NULL, NULL);
6805 }
6806
6807 /* Write up to LEN bytes from WRITE_BUF to FD on the remote target.
6808 Return the number of bytes written, or -1 if an error occurs (and
6809 set *REMOTE_ERRNO). */
6810
6811 static int
6812 remote_hostio_pwrite (int fd, const gdb_byte *write_buf, int len,
6813 ULONGEST offset, int *remote_errno)
6814 {
6815 struct remote_state *rs = get_remote_state ();
6816 char *p = rs->buf;
6817 int left = get_remote_packet_size ();
6818 int out_len;
6819
6820 remote_buffer_add_string (&p, &left, "vFile:pwrite:");
6821
6822 remote_buffer_add_int (&p, &left, fd);
6823 remote_buffer_add_string (&p, &left, ",");
6824
6825 remote_buffer_add_int (&p, &left, offset);
6826 remote_buffer_add_string (&p, &left, ",");
6827
6828 p += remote_escape_output (write_buf, len, p, &out_len,
6829 get_remote_packet_size () - (p - rs->buf));
6830
6831 return remote_hostio_send_command (p - rs->buf, PACKET_vFile_pwrite,
6832 remote_errno, NULL, NULL);
6833 }
6834
6835 /* Read up to LEN bytes FD on the remote target into READ_BUF
6836 Return the number of bytes read, or -1 if an error occurs (and
6837 set *REMOTE_ERRNO). */
6838
6839 static int
6840 remote_hostio_pread (int fd, gdb_byte *read_buf, int len,
6841 ULONGEST offset, int *remote_errno)
6842 {
6843 struct remote_state *rs = get_remote_state ();
6844 char *p = rs->buf;
6845 char *attachment;
6846 int left = get_remote_packet_size ();
6847 int ret, attachment_len;
6848 int read_len;
6849
6850 remote_buffer_add_string (&p, &left, "vFile:pread:");
6851
6852 remote_buffer_add_int (&p, &left, fd);
6853 remote_buffer_add_string (&p, &left, ",");
6854
6855 remote_buffer_add_int (&p, &left, len);
6856 remote_buffer_add_string (&p, &left, ",");
6857
6858 remote_buffer_add_int (&p, &left, offset);
6859
6860 ret = remote_hostio_send_command (p - rs->buf, PACKET_vFile_pread,
6861 remote_errno, &attachment,
6862 &attachment_len);
6863
6864 if (ret < 0)
6865 return ret;
6866
6867 read_len = remote_unescape_input (attachment, attachment_len,
6868 read_buf, len);
6869 if (read_len != ret)
6870 error (_("Read returned %d, but %d bytes."), ret, (int) read_len);
6871
6872 return ret;
6873 }
6874
6875 /* Close FD on the remote target. Return 0, or -1 if an error occurs
6876 (and set *REMOTE_ERRNO). */
6877
6878 static int
6879 remote_hostio_close (int fd, int *remote_errno)
6880 {
6881 struct remote_state *rs = get_remote_state ();
6882 char *p = rs->buf;
6883 int left = get_remote_packet_size () - 1;
6884
6885 remote_buffer_add_string (&p, &left, "vFile:close:");
6886
6887 remote_buffer_add_int (&p, &left, fd);
6888
6889 return remote_hostio_send_command (p - rs->buf, PACKET_vFile_close,
6890 remote_errno, NULL, NULL);
6891 }
6892
6893 /* Unlink FILENAME on the remote target. Return 0, or -1 if an error
6894 occurs (and set *REMOTE_ERRNO). */
6895
6896 static int
6897 remote_hostio_unlink (const char *filename, int *remote_errno)
6898 {
6899 struct remote_state *rs = get_remote_state ();
6900 char *p = rs->buf;
6901 int left = get_remote_packet_size () - 1;
6902
6903 remote_buffer_add_string (&p, &left, "vFile:unlink:");
6904
6905 remote_buffer_add_bytes (&p, &left, (const gdb_byte *) filename,
6906 strlen (filename));
6907
6908 return remote_hostio_send_command (p - rs->buf, PACKET_vFile_unlink,
6909 remote_errno, NULL, NULL);
6910 }
6911
6912 static int
6913 remote_fileio_errno_to_host (int errnum)
6914 {
6915 switch (errnum)
6916 {
6917 case FILEIO_EPERM:
6918 return EPERM;
6919 case FILEIO_ENOENT:
6920 return ENOENT;
6921 case FILEIO_EINTR:
6922 return EINTR;
6923 case FILEIO_EIO:
6924 return EIO;
6925 case FILEIO_EBADF:
6926 return EBADF;
6927 case FILEIO_EACCES:
6928 return EACCES;
6929 case FILEIO_EFAULT:
6930 return EFAULT;
6931 case FILEIO_EBUSY:
6932 return EBUSY;
6933 case FILEIO_EEXIST:
6934 return EEXIST;
6935 case FILEIO_ENODEV:
6936 return ENODEV;
6937 case FILEIO_ENOTDIR:
6938 return ENOTDIR;
6939 case FILEIO_EISDIR:
6940 return EISDIR;
6941 case FILEIO_EINVAL:
6942 return EINVAL;
6943 case FILEIO_ENFILE:
6944 return ENFILE;
6945 case FILEIO_EMFILE:
6946 return EMFILE;
6947 case FILEIO_EFBIG:
6948 return EFBIG;
6949 case FILEIO_ENOSPC:
6950 return ENOSPC;
6951 case FILEIO_ESPIPE:
6952 return ESPIPE;
6953 case FILEIO_EROFS:
6954 return EROFS;
6955 case FILEIO_ENOSYS:
6956 return ENOSYS;
6957 case FILEIO_ENAMETOOLONG:
6958 return ENAMETOOLONG;
6959 }
6960 return -1;
6961 }
6962
6963 static char *
6964 remote_hostio_error (int errnum)
6965 {
6966 int host_error = remote_fileio_errno_to_host (errnum);
6967
6968 if (host_error == -1)
6969 error (_("Unknown remote I/O error %d"), errnum);
6970 else
6971 error (_("Remote I/O error: %s"), safe_strerror (host_error));
6972 }
6973
6974 static void
6975 fclose_cleanup (void *file)
6976 {
6977 fclose (file);
6978 }
6979
6980 static void
6981 remote_hostio_close_cleanup (void *opaque)
6982 {
6983 int fd = *(int *) opaque;
6984 int remote_errno;
6985
6986 remote_hostio_close (fd, &remote_errno);
6987 }
6988
6989 void
6990 remote_file_put (const char *local_file, const char *remote_file, int from_tty)
6991 {
6992 struct cleanup *back_to, *close_cleanup;
6993 int retcode, fd, remote_errno, bytes, io_size;
6994 FILE *file;
6995 gdb_byte *buffer;
6996 int bytes_in_buffer;
6997 int saw_eof;
6998 ULONGEST offset;
6999
7000 if (!remote_desc)
7001 error (_("command can only be used with remote target"));
7002
7003 file = fopen (local_file, "rb");
7004 if (file == NULL)
7005 perror_with_name (local_file);
7006 back_to = make_cleanup (fclose_cleanup, file);
7007
7008 fd = remote_hostio_open (remote_file, (FILEIO_O_WRONLY | FILEIO_O_CREAT
7009 | FILEIO_O_TRUNC),
7010 0700, &remote_errno);
7011 if (fd == -1)
7012 remote_hostio_error (remote_errno);
7013
7014 /* Send up to this many bytes at once. They won't all fit in the
7015 remote packet limit, so we'll transfer slightly fewer. */
7016 io_size = get_remote_packet_size ();
7017 buffer = xmalloc (io_size);
7018 make_cleanup (xfree, buffer);
7019
7020 close_cleanup = make_cleanup (remote_hostio_close_cleanup, &fd);
7021
7022 bytes_in_buffer = 0;
7023 saw_eof = 0;
7024 offset = 0;
7025 while (bytes_in_buffer || !saw_eof)
7026 {
7027 if (!saw_eof)
7028 {
7029 bytes = fread (buffer + bytes_in_buffer, 1, io_size - bytes_in_buffer,
7030 file);
7031 if (bytes == 0)
7032 {
7033 if (ferror (file))
7034 error (_("Error reading %s."), local_file);
7035 else
7036 {
7037 /* EOF. Unless there is something still in the
7038 buffer from the last iteration, we are done. */
7039 saw_eof = 1;
7040 if (bytes_in_buffer == 0)
7041 break;
7042 }
7043 }
7044 }
7045 else
7046 bytes = 0;
7047
7048 bytes += bytes_in_buffer;
7049 bytes_in_buffer = 0;
7050
7051 retcode = remote_hostio_pwrite (fd, buffer, bytes, offset, &remote_errno);
7052
7053 if (retcode < 0)
7054 remote_hostio_error (remote_errno);
7055 else if (retcode == 0)
7056 error (_("Remote write of %d bytes returned 0!"), bytes);
7057 else if (retcode < bytes)
7058 {
7059 /* Short write. Save the rest of the read data for the next
7060 write. */
7061 bytes_in_buffer = bytes - retcode;
7062 memmove (buffer, buffer + retcode, bytes_in_buffer);
7063 }
7064
7065 offset += retcode;
7066 }
7067
7068 discard_cleanups (close_cleanup);
7069 if (remote_hostio_close (fd, &remote_errno))
7070 remote_hostio_error (remote_errno);
7071
7072 if (from_tty)
7073 printf_filtered (_("Successfully sent file \"%s\".\n"), local_file);
7074 do_cleanups (back_to);
7075 }
7076
7077 void
7078 remote_file_get (const char *remote_file, const char *local_file, int from_tty)
7079 {
7080 struct cleanup *back_to, *close_cleanup;
7081 int retcode, fd, remote_errno, bytes, io_size;
7082 FILE *file;
7083 gdb_byte *buffer;
7084 ULONGEST offset;
7085
7086 if (!remote_desc)
7087 error (_("command can only be used with remote target"));
7088
7089 fd = remote_hostio_open (remote_file, FILEIO_O_RDONLY, 0, &remote_errno);
7090 if (fd == -1)
7091 remote_hostio_error (remote_errno);
7092
7093 file = fopen (local_file, "wb");
7094 if (file == NULL)
7095 perror_with_name (local_file);
7096 back_to = make_cleanup (fclose_cleanup, file);
7097
7098 /* Send up to this many bytes at once. They won't all fit in the
7099 remote packet limit, so we'll transfer slightly fewer. */
7100 io_size = get_remote_packet_size ();
7101 buffer = xmalloc (io_size);
7102 make_cleanup (xfree, buffer);
7103
7104 close_cleanup = make_cleanup (remote_hostio_close_cleanup, &fd);
7105
7106 offset = 0;
7107 while (1)
7108 {
7109 bytes = remote_hostio_pread (fd, buffer, io_size, offset, &remote_errno);
7110 if (bytes == 0)
7111 /* Success, but no bytes, means end-of-file. */
7112 break;
7113 if (bytes == -1)
7114 remote_hostio_error (remote_errno);
7115
7116 offset += bytes;
7117
7118 bytes = fwrite (buffer, 1, bytes, file);
7119 if (bytes == 0)
7120 perror_with_name (local_file);
7121 }
7122
7123 discard_cleanups (close_cleanup);
7124 if (remote_hostio_close (fd, &remote_errno))
7125 remote_hostio_error (remote_errno);
7126
7127 if (from_tty)
7128 printf_filtered (_("Successfully fetched file \"%s\".\n"), remote_file);
7129 do_cleanups (back_to);
7130 }
7131
7132 void
7133 remote_file_delete (const char *remote_file, int from_tty)
7134 {
7135 int retcode, remote_errno;
7136
7137 if (!remote_desc)
7138 error (_("command can only be used with remote target"));
7139
7140 retcode = remote_hostio_unlink (remote_file, &remote_errno);
7141 if (retcode == -1)
7142 remote_hostio_error (remote_errno);
7143
7144 if (from_tty)
7145 printf_filtered (_("Successfully deleted file \"%s\".\n"), remote_file);
7146 }
7147
7148 static void
7149 remote_put_command (char *args, int from_tty)
7150 {
7151 struct cleanup *back_to;
7152 char **argv;
7153
7154 argv = buildargv (args);
7155 if (argv == NULL)
7156 nomem (0);
7157 back_to = make_cleanup_freeargv (argv);
7158 if (argv[0] == NULL || argv[1] == NULL || argv[2] != NULL)
7159 error (_("Invalid parameters to remote put"));
7160
7161 remote_file_put (argv[0], argv[1], from_tty);
7162
7163 do_cleanups (back_to);
7164 }
7165
7166 static void
7167 remote_get_command (char *args, int from_tty)
7168 {
7169 struct cleanup *back_to;
7170 char **argv;
7171
7172 argv = buildargv (args);
7173 if (argv == NULL)
7174 nomem (0);
7175 back_to = make_cleanup_freeargv (argv);
7176 if (argv[0] == NULL || argv[1] == NULL || argv[2] != NULL)
7177 error (_("Invalid parameters to remote get"));
7178
7179 remote_file_get (argv[0], argv[1], from_tty);
7180
7181 do_cleanups (back_to);
7182 }
7183
7184 static void
7185 remote_delete_command (char *args, int from_tty)
7186 {
7187 struct cleanup *back_to;
7188 char **argv;
7189
7190 argv = buildargv (args);
7191 if (argv == NULL)
7192 nomem (0);
7193 back_to = make_cleanup_freeargv (argv);
7194 if (argv[0] == NULL || argv[1] != NULL)
7195 error (_("Invalid parameters to remote delete"));
7196
7197 remote_file_delete (argv[0], from_tty);
7198
7199 do_cleanups (back_to);
7200 }
7201
7202 static void
7203 remote_command (char *args, int from_tty)
7204 {
7205 help_list (remote_cmdlist, "remote ", -1, gdb_stdout);
7206 }
7207
7208 static void
7209 init_remote_ops (void)
7210 {
7211 remote_ops.to_shortname = "remote";
7212 remote_ops.to_longname = "Remote serial target in gdb-specific protocol";
7213 remote_ops.to_doc =
7214 "Use a remote computer via a serial line, using a gdb-specific protocol.\n\
7215 Specify the serial device it is connected to\n\
7216 (e.g. /dev/ttyS0, /dev/ttya, COM1, etc.).";
7217 remote_ops.to_open = remote_open;
7218 remote_ops.to_close = remote_close;
7219 remote_ops.to_detach = remote_detach;
7220 remote_ops.to_disconnect = remote_disconnect;
7221 remote_ops.to_resume = remote_resume;
7222 remote_ops.to_wait = remote_wait;
7223 remote_ops.to_fetch_registers = remote_fetch_registers;
7224 remote_ops.to_store_registers = remote_store_registers;
7225 remote_ops.to_prepare_to_store = remote_prepare_to_store;
7226 remote_ops.deprecated_xfer_memory = remote_xfer_memory;
7227 remote_ops.to_files_info = remote_files_info;
7228 remote_ops.to_insert_breakpoint = remote_insert_breakpoint;
7229 remote_ops.to_remove_breakpoint = remote_remove_breakpoint;
7230 remote_ops.to_stopped_by_watchpoint = remote_stopped_by_watchpoint;
7231 remote_ops.to_stopped_data_address = remote_stopped_data_address;
7232 remote_ops.to_can_use_hw_breakpoint = remote_check_watch_resources;
7233 remote_ops.to_insert_hw_breakpoint = remote_insert_hw_breakpoint;
7234 remote_ops.to_remove_hw_breakpoint = remote_remove_hw_breakpoint;
7235 remote_ops.to_insert_watchpoint = remote_insert_watchpoint;
7236 remote_ops.to_remove_watchpoint = remote_remove_watchpoint;
7237 remote_ops.to_kill = remote_kill;
7238 remote_ops.to_load = generic_load;
7239 remote_ops.to_mourn_inferior = remote_mourn;
7240 remote_ops.to_thread_alive = remote_thread_alive;
7241 remote_ops.to_find_new_threads = remote_threads_info;
7242 remote_ops.to_pid_to_str = remote_pid_to_str;
7243 remote_ops.to_extra_thread_info = remote_threads_extra_info;
7244 remote_ops.to_stop = remote_stop;
7245 remote_ops.to_xfer_partial = remote_xfer_partial;
7246 remote_ops.to_rcmd = remote_rcmd;
7247 remote_ops.to_log_command = serial_log_command;
7248 remote_ops.to_get_thread_local_address = remote_get_thread_local_address;
7249 remote_ops.to_stratum = process_stratum;
7250 remote_ops.to_has_all_memory = 1;
7251 remote_ops.to_has_memory = 1;
7252 remote_ops.to_has_stack = 1;
7253 remote_ops.to_has_registers = 1;
7254 remote_ops.to_has_execution = 1;
7255 remote_ops.to_has_thread_control = tc_schedlock; /* can lock scheduler */
7256 remote_ops.to_magic = OPS_MAGIC;
7257 remote_ops.to_memory_map = remote_memory_map;
7258 remote_ops.to_flash_erase = remote_flash_erase;
7259 remote_ops.to_flash_done = remote_flash_done;
7260 remote_ops.to_read_description = remote_read_description;
7261 }
7262
7263 /* Set up the extended remote vector by making a copy of the standard
7264 remote vector and adding to it. */
7265
7266 static void
7267 init_extended_remote_ops (void)
7268 {
7269 extended_remote_ops = remote_ops;
7270
7271 extended_remote_ops.to_shortname = "extended-remote";
7272 extended_remote_ops.to_longname =
7273 "Extended remote serial target in gdb-specific protocol";
7274 extended_remote_ops.to_doc =
7275 "Use a remote computer via a serial line, using a gdb-specific protocol.\n\
7276 Specify the serial device it is connected to (e.g. /dev/ttya).",
7277 extended_remote_ops.to_open = extended_remote_open;
7278 extended_remote_ops.to_create_inferior = extended_remote_create_inferior;
7279 extended_remote_ops.to_mourn_inferior = extended_remote_mourn;
7280 extended_remote_ops.to_detach = extended_remote_detach;
7281 extended_remote_ops.to_attach = extended_remote_attach;
7282 }
7283
7284 static int
7285 remote_can_async_p (void)
7286 {
7287 /* We're async whenever the serial device is. */
7288 return (current_target.to_async_mask_value) && serial_can_async_p (remote_desc);
7289 }
7290
7291 static int
7292 remote_is_async_p (void)
7293 {
7294 /* We're async whenever the serial device is. */
7295 return (current_target.to_async_mask_value) && serial_is_async_p (remote_desc);
7296 }
7297
7298 /* Pass the SERIAL event on and up to the client. One day this code
7299 will be able to delay notifying the client of an event until the
7300 point where an entire packet has been received. */
7301
7302 static void (*async_client_callback) (enum inferior_event_type event_type,
7303 void *context);
7304 static void *async_client_context;
7305 static serial_event_ftype remote_async_serial_handler;
7306
7307 static void
7308 remote_async_serial_handler (struct serial *scb, void *context)
7309 {
7310 /* Don't propogate error information up to the client. Instead let
7311 the client find out about the error by querying the target. */
7312 async_client_callback (INF_REG_EVENT, async_client_context);
7313 }
7314
7315 static void
7316 remote_async (void (*callback) (enum inferior_event_type event_type,
7317 void *context), void *context)
7318 {
7319 if (current_target.to_async_mask_value == 0)
7320 internal_error (__FILE__, __LINE__,
7321 _("Calling remote_async when async is masked"));
7322
7323 if (callback != NULL)
7324 {
7325 serial_async (remote_desc, remote_async_serial_handler, NULL);
7326 async_client_callback = callback;
7327 async_client_context = context;
7328 }
7329 else
7330 serial_async (remote_desc, NULL, NULL);
7331 }
7332
7333 /* Target async and target extended-async.
7334
7335 This are temporary targets, until it is all tested. Eventually
7336 async support will be incorporated int the usual 'remote'
7337 target. */
7338
7339 static void
7340 init_remote_async_ops (void)
7341 {
7342 remote_async_ops.to_shortname = "async";
7343 remote_async_ops.to_longname =
7344 "Remote serial target in async version of the gdb-specific protocol";
7345 remote_async_ops.to_doc =
7346 "Use a remote computer via a serial line, using a gdb-specific protocol.\n\
7347 Specify the serial device it is connected to (e.g. /dev/ttya).";
7348 remote_async_ops.to_open = remote_async_open;
7349 remote_async_ops.to_close = remote_close;
7350 remote_async_ops.to_detach = remote_detach;
7351 remote_async_ops.to_disconnect = remote_disconnect;
7352 remote_async_ops.to_resume = remote_async_resume;
7353 remote_async_ops.to_wait = remote_async_wait;
7354 remote_async_ops.to_fetch_registers = remote_fetch_registers;
7355 remote_async_ops.to_store_registers = remote_store_registers;
7356 remote_async_ops.to_prepare_to_store = remote_prepare_to_store;
7357 remote_async_ops.deprecated_xfer_memory = remote_xfer_memory;
7358 remote_async_ops.to_files_info = remote_files_info;
7359 remote_async_ops.to_insert_breakpoint = remote_insert_breakpoint;
7360 remote_async_ops.to_remove_breakpoint = remote_remove_breakpoint;
7361 remote_async_ops.to_can_use_hw_breakpoint = remote_check_watch_resources;
7362 remote_async_ops.to_insert_hw_breakpoint = remote_insert_hw_breakpoint;
7363 remote_async_ops.to_remove_hw_breakpoint = remote_remove_hw_breakpoint;
7364 remote_async_ops.to_insert_watchpoint = remote_insert_watchpoint;
7365 remote_async_ops.to_remove_watchpoint = remote_remove_watchpoint;
7366 remote_async_ops.to_stopped_by_watchpoint = remote_stopped_by_watchpoint;
7367 remote_async_ops.to_stopped_data_address = remote_stopped_data_address;
7368 remote_async_ops.to_terminal_inferior = remote_async_terminal_inferior;
7369 remote_async_ops.to_terminal_ours = remote_async_terminal_ours;
7370 remote_async_ops.to_kill = remote_async_kill;
7371 remote_async_ops.to_load = generic_load;
7372 remote_async_ops.to_mourn_inferior = remote_async_mourn;
7373 remote_async_ops.to_thread_alive = remote_thread_alive;
7374 remote_async_ops.to_find_new_threads = remote_threads_info;
7375 remote_async_ops.to_pid_to_str = remote_pid_to_str;
7376 remote_async_ops.to_extra_thread_info = remote_threads_extra_info;
7377 remote_async_ops.to_stop = remote_stop;
7378 remote_async_ops.to_xfer_partial = remote_xfer_partial;
7379 remote_async_ops.to_rcmd = remote_rcmd;
7380 remote_async_ops.to_stratum = process_stratum;
7381 remote_async_ops.to_has_all_memory = 1;
7382 remote_async_ops.to_has_memory = 1;
7383 remote_async_ops.to_has_stack = 1;
7384 remote_async_ops.to_has_registers = 1;
7385 remote_async_ops.to_has_execution = 1;
7386 remote_async_ops.to_has_thread_control = tc_schedlock; /* can lock scheduler */
7387 remote_async_ops.to_can_async_p = remote_can_async_p;
7388 remote_async_ops.to_is_async_p = remote_is_async_p;
7389 remote_async_ops.to_async = remote_async;
7390 remote_async_ops.to_async_mask_value = 1;
7391 remote_async_ops.to_magic = OPS_MAGIC;
7392 remote_async_ops.to_memory_map = remote_memory_map;
7393 remote_async_ops.to_flash_erase = remote_flash_erase;
7394 remote_async_ops.to_flash_done = remote_flash_done;
7395 remote_async_ops.to_read_description = remote_read_description;
7396 }
7397
7398 /* Set up the async extended remote vector by making a copy of the standard
7399 remote vector and adding to it. */
7400
7401 static void
7402 init_extended_async_remote_ops (void)
7403 {
7404 extended_async_remote_ops = remote_async_ops;
7405
7406 extended_async_remote_ops.to_shortname = "extended-async";
7407 extended_async_remote_ops.to_longname =
7408 "Extended remote serial target in async gdb-specific protocol";
7409 extended_async_remote_ops.to_doc =
7410 "Use a remote computer via a serial line, using an async gdb-specific protocol.\n\
7411 Specify the serial device it is connected to (e.g. /dev/ttya).",
7412 extended_async_remote_ops.to_open = extended_remote_async_open;
7413 extended_async_remote_ops.to_create_inferior = extended_remote_async_create_inferior;
7414 extended_async_remote_ops.to_mourn_inferior = extended_async_remote_mourn;
7415 extended_async_remote_ops.to_detach = extended_remote_detach;
7416 extended_async_remote_ops.to_attach = extended_async_remote_attach;
7417 }
7418
7419 static void
7420 set_remote_cmd (char *args, int from_tty)
7421 {
7422 help_list (remote_set_cmdlist, "set remote ", -1, gdb_stdout);
7423 }
7424
7425 static void
7426 show_remote_cmd (char *args, int from_tty)
7427 {
7428 /* We can't just use cmd_show_list here, because we want to skip
7429 the redundant "show remote Z-packet" and the legacy aliases. */
7430 struct cleanup *showlist_chain;
7431 struct cmd_list_element *list = remote_show_cmdlist;
7432
7433 showlist_chain = make_cleanup_ui_out_tuple_begin_end (uiout, "showlist");
7434 for (; list != NULL; list = list->next)
7435 if (strcmp (list->name, "Z-packet") == 0)
7436 continue;
7437 else if (list->type == not_set_cmd)
7438 /* Alias commands are exactly like the original, except they
7439 don't have the normal type. */
7440 continue;
7441 else
7442 {
7443 struct cleanup *option_chain
7444 = make_cleanup_ui_out_tuple_begin_end (uiout, "option");
7445 ui_out_field_string (uiout, "name", list->name);
7446 ui_out_text (uiout, ": ");
7447 if (list->type == show_cmd)
7448 do_setshow_command ((char *) NULL, from_tty, list);
7449 else
7450 cmd_func (list, NULL, from_tty);
7451 /* Close the tuple. */
7452 do_cleanups (option_chain);
7453 }
7454
7455 /* Close the tuple. */
7456 do_cleanups (showlist_chain);
7457 }
7458
7459
7460 /* Function to be called whenever a new objfile (shlib) is detected. */
7461 static void
7462 remote_new_objfile (struct objfile *objfile)
7463 {
7464 if (remote_desc != 0) /* Have a remote connection. */
7465 remote_check_symbols (objfile);
7466 }
7467
7468 void
7469 _initialize_remote (void)
7470 {
7471 struct remote_state *rs;
7472
7473 /* architecture specific data */
7474 remote_gdbarch_data_handle =
7475 gdbarch_data_register_post_init (init_remote_state);
7476 remote_g_packet_data_handle =
7477 gdbarch_data_register_pre_init (remote_g_packet_data_init);
7478
7479 /* Initialize the per-target state. At the moment there is only one
7480 of these, not one per target. Only one target is active at a
7481 time. The default buffer size is unimportant; it will be expanded
7482 whenever a larger buffer is needed. */
7483 rs = get_remote_state_raw ();
7484 rs->buf_size = 400;
7485 rs->buf = xmalloc (rs->buf_size);
7486
7487 init_remote_ops ();
7488 add_target (&remote_ops);
7489
7490 init_extended_remote_ops ();
7491 add_target (&extended_remote_ops);
7492
7493 init_remote_async_ops ();
7494 add_target (&remote_async_ops);
7495
7496 init_extended_async_remote_ops ();
7497 add_target (&extended_async_remote_ops);
7498
7499 /* Hook into new objfile notification. */
7500 observer_attach_new_objfile (remote_new_objfile);
7501
7502 #if 0
7503 init_remote_threadtests ();
7504 #endif
7505
7506 /* set/show remote ... */
7507
7508 add_prefix_cmd ("remote", class_maintenance, set_remote_cmd, _("\
7509 Remote protocol specific variables\n\
7510 Configure various remote-protocol specific variables such as\n\
7511 the packets being used"),
7512 &remote_set_cmdlist, "set remote ",
7513 0 /* allow-unknown */, &setlist);
7514 add_prefix_cmd ("remote", class_maintenance, show_remote_cmd, _("\
7515 Remote protocol specific variables\n\
7516 Configure various remote-protocol specific variables such as\n\
7517 the packets being used"),
7518 &remote_show_cmdlist, "show remote ",
7519 0 /* allow-unknown */, &showlist);
7520
7521 add_cmd ("compare-sections", class_obscure, compare_sections_command, _("\
7522 Compare section data on target to the exec file.\n\
7523 Argument is a single section name (default: all loaded sections)."),
7524 &cmdlist);
7525
7526 add_cmd ("packet", class_maintenance, packet_command, _("\
7527 Send an arbitrary packet to a remote target.\n\
7528 maintenance packet TEXT\n\
7529 If GDB is talking to an inferior via the GDB serial protocol, then\n\
7530 this command sends the string TEXT to the inferior, and displays the\n\
7531 response packet. GDB supplies the initial `$' character, and the\n\
7532 terminating `#' character and checksum."),
7533 &maintenancelist);
7534
7535 add_setshow_boolean_cmd ("remotebreak", no_class, &remote_break, _("\
7536 Set whether to send break if interrupted."), _("\
7537 Show whether to send break if interrupted."), _("\
7538 If set, a break, instead of a cntrl-c, is sent to the remote target."),
7539 NULL, NULL, /* FIXME: i18n: Whether to send break if interrupted is %s. */
7540 &setlist, &showlist);
7541
7542 /* Install commands for configuring memory read/write packets. */
7543
7544 add_cmd ("remotewritesize", no_class, set_memory_write_packet_size, _("\
7545 Set the maximum number of bytes per memory write packet (deprecated)."),
7546 &setlist);
7547 add_cmd ("remotewritesize", no_class, show_memory_write_packet_size, _("\
7548 Show the maximum number of bytes per memory write packet (deprecated)."),
7549 &showlist);
7550 add_cmd ("memory-write-packet-size", no_class,
7551 set_memory_write_packet_size, _("\
7552 Set the maximum number of bytes per memory-write packet.\n\
7553 Specify the number of bytes in a packet or 0 (zero) for the\n\
7554 default packet size. The actual limit is further reduced\n\
7555 dependent on the target. Specify ``fixed'' to disable the\n\
7556 further restriction and ``limit'' to enable that restriction."),
7557 &remote_set_cmdlist);
7558 add_cmd ("memory-read-packet-size", no_class,
7559 set_memory_read_packet_size, _("\
7560 Set the maximum number of bytes per memory-read packet.\n\
7561 Specify the number of bytes in a packet or 0 (zero) for the\n\
7562 default packet size. The actual limit is further reduced\n\
7563 dependent on the target. Specify ``fixed'' to disable the\n\
7564 further restriction and ``limit'' to enable that restriction."),
7565 &remote_set_cmdlist);
7566 add_cmd ("memory-write-packet-size", no_class,
7567 show_memory_write_packet_size,
7568 _("Show the maximum number of bytes per memory-write packet."),
7569 &remote_show_cmdlist);
7570 add_cmd ("memory-read-packet-size", no_class,
7571 show_memory_read_packet_size,
7572 _("Show the maximum number of bytes per memory-read packet."),
7573 &remote_show_cmdlist);
7574
7575 add_setshow_zinteger_cmd ("hardware-watchpoint-limit", no_class,
7576 &remote_hw_watchpoint_limit, _("\
7577 Set the maximum number of target hardware watchpoints."), _("\
7578 Show the maximum number of target hardware watchpoints."), _("\
7579 Specify a negative limit for unlimited."),
7580 NULL, NULL, /* FIXME: i18n: The maximum number of target hardware watchpoints is %s. */
7581 &remote_set_cmdlist, &remote_show_cmdlist);
7582 add_setshow_zinteger_cmd ("hardware-breakpoint-limit", no_class,
7583 &remote_hw_breakpoint_limit, _("\
7584 Set the maximum number of target hardware breakpoints."), _("\
7585 Show the maximum number of target hardware breakpoints."), _("\
7586 Specify a negative limit for unlimited."),
7587 NULL, NULL, /* FIXME: i18n: The maximum number of target hardware breakpoints is %s. */
7588 &remote_set_cmdlist, &remote_show_cmdlist);
7589
7590 add_setshow_integer_cmd ("remoteaddresssize", class_obscure,
7591 &remote_address_size, _("\
7592 Set the maximum size of the address (in bits) in a memory packet."), _("\
7593 Show the maximum size of the address (in bits) in a memory packet."), NULL,
7594 NULL,
7595 NULL, /* FIXME: i18n: */
7596 &setlist, &showlist);
7597
7598 add_packet_config_cmd (&remote_protocol_packets[PACKET_X],
7599 "X", "binary-download", 1);
7600
7601 add_packet_config_cmd (&remote_protocol_packets[PACKET_vCont],
7602 "vCont", "verbose-resume", 0);
7603
7604 add_packet_config_cmd (&remote_protocol_packets[PACKET_QPassSignals],
7605 "QPassSignals", "pass-signals", 0);
7606
7607 add_packet_config_cmd (&remote_protocol_packets[PACKET_qSymbol],
7608 "qSymbol", "symbol-lookup", 0);
7609
7610 add_packet_config_cmd (&remote_protocol_packets[PACKET_P],
7611 "P", "set-register", 1);
7612
7613 add_packet_config_cmd (&remote_protocol_packets[PACKET_p],
7614 "p", "fetch-register", 1);
7615
7616 add_packet_config_cmd (&remote_protocol_packets[PACKET_Z0],
7617 "Z0", "software-breakpoint", 0);
7618
7619 add_packet_config_cmd (&remote_protocol_packets[PACKET_Z1],
7620 "Z1", "hardware-breakpoint", 0);
7621
7622 add_packet_config_cmd (&remote_protocol_packets[PACKET_Z2],
7623 "Z2", "write-watchpoint", 0);
7624
7625 add_packet_config_cmd (&remote_protocol_packets[PACKET_Z3],
7626 "Z3", "read-watchpoint", 0);
7627
7628 add_packet_config_cmd (&remote_protocol_packets[PACKET_Z4],
7629 "Z4", "access-watchpoint", 0);
7630
7631 add_packet_config_cmd (&remote_protocol_packets[PACKET_qXfer_auxv],
7632 "qXfer:auxv:read", "read-aux-vector", 0);
7633
7634 add_packet_config_cmd (&remote_protocol_packets[PACKET_qXfer_features],
7635 "qXfer:features:read", "target-features", 0);
7636
7637 add_packet_config_cmd (&remote_protocol_packets[PACKET_qXfer_libraries],
7638 "qXfer:libraries:read", "library-info", 0);
7639
7640 add_packet_config_cmd (&remote_protocol_packets[PACKET_qXfer_memory_map],
7641 "qXfer:memory-map:read", "memory-map", 0);
7642
7643 add_packet_config_cmd (&remote_protocol_packets[PACKET_qXfer_spu_read],
7644 "qXfer:spu:read", "read-spu-object", 0);
7645
7646 add_packet_config_cmd (&remote_protocol_packets[PACKET_qXfer_spu_write],
7647 "qXfer:spu:write", "write-spu-object", 0);
7648
7649 add_packet_config_cmd (&remote_protocol_packets[PACKET_qGetTLSAddr],
7650 "qGetTLSAddr", "get-thread-local-storage-address",
7651 0);
7652
7653 add_packet_config_cmd (&remote_protocol_packets[PACKET_qSupported],
7654 "qSupported", "supported-packets", 0);
7655
7656 add_packet_config_cmd (&remote_protocol_packets[PACKET_vFile_open],
7657 "vFile:open", "hostio-open", 0);
7658
7659 add_packet_config_cmd (&remote_protocol_packets[PACKET_vFile_pread],
7660 "vFile:pread", "hostio-pread", 0);
7661
7662 add_packet_config_cmd (&remote_protocol_packets[PACKET_vFile_pwrite],
7663 "vFile:pwrite", "hostio-pwrite", 0);
7664
7665 add_packet_config_cmd (&remote_protocol_packets[PACKET_vFile_close],
7666 "vFile:close", "hostio-close", 0);
7667
7668 add_packet_config_cmd (&remote_protocol_packets[PACKET_vFile_unlink],
7669 "vFile:unlink", "hostio-unlink", 0);
7670
7671 add_packet_config_cmd (&remote_protocol_packets[PACKET_vAttach],
7672 "vAttach", "attach", 0);
7673
7674 add_packet_config_cmd (&remote_protocol_packets[PACKET_vRun],
7675 "vRun", "run", 0);
7676
7677 /* Keep the old ``set remote Z-packet ...'' working. Each individual
7678 Z sub-packet has its own set and show commands, but users may
7679 have sets to this variable in their .gdbinit files (or in their
7680 documentation). */
7681 add_setshow_auto_boolean_cmd ("Z-packet", class_obscure,
7682 &remote_Z_packet_detect, _("\
7683 Set use of remote protocol `Z' packets"), _("\
7684 Show use of remote protocol `Z' packets "), _("\
7685 When set, GDB will attempt to use the remote breakpoint and watchpoint\n\
7686 packets."),
7687 set_remote_protocol_Z_packet_cmd,
7688 show_remote_protocol_Z_packet_cmd, /* FIXME: i18n: Use of remote protocol `Z' packets is %s. */
7689 &remote_set_cmdlist, &remote_show_cmdlist);
7690
7691 add_prefix_cmd ("remote", class_files, remote_command, _("\
7692 Manipulate files on the remote system\n\
7693 Transfer files to and from the remote target system."),
7694 &remote_cmdlist, "remote ",
7695 0 /* allow-unknown */, &cmdlist);
7696
7697 add_cmd ("put", class_files, remote_put_command,
7698 _("Copy a local file to the remote system."),
7699 &remote_cmdlist);
7700
7701 add_cmd ("get", class_files, remote_get_command,
7702 _("Copy a remote file to the local system."),
7703 &remote_cmdlist);
7704
7705 add_cmd ("delete", class_files, remote_delete_command,
7706 _("Delete a remote file."),
7707 &remote_cmdlist);
7708
7709 remote_exec_file = xstrdup ("");
7710 add_setshow_string_noescape_cmd ("exec-file", class_files,
7711 &remote_exec_file, _("\
7712 Set the remote pathname for \"run\""), _("\
7713 Show the remote pathname for \"run\""), NULL, NULL, NULL,
7714 &remote_set_cmdlist, &remote_show_cmdlist);
7715
7716 /* Eventually initialize fileio. See fileio.c */
7717 initialize_remote_fileio (remote_set_cmdlist, remote_show_cmdlist);
7718 }