* linux-nat.c (linux_nat_terminal_inferior)
[binutils-gdb.git] / gdb / remote.c
1 /* Remote target communications for serial-line targets in custom GDB protocol
2
3 Copyright (C) 1988, 1989, 1990, 1991, 1992, 1993, 1994, 1995, 1996, 1997,
4 1998, 1999, 2000, 2001, 2002, 2003, 2004, 2005, 2006, 2007, 2008, 2009
5 Free Software Foundation, Inc.
6
7 This file is part of GDB.
8
9 This program is free software; you can redistribute it and/or modify
10 it under the terms of the GNU General Public License as published by
11 the Free Software Foundation; either version 3 of the License, or
12 (at your option) any later version.
13
14 This program is distributed in the hope that it will be useful,
15 but WITHOUT ANY WARRANTY; without even the implied warranty of
16 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
17 GNU General Public License for more details.
18
19 You should have received a copy of the GNU General Public License
20 along with this program. If not, see <http://www.gnu.org/licenses/>. */
21
22 /* See the GDB User Guide for details of the GDB remote protocol. */
23
24 #include "defs.h"
25 #include "gdb_string.h"
26 #include <ctype.h>
27 #include <fcntl.h>
28 #include "inferior.h"
29 #include "bfd.h"
30 #include "symfile.h"
31 #include "exceptions.h"
32 #include "target.h"
33 /*#include "terminal.h" */
34 #include "gdbcmd.h"
35 #include "objfiles.h"
36 #include "gdb-stabs.h"
37 #include "gdbthread.h"
38 #include "remote.h"
39 #include "regcache.h"
40 #include "value.h"
41 #include "gdb_assert.h"
42 #include "observer.h"
43 #include "solib.h"
44 #include "cli/cli-decode.h"
45 #include "cli/cli-setshow.h"
46 #include "target-descriptions.h"
47
48 #include <ctype.h>
49 #include <sys/time.h>
50
51 #include "event-loop.h"
52 #include "event-top.h"
53 #include "inf-loop.h"
54
55 #include <signal.h>
56 #include "serial.h"
57
58 #include "gdbcore.h" /* for exec_bfd */
59
60 #include "remote-fileio.h"
61 #include "gdb/fileio.h"
62 #include "gdb_stat.h"
63
64 #include "memory-map.h"
65
66 /* The size to align memory write packets, when practical. The protocol
67 does not guarantee any alignment, and gdb will generate short
68 writes and unaligned writes, but even as a best-effort attempt this
69 can improve bulk transfers. For instance, if a write is misaligned
70 relative to the target's data bus, the stub may need to make an extra
71 round trip fetching data from the target. This doesn't make a
72 huge difference, but it's easy to do, so we try to be helpful.
73
74 The alignment chosen is arbitrary; usually data bus width is
75 important here, not the possibly larger cache line size. */
76 enum { REMOTE_ALIGN_WRITES = 16 };
77
78 /* Prototypes for local functions. */
79 static void cleanup_sigint_signal_handler (void *dummy);
80 static void initialize_sigint_signal_handler (void);
81 static int getpkt_sane (char **buf, long *sizeof_buf, int forever);
82 static int getpkt_or_notif_sane (char **buf, long *sizeof_buf,
83 int forever);
84
85 static void handle_remote_sigint (int);
86 static void handle_remote_sigint_twice (int);
87 static void async_remote_interrupt (gdb_client_data);
88 void async_remote_interrupt_twice (gdb_client_data);
89
90 static void remote_files_info (struct target_ops *ignore);
91
92 static void remote_prepare_to_store (struct regcache *regcache);
93
94 static void remote_open (char *name, int from_tty);
95
96 static void extended_remote_open (char *name, int from_tty);
97
98 static void remote_open_1 (char *, int, struct target_ops *, int extended_p);
99
100 static void remote_close (int quitting);
101
102 static void remote_mourn (struct target_ops *ops);
103
104 static void extended_remote_restart (void);
105
106 static void extended_remote_mourn (struct target_ops *);
107
108 static void remote_mourn_1 (struct target_ops *);
109
110 static void remote_send (char **buf, long *sizeof_buf_p);
111
112 static int readchar (int timeout);
113
114 static void remote_kill (struct target_ops *ops);
115
116 static int tohex (int nib);
117
118 static int remote_can_async_p (void);
119
120 static int remote_is_async_p (void);
121
122 static void remote_async (void (*callback) (enum inferior_event_type event_type,
123 void *context), void *context);
124
125 static int remote_async_mask (int new_mask);
126
127 static void remote_detach (struct target_ops *ops, char *args, int from_tty);
128
129 static void remote_interrupt (int signo);
130
131 static void remote_interrupt_twice (int signo);
132
133 static void interrupt_query (void);
134
135 static void set_general_thread (struct ptid ptid);
136 static void set_continue_thread (struct ptid ptid);
137
138 static void get_offsets (void);
139
140 static void skip_frame (void);
141
142 static long read_frame (char **buf_p, long *sizeof_buf);
143
144 static int hexnumlen (ULONGEST num);
145
146 static void init_remote_ops (void);
147
148 static void init_extended_remote_ops (void);
149
150 static void remote_stop (ptid_t);
151
152 static int ishex (int ch, int *val);
153
154 static int stubhex (int ch);
155
156 static int hexnumstr (char *, ULONGEST);
157
158 static int hexnumnstr (char *, ULONGEST, int);
159
160 static CORE_ADDR remote_address_masked (CORE_ADDR);
161
162 static void print_packet (char *);
163
164 static unsigned long crc32 (unsigned char *, int, unsigned int);
165
166 static void compare_sections_command (char *, int);
167
168 static void packet_command (char *, int);
169
170 static int stub_unpack_int (char *buff, int fieldlength);
171
172 static ptid_t remote_current_thread (ptid_t oldptid);
173
174 static void remote_find_new_threads (void);
175
176 static void record_currthread (ptid_t currthread);
177
178 static int fromhex (int a);
179
180 static int hex2bin (const char *hex, gdb_byte *bin, int count);
181
182 static int bin2hex (const gdb_byte *bin, char *hex, int count);
183
184 static int putpkt_binary (char *buf, int cnt);
185
186 static void check_binary_download (CORE_ADDR addr);
187
188 struct packet_config;
189
190 static void show_packet_config_cmd (struct packet_config *config);
191
192 static void update_packet_config (struct packet_config *config);
193
194 static void set_remote_protocol_packet_cmd (char *args, int from_tty,
195 struct cmd_list_element *c);
196
197 static void show_remote_protocol_packet_cmd (struct ui_file *file,
198 int from_tty,
199 struct cmd_list_element *c,
200 const char *value);
201
202 static char *write_ptid (char *buf, const char *endbuf, ptid_t ptid);
203 static ptid_t read_ptid (char *buf, char **obuf);
204
205 static void remote_query_supported (void);
206
207 static void remote_check_symbols (struct objfile *objfile);
208
209 void _initialize_remote (void);
210
211 struct stop_reply;
212 static struct stop_reply *stop_reply_xmalloc (void);
213 static void stop_reply_xfree (struct stop_reply *);
214 static void do_stop_reply_xfree (void *arg);
215 static void remote_parse_stop_reply (char *buf, struct stop_reply *);
216 static void push_stop_reply (struct stop_reply *);
217 static void remote_get_pending_stop_replies (void);
218 static void discard_pending_stop_replies (int pid);
219 static int peek_stop_reply (ptid_t ptid);
220
221 static void remote_async_inferior_event_handler (gdb_client_data);
222 static void remote_async_get_pending_events_handler (gdb_client_data);
223
224 static void remote_terminal_ours (void);
225
226 static int remote_read_description_p (struct target_ops *target);
227
228 /* The non-stop remote protocol provisions for one pending stop reply.
229 This is where we keep it until it is acknowledged. */
230
231 static struct stop_reply *pending_stop_reply = NULL;
232
233 /* For "remote". */
234
235 static struct cmd_list_element *remote_cmdlist;
236
237 /* For "set remote" and "show remote". */
238
239 static struct cmd_list_element *remote_set_cmdlist;
240 static struct cmd_list_element *remote_show_cmdlist;
241
242 /* Description of the remote protocol state for the currently
243 connected target. This is per-target state, and independent of the
244 selected architecture. */
245
246 struct remote_state
247 {
248 /* A buffer to use for incoming packets, and its current size. The
249 buffer is grown dynamically for larger incoming packets.
250 Outgoing packets may also be constructed in this buffer.
251 BUF_SIZE is always at least REMOTE_PACKET_SIZE;
252 REMOTE_PACKET_SIZE should be used to limit the length of outgoing
253 packets. */
254 char *buf;
255 long buf_size;
256
257 /* If we negotiated packet size explicitly (and thus can bypass
258 heuristics for the largest packet size that will not overflow
259 a buffer in the stub), this will be set to that packet size.
260 Otherwise zero, meaning to use the guessed size. */
261 long explicit_packet_size;
262
263 /* remote_wait is normally called when the target is running and
264 waits for a stop reply packet. But sometimes we need to call it
265 when the target is already stopped. We can send a "?" packet
266 and have remote_wait read the response. Or, if we already have
267 the response, we can stash it in BUF and tell remote_wait to
268 skip calling getpkt. This flag is set when BUF contains a
269 stop reply packet and the target is not waiting. */
270 int cached_wait_status;
271
272 /* True, if in no ack mode. That is, neither GDB nor the stub will
273 expect acks from each other. The connection is assumed to be
274 reliable. */
275 int noack_mode;
276
277 /* True if we're connected in extended remote mode. */
278 int extended;
279
280 /* True if the stub reported support for multi-process
281 extensions. */
282 int multi_process_aware;
283
284 /* True if we resumed the target and we're waiting for the target to
285 stop. In the mean time, we can't start another command/query.
286 The remote server wouldn't be ready to process it, so we'd
287 timeout waiting for a reply that would never come and eventually
288 we'd close the connection. This can happen in asynchronous mode
289 because we allow GDB commands while the target is running. */
290 int waiting_for_stop_reply;
291
292 /* True if the stub reports support for non-stop mode. */
293 int non_stop_aware;
294
295 /* True if the stub reports support for vCont;t. */
296 int support_vCont_t;
297 };
298
299 /* Returns true if the multi-process extensions are in effect. */
300 static int
301 remote_multi_process_p (struct remote_state *rs)
302 {
303 return rs->extended && rs->multi_process_aware;
304 }
305
306 /* This data could be associated with a target, but we do not always
307 have access to the current target when we need it, so for now it is
308 static. This will be fine for as long as only one target is in use
309 at a time. */
310 static struct remote_state remote_state;
311
312 static struct remote_state *
313 get_remote_state_raw (void)
314 {
315 return &remote_state;
316 }
317
318 /* Description of the remote protocol for a given architecture. */
319
320 struct packet_reg
321 {
322 long offset; /* Offset into G packet. */
323 long regnum; /* GDB's internal register number. */
324 LONGEST pnum; /* Remote protocol register number. */
325 int in_g_packet; /* Always part of G packet. */
326 /* long size in bytes; == register_size (target_gdbarch, regnum);
327 at present. */
328 /* char *name; == gdbarch_register_name (target_gdbarch, regnum);
329 at present. */
330 };
331
332 struct remote_arch_state
333 {
334 /* Description of the remote protocol registers. */
335 long sizeof_g_packet;
336
337 /* Description of the remote protocol registers indexed by REGNUM
338 (making an array gdbarch_num_regs in size). */
339 struct packet_reg *regs;
340
341 /* This is the size (in chars) of the first response to the ``g''
342 packet. It is used as a heuristic when determining the maximum
343 size of memory-read and memory-write packets. A target will
344 typically only reserve a buffer large enough to hold the ``g''
345 packet. The size does not include packet overhead (headers and
346 trailers). */
347 long actual_register_packet_size;
348
349 /* This is the maximum size (in chars) of a non read/write packet.
350 It is also used as a cap on the size of read/write packets. */
351 long remote_packet_size;
352 };
353
354
355 /* Handle for retreving the remote protocol data from gdbarch. */
356 static struct gdbarch_data *remote_gdbarch_data_handle;
357
358 static struct remote_arch_state *
359 get_remote_arch_state (void)
360 {
361 return gdbarch_data (target_gdbarch, remote_gdbarch_data_handle);
362 }
363
364 /* Fetch the global remote target state. */
365
366 static struct remote_state *
367 get_remote_state (void)
368 {
369 /* Make sure that the remote architecture state has been
370 initialized, because doing so might reallocate rs->buf. Any
371 function which calls getpkt also needs to be mindful of changes
372 to rs->buf, but this call limits the number of places which run
373 into trouble. */
374 get_remote_arch_state ();
375
376 return get_remote_state_raw ();
377 }
378
379 static int
380 compare_pnums (const void *lhs_, const void *rhs_)
381 {
382 const struct packet_reg * const *lhs = lhs_;
383 const struct packet_reg * const *rhs = rhs_;
384
385 if ((*lhs)->pnum < (*rhs)->pnum)
386 return -1;
387 else if ((*lhs)->pnum == (*rhs)->pnum)
388 return 0;
389 else
390 return 1;
391 }
392
393 static void *
394 init_remote_state (struct gdbarch *gdbarch)
395 {
396 int regnum, num_remote_regs, offset;
397 struct remote_state *rs = get_remote_state_raw ();
398 struct remote_arch_state *rsa;
399 struct packet_reg **remote_regs;
400
401 rsa = GDBARCH_OBSTACK_ZALLOC (gdbarch, struct remote_arch_state);
402
403 /* Use the architecture to build a regnum<->pnum table, which will be
404 1:1 unless a feature set specifies otherwise. */
405 rsa->regs = GDBARCH_OBSTACK_CALLOC (gdbarch,
406 gdbarch_num_regs (gdbarch),
407 struct packet_reg);
408 for (regnum = 0; regnum < gdbarch_num_regs (gdbarch); regnum++)
409 {
410 struct packet_reg *r = &rsa->regs[regnum];
411
412 if (register_size (gdbarch, regnum) == 0)
413 /* Do not try to fetch zero-sized (placeholder) registers. */
414 r->pnum = -1;
415 else
416 r->pnum = gdbarch_remote_register_number (gdbarch, regnum);
417
418 r->regnum = regnum;
419 }
420
421 /* Define the g/G packet format as the contents of each register
422 with a remote protocol number, in order of ascending protocol
423 number. */
424
425 remote_regs = alloca (gdbarch_num_regs (gdbarch)
426 * sizeof (struct packet_reg *));
427 for (num_remote_regs = 0, regnum = 0;
428 regnum < gdbarch_num_regs (gdbarch);
429 regnum++)
430 if (rsa->regs[regnum].pnum != -1)
431 remote_regs[num_remote_regs++] = &rsa->regs[regnum];
432
433 qsort (remote_regs, num_remote_regs, sizeof (struct packet_reg *),
434 compare_pnums);
435
436 for (regnum = 0, offset = 0; regnum < num_remote_regs; regnum++)
437 {
438 remote_regs[regnum]->in_g_packet = 1;
439 remote_regs[regnum]->offset = offset;
440 offset += register_size (gdbarch, remote_regs[regnum]->regnum);
441 }
442
443 /* Record the maximum possible size of the g packet - it may turn out
444 to be smaller. */
445 rsa->sizeof_g_packet = offset;
446
447 /* Default maximum number of characters in a packet body. Many
448 remote stubs have a hardwired buffer size of 400 bytes
449 (c.f. BUFMAX in m68k-stub.c and i386-stub.c). BUFMAX-1 is used
450 as the maximum packet-size to ensure that the packet and an extra
451 NUL character can always fit in the buffer. This stops GDB
452 trashing stubs that try to squeeze an extra NUL into what is
453 already a full buffer (As of 1999-12-04 that was most stubs). */
454 rsa->remote_packet_size = 400 - 1;
455
456 /* This one is filled in when a ``g'' packet is received. */
457 rsa->actual_register_packet_size = 0;
458
459 /* Should rsa->sizeof_g_packet needs more space than the
460 default, adjust the size accordingly. Remember that each byte is
461 encoded as two characters. 32 is the overhead for the packet
462 header / footer. NOTE: cagney/1999-10-26: I suspect that 8
463 (``$NN:G...#NN'') is a better guess, the below has been padded a
464 little. */
465 if (rsa->sizeof_g_packet > ((rsa->remote_packet_size - 32) / 2))
466 rsa->remote_packet_size = (rsa->sizeof_g_packet * 2 + 32);
467
468 /* Make sure that the packet buffer is plenty big enough for
469 this architecture. */
470 if (rs->buf_size < rsa->remote_packet_size)
471 {
472 rs->buf_size = 2 * rsa->remote_packet_size;
473 rs->buf = xrealloc (rs->buf, rs->buf_size);
474 }
475
476 return rsa;
477 }
478
479 /* Return the current allowed size of a remote packet. This is
480 inferred from the current architecture, and should be used to
481 limit the length of outgoing packets. */
482 static long
483 get_remote_packet_size (void)
484 {
485 struct remote_state *rs = get_remote_state ();
486 struct remote_arch_state *rsa = get_remote_arch_state ();
487
488 if (rs->explicit_packet_size)
489 return rs->explicit_packet_size;
490
491 return rsa->remote_packet_size;
492 }
493
494 static struct packet_reg *
495 packet_reg_from_regnum (struct remote_arch_state *rsa, long regnum)
496 {
497 if (regnum < 0 && regnum >= gdbarch_num_regs (target_gdbarch))
498 return NULL;
499 else
500 {
501 struct packet_reg *r = &rsa->regs[regnum];
502 gdb_assert (r->regnum == regnum);
503 return r;
504 }
505 }
506
507 static struct packet_reg *
508 packet_reg_from_pnum (struct remote_arch_state *rsa, LONGEST pnum)
509 {
510 int i;
511 for (i = 0; i < gdbarch_num_regs (target_gdbarch); i++)
512 {
513 struct packet_reg *r = &rsa->regs[i];
514 if (r->pnum == pnum)
515 return r;
516 }
517 return NULL;
518 }
519
520 /* FIXME: graces/2002-08-08: These variables should eventually be
521 bound to an instance of the target object (as in gdbarch-tdep()),
522 when such a thing exists. */
523
524 /* This is set to the data address of the access causing the target
525 to stop for a watchpoint. */
526 static CORE_ADDR remote_watch_data_address;
527
528 /* This is non-zero if target stopped for a watchpoint. */
529 static int remote_stopped_by_watchpoint_p;
530
531 static struct target_ops remote_ops;
532
533 static struct target_ops extended_remote_ops;
534
535 static int remote_async_mask_value = 1;
536
537 /* FIXME: cagney/1999-09-23: Even though getpkt was called with
538 ``forever'' still use the normal timeout mechanism. This is
539 currently used by the ASYNC code to guarentee that target reads
540 during the initial connect always time-out. Once getpkt has been
541 modified to return a timeout indication and, in turn
542 remote_wait()/wait_for_inferior() have gained a timeout parameter
543 this can go away. */
544 static int wait_forever_enabled_p = 1;
545
546
547 /* This variable chooses whether to send a ^C or a break when the user
548 requests program interruption. Although ^C is usually what remote
549 systems expect, and that is the default here, sometimes a break is
550 preferable instead. */
551
552 static int remote_break;
553
554 /* Descriptor for I/O to remote machine. Initialize it to NULL so that
555 remote_open knows that we don't have a file open when the program
556 starts. */
557 static struct serial *remote_desc = NULL;
558
559 /* This variable sets the number of bits in an address that are to be
560 sent in a memory ("M" or "m") packet. Normally, after stripping
561 leading zeros, the entire address would be sent. This variable
562 restricts the address to REMOTE_ADDRESS_SIZE bits. HISTORY: The
563 initial implementation of remote.c restricted the address sent in
564 memory packets to ``host::sizeof long'' bytes - (typically 32
565 bits). Consequently, for 64 bit targets, the upper 32 bits of an
566 address was never sent. Since fixing this bug may cause a break in
567 some remote targets this variable is principly provided to
568 facilitate backward compatibility. */
569
570 static int remote_address_size;
571
572 /* Temporary to track who currently owns the terminal. See
573 remote_terminal_* for more details. */
574
575 static int remote_async_terminal_ours_p;
576
577 /* The executable file to use for "run" on the remote side. */
578
579 static char *remote_exec_file = "";
580
581 \f
582 /* User configurable variables for the number of characters in a
583 memory read/write packet. MIN (rsa->remote_packet_size,
584 rsa->sizeof_g_packet) is the default. Some targets need smaller
585 values (fifo overruns, et.al.) and some users need larger values
586 (speed up transfers). The variables ``preferred_*'' (the user
587 request), ``current_*'' (what was actually set) and ``forced_*''
588 (Positive - a soft limit, negative - a hard limit). */
589
590 struct memory_packet_config
591 {
592 char *name;
593 long size;
594 int fixed_p;
595 };
596
597 /* Compute the current size of a read/write packet. Since this makes
598 use of ``actual_register_packet_size'' the computation is dynamic. */
599
600 static long
601 get_memory_packet_size (struct memory_packet_config *config)
602 {
603 struct remote_state *rs = get_remote_state ();
604 struct remote_arch_state *rsa = get_remote_arch_state ();
605
606 /* NOTE: The somewhat arbitrary 16k comes from the knowledge (folk
607 law?) that some hosts don't cope very well with large alloca()
608 calls. Eventually the alloca() code will be replaced by calls to
609 xmalloc() and make_cleanups() allowing this restriction to either
610 be lifted or removed. */
611 #ifndef MAX_REMOTE_PACKET_SIZE
612 #define MAX_REMOTE_PACKET_SIZE 16384
613 #endif
614 /* NOTE: 20 ensures we can write at least one byte. */
615 #ifndef MIN_REMOTE_PACKET_SIZE
616 #define MIN_REMOTE_PACKET_SIZE 20
617 #endif
618 long what_they_get;
619 if (config->fixed_p)
620 {
621 if (config->size <= 0)
622 what_they_get = MAX_REMOTE_PACKET_SIZE;
623 else
624 what_they_get = config->size;
625 }
626 else
627 {
628 what_they_get = get_remote_packet_size ();
629 /* Limit the packet to the size specified by the user. */
630 if (config->size > 0
631 && what_they_get > config->size)
632 what_they_get = config->size;
633
634 /* Limit it to the size of the targets ``g'' response unless we have
635 permission from the stub to use a larger packet size. */
636 if (rs->explicit_packet_size == 0
637 && rsa->actual_register_packet_size > 0
638 && what_they_get > rsa->actual_register_packet_size)
639 what_they_get = rsa->actual_register_packet_size;
640 }
641 if (what_they_get > MAX_REMOTE_PACKET_SIZE)
642 what_they_get = MAX_REMOTE_PACKET_SIZE;
643 if (what_they_get < MIN_REMOTE_PACKET_SIZE)
644 what_they_get = MIN_REMOTE_PACKET_SIZE;
645
646 /* Make sure there is room in the global buffer for this packet
647 (including its trailing NUL byte). */
648 if (rs->buf_size < what_they_get + 1)
649 {
650 rs->buf_size = 2 * what_they_get;
651 rs->buf = xrealloc (rs->buf, 2 * what_they_get);
652 }
653
654 return what_they_get;
655 }
656
657 /* Update the size of a read/write packet. If they user wants
658 something really big then do a sanity check. */
659
660 static void
661 set_memory_packet_size (char *args, struct memory_packet_config *config)
662 {
663 int fixed_p = config->fixed_p;
664 long size = config->size;
665 if (args == NULL)
666 error (_("Argument required (integer, `fixed' or `limited')."));
667 else if (strcmp (args, "hard") == 0
668 || strcmp (args, "fixed") == 0)
669 fixed_p = 1;
670 else if (strcmp (args, "soft") == 0
671 || strcmp (args, "limit") == 0)
672 fixed_p = 0;
673 else
674 {
675 char *end;
676 size = strtoul (args, &end, 0);
677 if (args == end)
678 error (_("Invalid %s (bad syntax)."), config->name);
679 #if 0
680 /* Instead of explicitly capping the size of a packet to
681 MAX_REMOTE_PACKET_SIZE or dissallowing it, the user is
682 instead allowed to set the size to something arbitrarily
683 large. */
684 if (size > MAX_REMOTE_PACKET_SIZE)
685 error (_("Invalid %s (too large)."), config->name);
686 #endif
687 }
688 /* Extra checks? */
689 if (fixed_p && !config->fixed_p)
690 {
691 if (! query (_("The target may not be able to correctly handle a %s\n"
692 "of %ld bytes. Change the packet size? "),
693 config->name, size))
694 error (_("Packet size not changed."));
695 }
696 /* Update the config. */
697 config->fixed_p = fixed_p;
698 config->size = size;
699 }
700
701 static void
702 show_memory_packet_size (struct memory_packet_config *config)
703 {
704 printf_filtered (_("The %s is %ld. "), config->name, config->size);
705 if (config->fixed_p)
706 printf_filtered (_("Packets are fixed at %ld bytes.\n"),
707 get_memory_packet_size (config));
708 else
709 printf_filtered (_("Packets are limited to %ld bytes.\n"),
710 get_memory_packet_size (config));
711 }
712
713 static struct memory_packet_config memory_write_packet_config =
714 {
715 "memory-write-packet-size",
716 };
717
718 static void
719 set_memory_write_packet_size (char *args, int from_tty)
720 {
721 set_memory_packet_size (args, &memory_write_packet_config);
722 }
723
724 static void
725 show_memory_write_packet_size (char *args, int from_tty)
726 {
727 show_memory_packet_size (&memory_write_packet_config);
728 }
729
730 static long
731 get_memory_write_packet_size (void)
732 {
733 return get_memory_packet_size (&memory_write_packet_config);
734 }
735
736 static struct memory_packet_config memory_read_packet_config =
737 {
738 "memory-read-packet-size",
739 };
740
741 static void
742 set_memory_read_packet_size (char *args, int from_tty)
743 {
744 set_memory_packet_size (args, &memory_read_packet_config);
745 }
746
747 static void
748 show_memory_read_packet_size (char *args, int from_tty)
749 {
750 show_memory_packet_size (&memory_read_packet_config);
751 }
752
753 static long
754 get_memory_read_packet_size (void)
755 {
756 long size = get_memory_packet_size (&memory_read_packet_config);
757 /* FIXME: cagney/1999-11-07: Functions like getpkt() need to get an
758 extra buffer size argument before the memory read size can be
759 increased beyond this. */
760 if (size > get_remote_packet_size ())
761 size = get_remote_packet_size ();
762 return size;
763 }
764
765 \f
766 /* Generic configuration support for packets the stub optionally
767 supports. Allows the user to specify the use of the packet as well
768 as allowing GDB to auto-detect support in the remote stub. */
769
770 enum packet_support
771 {
772 PACKET_SUPPORT_UNKNOWN = 0,
773 PACKET_ENABLE,
774 PACKET_DISABLE
775 };
776
777 struct packet_config
778 {
779 const char *name;
780 const char *title;
781 enum auto_boolean detect;
782 enum packet_support support;
783 };
784
785 /* Analyze a packet's return value and update the packet config
786 accordingly. */
787
788 enum packet_result
789 {
790 PACKET_ERROR,
791 PACKET_OK,
792 PACKET_UNKNOWN
793 };
794
795 static void
796 update_packet_config (struct packet_config *config)
797 {
798 switch (config->detect)
799 {
800 case AUTO_BOOLEAN_TRUE:
801 config->support = PACKET_ENABLE;
802 break;
803 case AUTO_BOOLEAN_FALSE:
804 config->support = PACKET_DISABLE;
805 break;
806 case AUTO_BOOLEAN_AUTO:
807 config->support = PACKET_SUPPORT_UNKNOWN;
808 break;
809 }
810 }
811
812 static void
813 show_packet_config_cmd (struct packet_config *config)
814 {
815 char *support = "internal-error";
816 switch (config->support)
817 {
818 case PACKET_ENABLE:
819 support = "enabled";
820 break;
821 case PACKET_DISABLE:
822 support = "disabled";
823 break;
824 case PACKET_SUPPORT_UNKNOWN:
825 support = "unknown";
826 break;
827 }
828 switch (config->detect)
829 {
830 case AUTO_BOOLEAN_AUTO:
831 printf_filtered (_("Support for the `%s' packet is auto-detected, currently %s.\n"),
832 config->name, support);
833 break;
834 case AUTO_BOOLEAN_TRUE:
835 case AUTO_BOOLEAN_FALSE:
836 printf_filtered (_("Support for the `%s' packet is currently %s.\n"),
837 config->name, support);
838 break;
839 }
840 }
841
842 static void
843 add_packet_config_cmd (struct packet_config *config, const char *name,
844 const char *title, int legacy)
845 {
846 char *set_doc;
847 char *show_doc;
848 char *cmd_name;
849
850 config->name = name;
851 config->title = title;
852 config->detect = AUTO_BOOLEAN_AUTO;
853 config->support = PACKET_SUPPORT_UNKNOWN;
854 set_doc = xstrprintf ("Set use of remote protocol `%s' (%s) packet",
855 name, title);
856 show_doc = xstrprintf ("Show current use of remote protocol `%s' (%s) packet",
857 name, title);
858 /* set/show TITLE-packet {auto,on,off} */
859 cmd_name = xstrprintf ("%s-packet", title);
860 add_setshow_auto_boolean_cmd (cmd_name, class_obscure,
861 &config->detect, set_doc, show_doc, NULL, /* help_doc */
862 set_remote_protocol_packet_cmd,
863 show_remote_protocol_packet_cmd,
864 &remote_set_cmdlist, &remote_show_cmdlist);
865 /* set/show remote NAME-packet {auto,on,off} -- legacy. */
866 if (legacy)
867 {
868 char *legacy_name;
869 legacy_name = xstrprintf ("%s-packet", name);
870 add_alias_cmd (legacy_name, cmd_name, class_obscure, 0,
871 &remote_set_cmdlist);
872 add_alias_cmd (legacy_name, cmd_name, class_obscure, 0,
873 &remote_show_cmdlist);
874 }
875 }
876
877 static enum packet_result
878 packet_check_result (const char *buf)
879 {
880 if (buf[0] != '\0')
881 {
882 /* The stub recognized the packet request. Check that the
883 operation succeeded. */
884 if (buf[0] == 'E'
885 && isxdigit (buf[1]) && isxdigit (buf[2])
886 && buf[3] == '\0')
887 /* "Enn" - definitly an error. */
888 return PACKET_ERROR;
889
890 /* Always treat "E." as an error. This will be used for
891 more verbose error messages, such as E.memtypes. */
892 if (buf[0] == 'E' && buf[1] == '.')
893 return PACKET_ERROR;
894
895 /* The packet may or may not be OK. Just assume it is. */
896 return PACKET_OK;
897 }
898 else
899 /* The stub does not support the packet. */
900 return PACKET_UNKNOWN;
901 }
902
903 static enum packet_result
904 packet_ok (const char *buf, struct packet_config *config)
905 {
906 enum packet_result result;
907
908 result = packet_check_result (buf);
909 switch (result)
910 {
911 case PACKET_OK:
912 case PACKET_ERROR:
913 /* The stub recognized the packet request. */
914 switch (config->support)
915 {
916 case PACKET_SUPPORT_UNKNOWN:
917 if (remote_debug)
918 fprintf_unfiltered (gdb_stdlog,
919 "Packet %s (%s) is supported\n",
920 config->name, config->title);
921 config->support = PACKET_ENABLE;
922 break;
923 case PACKET_DISABLE:
924 internal_error (__FILE__, __LINE__,
925 _("packet_ok: attempt to use a disabled packet"));
926 break;
927 case PACKET_ENABLE:
928 break;
929 }
930 break;
931 case PACKET_UNKNOWN:
932 /* The stub does not support the packet. */
933 switch (config->support)
934 {
935 case PACKET_ENABLE:
936 if (config->detect == AUTO_BOOLEAN_AUTO)
937 /* If the stub previously indicated that the packet was
938 supported then there is a protocol error.. */
939 error (_("Protocol error: %s (%s) conflicting enabled responses."),
940 config->name, config->title);
941 else
942 /* The user set it wrong. */
943 error (_("Enabled packet %s (%s) not recognized by stub"),
944 config->name, config->title);
945 break;
946 case PACKET_SUPPORT_UNKNOWN:
947 if (remote_debug)
948 fprintf_unfiltered (gdb_stdlog,
949 "Packet %s (%s) is NOT supported\n",
950 config->name, config->title);
951 config->support = PACKET_DISABLE;
952 break;
953 case PACKET_DISABLE:
954 break;
955 }
956 break;
957 }
958
959 return result;
960 }
961
962 enum {
963 PACKET_vCont = 0,
964 PACKET_X,
965 PACKET_qSymbol,
966 PACKET_P,
967 PACKET_p,
968 PACKET_Z0,
969 PACKET_Z1,
970 PACKET_Z2,
971 PACKET_Z3,
972 PACKET_Z4,
973 PACKET_vFile_open,
974 PACKET_vFile_pread,
975 PACKET_vFile_pwrite,
976 PACKET_vFile_close,
977 PACKET_vFile_unlink,
978 PACKET_qXfer_auxv,
979 PACKET_qXfer_features,
980 PACKET_qXfer_libraries,
981 PACKET_qXfer_memory_map,
982 PACKET_qXfer_spu_read,
983 PACKET_qXfer_spu_write,
984 PACKET_qXfer_osdata,
985 PACKET_qGetTLSAddr,
986 PACKET_qSupported,
987 PACKET_QPassSignals,
988 PACKET_qSearch_memory,
989 PACKET_vAttach,
990 PACKET_vRun,
991 PACKET_QStartNoAckMode,
992 PACKET_vKill,
993 PACKET_qXfer_siginfo_read,
994 PACKET_qXfer_siginfo_write,
995 PACKET_qAttached,
996 PACKET_MAX
997 };
998
999 static struct packet_config remote_protocol_packets[PACKET_MAX];
1000
1001 static void
1002 set_remote_protocol_packet_cmd (char *args, int from_tty,
1003 struct cmd_list_element *c)
1004 {
1005 struct packet_config *packet;
1006
1007 for (packet = remote_protocol_packets;
1008 packet < &remote_protocol_packets[PACKET_MAX];
1009 packet++)
1010 {
1011 if (&packet->detect == c->var)
1012 {
1013 update_packet_config (packet);
1014 return;
1015 }
1016 }
1017 internal_error (__FILE__, __LINE__, "Could not find config for %s",
1018 c->name);
1019 }
1020
1021 static void
1022 show_remote_protocol_packet_cmd (struct ui_file *file, int from_tty,
1023 struct cmd_list_element *c,
1024 const char *value)
1025 {
1026 struct packet_config *packet;
1027
1028 for (packet = remote_protocol_packets;
1029 packet < &remote_protocol_packets[PACKET_MAX];
1030 packet++)
1031 {
1032 if (&packet->detect == c->var)
1033 {
1034 show_packet_config_cmd (packet);
1035 return;
1036 }
1037 }
1038 internal_error (__FILE__, __LINE__, "Could not find config for %s",
1039 c->name);
1040 }
1041
1042 /* Should we try one of the 'Z' requests? */
1043
1044 enum Z_packet_type
1045 {
1046 Z_PACKET_SOFTWARE_BP,
1047 Z_PACKET_HARDWARE_BP,
1048 Z_PACKET_WRITE_WP,
1049 Z_PACKET_READ_WP,
1050 Z_PACKET_ACCESS_WP,
1051 NR_Z_PACKET_TYPES
1052 };
1053
1054 /* For compatibility with older distributions. Provide a ``set remote
1055 Z-packet ...'' command that updates all the Z packet types. */
1056
1057 static enum auto_boolean remote_Z_packet_detect;
1058
1059 static void
1060 set_remote_protocol_Z_packet_cmd (char *args, int from_tty,
1061 struct cmd_list_element *c)
1062 {
1063 int i;
1064 for (i = 0; i < NR_Z_PACKET_TYPES; i++)
1065 {
1066 remote_protocol_packets[PACKET_Z0 + i].detect = remote_Z_packet_detect;
1067 update_packet_config (&remote_protocol_packets[PACKET_Z0 + i]);
1068 }
1069 }
1070
1071 static void
1072 show_remote_protocol_Z_packet_cmd (struct ui_file *file, int from_tty,
1073 struct cmd_list_element *c,
1074 const char *value)
1075 {
1076 int i;
1077 for (i = 0; i < NR_Z_PACKET_TYPES; i++)
1078 {
1079 show_packet_config_cmd (&remote_protocol_packets[PACKET_Z0 + i]);
1080 }
1081 }
1082
1083 /* Should we try the 'ThreadInfo' query packet?
1084
1085 This variable (NOT available to the user: auto-detect only!)
1086 determines whether GDB will use the new, simpler "ThreadInfo"
1087 query or the older, more complex syntax for thread queries.
1088 This is an auto-detect variable (set to true at each connect,
1089 and set to false when the target fails to recognize it). */
1090
1091 static int use_threadinfo_query;
1092 static int use_threadextra_query;
1093
1094 /* Tokens for use by the asynchronous signal handlers for SIGINT. */
1095 static struct async_signal_handler *sigint_remote_twice_token;
1096 static struct async_signal_handler *sigint_remote_token;
1097
1098 \f
1099 /* Asynchronous signal handle registered as event loop source for
1100 when we have pending events ready to be passed to the core. */
1101
1102 static struct async_event_handler *remote_async_inferior_event_token;
1103
1104 /* Asynchronous signal handle registered as event loop source for when
1105 the remote sent us a %Stop notification. The registered callback
1106 will do a vStopped sequence to pull the rest of the events out of
1107 the remote side into our event queue. */
1108
1109 static struct async_event_handler *remote_async_get_pending_events_token;
1110 \f
1111
1112 static ptid_t magic_null_ptid;
1113 static ptid_t not_sent_ptid;
1114 static ptid_t any_thread_ptid;
1115
1116 /* These are the threads which we last sent to the remote system. The
1117 TID member will be -1 for all or -2 for not sent yet. */
1118
1119 static ptid_t general_thread;
1120 static ptid_t continue_thread;
1121
1122 /* Find out if the stub attached to PID (and hence GDB should offer to
1123 detach instead of killing it when bailing out). */
1124
1125 static int
1126 remote_query_attached (int pid)
1127 {
1128 struct remote_state *rs = get_remote_state ();
1129
1130 if (remote_protocol_packets[PACKET_qAttached].support == PACKET_DISABLE)
1131 return 0;
1132
1133 if (remote_multi_process_p (rs))
1134 sprintf (rs->buf, "qAttached:%x", pid);
1135 else
1136 sprintf (rs->buf, "qAttached");
1137
1138 putpkt (rs->buf);
1139 getpkt (&rs->buf, &rs->buf_size, 0);
1140
1141 switch (packet_ok (rs->buf,
1142 &remote_protocol_packets[PACKET_qAttached]))
1143 {
1144 case PACKET_OK:
1145 if (strcmp (rs->buf, "1") == 0)
1146 return 1;
1147 break;
1148 case PACKET_ERROR:
1149 warning (_("Remote failure reply: %s"), rs->buf);
1150 break;
1151 case PACKET_UNKNOWN:
1152 break;
1153 }
1154
1155 return 0;
1156 }
1157
1158 /* Add PID to GDB's inferior table. Since we can be connected to a
1159 remote system before before knowing about any inferior, mark the
1160 target with execution when we find the first inferior. If ATTACHED
1161 is 1, then we had just attached to this inferior. If it is 0, then
1162 we just created this inferior. If it is -1, then try querying the
1163 remote stub to find out if it had attached to the inferior or
1164 not. */
1165
1166 static struct inferior *
1167 remote_add_inferior (int pid, int attached)
1168 {
1169 struct remote_state *rs = get_remote_state ();
1170 struct inferior *inf;
1171
1172 /* Check whether this process we're learning about is to be
1173 considered attached, or if is to be considered to have been
1174 spawned by the stub. */
1175 if (attached == -1)
1176 attached = remote_query_attached (pid);
1177
1178 inf = add_inferior (pid);
1179
1180 inf->attach_flag = attached;
1181
1182 /* This may be the first inferior we hear about. */
1183 if (!target_has_execution)
1184 {
1185 if (rs->extended)
1186 target_mark_running (&extended_remote_ops);
1187 else
1188 target_mark_running (&remote_ops);
1189 }
1190
1191 return inf;
1192 }
1193
1194 /* Add thread PTID to GDB's thread list. Tag it as executing/running
1195 according to RUNNING. */
1196
1197 static void
1198 remote_add_thread (ptid_t ptid, int running)
1199 {
1200 add_thread (ptid);
1201
1202 set_executing (ptid, running);
1203 set_running (ptid, running);
1204 }
1205
1206 /* Come here when we learn about a thread id from the remote target.
1207 It may be the first time we hear about such thread, so take the
1208 opportunity to add it to GDB's thread list. In case this is the
1209 first time we're noticing its corresponding inferior, add it to
1210 GDB's inferior list as well. */
1211
1212 static void
1213 remote_notice_new_inferior (ptid_t currthread, int running)
1214 {
1215 struct remote_state *rs = get_remote_state ();
1216
1217 /* If this is a new thread, add it to GDB's thread list.
1218 If we leave it up to WFI to do this, bad things will happen. */
1219
1220 if (in_thread_list (currthread) && is_exited (currthread))
1221 {
1222 /* We're seeing an event on a thread id we knew had exited.
1223 This has to be a new thread reusing the old id. Add it. */
1224 remote_add_thread (currthread, running);
1225 return;
1226 }
1227
1228 if (!in_thread_list (currthread))
1229 {
1230 struct inferior *inf = NULL;
1231 int pid = ptid_get_pid (currthread);
1232
1233 if (ptid_is_pid (inferior_ptid)
1234 && pid == ptid_get_pid (inferior_ptid))
1235 {
1236 /* inferior_ptid has no thread member yet. This can happen
1237 with the vAttach -> remote_wait,"TAAthread:" path if the
1238 stub doesn't support qC. This is the first stop reported
1239 after an attach, so this is the main thread. Update the
1240 ptid in the thread list. */
1241 if (in_thread_list (pid_to_ptid (pid)))
1242 thread_change_ptid (inferior_ptid, currthread);
1243 else
1244 {
1245 remote_add_thread (currthread, running);
1246 inferior_ptid = currthread;
1247 }
1248 return;
1249 }
1250
1251 if (ptid_equal (magic_null_ptid, inferior_ptid))
1252 {
1253 /* inferior_ptid is not set yet. This can happen with the
1254 vRun -> remote_wait,"TAAthread:" path if the stub
1255 doesn't support qC. This is the first stop reported
1256 after an attach, so this is the main thread. Update the
1257 ptid in the thread list. */
1258 thread_change_ptid (inferior_ptid, currthread);
1259 return;
1260 }
1261
1262 /* When connecting to a target remote, or to a target
1263 extended-remote which already was debugging an inferior, we
1264 may not know about it yet. Add it before adding its child
1265 thread, so notifications are emitted in a sensible order. */
1266 if (!in_inferior_list (ptid_get_pid (currthread)))
1267 inf = remote_add_inferior (ptid_get_pid (currthread), -1);
1268
1269 /* This is really a new thread. Add it. */
1270 remote_add_thread (currthread, running);
1271
1272 /* If we found a new inferior, let the common code do whatever
1273 it needs to with it (e.g., read shared libraries, insert
1274 breakpoints). */
1275 if (inf != NULL)
1276 notice_new_inferior (currthread, running, 0);
1277 }
1278 }
1279
1280 /* Call this function as a result of
1281 1) A halt indication (T packet) containing a thread id
1282 2) A direct query of currthread
1283 3) Successful execution of set thread
1284 */
1285
1286 static void
1287 record_currthread (ptid_t currthread)
1288 {
1289 general_thread = currthread;
1290
1291 if (ptid_equal (currthread, minus_one_ptid))
1292 /* We're just invalidating the local thread mirror. */
1293 return;
1294
1295 remote_notice_new_inferior (currthread, 0);
1296 }
1297
1298 static char *last_pass_packet;
1299
1300 /* If 'QPassSignals' is supported, tell the remote stub what signals
1301 it can simply pass through to the inferior without reporting. */
1302
1303 static void
1304 remote_pass_signals (void)
1305 {
1306 if (remote_protocol_packets[PACKET_QPassSignals].support != PACKET_DISABLE)
1307 {
1308 char *pass_packet, *p;
1309 int numsigs = (int) TARGET_SIGNAL_LAST;
1310 int count = 0, i;
1311
1312 gdb_assert (numsigs < 256);
1313 for (i = 0; i < numsigs; i++)
1314 {
1315 if (signal_stop_state (i) == 0
1316 && signal_print_state (i) == 0
1317 && signal_pass_state (i) == 1)
1318 count++;
1319 }
1320 pass_packet = xmalloc (count * 3 + strlen ("QPassSignals:") + 1);
1321 strcpy (pass_packet, "QPassSignals:");
1322 p = pass_packet + strlen (pass_packet);
1323 for (i = 0; i < numsigs; i++)
1324 {
1325 if (signal_stop_state (i) == 0
1326 && signal_print_state (i) == 0
1327 && signal_pass_state (i) == 1)
1328 {
1329 if (i >= 16)
1330 *p++ = tohex (i >> 4);
1331 *p++ = tohex (i & 15);
1332 if (count)
1333 *p++ = ';';
1334 else
1335 break;
1336 count--;
1337 }
1338 }
1339 *p = 0;
1340 if (!last_pass_packet || strcmp (last_pass_packet, pass_packet))
1341 {
1342 struct remote_state *rs = get_remote_state ();
1343 char *buf = rs->buf;
1344
1345 putpkt (pass_packet);
1346 getpkt (&rs->buf, &rs->buf_size, 0);
1347 packet_ok (buf, &remote_protocol_packets[PACKET_QPassSignals]);
1348 if (last_pass_packet)
1349 xfree (last_pass_packet);
1350 last_pass_packet = pass_packet;
1351 }
1352 else
1353 xfree (pass_packet);
1354 }
1355 }
1356
1357 /* If PTID is MAGIC_NULL_PTID, don't set any thread. If PTID is
1358 MINUS_ONE_PTID, set the thread to -1, so the stub returns the
1359 thread. If GEN is set, set the general thread, if not, then set
1360 the step/continue thread. */
1361 static void
1362 set_thread (struct ptid ptid, int gen)
1363 {
1364 struct remote_state *rs = get_remote_state ();
1365 ptid_t state = gen ? general_thread : continue_thread;
1366 char *buf = rs->buf;
1367 char *endbuf = rs->buf + get_remote_packet_size ();
1368
1369 if (ptid_equal (state, ptid))
1370 return;
1371
1372 *buf++ = 'H';
1373 *buf++ = gen ? 'g' : 'c';
1374 if (ptid_equal (ptid, magic_null_ptid))
1375 xsnprintf (buf, endbuf - buf, "0");
1376 else if (ptid_equal (ptid, any_thread_ptid))
1377 xsnprintf (buf, endbuf - buf, "0");
1378 else if (ptid_equal (ptid, minus_one_ptid))
1379 xsnprintf (buf, endbuf - buf, "-1");
1380 else
1381 write_ptid (buf, endbuf, ptid);
1382 putpkt (rs->buf);
1383 getpkt (&rs->buf, &rs->buf_size, 0);
1384 if (gen)
1385 general_thread = ptid;
1386 else
1387 continue_thread = ptid;
1388 }
1389
1390 static void
1391 set_general_thread (struct ptid ptid)
1392 {
1393 set_thread (ptid, 1);
1394 }
1395
1396 static void
1397 set_continue_thread (struct ptid ptid)
1398 {
1399 set_thread (ptid, 0);
1400 }
1401
1402 /* Change the remote current process. Which thread within the process
1403 ends up selected isn't important, as long as it is the same process
1404 as what INFERIOR_PTID points to.
1405
1406 This comes from that fact that there is no explicit notion of
1407 "selected process" in the protocol. The selected process for
1408 general operations is the process the selected general thread
1409 belongs to. */
1410
1411 static void
1412 set_general_process (void)
1413 {
1414 struct remote_state *rs = get_remote_state ();
1415
1416 /* If the remote can't handle multiple processes, don't bother. */
1417 if (!remote_multi_process_p (rs))
1418 return;
1419
1420 /* We only need to change the remote current thread if it's pointing
1421 at some other process. */
1422 if (ptid_get_pid (general_thread) != ptid_get_pid (inferior_ptid))
1423 set_general_thread (inferior_ptid);
1424 }
1425
1426 \f
1427 /* Return nonzero if the thread PTID is still alive on the remote
1428 system. */
1429
1430 static int
1431 remote_thread_alive (struct target_ops *ops, ptid_t ptid)
1432 {
1433 struct remote_state *rs = get_remote_state ();
1434 int tid = ptid_get_tid (ptid);
1435 char *p, *endp;
1436
1437 if (ptid_equal (ptid, magic_null_ptid))
1438 /* The main thread is always alive. */
1439 return 1;
1440
1441 if (ptid_get_pid (ptid) != 0 && ptid_get_tid (ptid) == 0)
1442 /* The main thread is always alive. This can happen after a
1443 vAttach, if the remote side doesn't support
1444 multi-threading. */
1445 return 1;
1446
1447 p = rs->buf;
1448 endp = rs->buf + get_remote_packet_size ();
1449
1450 *p++ = 'T';
1451 write_ptid (p, endp, ptid);
1452
1453 putpkt (rs->buf);
1454 getpkt (&rs->buf, &rs->buf_size, 0);
1455 return (rs->buf[0] == 'O' && rs->buf[1] == 'K');
1456 }
1457
1458 /* About these extended threadlist and threadinfo packets. They are
1459 variable length packets but, the fields within them are often fixed
1460 length. They are redundent enough to send over UDP as is the
1461 remote protocol in general. There is a matching unit test module
1462 in libstub. */
1463
1464 #define OPAQUETHREADBYTES 8
1465
1466 /* a 64 bit opaque identifier */
1467 typedef unsigned char threadref[OPAQUETHREADBYTES];
1468
1469 /* WARNING: This threadref data structure comes from the remote O.S.,
1470 libstub protocol encoding, and remote.c. it is not particularly
1471 changable. */
1472
1473 /* Right now, the internal structure is int. We want it to be bigger.
1474 Plan to fix this.
1475 */
1476
1477 typedef int gdb_threadref; /* Internal GDB thread reference. */
1478
1479 /* gdb_ext_thread_info is an internal GDB data structure which is
1480 equivalent to the reply of the remote threadinfo packet. */
1481
1482 struct gdb_ext_thread_info
1483 {
1484 threadref threadid; /* External form of thread reference. */
1485 int active; /* Has state interesting to GDB?
1486 regs, stack. */
1487 char display[256]; /* Brief state display, name,
1488 blocked/suspended. */
1489 char shortname[32]; /* To be used to name threads. */
1490 char more_display[256]; /* Long info, statistics, queue depth,
1491 whatever. */
1492 };
1493
1494 /* The volume of remote transfers can be limited by submitting
1495 a mask containing bits specifying the desired information.
1496 Use a union of these values as the 'selection' parameter to
1497 get_thread_info. FIXME: Make these TAG names more thread specific.
1498 */
1499
1500 #define TAG_THREADID 1
1501 #define TAG_EXISTS 2
1502 #define TAG_DISPLAY 4
1503 #define TAG_THREADNAME 8
1504 #define TAG_MOREDISPLAY 16
1505
1506 #define BUF_THREAD_ID_SIZE (OPAQUETHREADBYTES * 2)
1507
1508 char *unpack_varlen_hex (char *buff, ULONGEST *result);
1509
1510 static char *unpack_nibble (char *buf, int *val);
1511
1512 static char *pack_nibble (char *buf, int nibble);
1513
1514 static char *pack_hex_byte (char *pkt, int /* unsigned char */ byte);
1515
1516 static char *unpack_byte (char *buf, int *value);
1517
1518 static char *pack_int (char *buf, int value);
1519
1520 static char *unpack_int (char *buf, int *value);
1521
1522 static char *unpack_string (char *src, char *dest, int length);
1523
1524 static char *pack_threadid (char *pkt, threadref *id);
1525
1526 static char *unpack_threadid (char *inbuf, threadref *id);
1527
1528 void int_to_threadref (threadref *id, int value);
1529
1530 static int threadref_to_int (threadref *ref);
1531
1532 static void copy_threadref (threadref *dest, threadref *src);
1533
1534 static int threadmatch (threadref *dest, threadref *src);
1535
1536 static char *pack_threadinfo_request (char *pkt, int mode,
1537 threadref *id);
1538
1539 static int remote_unpack_thread_info_response (char *pkt,
1540 threadref *expectedref,
1541 struct gdb_ext_thread_info
1542 *info);
1543
1544
1545 static int remote_get_threadinfo (threadref *threadid,
1546 int fieldset, /*TAG mask */
1547 struct gdb_ext_thread_info *info);
1548
1549 static char *pack_threadlist_request (char *pkt, int startflag,
1550 int threadcount,
1551 threadref *nextthread);
1552
1553 static int parse_threadlist_response (char *pkt,
1554 int result_limit,
1555 threadref *original_echo,
1556 threadref *resultlist,
1557 int *doneflag);
1558
1559 static int remote_get_threadlist (int startflag,
1560 threadref *nextthread,
1561 int result_limit,
1562 int *done,
1563 int *result_count,
1564 threadref *threadlist);
1565
1566 typedef int (*rmt_thread_action) (threadref *ref, void *context);
1567
1568 static int remote_threadlist_iterator (rmt_thread_action stepfunction,
1569 void *context, int looplimit);
1570
1571 static int remote_newthread_step (threadref *ref, void *context);
1572
1573
1574 /* Write a PTID to BUF. ENDBUF points to one-passed-the-end of the
1575 buffer we're allowed to write to. Returns
1576 BUF+CHARACTERS_WRITTEN. */
1577
1578 static char *
1579 write_ptid (char *buf, const char *endbuf, ptid_t ptid)
1580 {
1581 int pid, tid;
1582 struct remote_state *rs = get_remote_state ();
1583
1584 if (remote_multi_process_p (rs))
1585 {
1586 pid = ptid_get_pid (ptid);
1587 if (pid < 0)
1588 buf += xsnprintf (buf, endbuf - buf, "p-%x.", -pid);
1589 else
1590 buf += xsnprintf (buf, endbuf - buf, "p%x.", pid);
1591 }
1592 tid = ptid_get_tid (ptid);
1593 if (tid < 0)
1594 buf += xsnprintf (buf, endbuf - buf, "-%x", -tid);
1595 else
1596 buf += xsnprintf (buf, endbuf - buf, "%x", tid);
1597
1598 return buf;
1599 }
1600
1601 /* Extract a PTID from BUF. If non-null, OBUF is set to the to one
1602 passed the last parsed char. Returns null_ptid on error. */
1603
1604 static ptid_t
1605 read_ptid (char *buf, char **obuf)
1606 {
1607 char *p = buf;
1608 char *pp;
1609 ULONGEST pid = 0, tid = 0;
1610 ptid_t ptid;
1611
1612 if (*p == 'p')
1613 {
1614 /* Multi-process ptid. */
1615 pp = unpack_varlen_hex (p + 1, &pid);
1616 if (*pp != '.')
1617 error (_("invalid remote ptid: %s\n"), p);
1618
1619 p = pp;
1620 pp = unpack_varlen_hex (p + 1, &tid);
1621 if (obuf)
1622 *obuf = pp;
1623 return ptid_build (pid, 0, tid);
1624 }
1625
1626 /* No multi-process. Just a tid. */
1627 pp = unpack_varlen_hex (p, &tid);
1628
1629 /* Since the stub is not sending a process id, then default to
1630 what's in inferior_ptid, unless it's null at this point. If so,
1631 then since there's no way to know the pid of the reported
1632 threads, use the magic number. */
1633 if (ptid_equal (inferior_ptid, null_ptid))
1634 pid = ptid_get_pid (magic_null_ptid);
1635 else
1636 pid = ptid_get_pid (inferior_ptid);
1637
1638 if (obuf)
1639 *obuf = pp;
1640 return ptid_build (pid, 0, tid);
1641 }
1642
1643 /* Encode 64 bits in 16 chars of hex. */
1644
1645 static const char hexchars[] = "0123456789abcdef";
1646
1647 static int
1648 ishex (int ch, int *val)
1649 {
1650 if ((ch >= 'a') && (ch <= 'f'))
1651 {
1652 *val = ch - 'a' + 10;
1653 return 1;
1654 }
1655 if ((ch >= 'A') && (ch <= 'F'))
1656 {
1657 *val = ch - 'A' + 10;
1658 return 1;
1659 }
1660 if ((ch >= '0') && (ch <= '9'))
1661 {
1662 *val = ch - '0';
1663 return 1;
1664 }
1665 return 0;
1666 }
1667
1668 static int
1669 stubhex (int ch)
1670 {
1671 if (ch >= 'a' && ch <= 'f')
1672 return ch - 'a' + 10;
1673 if (ch >= '0' && ch <= '9')
1674 return ch - '0';
1675 if (ch >= 'A' && ch <= 'F')
1676 return ch - 'A' + 10;
1677 return -1;
1678 }
1679
1680 static int
1681 stub_unpack_int (char *buff, int fieldlength)
1682 {
1683 int nibble;
1684 int retval = 0;
1685
1686 while (fieldlength)
1687 {
1688 nibble = stubhex (*buff++);
1689 retval |= nibble;
1690 fieldlength--;
1691 if (fieldlength)
1692 retval = retval << 4;
1693 }
1694 return retval;
1695 }
1696
1697 char *
1698 unpack_varlen_hex (char *buff, /* packet to parse */
1699 ULONGEST *result)
1700 {
1701 int nibble;
1702 ULONGEST retval = 0;
1703
1704 while (ishex (*buff, &nibble))
1705 {
1706 buff++;
1707 retval = retval << 4;
1708 retval |= nibble & 0x0f;
1709 }
1710 *result = retval;
1711 return buff;
1712 }
1713
1714 static char *
1715 unpack_nibble (char *buf, int *val)
1716 {
1717 *val = fromhex (*buf++);
1718 return buf;
1719 }
1720
1721 static char *
1722 pack_nibble (char *buf, int nibble)
1723 {
1724 *buf++ = hexchars[(nibble & 0x0f)];
1725 return buf;
1726 }
1727
1728 static char *
1729 pack_hex_byte (char *pkt, int byte)
1730 {
1731 *pkt++ = hexchars[(byte >> 4) & 0xf];
1732 *pkt++ = hexchars[(byte & 0xf)];
1733 return pkt;
1734 }
1735
1736 static char *
1737 unpack_byte (char *buf, int *value)
1738 {
1739 *value = stub_unpack_int (buf, 2);
1740 return buf + 2;
1741 }
1742
1743 static char *
1744 pack_int (char *buf, int value)
1745 {
1746 buf = pack_hex_byte (buf, (value >> 24) & 0xff);
1747 buf = pack_hex_byte (buf, (value >> 16) & 0xff);
1748 buf = pack_hex_byte (buf, (value >> 8) & 0x0ff);
1749 buf = pack_hex_byte (buf, (value & 0xff));
1750 return buf;
1751 }
1752
1753 static char *
1754 unpack_int (char *buf, int *value)
1755 {
1756 *value = stub_unpack_int (buf, 8);
1757 return buf + 8;
1758 }
1759
1760 #if 0 /* Currently unused, uncomment when needed. */
1761 static char *pack_string (char *pkt, char *string);
1762
1763 static char *
1764 pack_string (char *pkt, char *string)
1765 {
1766 char ch;
1767 int len;
1768
1769 len = strlen (string);
1770 if (len > 200)
1771 len = 200; /* Bigger than most GDB packets, junk??? */
1772 pkt = pack_hex_byte (pkt, len);
1773 while (len-- > 0)
1774 {
1775 ch = *string++;
1776 if ((ch == '\0') || (ch == '#'))
1777 ch = '*'; /* Protect encapsulation. */
1778 *pkt++ = ch;
1779 }
1780 return pkt;
1781 }
1782 #endif /* 0 (unused) */
1783
1784 static char *
1785 unpack_string (char *src, char *dest, int length)
1786 {
1787 while (length--)
1788 *dest++ = *src++;
1789 *dest = '\0';
1790 return src;
1791 }
1792
1793 static char *
1794 pack_threadid (char *pkt, threadref *id)
1795 {
1796 char *limit;
1797 unsigned char *altid;
1798
1799 altid = (unsigned char *) id;
1800 limit = pkt + BUF_THREAD_ID_SIZE;
1801 while (pkt < limit)
1802 pkt = pack_hex_byte (pkt, *altid++);
1803 return pkt;
1804 }
1805
1806
1807 static char *
1808 unpack_threadid (char *inbuf, threadref *id)
1809 {
1810 char *altref;
1811 char *limit = inbuf + BUF_THREAD_ID_SIZE;
1812 int x, y;
1813
1814 altref = (char *) id;
1815
1816 while (inbuf < limit)
1817 {
1818 x = stubhex (*inbuf++);
1819 y = stubhex (*inbuf++);
1820 *altref++ = (x << 4) | y;
1821 }
1822 return inbuf;
1823 }
1824
1825 /* Externally, threadrefs are 64 bits but internally, they are still
1826 ints. This is due to a mismatch of specifications. We would like
1827 to use 64bit thread references internally. This is an adapter
1828 function. */
1829
1830 void
1831 int_to_threadref (threadref *id, int value)
1832 {
1833 unsigned char *scan;
1834
1835 scan = (unsigned char *) id;
1836 {
1837 int i = 4;
1838 while (i--)
1839 *scan++ = 0;
1840 }
1841 *scan++ = (value >> 24) & 0xff;
1842 *scan++ = (value >> 16) & 0xff;
1843 *scan++ = (value >> 8) & 0xff;
1844 *scan++ = (value & 0xff);
1845 }
1846
1847 static int
1848 threadref_to_int (threadref *ref)
1849 {
1850 int i, value = 0;
1851 unsigned char *scan;
1852
1853 scan = *ref;
1854 scan += 4;
1855 i = 4;
1856 while (i-- > 0)
1857 value = (value << 8) | ((*scan++) & 0xff);
1858 return value;
1859 }
1860
1861 static void
1862 copy_threadref (threadref *dest, threadref *src)
1863 {
1864 int i;
1865 unsigned char *csrc, *cdest;
1866
1867 csrc = (unsigned char *) src;
1868 cdest = (unsigned char *) dest;
1869 i = 8;
1870 while (i--)
1871 *cdest++ = *csrc++;
1872 }
1873
1874 static int
1875 threadmatch (threadref *dest, threadref *src)
1876 {
1877 /* Things are broken right now, so just assume we got a match. */
1878 #if 0
1879 unsigned char *srcp, *destp;
1880 int i, result;
1881 srcp = (char *) src;
1882 destp = (char *) dest;
1883
1884 result = 1;
1885 while (i-- > 0)
1886 result &= (*srcp++ == *destp++) ? 1 : 0;
1887 return result;
1888 #endif
1889 return 1;
1890 }
1891
1892 /*
1893 threadid:1, # always request threadid
1894 context_exists:2,
1895 display:4,
1896 unique_name:8,
1897 more_display:16
1898 */
1899
1900 /* Encoding: 'Q':8,'P':8,mask:32,threadid:64 */
1901
1902 static char *
1903 pack_threadinfo_request (char *pkt, int mode, threadref *id)
1904 {
1905 *pkt++ = 'q'; /* Info Query */
1906 *pkt++ = 'P'; /* process or thread info */
1907 pkt = pack_int (pkt, mode); /* mode */
1908 pkt = pack_threadid (pkt, id); /* threadid */
1909 *pkt = '\0'; /* terminate */
1910 return pkt;
1911 }
1912
1913 /* These values tag the fields in a thread info response packet. */
1914 /* Tagging the fields allows us to request specific fields and to
1915 add more fields as time goes by. */
1916
1917 #define TAG_THREADID 1 /* Echo the thread identifier. */
1918 #define TAG_EXISTS 2 /* Is this process defined enough to
1919 fetch registers and its stack? */
1920 #define TAG_DISPLAY 4 /* A short thing maybe to put on a window */
1921 #define TAG_THREADNAME 8 /* string, maps 1-to-1 with a thread is. */
1922 #define TAG_MOREDISPLAY 16 /* Whatever the kernel wants to say about
1923 the process. */
1924
1925 static int
1926 remote_unpack_thread_info_response (char *pkt, threadref *expectedref,
1927 struct gdb_ext_thread_info *info)
1928 {
1929 struct remote_state *rs = get_remote_state ();
1930 int mask, length;
1931 int tag;
1932 threadref ref;
1933 char *limit = pkt + rs->buf_size; /* Plausible parsing limit. */
1934 int retval = 1;
1935
1936 /* info->threadid = 0; FIXME: implement zero_threadref. */
1937 info->active = 0;
1938 info->display[0] = '\0';
1939 info->shortname[0] = '\0';
1940 info->more_display[0] = '\0';
1941
1942 /* Assume the characters indicating the packet type have been
1943 stripped. */
1944 pkt = unpack_int (pkt, &mask); /* arg mask */
1945 pkt = unpack_threadid (pkt, &ref);
1946
1947 if (mask == 0)
1948 warning (_("Incomplete response to threadinfo request."));
1949 if (!threadmatch (&ref, expectedref))
1950 { /* This is an answer to a different request. */
1951 warning (_("ERROR RMT Thread info mismatch."));
1952 return 0;
1953 }
1954 copy_threadref (&info->threadid, &ref);
1955
1956 /* Loop on tagged fields , try to bail if somthing goes wrong. */
1957
1958 /* Packets are terminated with nulls. */
1959 while ((pkt < limit) && mask && *pkt)
1960 {
1961 pkt = unpack_int (pkt, &tag); /* tag */
1962 pkt = unpack_byte (pkt, &length); /* length */
1963 if (!(tag & mask)) /* Tags out of synch with mask. */
1964 {
1965 warning (_("ERROR RMT: threadinfo tag mismatch."));
1966 retval = 0;
1967 break;
1968 }
1969 if (tag == TAG_THREADID)
1970 {
1971 if (length != 16)
1972 {
1973 warning (_("ERROR RMT: length of threadid is not 16."));
1974 retval = 0;
1975 break;
1976 }
1977 pkt = unpack_threadid (pkt, &ref);
1978 mask = mask & ~TAG_THREADID;
1979 continue;
1980 }
1981 if (tag == TAG_EXISTS)
1982 {
1983 info->active = stub_unpack_int (pkt, length);
1984 pkt += length;
1985 mask = mask & ~(TAG_EXISTS);
1986 if (length > 8)
1987 {
1988 warning (_("ERROR RMT: 'exists' length too long."));
1989 retval = 0;
1990 break;
1991 }
1992 continue;
1993 }
1994 if (tag == TAG_THREADNAME)
1995 {
1996 pkt = unpack_string (pkt, &info->shortname[0], length);
1997 mask = mask & ~TAG_THREADNAME;
1998 continue;
1999 }
2000 if (tag == TAG_DISPLAY)
2001 {
2002 pkt = unpack_string (pkt, &info->display[0], length);
2003 mask = mask & ~TAG_DISPLAY;
2004 continue;
2005 }
2006 if (tag == TAG_MOREDISPLAY)
2007 {
2008 pkt = unpack_string (pkt, &info->more_display[0], length);
2009 mask = mask & ~TAG_MOREDISPLAY;
2010 continue;
2011 }
2012 warning (_("ERROR RMT: unknown thread info tag."));
2013 break; /* Not a tag we know about. */
2014 }
2015 return retval;
2016 }
2017
2018 static int
2019 remote_get_threadinfo (threadref *threadid, int fieldset, /* TAG mask */
2020 struct gdb_ext_thread_info *info)
2021 {
2022 struct remote_state *rs = get_remote_state ();
2023 int result;
2024
2025 pack_threadinfo_request (rs->buf, fieldset, threadid);
2026 putpkt (rs->buf);
2027 getpkt (&rs->buf, &rs->buf_size, 0);
2028
2029 if (rs->buf[0] == '\0')
2030 return 0;
2031
2032 result = remote_unpack_thread_info_response (rs->buf + 2,
2033 threadid, info);
2034 return result;
2035 }
2036
2037 /* Format: i'Q':8,i"L":8,initflag:8,batchsize:16,lastthreadid:32 */
2038
2039 static char *
2040 pack_threadlist_request (char *pkt, int startflag, int threadcount,
2041 threadref *nextthread)
2042 {
2043 *pkt++ = 'q'; /* info query packet */
2044 *pkt++ = 'L'; /* Process LIST or threadLIST request */
2045 pkt = pack_nibble (pkt, startflag); /* initflag 1 bytes */
2046 pkt = pack_hex_byte (pkt, threadcount); /* threadcount 2 bytes */
2047 pkt = pack_threadid (pkt, nextthread); /* 64 bit thread identifier */
2048 *pkt = '\0';
2049 return pkt;
2050 }
2051
2052 /* Encoding: 'q':8,'M':8,count:16,done:8,argthreadid:64,(threadid:64)* */
2053
2054 static int
2055 parse_threadlist_response (char *pkt, int result_limit,
2056 threadref *original_echo, threadref *resultlist,
2057 int *doneflag)
2058 {
2059 struct remote_state *rs = get_remote_state ();
2060 char *limit;
2061 int count, resultcount, done;
2062
2063 resultcount = 0;
2064 /* Assume the 'q' and 'M chars have been stripped. */
2065 limit = pkt + (rs->buf_size - BUF_THREAD_ID_SIZE);
2066 /* done parse past here */
2067 pkt = unpack_byte (pkt, &count); /* count field */
2068 pkt = unpack_nibble (pkt, &done);
2069 /* The first threadid is the argument threadid. */
2070 pkt = unpack_threadid (pkt, original_echo); /* should match query packet */
2071 while ((count-- > 0) && (pkt < limit))
2072 {
2073 pkt = unpack_threadid (pkt, resultlist++);
2074 if (resultcount++ >= result_limit)
2075 break;
2076 }
2077 if (doneflag)
2078 *doneflag = done;
2079 return resultcount;
2080 }
2081
2082 static int
2083 remote_get_threadlist (int startflag, threadref *nextthread, int result_limit,
2084 int *done, int *result_count, threadref *threadlist)
2085 {
2086 struct remote_state *rs = get_remote_state ();
2087 static threadref echo_nextthread;
2088 int result = 1;
2089
2090 /* Trancate result limit to be smaller than the packet size. */
2091 if ((((result_limit + 1) * BUF_THREAD_ID_SIZE) + 10) >= get_remote_packet_size ())
2092 result_limit = (get_remote_packet_size () / BUF_THREAD_ID_SIZE) - 2;
2093
2094 pack_threadlist_request (rs->buf, startflag, result_limit, nextthread);
2095 putpkt (rs->buf);
2096 getpkt (&rs->buf, &rs->buf_size, 0);
2097
2098 if (*rs->buf == '\0')
2099 *result_count = 0;
2100 else
2101 *result_count =
2102 parse_threadlist_response (rs->buf + 2, result_limit, &echo_nextthread,
2103 threadlist, done);
2104
2105 if (!threadmatch (&echo_nextthread, nextthread))
2106 {
2107 /* FIXME: This is a good reason to drop the packet. */
2108 /* Possably, there is a duplicate response. */
2109 /* Possabilities :
2110 retransmit immediatly - race conditions
2111 retransmit after timeout - yes
2112 exit
2113 wait for packet, then exit
2114 */
2115 warning (_("HMM: threadlist did not echo arg thread, dropping it."));
2116 return 0; /* I choose simply exiting. */
2117 }
2118 if (*result_count <= 0)
2119 {
2120 if (*done != 1)
2121 {
2122 warning (_("RMT ERROR : failed to get remote thread list."));
2123 result = 0;
2124 }
2125 return result; /* break; */
2126 }
2127 if (*result_count > result_limit)
2128 {
2129 *result_count = 0;
2130 warning (_("RMT ERROR: threadlist response longer than requested."));
2131 return 0;
2132 }
2133 return result;
2134 }
2135
2136 /* This is the interface between remote and threads, remotes upper
2137 interface. */
2138
2139 /* remote_find_new_threads retrieves the thread list and for each
2140 thread in the list, looks up the thread in GDB's internal list,
2141 adding the thread if it does not already exist. This involves
2142 getting partial thread lists from the remote target so, polling the
2143 quit_flag is required. */
2144
2145
2146 /* About this many threadisds fit in a packet. */
2147
2148 #define MAXTHREADLISTRESULTS 32
2149
2150 static int
2151 remote_threadlist_iterator (rmt_thread_action stepfunction, void *context,
2152 int looplimit)
2153 {
2154 int done, i, result_count;
2155 int startflag = 1;
2156 int result = 1;
2157 int loopcount = 0;
2158 static threadref nextthread;
2159 static threadref resultthreadlist[MAXTHREADLISTRESULTS];
2160
2161 done = 0;
2162 while (!done)
2163 {
2164 if (loopcount++ > looplimit)
2165 {
2166 result = 0;
2167 warning (_("Remote fetch threadlist -infinite loop-."));
2168 break;
2169 }
2170 if (!remote_get_threadlist (startflag, &nextthread, MAXTHREADLISTRESULTS,
2171 &done, &result_count, resultthreadlist))
2172 {
2173 result = 0;
2174 break;
2175 }
2176 /* Clear for later iterations. */
2177 startflag = 0;
2178 /* Setup to resume next batch of thread references, set nextthread. */
2179 if (result_count >= 1)
2180 copy_threadref (&nextthread, &resultthreadlist[result_count - 1]);
2181 i = 0;
2182 while (result_count--)
2183 if (!(result = (*stepfunction) (&resultthreadlist[i++], context)))
2184 break;
2185 }
2186 return result;
2187 }
2188
2189 static int
2190 remote_newthread_step (threadref *ref, void *context)
2191 {
2192 int pid = ptid_get_pid (inferior_ptid);
2193 ptid_t ptid = ptid_build (pid, 0, threadref_to_int (ref));
2194
2195 if (!in_thread_list (ptid))
2196 add_thread (ptid);
2197 return 1; /* continue iterator */
2198 }
2199
2200 #define CRAZY_MAX_THREADS 1000
2201
2202 static ptid_t
2203 remote_current_thread (ptid_t oldpid)
2204 {
2205 struct remote_state *rs = get_remote_state ();
2206 char *p = rs->buf;
2207 int tid;
2208 int pid;
2209
2210 putpkt ("qC");
2211 getpkt (&rs->buf, &rs->buf_size, 0);
2212 if (rs->buf[0] == 'Q' && rs->buf[1] == 'C')
2213 return read_ptid (&rs->buf[2], NULL);
2214 else
2215 return oldpid;
2216 }
2217
2218 /* Find new threads for info threads command.
2219 * Original version, using John Metzler's thread protocol.
2220 */
2221
2222 static void
2223 remote_find_new_threads (void)
2224 {
2225 remote_threadlist_iterator (remote_newthread_step, 0,
2226 CRAZY_MAX_THREADS);
2227 }
2228
2229 /*
2230 * Find all threads for info threads command.
2231 * Uses new thread protocol contributed by Cisco.
2232 * Falls back and attempts to use the older method (above)
2233 * if the target doesn't respond to the new method.
2234 */
2235
2236 static void
2237 remote_threads_info (struct target_ops *ops)
2238 {
2239 struct remote_state *rs = get_remote_state ();
2240 char *bufp;
2241 ptid_t new_thread;
2242
2243 if (remote_desc == 0) /* paranoia */
2244 error (_("Command can only be used when connected to the remote target."));
2245
2246 if (use_threadinfo_query)
2247 {
2248 putpkt ("qfThreadInfo");
2249 getpkt (&rs->buf, &rs->buf_size, 0);
2250 bufp = rs->buf;
2251 if (bufp[0] != '\0') /* q packet recognized */
2252 {
2253 while (*bufp++ == 'm') /* reply contains one or more TID */
2254 {
2255 do
2256 {
2257 new_thread = read_ptid (bufp, &bufp);
2258 if (!ptid_equal (new_thread, null_ptid))
2259 {
2260 /* In non-stop mode, we assume new found threads
2261 are running until proven otherwise with a
2262 stop reply. In all-stop, we can only get
2263 here if all threads are stopped. */
2264 int running = non_stop ? 1 : 0;
2265
2266 remote_notice_new_inferior (new_thread, running);
2267 }
2268 }
2269 while (*bufp++ == ','); /* comma-separated list */
2270 putpkt ("qsThreadInfo");
2271 getpkt (&rs->buf, &rs->buf_size, 0);
2272 bufp = rs->buf;
2273 }
2274 return; /* done */
2275 }
2276 }
2277
2278 /* Only qfThreadInfo is supported in non-stop mode. */
2279 if (non_stop)
2280 return;
2281
2282 /* Else fall back to old method based on jmetzler protocol. */
2283 use_threadinfo_query = 0;
2284 remote_find_new_threads ();
2285 return;
2286 }
2287
2288 /*
2289 * Collect a descriptive string about the given thread.
2290 * The target may say anything it wants to about the thread
2291 * (typically info about its blocked / runnable state, name, etc.).
2292 * This string will appear in the info threads display.
2293 *
2294 * Optional: targets are not required to implement this function.
2295 */
2296
2297 static char *
2298 remote_threads_extra_info (struct thread_info *tp)
2299 {
2300 struct remote_state *rs = get_remote_state ();
2301 int result;
2302 int set;
2303 threadref id;
2304 struct gdb_ext_thread_info threadinfo;
2305 static char display_buf[100]; /* arbitrary... */
2306 int n = 0; /* position in display_buf */
2307
2308 if (remote_desc == 0) /* paranoia */
2309 internal_error (__FILE__, __LINE__,
2310 _("remote_threads_extra_info"));
2311
2312 if (ptid_equal (tp->ptid, magic_null_ptid)
2313 || (ptid_get_pid (tp->ptid) != 0 && ptid_get_tid (tp->ptid) == 0))
2314 /* This is the main thread which was added by GDB. The remote
2315 server doesn't know about it. */
2316 return NULL;
2317
2318 if (use_threadextra_query)
2319 {
2320 char *b = rs->buf;
2321 char *endb = rs->buf + get_remote_packet_size ();
2322
2323 xsnprintf (b, endb - b, "qThreadExtraInfo,");
2324 b += strlen (b);
2325 write_ptid (b, endb, tp->ptid);
2326
2327 putpkt (rs->buf);
2328 getpkt (&rs->buf, &rs->buf_size, 0);
2329 if (rs->buf[0] != 0)
2330 {
2331 n = min (strlen (rs->buf) / 2, sizeof (display_buf));
2332 result = hex2bin (rs->buf, (gdb_byte *) display_buf, n);
2333 display_buf [result] = '\0';
2334 return display_buf;
2335 }
2336 }
2337
2338 /* If the above query fails, fall back to the old method. */
2339 use_threadextra_query = 0;
2340 set = TAG_THREADID | TAG_EXISTS | TAG_THREADNAME
2341 | TAG_MOREDISPLAY | TAG_DISPLAY;
2342 int_to_threadref (&id, ptid_get_tid (tp->ptid));
2343 if (remote_get_threadinfo (&id, set, &threadinfo))
2344 if (threadinfo.active)
2345 {
2346 if (*threadinfo.shortname)
2347 n += xsnprintf (&display_buf[0], sizeof (display_buf) - n,
2348 " Name: %s,", threadinfo.shortname);
2349 if (*threadinfo.display)
2350 n += xsnprintf (&display_buf[n], sizeof (display_buf) - n,
2351 " State: %s,", threadinfo.display);
2352 if (*threadinfo.more_display)
2353 n += xsnprintf (&display_buf[n], sizeof (display_buf) - n,
2354 " Priority: %s", threadinfo.more_display);
2355
2356 if (n > 0)
2357 {
2358 /* For purely cosmetic reasons, clear up trailing commas. */
2359 if (',' == display_buf[n-1])
2360 display_buf[n-1] = ' ';
2361 return display_buf;
2362 }
2363 }
2364 return NULL;
2365 }
2366 \f
2367
2368 /* Restart the remote side; this is an extended protocol operation. */
2369
2370 static void
2371 extended_remote_restart (void)
2372 {
2373 struct remote_state *rs = get_remote_state ();
2374
2375 /* Send the restart command; for reasons I don't understand the
2376 remote side really expects a number after the "R". */
2377 xsnprintf (rs->buf, get_remote_packet_size (), "R%x", 0);
2378 putpkt (rs->buf);
2379
2380 remote_fileio_reset ();
2381 }
2382 \f
2383 /* Clean up connection to a remote debugger. */
2384
2385 static void
2386 remote_close (int quitting)
2387 {
2388 if (remote_desc == NULL)
2389 return; /* already closed */
2390
2391 /* Make sure we leave stdin registered in the event loop, and we
2392 don't leave the async SIGINT signal handler installed. */
2393 remote_terminal_ours ();
2394
2395 serial_close (remote_desc);
2396 remote_desc = NULL;
2397
2398 /* We don't have a connection to the remote stub anymore. Get rid
2399 of all the inferiors and their threads we were controlling. */
2400 discard_all_inferiors ();
2401
2402 /* We're no longer interested in any of these events. */
2403 discard_pending_stop_replies (-1);
2404
2405 if (remote_async_inferior_event_token)
2406 delete_async_event_handler (&remote_async_inferior_event_token);
2407 if (remote_async_get_pending_events_token)
2408 delete_async_event_handler (&remote_async_get_pending_events_token);
2409 }
2410
2411 /* Query the remote side for the text, data and bss offsets. */
2412
2413 static void
2414 get_offsets (void)
2415 {
2416 struct remote_state *rs = get_remote_state ();
2417 char *buf;
2418 char *ptr;
2419 int lose, num_segments = 0, do_sections, do_segments;
2420 CORE_ADDR text_addr, data_addr, bss_addr, segments[2];
2421 struct section_offsets *offs;
2422 struct symfile_segment_data *data;
2423
2424 if (symfile_objfile == NULL)
2425 return;
2426
2427 putpkt ("qOffsets");
2428 getpkt (&rs->buf, &rs->buf_size, 0);
2429 buf = rs->buf;
2430
2431 if (buf[0] == '\000')
2432 return; /* Return silently. Stub doesn't support
2433 this command. */
2434 if (buf[0] == 'E')
2435 {
2436 warning (_("Remote failure reply: %s"), buf);
2437 return;
2438 }
2439
2440 /* Pick up each field in turn. This used to be done with scanf, but
2441 scanf will make trouble if CORE_ADDR size doesn't match
2442 conversion directives correctly. The following code will work
2443 with any size of CORE_ADDR. */
2444 text_addr = data_addr = bss_addr = 0;
2445 ptr = buf;
2446 lose = 0;
2447
2448 if (strncmp (ptr, "Text=", 5) == 0)
2449 {
2450 ptr += 5;
2451 /* Don't use strtol, could lose on big values. */
2452 while (*ptr && *ptr != ';')
2453 text_addr = (text_addr << 4) + fromhex (*ptr++);
2454
2455 if (strncmp (ptr, ";Data=", 6) == 0)
2456 {
2457 ptr += 6;
2458 while (*ptr && *ptr != ';')
2459 data_addr = (data_addr << 4) + fromhex (*ptr++);
2460 }
2461 else
2462 lose = 1;
2463
2464 if (!lose && strncmp (ptr, ";Bss=", 5) == 0)
2465 {
2466 ptr += 5;
2467 while (*ptr && *ptr != ';')
2468 bss_addr = (bss_addr << 4) + fromhex (*ptr++);
2469
2470 if (bss_addr != data_addr)
2471 warning (_("Target reported unsupported offsets: %s"), buf);
2472 }
2473 else
2474 lose = 1;
2475 }
2476 else if (strncmp (ptr, "TextSeg=", 8) == 0)
2477 {
2478 ptr += 8;
2479 /* Don't use strtol, could lose on big values. */
2480 while (*ptr && *ptr != ';')
2481 text_addr = (text_addr << 4) + fromhex (*ptr++);
2482 num_segments = 1;
2483
2484 if (strncmp (ptr, ";DataSeg=", 9) == 0)
2485 {
2486 ptr += 9;
2487 while (*ptr && *ptr != ';')
2488 data_addr = (data_addr << 4) + fromhex (*ptr++);
2489 num_segments++;
2490 }
2491 }
2492 else
2493 lose = 1;
2494
2495 if (lose)
2496 error (_("Malformed response to offset query, %s"), buf);
2497 else if (*ptr != '\0')
2498 warning (_("Target reported unsupported offsets: %s"), buf);
2499
2500 offs = ((struct section_offsets *)
2501 alloca (SIZEOF_N_SECTION_OFFSETS (symfile_objfile->num_sections)));
2502 memcpy (offs, symfile_objfile->section_offsets,
2503 SIZEOF_N_SECTION_OFFSETS (symfile_objfile->num_sections));
2504
2505 data = get_symfile_segment_data (symfile_objfile->obfd);
2506 do_segments = (data != NULL);
2507 do_sections = num_segments == 0;
2508
2509 if (num_segments > 0)
2510 {
2511 segments[0] = text_addr;
2512 segments[1] = data_addr;
2513 }
2514 /* If we have two segments, we can still try to relocate everything
2515 by assuming that the .text and .data offsets apply to the whole
2516 text and data segments. Convert the offsets given in the packet
2517 to base addresses for symfile_map_offsets_to_segments. */
2518 else if (data && data->num_segments == 2)
2519 {
2520 segments[0] = data->segment_bases[0] + text_addr;
2521 segments[1] = data->segment_bases[1] + data_addr;
2522 num_segments = 2;
2523 }
2524 /* If the object file has only one segment, assume that it is text
2525 rather than data; main programs with no writable data are rare,
2526 but programs with no code are useless. Of course the code might
2527 have ended up in the data segment... to detect that we would need
2528 the permissions here. */
2529 else if (data && data->num_segments == 1)
2530 {
2531 segments[0] = data->segment_bases[0] + text_addr;
2532 num_segments = 1;
2533 }
2534 /* There's no way to relocate by segment. */
2535 else
2536 do_segments = 0;
2537
2538 if (do_segments)
2539 {
2540 int ret = symfile_map_offsets_to_segments (symfile_objfile->obfd, data,
2541 offs, num_segments, segments);
2542
2543 if (ret == 0 && !do_sections)
2544 error (_("Can not handle qOffsets TextSeg response with this symbol file"));
2545
2546 if (ret > 0)
2547 do_sections = 0;
2548 }
2549
2550 if (data)
2551 free_symfile_segment_data (data);
2552
2553 if (do_sections)
2554 {
2555 offs->offsets[SECT_OFF_TEXT (symfile_objfile)] = text_addr;
2556
2557 /* This is a temporary kludge to force data and bss to use the same offsets
2558 because that's what nlmconv does now. The real solution requires changes
2559 to the stub and remote.c that I don't have time to do right now. */
2560
2561 offs->offsets[SECT_OFF_DATA (symfile_objfile)] = data_addr;
2562 offs->offsets[SECT_OFF_BSS (symfile_objfile)] = data_addr;
2563 }
2564
2565 objfile_relocate (symfile_objfile, offs);
2566 }
2567
2568 /* Callback for iterate_over_threads. Set the STOP_REQUESTED flags in
2569 threads we know are stopped already. This is used during the
2570 initial remote connection in non-stop mode --- threads that are
2571 reported as already being stopped are left stopped. */
2572
2573 static int
2574 set_stop_requested_callback (struct thread_info *thread, void *data)
2575 {
2576 /* If we have a stop reply for this thread, it must be stopped. */
2577 if (peek_stop_reply (thread->ptid))
2578 set_stop_requested (thread->ptid, 1);
2579
2580 return 0;
2581 }
2582
2583 /* Stub for catch_exception. */
2584
2585 struct start_remote_args
2586 {
2587 int from_tty;
2588
2589 /* The current target. */
2590 struct target_ops *target;
2591
2592 /* Non-zero if this is an extended-remote target. */
2593 int extended_p;
2594 };
2595
2596 static void
2597 remote_start_remote (struct ui_out *uiout, void *opaque)
2598 {
2599 struct start_remote_args *args = opaque;
2600 struct remote_state *rs = get_remote_state ();
2601 struct packet_config *noack_config;
2602 char *wait_status = NULL;
2603
2604 immediate_quit++; /* Allow user to interrupt it. */
2605
2606 /* Ack any packet which the remote side has already sent. */
2607 serial_write (remote_desc, "+", 1);
2608
2609 /* The first packet we send to the target is the optional "supported
2610 packets" request. If the target can answer this, it will tell us
2611 which later probes to skip. */
2612 remote_query_supported ();
2613
2614 /* Next, we possibly activate noack mode.
2615
2616 If the QStartNoAckMode packet configuration is set to AUTO,
2617 enable noack mode if the stub reported a wish for it with
2618 qSupported.
2619
2620 If set to TRUE, then enable noack mode even if the stub didn't
2621 report it in qSupported. If the stub doesn't reply OK, the
2622 session ends with an error.
2623
2624 If FALSE, then don't activate noack mode, regardless of what the
2625 stub claimed should be the default with qSupported. */
2626
2627 noack_config = &remote_protocol_packets[PACKET_QStartNoAckMode];
2628
2629 if (noack_config->detect == AUTO_BOOLEAN_TRUE
2630 || (noack_config->detect == AUTO_BOOLEAN_AUTO
2631 && noack_config->support == PACKET_ENABLE))
2632 {
2633 putpkt ("QStartNoAckMode");
2634 getpkt (&rs->buf, &rs->buf_size, 0);
2635 if (packet_ok (rs->buf, noack_config) == PACKET_OK)
2636 rs->noack_mode = 1;
2637 }
2638
2639 if (args->extended_p)
2640 {
2641 /* Tell the remote that we are using the extended protocol. */
2642 putpkt ("!");
2643 getpkt (&rs->buf, &rs->buf_size, 0);
2644 }
2645
2646 /* Next, if the target can specify a description, read it. We do
2647 this before anything involving memory or registers. */
2648 target_find_description ();
2649
2650 /* On OSs where the list of libraries is global to all
2651 processes, we fetch them early. */
2652 if (gdbarch_has_global_solist (target_gdbarch))
2653 solib_add (NULL, args->from_tty, args->target, auto_solib_add);
2654
2655 if (non_stop)
2656 {
2657 if (!rs->non_stop_aware)
2658 error (_("Non-stop mode requested, but remote does not support non-stop"));
2659
2660 putpkt ("QNonStop:1");
2661 getpkt (&rs->buf, &rs->buf_size, 0);
2662
2663 if (strcmp (rs->buf, "OK") != 0)
2664 error ("Remote refused setting non-stop mode with: %s", rs->buf);
2665
2666 /* Find about threads and processes the stub is already
2667 controlling. We default to adding them in the running state.
2668 The '?' query below will then tell us about which threads are
2669 stopped. */
2670 remote_threads_info (args->target);
2671 }
2672 else if (rs->non_stop_aware)
2673 {
2674 /* Don't assume that the stub can operate in all-stop mode.
2675 Request it explicitely. */
2676 putpkt ("QNonStop:0");
2677 getpkt (&rs->buf, &rs->buf_size, 0);
2678
2679 if (strcmp (rs->buf, "OK") != 0)
2680 error ("Remote refused setting all-stop mode with: %s", rs->buf);
2681 }
2682
2683 /* Check whether the target is running now. */
2684 putpkt ("?");
2685 getpkt (&rs->buf, &rs->buf_size, 0);
2686
2687 if (!non_stop)
2688 {
2689 if (rs->buf[0] == 'W' || rs->buf[0] == 'X')
2690 {
2691 if (args->extended_p)
2692 {
2693 /* We're connected, but not running. Drop out before we
2694 call start_remote. */
2695 target_mark_exited (args->target);
2696 return;
2697 }
2698 else
2699 error (_("The target is not running (try extended-remote?)"));
2700 }
2701 else
2702 {
2703 /* Save the reply for later. */
2704 wait_status = alloca (strlen (rs->buf) + 1);
2705 strcpy (wait_status, rs->buf);
2706 }
2707
2708 /* Let the stub know that we want it to return the thread. */
2709 set_continue_thread (minus_one_ptid);
2710
2711 /* Without this, some commands which require an active target
2712 (such as kill) won't work. This variable serves (at least)
2713 double duty as both the pid of the target process (if it has
2714 such), and as a flag indicating that a target is active.
2715 These functions should be split out into seperate variables,
2716 especially since GDB will someday have a notion of debugging
2717 several processes. */
2718 inferior_ptid = magic_null_ptid;
2719
2720 /* Now, if we have thread information, update inferior_ptid. */
2721 inferior_ptid = remote_current_thread (inferior_ptid);
2722
2723 remote_add_inferior (ptid_get_pid (inferior_ptid), -1);
2724
2725 /* Always add the main thread. */
2726 add_thread_silent (inferior_ptid);
2727
2728 get_offsets (); /* Get text, data & bss offsets. */
2729
2730 /* If we could not find a description using qXfer, and we know
2731 how to do it some other way, try again. This is not
2732 supported for non-stop; it could be, but it is tricky if
2733 there are no stopped threads when we connect. */
2734 if (remote_read_description_p (args->target)
2735 && gdbarch_target_desc (target_gdbarch) == NULL)
2736 {
2737 target_clear_description ();
2738 target_find_description ();
2739 }
2740
2741 /* Use the previously fetched status. */
2742 gdb_assert (wait_status != NULL);
2743 strcpy (rs->buf, wait_status);
2744 rs->cached_wait_status = 1;
2745
2746 immediate_quit--;
2747 start_remote (args->from_tty); /* Initialize gdb process mechanisms. */
2748 }
2749 else
2750 {
2751 /* Clear WFI global state. Do this before finding about new
2752 threads and inferiors, and setting the current inferior.
2753 Otherwise we would clear the proceed status of the current
2754 inferior when we want its stop_soon state to be preserved
2755 (see notice_new_inferior). */
2756 init_wait_for_inferior ();
2757
2758 /* In non-stop, we will either get an "OK", meaning that there
2759 are no stopped threads at this time; or, a regular stop
2760 reply. In the latter case, there may be more than one thread
2761 stopped --- we pull them all out using the vStopped
2762 mechanism. */
2763 if (strcmp (rs->buf, "OK") != 0)
2764 {
2765 struct stop_reply *stop_reply;
2766 struct cleanup *old_chain;
2767
2768 stop_reply = stop_reply_xmalloc ();
2769 old_chain = make_cleanup (do_stop_reply_xfree, stop_reply);
2770
2771 remote_parse_stop_reply (rs->buf, stop_reply);
2772 discard_cleanups (old_chain);
2773
2774 /* get_pending_stop_replies acks this one, and gets the rest
2775 out. */
2776 pending_stop_reply = stop_reply;
2777 remote_get_pending_stop_replies ();
2778
2779 /* Make sure that threads that were stopped remain
2780 stopped. */
2781 iterate_over_threads (set_stop_requested_callback, NULL);
2782 }
2783
2784 if (target_can_async_p ())
2785 target_async (inferior_event_handler, 0);
2786
2787 if (thread_count () == 0)
2788 {
2789 if (args->extended_p)
2790 {
2791 /* We're connected, but not running. Drop out before we
2792 call start_remote. */
2793 target_mark_exited (args->target);
2794 return;
2795 }
2796 else
2797 error (_("The target is not running (try extended-remote?)"));
2798 }
2799
2800 if (args->extended_p)
2801 target_mark_running (args->target);
2802
2803 /* Let the stub know that we want it to return the thread. */
2804
2805 /* Force the stub to choose a thread. */
2806 set_general_thread (null_ptid);
2807
2808 /* Query it. */
2809 inferior_ptid = remote_current_thread (minus_one_ptid);
2810 if (ptid_equal (inferior_ptid, minus_one_ptid))
2811 error (_("remote didn't report the current thread in non-stop mode"));
2812
2813 get_offsets (); /* Get text, data & bss offsets. */
2814
2815 /* In non-stop mode, any cached wait status will be stored in
2816 the stop reply queue. */
2817 gdb_assert (wait_status == NULL);
2818 }
2819
2820 /* If we connected to a live target, do some additional setup. */
2821 if (target_has_execution)
2822 {
2823 if (exec_bfd) /* No use without an exec file. */
2824 remote_check_symbols (symfile_objfile);
2825 }
2826
2827 /* If breakpoints are global, insert them now. */
2828 if (gdbarch_has_global_breakpoints (target_gdbarch)
2829 && breakpoints_always_inserted_mode ())
2830 insert_breakpoints ();
2831 }
2832
2833 /* Open a connection to a remote debugger.
2834 NAME is the filename used for communication. */
2835
2836 static void
2837 remote_open (char *name, int from_tty)
2838 {
2839 remote_open_1 (name, from_tty, &remote_ops, 0);
2840 }
2841
2842 /* Open a connection to a remote debugger using the extended
2843 remote gdb protocol. NAME is the filename used for communication. */
2844
2845 static void
2846 extended_remote_open (char *name, int from_tty)
2847 {
2848 remote_open_1 (name, from_tty, &extended_remote_ops, 1 /*extended_p */);
2849 }
2850
2851 /* Generic code for opening a connection to a remote target. */
2852
2853 static void
2854 init_all_packet_configs (void)
2855 {
2856 int i;
2857 for (i = 0; i < PACKET_MAX; i++)
2858 update_packet_config (&remote_protocol_packets[i]);
2859 }
2860
2861 /* Symbol look-up. */
2862
2863 static void
2864 remote_check_symbols (struct objfile *objfile)
2865 {
2866 struct remote_state *rs = get_remote_state ();
2867 char *msg, *reply, *tmp;
2868 struct minimal_symbol *sym;
2869 int end;
2870
2871 if (remote_protocol_packets[PACKET_qSymbol].support == PACKET_DISABLE)
2872 return;
2873
2874 /* Make sure the remote is pointing at the right process. */
2875 set_general_process ();
2876
2877 /* Allocate a message buffer. We can't reuse the input buffer in RS,
2878 because we need both at the same time. */
2879 msg = alloca (get_remote_packet_size ());
2880
2881 /* Invite target to request symbol lookups. */
2882
2883 putpkt ("qSymbol::");
2884 getpkt (&rs->buf, &rs->buf_size, 0);
2885 packet_ok (rs->buf, &remote_protocol_packets[PACKET_qSymbol]);
2886 reply = rs->buf;
2887
2888 while (strncmp (reply, "qSymbol:", 8) == 0)
2889 {
2890 tmp = &reply[8];
2891 end = hex2bin (tmp, (gdb_byte *) msg, strlen (tmp) / 2);
2892 msg[end] = '\0';
2893 sym = lookup_minimal_symbol (msg, NULL, NULL);
2894 if (sym == NULL)
2895 xsnprintf (msg, get_remote_packet_size (), "qSymbol::%s", &reply[8]);
2896 else
2897 {
2898 CORE_ADDR sym_addr = SYMBOL_VALUE_ADDRESS (sym);
2899
2900 /* If this is a function address, return the start of code
2901 instead of any data function descriptor. */
2902 sym_addr = gdbarch_convert_from_func_ptr_addr (target_gdbarch,
2903 sym_addr,
2904 &current_target);
2905
2906 xsnprintf (msg, get_remote_packet_size (), "qSymbol:%s:%s",
2907 paddr_nz (sym_addr), &reply[8]);
2908 }
2909
2910 putpkt (msg);
2911 getpkt (&rs->buf, &rs->buf_size, 0);
2912 reply = rs->buf;
2913 }
2914 }
2915
2916 static struct serial *
2917 remote_serial_open (char *name)
2918 {
2919 static int udp_warning = 0;
2920
2921 /* FIXME: Parsing NAME here is a hack. But we want to warn here instead
2922 of in ser-tcp.c, because it is the remote protocol assuming that the
2923 serial connection is reliable and not the serial connection promising
2924 to be. */
2925 if (!udp_warning && strncmp (name, "udp:", 4) == 0)
2926 {
2927 warning (_("\
2928 The remote protocol may be unreliable over UDP.\n\
2929 Some events may be lost, rendering further debugging impossible."));
2930 udp_warning = 1;
2931 }
2932
2933 return serial_open (name);
2934 }
2935
2936 /* This type describes each known response to the qSupported
2937 packet. */
2938 struct protocol_feature
2939 {
2940 /* The name of this protocol feature. */
2941 const char *name;
2942
2943 /* The default for this protocol feature. */
2944 enum packet_support default_support;
2945
2946 /* The function to call when this feature is reported, or after
2947 qSupported processing if the feature is not supported.
2948 The first argument points to this structure. The second
2949 argument indicates whether the packet requested support be
2950 enabled, disabled, or probed (or the default, if this function
2951 is being called at the end of processing and this feature was
2952 not reported). The third argument may be NULL; if not NULL, it
2953 is a NUL-terminated string taken from the packet following
2954 this feature's name and an equals sign. */
2955 void (*func) (const struct protocol_feature *, enum packet_support,
2956 const char *);
2957
2958 /* The corresponding packet for this feature. Only used if
2959 FUNC is remote_supported_packet. */
2960 int packet;
2961 };
2962
2963 static void
2964 remote_supported_packet (const struct protocol_feature *feature,
2965 enum packet_support support,
2966 const char *argument)
2967 {
2968 if (argument)
2969 {
2970 warning (_("Remote qSupported response supplied an unexpected value for"
2971 " \"%s\"."), feature->name);
2972 return;
2973 }
2974
2975 if (remote_protocol_packets[feature->packet].support
2976 == PACKET_SUPPORT_UNKNOWN)
2977 remote_protocol_packets[feature->packet].support = support;
2978 }
2979
2980 static void
2981 remote_packet_size (const struct protocol_feature *feature,
2982 enum packet_support support, const char *value)
2983 {
2984 struct remote_state *rs = get_remote_state ();
2985
2986 int packet_size;
2987 char *value_end;
2988
2989 if (support != PACKET_ENABLE)
2990 return;
2991
2992 if (value == NULL || *value == '\0')
2993 {
2994 warning (_("Remote target reported \"%s\" without a size."),
2995 feature->name);
2996 return;
2997 }
2998
2999 errno = 0;
3000 packet_size = strtol (value, &value_end, 16);
3001 if (errno != 0 || *value_end != '\0' || packet_size < 0)
3002 {
3003 warning (_("Remote target reported \"%s\" with a bad size: \"%s\"."),
3004 feature->name, value);
3005 return;
3006 }
3007
3008 if (packet_size > MAX_REMOTE_PACKET_SIZE)
3009 {
3010 warning (_("limiting remote suggested packet size (%d bytes) to %d"),
3011 packet_size, MAX_REMOTE_PACKET_SIZE);
3012 packet_size = MAX_REMOTE_PACKET_SIZE;
3013 }
3014
3015 /* Record the new maximum packet size. */
3016 rs->explicit_packet_size = packet_size;
3017 }
3018
3019 static void
3020 remote_multi_process_feature (const struct protocol_feature *feature,
3021 enum packet_support support, const char *value)
3022 {
3023 struct remote_state *rs = get_remote_state ();
3024 rs->multi_process_aware = (support == PACKET_ENABLE);
3025 }
3026
3027 static void
3028 remote_non_stop_feature (const struct protocol_feature *feature,
3029 enum packet_support support, const char *value)
3030 {
3031 struct remote_state *rs = get_remote_state ();
3032 rs->non_stop_aware = (support == PACKET_ENABLE);
3033 }
3034
3035 static struct protocol_feature remote_protocol_features[] = {
3036 { "PacketSize", PACKET_DISABLE, remote_packet_size, -1 },
3037 { "qXfer:auxv:read", PACKET_DISABLE, remote_supported_packet,
3038 PACKET_qXfer_auxv },
3039 { "qXfer:features:read", PACKET_DISABLE, remote_supported_packet,
3040 PACKET_qXfer_features },
3041 { "qXfer:libraries:read", PACKET_DISABLE, remote_supported_packet,
3042 PACKET_qXfer_libraries },
3043 { "qXfer:memory-map:read", PACKET_DISABLE, remote_supported_packet,
3044 PACKET_qXfer_memory_map },
3045 { "qXfer:spu:read", PACKET_DISABLE, remote_supported_packet,
3046 PACKET_qXfer_spu_read },
3047 { "qXfer:spu:write", PACKET_DISABLE, remote_supported_packet,
3048 PACKET_qXfer_spu_write },
3049 { "qXfer:osdata:read", PACKET_DISABLE, remote_supported_packet,
3050 PACKET_qXfer_osdata },
3051 { "QPassSignals", PACKET_DISABLE, remote_supported_packet,
3052 PACKET_QPassSignals },
3053 { "QStartNoAckMode", PACKET_DISABLE, remote_supported_packet,
3054 PACKET_QStartNoAckMode },
3055 { "multiprocess", PACKET_DISABLE, remote_multi_process_feature, -1 },
3056 { "QNonStop", PACKET_DISABLE, remote_non_stop_feature, -1 },
3057 { "qXfer:siginfo:read", PACKET_DISABLE, remote_supported_packet,
3058 PACKET_qXfer_siginfo_read },
3059 { "qXfer:siginfo:write", PACKET_DISABLE, remote_supported_packet,
3060 PACKET_qXfer_siginfo_write },
3061 };
3062
3063 static void
3064 remote_query_supported (void)
3065 {
3066 struct remote_state *rs = get_remote_state ();
3067 char *next;
3068 int i;
3069 unsigned char seen [ARRAY_SIZE (remote_protocol_features)];
3070
3071 /* The packet support flags are handled differently for this packet
3072 than for most others. We treat an error, a disabled packet, and
3073 an empty response identically: any features which must be reported
3074 to be used will be automatically disabled. An empty buffer
3075 accomplishes this, since that is also the representation for a list
3076 containing no features. */
3077
3078 rs->buf[0] = 0;
3079 if (remote_protocol_packets[PACKET_qSupported].support != PACKET_DISABLE)
3080 {
3081 if (rs->extended)
3082 putpkt ("qSupported:multiprocess+");
3083 else
3084 putpkt ("qSupported");
3085
3086 getpkt (&rs->buf, &rs->buf_size, 0);
3087
3088 /* If an error occured, warn, but do not return - just reset the
3089 buffer to empty and go on to disable features. */
3090 if (packet_ok (rs->buf, &remote_protocol_packets[PACKET_qSupported])
3091 == PACKET_ERROR)
3092 {
3093 warning (_("Remote failure reply: %s"), rs->buf);
3094 rs->buf[0] = 0;
3095 }
3096 }
3097
3098 memset (seen, 0, sizeof (seen));
3099
3100 next = rs->buf;
3101 while (*next)
3102 {
3103 enum packet_support is_supported;
3104 char *p, *end, *name_end, *value;
3105
3106 /* First separate out this item from the rest of the packet. If
3107 there's another item after this, we overwrite the separator
3108 (terminated strings are much easier to work with). */
3109 p = next;
3110 end = strchr (p, ';');
3111 if (end == NULL)
3112 {
3113 end = p + strlen (p);
3114 next = end;
3115 }
3116 else
3117 {
3118 *end = '\0';
3119 next = end + 1;
3120
3121 if (end == p)
3122 {
3123 warning (_("empty item in \"qSupported\" response"));
3124 continue;
3125 }
3126 }
3127
3128 name_end = strchr (p, '=');
3129 if (name_end)
3130 {
3131 /* This is a name=value entry. */
3132 is_supported = PACKET_ENABLE;
3133 value = name_end + 1;
3134 *name_end = '\0';
3135 }
3136 else
3137 {
3138 value = NULL;
3139 switch (end[-1])
3140 {
3141 case '+':
3142 is_supported = PACKET_ENABLE;
3143 break;
3144
3145 case '-':
3146 is_supported = PACKET_DISABLE;
3147 break;
3148
3149 case '?':
3150 is_supported = PACKET_SUPPORT_UNKNOWN;
3151 break;
3152
3153 default:
3154 warning (_("unrecognized item \"%s\" in \"qSupported\" response"), p);
3155 continue;
3156 }
3157 end[-1] = '\0';
3158 }
3159
3160 for (i = 0; i < ARRAY_SIZE (remote_protocol_features); i++)
3161 if (strcmp (remote_protocol_features[i].name, p) == 0)
3162 {
3163 const struct protocol_feature *feature;
3164
3165 seen[i] = 1;
3166 feature = &remote_protocol_features[i];
3167 feature->func (feature, is_supported, value);
3168 break;
3169 }
3170 }
3171
3172 /* If we increased the packet size, make sure to increase the global
3173 buffer size also. We delay this until after parsing the entire
3174 qSupported packet, because this is the same buffer we were
3175 parsing. */
3176 if (rs->buf_size < rs->explicit_packet_size)
3177 {
3178 rs->buf_size = rs->explicit_packet_size;
3179 rs->buf = xrealloc (rs->buf, rs->buf_size);
3180 }
3181
3182 /* Handle the defaults for unmentioned features. */
3183 for (i = 0; i < ARRAY_SIZE (remote_protocol_features); i++)
3184 if (!seen[i])
3185 {
3186 const struct protocol_feature *feature;
3187
3188 feature = &remote_protocol_features[i];
3189 feature->func (feature, feature->default_support, NULL);
3190 }
3191 }
3192
3193
3194 static void
3195 remote_open_1 (char *name, int from_tty, struct target_ops *target, int extended_p)
3196 {
3197 struct remote_state *rs = get_remote_state ();
3198
3199 if (name == 0)
3200 error (_("To open a remote debug connection, you need to specify what\n"
3201 "serial device is attached to the remote system\n"
3202 "(e.g. /dev/ttyS0, /dev/ttya, COM1, etc.)."));
3203
3204 /* See FIXME above. */
3205 if (!target_async_permitted)
3206 wait_forever_enabled_p = 1;
3207
3208 /* If we're connected to a running target, target_preopen will kill it.
3209 But if we're connected to a target system with no running process,
3210 then we will still be connected when it returns. Ask this question
3211 first, before target_preopen has a chance to kill anything. */
3212 if (remote_desc != NULL && !target_has_execution)
3213 {
3214 if (!from_tty
3215 || query (_("Already connected to a remote target. Disconnect? ")))
3216 pop_target ();
3217 else
3218 error (_("Still connected."));
3219 }
3220
3221 target_preopen (from_tty);
3222
3223 unpush_target (target);
3224
3225 /* This time without a query. If we were connected to an
3226 extended-remote target and target_preopen killed the running
3227 process, we may still be connected. If we are starting "target
3228 remote" now, the extended-remote target will not have been
3229 removed by unpush_target. */
3230 if (remote_desc != NULL && !target_has_execution)
3231 pop_target ();
3232
3233 /* Make sure we send the passed signals list the next time we resume. */
3234 xfree (last_pass_packet);
3235 last_pass_packet = NULL;
3236
3237 remote_fileio_reset ();
3238 reopen_exec_file ();
3239 reread_symbols ();
3240
3241 remote_desc = remote_serial_open (name);
3242 if (!remote_desc)
3243 perror_with_name (name);
3244
3245 if (baud_rate != -1)
3246 {
3247 if (serial_setbaudrate (remote_desc, baud_rate))
3248 {
3249 /* The requested speed could not be set. Error out to
3250 top level after closing remote_desc. Take care to
3251 set remote_desc to NULL to avoid closing remote_desc
3252 more than once. */
3253 serial_close (remote_desc);
3254 remote_desc = NULL;
3255 perror_with_name (name);
3256 }
3257 }
3258
3259 serial_raw (remote_desc);
3260
3261 /* If there is something sitting in the buffer we might take it as a
3262 response to a command, which would be bad. */
3263 serial_flush_input (remote_desc);
3264
3265 if (from_tty)
3266 {
3267 puts_filtered ("Remote debugging using ");
3268 puts_filtered (name);
3269 puts_filtered ("\n");
3270 }
3271 push_target (target); /* Switch to using remote target now. */
3272
3273 /* Assume that the target is not running, until we learn otherwise. */
3274 if (extended_p)
3275 target_mark_exited (target);
3276
3277 /* Register extra event sources in the event loop. */
3278 remote_async_inferior_event_token
3279 = create_async_event_handler (remote_async_inferior_event_handler,
3280 NULL);
3281 remote_async_get_pending_events_token
3282 = create_async_event_handler (remote_async_get_pending_events_handler,
3283 NULL);
3284
3285 /* Reset the target state; these things will be queried either by
3286 remote_query_supported or as they are needed. */
3287 init_all_packet_configs ();
3288 rs->cached_wait_status = 0;
3289 rs->explicit_packet_size = 0;
3290 rs->noack_mode = 0;
3291 rs->multi_process_aware = 0;
3292 rs->extended = extended_p;
3293 rs->non_stop_aware = 0;
3294 rs->waiting_for_stop_reply = 0;
3295
3296 general_thread = not_sent_ptid;
3297 continue_thread = not_sent_ptid;
3298
3299 /* Probe for ability to use "ThreadInfo" query, as required. */
3300 use_threadinfo_query = 1;
3301 use_threadextra_query = 1;
3302
3303 if (target_async_permitted)
3304 {
3305 /* With this target we start out by owning the terminal. */
3306 remote_async_terminal_ours_p = 1;
3307
3308 /* FIXME: cagney/1999-09-23: During the initial connection it is
3309 assumed that the target is already ready and able to respond to
3310 requests. Unfortunately remote_start_remote() eventually calls
3311 wait_for_inferior() with no timeout. wait_forever_enabled_p gets
3312 around this. Eventually a mechanism that allows
3313 wait_for_inferior() to expect/get timeouts will be
3314 implemented. */
3315 wait_forever_enabled_p = 0;
3316 }
3317
3318 /* First delete any symbols previously loaded from shared libraries. */
3319 no_shared_libraries (NULL, 0);
3320
3321 /* Start afresh. */
3322 init_thread_list ();
3323
3324 /* Start the remote connection. If error() or QUIT, discard this
3325 target (we'd otherwise be in an inconsistent state) and then
3326 propogate the error on up the exception chain. This ensures that
3327 the caller doesn't stumble along blindly assuming that the
3328 function succeeded. The CLI doesn't have this problem but other
3329 UI's, such as MI do.
3330
3331 FIXME: cagney/2002-05-19: Instead of re-throwing the exception,
3332 this function should return an error indication letting the
3333 caller restore the previous state. Unfortunately the command
3334 ``target remote'' is directly wired to this function making that
3335 impossible. On a positive note, the CLI side of this problem has
3336 been fixed - the function set_cmd_context() makes it possible for
3337 all the ``target ....'' commands to share a common callback
3338 function. See cli-dump.c. */
3339 {
3340 struct gdb_exception ex;
3341 struct start_remote_args args;
3342
3343 args.from_tty = from_tty;
3344 args.target = target;
3345 args.extended_p = extended_p;
3346
3347 ex = catch_exception (uiout, remote_start_remote, &args, RETURN_MASK_ALL);
3348 if (ex.reason < 0)
3349 {
3350 /* Pop the partially set up target - unless something else did
3351 already before throwing the exception. */
3352 if (remote_desc != NULL)
3353 pop_target ();
3354 if (target_async_permitted)
3355 wait_forever_enabled_p = 1;
3356 throw_exception (ex);
3357 }
3358 }
3359
3360 if (target_async_permitted)
3361 wait_forever_enabled_p = 1;
3362 }
3363
3364 /* This takes a program previously attached to and detaches it. After
3365 this is done, GDB can be used to debug some other program. We
3366 better not have left any breakpoints in the target program or it'll
3367 die when it hits one. */
3368
3369 static void
3370 remote_detach_1 (char *args, int from_tty, int extended)
3371 {
3372 int pid = ptid_get_pid (inferior_ptid);
3373 struct remote_state *rs = get_remote_state ();
3374
3375 if (args)
3376 error (_("Argument given to \"detach\" when remotely debugging."));
3377
3378 if (!target_has_execution)
3379 error (_("No process to detach from."));
3380
3381 /* Tell the remote target to detach. */
3382 if (remote_multi_process_p (rs))
3383 sprintf (rs->buf, "D;%x", pid);
3384 else
3385 strcpy (rs->buf, "D");
3386
3387 putpkt (rs->buf);
3388 getpkt (&rs->buf, &rs->buf_size, 0);
3389
3390 if (rs->buf[0] == 'O' && rs->buf[1] == 'K')
3391 ;
3392 else if (rs->buf[0] == '\0')
3393 error (_("Remote doesn't know how to detach"));
3394 else
3395 error (_("Can't detach process."));
3396
3397 if (from_tty)
3398 {
3399 if (remote_multi_process_p (rs))
3400 printf_filtered (_("Detached from remote %s.\n"),
3401 target_pid_to_str (pid_to_ptid (pid)));
3402 else
3403 {
3404 if (extended)
3405 puts_filtered (_("Detached from remote process.\n"));
3406 else
3407 puts_filtered (_("Ending remote debugging.\n"));
3408 }
3409 }
3410
3411 discard_pending_stop_replies (pid);
3412 target_mourn_inferior ();
3413 }
3414
3415 static void
3416 remote_detach (struct target_ops *ops, char *args, int from_tty)
3417 {
3418 remote_detach_1 (args, from_tty, 0);
3419 }
3420
3421 static void
3422 extended_remote_detach (struct target_ops *ops, char *args, int from_tty)
3423 {
3424 remote_detach_1 (args, from_tty, 1);
3425 }
3426
3427 /* Same as remote_detach, but don't send the "D" packet; just disconnect. */
3428
3429 static void
3430 remote_disconnect (struct target_ops *target, char *args, int from_tty)
3431 {
3432 if (args)
3433 error (_("Argument given to \"disconnect\" when remotely debugging."));
3434
3435 /* Make sure we unpush even the extended remote targets; mourn
3436 won't do it. So call remote_mourn_1 directly instead of
3437 target_mourn_inferior. */
3438 remote_mourn_1 (target);
3439
3440 if (from_tty)
3441 puts_filtered ("Ending remote debugging.\n");
3442 }
3443
3444 /* Attach to the process specified by ARGS. If FROM_TTY is non-zero,
3445 be chatty about it. */
3446
3447 static void
3448 extended_remote_attach_1 (struct target_ops *target, char *args, int from_tty)
3449 {
3450 struct remote_state *rs = get_remote_state ();
3451 int pid;
3452 char *dummy;
3453 char *wait_status = NULL;
3454
3455 if (!args)
3456 error_no_arg (_("process-id to attach"));
3457
3458 dummy = args;
3459 pid = strtol (args, &dummy, 0);
3460 /* Some targets don't set errno on errors, grrr! */
3461 if (pid == 0 && args == dummy)
3462 error (_("Illegal process-id: %s."), args);
3463
3464 if (remote_protocol_packets[PACKET_vAttach].support == PACKET_DISABLE)
3465 error (_("This target does not support attaching to a process"));
3466
3467 sprintf (rs->buf, "vAttach;%x", pid);
3468 putpkt (rs->buf);
3469 getpkt (&rs->buf, &rs->buf_size, 0);
3470
3471 if (packet_ok (rs->buf, &remote_protocol_packets[PACKET_vAttach]) == PACKET_OK)
3472 {
3473 if (from_tty)
3474 printf_unfiltered (_("Attached to %s\n"),
3475 target_pid_to_str (pid_to_ptid (pid)));
3476
3477 if (!non_stop)
3478 {
3479 /* Save the reply for later. */
3480 wait_status = alloca (strlen (rs->buf) + 1);
3481 strcpy (wait_status, rs->buf);
3482 }
3483 else if (strcmp (rs->buf, "OK") != 0)
3484 error (_("Attaching to %s failed with: %s"),
3485 target_pid_to_str (pid_to_ptid (pid)),
3486 rs->buf);
3487 }
3488 else if (remote_protocol_packets[PACKET_vAttach].support == PACKET_DISABLE)
3489 error (_("This target does not support attaching to a process"));
3490 else
3491 error (_("Attaching to %s failed"),
3492 target_pid_to_str (pid_to_ptid (pid)));
3493
3494 remote_add_inferior (pid, 1);
3495
3496 inferior_ptid = pid_to_ptid (pid);
3497
3498 if (non_stop)
3499 {
3500 struct thread_info *thread;
3501
3502 /* Get list of threads. */
3503 remote_threads_info (target);
3504
3505 thread = first_thread_of_process (pid);
3506 if (thread)
3507 inferior_ptid = thread->ptid;
3508 else
3509 inferior_ptid = pid_to_ptid (pid);
3510
3511 /* Invalidate our notion of the remote current thread. */
3512 record_currthread (minus_one_ptid);
3513 }
3514 else
3515 {
3516 /* Now, if we have thread information, update inferior_ptid. */
3517 inferior_ptid = remote_current_thread (inferior_ptid);
3518
3519 /* Add the main thread to the thread list. */
3520 add_thread_silent (inferior_ptid);
3521 }
3522
3523 /* Next, if the target can specify a description, read it. We do
3524 this before anything involving memory or registers. */
3525 target_find_description ();
3526
3527 if (!non_stop)
3528 {
3529 /* Use the previously fetched status. */
3530 gdb_assert (wait_status != NULL);
3531
3532 if (target_can_async_p ())
3533 {
3534 struct stop_reply *stop_reply;
3535 struct cleanup *old_chain;
3536
3537 stop_reply = stop_reply_xmalloc ();
3538 old_chain = make_cleanup (do_stop_reply_xfree, stop_reply);
3539 remote_parse_stop_reply (wait_status, stop_reply);
3540 discard_cleanups (old_chain);
3541 push_stop_reply (stop_reply);
3542
3543 target_async (inferior_event_handler, 0);
3544 }
3545 else
3546 {
3547 gdb_assert (wait_status != NULL);
3548 strcpy (rs->buf, wait_status);
3549 rs->cached_wait_status = 1;
3550 }
3551 }
3552 else
3553 gdb_assert (wait_status == NULL);
3554 }
3555
3556 static void
3557 extended_remote_attach (struct target_ops *ops, char *args, int from_tty)
3558 {
3559 extended_remote_attach_1 (ops, args, from_tty);
3560 }
3561
3562 /* Convert hex digit A to a number. */
3563
3564 static int
3565 fromhex (int a)
3566 {
3567 if (a >= '0' && a <= '9')
3568 return a - '0';
3569 else if (a >= 'a' && a <= 'f')
3570 return a - 'a' + 10;
3571 else if (a >= 'A' && a <= 'F')
3572 return a - 'A' + 10;
3573 else
3574 error (_("Reply contains invalid hex digit %d"), a);
3575 }
3576
3577 static int
3578 hex2bin (const char *hex, gdb_byte *bin, int count)
3579 {
3580 int i;
3581
3582 for (i = 0; i < count; i++)
3583 {
3584 if (hex[0] == 0 || hex[1] == 0)
3585 {
3586 /* Hex string is short, or of uneven length.
3587 Return the count that has been converted so far. */
3588 return i;
3589 }
3590 *bin++ = fromhex (hex[0]) * 16 + fromhex (hex[1]);
3591 hex += 2;
3592 }
3593 return i;
3594 }
3595
3596 /* Convert number NIB to a hex digit. */
3597
3598 static int
3599 tohex (int nib)
3600 {
3601 if (nib < 10)
3602 return '0' + nib;
3603 else
3604 return 'a' + nib - 10;
3605 }
3606
3607 static int
3608 bin2hex (const gdb_byte *bin, char *hex, int count)
3609 {
3610 int i;
3611 /* May use a length, or a nul-terminated string as input. */
3612 if (count == 0)
3613 count = strlen ((char *) bin);
3614
3615 for (i = 0; i < count; i++)
3616 {
3617 *hex++ = tohex ((*bin >> 4) & 0xf);
3618 *hex++ = tohex (*bin++ & 0xf);
3619 }
3620 *hex = 0;
3621 return i;
3622 }
3623 \f
3624 /* Check for the availability of vCont. This function should also check
3625 the response. */
3626
3627 static void
3628 remote_vcont_probe (struct remote_state *rs)
3629 {
3630 char *buf;
3631
3632 strcpy (rs->buf, "vCont?");
3633 putpkt (rs->buf);
3634 getpkt (&rs->buf, &rs->buf_size, 0);
3635 buf = rs->buf;
3636
3637 /* Make sure that the features we assume are supported. */
3638 if (strncmp (buf, "vCont", 5) == 0)
3639 {
3640 char *p = &buf[5];
3641 int support_s, support_S, support_c, support_C;
3642
3643 support_s = 0;
3644 support_S = 0;
3645 support_c = 0;
3646 support_C = 0;
3647 rs->support_vCont_t = 0;
3648 while (p && *p == ';')
3649 {
3650 p++;
3651 if (*p == 's' && (*(p + 1) == ';' || *(p + 1) == 0))
3652 support_s = 1;
3653 else if (*p == 'S' && (*(p + 1) == ';' || *(p + 1) == 0))
3654 support_S = 1;
3655 else if (*p == 'c' && (*(p + 1) == ';' || *(p + 1) == 0))
3656 support_c = 1;
3657 else if (*p == 'C' && (*(p + 1) == ';' || *(p + 1) == 0))
3658 support_C = 1;
3659 else if (*p == 't' && (*(p + 1) == ';' || *(p + 1) == 0))
3660 rs->support_vCont_t = 1;
3661
3662 p = strchr (p, ';');
3663 }
3664
3665 /* If s, S, c, and C are not all supported, we can't use vCont. Clearing
3666 BUF will make packet_ok disable the packet. */
3667 if (!support_s || !support_S || !support_c || !support_C)
3668 buf[0] = 0;
3669 }
3670
3671 packet_ok (buf, &remote_protocol_packets[PACKET_vCont]);
3672 }
3673
3674 /* Helper function for building "vCont" resumptions. Write a
3675 resumption to P. ENDP points to one-passed-the-end of the buffer
3676 we're allowed to write to. Returns BUF+CHARACTERS_WRITTEN. The
3677 thread to be resumed is PTID; STEP and SIGGNAL indicate whether the
3678 resumed thread should be single-stepped and/or signalled. If PTID
3679 equals minus_one_ptid, then all threads are resumed; if PTID
3680 represents a process, then all threads of the process are resumed;
3681 the thread to be stepped and/or signalled is given in the global
3682 INFERIOR_PTID. */
3683
3684 static char *
3685 append_resumption (char *p, char *endp,
3686 ptid_t ptid, int step, enum target_signal siggnal)
3687 {
3688 struct remote_state *rs = get_remote_state ();
3689
3690 if (step && siggnal != TARGET_SIGNAL_0)
3691 p += xsnprintf (p, endp - p, ";S%02x", siggnal);
3692 else if (step)
3693 p += xsnprintf (p, endp - p, ";s");
3694 else if (siggnal != TARGET_SIGNAL_0)
3695 p += xsnprintf (p, endp - p, ";C%02x", siggnal);
3696 else
3697 p += xsnprintf (p, endp - p, ";c");
3698
3699 if (remote_multi_process_p (rs) && ptid_is_pid (ptid))
3700 {
3701 ptid_t nptid;
3702
3703 /* All (-1) threads of process. */
3704 nptid = ptid_build (ptid_get_pid (ptid), 0, -1);
3705
3706 p += xsnprintf (p, endp - p, ":");
3707 p = write_ptid (p, endp, nptid);
3708 }
3709 else if (!ptid_equal (ptid, minus_one_ptid))
3710 {
3711 p += xsnprintf (p, endp - p, ":");
3712 p = write_ptid (p, endp, ptid);
3713 }
3714
3715 return p;
3716 }
3717
3718 /* Resume the remote inferior by using a "vCont" packet. The thread
3719 to be resumed is PTID; STEP and SIGGNAL indicate whether the
3720 resumed thread should be single-stepped and/or signalled. If PTID
3721 equals minus_one_ptid, then all threads are resumed; the thread to
3722 be stepped and/or signalled is given in the global INFERIOR_PTID.
3723 This function returns non-zero iff it resumes the inferior.
3724
3725 This function issues a strict subset of all possible vCont commands at the
3726 moment. */
3727
3728 static int
3729 remote_vcont_resume (ptid_t ptid, int step, enum target_signal siggnal)
3730 {
3731 struct remote_state *rs = get_remote_state ();
3732 char *p;
3733 char *endp;
3734
3735 if (remote_protocol_packets[PACKET_vCont].support == PACKET_SUPPORT_UNKNOWN)
3736 remote_vcont_probe (rs);
3737
3738 if (remote_protocol_packets[PACKET_vCont].support == PACKET_DISABLE)
3739 return 0;
3740
3741 p = rs->buf;
3742 endp = rs->buf + get_remote_packet_size ();
3743
3744 /* If we could generate a wider range of packets, we'd have to worry
3745 about overflowing BUF. Should there be a generic
3746 "multi-part-packet" packet? */
3747
3748 p += xsnprintf (p, endp - p, "vCont");
3749
3750 if (ptid_equal (ptid, magic_null_ptid))
3751 {
3752 /* MAGIC_NULL_PTID means that we don't have any active threads,
3753 so we don't have any TID numbers the inferior will
3754 understand. Make sure to only send forms that do not specify
3755 a TID. */
3756 p = append_resumption (p, endp, minus_one_ptid, step, siggnal);
3757 }
3758 else if (ptid_equal (ptid, minus_one_ptid) || ptid_is_pid (ptid))
3759 {
3760 /* Resume all threads (of all processes, or of a single
3761 process), with preference for INFERIOR_PTID. This assumes
3762 inferior_ptid belongs to the set of all threads we are about
3763 to resume. */
3764 if (step || siggnal != TARGET_SIGNAL_0)
3765 {
3766 /* Step inferior_ptid, with or without signal. */
3767 p = append_resumption (p, endp, inferior_ptid, step, siggnal);
3768 }
3769
3770 /* And continue others without a signal. */
3771 p = append_resumption (p, endp, ptid, /*step=*/ 0, TARGET_SIGNAL_0);
3772 }
3773 else
3774 {
3775 /* Scheduler locking; resume only PTID. */
3776 p = append_resumption (p, endp, ptid, step, siggnal);
3777 }
3778
3779 gdb_assert (strlen (rs->buf) < get_remote_packet_size ());
3780 putpkt (rs->buf);
3781
3782 if (non_stop)
3783 {
3784 /* In non-stop, the stub replies to vCont with "OK". The stop
3785 reply will be reported asynchronously by means of a `%Stop'
3786 notification. */
3787 getpkt (&rs->buf, &rs->buf_size, 0);
3788 if (strcmp (rs->buf, "OK") != 0)
3789 error (_("Unexpected vCont reply in non-stop mode: %s"), rs->buf);
3790 }
3791
3792 return 1;
3793 }
3794
3795 /* Tell the remote machine to resume. */
3796
3797 static enum target_signal last_sent_signal = TARGET_SIGNAL_0;
3798
3799 static int last_sent_step;
3800
3801 static void
3802 remote_resume (struct target_ops *ops,
3803 ptid_t ptid, int step, enum target_signal siggnal)
3804 {
3805 struct remote_state *rs = get_remote_state ();
3806 char *buf;
3807
3808 last_sent_signal = siggnal;
3809 last_sent_step = step;
3810
3811 /* Update the inferior on signals to silently pass, if they've changed. */
3812 remote_pass_signals ();
3813
3814 /* The vCont packet doesn't need to specify threads via Hc. */
3815 if (remote_vcont_resume (ptid, step, siggnal))
3816 goto done;
3817
3818 /* All other supported resume packets do use Hc, so set the continue
3819 thread. */
3820 if (ptid_equal (ptid, minus_one_ptid))
3821 set_continue_thread (any_thread_ptid);
3822 else
3823 set_continue_thread (ptid);
3824
3825 buf = rs->buf;
3826 if (execution_direction == EXEC_REVERSE)
3827 {
3828 /* We don't pass signals to the target in reverse exec mode. */
3829 if (info_verbose && siggnal != TARGET_SIGNAL_0)
3830 warning (" - Can't pass signal %d to target in reverse: ignored.\n",
3831 siggnal);
3832 strcpy (buf, step ? "bs" : "bc");
3833 }
3834 else if (siggnal != TARGET_SIGNAL_0)
3835 {
3836 buf[0] = step ? 'S' : 'C';
3837 buf[1] = tohex (((int) siggnal >> 4) & 0xf);
3838 buf[2] = tohex (((int) siggnal) & 0xf);
3839 buf[3] = '\0';
3840 }
3841 else
3842 strcpy (buf, step ? "s" : "c");
3843
3844 putpkt (buf);
3845
3846 done:
3847 /* We are about to start executing the inferior, let's register it
3848 with the event loop. NOTE: this is the one place where all the
3849 execution commands end up. We could alternatively do this in each
3850 of the execution commands in infcmd.c. */
3851 /* FIXME: ezannoni 1999-09-28: We may need to move this out of here
3852 into infcmd.c in order to allow inferior function calls to work
3853 NOT asynchronously. */
3854 if (target_can_async_p ())
3855 target_async (inferior_event_handler, 0);
3856
3857 /* We've just told the target to resume. The remote server will
3858 wait for the inferior to stop, and then send a stop reply. In
3859 the mean time, we can't start another command/query ourselves
3860 because the stub wouldn't be ready to process it. This applies
3861 only to the base all-stop protocol, however. In non-stop (which
3862 only supports vCont), the stub replies with an "OK", and is
3863 immediate able to process further serial input. */
3864 if (!non_stop)
3865 rs->waiting_for_stop_reply = 1;
3866 }
3867 \f
3868
3869 /* Set up the signal handler for SIGINT, while the target is
3870 executing, ovewriting the 'regular' SIGINT signal handler. */
3871 static void
3872 initialize_sigint_signal_handler (void)
3873 {
3874 signal (SIGINT, handle_remote_sigint);
3875 }
3876
3877 /* Signal handler for SIGINT, while the target is executing. */
3878 static void
3879 handle_remote_sigint (int sig)
3880 {
3881 signal (sig, handle_remote_sigint_twice);
3882 mark_async_signal_handler_wrapper (sigint_remote_token);
3883 }
3884
3885 /* Signal handler for SIGINT, installed after SIGINT has already been
3886 sent once. It will take effect the second time that the user sends
3887 a ^C. */
3888 static void
3889 handle_remote_sigint_twice (int sig)
3890 {
3891 signal (sig, handle_remote_sigint);
3892 mark_async_signal_handler_wrapper (sigint_remote_twice_token);
3893 }
3894
3895 /* Perform the real interruption of the target execution, in response
3896 to a ^C. */
3897 static void
3898 async_remote_interrupt (gdb_client_data arg)
3899 {
3900 if (remote_debug)
3901 fprintf_unfiltered (gdb_stdlog, "remote_interrupt called\n");
3902
3903 target_stop (inferior_ptid);
3904 }
3905
3906 /* Perform interrupt, if the first attempt did not succeed. Just give
3907 up on the target alltogether. */
3908 void
3909 async_remote_interrupt_twice (gdb_client_data arg)
3910 {
3911 if (remote_debug)
3912 fprintf_unfiltered (gdb_stdlog, "remote_interrupt_twice called\n");
3913
3914 interrupt_query ();
3915 }
3916
3917 /* Reinstall the usual SIGINT handlers, after the target has
3918 stopped. */
3919 static void
3920 cleanup_sigint_signal_handler (void *dummy)
3921 {
3922 signal (SIGINT, handle_sigint);
3923 }
3924
3925 /* Send ^C to target to halt it. Target will respond, and send us a
3926 packet. */
3927 static void (*ofunc) (int);
3928
3929 /* The command line interface's stop routine. This function is installed
3930 as a signal handler for SIGINT. The first time a user requests a
3931 stop, we call remote_stop to send a break or ^C. If there is no
3932 response from the target (it didn't stop when the user requested it),
3933 we ask the user if he'd like to detach from the target. */
3934 static void
3935 remote_interrupt (int signo)
3936 {
3937 /* If this doesn't work, try more severe steps. */
3938 signal (signo, remote_interrupt_twice);
3939
3940 gdb_call_async_signal_handler (sigint_remote_token, 1);
3941 }
3942
3943 /* The user typed ^C twice. */
3944
3945 static void
3946 remote_interrupt_twice (int signo)
3947 {
3948 signal (signo, ofunc);
3949 gdb_call_async_signal_handler (sigint_remote_twice_token, 1);
3950 signal (signo, remote_interrupt);
3951 }
3952
3953 /* Non-stop version of target_stop. Uses `vCont;t' to stop a remote
3954 thread, all threads of a remote process, or all threads of all
3955 processes. */
3956
3957 static void
3958 remote_stop_ns (ptid_t ptid)
3959 {
3960 struct remote_state *rs = get_remote_state ();
3961 char *p = rs->buf;
3962 char *endp = rs->buf + get_remote_packet_size ();
3963 struct stop_reply *reply, *next;
3964
3965 if (remote_protocol_packets[PACKET_vCont].support == PACKET_SUPPORT_UNKNOWN)
3966 remote_vcont_probe (rs);
3967
3968 if (!rs->support_vCont_t)
3969 error (_("Remote server does not support stopping threads"));
3970
3971 if (ptid_equal (ptid, minus_one_ptid)
3972 || (!remote_multi_process_p (rs) && ptid_is_pid (ptid)))
3973 p += xsnprintf (p, endp - p, "vCont;t");
3974 else
3975 {
3976 ptid_t nptid;
3977
3978 p += xsnprintf (p, endp - p, "vCont;t:");
3979
3980 if (ptid_is_pid (ptid))
3981 /* All (-1) threads of process. */
3982 nptid = ptid_build (ptid_get_pid (ptid), 0, -1);
3983 else
3984 {
3985 /* Small optimization: if we already have a stop reply for
3986 this thread, no use in telling the stub we want this
3987 stopped. */
3988 if (peek_stop_reply (ptid))
3989 return;
3990
3991 nptid = ptid;
3992 }
3993
3994 p = write_ptid (p, endp, nptid);
3995 }
3996
3997 /* In non-stop, we get an immediate OK reply. The stop reply will
3998 come in asynchronously by notification. */
3999 putpkt (rs->buf);
4000 getpkt (&rs->buf, &rs->buf_size, 0);
4001 if (strcmp (rs->buf, "OK") != 0)
4002 error (_("Stopping %s failed: %s"), target_pid_to_str (ptid), rs->buf);
4003 }
4004
4005 /* All-stop version of target_stop. Sends a break or a ^C to stop the
4006 remote target. It is undefined which thread of which process
4007 reports the stop. */
4008
4009 static void
4010 remote_stop_as (ptid_t ptid)
4011 {
4012 struct remote_state *rs = get_remote_state ();
4013
4014 /* If the inferior is stopped already, but the core didn't know
4015 about it yet, just ignore the request. The cached wait status
4016 will be collected in remote_wait. */
4017 if (rs->cached_wait_status)
4018 return;
4019
4020 /* Send a break or a ^C, depending on user preference. */
4021
4022 if (remote_break)
4023 serial_send_break (remote_desc);
4024 else
4025 serial_write (remote_desc, "\003", 1);
4026 }
4027
4028 /* This is the generic stop called via the target vector. When a target
4029 interrupt is requested, either by the command line or the GUI, we
4030 will eventually end up here. */
4031
4032 static void
4033 remote_stop (ptid_t ptid)
4034 {
4035 if (remote_debug)
4036 fprintf_unfiltered (gdb_stdlog, "remote_stop called\n");
4037
4038 if (non_stop)
4039 remote_stop_ns (ptid);
4040 else
4041 remote_stop_as (ptid);
4042 }
4043
4044 /* Ask the user what to do when an interrupt is received. */
4045
4046 static void
4047 interrupt_query (void)
4048 {
4049 target_terminal_ours ();
4050
4051 if (target_can_async_p ())
4052 {
4053 signal (SIGINT, handle_sigint);
4054 deprecated_throw_reason (RETURN_QUIT);
4055 }
4056 else
4057 {
4058 if (query (_("Interrupted while waiting for the program.\n\
4059 Give up (and stop debugging it)? ")))
4060 {
4061 pop_target ();
4062 deprecated_throw_reason (RETURN_QUIT);
4063 }
4064 }
4065
4066 target_terminal_inferior ();
4067 }
4068
4069 /* Enable/disable target terminal ownership. Most targets can use
4070 terminal groups to control terminal ownership. Remote targets are
4071 different in that explicit transfer of ownership to/from GDB/target
4072 is required. */
4073
4074 static void
4075 remote_terminal_inferior (void)
4076 {
4077 if (!target_async_permitted)
4078 /* Nothing to do. */
4079 return;
4080
4081 /* FIXME: cagney/1999-09-27: Make calls to target_terminal_*()
4082 idempotent. The event-loop GDB talking to an asynchronous target
4083 with a synchronous command calls this function from both
4084 event-top.c and infrun.c/infcmd.c. Once GDB stops trying to
4085 transfer the terminal to the target when it shouldn't this guard
4086 can go away. */
4087 if (!remote_async_terminal_ours_p)
4088 return;
4089 delete_file_handler (input_fd);
4090 remote_async_terminal_ours_p = 0;
4091 initialize_sigint_signal_handler ();
4092 /* NOTE: At this point we could also register our selves as the
4093 recipient of all input. Any characters typed could then be
4094 passed on down to the target. */
4095 }
4096
4097 static void
4098 remote_terminal_ours (void)
4099 {
4100 if (!target_async_permitted)
4101 /* Nothing to do. */
4102 return;
4103
4104 /* See FIXME in remote_terminal_inferior. */
4105 if (remote_async_terminal_ours_p)
4106 return;
4107 cleanup_sigint_signal_handler (NULL);
4108 add_file_handler (input_fd, stdin_event_handler, 0);
4109 remote_async_terminal_ours_p = 1;
4110 }
4111
4112 void
4113 remote_console_output (char *msg)
4114 {
4115 char *p;
4116
4117 for (p = msg; p[0] && p[1]; p += 2)
4118 {
4119 char tb[2];
4120 char c = fromhex (p[0]) * 16 + fromhex (p[1]);
4121 tb[0] = c;
4122 tb[1] = 0;
4123 fputs_unfiltered (tb, gdb_stdtarg);
4124 }
4125 gdb_flush (gdb_stdtarg);
4126 }
4127
4128 typedef struct cached_reg
4129 {
4130 int num;
4131 gdb_byte data[MAX_REGISTER_SIZE];
4132 } cached_reg_t;
4133
4134 DEF_VEC_O(cached_reg_t);
4135
4136 struct stop_reply
4137 {
4138 struct stop_reply *next;
4139
4140 ptid_t ptid;
4141
4142 struct target_waitstatus ws;
4143
4144 VEC(cached_reg_t) *regcache;
4145
4146 int stopped_by_watchpoint_p;
4147 CORE_ADDR watch_data_address;
4148
4149 int solibs_changed;
4150 int replay_event;
4151 };
4152
4153 /* The list of already fetched and acknowledged stop events. */
4154 static struct stop_reply *stop_reply_queue;
4155
4156 static struct stop_reply *
4157 stop_reply_xmalloc (void)
4158 {
4159 struct stop_reply *r = XMALLOC (struct stop_reply);
4160 r->next = NULL;
4161 return r;
4162 }
4163
4164 static void
4165 stop_reply_xfree (struct stop_reply *r)
4166 {
4167 if (r != NULL)
4168 {
4169 VEC_free (cached_reg_t, r->regcache);
4170 xfree (r);
4171 }
4172 }
4173
4174 /* Discard all pending stop replies of inferior PID. If PID is -1,
4175 discard everything. */
4176
4177 static void
4178 discard_pending_stop_replies (int pid)
4179 {
4180 struct stop_reply *prev = NULL, *reply, *next;
4181
4182 /* Discard the in-flight notification. */
4183 if (pending_stop_reply != NULL
4184 && (pid == -1
4185 || ptid_get_pid (pending_stop_reply->ptid) == pid))
4186 {
4187 stop_reply_xfree (pending_stop_reply);
4188 pending_stop_reply = NULL;
4189 }
4190
4191 /* Discard the stop replies we have already pulled with
4192 vStopped. */
4193 for (reply = stop_reply_queue; reply; reply = next)
4194 {
4195 next = reply->next;
4196 if (pid == -1
4197 || ptid_get_pid (reply->ptid) == pid)
4198 {
4199 if (reply == stop_reply_queue)
4200 stop_reply_queue = reply->next;
4201 else
4202 prev->next = reply->next;
4203
4204 stop_reply_xfree (reply);
4205 }
4206 else
4207 prev = reply;
4208 }
4209 }
4210
4211 /* Cleanup wrapper. */
4212
4213 static void
4214 do_stop_reply_xfree (void *arg)
4215 {
4216 struct stop_reply *r = arg;
4217 stop_reply_xfree (r);
4218 }
4219
4220 /* Look for a queued stop reply belonging to PTID. If one is found,
4221 remove it from the queue, and return it. Returns NULL if none is
4222 found. If there are still queued events left to process, tell the
4223 event loop to get back to target_wait soon. */
4224
4225 static struct stop_reply *
4226 queued_stop_reply (ptid_t ptid)
4227 {
4228 struct stop_reply *it, *prev;
4229 struct stop_reply head;
4230
4231 head.next = stop_reply_queue;
4232 prev = &head;
4233
4234 it = head.next;
4235
4236 if (!ptid_equal (ptid, minus_one_ptid))
4237 for (; it; prev = it, it = it->next)
4238 if (ptid_equal (ptid, it->ptid))
4239 break;
4240
4241 if (it)
4242 {
4243 prev->next = it->next;
4244 it->next = NULL;
4245 }
4246
4247 stop_reply_queue = head.next;
4248
4249 if (stop_reply_queue)
4250 /* There's still at least an event left. */
4251 mark_async_event_handler (remote_async_inferior_event_token);
4252
4253 return it;
4254 }
4255
4256 /* Push a fully parsed stop reply in the stop reply queue. Since we
4257 know that we now have at least one queued event left to pass to the
4258 core side, tell the event loop to get back to target_wait soon. */
4259
4260 static void
4261 push_stop_reply (struct stop_reply *new_event)
4262 {
4263 struct stop_reply *event;
4264
4265 if (stop_reply_queue)
4266 {
4267 for (event = stop_reply_queue;
4268 event && event->next;
4269 event = event->next)
4270 ;
4271
4272 event->next = new_event;
4273 }
4274 else
4275 stop_reply_queue = new_event;
4276
4277 mark_async_event_handler (remote_async_inferior_event_token);
4278 }
4279
4280 /* Returns true if we have a stop reply for PTID. */
4281
4282 static int
4283 peek_stop_reply (ptid_t ptid)
4284 {
4285 struct stop_reply *it;
4286
4287 for (it = stop_reply_queue; it; it = it->next)
4288 if (ptid_equal (ptid, it->ptid))
4289 {
4290 if (it->ws.kind == TARGET_WAITKIND_STOPPED)
4291 return 1;
4292 }
4293
4294 return 0;
4295 }
4296
4297 /* Parse the stop reply in BUF. Either the function succeeds, and the
4298 result is stored in EVENT, or throws an error. */
4299
4300 static void
4301 remote_parse_stop_reply (char *buf, struct stop_reply *event)
4302 {
4303 struct remote_arch_state *rsa = get_remote_arch_state ();
4304 ULONGEST addr;
4305 char *p;
4306
4307 event->ptid = null_ptid;
4308 event->ws.kind = TARGET_WAITKIND_IGNORE;
4309 event->ws.value.integer = 0;
4310 event->solibs_changed = 0;
4311 event->replay_event = 0;
4312 event->stopped_by_watchpoint_p = 0;
4313 event->regcache = NULL;
4314
4315 switch (buf[0])
4316 {
4317 case 'T': /* Status with PC, SP, FP, ... */
4318 {
4319 gdb_byte regs[MAX_REGISTER_SIZE];
4320
4321 /* Expedited reply, containing Signal, {regno, reg} repeat. */
4322 /* format is: 'Tssn...:r...;n...:r...;n...:r...;#cc', where
4323 ss = signal number
4324 n... = register number
4325 r... = register contents
4326 */
4327
4328 p = &buf[3]; /* after Txx */
4329 while (*p)
4330 {
4331 char *p1;
4332 char *p_temp;
4333 int fieldsize;
4334 LONGEST pnum = 0;
4335
4336 /* If the packet contains a register number, save it in
4337 pnum and set p1 to point to the character following it.
4338 Otherwise p1 points to p. */
4339
4340 /* If this packet is an awatch packet, don't parse the 'a'
4341 as a register number. */
4342
4343 if (strncmp (p, "awatch", strlen("awatch")) != 0)
4344 {
4345 /* Read the ``P'' register number. */
4346 pnum = strtol (p, &p_temp, 16);
4347 p1 = p_temp;
4348 }
4349 else
4350 p1 = p;
4351
4352 if (p1 == p) /* No register number present here. */
4353 {
4354 p1 = strchr (p, ':');
4355 if (p1 == NULL)
4356 error (_("Malformed packet(a) (missing colon): %s\n\
4357 Packet: '%s'\n"),
4358 p, buf);
4359 if (strncmp (p, "thread", p1 - p) == 0)
4360 event->ptid = read_ptid (++p1, &p);
4361 else if ((strncmp (p, "watch", p1 - p) == 0)
4362 || (strncmp (p, "rwatch", p1 - p) == 0)
4363 || (strncmp (p, "awatch", p1 - p) == 0))
4364 {
4365 event->stopped_by_watchpoint_p = 1;
4366 p = unpack_varlen_hex (++p1, &addr);
4367 event->watch_data_address = (CORE_ADDR) addr;
4368 }
4369 else if (strncmp (p, "library", p1 - p) == 0)
4370 {
4371 p1++;
4372 p_temp = p1;
4373 while (*p_temp && *p_temp != ';')
4374 p_temp++;
4375
4376 event->solibs_changed = 1;
4377 p = p_temp;
4378 }
4379 else if (strncmp (p, "replaylog", p1 - p) == 0)
4380 {
4381 /* NO_HISTORY event.
4382 p1 will indicate "begin" or "end", but
4383 it makes no difference for now, so ignore it. */
4384 event->replay_event = 1;
4385 p_temp = strchr (p1 + 1, ';');
4386 if (p_temp)
4387 p = p_temp;
4388 }
4389 else
4390 {
4391 /* Silently skip unknown optional info. */
4392 p_temp = strchr (p1 + 1, ';');
4393 if (p_temp)
4394 p = p_temp;
4395 }
4396 }
4397 else
4398 {
4399 struct packet_reg *reg = packet_reg_from_pnum (rsa, pnum);
4400 cached_reg_t cached_reg;
4401
4402 p = p1;
4403
4404 if (*p != ':')
4405 error (_("Malformed packet(b) (missing colon): %s\n\
4406 Packet: '%s'\n"),
4407 p, buf);
4408 ++p;
4409
4410 if (reg == NULL)
4411 error (_("Remote sent bad register number %s: %s\n\
4412 Packet: '%s'\n"),
4413 phex_nz (pnum, 0), p, buf);
4414
4415 cached_reg.num = reg->regnum;
4416
4417 fieldsize = hex2bin (p, cached_reg.data,
4418 register_size (target_gdbarch,
4419 reg->regnum));
4420 p += 2 * fieldsize;
4421 if (fieldsize < register_size (target_gdbarch,
4422 reg->regnum))
4423 warning (_("Remote reply is too short: %s"), buf);
4424
4425 VEC_safe_push (cached_reg_t, event->regcache, &cached_reg);
4426 }
4427
4428 if (*p != ';')
4429 error (_("Remote register badly formatted: %s\nhere: %s"),
4430 buf, p);
4431 ++p;
4432 }
4433 }
4434 /* fall through */
4435 case 'S': /* Old style status, just signal only. */
4436 if (event->solibs_changed)
4437 event->ws.kind = TARGET_WAITKIND_LOADED;
4438 else if (event->replay_event)
4439 event->ws.kind = TARGET_WAITKIND_NO_HISTORY;
4440 else
4441 {
4442 event->ws.kind = TARGET_WAITKIND_STOPPED;
4443 event->ws.value.sig = (enum target_signal)
4444 (((fromhex (buf[1])) << 4) + (fromhex (buf[2])));
4445 }
4446 break;
4447 case 'W': /* Target exited. */
4448 case 'X':
4449 {
4450 char *p;
4451 int pid;
4452 ULONGEST value;
4453
4454 /* GDB used to accept only 2 hex chars here. Stubs should
4455 only send more if they detect GDB supports multi-process
4456 support. */
4457 p = unpack_varlen_hex (&buf[1], &value);
4458
4459 if (buf[0] == 'W')
4460 {
4461 /* The remote process exited. */
4462 event->ws.kind = TARGET_WAITKIND_EXITED;
4463 event->ws.value.integer = value;
4464 }
4465 else
4466 {
4467 /* The remote process exited with a signal. */
4468 event->ws.kind = TARGET_WAITKIND_SIGNALLED;
4469 event->ws.value.sig = (enum target_signal) value;
4470 }
4471
4472 /* If no process is specified, assume inferior_ptid. */
4473 pid = ptid_get_pid (inferior_ptid);
4474 if (*p == '\0')
4475 ;
4476 else if (*p == ';')
4477 {
4478 p++;
4479
4480 if (p == '\0')
4481 ;
4482 else if (strncmp (p,
4483 "process:", sizeof ("process:") - 1) == 0)
4484 {
4485 ULONGEST upid;
4486 p += sizeof ("process:") - 1;
4487 unpack_varlen_hex (p, &upid);
4488 pid = upid;
4489 }
4490 else
4491 error (_("unknown stop reply packet: %s"), buf);
4492 }
4493 else
4494 error (_("unknown stop reply packet: %s"), buf);
4495 event->ptid = pid_to_ptid (pid);
4496 }
4497 break;
4498 }
4499
4500 if (non_stop && ptid_equal (event->ptid, null_ptid))
4501 error (_("No process or thread specified in stop reply: %s"), buf);
4502 }
4503
4504 /* When the stub wants to tell GDB about a new stop reply, it sends a
4505 stop notification (%Stop). Those can come it at any time, hence,
4506 we have to make sure that any pending putpkt/getpkt sequence we're
4507 making is finished, before querying the stub for more events with
4508 vStopped. E.g., if we started a vStopped sequence immediatelly
4509 upon receiving the %Stop notification, something like this could
4510 happen:
4511
4512 1.1) --> Hg 1
4513 1.2) <-- OK
4514 1.3) --> g
4515 1.4) <-- %Stop
4516 1.5) --> vStopped
4517 1.6) <-- (registers reply to step #1.3)
4518
4519 Obviously, the reply in step #1.6 would be unexpected to a vStopped
4520 query.
4521
4522 To solve this, whenever we parse a %Stop notification sucessfully,
4523 we mark the REMOTE_ASYNC_GET_PENDING_EVENTS_TOKEN, and carry on
4524 doing whatever we were doing:
4525
4526 2.1) --> Hg 1
4527 2.2) <-- OK
4528 2.3) --> g
4529 2.4) <-- %Stop
4530 <GDB marks the REMOTE_ASYNC_GET_PENDING_EVENTS_TOKEN>
4531 2.5) <-- (registers reply to step #2.3)
4532
4533 Eventualy after step #2.5, we return to the event loop, which
4534 notices there's an event on the
4535 REMOTE_ASYNC_GET_PENDING_EVENTS_TOKEN event and calls the
4536 associated callback --- the function below. At this point, we're
4537 always safe to start a vStopped sequence. :
4538
4539 2.6) --> vStopped
4540 2.7) <-- T05 thread:2
4541 2.8) --> vStopped
4542 2.9) --> OK
4543 */
4544
4545 static void
4546 remote_get_pending_stop_replies (void)
4547 {
4548 struct remote_state *rs = get_remote_state ();
4549 int ret;
4550
4551 if (pending_stop_reply)
4552 {
4553 /* acknowledge */
4554 putpkt ("vStopped");
4555
4556 /* Now we can rely on it. */
4557 push_stop_reply (pending_stop_reply);
4558 pending_stop_reply = NULL;
4559
4560 while (1)
4561 {
4562 getpkt (&rs->buf, &rs->buf_size, 0);
4563 if (strcmp (rs->buf, "OK") == 0)
4564 break;
4565 else
4566 {
4567 struct cleanup *old_chain;
4568 struct stop_reply *stop_reply = stop_reply_xmalloc ();
4569
4570 old_chain = make_cleanup (do_stop_reply_xfree, stop_reply);
4571 remote_parse_stop_reply (rs->buf, stop_reply);
4572
4573 /* acknowledge */
4574 putpkt ("vStopped");
4575
4576 if (stop_reply->ws.kind != TARGET_WAITKIND_IGNORE)
4577 {
4578 /* Now we can rely on it. */
4579 discard_cleanups (old_chain);
4580 push_stop_reply (stop_reply);
4581 }
4582 else
4583 /* We got an unknown stop reply. */
4584 do_cleanups (old_chain);
4585 }
4586 }
4587 }
4588 }
4589
4590
4591 /* Called when it is decided that STOP_REPLY holds the info of the
4592 event that is to be returned to the core. This function always
4593 destroys STOP_REPLY. */
4594
4595 static ptid_t
4596 process_stop_reply (struct stop_reply *stop_reply,
4597 struct target_waitstatus *status)
4598 {
4599 ptid_t ptid;
4600
4601 *status = stop_reply->ws;
4602 ptid = stop_reply->ptid;
4603
4604 /* If no thread/process was reported by the stub, assume the current
4605 inferior. */
4606 if (ptid_equal (ptid, null_ptid))
4607 ptid = inferior_ptid;
4608
4609 if (status->kind != TARGET_WAITKIND_EXITED
4610 && status->kind != TARGET_WAITKIND_SIGNALLED)
4611 {
4612 /* Expedited registers. */
4613 if (stop_reply->regcache)
4614 {
4615 cached_reg_t *reg;
4616 int ix;
4617
4618 for (ix = 0;
4619 VEC_iterate(cached_reg_t, stop_reply->regcache, ix, reg);
4620 ix++)
4621 regcache_raw_supply (get_thread_regcache (ptid),
4622 reg->num, reg->data);
4623 VEC_free (cached_reg_t, stop_reply->regcache);
4624 }
4625
4626 remote_stopped_by_watchpoint_p = stop_reply->stopped_by_watchpoint_p;
4627 remote_watch_data_address = stop_reply->watch_data_address;
4628
4629 remote_notice_new_inferior (ptid, 0);
4630 }
4631
4632 stop_reply_xfree (stop_reply);
4633 return ptid;
4634 }
4635
4636 /* The non-stop mode version of target_wait. */
4637
4638 static ptid_t
4639 remote_wait_ns (ptid_t ptid, struct target_waitstatus *status, int options)
4640 {
4641 struct remote_state *rs = get_remote_state ();
4642 struct remote_arch_state *rsa = get_remote_arch_state ();
4643 ptid_t event_ptid = null_ptid;
4644 struct stop_reply *stop_reply;
4645 int ret;
4646
4647 /* If in non-stop mode, get out of getpkt even if a
4648 notification is received. */
4649
4650 ret = getpkt_or_notif_sane (&rs->buf, &rs->buf_size,
4651 0 /* forever */);
4652 while (1)
4653 {
4654 if (ret != -1)
4655 switch (rs->buf[0])
4656 {
4657 case 'E': /* Error of some sort. */
4658 /* We're out of sync with the target now. Did it continue
4659 or not? We can't tell which thread it was in non-stop,
4660 so just ignore this. */
4661 warning (_("Remote failure reply: %s"), rs->buf);
4662 break;
4663 case 'O': /* Console output. */
4664 remote_console_output (rs->buf + 1);
4665 break;
4666 default:
4667 warning (_("Invalid remote reply: %s"), rs->buf);
4668 break;
4669 }
4670
4671 /* Acknowledge a pending stop reply that may have arrived in the
4672 mean time. */
4673 if (pending_stop_reply != NULL)
4674 remote_get_pending_stop_replies ();
4675
4676 /* If indeed we noticed a stop reply, we're done. */
4677 stop_reply = queued_stop_reply (ptid);
4678 if (stop_reply != NULL)
4679 return process_stop_reply (stop_reply, status);
4680
4681 /* Still no event. If we're just polling for an event, then
4682 return to the event loop. */
4683 if (options & TARGET_WNOHANG)
4684 {
4685 status->kind = TARGET_WAITKIND_IGNORE;
4686 return minus_one_ptid;
4687 }
4688
4689 /* Otherwise do a blocking wait. */
4690 ret = getpkt_or_notif_sane (&rs->buf, &rs->buf_size,
4691 1 /* forever */);
4692 }
4693 }
4694
4695 /* Wait until the remote machine stops, then return, storing status in
4696 STATUS just as `wait' would. */
4697
4698 static ptid_t
4699 remote_wait_as (ptid_t ptid, struct target_waitstatus *status, int options)
4700 {
4701 struct remote_state *rs = get_remote_state ();
4702 struct remote_arch_state *rsa = get_remote_arch_state ();
4703 ptid_t event_ptid = null_ptid;
4704 ULONGEST addr;
4705 int solibs_changed = 0;
4706 char *buf, *p;
4707 struct stop_reply *stop_reply;
4708
4709 again:
4710
4711 status->kind = TARGET_WAITKIND_IGNORE;
4712 status->value.integer = 0;
4713
4714 stop_reply = queued_stop_reply (ptid);
4715 if (stop_reply != NULL)
4716 return process_stop_reply (stop_reply, status);
4717
4718 if (rs->cached_wait_status)
4719 /* Use the cached wait status, but only once. */
4720 rs->cached_wait_status = 0;
4721 else
4722 {
4723 int ret;
4724
4725 if (!target_is_async_p ())
4726 {
4727 ofunc = signal (SIGINT, remote_interrupt);
4728 /* If the user hit C-c before this packet, or between packets,
4729 pretend that it was hit right here. */
4730 if (quit_flag)
4731 {
4732 quit_flag = 0;
4733 remote_interrupt (SIGINT);
4734 }
4735 }
4736
4737 /* FIXME: cagney/1999-09-27: If we're in async mode we should
4738 _never_ wait for ever -> test on target_is_async_p().
4739 However, before we do that we need to ensure that the caller
4740 knows how to take the target into/out of async mode. */
4741 ret = getpkt_sane (&rs->buf, &rs->buf_size, wait_forever_enabled_p);
4742 if (!target_is_async_p ())
4743 signal (SIGINT, ofunc);
4744 }
4745
4746 buf = rs->buf;
4747
4748 remote_stopped_by_watchpoint_p = 0;
4749
4750 /* We got something. */
4751 rs->waiting_for_stop_reply = 0;
4752
4753 switch (buf[0])
4754 {
4755 case 'E': /* Error of some sort. */
4756 /* We're out of sync with the target now. Did it continue or
4757 not? Not is more likely, so report a stop. */
4758 warning (_("Remote failure reply: %s"), buf);
4759 status->kind = TARGET_WAITKIND_STOPPED;
4760 status->value.sig = TARGET_SIGNAL_0;
4761 break;
4762 case 'F': /* File-I/O request. */
4763 remote_fileio_request (buf);
4764 break;
4765 case 'T': case 'S': case 'X': case 'W':
4766 {
4767 struct stop_reply *stop_reply;
4768 struct cleanup *old_chain;
4769
4770 stop_reply = stop_reply_xmalloc ();
4771 old_chain = make_cleanup (do_stop_reply_xfree, stop_reply);
4772 remote_parse_stop_reply (buf, stop_reply);
4773 discard_cleanups (old_chain);
4774 event_ptid = process_stop_reply (stop_reply, status);
4775 break;
4776 }
4777 case 'O': /* Console output. */
4778 remote_console_output (buf + 1);
4779
4780 /* The target didn't really stop; keep waiting. */
4781 rs->waiting_for_stop_reply = 1;
4782
4783 break;
4784 case '\0':
4785 if (last_sent_signal != TARGET_SIGNAL_0)
4786 {
4787 /* Zero length reply means that we tried 'S' or 'C' and the
4788 remote system doesn't support it. */
4789 target_terminal_ours_for_output ();
4790 printf_filtered
4791 ("Can't send signals to this remote system. %s not sent.\n",
4792 target_signal_to_name (last_sent_signal));
4793 last_sent_signal = TARGET_SIGNAL_0;
4794 target_terminal_inferior ();
4795
4796 strcpy ((char *) buf, last_sent_step ? "s" : "c");
4797 putpkt ((char *) buf);
4798
4799 /* We just told the target to resume, so a stop reply is in
4800 order. */
4801 rs->waiting_for_stop_reply = 1;
4802 break;
4803 }
4804 /* else fallthrough */
4805 default:
4806 warning (_("Invalid remote reply: %s"), buf);
4807 /* Keep waiting. */
4808 rs->waiting_for_stop_reply = 1;
4809 break;
4810 }
4811
4812 if (status->kind == TARGET_WAITKIND_IGNORE)
4813 {
4814 /* Nothing interesting happened. If we're doing a non-blocking
4815 poll, we're done. Otherwise, go back to waiting. */
4816 if (options & TARGET_WNOHANG)
4817 return minus_one_ptid;
4818 else
4819 goto again;
4820 }
4821 else if (status->kind != TARGET_WAITKIND_EXITED
4822 && status->kind != TARGET_WAITKIND_SIGNALLED)
4823 {
4824 if (!ptid_equal (event_ptid, null_ptid))
4825 record_currthread (event_ptid);
4826 else
4827 event_ptid = inferior_ptid;
4828 }
4829 else
4830 /* A process exit. Invalidate our notion of current thread. */
4831 record_currthread (minus_one_ptid);
4832
4833 return event_ptid;
4834 }
4835
4836 /* Wait until the remote machine stops, then return, storing status in
4837 STATUS just as `wait' would. */
4838
4839 static ptid_t
4840 remote_wait (struct target_ops *ops,
4841 ptid_t ptid, struct target_waitstatus *status, int options)
4842 {
4843 ptid_t event_ptid;
4844
4845 if (non_stop)
4846 event_ptid = remote_wait_ns (ptid, status, options);
4847 else
4848 event_ptid = remote_wait_as (ptid, status, options);
4849
4850 if (target_can_async_p ())
4851 {
4852 /* If there are are events left in the queue tell the event loop
4853 to return here. */
4854 if (stop_reply_queue)
4855 mark_async_event_handler (remote_async_inferior_event_token);
4856 }
4857
4858 return event_ptid;
4859 }
4860
4861 /* Fetch a single register using a 'p' packet. */
4862
4863 static int
4864 fetch_register_using_p (struct regcache *regcache, struct packet_reg *reg)
4865 {
4866 struct remote_state *rs = get_remote_state ();
4867 char *buf, *p;
4868 char regp[MAX_REGISTER_SIZE];
4869 int i;
4870
4871 if (remote_protocol_packets[PACKET_p].support == PACKET_DISABLE)
4872 return 0;
4873
4874 if (reg->pnum == -1)
4875 return 0;
4876
4877 p = rs->buf;
4878 *p++ = 'p';
4879 p += hexnumstr (p, reg->pnum);
4880 *p++ = '\0';
4881 remote_send (&rs->buf, &rs->buf_size);
4882
4883 buf = rs->buf;
4884
4885 switch (packet_ok (buf, &remote_protocol_packets[PACKET_p]))
4886 {
4887 case PACKET_OK:
4888 break;
4889 case PACKET_UNKNOWN:
4890 return 0;
4891 case PACKET_ERROR:
4892 error (_("Could not fetch register \"%s\""),
4893 gdbarch_register_name (get_regcache_arch (regcache), reg->regnum));
4894 }
4895
4896 /* If this register is unfetchable, tell the regcache. */
4897 if (buf[0] == 'x')
4898 {
4899 regcache_raw_supply (regcache, reg->regnum, NULL);
4900 return 1;
4901 }
4902
4903 /* Otherwise, parse and supply the value. */
4904 p = buf;
4905 i = 0;
4906 while (p[0] != 0)
4907 {
4908 if (p[1] == 0)
4909 error (_("fetch_register_using_p: early buf termination"));
4910
4911 regp[i++] = fromhex (p[0]) * 16 + fromhex (p[1]);
4912 p += 2;
4913 }
4914 regcache_raw_supply (regcache, reg->regnum, regp);
4915 return 1;
4916 }
4917
4918 /* Fetch the registers included in the target's 'g' packet. */
4919
4920 static int
4921 send_g_packet (void)
4922 {
4923 struct remote_state *rs = get_remote_state ();
4924 int i, buf_len;
4925 char *p;
4926 char *regs;
4927
4928 sprintf (rs->buf, "g");
4929 remote_send (&rs->buf, &rs->buf_size);
4930
4931 /* We can get out of synch in various cases. If the first character
4932 in the buffer is not a hex character, assume that has happened
4933 and try to fetch another packet to read. */
4934 while ((rs->buf[0] < '0' || rs->buf[0] > '9')
4935 && (rs->buf[0] < 'A' || rs->buf[0] > 'F')
4936 && (rs->buf[0] < 'a' || rs->buf[0] > 'f')
4937 && rs->buf[0] != 'x') /* New: unavailable register value. */
4938 {
4939 if (remote_debug)
4940 fprintf_unfiltered (gdb_stdlog,
4941 "Bad register packet; fetching a new packet\n");
4942 getpkt (&rs->buf, &rs->buf_size, 0);
4943 }
4944
4945 buf_len = strlen (rs->buf);
4946
4947 /* Sanity check the received packet. */
4948 if (buf_len % 2 != 0)
4949 error (_("Remote 'g' packet reply is of odd length: %s"), rs->buf);
4950
4951 return buf_len / 2;
4952 }
4953
4954 static void
4955 process_g_packet (struct regcache *regcache)
4956 {
4957 struct gdbarch *gdbarch = get_regcache_arch (regcache);
4958 struct remote_state *rs = get_remote_state ();
4959 struct remote_arch_state *rsa = get_remote_arch_state ();
4960 int i, buf_len;
4961 char *p;
4962 char *regs;
4963
4964 buf_len = strlen (rs->buf);
4965
4966 /* Further sanity checks, with knowledge of the architecture. */
4967 if (buf_len > 2 * rsa->sizeof_g_packet)
4968 error (_("Remote 'g' packet reply is too long: %s"), rs->buf);
4969
4970 /* Save the size of the packet sent to us by the target. It is used
4971 as a heuristic when determining the max size of packets that the
4972 target can safely receive. */
4973 if (rsa->actual_register_packet_size == 0)
4974 rsa->actual_register_packet_size = buf_len;
4975
4976 /* If this is smaller than we guessed the 'g' packet would be,
4977 update our records. A 'g' reply that doesn't include a register's
4978 value implies either that the register is not available, or that
4979 the 'p' packet must be used. */
4980 if (buf_len < 2 * rsa->sizeof_g_packet)
4981 {
4982 rsa->sizeof_g_packet = buf_len / 2;
4983
4984 for (i = 0; i < gdbarch_num_regs (gdbarch); i++)
4985 {
4986 if (rsa->regs[i].pnum == -1)
4987 continue;
4988
4989 if (rsa->regs[i].offset >= rsa->sizeof_g_packet)
4990 rsa->regs[i].in_g_packet = 0;
4991 else
4992 rsa->regs[i].in_g_packet = 1;
4993 }
4994 }
4995
4996 regs = alloca (rsa->sizeof_g_packet);
4997
4998 /* Unimplemented registers read as all bits zero. */
4999 memset (regs, 0, rsa->sizeof_g_packet);
5000
5001 /* Reply describes registers byte by byte, each byte encoded as two
5002 hex characters. Suck them all up, then supply them to the
5003 register cacheing/storage mechanism. */
5004
5005 p = rs->buf;
5006 for (i = 0; i < rsa->sizeof_g_packet; i++)
5007 {
5008 if (p[0] == 0 || p[1] == 0)
5009 /* This shouldn't happen - we adjusted sizeof_g_packet above. */
5010 internal_error (__FILE__, __LINE__,
5011 "unexpected end of 'g' packet reply");
5012
5013 if (p[0] == 'x' && p[1] == 'x')
5014 regs[i] = 0; /* 'x' */
5015 else
5016 regs[i] = fromhex (p[0]) * 16 + fromhex (p[1]);
5017 p += 2;
5018 }
5019
5020 {
5021 int i;
5022 for (i = 0; i < gdbarch_num_regs (gdbarch); i++)
5023 {
5024 struct packet_reg *r = &rsa->regs[i];
5025 if (r->in_g_packet)
5026 {
5027 if (r->offset * 2 >= strlen (rs->buf))
5028 /* This shouldn't happen - we adjusted in_g_packet above. */
5029 internal_error (__FILE__, __LINE__,
5030 "unexpected end of 'g' packet reply");
5031 else if (rs->buf[r->offset * 2] == 'x')
5032 {
5033 gdb_assert (r->offset * 2 < strlen (rs->buf));
5034 /* The register isn't available, mark it as such (at
5035 the same time setting the value to zero). */
5036 regcache_raw_supply (regcache, r->regnum, NULL);
5037 }
5038 else
5039 regcache_raw_supply (regcache, r->regnum,
5040 regs + r->offset);
5041 }
5042 }
5043 }
5044 }
5045
5046 static void
5047 fetch_registers_using_g (struct regcache *regcache)
5048 {
5049 send_g_packet ();
5050 process_g_packet (regcache);
5051 }
5052
5053 static void
5054 remote_fetch_registers (struct target_ops *ops,
5055 struct regcache *regcache, int regnum)
5056 {
5057 struct remote_state *rs = get_remote_state ();
5058 struct remote_arch_state *rsa = get_remote_arch_state ();
5059 int i;
5060
5061 set_general_thread (inferior_ptid);
5062
5063 if (regnum >= 0)
5064 {
5065 struct packet_reg *reg = packet_reg_from_regnum (rsa, regnum);
5066 gdb_assert (reg != NULL);
5067
5068 /* If this register might be in the 'g' packet, try that first -
5069 we are likely to read more than one register. If this is the
5070 first 'g' packet, we might be overly optimistic about its
5071 contents, so fall back to 'p'. */
5072 if (reg->in_g_packet)
5073 {
5074 fetch_registers_using_g (regcache);
5075 if (reg->in_g_packet)
5076 return;
5077 }
5078
5079 if (fetch_register_using_p (regcache, reg))
5080 return;
5081
5082 /* This register is not available. */
5083 regcache_raw_supply (regcache, reg->regnum, NULL);
5084
5085 return;
5086 }
5087
5088 fetch_registers_using_g (regcache);
5089
5090 for (i = 0; i < gdbarch_num_regs (get_regcache_arch (regcache)); i++)
5091 if (!rsa->regs[i].in_g_packet)
5092 if (!fetch_register_using_p (regcache, &rsa->regs[i]))
5093 {
5094 /* This register is not available. */
5095 regcache_raw_supply (regcache, i, NULL);
5096 }
5097 }
5098
5099 /* Prepare to store registers. Since we may send them all (using a
5100 'G' request), we have to read out the ones we don't want to change
5101 first. */
5102
5103 static void
5104 remote_prepare_to_store (struct regcache *regcache)
5105 {
5106 struct remote_arch_state *rsa = get_remote_arch_state ();
5107 int i;
5108 gdb_byte buf[MAX_REGISTER_SIZE];
5109
5110 /* Make sure the entire registers array is valid. */
5111 switch (remote_protocol_packets[PACKET_P].support)
5112 {
5113 case PACKET_DISABLE:
5114 case PACKET_SUPPORT_UNKNOWN:
5115 /* Make sure all the necessary registers are cached. */
5116 for (i = 0; i < gdbarch_num_regs (get_regcache_arch (regcache)); i++)
5117 if (rsa->regs[i].in_g_packet)
5118 regcache_raw_read (regcache, rsa->regs[i].regnum, buf);
5119 break;
5120 case PACKET_ENABLE:
5121 break;
5122 }
5123 }
5124
5125 /* Helper: Attempt to store REGNUM using the P packet. Return fail IFF
5126 packet was not recognized. */
5127
5128 static int
5129 store_register_using_P (const struct regcache *regcache, struct packet_reg *reg)
5130 {
5131 struct gdbarch *gdbarch = get_regcache_arch (regcache);
5132 struct remote_state *rs = get_remote_state ();
5133 struct remote_arch_state *rsa = get_remote_arch_state ();
5134 /* Try storing a single register. */
5135 char *buf = rs->buf;
5136 gdb_byte regp[MAX_REGISTER_SIZE];
5137 char *p;
5138
5139 if (remote_protocol_packets[PACKET_P].support == PACKET_DISABLE)
5140 return 0;
5141
5142 if (reg->pnum == -1)
5143 return 0;
5144
5145 xsnprintf (buf, get_remote_packet_size (), "P%s=", phex_nz (reg->pnum, 0));
5146 p = buf + strlen (buf);
5147 regcache_raw_collect (regcache, reg->regnum, regp);
5148 bin2hex (regp, p, register_size (gdbarch, reg->regnum));
5149 remote_send (&rs->buf, &rs->buf_size);
5150
5151 switch (packet_ok (rs->buf, &remote_protocol_packets[PACKET_P]))
5152 {
5153 case PACKET_OK:
5154 return 1;
5155 case PACKET_ERROR:
5156 error (_("Could not write register \"%s\""),
5157 gdbarch_register_name (gdbarch, reg->regnum));
5158 case PACKET_UNKNOWN:
5159 return 0;
5160 default:
5161 internal_error (__FILE__, __LINE__, _("Bad result from packet_ok"));
5162 }
5163 }
5164
5165 /* Store register REGNUM, or all registers if REGNUM == -1, from the
5166 contents of the register cache buffer. FIXME: ignores errors. */
5167
5168 static void
5169 store_registers_using_G (const struct regcache *regcache)
5170 {
5171 struct remote_state *rs = get_remote_state ();
5172 struct remote_arch_state *rsa = get_remote_arch_state ();
5173 gdb_byte *regs;
5174 char *p;
5175
5176 /* Extract all the registers in the regcache copying them into a
5177 local buffer. */
5178 {
5179 int i;
5180 regs = alloca (rsa->sizeof_g_packet);
5181 memset (regs, 0, rsa->sizeof_g_packet);
5182 for (i = 0; i < gdbarch_num_regs (get_regcache_arch (regcache)); i++)
5183 {
5184 struct packet_reg *r = &rsa->regs[i];
5185 if (r->in_g_packet)
5186 regcache_raw_collect (regcache, r->regnum, regs + r->offset);
5187 }
5188 }
5189
5190 /* Command describes registers byte by byte,
5191 each byte encoded as two hex characters. */
5192 p = rs->buf;
5193 *p++ = 'G';
5194 /* remote_prepare_to_store insures that rsa->sizeof_g_packet gets
5195 updated. */
5196 bin2hex (regs, p, rsa->sizeof_g_packet);
5197 remote_send (&rs->buf, &rs->buf_size);
5198 }
5199
5200 /* Store register REGNUM, or all registers if REGNUM == -1, from the contents
5201 of the register cache buffer. FIXME: ignores errors. */
5202
5203 static void
5204 remote_store_registers (struct target_ops *ops,
5205 struct regcache *regcache, int regnum)
5206 {
5207 struct remote_state *rs = get_remote_state ();
5208 struct remote_arch_state *rsa = get_remote_arch_state ();
5209 int i;
5210
5211 set_general_thread (inferior_ptid);
5212
5213 if (regnum >= 0)
5214 {
5215 struct packet_reg *reg = packet_reg_from_regnum (rsa, regnum);
5216 gdb_assert (reg != NULL);
5217
5218 /* Always prefer to store registers using the 'P' packet if
5219 possible; we often change only a small number of registers.
5220 Sometimes we change a larger number; we'd need help from a
5221 higher layer to know to use 'G'. */
5222 if (store_register_using_P (regcache, reg))
5223 return;
5224
5225 /* For now, don't complain if we have no way to write the
5226 register. GDB loses track of unavailable registers too
5227 easily. Some day, this may be an error. We don't have
5228 any way to read the register, either... */
5229 if (!reg->in_g_packet)
5230 return;
5231
5232 store_registers_using_G (regcache);
5233 return;
5234 }
5235
5236 store_registers_using_G (regcache);
5237
5238 for (i = 0; i < gdbarch_num_regs (get_regcache_arch (regcache)); i++)
5239 if (!rsa->regs[i].in_g_packet)
5240 if (!store_register_using_P (regcache, &rsa->regs[i]))
5241 /* See above for why we do not issue an error here. */
5242 continue;
5243 }
5244 \f
5245
5246 /* Return the number of hex digits in num. */
5247
5248 static int
5249 hexnumlen (ULONGEST num)
5250 {
5251 int i;
5252
5253 for (i = 0; num != 0; i++)
5254 num >>= 4;
5255
5256 return max (i, 1);
5257 }
5258
5259 /* Set BUF to the minimum number of hex digits representing NUM. */
5260
5261 static int
5262 hexnumstr (char *buf, ULONGEST num)
5263 {
5264 int len = hexnumlen (num);
5265 return hexnumnstr (buf, num, len);
5266 }
5267
5268
5269 /* Set BUF to the hex digits representing NUM, padded to WIDTH characters. */
5270
5271 static int
5272 hexnumnstr (char *buf, ULONGEST num, int width)
5273 {
5274 int i;
5275
5276 buf[width] = '\0';
5277
5278 for (i = width - 1; i >= 0; i--)
5279 {
5280 buf[i] = "0123456789abcdef"[(num & 0xf)];
5281 num >>= 4;
5282 }
5283
5284 return width;
5285 }
5286
5287 /* Mask all but the least significant REMOTE_ADDRESS_SIZE bits. */
5288
5289 static CORE_ADDR
5290 remote_address_masked (CORE_ADDR addr)
5291 {
5292 int address_size = remote_address_size;
5293 /* If "remoteaddresssize" was not set, default to target address size. */
5294 if (!address_size)
5295 address_size = gdbarch_addr_bit (target_gdbarch);
5296
5297 if (address_size > 0
5298 && address_size < (sizeof (ULONGEST) * 8))
5299 {
5300 /* Only create a mask when that mask can safely be constructed
5301 in a ULONGEST variable. */
5302 ULONGEST mask = 1;
5303 mask = (mask << address_size) - 1;
5304 addr &= mask;
5305 }
5306 return addr;
5307 }
5308
5309 /* Convert BUFFER, binary data at least LEN bytes long, into escaped
5310 binary data in OUT_BUF. Set *OUT_LEN to the length of the data
5311 encoded in OUT_BUF, and return the number of bytes in OUT_BUF
5312 (which may be more than *OUT_LEN due to escape characters). The
5313 total number of bytes in the output buffer will be at most
5314 OUT_MAXLEN. */
5315
5316 static int
5317 remote_escape_output (const gdb_byte *buffer, int len,
5318 gdb_byte *out_buf, int *out_len,
5319 int out_maxlen)
5320 {
5321 int input_index, output_index;
5322
5323 output_index = 0;
5324 for (input_index = 0; input_index < len; input_index++)
5325 {
5326 gdb_byte b = buffer[input_index];
5327
5328 if (b == '$' || b == '#' || b == '}')
5329 {
5330 /* These must be escaped. */
5331 if (output_index + 2 > out_maxlen)
5332 break;
5333 out_buf[output_index++] = '}';
5334 out_buf[output_index++] = b ^ 0x20;
5335 }
5336 else
5337 {
5338 if (output_index + 1 > out_maxlen)
5339 break;
5340 out_buf[output_index++] = b;
5341 }
5342 }
5343
5344 *out_len = input_index;
5345 return output_index;
5346 }
5347
5348 /* Convert BUFFER, escaped data LEN bytes long, into binary data
5349 in OUT_BUF. Return the number of bytes written to OUT_BUF.
5350 Raise an error if the total number of bytes exceeds OUT_MAXLEN.
5351
5352 This function reverses remote_escape_output. It allows more
5353 escaped characters than that function does, in particular because
5354 '*' must be escaped to avoid the run-length encoding processing
5355 in reading packets. */
5356
5357 static int
5358 remote_unescape_input (const gdb_byte *buffer, int len,
5359 gdb_byte *out_buf, int out_maxlen)
5360 {
5361 int input_index, output_index;
5362 int escaped;
5363
5364 output_index = 0;
5365 escaped = 0;
5366 for (input_index = 0; input_index < len; input_index++)
5367 {
5368 gdb_byte b = buffer[input_index];
5369
5370 if (output_index + 1 > out_maxlen)
5371 {
5372 warning (_("Received too much data from remote target;"
5373 " ignoring overflow."));
5374 return output_index;
5375 }
5376
5377 if (escaped)
5378 {
5379 out_buf[output_index++] = b ^ 0x20;
5380 escaped = 0;
5381 }
5382 else if (b == '}')
5383 escaped = 1;
5384 else
5385 out_buf[output_index++] = b;
5386 }
5387
5388 if (escaped)
5389 error (_("Unmatched escape character in target response."));
5390
5391 return output_index;
5392 }
5393
5394 /* Determine whether the remote target supports binary downloading.
5395 This is accomplished by sending a no-op memory write of zero length
5396 to the target at the specified address. It does not suffice to send
5397 the whole packet, since many stubs strip the eighth bit and
5398 subsequently compute a wrong checksum, which causes real havoc with
5399 remote_write_bytes.
5400
5401 NOTE: This can still lose if the serial line is not eight-bit
5402 clean. In cases like this, the user should clear "remote
5403 X-packet". */
5404
5405 static void
5406 check_binary_download (CORE_ADDR addr)
5407 {
5408 struct remote_state *rs = get_remote_state ();
5409
5410 switch (remote_protocol_packets[PACKET_X].support)
5411 {
5412 case PACKET_DISABLE:
5413 break;
5414 case PACKET_ENABLE:
5415 break;
5416 case PACKET_SUPPORT_UNKNOWN:
5417 {
5418 char *p;
5419
5420 p = rs->buf;
5421 *p++ = 'X';
5422 p += hexnumstr (p, (ULONGEST) addr);
5423 *p++ = ',';
5424 p += hexnumstr (p, (ULONGEST) 0);
5425 *p++ = ':';
5426 *p = '\0';
5427
5428 putpkt_binary (rs->buf, (int) (p - rs->buf));
5429 getpkt (&rs->buf, &rs->buf_size, 0);
5430
5431 if (rs->buf[0] == '\0')
5432 {
5433 if (remote_debug)
5434 fprintf_unfiltered (gdb_stdlog,
5435 "binary downloading NOT suppported by target\n");
5436 remote_protocol_packets[PACKET_X].support = PACKET_DISABLE;
5437 }
5438 else
5439 {
5440 if (remote_debug)
5441 fprintf_unfiltered (gdb_stdlog,
5442 "binary downloading suppported by target\n");
5443 remote_protocol_packets[PACKET_X].support = PACKET_ENABLE;
5444 }
5445 break;
5446 }
5447 }
5448 }
5449
5450 /* Write memory data directly to the remote machine.
5451 This does not inform the data cache; the data cache uses this.
5452 HEADER is the starting part of the packet.
5453 MEMADDR is the address in the remote memory space.
5454 MYADDR is the address of the buffer in our space.
5455 LEN is the number of bytes.
5456 PACKET_FORMAT should be either 'X' or 'M', and indicates if we
5457 should send data as binary ('X'), or hex-encoded ('M').
5458
5459 The function creates packet of the form
5460 <HEADER><ADDRESS>,<LENGTH>:<DATA>
5461
5462 where encoding of <DATA> is termined by PACKET_FORMAT.
5463
5464 If USE_LENGTH is 0, then the <LENGTH> field and the preceding comma
5465 are omitted.
5466
5467 Returns the number of bytes transferred, or 0 (setting errno) for
5468 error. Only transfer a single packet. */
5469
5470 static int
5471 remote_write_bytes_aux (const char *header, CORE_ADDR memaddr,
5472 const gdb_byte *myaddr, int len,
5473 char packet_format, int use_length)
5474 {
5475 struct remote_state *rs = get_remote_state ();
5476 char *p;
5477 char *plen = NULL;
5478 int plenlen = 0;
5479 int todo;
5480 int nr_bytes;
5481 int payload_size;
5482 int payload_length;
5483 int header_length;
5484
5485 if (packet_format != 'X' && packet_format != 'M')
5486 internal_error (__FILE__, __LINE__,
5487 "remote_write_bytes_aux: bad packet format");
5488
5489 if (len <= 0)
5490 return 0;
5491
5492 payload_size = get_memory_write_packet_size ();
5493
5494 /* The packet buffer will be large enough for the payload;
5495 get_memory_packet_size ensures this. */
5496 rs->buf[0] = '\0';
5497
5498 /* Compute the size of the actual payload by subtracting out the
5499 packet header and footer overhead: "$M<memaddr>,<len>:...#nn".
5500 */
5501 payload_size -= strlen ("$,:#NN");
5502 if (!use_length)
5503 /* The comma won't be used. */
5504 payload_size += 1;
5505 header_length = strlen (header);
5506 payload_size -= header_length;
5507 payload_size -= hexnumlen (memaddr);
5508
5509 /* Construct the packet excluding the data: "<header><memaddr>,<len>:". */
5510
5511 strcat (rs->buf, header);
5512 p = rs->buf + strlen (header);
5513
5514 /* Compute a best guess of the number of bytes actually transfered. */
5515 if (packet_format == 'X')
5516 {
5517 /* Best guess at number of bytes that will fit. */
5518 todo = min (len, payload_size);
5519 if (use_length)
5520 payload_size -= hexnumlen (todo);
5521 todo = min (todo, payload_size);
5522 }
5523 else
5524 {
5525 /* Num bytes that will fit. */
5526 todo = min (len, payload_size / 2);
5527 if (use_length)
5528 payload_size -= hexnumlen (todo);
5529 todo = min (todo, payload_size / 2);
5530 }
5531
5532 if (todo <= 0)
5533 internal_error (__FILE__, __LINE__,
5534 _("minumum packet size too small to write data"));
5535
5536 /* If we already need another packet, then try to align the end
5537 of this packet to a useful boundary. */
5538 if (todo > 2 * REMOTE_ALIGN_WRITES && todo < len)
5539 todo = ((memaddr + todo) & ~(REMOTE_ALIGN_WRITES - 1)) - memaddr;
5540
5541 /* Append "<memaddr>". */
5542 memaddr = remote_address_masked (memaddr);
5543 p += hexnumstr (p, (ULONGEST) memaddr);
5544
5545 if (use_length)
5546 {
5547 /* Append ",". */
5548 *p++ = ',';
5549
5550 /* Append <len>. Retain the location/size of <len>. It may need to
5551 be adjusted once the packet body has been created. */
5552 plen = p;
5553 plenlen = hexnumstr (p, (ULONGEST) todo);
5554 p += plenlen;
5555 }
5556
5557 /* Append ":". */
5558 *p++ = ':';
5559 *p = '\0';
5560
5561 /* Append the packet body. */
5562 if (packet_format == 'X')
5563 {
5564 /* Binary mode. Send target system values byte by byte, in
5565 increasing byte addresses. Only escape certain critical
5566 characters. */
5567 payload_length = remote_escape_output (myaddr, todo, p, &nr_bytes,
5568 payload_size);
5569
5570 /* If not all TODO bytes fit, then we'll need another packet. Make
5571 a second try to keep the end of the packet aligned. Don't do
5572 this if the packet is tiny. */
5573 if (nr_bytes < todo && nr_bytes > 2 * REMOTE_ALIGN_WRITES)
5574 {
5575 int new_nr_bytes;
5576
5577 new_nr_bytes = (((memaddr + nr_bytes) & ~(REMOTE_ALIGN_WRITES - 1))
5578 - memaddr);
5579 if (new_nr_bytes != nr_bytes)
5580 payload_length = remote_escape_output (myaddr, new_nr_bytes,
5581 p, &nr_bytes,
5582 payload_size);
5583 }
5584
5585 p += payload_length;
5586 if (use_length && nr_bytes < todo)
5587 {
5588 /* Escape chars have filled up the buffer prematurely,
5589 and we have actually sent fewer bytes than planned.
5590 Fix-up the length field of the packet. Use the same
5591 number of characters as before. */
5592 plen += hexnumnstr (plen, (ULONGEST) nr_bytes, plenlen);
5593 *plen = ':'; /* overwrite \0 from hexnumnstr() */
5594 }
5595 }
5596 else
5597 {
5598 /* Normal mode: Send target system values byte by byte, in
5599 increasing byte addresses. Each byte is encoded as a two hex
5600 value. */
5601 nr_bytes = bin2hex (myaddr, p, todo);
5602 p += 2 * nr_bytes;
5603 }
5604
5605 putpkt_binary (rs->buf, (int) (p - rs->buf));
5606 getpkt (&rs->buf, &rs->buf_size, 0);
5607
5608 if (rs->buf[0] == 'E')
5609 {
5610 /* There is no correspondance between what the remote protocol
5611 uses for errors and errno codes. We would like a cleaner way
5612 of representing errors (big enough to include errno codes,
5613 bfd_error codes, and others). But for now just return EIO. */
5614 errno = EIO;
5615 return 0;
5616 }
5617
5618 /* Return NR_BYTES, not TODO, in case escape chars caused us to send
5619 fewer bytes than we'd planned. */
5620 return nr_bytes;
5621 }
5622
5623 /* Write memory data directly to the remote machine.
5624 This does not inform the data cache; the data cache uses this.
5625 MEMADDR is the address in the remote memory space.
5626 MYADDR is the address of the buffer in our space.
5627 LEN is the number of bytes.
5628
5629 Returns number of bytes transferred, or 0 (setting errno) for
5630 error. Only transfer a single packet. */
5631
5632 int
5633 remote_write_bytes (CORE_ADDR memaddr, const gdb_byte *myaddr, int len)
5634 {
5635 char *packet_format = 0;
5636
5637 /* Check whether the target supports binary download. */
5638 check_binary_download (memaddr);
5639
5640 switch (remote_protocol_packets[PACKET_X].support)
5641 {
5642 case PACKET_ENABLE:
5643 packet_format = "X";
5644 break;
5645 case PACKET_DISABLE:
5646 packet_format = "M";
5647 break;
5648 case PACKET_SUPPORT_UNKNOWN:
5649 internal_error (__FILE__, __LINE__,
5650 _("remote_write_bytes: bad internal state"));
5651 default:
5652 internal_error (__FILE__, __LINE__, _("bad switch"));
5653 }
5654
5655 return remote_write_bytes_aux (packet_format,
5656 memaddr, myaddr, len, packet_format[0], 1);
5657 }
5658
5659 /* Read memory data directly from the remote machine.
5660 This does not use the data cache; the data cache uses this.
5661 MEMADDR is the address in the remote memory space.
5662 MYADDR is the address of the buffer in our space.
5663 LEN is the number of bytes.
5664
5665 Returns number of bytes transferred, or 0 for error. */
5666
5667 /* NOTE: cagney/1999-10-18: This function (and its siblings in other
5668 remote targets) shouldn't attempt to read the entire buffer.
5669 Instead it should read a single packet worth of data and then
5670 return the byte size of that packet to the caller. The caller (its
5671 caller and its callers caller ;-) already contains code for
5672 handling partial reads. */
5673
5674 int
5675 remote_read_bytes (CORE_ADDR memaddr, gdb_byte *myaddr, int len)
5676 {
5677 struct remote_state *rs = get_remote_state ();
5678 int max_buf_size; /* Max size of packet output buffer. */
5679 int origlen;
5680
5681 if (len <= 0)
5682 return 0;
5683
5684 max_buf_size = get_memory_read_packet_size ();
5685 /* The packet buffer will be large enough for the payload;
5686 get_memory_packet_size ensures this. */
5687
5688 origlen = len;
5689 while (len > 0)
5690 {
5691 char *p;
5692 int todo;
5693 int i;
5694
5695 todo = min (len, max_buf_size / 2); /* num bytes that will fit */
5696
5697 /* construct "m"<memaddr>","<len>" */
5698 /* sprintf (rs->buf, "m%lx,%x", (unsigned long) memaddr, todo); */
5699 memaddr = remote_address_masked (memaddr);
5700 p = rs->buf;
5701 *p++ = 'm';
5702 p += hexnumstr (p, (ULONGEST) memaddr);
5703 *p++ = ',';
5704 p += hexnumstr (p, (ULONGEST) todo);
5705 *p = '\0';
5706
5707 putpkt (rs->buf);
5708 getpkt (&rs->buf, &rs->buf_size, 0);
5709
5710 if (rs->buf[0] == 'E'
5711 && isxdigit (rs->buf[1]) && isxdigit (rs->buf[2])
5712 && rs->buf[3] == '\0')
5713 {
5714 /* There is no correspondance between what the remote
5715 protocol uses for errors and errno codes. We would like
5716 a cleaner way of representing errors (big enough to
5717 include errno codes, bfd_error codes, and others). But
5718 for now just return EIO. */
5719 errno = EIO;
5720 return 0;
5721 }
5722
5723 /* Reply describes memory byte by byte,
5724 each byte encoded as two hex characters. */
5725
5726 p = rs->buf;
5727 if ((i = hex2bin (p, myaddr, todo)) < todo)
5728 {
5729 /* Reply is short. This means that we were able to read
5730 only part of what we wanted to. */
5731 return i + (origlen - len);
5732 }
5733 myaddr += todo;
5734 memaddr += todo;
5735 len -= todo;
5736 }
5737 return origlen;
5738 }
5739 \f
5740
5741 /* Remote notification handler. */
5742
5743 static void
5744 handle_notification (char *buf, size_t length)
5745 {
5746 if (strncmp (buf, "Stop:", 5) == 0)
5747 {
5748 if (pending_stop_reply)
5749 /* We've already parsed the in-flight stop-reply, but the stub
5750 for some reason thought we didn't, possibly due to timeout
5751 on its side. Just ignore it. */
5752 ;
5753 else
5754 {
5755 struct cleanup *old_chain;
5756 struct stop_reply *reply = stop_reply_xmalloc ();
5757 old_chain = make_cleanup (do_stop_reply_xfree, reply);
5758
5759 remote_parse_stop_reply (buf + 5, reply);
5760
5761 discard_cleanups (old_chain);
5762
5763 /* Be careful to only set it after parsing, since an error
5764 may be thrown then. */
5765 pending_stop_reply = reply;
5766
5767 /* Notify the event loop there's a stop reply to acknowledge
5768 and that there may be more events to fetch. */
5769 mark_async_event_handler (remote_async_get_pending_events_token);
5770 }
5771 }
5772 else
5773 /* We ignore notifications we don't recognize, for compatibility
5774 with newer stubs. */
5775 ;
5776 }
5777
5778 \f
5779 /* Read or write LEN bytes from inferior memory at MEMADDR,
5780 transferring to or from debugger address BUFFER. Write to inferior
5781 if SHOULD_WRITE is nonzero. Returns length of data written or
5782 read; 0 for error. TARGET is unused. */
5783
5784 static int
5785 remote_xfer_memory (CORE_ADDR mem_addr, gdb_byte *buffer, int mem_len,
5786 int should_write, struct mem_attrib *attrib,
5787 struct target_ops *target)
5788 {
5789 int res;
5790
5791 set_general_thread (inferior_ptid);
5792
5793 if (should_write)
5794 res = remote_write_bytes (mem_addr, buffer, mem_len);
5795 else
5796 res = remote_read_bytes (mem_addr, buffer, mem_len);
5797
5798 return res;
5799 }
5800
5801 /* Sends a packet with content determined by the printf format string
5802 FORMAT and the remaining arguments, then gets the reply. Returns
5803 whether the packet was a success, a failure, or unknown. */
5804
5805 static enum packet_result
5806 remote_send_printf (const char *format, ...)
5807 {
5808 struct remote_state *rs = get_remote_state ();
5809 int max_size = get_remote_packet_size ();
5810
5811 va_list ap;
5812 va_start (ap, format);
5813
5814 rs->buf[0] = '\0';
5815 if (vsnprintf (rs->buf, max_size, format, ap) >= max_size)
5816 internal_error (__FILE__, __LINE__, "Too long remote packet.");
5817
5818 if (putpkt (rs->buf) < 0)
5819 error (_("Communication problem with target."));
5820
5821 rs->buf[0] = '\0';
5822 getpkt (&rs->buf, &rs->buf_size, 0);
5823
5824 return packet_check_result (rs->buf);
5825 }
5826
5827 static void
5828 restore_remote_timeout (void *p)
5829 {
5830 int value = *(int *)p;
5831 remote_timeout = value;
5832 }
5833
5834 /* Flash writing can take quite some time. We'll set
5835 effectively infinite timeout for flash operations.
5836 In future, we'll need to decide on a better approach. */
5837 static const int remote_flash_timeout = 1000;
5838
5839 static void
5840 remote_flash_erase (struct target_ops *ops,
5841 ULONGEST address, LONGEST length)
5842 {
5843 int saved_remote_timeout = remote_timeout;
5844 enum packet_result ret;
5845
5846 struct cleanup *back_to = make_cleanup (restore_remote_timeout,
5847 &saved_remote_timeout);
5848 remote_timeout = remote_flash_timeout;
5849
5850 ret = remote_send_printf ("vFlashErase:%s,%s",
5851 paddr (address),
5852 phex (length, 4));
5853 switch (ret)
5854 {
5855 case PACKET_UNKNOWN:
5856 error (_("Remote target does not support flash erase"));
5857 case PACKET_ERROR:
5858 error (_("Error erasing flash with vFlashErase packet"));
5859 default:
5860 break;
5861 }
5862
5863 do_cleanups (back_to);
5864 }
5865
5866 static LONGEST
5867 remote_flash_write (struct target_ops *ops,
5868 ULONGEST address, LONGEST length,
5869 const gdb_byte *data)
5870 {
5871 int saved_remote_timeout = remote_timeout;
5872 int ret;
5873 struct cleanup *back_to = make_cleanup (restore_remote_timeout,
5874 &saved_remote_timeout);
5875
5876 remote_timeout = remote_flash_timeout;
5877 ret = remote_write_bytes_aux ("vFlashWrite:", address, data, length, 'X', 0);
5878 do_cleanups (back_to);
5879
5880 return ret;
5881 }
5882
5883 static void
5884 remote_flash_done (struct target_ops *ops)
5885 {
5886 int saved_remote_timeout = remote_timeout;
5887 int ret;
5888 struct cleanup *back_to = make_cleanup (restore_remote_timeout,
5889 &saved_remote_timeout);
5890
5891 remote_timeout = remote_flash_timeout;
5892 ret = remote_send_printf ("vFlashDone");
5893 do_cleanups (back_to);
5894
5895 switch (ret)
5896 {
5897 case PACKET_UNKNOWN:
5898 error (_("Remote target does not support vFlashDone"));
5899 case PACKET_ERROR:
5900 error (_("Error finishing flash operation"));
5901 default:
5902 break;
5903 }
5904 }
5905
5906 static void
5907 remote_files_info (struct target_ops *ignore)
5908 {
5909 puts_filtered ("Debugging a target over a serial line.\n");
5910 }
5911 \f
5912 /* Stuff for dealing with the packets which are part of this protocol.
5913 See comment at top of file for details. */
5914
5915 /* Read a single character from the remote end. */
5916
5917 static int
5918 readchar (int timeout)
5919 {
5920 int ch;
5921
5922 ch = serial_readchar (remote_desc, timeout);
5923
5924 if (ch >= 0)
5925 return ch;
5926
5927 switch ((enum serial_rc) ch)
5928 {
5929 case SERIAL_EOF:
5930 pop_target ();
5931 error (_("Remote connection closed"));
5932 /* no return */
5933 case SERIAL_ERROR:
5934 perror_with_name (_("Remote communication error"));
5935 /* no return */
5936 case SERIAL_TIMEOUT:
5937 break;
5938 }
5939 return ch;
5940 }
5941
5942 /* Send the command in *BUF to the remote machine, and read the reply
5943 into *BUF. Report an error if we get an error reply. Resize
5944 *BUF using xrealloc if necessary to hold the result, and update
5945 *SIZEOF_BUF. */
5946
5947 static void
5948 remote_send (char **buf,
5949 long *sizeof_buf)
5950 {
5951 putpkt (*buf);
5952 getpkt (buf, sizeof_buf, 0);
5953
5954 if ((*buf)[0] == 'E')
5955 error (_("Remote failure reply: %s"), *buf);
5956 }
5957
5958 /* Return a pointer to an xmalloc'ed string representing an escaped
5959 version of BUF, of len N. E.g. \n is converted to \\n, \t to \\t,
5960 etc. The caller is responsible for releasing the returned
5961 memory. */
5962
5963 static char *
5964 escape_buffer (const char *buf, int n)
5965 {
5966 struct cleanup *old_chain;
5967 struct ui_file *stb;
5968 char *str;
5969 long length;
5970
5971 stb = mem_fileopen ();
5972 old_chain = make_cleanup_ui_file_delete (stb);
5973
5974 fputstrn_unfiltered (buf, n, 0, stb);
5975 str = ui_file_xstrdup (stb, &length);
5976 do_cleanups (old_chain);
5977 return str;
5978 }
5979
5980 /* Display a null-terminated packet on stdout, for debugging, using C
5981 string notation. */
5982
5983 static void
5984 print_packet (char *buf)
5985 {
5986 puts_filtered ("\"");
5987 fputstr_filtered (buf, '"', gdb_stdout);
5988 puts_filtered ("\"");
5989 }
5990
5991 int
5992 putpkt (char *buf)
5993 {
5994 return putpkt_binary (buf, strlen (buf));
5995 }
5996
5997 /* Send a packet to the remote machine, with error checking. The data
5998 of the packet is in BUF. The string in BUF can be at most
5999 get_remote_packet_size () - 5 to account for the $, # and checksum,
6000 and for a possible /0 if we are debugging (remote_debug) and want
6001 to print the sent packet as a string. */
6002
6003 static int
6004 putpkt_binary (char *buf, int cnt)
6005 {
6006 struct remote_state *rs = get_remote_state ();
6007 int i;
6008 unsigned char csum = 0;
6009 char *buf2 = alloca (cnt + 6);
6010
6011 int ch;
6012 int tcount = 0;
6013 char *p;
6014
6015 /* Catch cases like trying to read memory or listing threads while
6016 we're waiting for a stop reply. The remote server wouldn't be
6017 ready to handle this request, so we'd hang and timeout. We don't
6018 have to worry about this in synchronous mode, because in that
6019 case it's not possible to issue a command while the target is
6020 running. This is not a problem in non-stop mode, because in that
6021 case, the stub is always ready to process serial input. */
6022 if (!non_stop && target_can_async_p () && rs->waiting_for_stop_reply)
6023 error (_("Cannot execute this command while the target is running."));
6024
6025 /* We're sending out a new packet. Make sure we don't look at a
6026 stale cached response. */
6027 rs->cached_wait_status = 0;
6028
6029 /* Copy the packet into buffer BUF2, encapsulating it
6030 and giving it a checksum. */
6031
6032 p = buf2;
6033 *p++ = '$';
6034
6035 for (i = 0; i < cnt; i++)
6036 {
6037 csum += buf[i];
6038 *p++ = buf[i];
6039 }
6040 *p++ = '#';
6041 *p++ = tohex ((csum >> 4) & 0xf);
6042 *p++ = tohex (csum & 0xf);
6043
6044 /* Send it over and over until we get a positive ack. */
6045
6046 while (1)
6047 {
6048 int started_error_output = 0;
6049
6050 if (remote_debug)
6051 {
6052 struct cleanup *old_chain;
6053 char *str;
6054
6055 *p = '\0';
6056 str = escape_buffer (buf2, p - buf2);
6057 old_chain = make_cleanup (xfree, str);
6058 fprintf_unfiltered (gdb_stdlog, "Sending packet: %s...", str);
6059 gdb_flush (gdb_stdlog);
6060 do_cleanups (old_chain);
6061 }
6062 if (serial_write (remote_desc, buf2, p - buf2))
6063 perror_with_name (_("putpkt: write failed"));
6064
6065 /* If this is a no acks version of the remote protocol, send the
6066 packet and move on. */
6067 if (rs->noack_mode)
6068 break;
6069
6070 /* Read until either a timeout occurs (-2) or '+' is read.
6071 Handle any notification that arrives in the mean time. */
6072 while (1)
6073 {
6074 ch = readchar (remote_timeout);
6075
6076 if (remote_debug)
6077 {
6078 switch (ch)
6079 {
6080 case '+':
6081 case '-':
6082 case SERIAL_TIMEOUT:
6083 case '$':
6084 case '%':
6085 if (started_error_output)
6086 {
6087 putchar_unfiltered ('\n');
6088 started_error_output = 0;
6089 }
6090 }
6091 }
6092
6093 switch (ch)
6094 {
6095 case '+':
6096 if (remote_debug)
6097 fprintf_unfiltered (gdb_stdlog, "Ack\n");
6098 return 1;
6099 case '-':
6100 if (remote_debug)
6101 fprintf_unfiltered (gdb_stdlog, "Nak\n");
6102 case SERIAL_TIMEOUT:
6103 tcount++;
6104 if (tcount > 3)
6105 return 0;
6106 break; /* Retransmit buffer. */
6107 case '$':
6108 {
6109 if (remote_debug)
6110 fprintf_unfiltered (gdb_stdlog,
6111 "Packet instead of Ack, ignoring it\n");
6112 /* It's probably an old response sent because an ACK
6113 was lost. Gobble up the packet and ack it so it
6114 doesn't get retransmitted when we resend this
6115 packet. */
6116 skip_frame ();
6117 serial_write (remote_desc, "+", 1);
6118 continue; /* Now, go look for +. */
6119 }
6120
6121 case '%':
6122 {
6123 int val;
6124
6125 /* If we got a notification, handle it, and go back to looking
6126 for an ack. */
6127 /* We've found the start of a notification. Now
6128 collect the data. */
6129 val = read_frame (&rs->buf, &rs->buf_size);
6130 if (val >= 0)
6131 {
6132 if (remote_debug)
6133 {
6134 struct cleanup *old_chain;
6135 char *str;
6136
6137 str = escape_buffer (rs->buf, val);
6138 old_chain = make_cleanup (xfree, str);
6139 fprintf_unfiltered (gdb_stdlog,
6140 " Notification received: %s\n",
6141 str);
6142 do_cleanups (old_chain);
6143 }
6144 handle_notification (rs->buf, val);
6145 /* We're in sync now, rewait for the ack. */
6146 tcount = 0;
6147 }
6148 else
6149 {
6150 if (remote_debug)
6151 {
6152 if (!started_error_output)
6153 {
6154 started_error_output = 1;
6155 fprintf_unfiltered (gdb_stdlog, "putpkt: Junk: ");
6156 }
6157 fputc_unfiltered (ch & 0177, gdb_stdlog);
6158 fprintf_unfiltered (gdb_stdlog, "%s", rs->buf);
6159 }
6160 }
6161 continue;
6162 }
6163 /* fall-through */
6164 default:
6165 if (remote_debug)
6166 {
6167 if (!started_error_output)
6168 {
6169 started_error_output = 1;
6170 fprintf_unfiltered (gdb_stdlog, "putpkt: Junk: ");
6171 }
6172 fputc_unfiltered (ch & 0177, gdb_stdlog);
6173 }
6174 continue;
6175 }
6176 break; /* Here to retransmit. */
6177 }
6178
6179 #if 0
6180 /* This is wrong. If doing a long backtrace, the user should be
6181 able to get out next time we call QUIT, without anything as
6182 violent as interrupt_query. If we want to provide a way out of
6183 here without getting to the next QUIT, it should be based on
6184 hitting ^C twice as in remote_wait. */
6185 if (quit_flag)
6186 {
6187 quit_flag = 0;
6188 interrupt_query ();
6189 }
6190 #endif
6191 }
6192 return 0;
6193 }
6194
6195 /* Come here after finding the start of a frame when we expected an
6196 ack. Do our best to discard the rest of this packet. */
6197
6198 static void
6199 skip_frame (void)
6200 {
6201 int c;
6202
6203 while (1)
6204 {
6205 c = readchar (remote_timeout);
6206 switch (c)
6207 {
6208 case SERIAL_TIMEOUT:
6209 /* Nothing we can do. */
6210 return;
6211 case '#':
6212 /* Discard the two bytes of checksum and stop. */
6213 c = readchar (remote_timeout);
6214 if (c >= 0)
6215 c = readchar (remote_timeout);
6216
6217 return;
6218 case '*': /* Run length encoding. */
6219 /* Discard the repeat count. */
6220 c = readchar (remote_timeout);
6221 if (c < 0)
6222 return;
6223 break;
6224 default:
6225 /* A regular character. */
6226 break;
6227 }
6228 }
6229 }
6230
6231 /* Come here after finding the start of the frame. Collect the rest
6232 into *BUF, verifying the checksum, length, and handling run-length
6233 compression. NUL terminate the buffer. If there is not enough room,
6234 expand *BUF using xrealloc.
6235
6236 Returns -1 on error, number of characters in buffer (ignoring the
6237 trailing NULL) on success. (could be extended to return one of the
6238 SERIAL status indications). */
6239
6240 static long
6241 read_frame (char **buf_p,
6242 long *sizeof_buf)
6243 {
6244 unsigned char csum;
6245 long bc;
6246 int c;
6247 char *buf = *buf_p;
6248 struct remote_state *rs = get_remote_state ();
6249
6250 csum = 0;
6251 bc = 0;
6252
6253 while (1)
6254 {
6255 c = readchar (remote_timeout);
6256 switch (c)
6257 {
6258 case SERIAL_TIMEOUT:
6259 if (remote_debug)
6260 fputs_filtered ("Timeout in mid-packet, retrying\n", gdb_stdlog);
6261 return -1;
6262 case '$':
6263 if (remote_debug)
6264 fputs_filtered ("Saw new packet start in middle of old one\n",
6265 gdb_stdlog);
6266 return -1; /* Start a new packet, count retries. */
6267 case '#':
6268 {
6269 unsigned char pktcsum;
6270 int check_0 = 0;
6271 int check_1 = 0;
6272
6273 buf[bc] = '\0';
6274
6275 check_0 = readchar (remote_timeout);
6276 if (check_0 >= 0)
6277 check_1 = readchar (remote_timeout);
6278
6279 if (check_0 == SERIAL_TIMEOUT || check_1 == SERIAL_TIMEOUT)
6280 {
6281 if (remote_debug)
6282 fputs_filtered ("Timeout in checksum, retrying\n",
6283 gdb_stdlog);
6284 return -1;
6285 }
6286 else if (check_0 < 0 || check_1 < 0)
6287 {
6288 if (remote_debug)
6289 fputs_filtered ("Communication error in checksum\n",
6290 gdb_stdlog);
6291 return -1;
6292 }
6293
6294 /* Don't recompute the checksum; with no ack packets we
6295 don't have any way to indicate a packet retransmission
6296 is necessary. */
6297 if (rs->noack_mode)
6298 return bc;
6299
6300 pktcsum = (fromhex (check_0) << 4) | fromhex (check_1);
6301 if (csum == pktcsum)
6302 return bc;
6303
6304 if (remote_debug)
6305 {
6306 struct cleanup *old_chain;
6307 char *str;
6308
6309 str = escape_buffer (buf, bc);
6310 old_chain = make_cleanup (xfree, str);
6311 fprintf_unfiltered (gdb_stdlog,
6312 "\
6313 Bad checksum, sentsum=0x%x, csum=0x%x, buf=%s\n",
6314 pktcsum, csum, str);
6315 do_cleanups (old_chain);
6316 }
6317 /* Number of characters in buffer ignoring trailing
6318 NULL. */
6319 return -1;
6320 }
6321 case '*': /* Run length encoding. */
6322 {
6323 int repeat;
6324 csum += c;
6325
6326 c = readchar (remote_timeout);
6327 csum += c;
6328 repeat = c - ' ' + 3; /* Compute repeat count. */
6329
6330 /* The character before ``*'' is repeated. */
6331
6332 if (repeat > 0 && repeat <= 255 && bc > 0)
6333 {
6334 if (bc + repeat - 1 >= *sizeof_buf - 1)
6335 {
6336 /* Make some more room in the buffer. */
6337 *sizeof_buf += repeat;
6338 *buf_p = xrealloc (*buf_p, *sizeof_buf);
6339 buf = *buf_p;
6340 }
6341
6342 memset (&buf[bc], buf[bc - 1], repeat);
6343 bc += repeat;
6344 continue;
6345 }
6346
6347 buf[bc] = '\0';
6348 printf_filtered (_("Invalid run length encoding: %s\n"), buf);
6349 return -1;
6350 }
6351 default:
6352 if (bc >= *sizeof_buf - 1)
6353 {
6354 /* Make some more room in the buffer. */
6355 *sizeof_buf *= 2;
6356 *buf_p = xrealloc (*buf_p, *sizeof_buf);
6357 buf = *buf_p;
6358 }
6359
6360 buf[bc++] = c;
6361 csum += c;
6362 continue;
6363 }
6364 }
6365 }
6366
6367 /* Read a packet from the remote machine, with error checking, and
6368 store it in *BUF. Resize *BUF using xrealloc if necessary to hold
6369 the result, and update *SIZEOF_BUF. If FOREVER, wait forever
6370 rather than timing out; this is used (in synchronous mode) to wait
6371 for a target that is is executing user code to stop. */
6372 /* FIXME: ezannoni 2000-02-01 this wrapper is necessary so that we
6373 don't have to change all the calls to getpkt to deal with the
6374 return value, because at the moment I don't know what the right
6375 thing to do it for those. */
6376 void
6377 getpkt (char **buf,
6378 long *sizeof_buf,
6379 int forever)
6380 {
6381 int timed_out;
6382
6383 timed_out = getpkt_sane (buf, sizeof_buf, forever);
6384 }
6385
6386
6387 /* Read a packet from the remote machine, with error checking, and
6388 store it in *BUF. Resize *BUF using xrealloc if necessary to hold
6389 the result, and update *SIZEOF_BUF. If FOREVER, wait forever
6390 rather than timing out; this is used (in synchronous mode) to wait
6391 for a target that is is executing user code to stop. If FOREVER ==
6392 0, this function is allowed to time out gracefully and return an
6393 indication of this to the caller. Otherwise return the number of
6394 bytes read. If EXPECTING_NOTIF, consider receiving a notification
6395 enough reason to return to the caller. */
6396
6397 static int
6398 getpkt_or_notif_sane_1 (char **buf, long *sizeof_buf, int forever,
6399 int expecting_notif)
6400 {
6401 struct remote_state *rs = get_remote_state ();
6402 int c;
6403 int tries;
6404 int timeout;
6405 int val;
6406
6407 /* We're reading a new response. Make sure we don't look at a
6408 previously cached response. */
6409 rs->cached_wait_status = 0;
6410
6411 strcpy (*buf, "timeout");
6412
6413 if (forever)
6414 timeout = watchdog > 0 ? watchdog : -1;
6415 else if (expecting_notif)
6416 timeout = 0; /* There should already be a char in the buffer. If
6417 not, bail out. */
6418 else
6419 timeout = remote_timeout;
6420
6421 #define MAX_TRIES 3
6422
6423 /* Process any number of notifications, and then return when
6424 we get a packet. */
6425 for (;;)
6426 {
6427 /* If we get a timeout or bad checksm, retry up to MAX_TRIES
6428 times. */
6429 for (tries = 1; tries <= MAX_TRIES; tries++)
6430 {
6431 /* This can loop forever if the remote side sends us
6432 characters continuously, but if it pauses, we'll get
6433 SERIAL_TIMEOUT from readchar because of timeout. Then
6434 we'll count that as a retry.
6435
6436 Note that even when forever is set, we will only wait
6437 forever prior to the start of a packet. After that, we
6438 expect characters to arrive at a brisk pace. They should
6439 show up within remote_timeout intervals. */
6440 do
6441 c = readchar (timeout);
6442 while (c != SERIAL_TIMEOUT && c != '$' && c != '%');
6443
6444 if (c == SERIAL_TIMEOUT)
6445 {
6446 if (expecting_notif)
6447 return -1; /* Don't complain, it's normal to not get
6448 anything in this case. */
6449
6450 if (forever) /* Watchdog went off? Kill the target. */
6451 {
6452 QUIT;
6453 pop_target ();
6454 error (_("Watchdog timeout has expired. Target detached."));
6455 }
6456 if (remote_debug)
6457 fputs_filtered ("Timed out.\n", gdb_stdlog);
6458 }
6459 else
6460 {
6461 /* We've found the start of a packet or notification.
6462 Now collect the data. */
6463 val = read_frame (buf, sizeof_buf);
6464 if (val >= 0)
6465 break;
6466 }
6467
6468 serial_write (remote_desc, "-", 1);
6469 }
6470
6471 if (tries > MAX_TRIES)
6472 {
6473 /* We have tried hard enough, and just can't receive the
6474 packet/notification. Give up. */
6475 printf_unfiltered (_("Ignoring packet error, continuing...\n"));
6476
6477 /* Skip the ack char if we're in no-ack mode. */
6478 if (!rs->noack_mode)
6479 serial_write (remote_desc, "+", 1);
6480 return -1;
6481 }
6482
6483 /* If we got an ordinary packet, return that to our caller. */
6484 if (c == '$')
6485 {
6486 if (remote_debug)
6487 {
6488 struct cleanup *old_chain;
6489 char *str;
6490
6491 str = escape_buffer (*buf, val);
6492 old_chain = make_cleanup (xfree, str);
6493 fprintf_unfiltered (gdb_stdlog, "Packet received: %s\n", str);
6494 do_cleanups (old_chain);
6495 }
6496
6497 /* Skip the ack char if we're in no-ack mode. */
6498 if (!rs->noack_mode)
6499 serial_write (remote_desc, "+", 1);
6500 return val;
6501 }
6502
6503 /* If we got a notification, handle it, and go back to looking
6504 for a packet. */
6505 else
6506 {
6507 gdb_assert (c == '%');
6508
6509 if (remote_debug)
6510 {
6511 struct cleanup *old_chain;
6512 char *str;
6513
6514 str = escape_buffer (*buf, val);
6515 old_chain = make_cleanup (xfree, str);
6516 fprintf_unfiltered (gdb_stdlog,
6517 " Notification received: %s\n",
6518 str);
6519 do_cleanups (old_chain);
6520 }
6521
6522 handle_notification (*buf, val);
6523
6524 /* Notifications require no acknowledgement. */
6525
6526 if (expecting_notif)
6527 return -1;
6528 }
6529 }
6530 }
6531
6532 static int
6533 getpkt_sane (char **buf, long *sizeof_buf, int forever)
6534 {
6535 return getpkt_or_notif_sane_1 (buf, sizeof_buf, forever, 0);
6536 }
6537
6538 static int
6539 getpkt_or_notif_sane (char **buf, long *sizeof_buf, int forever)
6540 {
6541 return getpkt_or_notif_sane_1 (buf, sizeof_buf, forever, 1);
6542 }
6543
6544 \f
6545 static void
6546 remote_kill (struct target_ops *ops)
6547 {
6548 /* Use catch_errors so the user can quit from gdb even when we
6549 aren't on speaking terms with the remote system. */
6550 catch_errors ((catch_errors_ftype *) putpkt, "k", "", RETURN_MASK_ERROR);
6551
6552 /* Don't wait for it to die. I'm not really sure it matters whether
6553 we do or not. For the existing stubs, kill is a noop. */
6554 target_mourn_inferior ();
6555 }
6556
6557 static int
6558 remote_vkill (int pid, struct remote_state *rs)
6559 {
6560 if (remote_protocol_packets[PACKET_vKill].support == PACKET_DISABLE)
6561 return -1;
6562
6563 /* Tell the remote target to detach. */
6564 sprintf (rs->buf, "vKill;%x", pid);
6565 putpkt (rs->buf);
6566 getpkt (&rs->buf, &rs->buf_size, 0);
6567
6568 if (packet_ok (rs->buf,
6569 &remote_protocol_packets[PACKET_vKill]) == PACKET_OK)
6570 return 0;
6571 else if (remote_protocol_packets[PACKET_vKill].support == PACKET_DISABLE)
6572 return -1;
6573 else
6574 return 1;
6575 }
6576
6577 static void
6578 extended_remote_kill (struct target_ops *ops)
6579 {
6580 int res;
6581 int pid = ptid_get_pid (inferior_ptid);
6582 struct remote_state *rs = get_remote_state ();
6583
6584 res = remote_vkill (pid, rs);
6585 if (res == -1 && !remote_multi_process_p (rs))
6586 {
6587 /* Don't try 'k' on a multi-process aware stub -- it has no way
6588 to specify the pid. */
6589
6590 putpkt ("k");
6591 #if 0
6592 getpkt (&rs->buf, &rs->buf_size, 0);
6593 if (rs->buf[0] != 'O' || rs->buf[0] != 'K')
6594 res = 1;
6595 #else
6596 /* Don't wait for it to die. I'm not really sure it matters whether
6597 we do or not. For the existing stubs, kill is a noop. */
6598 res = 0;
6599 #endif
6600 }
6601
6602 if (res != 0)
6603 error (_("Can't kill process"));
6604
6605 target_mourn_inferior ();
6606 }
6607
6608 static void
6609 remote_mourn (struct target_ops *ops)
6610 {
6611 remote_mourn_1 (ops);
6612 }
6613
6614 /* Worker function for remote_mourn. */
6615 static void
6616 remote_mourn_1 (struct target_ops *target)
6617 {
6618 unpush_target (target);
6619
6620 /* remote_close takes care of doing most of the clean up. */
6621 generic_mourn_inferior ();
6622 }
6623
6624 static void
6625 extended_remote_mourn_1 (struct target_ops *target)
6626 {
6627 struct remote_state *rs = get_remote_state ();
6628
6629 /* In case we got here due to an error, but we're going to stay
6630 connected. */
6631 rs->waiting_for_stop_reply = 0;
6632
6633 /* We're no longer interested in these events. */
6634 discard_pending_stop_replies (ptid_get_pid (inferior_ptid));
6635
6636 /* If the current general thread belonged to the process we just
6637 detached from or has exited, the remote side current general
6638 thread becomes undefined. Considering a case like this:
6639
6640 - We just got here due to a detach.
6641 - The process that we're detaching from happens to immediately
6642 report a global breakpoint being hit in non-stop mode, in the
6643 same thread we had selected before.
6644 - GDB attaches to this process again.
6645 - This event happens to be the next event we handle.
6646
6647 GDB would consider that the current general thread didn't need to
6648 be set on the stub side (with Hg), since for all it knew,
6649 GENERAL_THREAD hadn't changed.
6650
6651 Notice that although in all-stop mode, the remote server always
6652 sets the current thread to the thread reporting the stop event,
6653 that doesn't happen in non-stop mode; in non-stop, the stub *must
6654 not* change the current thread when reporting a breakpoint hit,
6655 due to the decoupling of event reporting and event handling.
6656
6657 To keep things simple, we always invalidate our notion of the
6658 current thread. */
6659 record_currthread (minus_one_ptid);
6660
6661 /* Unlike "target remote", we do not want to unpush the target; then
6662 the next time the user says "run", we won't be connected. */
6663
6664 /* Call common code to mark the inferior as not running. */
6665 generic_mourn_inferior ();
6666
6667 if (!have_inferiors ())
6668 {
6669 if (!remote_multi_process_p (rs))
6670 {
6671 /* Check whether the target is running now - some remote stubs
6672 automatically restart after kill. */
6673 putpkt ("?");
6674 getpkt (&rs->buf, &rs->buf_size, 0);
6675
6676 if (rs->buf[0] == 'S' || rs->buf[0] == 'T')
6677 {
6678 /* Assume that the target has been restarted. Set inferior_ptid
6679 so that bits of core GDB realizes there's something here, e.g.,
6680 so that the user can say "kill" again. */
6681 inferior_ptid = magic_null_ptid;
6682 }
6683 else
6684 {
6685 /* Mark this (still pushed) target as not executable until we
6686 restart it. */
6687 target_mark_exited (target);
6688 }
6689 }
6690 else
6691 /* Always remove execution if this was the last process. */
6692 target_mark_exited (target);
6693 }
6694 }
6695
6696 static void
6697 extended_remote_mourn (struct target_ops *ops)
6698 {
6699 extended_remote_mourn_1 (ops);
6700 }
6701
6702 static int
6703 extended_remote_run (char *args)
6704 {
6705 struct remote_state *rs = get_remote_state ();
6706 char *p;
6707 int len;
6708
6709 /* If the user has disabled vRun support, or we have detected that
6710 support is not available, do not try it. */
6711 if (remote_protocol_packets[PACKET_vRun].support == PACKET_DISABLE)
6712 return -1;
6713
6714 strcpy (rs->buf, "vRun;");
6715 len = strlen (rs->buf);
6716
6717 if (strlen (remote_exec_file) * 2 + len >= get_remote_packet_size ())
6718 error (_("Remote file name too long for run packet"));
6719 len += 2 * bin2hex ((gdb_byte *) remote_exec_file, rs->buf + len, 0);
6720
6721 gdb_assert (args != NULL);
6722 if (*args)
6723 {
6724 struct cleanup *back_to;
6725 int i;
6726 char **argv;
6727
6728 argv = gdb_buildargv (args);
6729 back_to = make_cleanup ((void (*) (void *)) freeargv, argv);
6730 for (i = 0; argv[i] != NULL; i++)
6731 {
6732 if (strlen (argv[i]) * 2 + 1 + len >= get_remote_packet_size ())
6733 error (_("Argument list too long for run packet"));
6734 rs->buf[len++] = ';';
6735 len += 2 * bin2hex ((gdb_byte *) argv[i], rs->buf + len, 0);
6736 }
6737 do_cleanups (back_to);
6738 }
6739
6740 rs->buf[len++] = '\0';
6741
6742 putpkt (rs->buf);
6743 getpkt (&rs->buf, &rs->buf_size, 0);
6744
6745 if (packet_ok (rs->buf, &remote_protocol_packets[PACKET_vRun]) == PACKET_OK)
6746 {
6747 /* We have a wait response; we don't need it, though. All is well. */
6748 return 0;
6749 }
6750 else if (remote_protocol_packets[PACKET_vRun].support == PACKET_DISABLE)
6751 /* It wasn't disabled before, but it is now. */
6752 return -1;
6753 else
6754 {
6755 if (remote_exec_file[0] == '\0')
6756 error (_("Running the default executable on the remote target failed; "
6757 "try \"set remote exec-file\"?"));
6758 else
6759 error (_("Running \"%s\" on the remote target failed"),
6760 remote_exec_file);
6761 }
6762 }
6763
6764 /* In the extended protocol we want to be able to do things like
6765 "run" and have them basically work as expected. So we need
6766 a special create_inferior function. We support changing the
6767 executable file and the command line arguments, but not the
6768 environment. */
6769
6770 static void
6771 extended_remote_create_inferior_1 (char *exec_file, char *args,
6772 char **env, int from_tty)
6773 {
6774 /* If running asynchronously, register the target file descriptor
6775 with the event loop. */
6776 if (target_can_async_p ())
6777 target_async (inferior_event_handler, 0);
6778
6779 /* Now restart the remote server. */
6780 if (extended_remote_run (args) == -1)
6781 {
6782 /* vRun was not supported. Fail if we need it to do what the
6783 user requested. */
6784 if (remote_exec_file[0])
6785 error (_("Remote target does not support \"set remote exec-file\""));
6786 if (args[0])
6787 error (_("Remote target does not support \"set args\" or run <ARGS>"));
6788
6789 /* Fall back to "R". */
6790 extended_remote_restart ();
6791 }
6792
6793 /* Clean up from the last time we ran, before we mark the target
6794 running again. This will mark breakpoints uninserted, and
6795 get_offsets may insert breakpoints. */
6796 init_thread_list ();
6797 init_wait_for_inferior ();
6798
6799 /* Now mark the inferior as running before we do anything else. */
6800 inferior_ptid = magic_null_ptid;
6801
6802 /* Now, if we have thread information, update inferior_ptid. */
6803 inferior_ptid = remote_current_thread (inferior_ptid);
6804
6805 remote_add_inferior (ptid_get_pid (inferior_ptid), 0);
6806 add_thread_silent (inferior_ptid);
6807
6808 /* Get updated offsets, if the stub uses qOffsets. */
6809 get_offsets ();
6810 }
6811
6812 static void
6813 extended_remote_create_inferior (struct target_ops *ops,
6814 char *exec_file, char *args,
6815 char **env, int from_tty)
6816 {
6817 extended_remote_create_inferior_1 (exec_file, args, env, from_tty);
6818 }
6819 \f
6820
6821 /* Insert a breakpoint. On targets that have software breakpoint
6822 support, we ask the remote target to do the work; on targets
6823 which don't, we insert a traditional memory breakpoint. */
6824
6825 static int
6826 remote_insert_breakpoint (struct bp_target_info *bp_tgt)
6827 {
6828 /* Try the "Z" s/w breakpoint packet if it is not already disabled.
6829 If it succeeds, then set the support to PACKET_ENABLE. If it
6830 fails, and the user has explicitly requested the Z support then
6831 report an error, otherwise, mark it disabled and go on. */
6832
6833 if (remote_protocol_packets[PACKET_Z0].support != PACKET_DISABLE)
6834 {
6835 CORE_ADDR addr = bp_tgt->placed_address;
6836 struct remote_state *rs;
6837 char *p;
6838 int bpsize;
6839
6840 gdbarch_breakpoint_from_pc (target_gdbarch, &addr, &bpsize);
6841
6842 rs = get_remote_state ();
6843 p = rs->buf;
6844
6845 *(p++) = 'Z';
6846 *(p++) = '0';
6847 *(p++) = ',';
6848 addr = (ULONGEST) remote_address_masked (addr);
6849 p += hexnumstr (p, addr);
6850 sprintf (p, ",%d", bpsize);
6851
6852 putpkt (rs->buf);
6853 getpkt (&rs->buf, &rs->buf_size, 0);
6854
6855 switch (packet_ok (rs->buf, &remote_protocol_packets[PACKET_Z0]))
6856 {
6857 case PACKET_ERROR:
6858 return -1;
6859 case PACKET_OK:
6860 bp_tgt->placed_address = addr;
6861 bp_tgt->placed_size = bpsize;
6862 return 0;
6863 case PACKET_UNKNOWN:
6864 break;
6865 }
6866 }
6867
6868 return memory_insert_breakpoint (bp_tgt);
6869 }
6870
6871 static int
6872 remote_remove_breakpoint (struct bp_target_info *bp_tgt)
6873 {
6874 CORE_ADDR addr = bp_tgt->placed_address;
6875 struct remote_state *rs = get_remote_state ();
6876 int bp_size;
6877
6878 if (remote_protocol_packets[PACKET_Z0].support != PACKET_DISABLE)
6879 {
6880 char *p = rs->buf;
6881
6882 *(p++) = 'z';
6883 *(p++) = '0';
6884 *(p++) = ',';
6885
6886 addr = (ULONGEST) remote_address_masked (bp_tgt->placed_address);
6887 p += hexnumstr (p, addr);
6888 sprintf (p, ",%d", bp_tgt->placed_size);
6889
6890 putpkt (rs->buf);
6891 getpkt (&rs->buf, &rs->buf_size, 0);
6892
6893 return (rs->buf[0] == 'E');
6894 }
6895
6896 return memory_remove_breakpoint (bp_tgt);
6897 }
6898
6899 static int
6900 watchpoint_to_Z_packet (int type)
6901 {
6902 switch (type)
6903 {
6904 case hw_write:
6905 return Z_PACKET_WRITE_WP;
6906 break;
6907 case hw_read:
6908 return Z_PACKET_READ_WP;
6909 break;
6910 case hw_access:
6911 return Z_PACKET_ACCESS_WP;
6912 break;
6913 default:
6914 internal_error (__FILE__, __LINE__,
6915 _("hw_bp_to_z: bad watchpoint type %d"), type);
6916 }
6917 }
6918
6919 static int
6920 remote_insert_watchpoint (CORE_ADDR addr, int len, int type)
6921 {
6922 struct remote_state *rs = get_remote_state ();
6923 char *p;
6924 enum Z_packet_type packet = watchpoint_to_Z_packet (type);
6925
6926 if (remote_protocol_packets[PACKET_Z0 + packet].support == PACKET_DISABLE)
6927 return -1;
6928
6929 sprintf (rs->buf, "Z%x,", packet);
6930 p = strchr (rs->buf, '\0');
6931 addr = remote_address_masked (addr);
6932 p += hexnumstr (p, (ULONGEST) addr);
6933 sprintf (p, ",%x", len);
6934
6935 putpkt (rs->buf);
6936 getpkt (&rs->buf, &rs->buf_size, 0);
6937
6938 switch (packet_ok (rs->buf, &remote_protocol_packets[PACKET_Z0 + packet]))
6939 {
6940 case PACKET_ERROR:
6941 case PACKET_UNKNOWN:
6942 return -1;
6943 case PACKET_OK:
6944 return 0;
6945 }
6946 internal_error (__FILE__, __LINE__,
6947 _("remote_insert_watchpoint: reached end of function"));
6948 }
6949
6950
6951 static int
6952 remote_remove_watchpoint (CORE_ADDR addr, int len, int type)
6953 {
6954 struct remote_state *rs = get_remote_state ();
6955 char *p;
6956 enum Z_packet_type packet = watchpoint_to_Z_packet (type);
6957
6958 if (remote_protocol_packets[PACKET_Z0 + packet].support == PACKET_DISABLE)
6959 return -1;
6960
6961 sprintf (rs->buf, "z%x,", packet);
6962 p = strchr (rs->buf, '\0');
6963 addr = remote_address_masked (addr);
6964 p += hexnumstr (p, (ULONGEST) addr);
6965 sprintf (p, ",%x", len);
6966 putpkt (rs->buf);
6967 getpkt (&rs->buf, &rs->buf_size, 0);
6968
6969 switch (packet_ok (rs->buf, &remote_protocol_packets[PACKET_Z0 + packet]))
6970 {
6971 case PACKET_ERROR:
6972 case PACKET_UNKNOWN:
6973 return -1;
6974 case PACKET_OK:
6975 return 0;
6976 }
6977 internal_error (__FILE__, __LINE__,
6978 _("remote_remove_watchpoint: reached end of function"));
6979 }
6980
6981
6982 int remote_hw_watchpoint_limit = -1;
6983 int remote_hw_breakpoint_limit = -1;
6984
6985 static int
6986 remote_check_watch_resources (int type, int cnt, int ot)
6987 {
6988 if (type == bp_hardware_breakpoint)
6989 {
6990 if (remote_hw_breakpoint_limit == 0)
6991 return 0;
6992 else if (remote_hw_breakpoint_limit < 0)
6993 return 1;
6994 else if (cnt <= remote_hw_breakpoint_limit)
6995 return 1;
6996 }
6997 else
6998 {
6999 if (remote_hw_watchpoint_limit == 0)
7000 return 0;
7001 else if (remote_hw_watchpoint_limit < 0)
7002 return 1;
7003 else if (ot)
7004 return -1;
7005 else if (cnt <= remote_hw_watchpoint_limit)
7006 return 1;
7007 }
7008 return -1;
7009 }
7010
7011 static int
7012 remote_stopped_by_watchpoint (void)
7013 {
7014 return remote_stopped_by_watchpoint_p;
7015 }
7016
7017 static int
7018 remote_stopped_data_address (struct target_ops *target, CORE_ADDR *addr_p)
7019 {
7020 int rc = 0;
7021 if (remote_stopped_by_watchpoint ())
7022 {
7023 *addr_p = remote_watch_data_address;
7024 rc = 1;
7025 }
7026
7027 return rc;
7028 }
7029
7030
7031 static int
7032 remote_insert_hw_breakpoint (struct bp_target_info *bp_tgt)
7033 {
7034 CORE_ADDR addr;
7035 struct remote_state *rs;
7036 char *p;
7037
7038 /* The length field should be set to the size of a breakpoint
7039 instruction, even though we aren't inserting one ourselves. */
7040
7041 gdbarch_breakpoint_from_pc
7042 (target_gdbarch, &bp_tgt->placed_address, &bp_tgt->placed_size);
7043
7044 if (remote_protocol_packets[PACKET_Z1].support == PACKET_DISABLE)
7045 return -1;
7046
7047 rs = get_remote_state ();
7048 p = rs->buf;
7049
7050 *(p++) = 'Z';
7051 *(p++) = '1';
7052 *(p++) = ',';
7053
7054 addr = remote_address_masked (bp_tgt->placed_address);
7055 p += hexnumstr (p, (ULONGEST) addr);
7056 sprintf (p, ",%x", bp_tgt->placed_size);
7057
7058 putpkt (rs->buf);
7059 getpkt (&rs->buf, &rs->buf_size, 0);
7060
7061 switch (packet_ok (rs->buf, &remote_protocol_packets[PACKET_Z1]))
7062 {
7063 case PACKET_ERROR:
7064 case PACKET_UNKNOWN:
7065 return -1;
7066 case PACKET_OK:
7067 return 0;
7068 }
7069 internal_error (__FILE__, __LINE__,
7070 _("remote_insert_hw_breakpoint: reached end of function"));
7071 }
7072
7073
7074 static int
7075 remote_remove_hw_breakpoint (struct bp_target_info *bp_tgt)
7076 {
7077 CORE_ADDR addr;
7078 struct remote_state *rs = get_remote_state ();
7079 char *p = rs->buf;
7080
7081 if (remote_protocol_packets[PACKET_Z1].support == PACKET_DISABLE)
7082 return -1;
7083
7084 *(p++) = 'z';
7085 *(p++) = '1';
7086 *(p++) = ',';
7087
7088 addr = remote_address_masked (bp_tgt->placed_address);
7089 p += hexnumstr (p, (ULONGEST) addr);
7090 sprintf (p, ",%x", bp_tgt->placed_size);
7091
7092 putpkt (rs->buf);
7093 getpkt (&rs->buf, &rs->buf_size, 0);
7094
7095 switch (packet_ok (rs->buf, &remote_protocol_packets[PACKET_Z1]))
7096 {
7097 case PACKET_ERROR:
7098 case PACKET_UNKNOWN:
7099 return -1;
7100 case PACKET_OK:
7101 return 0;
7102 }
7103 internal_error (__FILE__, __LINE__,
7104 _("remote_remove_hw_breakpoint: reached end of function"));
7105 }
7106
7107 /* Table used by the crc32 function to calcuate the checksum. */
7108
7109 static unsigned long crc32_table[256] =
7110 {0, 0};
7111
7112 static unsigned long
7113 crc32 (unsigned char *buf, int len, unsigned int crc)
7114 {
7115 if (!crc32_table[1])
7116 {
7117 /* Initialize the CRC table and the decoding table. */
7118 int i, j;
7119 unsigned int c;
7120
7121 for (i = 0; i < 256; i++)
7122 {
7123 for (c = i << 24, j = 8; j > 0; --j)
7124 c = c & 0x80000000 ? (c << 1) ^ 0x04c11db7 : (c << 1);
7125 crc32_table[i] = c;
7126 }
7127 }
7128
7129 while (len--)
7130 {
7131 crc = (crc << 8) ^ crc32_table[((crc >> 24) ^ *buf) & 255];
7132 buf++;
7133 }
7134 return crc;
7135 }
7136
7137 /* compare-sections command
7138
7139 With no arguments, compares each loadable section in the exec bfd
7140 with the same memory range on the target, and reports mismatches.
7141 Useful for verifying the image on the target against the exec file.
7142 Depends on the target understanding the new "qCRC:" request. */
7143
7144 /* FIXME: cagney/1999-10-26: This command should be broken down into a
7145 target method (target verify memory) and generic version of the
7146 actual command. This will allow other high-level code (especially
7147 generic_load()) to make use of this target functionality. */
7148
7149 static void
7150 compare_sections_command (char *args, int from_tty)
7151 {
7152 struct remote_state *rs = get_remote_state ();
7153 asection *s;
7154 unsigned long host_crc, target_crc;
7155 extern bfd *exec_bfd;
7156 struct cleanup *old_chain;
7157 char *tmp;
7158 char *sectdata;
7159 const char *sectname;
7160 bfd_size_type size;
7161 bfd_vma lma;
7162 int matched = 0;
7163 int mismatched = 0;
7164
7165 if (!exec_bfd)
7166 error (_("command cannot be used without an exec file"));
7167 if (!current_target.to_shortname ||
7168 strcmp (current_target.to_shortname, "remote") != 0)
7169 error (_("command can only be used with remote target"));
7170
7171 for (s = exec_bfd->sections; s; s = s->next)
7172 {
7173 if (!(s->flags & SEC_LOAD))
7174 continue; /* skip non-loadable section */
7175
7176 size = bfd_get_section_size (s);
7177 if (size == 0)
7178 continue; /* skip zero-length section */
7179
7180 sectname = bfd_get_section_name (exec_bfd, s);
7181 if (args && strcmp (args, sectname) != 0)
7182 continue; /* not the section selected by user */
7183
7184 matched = 1; /* do this section */
7185 lma = s->lma;
7186 /* FIXME: assumes lma can fit into long. */
7187 xsnprintf (rs->buf, get_remote_packet_size (), "qCRC:%lx,%lx",
7188 (long) lma, (long) size);
7189 putpkt (rs->buf);
7190
7191 /* Be clever; compute the host_crc before waiting for target
7192 reply. */
7193 sectdata = xmalloc (size);
7194 old_chain = make_cleanup (xfree, sectdata);
7195 bfd_get_section_contents (exec_bfd, s, sectdata, 0, size);
7196 host_crc = crc32 ((unsigned char *) sectdata, size, 0xffffffff);
7197
7198 getpkt (&rs->buf, &rs->buf_size, 0);
7199 if (rs->buf[0] == 'E')
7200 error (_("target memory fault, section %s, range 0x%s -- 0x%s"),
7201 sectname, paddr (lma), paddr (lma + size));
7202 if (rs->buf[0] != 'C')
7203 error (_("remote target does not support this operation"));
7204
7205 for (target_crc = 0, tmp = &rs->buf[1]; *tmp; tmp++)
7206 target_crc = target_crc * 16 + fromhex (*tmp);
7207
7208 printf_filtered ("Section %s, range 0x%s -- 0x%s: ",
7209 sectname, paddr (lma), paddr (lma + size));
7210 if (host_crc == target_crc)
7211 printf_filtered ("matched.\n");
7212 else
7213 {
7214 printf_filtered ("MIS-MATCHED!\n");
7215 mismatched++;
7216 }
7217
7218 do_cleanups (old_chain);
7219 }
7220 if (mismatched > 0)
7221 warning (_("One or more sections of the remote executable does not match\n\
7222 the loaded file\n"));
7223 if (args && !matched)
7224 printf_filtered (_("No loaded section named '%s'.\n"), args);
7225 }
7226
7227 /* Write LEN bytes from WRITEBUF into OBJECT_NAME/ANNEX at OFFSET
7228 into remote target. The number of bytes written to the remote
7229 target is returned, or -1 for error. */
7230
7231 static LONGEST
7232 remote_write_qxfer (struct target_ops *ops, const char *object_name,
7233 const char *annex, const gdb_byte *writebuf,
7234 ULONGEST offset, LONGEST len,
7235 struct packet_config *packet)
7236 {
7237 int i, buf_len;
7238 ULONGEST n;
7239 gdb_byte *wbuf;
7240 struct remote_state *rs = get_remote_state ();
7241 int max_size = get_memory_write_packet_size ();
7242
7243 if (packet->support == PACKET_DISABLE)
7244 return -1;
7245
7246 /* Insert header. */
7247 i = snprintf (rs->buf, max_size,
7248 "qXfer:%s:write:%s:%s:",
7249 object_name, annex ? annex : "",
7250 phex_nz (offset, sizeof offset));
7251 max_size -= (i + 1);
7252
7253 /* Escape as much data as fits into rs->buf. */
7254 buf_len = remote_escape_output
7255 (writebuf, len, (rs->buf + i), &max_size, max_size);
7256
7257 if (putpkt_binary (rs->buf, i + buf_len) < 0
7258 || getpkt_sane (&rs->buf, &rs->buf_size, 0) < 0
7259 || packet_ok (rs->buf, packet) != PACKET_OK)
7260 return -1;
7261
7262 unpack_varlen_hex (rs->buf, &n);
7263 return n;
7264 }
7265
7266 /* Read OBJECT_NAME/ANNEX from the remote target using a qXfer packet.
7267 Data at OFFSET, of up to LEN bytes, is read into READBUF; the
7268 number of bytes read is returned, or 0 for EOF, or -1 for error.
7269 The number of bytes read may be less than LEN without indicating an
7270 EOF. PACKET is checked and updated to indicate whether the remote
7271 target supports this object. */
7272
7273 static LONGEST
7274 remote_read_qxfer (struct target_ops *ops, const char *object_name,
7275 const char *annex,
7276 gdb_byte *readbuf, ULONGEST offset, LONGEST len,
7277 struct packet_config *packet)
7278 {
7279 static char *finished_object;
7280 static char *finished_annex;
7281 static ULONGEST finished_offset;
7282
7283 struct remote_state *rs = get_remote_state ();
7284 unsigned int total = 0;
7285 LONGEST i, n, packet_len;
7286
7287 if (packet->support == PACKET_DISABLE)
7288 return -1;
7289
7290 /* Check whether we've cached an end-of-object packet that matches
7291 this request. */
7292 if (finished_object)
7293 {
7294 if (strcmp (object_name, finished_object) == 0
7295 && strcmp (annex ? annex : "", finished_annex) == 0
7296 && offset == finished_offset)
7297 return 0;
7298
7299 /* Otherwise, we're now reading something different. Discard
7300 the cache. */
7301 xfree (finished_object);
7302 xfree (finished_annex);
7303 finished_object = NULL;
7304 finished_annex = NULL;
7305 }
7306
7307 /* Request only enough to fit in a single packet. The actual data
7308 may not, since we don't know how much of it will need to be escaped;
7309 the target is free to respond with slightly less data. We subtract
7310 five to account for the response type and the protocol frame. */
7311 n = min (get_remote_packet_size () - 5, len);
7312 snprintf (rs->buf, get_remote_packet_size () - 4, "qXfer:%s:read:%s:%s,%s",
7313 object_name, annex ? annex : "",
7314 phex_nz (offset, sizeof offset),
7315 phex_nz (n, sizeof n));
7316 i = putpkt (rs->buf);
7317 if (i < 0)
7318 return -1;
7319
7320 rs->buf[0] = '\0';
7321 packet_len = getpkt_sane (&rs->buf, &rs->buf_size, 0);
7322 if (packet_len < 0 || packet_ok (rs->buf, packet) != PACKET_OK)
7323 return -1;
7324
7325 if (rs->buf[0] != 'l' && rs->buf[0] != 'm')
7326 error (_("Unknown remote qXfer reply: %s"), rs->buf);
7327
7328 /* 'm' means there is (or at least might be) more data after this
7329 batch. That does not make sense unless there's at least one byte
7330 of data in this reply. */
7331 if (rs->buf[0] == 'm' && packet_len == 1)
7332 error (_("Remote qXfer reply contained no data."));
7333
7334 /* Got some data. */
7335 i = remote_unescape_input (rs->buf + 1, packet_len - 1, readbuf, n);
7336
7337 /* 'l' is an EOF marker, possibly including a final block of data,
7338 or possibly empty. If we have the final block of a non-empty
7339 object, record this fact to bypass a subsequent partial read. */
7340 if (rs->buf[0] == 'l' && offset + i > 0)
7341 {
7342 finished_object = xstrdup (object_name);
7343 finished_annex = xstrdup (annex ? annex : "");
7344 finished_offset = offset + i;
7345 }
7346
7347 return i;
7348 }
7349
7350 static LONGEST
7351 remote_xfer_partial (struct target_ops *ops, enum target_object object,
7352 const char *annex, gdb_byte *readbuf,
7353 const gdb_byte *writebuf, ULONGEST offset, LONGEST len)
7354 {
7355 struct remote_state *rs;
7356 int i;
7357 char *p2;
7358 char query_type;
7359
7360 set_general_thread (inferior_ptid);
7361
7362 rs = get_remote_state ();
7363
7364 /* Handle memory using the standard memory routines. */
7365 if (object == TARGET_OBJECT_MEMORY)
7366 {
7367 int xfered;
7368 errno = 0;
7369
7370 /* If the remote target is connected but not running, we should
7371 pass this request down to a lower stratum (e.g. the executable
7372 file). */
7373 if (!target_has_execution)
7374 return 0;
7375
7376 if (writebuf != NULL)
7377 xfered = remote_write_bytes (offset, writebuf, len);
7378 else
7379 xfered = remote_read_bytes (offset, readbuf, len);
7380
7381 if (xfered > 0)
7382 return xfered;
7383 else if (xfered == 0 && errno == 0)
7384 return 0;
7385 else
7386 return -1;
7387 }
7388
7389 /* Handle SPU memory using qxfer packets. */
7390 if (object == TARGET_OBJECT_SPU)
7391 {
7392 if (readbuf)
7393 return remote_read_qxfer (ops, "spu", annex, readbuf, offset, len,
7394 &remote_protocol_packets
7395 [PACKET_qXfer_spu_read]);
7396 else
7397 return remote_write_qxfer (ops, "spu", annex, writebuf, offset, len,
7398 &remote_protocol_packets
7399 [PACKET_qXfer_spu_write]);
7400 }
7401
7402 /* Handle extra signal info using qxfer packets. */
7403 if (object == TARGET_OBJECT_SIGNAL_INFO)
7404 {
7405 if (readbuf)
7406 return remote_read_qxfer (ops, "siginfo", annex, readbuf, offset, len,
7407 &remote_protocol_packets
7408 [PACKET_qXfer_siginfo_read]);
7409 else
7410 return remote_write_qxfer (ops, "siginfo", annex, writebuf, offset, len,
7411 &remote_protocol_packets
7412 [PACKET_qXfer_siginfo_write]);
7413 }
7414
7415 /* Only handle flash writes. */
7416 if (writebuf != NULL)
7417 {
7418 LONGEST xfered;
7419
7420 switch (object)
7421 {
7422 case TARGET_OBJECT_FLASH:
7423 xfered = remote_flash_write (ops, offset, len, writebuf);
7424
7425 if (xfered > 0)
7426 return xfered;
7427 else if (xfered == 0 && errno == 0)
7428 return 0;
7429 else
7430 return -1;
7431
7432 default:
7433 return -1;
7434 }
7435 }
7436
7437 /* Map pre-existing objects onto letters. DO NOT do this for new
7438 objects!!! Instead specify new query packets. */
7439 switch (object)
7440 {
7441 case TARGET_OBJECT_AVR:
7442 query_type = 'R';
7443 break;
7444
7445 case TARGET_OBJECT_AUXV:
7446 gdb_assert (annex == NULL);
7447 return remote_read_qxfer (ops, "auxv", annex, readbuf, offset, len,
7448 &remote_protocol_packets[PACKET_qXfer_auxv]);
7449
7450 case TARGET_OBJECT_AVAILABLE_FEATURES:
7451 return remote_read_qxfer
7452 (ops, "features", annex, readbuf, offset, len,
7453 &remote_protocol_packets[PACKET_qXfer_features]);
7454
7455 case TARGET_OBJECT_LIBRARIES:
7456 return remote_read_qxfer
7457 (ops, "libraries", annex, readbuf, offset, len,
7458 &remote_protocol_packets[PACKET_qXfer_libraries]);
7459
7460 case TARGET_OBJECT_MEMORY_MAP:
7461 gdb_assert (annex == NULL);
7462 return remote_read_qxfer (ops, "memory-map", annex, readbuf, offset, len,
7463 &remote_protocol_packets[PACKET_qXfer_memory_map]);
7464
7465 case TARGET_OBJECT_OSDATA:
7466 /* Should only get here if we're connected. */
7467 gdb_assert (remote_desc);
7468 return remote_read_qxfer
7469 (ops, "osdata", annex, readbuf, offset, len,
7470 &remote_protocol_packets[PACKET_qXfer_osdata]);
7471
7472 default:
7473 return -1;
7474 }
7475
7476 /* Note: a zero OFFSET and LEN can be used to query the minimum
7477 buffer size. */
7478 if (offset == 0 && len == 0)
7479 return (get_remote_packet_size ());
7480 /* Minimum outbuf size is get_remote_packet_size (). If LEN is not
7481 large enough let the caller deal with it. */
7482 if (len < get_remote_packet_size ())
7483 return -1;
7484 len = get_remote_packet_size ();
7485
7486 /* Except for querying the minimum buffer size, target must be open. */
7487 if (!remote_desc)
7488 error (_("remote query is only available after target open"));
7489
7490 gdb_assert (annex != NULL);
7491 gdb_assert (readbuf != NULL);
7492
7493 p2 = rs->buf;
7494 *p2++ = 'q';
7495 *p2++ = query_type;
7496
7497 /* We used one buffer char for the remote protocol q command and
7498 another for the query type. As the remote protocol encapsulation
7499 uses 4 chars plus one extra in case we are debugging
7500 (remote_debug), we have PBUFZIZ - 7 left to pack the query
7501 string. */
7502 i = 0;
7503 while (annex[i] && (i < (get_remote_packet_size () - 8)))
7504 {
7505 /* Bad caller may have sent forbidden characters. */
7506 gdb_assert (isprint (annex[i]) && annex[i] != '$' && annex[i] != '#');
7507 *p2++ = annex[i];
7508 i++;
7509 }
7510 *p2 = '\0';
7511 gdb_assert (annex[i] == '\0');
7512
7513 i = putpkt (rs->buf);
7514 if (i < 0)
7515 return i;
7516
7517 getpkt (&rs->buf, &rs->buf_size, 0);
7518 strcpy ((char *) readbuf, rs->buf);
7519
7520 return strlen ((char *) readbuf);
7521 }
7522
7523 static int
7524 remote_search_memory (struct target_ops* ops,
7525 CORE_ADDR start_addr, ULONGEST search_space_len,
7526 const gdb_byte *pattern, ULONGEST pattern_len,
7527 CORE_ADDR *found_addrp)
7528 {
7529 struct remote_state *rs = get_remote_state ();
7530 int max_size = get_memory_write_packet_size ();
7531 struct packet_config *packet =
7532 &remote_protocol_packets[PACKET_qSearch_memory];
7533 /* number of packet bytes used to encode the pattern,
7534 this could be more than PATTERN_LEN due to escape characters */
7535 int escaped_pattern_len;
7536 /* amount of pattern that was encodable in the packet */
7537 int used_pattern_len;
7538 int i;
7539 int found;
7540 ULONGEST found_addr;
7541
7542 /* Don't go to the target if we don't have to.
7543 This is done before checking packet->support to avoid the possibility that
7544 a success for this edge case means the facility works in general. */
7545 if (pattern_len > search_space_len)
7546 return 0;
7547 if (pattern_len == 0)
7548 {
7549 *found_addrp = start_addr;
7550 return 1;
7551 }
7552
7553 /* If we already know the packet isn't supported, fall back to the simple
7554 way of searching memory. */
7555
7556 if (packet->support == PACKET_DISABLE)
7557 {
7558 /* Target doesn't provided special support, fall back and use the
7559 standard support (copy memory and do the search here). */
7560 return simple_search_memory (ops, start_addr, search_space_len,
7561 pattern, pattern_len, found_addrp);
7562 }
7563
7564 /* Insert header. */
7565 i = snprintf (rs->buf, max_size,
7566 "qSearch:memory:%s;%s;",
7567 paddr_nz (start_addr),
7568 phex_nz (search_space_len, sizeof (search_space_len)));
7569 max_size -= (i + 1);
7570
7571 /* Escape as much data as fits into rs->buf. */
7572 escaped_pattern_len =
7573 remote_escape_output (pattern, pattern_len, (rs->buf + i),
7574 &used_pattern_len, max_size);
7575
7576 /* Bail if the pattern is too large. */
7577 if (used_pattern_len != pattern_len)
7578 error ("Pattern is too large to transmit to remote target.");
7579
7580 if (putpkt_binary (rs->buf, i + escaped_pattern_len) < 0
7581 || getpkt_sane (&rs->buf, &rs->buf_size, 0) < 0
7582 || packet_ok (rs->buf, packet) != PACKET_OK)
7583 {
7584 /* The request may not have worked because the command is not
7585 supported. If so, fall back to the simple way. */
7586 if (packet->support == PACKET_DISABLE)
7587 {
7588 return simple_search_memory (ops, start_addr, search_space_len,
7589 pattern, pattern_len, found_addrp);
7590 }
7591 return -1;
7592 }
7593
7594 if (rs->buf[0] == '0')
7595 found = 0;
7596 else if (rs->buf[0] == '1')
7597 {
7598 found = 1;
7599 if (rs->buf[1] != ',')
7600 error (_("Unknown qSearch:memory reply: %s"), rs->buf);
7601 unpack_varlen_hex (rs->buf + 2, &found_addr);
7602 *found_addrp = found_addr;
7603 }
7604 else
7605 error (_("Unknown qSearch:memory reply: %s"), rs->buf);
7606
7607 return found;
7608 }
7609
7610 static void
7611 remote_rcmd (char *command,
7612 struct ui_file *outbuf)
7613 {
7614 struct remote_state *rs = get_remote_state ();
7615 char *p = rs->buf;
7616
7617 if (!remote_desc)
7618 error (_("remote rcmd is only available after target open"));
7619
7620 /* Send a NULL command across as an empty command. */
7621 if (command == NULL)
7622 command = "";
7623
7624 /* The query prefix. */
7625 strcpy (rs->buf, "qRcmd,");
7626 p = strchr (rs->buf, '\0');
7627
7628 if ((strlen (rs->buf) + strlen (command) * 2 + 8/*misc*/) > get_remote_packet_size ())
7629 error (_("\"monitor\" command ``%s'' is too long."), command);
7630
7631 /* Encode the actual command. */
7632 bin2hex ((gdb_byte *) command, p, 0);
7633
7634 if (putpkt (rs->buf) < 0)
7635 error (_("Communication problem with target."));
7636
7637 /* get/display the response */
7638 while (1)
7639 {
7640 char *buf;
7641
7642 /* XXX - see also tracepoint.c:remote_get_noisy_reply(). */
7643 rs->buf[0] = '\0';
7644 getpkt (&rs->buf, &rs->buf_size, 0);
7645 buf = rs->buf;
7646 if (buf[0] == '\0')
7647 error (_("Target does not support this command."));
7648 if (buf[0] == 'O' && buf[1] != 'K')
7649 {
7650 remote_console_output (buf + 1); /* 'O' message from stub. */
7651 continue;
7652 }
7653 if (strcmp (buf, "OK") == 0)
7654 break;
7655 if (strlen (buf) == 3 && buf[0] == 'E'
7656 && isdigit (buf[1]) && isdigit (buf[2]))
7657 {
7658 error (_("Protocol error with Rcmd"));
7659 }
7660 for (p = buf; p[0] != '\0' && p[1] != '\0'; p += 2)
7661 {
7662 char c = (fromhex (p[0]) << 4) + fromhex (p[1]);
7663 fputc_unfiltered (c, outbuf);
7664 }
7665 break;
7666 }
7667 }
7668
7669 static VEC(mem_region_s) *
7670 remote_memory_map (struct target_ops *ops)
7671 {
7672 VEC(mem_region_s) *result = NULL;
7673 char *text = target_read_stralloc (&current_target,
7674 TARGET_OBJECT_MEMORY_MAP, NULL);
7675
7676 if (text)
7677 {
7678 struct cleanup *back_to = make_cleanup (xfree, text);
7679 result = parse_memory_map (text);
7680 do_cleanups (back_to);
7681 }
7682
7683 return result;
7684 }
7685
7686 static void
7687 packet_command (char *args, int from_tty)
7688 {
7689 struct remote_state *rs = get_remote_state ();
7690
7691 if (!remote_desc)
7692 error (_("command can only be used with remote target"));
7693
7694 if (!args)
7695 error (_("remote-packet command requires packet text as argument"));
7696
7697 puts_filtered ("sending: ");
7698 print_packet (args);
7699 puts_filtered ("\n");
7700 putpkt (args);
7701
7702 getpkt (&rs->buf, &rs->buf_size, 0);
7703 puts_filtered ("received: ");
7704 print_packet (rs->buf);
7705 puts_filtered ("\n");
7706 }
7707
7708 #if 0
7709 /* --------- UNIT_TEST for THREAD oriented PACKETS ------------------- */
7710
7711 static void display_thread_info (struct gdb_ext_thread_info *info);
7712
7713 static void threadset_test_cmd (char *cmd, int tty);
7714
7715 static void threadalive_test (char *cmd, int tty);
7716
7717 static void threadlist_test_cmd (char *cmd, int tty);
7718
7719 int get_and_display_threadinfo (threadref *ref);
7720
7721 static void threadinfo_test_cmd (char *cmd, int tty);
7722
7723 static int thread_display_step (threadref *ref, void *context);
7724
7725 static void threadlist_update_test_cmd (char *cmd, int tty);
7726
7727 static void init_remote_threadtests (void);
7728
7729 #define SAMPLE_THREAD 0x05060708 /* Truncated 64 bit threadid. */
7730
7731 static void
7732 threadset_test_cmd (char *cmd, int tty)
7733 {
7734 int sample_thread = SAMPLE_THREAD;
7735
7736 printf_filtered (_("Remote threadset test\n"));
7737 set_general_thread (sample_thread);
7738 }
7739
7740
7741 static void
7742 threadalive_test (char *cmd, int tty)
7743 {
7744 int sample_thread = SAMPLE_THREAD;
7745 int pid = ptid_get_pid (inferior_ptid);
7746 ptid_t ptid = ptid_build (pid, 0, sample_thread);
7747
7748 if (remote_thread_alive (ptid))
7749 printf_filtered ("PASS: Thread alive test\n");
7750 else
7751 printf_filtered ("FAIL: Thread alive test\n");
7752 }
7753
7754 void output_threadid (char *title, threadref *ref);
7755
7756 void
7757 output_threadid (char *title, threadref *ref)
7758 {
7759 char hexid[20];
7760
7761 pack_threadid (&hexid[0], ref); /* Convert threead id into hex. */
7762 hexid[16] = 0;
7763 printf_filtered ("%s %s\n", title, (&hexid[0]));
7764 }
7765
7766 static void
7767 threadlist_test_cmd (char *cmd, int tty)
7768 {
7769 int startflag = 1;
7770 threadref nextthread;
7771 int done, result_count;
7772 threadref threadlist[3];
7773
7774 printf_filtered ("Remote Threadlist test\n");
7775 if (!remote_get_threadlist (startflag, &nextthread, 3, &done,
7776 &result_count, &threadlist[0]))
7777 printf_filtered ("FAIL: threadlist test\n");
7778 else
7779 {
7780 threadref *scan = threadlist;
7781 threadref *limit = scan + result_count;
7782
7783 while (scan < limit)
7784 output_threadid (" thread ", scan++);
7785 }
7786 }
7787
7788 void
7789 display_thread_info (struct gdb_ext_thread_info *info)
7790 {
7791 output_threadid ("Threadid: ", &info->threadid);
7792 printf_filtered ("Name: %s\n ", info->shortname);
7793 printf_filtered ("State: %s\n", info->display);
7794 printf_filtered ("other: %s\n\n", info->more_display);
7795 }
7796
7797 int
7798 get_and_display_threadinfo (threadref *ref)
7799 {
7800 int result;
7801 int set;
7802 struct gdb_ext_thread_info threadinfo;
7803
7804 set = TAG_THREADID | TAG_EXISTS | TAG_THREADNAME
7805 | TAG_MOREDISPLAY | TAG_DISPLAY;
7806 if (0 != (result = remote_get_threadinfo (ref, set, &threadinfo)))
7807 display_thread_info (&threadinfo);
7808 return result;
7809 }
7810
7811 static void
7812 threadinfo_test_cmd (char *cmd, int tty)
7813 {
7814 int athread = SAMPLE_THREAD;
7815 threadref thread;
7816 int set;
7817
7818 int_to_threadref (&thread, athread);
7819 printf_filtered ("Remote Threadinfo test\n");
7820 if (!get_and_display_threadinfo (&thread))
7821 printf_filtered ("FAIL cannot get thread info\n");
7822 }
7823
7824 static int
7825 thread_display_step (threadref *ref, void *context)
7826 {
7827 /* output_threadid(" threadstep ",ref); *//* simple test */
7828 return get_and_display_threadinfo (ref);
7829 }
7830
7831 static void
7832 threadlist_update_test_cmd (char *cmd, int tty)
7833 {
7834 printf_filtered ("Remote Threadlist update test\n");
7835 remote_threadlist_iterator (thread_display_step, 0, CRAZY_MAX_THREADS);
7836 }
7837
7838 static void
7839 init_remote_threadtests (void)
7840 {
7841 add_com ("tlist", class_obscure, threadlist_test_cmd, _("\
7842 Fetch and print the remote list of thread identifiers, one pkt only"));
7843 add_com ("tinfo", class_obscure, threadinfo_test_cmd,
7844 _("Fetch and display info about one thread"));
7845 add_com ("tset", class_obscure, threadset_test_cmd,
7846 _("Test setting to a different thread"));
7847 add_com ("tupd", class_obscure, threadlist_update_test_cmd,
7848 _("Iterate through updating all remote thread info"));
7849 add_com ("talive", class_obscure, threadalive_test,
7850 _(" Remote thread alive test "));
7851 }
7852
7853 #endif /* 0 */
7854
7855 /* Convert a thread ID to a string. Returns the string in a static
7856 buffer. */
7857
7858 static char *
7859 remote_pid_to_str (struct target_ops *ops, ptid_t ptid)
7860 {
7861 static char buf[64];
7862 struct remote_state *rs = get_remote_state ();
7863
7864 if (ptid_equal (magic_null_ptid, ptid))
7865 {
7866 xsnprintf (buf, sizeof buf, "Thread <main>");
7867 return buf;
7868 }
7869 else if (remote_multi_process_p (rs)
7870 && ptid_get_tid (ptid) != 0 && ptid_get_pid (ptid) != 0)
7871 {
7872 xsnprintf (buf, sizeof buf, "Thread %d.%ld",
7873 ptid_get_pid (ptid), ptid_get_tid (ptid));
7874 return buf;
7875 }
7876 else if (ptid_get_tid (ptid) != 0)
7877 {
7878 xsnprintf (buf, sizeof buf, "Thread %ld",
7879 ptid_get_tid (ptid));
7880 return buf;
7881 }
7882
7883 return normal_pid_to_str (ptid);
7884 }
7885
7886 /* Get the address of the thread local variable in OBJFILE which is
7887 stored at OFFSET within the thread local storage for thread PTID. */
7888
7889 static CORE_ADDR
7890 remote_get_thread_local_address (struct target_ops *ops,
7891 ptid_t ptid, CORE_ADDR lm, CORE_ADDR offset)
7892 {
7893 if (remote_protocol_packets[PACKET_qGetTLSAddr].support != PACKET_DISABLE)
7894 {
7895 struct remote_state *rs = get_remote_state ();
7896 char *p = rs->buf;
7897 char *endp = rs->buf + get_remote_packet_size ();
7898 enum packet_result result;
7899
7900 strcpy (p, "qGetTLSAddr:");
7901 p += strlen (p);
7902 p = write_ptid (p, endp, ptid);
7903 *p++ = ',';
7904 p += hexnumstr (p, offset);
7905 *p++ = ',';
7906 p += hexnumstr (p, lm);
7907 *p++ = '\0';
7908
7909 putpkt (rs->buf);
7910 getpkt (&rs->buf, &rs->buf_size, 0);
7911 result = packet_ok (rs->buf, &remote_protocol_packets[PACKET_qGetTLSAddr]);
7912 if (result == PACKET_OK)
7913 {
7914 ULONGEST result;
7915
7916 unpack_varlen_hex (rs->buf, &result);
7917 return result;
7918 }
7919 else if (result == PACKET_UNKNOWN)
7920 throw_error (TLS_GENERIC_ERROR,
7921 _("Remote target doesn't support qGetTLSAddr packet"));
7922 else
7923 throw_error (TLS_GENERIC_ERROR,
7924 _("Remote target failed to process qGetTLSAddr request"));
7925 }
7926 else
7927 throw_error (TLS_GENERIC_ERROR,
7928 _("TLS not supported or disabled on this target"));
7929 /* Not reached. */
7930 return 0;
7931 }
7932
7933 /* Support for inferring a target description based on the current
7934 architecture and the size of a 'g' packet. While the 'g' packet
7935 can have any size (since optional registers can be left off the
7936 end), some sizes are easily recognizable given knowledge of the
7937 approximate architecture. */
7938
7939 struct remote_g_packet_guess
7940 {
7941 int bytes;
7942 const struct target_desc *tdesc;
7943 };
7944 typedef struct remote_g_packet_guess remote_g_packet_guess_s;
7945 DEF_VEC_O(remote_g_packet_guess_s);
7946
7947 struct remote_g_packet_data
7948 {
7949 VEC(remote_g_packet_guess_s) *guesses;
7950 };
7951
7952 static struct gdbarch_data *remote_g_packet_data_handle;
7953
7954 static void *
7955 remote_g_packet_data_init (struct obstack *obstack)
7956 {
7957 return OBSTACK_ZALLOC (obstack, struct remote_g_packet_data);
7958 }
7959
7960 void
7961 register_remote_g_packet_guess (struct gdbarch *gdbarch, int bytes,
7962 const struct target_desc *tdesc)
7963 {
7964 struct remote_g_packet_data *data
7965 = gdbarch_data (gdbarch, remote_g_packet_data_handle);
7966 struct remote_g_packet_guess new_guess, *guess;
7967 int ix;
7968
7969 gdb_assert (tdesc != NULL);
7970
7971 for (ix = 0;
7972 VEC_iterate (remote_g_packet_guess_s, data->guesses, ix, guess);
7973 ix++)
7974 if (guess->bytes == bytes)
7975 internal_error (__FILE__, __LINE__,
7976 "Duplicate g packet description added for size %d",
7977 bytes);
7978
7979 new_guess.bytes = bytes;
7980 new_guess.tdesc = tdesc;
7981 VEC_safe_push (remote_g_packet_guess_s, data->guesses, &new_guess);
7982 }
7983
7984 /* Return 1 if remote_read_description would do anything on this target
7985 and architecture, 0 otherwise. */
7986
7987 static int
7988 remote_read_description_p (struct target_ops *target)
7989 {
7990 struct remote_g_packet_data *data
7991 = gdbarch_data (target_gdbarch, remote_g_packet_data_handle);
7992
7993 if (!VEC_empty (remote_g_packet_guess_s, data->guesses))
7994 return 1;
7995
7996 return 0;
7997 }
7998
7999 static const struct target_desc *
8000 remote_read_description (struct target_ops *target)
8001 {
8002 struct remote_g_packet_data *data
8003 = gdbarch_data (target_gdbarch, remote_g_packet_data_handle);
8004
8005 /* Do not try this during initial connection, when we do not know
8006 whether there is a running but stopped thread. */
8007 if (!target_has_execution || ptid_equal (inferior_ptid, null_ptid))
8008 return NULL;
8009
8010 if (!VEC_empty (remote_g_packet_guess_s, data->guesses))
8011 {
8012 struct remote_g_packet_guess *guess;
8013 int ix;
8014 int bytes = send_g_packet ();
8015
8016 for (ix = 0;
8017 VEC_iterate (remote_g_packet_guess_s, data->guesses, ix, guess);
8018 ix++)
8019 if (guess->bytes == bytes)
8020 return guess->tdesc;
8021
8022 /* We discard the g packet. A minor optimization would be to
8023 hold on to it, and fill the register cache once we have selected
8024 an architecture, but it's too tricky to do safely. */
8025 }
8026
8027 return NULL;
8028 }
8029
8030 /* Remote file transfer support. This is host-initiated I/O, not
8031 target-initiated; for target-initiated, see remote-fileio.c. */
8032
8033 /* If *LEFT is at least the length of STRING, copy STRING to
8034 *BUFFER, update *BUFFER to point to the new end of the buffer, and
8035 decrease *LEFT. Otherwise raise an error. */
8036
8037 static void
8038 remote_buffer_add_string (char **buffer, int *left, char *string)
8039 {
8040 int len = strlen (string);
8041
8042 if (len > *left)
8043 error (_("Packet too long for target."));
8044
8045 memcpy (*buffer, string, len);
8046 *buffer += len;
8047 *left -= len;
8048
8049 /* NUL-terminate the buffer as a convenience, if there is
8050 room. */
8051 if (*left)
8052 **buffer = '\0';
8053 }
8054
8055 /* If *LEFT is large enough, hex encode LEN bytes from BYTES into
8056 *BUFFER, update *BUFFER to point to the new end of the buffer, and
8057 decrease *LEFT. Otherwise raise an error. */
8058
8059 static void
8060 remote_buffer_add_bytes (char **buffer, int *left, const gdb_byte *bytes,
8061 int len)
8062 {
8063 if (2 * len > *left)
8064 error (_("Packet too long for target."));
8065
8066 bin2hex (bytes, *buffer, len);
8067 *buffer += 2 * len;
8068 *left -= 2 * len;
8069
8070 /* NUL-terminate the buffer as a convenience, if there is
8071 room. */
8072 if (*left)
8073 **buffer = '\0';
8074 }
8075
8076 /* If *LEFT is large enough, convert VALUE to hex and add it to
8077 *BUFFER, update *BUFFER to point to the new end of the buffer, and
8078 decrease *LEFT. Otherwise raise an error. */
8079
8080 static void
8081 remote_buffer_add_int (char **buffer, int *left, ULONGEST value)
8082 {
8083 int len = hexnumlen (value);
8084
8085 if (len > *left)
8086 error (_("Packet too long for target."));
8087
8088 hexnumstr (*buffer, value);
8089 *buffer += len;
8090 *left -= len;
8091
8092 /* NUL-terminate the buffer as a convenience, if there is
8093 room. */
8094 if (*left)
8095 **buffer = '\0';
8096 }
8097
8098 /* Parse an I/O result packet from BUFFER. Set RETCODE to the return
8099 value, *REMOTE_ERRNO to the remote error number or zero if none
8100 was included, and *ATTACHMENT to point to the start of the annex
8101 if any. The length of the packet isn't needed here; there may
8102 be NUL bytes in BUFFER, but they will be after *ATTACHMENT.
8103
8104 Return 0 if the packet could be parsed, -1 if it could not. If
8105 -1 is returned, the other variables may not be initialized. */
8106
8107 static int
8108 remote_hostio_parse_result (char *buffer, int *retcode,
8109 int *remote_errno, char **attachment)
8110 {
8111 char *p, *p2;
8112
8113 *remote_errno = 0;
8114 *attachment = NULL;
8115
8116 if (buffer[0] != 'F')
8117 return -1;
8118
8119 errno = 0;
8120 *retcode = strtol (&buffer[1], &p, 16);
8121 if (errno != 0 || p == &buffer[1])
8122 return -1;
8123
8124 /* Check for ",errno". */
8125 if (*p == ',')
8126 {
8127 errno = 0;
8128 *remote_errno = strtol (p + 1, &p2, 16);
8129 if (errno != 0 || p + 1 == p2)
8130 return -1;
8131 p = p2;
8132 }
8133
8134 /* Check for ";attachment". If there is no attachment, the
8135 packet should end here. */
8136 if (*p == ';')
8137 {
8138 *attachment = p + 1;
8139 return 0;
8140 }
8141 else if (*p == '\0')
8142 return 0;
8143 else
8144 return -1;
8145 }
8146
8147 /* Send a prepared I/O packet to the target and read its response.
8148 The prepared packet is in the global RS->BUF before this function
8149 is called, and the answer is there when we return.
8150
8151 COMMAND_BYTES is the length of the request to send, which may include
8152 binary data. WHICH_PACKET is the packet configuration to check
8153 before attempting a packet. If an error occurs, *REMOTE_ERRNO
8154 is set to the error number and -1 is returned. Otherwise the value
8155 returned by the function is returned.
8156
8157 ATTACHMENT and ATTACHMENT_LEN should be non-NULL if and only if an
8158 attachment is expected; an error will be reported if there's a
8159 mismatch. If one is found, *ATTACHMENT will be set to point into
8160 the packet buffer and *ATTACHMENT_LEN will be set to the
8161 attachment's length. */
8162
8163 static int
8164 remote_hostio_send_command (int command_bytes, int which_packet,
8165 int *remote_errno, char **attachment,
8166 int *attachment_len)
8167 {
8168 struct remote_state *rs = get_remote_state ();
8169 int ret, bytes_read;
8170 char *attachment_tmp;
8171
8172 if (!remote_desc
8173 || remote_protocol_packets[which_packet].support == PACKET_DISABLE)
8174 {
8175 *remote_errno = FILEIO_ENOSYS;
8176 return -1;
8177 }
8178
8179 putpkt_binary (rs->buf, command_bytes);
8180 bytes_read = getpkt_sane (&rs->buf, &rs->buf_size, 0);
8181
8182 /* If it timed out, something is wrong. Don't try to parse the
8183 buffer. */
8184 if (bytes_read < 0)
8185 {
8186 *remote_errno = FILEIO_EINVAL;
8187 return -1;
8188 }
8189
8190 switch (packet_ok (rs->buf, &remote_protocol_packets[which_packet]))
8191 {
8192 case PACKET_ERROR:
8193 *remote_errno = FILEIO_EINVAL;
8194 return -1;
8195 case PACKET_UNKNOWN:
8196 *remote_errno = FILEIO_ENOSYS;
8197 return -1;
8198 case PACKET_OK:
8199 break;
8200 }
8201
8202 if (remote_hostio_parse_result (rs->buf, &ret, remote_errno,
8203 &attachment_tmp))
8204 {
8205 *remote_errno = FILEIO_EINVAL;
8206 return -1;
8207 }
8208
8209 /* Make sure we saw an attachment if and only if we expected one. */
8210 if ((attachment_tmp == NULL && attachment != NULL)
8211 || (attachment_tmp != NULL && attachment == NULL))
8212 {
8213 *remote_errno = FILEIO_EINVAL;
8214 return -1;
8215 }
8216
8217 /* If an attachment was found, it must point into the packet buffer;
8218 work out how many bytes there were. */
8219 if (attachment_tmp != NULL)
8220 {
8221 *attachment = attachment_tmp;
8222 *attachment_len = bytes_read - (*attachment - rs->buf);
8223 }
8224
8225 return ret;
8226 }
8227
8228 /* Open FILENAME on the remote target, using FLAGS and MODE. Return a
8229 remote file descriptor, or -1 if an error occurs (and set
8230 *REMOTE_ERRNO). */
8231
8232 static int
8233 remote_hostio_open (const char *filename, int flags, int mode,
8234 int *remote_errno)
8235 {
8236 struct remote_state *rs = get_remote_state ();
8237 char *p = rs->buf;
8238 int left = get_remote_packet_size () - 1;
8239
8240 remote_buffer_add_string (&p, &left, "vFile:open:");
8241
8242 remote_buffer_add_bytes (&p, &left, (const gdb_byte *) filename,
8243 strlen (filename));
8244 remote_buffer_add_string (&p, &left, ",");
8245
8246 remote_buffer_add_int (&p, &left, flags);
8247 remote_buffer_add_string (&p, &left, ",");
8248
8249 remote_buffer_add_int (&p, &left, mode);
8250
8251 return remote_hostio_send_command (p - rs->buf, PACKET_vFile_open,
8252 remote_errno, NULL, NULL);
8253 }
8254
8255 /* Write up to LEN bytes from WRITE_BUF to FD on the remote target.
8256 Return the number of bytes written, or -1 if an error occurs (and
8257 set *REMOTE_ERRNO). */
8258
8259 static int
8260 remote_hostio_pwrite (int fd, const gdb_byte *write_buf, int len,
8261 ULONGEST offset, int *remote_errno)
8262 {
8263 struct remote_state *rs = get_remote_state ();
8264 char *p = rs->buf;
8265 int left = get_remote_packet_size ();
8266 int out_len;
8267
8268 remote_buffer_add_string (&p, &left, "vFile:pwrite:");
8269
8270 remote_buffer_add_int (&p, &left, fd);
8271 remote_buffer_add_string (&p, &left, ",");
8272
8273 remote_buffer_add_int (&p, &left, offset);
8274 remote_buffer_add_string (&p, &left, ",");
8275
8276 p += remote_escape_output (write_buf, len, p, &out_len,
8277 get_remote_packet_size () - (p - rs->buf));
8278
8279 return remote_hostio_send_command (p - rs->buf, PACKET_vFile_pwrite,
8280 remote_errno, NULL, NULL);
8281 }
8282
8283 /* Read up to LEN bytes FD on the remote target into READ_BUF
8284 Return the number of bytes read, or -1 if an error occurs (and
8285 set *REMOTE_ERRNO). */
8286
8287 static int
8288 remote_hostio_pread (int fd, gdb_byte *read_buf, int len,
8289 ULONGEST offset, int *remote_errno)
8290 {
8291 struct remote_state *rs = get_remote_state ();
8292 char *p = rs->buf;
8293 char *attachment;
8294 int left = get_remote_packet_size ();
8295 int ret, attachment_len;
8296 int read_len;
8297
8298 remote_buffer_add_string (&p, &left, "vFile:pread:");
8299
8300 remote_buffer_add_int (&p, &left, fd);
8301 remote_buffer_add_string (&p, &left, ",");
8302
8303 remote_buffer_add_int (&p, &left, len);
8304 remote_buffer_add_string (&p, &left, ",");
8305
8306 remote_buffer_add_int (&p, &left, offset);
8307
8308 ret = remote_hostio_send_command (p - rs->buf, PACKET_vFile_pread,
8309 remote_errno, &attachment,
8310 &attachment_len);
8311
8312 if (ret < 0)
8313 return ret;
8314
8315 read_len = remote_unescape_input (attachment, attachment_len,
8316 read_buf, len);
8317 if (read_len != ret)
8318 error (_("Read returned %d, but %d bytes."), ret, (int) read_len);
8319
8320 return ret;
8321 }
8322
8323 /* Close FD on the remote target. Return 0, or -1 if an error occurs
8324 (and set *REMOTE_ERRNO). */
8325
8326 static int
8327 remote_hostio_close (int fd, int *remote_errno)
8328 {
8329 struct remote_state *rs = get_remote_state ();
8330 char *p = rs->buf;
8331 int left = get_remote_packet_size () - 1;
8332
8333 remote_buffer_add_string (&p, &left, "vFile:close:");
8334
8335 remote_buffer_add_int (&p, &left, fd);
8336
8337 return remote_hostio_send_command (p - rs->buf, PACKET_vFile_close,
8338 remote_errno, NULL, NULL);
8339 }
8340
8341 /* Unlink FILENAME on the remote target. Return 0, or -1 if an error
8342 occurs (and set *REMOTE_ERRNO). */
8343
8344 static int
8345 remote_hostio_unlink (const char *filename, int *remote_errno)
8346 {
8347 struct remote_state *rs = get_remote_state ();
8348 char *p = rs->buf;
8349 int left = get_remote_packet_size () - 1;
8350
8351 remote_buffer_add_string (&p, &left, "vFile:unlink:");
8352
8353 remote_buffer_add_bytes (&p, &left, (const gdb_byte *) filename,
8354 strlen (filename));
8355
8356 return remote_hostio_send_command (p - rs->buf, PACKET_vFile_unlink,
8357 remote_errno, NULL, NULL);
8358 }
8359
8360 static int
8361 remote_fileio_errno_to_host (int errnum)
8362 {
8363 switch (errnum)
8364 {
8365 case FILEIO_EPERM:
8366 return EPERM;
8367 case FILEIO_ENOENT:
8368 return ENOENT;
8369 case FILEIO_EINTR:
8370 return EINTR;
8371 case FILEIO_EIO:
8372 return EIO;
8373 case FILEIO_EBADF:
8374 return EBADF;
8375 case FILEIO_EACCES:
8376 return EACCES;
8377 case FILEIO_EFAULT:
8378 return EFAULT;
8379 case FILEIO_EBUSY:
8380 return EBUSY;
8381 case FILEIO_EEXIST:
8382 return EEXIST;
8383 case FILEIO_ENODEV:
8384 return ENODEV;
8385 case FILEIO_ENOTDIR:
8386 return ENOTDIR;
8387 case FILEIO_EISDIR:
8388 return EISDIR;
8389 case FILEIO_EINVAL:
8390 return EINVAL;
8391 case FILEIO_ENFILE:
8392 return ENFILE;
8393 case FILEIO_EMFILE:
8394 return EMFILE;
8395 case FILEIO_EFBIG:
8396 return EFBIG;
8397 case FILEIO_ENOSPC:
8398 return ENOSPC;
8399 case FILEIO_ESPIPE:
8400 return ESPIPE;
8401 case FILEIO_EROFS:
8402 return EROFS;
8403 case FILEIO_ENOSYS:
8404 return ENOSYS;
8405 case FILEIO_ENAMETOOLONG:
8406 return ENAMETOOLONG;
8407 }
8408 return -1;
8409 }
8410
8411 static char *
8412 remote_hostio_error (int errnum)
8413 {
8414 int host_error = remote_fileio_errno_to_host (errnum);
8415
8416 if (host_error == -1)
8417 error (_("Unknown remote I/O error %d"), errnum);
8418 else
8419 error (_("Remote I/O error: %s"), safe_strerror (host_error));
8420 }
8421
8422 static void
8423 remote_hostio_close_cleanup (void *opaque)
8424 {
8425 int fd = *(int *) opaque;
8426 int remote_errno;
8427
8428 remote_hostio_close (fd, &remote_errno);
8429 }
8430
8431
8432 static void *
8433 remote_bfd_iovec_open (struct bfd *abfd, void *open_closure)
8434 {
8435 const char *filename = bfd_get_filename (abfd);
8436 int fd, remote_errno;
8437 int *stream;
8438
8439 gdb_assert (remote_filename_p (filename));
8440
8441 fd = remote_hostio_open (filename + 7, FILEIO_O_RDONLY, 0, &remote_errno);
8442 if (fd == -1)
8443 {
8444 errno = remote_fileio_errno_to_host (remote_errno);
8445 bfd_set_error (bfd_error_system_call);
8446 return NULL;
8447 }
8448
8449 stream = xmalloc (sizeof (int));
8450 *stream = fd;
8451 return stream;
8452 }
8453
8454 static int
8455 remote_bfd_iovec_close (struct bfd *abfd, void *stream)
8456 {
8457 int fd = *(int *)stream;
8458 int remote_errno;
8459
8460 xfree (stream);
8461
8462 /* Ignore errors on close; these may happen if the remote
8463 connection was already torn down. */
8464 remote_hostio_close (fd, &remote_errno);
8465
8466 return 1;
8467 }
8468
8469 static file_ptr
8470 remote_bfd_iovec_pread (struct bfd *abfd, void *stream, void *buf,
8471 file_ptr nbytes, file_ptr offset)
8472 {
8473 int fd = *(int *)stream;
8474 int remote_errno;
8475 file_ptr pos, bytes;
8476
8477 pos = 0;
8478 while (nbytes > pos)
8479 {
8480 bytes = remote_hostio_pread (fd, (char *)buf + pos, nbytes - pos,
8481 offset + pos, &remote_errno);
8482 if (bytes == 0)
8483 /* Success, but no bytes, means end-of-file. */
8484 break;
8485 if (bytes == -1)
8486 {
8487 errno = remote_fileio_errno_to_host (remote_errno);
8488 bfd_set_error (bfd_error_system_call);
8489 return -1;
8490 }
8491
8492 pos += bytes;
8493 }
8494
8495 return pos;
8496 }
8497
8498 static int
8499 remote_bfd_iovec_stat (struct bfd *abfd, void *stream, struct stat *sb)
8500 {
8501 /* FIXME: We should probably implement remote_hostio_stat. */
8502 sb->st_size = INT_MAX;
8503 return 0;
8504 }
8505
8506 int
8507 remote_filename_p (const char *filename)
8508 {
8509 return strncmp (filename, "remote:", 7) == 0;
8510 }
8511
8512 bfd *
8513 remote_bfd_open (const char *remote_file, const char *target)
8514 {
8515 return bfd_openr_iovec (remote_file, target,
8516 remote_bfd_iovec_open, NULL,
8517 remote_bfd_iovec_pread,
8518 remote_bfd_iovec_close,
8519 remote_bfd_iovec_stat);
8520 }
8521
8522 void
8523 remote_file_put (const char *local_file, const char *remote_file, int from_tty)
8524 {
8525 struct cleanup *back_to, *close_cleanup;
8526 int retcode, fd, remote_errno, bytes, io_size;
8527 FILE *file;
8528 gdb_byte *buffer;
8529 int bytes_in_buffer;
8530 int saw_eof;
8531 ULONGEST offset;
8532
8533 if (!remote_desc)
8534 error (_("command can only be used with remote target"));
8535
8536 file = fopen (local_file, "rb");
8537 if (file == NULL)
8538 perror_with_name (local_file);
8539 back_to = make_cleanup_fclose (file);
8540
8541 fd = remote_hostio_open (remote_file, (FILEIO_O_WRONLY | FILEIO_O_CREAT
8542 | FILEIO_O_TRUNC),
8543 0700, &remote_errno);
8544 if (fd == -1)
8545 remote_hostio_error (remote_errno);
8546
8547 /* Send up to this many bytes at once. They won't all fit in the
8548 remote packet limit, so we'll transfer slightly fewer. */
8549 io_size = get_remote_packet_size ();
8550 buffer = xmalloc (io_size);
8551 make_cleanup (xfree, buffer);
8552
8553 close_cleanup = make_cleanup (remote_hostio_close_cleanup, &fd);
8554
8555 bytes_in_buffer = 0;
8556 saw_eof = 0;
8557 offset = 0;
8558 while (bytes_in_buffer || !saw_eof)
8559 {
8560 if (!saw_eof)
8561 {
8562 bytes = fread (buffer + bytes_in_buffer, 1, io_size - bytes_in_buffer,
8563 file);
8564 if (bytes == 0)
8565 {
8566 if (ferror (file))
8567 error (_("Error reading %s."), local_file);
8568 else
8569 {
8570 /* EOF. Unless there is something still in the
8571 buffer from the last iteration, we are done. */
8572 saw_eof = 1;
8573 if (bytes_in_buffer == 0)
8574 break;
8575 }
8576 }
8577 }
8578 else
8579 bytes = 0;
8580
8581 bytes += bytes_in_buffer;
8582 bytes_in_buffer = 0;
8583
8584 retcode = remote_hostio_pwrite (fd, buffer, bytes, offset, &remote_errno);
8585
8586 if (retcode < 0)
8587 remote_hostio_error (remote_errno);
8588 else if (retcode == 0)
8589 error (_("Remote write of %d bytes returned 0!"), bytes);
8590 else if (retcode < bytes)
8591 {
8592 /* Short write. Save the rest of the read data for the next
8593 write. */
8594 bytes_in_buffer = bytes - retcode;
8595 memmove (buffer, buffer + retcode, bytes_in_buffer);
8596 }
8597
8598 offset += retcode;
8599 }
8600
8601 discard_cleanups (close_cleanup);
8602 if (remote_hostio_close (fd, &remote_errno))
8603 remote_hostio_error (remote_errno);
8604
8605 if (from_tty)
8606 printf_filtered (_("Successfully sent file \"%s\".\n"), local_file);
8607 do_cleanups (back_to);
8608 }
8609
8610 void
8611 remote_file_get (const char *remote_file, const char *local_file, int from_tty)
8612 {
8613 struct cleanup *back_to, *close_cleanup;
8614 int retcode, fd, remote_errno, bytes, io_size;
8615 FILE *file;
8616 gdb_byte *buffer;
8617 ULONGEST offset;
8618
8619 if (!remote_desc)
8620 error (_("command can only be used with remote target"));
8621
8622 fd = remote_hostio_open (remote_file, FILEIO_O_RDONLY, 0, &remote_errno);
8623 if (fd == -1)
8624 remote_hostio_error (remote_errno);
8625
8626 file = fopen (local_file, "wb");
8627 if (file == NULL)
8628 perror_with_name (local_file);
8629 back_to = make_cleanup_fclose (file);
8630
8631 /* Send up to this many bytes at once. They won't all fit in the
8632 remote packet limit, so we'll transfer slightly fewer. */
8633 io_size = get_remote_packet_size ();
8634 buffer = xmalloc (io_size);
8635 make_cleanup (xfree, buffer);
8636
8637 close_cleanup = make_cleanup (remote_hostio_close_cleanup, &fd);
8638
8639 offset = 0;
8640 while (1)
8641 {
8642 bytes = remote_hostio_pread (fd, buffer, io_size, offset, &remote_errno);
8643 if (bytes == 0)
8644 /* Success, but no bytes, means end-of-file. */
8645 break;
8646 if (bytes == -1)
8647 remote_hostio_error (remote_errno);
8648
8649 offset += bytes;
8650
8651 bytes = fwrite (buffer, 1, bytes, file);
8652 if (bytes == 0)
8653 perror_with_name (local_file);
8654 }
8655
8656 discard_cleanups (close_cleanup);
8657 if (remote_hostio_close (fd, &remote_errno))
8658 remote_hostio_error (remote_errno);
8659
8660 if (from_tty)
8661 printf_filtered (_("Successfully fetched file \"%s\".\n"), remote_file);
8662 do_cleanups (back_to);
8663 }
8664
8665 void
8666 remote_file_delete (const char *remote_file, int from_tty)
8667 {
8668 int retcode, remote_errno;
8669
8670 if (!remote_desc)
8671 error (_("command can only be used with remote target"));
8672
8673 retcode = remote_hostio_unlink (remote_file, &remote_errno);
8674 if (retcode == -1)
8675 remote_hostio_error (remote_errno);
8676
8677 if (from_tty)
8678 printf_filtered (_("Successfully deleted file \"%s\".\n"), remote_file);
8679 }
8680
8681 static void
8682 remote_put_command (char *args, int from_tty)
8683 {
8684 struct cleanup *back_to;
8685 char **argv;
8686
8687 if (args == NULL)
8688 error_no_arg (_("file to put"));
8689
8690 argv = gdb_buildargv (args);
8691 back_to = make_cleanup_freeargv (argv);
8692 if (argv[0] == NULL || argv[1] == NULL || argv[2] != NULL)
8693 error (_("Invalid parameters to remote put"));
8694
8695 remote_file_put (argv[0], argv[1], from_tty);
8696
8697 do_cleanups (back_to);
8698 }
8699
8700 static void
8701 remote_get_command (char *args, int from_tty)
8702 {
8703 struct cleanup *back_to;
8704 char **argv;
8705
8706 if (args == NULL)
8707 error_no_arg (_("file to get"));
8708
8709 argv = gdb_buildargv (args);
8710 back_to = make_cleanup_freeargv (argv);
8711 if (argv[0] == NULL || argv[1] == NULL || argv[2] != NULL)
8712 error (_("Invalid parameters to remote get"));
8713
8714 remote_file_get (argv[0], argv[1], from_tty);
8715
8716 do_cleanups (back_to);
8717 }
8718
8719 static void
8720 remote_delete_command (char *args, int from_tty)
8721 {
8722 struct cleanup *back_to;
8723 char **argv;
8724
8725 if (args == NULL)
8726 error_no_arg (_("file to delete"));
8727
8728 argv = gdb_buildargv (args);
8729 back_to = make_cleanup_freeargv (argv);
8730 if (argv[0] == NULL || argv[1] != NULL)
8731 error (_("Invalid parameters to remote delete"));
8732
8733 remote_file_delete (argv[0], from_tty);
8734
8735 do_cleanups (back_to);
8736 }
8737
8738 static void
8739 remote_command (char *args, int from_tty)
8740 {
8741 help_list (remote_cmdlist, "remote ", -1, gdb_stdout);
8742 }
8743
8744 static int remote_target_can_reverse = 1;
8745
8746 static int
8747 remote_can_execute_reverse (void)
8748 {
8749 return remote_target_can_reverse;
8750 }
8751
8752 static int
8753 remote_supports_non_stop (void)
8754 {
8755 return 1;
8756 }
8757
8758 static int
8759 remote_supports_multi_process (void)
8760 {
8761 struct remote_state *rs = get_remote_state ();
8762 return remote_multi_process_p (rs);
8763 }
8764
8765 static void
8766 init_remote_ops (void)
8767 {
8768 remote_ops.to_shortname = "remote";
8769 remote_ops.to_longname = "Remote serial target in gdb-specific protocol";
8770 remote_ops.to_doc =
8771 "Use a remote computer via a serial line, using a gdb-specific protocol.\n\
8772 Specify the serial device it is connected to\n\
8773 (e.g. /dev/ttyS0, /dev/ttya, COM1, etc.).";
8774 remote_ops.to_open = remote_open;
8775 remote_ops.to_close = remote_close;
8776 remote_ops.to_detach = remote_detach;
8777 remote_ops.to_disconnect = remote_disconnect;
8778 remote_ops.to_resume = remote_resume;
8779 remote_ops.to_wait = remote_wait;
8780 remote_ops.to_fetch_registers = remote_fetch_registers;
8781 remote_ops.to_store_registers = remote_store_registers;
8782 remote_ops.to_prepare_to_store = remote_prepare_to_store;
8783 remote_ops.deprecated_xfer_memory = remote_xfer_memory;
8784 remote_ops.to_files_info = remote_files_info;
8785 remote_ops.to_insert_breakpoint = remote_insert_breakpoint;
8786 remote_ops.to_remove_breakpoint = remote_remove_breakpoint;
8787 remote_ops.to_stopped_by_watchpoint = remote_stopped_by_watchpoint;
8788 remote_ops.to_stopped_data_address = remote_stopped_data_address;
8789 remote_ops.to_can_use_hw_breakpoint = remote_check_watch_resources;
8790 remote_ops.to_insert_hw_breakpoint = remote_insert_hw_breakpoint;
8791 remote_ops.to_remove_hw_breakpoint = remote_remove_hw_breakpoint;
8792 remote_ops.to_insert_watchpoint = remote_insert_watchpoint;
8793 remote_ops.to_remove_watchpoint = remote_remove_watchpoint;
8794 remote_ops.to_kill = remote_kill;
8795 remote_ops.to_load = generic_load;
8796 remote_ops.to_mourn_inferior = remote_mourn;
8797 remote_ops.to_thread_alive = remote_thread_alive;
8798 remote_ops.to_find_new_threads = remote_threads_info;
8799 remote_ops.to_pid_to_str = remote_pid_to_str;
8800 remote_ops.to_extra_thread_info = remote_threads_extra_info;
8801 remote_ops.to_stop = remote_stop;
8802 remote_ops.to_xfer_partial = remote_xfer_partial;
8803 remote_ops.to_rcmd = remote_rcmd;
8804 remote_ops.to_log_command = serial_log_command;
8805 remote_ops.to_get_thread_local_address = remote_get_thread_local_address;
8806 remote_ops.to_stratum = process_stratum;
8807 remote_ops.to_has_all_memory = 1;
8808 remote_ops.to_has_memory = 1;
8809 remote_ops.to_has_stack = 1;
8810 remote_ops.to_has_registers = 1;
8811 remote_ops.to_has_execution = 1;
8812 remote_ops.to_has_thread_control = tc_schedlock; /* can lock scheduler */
8813 remote_ops.to_can_execute_reverse = remote_can_execute_reverse;
8814 remote_ops.to_magic = OPS_MAGIC;
8815 remote_ops.to_memory_map = remote_memory_map;
8816 remote_ops.to_flash_erase = remote_flash_erase;
8817 remote_ops.to_flash_done = remote_flash_done;
8818 remote_ops.to_read_description = remote_read_description;
8819 remote_ops.to_search_memory = remote_search_memory;
8820 remote_ops.to_can_async_p = remote_can_async_p;
8821 remote_ops.to_is_async_p = remote_is_async_p;
8822 remote_ops.to_async = remote_async;
8823 remote_ops.to_async_mask = remote_async_mask;
8824 remote_ops.to_terminal_inferior = remote_terminal_inferior;
8825 remote_ops.to_terminal_ours = remote_terminal_ours;
8826 remote_ops.to_supports_non_stop = remote_supports_non_stop;
8827 remote_ops.to_supports_multi_process = remote_supports_multi_process;
8828 }
8829
8830 /* Set up the extended remote vector by making a copy of the standard
8831 remote vector and adding to it. */
8832
8833 static void
8834 init_extended_remote_ops (void)
8835 {
8836 extended_remote_ops = remote_ops;
8837
8838 extended_remote_ops.to_shortname = "extended-remote";
8839 extended_remote_ops.to_longname =
8840 "Extended remote serial target in gdb-specific protocol";
8841 extended_remote_ops.to_doc =
8842 "Use a remote computer via a serial line, using a gdb-specific protocol.\n\
8843 Specify the serial device it is connected to (e.g. /dev/ttya).";
8844 extended_remote_ops.to_open = extended_remote_open;
8845 extended_remote_ops.to_create_inferior = extended_remote_create_inferior;
8846 extended_remote_ops.to_mourn_inferior = extended_remote_mourn;
8847 extended_remote_ops.to_detach = extended_remote_detach;
8848 extended_remote_ops.to_attach = extended_remote_attach;
8849 extended_remote_ops.to_kill = extended_remote_kill;
8850 }
8851
8852 static int
8853 remote_can_async_p (void)
8854 {
8855 if (!target_async_permitted)
8856 /* We only enable async when the user specifically asks for it. */
8857 return 0;
8858
8859 /* We're async whenever the serial device is. */
8860 return remote_async_mask_value && serial_can_async_p (remote_desc);
8861 }
8862
8863 static int
8864 remote_is_async_p (void)
8865 {
8866 if (!target_async_permitted)
8867 /* We only enable async when the user specifically asks for it. */
8868 return 0;
8869
8870 /* We're async whenever the serial device is. */
8871 return remote_async_mask_value && serial_is_async_p (remote_desc);
8872 }
8873
8874 /* Pass the SERIAL event on and up to the client. One day this code
8875 will be able to delay notifying the client of an event until the
8876 point where an entire packet has been received. */
8877
8878 static void (*async_client_callback) (enum inferior_event_type event_type,
8879 void *context);
8880 static void *async_client_context;
8881 static serial_event_ftype remote_async_serial_handler;
8882
8883 static void
8884 remote_async_serial_handler (struct serial *scb, void *context)
8885 {
8886 /* Don't propogate error information up to the client. Instead let
8887 the client find out about the error by querying the target. */
8888 async_client_callback (INF_REG_EVENT, async_client_context);
8889 }
8890
8891 static void
8892 remote_async_inferior_event_handler (gdb_client_data data)
8893 {
8894 inferior_event_handler (INF_REG_EVENT, NULL);
8895 }
8896
8897 static void
8898 remote_async_get_pending_events_handler (gdb_client_data data)
8899 {
8900 remote_get_pending_stop_replies ();
8901 }
8902
8903 static void
8904 remote_async (void (*callback) (enum inferior_event_type event_type,
8905 void *context), void *context)
8906 {
8907 if (remote_async_mask_value == 0)
8908 internal_error (__FILE__, __LINE__,
8909 _("Calling remote_async when async is masked"));
8910
8911 if (callback != NULL)
8912 {
8913 serial_async (remote_desc, remote_async_serial_handler, NULL);
8914 async_client_callback = callback;
8915 async_client_context = context;
8916 }
8917 else
8918 serial_async (remote_desc, NULL, NULL);
8919 }
8920
8921 static int
8922 remote_async_mask (int new_mask)
8923 {
8924 int curr_mask = remote_async_mask_value;
8925 remote_async_mask_value = new_mask;
8926 return curr_mask;
8927 }
8928
8929 static void
8930 set_remote_cmd (char *args, int from_tty)
8931 {
8932 help_list (remote_set_cmdlist, "set remote ", -1, gdb_stdout);
8933 }
8934
8935 static void
8936 show_remote_cmd (char *args, int from_tty)
8937 {
8938 /* We can't just use cmd_show_list here, because we want to skip
8939 the redundant "show remote Z-packet" and the legacy aliases. */
8940 struct cleanup *showlist_chain;
8941 struct cmd_list_element *list = remote_show_cmdlist;
8942
8943 showlist_chain = make_cleanup_ui_out_tuple_begin_end (uiout, "showlist");
8944 for (; list != NULL; list = list->next)
8945 if (strcmp (list->name, "Z-packet") == 0)
8946 continue;
8947 else if (list->type == not_set_cmd)
8948 /* Alias commands are exactly like the original, except they
8949 don't have the normal type. */
8950 continue;
8951 else
8952 {
8953 struct cleanup *option_chain
8954 = make_cleanup_ui_out_tuple_begin_end (uiout, "option");
8955 ui_out_field_string (uiout, "name", list->name);
8956 ui_out_text (uiout, ": ");
8957 if (list->type == show_cmd)
8958 do_setshow_command ((char *) NULL, from_tty, list);
8959 else
8960 cmd_func (list, NULL, from_tty);
8961 /* Close the tuple. */
8962 do_cleanups (option_chain);
8963 }
8964
8965 /* Close the tuple. */
8966 do_cleanups (showlist_chain);
8967 }
8968
8969
8970 /* Function to be called whenever a new objfile (shlib) is detected. */
8971 static void
8972 remote_new_objfile (struct objfile *objfile)
8973 {
8974 if (remote_desc != 0) /* Have a remote connection. */
8975 remote_check_symbols (objfile);
8976 }
8977
8978 void
8979 _initialize_remote (void)
8980 {
8981 struct remote_state *rs;
8982
8983 /* architecture specific data */
8984 remote_gdbarch_data_handle =
8985 gdbarch_data_register_post_init (init_remote_state);
8986 remote_g_packet_data_handle =
8987 gdbarch_data_register_pre_init (remote_g_packet_data_init);
8988
8989 /* Initialize the per-target state. At the moment there is only one
8990 of these, not one per target. Only one target is active at a
8991 time. The default buffer size is unimportant; it will be expanded
8992 whenever a larger buffer is needed. */
8993 rs = get_remote_state_raw ();
8994 rs->buf_size = 400;
8995 rs->buf = xmalloc (rs->buf_size);
8996
8997 init_remote_ops ();
8998 add_target (&remote_ops);
8999
9000 init_extended_remote_ops ();
9001 add_target (&extended_remote_ops);
9002
9003 /* Hook into new objfile notification. */
9004 observer_attach_new_objfile (remote_new_objfile);
9005
9006 /* Set up signal handlers. */
9007 sigint_remote_token =
9008 create_async_signal_handler (async_remote_interrupt, NULL);
9009 sigint_remote_twice_token =
9010 create_async_signal_handler (inferior_event_handler_wrapper, NULL);
9011
9012 #if 0
9013 init_remote_threadtests ();
9014 #endif
9015
9016 /* set/show remote ... */
9017
9018 add_prefix_cmd ("remote", class_maintenance, set_remote_cmd, _("\
9019 Remote protocol specific variables\n\
9020 Configure various remote-protocol specific variables such as\n\
9021 the packets being used"),
9022 &remote_set_cmdlist, "set remote ",
9023 0 /* allow-unknown */, &setlist);
9024 add_prefix_cmd ("remote", class_maintenance, show_remote_cmd, _("\
9025 Remote protocol specific variables\n\
9026 Configure various remote-protocol specific variables such as\n\
9027 the packets being used"),
9028 &remote_show_cmdlist, "show remote ",
9029 0 /* allow-unknown */, &showlist);
9030
9031 add_cmd ("compare-sections", class_obscure, compare_sections_command, _("\
9032 Compare section data on target to the exec file.\n\
9033 Argument is a single section name (default: all loaded sections)."),
9034 &cmdlist);
9035
9036 add_cmd ("packet", class_maintenance, packet_command, _("\
9037 Send an arbitrary packet to a remote target.\n\
9038 maintenance packet TEXT\n\
9039 If GDB is talking to an inferior via the GDB serial protocol, then\n\
9040 this command sends the string TEXT to the inferior, and displays the\n\
9041 response packet. GDB supplies the initial `$' character, and the\n\
9042 terminating `#' character and checksum."),
9043 &maintenancelist);
9044
9045 add_setshow_boolean_cmd ("remotebreak", no_class, &remote_break, _("\
9046 Set whether to send break if interrupted."), _("\
9047 Show whether to send break if interrupted."), _("\
9048 If set, a break, instead of a cntrl-c, is sent to the remote target."),
9049 NULL, NULL, /* FIXME: i18n: Whether to send break if interrupted is %s. */
9050 &setlist, &showlist);
9051
9052 /* Install commands for configuring memory read/write packets. */
9053
9054 add_cmd ("remotewritesize", no_class, set_memory_write_packet_size, _("\
9055 Set the maximum number of bytes per memory write packet (deprecated)."),
9056 &setlist);
9057 add_cmd ("remotewritesize", no_class, show_memory_write_packet_size, _("\
9058 Show the maximum number of bytes per memory write packet (deprecated)."),
9059 &showlist);
9060 add_cmd ("memory-write-packet-size", no_class,
9061 set_memory_write_packet_size, _("\
9062 Set the maximum number of bytes per memory-write packet.\n\
9063 Specify the number of bytes in a packet or 0 (zero) for the\n\
9064 default packet size. The actual limit is further reduced\n\
9065 dependent on the target. Specify ``fixed'' to disable the\n\
9066 further restriction and ``limit'' to enable that restriction."),
9067 &remote_set_cmdlist);
9068 add_cmd ("memory-read-packet-size", no_class,
9069 set_memory_read_packet_size, _("\
9070 Set the maximum number of bytes per memory-read packet.\n\
9071 Specify the number of bytes in a packet or 0 (zero) for the\n\
9072 default packet size. The actual limit is further reduced\n\
9073 dependent on the target. Specify ``fixed'' to disable the\n\
9074 further restriction and ``limit'' to enable that restriction."),
9075 &remote_set_cmdlist);
9076 add_cmd ("memory-write-packet-size", no_class,
9077 show_memory_write_packet_size,
9078 _("Show the maximum number of bytes per memory-write packet."),
9079 &remote_show_cmdlist);
9080 add_cmd ("memory-read-packet-size", no_class,
9081 show_memory_read_packet_size,
9082 _("Show the maximum number of bytes per memory-read packet."),
9083 &remote_show_cmdlist);
9084
9085 add_setshow_zinteger_cmd ("hardware-watchpoint-limit", no_class,
9086 &remote_hw_watchpoint_limit, _("\
9087 Set the maximum number of target hardware watchpoints."), _("\
9088 Show the maximum number of target hardware watchpoints."), _("\
9089 Specify a negative limit for unlimited."),
9090 NULL, NULL, /* FIXME: i18n: The maximum number of target hardware watchpoints is %s. */
9091 &remote_set_cmdlist, &remote_show_cmdlist);
9092 add_setshow_zinteger_cmd ("hardware-breakpoint-limit", no_class,
9093 &remote_hw_breakpoint_limit, _("\
9094 Set the maximum number of target hardware breakpoints."), _("\
9095 Show the maximum number of target hardware breakpoints."), _("\
9096 Specify a negative limit for unlimited."),
9097 NULL, NULL, /* FIXME: i18n: The maximum number of target hardware breakpoints is %s. */
9098 &remote_set_cmdlist, &remote_show_cmdlist);
9099
9100 add_setshow_integer_cmd ("remoteaddresssize", class_obscure,
9101 &remote_address_size, _("\
9102 Set the maximum size of the address (in bits) in a memory packet."), _("\
9103 Show the maximum size of the address (in bits) in a memory packet."), NULL,
9104 NULL,
9105 NULL, /* FIXME: i18n: */
9106 &setlist, &showlist);
9107
9108 add_packet_config_cmd (&remote_protocol_packets[PACKET_X],
9109 "X", "binary-download", 1);
9110
9111 add_packet_config_cmd (&remote_protocol_packets[PACKET_vCont],
9112 "vCont", "verbose-resume", 0);
9113
9114 add_packet_config_cmd (&remote_protocol_packets[PACKET_QPassSignals],
9115 "QPassSignals", "pass-signals", 0);
9116
9117 add_packet_config_cmd (&remote_protocol_packets[PACKET_qSymbol],
9118 "qSymbol", "symbol-lookup", 0);
9119
9120 add_packet_config_cmd (&remote_protocol_packets[PACKET_P],
9121 "P", "set-register", 1);
9122
9123 add_packet_config_cmd (&remote_protocol_packets[PACKET_p],
9124 "p", "fetch-register", 1);
9125
9126 add_packet_config_cmd (&remote_protocol_packets[PACKET_Z0],
9127 "Z0", "software-breakpoint", 0);
9128
9129 add_packet_config_cmd (&remote_protocol_packets[PACKET_Z1],
9130 "Z1", "hardware-breakpoint", 0);
9131
9132 add_packet_config_cmd (&remote_protocol_packets[PACKET_Z2],
9133 "Z2", "write-watchpoint", 0);
9134
9135 add_packet_config_cmd (&remote_protocol_packets[PACKET_Z3],
9136 "Z3", "read-watchpoint", 0);
9137
9138 add_packet_config_cmd (&remote_protocol_packets[PACKET_Z4],
9139 "Z4", "access-watchpoint", 0);
9140
9141 add_packet_config_cmd (&remote_protocol_packets[PACKET_qXfer_auxv],
9142 "qXfer:auxv:read", "read-aux-vector", 0);
9143
9144 add_packet_config_cmd (&remote_protocol_packets[PACKET_qXfer_features],
9145 "qXfer:features:read", "target-features", 0);
9146
9147 add_packet_config_cmd (&remote_protocol_packets[PACKET_qXfer_libraries],
9148 "qXfer:libraries:read", "library-info", 0);
9149
9150 add_packet_config_cmd (&remote_protocol_packets[PACKET_qXfer_memory_map],
9151 "qXfer:memory-map:read", "memory-map", 0);
9152
9153 add_packet_config_cmd (&remote_protocol_packets[PACKET_qXfer_spu_read],
9154 "qXfer:spu:read", "read-spu-object", 0);
9155
9156 add_packet_config_cmd (&remote_protocol_packets[PACKET_qXfer_spu_write],
9157 "qXfer:spu:write", "write-spu-object", 0);
9158
9159 add_packet_config_cmd (&remote_protocol_packets[PACKET_qXfer_osdata],
9160 "qXfer:osdata:read", "osdata", 0);
9161
9162 add_packet_config_cmd (&remote_protocol_packets[PACKET_qXfer_siginfo_read],
9163 "qXfer:siginfo:read", "read-siginfo-object", 0);
9164
9165 add_packet_config_cmd (&remote_protocol_packets[PACKET_qXfer_siginfo_write],
9166 "qXfer:siginfo:write", "write-siginfo-object", 0);
9167
9168 add_packet_config_cmd (&remote_protocol_packets[PACKET_qGetTLSAddr],
9169 "qGetTLSAddr", "get-thread-local-storage-address",
9170 0);
9171
9172 add_packet_config_cmd (&remote_protocol_packets[PACKET_qSupported],
9173 "qSupported", "supported-packets", 0);
9174
9175 add_packet_config_cmd (&remote_protocol_packets[PACKET_qSearch_memory],
9176 "qSearch:memory", "search-memory", 0);
9177
9178 add_packet_config_cmd (&remote_protocol_packets[PACKET_vFile_open],
9179 "vFile:open", "hostio-open", 0);
9180
9181 add_packet_config_cmd (&remote_protocol_packets[PACKET_vFile_pread],
9182 "vFile:pread", "hostio-pread", 0);
9183
9184 add_packet_config_cmd (&remote_protocol_packets[PACKET_vFile_pwrite],
9185 "vFile:pwrite", "hostio-pwrite", 0);
9186
9187 add_packet_config_cmd (&remote_protocol_packets[PACKET_vFile_close],
9188 "vFile:close", "hostio-close", 0);
9189
9190 add_packet_config_cmd (&remote_protocol_packets[PACKET_vFile_unlink],
9191 "vFile:unlink", "hostio-unlink", 0);
9192
9193 add_packet_config_cmd (&remote_protocol_packets[PACKET_vAttach],
9194 "vAttach", "attach", 0);
9195
9196 add_packet_config_cmd (&remote_protocol_packets[PACKET_vRun],
9197 "vRun", "run", 0);
9198
9199 add_packet_config_cmd (&remote_protocol_packets[PACKET_QStartNoAckMode],
9200 "QStartNoAckMode", "noack", 0);
9201
9202 add_packet_config_cmd (&remote_protocol_packets[PACKET_vKill],
9203 "vKill", "kill", 0);
9204
9205 add_packet_config_cmd (&remote_protocol_packets[PACKET_qAttached],
9206 "qAttached", "query-attached", 0);
9207
9208 /* Keep the old ``set remote Z-packet ...'' working. Each individual
9209 Z sub-packet has its own set and show commands, but users may
9210 have sets to this variable in their .gdbinit files (or in their
9211 documentation). */
9212 add_setshow_auto_boolean_cmd ("Z-packet", class_obscure,
9213 &remote_Z_packet_detect, _("\
9214 Set use of remote protocol `Z' packets"), _("\
9215 Show use of remote protocol `Z' packets "), _("\
9216 When set, GDB will attempt to use the remote breakpoint and watchpoint\n\
9217 packets."),
9218 set_remote_protocol_Z_packet_cmd,
9219 show_remote_protocol_Z_packet_cmd, /* FIXME: i18n: Use of remote protocol `Z' packets is %s. */
9220 &remote_set_cmdlist, &remote_show_cmdlist);
9221
9222 add_prefix_cmd ("remote", class_files, remote_command, _("\
9223 Manipulate files on the remote system\n\
9224 Transfer files to and from the remote target system."),
9225 &remote_cmdlist, "remote ",
9226 0 /* allow-unknown */, &cmdlist);
9227
9228 add_cmd ("put", class_files, remote_put_command,
9229 _("Copy a local file to the remote system."),
9230 &remote_cmdlist);
9231
9232 add_cmd ("get", class_files, remote_get_command,
9233 _("Copy a remote file to the local system."),
9234 &remote_cmdlist);
9235
9236 add_cmd ("delete", class_files, remote_delete_command,
9237 _("Delete a remote file."),
9238 &remote_cmdlist);
9239
9240 remote_exec_file = xstrdup ("");
9241 add_setshow_string_noescape_cmd ("exec-file", class_files,
9242 &remote_exec_file, _("\
9243 Set the remote pathname for \"run\""), _("\
9244 Show the remote pathname for \"run\""), NULL, NULL, NULL,
9245 &remote_set_cmdlist, &remote_show_cmdlist);
9246
9247 /* Eventually initialize fileio. See fileio.c */
9248 initialize_remote_fileio (remote_set_cmdlist, remote_show_cmdlist);
9249
9250 /* Take advantage of the fact that the LWP field is not used, to tag
9251 special ptids with it set to != 0. */
9252 magic_null_ptid = ptid_build (42000, 1, -1);
9253 not_sent_ptid = ptid_build (42000, 1, -2);
9254 any_thread_ptid = ptid_build (42000, 1, 0);
9255 }