Remove duplicated #include's from GDB
[binutils-gdb.git] / gdb / remote.c
1 /* Remote target communications for serial-line targets in custom GDB protocol
2
3 Copyright (C) 1988-2014 Free Software Foundation, Inc.
4
5 This file is part of GDB.
6
7 This program is free software; you can redistribute it and/or modify
8 it under the terms of the GNU General Public License as published by
9 the Free Software Foundation; either version 3 of the License, or
10 (at your option) any later version.
11
12 This program is distributed in the hope that it will be useful,
13 but WITHOUT ANY WARRANTY; without even the implied warranty of
14 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
15 GNU General Public License for more details.
16
17 You should have received a copy of the GNU General Public License
18 along with this program. If not, see <http://www.gnu.org/licenses/>. */
19
20 /* See the GDB User Guide for details of the GDB remote protocol. */
21
22 #include "defs.h"
23 #include <string.h>
24 #include <ctype.h>
25 #include <fcntl.h>
26 #include "inferior.h"
27 #include "bfd.h"
28 #include "symfile.h"
29 #include "exceptions.h"
30 #include "target.h"
31 /*#include "terminal.h" */
32 #include "gdbcmd.h"
33 #include "objfiles.h"
34 #include "gdb-stabs.h"
35 #include "gdbthread.h"
36 #include "remote.h"
37 #include "remote-notif.h"
38 #include "regcache.h"
39 #include "value.h"
40 #include "gdb_assert.h"
41 #include "observer.h"
42 #include "solib.h"
43 #include "cli/cli-decode.h"
44 #include "cli/cli-setshow.h"
45 #include "target-descriptions.h"
46 #include "gdb_bfd.h"
47 #include "filestuff.h"
48
49 #include <sys/time.h>
50
51 #include "event-loop.h"
52 #include "event-top.h"
53 #include "inf-loop.h"
54
55 #include <signal.h>
56 #include "serial.h"
57
58 #include "gdbcore.h" /* for exec_bfd */
59
60 #include "remote-fileio.h"
61 #include "gdb/fileio.h"
62 #include <sys/stat.h>
63 #include "xml-support.h"
64
65 #include "memory-map.h"
66
67 #include "tracepoint.h"
68 #include "ax.h"
69 #include "ax-gdb.h"
70 #include "agent.h"
71 #include "btrace.h"
72
73 /* Temp hacks for tracepoint encoding migration. */
74 static char *target_buf;
75 static long target_buf_size;
76
77 /* The size to align memory write packets, when practical. The protocol
78 does not guarantee any alignment, and gdb will generate short
79 writes and unaligned writes, but even as a best-effort attempt this
80 can improve bulk transfers. For instance, if a write is misaligned
81 relative to the target's data bus, the stub may need to make an extra
82 round trip fetching data from the target. This doesn't make a
83 huge difference, but it's easy to do, so we try to be helpful.
84
85 The alignment chosen is arbitrary; usually data bus width is
86 important here, not the possibly larger cache line size. */
87 enum { REMOTE_ALIGN_WRITES = 16 };
88
89 /* Prototypes for local functions. */
90 static void async_cleanup_sigint_signal_handler (void *dummy);
91 static int getpkt_sane (char **buf, long *sizeof_buf, int forever);
92 static int getpkt_or_notif_sane (char **buf, long *sizeof_buf,
93 int forever, int *is_notif);
94
95 static void async_handle_remote_sigint (int);
96 static void async_handle_remote_sigint_twice (int);
97
98 static void remote_files_info (struct target_ops *ignore);
99
100 static void remote_prepare_to_store (struct regcache *regcache);
101
102 static void remote_open (char *name, int from_tty);
103
104 static void extended_remote_open (char *name, int from_tty);
105
106 static void remote_open_1 (char *, int, struct target_ops *, int extended_p);
107
108 static void remote_close (void);
109
110 static void remote_mourn (struct target_ops *ops);
111
112 static void extended_remote_restart (void);
113
114 static void extended_remote_mourn (struct target_ops *);
115
116 static void remote_mourn_1 (struct target_ops *);
117
118 static void remote_send (char **buf, long *sizeof_buf_p);
119
120 static int readchar (int timeout);
121
122 static void remote_serial_write (const char *str, int len);
123
124 static void remote_kill (struct target_ops *ops);
125
126 static int tohex (int nib);
127
128 static int remote_can_async_p (void);
129
130 static int remote_is_async_p (void);
131
132 static void remote_async (void (*callback) (enum inferior_event_type event_type,
133 void *context), void *context);
134
135 static void sync_remote_interrupt_twice (int signo);
136
137 static void interrupt_query (void);
138
139 static void set_general_thread (struct ptid ptid);
140 static void set_continue_thread (struct ptid ptid);
141
142 static void get_offsets (void);
143
144 static void skip_frame (void);
145
146 static long read_frame (char **buf_p, long *sizeof_buf);
147
148 static int hexnumlen (ULONGEST num);
149
150 static void init_remote_ops (void);
151
152 static void init_extended_remote_ops (void);
153
154 static void remote_stop (ptid_t);
155
156 static int ishex (int ch, int *val);
157
158 static int stubhex (int ch);
159
160 static int hexnumstr (char *, ULONGEST);
161
162 static int hexnumnstr (char *, ULONGEST, int);
163
164 static CORE_ADDR remote_address_masked (CORE_ADDR);
165
166 static void print_packet (char *);
167
168 static void compare_sections_command (char *, int);
169
170 static void packet_command (char *, int);
171
172 static int stub_unpack_int (char *buff, int fieldlength);
173
174 static ptid_t remote_current_thread (ptid_t oldptid);
175
176 static void remote_find_new_threads (void);
177
178 static int fromhex (int a);
179
180 static int putpkt_binary (char *buf, int cnt);
181
182 static void check_binary_download (CORE_ADDR addr);
183
184 struct packet_config;
185
186 static void show_packet_config_cmd (struct packet_config *config);
187
188 static void update_packet_config (struct packet_config *config);
189
190 static void set_remote_protocol_packet_cmd (char *args, int from_tty,
191 struct cmd_list_element *c);
192
193 static void show_remote_protocol_packet_cmd (struct ui_file *file,
194 int from_tty,
195 struct cmd_list_element *c,
196 const char *value);
197
198 static char *write_ptid (char *buf, const char *endbuf, ptid_t ptid);
199 static ptid_t read_ptid (char *buf, char **obuf);
200
201 static void remote_set_permissions (void);
202
203 struct remote_state;
204 static int remote_get_trace_status (struct trace_status *ts);
205
206 static int remote_upload_tracepoints (struct uploaded_tp **utpp);
207
208 static int remote_upload_trace_state_variables (struct uploaded_tsv **utsvp);
209
210 static void remote_query_supported (void);
211
212 static void remote_check_symbols (void);
213
214 void _initialize_remote (void);
215
216 struct stop_reply;
217 static void stop_reply_xfree (struct stop_reply *);
218 static void remote_parse_stop_reply (char *, struct stop_reply *);
219 static void push_stop_reply (struct stop_reply *);
220 static void discard_pending_stop_replies_in_queue (struct remote_state *);
221 static int peek_stop_reply (ptid_t ptid);
222
223 static void remote_async_inferior_event_handler (gdb_client_data);
224
225 static void remote_terminal_ours (void);
226
227 static int remote_read_description_p (struct target_ops *target);
228
229 static void remote_console_output (char *msg);
230
231 static int remote_supports_cond_breakpoints (void);
232
233 static int remote_can_run_breakpoint_commands (void);
234
235 /* For "remote". */
236
237 static struct cmd_list_element *remote_cmdlist;
238
239 /* For "set remote" and "show remote". */
240
241 static struct cmd_list_element *remote_set_cmdlist;
242 static struct cmd_list_element *remote_show_cmdlist;
243
244 /* Stub vCont actions support.
245
246 Each field is a boolean flag indicating whether the stub reports
247 support for the corresponding action. */
248
249 struct vCont_action_support
250 {
251 /* vCont;t */
252 int t;
253
254 /* vCont;r */
255 int r;
256 };
257
258 /* Controls whether GDB is willing to use range stepping. */
259
260 static int use_range_stepping = 1;
261
262 #define OPAQUETHREADBYTES 8
263
264 /* a 64 bit opaque identifier */
265 typedef unsigned char threadref[OPAQUETHREADBYTES];
266
267 /* About this many threadisds fit in a packet. */
268
269 #define MAXTHREADLISTRESULTS 32
270
271 /* Description of the remote protocol state for the currently
272 connected target. This is per-target state, and independent of the
273 selected architecture. */
274
275 struct remote_state
276 {
277 /* A buffer to use for incoming packets, and its current size. The
278 buffer is grown dynamically for larger incoming packets.
279 Outgoing packets may also be constructed in this buffer.
280 BUF_SIZE is always at least REMOTE_PACKET_SIZE;
281 REMOTE_PACKET_SIZE should be used to limit the length of outgoing
282 packets. */
283 char *buf;
284 long buf_size;
285
286 /* True if we're going through initial connection setup (finding out
287 about the remote side's threads, relocating symbols, etc.). */
288 int starting_up;
289
290 /* If we negotiated packet size explicitly (and thus can bypass
291 heuristics for the largest packet size that will not overflow
292 a buffer in the stub), this will be set to that packet size.
293 Otherwise zero, meaning to use the guessed size. */
294 long explicit_packet_size;
295
296 /* remote_wait is normally called when the target is running and
297 waits for a stop reply packet. But sometimes we need to call it
298 when the target is already stopped. We can send a "?" packet
299 and have remote_wait read the response. Or, if we already have
300 the response, we can stash it in BUF and tell remote_wait to
301 skip calling getpkt. This flag is set when BUF contains a
302 stop reply packet and the target is not waiting. */
303 int cached_wait_status;
304
305 /* True, if in no ack mode. That is, neither GDB nor the stub will
306 expect acks from each other. The connection is assumed to be
307 reliable. */
308 int noack_mode;
309
310 /* True if we're connected in extended remote mode. */
311 int extended;
312
313 /* True if the stub reported support for multi-process
314 extensions. */
315 int multi_process_aware;
316
317 /* True if we resumed the target and we're waiting for the target to
318 stop. In the mean time, we can't start another command/query.
319 The remote server wouldn't be ready to process it, so we'd
320 timeout waiting for a reply that would never come and eventually
321 we'd close the connection. This can happen in asynchronous mode
322 because we allow GDB commands while the target is running. */
323 int waiting_for_stop_reply;
324
325 /* True if the stub reports support for non-stop mode. */
326 int non_stop_aware;
327
328 /* The status of the stub support for the various vCont actions. */
329 struct vCont_action_support supports_vCont;
330
331 /* True if the stub reports support for conditional tracepoints. */
332 int cond_tracepoints;
333
334 /* True if the stub reports support for target-side breakpoint
335 conditions. */
336 int cond_breakpoints;
337
338 /* True if the stub reports support for target-side breakpoint
339 commands. */
340 int breakpoint_commands;
341
342 /* True if the stub reports support for fast tracepoints. */
343 int fast_tracepoints;
344
345 /* True if the stub reports support for static tracepoints. */
346 int static_tracepoints;
347
348 /* True if the stub reports support for installing tracepoint while
349 tracing. */
350 int install_in_trace;
351
352 /* True if the stub can continue running a trace while GDB is
353 disconnected. */
354 int disconnected_tracing;
355
356 /* True if the stub reports support for enabling and disabling
357 tracepoints while a trace experiment is running. */
358 int enable_disable_tracepoints;
359
360 /* True if the stub can collect strings using tracenz bytecode. */
361 int string_tracing;
362
363 /* True if the stub supports qXfer:libraries-svr4:read with a
364 non-empty annex. */
365 int augmented_libraries_svr4_read;
366
367 /* Nonzero if the user has pressed Ctrl-C, but the target hasn't
368 responded to that. */
369 int ctrlc_pending_p;
370
371 /* Descriptor for I/O to remote machine. Initialize it to NULL so that
372 remote_open knows that we don't have a file open when the program
373 starts. */
374 struct serial *remote_desc;
375
376 /* These are the threads which we last sent to the remote system. The
377 TID member will be -1 for all or -2 for not sent yet. */
378 ptid_t general_thread;
379 ptid_t continue_thread;
380
381 /* This is the traceframe which we last selected on the remote system.
382 It will be -1 if no traceframe is selected. */
383 int remote_traceframe_number;
384
385 char *last_pass_packet;
386
387 /* The last QProgramSignals packet sent to the target. We bypass
388 sending a new program signals list down to the target if the new
389 packet is exactly the same as the last we sent. IOW, we only let
390 the target know about program signals list changes. */
391 char *last_program_signals_packet;
392
393 enum gdb_signal last_sent_signal;
394
395 int last_sent_step;
396
397 char *finished_object;
398 char *finished_annex;
399 ULONGEST finished_offset;
400
401 /* Should we try the 'ThreadInfo' query packet?
402
403 This variable (NOT available to the user: auto-detect only!)
404 determines whether GDB will use the new, simpler "ThreadInfo"
405 query or the older, more complex syntax for thread queries.
406 This is an auto-detect variable (set to true at each connect,
407 and set to false when the target fails to recognize it). */
408 int use_threadinfo_query;
409 int use_threadextra_query;
410
411 void (*async_client_callback) (enum inferior_event_type event_type,
412 void *context);
413 void *async_client_context;
414
415 /* This is set to the data address of the access causing the target
416 to stop for a watchpoint. */
417 CORE_ADDR remote_watch_data_address;
418
419 /* This is non-zero if target stopped for a watchpoint. */
420 int remote_stopped_by_watchpoint_p;
421
422 threadref echo_nextthread;
423 threadref nextthread;
424 threadref resultthreadlist[MAXTHREADLISTRESULTS];
425
426 /* The state of remote notification. */
427 struct remote_notif_state *notif_state;
428 };
429
430 /* Private data that we'll store in (struct thread_info)->private. */
431 struct private_thread_info
432 {
433 char *extra;
434 int core;
435 };
436
437 static void
438 free_private_thread_info (struct private_thread_info *info)
439 {
440 xfree (info->extra);
441 xfree (info);
442 }
443
444 /* Returns true if the multi-process extensions are in effect. */
445 static int
446 remote_multi_process_p (struct remote_state *rs)
447 {
448 return rs->multi_process_aware;
449 }
450
451 /* This data could be associated with a target, but we do not always
452 have access to the current target when we need it, so for now it is
453 static. This will be fine for as long as only one target is in use
454 at a time. */
455 static struct remote_state *remote_state;
456
457 static struct remote_state *
458 get_remote_state_raw (void)
459 {
460 return remote_state;
461 }
462
463 /* Allocate a new struct remote_state with xmalloc, initialize it, and
464 return it. */
465
466 static struct remote_state *
467 new_remote_state (void)
468 {
469 struct remote_state *result = XCNEW (struct remote_state);
470
471 /* The default buffer size is unimportant; it will be expanded
472 whenever a larger buffer is needed. */
473 result->buf_size = 400;
474 result->buf = xmalloc (result->buf_size);
475 result->remote_traceframe_number = -1;
476 result->last_sent_signal = GDB_SIGNAL_0;
477
478 return result;
479 }
480
481 /* Description of the remote protocol for a given architecture. */
482
483 struct packet_reg
484 {
485 long offset; /* Offset into G packet. */
486 long regnum; /* GDB's internal register number. */
487 LONGEST pnum; /* Remote protocol register number. */
488 int in_g_packet; /* Always part of G packet. */
489 /* long size in bytes; == register_size (target_gdbarch (), regnum);
490 at present. */
491 /* char *name; == gdbarch_register_name (target_gdbarch (), regnum);
492 at present. */
493 };
494
495 struct remote_arch_state
496 {
497 /* Description of the remote protocol registers. */
498 long sizeof_g_packet;
499
500 /* Description of the remote protocol registers indexed by REGNUM
501 (making an array gdbarch_num_regs in size). */
502 struct packet_reg *regs;
503
504 /* This is the size (in chars) of the first response to the ``g''
505 packet. It is used as a heuristic when determining the maximum
506 size of memory-read and memory-write packets. A target will
507 typically only reserve a buffer large enough to hold the ``g''
508 packet. The size does not include packet overhead (headers and
509 trailers). */
510 long actual_register_packet_size;
511
512 /* This is the maximum size (in chars) of a non read/write packet.
513 It is also used as a cap on the size of read/write packets. */
514 long remote_packet_size;
515 };
516
517 /* Utility: generate error from an incoming stub packet. */
518 static void
519 trace_error (char *buf)
520 {
521 if (*buf++ != 'E')
522 return; /* not an error msg */
523 switch (*buf)
524 {
525 case '1': /* malformed packet error */
526 if (*++buf == '0') /* general case: */
527 error (_("remote.c: error in outgoing packet."));
528 else
529 error (_("remote.c: error in outgoing packet at field #%ld."),
530 strtol (buf, NULL, 16));
531 default:
532 error (_("Target returns error code '%s'."), buf);
533 }
534 }
535
536 /* Utility: wait for reply from stub, while accepting "O" packets. */
537 static char *
538 remote_get_noisy_reply (char **buf_p,
539 long *sizeof_buf)
540 {
541 do /* Loop on reply from remote stub. */
542 {
543 char *buf;
544
545 QUIT; /* Allow user to bail out with ^C. */
546 getpkt (buf_p, sizeof_buf, 0);
547 buf = *buf_p;
548 if (buf[0] == 'E')
549 trace_error (buf);
550 else if (strncmp (buf, "qRelocInsn:", strlen ("qRelocInsn:")) == 0)
551 {
552 ULONGEST ul;
553 CORE_ADDR from, to, org_to;
554 char *p, *pp;
555 int adjusted_size = 0;
556 volatile struct gdb_exception ex;
557
558 p = buf + strlen ("qRelocInsn:");
559 pp = unpack_varlen_hex (p, &ul);
560 if (*pp != ';')
561 error (_("invalid qRelocInsn packet: %s"), buf);
562 from = ul;
563
564 p = pp + 1;
565 unpack_varlen_hex (p, &ul);
566 to = ul;
567
568 org_to = to;
569
570 TRY_CATCH (ex, RETURN_MASK_ALL)
571 {
572 gdbarch_relocate_instruction (target_gdbarch (), &to, from);
573 }
574 if (ex.reason >= 0)
575 {
576 adjusted_size = to - org_to;
577
578 xsnprintf (buf, *sizeof_buf, "qRelocInsn:%x", adjusted_size);
579 putpkt (buf);
580 }
581 else if (ex.reason < 0 && ex.error == MEMORY_ERROR)
582 {
583 /* Propagate memory errors silently back to the target.
584 The stub may have limited the range of addresses we
585 can write to, for example. */
586 putpkt ("E01");
587 }
588 else
589 {
590 /* Something unexpectedly bad happened. Be verbose so
591 we can tell what, and propagate the error back to the
592 stub, so it doesn't get stuck waiting for a
593 response. */
594 exception_fprintf (gdb_stderr, ex,
595 _("warning: relocating instruction: "));
596 putpkt ("E01");
597 }
598 }
599 else if (buf[0] == 'O' && buf[1] != 'K')
600 remote_console_output (buf + 1); /* 'O' message from stub */
601 else
602 return buf; /* Here's the actual reply. */
603 }
604 while (1);
605 }
606
607 /* Handle for retreving the remote protocol data from gdbarch. */
608 static struct gdbarch_data *remote_gdbarch_data_handle;
609
610 static struct remote_arch_state *
611 get_remote_arch_state (void)
612 {
613 return gdbarch_data (target_gdbarch (), remote_gdbarch_data_handle);
614 }
615
616 /* Fetch the global remote target state. */
617
618 static struct remote_state *
619 get_remote_state (void)
620 {
621 /* Make sure that the remote architecture state has been
622 initialized, because doing so might reallocate rs->buf. Any
623 function which calls getpkt also needs to be mindful of changes
624 to rs->buf, but this call limits the number of places which run
625 into trouble. */
626 get_remote_arch_state ();
627
628 return get_remote_state_raw ();
629 }
630
631 static int
632 compare_pnums (const void *lhs_, const void *rhs_)
633 {
634 const struct packet_reg * const *lhs = lhs_;
635 const struct packet_reg * const *rhs = rhs_;
636
637 if ((*lhs)->pnum < (*rhs)->pnum)
638 return -1;
639 else if ((*lhs)->pnum == (*rhs)->pnum)
640 return 0;
641 else
642 return 1;
643 }
644
645 static int
646 map_regcache_remote_table (struct gdbarch *gdbarch, struct packet_reg *regs)
647 {
648 int regnum, num_remote_regs, offset;
649 struct packet_reg **remote_regs;
650
651 for (regnum = 0; regnum < gdbarch_num_regs (gdbarch); regnum++)
652 {
653 struct packet_reg *r = &regs[regnum];
654
655 if (register_size (gdbarch, regnum) == 0)
656 /* Do not try to fetch zero-sized (placeholder) registers. */
657 r->pnum = -1;
658 else
659 r->pnum = gdbarch_remote_register_number (gdbarch, regnum);
660
661 r->regnum = regnum;
662 }
663
664 /* Define the g/G packet format as the contents of each register
665 with a remote protocol number, in order of ascending protocol
666 number. */
667
668 remote_regs = alloca (gdbarch_num_regs (gdbarch)
669 * sizeof (struct packet_reg *));
670 for (num_remote_regs = 0, regnum = 0;
671 regnum < gdbarch_num_regs (gdbarch);
672 regnum++)
673 if (regs[regnum].pnum != -1)
674 remote_regs[num_remote_regs++] = &regs[regnum];
675
676 qsort (remote_regs, num_remote_regs, sizeof (struct packet_reg *),
677 compare_pnums);
678
679 for (regnum = 0, offset = 0; regnum < num_remote_regs; regnum++)
680 {
681 remote_regs[regnum]->in_g_packet = 1;
682 remote_regs[regnum]->offset = offset;
683 offset += register_size (gdbarch, remote_regs[regnum]->regnum);
684 }
685
686 return offset;
687 }
688
689 /* Given the architecture described by GDBARCH, return the remote
690 protocol register's number and the register's offset in the g/G
691 packets of GDB register REGNUM, in PNUM and POFFSET respectively.
692 If the target does not have a mapping for REGNUM, return false,
693 otherwise, return true. */
694
695 int
696 remote_register_number_and_offset (struct gdbarch *gdbarch, int regnum,
697 int *pnum, int *poffset)
698 {
699 int sizeof_g_packet;
700 struct packet_reg *regs;
701 struct cleanup *old_chain;
702
703 gdb_assert (regnum < gdbarch_num_regs (gdbarch));
704
705 regs = xcalloc (gdbarch_num_regs (gdbarch), sizeof (struct packet_reg));
706 old_chain = make_cleanup (xfree, regs);
707
708 sizeof_g_packet = map_regcache_remote_table (gdbarch, regs);
709
710 *pnum = regs[regnum].pnum;
711 *poffset = regs[regnum].offset;
712
713 do_cleanups (old_chain);
714
715 return *pnum != -1;
716 }
717
718 static void *
719 init_remote_state (struct gdbarch *gdbarch)
720 {
721 struct remote_state *rs = get_remote_state_raw ();
722 struct remote_arch_state *rsa;
723
724 rsa = GDBARCH_OBSTACK_ZALLOC (gdbarch, struct remote_arch_state);
725
726 /* Use the architecture to build a regnum<->pnum table, which will be
727 1:1 unless a feature set specifies otherwise. */
728 rsa->regs = GDBARCH_OBSTACK_CALLOC (gdbarch,
729 gdbarch_num_regs (gdbarch),
730 struct packet_reg);
731
732 /* Record the maximum possible size of the g packet - it may turn out
733 to be smaller. */
734 rsa->sizeof_g_packet = map_regcache_remote_table (gdbarch, rsa->regs);
735
736 /* Default maximum number of characters in a packet body. Many
737 remote stubs have a hardwired buffer size of 400 bytes
738 (c.f. BUFMAX in m68k-stub.c and i386-stub.c). BUFMAX-1 is used
739 as the maximum packet-size to ensure that the packet and an extra
740 NUL character can always fit in the buffer. This stops GDB
741 trashing stubs that try to squeeze an extra NUL into what is
742 already a full buffer (As of 1999-12-04 that was most stubs). */
743 rsa->remote_packet_size = 400 - 1;
744
745 /* This one is filled in when a ``g'' packet is received. */
746 rsa->actual_register_packet_size = 0;
747
748 /* Should rsa->sizeof_g_packet needs more space than the
749 default, adjust the size accordingly. Remember that each byte is
750 encoded as two characters. 32 is the overhead for the packet
751 header / footer. NOTE: cagney/1999-10-26: I suspect that 8
752 (``$NN:G...#NN'') is a better guess, the below has been padded a
753 little. */
754 if (rsa->sizeof_g_packet > ((rsa->remote_packet_size - 32) / 2))
755 rsa->remote_packet_size = (rsa->sizeof_g_packet * 2 + 32);
756
757 /* Make sure that the packet buffer is plenty big enough for
758 this architecture. */
759 if (rs->buf_size < rsa->remote_packet_size)
760 {
761 rs->buf_size = 2 * rsa->remote_packet_size;
762 rs->buf = xrealloc (rs->buf, rs->buf_size);
763 }
764
765 return rsa;
766 }
767
768 /* Return the current allowed size of a remote packet. This is
769 inferred from the current architecture, and should be used to
770 limit the length of outgoing packets. */
771 static long
772 get_remote_packet_size (void)
773 {
774 struct remote_state *rs = get_remote_state ();
775 struct remote_arch_state *rsa = get_remote_arch_state ();
776
777 if (rs->explicit_packet_size)
778 return rs->explicit_packet_size;
779
780 return rsa->remote_packet_size;
781 }
782
783 static struct packet_reg *
784 packet_reg_from_regnum (struct remote_arch_state *rsa, long regnum)
785 {
786 if (regnum < 0 && regnum >= gdbarch_num_regs (target_gdbarch ()))
787 return NULL;
788 else
789 {
790 struct packet_reg *r = &rsa->regs[regnum];
791
792 gdb_assert (r->regnum == regnum);
793 return r;
794 }
795 }
796
797 static struct packet_reg *
798 packet_reg_from_pnum (struct remote_arch_state *rsa, LONGEST pnum)
799 {
800 int i;
801
802 for (i = 0; i < gdbarch_num_regs (target_gdbarch ()); i++)
803 {
804 struct packet_reg *r = &rsa->regs[i];
805
806 if (r->pnum == pnum)
807 return r;
808 }
809 return NULL;
810 }
811
812 static struct target_ops remote_ops;
813
814 static struct target_ops extended_remote_ops;
815
816 /* FIXME: cagney/1999-09-23: Even though getpkt was called with
817 ``forever'' still use the normal timeout mechanism. This is
818 currently used by the ASYNC code to guarentee that target reads
819 during the initial connect always time-out. Once getpkt has been
820 modified to return a timeout indication and, in turn
821 remote_wait()/wait_for_inferior() have gained a timeout parameter
822 this can go away. */
823 static int wait_forever_enabled_p = 1;
824
825 /* Allow the user to specify what sequence to send to the remote
826 when he requests a program interruption: Although ^C is usually
827 what remote systems expect (this is the default, here), it is
828 sometimes preferable to send a break. On other systems such
829 as the Linux kernel, a break followed by g, which is Magic SysRq g
830 is required in order to interrupt the execution. */
831 const char interrupt_sequence_control_c[] = "Ctrl-C";
832 const char interrupt_sequence_break[] = "BREAK";
833 const char interrupt_sequence_break_g[] = "BREAK-g";
834 static const char *const interrupt_sequence_modes[] =
835 {
836 interrupt_sequence_control_c,
837 interrupt_sequence_break,
838 interrupt_sequence_break_g,
839 NULL
840 };
841 static const char *interrupt_sequence_mode = interrupt_sequence_control_c;
842
843 static void
844 show_interrupt_sequence (struct ui_file *file, int from_tty,
845 struct cmd_list_element *c,
846 const char *value)
847 {
848 if (interrupt_sequence_mode == interrupt_sequence_control_c)
849 fprintf_filtered (file,
850 _("Send the ASCII ETX character (Ctrl-c) "
851 "to the remote target to interrupt the "
852 "execution of the program.\n"));
853 else if (interrupt_sequence_mode == interrupt_sequence_break)
854 fprintf_filtered (file,
855 _("send a break signal to the remote target "
856 "to interrupt the execution of the program.\n"));
857 else if (interrupt_sequence_mode == interrupt_sequence_break_g)
858 fprintf_filtered (file,
859 _("Send a break signal and 'g' a.k.a. Magic SysRq g to "
860 "the remote target to interrupt the execution "
861 "of Linux kernel.\n"));
862 else
863 internal_error (__FILE__, __LINE__,
864 _("Invalid value for interrupt_sequence_mode: %s."),
865 interrupt_sequence_mode);
866 }
867
868 /* This boolean variable specifies whether interrupt_sequence is sent
869 to the remote target when gdb connects to it.
870 This is mostly needed when you debug the Linux kernel: The Linux kernel
871 expects BREAK g which is Magic SysRq g for connecting gdb. */
872 static int interrupt_on_connect = 0;
873
874 /* This variable is used to implement the "set/show remotebreak" commands.
875 Since these commands are now deprecated in favor of "set/show remote
876 interrupt-sequence", it no longer has any effect on the code. */
877 static int remote_break;
878
879 static void
880 set_remotebreak (char *args, int from_tty, struct cmd_list_element *c)
881 {
882 if (remote_break)
883 interrupt_sequence_mode = interrupt_sequence_break;
884 else
885 interrupt_sequence_mode = interrupt_sequence_control_c;
886 }
887
888 static void
889 show_remotebreak (struct ui_file *file, int from_tty,
890 struct cmd_list_element *c,
891 const char *value)
892 {
893 }
894
895 /* This variable sets the number of bits in an address that are to be
896 sent in a memory ("M" or "m") packet. Normally, after stripping
897 leading zeros, the entire address would be sent. This variable
898 restricts the address to REMOTE_ADDRESS_SIZE bits. HISTORY: The
899 initial implementation of remote.c restricted the address sent in
900 memory packets to ``host::sizeof long'' bytes - (typically 32
901 bits). Consequently, for 64 bit targets, the upper 32 bits of an
902 address was never sent. Since fixing this bug may cause a break in
903 some remote targets this variable is principly provided to
904 facilitate backward compatibility. */
905
906 static unsigned int remote_address_size;
907
908 /* Temporary to track who currently owns the terminal. See
909 remote_terminal_* for more details. */
910
911 static int remote_async_terminal_ours_p;
912
913 /* The executable file to use for "run" on the remote side. */
914
915 static char *remote_exec_file = "";
916
917 \f
918 /* User configurable variables for the number of characters in a
919 memory read/write packet. MIN (rsa->remote_packet_size,
920 rsa->sizeof_g_packet) is the default. Some targets need smaller
921 values (fifo overruns, et.al.) and some users need larger values
922 (speed up transfers). The variables ``preferred_*'' (the user
923 request), ``current_*'' (what was actually set) and ``forced_*''
924 (Positive - a soft limit, negative - a hard limit). */
925
926 struct memory_packet_config
927 {
928 char *name;
929 long size;
930 int fixed_p;
931 };
932
933 /* Compute the current size of a read/write packet. Since this makes
934 use of ``actual_register_packet_size'' the computation is dynamic. */
935
936 static long
937 get_memory_packet_size (struct memory_packet_config *config)
938 {
939 struct remote_state *rs = get_remote_state ();
940 struct remote_arch_state *rsa = get_remote_arch_state ();
941
942 /* NOTE: The somewhat arbitrary 16k comes from the knowledge (folk
943 law?) that some hosts don't cope very well with large alloca()
944 calls. Eventually the alloca() code will be replaced by calls to
945 xmalloc() and make_cleanups() allowing this restriction to either
946 be lifted or removed. */
947 #ifndef MAX_REMOTE_PACKET_SIZE
948 #define MAX_REMOTE_PACKET_SIZE 16384
949 #endif
950 /* NOTE: 20 ensures we can write at least one byte. */
951 #ifndef MIN_REMOTE_PACKET_SIZE
952 #define MIN_REMOTE_PACKET_SIZE 20
953 #endif
954 long what_they_get;
955 if (config->fixed_p)
956 {
957 if (config->size <= 0)
958 what_they_get = MAX_REMOTE_PACKET_SIZE;
959 else
960 what_they_get = config->size;
961 }
962 else
963 {
964 what_they_get = get_remote_packet_size ();
965 /* Limit the packet to the size specified by the user. */
966 if (config->size > 0
967 && what_they_get > config->size)
968 what_they_get = config->size;
969
970 /* Limit it to the size of the targets ``g'' response unless we have
971 permission from the stub to use a larger packet size. */
972 if (rs->explicit_packet_size == 0
973 && rsa->actual_register_packet_size > 0
974 && what_they_get > rsa->actual_register_packet_size)
975 what_they_get = rsa->actual_register_packet_size;
976 }
977 if (what_they_get > MAX_REMOTE_PACKET_SIZE)
978 what_they_get = MAX_REMOTE_PACKET_SIZE;
979 if (what_they_get < MIN_REMOTE_PACKET_SIZE)
980 what_they_get = MIN_REMOTE_PACKET_SIZE;
981
982 /* Make sure there is room in the global buffer for this packet
983 (including its trailing NUL byte). */
984 if (rs->buf_size < what_they_get + 1)
985 {
986 rs->buf_size = 2 * what_they_get;
987 rs->buf = xrealloc (rs->buf, 2 * what_they_get);
988 }
989
990 return what_they_get;
991 }
992
993 /* Update the size of a read/write packet. If they user wants
994 something really big then do a sanity check. */
995
996 static void
997 set_memory_packet_size (char *args, struct memory_packet_config *config)
998 {
999 int fixed_p = config->fixed_p;
1000 long size = config->size;
1001
1002 if (args == NULL)
1003 error (_("Argument required (integer, `fixed' or `limited')."));
1004 else if (strcmp (args, "hard") == 0
1005 || strcmp (args, "fixed") == 0)
1006 fixed_p = 1;
1007 else if (strcmp (args, "soft") == 0
1008 || strcmp (args, "limit") == 0)
1009 fixed_p = 0;
1010 else
1011 {
1012 char *end;
1013
1014 size = strtoul (args, &end, 0);
1015 if (args == end)
1016 error (_("Invalid %s (bad syntax)."), config->name);
1017 #if 0
1018 /* Instead of explicitly capping the size of a packet to
1019 MAX_REMOTE_PACKET_SIZE or dissallowing it, the user is
1020 instead allowed to set the size to something arbitrarily
1021 large. */
1022 if (size > MAX_REMOTE_PACKET_SIZE)
1023 error (_("Invalid %s (too large)."), config->name);
1024 #endif
1025 }
1026 /* Extra checks? */
1027 if (fixed_p && !config->fixed_p)
1028 {
1029 if (! query (_("The target may not be able to correctly handle a %s\n"
1030 "of %ld bytes. Change the packet size? "),
1031 config->name, size))
1032 error (_("Packet size not changed."));
1033 }
1034 /* Update the config. */
1035 config->fixed_p = fixed_p;
1036 config->size = size;
1037 }
1038
1039 static void
1040 show_memory_packet_size (struct memory_packet_config *config)
1041 {
1042 printf_filtered (_("The %s is %ld. "), config->name, config->size);
1043 if (config->fixed_p)
1044 printf_filtered (_("Packets are fixed at %ld bytes.\n"),
1045 get_memory_packet_size (config));
1046 else
1047 printf_filtered (_("Packets are limited to %ld bytes.\n"),
1048 get_memory_packet_size (config));
1049 }
1050
1051 static struct memory_packet_config memory_write_packet_config =
1052 {
1053 "memory-write-packet-size",
1054 };
1055
1056 static void
1057 set_memory_write_packet_size (char *args, int from_tty)
1058 {
1059 set_memory_packet_size (args, &memory_write_packet_config);
1060 }
1061
1062 static void
1063 show_memory_write_packet_size (char *args, int from_tty)
1064 {
1065 show_memory_packet_size (&memory_write_packet_config);
1066 }
1067
1068 static long
1069 get_memory_write_packet_size (void)
1070 {
1071 return get_memory_packet_size (&memory_write_packet_config);
1072 }
1073
1074 static struct memory_packet_config memory_read_packet_config =
1075 {
1076 "memory-read-packet-size",
1077 };
1078
1079 static void
1080 set_memory_read_packet_size (char *args, int from_tty)
1081 {
1082 set_memory_packet_size (args, &memory_read_packet_config);
1083 }
1084
1085 static void
1086 show_memory_read_packet_size (char *args, int from_tty)
1087 {
1088 show_memory_packet_size (&memory_read_packet_config);
1089 }
1090
1091 static long
1092 get_memory_read_packet_size (void)
1093 {
1094 long size = get_memory_packet_size (&memory_read_packet_config);
1095
1096 /* FIXME: cagney/1999-11-07: Functions like getpkt() need to get an
1097 extra buffer size argument before the memory read size can be
1098 increased beyond this. */
1099 if (size > get_remote_packet_size ())
1100 size = get_remote_packet_size ();
1101 return size;
1102 }
1103
1104 \f
1105 /* Generic configuration support for packets the stub optionally
1106 supports. Allows the user to specify the use of the packet as well
1107 as allowing GDB to auto-detect support in the remote stub. */
1108
1109 enum packet_support
1110 {
1111 PACKET_SUPPORT_UNKNOWN = 0,
1112 PACKET_ENABLE,
1113 PACKET_DISABLE
1114 };
1115
1116 struct packet_config
1117 {
1118 const char *name;
1119 const char *title;
1120 enum auto_boolean detect;
1121 enum packet_support support;
1122 };
1123
1124 /* Analyze a packet's return value and update the packet config
1125 accordingly. */
1126
1127 enum packet_result
1128 {
1129 PACKET_ERROR,
1130 PACKET_OK,
1131 PACKET_UNKNOWN
1132 };
1133
1134 static void
1135 update_packet_config (struct packet_config *config)
1136 {
1137 switch (config->detect)
1138 {
1139 case AUTO_BOOLEAN_TRUE:
1140 config->support = PACKET_ENABLE;
1141 break;
1142 case AUTO_BOOLEAN_FALSE:
1143 config->support = PACKET_DISABLE;
1144 break;
1145 case AUTO_BOOLEAN_AUTO:
1146 config->support = PACKET_SUPPORT_UNKNOWN;
1147 break;
1148 }
1149 }
1150
1151 static void
1152 show_packet_config_cmd (struct packet_config *config)
1153 {
1154 char *support = "internal-error";
1155
1156 switch (config->support)
1157 {
1158 case PACKET_ENABLE:
1159 support = "enabled";
1160 break;
1161 case PACKET_DISABLE:
1162 support = "disabled";
1163 break;
1164 case PACKET_SUPPORT_UNKNOWN:
1165 support = "unknown";
1166 break;
1167 }
1168 switch (config->detect)
1169 {
1170 case AUTO_BOOLEAN_AUTO:
1171 printf_filtered (_("Support for the `%s' packet "
1172 "is auto-detected, currently %s.\n"),
1173 config->name, support);
1174 break;
1175 case AUTO_BOOLEAN_TRUE:
1176 case AUTO_BOOLEAN_FALSE:
1177 printf_filtered (_("Support for the `%s' packet is currently %s.\n"),
1178 config->name, support);
1179 break;
1180 }
1181 }
1182
1183 static void
1184 add_packet_config_cmd (struct packet_config *config, const char *name,
1185 const char *title, int legacy)
1186 {
1187 char *set_doc;
1188 char *show_doc;
1189 char *cmd_name;
1190
1191 config->name = name;
1192 config->title = title;
1193 config->detect = AUTO_BOOLEAN_AUTO;
1194 config->support = PACKET_SUPPORT_UNKNOWN;
1195 set_doc = xstrprintf ("Set use of remote protocol `%s' (%s) packet",
1196 name, title);
1197 show_doc = xstrprintf ("Show current use of remote "
1198 "protocol `%s' (%s) packet",
1199 name, title);
1200 /* set/show TITLE-packet {auto,on,off} */
1201 cmd_name = xstrprintf ("%s-packet", title);
1202 add_setshow_auto_boolean_cmd (cmd_name, class_obscure,
1203 &config->detect, set_doc,
1204 show_doc, NULL, /* help_doc */
1205 set_remote_protocol_packet_cmd,
1206 show_remote_protocol_packet_cmd,
1207 &remote_set_cmdlist, &remote_show_cmdlist);
1208 /* The command code copies the documentation strings. */
1209 xfree (set_doc);
1210 xfree (show_doc);
1211 /* set/show remote NAME-packet {auto,on,off} -- legacy. */
1212 if (legacy)
1213 {
1214 char *legacy_name;
1215
1216 legacy_name = xstrprintf ("%s-packet", name);
1217 add_alias_cmd (legacy_name, cmd_name, class_obscure, 0,
1218 &remote_set_cmdlist);
1219 add_alias_cmd (legacy_name, cmd_name, class_obscure, 0,
1220 &remote_show_cmdlist);
1221 }
1222 }
1223
1224 static enum packet_result
1225 packet_check_result (const char *buf)
1226 {
1227 if (buf[0] != '\0')
1228 {
1229 /* The stub recognized the packet request. Check that the
1230 operation succeeded. */
1231 if (buf[0] == 'E'
1232 && isxdigit (buf[1]) && isxdigit (buf[2])
1233 && buf[3] == '\0')
1234 /* "Enn" - definitly an error. */
1235 return PACKET_ERROR;
1236
1237 /* Always treat "E." as an error. This will be used for
1238 more verbose error messages, such as E.memtypes. */
1239 if (buf[0] == 'E' && buf[1] == '.')
1240 return PACKET_ERROR;
1241
1242 /* The packet may or may not be OK. Just assume it is. */
1243 return PACKET_OK;
1244 }
1245 else
1246 /* The stub does not support the packet. */
1247 return PACKET_UNKNOWN;
1248 }
1249
1250 static enum packet_result
1251 packet_ok (const char *buf, struct packet_config *config)
1252 {
1253 enum packet_result result;
1254
1255 result = packet_check_result (buf);
1256 switch (result)
1257 {
1258 case PACKET_OK:
1259 case PACKET_ERROR:
1260 /* The stub recognized the packet request. */
1261 switch (config->support)
1262 {
1263 case PACKET_SUPPORT_UNKNOWN:
1264 if (remote_debug)
1265 fprintf_unfiltered (gdb_stdlog,
1266 "Packet %s (%s) is supported\n",
1267 config->name, config->title);
1268 config->support = PACKET_ENABLE;
1269 break;
1270 case PACKET_DISABLE:
1271 internal_error (__FILE__, __LINE__,
1272 _("packet_ok: attempt to use a disabled packet"));
1273 break;
1274 case PACKET_ENABLE:
1275 break;
1276 }
1277 break;
1278 case PACKET_UNKNOWN:
1279 /* The stub does not support the packet. */
1280 switch (config->support)
1281 {
1282 case PACKET_ENABLE:
1283 if (config->detect == AUTO_BOOLEAN_AUTO)
1284 /* If the stub previously indicated that the packet was
1285 supported then there is a protocol error.. */
1286 error (_("Protocol error: %s (%s) conflicting enabled responses."),
1287 config->name, config->title);
1288 else
1289 /* The user set it wrong. */
1290 error (_("Enabled packet %s (%s) not recognized by stub"),
1291 config->name, config->title);
1292 break;
1293 case PACKET_SUPPORT_UNKNOWN:
1294 if (remote_debug)
1295 fprintf_unfiltered (gdb_stdlog,
1296 "Packet %s (%s) is NOT supported\n",
1297 config->name, config->title);
1298 config->support = PACKET_DISABLE;
1299 break;
1300 case PACKET_DISABLE:
1301 break;
1302 }
1303 break;
1304 }
1305
1306 return result;
1307 }
1308
1309 enum {
1310 PACKET_vCont = 0,
1311 PACKET_X,
1312 PACKET_qSymbol,
1313 PACKET_P,
1314 PACKET_p,
1315 PACKET_Z0,
1316 PACKET_Z1,
1317 PACKET_Z2,
1318 PACKET_Z3,
1319 PACKET_Z4,
1320 PACKET_vFile_open,
1321 PACKET_vFile_pread,
1322 PACKET_vFile_pwrite,
1323 PACKET_vFile_close,
1324 PACKET_vFile_unlink,
1325 PACKET_vFile_readlink,
1326 PACKET_qXfer_auxv,
1327 PACKET_qXfer_features,
1328 PACKET_qXfer_libraries,
1329 PACKET_qXfer_libraries_svr4,
1330 PACKET_qXfer_memory_map,
1331 PACKET_qXfer_spu_read,
1332 PACKET_qXfer_spu_write,
1333 PACKET_qXfer_osdata,
1334 PACKET_qXfer_threads,
1335 PACKET_qXfer_statictrace_read,
1336 PACKET_qXfer_traceframe_info,
1337 PACKET_qXfer_uib,
1338 PACKET_qGetTIBAddr,
1339 PACKET_qGetTLSAddr,
1340 PACKET_qSupported,
1341 PACKET_qTStatus,
1342 PACKET_QPassSignals,
1343 PACKET_QProgramSignals,
1344 PACKET_qSearch_memory,
1345 PACKET_vAttach,
1346 PACKET_vRun,
1347 PACKET_QStartNoAckMode,
1348 PACKET_vKill,
1349 PACKET_qXfer_siginfo_read,
1350 PACKET_qXfer_siginfo_write,
1351 PACKET_qAttached,
1352 PACKET_ConditionalTracepoints,
1353 PACKET_ConditionalBreakpoints,
1354 PACKET_BreakpointCommands,
1355 PACKET_FastTracepoints,
1356 PACKET_StaticTracepoints,
1357 PACKET_InstallInTrace,
1358 PACKET_bc,
1359 PACKET_bs,
1360 PACKET_TracepointSource,
1361 PACKET_QAllow,
1362 PACKET_qXfer_fdpic,
1363 PACKET_QDisableRandomization,
1364 PACKET_QAgent,
1365 PACKET_QTBuffer_size,
1366 PACKET_Qbtrace_off,
1367 PACKET_Qbtrace_bts,
1368 PACKET_qXfer_btrace,
1369 PACKET_MAX
1370 };
1371
1372 static struct packet_config remote_protocol_packets[PACKET_MAX];
1373
1374 static void
1375 set_remote_protocol_packet_cmd (char *args, int from_tty,
1376 struct cmd_list_element *c)
1377 {
1378 struct packet_config *packet;
1379
1380 for (packet = remote_protocol_packets;
1381 packet < &remote_protocol_packets[PACKET_MAX];
1382 packet++)
1383 {
1384 if (&packet->detect == c->var)
1385 {
1386 update_packet_config (packet);
1387 return;
1388 }
1389 }
1390 internal_error (__FILE__, __LINE__, _("Could not find config for %s"),
1391 c->name);
1392 }
1393
1394 static void
1395 show_remote_protocol_packet_cmd (struct ui_file *file, int from_tty,
1396 struct cmd_list_element *c,
1397 const char *value)
1398 {
1399 struct packet_config *packet;
1400
1401 for (packet = remote_protocol_packets;
1402 packet < &remote_protocol_packets[PACKET_MAX];
1403 packet++)
1404 {
1405 if (&packet->detect == c->var)
1406 {
1407 show_packet_config_cmd (packet);
1408 return;
1409 }
1410 }
1411 internal_error (__FILE__, __LINE__, _("Could not find config for %s"),
1412 c->name);
1413 }
1414
1415 /* Should we try one of the 'Z' requests? */
1416
1417 enum Z_packet_type
1418 {
1419 Z_PACKET_SOFTWARE_BP,
1420 Z_PACKET_HARDWARE_BP,
1421 Z_PACKET_WRITE_WP,
1422 Z_PACKET_READ_WP,
1423 Z_PACKET_ACCESS_WP,
1424 NR_Z_PACKET_TYPES
1425 };
1426
1427 /* For compatibility with older distributions. Provide a ``set remote
1428 Z-packet ...'' command that updates all the Z packet types. */
1429
1430 static enum auto_boolean remote_Z_packet_detect;
1431
1432 static void
1433 set_remote_protocol_Z_packet_cmd (char *args, int from_tty,
1434 struct cmd_list_element *c)
1435 {
1436 int i;
1437
1438 for (i = 0; i < NR_Z_PACKET_TYPES; i++)
1439 {
1440 remote_protocol_packets[PACKET_Z0 + i].detect = remote_Z_packet_detect;
1441 update_packet_config (&remote_protocol_packets[PACKET_Z0 + i]);
1442 }
1443 }
1444
1445 static void
1446 show_remote_protocol_Z_packet_cmd (struct ui_file *file, int from_tty,
1447 struct cmd_list_element *c,
1448 const char *value)
1449 {
1450 int i;
1451
1452 for (i = 0; i < NR_Z_PACKET_TYPES; i++)
1453 {
1454 show_packet_config_cmd (&remote_protocol_packets[PACKET_Z0 + i]);
1455 }
1456 }
1457
1458 /* Tokens for use by the asynchronous signal handlers for SIGINT. */
1459 static struct async_signal_handler *async_sigint_remote_twice_token;
1460 static struct async_signal_handler *async_sigint_remote_token;
1461
1462 \f
1463 /* Asynchronous signal handle registered as event loop source for
1464 when we have pending events ready to be passed to the core. */
1465
1466 static struct async_event_handler *remote_async_inferior_event_token;
1467
1468 \f
1469
1470 static ptid_t magic_null_ptid;
1471 static ptid_t not_sent_ptid;
1472 static ptid_t any_thread_ptid;
1473
1474 /* Find out if the stub attached to PID (and hence GDB should offer to
1475 detach instead of killing it when bailing out). */
1476
1477 static int
1478 remote_query_attached (int pid)
1479 {
1480 struct remote_state *rs = get_remote_state ();
1481 size_t size = get_remote_packet_size ();
1482
1483 if (remote_protocol_packets[PACKET_qAttached].support == PACKET_DISABLE)
1484 return 0;
1485
1486 if (remote_multi_process_p (rs))
1487 xsnprintf (rs->buf, size, "qAttached:%x", pid);
1488 else
1489 xsnprintf (rs->buf, size, "qAttached");
1490
1491 putpkt (rs->buf);
1492 getpkt (&rs->buf, &rs->buf_size, 0);
1493
1494 switch (packet_ok (rs->buf,
1495 &remote_protocol_packets[PACKET_qAttached]))
1496 {
1497 case PACKET_OK:
1498 if (strcmp (rs->buf, "1") == 0)
1499 return 1;
1500 break;
1501 case PACKET_ERROR:
1502 warning (_("Remote failure reply: %s"), rs->buf);
1503 break;
1504 case PACKET_UNKNOWN:
1505 break;
1506 }
1507
1508 return 0;
1509 }
1510
1511 /* Add PID to GDB's inferior table. If FAKE_PID_P is true, then PID
1512 has been invented by GDB, instead of reported by the target. Since
1513 we can be connected to a remote system before before knowing about
1514 any inferior, mark the target with execution when we find the first
1515 inferior. If ATTACHED is 1, then we had just attached to this
1516 inferior. If it is 0, then we just created this inferior. If it
1517 is -1, then try querying the remote stub to find out if it had
1518 attached to the inferior or not. */
1519
1520 static struct inferior *
1521 remote_add_inferior (int fake_pid_p, int pid, int attached)
1522 {
1523 struct inferior *inf;
1524
1525 /* Check whether this process we're learning about is to be
1526 considered attached, or if is to be considered to have been
1527 spawned by the stub. */
1528 if (attached == -1)
1529 attached = remote_query_attached (pid);
1530
1531 if (gdbarch_has_global_solist (target_gdbarch ()))
1532 {
1533 /* If the target shares code across all inferiors, then every
1534 attach adds a new inferior. */
1535 inf = add_inferior (pid);
1536
1537 /* ... and every inferior is bound to the same program space.
1538 However, each inferior may still have its own address
1539 space. */
1540 inf->aspace = maybe_new_address_space ();
1541 inf->pspace = current_program_space;
1542 }
1543 else
1544 {
1545 /* In the traditional debugging scenario, there's a 1-1 match
1546 between program/address spaces. We simply bind the inferior
1547 to the program space's address space. */
1548 inf = current_inferior ();
1549 inferior_appeared (inf, pid);
1550 }
1551
1552 inf->attach_flag = attached;
1553 inf->fake_pid_p = fake_pid_p;
1554
1555 return inf;
1556 }
1557
1558 /* Add thread PTID to GDB's thread list. Tag it as executing/running
1559 according to RUNNING. */
1560
1561 static void
1562 remote_add_thread (ptid_t ptid, int running)
1563 {
1564 add_thread (ptid);
1565
1566 set_executing (ptid, running);
1567 set_running (ptid, running);
1568 }
1569
1570 /* Come here when we learn about a thread id from the remote target.
1571 It may be the first time we hear about such thread, so take the
1572 opportunity to add it to GDB's thread list. In case this is the
1573 first time we're noticing its corresponding inferior, add it to
1574 GDB's inferior list as well. */
1575
1576 static void
1577 remote_notice_new_inferior (ptid_t currthread, int running)
1578 {
1579 /* If this is a new thread, add it to GDB's thread list.
1580 If we leave it up to WFI to do this, bad things will happen. */
1581
1582 if (in_thread_list (currthread) && is_exited (currthread))
1583 {
1584 /* We're seeing an event on a thread id we knew had exited.
1585 This has to be a new thread reusing the old id. Add it. */
1586 remote_add_thread (currthread, running);
1587 return;
1588 }
1589
1590 if (!in_thread_list (currthread))
1591 {
1592 struct inferior *inf = NULL;
1593 int pid = ptid_get_pid (currthread);
1594
1595 if (ptid_is_pid (inferior_ptid)
1596 && pid == ptid_get_pid (inferior_ptid))
1597 {
1598 /* inferior_ptid has no thread member yet. This can happen
1599 with the vAttach -> remote_wait,"TAAthread:" path if the
1600 stub doesn't support qC. This is the first stop reported
1601 after an attach, so this is the main thread. Update the
1602 ptid in the thread list. */
1603 if (in_thread_list (pid_to_ptid (pid)))
1604 thread_change_ptid (inferior_ptid, currthread);
1605 else
1606 {
1607 remote_add_thread (currthread, running);
1608 inferior_ptid = currthread;
1609 }
1610 return;
1611 }
1612
1613 if (ptid_equal (magic_null_ptid, inferior_ptid))
1614 {
1615 /* inferior_ptid is not set yet. This can happen with the
1616 vRun -> remote_wait,"TAAthread:" path if the stub
1617 doesn't support qC. This is the first stop reported
1618 after an attach, so this is the main thread. Update the
1619 ptid in the thread list. */
1620 thread_change_ptid (inferior_ptid, currthread);
1621 return;
1622 }
1623
1624 /* When connecting to a target remote, or to a target
1625 extended-remote which already was debugging an inferior, we
1626 may not know about it yet. Add it before adding its child
1627 thread, so notifications are emitted in a sensible order. */
1628 if (!in_inferior_list (ptid_get_pid (currthread)))
1629 {
1630 struct remote_state *rs = get_remote_state ();
1631 int fake_pid_p = !remote_multi_process_p (rs);
1632
1633 inf = remote_add_inferior (fake_pid_p,
1634 ptid_get_pid (currthread), -1);
1635 }
1636
1637 /* This is really a new thread. Add it. */
1638 remote_add_thread (currthread, running);
1639
1640 /* If we found a new inferior, let the common code do whatever
1641 it needs to with it (e.g., read shared libraries, insert
1642 breakpoints). */
1643 if (inf != NULL)
1644 notice_new_inferior (currthread, running, 0);
1645 }
1646 }
1647
1648 /* Return the private thread data, creating it if necessary. */
1649
1650 static struct private_thread_info *
1651 demand_private_info (ptid_t ptid)
1652 {
1653 struct thread_info *info = find_thread_ptid (ptid);
1654
1655 gdb_assert (info);
1656
1657 if (!info->private)
1658 {
1659 info->private = xmalloc (sizeof (*(info->private)));
1660 info->private_dtor = free_private_thread_info;
1661 info->private->core = -1;
1662 info->private->extra = 0;
1663 }
1664
1665 return info->private;
1666 }
1667
1668 /* Call this function as a result of
1669 1) A halt indication (T packet) containing a thread id
1670 2) A direct query of currthread
1671 3) Successful execution of set thread */
1672
1673 static void
1674 record_currthread (struct remote_state *rs, ptid_t currthread)
1675 {
1676 rs->general_thread = currthread;
1677 }
1678
1679 /* If 'QPassSignals' is supported, tell the remote stub what signals
1680 it can simply pass through to the inferior without reporting. */
1681
1682 static void
1683 remote_pass_signals (int numsigs, unsigned char *pass_signals)
1684 {
1685 if (remote_protocol_packets[PACKET_QPassSignals].support != PACKET_DISABLE)
1686 {
1687 char *pass_packet, *p;
1688 int count = 0, i;
1689 struct remote_state *rs = get_remote_state ();
1690
1691 gdb_assert (numsigs < 256);
1692 for (i = 0; i < numsigs; i++)
1693 {
1694 if (pass_signals[i])
1695 count++;
1696 }
1697 pass_packet = xmalloc (count * 3 + strlen ("QPassSignals:") + 1);
1698 strcpy (pass_packet, "QPassSignals:");
1699 p = pass_packet + strlen (pass_packet);
1700 for (i = 0; i < numsigs; i++)
1701 {
1702 if (pass_signals[i])
1703 {
1704 if (i >= 16)
1705 *p++ = tohex (i >> 4);
1706 *p++ = tohex (i & 15);
1707 if (count)
1708 *p++ = ';';
1709 else
1710 break;
1711 count--;
1712 }
1713 }
1714 *p = 0;
1715 if (!rs->last_pass_packet || strcmp (rs->last_pass_packet, pass_packet))
1716 {
1717 char *buf = rs->buf;
1718
1719 putpkt (pass_packet);
1720 getpkt (&rs->buf, &rs->buf_size, 0);
1721 packet_ok (buf, &remote_protocol_packets[PACKET_QPassSignals]);
1722 if (rs->last_pass_packet)
1723 xfree (rs->last_pass_packet);
1724 rs->last_pass_packet = pass_packet;
1725 }
1726 else
1727 xfree (pass_packet);
1728 }
1729 }
1730
1731 /* If 'QProgramSignals' is supported, tell the remote stub what
1732 signals it should pass through to the inferior when detaching. */
1733
1734 static void
1735 remote_program_signals (int numsigs, unsigned char *signals)
1736 {
1737 if (remote_protocol_packets[PACKET_QProgramSignals].support != PACKET_DISABLE)
1738 {
1739 char *packet, *p;
1740 int count = 0, i;
1741 struct remote_state *rs = get_remote_state ();
1742
1743 gdb_assert (numsigs < 256);
1744 for (i = 0; i < numsigs; i++)
1745 {
1746 if (signals[i])
1747 count++;
1748 }
1749 packet = xmalloc (count * 3 + strlen ("QProgramSignals:") + 1);
1750 strcpy (packet, "QProgramSignals:");
1751 p = packet + strlen (packet);
1752 for (i = 0; i < numsigs; i++)
1753 {
1754 if (signal_pass_state (i))
1755 {
1756 if (i >= 16)
1757 *p++ = tohex (i >> 4);
1758 *p++ = tohex (i & 15);
1759 if (count)
1760 *p++ = ';';
1761 else
1762 break;
1763 count--;
1764 }
1765 }
1766 *p = 0;
1767 if (!rs->last_program_signals_packet
1768 || strcmp (rs->last_program_signals_packet, packet) != 0)
1769 {
1770 char *buf = rs->buf;
1771
1772 putpkt (packet);
1773 getpkt (&rs->buf, &rs->buf_size, 0);
1774 packet_ok (buf, &remote_protocol_packets[PACKET_QProgramSignals]);
1775 xfree (rs->last_program_signals_packet);
1776 rs->last_program_signals_packet = packet;
1777 }
1778 else
1779 xfree (packet);
1780 }
1781 }
1782
1783 /* If PTID is MAGIC_NULL_PTID, don't set any thread. If PTID is
1784 MINUS_ONE_PTID, set the thread to -1, so the stub returns the
1785 thread. If GEN is set, set the general thread, if not, then set
1786 the step/continue thread. */
1787 static void
1788 set_thread (struct ptid ptid, int gen)
1789 {
1790 struct remote_state *rs = get_remote_state ();
1791 ptid_t state = gen ? rs->general_thread : rs->continue_thread;
1792 char *buf = rs->buf;
1793 char *endbuf = rs->buf + get_remote_packet_size ();
1794
1795 if (ptid_equal (state, ptid))
1796 return;
1797
1798 *buf++ = 'H';
1799 *buf++ = gen ? 'g' : 'c';
1800 if (ptid_equal (ptid, magic_null_ptid))
1801 xsnprintf (buf, endbuf - buf, "0");
1802 else if (ptid_equal (ptid, any_thread_ptid))
1803 xsnprintf (buf, endbuf - buf, "0");
1804 else if (ptid_equal (ptid, minus_one_ptid))
1805 xsnprintf (buf, endbuf - buf, "-1");
1806 else
1807 write_ptid (buf, endbuf, ptid);
1808 putpkt (rs->buf);
1809 getpkt (&rs->buf, &rs->buf_size, 0);
1810 if (gen)
1811 rs->general_thread = ptid;
1812 else
1813 rs->continue_thread = ptid;
1814 }
1815
1816 static void
1817 set_general_thread (struct ptid ptid)
1818 {
1819 set_thread (ptid, 1);
1820 }
1821
1822 static void
1823 set_continue_thread (struct ptid ptid)
1824 {
1825 set_thread (ptid, 0);
1826 }
1827
1828 /* Change the remote current process. Which thread within the process
1829 ends up selected isn't important, as long as it is the same process
1830 as what INFERIOR_PTID points to.
1831
1832 This comes from that fact that there is no explicit notion of
1833 "selected process" in the protocol. The selected process for
1834 general operations is the process the selected general thread
1835 belongs to. */
1836
1837 static void
1838 set_general_process (void)
1839 {
1840 struct remote_state *rs = get_remote_state ();
1841
1842 /* If the remote can't handle multiple processes, don't bother. */
1843 if (!rs->extended || !remote_multi_process_p (rs))
1844 return;
1845
1846 /* We only need to change the remote current thread if it's pointing
1847 at some other process. */
1848 if (ptid_get_pid (rs->general_thread) != ptid_get_pid (inferior_ptid))
1849 set_general_thread (inferior_ptid);
1850 }
1851
1852 \f
1853 /* Return nonzero if the thread PTID is still alive on the remote
1854 system. */
1855
1856 static int
1857 remote_thread_alive (struct target_ops *ops, ptid_t ptid)
1858 {
1859 struct remote_state *rs = get_remote_state ();
1860 char *p, *endp;
1861
1862 if (ptid_equal (ptid, magic_null_ptid))
1863 /* The main thread is always alive. */
1864 return 1;
1865
1866 if (ptid_get_pid (ptid) != 0 && ptid_get_tid (ptid) == 0)
1867 /* The main thread is always alive. This can happen after a
1868 vAttach, if the remote side doesn't support
1869 multi-threading. */
1870 return 1;
1871
1872 p = rs->buf;
1873 endp = rs->buf + get_remote_packet_size ();
1874
1875 *p++ = 'T';
1876 write_ptid (p, endp, ptid);
1877
1878 putpkt (rs->buf);
1879 getpkt (&rs->buf, &rs->buf_size, 0);
1880 return (rs->buf[0] == 'O' && rs->buf[1] == 'K');
1881 }
1882
1883 /* About these extended threadlist and threadinfo packets. They are
1884 variable length packets but, the fields within them are often fixed
1885 length. They are redundent enough to send over UDP as is the
1886 remote protocol in general. There is a matching unit test module
1887 in libstub. */
1888
1889 /* WARNING: This threadref data structure comes from the remote O.S.,
1890 libstub protocol encoding, and remote.c. It is not particularly
1891 changable. */
1892
1893 /* Right now, the internal structure is int. We want it to be bigger.
1894 Plan to fix this. */
1895
1896 typedef int gdb_threadref; /* Internal GDB thread reference. */
1897
1898 /* gdb_ext_thread_info is an internal GDB data structure which is
1899 equivalent to the reply of the remote threadinfo packet. */
1900
1901 struct gdb_ext_thread_info
1902 {
1903 threadref threadid; /* External form of thread reference. */
1904 int active; /* Has state interesting to GDB?
1905 regs, stack. */
1906 char display[256]; /* Brief state display, name,
1907 blocked/suspended. */
1908 char shortname[32]; /* To be used to name threads. */
1909 char more_display[256]; /* Long info, statistics, queue depth,
1910 whatever. */
1911 };
1912
1913 /* The volume of remote transfers can be limited by submitting
1914 a mask containing bits specifying the desired information.
1915 Use a union of these values as the 'selection' parameter to
1916 get_thread_info. FIXME: Make these TAG names more thread specific. */
1917
1918 #define TAG_THREADID 1
1919 #define TAG_EXISTS 2
1920 #define TAG_DISPLAY 4
1921 #define TAG_THREADNAME 8
1922 #define TAG_MOREDISPLAY 16
1923
1924 #define BUF_THREAD_ID_SIZE (OPAQUETHREADBYTES * 2)
1925
1926 char *unpack_varlen_hex (char *buff, ULONGEST *result);
1927
1928 static char *unpack_nibble (char *buf, int *val);
1929
1930 static char *pack_nibble (char *buf, int nibble);
1931
1932 static char *pack_hex_byte (char *pkt, int /* unsigned char */ byte);
1933
1934 static char *unpack_byte (char *buf, int *value);
1935
1936 static char *pack_int (char *buf, int value);
1937
1938 static char *unpack_int (char *buf, int *value);
1939
1940 static char *unpack_string (char *src, char *dest, int length);
1941
1942 static char *pack_threadid (char *pkt, threadref *id);
1943
1944 static char *unpack_threadid (char *inbuf, threadref *id);
1945
1946 void int_to_threadref (threadref *id, int value);
1947
1948 static int threadref_to_int (threadref *ref);
1949
1950 static void copy_threadref (threadref *dest, threadref *src);
1951
1952 static int threadmatch (threadref *dest, threadref *src);
1953
1954 static char *pack_threadinfo_request (char *pkt, int mode,
1955 threadref *id);
1956
1957 static int remote_unpack_thread_info_response (char *pkt,
1958 threadref *expectedref,
1959 struct gdb_ext_thread_info
1960 *info);
1961
1962
1963 static int remote_get_threadinfo (threadref *threadid,
1964 int fieldset, /*TAG mask */
1965 struct gdb_ext_thread_info *info);
1966
1967 static char *pack_threadlist_request (char *pkt, int startflag,
1968 int threadcount,
1969 threadref *nextthread);
1970
1971 static int parse_threadlist_response (char *pkt,
1972 int result_limit,
1973 threadref *original_echo,
1974 threadref *resultlist,
1975 int *doneflag);
1976
1977 static int remote_get_threadlist (int startflag,
1978 threadref *nextthread,
1979 int result_limit,
1980 int *done,
1981 int *result_count,
1982 threadref *threadlist);
1983
1984 typedef int (*rmt_thread_action) (threadref *ref, void *context);
1985
1986 static int remote_threadlist_iterator (rmt_thread_action stepfunction,
1987 void *context, int looplimit);
1988
1989 static int remote_newthread_step (threadref *ref, void *context);
1990
1991
1992 /* Write a PTID to BUF. ENDBUF points to one-passed-the-end of the
1993 buffer we're allowed to write to. Returns
1994 BUF+CHARACTERS_WRITTEN. */
1995
1996 static char *
1997 write_ptid (char *buf, const char *endbuf, ptid_t ptid)
1998 {
1999 int pid, tid;
2000 struct remote_state *rs = get_remote_state ();
2001
2002 if (remote_multi_process_p (rs))
2003 {
2004 pid = ptid_get_pid (ptid);
2005 if (pid < 0)
2006 buf += xsnprintf (buf, endbuf - buf, "p-%x.", -pid);
2007 else
2008 buf += xsnprintf (buf, endbuf - buf, "p%x.", pid);
2009 }
2010 tid = ptid_get_tid (ptid);
2011 if (tid < 0)
2012 buf += xsnprintf (buf, endbuf - buf, "-%x", -tid);
2013 else
2014 buf += xsnprintf (buf, endbuf - buf, "%x", tid);
2015
2016 return buf;
2017 }
2018
2019 /* Extract a PTID from BUF. If non-null, OBUF is set to the to one
2020 passed the last parsed char. Returns null_ptid on error. */
2021
2022 static ptid_t
2023 read_ptid (char *buf, char **obuf)
2024 {
2025 char *p = buf;
2026 char *pp;
2027 ULONGEST pid = 0, tid = 0;
2028
2029 if (*p == 'p')
2030 {
2031 /* Multi-process ptid. */
2032 pp = unpack_varlen_hex (p + 1, &pid);
2033 if (*pp != '.')
2034 error (_("invalid remote ptid: %s"), p);
2035
2036 p = pp;
2037 pp = unpack_varlen_hex (p + 1, &tid);
2038 if (obuf)
2039 *obuf = pp;
2040 return ptid_build (pid, 0, tid);
2041 }
2042
2043 /* No multi-process. Just a tid. */
2044 pp = unpack_varlen_hex (p, &tid);
2045
2046 /* Since the stub is not sending a process id, then default to
2047 what's in inferior_ptid, unless it's null at this point. If so,
2048 then since there's no way to know the pid of the reported
2049 threads, use the magic number. */
2050 if (ptid_equal (inferior_ptid, null_ptid))
2051 pid = ptid_get_pid (magic_null_ptid);
2052 else
2053 pid = ptid_get_pid (inferior_ptid);
2054
2055 if (obuf)
2056 *obuf = pp;
2057 return ptid_build (pid, 0, tid);
2058 }
2059
2060 /* Encode 64 bits in 16 chars of hex. */
2061
2062 static const char hexchars[] = "0123456789abcdef";
2063
2064 static int
2065 ishex (int ch, int *val)
2066 {
2067 if ((ch >= 'a') && (ch <= 'f'))
2068 {
2069 *val = ch - 'a' + 10;
2070 return 1;
2071 }
2072 if ((ch >= 'A') && (ch <= 'F'))
2073 {
2074 *val = ch - 'A' + 10;
2075 return 1;
2076 }
2077 if ((ch >= '0') && (ch <= '9'))
2078 {
2079 *val = ch - '0';
2080 return 1;
2081 }
2082 return 0;
2083 }
2084
2085 static int
2086 stubhex (int ch)
2087 {
2088 if (ch >= 'a' && ch <= 'f')
2089 return ch - 'a' + 10;
2090 if (ch >= '0' && ch <= '9')
2091 return ch - '0';
2092 if (ch >= 'A' && ch <= 'F')
2093 return ch - 'A' + 10;
2094 return -1;
2095 }
2096
2097 static int
2098 stub_unpack_int (char *buff, int fieldlength)
2099 {
2100 int nibble;
2101 int retval = 0;
2102
2103 while (fieldlength)
2104 {
2105 nibble = stubhex (*buff++);
2106 retval |= nibble;
2107 fieldlength--;
2108 if (fieldlength)
2109 retval = retval << 4;
2110 }
2111 return retval;
2112 }
2113
2114 char *
2115 unpack_varlen_hex (char *buff, /* packet to parse */
2116 ULONGEST *result)
2117 {
2118 int nibble;
2119 ULONGEST retval = 0;
2120
2121 while (ishex (*buff, &nibble))
2122 {
2123 buff++;
2124 retval = retval << 4;
2125 retval |= nibble & 0x0f;
2126 }
2127 *result = retval;
2128 return buff;
2129 }
2130
2131 static char *
2132 unpack_nibble (char *buf, int *val)
2133 {
2134 *val = fromhex (*buf++);
2135 return buf;
2136 }
2137
2138 static char *
2139 pack_nibble (char *buf, int nibble)
2140 {
2141 *buf++ = hexchars[(nibble & 0x0f)];
2142 return buf;
2143 }
2144
2145 static char *
2146 pack_hex_byte (char *pkt, int byte)
2147 {
2148 *pkt++ = hexchars[(byte >> 4) & 0xf];
2149 *pkt++ = hexchars[(byte & 0xf)];
2150 return pkt;
2151 }
2152
2153 static char *
2154 unpack_byte (char *buf, int *value)
2155 {
2156 *value = stub_unpack_int (buf, 2);
2157 return buf + 2;
2158 }
2159
2160 static char *
2161 pack_int (char *buf, int value)
2162 {
2163 buf = pack_hex_byte (buf, (value >> 24) & 0xff);
2164 buf = pack_hex_byte (buf, (value >> 16) & 0xff);
2165 buf = pack_hex_byte (buf, (value >> 8) & 0x0ff);
2166 buf = pack_hex_byte (buf, (value & 0xff));
2167 return buf;
2168 }
2169
2170 static char *
2171 unpack_int (char *buf, int *value)
2172 {
2173 *value = stub_unpack_int (buf, 8);
2174 return buf + 8;
2175 }
2176
2177 #if 0 /* Currently unused, uncomment when needed. */
2178 static char *pack_string (char *pkt, char *string);
2179
2180 static char *
2181 pack_string (char *pkt, char *string)
2182 {
2183 char ch;
2184 int len;
2185
2186 len = strlen (string);
2187 if (len > 200)
2188 len = 200; /* Bigger than most GDB packets, junk??? */
2189 pkt = pack_hex_byte (pkt, len);
2190 while (len-- > 0)
2191 {
2192 ch = *string++;
2193 if ((ch == '\0') || (ch == '#'))
2194 ch = '*'; /* Protect encapsulation. */
2195 *pkt++ = ch;
2196 }
2197 return pkt;
2198 }
2199 #endif /* 0 (unused) */
2200
2201 static char *
2202 unpack_string (char *src, char *dest, int length)
2203 {
2204 while (length--)
2205 *dest++ = *src++;
2206 *dest = '\0';
2207 return src;
2208 }
2209
2210 static char *
2211 pack_threadid (char *pkt, threadref *id)
2212 {
2213 char *limit;
2214 unsigned char *altid;
2215
2216 altid = (unsigned char *) id;
2217 limit = pkt + BUF_THREAD_ID_SIZE;
2218 while (pkt < limit)
2219 pkt = pack_hex_byte (pkt, *altid++);
2220 return pkt;
2221 }
2222
2223
2224 static char *
2225 unpack_threadid (char *inbuf, threadref *id)
2226 {
2227 char *altref;
2228 char *limit = inbuf + BUF_THREAD_ID_SIZE;
2229 int x, y;
2230
2231 altref = (char *) id;
2232
2233 while (inbuf < limit)
2234 {
2235 x = stubhex (*inbuf++);
2236 y = stubhex (*inbuf++);
2237 *altref++ = (x << 4) | y;
2238 }
2239 return inbuf;
2240 }
2241
2242 /* Externally, threadrefs are 64 bits but internally, they are still
2243 ints. This is due to a mismatch of specifications. We would like
2244 to use 64bit thread references internally. This is an adapter
2245 function. */
2246
2247 void
2248 int_to_threadref (threadref *id, int value)
2249 {
2250 unsigned char *scan;
2251
2252 scan = (unsigned char *) id;
2253 {
2254 int i = 4;
2255 while (i--)
2256 *scan++ = 0;
2257 }
2258 *scan++ = (value >> 24) & 0xff;
2259 *scan++ = (value >> 16) & 0xff;
2260 *scan++ = (value >> 8) & 0xff;
2261 *scan++ = (value & 0xff);
2262 }
2263
2264 static int
2265 threadref_to_int (threadref *ref)
2266 {
2267 int i, value = 0;
2268 unsigned char *scan;
2269
2270 scan = *ref;
2271 scan += 4;
2272 i = 4;
2273 while (i-- > 0)
2274 value = (value << 8) | ((*scan++) & 0xff);
2275 return value;
2276 }
2277
2278 static void
2279 copy_threadref (threadref *dest, threadref *src)
2280 {
2281 int i;
2282 unsigned char *csrc, *cdest;
2283
2284 csrc = (unsigned char *) src;
2285 cdest = (unsigned char *) dest;
2286 i = 8;
2287 while (i--)
2288 *cdest++ = *csrc++;
2289 }
2290
2291 static int
2292 threadmatch (threadref *dest, threadref *src)
2293 {
2294 /* Things are broken right now, so just assume we got a match. */
2295 #if 0
2296 unsigned char *srcp, *destp;
2297 int i, result;
2298 srcp = (char *) src;
2299 destp = (char *) dest;
2300
2301 result = 1;
2302 while (i-- > 0)
2303 result &= (*srcp++ == *destp++) ? 1 : 0;
2304 return result;
2305 #endif
2306 return 1;
2307 }
2308
2309 /*
2310 threadid:1, # always request threadid
2311 context_exists:2,
2312 display:4,
2313 unique_name:8,
2314 more_display:16
2315 */
2316
2317 /* Encoding: 'Q':8,'P':8,mask:32,threadid:64 */
2318
2319 static char *
2320 pack_threadinfo_request (char *pkt, int mode, threadref *id)
2321 {
2322 *pkt++ = 'q'; /* Info Query */
2323 *pkt++ = 'P'; /* process or thread info */
2324 pkt = pack_int (pkt, mode); /* mode */
2325 pkt = pack_threadid (pkt, id); /* threadid */
2326 *pkt = '\0'; /* terminate */
2327 return pkt;
2328 }
2329
2330 /* These values tag the fields in a thread info response packet. */
2331 /* Tagging the fields allows us to request specific fields and to
2332 add more fields as time goes by. */
2333
2334 #define TAG_THREADID 1 /* Echo the thread identifier. */
2335 #define TAG_EXISTS 2 /* Is this process defined enough to
2336 fetch registers and its stack? */
2337 #define TAG_DISPLAY 4 /* A short thing maybe to put on a window */
2338 #define TAG_THREADNAME 8 /* string, maps 1-to-1 with a thread is. */
2339 #define TAG_MOREDISPLAY 16 /* Whatever the kernel wants to say about
2340 the process. */
2341
2342 static int
2343 remote_unpack_thread_info_response (char *pkt, threadref *expectedref,
2344 struct gdb_ext_thread_info *info)
2345 {
2346 struct remote_state *rs = get_remote_state ();
2347 int mask, length;
2348 int tag;
2349 threadref ref;
2350 char *limit = pkt + rs->buf_size; /* Plausible parsing limit. */
2351 int retval = 1;
2352
2353 /* info->threadid = 0; FIXME: implement zero_threadref. */
2354 info->active = 0;
2355 info->display[0] = '\0';
2356 info->shortname[0] = '\0';
2357 info->more_display[0] = '\0';
2358
2359 /* Assume the characters indicating the packet type have been
2360 stripped. */
2361 pkt = unpack_int (pkt, &mask); /* arg mask */
2362 pkt = unpack_threadid (pkt, &ref);
2363
2364 if (mask == 0)
2365 warning (_("Incomplete response to threadinfo request."));
2366 if (!threadmatch (&ref, expectedref))
2367 { /* This is an answer to a different request. */
2368 warning (_("ERROR RMT Thread info mismatch."));
2369 return 0;
2370 }
2371 copy_threadref (&info->threadid, &ref);
2372
2373 /* Loop on tagged fields , try to bail if somthing goes wrong. */
2374
2375 /* Packets are terminated with nulls. */
2376 while ((pkt < limit) && mask && *pkt)
2377 {
2378 pkt = unpack_int (pkt, &tag); /* tag */
2379 pkt = unpack_byte (pkt, &length); /* length */
2380 if (!(tag & mask)) /* Tags out of synch with mask. */
2381 {
2382 warning (_("ERROR RMT: threadinfo tag mismatch."));
2383 retval = 0;
2384 break;
2385 }
2386 if (tag == TAG_THREADID)
2387 {
2388 if (length != 16)
2389 {
2390 warning (_("ERROR RMT: length of threadid is not 16."));
2391 retval = 0;
2392 break;
2393 }
2394 pkt = unpack_threadid (pkt, &ref);
2395 mask = mask & ~TAG_THREADID;
2396 continue;
2397 }
2398 if (tag == TAG_EXISTS)
2399 {
2400 info->active = stub_unpack_int (pkt, length);
2401 pkt += length;
2402 mask = mask & ~(TAG_EXISTS);
2403 if (length > 8)
2404 {
2405 warning (_("ERROR RMT: 'exists' length too long."));
2406 retval = 0;
2407 break;
2408 }
2409 continue;
2410 }
2411 if (tag == TAG_THREADNAME)
2412 {
2413 pkt = unpack_string (pkt, &info->shortname[0], length);
2414 mask = mask & ~TAG_THREADNAME;
2415 continue;
2416 }
2417 if (tag == TAG_DISPLAY)
2418 {
2419 pkt = unpack_string (pkt, &info->display[0], length);
2420 mask = mask & ~TAG_DISPLAY;
2421 continue;
2422 }
2423 if (tag == TAG_MOREDISPLAY)
2424 {
2425 pkt = unpack_string (pkt, &info->more_display[0], length);
2426 mask = mask & ~TAG_MOREDISPLAY;
2427 continue;
2428 }
2429 warning (_("ERROR RMT: unknown thread info tag."));
2430 break; /* Not a tag we know about. */
2431 }
2432 return retval;
2433 }
2434
2435 static int
2436 remote_get_threadinfo (threadref *threadid, int fieldset, /* TAG mask */
2437 struct gdb_ext_thread_info *info)
2438 {
2439 struct remote_state *rs = get_remote_state ();
2440 int result;
2441
2442 pack_threadinfo_request (rs->buf, fieldset, threadid);
2443 putpkt (rs->buf);
2444 getpkt (&rs->buf, &rs->buf_size, 0);
2445
2446 if (rs->buf[0] == '\0')
2447 return 0;
2448
2449 result = remote_unpack_thread_info_response (rs->buf + 2,
2450 threadid, info);
2451 return result;
2452 }
2453
2454 /* Format: i'Q':8,i"L":8,initflag:8,batchsize:16,lastthreadid:32 */
2455
2456 static char *
2457 pack_threadlist_request (char *pkt, int startflag, int threadcount,
2458 threadref *nextthread)
2459 {
2460 *pkt++ = 'q'; /* info query packet */
2461 *pkt++ = 'L'; /* Process LIST or threadLIST request */
2462 pkt = pack_nibble (pkt, startflag); /* initflag 1 bytes */
2463 pkt = pack_hex_byte (pkt, threadcount); /* threadcount 2 bytes */
2464 pkt = pack_threadid (pkt, nextthread); /* 64 bit thread identifier */
2465 *pkt = '\0';
2466 return pkt;
2467 }
2468
2469 /* Encoding: 'q':8,'M':8,count:16,done:8,argthreadid:64,(threadid:64)* */
2470
2471 static int
2472 parse_threadlist_response (char *pkt, int result_limit,
2473 threadref *original_echo, threadref *resultlist,
2474 int *doneflag)
2475 {
2476 struct remote_state *rs = get_remote_state ();
2477 char *limit;
2478 int count, resultcount, done;
2479
2480 resultcount = 0;
2481 /* Assume the 'q' and 'M chars have been stripped. */
2482 limit = pkt + (rs->buf_size - BUF_THREAD_ID_SIZE);
2483 /* done parse past here */
2484 pkt = unpack_byte (pkt, &count); /* count field */
2485 pkt = unpack_nibble (pkt, &done);
2486 /* The first threadid is the argument threadid. */
2487 pkt = unpack_threadid (pkt, original_echo); /* should match query packet */
2488 while ((count-- > 0) && (pkt < limit))
2489 {
2490 pkt = unpack_threadid (pkt, resultlist++);
2491 if (resultcount++ >= result_limit)
2492 break;
2493 }
2494 if (doneflag)
2495 *doneflag = done;
2496 return resultcount;
2497 }
2498
2499 static int
2500 remote_get_threadlist (int startflag, threadref *nextthread, int result_limit,
2501 int *done, int *result_count, threadref *threadlist)
2502 {
2503 struct remote_state *rs = get_remote_state ();
2504 int result = 1;
2505
2506 /* Trancate result limit to be smaller than the packet size. */
2507 if ((((result_limit + 1) * BUF_THREAD_ID_SIZE) + 10)
2508 >= get_remote_packet_size ())
2509 result_limit = (get_remote_packet_size () / BUF_THREAD_ID_SIZE) - 2;
2510
2511 pack_threadlist_request (rs->buf, startflag, result_limit, nextthread);
2512 putpkt (rs->buf);
2513 getpkt (&rs->buf, &rs->buf_size, 0);
2514
2515 if (*rs->buf == '\0')
2516 return 0;
2517 else
2518 *result_count =
2519 parse_threadlist_response (rs->buf + 2, result_limit,
2520 &rs->echo_nextthread, threadlist, done);
2521
2522 if (!threadmatch (&rs->echo_nextthread, nextthread))
2523 {
2524 /* FIXME: This is a good reason to drop the packet. */
2525 /* Possably, there is a duplicate response. */
2526 /* Possabilities :
2527 retransmit immediatly - race conditions
2528 retransmit after timeout - yes
2529 exit
2530 wait for packet, then exit
2531 */
2532 warning (_("HMM: threadlist did not echo arg thread, dropping it."));
2533 return 0; /* I choose simply exiting. */
2534 }
2535 if (*result_count <= 0)
2536 {
2537 if (*done != 1)
2538 {
2539 warning (_("RMT ERROR : failed to get remote thread list."));
2540 result = 0;
2541 }
2542 return result; /* break; */
2543 }
2544 if (*result_count > result_limit)
2545 {
2546 *result_count = 0;
2547 warning (_("RMT ERROR: threadlist response longer than requested."));
2548 return 0;
2549 }
2550 return result;
2551 }
2552
2553 /* This is the interface between remote and threads, remotes upper
2554 interface. */
2555
2556 /* remote_find_new_threads retrieves the thread list and for each
2557 thread in the list, looks up the thread in GDB's internal list,
2558 adding the thread if it does not already exist. This involves
2559 getting partial thread lists from the remote target so, polling the
2560 quit_flag is required. */
2561
2562
2563 static int
2564 remote_threadlist_iterator (rmt_thread_action stepfunction, void *context,
2565 int looplimit)
2566 {
2567 struct remote_state *rs = get_remote_state ();
2568 int done, i, result_count;
2569 int startflag = 1;
2570 int result = 1;
2571 int loopcount = 0;
2572
2573 done = 0;
2574 while (!done)
2575 {
2576 if (loopcount++ > looplimit)
2577 {
2578 result = 0;
2579 warning (_("Remote fetch threadlist -infinite loop-."));
2580 break;
2581 }
2582 if (!remote_get_threadlist (startflag, &rs->nextthread,
2583 MAXTHREADLISTRESULTS,
2584 &done, &result_count, rs->resultthreadlist))
2585 {
2586 result = 0;
2587 break;
2588 }
2589 /* Clear for later iterations. */
2590 startflag = 0;
2591 /* Setup to resume next batch of thread references, set nextthread. */
2592 if (result_count >= 1)
2593 copy_threadref (&rs->nextthread,
2594 &rs->resultthreadlist[result_count - 1]);
2595 i = 0;
2596 while (result_count--)
2597 if (!(result = (*stepfunction) (&rs->resultthreadlist[i++], context)))
2598 break;
2599 }
2600 return result;
2601 }
2602
2603 static int
2604 remote_newthread_step (threadref *ref, void *context)
2605 {
2606 int pid = ptid_get_pid (inferior_ptid);
2607 ptid_t ptid = ptid_build (pid, 0, threadref_to_int (ref));
2608
2609 if (!in_thread_list (ptid))
2610 add_thread (ptid);
2611 return 1; /* continue iterator */
2612 }
2613
2614 #define CRAZY_MAX_THREADS 1000
2615
2616 static ptid_t
2617 remote_current_thread (ptid_t oldpid)
2618 {
2619 struct remote_state *rs = get_remote_state ();
2620
2621 putpkt ("qC");
2622 getpkt (&rs->buf, &rs->buf_size, 0);
2623 if (rs->buf[0] == 'Q' && rs->buf[1] == 'C')
2624 return read_ptid (&rs->buf[2], NULL);
2625 else
2626 return oldpid;
2627 }
2628
2629 /* Find new threads for info threads command.
2630 * Original version, using John Metzler's thread protocol.
2631 */
2632
2633 static void
2634 remote_find_new_threads (void)
2635 {
2636 remote_threadlist_iterator (remote_newthread_step, 0,
2637 CRAZY_MAX_THREADS);
2638 }
2639
2640 #if defined(HAVE_LIBEXPAT)
2641
2642 typedef struct thread_item
2643 {
2644 ptid_t ptid;
2645 char *extra;
2646 int core;
2647 } thread_item_t;
2648 DEF_VEC_O(thread_item_t);
2649
2650 struct threads_parsing_context
2651 {
2652 VEC (thread_item_t) *items;
2653 };
2654
2655 static void
2656 start_thread (struct gdb_xml_parser *parser,
2657 const struct gdb_xml_element *element,
2658 void *user_data, VEC(gdb_xml_value_s) *attributes)
2659 {
2660 struct threads_parsing_context *data = user_data;
2661
2662 struct thread_item item;
2663 char *id;
2664 struct gdb_xml_value *attr;
2665
2666 id = xml_find_attribute (attributes, "id")->value;
2667 item.ptid = read_ptid (id, NULL);
2668
2669 attr = xml_find_attribute (attributes, "core");
2670 if (attr != NULL)
2671 item.core = *(ULONGEST *) attr->value;
2672 else
2673 item.core = -1;
2674
2675 item.extra = 0;
2676
2677 VEC_safe_push (thread_item_t, data->items, &item);
2678 }
2679
2680 static void
2681 end_thread (struct gdb_xml_parser *parser,
2682 const struct gdb_xml_element *element,
2683 void *user_data, const char *body_text)
2684 {
2685 struct threads_parsing_context *data = user_data;
2686
2687 if (body_text && *body_text)
2688 VEC_last (thread_item_t, data->items)->extra = xstrdup (body_text);
2689 }
2690
2691 const struct gdb_xml_attribute thread_attributes[] = {
2692 { "id", GDB_XML_AF_NONE, NULL, NULL },
2693 { "core", GDB_XML_AF_OPTIONAL, gdb_xml_parse_attr_ulongest, NULL },
2694 { NULL, GDB_XML_AF_NONE, NULL, NULL }
2695 };
2696
2697 const struct gdb_xml_element thread_children[] = {
2698 { NULL, NULL, NULL, GDB_XML_EF_NONE, NULL, NULL }
2699 };
2700
2701 const struct gdb_xml_element threads_children[] = {
2702 { "thread", thread_attributes, thread_children,
2703 GDB_XML_EF_REPEATABLE | GDB_XML_EF_OPTIONAL,
2704 start_thread, end_thread },
2705 { NULL, NULL, NULL, GDB_XML_EF_NONE, NULL, NULL }
2706 };
2707
2708 const struct gdb_xml_element threads_elements[] = {
2709 { "threads", NULL, threads_children,
2710 GDB_XML_EF_NONE, NULL, NULL },
2711 { NULL, NULL, NULL, GDB_XML_EF_NONE, NULL, NULL }
2712 };
2713
2714 /* Discard the contents of the constructed thread info context. */
2715
2716 static void
2717 clear_threads_parsing_context (void *p)
2718 {
2719 struct threads_parsing_context *context = p;
2720 int i;
2721 struct thread_item *item;
2722
2723 for (i = 0; VEC_iterate (thread_item_t, context->items, i, item); ++i)
2724 xfree (item->extra);
2725
2726 VEC_free (thread_item_t, context->items);
2727 }
2728
2729 #endif
2730
2731 /*
2732 * Find all threads for info threads command.
2733 * Uses new thread protocol contributed by Cisco.
2734 * Falls back and attempts to use the older method (above)
2735 * if the target doesn't respond to the new method.
2736 */
2737
2738 static void
2739 remote_threads_info (struct target_ops *ops)
2740 {
2741 struct remote_state *rs = get_remote_state ();
2742 char *bufp;
2743 ptid_t new_thread;
2744
2745 if (rs->remote_desc == 0) /* paranoia */
2746 error (_("Command can only be used when connected to the remote target."));
2747
2748 #if defined(HAVE_LIBEXPAT)
2749 if (remote_protocol_packets[PACKET_qXfer_threads].support == PACKET_ENABLE)
2750 {
2751 char *xml = target_read_stralloc (&current_target,
2752 TARGET_OBJECT_THREADS, NULL);
2753
2754 struct cleanup *back_to = make_cleanup (xfree, xml);
2755
2756 if (xml && *xml)
2757 {
2758 struct threads_parsing_context context;
2759
2760 context.items = NULL;
2761 make_cleanup (clear_threads_parsing_context, &context);
2762
2763 if (gdb_xml_parse_quick (_("threads"), "threads.dtd",
2764 threads_elements, xml, &context) == 0)
2765 {
2766 int i;
2767 struct thread_item *item;
2768
2769 for (i = 0;
2770 VEC_iterate (thread_item_t, context.items, i, item);
2771 ++i)
2772 {
2773 if (!ptid_equal (item->ptid, null_ptid))
2774 {
2775 struct private_thread_info *info;
2776 /* In non-stop mode, we assume new found threads
2777 are running until proven otherwise with a
2778 stop reply. In all-stop, we can only get
2779 here if all threads are stopped. */
2780 int running = non_stop ? 1 : 0;
2781
2782 remote_notice_new_inferior (item->ptid, running);
2783
2784 info = demand_private_info (item->ptid);
2785 info->core = item->core;
2786 info->extra = item->extra;
2787 item->extra = NULL;
2788 }
2789 }
2790 }
2791 }
2792
2793 do_cleanups (back_to);
2794 return;
2795 }
2796 #endif
2797
2798 if (rs->use_threadinfo_query)
2799 {
2800 putpkt ("qfThreadInfo");
2801 getpkt (&rs->buf, &rs->buf_size, 0);
2802 bufp = rs->buf;
2803 if (bufp[0] != '\0') /* q packet recognized */
2804 {
2805 struct cleanup *old_chain;
2806 char *saved_reply;
2807
2808 /* remote_notice_new_inferior (in the loop below) may make
2809 new RSP calls, which clobber rs->buf. Work with a
2810 copy. */
2811 bufp = saved_reply = xstrdup (rs->buf);
2812 old_chain = make_cleanup (free_current_contents, &saved_reply);
2813
2814 while (*bufp++ == 'm') /* reply contains one or more TID */
2815 {
2816 do
2817 {
2818 new_thread = read_ptid (bufp, &bufp);
2819 if (!ptid_equal (new_thread, null_ptid))
2820 {
2821 /* In non-stop mode, we assume new found threads
2822 are running until proven otherwise with a
2823 stop reply. In all-stop, we can only get
2824 here if all threads are stopped. */
2825 int running = non_stop ? 1 : 0;
2826
2827 remote_notice_new_inferior (new_thread, running);
2828 }
2829 }
2830 while (*bufp++ == ','); /* comma-separated list */
2831 free_current_contents (&saved_reply);
2832 putpkt ("qsThreadInfo");
2833 getpkt (&rs->buf, &rs->buf_size, 0);
2834 bufp = saved_reply = xstrdup (rs->buf);
2835 }
2836 do_cleanups (old_chain);
2837 return; /* done */
2838 }
2839 }
2840
2841 /* Only qfThreadInfo is supported in non-stop mode. */
2842 if (non_stop)
2843 return;
2844
2845 /* Else fall back to old method based on jmetzler protocol. */
2846 rs->use_threadinfo_query = 0;
2847 remote_find_new_threads ();
2848 return;
2849 }
2850
2851 /*
2852 * Collect a descriptive string about the given thread.
2853 * The target may say anything it wants to about the thread
2854 * (typically info about its blocked / runnable state, name, etc.).
2855 * This string will appear in the info threads display.
2856 *
2857 * Optional: targets are not required to implement this function.
2858 */
2859
2860 static char *
2861 remote_threads_extra_info (struct thread_info *tp)
2862 {
2863 struct remote_state *rs = get_remote_state ();
2864 int result;
2865 int set;
2866 threadref id;
2867 struct gdb_ext_thread_info threadinfo;
2868 static char display_buf[100]; /* arbitrary... */
2869 int n = 0; /* position in display_buf */
2870
2871 if (rs->remote_desc == 0) /* paranoia */
2872 internal_error (__FILE__, __LINE__,
2873 _("remote_threads_extra_info"));
2874
2875 if (ptid_equal (tp->ptid, magic_null_ptid)
2876 || (ptid_get_pid (tp->ptid) != 0 && ptid_get_tid (tp->ptid) == 0))
2877 /* This is the main thread which was added by GDB. The remote
2878 server doesn't know about it. */
2879 return NULL;
2880
2881 if (remote_protocol_packets[PACKET_qXfer_threads].support == PACKET_ENABLE)
2882 {
2883 struct thread_info *info = find_thread_ptid (tp->ptid);
2884
2885 if (info && info->private)
2886 return info->private->extra;
2887 else
2888 return NULL;
2889 }
2890
2891 if (rs->use_threadextra_query)
2892 {
2893 char *b = rs->buf;
2894 char *endb = rs->buf + get_remote_packet_size ();
2895
2896 xsnprintf (b, endb - b, "qThreadExtraInfo,");
2897 b += strlen (b);
2898 write_ptid (b, endb, tp->ptid);
2899
2900 putpkt (rs->buf);
2901 getpkt (&rs->buf, &rs->buf_size, 0);
2902 if (rs->buf[0] != 0)
2903 {
2904 n = min (strlen (rs->buf) / 2, sizeof (display_buf));
2905 result = hex2bin (rs->buf, (gdb_byte *) display_buf, n);
2906 display_buf [result] = '\0';
2907 return display_buf;
2908 }
2909 }
2910
2911 /* If the above query fails, fall back to the old method. */
2912 rs->use_threadextra_query = 0;
2913 set = TAG_THREADID | TAG_EXISTS | TAG_THREADNAME
2914 | TAG_MOREDISPLAY | TAG_DISPLAY;
2915 int_to_threadref (&id, ptid_get_tid (tp->ptid));
2916 if (remote_get_threadinfo (&id, set, &threadinfo))
2917 if (threadinfo.active)
2918 {
2919 if (*threadinfo.shortname)
2920 n += xsnprintf (&display_buf[0], sizeof (display_buf) - n,
2921 " Name: %s,", threadinfo.shortname);
2922 if (*threadinfo.display)
2923 n += xsnprintf (&display_buf[n], sizeof (display_buf) - n,
2924 " State: %s,", threadinfo.display);
2925 if (*threadinfo.more_display)
2926 n += xsnprintf (&display_buf[n], sizeof (display_buf) - n,
2927 " Priority: %s", threadinfo.more_display);
2928
2929 if (n > 0)
2930 {
2931 /* For purely cosmetic reasons, clear up trailing commas. */
2932 if (',' == display_buf[n-1])
2933 display_buf[n-1] = ' ';
2934 return display_buf;
2935 }
2936 }
2937 return NULL;
2938 }
2939 \f
2940
2941 static int
2942 remote_static_tracepoint_marker_at (CORE_ADDR addr,
2943 struct static_tracepoint_marker *marker)
2944 {
2945 struct remote_state *rs = get_remote_state ();
2946 char *p = rs->buf;
2947
2948 xsnprintf (p, get_remote_packet_size (), "qTSTMat:");
2949 p += strlen (p);
2950 p += hexnumstr (p, addr);
2951 putpkt (rs->buf);
2952 getpkt (&rs->buf, &rs->buf_size, 0);
2953 p = rs->buf;
2954
2955 if (*p == 'E')
2956 error (_("Remote failure reply: %s"), p);
2957
2958 if (*p++ == 'm')
2959 {
2960 parse_static_tracepoint_marker_definition (p, &p, marker);
2961 return 1;
2962 }
2963
2964 return 0;
2965 }
2966
2967 static VEC(static_tracepoint_marker_p) *
2968 remote_static_tracepoint_markers_by_strid (const char *strid)
2969 {
2970 struct remote_state *rs = get_remote_state ();
2971 VEC(static_tracepoint_marker_p) *markers = NULL;
2972 struct static_tracepoint_marker *marker = NULL;
2973 struct cleanup *old_chain;
2974 char *p;
2975
2976 /* Ask for a first packet of static tracepoint marker
2977 definition. */
2978 putpkt ("qTfSTM");
2979 getpkt (&rs->buf, &rs->buf_size, 0);
2980 p = rs->buf;
2981 if (*p == 'E')
2982 error (_("Remote failure reply: %s"), p);
2983
2984 old_chain = make_cleanup (free_current_marker, &marker);
2985
2986 while (*p++ == 'm')
2987 {
2988 if (marker == NULL)
2989 marker = XCNEW (struct static_tracepoint_marker);
2990
2991 do
2992 {
2993 parse_static_tracepoint_marker_definition (p, &p, marker);
2994
2995 if (strid == NULL || strcmp (strid, marker->str_id) == 0)
2996 {
2997 VEC_safe_push (static_tracepoint_marker_p,
2998 markers, marker);
2999 marker = NULL;
3000 }
3001 else
3002 {
3003 release_static_tracepoint_marker (marker);
3004 memset (marker, 0, sizeof (*marker));
3005 }
3006 }
3007 while (*p++ == ','); /* comma-separated list */
3008 /* Ask for another packet of static tracepoint definition. */
3009 putpkt ("qTsSTM");
3010 getpkt (&rs->buf, &rs->buf_size, 0);
3011 p = rs->buf;
3012 }
3013
3014 do_cleanups (old_chain);
3015 return markers;
3016 }
3017
3018 \f
3019 /* Implement the to_get_ada_task_ptid function for the remote targets. */
3020
3021 static ptid_t
3022 remote_get_ada_task_ptid (long lwp, long thread)
3023 {
3024 return ptid_build (ptid_get_pid (inferior_ptid), 0, lwp);
3025 }
3026 \f
3027
3028 /* Restart the remote side; this is an extended protocol operation. */
3029
3030 static void
3031 extended_remote_restart (void)
3032 {
3033 struct remote_state *rs = get_remote_state ();
3034
3035 /* Send the restart command; for reasons I don't understand the
3036 remote side really expects a number after the "R". */
3037 xsnprintf (rs->buf, get_remote_packet_size (), "R%x", 0);
3038 putpkt (rs->buf);
3039
3040 remote_fileio_reset ();
3041 }
3042 \f
3043 /* Clean up connection to a remote debugger. */
3044
3045 static void
3046 remote_close (void)
3047 {
3048 struct remote_state *rs = get_remote_state ();
3049
3050 if (rs->remote_desc == NULL)
3051 return; /* already closed */
3052
3053 /* Make sure we leave stdin registered in the event loop, and we
3054 don't leave the async SIGINT signal handler installed. */
3055 remote_terminal_ours ();
3056
3057 serial_close (rs->remote_desc);
3058 rs->remote_desc = NULL;
3059
3060 /* We don't have a connection to the remote stub anymore. Get rid
3061 of all the inferiors and their threads we were controlling.
3062 Reset inferior_ptid to null_ptid first, as otherwise has_stack_frame
3063 will be unable to find the thread corresponding to (pid, 0, 0). */
3064 inferior_ptid = null_ptid;
3065 discard_all_inferiors ();
3066
3067 /* We are closing the remote target, so we should discard
3068 everything of this target. */
3069 discard_pending_stop_replies_in_queue (rs);
3070
3071 if (remote_async_inferior_event_token)
3072 delete_async_event_handler (&remote_async_inferior_event_token);
3073
3074 remote_notif_state_xfree (rs->notif_state);
3075
3076 trace_reset_local_state ();
3077 }
3078
3079 /* Query the remote side for the text, data and bss offsets. */
3080
3081 static void
3082 get_offsets (void)
3083 {
3084 struct remote_state *rs = get_remote_state ();
3085 char *buf;
3086 char *ptr;
3087 int lose, num_segments = 0, do_sections, do_segments;
3088 CORE_ADDR text_addr, data_addr, bss_addr, segments[2];
3089 struct section_offsets *offs;
3090 struct symfile_segment_data *data;
3091
3092 if (symfile_objfile == NULL)
3093 return;
3094
3095 putpkt ("qOffsets");
3096 getpkt (&rs->buf, &rs->buf_size, 0);
3097 buf = rs->buf;
3098
3099 if (buf[0] == '\000')
3100 return; /* Return silently. Stub doesn't support
3101 this command. */
3102 if (buf[0] == 'E')
3103 {
3104 warning (_("Remote failure reply: %s"), buf);
3105 return;
3106 }
3107
3108 /* Pick up each field in turn. This used to be done with scanf, but
3109 scanf will make trouble if CORE_ADDR size doesn't match
3110 conversion directives correctly. The following code will work
3111 with any size of CORE_ADDR. */
3112 text_addr = data_addr = bss_addr = 0;
3113 ptr = buf;
3114 lose = 0;
3115
3116 if (strncmp (ptr, "Text=", 5) == 0)
3117 {
3118 ptr += 5;
3119 /* Don't use strtol, could lose on big values. */
3120 while (*ptr && *ptr != ';')
3121 text_addr = (text_addr << 4) + fromhex (*ptr++);
3122
3123 if (strncmp (ptr, ";Data=", 6) == 0)
3124 {
3125 ptr += 6;
3126 while (*ptr && *ptr != ';')
3127 data_addr = (data_addr << 4) + fromhex (*ptr++);
3128 }
3129 else
3130 lose = 1;
3131
3132 if (!lose && strncmp (ptr, ";Bss=", 5) == 0)
3133 {
3134 ptr += 5;
3135 while (*ptr && *ptr != ';')
3136 bss_addr = (bss_addr << 4) + fromhex (*ptr++);
3137
3138 if (bss_addr != data_addr)
3139 warning (_("Target reported unsupported offsets: %s"), buf);
3140 }
3141 else
3142 lose = 1;
3143 }
3144 else if (strncmp (ptr, "TextSeg=", 8) == 0)
3145 {
3146 ptr += 8;
3147 /* Don't use strtol, could lose on big values. */
3148 while (*ptr && *ptr != ';')
3149 text_addr = (text_addr << 4) + fromhex (*ptr++);
3150 num_segments = 1;
3151
3152 if (strncmp (ptr, ";DataSeg=", 9) == 0)
3153 {
3154 ptr += 9;
3155 while (*ptr && *ptr != ';')
3156 data_addr = (data_addr << 4) + fromhex (*ptr++);
3157 num_segments++;
3158 }
3159 }
3160 else
3161 lose = 1;
3162
3163 if (lose)
3164 error (_("Malformed response to offset query, %s"), buf);
3165 else if (*ptr != '\0')
3166 warning (_("Target reported unsupported offsets: %s"), buf);
3167
3168 offs = ((struct section_offsets *)
3169 alloca (SIZEOF_N_SECTION_OFFSETS (symfile_objfile->num_sections)));
3170 memcpy (offs, symfile_objfile->section_offsets,
3171 SIZEOF_N_SECTION_OFFSETS (symfile_objfile->num_sections));
3172
3173 data = get_symfile_segment_data (symfile_objfile->obfd);
3174 do_segments = (data != NULL);
3175 do_sections = num_segments == 0;
3176
3177 if (num_segments > 0)
3178 {
3179 segments[0] = text_addr;
3180 segments[1] = data_addr;
3181 }
3182 /* If we have two segments, we can still try to relocate everything
3183 by assuming that the .text and .data offsets apply to the whole
3184 text and data segments. Convert the offsets given in the packet
3185 to base addresses for symfile_map_offsets_to_segments. */
3186 else if (data && data->num_segments == 2)
3187 {
3188 segments[0] = data->segment_bases[0] + text_addr;
3189 segments[1] = data->segment_bases[1] + data_addr;
3190 num_segments = 2;
3191 }
3192 /* If the object file has only one segment, assume that it is text
3193 rather than data; main programs with no writable data are rare,
3194 but programs with no code are useless. Of course the code might
3195 have ended up in the data segment... to detect that we would need
3196 the permissions here. */
3197 else if (data && data->num_segments == 1)
3198 {
3199 segments[0] = data->segment_bases[0] + text_addr;
3200 num_segments = 1;
3201 }
3202 /* There's no way to relocate by segment. */
3203 else
3204 do_segments = 0;
3205
3206 if (do_segments)
3207 {
3208 int ret = symfile_map_offsets_to_segments (symfile_objfile->obfd, data,
3209 offs, num_segments, segments);
3210
3211 if (ret == 0 && !do_sections)
3212 error (_("Can not handle qOffsets TextSeg "
3213 "response with this symbol file"));
3214
3215 if (ret > 0)
3216 do_sections = 0;
3217 }
3218
3219 if (data)
3220 free_symfile_segment_data (data);
3221
3222 if (do_sections)
3223 {
3224 offs->offsets[SECT_OFF_TEXT (symfile_objfile)] = text_addr;
3225
3226 /* This is a temporary kludge to force data and bss to use the
3227 same offsets because that's what nlmconv does now. The real
3228 solution requires changes to the stub and remote.c that I
3229 don't have time to do right now. */
3230
3231 offs->offsets[SECT_OFF_DATA (symfile_objfile)] = data_addr;
3232 offs->offsets[SECT_OFF_BSS (symfile_objfile)] = data_addr;
3233 }
3234
3235 objfile_relocate (symfile_objfile, offs);
3236 }
3237
3238 /* Callback for iterate_over_threads. Set the STOP_REQUESTED flags in
3239 threads we know are stopped already. This is used during the
3240 initial remote connection in non-stop mode --- threads that are
3241 reported as already being stopped are left stopped. */
3242
3243 static int
3244 set_stop_requested_callback (struct thread_info *thread, void *data)
3245 {
3246 /* If we have a stop reply for this thread, it must be stopped. */
3247 if (peek_stop_reply (thread->ptid))
3248 set_stop_requested (thread->ptid, 1);
3249
3250 return 0;
3251 }
3252
3253 /* Send interrupt_sequence to remote target. */
3254 static void
3255 send_interrupt_sequence (void)
3256 {
3257 struct remote_state *rs = get_remote_state ();
3258
3259 if (interrupt_sequence_mode == interrupt_sequence_control_c)
3260 remote_serial_write ("\x03", 1);
3261 else if (interrupt_sequence_mode == interrupt_sequence_break)
3262 serial_send_break (rs->remote_desc);
3263 else if (interrupt_sequence_mode == interrupt_sequence_break_g)
3264 {
3265 serial_send_break (rs->remote_desc);
3266 remote_serial_write ("g", 1);
3267 }
3268 else
3269 internal_error (__FILE__, __LINE__,
3270 _("Invalid value for interrupt_sequence_mode: %s."),
3271 interrupt_sequence_mode);
3272 }
3273
3274
3275 /* If STOP_REPLY is a T stop reply, look for the "thread" register,
3276 and extract the PTID. Returns NULL_PTID if not found. */
3277
3278 static ptid_t
3279 stop_reply_extract_thread (char *stop_reply)
3280 {
3281 if (stop_reply[0] == 'T' && strlen (stop_reply) > 3)
3282 {
3283 char *p;
3284
3285 /* Txx r:val ; r:val (...) */
3286 p = &stop_reply[3];
3287
3288 /* Look for "register" named "thread". */
3289 while (*p != '\0')
3290 {
3291 char *p1;
3292
3293 p1 = strchr (p, ':');
3294 if (p1 == NULL)
3295 return null_ptid;
3296
3297 if (strncmp (p, "thread", p1 - p) == 0)
3298 return read_ptid (++p1, &p);
3299
3300 p1 = strchr (p, ';');
3301 if (p1 == NULL)
3302 return null_ptid;
3303 p1++;
3304
3305 p = p1;
3306 }
3307 }
3308
3309 return null_ptid;
3310 }
3311
3312 /* Query the remote target for which is the current thread/process,
3313 add it to our tables, and update INFERIOR_PTID. The caller is
3314 responsible for setting the state such that the remote end is ready
3315 to return the current thread.
3316
3317 This function is called after handling the '?' or 'vRun' packets,
3318 whose response is a stop reply from which we can also try
3319 extracting the thread. If the target doesn't support the explicit
3320 qC query, we infer the current thread from that stop reply, passed
3321 in in WAIT_STATUS, which may be NULL. */
3322
3323 static void
3324 add_current_inferior_and_thread (char *wait_status)
3325 {
3326 struct remote_state *rs = get_remote_state ();
3327 int fake_pid_p = 0;
3328 ptid_t ptid = null_ptid;
3329
3330 inferior_ptid = null_ptid;
3331
3332 /* Now, if we have thread information, update inferior_ptid. First
3333 if we have a stop reply handy, maybe it's a T stop reply with a
3334 "thread" register we can extract the current thread from. If
3335 not, ask the remote which is the current thread, with qC. The
3336 former method avoids a roundtrip. Note we don't use
3337 remote_parse_stop_reply as that makes use of the target
3338 architecture, which we haven't yet fully determined at this
3339 point. */
3340 if (wait_status != NULL)
3341 ptid = stop_reply_extract_thread (wait_status);
3342 if (ptid_equal (ptid, null_ptid))
3343 ptid = remote_current_thread (inferior_ptid);
3344
3345 if (!ptid_equal (ptid, null_ptid))
3346 {
3347 if (!remote_multi_process_p (rs))
3348 fake_pid_p = 1;
3349
3350 inferior_ptid = ptid;
3351 }
3352 else
3353 {
3354 /* Without this, some commands which require an active target
3355 (such as kill) won't work. This variable serves (at least)
3356 double duty as both the pid of the target process (if it has
3357 such), and as a flag indicating that a target is active. */
3358 inferior_ptid = magic_null_ptid;
3359 fake_pid_p = 1;
3360 }
3361
3362 remote_add_inferior (fake_pid_p, ptid_get_pid (inferior_ptid), -1);
3363
3364 /* Add the main thread. */
3365 add_thread_silent (inferior_ptid);
3366 }
3367
3368 static void
3369 remote_start_remote (int from_tty, struct target_ops *target, int extended_p)
3370 {
3371 struct remote_state *rs = get_remote_state ();
3372 struct packet_config *noack_config;
3373 char *wait_status = NULL;
3374
3375 immediate_quit++; /* Allow user to interrupt it. */
3376 QUIT;
3377
3378 if (interrupt_on_connect)
3379 send_interrupt_sequence ();
3380
3381 /* Ack any packet which the remote side has already sent. */
3382 serial_write (rs->remote_desc, "+", 1);
3383
3384 /* Signal other parts that we're going through the initial setup,
3385 and so things may not be stable yet. */
3386 rs->starting_up = 1;
3387
3388 /* The first packet we send to the target is the optional "supported
3389 packets" request. If the target can answer this, it will tell us
3390 which later probes to skip. */
3391 remote_query_supported ();
3392
3393 /* If the stub wants to get a QAllow, compose one and send it. */
3394 if (remote_protocol_packets[PACKET_QAllow].support != PACKET_DISABLE)
3395 remote_set_permissions ();
3396
3397 /* Next, we possibly activate noack mode.
3398
3399 If the QStartNoAckMode packet configuration is set to AUTO,
3400 enable noack mode if the stub reported a wish for it with
3401 qSupported.
3402
3403 If set to TRUE, then enable noack mode even if the stub didn't
3404 report it in qSupported. If the stub doesn't reply OK, the
3405 session ends with an error.
3406
3407 If FALSE, then don't activate noack mode, regardless of what the
3408 stub claimed should be the default with qSupported. */
3409
3410 noack_config = &remote_protocol_packets[PACKET_QStartNoAckMode];
3411
3412 if (noack_config->detect == AUTO_BOOLEAN_TRUE
3413 || (noack_config->detect == AUTO_BOOLEAN_AUTO
3414 && noack_config->support == PACKET_ENABLE))
3415 {
3416 putpkt ("QStartNoAckMode");
3417 getpkt (&rs->buf, &rs->buf_size, 0);
3418 if (packet_ok (rs->buf, noack_config) == PACKET_OK)
3419 rs->noack_mode = 1;
3420 }
3421
3422 if (extended_p)
3423 {
3424 /* Tell the remote that we are using the extended protocol. */
3425 putpkt ("!");
3426 getpkt (&rs->buf, &rs->buf_size, 0);
3427 }
3428
3429 /* Let the target know which signals it is allowed to pass down to
3430 the program. */
3431 update_signals_program_target ();
3432
3433 /* Next, if the target can specify a description, read it. We do
3434 this before anything involving memory or registers. */
3435 target_find_description ();
3436
3437 /* Next, now that we know something about the target, update the
3438 address spaces in the program spaces. */
3439 update_address_spaces ();
3440
3441 /* On OSs where the list of libraries is global to all
3442 processes, we fetch them early. */
3443 if (gdbarch_has_global_solist (target_gdbarch ()))
3444 solib_add (NULL, from_tty, target, auto_solib_add);
3445
3446 if (non_stop)
3447 {
3448 if (!rs->non_stop_aware)
3449 error (_("Non-stop mode requested, but remote "
3450 "does not support non-stop"));
3451
3452 putpkt ("QNonStop:1");
3453 getpkt (&rs->buf, &rs->buf_size, 0);
3454
3455 if (strcmp (rs->buf, "OK") != 0)
3456 error (_("Remote refused setting non-stop mode with: %s"), rs->buf);
3457
3458 /* Find about threads and processes the stub is already
3459 controlling. We default to adding them in the running state.
3460 The '?' query below will then tell us about which threads are
3461 stopped. */
3462 remote_threads_info (target);
3463 }
3464 else if (rs->non_stop_aware)
3465 {
3466 /* Don't assume that the stub can operate in all-stop mode.
3467 Request it explicitly. */
3468 putpkt ("QNonStop:0");
3469 getpkt (&rs->buf, &rs->buf_size, 0);
3470
3471 if (strcmp (rs->buf, "OK") != 0)
3472 error (_("Remote refused setting all-stop mode with: %s"), rs->buf);
3473 }
3474
3475 /* Upload TSVs regardless of whether the target is running or not. The
3476 remote stub, such as GDBserver, may have some predefined or builtin
3477 TSVs, even if the target is not running. */
3478 if (remote_get_trace_status (current_trace_status ()) != -1)
3479 {
3480 struct uploaded_tsv *uploaded_tsvs = NULL;
3481
3482 remote_upload_trace_state_variables (&uploaded_tsvs);
3483 merge_uploaded_trace_state_variables (&uploaded_tsvs);
3484 }
3485
3486 /* Check whether the target is running now. */
3487 putpkt ("?");
3488 getpkt (&rs->buf, &rs->buf_size, 0);
3489
3490 if (!non_stop)
3491 {
3492 ptid_t ptid;
3493 int fake_pid_p = 0;
3494 struct inferior *inf;
3495
3496 if (rs->buf[0] == 'W' || rs->buf[0] == 'X')
3497 {
3498 if (!extended_p)
3499 error (_("The target is not running (try extended-remote?)"));
3500
3501 /* We're connected, but not running. Drop out before we
3502 call start_remote. */
3503 rs->starting_up = 0;
3504 return;
3505 }
3506 else
3507 {
3508 /* Save the reply for later. */
3509 wait_status = alloca (strlen (rs->buf) + 1);
3510 strcpy (wait_status, rs->buf);
3511 }
3512
3513 /* Let the stub know that we want it to return the thread. */
3514 set_continue_thread (minus_one_ptid);
3515
3516 add_current_inferior_and_thread (wait_status);
3517
3518 /* init_wait_for_inferior should be called before get_offsets in order
3519 to manage `inserted' flag in bp loc in a correct state.
3520 breakpoint_init_inferior, called from init_wait_for_inferior, set
3521 `inserted' flag to 0, while before breakpoint_re_set, called from
3522 start_remote, set `inserted' flag to 1. In the initialization of
3523 inferior, breakpoint_init_inferior should be called first, and then
3524 breakpoint_re_set can be called. If this order is broken, state of
3525 `inserted' flag is wrong, and cause some problems on breakpoint
3526 manipulation. */
3527 init_wait_for_inferior ();
3528
3529 get_offsets (); /* Get text, data & bss offsets. */
3530
3531 /* If we could not find a description using qXfer, and we know
3532 how to do it some other way, try again. This is not
3533 supported for non-stop; it could be, but it is tricky if
3534 there are no stopped threads when we connect. */
3535 if (remote_read_description_p (target)
3536 && gdbarch_target_desc (target_gdbarch ()) == NULL)
3537 {
3538 target_clear_description ();
3539 target_find_description ();
3540 }
3541
3542 /* Use the previously fetched status. */
3543 gdb_assert (wait_status != NULL);
3544 strcpy (rs->buf, wait_status);
3545 rs->cached_wait_status = 1;
3546
3547 immediate_quit--;
3548 start_remote (from_tty); /* Initialize gdb process mechanisms. */
3549 }
3550 else
3551 {
3552 /* Clear WFI global state. Do this before finding about new
3553 threads and inferiors, and setting the current inferior.
3554 Otherwise we would clear the proceed status of the current
3555 inferior when we want its stop_soon state to be preserved
3556 (see notice_new_inferior). */
3557 init_wait_for_inferior ();
3558
3559 /* In non-stop, we will either get an "OK", meaning that there
3560 are no stopped threads at this time; or, a regular stop
3561 reply. In the latter case, there may be more than one thread
3562 stopped --- we pull them all out using the vStopped
3563 mechanism. */
3564 if (strcmp (rs->buf, "OK") != 0)
3565 {
3566 struct notif_client *notif = &notif_client_stop;
3567
3568 /* remote_notif_get_pending_replies acks this one, and gets
3569 the rest out. */
3570 rs->notif_state->pending_event[notif_client_stop.id]
3571 = remote_notif_parse (notif, rs->buf);
3572 remote_notif_get_pending_events (notif);
3573
3574 /* Make sure that threads that were stopped remain
3575 stopped. */
3576 iterate_over_threads (set_stop_requested_callback, NULL);
3577 }
3578
3579 if (target_can_async_p ())
3580 target_async (inferior_event_handler, 0);
3581
3582 if (thread_count () == 0)
3583 {
3584 if (!extended_p)
3585 error (_("The target is not running (try extended-remote?)"));
3586
3587 /* We're connected, but not running. Drop out before we
3588 call start_remote. */
3589 rs->starting_up = 0;
3590 return;
3591 }
3592
3593 /* Let the stub know that we want it to return the thread. */
3594
3595 /* Force the stub to choose a thread. */
3596 set_general_thread (null_ptid);
3597
3598 /* Query it. */
3599 inferior_ptid = remote_current_thread (minus_one_ptid);
3600 if (ptid_equal (inferior_ptid, minus_one_ptid))
3601 error (_("remote didn't report the current thread in non-stop mode"));
3602
3603 get_offsets (); /* Get text, data & bss offsets. */
3604
3605 /* In non-stop mode, any cached wait status will be stored in
3606 the stop reply queue. */
3607 gdb_assert (wait_status == NULL);
3608
3609 /* Report all signals during attach/startup. */
3610 remote_pass_signals (0, NULL);
3611 }
3612
3613 /* If we connected to a live target, do some additional setup. */
3614 if (target_has_execution)
3615 {
3616 if (exec_bfd) /* No use without an exec file. */
3617 remote_check_symbols ();
3618 }
3619
3620 /* Possibly the target has been engaged in a trace run started
3621 previously; find out where things are at. */
3622 if (remote_get_trace_status (current_trace_status ()) != -1)
3623 {
3624 struct uploaded_tp *uploaded_tps = NULL;
3625
3626 if (current_trace_status ()->running)
3627 printf_filtered (_("Trace is already running on the target.\n"));
3628
3629 remote_upload_tracepoints (&uploaded_tps);
3630
3631 merge_uploaded_tracepoints (&uploaded_tps);
3632 }
3633
3634 /* The thread and inferior lists are now synchronized with the
3635 target, our symbols have been relocated, and we're merged the
3636 target's tracepoints with ours. We're done with basic start
3637 up. */
3638 rs->starting_up = 0;
3639
3640 /* If breakpoints are global, insert them now. */
3641 if (gdbarch_has_global_breakpoints (target_gdbarch ())
3642 && breakpoints_always_inserted_mode ())
3643 insert_breakpoints ();
3644 }
3645
3646 /* Open a connection to a remote debugger.
3647 NAME is the filename used for communication. */
3648
3649 static void
3650 remote_open (char *name, int from_tty)
3651 {
3652 remote_open_1 (name, from_tty, &remote_ops, 0);
3653 }
3654
3655 /* Open a connection to a remote debugger using the extended
3656 remote gdb protocol. NAME is the filename used for communication. */
3657
3658 static void
3659 extended_remote_open (char *name, int from_tty)
3660 {
3661 remote_open_1 (name, from_tty, &extended_remote_ops, 1 /*extended_p */);
3662 }
3663
3664 /* Generic code for opening a connection to a remote target. */
3665
3666 static void
3667 init_all_packet_configs (void)
3668 {
3669 int i;
3670
3671 for (i = 0; i < PACKET_MAX; i++)
3672 update_packet_config (&remote_protocol_packets[i]);
3673 }
3674
3675 /* Symbol look-up. */
3676
3677 static void
3678 remote_check_symbols (void)
3679 {
3680 struct remote_state *rs = get_remote_state ();
3681 char *msg, *reply, *tmp;
3682 struct minimal_symbol *sym;
3683 int end;
3684
3685 /* The remote side has no concept of inferiors that aren't running
3686 yet, it only knows about running processes. If we're connected
3687 but our current inferior is not running, we should not invite the
3688 remote target to request symbol lookups related to its
3689 (unrelated) current process. */
3690 if (!target_has_execution)
3691 return;
3692
3693 if (remote_protocol_packets[PACKET_qSymbol].support == PACKET_DISABLE)
3694 return;
3695
3696 /* Make sure the remote is pointing at the right process. Note
3697 there's no way to select "no process". */
3698 set_general_process ();
3699
3700 /* Allocate a message buffer. We can't reuse the input buffer in RS,
3701 because we need both at the same time. */
3702 msg = alloca (get_remote_packet_size ());
3703
3704 /* Invite target to request symbol lookups. */
3705
3706 putpkt ("qSymbol::");
3707 getpkt (&rs->buf, &rs->buf_size, 0);
3708 packet_ok (rs->buf, &remote_protocol_packets[PACKET_qSymbol]);
3709 reply = rs->buf;
3710
3711 while (strncmp (reply, "qSymbol:", 8) == 0)
3712 {
3713 tmp = &reply[8];
3714 end = hex2bin (tmp, (gdb_byte *) msg, strlen (tmp) / 2);
3715 msg[end] = '\0';
3716 sym = lookup_minimal_symbol (msg, NULL, NULL);
3717 if (sym == NULL)
3718 xsnprintf (msg, get_remote_packet_size (), "qSymbol::%s", &reply[8]);
3719 else
3720 {
3721 int addr_size = gdbarch_addr_bit (target_gdbarch ()) / 8;
3722 CORE_ADDR sym_addr = SYMBOL_VALUE_ADDRESS (sym);
3723
3724 /* If this is a function address, return the start of code
3725 instead of any data function descriptor. */
3726 sym_addr = gdbarch_convert_from_func_ptr_addr (target_gdbarch (),
3727 sym_addr,
3728 &current_target);
3729
3730 xsnprintf (msg, get_remote_packet_size (), "qSymbol:%s:%s",
3731 phex_nz (sym_addr, addr_size), &reply[8]);
3732 }
3733
3734 putpkt (msg);
3735 getpkt (&rs->buf, &rs->buf_size, 0);
3736 reply = rs->buf;
3737 }
3738 }
3739
3740 static struct serial *
3741 remote_serial_open (char *name)
3742 {
3743 static int udp_warning = 0;
3744
3745 /* FIXME: Parsing NAME here is a hack. But we want to warn here instead
3746 of in ser-tcp.c, because it is the remote protocol assuming that the
3747 serial connection is reliable and not the serial connection promising
3748 to be. */
3749 if (!udp_warning && strncmp (name, "udp:", 4) == 0)
3750 {
3751 warning (_("The remote protocol may be unreliable over UDP.\n"
3752 "Some events may be lost, rendering further debugging "
3753 "impossible."));
3754 udp_warning = 1;
3755 }
3756
3757 return serial_open (name);
3758 }
3759
3760 /* Inform the target of our permission settings. The permission flags
3761 work without this, but if the target knows the settings, it can do
3762 a couple things. First, it can add its own check, to catch cases
3763 that somehow manage to get by the permissions checks in target
3764 methods. Second, if the target is wired to disallow particular
3765 settings (for instance, a system in the field that is not set up to
3766 be able to stop at a breakpoint), it can object to any unavailable
3767 permissions. */
3768
3769 void
3770 remote_set_permissions (void)
3771 {
3772 struct remote_state *rs = get_remote_state ();
3773
3774 xsnprintf (rs->buf, get_remote_packet_size (), "QAllow:"
3775 "WriteReg:%x;WriteMem:%x;"
3776 "InsertBreak:%x;InsertTrace:%x;"
3777 "InsertFastTrace:%x;Stop:%x",
3778 may_write_registers, may_write_memory,
3779 may_insert_breakpoints, may_insert_tracepoints,
3780 may_insert_fast_tracepoints, may_stop);
3781 putpkt (rs->buf);
3782 getpkt (&rs->buf, &rs->buf_size, 0);
3783
3784 /* If the target didn't like the packet, warn the user. Do not try
3785 to undo the user's settings, that would just be maddening. */
3786 if (strcmp (rs->buf, "OK") != 0)
3787 warning (_("Remote refused setting permissions with: %s"), rs->buf);
3788 }
3789
3790 /* This type describes each known response to the qSupported
3791 packet. */
3792 struct protocol_feature
3793 {
3794 /* The name of this protocol feature. */
3795 const char *name;
3796
3797 /* The default for this protocol feature. */
3798 enum packet_support default_support;
3799
3800 /* The function to call when this feature is reported, or after
3801 qSupported processing if the feature is not supported.
3802 The first argument points to this structure. The second
3803 argument indicates whether the packet requested support be
3804 enabled, disabled, or probed (or the default, if this function
3805 is being called at the end of processing and this feature was
3806 not reported). The third argument may be NULL; if not NULL, it
3807 is a NUL-terminated string taken from the packet following
3808 this feature's name and an equals sign. */
3809 void (*func) (const struct protocol_feature *, enum packet_support,
3810 const char *);
3811
3812 /* The corresponding packet for this feature. Only used if
3813 FUNC is remote_supported_packet. */
3814 int packet;
3815 };
3816
3817 static void
3818 remote_supported_packet (const struct protocol_feature *feature,
3819 enum packet_support support,
3820 const char *argument)
3821 {
3822 if (argument)
3823 {
3824 warning (_("Remote qSupported response supplied an unexpected value for"
3825 " \"%s\"."), feature->name);
3826 return;
3827 }
3828
3829 if (remote_protocol_packets[feature->packet].support
3830 == PACKET_SUPPORT_UNKNOWN)
3831 remote_protocol_packets[feature->packet].support = support;
3832 }
3833
3834 static void
3835 remote_packet_size (const struct protocol_feature *feature,
3836 enum packet_support support, const char *value)
3837 {
3838 struct remote_state *rs = get_remote_state ();
3839
3840 int packet_size;
3841 char *value_end;
3842
3843 if (support != PACKET_ENABLE)
3844 return;
3845
3846 if (value == NULL || *value == '\0')
3847 {
3848 warning (_("Remote target reported \"%s\" without a size."),
3849 feature->name);
3850 return;
3851 }
3852
3853 errno = 0;
3854 packet_size = strtol (value, &value_end, 16);
3855 if (errno != 0 || *value_end != '\0' || packet_size < 0)
3856 {
3857 warning (_("Remote target reported \"%s\" with a bad size: \"%s\"."),
3858 feature->name, value);
3859 return;
3860 }
3861
3862 if (packet_size > MAX_REMOTE_PACKET_SIZE)
3863 {
3864 warning (_("limiting remote suggested packet size (%d bytes) to %d"),
3865 packet_size, MAX_REMOTE_PACKET_SIZE);
3866 packet_size = MAX_REMOTE_PACKET_SIZE;
3867 }
3868
3869 /* Record the new maximum packet size. */
3870 rs->explicit_packet_size = packet_size;
3871 }
3872
3873 static void
3874 remote_multi_process_feature (const struct protocol_feature *feature,
3875 enum packet_support support, const char *value)
3876 {
3877 struct remote_state *rs = get_remote_state ();
3878
3879 rs->multi_process_aware = (support == PACKET_ENABLE);
3880 }
3881
3882 static void
3883 remote_non_stop_feature (const struct protocol_feature *feature,
3884 enum packet_support support, const char *value)
3885 {
3886 struct remote_state *rs = get_remote_state ();
3887
3888 rs->non_stop_aware = (support == PACKET_ENABLE);
3889 }
3890
3891 static void
3892 remote_cond_tracepoint_feature (const struct protocol_feature *feature,
3893 enum packet_support support,
3894 const char *value)
3895 {
3896 struct remote_state *rs = get_remote_state ();
3897
3898 rs->cond_tracepoints = (support == PACKET_ENABLE);
3899 }
3900
3901 static void
3902 remote_cond_breakpoint_feature (const struct protocol_feature *feature,
3903 enum packet_support support,
3904 const char *value)
3905 {
3906 struct remote_state *rs = get_remote_state ();
3907
3908 rs->cond_breakpoints = (support == PACKET_ENABLE);
3909 }
3910
3911 static void
3912 remote_breakpoint_commands_feature (const struct protocol_feature *feature,
3913 enum packet_support support,
3914 const char *value)
3915 {
3916 struct remote_state *rs = get_remote_state ();
3917
3918 rs->breakpoint_commands = (support == PACKET_ENABLE);
3919 }
3920
3921 static void
3922 remote_fast_tracepoint_feature (const struct protocol_feature *feature,
3923 enum packet_support support,
3924 const char *value)
3925 {
3926 struct remote_state *rs = get_remote_state ();
3927
3928 rs->fast_tracepoints = (support == PACKET_ENABLE);
3929 }
3930
3931 static void
3932 remote_static_tracepoint_feature (const struct protocol_feature *feature,
3933 enum packet_support support,
3934 const char *value)
3935 {
3936 struct remote_state *rs = get_remote_state ();
3937
3938 rs->static_tracepoints = (support == PACKET_ENABLE);
3939 }
3940
3941 static void
3942 remote_install_in_trace_feature (const struct protocol_feature *feature,
3943 enum packet_support support,
3944 const char *value)
3945 {
3946 struct remote_state *rs = get_remote_state ();
3947
3948 rs->install_in_trace = (support == PACKET_ENABLE);
3949 }
3950
3951 static void
3952 remote_disconnected_tracing_feature (const struct protocol_feature *feature,
3953 enum packet_support support,
3954 const char *value)
3955 {
3956 struct remote_state *rs = get_remote_state ();
3957
3958 rs->disconnected_tracing = (support == PACKET_ENABLE);
3959 }
3960
3961 static void
3962 remote_enable_disable_tracepoint_feature (const struct protocol_feature *feature,
3963 enum packet_support support,
3964 const char *value)
3965 {
3966 struct remote_state *rs = get_remote_state ();
3967
3968 rs->enable_disable_tracepoints = (support == PACKET_ENABLE);
3969 }
3970
3971 static void
3972 remote_string_tracing_feature (const struct protocol_feature *feature,
3973 enum packet_support support,
3974 const char *value)
3975 {
3976 struct remote_state *rs = get_remote_state ();
3977
3978 rs->string_tracing = (support == PACKET_ENABLE);
3979 }
3980
3981 static void
3982 remote_augmented_libraries_svr4_read_feature
3983 (const struct protocol_feature *feature,
3984 enum packet_support support, const char *value)
3985 {
3986 struct remote_state *rs = get_remote_state ();
3987
3988 rs->augmented_libraries_svr4_read = (support == PACKET_ENABLE);
3989 }
3990
3991 static const struct protocol_feature remote_protocol_features[] = {
3992 { "PacketSize", PACKET_DISABLE, remote_packet_size, -1 },
3993 { "qXfer:auxv:read", PACKET_DISABLE, remote_supported_packet,
3994 PACKET_qXfer_auxv },
3995 { "qXfer:features:read", PACKET_DISABLE, remote_supported_packet,
3996 PACKET_qXfer_features },
3997 { "qXfer:libraries:read", PACKET_DISABLE, remote_supported_packet,
3998 PACKET_qXfer_libraries },
3999 { "qXfer:libraries-svr4:read", PACKET_DISABLE, remote_supported_packet,
4000 PACKET_qXfer_libraries_svr4 },
4001 { "augmented-libraries-svr4-read", PACKET_DISABLE,
4002 remote_augmented_libraries_svr4_read_feature, -1 },
4003 { "qXfer:memory-map:read", PACKET_DISABLE, remote_supported_packet,
4004 PACKET_qXfer_memory_map },
4005 { "qXfer:spu:read", PACKET_DISABLE, remote_supported_packet,
4006 PACKET_qXfer_spu_read },
4007 { "qXfer:spu:write", PACKET_DISABLE, remote_supported_packet,
4008 PACKET_qXfer_spu_write },
4009 { "qXfer:osdata:read", PACKET_DISABLE, remote_supported_packet,
4010 PACKET_qXfer_osdata },
4011 { "qXfer:threads:read", PACKET_DISABLE, remote_supported_packet,
4012 PACKET_qXfer_threads },
4013 { "qXfer:traceframe-info:read", PACKET_DISABLE, remote_supported_packet,
4014 PACKET_qXfer_traceframe_info },
4015 { "QPassSignals", PACKET_DISABLE, remote_supported_packet,
4016 PACKET_QPassSignals },
4017 { "QProgramSignals", PACKET_DISABLE, remote_supported_packet,
4018 PACKET_QProgramSignals },
4019 { "QStartNoAckMode", PACKET_DISABLE, remote_supported_packet,
4020 PACKET_QStartNoAckMode },
4021 { "multiprocess", PACKET_DISABLE, remote_multi_process_feature, -1 },
4022 { "QNonStop", PACKET_DISABLE, remote_non_stop_feature, -1 },
4023 { "qXfer:siginfo:read", PACKET_DISABLE, remote_supported_packet,
4024 PACKET_qXfer_siginfo_read },
4025 { "qXfer:siginfo:write", PACKET_DISABLE, remote_supported_packet,
4026 PACKET_qXfer_siginfo_write },
4027 { "ConditionalTracepoints", PACKET_DISABLE, remote_cond_tracepoint_feature,
4028 PACKET_ConditionalTracepoints },
4029 { "ConditionalBreakpoints", PACKET_DISABLE, remote_cond_breakpoint_feature,
4030 PACKET_ConditionalBreakpoints },
4031 { "BreakpointCommands", PACKET_DISABLE, remote_breakpoint_commands_feature,
4032 PACKET_BreakpointCommands },
4033 { "FastTracepoints", PACKET_DISABLE, remote_fast_tracepoint_feature,
4034 PACKET_FastTracepoints },
4035 { "StaticTracepoints", PACKET_DISABLE, remote_static_tracepoint_feature,
4036 PACKET_StaticTracepoints },
4037 {"InstallInTrace", PACKET_DISABLE, remote_install_in_trace_feature,
4038 PACKET_InstallInTrace},
4039 { "DisconnectedTracing", PACKET_DISABLE, remote_disconnected_tracing_feature,
4040 -1 },
4041 { "ReverseContinue", PACKET_DISABLE, remote_supported_packet,
4042 PACKET_bc },
4043 { "ReverseStep", PACKET_DISABLE, remote_supported_packet,
4044 PACKET_bs },
4045 { "TracepointSource", PACKET_DISABLE, remote_supported_packet,
4046 PACKET_TracepointSource },
4047 { "QAllow", PACKET_DISABLE, remote_supported_packet,
4048 PACKET_QAllow },
4049 { "EnableDisableTracepoints", PACKET_DISABLE,
4050 remote_enable_disable_tracepoint_feature, -1 },
4051 { "qXfer:fdpic:read", PACKET_DISABLE, remote_supported_packet,
4052 PACKET_qXfer_fdpic },
4053 { "qXfer:uib:read", PACKET_DISABLE, remote_supported_packet,
4054 PACKET_qXfer_uib },
4055 { "QDisableRandomization", PACKET_DISABLE, remote_supported_packet,
4056 PACKET_QDisableRandomization },
4057 { "QAgent", PACKET_DISABLE, remote_supported_packet, PACKET_QAgent},
4058 { "QTBuffer:size", PACKET_DISABLE,
4059 remote_supported_packet, PACKET_QTBuffer_size},
4060 { "tracenz", PACKET_DISABLE,
4061 remote_string_tracing_feature, -1 },
4062 { "Qbtrace:off", PACKET_DISABLE, remote_supported_packet, PACKET_Qbtrace_off },
4063 { "Qbtrace:bts", PACKET_DISABLE, remote_supported_packet, PACKET_Qbtrace_bts },
4064 { "qXfer:btrace:read", PACKET_DISABLE, remote_supported_packet,
4065 PACKET_qXfer_btrace }
4066 };
4067
4068 static char *remote_support_xml;
4069
4070 /* Register string appended to "xmlRegisters=" in qSupported query. */
4071
4072 void
4073 register_remote_support_xml (const char *xml)
4074 {
4075 #if defined(HAVE_LIBEXPAT)
4076 if (remote_support_xml == NULL)
4077 remote_support_xml = concat ("xmlRegisters=", xml, (char *) NULL);
4078 else
4079 {
4080 char *copy = xstrdup (remote_support_xml + 13);
4081 char *p = strtok (copy, ",");
4082
4083 do
4084 {
4085 if (strcmp (p, xml) == 0)
4086 {
4087 /* already there */
4088 xfree (copy);
4089 return;
4090 }
4091 }
4092 while ((p = strtok (NULL, ",")) != NULL);
4093 xfree (copy);
4094
4095 remote_support_xml = reconcat (remote_support_xml,
4096 remote_support_xml, ",", xml,
4097 (char *) NULL);
4098 }
4099 #endif
4100 }
4101
4102 static char *
4103 remote_query_supported_append (char *msg, const char *append)
4104 {
4105 if (msg)
4106 return reconcat (msg, msg, ";", append, (char *) NULL);
4107 else
4108 return xstrdup (append);
4109 }
4110
4111 static void
4112 remote_query_supported (void)
4113 {
4114 struct remote_state *rs = get_remote_state ();
4115 char *next;
4116 int i;
4117 unsigned char seen [ARRAY_SIZE (remote_protocol_features)];
4118
4119 /* The packet support flags are handled differently for this packet
4120 than for most others. We treat an error, a disabled packet, and
4121 an empty response identically: any features which must be reported
4122 to be used will be automatically disabled. An empty buffer
4123 accomplishes this, since that is also the representation for a list
4124 containing no features. */
4125
4126 rs->buf[0] = 0;
4127 if (remote_protocol_packets[PACKET_qSupported].support != PACKET_DISABLE)
4128 {
4129 char *q = NULL;
4130 struct cleanup *old_chain = make_cleanup (free_current_contents, &q);
4131
4132 q = remote_query_supported_append (q, "multiprocess+");
4133
4134 if (remote_support_xml)
4135 q = remote_query_supported_append (q, remote_support_xml);
4136
4137 q = remote_query_supported_append (q, "qRelocInsn+");
4138
4139 q = reconcat (q, "qSupported:", q, (char *) NULL);
4140 putpkt (q);
4141
4142 do_cleanups (old_chain);
4143
4144 getpkt (&rs->buf, &rs->buf_size, 0);
4145
4146 /* If an error occured, warn, but do not return - just reset the
4147 buffer to empty and go on to disable features. */
4148 if (packet_ok (rs->buf, &remote_protocol_packets[PACKET_qSupported])
4149 == PACKET_ERROR)
4150 {
4151 warning (_("Remote failure reply: %s"), rs->buf);
4152 rs->buf[0] = 0;
4153 }
4154 }
4155
4156 memset (seen, 0, sizeof (seen));
4157
4158 next = rs->buf;
4159 while (*next)
4160 {
4161 enum packet_support is_supported;
4162 char *p, *end, *name_end, *value;
4163
4164 /* First separate out this item from the rest of the packet. If
4165 there's another item after this, we overwrite the separator
4166 (terminated strings are much easier to work with). */
4167 p = next;
4168 end = strchr (p, ';');
4169 if (end == NULL)
4170 {
4171 end = p + strlen (p);
4172 next = end;
4173 }
4174 else
4175 {
4176 *end = '\0';
4177 next = end + 1;
4178
4179 if (end == p)
4180 {
4181 warning (_("empty item in \"qSupported\" response"));
4182 continue;
4183 }
4184 }
4185
4186 name_end = strchr (p, '=');
4187 if (name_end)
4188 {
4189 /* This is a name=value entry. */
4190 is_supported = PACKET_ENABLE;
4191 value = name_end + 1;
4192 *name_end = '\0';
4193 }
4194 else
4195 {
4196 value = NULL;
4197 switch (end[-1])
4198 {
4199 case '+':
4200 is_supported = PACKET_ENABLE;
4201 break;
4202
4203 case '-':
4204 is_supported = PACKET_DISABLE;
4205 break;
4206
4207 case '?':
4208 is_supported = PACKET_SUPPORT_UNKNOWN;
4209 break;
4210
4211 default:
4212 warning (_("unrecognized item \"%s\" "
4213 "in \"qSupported\" response"), p);
4214 continue;
4215 }
4216 end[-1] = '\0';
4217 }
4218
4219 for (i = 0; i < ARRAY_SIZE (remote_protocol_features); i++)
4220 if (strcmp (remote_protocol_features[i].name, p) == 0)
4221 {
4222 const struct protocol_feature *feature;
4223
4224 seen[i] = 1;
4225 feature = &remote_protocol_features[i];
4226 feature->func (feature, is_supported, value);
4227 break;
4228 }
4229 }
4230
4231 /* If we increased the packet size, make sure to increase the global
4232 buffer size also. We delay this until after parsing the entire
4233 qSupported packet, because this is the same buffer we were
4234 parsing. */
4235 if (rs->buf_size < rs->explicit_packet_size)
4236 {
4237 rs->buf_size = rs->explicit_packet_size;
4238 rs->buf = xrealloc (rs->buf, rs->buf_size);
4239 }
4240
4241 /* Handle the defaults for unmentioned features. */
4242 for (i = 0; i < ARRAY_SIZE (remote_protocol_features); i++)
4243 if (!seen[i])
4244 {
4245 const struct protocol_feature *feature;
4246
4247 feature = &remote_protocol_features[i];
4248 feature->func (feature, feature->default_support, NULL);
4249 }
4250 }
4251
4252 /* Remove any of the remote.c targets from target stack. Upper targets depend
4253 on it so remove them first. */
4254
4255 static void
4256 remote_unpush_target (void)
4257 {
4258 pop_all_targets_above (process_stratum - 1);
4259 }
4260
4261 static void
4262 remote_open_1 (char *name, int from_tty,
4263 struct target_ops *target, int extended_p)
4264 {
4265 struct remote_state *rs = get_remote_state ();
4266
4267 if (name == 0)
4268 error (_("To open a remote debug connection, you need to specify what\n"
4269 "serial device is attached to the remote system\n"
4270 "(e.g. /dev/ttyS0, /dev/ttya, COM1, etc.)."));
4271
4272 /* See FIXME above. */
4273 if (!target_async_permitted)
4274 wait_forever_enabled_p = 1;
4275
4276 /* If we're connected to a running target, target_preopen will kill it.
4277 Ask this question first, before target_preopen has a chance to kill
4278 anything. */
4279 if (rs->remote_desc != NULL && !have_inferiors ())
4280 {
4281 if (from_tty
4282 && !query (_("Already connected to a remote target. Disconnect? ")))
4283 error (_("Still connected."));
4284 }
4285
4286 /* Here the possibly existing remote target gets unpushed. */
4287 target_preopen (from_tty);
4288
4289 /* Make sure we send the passed signals list the next time we resume. */
4290 xfree (rs->last_pass_packet);
4291 rs->last_pass_packet = NULL;
4292
4293 /* Make sure we send the program signals list the next time we
4294 resume. */
4295 xfree (rs->last_program_signals_packet);
4296 rs->last_program_signals_packet = NULL;
4297
4298 remote_fileio_reset ();
4299 reopen_exec_file ();
4300 reread_symbols ();
4301
4302 rs->remote_desc = remote_serial_open (name);
4303 if (!rs->remote_desc)
4304 perror_with_name (name);
4305
4306 if (baud_rate != -1)
4307 {
4308 if (serial_setbaudrate (rs->remote_desc, baud_rate))
4309 {
4310 /* The requested speed could not be set. Error out to
4311 top level after closing remote_desc. Take care to
4312 set remote_desc to NULL to avoid closing remote_desc
4313 more than once. */
4314 serial_close (rs->remote_desc);
4315 rs->remote_desc = NULL;
4316 perror_with_name (name);
4317 }
4318 }
4319
4320 serial_raw (rs->remote_desc);
4321
4322 /* If there is something sitting in the buffer we might take it as a
4323 response to a command, which would be bad. */
4324 serial_flush_input (rs->remote_desc);
4325
4326 if (from_tty)
4327 {
4328 puts_filtered ("Remote debugging using ");
4329 puts_filtered (name);
4330 puts_filtered ("\n");
4331 }
4332 push_target (target); /* Switch to using remote target now. */
4333
4334 /* Register extra event sources in the event loop. */
4335 remote_async_inferior_event_token
4336 = create_async_event_handler (remote_async_inferior_event_handler,
4337 NULL);
4338 rs->notif_state = remote_notif_state_allocate ();
4339
4340 /* Reset the target state; these things will be queried either by
4341 remote_query_supported or as they are needed. */
4342 init_all_packet_configs ();
4343 rs->cached_wait_status = 0;
4344 rs->explicit_packet_size = 0;
4345 rs->noack_mode = 0;
4346 rs->multi_process_aware = 0;
4347 rs->extended = extended_p;
4348 rs->non_stop_aware = 0;
4349 rs->waiting_for_stop_reply = 0;
4350 rs->ctrlc_pending_p = 0;
4351
4352 rs->general_thread = not_sent_ptid;
4353 rs->continue_thread = not_sent_ptid;
4354 rs->remote_traceframe_number = -1;
4355
4356 /* Probe for ability to use "ThreadInfo" query, as required. */
4357 rs->use_threadinfo_query = 1;
4358 rs->use_threadextra_query = 1;
4359
4360 if (target_async_permitted)
4361 {
4362 /* With this target we start out by owning the terminal. */
4363 remote_async_terminal_ours_p = 1;
4364
4365 /* FIXME: cagney/1999-09-23: During the initial connection it is
4366 assumed that the target is already ready and able to respond to
4367 requests. Unfortunately remote_start_remote() eventually calls
4368 wait_for_inferior() with no timeout. wait_forever_enabled_p gets
4369 around this. Eventually a mechanism that allows
4370 wait_for_inferior() to expect/get timeouts will be
4371 implemented. */
4372 wait_forever_enabled_p = 0;
4373 }
4374
4375 /* First delete any symbols previously loaded from shared libraries. */
4376 no_shared_libraries (NULL, 0);
4377
4378 /* Start afresh. */
4379 init_thread_list ();
4380
4381 /* Start the remote connection. If error() or QUIT, discard this
4382 target (we'd otherwise be in an inconsistent state) and then
4383 propogate the error on up the exception chain. This ensures that
4384 the caller doesn't stumble along blindly assuming that the
4385 function succeeded. The CLI doesn't have this problem but other
4386 UI's, such as MI do.
4387
4388 FIXME: cagney/2002-05-19: Instead of re-throwing the exception,
4389 this function should return an error indication letting the
4390 caller restore the previous state. Unfortunately the command
4391 ``target remote'' is directly wired to this function making that
4392 impossible. On a positive note, the CLI side of this problem has
4393 been fixed - the function set_cmd_context() makes it possible for
4394 all the ``target ....'' commands to share a common callback
4395 function. See cli-dump.c. */
4396 {
4397 volatile struct gdb_exception ex;
4398
4399 TRY_CATCH (ex, RETURN_MASK_ALL)
4400 {
4401 remote_start_remote (from_tty, target, extended_p);
4402 }
4403 if (ex.reason < 0)
4404 {
4405 /* Pop the partially set up target - unless something else did
4406 already before throwing the exception. */
4407 if (rs->remote_desc != NULL)
4408 remote_unpush_target ();
4409 if (target_async_permitted)
4410 wait_forever_enabled_p = 1;
4411 throw_exception (ex);
4412 }
4413 }
4414
4415 if (target_async_permitted)
4416 wait_forever_enabled_p = 1;
4417 }
4418
4419 /* This takes a program previously attached to and detaches it. After
4420 this is done, GDB can be used to debug some other program. We
4421 better not have left any breakpoints in the target program or it'll
4422 die when it hits one. */
4423
4424 static void
4425 remote_detach_1 (const char *args, int from_tty, int extended)
4426 {
4427 int pid = ptid_get_pid (inferior_ptid);
4428 struct remote_state *rs = get_remote_state ();
4429
4430 if (args)
4431 error (_("Argument given to \"detach\" when remotely debugging."));
4432
4433 if (!target_has_execution)
4434 error (_("No process to detach from."));
4435
4436 if (from_tty)
4437 {
4438 char *exec_file = get_exec_file (0);
4439 if (exec_file == NULL)
4440 exec_file = "";
4441 printf_unfiltered (_("Detaching from program: %s, %s\n"), exec_file,
4442 target_pid_to_str (pid_to_ptid (pid)));
4443 gdb_flush (gdb_stdout);
4444 }
4445
4446 /* Tell the remote target to detach. */
4447 if (remote_multi_process_p (rs))
4448 xsnprintf (rs->buf, get_remote_packet_size (), "D;%x", pid);
4449 else
4450 strcpy (rs->buf, "D");
4451
4452 putpkt (rs->buf);
4453 getpkt (&rs->buf, &rs->buf_size, 0);
4454
4455 if (rs->buf[0] == 'O' && rs->buf[1] == 'K')
4456 ;
4457 else if (rs->buf[0] == '\0')
4458 error (_("Remote doesn't know how to detach"));
4459 else
4460 error (_("Can't detach process."));
4461
4462 if (from_tty && !extended)
4463 puts_filtered (_("Ending remote debugging.\n"));
4464
4465 target_mourn_inferior ();
4466 }
4467
4468 static void
4469 remote_detach (struct target_ops *ops, const char *args, int from_tty)
4470 {
4471 remote_detach_1 (args, from_tty, 0);
4472 }
4473
4474 static void
4475 extended_remote_detach (struct target_ops *ops, const char *args, int from_tty)
4476 {
4477 remote_detach_1 (args, from_tty, 1);
4478 }
4479
4480 /* Same as remote_detach, but don't send the "D" packet; just disconnect. */
4481
4482 static void
4483 remote_disconnect (struct target_ops *target, char *args, int from_tty)
4484 {
4485 if (args)
4486 error (_("Argument given to \"disconnect\" when remotely debugging."));
4487
4488 /* Make sure we unpush even the extended remote targets; mourn
4489 won't do it. So call remote_mourn_1 directly instead of
4490 target_mourn_inferior. */
4491 remote_mourn_1 (target);
4492
4493 if (from_tty)
4494 puts_filtered ("Ending remote debugging.\n");
4495 }
4496
4497 /* Attach to the process specified by ARGS. If FROM_TTY is non-zero,
4498 be chatty about it. */
4499
4500 static void
4501 extended_remote_attach_1 (struct target_ops *target, char *args, int from_tty)
4502 {
4503 struct remote_state *rs = get_remote_state ();
4504 int pid;
4505 char *wait_status = NULL;
4506
4507 pid = parse_pid_to_attach (args);
4508
4509 /* Remote PID can be freely equal to getpid, do not check it here the same
4510 way as in other targets. */
4511
4512 if (remote_protocol_packets[PACKET_vAttach].support == PACKET_DISABLE)
4513 error (_("This target does not support attaching to a process"));
4514
4515 if (from_tty)
4516 {
4517 char *exec_file = get_exec_file (0);
4518
4519 if (exec_file)
4520 printf_unfiltered (_("Attaching to program: %s, %s\n"), exec_file,
4521 target_pid_to_str (pid_to_ptid (pid)));
4522 else
4523 printf_unfiltered (_("Attaching to %s\n"),
4524 target_pid_to_str (pid_to_ptid (pid)));
4525
4526 gdb_flush (gdb_stdout);
4527 }
4528
4529 xsnprintf (rs->buf, get_remote_packet_size (), "vAttach;%x", pid);
4530 putpkt (rs->buf);
4531 getpkt (&rs->buf, &rs->buf_size, 0);
4532
4533 if (packet_ok (rs->buf,
4534 &remote_protocol_packets[PACKET_vAttach]) == PACKET_OK)
4535 {
4536 if (!non_stop)
4537 {
4538 /* Save the reply for later. */
4539 wait_status = alloca (strlen (rs->buf) + 1);
4540 strcpy (wait_status, rs->buf);
4541 }
4542 else if (strcmp (rs->buf, "OK") != 0)
4543 error (_("Attaching to %s failed with: %s"),
4544 target_pid_to_str (pid_to_ptid (pid)),
4545 rs->buf);
4546 }
4547 else if (remote_protocol_packets[PACKET_vAttach].support == PACKET_DISABLE)
4548 error (_("This target does not support attaching to a process"));
4549 else
4550 error (_("Attaching to %s failed"),
4551 target_pid_to_str (pid_to_ptid (pid)));
4552
4553 set_current_inferior (remote_add_inferior (0, pid, 1));
4554
4555 inferior_ptid = pid_to_ptid (pid);
4556
4557 if (non_stop)
4558 {
4559 struct thread_info *thread;
4560
4561 /* Get list of threads. */
4562 remote_threads_info (target);
4563
4564 thread = first_thread_of_process (pid);
4565 if (thread)
4566 inferior_ptid = thread->ptid;
4567 else
4568 inferior_ptid = pid_to_ptid (pid);
4569
4570 /* Invalidate our notion of the remote current thread. */
4571 record_currthread (rs, minus_one_ptid);
4572 }
4573 else
4574 {
4575 /* Now, if we have thread information, update inferior_ptid. */
4576 inferior_ptid = remote_current_thread (inferior_ptid);
4577
4578 /* Add the main thread to the thread list. */
4579 add_thread_silent (inferior_ptid);
4580 }
4581
4582 /* Next, if the target can specify a description, read it. We do
4583 this before anything involving memory or registers. */
4584 target_find_description ();
4585
4586 if (!non_stop)
4587 {
4588 /* Use the previously fetched status. */
4589 gdb_assert (wait_status != NULL);
4590
4591 if (target_can_async_p ())
4592 {
4593 struct notif_event *reply
4594 = remote_notif_parse (&notif_client_stop, wait_status);
4595
4596 push_stop_reply ((struct stop_reply *) reply);
4597
4598 target_async (inferior_event_handler, 0);
4599 }
4600 else
4601 {
4602 gdb_assert (wait_status != NULL);
4603 strcpy (rs->buf, wait_status);
4604 rs->cached_wait_status = 1;
4605 }
4606 }
4607 else
4608 gdb_assert (wait_status == NULL);
4609 }
4610
4611 static void
4612 extended_remote_attach (struct target_ops *ops, char *args, int from_tty)
4613 {
4614 extended_remote_attach_1 (ops, args, from_tty);
4615 }
4616
4617 /* Convert hex digit A to a number. */
4618
4619 static int
4620 fromhex (int a)
4621 {
4622 if (a >= '0' && a <= '9')
4623 return a - '0';
4624 else if (a >= 'a' && a <= 'f')
4625 return a - 'a' + 10;
4626 else if (a >= 'A' && a <= 'F')
4627 return a - 'A' + 10;
4628 else
4629 error (_("Reply contains invalid hex digit %d"), a);
4630 }
4631
4632 int
4633 hex2bin (const char *hex, gdb_byte *bin, int count)
4634 {
4635 int i;
4636
4637 for (i = 0; i < count; i++)
4638 {
4639 if (hex[0] == 0 || hex[1] == 0)
4640 {
4641 /* Hex string is short, or of uneven length.
4642 Return the count that has been converted so far. */
4643 return i;
4644 }
4645 *bin++ = fromhex (hex[0]) * 16 + fromhex (hex[1]);
4646 hex += 2;
4647 }
4648 return i;
4649 }
4650
4651 /* Convert number NIB to a hex digit. */
4652
4653 static int
4654 tohex (int nib)
4655 {
4656 if (nib < 10)
4657 return '0' + nib;
4658 else
4659 return 'a' + nib - 10;
4660 }
4661
4662 int
4663 bin2hex (const gdb_byte *bin, char *hex, int count)
4664 {
4665 int i;
4666
4667 /* May use a length, or a nul-terminated string as input. */
4668 if (count == 0)
4669 count = strlen ((char *) bin);
4670
4671 for (i = 0; i < count; i++)
4672 {
4673 *hex++ = tohex ((*bin >> 4) & 0xf);
4674 *hex++ = tohex (*bin++ & 0xf);
4675 }
4676 *hex = 0;
4677 return i;
4678 }
4679 \f
4680 /* Check for the availability of vCont. This function should also check
4681 the response. */
4682
4683 static void
4684 remote_vcont_probe (struct remote_state *rs)
4685 {
4686 char *buf;
4687
4688 strcpy (rs->buf, "vCont?");
4689 putpkt (rs->buf);
4690 getpkt (&rs->buf, &rs->buf_size, 0);
4691 buf = rs->buf;
4692
4693 /* Make sure that the features we assume are supported. */
4694 if (strncmp (buf, "vCont", 5) == 0)
4695 {
4696 char *p = &buf[5];
4697 int support_s, support_S, support_c, support_C;
4698
4699 support_s = 0;
4700 support_S = 0;
4701 support_c = 0;
4702 support_C = 0;
4703 rs->supports_vCont.t = 0;
4704 rs->supports_vCont.r = 0;
4705 while (p && *p == ';')
4706 {
4707 p++;
4708 if (*p == 's' && (*(p + 1) == ';' || *(p + 1) == 0))
4709 support_s = 1;
4710 else if (*p == 'S' && (*(p + 1) == ';' || *(p + 1) == 0))
4711 support_S = 1;
4712 else if (*p == 'c' && (*(p + 1) == ';' || *(p + 1) == 0))
4713 support_c = 1;
4714 else if (*p == 'C' && (*(p + 1) == ';' || *(p + 1) == 0))
4715 support_C = 1;
4716 else if (*p == 't' && (*(p + 1) == ';' || *(p + 1) == 0))
4717 rs->supports_vCont.t = 1;
4718 else if (*p == 'r' && (*(p + 1) == ';' || *(p + 1) == 0))
4719 rs->supports_vCont.r = 1;
4720
4721 p = strchr (p, ';');
4722 }
4723
4724 /* If s, S, c, and C are not all supported, we can't use vCont. Clearing
4725 BUF will make packet_ok disable the packet. */
4726 if (!support_s || !support_S || !support_c || !support_C)
4727 buf[0] = 0;
4728 }
4729
4730 packet_ok (buf, &remote_protocol_packets[PACKET_vCont]);
4731 }
4732
4733 /* Helper function for building "vCont" resumptions. Write a
4734 resumption to P. ENDP points to one-passed-the-end of the buffer
4735 we're allowed to write to. Returns BUF+CHARACTERS_WRITTEN. The
4736 thread to be resumed is PTID; STEP and SIGGNAL indicate whether the
4737 resumed thread should be single-stepped and/or signalled. If PTID
4738 equals minus_one_ptid, then all threads are resumed; if PTID
4739 represents a process, then all threads of the process are resumed;
4740 the thread to be stepped and/or signalled is given in the global
4741 INFERIOR_PTID. */
4742
4743 static char *
4744 append_resumption (char *p, char *endp,
4745 ptid_t ptid, int step, enum gdb_signal siggnal)
4746 {
4747 struct remote_state *rs = get_remote_state ();
4748
4749 if (step && siggnal != GDB_SIGNAL_0)
4750 p += xsnprintf (p, endp - p, ";S%02x", siggnal);
4751 else if (step
4752 /* GDB is willing to range step. */
4753 && use_range_stepping
4754 /* Target supports range stepping. */
4755 && rs->supports_vCont.r
4756 /* We don't currently support range stepping multiple
4757 threads with a wildcard (though the protocol allows it,
4758 so stubs shouldn't make an active effort to forbid
4759 it). */
4760 && !(remote_multi_process_p (rs) && ptid_is_pid (ptid)))
4761 {
4762 struct thread_info *tp;
4763
4764 if (ptid_equal (ptid, minus_one_ptid))
4765 {
4766 /* If we don't know about the target thread's tid, then
4767 we're resuming magic_null_ptid (see caller). */
4768 tp = find_thread_ptid (magic_null_ptid);
4769 }
4770 else
4771 tp = find_thread_ptid (ptid);
4772 gdb_assert (tp != NULL);
4773
4774 if (tp->control.may_range_step)
4775 {
4776 int addr_size = gdbarch_addr_bit (target_gdbarch ()) / 8;
4777
4778 p += xsnprintf (p, endp - p, ";r%s,%s",
4779 phex_nz (tp->control.step_range_start,
4780 addr_size),
4781 phex_nz (tp->control.step_range_end,
4782 addr_size));
4783 }
4784 else
4785 p += xsnprintf (p, endp - p, ";s");
4786 }
4787 else if (step)
4788 p += xsnprintf (p, endp - p, ";s");
4789 else if (siggnal != GDB_SIGNAL_0)
4790 p += xsnprintf (p, endp - p, ";C%02x", siggnal);
4791 else
4792 p += xsnprintf (p, endp - p, ";c");
4793
4794 if (remote_multi_process_p (rs) && ptid_is_pid (ptid))
4795 {
4796 ptid_t nptid;
4797
4798 /* All (-1) threads of process. */
4799 nptid = ptid_build (ptid_get_pid (ptid), 0, -1);
4800
4801 p += xsnprintf (p, endp - p, ":");
4802 p = write_ptid (p, endp, nptid);
4803 }
4804 else if (!ptid_equal (ptid, minus_one_ptid))
4805 {
4806 p += xsnprintf (p, endp - p, ":");
4807 p = write_ptid (p, endp, ptid);
4808 }
4809
4810 return p;
4811 }
4812
4813 /* Append a vCont continue-with-signal action for threads that have a
4814 non-zero stop signal. */
4815
4816 static char *
4817 append_pending_thread_resumptions (char *p, char *endp, ptid_t ptid)
4818 {
4819 struct thread_info *thread;
4820
4821 ALL_THREADS (thread)
4822 if (ptid_match (thread->ptid, ptid)
4823 && !ptid_equal (inferior_ptid, thread->ptid)
4824 && thread->suspend.stop_signal != GDB_SIGNAL_0
4825 && signal_pass_state (thread->suspend.stop_signal))
4826 {
4827 p = append_resumption (p, endp, thread->ptid,
4828 0, thread->suspend.stop_signal);
4829 thread->suspend.stop_signal = GDB_SIGNAL_0;
4830 }
4831
4832 return p;
4833 }
4834
4835 /* Resume the remote inferior by using a "vCont" packet. The thread
4836 to be resumed is PTID; STEP and SIGGNAL indicate whether the
4837 resumed thread should be single-stepped and/or signalled. If PTID
4838 equals minus_one_ptid, then all threads are resumed; the thread to
4839 be stepped and/or signalled is given in the global INFERIOR_PTID.
4840 This function returns non-zero iff it resumes the inferior.
4841
4842 This function issues a strict subset of all possible vCont commands at the
4843 moment. */
4844
4845 static int
4846 remote_vcont_resume (ptid_t ptid, int step, enum gdb_signal siggnal)
4847 {
4848 struct remote_state *rs = get_remote_state ();
4849 char *p;
4850 char *endp;
4851
4852 if (remote_protocol_packets[PACKET_vCont].support == PACKET_SUPPORT_UNKNOWN)
4853 remote_vcont_probe (rs);
4854
4855 if (remote_protocol_packets[PACKET_vCont].support == PACKET_DISABLE)
4856 return 0;
4857
4858 p = rs->buf;
4859 endp = rs->buf + get_remote_packet_size ();
4860
4861 /* If we could generate a wider range of packets, we'd have to worry
4862 about overflowing BUF. Should there be a generic
4863 "multi-part-packet" packet? */
4864
4865 p += xsnprintf (p, endp - p, "vCont");
4866
4867 if (ptid_equal (ptid, magic_null_ptid))
4868 {
4869 /* MAGIC_NULL_PTID means that we don't have any active threads,
4870 so we don't have any TID numbers the inferior will
4871 understand. Make sure to only send forms that do not specify
4872 a TID. */
4873 append_resumption (p, endp, minus_one_ptid, step, siggnal);
4874 }
4875 else if (ptid_equal (ptid, minus_one_ptid) || ptid_is_pid (ptid))
4876 {
4877 /* Resume all threads (of all processes, or of a single
4878 process), with preference for INFERIOR_PTID. This assumes
4879 inferior_ptid belongs to the set of all threads we are about
4880 to resume. */
4881 if (step || siggnal != GDB_SIGNAL_0)
4882 {
4883 /* Step inferior_ptid, with or without signal. */
4884 p = append_resumption (p, endp, inferior_ptid, step, siggnal);
4885 }
4886
4887 /* Also pass down any pending signaled resumption for other
4888 threads not the current. */
4889 p = append_pending_thread_resumptions (p, endp, ptid);
4890
4891 /* And continue others without a signal. */
4892 append_resumption (p, endp, ptid, /*step=*/ 0, GDB_SIGNAL_0);
4893 }
4894 else
4895 {
4896 /* Scheduler locking; resume only PTID. */
4897 append_resumption (p, endp, ptid, step, siggnal);
4898 }
4899
4900 gdb_assert (strlen (rs->buf) < get_remote_packet_size ());
4901 putpkt (rs->buf);
4902
4903 if (non_stop)
4904 {
4905 /* In non-stop, the stub replies to vCont with "OK". The stop
4906 reply will be reported asynchronously by means of a `%Stop'
4907 notification. */
4908 getpkt (&rs->buf, &rs->buf_size, 0);
4909 if (strcmp (rs->buf, "OK") != 0)
4910 error (_("Unexpected vCont reply in non-stop mode: %s"), rs->buf);
4911 }
4912
4913 return 1;
4914 }
4915
4916 /* Tell the remote machine to resume. */
4917
4918 static void
4919 remote_resume (struct target_ops *ops,
4920 ptid_t ptid, int step, enum gdb_signal siggnal)
4921 {
4922 struct remote_state *rs = get_remote_state ();
4923 char *buf;
4924
4925 /* In all-stop, we can't mark REMOTE_ASYNC_GET_PENDING_EVENTS_TOKEN
4926 (explained in remote-notif.c:handle_notification) so
4927 remote_notif_process is not called. We need find a place where
4928 it is safe to start a 'vNotif' sequence. It is good to do it
4929 before resuming inferior, because inferior was stopped and no RSP
4930 traffic at that moment. */
4931 if (!non_stop)
4932 remote_notif_process (rs->notif_state, &notif_client_stop);
4933
4934 rs->last_sent_signal = siggnal;
4935 rs->last_sent_step = step;
4936
4937 /* The vCont packet doesn't need to specify threads via Hc. */
4938 /* No reverse support (yet) for vCont. */
4939 if (execution_direction != EXEC_REVERSE)
4940 if (remote_vcont_resume (ptid, step, siggnal))
4941 goto done;
4942
4943 /* All other supported resume packets do use Hc, so set the continue
4944 thread. */
4945 if (ptid_equal (ptid, minus_one_ptid))
4946 set_continue_thread (any_thread_ptid);
4947 else
4948 set_continue_thread (ptid);
4949
4950 buf = rs->buf;
4951 if (execution_direction == EXEC_REVERSE)
4952 {
4953 /* We don't pass signals to the target in reverse exec mode. */
4954 if (info_verbose && siggnal != GDB_SIGNAL_0)
4955 warning (_(" - Can't pass signal %d to target in reverse: ignored."),
4956 siggnal);
4957
4958 if (step
4959 && remote_protocol_packets[PACKET_bs].support == PACKET_DISABLE)
4960 error (_("Remote reverse-step not supported."));
4961 if (!step
4962 && remote_protocol_packets[PACKET_bc].support == PACKET_DISABLE)
4963 error (_("Remote reverse-continue not supported."));
4964
4965 strcpy (buf, step ? "bs" : "bc");
4966 }
4967 else if (siggnal != GDB_SIGNAL_0)
4968 {
4969 buf[0] = step ? 'S' : 'C';
4970 buf[1] = tohex (((int) siggnal >> 4) & 0xf);
4971 buf[2] = tohex (((int) siggnal) & 0xf);
4972 buf[3] = '\0';
4973 }
4974 else
4975 strcpy (buf, step ? "s" : "c");
4976
4977 putpkt (buf);
4978
4979 done:
4980 /* We are about to start executing the inferior, let's register it
4981 with the event loop. NOTE: this is the one place where all the
4982 execution commands end up. We could alternatively do this in each
4983 of the execution commands in infcmd.c. */
4984 /* FIXME: ezannoni 1999-09-28: We may need to move this out of here
4985 into infcmd.c in order to allow inferior function calls to work
4986 NOT asynchronously. */
4987 if (target_can_async_p ())
4988 target_async (inferior_event_handler, 0);
4989
4990 /* We've just told the target to resume. The remote server will
4991 wait for the inferior to stop, and then send a stop reply. In
4992 the mean time, we can't start another command/query ourselves
4993 because the stub wouldn't be ready to process it. This applies
4994 only to the base all-stop protocol, however. In non-stop (which
4995 only supports vCont), the stub replies with an "OK", and is
4996 immediate able to process further serial input. */
4997 if (!non_stop)
4998 rs->waiting_for_stop_reply = 1;
4999 }
5000 \f
5001
5002 /* Set up the signal handler for SIGINT, while the target is
5003 executing, ovewriting the 'regular' SIGINT signal handler. */
5004 static void
5005 async_initialize_sigint_signal_handler (void)
5006 {
5007 signal (SIGINT, async_handle_remote_sigint);
5008 }
5009
5010 /* Signal handler for SIGINT, while the target is executing. */
5011 static void
5012 async_handle_remote_sigint (int sig)
5013 {
5014 signal (sig, async_handle_remote_sigint_twice);
5015 mark_async_signal_handler (async_sigint_remote_token);
5016 }
5017
5018 /* Signal handler for SIGINT, installed after SIGINT has already been
5019 sent once. It will take effect the second time that the user sends
5020 a ^C. */
5021 static void
5022 async_handle_remote_sigint_twice (int sig)
5023 {
5024 signal (sig, async_handle_remote_sigint);
5025 mark_async_signal_handler (async_sigint_remote_twice_token);
5026 }
5027
5028 /* Perform the real interruption of the target execution, in response
5029 to a ^C. */
5030 static void
5031 async_remote_interrupt (gdb_client_data arg)
5032 {
5033 if (remote_debug)
5034 fprintf_unfiltered (gdb_stdlog, "async_remote_interrupt called\n");
5035
5036 target_stop (inferior_ptid);
5037 }
5038
5039 /* Perform interrupt, if the first attempt did not succeed. Just give
5040 up on the target alltogether. */
5041 static void
5042 async_remote_interrupt_twice (gdb_client_data arg)
5043 {
5044 if (remote_debug)
5045 fprintf_unfiltered (gdb_stdlog, "async_remote_interrupt_twice called\n");
5046
5047 interrupt_query ();
5048 }
5049
5050 /* Reinstall the usual SIGINT handlers, after the target has
5051 stopped. */
5052 static void
5053 async_cleanup_sigint_signal_handler (void *dummy)
5054 {
5055 signal (SIGINT, handle_sigint);
5056 }
5057
5058 /* Send ^C to target to halt it. Target will respond, and send us a
5059 packet. */
5060 static void (*ofunc) (int);
5061
5062 /* The command line interface's stop routine. This function is installed
5063 as a signal handler for SIGINT. The first time a user requests a
5064 stop, we call remote_stop to send a break or ^C. If there is no
5065 response from the target (it didn't stop when the user requested it),
5066 we ask the user if he'd like to detach from the target. */
5067 static void
5068 sync_remote_interrupt (int signo)
5069 {
5070 /* If this doesn't work, try more severe steps. */
5071 signal (signo, sync_remote_interrupt_twice);
5072
5073 gdb_call_async_signal_handler (async_sigint_remote_token, 1);
5074 }
5075
5076 /* The user typed ^C twice. */
5077
5078 static void
5079 sync_remote_interrupt_twice (int signo)
5080 {
5081 signal (signo, ofunc);
5082 gdb_call_async_signal_handler (async_sigint_remote_twice_token, 1);
5083 signal (signo, sync_remote_interrupt);
5084 }
5085
5086 /* Non-stop version of target_stop. Uses `vCont;t' to stop a remote
5087 thread, all threads of a remote process, or all threads of all
5088 processes. */
5089
5090 static void
5091 remote_stop_ns (ptid_t ptid)
5092 {
5093 struct remote_state *rs = get_remote_state ();
5094 char *p = rs->buf;
5095 char *endp = rs->buf + get_remote_packet_size ();
5096
5097 if (remote_protocol_packets[PACKET_vCont].support == PACKET_SUPPORT_UNKNOWN)
5098 remote_vcont_probe (rs);
5099
5100 if (!rs->supports_vCont.t)
5101 error (_("Remote server does not support stopping threads"));
5102
5103 if (ptid_equal (ptid, minus_one_ptid)
5104 || (!remote_multi_process_p (rs) && ptid_is_pid (ptid)))
5105 p += xsnprintf (p, endp - p, "vCont;t");
5106 else
5107 {
5108 ptid_t nptid;
5109
5110 p += xsnprintf (p, endp - p, "vCont;t:");
5111
5112 if (ptid_is_pid (ptid))
5113 /* All (-1) threads of process. */
5114 nptid = ptid_build (ptid_get_pid (ptid), 0, -1);
5115 else
5116 {
5117 /* Small optimization: if we already have a stop reply for
5118 this thread, no use in telling the stub we want this
5119 stopped. */
5120 if (peek_stop_reply (ptid))
5121 return;
5122
5123 nptid = ptid;
5124 }
5125
5126 write_ptid (p, endp, nptid);
5127 }
5128
5129 /* In non-stop, we get an immediate OK reply. The stop reply will
5130 come in asynchronously by notification. */
5131 putpkt (rs->buf);
5132 getpkt (&rs->buf, &rs->buf_size, 0);
5133 if (strcmp (rs->buf, "OK") != 0)
5134 error (_("Stopping %s failed: %s"), target_pid_to_str (ptid), rs->buf);
5135 }
5136
5137 /* All-stop version of target_stop. Sends a break or a ^C to stop the
5138 remote target. It is undefined which thread of which process
5139 reports the stop. */
5140
5141 static void
5142 remote_stop_as (ptid_t ptid)
5143 {
5144 struct remote_state *rs = get_remote_state ();
5145
5146 rs->ctrlc_pending_p = 1;
5147
5148 /* If the inferior is stopped already, but the core didn't know
5149 about it yet, just ignore the request. The cached wait status
5150 will be collected in remote_wait. */
5151 if (rs->cached_wait_status)
5152 return;
5153
5154 /* Send interrupt_sequence to remote target. */
5155 send_interrupt_sequence ();
5156 }
5157
5158 /* This is the generic stop called via the target vector. When a target
5159 interrupt is requested, either by the command line or the GUI, we
5160 will eventually end up here. */
5161
5162 static void
5163 remote_stop (ptid_t ptid)
5164 {
5165 if (remote_debug)
5166 fprintf_unfiltered (gdb_stdlog, "remote_stop called\n");
5167
5168 if (non_stop)
5169 remote_stop_ns (ptid);
5170 else
5171 remote_stop_as (ptid);
5172 }
5173
5174 /* Ask the user what to do when an interrupt is received. */
5175
5176 static void
5177 interrupt_query (void)
5178 {
5179 target_terminal_ours ();
5180
5181 if (target_can_async_p ())
5182 {
5183 signal (SIGINT, handle_sigint);
5184 quit ();
5185 }
5186 else
5187 {
5188 if (query (_("Interrupted while waiting for the program.\n\
5189 Give up (and stop debugging it)? ")))
5190 {
5191 remote_unpush_target ();
5192 quit ();
5193 }
5194 }
5195
5196 target_terminal_inferior ();
5197 }
5198
5199 /* Enable/disable target terminal ownership. Most targets can use
5200 terminal groups to control terminal ownership. Remote targets are
5201 different in that explicit transfer of ownership to/from GDB/target
5202 is required. */
5203
5204 static void
5205 remote_terminal_inferior (void)
5206 {
5207 if (!target_async_permitted)
5208 /* Nothing to do. */
5209 return;
5210
5211 /* FIXME: cagney/1999-09-27: Make calls to target_terminal_*()
5212 idempotent. The event-loop GDB talking to an asynchronous target
5213 with a synchronous command calls this function from both
5214 event-top.c and infrun.c/infcmd.c. Once GDB stops trying to
5215 transfer the terminal to the target when it shouldn't this guard
5216 can go away. */
5217 if (!remote_async_terminal_ours_p)
5218 return;
5219 delete_file_handler (input_fd);
5220 remote_async_terminal_ours_p = 0;
5221 async_initialize_sigint_signal_handler ();
5222 /* NOTE: At this point we could also register our selves as the
5223 recipient of all input. Any characters typed could then be
5224 passed on down to the target. */
5225 }
5226
5227 static void
5228 remote_terminal_ours (void)
5229 {
5230 if (!target_async_permitted)
5231 /* Nothing to do. */
5232 return;
5233
5234 /* See FIXME in remote_terminal_inferior. */
5235 if (remote_async_terminal_ours_p)
5236 return;
5237 async_cleanup_sigint_signal_handler (NULL);
5238 add_file_handler (input_fd, stdin_event_handler, 0);
5239 remote_async_terminal_ours_p = 1;
5240 }
5241
5242 static void
5243 remote_console_output (char *msg)
5244 {
5245 char *p;
5246
5247 for (p = msg; p[0] && p[1]; p += 2)
5248 {
5249 char tb[2];
5250 char c = fromhex (p[0]) * 16 + fromhex (p[1]);
5251
5252 tb[0] = c;
5253 tb[1] = 0;
5254 fputs_unfiltered (tb, gdb_stdtarg);
5255 }
5256 gdb_flush (gdb_stdtarg);
5257 }
5258
5259 typedef struct cached_reg
5260 {
5261 int num;
5262 gdb_byte data[MAX_REGISTER_SIZE];
5263 } cached_reg_t;
5264
5265 DEF_VEC_O(cached_reg_t);
5266
5267 typedef struct stop_reply
5268 {
5269 struct notif_event base;
5270
5271 /* The identifier of the thread about this event */
5272 ptid_t ptid;
5273
5274 /* The remote state this event is associated with. When the remote
5275 connection, represented by a remote_state object, is closed,
5276 all the associated stop_reply events should be released. */
5277 struct remote_state *rs;
5278
5279 struct target_waitstatus ws;
5280
5281 /* Expedited registers. This makes remote debugging a bit more
5282 efficient for those targets that provide critical registers as
5283 part of their normal status mechanism (as another roundtrip to
5284 fetch them is avoided). */
5285 VEC(cached_reg_t) *regcache;
5286
5287 int stopped_by_watchpoint_p;
5288 CORE_ADDR watch_data_address;
5289
5290 int core;
5291 } *stop_reply_p;
5292
5293 DECLARE_QUEUE_P (stop_reply_p);
5294 DEFINE_QUEUE_P (stop_reply_p);
5295 /* The list of already fetched and acknowledged stop events. This
5296 queue is used for notification Stop, and other notifications
5297 don't need queue for their events, because the notification events
5298 of Stop can't be consumed immediately, so that events should be
5299 queued first, and be consumed by remote_wait_{ns,as} one per
5300 time. Other notifications can consume their events immediately,
5301 so queue is not needed for them. */
5302 static QUEUE (stop_reply_p) *stop_reply_queue;
5303
5304 static void
5305 stop_reply_xfree (struct stop_reply *r)
5306 {
5307 notif_event_xfree ((struct notif_event *) r);
5308 }
5309
5310 static void
5311 remote_notif_stop_parse (struct notif_client *self, char *buf,
5312 struct notif_event *event)
5313 {
5314 remote_parse_stop_reply (buf, (struct stop_reply *) event);
5315 }
5316
5317 static void
5318 remote_notif_stop_ack (struct notif_client *self, char *buf,
5319 struct notif_event *event)
5320 {
5321 struct stop_reply *stop_reply = (struct stop_reply *) event;
5322
5323 /* acknowledge */
5324 putpkt ((char *) self->ack_command);
5325
5326 if (stop_reply->ws.kind == TARGET_WAITKIND_IGNORE)
5327 /* We got an unknown stop reply. */
5328 error (_("Unknown stop reply"));
5329
5330 push_stop_reply (stop_reply);
5331 }
5332
5333 static int
5334 remote_notif_stop_can_get_pending_events (struct notif_client *self)
5335 {
5336 /* We can't get pending events in remote_notif_process for
5337 notification stop, and we have to do this in remote_wait_ns
5338 instead. If we fetch all queued events from stub, remote stub
5339 may exit and we have no chance to process them back in
5340 remote_wait_ns. */
5341 mark_async_event_handler (remote_async_inferior_event_token);
5342 return 0;
5343 }
5344
5345 static void
5346 stop_reply_dtr (struct notif_event *event)
5347 {
5348 struct stop_reply *r = (struct stop_reply *) event;
5349
5350 VEC_free (cached_reg_t, r->regcache);
5351 }
5352
5353 static struct notif_event *
5354 remote_notif_stop_alloc_reply (void)
5355 {
5356 struct notif_event *r
5357 = (struct notif_event *) XMALLOC (struct stop_reply);
5358
5359 r->dtr = stop_reply_dtr;
5360
5361 return r;
5362 }
5363
5364 /* A client of notification Stop. */
5365
5366 struct notif_client notif_client_stop =
5367 {
5368 "Stop",
5369 "vStopped",
5370 remote_notif_stop_parse,
5371 remote_notif_stop_ack,
5372 remote_notif_stop_can_get_pending_events,
5373 remote_notif_stop_alloc_reply,
5374 REMOTE_NOTIF_STOP,
5375 };
5376
5377 /* A parameter to pass data in and out. */
5378
5379 struct queue_iter_param
5380 {
5381 void *input;
5382 struct stop_reply *output;
5383 };
5384
5385 /* Remove stop replies in the queue if its pid is equal to the given
5386 inferior's pid. */
5387
5388 static int
5389 remove_stop_reply_for_inferior (QUEUE (stop_reply_p) *q,
5390 QUEUE_ITER (stop_reply_p) *iter,
5391 stop_reply_p event,
5392 void *data)
5393 {
5394 struct queue_iter_param *param = data;
5395 struct inferior *inf = param->input;
5396
5397 if (ptid_get_pid (event->ptid) == inf->pid)
5398 {
5399 stop_reply_xfree (event);
5400 QUEUE_remove_elem (stop_reply_p, q, iter);
5401 }
5402
5403 return 1;
5404 }
5405
5406 /* Discard all pending stop replies of inferior INF. */
5407
5408 static void
5409 discard_pending_stop_replies (struct inferior *inf)
5410 {
5411 int i;
5412 struct queue_iter_param param;
5413 struct stop_reply *reply;
5414 struct remote_state *rs = get_remote_state ();
5415 struct remote_notif_state *rns = rs->notif_state;
5416
5417 /* This function can be notified when an inferior exists. When the
5418 target is not remote, the notification state is NULL. */
5419 if (rs->remote_desc == NULL)
5420 return;
5421
5422 reply = (struct stop_reply *) rns->pending_event[notif_client_stop.id];
5423
5424 /* Discard the in-flight notification. */
5425 if (reply != NULL && ptid_get_pid (reply->ptid) == inf->pid)
5426 {
5427 stop_reply_xfree (reply);
5428 rns->pending_event[notif_client_stop.id] = NULL;
5429 }
5430
5431 param.input = inf;
5432 param.output = NULL;
5433 /* Discard the stop replies we have already pulled with
5434 vStopped. */
5435 QUEUE_iterate (stop_reply_p, stop_reply_queue,
5436 remove_stop_reply_for_inferior, &param);
5437 }
5438
5439 /* If its remote state is equal to the given remote state,
5440 remove EVENT from the stop reply queue. */
5441
5442 static int
5443 remove_stop_reply_of_remote_state (QUEUE (stop_reply_p) *q,
5444 QUEUE_ITER (stop_reply_p) *iter,
5445 stop_reply_p event,
5446 void *data)
5447 {
5448 struct queue_iter_param *param = data;
5449 struct remote_state *rs = param->input;
5450
5451 if (event->rs == rs)
5452 {
5453 stop_reply_xfree (event);
5454 QUEUE_remove_elem (stop_reply_p, q, iter);
5455 }
5456
5457 return 1;
5458 }
5459
5460 /* Discard the stop replies for RS in stop_reply_queue. */
5461
5462 static void
5463 discard_pending_stop_replies_in_queue (struct remote_state *rs)
5464 {
5465 struct queue_iter_param param;
5466
5467 param.input = rs;
5468 param.output = NULL;
5469 /* Discard the stop replies we have already pulled with
5470 vStopped. */
5471 QUEUE_iterate (stop_reply_p, stop_reply_queue,
5472 remove_stop_reply_of_remote_state, &param);
5473 }
5474
5475 /* A parameter to pass data in and out. */
5476
5477 static int
5478 remote_notif_remove_once_on_match (QUEUE (stop_reply_p) *q,
5479 QUEUE_ITER (stop_reply_p) *iter,
5480 stop_reply_p event,
5481 void *data)
5482 {
5483 struct queue_iter_param *param = data;
5484 ptid_t *ptid = param->input;
5485
5486 if (ptid_match (event->ptid, *ptid))
5487 {
5488 param->output = event;
5489 QUEUE_remove_elem (stop_reply_p, q, iter);
5490 return 0;
5491 }
5492
5493 return 1;
5494 }
5495
5496 /* Remove the first reply in 'stop_reply_queue' which matches
5497 PTID. */
5498
5499 static struct stop_reply *
5500 remote_notif_remove_queued_reply (ptid_t ptid)
5501 {
5502 struct queue_iter_param param;
5503
5504 param.input = &ptid;
5505 param.output = NULL;
5506
5507 QUEUE_iterate (stop_reply_p, stop_reply_queue,
5508 remote_notif_remove_once_on_match, &param);
5509 if (notif_debug)
5510 fprintf_unfiltered (gdb_stdlog,
5511 "notif: discard queued event: 'Stop' in %s\n",
5512 target_pid_to_str (ptid));
5513
5514 return param.output;
5515 }
5516
5517 /* Look for a queued stop reply belonging to PTID. If one is found,
5518 remove it from the queue, and return it. Returns NULL if none is
5519 found. If there are still queued events left to process, tell the
5520 event loop to get back to target_wait soon. */
5521
5522 static struct stop_reply *
5523 queued_stop_reply (ptid_t ptid)
5524 {
5525 struct stop_reply *r = remote_notif_remove_queued_reply (ptid);
5526
5527 if (!QUEUE_is_empty (stop_reply_p, stop_reply_queue))
5528 /* There's still at least an event left. */
5529 mark_async_event_handler (remote_async_inferior_event_token);
5530
5531 return r;
5532 }
5533
5534 /* Push a fully parsed stop reply in the stop reply queue. Since we
5535 know that we now have at least one queued event left to pass to the
5536 core side, tell the event loop to get back to target_wait soon. */
5537
5538 static void
5539 push_stop_reply (struct stop_reply *new_event)
5540 {
5541 QUEUE_enque (stop_reply_p, stop_reply_queue, new_event);
5542
5543 if (notif_debug)
5544 fprintf_unfiltered (gdb_stdlog,
5545 "notif: push 'Stop' %s to queue %d\n",
5546 target_pid_to_str (new_event->ptid),
5547 QUEUE_length (stop_reply_p,
5548 stop_reply_queue));
5549
5550 mark_async_event_handler (remote_async_inferior_event_token);
5551 }
5552
5553 static int
5554 stop_reply_match_ptid_and_ws (QUEUE (stop_reply_p) *q,
5555 QUEUE_ITER (stop_reply_p) *iter,
5556 struct stop_reply *event,
5557 void *data)
5558 {
5559 ptid_t *ptid = data;
5560
5561 return !(ptid_equal (*ptid, event->ptid)
5562 && event->ws.kind == TARGET_WAITKIND_STOPPED);
5563 }
5564
5565 /* Returns true if we have a stop reply for PTID. */
5566
5567 static int
5568 peek_stop_reply (ptid_t ptid)
5569 {
5570 return !QUEUE_iterate (stop_reply_p, stop_reply_queue,
5571 stop_reply_match_ptid_and_ws, &ptid);
5572 }
5573
5574 /* Parse the stop reply in BUF. Either the function succeeds, and the
5575 result is stored in EVENT, or throws an error. */
5576
5577 static void
5578 remote_parse_stop_reply (char *buf, struct stop_reply *event)
5579 {
5580 struct remote_arch_state *rsa = get_remote_arch_state ();
5581 ULONGEST addr;
5582 char *p;
5583
5584 event->ptid = null_ptid;
5585 event->rs = get_remote_state ();
5586 event->ws.kind = TARGET_WAITKIND_IGNORE;
5587 event->ws.value.integer = 0;
5588 event->stopped_by_watchpoint_p = 0;
5589 event->regcache = NULL;
5590 event->core = -1;
5591
5592 switch (buf[0])
5593 {
5594 case 'T': /* Status with PC, SP, FP, ... */
5595 /* Expedited reply, containing Signal, {regno, reg} repeat. */
5596 /* format is: 'Tssn...:r...;n...:r...;n...:r...;#cc', where
5597 ss = signal number
5598 n... = register number
5599 r... = register contents
5600 */
5601
5602 p = &buf[3]; /* after Txx */
5603 while (*p)
5604 {
5605 char *p1;
5606 char *p_temp;
5607 int fieldsize;
5608 LONGEST pnum = 0;
5609
5610 /* If the packet contains a register number, save it in
5611 pnum and set p1 to point to the character following it.
5612 Otherwise p1 points to p. */
5613
5614 /* If this packet is an awatch packet, don't parse the 'a'
5615 as a register number. */
5616
5617 if (strncmp (p, "awatch", strlen("awatch")) != 0
5618 && strncmp (p, "core", strlen ("core") != 0))
5619 {
5620 /* Read the ``P'' register number. */
5621 pnum = strtol (p, &p_temp, 16);
5622 p1 = p_temp;
5623 }
5624 else
5625 p1 = p;
5626
5627 if (p1 == p) /* No register number present here. */
5628 {
5629 p1 = strchr (p, ':');
5630 if (p1 == NULL)
5631 error (_("Malformed packet(a) (missing colon): %s\n\
5632 Packet: '%s'\n"),
5633 p, buf);
5634 if (strncmp (p, "thread", p1 - p) == 0)
5635 event->ptid = read_ptid (++p1, &p);
5636 else if ((strncmp (p, "watch", p1 - p) == 0)
5637 || (strncmp (p, "rwatch", p1 - p) == 0)
5638 || (strncmp (p, "awatch", p1 - p) == 0))
5639 {
5640 event->stopped_by_watchpoint_p = 1;
5641 p = unpack_varlen_hex (++p1, &addr);
5642 event->watch_data_address = (CORE_ADDR) addr;
5643 }
5644 else if (strncmp (p, "library", p1 - p) == 0)
5645 {
5646 p1++;
5647 p_temp = p1;
5648 while (*p_temp && *p_temp != ';')
5649 p_temp++;
5650
5651 event->ws.kind = TARGET_WAITKIND_LOADED;
5652 p = p_temp;
5653 }
5654 else if (strncmp (p, "replaylog", p1 - p) == 0)
5655 {
5656 event->ws.kind = TARGET_WAITKIND_NO_HISTORY;
5657 /* p1 will indicate "begin" or "end", but it makes
5658 no difference for now, so ignore it. */
5659 p_temp = strchr (p1 + 1, ';');
5660 if (p_temp)
5661 p = p_temp;
5662 }
5663 else if (strncmp (p, "core", p1 - p) == 0)
5664 {
5665 ULONGEST c;
5666
5667 p = unpack_varlen_hex (++p1, &c);
5668 event->core = c;
5669 }
5670 else
5671 {
5672 /* Silently skip unknown optional info. */
5673 p_temp = strchr (p1 + 1, ';');
5674 if (p_temp)
5675 p = p_temp;
5676 }
5677 }
5678 else
5679 {
5680 struct packet_reg *reg = packet_reg_from_pnum (rsa, pnum);
5681 cached_reg_t cached_reg;
5682
5683 p = p1;
5684
5685 if (*p != ':')
5686 error (_("Malformed packet(b) (missing colon): %s\n\
5687 Packet: '%s'\n"),
5688 p, buf);
5689 ++p;
5690
5691 if (reg == NULL)
5692 error (_("Remote sent bad register number %s: %s\n\
5693 Packet: '%s'\n"),
5694 hex_string (pnum), p, buf);
5695
5696 cached_reg.num = reg->regnum;
5697
5698 fieldsize = hex2bin (p, cached_reg.data,
5699 register_size (target_gdbarch (),
5700 reg->regnum));
5701 p += 2 * fieldsize;
5702 if (fieldsize < register_size (target_gdbarch (),
5703 reg->regnum))
5704 warning (_("Remote reply is too short: %s"), buf);
5705
5706 VEC_safe_push (cached_reg_t, event->regcache, &cached_reg);
5707 }
5708
5709 if (*p != ';')
5710 error (_("Remote register badly formatted: %s\nhere: %s"),
5711 buf, p);
5712 ++p;
5713 }
5714
5715 if (event->ws.kind != TARGET_WAITKIND_IGNORE)
5716 break;
5717
5718 /* fall through */
5719 case 'S': /* Old style status, just signal only. */
5720 {
5721 int sig;
5722
5723 event->ws.kind = TARGET_WAITKIND_STOPPED;
5724 sig = (fromhex (buf[1]) << 4) + fromhex (buf[2]);
5725 if (GDB_SIGNAL_FIRST <= sig && sig < GDB_SIGNAL_LAST)
5726 event->ws.value.sig = (enum gdb_signal) sig;
5727 else
5728 event->ws.value.sig = GDB_SIGNAL_UNKNOWN;
5729 }
5730 break;
5731 case 'W': /* Target exited. */
5732 case 'X':
5733 {
5734 char *p;
5735 int pid;
5736 ULONGEST value;
5737
5738 /* GDB used to accept only 2 hex chars here. Stubs should
5739 only send more if they detect GDB supports multi-process
5740 support. */
5741 p = unpack_varlen_hex (&buf[1], &value);
5742
5743 if (buf[0] == 'W')
5744 {
5745 /* The remote process exited. */
5746 event->ws.kind = TARGET_WAITKIND_EXITED;
5747 event->ws.value.integer = value;
5748 }
5749 else
5750 {
5751 /* The remote process exited with a signal. */
5752 event->ws.kind = TARGET_WAITKIND_SIGNALLED;
5753 if (GDB_SIGNAL_FIRST <= value && value < GDB_SIGNAL_LAST)
5754 event->ws.value.sig = (enum gdb_signal) value;
5755 else
5756 event->ws.value.sig = GDB_SIGNAL_UNKNOWN;
5757 }
5758
5759 /* If no process is specified, assume inferior_ptid. */
5760 pid = ptid_get_pid (inferior_ptid);
5761 if (*p == '\0')
5762 ;
5763 else if (*p == ';')
5764 {
5765 p++;
5766
5767 if (p == '\0')
5768 ;
5769 else if (strncmp (p,
5770 "process:", sizeof ("process:") - 1) == 0)
5771 {
5772 ULONGEST upid;
5773
5774 p += sizeof ("process:") - 1;
5775 unpack_varlen_hex (p, &upid);
5776 pid = upid;
5777 }
5778 else
5779 error (_("unknown stop reply packet: %s"), buf);
5780 }
5781 else
5782 error (_("unknown stop reply packet: %s"), buf);
5783 event->ptid = pid_to_ptid (pid);
5784 }
5785 break;
5786 }
5787
5788 if (non_stop && ptid_equal (event->ptid, null_ptid))
5789 error (_("No process or thread specified in stop reply: %s"), buf);
5790 }
5791
5792 /* When the stub wants to tell GDB about a new notification reply, it
5793 sends a notification (%Stop, for example). Those can come it at
5794 any time, hence, we have to make sure that any pending
5795 putpkt/getpkt sequence we're making is finished, before querying
5796 the stub for more events with the corresponding ack command
5797 (vStopped, for example). E.g., if we started a vStopped sequence
5798 immediately upon receiving the notification, something like this
5799 could happen:
5800
5801 1.1) --> Hg 1
5802 1.2) <-- OK
5803 1.3) --> g
5804 1.4) <-- %Stop
5805 1.5) --> vStopped
5806 1.6) <-- (registers reply to step #1.3)
5807
5808 Obviously, the reply in step #1.6 would be unexpected to a vStopped
5809 query.
5810
5811 To solve this, whenever we parse a %Stop notification successfully,
5812 we mark the REMOTE_ASYNC_GET_PENDING_EVENTS_TOKEN, and carry on
5813 doing whatever we were doing:
5814
5815 2.1) --> Hg 1
5816 2.2) <-- OK
5817 2.3) --> g
5818 2.4) <-- %Stop
5819 <GDB marks the REMOTE_ASYNC_GET_PENDING_EVENTS_TOKEN>
5820 2.5) <-- (registers reply to step #2.3)
5821
5822 Eventualy after step #2.5, we return to the event loop, which
5823 notices there's an event on the
5824 REMOTE_ASYNC_GET_PENDING_EVENTS_TOKEN event and calls the
5825 associated callback --- the function below. At this point, we're
5826 always safe to start a vStopped sequence. :
5827
5828 2.6) --> vStopped
5829 2.7) <-- T05 thread:2
5830 2.8) --> vStopped
5831 2.9) --> OK
5832 */
5833
5834 void
5835 remote_notif_get_pending_events (struct notif_client *nc)
5836 {
5837 struct remote_state *rs = get_remote_state ();
5838
5839 if (rs->notif_state->pending_event[nc->id] != NULL)
5840 {
5841 if (notif_debug)
5842 fprintf_unfiltered (gdb_stdlog,
5843 "notif: process: '%s' ack pending event\n",
5844 nc->name);
5845
5846 /* acknowledge */
5847 nc->ack (nc, rs->buf, rs->notif_state->pending_event[nc->id]);
5848 rs->notif_state->pending_event[nc->id] = NULL;
5849
5850 while (1)
5851 {
5852 getpkt (&rs->buf, &rs->buf_size, 0);
5853 if (strcmp (rs->buf, "OK") == 0)
5854 break;
5855 else
5856 remote_notif_ack (nc, rs->buf);
5857 }
5858 }
5859 else
5860 {
5861 if (notif_debug)
5862 fprintf_unfiltered (gdb_stdlog,
5863 "notif: process: '%s' no pending reply\n",
5864 nc->name);
5865 }
5866 }
5867
5868 /* Called when it is decided that STOP_REPLY holds the info of the
5869 event that is to be returned to the core. This function always
5870 destroys STOP_REPLY. */
5871
5872 static ptid_t
5873 process_stop_reply (struct stop_reply *stop_reply,
5874 struct target_waitstatus *status)
5875 {
5876 ptid_t ptid;
5877
5878 *status = stop_reply->ws;
5879 ptid = stop_reply->ptid;
5880
5881 /* If no thread/process was reported by the stub, assume the current
5882 inferior. */
5883 if (ptid_equal (ptid, null_ptid))
5884 ptid = inferior_ptid;
5885
5886 if (status->kind != TARGET_WAITKIND_EXITED
5887 && status->kind != TARGET_WAITKIND_SIGNALLED)
5888 {
5889 struct remote_state *rs = get_remote_state ();
5890
5891 /* Expedited registers. */
5892 if (stop_reply->regcache)
5893 {
5894 struct regcache *regcache
5895 = get_thread_arch_regcache (ptid, target_gdbarch ());
5896 cached_reg_t *reg;
5897 int ix;
5898
5899 for (ix = 0;
5900 VEC_iterate(cached_reg_t, stop_reply->regcache, ix, reg);
5901 ix++)
5902 regcache_raw_supply (regcache, reg->num, reg->data);
5903 VEC_free (cached_reg_t, stop_reply->regcache);
5904 }
5905
5906 rs->remote_stopped_by_watchpoint_p = stop_reply->stopped_by_watchpoint_p;
5907 rs->remote_watch_data_address = stop_reply->watch_data_address;
5908
5909 remote_notice_new_inferior (ptid, 0);
5910 demand_private_info (ptid)->core = stop_reply->core;
5911 }
5912
5913 stop_reply_xfree (stop_reply);
5914 return ptid;
5915 }
5916
5917 /* The non-stop mode version of target_wait. */
5918
5919 static ptid_t
5920 remote_wait_ns (ptid_t ptid, struct target_waitstatus *status, int options)
5921 {
5922 struct remote_state *rs = get_remote_state ();
5923 struct stop_reply *stop_reply;
5924 int ret;
5925 int is_notif = 0;
5926
5927 /* If in non-stop mode, get out of getpkt even if a
5928 notification is received. */
5929
5930 ret = getpkt_or_notif_sane (&rs->buf, &rs->buf_size,
5931 0 /* forever */, &is_notif);
5932 while (1)
5933 {
5934 if (ret != -1 && !is_notif)
5935 switch (rs->buf[0])
5936 {
5937 case 'E': /* Error of some sort. */
5938 /* We're out of sync with the target now. Did it continue
5939 or not? We can't tell which thread it was in non-stop,
5940 so just ignore this. */
5941 warning (_("Remote failure reply: %s"), rs->buf);
5942 break;
5943 case 'O': /* Console output. */
5944 remote_console_output (rs->buf + 1);
5945 break;
5946 default:
5947 warning (_("Invalid remote reply: %s"), rs->buf);
5948 break;
5949 }
5950
5951 /* Acknowledge a pending stop reply that may have arrived in the
5952 mean time. */
5953 if (rs->notif_state->pending_event[notif_client_stop.id] != NULL)
5954 remote_notif_get_pending_events (&notif_client_stop);
5955
5956 /* If indeed we noticed a stop reply, we're done. */
5957 stop_reply = queued_stop_reply (ptid);
5958 if (stop_reply != NULL)
5959 return process_stop_reply (stop_reply, status);
5960
5961 /* Still no event. If we're just polling for an event, then
5962 return to the event loop. */
5963 if (options & TARGET_WNOHANG)
5964 {
5965 status->kind = TARGET_WAITKIND_IGNORE;
5966 return minus_one_ptid;
5967 }
5968
5969 /* Otherwise do a blocking wait. */
5970 ret = getpkt_or_notif_sane (&rs->buf, &rs->buf_size,
5971 1 /* forever */, &is_notif);
5972 }
5973 }
5974
5975 /* Wait until the remote machine stops, then return, storing status in
5976 STATUS just as `wait' would. */
5977
5978 static ptid_t
5979 remote_wait_as (ptid_t ptid, struct target_waitstatus *status, int options)
5980 {
5981 struct remote_state *rs = get_remote_state ();
5982 ptid_t event_ptid = null_ptid;
5983 char *buf;
5984 struct stop_reply *stop_reply;
5985
5986 again:
5987
5988 status->kind = TARGET_WAITKIND_IGNORE;
5989 status->value.integer = 0;
5990
5991 stop_reply = queued_stop_reply (ptid);
5992 if (stop_reply != NULL)
5993 return process_stop_reply (stop_reply, status);
5994
5995 if (rs->cached_wait_status)
5996 /* Use the cached wait status, but only once. */
5997 rs->cached_wait_status = 0;
5998 else
5999 {
6000 int ret;
6001 int is_notif;
6002
6003 if (!target_is_async_p ())
6004 {
6005 ofunc = signal (SIGINT, sync_remote_interrupt);
6006 /* If the user hit C-c before this packet, or between packets,
6007 pretend that it was hit right here. */
6008 if (check_quit_flag ())
6009 {
6010 clear_quit_flag ();
6011 sync_remote_interrupt (SIGINT);
6012 }
6013 }
6014
6015 /* FIXME: cagney/1999-09-27: If we're in async mode we should
6016 _never_ wait for ever -> test on target_is_async_p().
6017 However, before we do that we need to ensure that the caller
6018 knows how to take the target into/out of async mode. */
6019 ret = getpkt_or_notif_sane (&rs->buf, &rs->buf_size,
6020 wait_forever_enabled_p, &is_notif);
6021
6022 if (!target_is_async_p ())
6023 signal (SIGINT, ofunc);
6024
6025 /* GDB gets a notification. Return to core as this event is
6026 not interesting. */
6027 if (ret != -1 && is_notif)
6028 return minus_one_ptid;
6029 }
6030
6031 buf = rs->buf;
6032
6033 rs->remote_stopped_by_watchpoint_p = 0;
6034
6035 /* We got something. */
6036 rs->waiting_for_stop_reply = 0;
6037
6038 /* Assume that the target has acknowledged Ctrl-C unless we receive
6039 an 'F' or 'O' packet. */
6040 if (buf[0] != 'F' && buf[0] != 'O')
6041 rs->ctrlc_pending_p = 0;
6042
6043 switch (buf[0])
6044 {
6045 case 'E': /* Error of some sort. */
6046 /* We're out of sync with the target now. Did it continue or
6047 not? Not is more likely, so report a stop. */
6048 warning (_("Remote failure reply: %s"), buf);
6049 status->kind = TARGET_WAITKIND_STOPPED;
6050 status->value.sig = GDB_SIGNAL_0;
6051 break;
6052 case 'F': /* File-I/O request. */
6053 remote_fileio_request (buf, rs->ctrlc_pending_p);
6054 rs->ctrlc_pending_p = 0;
6055 break;
6056 case 'T': case 'S': case 'X': case 'W':
6057 {
6058 struct stop_reply *stop_reply
6059 = (struct stop_reply *) remote_notif_parse (&notif_client_stop,
6060 rs->buf);
6061
6062 event_ptid = process_stop_reply (stop_reply, status);
6063 break;
6064 }
6065 case 'O': /* Console output. */
6066 remote_console_output (buf + 1);
6067
6068 /* The target didn't really stop; keep waiting. */
6069 rs->waiting_for_stop_reply = 1;
6070
6071 break;
6072 case '\0':
6073 if (rs->last_sent_signal != GDB_SIGNAL_0)
6074 {
6075 /* Zero length reply means that we tried 'S' or 'C' and the
6076 remote system doesn't support it. */
6077 target_terminal_ours_for_output ();
6078 printf_filtered
6079 ("Can't send signals to this remote system. %s not sent.\n",
6080 gdb_signal_to_name (rs->last_sent_signal));
6081 rs->last_sent_signal = GDB_SIGNAL_0;
6082 target_terminal_inferior ();
6083
6084 strcpy ((char *) buf, rs->last_sent_step ? "s" : "c");
6085 putpkt ((char *) buf);
6086
6087 /* We just told the target to resume, so a stop reply is in
6088 order. */
6089 rs->waiting_for_stop_reply = 1;
6090 break;
6091 }
6092 /* else fallthrough */
6093 default:
6094 warning (_("Invalid remote reply: %s"), buf);
6095 /* Keep waiting. */
6096 rs->waiting_for_stop_reply = 1;
6097 break;
6098 }
6099
6100 if (status->kind == TARGET_WAITKIND_IGNORE)
6101 {
6102 /* Nothing interesting happened. If we're doing a non-blocking
6103 poll, we're done. Otherwise, go back to waiting. */
6104 if (options & TARGET_WNOHANG)
6105 return minus_one_ptid;
6106 else
6107 goto again;
6108 }
6109 else if (status->kind != TARGET_WAITKIND_EXITED
6110 && status->kind != TARGET_WAITKIND_SIGNALLED)
6111 {
6112 if (!ptid_equal (event_ptid, null_ptid))
6113 record_currthread (rs, event_ptid);
6114 else
6115 event_ptid = inferior_ptid;
6116 }
6117 else
6118 /* A process exit. Invalidate our notion of current thread. */
6119 record_currthread (rs, minus_one_ptid);
6120
6121 return event_ptid;
6122 }
6123
6124 /* Wait until the remote machine stops, then return, storing status in
6125 STATUS just as `wait' would. */
6126
6127 static ptid_t
6128 remote_wait (struct target_ops *ops,
6129 ptid_t ptid, struct target_waitstatus *status, int options)
6130 {
6131 ptid_t event_ptid;
6132
6133 if (non_stop)
6134 event_ptid = remote_wait_ns (ptid, status, options);
6135 else
6136 event_ptid = remote_wait_as (ptid, status, options);
6137
6138 if (target_can_async_p ())
6139 {
6140 /* If there are are events left in the queue tell the event loop
6141 to return here. */
6142 if (!QUEUE_is_empty (stop_reply_p, stop_reply_queue))
6143 mark_async_event_handler (remote_async_inferior_event_token);
6144 }
6145
6146 return event_ptid;
6147 }
6148
6149 /* Fetch a single register using a 'p' packet. */
6150
6151 static int
6152 fetch_register_using_p (struct regcache *regcache, struct packet_reg *reg)
6153 {
6154 struct remote_state *rs = get_remote_state ();
6155 char *buf, *p;
6156 char regp[MAX_REGISTER_SIZE];
6157 int i;
6158
6159 if (remote_protocol_packets[PACKET_p].support == PACKET_DISABLE)
6160 return 0;
6161
6162 if (reg->pnum == -1)
6163 return 0;
6164
6165 p = rs->buf;
6166 *p++ = 'p';
6167 p += hexnumstr (p, reg->pnum);
6168 *p++ = '\0';
6169 putpkt (rs->buf);
6170 getpkt (&rs->buf, &rs->buf_size, 0);
6171
6172 buf = rs->buf;
6173
6174 switch (packet_ok (buf, &remote_protocol_packets[PACKET_p]))
6175 {
6176 case PACKET_OK:
6177 break;
6178 case PACKET_UNKNOWN:
6179 return 0;
6180 case PACKET_ERROR:
6181 error (_("Could not fetch register \"%s\"; remote failure reply '%s'"),
6182 gdbarch_register_name (get_regcache_arch (regcache),
6183 reg->regnum),
6184 buf);
6185 }
6186
6187 /* If this register is unfetchable, tell the regcache. */
6188 if (buf[0] == 'x')
6189 {
6190 regcache_raw_supply (regcache, reg->regnum, NULL);
6191 return 1;
6192 }
6193
6194 /* Otherwise, parse and supply the value. */
6195 p = buf;
6196 i = 0;
6197 while (p[0] != 0)
6198 {
6199 if (p[1] == 0)
6200 error (_("fetch_register_using_p: early buf termination"));
6201
6202 regp[i++] = fromhex (p[0]) * 16 + fromhex (p[1]);
6203 p += 2;
6204 }
6205 regcache_raw_supply (regcache, reg->regnum, regp);
6206 return 1;
6207 }
6208
6209 /* Fetch the registers included in the target's 'g' packet. */
6210
6211 static int
6212 send_g_packet (void)
6213 {
6214 struct remote_state *rs = get_remote_state ();
6215 int buf_len;
6216
6217 xsnprintf (rs->buf, get_remote_packet_size (), "g");
6218 remote_send (&rs->buf, &rs->buf_size);
6219
6220 /* We can get out of synch in various cases. If the first character
6221 in the buffer is not a hex character, assume that has happened
6222 and try to fetch another packet to read. */
6223 while ((rs->buf[0] < '0' || rs->buf[0] > '9')
6224 && (rs->buf[0] < 'A' || rs->buf[0] > 'F')
6225 && (rs->buf[0] < 'a' || rs->buf[0] > 'f')
6226 && rs->buf[0] != 'x') /* New: unavailable register value. */
6227 {
6228 if (remote_debug)
6229 fprintf_unfiltered (gdb_stdlog,
6230 "Bad register packet; fetching a new packet\n");
6231 getpkt (&rs->buf, &rs->buf_size, 0);
6232 }
6233
6234 buf_len = strlen (rs->buf);
6235
6236 /* Sanity check the received packet. */
6237 if (buf_len % 2 != 0)
6238 error (_("Remote 'g' packet reply is of odd length: %s"), rs->buf);
6239
6240 return buf_len / 2;
6241 }
6242
6243 static void
6244 process_g_packet (struct regcache *regcache)
6245 {
6246 struct gdbarch *gdbarch = get_regcache_arch (regcache);
6247 struct remote_state *rs = get_remote_state ();
6248 struct remote_arch_state *rsa = get_remote_arch_state ();
6249 int i, buf_len;
6250 char *p;
6251 char *regs;
6252
6253 buf_len = strlen (rs->buf);
6254
6255 /* Further sanity checks, with knowledge of the architecture. */
6256 if (buf_len > 2 * rsa->sizeof_g_packet)
6257 error (_("Remote 'g' packet reply is too long: %s"), rs->buf);
6258
6259 /* Save the size of the packet sent to us by the target. It is used
6260 as a heuristic when determining the max size of packets that the
6261 target can safely receive. */
6262 if (rsa->actual_register_packet_size == 0)
6263 rsa->actual_register_packet_size = buf_len;
6264
6265 /* If this is smaller than we guessed the 'g' packet would be,
6266 update our records. A 'g' reply that doesn't include a register's
6267 value implies either that the register is not available, or that
6268 the 'p' packet must be used. */
6269 if (buf_len < 2 * rsa->sizeof_g_packet)
6270 {
6271 rsa->sizeof_g_packet = buf_len / 2;
6272
6273 for (i = 0; i < gdbarch_num_regs (gdbarch); i++)
6274 {
6275 if (rsa->regs[i].pnum == -1)
6276 continue;
6277
6278 if (rsa->regs[i].offset >= rsa->sizeof_g_packet)
6279 rsa->regs[i].in_g_packet = 0;
6280 else
6281 rsa->regs[i].in_g_packet = 1;
6282 }
6283 }
6284
6285 regs = alloca (rsa->sizeof_g_packet);
6286
6287 /* Unimplemented registers read as all bits zero. */
6288 memset (regs, 0, rsa->sizeof_g_packet);
6289
6290 /* Reply describes registers byte by byte, each byte encoded as two
6291 hex characters. Suck them all up, then supply them to the
6292 register cacheing/storage mechanism. */
6293
6294 p = rs->buf;
6295 for (i = 0; i < rsa->sizeof_g_packet; i++)
6296 {
6297 if (p[0] == 0 || p[1] == 0)
6298 /* This shouldn't happen - we adjusted sizeof_g_packet above. */
6299 internal_error (__FILE__, __LINE__,
6300 _("unexpected end of 'g' packet reply"));
6301
6302 if (p[0] == 'x' && p[1] == 'x')
6303 regs[i] = 0; /* 'x' */
6304 else
6305 regs[i] = fromhex (p[0]) * 16 + fromhex (p[1]);
6306 p += 2;
6307 }
6308
6309 for (i = 0; i < gdbarch_num_regs (gdbarch); i++)
6310 {
6311 struct packet_reg *r = &rsa->regs[i];
6312
6313 if (r->in_g_packet)
6314 {
6315 if (r->offset * 2 >= strlen (rs->buf))
6316 /* This shouldn't happen - we adjusted in_g_packet above. */
6317 internal_error (__FILE__, __LINE__,
6318 _("unexpected end of 'g' packet reply"));
6319 else if (rs->buf[r->offset * 2] == 'x')
6320 {
6321 gdb_assert (r->offset * 2 < strlen (rs->buf));
6322 /* The register isn't available, mark it as such (at
6323 the same time setting the value to zero). */
6324 regcache_raw_supply (regcache, r->regnum, NULL);
6325 }
6326 else
6327 regcache_raw_supply (regcache, r->regnum,
6328 regs + r->offset);
6329 }
6330 }
6331 }
6332
6333 static void
6334 fetch_registers_using_g (struct regcache *regcache)
6335 {
6336 send_g_packet ();
6337 process_g_packet (regcache);
6338 }
6339
6340 /* Make the remote selected traceframe match GDB's selected
6341 traceframe. */
6342
6343 static void
6344 set_remote_traceframe (void)
6345 {
6346 int newnum;
6347 struct remote_state *rs = get_remote_state ();
6348
6349 if (rs->remote_traceframe_number == get_traceframe_number ())
6350 return;
6351
6352 /* Avoid recursion, remote_trace_find calls us again. */
6353 rs->remote_traceframe_number = get_traceframe_number ();
6354
6355 newnum = target_trace_find (tfind_number,
6356 get_traceframe_number (), 0, 0, NULL);
6357
6358 /* Should not happen. If it does, all bets are off. */
6359 if (newnum != get_traceframe_number ())
6360 warning (_("could not set remote traceframe"));
6361 }
6362
6363 static void
6364 remote_fetch_registers (struct target_ops *ops,
6365 struct regcache *regcache, int regnum)
6366 {
6367 struct remote_arch_state *rsa = get_remote_arch_state ();
6368 int i;
6369
6370 set_remote_traceframe ();
6371 set_general_thread (inferior_ptid);
6372
6373 if (regnum >= 0)
6374 {
6375 struct packet_reg *reg = packet_reg_from_regnum (rsa, regnum);
6376
6377 gdb_assert (reg != NULL);
6378
6379 /* If this register might be in the 'g' packet, try that first -
6380 we are likely to read more than one register. If this is the
6381 first 'g' packet, we might be overly optimistic about its
6382 contents, so fall back to 'p'. */
6383 if (reg->in_g_packet)
6384 {
6385 fetch_registers_using_g (regcache);
6386 if (reg->in_g_packet)
6387 return;
6388 }
6389
6390 if (fetch_register_using_p (regcache, reg))
6391 return;
6392
6393 /* This register is not available. */
6394 regcache_raw_supply (regcache, reg->regnum, NULL);
6395
6396 return;
6397 }
6398
6399 fetch_registers_using_g (regcache);
6400
6401 for (i = 0; i < gdbarch_num_regs (get_regcache_arch (regcache)); i++)
6402 if (!rsa->regs[i].in_g_packet)
6403 if (!fetch_register_using_p (regcache, &rsa->regs[i]))
6404 {
6405 /* This register is not available. */
6406 regcache_raw_supply (regcache, i, NULL);
6407 }
6408 }
6409
6410 /* Prepare to store registers. Since we may send them all (using a
6411 'G' request), we have to read out the ones we don't want to change
6412 first. */
6413
6414 static void
6415 remote_prepare_to_store (struct regcache *regcache)
6416 {
6417 struct remote_arch_state *rsa = get_remote_arch_state ();
6418 int i;
6419 gdb_byte buf[MAX_REGISTER_SIZE];
6420
6421 /* Make sure the entire registers array is valid. */
6422 switch (remote_protocol_packets[PACKET_P].support)
6423 {
6424 case PACKET_DISABLE:
6425 case PACKET_SUPPORT_UNKNOWN:
6426 /* Make sure all the necessary registers are cached. */
6427 for (i = 0; i < gdbarch_num_regs (get_regcache_arch (regcache)); i++)
6428 if (rsa->regs[i].in_g_packet)
6429 regcache_raw_read (regcache, rsa->regs[i].regnum, buf);
6430 break;
6431 case PACKET_ENABLE:
6432 break;
6433 }
6434 }
6435
6436 /* Helper: Attempt to store REGNUM using the P packet. Return fail IFF
6437 packet was not recognized. */
6438
6439 static int
6440 store_register_using_P (const struct regcache *regcache,
6441 struct packet_reg *reg)
6442 {
6443 struct gdbarch *gdbarch = get_regcache_arch (regcache);
6444 struct remote_state *rs = get_remote_state ();
6445 /* Try storing a single register. */
6446 char *buf = rs->buf;
6447 gdb_byte regp[MAX_REGISTER_SIZE];
6448 char *p;
6449
6450 if (remote_protocol_packets[PACKET_P].support == PACKET_DISABLE)
6451 return 0;
6452
6453 if (reg->pnum == -1)
6454 return 0;
6455
6456 xsnprintf (buf, get_remote_packet_size (), "P%s=", phex_nz (reg->pnum, 0));
6457 p = buf + strlen (buf);
6458 regcache_raw_collect (regcache, reg->regnum, regp);
6459 bin2hex (regp, p, register_size (gdbarch, reg->regnum));
6460 putpkt (rs->buf);
6461 getpkt (&rs->buf, &rs->buf_size, 0);
6462
6463 switch (packet_ok (rs->buf, &remote_protocol_packets[PACKET_P]))
6464 {
6465 case PACKET_OK:
6466 return 1;
6467 case PACKET_ERROR:
6468 error (_("Could not write register \"%s\"; remote failure reply '%s'"),
6469 gdbarch_register_name (gdbarch, reg->regnum), rs->buf);
6470 case PACKET_UNKNOWN:
6471 return 0;
6472 default:
6473 internal_error (__FILE__, __LINE__, _("Bad result from packet_ok"));
6474 }
6475 }
6476
6477 /* Store register REGNUM, or all registers if REGNUM == -1, from the
6478 contents of the register cache buffer. FIXME: ignores errors. */
6479
6480 static void
6481 store_registers_using_G (const struct regcache *regcache)
6482 {
6483 struct remote_state *rs = get_remote_state ();
6484 struct remote_arch_state *rsa = get_remote_arch_state ();
6485 gdb_byte *regs;
6486 char *p;
6487
6488 /* Extract all the registers in the regcache copying them into a
6489 local buffer. */
6490 {
6491 int i;
6492
6493 regs = alloca (rsa->sizeof_g_packet);
6494 memset (regs, 0, rsa->sizeof_g_packet);
6495 for (i = 0; i < gdbarch_num_regs (get_regcache_arch (regcache)); i++)
6496 {
6497 struct packet_reg *r = &rsa->regs[i];
6498
6499 if (r->in_g_packet)
6500 regcache_raw_collect (regcache, r->regnum, regs + r->offset);
6501 }
6502 }
6503
6504 /* Command describes registers byte by byte,
6505 each byte encoded as two hex characters. */
6506 p = rs->buf;
6507 *p++ = 'G';
6508 /* remote_prepare_to_store insures that rsa->sizeof_g_packet gets
6509 updated. */
6510 bin2hex (regs, p, rsa->sizeof_g_packet);
6511 putpkt (rs->buf);
6512 getpkt (&rs->buf, &rs->buf_size, 0);
6513 if (packet_check_result (rs->buf) == PACKET_ERROR)
6514 error (_("Could not write registers; remote failure reply '%s'"),
6515 rs->buf);
6516 }
6517
6518 /* Store register REGNUM, or all registers if REGNUM == -1, from the contents
6519 of the register cache buffer. FIXME: ignores errors. */
6520
6521 static void
6522 remote_store_registers (struct target_ops *ops,
6523 struct regcache *regcache, int regnum)
6524 {
6525 struct remote_arch_state *rsa = get_remote_arch_state ();
6526 int i;
6527
6528 set_remote_traceframe ();
6529 set_general_thread (inferior_ptid);
6530
6531 if (regnum >= 0)
6532 {
6533 struct packet_reg *reg = packet_reg_from_regnum (rsa, regnum);
6534
6535 gdb_assert (reg != NULL);
6536
6537 /* Always prefer to store registers using the 'P' packet if
6538 possible; we often change only a small number of registers.
6539 Sometimes we change a larger number; we'd need help from a
6540 higher layer to know to use 'G'. */
6541 if (store_register_using_P (regcache, reg))
6542 return;
6543
6544 /* For now, don't complain if we have no way to write the
6545 register. GDB loses track of unavailable registers too
6546 easily. Some day, this may be an error. We don't have
6547 any way to read the register, either... */
6548 if (!reg->in_g_packet)
6549 return;
6550
6551 store_registers_using_G (regcache);
6552 return;
6553 }
6554
6555 store_registers_using_G (regcache);
6556
6557 for (i = 0; i < gdbarch_num_regs (get_regcache_arch (regcache)); i++)
6558 if (!rsa->regs[i].in_g_packet)
6559 if (!store_register_using_P (regcache, &rsa->regs[i]))
6560 /* See above for why we do not issue an error here. */
6561 continue;
6562 }
6563 \f
6564
6565 /* Return the number of hex digits in num. */
6566
6567 static int
6568 hexnumlen (ULONGEST num)
6569 {
6570 int i;
6571
6572 for (i = 0; num != 0; i++)
6573 num >>= 4;
6574
6575 return max (i, 1);
6576 }
6577
6578 /* Set BUF to the minimum number of hex digits representing NUM. */
6579
6580 static int
6581 hexnumstr (char *buf, ULONGEST num)
6582 {
6583 int len = hexnumlen (num);
6584
6585 return hexnumnstr (buf, num, len);
6586 }
6587
6588
6589 /* Set BUF to the hex digits representing NUM, padded to WIDTH characters. */
6590
6591 static int
6592 hexnumnstr (char *buf, ULONGEST num, int width)
6593 {
6594 int i;
6595
6596 buf[width] = '\0';
6597
6598 for (i = width - 1; i >= 0; i--)
6599 {
6600 buf[i] = "0123456789abcdef"[(num & 0xf)];
6601 num >>= 4;
6602 }
6603
6604 return width;
6605 }
6606
6607 /* Mask all but the least significant REMOTE_ADDRESS_SIZE bits. */
6608
6609 static CORE_ADDR
6610 remote_address_masked (CORE_ADDR addr)
6611 {
6612 unsigned int address_size = remote_address_size;
6613
6614 /* If "remoteaddresssize" was not set, default to target address size. */
6615 if (!address_size)
6616 address_size = gdbarch_addr_bit (target_gdbarch ());
6617
6618 if (address_size > 0
6619 && address_size < (sizeof (ULONGEST) * 8))
6620 {
6621 /* Only create a mask when that mask can safely be constructed
6622 in a ULONGEST variable. */
6623 ULONGEST mask = 1;
6624
6625 mask = (mask << address_size) - 1;
6626 addr &= mask;
6627 }
6628 return addr;
6629 }
6630
6631 /* Convert BUFFER, binary data at least LEN bytes long, into escaped
6632 binary data in OUT_BUF. Set *OUT_LEN to the length of the data
6633 encoded in OUT_BUF, and return the number of bytes in OUT_BUF
6634 (which may be more than *OUT_LEN due to escape characters). The
6635 total number of bytes in the output buffer will be at most
6636 OUT_MAXLEN. */
6637
6638 static int
6639 remote_escape_output (const gdb_byte *buffer, int len,
6640 gdb_byte *out_buf, int *out_len,
6641 int out_maxlen)
6642 {
6643 int input_index, output_index;
6644
6645 output_index = 0;
6646 for (input_index = 0; input_index < len; input_index++)
6647 {
6648 gdb_byte b = buffer[input_index];
6649
6650 if (b == '$' || b == '#' || b == '}')
6651 {
6652 /* These must be escaped. */
6653 if (output_index + 2 > out_maxlen)
6654 break;
6655 out_buf[output_index++] = '}';
6656 out_buf[output_index++] = b ^ 0x20;
6657 }
6658 else
6659 {
6660 if (output_index + 1 > out_maxlen)
6661 break;
6662 out_buf[output_index++] = b;
6663 }
6664 }
6665
6666 *out_len = input_index;
6667 return output_index;
6668 }
6669
6670 /* Convert BUFFER, escaped data LEN bytes long, into binary data
6671 in OUT_BUF. Return the number of bytes written to OUT_BUF.
6672 Raise an error if the total number of bytes exceeds OUT_MAXLEN.
6673
6674 This function reverses remote_escape_output. It allows more
6675 escaped characters than that function does, in particular because
6676 '*' must be escaped to avoid the run-length encoding processing
6677 in reading packets. */
6678
6679 static int
6680 remote_unescape_input (const gdb_byte *buffer, int len,
6681 gdb_byte *out_buf, int out_maxlen)
6682 {
6683 int input_index, output_index;
6684 int escaped;
6685
6686 output_index = 0;
6687 escaped = 0;
6688 for (input_index = 0; input_index < len; input_index++)
6689 {
6690 gdb_byte b = buffer[input_index];
6691
6692 if (output_index + 1 > out_maxlen)
6693 {
6694 warning (_("Received too much data from remote target;"
6695 " ignoring overflow."));
6696 return output_index;
6697 }
6698
6699 if (escaped)
6700 {
6701 out_buf[output_index++] = b ^ 0x20;
6702 escaped = 0;
6703 }
6704 else if (b == '}')
6705 escaped = 1;
6706 else
6707 out_buf[output_index++] = b;
6708 }
6709
6710 if (escaped)
6711 error (_("Unmatched escape character in target response."));
6712
6713 return output_index;
6714 }
6715
6716 /* Determine whether the remote target supports binary downloading.
6717 This is accomplished by sending a no-op memory write of zero length
6718 to the target at the specified address. It does not suffice to send
6719 the whole packet, since many stubs strip the eighth bit and
6720 subsequently compute a wrong checksum, which causes real havoc with
6721 remote_write_bytes.
6722
6723 NOTE: This can still lose if the serial line is not eight-bit
6724 clean. In cases like this, the user should clear "remote
6725 X-packet". */
6726
6727 static void
6728 check_binary_download (CORE_ADDR addr)
6729 {
6730 struct remote_state *rs = get_remote_state ();
6731
6732 switch (remote_protocol_packets[PACKET_X].support)
6733 {
6734 case PACKET_DISABLE:
6735 break;
6736 case PACKET_ENABLE:
6737 break;
6738 case PACKET_SUPPORT_UNKNOWN:
6739 {
6740 char *p;
6741
6742 p = rs->buf;
6743 *p++ = 'X';
6744 p += hexnumstr (p, (ULONGEST) addr);
6745 *p++ = ',';
6746 p += hexnumstr (p, (ULONGEST) 0);
6747 *p++ = ':';
6748 *p = '\0';
6749
6750 putpkt_binary (rs->buf, (int) (p - rs->buf));
6751 getpkt (&rs->buf, &rs->buf_size, 0);
6752
6753 if (rs->buf[0] == '\0')
6754 {
6755 if (remote_debug)
6756 fprintf_unfiltered (gdb_stdlog,
6757 "binary downloading NOT "
6758 "supported by target\n");
6759 remote_protocol_packets[PACKET_X].support = PACKET_DISABLE;
6760 }
6761 else
6762 {
6763 if (remote_debug)
6764 fprintf_unfiltered (gdb_stdlog,
6765 "binary downloading supported by target\n");
6766 remote_protocol_packets[PACKET_X].support = PACKET_ENABLE;
6767 }
6768 break;
6769 }
6770 }
6771 }
6772
6773 /* Write memory data directly to the remote machine.
6774 This does not inform the data cache; the data cache uses this.
6775 HEADER is the starting part of the packet.
6776 MEMADDR is the address in the remote memory space.
6777 MYADDR is the address of the buffer in our space.
6778 LEN is the number of bytes.
6779 PACKET_FORMAT should be either 'X' or 'M', and indicates if we
6780 should send data as binary ('X'), or hex-encoded ('M').
6781
6782 The function creates packet of the form
6783 <HEADER><ADDRESS>,<LENGTH>:<DATA>
6784
6785 where encoding of <DATA> is termined by PACKET_FORMAT.
6786
6787 If USE_LENGTH is 0, then the <LENGTH> field and the preceding comma
6788 are omitted.
6789
6790 Returns the number of bytes transferred, or a negative value (an
6791 'enum target_xfer_error' value) for error. Only transfer a single
6792 packet. */
6793
6794 static LONGEST
6795 remote_write_bytes_aux (const char *header, CORE_ADDR memaddr,
6796 const gdb_byte *myaddr, ssize_t len,
6797 char packet_format, int use_length)
6798 {
6799 struct remote_state *rs = get_remote_state ();
6800 char *p;
6801 char *plen = NULL;
6802 int plenlen = 0;
6803 int todo;
6804 int nr_bytes;
6805 int payload_size;
6806 int payload_length;
6807 int header_length;
6808
6809 if (packet_format != 'X' && packet_format != 'M')
6810 internal_error (__FILE__, __LINE__,
6811 _("remote_write_bytes_aux: bad packet format"));
6812
6813 if (len <= 0)
6814 return 0;
6815
6816 payload_size = get_memory_write_packet_size ();
6817
6818 /* The packet buffer will be large enough for the payload;
6819 get_memory_packet_size ensures this. */
6820 rs->buf[0] = '\0';
6821
6822 /* Compute the size of the actual payload by subtracting out the
6823 packet header and footer overhead: "$M<memaddr>,<len>:...#nn". */
6824
6825 payload_size -= strlen ("$,:#NN");
6826 if (!use_length)
6827 /* The comma won't be used. */
6828 payload_size += 1;
6829 header_length = strlen (header);
6830 payload_size -= header_length;
6831 payload_size -= hexnumlen (memaddr);
6832
6833 /* Construct the packet excluding the data: "<header><memaddr>,<len>:". */
6834
6835 strcat (rs->buf, header);
6836 p = rs->buf + strlen (header);
6837
6838 /* Compute a best guess of the number of bytes actually transfered. */
6839 if (packet_format == 'X')
6840 {
6841 /* Best guess at number of bytes that will fit. */
6842 todo = min (len, payload_size);
6843 if (use_length)
6844 payload_size -= hexnumlen (todo);
6845 todo = min (todo, payload_size);
6846 }
6847 else
6848 {
6849 /* Num bytes that will fit. */
6850 todo = min (len, payload_size / 2);
6851 if (use_length)
6852 payload_size -= hexnumlen (todo);
6853 todo = min (todo, payload_size / 2);
6854 }
6855
6856 if (todo <= 0)
6857 internal_error (__FILE__, __LINE__,
6858 _("minimum packet size too small to write data"));
6859
6860 /* If we already need another packet, then try to align the end
6861 of this packet to a useful boundary. */
6862 if (todo > 2 * REMOTE_ALIGN_WRITES && todo < len)
6863 todo = ((memaddr + todo) & ~(REMOTE_ALIGN_WRITES - 1)) - memaddr;
6864
6865 /* Append "<memaddr>". */
6866 memaddr = remote_address_masked (memaddr);
6867 p += hexnumstr (p, (ULONGEST) memaddr);
6868
6869 if (use_length)
6870 {
6871 /* Append ",". */
6872 *p++ = ',';
6873
6874 /* Append <len>. Retain the location/size of <len>. It may need to
6875 be adjusted once the packet body has been created. */
6876 plen = p;
6877 plenlen = hexnumstr (p, (ULONGEST) todo);
6878 p += plenlen;
6879 }
6880
6881 /* Append ":". */
6882 *p++ = ':';
6883 *p = '\0';
6884
6885 /* Append the packet body. */
6886 if (packet_format == 'X')
6887 {
6888 /* Binary mode. Send target system values byte by byte, in
6889 increasing byte addresses. Only escape certain critical
6890 characters. */
6891 payload_length = remote_escape_output (myaddr, todo, (gdb_byte *) p,
6892 &nr_bytes, payload_size);
6893
6894 /* If not all TODO bytes fit, then we'll need another packet. Make
6895 a second try to keep the end of the packet aligned. Don't do
6896 this if the packet is tiny. */
6897 if (nr_bytes < todo && nr_bytes > 2 * REMOTE_ALIGN_WRITES)
6898 {
6899 int new_nr_bytes;
6900
6901 new_nr_bytes = (((memaddr + nr_bytes) & ~(REMOTE_ALIGN_WRITES - 1))
6902 - memaddr);
6903 if (new_nr_bytes != nr_bytes)
6904 payload_length = remote_escape_output (myaddr, new_nr_bytes,
6905 (gdb_byte *) p, &nr_bytes,
6906 payload_size);
6907 }
6908
6909 p += payload_length;
6910 if (use_length && nr_bytes < todo)
6911 {
6912 /* Escape chars have filled up the buffer prematurely,
6913 and we have actually sent fewer bytes than planned.
6914 Fix-up the length field of the packet. Use the same
6915 number of characters as before. */
6916 plen += hexnumnstr (plen, (ULONGEST) nr_bytes, plenlen);
6917 *plen = ':'; /* overwrite \0 from hexnumnstr() */
6918 }
6919 }
6920 else
6921 {
6922 /* Normal mode: Send target system values byte by byte, in
6923 increasing byte addresses. Each byte is encoded as a two hex
6924 value. */
6925 nr_bytes = bin2hex (myaddr, p, todo);
6926 p += 2 * nr_bytes;
6927 }
6928
6929 putpkt_binary (rs->buf, (int) (p - rs->buf));
6930 getpkt (&rs->buf, &rs->buf_size, 0);
6931
6932 if (rs->buf[0] == 'E')
6933 return TARGET_XFER_E_IO;
6934
6935 /* Return NR_BYTES, not TODO, in case escape chars caused us to send
6936 fewer bytes than we'd planned. */
6937 return nr_bytes;
6938 }
6939
6940 /* Write memory data directly to the remote machine.
6941 This does not inform the data cache; the data cache uses this.
6942 MEMADDR is the address in the remote memory space.
6943 MYADDR is the address of the buffer in our space.
6944 LEN is the number of bytes.
6945
6946 Returns number of bytes transferred, or a negative value (an 'enum
6947 target_xfer_error' value) for error. Only transfer a single
6948 packet. */
6949
6950 static LONGEST
6951 remote_write_bytes (CORE_ADDR memaddr, const gdb_byte *myaddr, ssize_t len)
6952 {
6953 char *packet_format = 0;
6954
6955 /* Check whether the target supports binary download. */
6956 check_binary_download (memaddr);
6957
6958 switch (remote_protocol_packets[PACKET_X].support)
6959 {
6960 case PACKET_ENABLE:
6961 packet_format = "X";
6962 break;
6963 case PACKET_DISABLE:
6964 packet_format = "M";
6965 break;
6966 case PACKET_SUPPORT_UNKNOWN:
6967 internal_error (__FILE__, __LINE__,
6968 _("remote_write_bytes: bad internal state"));
6969 default:
6970 internal_error (__FILE__, __LINE__, _("bad switch"));
6971 }
6972
6973 return remote_write_bytes_aux (packet_format,
6974 memaddr, myaddr, len, packet_format[0], 1);
6975 }
6976
6977 /* Read memory data directly from the remote machine.
6978 This does not use the data cache; the data cache uses this.
6979 MEMADDR is the address in the remote memory space.
6980 MYADDR is the address of the buffer in our space.
6981 LEN is the number of bytes.
6982
6983 Returns number of bytes transferred, or a negative value (an 'enum
6984 target_xfer_error' value) for error. */
6985
6986 static LONGEST
6987 remote_read_bytes (CORE_ADDR memaddr, gdb_byte *myaddr, int len)
6988 {
6989 struct remote_state *rs = get_remote_state ();
6990 int max_buf_size; /* Max size of packet output buffer. */
6991 char *p;
6992 int todo;
6993 int i;
6994
6995 if (len <= 0)
6996 return 0;
6997
6998 max_buf_size = get_memory_read_packet_size ();
6999 /* The packet buffer will be large enough for the payload;
7000 get_memory_packet_size ensures this. */
7001
7002 /* Number if bytes that will fit. */
7003 todo = min (len, max_buf_size / 2);
7004
7005 /* Construct "m"<memaddr>","<len>". */
7006 memaddr = remote_address_masked (memaddr);
7007 p = rs->buf;
7008 *p++ = 'm';
7009 p += hexnumstr (p, (ULONGEST) memaddr);
7010 *p++ = ',';
7011 p += hexnumstr (p, (ULONGEST) todo);
7012 *p = '\0';
7013 putpkt (rs->buf);
7014 getpkt (&rs->buf, &rs->buf_size, 0);
7015 if (rs->buf[0] == 'E'
7016 && isxdigit (rs->buf[1]) && isxdigit (rs->buf[2])
7017 && rs->buf[3] == '\0')
7018 return TARGET_XFER_E_IO;
7019 /* Reply describes memory byte by byte, each byte encoded as two hex
7020 characters. */
7021 p = rs->buf;
7022 i = hex2bin (p, myaddr, todo);
7023 /* Return what we have. Let higher layers handle partial reads. */
7024 return i;
7025 }
7026
7027 \f
7028
7029 /* Sends a packet with content determined by the printf format string
7030 FORMAT and the remaining arguments, then gets the reply. Returns
7031 whether the packet was a success, a failure, or unknown. */
7032
7033 static enum packet_result
7034 remote_send_printf (const char *format, ...)
7035 {
7036 struct remote_state *rs = get_remote_state ();
7037 int max_size = get_remote_packet_size ();
7038 va_list ap;
7039
7040 va_start (ap, format);
7041
7042 rs->buf[0] = '\0';
7043 if (vsnprintf (rs->buf, max_size, format, ap) >= max_size)
7044 internal_error (__FILE__, __LINE__, _("Too long remote packet."));
7045
7046 if (putpkt (rs->buf) < 0)
7047 error (_("Communication problem with target."));
7048
7049 rs->buf[0] = '\0';
7050 getpkt (&rs->buf, &rs->buf_size, 0);
7051
7052 return packet_check_result (rs->buf);
7053 }
7054
7055 static void
7056 restore_remote_timeout (void *p)
7057 {
7058 int value = *(int *)p;
7059
7060 remote_timeout = value;
7061 }
7062
7063 /* Flash writing can take quite some time. We'll set
7064 effectively infinite timeout for flash operations.
7065 In future, we'll need to decide on a better approach. */
7066 static const int remote_flash_timeout = 1000;
7067
7068 static void
7069 remote_flash_erase (struct target_ops *ops,
7070 ULONGEST address, LONGEST length)
7071 {
7072 int addr_size = gdbarch_addr_bit (target_gdbarch ()) / 8;
7073 int saved_remote_timeout = remote_timeout;
7074 enum packet_result ret;
7075 struct cleanup *back_to = make_cleanup (restore_remote_timeout,
7076 &saved_remote_timeout);
7077
7078 remote_timeout = remote_flash_timeout;
7079
7080 ret = remote_send_printf ("vFlashErase:%s,%s",
7081 phex (address, addr_size),
7082 phex (length, 4));
7083 switch (ret)
7084 {
7085 case PACKET_UNKNOWN:
7086 error (_("Remote target does not support flash erase"));
7087 case PACKET_ERROR:
7088 error (_("Error erasing flash with vFlashErase packet"));
7089 default:
7090 break;
7091 }
7092
7093 do_cleanups (back_to);
7094 }
7095
7096 static LONGEST
7097 remote_flash_write (struct target_ops *ops,
7098 ULONGEST address, LONGEST length,
7099 const gdb_byte *data)
7100 {
7101 int saved_remote_timeout = remote_timeout;
7102 LONGEST ret;
7103 struct cleanup *back_to = make_cleanup (restore_remote_timeout,
7104 &saved_remote_timeout);
7105
7106 remote_timeout = remote_flash_timeout;
7107 ret = remote_write_bytes_aux ("vFlashWrite:", address, data, length, 'X', 0);
7108 do_cleanups (back_to);
7109
7110 return ret;
7111 }
7112
7113 static void
7114 remote_flash_done (struct target_ops *ops)
7115 {
7116 int saved_remote_timeout = remote_timeout;
7117 int ret;
7118 struct cleanup *back_to = make_cleanup (restore_remote_timeout,
7119 &saved_remote_timeout);
7120
7121 remote_timeout = remote_flash_timeout;
7122 ret = remote_send_printf ("vFlashDone");
7123 do_cleanups (back_to);
7124
7125 switch (ret)
7126 {
7127 case PACKET_UNKNOWN:
7128 error (_("Remote target does not support vFlashDone"));
7129 case PACKET_ERROR:
7130 error (_("Error finishing flash operation"));
7131 default:
7132 break;
7133 }
7134 }
7135
7136 static void
7137 remote_files_info (struct target_ops *ignore)
7138 {
7139 puts_filtered ("Debugging a target over a serial line.\n");
7140 }
7141 \f
7142 /* Stuff for dealing with the packets which are part of this protocol.
7143 See comment at top of file for details. */
7144
7145 /* Close/unpush the remote target, and throw a TARGET_CLOSE_ERROR
7146 error to higher layers. Called when a serial error is detected.
7147 The exception message is STRING, followed by a colon and a blank,
7148 the system error message for errno at function entry and final dot
7149 for output compatibility with throw_perror_with_name. */
7150
7151 static void
7152 unpush_and_perror (const char *string)
7153 {
7154 int saved_errno = errno;
7155
7156 remote_unpush_target ();
7157 throw_error (TARGET_CLOSE_ERROR, "%s: %s.", string,
7158 safe_strerror (saved_errno));
7159 }
7160
7161 /* Read a single character from the remote end. */
7162
7163 static int
7164 readchar (int timeout)
7165 {
7166 int ch;
7167 struct remote_state *rs = get_remote_state ();
7168
7169 ch = serial_readchar (rs->remote_desc, timeout);
7170
7171 if (ch >= 0)
7172 return ch;
7173
7174 switch ((enum serial_rc) ch)
7175 {
7176 case SERIAL_EOF:
7177 remote_unpush_target ();
7178 throw_error (TARGET_CLOSE_ERROR, _("Remote connection closed"));
7179 /* no return */
7180 case SERIAL_ERROR:
7181 unpush_and_perror (_("Remote communication error. "
7182 "Target disconnected."));
7183 /* no return */
7184 case SERIAL_TIMEOUT:
7185 break;
7186 }
7187 return ch;
7188 }
7189
7190 /* Wrapper for serial_write that closes the target and throws if
7191 writing fails. */
7192
7193 static void
7194 remote_serial_write (const char *str, int len)
7195 {
7196 struct remote_state *rs = get_remote_state ();
7197
7198 if (serial_write (rs->remote_desc, str, len))
7199 {
7200 unpush_and_perror (_("Remote communication error. "
7201 "Target disconnected."));
7202 }
7203 }
7204
7205 /* Send the command in *BUF to the remote machine, and read the reply
7206 into *BUF. Report an error if we get an error reply. Resize
7207 *BUF using xrealloc if necessary to hold the result, and update
7208 *SIZEOF_BUF. */
7209
7210 static void
7211 remote_send (char **buf,
7212 long *sizeof_buf)
7213 {
7214 putpkt (*buf);
7215 getpkt (buf, sizeof_buf, 0);
7216
7217 if ((*buf)[0] == 'E')
7218 error (_("Remote failure reply: %s"), *buf);
7219 }
7220
7221 /* Return a pointer to an xmalloc'ed string representing an escaped
7222 version of BUF, of len N. E.g. \n is converted to \\n, \t to \\t,
7223 etc. The caller is responsible for releasing the returned
7224 memory. */
7225
7226 static char *
7227 escape_buffer (const char *buf, int n)
7228 {
7229 struct cleanup *old_chain;
7230 struct ui_file *stb;
7231 char *str;
7232
7233 stb = mem_fileopen ();
7234 old_chain = make_cleanup_ui_file_delete (stb);
7235
7236 fputstrn_unfiltered (buf, n, 0, stb);
7237 str = ui_file_xstrdup (stb, NULL);
7238 do_cleanups (old_chain);
7239 return str;
7240 }
7241
7242 /* Display a null-terminated packet on stdout, for debugging, using C
7243 string notation. */
7244
7245 static void
7246 print_packet (char *buf)
7247 {
7248 puts_filtered ("\"");
7249 fputstr_filtered (buf, '"', gdb_stdout);
7250 puts_filtered ("\"");
7251 }
7252
7253 int
7254 putpkt (char *buf)
7255 {
7256 return putpkt_binary (buf, strlen (buf));
7257 }
7258
7259 /* Send a packet to the remote machine, with error checking. The data
7260 of the packet is in BUF. The string in BUF can be at most
7261 get_remote_packet_size () - 5 to account for the $, # and checksum,
7262 and for a possible /0 if we are debugging (remote_debug) and want
7263 to print the sent packet as a string. */
7264
7265 static int
7266 putpkt_binary (char *buf, int cnt)
7267 {
7268 struct remote_state *rs = get_remote_state ();
7269 int i;
7270 unsigned char csum = 0;
7271 char *buf2 = alloca (cnt + 6);
7272
7273 int ch;
7274 int tcount = 0;
7275 char *p;
7276 char *message;
7277
7278 /* Catch cases like trying to read memory or listing threads while
7279 we're waiting for a stop reply. The remote server wouldn't be
7280 ready to handle this request, so we'd hang and timeout. We don't
7281 have to worry about this in synchronous mode, because in that
7282 case it's not possible to issue a command while the target is
7283 running. This is not a problem in non-stop mode, because in that
7284 case, the stub is always ready to process serial input. */
7285 if (!non_stop && target_can_async_p () && rs->waiting_for_stop_reply)
7286 error (_("Cannot execute this command while the target is running."));
7287
7288 /* We're sending out a new packet. Make sure we don't look at a
7289 stale cached response. */
7290 rs->cached_wait_status = 0;
7291
7292 /* Copy the packet into buffer BUF2, encapsulating it
7293 and giving it a checksum. */
7294
7295 p = buf2;
7296 *p++ = '$';
7297
7298 for (i = 0; i < cnt; i++)
7299 {
7300 csum += buf[i];
7301 *p++ = buf[i];
7302 }
7303 *p++ = '#';
7304 *p++ = tohex ((csum >> 4) & 0xf);
7305 *p++ = tohex (csum & 0xf);
7306
7307 /* Send it over and over until we get a positive ack. */
7308
7309 while (1)
7310 {
7311 int started_error_output = 0;
7312
7313 if (remote_debug)
7314 {
7315 struct cleanup *old_chain;
7316 char *str;
7317
7318 *p = '\0';
7319 str = escape_buffer (buf2, p - buf2);
7320 old_chain = make_cleanup (xfree, str);
7321 fprintf_unfiltered (gdb_stdlog, "Sending packet: %s...", str);
7322 gdb_flush (gdb_stdlog);
7323 do_cleanups (old_chain);
7324 }
7325 remote_serial_write (buf2, p - buf2);
7326
7327 /* If this is a no acks version of the remote protocol, send the
7328 packet and move on. */
7329 if (rs->noack_mode)
7330 break;
7331
7332 /* Read until either a timeout occurs (-2) or '+' is read.
7333 Handle any notification that arrives in the mean time. */
7334 while (1)
7335 {
7336 ch = readchar (remote_timeout);
7337
7338 if (remote_debug)
7339 {
7340 switch (ch)
7341 {
7342 case '+':
7343 case '-':
7344 case SERIAL_TIMEOUT:
7345 case '$':
7346 case '%':
7347 if (started_error_output)
7348 {
7349 putchar_unfiltered ('\n');
7350 started_error_output = 0;
7351 }
7352 }
7353 }
7354
7355 switch (ch)
7356 {
7357 case '+':
7358 if (remote_debug)
7359 fprintf_unfiltered (gdb_stdlog, "Ack\n");
7360 return 1;
7361 case '-':
7362 if (remote_debug)
7363 fprintf_unfiltered (gdb_stdlog, "Nak\n");
7364 /* FALLTHROUGH */
7365 case SERIAL_TIMEOUT:
7366 tcount++;
7367 if (tcount > 3)
7368 return 0;
7369 break; /* Retransmit buffer. */
7370 case '$':
7371 {
7372 if (remote_debug)
7373 fprintf_unfiltered (gdb_stdlog,
7374 "Packet instead of Ack, ignoring it\n");
7375 /* It's probably an old response sent because an ACK
7376 was lost. Gobble up the packet and ack it so it
7377 doesn't get retransmitted when we resend this
7378 packet. */
7379 skip_frame ();
7380 remote_serial_write ("+", 1);
7381 continue; /* Now, go look for +. */
7382 }
7383
7384 case '%':
7385 {
7386 int val;
7387
7388 /* If we got a notification, handle it, and go back to looking
7389 for an ack. */
7390 /* We've found the start of a notification. Now
7391 collect the data. */
7392 val = read_frame (&rs->buf, &rs->buf_size);
7393 if (val >= 0)
7394 {
7395 if (remote_debug)
7396 {
7397 struct cleanup *old_chain;
7398 char *str;
7399
7400 str = escape_buffer (rs->buf, val);
7401 old_chain = make_cleanup (xfree, str);
7402 fprintf_unfiltered (gdb_stdlog,
7403 " Notification received: %s\n",
7404 str);
7405 do_cleanups (old_chain);
7406 }
7407 handle_notification (rs->notif_state, rs->buf);
7408 /* We're in sync now, rewait for the ack. */
7409 tcount = 0;
7410 }
7411 else
7412 {
7413 if (remote_debug)
7414 {
7415 if (!started_error_output)
7416 {
7417 started_error_output = 1;
7418 fprintf_unfiltered (gdb_stdlog, "putpkt: Junk: ");
7419 }
7420 fputc_unfiltered (ch & 0177, gdb_stdlog);
7421 fprintf_unfiltered (gdb_stdlog, "%s", rs->buf);
7422 }
7423 }
7424 continue;
7425 }
7426 /* fall-through */
7427 default:
7428 if (remote_debug)
7429 {
7430 if (!started_error_output)
7431 {
7432 started_error_output = 1;
7433 fprintf_unfiltered (gdb_stdlog, "putpkt: Junk: ");
7434 }
7435 fputc_unfiltered (ch & 0177, gdb_stdlog);
7436 }
7437 continue;
7438 }
7439 break; /* Here to retransmit. */
7440 }
7441
7442 #if 0
7443 /* This is wrong. If doing a long backtrace, the user should be
7444 able to get out next time we call QUIT, without anything as
7445 violent as interrupt_query. If we want to provide a way out of
7446 here without getting to the next QUIT, it should be based on
7447 hitting ^C twice as in remote_wait. */
7448 if (quit_flag)
7449 {
7450 quit_flag = 0;
7451 interrupt_query ();
7452 }
7453 #endif
7454 }
7455 return 0;
7456 }
7457
7458 /* Come here after finding the start of a frame when we expected an
7459 ack. Do our best to discard the rest of this packet. */
7460
7461 static void
7462 skip_frame (void)
7463 {
7464 int c;
7465
7466 while (1)
7467 {
7468 c = readchar (remote_timeout);
7469 switch (c)
7470 {
7471 case SERIAL_TIMEOUT:
7472 /* Nothing we can do. */
7473 return;
7474 case '#':
7475 /* Discard the two bytes of checksum and stop. */
7476 c = readchar (remote_timeout);
7477 if (c >= 0)
7478 c = readchar (remote_timeout);
7479
7480 return;
7481 case '*': /* Run length encoding. */
7482 /* Discard the repeat count. */
7483 c = readchar (remote_timeout);
7484 if (c < 0)
7485 return;
7486 break;
7487 default:
7488 /* A regular character. */
7489 break;
7490 }
7491 }
7492 }
7493
7494 /* Come here after finding the start of the frame. Collect the rest
7495 into *BUF, verifying the checksum, length, and handling run-length
7496 compression. NUL terminate the buffer. If there is not enough room,
7497 expand *BUF using xrealloc.
7498
7499 Returns -1 on error, number of characters in buffer (ignoring the
7500 trailing NULL) on success. (could be extended to return one of the
7501 SERIAL status indications). */
7502
7503 static long
7504 read_frame (char **buf_p,
7505 long *sizeof_buf)
7506 {
7507 unsigned char csum;
7508 long bc;
7509 int c;
7510 char *buf = *buf_p;
7511 struct remote_state *rs = get_remote_state ();
7512
7513 csum = 0;
7514 bc = 0;
7515
7516 while (1)
7517 {
7518 c = readchar (remote_timeout);
7519 switch (c)
7520 {
7521 case SERIAL_TIMEOUT:
7522 if (remote_debug)
7523 fputs_filtered ("Timeout in mid-packet, retrying\n", gdb_stdlog);
7524 return -1;
7525 case '$':
7526 if (remote_debug)
7527 fputs_filtered ("Saw new packet start in middle of old one\n",
7528 gdb_stdlog);
7529 return -1; /* Start a new packet, count retries. */
7530 case '#':
7531 {
7532 unsigned char pktcsum;
7533 int check_0 = 0;
7534 int check_1 = 0;
7535
7536 buf[bc] = '\0';
7537
7538 check_0 = readchar (remote_timeout);
7539 if (check_0 >= 0)
7540 check_1 = readchar (remote_timeout);
7541
7542 if (check_0 == SERIAL_TIMEOUT || check_1 == SERIAL_TIMEOUT)
7543 {
7544 if (remote_debug)
7545 fputs_filtered ("Timeout in checksum, retrying\n",
7546 gdb_stdlog);
7547 return -1;
7548 }
7549 else if (check_0 < 0 || check_1 < 0)
7550 {
7551 if (remote_debug)
7552 fputs_filtered ("Communication error in checksum\n",
7553 gdb_stdlog);
7554 return -1;
7555 }
7556
7557 /* Don't recompute the checksum; with no ack packets we
7558 don't have any way to indicate a packet retransmission
7559 is necessary. */
7560 if (rs->noack_mode)
7561 return bc;
7562
7563 pktcsum = (fromhex (check_0) << 4) | fromhex (check_1);
7564 if (csum == pktcsum)
7565 return bc;
7566
7567 if (remote_debug)
7568 {
7569 struct cleanup *old_chain;
7570 char *str;
7571
7572 str = escape_buffer (buf, bc);
7573 old_chain = make_cleanup (xfree, str);
7574 fprintf_unfiltered (gdb_stdlog,
7575 "Bad checksum, sentsum=0x%x, "
7576 "csum=0x%x, buf=%s\n",
7577 pktcsum, csum, str);
7578 do_cleanups (old_chain);
7579 }
7580 /* Number of characters in buffer ignoring trailing
7581 NULL. */
7582 return -1;
7583 }
7584 case '*': /* Run length encoding. */
7585 {
7586 int repeat;
7587
7588 csum += c;
7589 c = readchar (remote_timeout);
7590 csum += c;
7591 repeat = c - ' ' + 3; /* Compute repeat count. */
7592
7593 /* The character before ``*'' is repeated. */
7594
7595 if (repeat > 0 && repeat <= 255 && bc > 0)
7596 {
7597 if (bc + repeat - 1 >= *sizeof_buf - 1)
7598 {
7599 /* Make some more room in the buffer. */
7600 *sizeof_buf += repeat;
7601 *buf_p = xrealloc (*buf_p, *sizeof_buf);
7602 buf = *buf_p;
7603 }
7604
7605 memset (&buf[bc], buf[bc - 1], repeat);
7606 bc += repeat;
7607 continue;
7608 }
7609
7610 buf[bc] = '\0';
7611 printf_filtered (_("Invalid run length encoding: %s\n"), buf);
7612 return -1;
7613 }
7614 default:
7615 if (bc >= *sizeof_buf - 1)
7616 {
7617 /* Make some more room in the buffer. */
7618 *sizeof_buf *= 2;
7619 *buf_p = xrealloc (*buf_p, *sizeof_buf);
7620 buf = *buf_p;
7621 }
7622
7623 buf[bc++] = c;
7624 csum += c;
7625 continue;
7626 }
7627 }
7628 }
7629
7630 /* Read a packet from the remote machine, with error checking, and
7631 store it in *BUF. Resize *BUF using xrealloc if necessary to hold
7632 the result, and update *SIZEOF_BUF. If FOREVER, wait forever
7633 rather than timing out; this is used (in synchronous mode) to wait
7634 for a target that is is executing user code to stop. */
7635 /* FIXME: ezannoni 2000-02-01 this wrapper is necessary so that we
7636 don't have to change all the calls to getpkt to deal with the
7637 return value, because at the moment I don't know what the right
7638 thing to do it for those. */
7639 void
7640 getpkt (char **buf,
7641 long *sizeof_buf,
7642 int forever)
7643 {
7644 int timed_out;
7645
7646 timed_out = getpkt_sane (buf, sizeof_buf, forever);
7647 }
7648
7649
7650 /* Read a packet from the remote machine, with error checking, and
7651 store it in *BUF. Resize *BUF using xrealloc if necessary to hold
7652 the result, and update *SIZEOF_BUF. If FOREVER, wait forever
7653 rather than timing out; this is used (in synchronous mode) to wait
7654 for a target that is is executing user code to stop. If FOREVER ==
7655 0, this function is allowed to time out gracefully and return an
7656 indication of this to the caller. Otherwise return the number of
7657 bytes read. If EXPECTING_NOTIF, consider receiving a notification
7658 enough reason to return to the caller. *IS_NOTIF is an output
7659 boolean that indicates whether *BUF holds a notification or not
7660 (a regular packet). */
7661
7662 static int
7663 getpkt_or_notif_sane_1 (char **buf, long *sizeof_buf, int forever,
7664 int expecting_notif, int *is_notif)
7665 {
7666 struct remote_state *rs = get_remote_state ();
7667 int c;
7668 int tries;
7669 int timeout;
7670 int val = -1;
7671
7672 /* We're reading a new response. Make sure we don't look at a
7673 previously cached response. */
7674 rs->cached_wait_status = 0;
7675
7676 strcpy (*buf, "timeout");
7677
7678 if (forever)
7679 timeout = watchdog > 0 ? watchdog : -1;
7680 else if (expecting_notif)
7681 timeout = 0; /* There should already be a char in the buffer. If
7682 not, bail out. */
7683 else
7684 timeout = remote_timeout;
7685
7686 #define MAX_TRIES 3
7687
7688 /* Process any number of notifications, and then return when
7689 we get a packet. */
7690 for (;;)
7691 {
7692 /* If we get a timeout or bad checksum, retry up to MAX_TRIES
7693 times. */
7694 for (tries = 1; tries <= MAX_TRIES; tries++)
7695 {
7696 /* This can loop forever if the remote side sends us
7697 characters continuously, but if it pauses, we'll get
7698 SERIAL_TIMEOUT from readchar because of timeout. Then
7699 we'll count that as a retry.
7700
7701 Note that even when forever is set, we will only wait
7702 forever prior to the start of a packet. After that, we
7703 expect characters to arrive at a brisk pace. They should
7704 show up within remote_timeout intervals. */
7705 do
7706 c = readchar (timeout);
7707 while (c != SERIAL_TIMEOUT && c != '$' && c != '%');
7708
7709 if (c == SERIAL_TIMEOUT)
7710 {
7711 if (expecting_notif)
7712 return -1; /* Don't complain, it's normal to not get
7713 anything in this case. */
7714
7715 if (forever) /* Watchdog went off? Kill the target. */
7716 {
7717 QUIT;
7718 remote_unpush_target ();
7719 throw_error (TARGET_CLOSE_ERROR,
7720 _("Watchdog timeout has expired. "
7721 "Target detached."));
7722 }
7723 if (remote_debug)
7724 fputs_filtered ("Timed out.\n", gdb_stdlog);
7725 }
7726 else
7727 {
7728 /* We've found the start of a packet or notification.
7729 Now collect the data. */
7730 val = read_frame (buf, sizeof_buf);
7731 if (val >= 0)
7732 break;
7733 }
7734
7735 remote_serial_write ("-", 1);
7736 }
7737
7738 if (tries > MAX_TRIES)
7739 {
7740 /* We have tried hard enough, and just can't receive the
7741 packet/notification. Give up. */
7742 printf_unfiltered (_("Ignoring packet error, continuing...\n"));
7743
7744 /* Skip the ack char if we're in no-ack mode. */
7745 if (!rs->noack_mode)
7746 remote_serial_write ("+", 1);
7747 return -1;
7748 }
7749
7750 /* If we got an ordinary packet, return that to our caller. */
7751 if (c == '$')
7752 {
7753 if (remote_debug)
7754 {
7755 struct cleanup *old_chain;
7756 char *str;
7757
7758 str = escape_buffer (*buf, val);
7759 old_chain = make_cleanup (xfree, str);
7760 fprintf_unfiltered (gdb_stdlog, "Packet received: %s\n", str);
7761 do_cleanups (old_chain);
7762 }
7763
7764 /* Skip the ack char if we're in no-ack mode. */
7765 if (!rs->noack_mode)
7766 remote_serial_write ("+", 1);
7767 if (is_notif != NULL)
7768 *is_notif = 0;
7769 return val;
7770 }
7771
7772 /* If we got a notification, handle it, and go back to looking
7773 for a packet. */
7774 else
7775 {
7776 gdb_assert (c == '%');
7777
7778 if (remote_debug)
7779 {
7780 struct cleanup *old_chain;
7781 char *str;
7782
7783 str = escape_buffer (*buf, val);
7784 old_chain = make_cleanup (xfree, str);
7785 fprintf_unfiltered (gdb_stdlog,
7786 " Notification received: %s\n",
7787 str);
7788 do_cleanups (old_chain);
7789 }
7790 if (is_notif != NULL)
7791 *is_notif = 1;
7792
7793 handle_notification (rs->notif_state, *buf);
7794
7795 /* Notifications require no acknowledgement. */
7796
7797 if (expecting_notif)
7798 return val;
7799 }
7800 }
7801 }
7802
7803 static int
7804 getpkt_sane (char **buf, long *sizeof_buf, int forever)
7805 {
7806 return getpkt_or_notif_sane_1 (buf, sizeof_buf, forever, 0, NULL);
7807 }
7808
7809 static int
7810 getpkt_or_notif_sane (char **buf, long *sizeof_buf, int forever,
7811 int *is_notif)
7812 {
7813 return getpkt_or_notif_sane_1 (buf, sizeof_buf, forever, 1,
7814 is_notif);
7815 }
7816
7817 \f
7818 static void
7819 remote_kill (struct target_ops *ops)
7820 {
7821 struct gdb_exception ex;
7822
7823 /* Catch errors so the user can quit from gdb even when we
7824 aren't on speaking terms with the remote system. */
7825 TRY_CATCH (ex, RETURN_MASK_ERROR)
7826 {
7827 putpkt ("k");
7828 }
7829 if (ex.reason < 0)
7830 {
7831 if (ex.error == TARGET_CLOSE_ERROR)
7832 {
7833 /* If we got an (EOF) error that caused the target
7834 to go away, then we're done, that's what we wanted.
7835 "k" is susceptible to cause a premature EOF, given
7836 that the remote server isn't actually required to
7837 reply to "k", and it can happen that it doesn't
7838 even get to reply ACK to the "k". */
7839 return;
7840 }
7841
7842 /* Otherwise, something went wrong. We didn't actually kill
7843 the target. Just propagate the exception, and let the
7844 user or higher layers decide what to do. */
7845 throw_exception (ex);
7846 }
7847
7848 /* We've killed the remote end, we get to mourn it. Since this is
7849 target remote, single-process, mourning the inferior also
7850 unpushes remote_ops. */
7851 target_mourn_inferior ();
7852 }
7853
7854 static int
7855 remote_vkill (int pid, struct remote_state *rs)
7856 {
7857 if (remote_protocol_packets[PACKET_vKill].support == PACKET_DISABLE)
7858 return -1;
7859
7860 /* Tell the remote target to detach. */
7861 xsnprintf (rs->buf, get_remote_packet_size (), "vKill;%x", pid);
7862 putpkt (rs->buf);
7863 getpkt (&rs->buf, &rs->buf_size, 0);
7864
7865 if (packet_ok (rs->buf,
7866 &remote_protocol_packets[PACKET_vKill]) == PACKET_OK)
7867 return 0;
7868 else if (remote_protocol_packets[PACKET_vKill].support == PACKET_DISABLE)
7869 return -1;
7870 else
7871 return 1;
7872 }
7873
7874 static void
7875 extended_remote_kill (struct target_ops *ops)
7876 {
7877 int res;
7878 int pid = ptid_get_pid (inferior_ptid);
7879 struct remote_state *rs = get_remote_state ();
7880
7881 res = remote_vkill (pid, rs);
7882 if (res == -1 && !(rs->extended && remote_multi_process_p (rs)))
7883 {
7884 /* Don't try 'k' on a multi-process aware stub -- it has no way
7885 to specify the pid. */
7886
7887 putpkt ("k");
7888 #if 0
7889 getpkt (&rs->buf, &rs->buf_size, 0);
7890 if (rs->buf[0] != 'O' || rs->buf[0] != 'K')
7891 res = 1;
7892 #else
7893 /* Don't wait for it to die. I'm not really sure it matters whether
7894 we do or not. For the existing stubs, kill is a noop. */
7895 res = 0;
7896 #endif
7897 }
7898
7899 if (res != 0)
7900 error (_("Can't kill process"));
7901
7902 target_mourn_inferior ();
7903 }
7904
7905 static void
7906 remote_mourn (struct target_ops *ops)
7907 {
7908 remote_mourn_1 (ops);
7909 }
7910
7911 /* Worker function for remote_mourn. */
7912 static void
7913 remote_mourn_1 (struct target_ops *target)
7914 {
7915 unpush_target (target);
7916
7917 /* remote_close takes care of doing most of the clean up. */
7918 generic_mourn_inferior ();
7919 }
7920
7921 static void
7922 extended_remote_mourn_1 (struct target_ops *target)
7923 {
7924 struct remote_state *rs = get_remote_state ();
7925
7926 /* In case we got here due to an error, but we're going to stay
7927 connected. */
7928 rs->waiting_for_stop_reply = 0;
7929
7930 /* If the current general thread belonged to the process we just
7931 detached from or has exited, the remote side current general
7932 thread becomes undefined. Considering a case like this:
7933
7934 - We just got here due to a detach.
7935 - The process that we're detaching from happens to immediately
7936 report a global breakpoint being hit in non-stop mode, in the
7937 same thread we had selected before.
7938 - GDB attaches to this process again.
7939 - This event happens to be the next event we handle.
7940
7941 GDB would consider that the current general thread didn't need to
7942 be set on the stub side (with Hg), since for all it knew,
7943 GENERAL_THREAD hadn't changed.
7944
7945 Notice that although in all-stop mode, the remote server always
7946 sets the current thread to the thread reporting the stop event,
7947 that doesn't happen in non-stop mode; in non-stop, the stub *must
7948 not* change the current thread when reporting a breakpoint hit,
7949 due to the decoupling of event reporting and event handling.
7950
7951 To keep things simple, we always invalidate our notion of the
7952 current thread. */
7953 record_currthread (rs, minus_one_ptid);
7954
7955 /* Unlike "target remote", we do not want to unpush the target; then
7956 the next time the user says "run", we won't be connected. */
7957
7958 /* Call common code to mark the inferior as not running. */
7959 generic_mourn_inferior ();
7960
7961 if (!have_inferiors ())
7962 {
7963 if (!remote_multi_process_p (rs))
7964 {
7965 /* Check whether the target is running now - some remote stubs
7966 automatically restart after kill. */
7967 putpkt ("?");
7968 getpkt (&rs->buf, &rs->buf_size, 0);
7969
7970 if (rs->buf[0] == 'S' || rs->buf[0] == 'T')
7971 {
7972 /* Assume that the target has been restarted. Set
7973 inferior_ptid so that bits of core GDB realizes
7974 there's something here, e.g., so that the user can
7975 say "kill" again. */
7976 inferior_ptid = magic_null_ptid;
7977 }
7978 }
7979 }
7980 }
7981
7982 static void
7983 extended_remote_mourn (struct target_ops *ops)
7984 {
7985 extended_remote_mourn_1 (ops);
7986 }
7987
7988 static int
7989 extended_remote_supports_disable_randomization (void)
7990 {
7991 return (remote_protocol_packets[PACKET_QDisableRandomization].support
7992 == PACKET_ENABLE);
7993 }
7994
7995 static void
7996 extended_remote_disable_randomization (int val)
7997 {
7998 struct remote_state *rs = get_remote_state ();
7999 char *reply;
8000
8001 xsnprintf (rs->buf, get_remote_packet_size (), "QDisableRandomization:%x",
8002 val);
8003 putpkt (rs->buf);
8004 reply = remote_get_noisy_reply (&target_buf, &target_buf_size);
8005 if (*reply == '\0')
8006 error (_("Target does not support QDisableRandomization."));
8007 if (strcmp (reply, "OK") != 0)
8008 error (_("Bogus QDisableRandomization reply from target: %s"), reply);
8009 }
8010
8011 static int
8012 extended_remote_run (char *args)
8013 {
8014 struct remote_state *rs = get_remote_state ();
8015 int len;
8016
8017 /* If the user has disabled vRun support, or we have detected that
8018 support is not available, do not try it. */
8019 if (remote_protocol_packets[PACKET_vRun].support == PACKET_DISABLE)
8020 return -1;
8021
8022 strcpy (rs->buf, "vRun;");
8023 len = strlen (rs->buf);
8024
8025 if (strlen (remote_exec_file) * 2 + len >= get_remote_packet_size ())
8026 error (_("Remote file name too long for run packet"));
8027 len += 2 * bin2hex ((gdb_byte *) remote_exec_file, rs->buf + len, 0);
8028
8029 gdb_assert (args != NULL);
8030 if (*args)
8031 {
8032 struct cleanup *back_to;
8033 int i;
8034 char **argv;
8035
8036 argv = gdb_buildargv (args);
8037 back_to = make_cleanup ((void (*) (void *)) freeargv, argv);
8038 for (i = 0; argv[i] != NULL; i++)
8039 {
8040 if (strlen (argv[i]) * 2 + 1 + len >= get_remote_packet_size ())
8041 error (_("Argument list too long for run packet"));
8042 rs->buf[len++] = ';';
8043 len += 2 * bin2hex ((gdb_byte *) argv[i], rs->buf + len, 0);
8044 }
8045 do_cleanups (back_to);
8046 }
8047
8048 rs->buf[len++] = '\0';
8049
8050 putpkt (rs->buf);
8051 getpkt (&rs->buf, &rs->buf_size, 0);
8052
8053 if (packet_ok (rs->buf, &remote_protocol_packets[PACKET_vRun]) == PACKET_OK)
8054 {
8055 /* We have a wait response. All is well. */
8056 return 0;
8057 }
8058 else if (remote_protocol_packets[PACKET_vRun].support == PACKET_DISABLE)
8059 /* It wasn't disabled before, but it is now. */
8060 return -1;
8061 else
8062 {
8063 if (remote_exec_file[0] == '\0')
8064 error (_("Running the default executable on the remote target failed; "
8065 "try \"set remote exec-file\"?"));
8066 else
8067 error (_("Running \"%s\" on the remote target failed"),
8068 remote_exec_file);
8069 }
8070 }
8071
8072 /* In the extended protocol we want to be able to do things like
8073 "run" and have them basically work as expected. So we need
8074 a special create_inferior function. We support changing the
8075 executable file and the command line arguments, but not the
8076 environment. */
8077
8078 static void
8079 extended_remote_create_inferior_1 (char *exec_file, char *args,
8080 char **env, int from_tty)
8081 {
8082 int run_worked;
8083 char *stop_reply;
8084 struct remote_state *rs = get_remote_state ();
8085
8086 /* If running asynchronously, register the target file descriptor
8087 with the event loop. */
8088 if (target_can_async_p ())
8089 target_async (inferior_event_handler, 0);
8090
8091 /* Disable address space randomization if requested (and supported). */
8092 if (extended_remote_supports_disable_randomization ())
8093 extended_remote_disable_randomization (disable_randomization);
8094
8095 /* Now restart the remote server. */
8096 run_worked = extended_remote_run (args) != -1;
8097 if (!run_worked)
8098 {
8099 /* vRun was not supported. Fail if we need it to do what the
8100 user requested. */
8101 if (remote_exec_file[0])
8102 error (_("Remote target does not support \"set remote exec-file\""));
8103 if (args[0])
8104 error (_("Remote target does not support \"set args\" or run <ARGS>"));
8105
8106 /* Fall back to "R". */
8107 extended_remote_restart ();
8108 }
8109
8110 if (!have_inferiors ())
8111 {
8112 /* Clean up from the last time we ran, before we mark the target
8113 running again. This will mark breakpoints uninserted, and
8114 get_offsets may insert breakpoints. */
8115 init_thread_list ();
8116 init_wait_for_inferior ();
8117 }
8118
8119 /* vRun's success return is a stop reply. */
8120 stop_reply = run_worked ? rs->buf : NULL;
8121 add_current_inferior_and_thread (stop_reply);
8122
8123 /* Get updated offsets, if the stub uses qOffsets. */
8124 get_offsets ();
8125 }
8126
8127 static void
8128 extended_remote_create_inferior (struct target_ops *ops,
8129 char *exec_file, char *args,
8130 char **env, int from_tty)
8131 {
8132 extended_remote_create_inferior_1 (exec_file, args, env, from_tty);
8133 }
8134 \f
8135
8136 /* Given a location's target info BP_TGT and the packet buffer BUF, output
8137 the list of conditions (in agent expression bytecode format), if any, the
8138 target needs to evaluate. The output is placed into the packet buffer
8139 started from BUF and ended at BUF_END. */
8140
8141 static int
8142 remote_add_target_side_condition (struct gdbarch *gdbarch,
8143 struct bp_target_info *bp_tgt, char *buf,
8144 char *buf_end)
8145 {
8146 struct agent_expr *aexpr = NULL;
8147 int i, ix;
8148 char *pkt;
8149 char *buf_start = buf;
8150
8151 if (VEC_empty (agent_expr_p, bp_tgt->conditions))
8152 return 0;
8153
8154 buf += strlen (buf);
8155 xsnprintf (buf, buf_end - buf, "%s", ";");
8156 buf++;
8157
8158 /* Send conditions to the target and free the vector. */
8159 for (ix = 0;
8160 VEC_iterate (agent_expr_p, bp_tgt->conditions, ix, aexpr);
8161 ix++)
8162 {
8163 xsnprintf (buf, buf_end - buf, "X%x,", aexpr->len);
8164 buf += strlen (buf);
8165 for (i = 0; i < aexpr->len; ++i)
8166 buf = pack_hex_byte (buf, aexpr->buf[i]);
8167 *buf = '\0';
8168 }
8169 return 0;
8170 }
8171
8172 static void
8173 remote_add_target_side_commands (struct gdbarch *gdbarch,
8174 struct bp_target_info *bp_tgt, char *buf)
8175 {
8176 struct agent_expr *aexpr = NULL;
8177 int i, ix;
8178
8179 if (VEC_empty (agent_expr_p, bp_tgt->tcommands))
8180 return;
8181
8182 buf += strlen (buf);
8183
8184 sprintf (buf, ";cmds:%x,", bp_tgt->persist);
8185 buf += strlen (buf);
8186
8187 /* Concatenate all the agent expressions that are commands into the
8188 cmds parameter. */
8189 for (ix = 0;
8190 VEC_iterate (agent_expr_p, bp_tgt->tcommands, ix, aexpr);
8191 ix++)
8192 {
8193 sprintf (buf, "X%x,", aexpr->len);
8194 buf += strlen (buf);
8195 for (i = 0; i < aexpr->len; ++i)
8196 buf = pack_hex_byte (buf, aexpr->buf[i]);
8197 *buf = '\0';
8198 }
8199 }
8200
8201 /* Insert a breakpoint. On targets that have software breakpoint
8202 support, we ask the remote target to do the work; on targets
8203 which don't, we insert a traditional memory breakpoint. */
8204
8205 static int
8206 remote_insert_breakpoint (struct gdbarch *gdbarch,
8207 struct bp_target_info *bp_tgt)
8208 {
8209 /* Try the "Z" s/w breakpoint packet if it is not already disabled.
8210 If it succeeds, then set the support to PACKET_ENABLE. If it
8211 fails, and the user has explicitly requested the Z support then
8212 report an error, otherwise, mark it disabled and go on. */
8213
8214 if (remote_protocol_packets[PACKET_Z0].support != PACKET_DISABLE)
8215 {
8216 CORE_ADDR addr = bp_tgt->placed_address;
8217 struct remote_state *rs;
8218 char *p, *endbuf;
8219 int bpsize;
8220 struct condition_list *cond = NULL;
8221
8222 /* Make sure the remote is pointing at the right process, if
8223 necessary. */
8224 if (!gdbarch_has_global_breakpoints (target_gdbarch ()))
8225 set_general_process ();
8226
8227 gdbarch_remote_breakpoint_from_pc (gdbarch, &addr, &bpsize);
8228
8229 rs = get_remote_state ();
8230 p = rs->buf;
8231 endbuf = rs->buf + get_remote_packet_size ();
8232
8233 *(p++) = 'Z';
8234 *(p++) = '0';
8235 *(p++) = ',';
8236 addr = (ULONGEST) remote_address_masked (addr);
8237 p += hexnumstr (p, addr);
8238 xsnprintf (p, endbuf - p, ",%d", bpsize);
8239
8240 if (remote_supports_cond_breakpoints ())
8241 remote_add_target_side_condition (gdbarch, bp_tgt, p, endbuf);
8242
8243 if (remote_can_run_breakpoint_commands ())
8244 remote_add_target_side_commands (gdbarch, bp_tgt, p);
8245
8246 putpkt (rs->buf);
8247 getpkt (&rs->buf, &rs->buf_size, 0);
8248
8249 switch (packet_ok (rs->buf, &remote_protocol_packets[PACKET_Z0]))
8250 {
8251 case PACKET_ERROR:
8252 return -1;
8253 case PACKET_OK:
8254 bp_tgt->placed_address = addr;
8255 bp_tgt->placed_size = bpsize;
8256 return 0;
8257 case PACKET_UNKNOWN:
8258 break;
8259 }
8260 }
8261
8262 return memory_insert_breakpoint (gdbarch, bp_tgt);
8263 }
8264
8265 static int
8266 remote_remove_breakpoint (struct gdbarch *gdbarch,
8267 struct bp_target_info *bp_tgt)
8268 {
8269 CORE_ADDR addr = bp_tgt->placed_address;
8270 struct remote_state *rs = get_remote_state ();
8271
8272 if (remote_protocol_packets[PACKET_Z0].support != PACKET_DISABLE)
8273 {
8274 char *p = rs->buf;
8275 char *endbuf = rs->buf + get_remote_packet_size ();
8276
8277 /* Make sure the remote is pointing at the right process, if
8278 necessary. */
8279 if (!gdbarch_has_global_breakpoints (target_gdbarch ()))
8280 set_general_process ();
8281
8282 *(p++) = 'z';
8283 *(p++) = '0';
8284 *(p++) = ',';
8285
8286 addr = (ULONGEST) remote_address_masked (bp_tgt->placed_address);
8287 p += hexnumstr (p, addr);
8288 xsnprintf (p, endbuf - p, ",%d", bp_tgt->placed_size);
8289
8290 putpkt (rs->buf);
8291 getpkt (&rs->buf, &rs->buf_size, 0);
8292
8293 return (rs->buf[0] == 'E');
8294 }
8295
8296 return memory_remove_breakpoint (gdbarch, bp_tgt);
8297 }
8298
8299 static int
8300 watchpoint_to_Z_packet (int type)
8301 {
8302 switch (type)
8303 {
8304 case hw_write:
8305 return Z_PACKET_WRITE_WP;
8306 break;
8307 case hw_read:
8308 return Z_PACKET_READ_WP;
8309 break;
8310 case hw_access:
8311 return Z_PACKET_ACCESS_WP;
8312 break;
8313 default:
8314 internal_error (__FILE__, __LINE__,
8315 _("hw_bp_to_z: bad watchpoint type %d"), type);
8316 }
8317 }
8318
8319 static int
8320 remote_insert_watchpoint (CORE_ADDR addr, int len, int type,
8321 struct expression *cond)
8322 {
8323 struct remote_state *rs = get_remote_state ();
8324 char *endbuf = rs->buf + get_remote_packet_size ();
8325 char *p;
8326 enum Z_packet_type packet = watchpoint_to_Z_packet (type);
8327
8328 if (remote_protocol_packets[PACKET_Z0 + packet].support == PACKET_DISABLE)
8329 return 1;
8330
8331 /* Make sure the remote is pointing at the right process, if
8332 necessary. */
8333 if (!gdbarch_has_global_breakpoints (target_gdbarch ()))
8334 set_general_process ();
8335
8336 xsnprintf (rs->buf, endbuf - rs->buf, "Z%x,", packet);
8337 p = strchr (rs->buf, '\0');
8338 addr = remote_address_masked (addr);
8339 p += hexnumstr (p, (ULONGEST) addr);
8340 xsnprintf (p, endbuf - p, ",%x", len);
8341
8342 putpkt (rs->buf);
8343 getpkt (&rs->buf, &rs->buf_size, 0);
8344
8345 switch (packet_ok (rs->buf, &remote_protocol_packets[PACKET_Z0 + packet]))
8346 {
8347 case PACKET_ERROR:
8348 return -1;
8349 case PACKET_UNKNOWN:
8350 return 1;
8351 case PACKET_OK:
8352 return 0;
8353 }
8354 internal_error (__FILE__, __LINE__,
8355 _("remote_insert_watchpoint: reached end of function"));
8356 }
8357
8358 static int
8359 remote_watchpoint_addr_within_range (struct target_ops *target, CORE_ADDR addr,
8360 CORE_ADDR start, int length)
8361 {
8362 CORE_ADDR diff = remote_address_masked (addr - start);
8363
8364 return diff < length;
8365 }
8366
8367
8368 static int
8369 remote_remove_watchpoint (CORE_ADDR addr, int len, int type,
8370 struct expression *cond)
8371 {
8372 struct remote_state *rs = get_remote_state ();
8373 char *endbuf = rs->buf + get_remote_packet_size ();
8374 char *p;
8375 enum Z_packet_type packet = watchpoint_to_Z_packet (type);
8376
8377 if (remote_protocol_packets[PACKET_Z0 + packet].support == PACKET_DISABLE)
8378 return -1;
8379
8380 /* Make sure the remote is pointing at the right process, if
8381 necessary. */
8382 if (!gdbarch_has_global_breakpoints (target_gdbarch ()))
8383 set_general_process ();
8384
8385 xsnprintf (rs->buf, endbuf - rs->buf, "z%x,", packet);
8386 p = strchr (rs->buf, '\0');
8387 addr = remote_address_masked (addr);
8388 p += hexnumstr (p, (ULONGEST) addr);
8389 xsnprintf (p, endbuf - p, ",%x", len);
8390 putpkt (rs->buf);
8391 getpkt (&rs->buf, &rs->buf_size, 0);
8392
8393 switch (packet_ok (rs->buf, &remote_protocol_packets[PACKET_Z0 + packet]))
8394 {
8395 case PACKET_ERROR:
8396 case PACKET_UNKNOWN:
8397 return -1;
8398 case PACKET_OK:
8399 return 0;
8400 }
8401 internal_error (__FILE__, __LINE__,
8402 _("remote_remove_watchpoint: reached end of function"));
8403 }
8404
8405
8406 int remote_hw_watchpoint_limit = -1;
8407 int remote_hw_watchpoint_length_limit = -1;
8408 int remote_hw_breakpoint_limit = -1;
8409
8410 static int
8411 remote_region_ok_for_hw_watchpoint (CORE_ADDR addr, int len)
8412 {
8413 if (remote_hw_watchpoint_length_limit == 0)
8414 return 0;
8415 else if (remote_hw_watchpoint_length_limit < 0)
8416 return 1;
8417 else if (len <= remote_hw_watchpoint_length_limit)
8418 return 1;
8419 else
8420 return 0;
8421 }
8422
8423 static int
8424 remote_check_watch_resources (int type, int cnt, int ot)
8425 {
8426 if (type == bp_hardware_breakpoint)
8427 {
8428 if (remote_hw_breakpoint_limit == 0)
8429 return 0;
8430 else if (remote_hw_breakpoint_limit < 0)
8431 return 1;
8432 else if (cnt <= remote_hw_breakpoint_limit)
8433 return 1;
8434 }
8435 else
8436 {
8437 if (remote_hw_watchpoint_limit == 0)
8438 return 0;
8439 else if (remote_hw_watchpoint_limit < 0)
8440 return 1;
8441 else if (ot)
8442 return -1;
8443 else if (cnt <= remote_hw_watchpoint_limit)
8444 return 1;
8445 }
8446 return -1;
8447 }
8448
8449 static int
8450 remote_stopped_by_watchpoint (void)
8451 {
8452 struct remote_state *rs = get_remote_state ();
8453
8454 return rs->remote_stopped_by_watchpoint_p;
8455 }
8456
8457 static int
8458 remote_stopped_data_address (struct target_ops *target, CORE_ADDR *addr_p)
8459 {
8460 struct remote_state *rs = get_remote_state ();
8461 int rc = 0;
8462
8463 if (remote_stopped_by_watchpoint ())
8464 {
8465 *addr_p = rs->remote_watch_data_address;
8466 rc = 1;
8467 }
8468
8469 return rc;
8470 }
8471
8472
8473 static int
8474 remote_insert_hw_breakpoint (struct gdbarch *gdbarch,
8475 struct bp_target_info *bp_tgt)
8476 {
8477 CORE_ADDR addr;
8478 struct remote_state *rs;
8479 char *p, *endbuf;
8480 char *message;
8481
8482 /* The length field should be set to the size of a breakpoint
8483 instruction, even though we aren't inserting one ourselves. */
8484
8485 gdbarch_remote_breakpoint_from_pc
8486 (gdbarch, &bp_tgt->placed_address, &bp_tgt->placed_size);
8487
8488 if (remote_protocol_packets[PACKET_Z1].support == PACKET_DISABLE)
8489 return -1;
8490
8491 /* Make sure the remote is pointing at the right process, if
8492 necessary. */
8493 if (!gdbarch_has_global_breakpoints (target_gdbarch ()))
8494 set_general_process ();
8495
8496 rs = get_remote_state ();
8497 p = rs->buf;
8498 endbuf = rs->buf + get_remote_packet_size ();
8499
8500 *(p++) = 'Z';
8501 *(p++) = '1';
8502 *(p++) = ',';
8503
8504 addr = remote_address_masked (bp_tgt->placed_address);
8505 p += hexnumstr (p, (ULONGEST) addr);
8506 xsnprintf (p, endbuf - p, ",%x", bp_tgt->placed_size);
8507
8508 if (remote_supports_cond_breakpoints ())
8509 remote_add_target_side_condition (gdbarch, bp_tgt, p, endbuf);
8510
8511 if (remote_can_run_breakpoint_commands ())
8512 remote_add_target_side_commands (gdbarch, bp_tgt, p);
8513
8514 putpkt (rs->buf);
8515 getpkt (&rs->buf, &rs->buf_size, 0);
8516
8517 switch (packet_ok (rs->buf, &remote_protocol_packets[PACKET_Z1]))
8518 {
8519 case PACKET_ERROR:
8520 if (rs->buf[1] == '.')
8521 {
8522 message = strchr (rs->buf + 2, '.');
8523 if (message)
8524 error (_("Remote failure reply: %s"), message + 1);
8525 }
8526 return -1;
8527 case PACKET_UNKNOWN:
8528 return -1;
8529 case PACKET_OK:
8530 return 0;
8531 }
8532 internal_error (__FILE__, __LINE__,
8533 _("remote_insert_hw_breakpoint: reached end of function"));
8534 }
8535
8536
8537 static int
8538 remote_remove_hw_breakpoint (struct gdbarch *gdbarch,
8539 struct bp_target_info *bp_tgt)
8540 {
8541 CORE_ADDR addr;
8542 struct remote_state *rs = get_remote_state ();
8543 char *p = rs->buf;
8544 char *endbuf = rs->buf + get_remote_packet_size ();
8545
8546 if (remote_protocol_packets[PACKET_Z1].support == PACKET_DISABLE)
8547 return -1;
8548
8549 /* Make sure the remote is pointing at the right process, if
8550 necessary. */
8551 if (!gdbarch_has_global_breakpoints (target_gdbarch ()))
8552 set_general_process ();
8553
8554 *(p++) = 'z';
8555 *(p++) = '1';
8556 *(p++) = ',';
8557
8558 addr = remote_address_masked (bp_tgt->placed_address);
8559 p += hexnumstr (p, (ULONGEST) addr);
8560 xsnprintf (p, endbuf - p, ",%x", bp_tgt->placed_size);
8561
8562 putpkt (rs->buf);
8563 getpkt (&rs->buf, &rs->buf_size, 0);
8564
8565 switch (packet_ok (rs->buf, &remote_protocol_packets[PACKET_Z1]))
8566 {
8567 case PACKET_ERROR:
8568 case PACKET_UNKNOWN:
8569 return -1;
8570 case PACKET_OK:
8571 return 0;
8572 }
8573 internal_error (__FILE__, __LINE__,
8574 _("remote_remove_hw_breakpoint: reached end of function"));
8575 }
8576
8577 /* Verify memory using the "qCRC:" request. */
8578
8579 static int
8580 remote_verify_memory (struct target_ops *ops,
8581 const gdb_byte *data, CORE_ADDR lma, ULONGEST size)
8582 {
8583 struct remote_state *rs = get_remote_state ();
8584 unsigned long host_crc, target_crc;
8585 char *tmp;
8586
8587 /* Make sure the remote is pointing at the right process. */
8588 set_general_process ();
8589
8590 /* FIXME: assumes lma can fit into long. */
8591 xsnprintf (rs->buf, get_remote_packet_size (), "qCRC:%lx,%lx",
8592 (long) lma, (long) size);
8593 putpkt (rs->buf);
8594
8595 /* Be clever; compute the host_crc before waiting for target
8596 reply. */
8597 host_crc = xcrc32 (data, size, 0xffffffff);
8598
8599 getpkt (&rs->buf, &rs->buf_size, 0);
8600 if (rs->buf[0] == 'E')
8601 return -1;
8602
8603 if (rs->buf[0] != 'C')
8604 error (_("remote target does not support this operation"));
8605
8606 for (target_crc = 0, tmp = &rs->buf[1]; *tmp; tmp++)
8607 target_crc = target_crc * 16 + fromhex (*tmp);
8608
8609 return (host_crc == target_crc);
8610 }
8611
8612 /* compare-sections command
8613
8614 With no arguments, compares each loadable section in the exec bfd
8615 with the same memory range on the target, and reports mismatches.
8616 Useful for verifying the image on the target against the exec file. */
8617
8618 static void
8619 compare_sections_command (char *args, int from_tty)
8620 {
8621 asection *s;
8622 struct cleanup *old_chain;
8623 gdb_byte *sectdata;
8624 const char *sectname;
8625 bfd_size_type size;
8626 bfd_vma lma;
8627 int matched = 0;
8628 int mismatched = 0;
8629 int res;
8630
8631 if (!exec_bfd)
8632 error (_("command cannot be used without an exec file"));
8633
8634 /* Make sure the remote is pointing at the right process. */
8635 set_general_process ();
8636
8637 for (s = exec_bfd->sections; s; s = s->next)
8638 {
8639 if (!(s->flags & SEC_LOAD))
8640 continue; /* Skip non-loadable section. */
8641
8642 size = bfd_get_section_size (s);
8643 if (size == 0)
8644 continue; /* Skip zero-length section. */
8645
8646 sectname = bfd_get_section_name (exec_bfd, s);
8647 if (args && strcmp (args, sectname) != 0)
8648 continue; /* Not the section selected by user. */
8649
8650 matched = 1; /* Do this section. */
8651 lma = s->lma;
8652
8653 sectdata = xmalloc (size);
8654 old_chain = make_cleanup (xfree, sectdata);
8655 bfd_get_section_contents (exec_bfd, s, sectdata, 0, size);
8656
8657 res = target_verify_memory (sectdata, lma, size);
8658
8659 if (res == -1)
8660 error (_("target memory fault, section %s, range %s -- %s"), sectname,
8661 paddress (target_gdbarch (), lma),
8662 paddress (target_gdbarch (), lma + size));
8663
8664 printf_filtered ("Section %s, range %s -- %s: ", sectname,
8665 paddress (target_gdbarch (), lma),
8666 paddress (target_gdbarch (), lma + size));
8667 if (res)
8668 printf_filtered ("matched.\n");
8669 else
8670 {
8671 printf_filtered ("MIS-MATCHED!\n");
8672 mismatched++;
8673 }
8674
8675 do_cleanups (old_chain);
8676 }
8677 if (mismatched > 0)
8678 warning (_("One or more sections of the remote executable does not match\n\
8679 the loaded file\n"));
8680 if (args && !matched)
8681 printf_filtered (_("No loaded section named '%s'.\n"), args);
8682 }
8683
8684 /* Write LEN bytes from WRITEBUF into OBJECT_NAME/ANNEX at OFFSET
8685 into remote target. The number of bytes written to the remote
8686 target is returned, or -1 for error. */
8687
8688 static LONGEST
8689 remote_write_qxfer (struct target_ops *ops, const char *object_name,
8690 const char *annex, const gdb_byte *writebuf,
8691 ULONGEST offset, LONGEST len,
8692 struct packet_config *packet)
8693 {
8694 int i, buf_len;
8695 ULONGEST n;
8696 struct remote_state *rs = get_remote_state ();
8697 int max_size = get_memory_write_packet_size ();
8698
8699 if (packet->support == PACKET_DISABLE)
8700 return -1;
8701
8702 /* Insert header. */
8703 i = snprintf (rs->buf, max_size,
8704 "qXfer:%s:write:%s:%s:",
8705 object_name, annex ? annex : "",
8706 phex_nz (offset, sizeof offset));
8707 max_size -= (i + 1);
8708
8709 /* Escape as much data as fits into rs->buf. */
8710 buf_len = remote_escape_output
8711 (writebuf, len, (gdb_byte *) rs->buf + i, &max_size, max_size);
8712
8713 if (putpkt_binary (rs->buf, i + buf_len) < 0
8714 || getpkt_sane (&rs->buf, &rs->buf_size, 0) < 0
8715 || packet_ok (rs->buf, packet) != PACKET_OK)
8716 return -1;
8717
8718 unpack_varlen_hex (rs->buf, &n);
8719 return n;
8720 }
8721
8722 /* Read OBJECT_NAME/ANNEX from the remote target using a qXfer packet.
8723 Data at OFFSET, of up to LEN bytes, is read into READBUF; the
8724 number of bytes read is returned, or 0 for EOF, or -1 for error.
8725 The number of bytes read may be less than LEN without indicating an
8726 EOF. PACKET is checked and updated to indicate whether the remote
8727 target supports this object. */
8728
8729 static LONGEST
8730 remote_read_qxfer (struct target_ops *ops, const char *object_name,
8731 const char *annex,
8732 gdb_byte *readbuf, ULONGEST offset, LONGEST len,
8733 struct packet_config *packet)
8734 {
8735 struct remote_state *rs = get_remote_state ();
8736 LONGEST i, n, packet_len;
8737
8738 if (packet->support == PACKET_DISABLE)
8739 return -1;
8740
8741 /* Check whether we've cached an end-of-object packet that matches
8742 this request. */
8743 if (rs->finished_object)
8744 {
8745 if (strcmp (object_name, rs->finished_object) == 0
8746 && strcmp (annex ? annex : "", rs->finished_annex) == 0
8747 && offset == rs->finished_offset)
8748 return 0;
8749
8750 /* Otherwise, we're now reading something different. Discard
8751 the cache. */
8752 xfree (rs->finished_object);
8753 xfree (rs->finished_annex);
8754 rs->finished_object = NULL;
8755 rs->finished_annex = NULL;
8756 }
8757
8758 /* Request only enough to fit in a single packet. The actual data
8759 may not, since we don't know how much of it will need to be escaped;
8760 the target is free to respond with slightly less data. We subtract
8761 five to account for the response type and the protocol frame. */
8762 n = min (get_remote_packet_size () - 5, len);
8763 snprintf (rs->buf, get_remote_packet_size () - 4, "qXfer:%s:read:%s:%s,%s",
8764 object_name, annex ? annex : "",
8765 phex_nz (offset, sizeof offset),
8766 phex_nz (n, sizeof n));
8767 i = putpkt (rs->buf);
8768 if (i < 0)
8769 return -1;
8770
8771 rs->buf[0] = '\0';
8772 packet_len = getpkt_sane (&rs->buf, &rs->buf_size, 0);
8773 if (packet_len < 0 || packet_ok (rs->buf, packet) != PACKET_OK)
8774 return -1;
8775
8776 if (rs->buf[0] != 'l' && rs->buf[0] != 'm')
8777 error (_("Unknown remote qXfer reply: %s"), rs->buf);
8778
8779 /* 'm' means there is (or at least might be) more data after this
8780 batch. That does not make sense unless there's at least one byte
8781 of data in this reply. */
8782 if (rs->buf[0] == 'm' && packet_len == 1)
8783 error (_("Remote qXfer reply contained no data."));
8784
8785 /* Got some data. */
8786 i = remote_unescape_input ((gdb_byte *) rs->buf + 1,
8787 packet_len - 1, readbuf, n);
8788
8789 /* 'l' is an EOF marker, possibly including a final block of data,
8790 or possibly empty. If we have the final block of a non-empty
8791 object, record this fact to bypass a subsequent partial read. */
8792 if (rs->buf[0] == 'l' && offset + i > 0)
8793 {
8794 rs->finished_object = xstrdup (object_name);
8795 rs->finished_annex = xstrdup (annex ? annex : "");
8796 rs->finished_offset = offset + i;
8797 }
8798
8799 return i;
8800 }
8801
8802 static LONGEST
8803 remote_xfer_partial (struct target_ops *ops, enum target_object object,
8804 const char *annex, gdb_byte *readbuf,
8805 const gdb_byte *writebuf, ULONGEST offset, LONGEST len)
8806 {
8807 struct remote_state *rs;
8808 int i;
8809 char *p2;
8810 char query_type;
8811
8812 set_remote_traceframe ();
8813 set_general_thread (inferior_ptid);
8814
8815 rs = get_remote_state ();
8816
8817 /* Handle memory using the standard memory routines. */
8818 if (object == TARGET_OBJECT_MEMORY)
8819 {
8820 LONGEST xfered;
8821
8822 /* If the remote target is connected but not running, we should
8823 pass this request down to a lower stratum (e.g. the executable
8824 file). */
8825 if (!target_has_execution)
8826 return 0;
8827
8828 if (writebuf != NULL)
8829 xfered = remote_write_bytes (offset, writebuf, len);
8830 else
8831 xfered = remote_read_bytes (offset, readbuf, len);
8832
8833 return xfered;
8834 }
8835
8836 /* Handle SPU memory using qxfer packets. */
8837 if (object == TARGET_OBJECT_SPU)
8838 {
8839 if (readbuf)
8840 return remote_read_qxfer (ops, "spu", annex, readbuf, offset, len,
8841 &remote_protocol_packets
8842 [PACKET_qXfer_spu_read]);
8843 else
8844 return remote_write_qxfer (ops, "spu", annex, writebuf, offset, len,
8845 &remote_protocol_packets
8846 [PACKET_qXfer_spu_write]);
8847 }
8848
8849 /* Handle extra signal info using qxfer packets. */
8850 if (object == TARGET_OBJECT_SIGNAL_INFO)
8851 {
8852 if (readbuf)
8853 return remote_read_qxfer (ops, "siginfo", annex, readbuf, offset, len,
8854 &remote_protocol_packets
8855 [PACKET_qXfer_siginfo_read]);
8856 else
8857 return remote_write_qxfer (ops, "siginfo", annex,
8858 writebuf, offset, len,
8859 &remote_protocol_packets
8860 [PACKET_qXfer_siginfo_write]);
8861 }
8862
8863 if (object == TARGET_OBJECT_STATIC_TRACE_DATA)
8864 {
8865 if (readbuf)
8866 return remote_read_qxfer (ops, "statictrace", annex,
8867 readbuf, offset, len,
8868 &remote_protocol_packets
8869 [PACKET_qXfer_statictrace_read]);
8870 else
8871 return -1;
8872 }
8873
8874 /* Only handle flash writes. */
8875 if (writebuf != NULL)
8876 {
8877 LONGEST xfered;
8878
8879 switch (object)
8880 {
8881 case TARGET_OBJECT_FLASH:
8882 return remote_flash_write (ops, offset, len, writebuf);
8883
8884 default:
8885 return -1;
8886 }
8887 }
8888
8889 /* Map pre-existing objects onto letters. DO NOT do this for new
8890 objects!!! Instead specify new query packets. */
8891 switch (object)
8892 {
8893 case TARGET_OBJECT_AVR:
8894 query_type = 'R';
8895 break;
8896
8897 case TARGET_OBJECT_AUXV:
8898 gdb_assert (annex == NULL);
8899 return remote_read_qxfer (ops, "auxv", annex, readbuf, offset, len,
8900 &remote_protocol_packets[PACKET_qXfer_auxv]);
8901
8902 case TARGET_OBJECT_AVAILABLE_FEATURES:
8903 return remote_read_qxfer
8904 (ops, "features", annex, readbuf, offset, len,
8905 &remote_protocol_packets[PACKET_qXfer_features]);
8906
8907 case TARGET_OBJECT_LIBRARIES:
8908 return remote_read_qxfer
8909 (ops, "libraries", annex, readbuf, offset, len,
8910 &remote_protocol_packets[PACKET_qXfer_libraries]);
8911
8912 case TARGET_OBJECT_LIBRARIES_SVR4:
8913 return remote_read_qxfer
8914 (ops, "libraries-svr4", annex, readbuf, offset, len,
8915 &remote_protocol_packets[PACKET_qXfer_libraries_svr4]);
8916
8917 case TARGET_OBJECT_MEMORY_MAP:
8918 gdb_assert (annex == NULL);
8919 return remote_read_qxfer (ops, "memory-map", annex, readbuf, offset, len,
8920 &remote_protocol_packets[PACKET_qXfer_memory_map]);
8921
8922 case TARGET_OBJECT_OSDATA:
8923 /* Should only get here if we're connected. */
8924 gdb_assert (rs->remote_desc);
8925 return remote_read_qxfer
8926 (ops, "osdata", annex, readbuf, offset, len,
8927 &remote_protocol_packets[PACKET_qXfer_osdata]);
8928
8929 case TARGET_OBJECT_THREADS:
8930 gdb_assert (annex == NULL);
8931 return remote_read_qxfer (ops, "threads", annex, readbuf, offset, len,
8932 &remote_protocol_packets[PACKET_qXfer_threads]);
8933
8934 case TARGET_OBJECT_TRACEFRAME_INFO:
8935 gdb_assert (annex == NULL);
8936 return remote_read_qxfer
8937 (ops, "traceframe-info", annex, readbuf, offset, len,
8938 &remote_protocol_packets[PACKET_qXfer_traceframe_info]);
8939
8940 case TARGET_OBJECT_FDPIC:
8941 return remote_read_qxfer (ops, "fdpic", annex, readbuf, offset, len,
8942 &remote_protocol_packets[PACKET_qXfer_fdpic]);
8943
8944 case TARGET_OBJECT_OPENVMS_UIB:
8945 return remote_read_qxfer (ops, "uib", annex, readbuf, offset, len,
8946 &remote_protocol_packets[PACKET_qXfer_uib]);
8947
8948 case TARGET_OBJECT_BTRACE:
8949 return remote_read_qxfer (ops, "btrace", annex, readbuf, offset, len,
8950 &remote_protocol_packets[PACKET_qXfer_btrace]);
8951
8952 default:
8953 return -1;
8954 }
8955
8956 /* Note: a zero OFFSET and LEN can be used to query the minimum
8957 buffer size. */
8958 if (offset == 0 && len == 0)
8959 return (get_remote_packet_size ());
8960 /* Minimum outbuf size is get_remote_packet_size (). If LEN is not
8961 large enough let the caller deal with it. */
8962 if (len < get_remote_packet_size ())
8963 return -1;
8964 len = get_remote_packet_size ();
8965
8966 /* Except for querying the minimum buffer size, target must be open. */
8967 if (!rs->remote_desc)
8968 error (_("remote query is only available after target open"));
8969
8970 gdb_assert (annex != NULL);
8971 gdb_assert (readbuf != NULL);
8972
8973 p2 = rs->buf;
8974 *p2++ = 'q';
8975 *p2++ = query_type;
8976
8977 /* We used one buffer char for the remote protocol q command and
8978 another for the query type. As the remote protocol encapsulation
8979 uses 4 chars plus one extra in case we are debugging
8980 (remote_debug), we have PBUFZIZ - 7 left to pack the query
8981 string. */
8982 i = 0;
8983 while (annex[i] && (i < (get_remote_packet_size () - 8)))
8984 {
8985 /* Bad caller may have sent forbidden characters. */
8986 gdb_assert (isprint (annex[i]) && annex[i] != '$' && annex[i] != '#');
8987 *p2++ = annex[i];
8988 i++;
8989 }
8990 *p2 = '\0';
8991 gdb_assert (annex[i] == '\0');
8992
8993 i = putpkt (rs->buf);
8994 if (i < 0)
8995 return i;
8996
8997 getpkt (&rs->buf, &rs->buf_size, 0);
8998 strcpy ((char *) readbuf, rs->buf);
8999
9000 return strlen ((char *) readbuf);
9001 }
9002
9003 static int
9004 remote_search_memory (struct target_ops* ops,
9005 CORE_ADDR start_addr, ULONGEST search_space_len,
9006 const gdb_byte *pattern, ULONGEST pattern_len,
9007 CORE_ADDR *found_addrp)
9008 {
9009 int addr_size = gdbarch_addr_bit (target_gdbarch ()) / 8;
9010 struct remote_state *rs = get_remote_state ();
9011 int max_size = get_memory_write_packet_size ();
9012 struct packet_config *packet =
9013 &remote_protocol_packets[PACKET_qSearch_memory];
9014 /* Number of packet bytes used to encode the pattern;
9015 this could be more than PATTERN_LEN due to escape characters. */
9016 int escaped_pattern_len;
9017 /* Amount of pattern that was encodable in the packet. */
9018 int used_pattern_len;
9019 int i;
9020 int found;
9021 ULONGEST found_addr;
9022
9023 /* Don't go to the target if we don't have to.
9024 This is done before checking packet->support to avoid the possibility that
9025 a success for this edge case means the facility works in general. */
9026 if (pattern_len > search_space_len)
9027 return 0;
9028 if (pattern_len == 0)
9029 {
9030 *found_addrp = start_addr;
9031 return 1;
9032 }
9033
9034 /* If we already know the packet isn't supported, fall back to the simple
9035 way of searching memory. */
9036
9037 if (packet->support == PACKET_DISABLE)
9038 {
9039 /* Target doesn't provided special support, fall back and use the
9040 standard support (copy memory and do the search here). */
9041 return simple_search_memory (ops, start_addr, search_space_len,
9042 pattern, pattern_len, found_addrp);
9043 }
9044
9045 /* Make sure the remote is pointing at the right process. */
9046 set_general_process ();
9047
9048 /* Insert header. */
9049 i = snprintf (rs->buf, max_size,
9050 "qSearch:memory:%s;%s;",
9051 phex_nz (start_addr, addr_size),
9052 phex_nz (search_space_len, sizeof (search_space_len)));
9053 max_size -= (i + 1);
9054
9055 /* Escape as much data as fits into rs->buf. */
9056 escaped_pattern_len =
9057 remote_escape_output (pattern, pattern_len, (gdb_byte *) rs->buf + i,
9058 &used_pattern_len, max_size);
9059
9060 /* Bail if the pattern is too large. */
9061 if (used_pattern_len != pattern_len)
9062 error (_("Pattern is too large to transmit to remote target."));
9063
9064 if (putpkt_binary (rs->buf, i + escaped_pattern_len) < 0
9065 || getpkt_sane (&rs->buf, &rs->buf_size, 0) < 0
9066 || packet_ok (rs->buf, packet) != PACKET_OK)
9067 {
9068 /* The request may not have worked because the command is not
9069 supported. If so, fall back to the simple way. */
9070 if (packet->support == PACKET_DISABLE)
9071 {
9072 return simple_search_memory (ops, start_addr, search_space_len,
9073 pattern, pattern_len, found_addrp);
9074 }
9075 return -1;
9076 }
9077
9078 if (rs->buf[0] == '0')
9079 found = 0;
9080 else if (rs->buf[0] == '1')
9081 {
9082 found = 1;
9083 if (rs->buf[1] != ',')
9084 error (_("Unknown qSearch:memory reply: %s"), rs->buf);
9085 unpack_varlen_hex (rs->buf + 2, &found_addr);
9086 *found_addrp = found_addr;
9087 }
9088 else
9089 error (_("Unknown qSearch:memory reply: %s"), rs->buf);
9090
9091 return found;
9092 }
9093
9094 static void
9095 remote_rcmd (char *command,
9096 struct ui_file *outbuf)
9097 {
9098 struct remote_state *rs = get_remote_state ();
9099 char *p = rs->buf;
9100
9101 if (!rs->remote_desc)
9102 error (_("remote rcmd is only available after target open"));
9103
9104 /* Send a NULL command across as an empty command. */
9105 if (command == NULL)
9106 command = "";
9107
9108 /* The query prefix. */
9109 strcpy (rs->buf, "qRcmd,");
9110 p = strchr (rs->buf, '\0');
9111
9112 if ((strlen (rs->buf) + strlen (command) * 2 + 8/*misc*/)
9113 > get_remote_packet_size ())
9114 error (_("\"monitor\" command ``%s'' is too long."), command);
9115
9116 /* Encode the actual command. */
9117 bin2hex ((gdb_byte *) command, p, 0);
9118
9119 if (putpkt (rs->buf) < 0)
9120 error (_("Communication problem with target."));
9121
9122 /* get/display the response */
9123 while (1)
9124 {
9125 char *buf;
9126
9127 /* XXX - see also remote_get_noisy_reply(). */
9128 QUIT; /* Allow user to bail out with ^C. */
9129 rs->buf[0] = '\0';
9130 if (getpkt_sane (&rs->buf, &rs->buf_size, 0) == -1)
9131 {
9132 /* Timeout. Continue to (try to) read responses.
9133 This is better than stopping with an error, assuming the stub
9134 is still executing the (long) monitor command.
9135 If needed, the user can interrupt gdb using C-c, obtaining
9136 an effect similar to stop on timeout. */
9137 continue;
9138 }
9139 buf = rs->buf;
9140 if (buf[0] == '\0')
9141 error (_("Target does not support this command."));
9142 if (buf[0] == 'O' && buf[1] != 'K')
9143 {
9144 remote_console_output (buf + 1); /* 'O' message from stub. */
9145 continue;
9146 }
9147 if (strcmp (buf, "OK") == 0)
9148 break;
9149 if (strlen (buf) == 3 && buf[0] == 'E'
9150 && isdigit (buf[1]) && isdigit (buf[2]))
9151 {
9152 error (_("Protocol error with Rcmd"));
9153 }
9154 for (p = buf; p[0] != '\0' && p[1] != '\0'; p += 2)
9155 {
9156 char c = (fromhex (p[0]) << 4) + fromhex (p[1]);
9157
9158 fputc_unfiltered (c, outbuf);
9159 }
9160 break;
9161 }
9162 }
9163
9164 static VEC(mem_region_s) *
9165 remote_memory_map (struct target_ops *ops)
9166 {
9167 VEC(mem_region_s) *result = NULL;
9168 char *text = target_read_stralloc (&current_target,
9169 TARGET_OBJECT_MEMORY_MAP, NULL);
9170
9171 if (text)
9172 {
9173 struct cleanup *back_to = make_cleanup (xfree, text);
9174
9175 result = parse_memory_map (text);
9176 do_cleanups (back_to);
9177 }
9178
9179 return result;
9180 }
9181
9182 static void
9183 packet_command (char *args, int from_tty)
9184 {
9185 struct remote_state *rs = get_remote_state ();
9186
9187 if (!rs->remote_desc)
9188 error (_("command can only be used with remote target"));
9189
9190 if (!args)
9191 error (_("remote-packet command requires packet text as argument"));
9192
9193 puts_filtered ("sending: ");
9194 print_packet (args);
9195 puts_filtered ("\n");
9196 putpkt (args);
9197
9198 getpkt (&rs->buf, &rs->buf_size, 0);
9199 puts_filtered ("received: ");
9200 print_packet (rs->buf);
9201 puts_filtered ("\n");
9202 }
9203
9204 #if 0
9205 /* --------- UNIT_TEST for THREAD oriented PACKETS ------------------- */
9206
9207 static void display_thread_info (struct gdb_ext_thread_info *info);
9208
9209 static void threadset_test_cmd (char *cmd, int tty);
9210
9211 static void threadalive_test (char *cmd, int tty);
9212
9213 static void threadlist_test_cmd (char *cmd, int tty);
9214
9215 int get_and_display_threadinfo (threadref *ref);
9216
9217 static void threadinfo_test_cmd (char *cmd, int tty);
9218
9219 static int thread_display_step (threadref *ref, void *context);
9220
9221 static void threadlist_update_test_cmd (char *cmd, int tty);
9222
9223 static void init_remote_threadtests (void);
9224
9225 #define SAMPLE_THREAD 0x05060708 /* Truncated 64 bit threadid. */
9226
9227 static void
9228 threadset_test_cmd (char *cmd, int tty)
9229 {
9230 int sample_thread = SAMPLE_THREAD;
9231
9232 printf_filtered (_("Remote threadset test\n"));
9233 set_general_thread (sample_thread);
9234 }
9235
9236
9237 static void
9238 threadalive_test (char *cmd, int tty)
9239 {
9240 int sample_thread = SAMPLE_THREAD;
9241 int pid = ptid_get_pid (inferior_ptid);
9242 ptid_t ptid = ptid_build (pid, 0, sample_thread);
9243
9244 if (remote_thread_alive (ptid))
9245 printf_filtered ("PASS: Thread alive test\n");
9246 else
9247 printf_filtered ("FAIL: Thread alive test\n");
9248 }
9249
9250 void output_threadid (char *title, threadref *ref);
9251
9252 void
9253 output_threadid (char *title, threadref *ref)
9254 {
9255 char hexid[20];
9256
9257 pack_threadid (&hexid[0], ref); /* Convert threead id into hex. */
9258 hexid[16] = 0;
9259 printf_filtered ("%s %s\n", title, (&hexid[0]));
9260 }
9261
9262 static void
9263 threadlist_test_cmd (char *cmd, int tty)
9264 {
9265 int startflag = 1;
9266 threadref nextthread;
9267 int done, result_count;
9268 threadref threadlist[3];
9269
9270 printf_filtered ("Remote Threadlist test\n");
9271 if (!remote_get_threadlist (startflag, &nextthread, 3, &done,
9272 &result_count, &threadlist[0]))
9273 printf_filtered ("FAIL: threadlist test\n");
9274 else
9275 {
9276 threadref *scan = threadlist;
9277 threadref *limit = scan + result_count;
9278
9279 while (scan < limit)
9280 output_threadid (" thread ", scan++);
9281 }
9282 }
9283
9284 void
9285 display_thread_info (struct gdb_ext_thread_info *info)
9286 {
9287 output_threadid ("Threadid: ", &info->threadid);
9288 printf_filtered ("Name: %s\n ", info->shortname);
9289 printf_filtered ("State: %s\n", info->display);
9290 printf_filtered ("other: %s\n\n", info->more_display);
9291 }
9292
9293 int
9294 get_and_display_threadinfo (threadref *ref)
9295 {
9296 int result;
9297 int set;
9298 struct gdb_ext_thread_info threadinfo;
9299
9300 set = TAG_THREADID | TAG_EXISTS | TAG_THREADNAME
9301 | TAG_MOREDISPLAY | TAG_DISPLAY;
9302 if (0 != (result = remote_get_threadinfo (ref, set, &threadinfo)))
9303 display_thread_info (&threadinfo);
9304 return result;
9305 }
9306
9307 static void
9308 threadinfo_test_cmd (char *cmd, int tty)
9309 {
9310 int athread = SAMPLE_THREAD;
9311 threadref thread;
9312 int set;
9313
9314 int_to_threadref (&thread, athread);
9315 printf_filtered ("Remote Threadinfo test\n");
9316 if (!get_and_display_threadinfo (&thread))
9317 printf_filtered ("FAIL cannot get thread info\n");
9318 }
9319
9320 static int
9321 thread_display_step (threadref *ref, void *context)
9322 {
9323 /* output_threadid(" threadstep ",ref); *//* simple test */
9324 return get_and_display_threadinfo (ref);
9325 }
9326
9327 static void
9328 threadlist_update_test_cmd (char *cmd, int tty)
9329 {
9330 printf_filtered ("Remote Threadlist update test\n");
9331 remote_threadlist_iterator (thread_display_step, 0, CRAZY_MAX_THREADS);
9332 }
9333
9334 static void
9335 init_remote_threadtests (void)
9336 {
9337 add_com ("tlist", class_obscure, threadlist_test_cmd,
9338 _("Fetch and print the remote list of "
9339 "thread identifiers, one pkt only"));
9340 add_com ("tinfo", class_obscure, threadinfo_test_cmd,
9341 _("Fetch and display info about one thread"));
9342 add_com ("tset", class_obscure, threadset_test_cmd,
9343 _("Test setting to a different thread"));
9344 add_com ("tupd", class_obscure, threadlist_update_test_cmd,
9345 _("Iterate through updating all remote thread info"));
9346 add_com ("talive", class_obscure, threadalive_test,
9347 _(" Remote thread alive test "));
9348 }
9349
9350 #endif /* 0 */
9351
9352 /* Convert a thread ID to a string. Returns the string in a static
9353 buffer. */
9354
9355 static char *
9356 remote_pid_to_str (struct target_ops *ops, ptid_t ptid)
9357 {
9358 static char buf[64];
9359 struct remote_state *rs = get_remote_state ();
9360
9361 if (ptid_equal (ptid, null_ptid))
9362 return normal_pid_to_str (ptid);
9363 else if (ptid_is_pid (ptid))
9364 {
9365 /* Printing an inferior target id. */
9366
9367 /* When multi-process extensions are off, there's no way in the
9368 remote protocol to know the remote process id, if there's any
9369 at all. There's one exception --- when we're connected with
9370 target extended-remote, and we manually attached to a process
9371 with "attach PID". We don't record anywhere a flag that
9372 allows us to distinguish that case from the case of
9373 connecting with extended-remote and the stub already being
9374 attached to a process, and reporting yes to qAttached, hence
9375 no smart special casing here. */
9376 if (!remote_multi_process_p (rs))
9377 {
9378 xsnprintf (buf, sizeof buf, "Remote target");
9379 return buf;
9380 }
9381
9382 return normal_pid_to_str (ptid);
9383 }
9384 else
9385 {
9386 if (ptid_equal (magic_null_ptid, ptid))
9387 xsnprintf (buf, sizeof buf, "Thread <main>");
9388 else if (rs->extended && remote_multi_process_p (rs))
9389 xsnprintf (buf, sizeof buf, "Thread %d.%ld",
9390 ptid_get_pid (ptid), ptid_get_tid (ptid));
9391 else
9392 xsnprintf (buf, sizeof buf, "Thread %ld",
9393 ptid_get_tid (ptid));
9394 return buf;
9395 }
9396 }
9397
9398 /* Get the address of the thread local variable in OBJFILE which is
9399 stored at OFFSET within the thread local storage for thread PTID. */
9400
9401 static CORE_ADDR
9402 remote_get_thread_local_address (struct target_ops *ops,
9403 ptid_t ptid, CORE_ADDR lm, CORE_ADDR offset)
9404 {
9405 if (remote_protocol_packets[PACKET_qGetTLSAddr].support != PACKET_DISABLE)
9406 {
9407 struct remote_state *rs = get_remote_state ();
9408 char *p = rs->buf;
9409 char *endp = rs->buf + get_remote_packet_size ();
9410 enum packet_result result;
9411
9412 strcpy (p, "qGetTLSAddr:");
9413 p += strlen (p);
9414 p = write_ptid (p, endp, ptid);
9415 *p++ = ',';
9416 p += hexnumstr (p, offset);
9417 *p++ = ',';
9418 p += hexnumstr (p, lm);
9419 *p++ = '\0';
9420
9421 putpkt (rs->buf);
9422 getpkt (&rs->buf, &rs->buf_size, 0);
9423 result = packet_ok (rs->buf,
9424 &remote_protocol_packets[PACKET_qGetTLSAddr]);
9425 if (result == PACKET_OK)
9426 {
9427 ULONGEST result;
9428
9429 unpack_varlen_hex (rs->buf, &result);
9430 return result;
9431 }
9432 else if (result == PACKET_UNKNOWN)
9433 throw_error (TLS_GENERIC_ERROR,
9434 _("Remote target doesn't support qGetTLSAddr packet"));
9435 else
9436 throw_error (TLS_GENERIC_ERROR,
9437 _("Remote target failed to process qGetTLSAddr request"));
9438 }
9439 else
9440 throw_error (TLS_GENERIC_ERROR,
9441 _("TLS not supported or disabled on this target"));
9442 /* Not reached. */
9443 return 0;
9444 }
9445
9446 /* Provide thread local base, i.e. Thread Information Block address.
9447 Returns 1 if ptid is found and thread_local_base is non zero. */
9448
9449 static int
9450 remote_get_tib_address (ptid_t ptid, CORE_ADDR *addr)
9451 {
9452 if (remote_protocol_packets[PACKET_qGetTIBAddr].support != PACKET_DISABLE)
9453 {
9454 struct remote_state *rs = get_remote_state ();
9455 char *p = rs->buf;
9456 char *endp = rs->buf + get_remote_packet_size ();
9457 enum packet_result result;
9458
9459 strcpy (p, "qGetTIBAddr:");
9460 p += strlen (p);
9461 p = write_ptid (p, endp, ptid);
9462 *p++ = '\0';
9463
9464 putpkt (rs->buf);
9465 getpkt (&rs->buf, &rs->buf_size, 0);
9466 result = packet_ok (rs->buf,
9467 &remote_protocol_packets[PACKET_qGetTIBAddr]);
9468 if (result == PACKET_OK)
9469 {
9470 ULONGEST result;
9471
9472 unpack_varlen_hex (rs->buf, &result);
9473 if (addr)
9474 *addr = (CORE_ADDR) result;
9475 return 1;
9476 }
9477 else if (result == PACKET_UNKNOWN)
9478 error (_("Remote target doesn't support qGetTIBAddr packet"));
9479 else
9480 error (_("Remote target failed to process qGetTIBAddr request"));
9481 }
9482 else
9483 error (_("qGetTIBAddr not supported or disabled on this target"));
9484 /* Not reached. */
9485 return 0;
9486 }
9487
9488 /* Support for inferring a target description based on the current
9489 architecture and the size of a 'g' packet. While the 'g' packet
9490 can have any size (since optional registers can be left off the
9491 end), some sizes are easily recognizable given knowledge of the
9492 approximate architecture. */
9493
9494 struct remote_g_packet_guess
9495 {
9496 int bytes;
9497 const struct target_desc *tdesc;
9498 };
9499 typedef struct remote_g_packet_guess remote_g_packet_guess_s;
9500 DEF_VEC_O(remote_g_packet_guess_s);
9501
9502 struct remote_g_packet_data
9503 {
9504 VEC(remote_g_packet_guess_s) *guesses;
9505 };
9506
9507 static struct gdbarch_data *remote_g_packet_data_handle;
9508
9509 static void *
9510 remote_g_packet_data_init (struct obstack *obstack)
9511 {
9512 return OBSTACK_ZALLOC (obstack, struct remote_g_packet_data);
9513 }
9514
9515 void
9516 register_remote_g_packet_guess (struct gdbarch *gdbarch, int bytes,
9517 const struct target_desc *tdesc)
9518 {
9519 struct remote_g_packet_data *data
9520 = gdbarch_data (gdbarch, remote_g_packet_data_handle);
9521 struct remote_g_packet_guess new_guess, *guess;
9522 int ix;
9523
9524 gdb_assert (tdesc != NULL);
9525
9526 for (ix = 0;
9527 VEC_iterate (remote_g_packet_guess_s, data->guesses, ix, guess);
9528 ix++)
9529 if (guess->bytes == bytes)
9530 internal_error (__FILE__, __LINE__,
9531 _("Duplicate g packet description added for size %d"),
9532 bytes);
9533
9534 new_guess.bytes = bytes;
9535 new_guess.tdesc = tdesc;
9536 VEC_safe_push (remote_g_packet_guess_s, data->guesses, &new_guess);
9537 }
9538
9539 /* Return 1 if remote_read_description would do anything on this target
9540 and architecture, 0 otherwise. */
9541
9542 static int
9543 remote_read_description_p (struct target_ops *target)
9544 {
9545 struct remote_g_packet_data *data
9546 = gdbarch_data (target_gdbarch (), remote_g_packet_data_handle);
9547
9548 if (!VEC_empty (remote_g_packet_guess_s, data->guesses))
9549 return 1;
9550
9551 return 0;
9552 }
9553
9554 static const struct target_desc *
9555 remote_read_description (struct target_ops *target)
9556 {
9557 struct remote_g_packet_data *data
9558 = gdbarch_data (target_gdbarch (), remote_g_packet_data_handle);
9559
9560 /* Do not try this during initial connection, when we do not know
9561 whether there is a running but stopped thread. */
9562 if (!target_has_execution || ptid_equal (inferior_ptid, null_ptid))
9563 return NULL;
9564
9565 if (!VEC_empty (remote_g_packet_guess_s, data->guesses))
9566 {
9567 struct remote_g_packet_guess *guess;
9568 int ix;
9569 int bytes = send_g_packet ();
9570
9571 for (ix = 0;
9572 VEC_iterate (remote_g_packet_guess_s, data->guesses, ix, guess);
9573 ix++)
9574 if (guess->bytes == bytes)
9575 return guess->tdesc;
9576
9577 /* We discard the g packet. A minor optimization would be to
9578 hold on to it, and fill the register cache once we have selected
9579 an architecture, but it's too tricky to do safely. */
9580 }
9581
9582 return NULL;
9583 }
9584
9585 /* Remote file transfer support. This is host-initiated I/O, not
9586 target-initiated; for target-initiated, see remote-fileio.c. */
9587
9588 /* If *LEFT is at least the length of STRING, copy STRING to
9589 *BUFFER, update *BUFFER to point to the new end of the buffer, and
9590 decrease *LEFT. Otherwise raise an error. */
9591
9592 static void
9593 remote_buffer_add_string (char **buffer, int *left, char *string)
9594 {
9595 int len = strlen (string);
9596
9597 if (len > *left)
9598 error (_("Packet too long for target."));
9599
9600 memcpy (*buffer, string, len);
9601 *buffer += len;
9602 *left -= len;
9603
9604 /* NUL-terminate the buffer as a convenience, if there is
9605 room. */
9606 if (*left)
9607 **buffer = '\0';
9608 }
9609
9610 /* If *LEFT is large enough, hex encode LEN bytes from BYTES into
9611 *BUFFER, update *BUFFER to point to the new end of the buffer, and
9612 decrease *LEFT. Otherwise raise an error. */
9613
9614 static void
9615 remote_buffer_add_bytes (char **buffer, int *left, const gdb_byte *bytes,
9616 int len)
9617 {
9618 if (2 * len > *left)
9619 error (_("Packet too long for target."));
9620
9621 bin2hex (bytes, *buffer, len);
9622 *buffer += 2 * len;
9623 *left -= 2 * len;
9624
9625 /* NUL-terminate the buffer as a convenience, if there is
9626 room. */
9627 if (*left)
9628 **buffer = '\0';
9629 }
9630
9631 /* If *LEFT is large enough, convert VALUE to hex and add it to
9632 *BUFFER, update *BUFFER to point to the new end of the buffer, and
9633 decrease *LEFT. Otherwise raise an error. */
9634
9635 static void
9636 remote_buffer_add_int (char **buffer, int *left, ULONGEST value)
9637 {
9638 int len = hexnumlen (value);
9639
9640 if (len > *left)
9641 error (_("Packet too long for target."));
9642
9643 hexnumstr (*buffer, value);
9644 *buffer += len;
9645 *left -= len;
9646
9647 /* NUL-terminate the buffer as a convenience, if there is
9648 room. */
9649 if (*left)
9650 **buffer = '\0';
9651 }
9652
9653 /* Parse an I/O result packet from BUFFER. Set RETCODE to the return
9654 value, *REMOTE_ERRNO to the remote error number or zero if none
9655 was included, and *ATTACHMENT to point to the start of the annex
9656 if any. The length of the packet isn't needed here; there may
9657 be NUL bytes in BUFFER, but they will be after *ATTACHMENT.
9658
9659 Return 0 if the packet could be parsed, -1 if it could not. If
9660 -1 is returned, the other variables may not be initialized. */
9661
9662 static int
9663 remote_hostio_parse_result (char *buffer, int *retcode,
9664 int *remote_errno, char **attachment)
9665 {
9666 char *p, *p2;
9667
9668 *remote_errno = 0;
9669 *attachment = NULL;
9670
9671 if (buffer[0] != 'F')
9672 return -1;
9673
9674 errno = 0;
9675 *retcode = strtol (&buffer[1], &p, 16);
9676 if (errno != 0 || p == &buffer[1])
9677 return -1;
9678
9679 /* Check for ",errno". */
9680 if (*p == ',')
9681 {
9682 errno = 0;
9683 *remote_errno = strtol (p + 1, &p2, 16);
9684 if (errno != 0 || p + 1 == p2)
9685 return -1;
9686 p = p2;
9687 }
9688
9689 /* Check for ";attachment". If there is no attachment, the
9690 packet should end here. */
9691 if (*p == ';')
9692 {
9693 *attachment = p + 1;
9694 return 0;
9695 }
9696 else if (*p == '\0')
9697 return 0;
9698 else
9699 return -1;
9700 }
9701
9702 /* Send a prepared I/O packet to the target and read its response.
9703 The prepared packet is in the global RS->BUF before this function
9704 is called, and the answer is there when we return.
9705
9706 COMMAND_BYTES is the length of the request to send, which may include
9707 binary data. WHICH_PACKET is the packet configuration to check
9708 before attempting a packet. If an error occurs, *REMOTE_ERRNO
9709 is set to the error number and -1 is returned. Otherwise the value
9710 returned by the function is returned.
9711
9712 ATTACHMENT and ATTACHMENT_LEN should be non-NULL if and only if an
9713 attachment is expected; an error will be reported if there's a
9714 mismatch. If one is found, *ATTACHMENT will be set to point into
9715 the packet buffer and *ATTACHMENT_LEN will be set to the
9716 attachment's length. */
9717
9718 static int
9719 remote_hostio_send_command (int command_bytes, int which_packet,
9720 int *remote_errno, char **attachment,
9721 int *attachment_len)
9722 {
9723 struct remote_state *rs = get_remote_state ();
9724 int ret, bytes_read;
9725 char *attachment_tmp;
9726
9727 if (!rs->remote_desc
9728 || remote_protocol_packets[which_packet].support == PACKET_DISABLE)
9729 {
9730 *remote_errno = FILEIO_ENOSYS;
9731 return -1;
9732 }
9733
9734 putpkt_binary (rs->buf, command_bytes);
9735 bytes_read = getpkt_sane (&rs->buf, &rs->buf_size, 0);
9736
9737 /* If it timed out, something is wrong. Don't try to parse the
9738 buffer. */
9739 if (bytes_read < 0)
9740 {
9741 *remote_errno = FILEIO_EINVAL;
9742 return -1;
9743 }
9744
9745 switch (packet_ok (rs->buf, &remote_protocol_packets[which_packet]))
9746 {
9747 case PACKET_ERROR:
9748 *remote_errno = FILEIO_EINVAL;
9749 return -1;
9750 case PACKET_UNKNOWN:
9751 *remote_errno = FILEIO_ENOSYS;
9752 return -1;
9753 case PACKET_OK:
9754 break;
9755 }
9756
9757 if (remote_hostio_parse_result (rs->buf, &ret, remote_errno,
9758 &attachment_tmp))
9759 {
9760 *remote_errno = FILEIO_EINVAL;
9761 return -1;
9762 }
9763
9764 /* Make sure we saw an attachment if and only if we expected one. */
9765 if ((attachment_tmp == NULL && attachment != NULL)
9766 || (attachment_tmp != NULL && attachment == NULL))
9767 {
9768 *remote_errno = FILEIO_EINVAL;
9769 return -1;
9770 }
9771
9772 /* If an attachment was found, it must point into the packet buffer;
9773 work out how many bytes there were. */
9774 if (attachment_tmp != NULL)
9775 {
9776 *attachment = attachment_tmp;
9777 *attachment_len = bytes_read - (*attachment - rs->buf);
9778 }
9779
9780 return ret;
9781 }
9782
9783 /* Open FILENAME on the remote target, using FLAGS and MODE. Return a
9784 remote file descriptor, or -1 if an error occurs (and set
9785 *REMOTE_ERRNO). */
9786
9787 static int
9788 remote_hostio_open (const char *filename, int flags, int mode,
9789 int *remote_errno)
9790 {
9791 struct remote_state *rs = get_remote_state ();
9792 char *p = rs->buf;
9793 int left = get_remote_packet_size () - 1;
9794
9795 remote_buffer_add_string (&p, &left, "vFile:open:");
9796
9797 remote_buffer_add_bytes (&p, &left, (const gdb_byte *) filename,
9798 strlen (filename));
9799 remote_buffer_add_string (&p, &left, ",");
9800
9801 remote_buffer_add_int (&p, &left, flags);
9802 remote_buffer_add_string (&p, &left, ",");
9803
9804 remote_buffer_add_int (&p, &left, mode);
9805
9806 return remote_hostio_send_command (p - rs->buf, PACKET_vFile_open,
9807 remote_errno, NULL, NULL);
9808 }
9809
9810 /* Write up to LEN bytes from WRITE_BUF to FD on the remote target.
9811 Return the number of bytes written, or -1 if an error occurs (and
9812 set *REMOTE_ERRNO). */
9813
9814 static int
9815 remote_hostio_pwrite (int fd, const gdb_byte *write_buf, int len,
9816 ULONGEST offset, int *remote_errno)
9817 {
9818 struct remote_state *rs = get_remote_state ();
9819 char *p = rs->buf;
9820 int left = get_remote_packet_size ();
9821 int out_len;
9822
9823 remote_buffer_add_string (&p, &left, "vFile:pwrite:");
9824
9825 remote_buffer_add_int (&p, &left, fd);
9826 remote_buffer_add_string (&p, &left, ",");
9827
9828 remote_buffer_add_int (&p, &left, offset);
9829 remote_buffer_add_string (&p, &left, ",");
9830
9831 p += remote_escape_output (write_buf, len, (gdb_byte *) p, &out_len,
9832 get_remote_packet_size () - (p - rs->buf));
9833
9834 return remote_hostio_send_command (p - rs->buf, PACKET_vFile_pwrite,
9835 remote_errno, NULL, NULL);
9836 }
9837
9838 /* Read up to LEN bytes FD on the remote target into READ_BUF
9839 Return the number of bytes read, or -1 if an error occurs (and
9840 set *REMOTE_ERRNO). */
9841
9842 static int
9843 remote_hostio_pread (int fd, gdb_byte *read_buf, int len,
9844 ULONGEST offset, int *remote_errno)
9845 {
9846 struct remote_state *rs = get_remote_state ();
9847 char *p = rs->buf;
9848 char *attachment;
9849 int left = get_remote_packet_size ();
9850 int ret, attachment_len;
9851 int read_len;
9852
9853 remote_buffer_add_string (&p, &left, "vFile:pread:");
9854
9855 remote_buffer_add_int (&p, &left, fd);
9856 remote_buffer_add_string (&p, &left, ",");
9857
9858 remote_buffer_add_int (&p, &left, len);
9859 remote_buffer_add_string (&p, &left, ",");
9860
9861 remote_buffer_add_int (&p, &left, offset);
9862
9863 ret = remote_hostio_send_command (p - rs->buf, PACKET_vFile_pread,
9864 remote_errno, &attachment,
9865 &attachment_len);
9866
9867 if (ret < 0)
9868 return ret;
9869
9870 read_len = remote_unescape_input ((gdb_byte *) attachment, attachment_len,
9871 read_buf, len);
9872 if (read_len != ret)
9873 error (_("Read returned %d, but %d bytes."), ret, (int) read_len);
9874
9875 return ret;
9876 }
9877
9878 /* Close FD on the remote target. Return 0, or -1 if an error occurs
9879 (and set *REMOTE_ERRNO). */
9880
9881 static int
9882 remote_hostio_close (int fd, int *remote_errno)
9883 {
9884 struct remote_state *rs = get_remote_state ();
9885 char *p = rs->buf;
9886 int left = get_remote_packet_size () - 1;
9887
9888 remote_buffer_add_string (&p, &left, "vFile:close:");
9889
9890 remote_buffer_add_int (&p, &left, fd);
9891
9892 return remote_hostio_send_command (p - rs->buf, PACKET_vFile_close,
9893 remote_errno, NULL, NULL);
9894 }
9895
9896 /* Unlink FILENAME on the remote target. Return 0, or -1 if an error
9897 occurs (and set *REMOTE_ERRNO). */
9898
9899 static int
9900 remote_hostio_unlink (const char *filename, int *remote_errno)
9901 {
9902 struct remote_state *rs = get_remote_state ();
9903 char *p = rs->buf;
9904 int left = get_remote_packet_size () - 1;
9905
9906 remote_buffer_add_string (&p, &left, "vFile:unlink:");
9907
9908 remote_buffer_add_bytes (&p, &left, (const gdb_byte *) filename,
9909 strlen (filename));
9910
9911 return remote_hostio_send_command (p - rs->buf, PACKET_vFile_unlink,
9912 remote_errno, NULL, NULL);
9913 }
9914
9915 /* Read value of symbolic link FILENAME on the remote target. Return
9916 a null-terminated string allocated via xmalloc, or NULL if an error
9917 occurs (and set *REMOTE_ERRNO). */
9918
9919 static char *
9920 remote_hostio_readlink (const char *filename, int *remote_errno)
9921 {
9922 struct remote_state *rs = get_remote_state ();
9923 char *p = rs->buf;
9924 char *attachment;
9925 int left = get_remote_packet_size ();
9926 int len, attachment_len;
9927 int read_len;
9928 char *ret;
9929
9930 remote_buffer_add_string (&p, &left, "vFile:readlink:");
9931
9932 remote_buffer_add_bytes (&p, &left, (const gdb_byte *) filename,
9933 strlen (filename));
9934
9935 len = remote_hostio_send_command (p - rs->buf, PACKET_vFile_readlink,
9936 remote_errno, &attachment,
9937 &attachment_len);
9938
9939 if (len < 0)
9940 return NULL;
9941
9942 ret = xmalloc (len + 1);
9943
9944 read_len = remote_unescape_input ((gdb_byte *) attachment, attachment_len,
9945 (gdb_byte *) ret, len);
9946 if (read_len != len)
9947 error (_("Readlink returned %d, but %d bytes."), len, read_len);
9948
9949 ret[len] = '\0';
9950 return ret;
9951 }
9952
9953 static int
9954 remote_fileio_errno_to_host (int errnum)
9955 {
9956 switch (errnum)
9957 {
9958 case FILEIO_EPERM:
9959 return EPERM;
9960 case FILEIO_ENOENT:
9961 return ENOENT;
9962 case FILEIO_EINTR:
9963 return EINTR;
9964 case FILEIO_EIO:
9965 return EIO;
9966 case FILEIO_EBADF:
9967 return EBADF;
9968 case FILEIO_EACCES:
9969 return EACCES;
9970 case FILEIO_EFAULT:
9971 return EFAULT;
9972 case FILEIO_EBUSY:
9973 return EBUSY;
9974 case FILEIO_EEXIST:
9975 return EEXIST;
9976 case FILEIO_ENODEV:
9977 return ENODEV;
9978 case FILEIO_ENOTDIR:
9979 return ENOTDIR;
9980 case FILEIO_EISDIR:
9981 return EISDIR;
9982 case FILEIO_EINVAL:
9983 return EINVAL;
9984 case FILEIO_ENFILE:
9985 return ENFILE;
9986 case FILEIO_EMFILE:
9987 return EMFILE;
9988 case FILEIO_EFBIG:
9989 return EFBIG;
9990 case FILEIO_ENOSPC:
9991 return ENOSPC;
9992 case FILEIO_ESPIPE:
9993 return ESPIPE;
9994 case FILEIO_EROFS:
9995 return EROFS;
9996 case FILEIO_ENOSYS:
9997 return ENOSYS;
9998 case FILEIO_ENAMETOOLONG:
9999 return ENAMETOOLONG;
10000 }
10001 return -1;
10002 }
10003
10004 static char *
10005 remote_hostio_error (int errnum)
10006 {
10007 int host_error = remote_fileio_errno_to_host (errnum);
10008
10009 if (host_error == -1)
10010 error (_("Unknown remote I/O error %d"), errnum);
10011 else
10012 error (_("Remote I/O error: %s"), safe_strerror (host_error));
10013 }
10014
10015 static void
10016 remote_hostio_close_cleanup (void *opaque)
10017 {
10018 int fd = *(int *) opaque;
10019 int remote_errno;
10020
10021 remote_hostio_close (fd, &remote_errno);
10022 }
10023
10024
10025 static void *
10026 remote_bfd_iovec_open (struct bfd *abfd, void *open_closure)
10027 {
10028 const char *filename = bfd_get_filename (abfd);
10029 int fd, remote_errno;
10030 int *stream;
10031
10032 gdb_assert (remote_filename_p (filename));
10033
10034 fd = remote_hostio_open (filename + 7, FILEIO_O_RDONLY, 0, &remote_errno);
10035 if (fd == -1)
10036 {
10037 errno = remote_fileio_errno_to_host (remote_errno);
10038 bfd_set_error (bfd_error_system_call);
10039 return NULL;
10040 }
10041
10042 stream = xmalloc (sizeof (int));
10043 *stream = fd;
10044 return stream;
10045 }
10046
10047 static int
10048 remote_bfd_iovec_close (struct bfd *abfd, void *stream)
10049 {
10050 int fd = *(int *)stream;
10051 int remote_errno;
10052
10053 xfree (stream);
10054
10055 /* Ignore errors on close; these may happen if the remote
10056 connection was already torn down. */
10057 remote_hostio_close (fd, &remote_errno);
10058
10059 /* Zero means success. */
10060 return 0;
10061 }
10062
10063 static file_ptr
10064 remote_bfd_iovec_pread (struct bfd *abfd, void *stream, void *buf,
10065 file_ptr nbytes, file_ptr offset)
10066 {
10067 int fd = *(int *)stream;
10068 int remote_errno;
10069 file_ptr pos, bytes;
10070
10071 pos = 0;
10072 while (nbytes > pos)
10073 {
10074 bytes = remote_hostio_pread (fd, (gdb_byte *) buf + pos, nbytes - pos,
10075 offset + pos, &remote_errno);
10076 if (bytes == 0)
10077 /* Success, but no bytes, means end-of-file. */
10078 break;
10079 if (bytes == -1)
10080 {
10081 errno = remote_fileio_errno_to_host (remote_errno);
10082 bfd_set_error (bfd_error_system_call);
10083 return -1;
10084 }
10085
10086 pos += bytes;
10087 }
10088
10089 return pos;
10090 }
10091
10092 static int
10093 remote_bfd_iovec_stat (struct bfd *abfd, void *stream, struct stat *sb)
10094 {
10095 /* FIXME: We should probably implement remote_hostio_stat. */
10096 sb->st_size = INT_MAX;
10097 return 0;
10098 }
10099
10100 int
10101 remote_filename_p (const char *filename)
10102 {
10103 return strncmp (filename,
10104 REMOTE_SYSROOT_PREFIX,
10105 sizeof (REMOTE_SYSROOT_PREFIX) - 1) == 0;
10106 }
10107
10108 bfd *
10109 remote_bfd_open (const char *remote_file, const char *target)
10110 {
10111 bfd *abfd = gdb_bfd_openr_iovec (remote_file, target,
10112 remote_bfd_iovec_open, NULL,
10113 remote_bfd_iovec_pread,
10114 remote_bfd_iovec_close,
10115 remote_bfd_iovec_stat);
10116
10117 return abfd;
10118 }
10119
10120 void
10121 remote_file_put (const char *local_file, const char *remote_file, int from_tty)
10122 {
10123 struct cleanup *back_to, *close_cleanup;
10124 int retcode, fd, remote_errno, bytes, io_size;
10125 FILE *file;
10126 gdb_byte *buffer;
10127 int bytes_in_buffer;
10128 int saw_eof;
10129 ULONGEST offset;
10130 struct remote_state *rs = get_remote_state ();
10131
10132 if (!rs->remote_desc)
10133 error (_("command can only be used with remote target"));
10134
10135 file = gdb_fopen_cloexec (local_file, "rb");
10136 if (file == NULL)
10137 perror_with_name (local_file);
10138 back_to = make_cleanup_fclose (file);
10139
10140 fd = remote_hostio_open (remote_file, (FILEIO_O_WRONLY | FILEIO_O_CREAT
10141 | FILEIO_O_TRUNC),
10142 0700, &remote_errno);
10143 if (fd == -1)
10144 remote_hostio_error (remote_errno);
10145
10146 /* Send up to this many bytes at once. They won't all fit in the
10147 remote packet limit, so we'll transfer slightly fewer. */
10148 io_size = get_remote_packet_size ();
10149 buffer = xmalloc (io_size);
10150 make_cleanup (xfree, buffer);
10151
10152 close_cleanup = make_cleanup (remote_hostio_close_cleanup, &fd);
10153
10154 bytes_in_buffer = 0;
10155 saw_eof = 0;
10156 offset = 0;
10157 while (bytes_in_buffer || !saw_eof)
10158 {
10159 if (!saw_eof)
10160 {
10161 bytes = fread (buffer + bytes_in_buffer, 1,
10162 io_size - bytes_in_buffer,
10163 file);
10164 if (bytes == 0)
10165 {
10166 if (ferror (file))
10167 error (_("Error reading %s."), local_file);
10168 else
10169 {
10170 /* EOF. Unless there is something still in the
10171 buffer from the last iteration, we are done. */
10172 saw_eof = 1;
10173 if (bytes_in_buffer == 0)
10174 break;
10175 }
10176 }
10177 }
10178 else
10179 bytes = 0;
10180
10181 bytes += bytes_in_buffer;
10182 bytes_in_buffer = 0;
10183
10184 retcode = remote_hostio_pwrite (fd, buffer, bytes,
10185 offset, &remote_errno);
10186
10187 if (retcode < 0)
10188 remote_hostio_error (remote_errno);
10189 else if (retcode == 0)
10190 error (_("Remote write of %d bytes returned 0!"), bytes);
10191 else if (retcode < bytes)
10192 {
10193 /* Short write. Save the rest of the read data for the next
10194 write. */
10195 bytes_in_buffer = bytes - retcode;
10196 memmove (buffer, buffer + retcode, bytes_in_buffer);
10197 }
10198
10199 offset += retcode;
10200 }
10201
10202 discard_cleanups (close_cleanup);
10203 if (remote_hostio_close (fd, &remote_errno))
10204 remote_hostio_error (remote_errno);
10205
10206 if (from_tty)
10207 printf_filtered (_("Successfully sent file \"%s\".\n"), local_file);
10208 do_cleanups (back_to);
10209 }
10210
10211 void
10212 remote_file_get (const char *remote_file, const char *local_file, int from_tty)
10213 {
10214 struct cleanup *back_to, *close_cleanup;
10215 int fd, remote_errno, bytes, io_size;
10216 FILE *file;
10217 gdb_byte *buffer;
10218 ULONGEST offset;
10219 struct remote_state *rs = get_remote_state ();
10220
10221 if (!rs->remote_desc)
10222 error (_("command can only be used with remote target"));
10223
10224 fd = remote_hostio_open (remote_file, FILEIO_O_RDONLY, 0, &remote_errno);
10225 if (fd == -1)
10226 remote_hostio_error (remote_errno);
10227
10228 file = gdb_fopen_cloexec (local_file, "wb");
10229 if (file == NULL)
10230 perror_with_name (local_file);
10231 back_to = make_cleanup_fclose (file);
10232
10233 /* Send up to this many bytes at once. They won't all fit in the
10234 remote packet limit, so we'll transfer slightly fewer. */
10235 io_size = get_remote_packet_size ();
10236 buffer = xmalloc (io_size);
10237 make_cleanup (xfree, buffer);
10238
10239 close_cleanup = make_cleanup (remote_hostio_close_cleanup, &fd);
10240
10241 offset = 0;
10242 while (1)
10243 {
10244 bytes = remote_hostio_pread (fd, buffer, io_size, offset, &remote_errno);
10245 if (bytes == 0)
10246 /* Success, but no bytes, means end-of-file. */
10247 break;
10248 if (bytes == -1)
10249 remote_hostio_error (remote_errno);
10250
10251 offset += bytes;
10252
10253 bytes = fwrite (buffer, 1, bytes, file);
10254 if (bytes == 0)
10255 perror_with_name (local_file);
10256 }
10257
10258 discard_cleanups (close_cleanup);
10259 if (remote_hostio_close (fd, &remote_errno))
10260 remote_hostio_error (remote_errno);
10261
10262 if (from_tty)
10263 printf_filtered (_("Successfully fetched file \"%s\".\n"), remote_file);
10264 do_cleanups (back_to);
10265 }
10266
10267 void
10268 remote_file_delete (const char *remote_file, int from_tty)
10269 {
10270 int retcode, remote_errno;
10271 struct remote_state *rs = get_remote_state ();
10272
10273 if (!rs->remote_desc)
10274 error (_("command can only be used with remote target"));
10275
10276 retcode = remote_hostio_unlink (remote_file, &remote_errno);
10277 if (retcode == -1)
10278 remote_hostio_error (remote_errno);
10279
10280 if (from_tty)
10281 printf_filtered (_("Successfully deleted file \"%s\".\n"), remote_file);
10282 }
10283
10284 static void
10285 remote_put_command (char *args, int from_tty)
10286 {
10287 struct cleanup *back_to;
10288 char **argv;
10289
10290 if (args == NULL)
10291 error_no_arg (_("file to put"));
10292
10293 argv = gdb_buildargv (args);
10294 back_to = make_cleanup_freeargv (argv);
10295 if (argv[0] == NULL || argv[1] == NULL || argv[2] != NULL)
10296 error (_("Invalid parameters to remote put"));
10297
10298 remote_file_put (argv[0], argv[1], from_tty);
10299
10300 do_cleanups (back_to);
10301 }
10302
10303 static void
10304 remote_get_command (char *args, int from_tty)
10305 {
10306 struct cleanup *back_to;
10307 char **argv;
10308
10309 if (args == NULL)
10310 error_no_arg (_("file to get"));
10311
10312 argv = gdb_buildargv (args);
10313 back_to = make_cleanup_freeargv (argv);
10314 if (argv[0] == NULL || argv[1] == NULL || argv[2] != NULL)
10315 error (_("Invalid parameters to remote get"));
10316
10317 remote_file_get (argv[0], argv[1], from_tty);
10318
10319 do_cleanups (back_to);
10320 }
10321
10322 static void
10323 remote_delete_command (char *args, int from_tty)
10324 {
10325 struct cleanup *back_to;
10326 char **argv;
10327
10328 if (args == NULL)
10329 error_no_arg (_("file to delete"));
10330
10331 argv = gdb_buildargv (args);
10332 back_to = make_cleanup_freeargv (argv);
10333 if (argv[0] == NULL || argv[1] != NULL)
10334 error (_("Invalid parameters to remote delete"));
10335
10336 remote_file_delete (argv[0], from_tty);
10337
10338 do_cleanups (back_to);
10339 }
10340
10341 static void
10342 remote_command (char *args, int from_tty)
10343 {
10344 help_list (remote_cmdlist, "remote ", -1, gdb_stdout);
10345 }
10346
10347 static int
10348 remote_can_execute_reverse (void)
10349 {
10350 if (remote_protocol_packets[PACKET_bs].support == PACKET_ENABLE
10351 || remote_protocol_packets[PACKET_bc].support == PACKET_ENABLE)
10352 return 1;
10353 else
10354 return 0;
10355 }
10356
10357 static int
10358 remote_supports_non_stop (void)
10359 {
10360 return 1;
10361 }
10362
10363 static int
10364 remote_supports_disable_randomization (void)
10365 {
10366 /* Only supported in extended mode. */
10367 return 0;
10368 }
10369
10370 static int
10371 remote_supports_multi_process (void)
10372 {
10373 struct remote_state *rs = get_remote_state ();
10374
10375 /* Only extended-remote handles being attached to multiple
10376 processes, even though plain remote can use the multi-process
10377 thread id extensions, so that GDB knows the target process's
10378 PID. */
10379 return rs->extended && remote_multi_process_p (rs);
10380 }
10381
10382 static int
10383 remote_supports_cond_tracepoints (void)
10384 {
10385 struct remote_state *rs = get_remote_state ();
10386
10387 return rs->cond_tracepoints;
10388 }
10389
10390 static int
10391 remote_supports_cond_breakpoints (void)
10392 {
10393 struct remote_state *rs = get_remote_state ();
10394
10395 return rs->cond_breakpoints;
10396 }
10397
10398 static int
10399 remote_supports_fast_tracepoints (void)
10400 {
10401 struct remote_state *rs = get_remote_state ();
10402
10403 return rs->fast_tracepoints;
10404 }
10405
10406 static int
10407 remote_supports_static_tracepoints (void)
10408 {
10409 struct remote_state *rs = get_remote_state ();
10410
10411 return rs->static_tracepoints;
10412 }
10413
10414 static int
10415 remote_supports_install_in_trace (void)
10416 {
10417 struct remote_state *rs = get_remote_state ();
10418
10419 return rs->install_in_trace;
10420 }
10421
10422 static int
10423 remote_supports_enable_disable_tracepoint (void)
10424 {
10425 struct remote_state *rs = get_remote_state ();
10426
10427 return rs->enable_disable_tracepoints;
10428 }
10429
10430 static int
10431 remote_supports_string_tracing (void)
10432 {
10433 struct remote_state *rs = get_remote_state ();
10434
10435 return rs->string_tracing;
10436 }
10437
10438 static int
10439 remote_can_run_breakpoint_commands (void)
10440 {
10441 struct remote_state *rs = get_remote_state ();
10442
10443 return rs->breakpoint_commands;
10444 }
10445
10446 static void
10447 remote_trace_init (void)
10448 {
10449 putpkt ("QTinit");
10450 remote_get_noisy_reply (&target_buf, &target_buf_size);
10451 if (strcmp (target_buf, "OK") != 0)
10452 error (_("Target does not support this command."));
10453 }
10454
10455 static void free_actions_list (char **actions_list);
10456 static void free_actions_list_cleanup_wrapper (void *);
10457 static void
10458 free_actions_list_cleanup_wrapper (void *al)
10459 {
10460 free_actions_list (al);
10461 }
10462
10463 static void
10464 free_actions_list (char **actions_list)
10465 {
10466 int ndx;
10467
10468 if (actions_list == 0)
10469 return;
10470
10471 for (ndx = 0; actions_list[ndx]; ndx++)
10472 xfree (actions_list[ndx]);
10473
10474 xfree (actions_list);
10475 }
10476
10477 /* Recursive routine to walk through command list including loops, and
10478 download packets for each command. */
10479
10480 static void
10481 remote_download_command_source (int num, ULONGEST addr,
10482 struct command_line *cmds)
10483 {
10484 struct remote_state *rs = get_remote_state ();
10485 struct command_line *cmd;
10486
10487 for (cmd = cmds; cmd; cmd = cmd->next)
10488 {
10489 QUIT; /* Allow user to bail out with ^C. */
10490 strcpy (rs->buf, "QTDPsrc:");
10491 encode_source_string (num, addr, "cmd", cmd->line,
10492 rs->buf + strlen (rs->buf),
10493 rs->buf_size - strlen (rs->buf));
10494 putpkt (rs->buf);
10495 remote_get_noisy_reply (&target_buf, &target_buf_size);
10496 if (strcmp (target_buf, "OK"))
10497 warning (_("Target does not support source download."));
10498
10499 if (cmd->control_type == while_control
10500 || cmd->control_type == while_stepping_control)
10501 {
10502 remote_download_command_source (num, addr, *cmd->body_list);
10503
10504 QUIT; /* Allow user to bail out with ^C. */
10505 strcpy (rs->buf, "QTDPsrc:");
10506 encode_source_string (num, addr, "cmd", "end",
10507 rs->buf + strlen (rs->buf),
10508 rs->buf_size - strlen (rs->buf));
10509 putpkt (rs->buf);
10510 remote_get_noisy_reply (&target_buf, &target_buf_size);
10511 if (strcmp (target_buf, "OK"))
10512 warning (_("Target does not support source download."));
10513 }
10514 }
10515 }
10516
10517 static void
10518 remote_download_tracepoint (struct bp_location *loc)
10519 {
10520 #define BUF_SIZE 2048
10521
10522 CORE_ADDR tpaddr;
10523 char addrbuf[40];
10524 char buf[BUF_SIZE];
10525 char **tdp_actions;
10526 char **stepping_actions;
10527 int ndx;
10528 struct cleanup *old_chain = NULL;
10529 struct agent_expr *aexpr;
10530 struct cleanup *aexpr_chain = NULL;
10531 char *pkt;
10532 struct breakpoint *b = loc->owner;
10533 struct tracepoint *t = (struct tracepoint *) b;
10534
10535 encode_actions_rsp (loc, &tdp_actions, &stepping_actions);
10536 old_chain = make_cleanup (free_actions_list_cleanup_wrapper,
10537 tdp_actions);
10538 (void) make_cleanup (free_actions_list_cleanup_wrapper,
10539 stepping_actions);
10540
10541 tpaddr = loc->address;
10542 sprintf_vma (addrbuf, tpaddr);
10543 xsnprintf (buf, BUF_SIZE, "QTDP:%x:%s:%c:%lx:%x", b->number,
10544 addrbuf, /* address */
10545 (b->enable_state == bp_enabled ? 'E' : 'D'),
10546 t->step_count, t->pass_count);
10547 /* Fast tracepoints are mostly handled by the target, but we can
10548 tell the target how big of an instruction block should be moved
10549 around. */
10550 if (b->type == bp_fast_tracepoint)
10551 {
10552 /* Only test for support at download time; we may not know
10553 target capabilities at definition time. */
10554 if (remote_supports_fast_tracepoints ())
10555 {
10556 int isize;
10557
10558 if (gdbarch_fast_tracepoint_valid_at (target_gdbarch (),
10559 tpaddr, &isize, NULL))
10560 xsnprintf (buf + strlen (buf), BUF_SIZE - strlen (buf), ":F%x",
10561 isize);
10562 else
10563 /* If it passed validation at definition but fails now,
10564 something is very wrong. */
10565 internal_error (__FILE__, __LINE__,
10566 _("Fast tracepoint not "
10567 "valid during download"));
10568 }
10569 else
10570 /* Fast tracepoints are functionally identical to regular
10571 tracepoints, so don't take lack of support as a reason to
10572 give up on the trace run. */
10573 warning (_("Target does not support fast tracepoints, "
10574 "downloading %d as regular tracepoint"), b->number);
10575 }
10576 else if (b->type == bp_static_tracepoint)
10577 {
10578 /* Only test for support at download time; we may not know
10579 target capabilities at definition time. */
10580 if (remote_supports_static_tracepoints ())
10581 {
10582 struct static_tracepoint_marker marker;
10583
10584 if (target_static_tracepoint_marker_at (tpaddr, &marker))
10585 strcat (buf, ":S");
10586 else
10587 error (_("Static tracepoint not valid during download"));
10588 }
10589 else
10590 /* Fast tracepoints are functionally identical to regular
10591 tracepoints, so don't take lack of support as a reason
10592 to give up on the trace run. */
10593 error (_("Target does not support static tracepoints"));
10594 }
10595 /* If the tracepoint has a conditional, make it into an agent
10596 expression and append to the definition. */
10597 if (loc->cond)
10598 {
10599 /* Only test support at download time, we may not know target
10600 capabilities at definition time. */
10601 if (remote_supports_cond_tracepoints ())
10602 {
10603 aexpr = gen_eval_for_expr (tpaddr, loc->cond);
10604 aexpr_chain = make_cleanup_free_agent_expr (aexpr);
10605 xsnprintf (buf + strlen (buf), BUF_SIZE - strlen (buf), ":X%x,",
10606 aexpr->len);
10607 pkt = buf + strlen (buf);
10608 for (ndx = 0; ndx < aexpr->len; ++ndx)
10609 pkt = pack_hex_byte (pkt, aexpr->buf[ndx]);
10610 *pkt = '\0';
10611 do_cleanups (aexpr_chain);
10612 }
10613 else
10614 warning (_("Target does not support conditional tracepoints, "
10615 "ignoring tp %d cond"), b->number);
10616 }
10617
10618 if (b->commands || *default_collect)
10619 strcat (buf, "-");
10620 putpkt (buf);
10621 remote_get_noisy_reply (&target_buf, &target_buf_size);
10622 if (strcmp (target_buf, "OK"))
10623 error (_("Target does not support tracepoints."));
10624
10625 /* do_single_steps (t); */
10626 if (tdp_actions)
10627 {
10628 for (ndx = 0; tdp_actions[ndx]; ndx++)
10629 {
10630 QUIT; /* Allow user to bail out with ^C. */
10631 xsnprintf (buf, BUF_SIZE, "QTDP:-%x:%s:%s%c",
10632 b->number, addrbuf, /* address */
10633 tdp_actions[ndx],
10634 ((tdp_actions[ndx + 1] || stepping_actions)
10635 ? '-' : 0));
10636 putpkt (buf);
10637 remote_get_noisy_reply (&target_buf,
10638 &target_buf_size);
10639 if (strcmp (target_buf, "OK"))
10640 error (_("Error on target while setting tracepoints."));
10641 }
10642 }
10643 if (stepping_actions)
10644 {
10645 for (ndx = 0; stepping_actions[ndx]; ndx++)
10646 {
10647 QUIT; /* Allow user to bail out with ^C. */
10648 xsnprintf (buf, BUF_SIZE, "QTDP:-%x:%s:%s%s%s",
10649 b->number, addrbuf, /* address */
10650 ((ndx == 0) ? "S" : ""),
10651 stepping_actions[ndx],
10652 (stepping_actions[ndx + 1] ? "-" : ""));
10653 putpkt (buf);
10654 remote_get_noisy_reply (&target_buf,
10655 &target_buf_size);
10656 if (strcmp (target_buf, "OK"))
10657 error (_("Error on target while setting tracepoints."));
10658 }
10659 }
10660
10661 if (remote_protocol_packets[PACKET_TracepointSource].support
10662 == PACKET_ENABLE)
10663 {
10664 if (b->addr_string)
10665 {
10666 strcpy (buf, "QTDPsrc:");
10667 encode_source_string (b->number, loc->address,
10668 "at", b->addr_string, buf + strlen (buf),
10669 2048 - strlen (buf));
10670
10671 putpkt (buf);
10672 remote_get_noisy_reply (&target_buf, &target_buf_size);
10673 if (strcmp (target_buf, "OK"))
10674 warning (_("Target does not support source download."));
10675 }
10676 if (b->cond_string)
10677 {
10678 strcpy (buf, "QTDPsrc:");
10679 encode_source_string (b->number, loc->address,
10680 "cond", b->cond_string, buf + strlen (buf),
10681 2048 - strlen (buf));
10682 putpkt (buf);
10683 remote_get_noisy_reply (&target_buf, &target_buf_size);
10684 if (strcmp (target_buf, "OK"))
10685 warning (_("Target does not support source download."));
10686 }
10687 remote_download_command_source (b->number, loc->address,
10688 breakpoint_commands (b));
10689 }
10690
10691 do_cleanups (old_chain);
10692 }
10693
10694 static int
10695 remote_can_download_tracepoint (void)
10696 {
10697 struct remote_state *rs = get_remote_state ();
10698 struct trace_status *ts;
10699 int status;
10700
10701 /* Don't try to install tracepoints until we've relocated our
10702 symbols, and fetched and merged the target's tracepoint list with
10703 ours. */
10704 if (rs->starting_up)
10705 return 0;
10706
10707 ts = current_trace_status ();
10708 status = remote_get_trace_status (ts);
10709
10710 if (status == -1 || !ts->running_known || !ts->running)
10711 return 0;
10712
10713 /* If we are in a tracing experiment, but remote stub doesn't support
10714 installing tracepoint in trace, we have to return. */
10715 if (!remote_supports_install_in_trace ())
10716 return 0;
10717
10718 return 1;
10719 }
10720
10721
10722 static void
10723 remote_download_trace_state_variable (struct trace_state_variable *tsv)
10724 {
10725 struct remote_state *rs = get_remote_state ();
10726 char *p;
10727
10728 xsnprintf (rs->buf, get_remote_packet_size (), "QTDV:%x:%s:%x:",
10729 tsv->number, phex ((ULONGEST) tsv->initial_value, 8),
10730 tsv->builtin);
10731 p = rs->buf + strlen (rs->buf);
10732 if ((p - rs->buf) + strlen (tsv->name) * 2 >= get_remote_packet_size ())
10733 error (_("Trace state variable name too long for tsv definition packet"));
10734 p += 2 * bin2hex ((gdb_byte *) (tsv->name), p, 0);
10735 *p++ = '\0';
10736 putpkt (rs->buf);
10737 remote_get_noisy_reply (&target_buf, &target_buf_size);
10738 if (*target_buf == '\0')
10739 error (_("Target does not support this command."));
10740 if (strcmp (target_buf, "OK") != 0)
10741 error (_("Error on target while downloading trace state variable."));
10742 }
10743
10744 static void
10745 remote_enable_tracepoint (struct bp_location *location)
10746 {
10747 struct remote_state *rs = get_remote_state ();
10748 char addr_buf[40];
10749
10750 sprintf_vma (addr_buf, location->address);
10751 xsnprintf (rs->buf, get_remote_packet_size (), "QTEnable:%x:%s",
10752 location->owner->number, addr_buf);
10753 putpkt (rs->buf);
10754 remote_get_noisy_reply (&rs->buf, &rs->buf_size);
10755 if (*rs->buf == '\0')
10756 error (_("Target does not support enabling tracepoints while a trace run is ongoing."));
10757 if (strcmp (rs->buf, "OK") != 0)
10758 error (_("Error on target while enabling tracepoint."));
10759 }
10760
10761 static void
10762 remote_disable_tracepoint (struct bp_location *location)
10763 {
10764 struct remote_state *rs = get_remote_state ();
10765 char addr_buf[40];
10766
10767 sprintf_vma (addr_buf, location->address);
10768 xsnprintf (rs->buf, get_remote_packet_size (), "QTDisable:%x:%s",
10769 location->owner->number, addr_buf);
10770 putpkt (rs->buf);
10771 remote_get_noisy_reply (&rs->buf, &rs->buf_size);
10772 if (*rs->buf == '\0')
10773 error (_("Target does not support disabling tracepoints while a trace run is ongoing."));
10774 if (strcmp (rs->buf, "OK") != 0)
10775 error (_("Error on target while disabling tracepoint."));
10776 }
10777
10778 static void
10779 remote_trace_set_readonly_regions (void)
10780 {
10781 asection *s;
10782 bfd *abfd = NULL;
10783 bfd_size_type size;
10784 bfd_vma vma;
10785 int anysecs = 0;
10786 int offset = 0;
10787
10788 if (!exec_bfd)
10789 return; /* No information to give. */
10790
10791 strcpy (target_buf, "QTro");
10792 offset = strlen (target_buf);
10793 for (s = exec_bfd->sections; s; s = s->next)
10794 {
10795 char tmp1[40], tmp2[40];
10796 int sec_length;
10797
10798 if ((s->flags & SEC_LOAD) == 0 ||
10799 /* (s->flags & SEC_CODE) == 0 || */
10800 (s->flags & SEC_READONLY) == 0)
10801 continue;
10802
10803 anysecs = 1;
10804 vma = bfd_get_section_vma (abfd, s);
10805 size = bfd_get_section_size (s);
10806 sprintf_vma (tmp1, vma);
10807 sprintf_vma (tmp2, vma + size);
10808 sec_length = 1 + strlen (tmp1) + 1 + strlen (tmp2);
10809 if (offset + sec_length + 1 > target_buf_size)
10810 {
10811 if (remote_protocol_packets[PACKET_qXfer_traceframe_info].support
10812 != PACKET_ENABLE)
10813 warning (_("\
10814 Too many sections for read-only sections definition packet."));
10815 break;
10816 }
10817 xsnprintf (target_buf + offset, target_buf_size - offset, ":%s,%s",
10818 tmp1, tmp2);
10819 offset += sec_length;
10820 }
10821 if (anysecs)
10822 {
10823 putpkt (target_buf);
10824 getpkt (&target_buf, &target_buf_size, 0);
10825 }
10826 }
10827
10828 static void
10829 remote_trace_start (void)
10830 {
10831 putpkt ("QTStart");
10832 remote_get_noisy_reply (&target_buf, &target_buf_size);
10833 if (*target_buf == '\0')
10834 error (_("Target does not support this command."));
10835 if (strcmp (target_buf, "OK") != 0)
10836 error (_("Bogus reply from target: %s"), target_buf);
10837 }
10838
10839 static int
10840 remote_get_trace_status (struct trace_status *ts)
10841 {
10842 /* Initialize it just to avoid a GCC false warning. */
10843 char *p = NULL;
10844 /* FIXME we need to get register block size some other way. */
10845 extern int trace_regblock_size;
10846 volatile struct gdb_exception ex;
10847 enum packet_result result;
10848
10849 if (remote_protocol_packets[PACKET_qTStatus].support == PACKET_DISABLE)
10850 return -1;
10851
10852 trace_regblock_size = get_remote_arch_state ()->sizeof_g_packet;
10853
10854 putpkt ("qTStatus");
10855
10856 TRY_CATCH (ex, RETURN_MASK_ERROR)
10857 {
10858 p = remote_get_noisy_reply (&target_buf, &target_buf_size);
10859 }
10860 if (ex.reason < 0)
10861 {
10862 if (ex.error != TARGET_CLOSE_ERROR)
10863 {
10864 exception_fprintf (gdb_stderr, ex, "qTStatus: ");
10865 return -1;
10866 }
10867 throw_exception (ex);
10868 }
10869
10870 result = packet_ok (p, &remote_protocol_packets[PACKET_qTStatus]);
10871
10872 /* If the remote target doesn't do tracing, flag it. */
10873 if (result == PACKET_UNKNOWN)
10874 return -1;
10875
10876 /* We're working with a live target. */
10877 ts->filename = NULL;
10878
10879 if (*p++ != 'T')
10880 error (_("Bogus trace status reply from target: %s"), target_buf);
10881
10882 /* Function 'parse_trace_status' sets default value of each field of
10883 'ts' at first, so we don't have to do it here. */
10884 parse_trace_status (p, ts);
10885
10886 return ts->running;
10887 }
10888
10889 static void
10890 remote_get_tracepoint_status (struct breakpoint *bp,
10891 struct uploaded_tp *utp)
10892 {
10893 struct remote_state *rs = get_remote_state ();
10894 char *reply;
10895 struct bp_location *loc;
10896 struct tracepoint *tp = (struct tracepoint *) bp;
10897 size_t size = get_remote_packet_size ();
10898
10899 if (tp)
10900 {
10901 tp->base.hit_count = 0;
10902 tp->traceframe_usage = 0;
10903 for (loc = tp->base.loc; loc; loc = loc->next)
10904 {
10905 /* If the tracepoint was never downloaded, don't go asking for
10906 any status. */
10907 if (tp->number_on_target == 0)
10908 continue;
10909 xsnprintf (rs->buf, size, "qTP:%x:%s", tp->number_on_target,
10910 phex_nz (loc->address, 0));
10911 putpkt (rs->buf);
10912 reply = remote_get_noisy_reply (&target_buf, &target_buf_size);
10913 if (reply && *reply)
10914 {
10915 if (*reply == 'V')
10916 parse_tracepoint_status (reply + 1, bp, utp);
10917 }
10918 }
10919 }
10920 else if (utp)
10921 {
10922 utp->hit_count = 0;
10923 utp->traceframe_usage = 0;
10924 xsnprintf (rs->buf, size, "qTP:%x:%s", utp->number,
10925 phex_nz (utp->addr, 0));
10926 putpkt (rs->buf);
10927 reply = remote_get_noisy_reply (&target_buf, &target_buf_size);
10928 if (reply && *reply)
10929 {
10930 if (*reply == 'V')
10931 parse_tracepoint_status (reply + 1, bp, utp);
10932 }
10933 }
10934 }
10935
10936 static void
10937 remote_trace_stop (void)
10938 {
10939 putpkt ("QTStop");
10940 remote_get_noisy_reply (&target_buf, &target_buf_size);
10941 if (*target_buf == '\0')
10942 error (_("Target does not support this command."));
10943 if (strcmp (target_buf, "OK") != 0)
10944 error (_("Bogus reply from target: %s"), target_buf);
10945 }
10946
10947 static int
10948 remote_trace_find (enum trace_find_type type, int num,
10949 CORE_ADDR addr1, CORE_ADDR addr2,
10950 int *tpp)
10951 {
10952 struct remote_state *rs = get_remote_state ();
10953 char *endbuf = rs->buf + get_remote_packet_size ();
10954 char *p, *reply;
10955 int target_frameno = -1, target_tracept = -1;
10956
10957 /* Lookups other than by absolute frame number depend on the current
10958 trace selected, so make sure it is correct on the remote end
10959 first. */
10960 if (type != tfind_number)
10961 set_remote_traceframe ();
10962
10963 p = rs->buf;
10964 strcpy (p, "QTFrame:");
10965 p = strchr (p, '\0');
10966 switch (type)
10967 {
10968 case tfind_number:
10969 xsnprintf (p, endbuf - p, "%x", num);
10970 break;
10971 case tfind_pc:
10972 xsnprintf (p, endbuf - p, "pc:%s", phex_nz (addr1, 0));
10973 break;
10974 case tfind_tp:
10975 xsnprintf (p, endbuf - p, "tdp:%x", num);
10976 break;
10977 case tfind_range:
10978 xsnprintf (p, endbuf - p, "range:%s:%s", phex_nz (addr1, 0),
10979 phex_nz (addr2, 0));
10980 break;
10981 case tfind_outside:
10982 xsnprintf (p, endbuf - p, "outside:%s:%s", phex_nz (addr1, 0),
10983 phex_nz (addr2, 0));
10984 break;
10985 default:
10986 error (_("Unknown trace find type %d"), type);
10987 }
10988
10989 putpkt (rs->buf);
10990 reply = remote_get_noisy_reply (&(rs->buf), &rs->buf_size);
10991 if (*reply == '\0')
10992 error (_("Target does not support this command."));
10993
10994 while (reply && *reply)
10995 switch (*reply)
10996 {
10997 case 'F':
10998 p = ++reply;
10999 target_frameno = (int) strtol (p, &reply, 16);
11000 if (reply == p)
11001 error (_("Unable to parse trace frame number"));
11002 /* Don't update our remote traceframe number cache on failure
11003 to select a remote traceframe. */
11004 if (target_frameno == -1)
11005 return -1;
11006 break;
11007 case 'T':
11008 p = ++reply;
11009 target_tracept = (int) strtol (p, &reply, 16);
11010 if (reply == p)
11011 error (_("Unable to parse tracepoint number"));
11012 break;
11013 case 'O': /* "OK"? */
11014 if (reply[1] == 'K' && reply[2] == '\0')
11015 reply += 2;
11016 else
11017 error (_("Bogus reply from target: %s"), reply);
11018 break;
11019 default:
11020 error (_("Bogus reply from target: %s"), reply);
11021 }
11022 if (tpp)
11023 *tpp = target_tracept;
11024
11025 rs->remote_traceframe_number = target_frameno;
11026 return target_frameno;
11027 }
11028
11029 static int
11030 remote_get_trace_state_variable_value (int tsvnum, LONGEST *val)
11031 {
11032 struct remote_state *rs = get_remote_state ();
11033 char *reply;
11034 ULONGEST uval;
11035
11036 set_remote_traceframe ();
11037
11038 xsnprintf (rs->buf, get_remote_packet_size (), "qTV:%x", tsvnum);
11039 putpkt (rs->buf);
11040 reply = remote_get_noisy_reply (&target_buf, &target_buf_size);
11041 if (reply && *reply)
11042 {
11043 if (*reply == 'V')
11044 {
11045 unpack_varlen_hex (reply + 1, &uval);
11046 *val = (LONGEST) uval;
11047 return 1;
11048 }
11049 }
11050 return 0;
11051 }
11052
11053 static int
11054 remote_save_trace_data (const char *filename)
11055 {
11056 struct remote_state *rs = get_remote_state ();
11057 char *p, *reply;
11058
11059 p = rs->buf;
11060 strcpy (p, "QTSave:");
11061 p += strlen (p);
11062 if ((p - rs->buf) + strlen (filename) * 2 >= get_remote_packet_size ())
11063 error (_("Remote file name too long for trace save packet"));
11064 p += 2 * bin2hex ((gdb_byte *) filename, p, 0);
11065 *p++ = '\0';
11066 putpkt (rs->buf);
11067 reply = remote_get_noisy_reply (&target_buf, &target_buf_size);
11068 if (*reply == '\0')
11069 error (_("Target does not support this command."));
11070 if (strcmp (reply, "OK") != 0)
11071 error (_("Bogus reply from target: %s"), reply);
11072 return 0;
11073 }
11074
11075 /* This is basically a memory transfer, but needs to be its own packet
11076 because we don't know how the target actually organizes its trace
11077 memory, plus we want to be able to ask for as much as possible, but
11078 not be unhappy if we don't get as much as we ask for. */
11079
11080 static LONGEST
11081 remote_get_raw_trace_data (gdb_byte *buf, ULONGEST offset, LONGEST len)
11082 {
11083 struct remote_state *rs = get_remote_state ();
11084 char *reply;
11085 char *p;
11086 int rslt;
11087
11088 p = rs->buf;
11089 strcpy (p, "qTBuffer:");
11090 p += strlen (p);
11091 p += hexnumstr (p, offset);
11092 *p++ = ',';
11093 p += hexnumstr (p, len);
11094 *p++ = '\0';
11095
11096 putpkt (rs->buf);
11097 reply = remote_get_noisy_reply (&target_buf, &target_buf_size);
11098 if (reply && *reply)
11099 {
11100 /* 'l' by itself means we're at the end of the buffer and
11101 there is nothing more to get. */
11102 if (*reply == 'l')
11103 return 0;
11104
11105 /* Convert the reply into binary. Limit the number of bytes to
11106 convert according to our passed-in buffer size, rather than
11107 what was returned in the packet; if the target is
11108 unexpectedly generous and gives us a bigger reply than we
11109 asked for, we don't want to crash. */
11110 rslt = hex2bin (target_buf, buf, len);
11111 return rslt;
11112 }
11113
11114 /* Something went wrong, flag as an error. */
11115 return -1;
11116 }
11117
11118 static void
11119 remote_set_disconnected_tracing (int val)
11120 {
11121 struct remote_state *rs = get_remote_state ();
11122
11123 if (rs->disconnected_tracing)
11124 {
11125 char *reply;
11126
11127 xsnprintf (rs->buf, get_remote_packet_size (), "QTDisconnected:%x", val);
11128 putpkt (rs->buf);
11129 reply = remote_get_noisy_reply (&target_buf, &target_buf_size);
11130 if (*reply == '\0')
11131 error (_("Target does not support this command."));
11132 if (strcmp (reply, "OK") != 0)
11133 error (_("Bogus reply from target: %s"), reply);
11134 }
11135 else if (val)
11136 warning (_("Target does not support disconnected tracing."));
11137 }
11138
11139 static int
11140 remote_core_of_thread (struct target_ops *ops, ptid_t ptid)
11141 {
11142 struct thread_info *info = find_thread_ptid (ptid);
11143
11144 if (info && info->private)
11145 return info->private->core;
11146 return -1;
11147 }
11148
11149 static void
11150 remote_set_circular_trace_buffer (int val)
11151 {
11152 struct remote_state *rs = get_remote_state ();
11153 char *reply;
11154
11155 xsnprintf (rs->buf, get_remote_packet_size (), "QTBuffer:circular:%x", val);
11156 putpkt (rs->buf);
11157 reply = remote_get_noisy_reply (&target_buf, &target_buf_size);
11158 if (*reply == '\0')
11159 error (_("Target does not support this command."));
11160 if (strcmp (reply, "OK") != 0)
11161 error (_("Bogus reply from target: %s"), reply);
11162 }
11163
11164 static struct traceframe_info *
11165 remote_traceframe_info (void)
11166 {
11167 char *text;
11168
11169 /* If current traceframe is not selected, don't bother the remote
11170 stub. */
11171 if (get_traceframe_number () < 0)
11172 return NULL;
11173
11174 text = target_read_stralloc (&current_target,
11175 TARGET_OBJECT_TRACEFRAME_INFO, NULL);
11176 if (text != NULL)
11177 {
11178 struct traceframe_info *info;
11179 struct cleanup *back_to = make_cleanup (xfree, text);
11180
11181 info = parse_traceframe_info (text);
11182 do_cleanups (back_to);
11183 return info;
11184 }
11185
11186 return NULL;
11187 }
11188
11189 /* Handle the qTMinFTPILen packet. Returns the minimum length of
11190 instruction on which a fast tracepoint may be placed. Returns -1
11191 if the packet is not supported, and 0 if the minimum instruction
11192 length is unknown. */
11193
11194 static int
11195 remote_get_min_fast_tracepoint_insn_len (void)
11196 {
11197 struct remote_state *rs = get_remote_state ();
11198 char *reply;
11199
11200 /* If we're not debugging a process yet, the IPA can't be
11201 loaded. */
11202 if (!target_has_execution)
11203 return 0;
11204
11205 /* Make sure the remote is pointing at the right process. */
11206 set_general_process ();
11207
11208 xsnprintf (rs->buf, get_remote_packet_size (), "qTMinFTPILen");
11209 putpkt (rs->buf);
11210 reply = remote_get_noisy_reply (&target_buf, &target_buf_size);
11211 if (*reply == '\0')
11212 return -1;
11213 else
11214 {
11215 ULONGEST min_insn_len;
11216
11217 unpack_varlen_hex (reply, &min_insn_len);
11218
11219 return (int) min_insn_len;
11220 }
11221 }
11222
11223 static void
11224 remote_set_trace_buffer_size (LONGEST val)
11225 {
11226 if (remote_protocol_packets[PACKET_QTBuffer_size].support
11227 != PACKET_DISABLE)
11228 {
11229 struct remote_state *rs = get_remote_state ();
11230 char *buf = rs->buf;
11231 char *endbuf = rs->buf + get_remote_packet_size ();
11232 enum packet_result result;
11233
11234 gdb_assert (val >= 0 || val == -1);
11235 buf += xsnprintf (buf, endbuf - buf, "QTBuffer:size:");
11236 /* Send -1 as literal "-1" to avoid host size dependency. */
11237 if (val < 0)
11238 {
11239 *buf++ = '-';
11240 buf += hexnumstr (buf, (ULONGEST) -val);
11241 }
11242 else
11243 buf += hexnumstr (buf, (ULONGEST) val);
11244
11245 putpkt (rs->buf);
11246 remote_get_noisy_reply (&rs->buf, &rs->buf_size);
11247 result = packet_ok (rs->buf,
11248 &remote_protocol_packets[PACKET_QTBuffer_size]);
11249
11250 if (result != PACKET_OK)
11251 warning (_("Bogus reply from target: %s"), rs->buf);
11252 }
11253 }
11254
11255 static int
11256 remote_set_trace_notes (const char *user, const char *notes,
11257 const char *stop_notes)
11258 {
11259 struct remote_state *rs = get_remote_state ();
11260 char *reply;
11261 char *buf = rs->buf;
11262 char *endbuf = rs->buf + get_remote_packet_size ();
11263 int nbytes;
11264
11265 buf += xsnprintf (buf, endbuf - buf, "QTNotes:");
11266 if (user)
11267 {
11268 buf += xsnprintf (buf, endbuf - buf, "user:");
11269 nbytes = bin2hex ((gdb_byte *) user, buf, 0);
11270 buf += 2 * nbytes;
11271 *buf++ = ';';
11272 }
11273 if (notes)
11274 {
11275 buf += xsnprintf (buf, endbuf - buf, "notes:");
11276 nbytes = bin2hex ((gdb_byte *) notes, buf, 0);
11277 buf += 2 * nbytes;
11278 *buf++ = ';';
11279 }
11280 if (stop_notes)
11281 {
11282 buf += xsnprintf (buf, endbuf - buf, "tstop:");
11283 nbytes = bin2hex ((gdb_byte *) stop_notes, buf, 0);
11284 buf += 2 * nbytes;
11285 *buf++ = ';';
11286 }
11287 /* Ensure the buffer is terminated. */
11288 *buf = '\0';
11289
11290 putpkt (rs->buf);
11291 reply = remote_get_noisy_reply (&target_buf, &target_buf_size);
11292 if (*reply == '\0')
11293 return 0;
11294
11295 if (strcmp (reply, "OK") != 0)
11296 error (_("Bogus reply from target: %s"), reply);
11297
11298 return 1;
11299 }
11300
11301 static int
11302 remote_use_agent (int use)
11303 {
11304 if (remote_protocol_packets[PACKET_QAgent].support != PACKET_DISABLE)
11305 {
11306 struct remote_state *rs = get_remote_state ();
11307
11308 /* If the stub supports QAgent. */
11309 xsnprintf (rs->buf, get_remote_packet_size (), "QAgent:%d", use);
11310 putpkt (rs->buf);
11311 getpkt (&rs->buf, &rs->buf_size, 0);
11312
11313 if (strcmp (rs->buf, "OK") == 0)
11314 {
11315 use_agent = use;
11316 return 1;
11317 }
11318 }
11319
11320 return 0;
11321 }
11322
11323 static int
11324 remote_can_use_agent (void)
11325 {
11326 return (remote_protocol_packets[PACKET_QAgent].support != PACKET_DISABLE);
11327 }
11328
11329 struct btrace_target_info
11330 {
11331 /* The ptid of the traced thread. */
11332 ptid_t ptid;
11333 };
11334
11335 /* Check whether the target supports branch tracing. */
11336
11337 static int
11338 remote_supports_btrace (void)
11339 {
11340 if (remote_protocol_packets[PACKET_Qbtrace_off].support != PACKET_ENABLE)
11341 return 0;
11342 if (remote_protocol_packets[PACKET_Qbtrace_bts].support != PACKET_ENABLE)
11343 return 0;
11344 if (remote_protocol_packets[PACKET_qXfer_btrace].support != PACKET_ENABLE)
11345 return 0;
11346
11347 return 1;
11348 }
11349
11350 /* Enable branch tracing. */
11351
11352 static struct btrace_target_info *
11353 remote_enable_btrace (ptid_t ptid)
11354 {
11355 struct btrace_target_info *tinfo = NULL;
11356 struct packet_config *packet = &remote_protocol_packets[PACKET_Qbtrace_bts];
11357 struct remote_state *rs = get_remote_state ();
11358 char *buf = rs->buf;
11359 char *endbuf = rs->buf + get_remote_packet_size ();
11360
11361 if (packet->support != PACKET_ENABLE)
11362 error (_("Target does not support branch tracing."));
11363
11364 set_general_thread (ptid);
11365
11366 buf += xsnprintf (buf, endbuf - buf, "%s", packet->name);
11367 putpkt (rs->buf);
11368 getpkt (&rs->buf, &rs->buf_size, 0);
11369
11370 if (packet_ok (rs->buf, packet) == PACKET_ERROR)
11371 {
11372 if (rs->buf[0] == 'E' && rs->buf[1] == '.')
11373 error (_("Could not enable branch tracing for %s: %s"),
11374 target_pid_to_str (ptid), rs->buf + 2);
11375 else
11376 error (_("Could not enable branch tracing for %s."),
11377 target_pid_to_str (ptid));
11378 }
11379
11380 tinfo = xzalloc (sizeof (*tinfo));
11381 tinfo->ptid = ptid;
11382
11383 return tinfo;
11384 }
11385
11386 /* Disable branch tracing. */
11387
11388 static void
11389 remote_disable_btrace (struct btrace_target_info *tinfo)
11390 {
11391 struct packet_config *packet = &remote_protocol_packets[PACKET_Qbtrace_off];
11392 struct remote_state *rs = get_remote_state ();
11393 char *buf = rs->buf;
11394 char *endbuf = rs->buf + get_remote_packet_size ();
11395
11396 if (packet->support != PACKET_ENABLE)
11397 error (_("Target does not support branch tracing."));
11398
11399 set_general_thread (tinfo->ptid);
11400
11401 buf += xsnprintf (buf, endbuf - buf, "%s", packet->name);
11402 putpkt (rs->buf);
11403 getpkt (&rs->buf, &rs->buf_size, 0);
11404
11405 if (packet_ok (rs->buf, packet) == PACKET_ERROR)
11406 {
11407 if (rs->buf[0] == 'E' && rs->buf[1] == '.')
11408 error (_("Could not disable branch tracing for %s: %s"),
11409 target_pid_to_str (tinfo->ptid), rs->buf + 2);
11410 else
11411 error (_("Could not disable branch tracing for %s."),
11412 target_pid_to_str (tinfo->ptid));
11413 }
11414
11415 xfree (tinfo);
11416 }
11417
11418 /* Teardown branch tracing. */
11419
11420 static void
11421 remote_teardown_btrace (struct btrace_target_info *tinfo)
11422 {
11423 /* We must not talk to the target during teardown. */
11424 xfree (tinfo);
11425 }
11426
11427 /* Read the branch trace. */
11428
11429 static VEC (btrace_block_s) *
11430 remote_read_btrace (struct btrace_target_info *tinfo,
11431 enum btrace_read_type type)
11432 {
11433 struct packet_config *packet = &remote_protocol_packets[PACKET_qXfer_btrace];
11434 struct remote_state *rs = get_remote_state ();
11435 VEC (btrace_block_s) *btrace = NULL;
11436 const char *annex;
11437 char *xml;
11438
11439 if (packet->support != PACKET_ENABLE)
11440 error (_("Target does not support branch tracing."));
11441
11442 #if !defined(HAVE_LIBEXPAT)
11443 error (_("Cannot process branch tracing result. XML parsing not supported."));
11444 #endif
11445
11446 switch (type)
11447 {
11448 case btrace_read_all:
11449 annex = "all";
11450 break;
11451 case btrace_read_new:
11452 annex = "new";
11453 break;
11454 default:
11455 internal_error (__FILE__, __LINE__,
11456 _("Bad branch tracing read type: %u."),
11457 (unsigned int) type);
11458 }
11459
11460 xml = target_read_stralloc (&current_target,
11461 TARGET_OBJECT_BTRACE, annex);
11462 if (xml != NULL)
11463 {
11464 struct cleanup *cleanup = make_cleanup (xfree, xml);
11465
11466 btrace = parse_xml_btrace (xml);
11467 do_cleanups (cleanup);
11468 }
11469
11470 return btrace;
11471 }
11472
11473 static int
11474 remote_augmented_libraries_svr4_read (void)
11475 {
11476 struct remote_state *rs = get_remote_state ();
11477
11478 return rs->augmented_libraries_svr4_read;
11479 }
11480
11481 static void
11482 init_remote_ops (void)
11483 {
11484 remote_ops.to_shortname = "remote";
11485 remote_ops.to_longname = "Remote serial target in gdb-specific protocol";
11486 remote_ops.to_doc =
11487 "Use a remote computer via a serial line, using a gdb-specific protocol.\n\
11488 Specify the serial device it is connected to\n\
11489 (e.g. /dev/ttyS0, /dev/ttya, COM1, etc.).";
11490 remote_ops.to_open = remote_open;
11491 remote_ops.to_close = remote_close;
11492 remote_ops.to_detach = remote_detach;
11493 remote_ops.to_disconnect = remote_disconnect;
11494 remote_ops.to_resume = remote_resume;
11495 remote_ops.to_wait = remote_wait;
11496 remote_ops.to_fetch_registers = remote_fetch_registers;
11497 remote_ops.to_store_registers = remote_store_registers;
11498 remote_ops.to_prepare_to_store = remote_prepare_to_store;
11499 remote_ops.to_files_info = remote_files_info;
11500 remote_ops.to_insert_breakpoint = remote_insert_breakpoint;
11501 remote_ops.to_remove_breakpoint = remote_remove_breakpoint;
11502 remote_ops.to_stopped_by_watchpoint = remote_stopped_by_watchpoint;
11503 remote_ops.to_stopped_data_address = remote_stopped_data_address;
11504 remote_ops.to_watchpoint_addr_within_range =
11505 remote_watchpoint_addr_within_range;
11506 remote_ops.to_can_use_hw_breakpoint = remote_check_watch_resources;
11507 remote_ops.to_insert_hw_breakpoint = remote_insert_hw_breakpoint;
11508 remote_ops.to_remove_hw_breakpoint = remote_remove_hw_breakpoint;
11509 remote_ops.to_region_ok_for_hw_watchpoint
11510 = remote_region_ok_for_hw_watchpoint;
11511 remote_ops.to_insert_watchpoint = remote_insert_watchpoint;
11512 remote_ops.to_remove_watchpoint = remote_remove_watchpoint;
11513 remote_ops.to_kill = remote_kill;
11514 remote_ops.to_load = generic_load;
11515 remote_ops.to_mourn_inferior = remote_mourn;
11516 remote_ops.to_pass_signals = remote_pass_signals;
11517 remote_ops.to_program_signals = remote_program_signals;
11518 remote_ops.to_thread_alive = remote_thread_alive;
11519 remote_ops.to_find_new_threads = remote_threads_info;
11520 remote_ops.to_pid_to_str = remote_pid_to_str;
11521 remote_ops.to_extra_thread_info = remote_threads_extra_info;
11522 remote_ops.to_get_ada_task_ptid = remote_get_ada_task_ptid;
11523 remote_ops.to_stop = remote_stop;
11524 remote_ops.to_xfer_partial = remote_xfer_partial;
11525 remote_ops.to_rcmd = remote_rcmd;
11526 remote_ops.to_log_command = serial_log_command;
11527 remote_ops.to_get_thread_local_address = remote_get_thread_local_address;
11528 remote_ops.to_stratum = process_stratum;
11529 remote_ops.to_has_all_memory = default_child_has_all_memory;
11530 remote_ops.to_has_memory = default_child_has_memory;
11531 remote_ops.to_has_stack = default_child_has_stack;
11532 remote_ops.to_has_registers = default_child_has_registers;
11533 remote_ops.to_has_execution = default_child_has_execution;
11534 remote_ops.to_has_thread_control = tc_schedlock; /* can lock scheduler */
11535 remote_ops.to_can_execute_reverse = remote_can_execute_reverse;
11536 remote_ops.to_magic = OPS_MAGIC;
11537 remote_ops.to_memory_map = remote_memory_map;
11538 remote_ops.to_flash_erase = remote_flash_erase;
11539 remote_ops.to_flash_done = remote_flash_done;
11540 remote_ops.to_read_description = remote_read_description;
11541 remote_ops.to_search_memory = remote_search_memory;
11542 remote_ops.to_can_async_p = remote_can_async_p;
11543 remote_ops.to_is_async_p = remote_is_async_p;
11544 remote_ops.to_async = remote_async;
11545 remote_ops.to_terminal_inferior = remote_terminal_inferior;
11546 remote_ops.to_terminal_ours = remote_terminal_ours;
11547 remote_ops.to_supports_non_stop = remote_supports_non_stop;
11548 remote_ops.to_supports_multi_process = remote_supports_multi_process;
11549 remote_ops.to_supports_disable_randomization
11550 = remote_supports_disable_randomization;
11551 remote_ops.to_fileio_open = remote_hostio_open;
11552 remote_ops.to_fileio_pwrite = remote_hostio_pwrite;
11553 remote_ops.to_fileio_pread = remote_hostio_pread;
11554 remote_ops.to_fileio_close = remote_hostio_close;
11555 remote_ops.to_fileio_unlink = remote_hostio_unlink;
11556 remote_ops.to_fileio_readlink = remote_hostio_readlink;
11557 remote_ops.to_supports_enable_disable_tracepoint = remote_supports_enable_disable_tracepoint;
11558 remote_ops.to_supports_string_tracing = remote_supports_string_tracing;
11559 remote_ops.to_supports_evaluation_of_breakpoint_conditions = remote_supports_cond_breakpoints;
11560 remote_ops.to_can_run_breakpoint_commands = remote_can_run_breakpoint_commands;
11561 remote_ops.to_trace_init = remote_trace_init;
11562 remote_ops.to_download_tracepoint = remote_download_tracepoint;
11563 remote_ops.to_can_download_tracepoint = remote_can_download_tracepoint;
11564 remote_ops.to_download_trace_state_variable
11565 = remote_download_trace_state_variable;
11566 remote_ops.to_enable_tracepoint = remote_enable_tracepoint;
11567 remote_ops.to_disable_tracepoint = remote_disable_tracepoint;
11568 remote_ops.to_trace_set_readonly_regions = remote_trace_set_readonly_regions;
11569 remote_ops.to_trace_start = remote_trace_start;
11570 remote_ops.to_get_trace_status = remote_get_trace_status;
11571 remote_ops.to_get_tracepoint_status = remote_get_tracepoint_status;
11572 remote_ops.to_trace_stop = remote_trace_stop;
11573 remote_ops.to_trace_find = remote_trace_find;
11574 remote_ops.to_get_trace_state_variable_value
11575 = remote_get_trace_state_variable_value;
11576 remote_ops.to_save_trace_data = remote_save_trace_data;
11577 remote_ops.to_upload_tracepoints = remote_upload_tracepoints;
11578 remote_ops.to_upload_trace_state_variables
11579 = remote_upload_trace_state_variables;
11580 remote_ops.to_get_raw_trace_data = remote_get_raw_trace_data;
11581 remote_ops.to_get_min_fast_tracepoint_insn_len = remote_get_min_fast_tracepoint_insn_len;
11582 remote_ops.to_set_disconnected_tracing = remote_set_disconnected_tracing;
11583 remote_ops.to_set_circular_trace_buffer = remote_set_circular_trace_buffer;
11584 remote_ops.to_set_trace_buffer_size = remote_set_trace_buffer_size;
11585 remote_ops.to_set_trace_notes = remote_set_trace_notes;
11586 remote_ops.to_core_of_thread = remote_core_of_thread;
11587 remote_ops.to_verify_memory = remote_verify_memory;
11588 remote_ops.to_get_tib_address = remote_get_tib_address;
11589 remote_ops.to_set_permissions = remote_set_permissions;
11590 remote_ops.to_static_tracepoint_marker_at
11591 = remote_static_tracepoint_marker_at;
11592 remote_ops.to_static_tracepoint_markers_by_strid
11593 = remote_static_tracepoint_markers_by_strid;
11594 remote_ops.to_traceframe_info = remote_traceframe_info;
11595 remote_ops.to_use_agent = remote_use_agent;
11596 remote_ops.to_can_use_agent = remote_can_use_agent;
11597 remote_ops.to_supports_btrace = remote_supports_btrace;
11598 remote_ops.to_enable_btrace = remote_enable_btrace;
11599 remote_ops.to_disable_btrace = remote_disable_btrace;
11600 remote_ops.to_teardown_btrace = remote_teardown_btrace;
11601 remote_ops.to_read_btrace = remote_read_btrace;
11602 remote_ops.to_augmented_libraries_svr4_read =
11603 remote_augmented_libraries_svr4_read;
11604 }
11605
11606 /* Set up the extended remote vector by making a copy of the standard
11607 remote vector and adding to it. */
11608
11609 static void
11610 init_extended_remote_ops (void)
11611 {
11612 extended_remote_ops = remote_ops;
11613
11614 extended_remote_ops.to_shortname = "extended-remote";
11615 extended_remote_ops.to_longname =
11616 "Extended remote serial target in gdb-specific protocol";
11617 extended_remote_ops.to_doc =
11618 "Use a remote computer via a serial line, using a gdb-specific protocol.\n\
11619 Specify the serial device it is connected to (e.g. /dev/ttya).";
11620 extended_remote_ops.to_open = extended_remote_open;
11621 extended_remote_ops.to_create_inferior = extended_remote_create_inferior;
11622 extended_remote_ops.to_mourn_inferior = extended_remote_mourn;
11623 extended_remote_ops.to_detach = extended_remote_detach;
11624 extended_remote_ops.to_attach = extended_remote_attach;
11625 extended_remote_ops.to_kill = extended_remote_kill;
11626 extended_remote_ops.to_supports_disable_randomization
11627 = extended_remote_supports_disable_randomization;
11628 }
11629
11630 static int
11631 remote_can_async_p (void)
11632 {
11633 struct remote_state *rs = get_remote_state ();
11634
11635 if (!target_async_permitted)
11636 /* We only enable async when the user specifically asks for it. */
11637 return 0;
11638
11639 /* We're async whenever the serial device is. */
11640 return serial_can_async_p (rs->remote_desc);
11641 }
11642
11643 static int
11644 remote_is_async_p (void)
11645 {
11646 struct remote_state *rs = get_remote_state ();
11647
11648 if (!target_async_permitted)
11649 /* We only enable async when the user specifically asks for it. */
11650 return 0;
11651
11652 /* We're async whenever the serial device is. */
11653 return serial_is_async_p (rs->remote_desc);
11654 }
11655
11656 /* Pass the SERIAL event on and up to the client. One day this code
11657 will be able to delay notifying the client of an event until the
11658 point where an entire packet has been received. */
11659
11660 static serial_event_ftype remote_async_serial_handler;
11661
11662 static void
11663 remote_async_serial_handler (struct serial *scb, void *context)
11664 {
11665 struct remote_state *rs = context;
11666
11667 /* Don't propogate error information up to the client. Instead let
11668 the client find out about the error by querying the target. */
11669 rs->async_client_callback (INF_REG_EVENT, rs->async_client_context);
11670 }
11671
11672 static void
11673 remote_async_inferior_event_handler (gdb_client_data data)
11674 {
11675 inferior_event_handler (INF_REG_EVENT, NULL);
11676 }
11677
11678 static void
11679 remote_async (void (*callback) (enum inferior_event_type event_type,
11680 void *context), void *context)
11681 {
11682 struct remote_state *rs = get_remote_state ();
11683
11684 if (callback != NULL)
11685 {
11686 serial_async (rs->remote_desc, remote_async_serial_handler, rs);
11687 rs->async_client_callback = callback;
11688 rs->async_client_context = context;
11689 }
11690 else
11691 serial_async (rs->remote_desc, NULL, NULL);
11692 }
11693
11694 static void
11695 set_remote_cmd (char *args, int from_tty)
11696 {
11697 help_list (remote_set_cmdlist, "set remote ", -1, gdb_stdout);
11698 }
11699
11700 static void
11701 show_remote_cmd (char *args, int from_tty)
11702 {
11703 /* We can't just use cmd_show_list here, because we want to skip
11704 the redundant "show remote Z-packet" and the legacy aliases. */
11705 struct cleanup *showlist_chain;
11706 struct cmd_list_element *list = remote_show_cmdlist;
11707 struct ui_out *uiout = current_uiout;
11708
11709 showlist_chain = make_cleanup_ui_out_tuple_begin_end (uiout, "showlist");
11710 for (; list != NULL; list = list->next)
11711 if (strcmp (list->name, "Z-packet") == 0)
11712 continue;
11713 else if (list->type == not_set_cmd)
11714 /* Alias commands are exactly like the original, except they
11715 don't have the normal type. */
11716 continue;
11717 else
11718 {
11719 struct cleanup *option_chain
11720 = make_cleanup_ui_out_tuple_begin_end (uiout, "option");
11721
11722 ui_out_field_string (uiout, "name", list->name);
11723 ui_out_text (uiout, ": ");
11724 if (list->type == show_cmd)
11725 do_show_command ((char *) NULL, from_tty, list);
11726 else
11727 cmd_func (list, NULL, from_tty);
11728 /* Close the tuple. */
11729 do_cleanups (option_chain);
11730 }
11731
11732 /* Close the tuple. */
11733 do_cleanups (showlist_chain);
11734 }
11735
11736
11737 /* Function to be called whenever a new objfile (shlib) is detected. */
11738 static void
11739 remote_new_objfile (struct objfile *objfile)
11740 {
11741 struct remote_state *rs = get_remote_state ();
11742
11743 if (rs->remote_desc != 0) /* Have a remote connection. */
11744 remote_check_symbols ();
11745 }
11746
11747 /* Pull all the tracepoints defined on the target and create local
11748 data structures representing them. We don't want to create real
11749 tracepoints yet, we don't want to mess up the user's existing
11750 collection. */
11751
11752 static int
11753 remote_upload_tracepoints (struct uploaded_tp **utpp)
11754 {
11755 struct remote_state *rs = get_remote_state ();
11756 char *p;
11757
11758 /* Ask for a first packet of tracepoint definition. */
11759 putpkt ("qTfP");
11760 getpkt (&rs->buf, &rs->buf_size, 0);
11761 p = rs->buf;
11762 while (*p && *p != 'l')
11763 {
11764 parse_tracepoint_definition (p, utpp);
11765 /* Ask for another packet of tracepoint definition. */
11766 putpkt ("qTsP");
11767 getpkt (&rs->buf, &rs->buf_size, 0);
11768 p = rs->buf;
11769 }
11770 return 0;
11771 }
11772
11773 static int
11774 remote_upload_trace_state_variables (struct uploaded_tsv **utsvp)
11775 {
11776 struct remote_state *rs = get_remote_state ();
11777 char *p;
11778
11779 /* Ask for a first packet of variable definition. */
11780 putpkt ("qTfV");
11781 getpkt (&rs->buf, &rs->buf_size, 0);
11782 p = rs->buf;
11783 while (*p && *p != 'l')
11784 {
11785 parse_tsv_definition (p, utsvp);
11786 /* Ask for another packet of variable definition. */
11787 putpkt ("qTsV");
11788 getpkt (&rs->buf, &rs->buf_size, 0);
11789 p = rs->buf;
11790 }
11791 return 0;
11792 }
11793
11794 /* The "set/show range-stepping" show hook. */
11795
11796 static void
11797 show_range_stepping (struct ui_file *file, int from_tty,
11798 struct cmd_list_element *c,
11799 const char *value)
11800 {
11801 fprintf_filtered (file,
11802 _("Debugger's willingness to use range stepping "
11803 "is %s.\n"), value);
11804 }
11805
11806 /* The "set/show range-stepping" set hook. */
11807
11808 static void
11809 set_range_stepping (char *ignore_args, int from_tty,
11810 struct cmd_list_element *c)
11811 {
11812 struct remote_state *rs = get_remote_state ();
11813
11814 /* Whene enabling, check whether range stepping is actually
11815 supported by the target, and warn if not. */
11816 if (use_range_stepping)
11817 {
11818 if (rs->remote_desc != NULL)
11819 {
11820 if (remote_protocol_packets[PACKET_vCont].support == PACKET_SUPPORT_UNKNOWN)
11821 remote_vcont_probe (rs);
11822
11823 if (remote_protocol_packets[PACKET_vCont].support == PACKET_ENABLE
11824 && rs->supports_vCont.r)
11825 return;
11826 }
11827
11828 warning (_("Range stepping is not supported by the current target"));
11829 }
11830 }
11831
11832 void
11833 _initialize_remote (void)
11834 {
11835 struct remote_state *rs;
11836 struct cmd_list_element *cmd;
11837 const char *cmd_name;
11838
11839 /* architecture specific data */
11840 remote_gdbarch_data_handle =
11841 gdbarch_data_register_post_init (init_remote_state);
11842 remote_g_packet_data_handle =
11843 gdbarch_data_register_pre_init (remote_g_packet_data_init);
11844
11845 /* Initialize the per-target state. At the moment there is only one
11846 of these, not one per target. Only one target is active at a
11847 time. */
11848 remote_state = new_remote_state ();
11849
11850 init_remote_ops ();
11851 add_target (&remote_ops);
11852
11853 init_extended_remote_ops ();
11854 add_target (&extended_remote_ops);
11855
11856 /* Hook into new objfile notification. */
11857 observer_attach_new_objfile (remote_new_objfile);
11858 /* We're no longer interested in notification events of an inferior
11859 when it exits. */
11860 observer_attach_inferior_exit (discard_pending_stop_replies);
11861
11862 /* Set up signal handlers. */
11863 async_sigint_remote_token =
11864 create_async_signal_handler (async_remote_interrupt, NULL);
11865 async_sigint_remote_twice_token =
11866 create_async_signal_handler (async_remote_interrupt_twice, NULL);
11867
11868 #if 0
11869 init_remote_threadtests ();
11870 #endif
11871
11872 stop_reply_queue = QUEUE_alloc (stop_reply_p, stop_reply_xfree);
11873 /* set/show remote ... */
11874
11875 add_prefix_cmd ("remote", class_maintenance, set_remote_cmd, _("\
11876 Remote protocol specific variables\n\
11877 Configure various remote-protocol specific variables such as\n\
11878 the packets being used"),
11879 &remote_set_cmdlist, "set remote ",
11880 0 /* allow-unknown */, &setlist);
11881 add_prefix_cmd ("remote", class_maintenance, show_remote_cmd, _("\
11882 Remote protocol specific variables\n\
11883 Configure various remote-protocol specific variables such as\n\
11884 the packets being used"),
11885 &remote_show_cmdlist, "show remote ",
11886 0 /* allow-unknown */, &showlist);
11887
11888 add_cmd ("compare-sections", class_obscure, compare_sections_command, _("\
11889 Compare section data on target to the exec file.\n\
11890 Argument is a single section name (default: all loaded sections)."),
11891 &cmdlist);
11892
11893 add_cmd ("packet", class_maintenance, packet_command, _("\
11894 Send an arbitrary packet to a remote target.\n\
11895 maintenance packet TEXT\n\
11896 If GDB is talking to an inferior via the GDB serial protocol, then\n\
11897 this command sends the string TEXT to the inferior, and displays the\n\
11898 response packet. GDB supplies the initial `$' character, and the\n\
11899 terminating `#' character and checksum."),
11900 &maintenancelist);
11901
11902 add_setshow_boolean_cmd ("remotebreak", no_class, &remote_break, _("\
11903 Set whether to send break if interrupted."), _("\
11904 Show whether to send break if interrupted."), _("\
11905 If set, a break, instead of a cntrl-c, is sent to the remote target."),
11906 set_remotebreak, show_remotebreak,
11907 &setlist, &showlist);
11908 cmd_name = "remotebreak";
11909 cmd = lookup_cmd (&cmd_name, setlist, "", -1, 1);
11910 deprecate_cmd (cmd, "set remote interrupt-sequence");
11911 cmd_name = "remotebreak"; /* needed because lookup_cmd updates the pointer */
11912 cmd = lookup_cmd (&cmd_name, showlist, "", -1, 1);
11913 deprecate_cmd (cmd, "show remote interrupt-sequence");
11914
11915 add_setshow_enum_cmd ("interrupt-sequence", class_support,
11916 interrupt_sequence_modes, &interrupt_sequence_mode,
11917 _("\
11918 Set interrupt sequence to remote target."), _("\
11919 Show interrupt sequence to remote target."), _("\
11920 Valid value is \"Ctrl-C\", \"BREAK\" or \"BREAK-g\". The default is \"Ctrl-C\"."),
11921 NULL, show_interrupt_sequence,
11922 &remote_set_cmdlist,
11923 &remote_show_cmdlist);
11924
11925 add_setshow_boolean_cmd ("interrupt-on-connect", class_support,
11926 &interrupt_on_connect, _("\
11927 Set whether interrupt-sequence is sent to remote target when gdb connects to."), _(" \
11928 Show whether interrupt-sequence is sent to remote target when gdb connects to."), _(" \
11929 If set, interrupt sequence is sent to remote target."),
11930 NULL, NULL,
11931 &remote_set_cmdlist, &remote_show_cmdlist);
11932
11933 /* Install commands for configuring memory read/write packets. */
11934
11935 add_cmd ("remotewritesize", no_class, set_memory_write_packet_size, _("\
11936 Set the maximum number of bytes per memory write packet (deprecated)."),
11937 &setlist);
11938 add_cmd ("remotewritesize", no_class, show_memory_write_packet_size, _("\
11939 Show the maximum number of bytes per memory write packet (deprecated)."),
11940 &showlist);
11941 add_cmd ("memory-write-packet-size", no_class,
11942 set_memory_write_packet_size, _("\
11943 Set the maximum number of bytes per memory-write packet.\n\
11944 Specify the number of bytes in a packet or 0 (zero) for the\n\
11945 default packet size. The actual limit is further reduced\n\
11946 dependent on the target. Specify ``fixed'' to disable the\n\
11947 further restriction and ``limit'' to enable that restriction."),
11948 &remote_set_cmdlist);
11949 add_cmd ("memory-read-packet-size", no_class,
11950 set_memory_read_packet_size, _("\
11951 Set the maximum number of bytes per memory-read packet.\n\
11952 Specify the number of bytes in a packet or 0 (zero) for the\n\
11953 default packet size. The actual limit is further reduced\n\
11954 dependent on the target. Specify ``fixed'' to disable the\n\
11955 further restriction and ``limit'' to enable that restriction."),
11956 &remote_set_cmdlist);
11957 add_cmd ("memory-write-packet-size", no_class,
11958 show_memory_write_packet_size,
11959 _("Show the maximum number of bytes per memory-write packet."),
11960 &remote_show_cmdlist);
11961 add_cmd ("memory-read-packet-size", no_class,
11962 show_memory_read_packet_size,
11963 _("Show the maximum number of bytes per memory-read packet."),
11964 &remote_show_cmdlist);
11965
11966 add_setshow_zinteger_cmd ("hardware-watchpoint-limit", no_class,
11967 &remote_hw_watchpoint_limit, _("\
11968 Set the maximum number of target hardware watchpoints."), _("\
11969 Show the maximum number of target hardware watchpoints."), _("\
11970 Specify a negative limit for unlimited."),
11971 NULL, NULL, /* FIXME: i18n: The maximum
11972 number of target hardware
11973 watchpoints is %s. */
11974 &remote_set_cmdlist, &remote_show_cmdlist);
11975 add_setshow_zinteger_cmd ("hardware-watchpoint-length-limit", no_class,
11976 &remote_hw_watchpoint_length_limit, _("\
11977 Set the maximum length (in bytes) of a target hardware watchpoint."), _("\
11978 Show the maximum length (in bytes) of a target hardware watchpoint."), _("\
11979 Specify a negative limit for unlimited."),
11980 NULL, NULL, /* FIXME: i18n: The maximum
11981 length (in bytes) of a target
11982 hardware watchpoint is %s. */
11983 &remote_set_cmdlist, &remote_show_cmdlist);
11984 add_setshow_zinteger_cmd ("hardware-breakpoint-limit", no_class,
11985 &remote_hw_breakpoint_limit, _("\
11986 Set the maximum number of target hardware breakpoints."), _("\
11987 Show the maximum number of target hardware breakpoints."), _("\
11988 Specify a negative limit for unlimited."),
11989 NULL, NULL, /* FIXME: i18n: The maximum
11990 number of target hardware
11991 breakpoints is %s. */
11992 &remote_set_cmdlist, &remote_show_cmdlist);
11993
11994 add_setshow_zuinteger_cmd ("remoteaddresssize", class_obscure,
11995 &remote_address_size, _("\
11996 Set the maximum size of the address (in bits) in a memory packet."), _("\
11997 Show the maximum size of the address (in bits) in a memory packet."), NULL,
11998 NULL,
11999 NULL, /* FIXME: i18n: */
12000 &setlist, &showlist);
12001
12002 add_packet_config_cmd (&remote_protocol_packets[PACKET_X],
12003 "X", "binary-download", 1);
12004
12005 add_packet_config_cmd (&remote_protocol_packets[PACKET_vCont],
12006 "vCont", "verbose-resume", 0);
12007
12008 add_packet_config_cmd (&remote_protocol_packets[PACKET_QPassSignals],
12009 "QPassSignals", "pass-signals", 0);
12010
12011 add_packet_config_cmd (&remote_protocol_packets[PACKET_QProgramSignals],
12012 "QProgramSignals", "program-signals", 0);
12013
12014 add_packet_config_cmd (&remote_protocol_packets[PACKET_qSymbol],
12015 "qSymbol", "symbol-lookup", 0);
12016
12017 add_packet_config_cmd (&remote_protocol_packets[PACKET_P],
12018 "P", "set-register", 1);
12019
12020 add_packet_config_cmd (&remote_protocol_packets[PACKET_p],
12021 "p", "fetch-register", 1);
12022
12023 add_packet_config_cmd (&remote_protocol_packets[PACKET_Z0],
12024 "Z0", "software-breakpoint", 0);
12025
12026 add_packet_config_cmd (&remote_protocol_packets[PACKET_Z1],
12027 "Z1", "hardware-breakpoint", 0);
12028
12029 add_packet_config_cmd (&remote_protocol_packets[PACKET_Z2],
12030 "Z2", "write-watchpoint", 0);
12031
12032 add_packet_config_cmd (&remote_protocol_packets[PACKET_Z3],
12033 "Z3", "read-watchpoint", 0);
12034
12035 add_packet_config_cmd (&remote_protocol_packets[PACKET_Z4],
12036 "Z4", "access-watchpoint", 0);
12037
12038 add_packet_config_cmd (&remote_protocol_packets[PACKET_qXfer_auxv],
12039 "qXfer:auxv:read", "read-aux-vector", 0);
12040
12041 add_packet_config_cmd (&remote_protocol_packets[PACKET_qXfer_features],
12042 "qXfer:features:read", "target-features", 0);
12043
12044 add_packet_config_cmd (&remote_protocol_packets[PACKET_qXfer_libraries],
12045 "qXfer:libraries:read", "library-info", 0);
12046
12047 add_packet_config_cmd (&remote_protocol_packets[PACKET_qXfer_libraries_svr4],
12048 "qXfer:libraries-svr4:read", "library-info-svr4", 0);
12049
12050 add_packet_config_cmd (&remote_protocol_packets[PACKET_qXfer_memory_map],
12051 "qXfer:memory-map:read", "memory-map", 0);
12052
12053 add_packet_config_cmd (&remote_protocol_packets[PACKET_qXfer_spu_read],
12054 "qXfer:spu:read", "read-spu-object", 0);
12055
12056 add_packet_config_cmd (&remote_protocol_packets[PACKET_qXfer_spu_write],
12057 "qXfer:spu:write", "write-spu-object", 0);
12058
12059 add_packet_config_cmd (&remote_protocol_packets[PACKET_qXfer_osdata],
12060 "qXfer:osdata:read", "osdata", 0);
12061
12062 add_packet_config_cmd (&remote_protocol_packets[PACKET_qXfer_threads],
12063 "qXfer:threads:read", "threads", 0);
12064
12065 add_packet_config_cmd (&remote_protocol_packets[PACKET_qXfer_siginfo_read],
12066 "qXfer:siginfo:read", "read-siginfo-object", 0);
12067
12068 add_packet_config_cmd (&remote_protocol_packets[PACKET_qXfer_siginfo_write],
12069 "qXfer:siginfo:write", "write-siginfo-object", 0);
12070
12071 add_packet_config_cmd
12072 (&remote_protocol_packets[PACKET_qXfer_traceframe_info],
12073 "qXfer:traceframe-info:read", "traceframe-info", 0);
12074
12075 add_packet_config_cmd (&remote_protocol_packets[PACKET_qXfer_uib],
12076 "qXfer:uib:read", "unwind-info-block", 0);
12077
12078 add_packet_config_cmd (&remote_protocol_packets[PACKET_qGetTLSAddr],
12079 "qGetTLSAddr", "get-thread-local-storage-address",
12080 0);
12081
12082 add_packet_config_cmd (&remote_protocol_packets[PACKET_qGetTIBAddr],
12083 "qGetTIBAddr", "get-thread-information-block-address",
12084 0);
12085
12086 add_packet_config_cmd (&remote_protocol_packets[PACKET_bc],
12087 "bc", "reverse-continue", 0);
12088
12089 add_packet_config_cmd (&remote_protocol_packets[PACKET_bs],
12090 "bs", "reverse-step", 0);
12091
12092 add_packet_config_cmd (&remote_protocol_packets[PACKET_qSupported],
12093 "qSupported", "supported-packets", 0);
12094
12095 add_packet_config_cmd (&remote_protocol_packets[PACKET_qSearch_memory],
12096 "qSearch:memory", "search-memory", 0);
12097
12098 add_packet_config_cmd (&remote_protocol_packets[PACKET_qTStatus],
12099 "qTStatus", "trace-status", 0);
12100
12101 add_packet_config_cmd (&remote_protocol_packets[PACKET_vFile_open],
12102 "vFile:open", "hostio-open", 0);
12103
12104 add_packet_config_cmd (&remote_protocol_packets[PACKET_vFile_pread],
12105 "vFile:pread", "hostio-pread", 0);
12106
12107 add_packet_config_cmd (&remote_protocol_packets[PACKET_vFile_pwrite],
12108 "vFile:pwrite", "hostio-pwrite", 0);
12109
12110 add_packet_config_cmd (&remote_protocol_packets[PACKET_vFile_close],
12111 "vFile:close", "hostio-close", 0);
12112
12113 add_packet_config_cmd (&remote_protocol_packets[PACKET_vFile_unlink],
12114 "vFile:unlink", "hostio-unlink", 0);
12115
12116 add_packet_config_cmd (&remote_protocol_packets[PACKET_vFile_readlink],
12117 "vFile:readlink", "hostio-readlink", 0);
12118
12119 add_packet_config_cmd (&remote_protocol_packets[PACKET_vAttach],
12120 "vAttach", "attach", 0);
12121
12122 add_packet_config_cmd (&remote_protocol_packets[PACKET_vRun],
12123 "vRun", "run", 0);
12124
12125 add_packet_config_cmd (&remote_protocol_packets[PACKET_QStartNoAckMode],
12126 "QStartNoAckMode", "noack", 0);
12127
12128 add_packet_config_cmd (&remote_protocol_packets[PACKET_vKill],
12129 "vKill", "kill", 0);
12130
12131 add_packet_config_cmd (&remote_protocol_packets[PACKET_qAttached],
12132 "qAttached", "query-attached", 0);
12133
12134 add_packet_config_cmd (&remote_protocol_packets[PACKET_ConditionalTracepoints],
12135 "ConditionalTracepoints",
12136 "conditional-tracepoints", 0);
12137
12138 add_packet_config_cmd (&remote_protocol_packets[PACKET_ConditionalBreakpoints],
12139 "ConditionalBreakpoints",
12140 "conditional-breakpoints", 0);
12141
12142 add_packet_config_cmd (&remote_protocol_packets[PACKET_BreakpointCommands],
12143 "BreakpointCommands",
12144 "breakpoint-commands", 0);
12145
12146 add_packet_config_cmd (&remote_protocol_packets[PACKET_FastTracepoints],
12147 "FastTracepoints", "fast-tracepoints", 0);
12148
12149 add_packet_config_cmd (&remote_protocol_packets[PACKET_TracepointSource],
12150 "TracepointSource", "TracepointSource", 0);
12151
12152 add_packet_config_cmd (&remote_protocol_packets[PACKET_QAllow],
12153 "QAllow", "allow", 0);
12154
12155 add_packet_config_cmd (&remote_protocol_packets[PACKET_StaticTracepoints],
12156 "StaticTracepoints", "static-tracepoints", 0);
12157
12158 add_packet_config_cmd (&remote_protocol_packets[PACKET_InstallInTrace],
12159 "InstallInTrace", "install-in-trace", 0);
12160
12161 add_packet_config_cmd (&remote_protocol_packets[PACKET_qXfer_statictrace_read],
12162 "qXfer:statictrace:read", "read-sdata-object", 0);
12163
12164 add_packet_config_cmd (&remote_protocol_packets[PACKET_qXfer_fdpic],
12165 "qXfer:fdpic:read", "read-fdpic-loadmap", 0);
12166
12167 add_packet_config_cmd (&remote_protocol_packets[PACKET_QDisableRandomization],
12168 "QDisableRandomization", "disable-randomization", 0);
12169
12170 add_packet_config_cmd (&remote_protocol_packets[PACKET_QAgent],
12171 "QAgent", "agent", 0);
12172
12173 add_packet_config_cmd (&remote_protocol_packets[PACKET_QTBuffer_size],
12174 "QTBuffer:size", "trace-buffer-size", 0);
12175
12176 add_packet_config_cmd (&remote_protocol_packets[PACKET_Qbtrace_off],
12177 "Qbtrace:off", "disable-btrace", 0);
12178
12179 add_packet_config_cmd (&remote_protocol_packets[PACKET_Qbtrace_bts],
12180 "Qbtrace:bts", "enable-btrace", 0);
12181
12182 add_packet_config_cmd (&remote_protocol_packets[PACKET_qXfer_btrace],
12183 "qXfer:btrace", "read-btrace", 0);
12184
12185 /* Keep the old ``set remote Z-packet ...'' working. Each individual
12186 Z sub-packet has its own set and show commands, but users may
12187 have sets to this variable in their .gdbinit files (or in their
12188 documentation). */
12189 add_setshow_auto_boolean_cmd ("Z-packet", class_obscure,
12190 &remote_Z_packet_detect, _("\
12191 Set use of remote protocol `Z' packets"), _("\
12192 Show use of remote protocol `Z' packets "), _("\
12193 When set, GDB will attempt to use the remote breakpoint and watchpoint\n\
12194 packets."),
12195 set_remote_protocol_Z_packet_cmd,
12196 show_remote_protocol_Z_packet_cmd,
12197 /* FIXME: i18n: Use of remote protocol
12198 `Z' packets is %s. */
12199 &remote_set_cmdlist, &remote_show_cmdlist);
12200
12201 add_prefix_cmd ("remote", class_files, remote_command, _("\
12202 Manipulate files on the remote system\n\
12203 Transfer files to and from the remote target system."),
12204 &remote_cmdlist, "remote ",
12205 0 /* allow-unknown */, &cmdlist);
12206
12207 add_cmd ("put", class_files, remote_put_command,
12208 _("Copy a local file to the remote system."),
12209 &remote_cmdlist);
12210
12211 add_cmd ("get", class_files, remote_get_command,
12212 _("Copy a remote file to the local system."),
12213 &remote_cmdlist);
12214
12215 add_cmd ("delete", class_files, remote_delete_command,
12216 _("Delete a remote file."),
12217 &remote_cmdlist);
12218
12219 remote_exec_file = xstrdup ("");
12220 add_setshow_string_noescape_cmd ("exec-file", class_files,
12221 &remote_exec_file, _("\
12222 Set the remote pathname for \"run\""), _("\
12223 Show the remote pathname for \"run\""), NULL, NULL, NULL,
12224 &remote_set_cmdlist, &remote_show_cmdlist);
12225
12226 add_setshow_boolean_cmd ("range-stepping", class_run,
12227 &use_range_stepping, _("\
12228 Enable or disable range stepping."), _("\
12229 Show whether target-assisted range stepping is enabled."), _("\
12230 If on, and the target supports it, when stepping a source line, GDB\n\
12231 tells the target to step the corresponding range of addresses itself instead\n\
12232 of issuing multiple single-steps. This speeds up source level\n\
12233 stepping. If off, GDB always issues single-steps, even if range\n\
12234 stepping is supported by the target. The default is on."),
12235 set_range_stepping,
12236 show_range_stepping,
12237 &setlist,
12238 &showlist);
12239
12240 /* Eventually initialize fileio. See fileio.c */
12241 initialize_remote_fileio (remote_set_cmdlist, remote_show_cmdlist);
12242
12243 /* Take advantage of the fact that the LWP field is not used, to tag
12244 special ptids with it set to != 0. */
12245 magic_null_ptid = ptid_build (42000, 1, -1);
12246 not_sent_ptid = ptid_build (42000, 1, -2);
12247 any_thread_ptid = ptid_build (42000, 1, 0);
12248
12249 target_buf_size = 2048;
12250 target_buf = xmalloc (target_buf_size);
12251 }
12252