Add target_ops argument to to_prepare_to_store
[binutils-gdb.git] / gdb / remote.c
1 /* Remote target communications for serial-line targets in custom GDB protocol
2
3 Copyright (C) 1988-2014 Free Software Foundation, Inc.
4
5 This file is part of GDB.
6
7 This program is free software; you can redistribute it and/or modify
8 it under the terms of the GNU General Public License as published by
9 the Free Software Foundation; either version 3 of the License, or
10 (at your option) any later version.
11
12 This program is distributed in the hope that it will be useful,
13 but WITHOUT ANY WARRANTY; without even the implied warranty of
14 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
15 GNU General Public License for more details.
16
17 You should have received a copy of the GNU General Public License
18 along with this program. If not, see <http://www.gnu.org/licenses/>. */
19
20 /* See the GDB User Guide for details of the GDB remote protocol. */
21
22 #include "defs.h"
23 #include <string.h>
24 #include <ctype.h>
25 #include <fcntl.h>
26 #include "inferior.h"
27 #include "bfd.h"
28 #include "symfile.h"
29 #include "exceptions.h"
30 #include "target.h"
31 /*#include "terminal.h" */
32 #include "gdbcmd.h"
33 #include "objfiles.h"
34 #include "gdb-stabs.h"
35 #include "gdbthread.h"
36 #include "remote.h"
37 #include "remote-notif.h"
38 #include "regcache.h"
39 #include "value.h"
40 #include "gdb_assert.h"
41 #include "observer.h"
42 #include "solib.h"
43 #include "cli/cli-decode.h"
44 #include "cli/cli-setshow.h"
45 #include "target-descriptions.h"
46 #include "gdb_bfd.h"
47 #include "filestuff.h"
48
49 #include <sys/time.h>
50
51 #include "event-loop.h"
52 #include "event-top.h"
53 #include "inf-loop.h"
54
55 #include <signal.h>
56 #include "serial.h"
57
58 #include "gdbcore.h" /* for exec_bfd */
59
60 #include "remote-fileio.h"
61 #include "gdb/fileio.h"
62 #include <sys/stat.h>
63 #include "xml-support.h"
64
65 #include "memory-map.h"
66
67 #include "tracepoint.h"
68 #include "ax.h"
69 #include "ax-gdb.h"
70 #include "agent.h"
71 #include "btrace.h"
72
73 /* Temp hacks for tracepoint encoding migration. */
74 static char *target_buf;
75 static long target_buf_size;
76
77 /* The size to align memory write packets, when practical. The protocol
78 does not guarantee any alignment, and gdb will generate short
79 writes and unaligned writes, but even as a best-effort attempt this
80 can improve bulk transfers. For instance, if a write is misaligned
81 relative to the target's data bus, the stub may need to make an extra
82 round trip fetching data from the target. This doesn't make a
83 huge difference, but it's easy to do, so we try to be helpful.
84
85 The alignment chosen is arbitrary; usually data bus width is
86 important here, not the possibly larger cache line size. */
87 enum { REMOTE_ALIGN_WRITES = 16 };
88
89 /* Prototypes for local functions. */
90 static void async_cleanup_sigint_signal_handler (void *dummy);
91 static int getpkt_sane (char **buf, long *sizeof_buf, int forever);
92 static int getpkt_or_notif_sane (char **buf, long *sizeof_buf,
93 int forever, int *is_notif);
94
95 static void async_handle_remote_sigint (int);
96 static void async_handle_remote_sigint_twice (int);
97
98 static void remote_files_info (struct target_ops *ignore);
99
100 static void remote_prepare_to_store (struct target_ops *self,
101 struct regcache *regcache);
102
103 static void remote_open (char *name, int from_tty);
104
105 static void extended_remote_open (char *name, int from_tty);
106
107 static void remote_open_1 (char *, int, struct target_ops *, int extended_p);
108
109 static void remote_close (void);
110
111 static void remote_mourn (struct target_ops *ops);
112
113 static void extended_remote_restart (void);
114
115 static void extended_remote_mourn (struct target_ops *);
116
117 static void remote_mourn_1 (struct target_ops *);
118
119 static void remote_send (char **buf, long *sizeof_buf_p);
120
121 static int readchar (int timeout);
122
123 static void remote_serial_write (const char *str, int len);
124
125 static void remote_kill (struct target_ops *ops);
126
127 static int tohex (int nib);
128
129 static int remote_can_async_p (void);
130
131 static int remote_is_async_p (void);
132
133 static void remote_async (void (*callback) (enum inferior_event_type event_type,
134 void *context), void *context);
135
136 static void sync_remote_interrupt_twice (int signo);
137
138 static void interrupt_query (void);
139
140 static void set_general_thread (struct ptid ptid);
141 static void set_continue_thread (struct ptid ptid);
142
143 static void get_offsets (void);
144
145 static void skip_frame (void);
146
147 static long read_frame (char **buf_p, long *sizeof_buf);
148
149 static int hexnumlen (ULONGEST num);
150
151 static void init_remote_ops (void);
152
153 static void init_extended_remote_ops (void);
154
155 static void remote_stop (ptid_t);
156
157 static int ishex (int ch, int *val);
158
159 static int stubhex (int ch);
160
161 static int hexnumstr (char *, ULONGEST);
162
163 static int hexnumnstr (char *, ULONGEST, int);
164
165 static CORE_ADDR remote_address_masked (CORE_ADDR);
166
167 static void print_packet (char *);
168
169 static void compare_sections_command (char *, int);
170
171 static void packet_command (char *, int);
172
173 static int stub_unpack_int (char *buff, int fieldlength);
174
175 static ptid_t remote_current_thread (ptid_t oldptid);
176
177 static void remote_find_new_threads (void);
178
179 static int fromhex (int a);
180
181 static int putpkt_binary (char *buf, int cnt);
182
183 static void check_binary_download (CORE_ADDR addr);
184
185 struct packet_config;
186
187 static void show_packet_config_cmd (struct packet_config *config);
188
189 static void update_packet_config (struct packet_config *config);
190
191 static void set_remote_protocol_packet_cmd (char *args, int from_tty,
192 struct cmd_list_element *c);
193
194 static void show_remote_protocol_packet_cmd (struct ui_file *file,
195 int from_tty,
196 struct cmd_list_element *c,
197 const char *value);
198
199 static char *write_ptid (char *buf, const char *endbuf, ptid_t ptid);
200 static ptid_t read_ptid (char *buf, char **obuf);
201
202 static void remote_set_permissions (void);
203
204 struct remote_state;
205 static int remote_get_trace_status (struct trace_status *ts);
206
207 static int remote_upload_tracepoints (struct uploaded_tp **utpp);
208
209 static int remote_upload_trace_state_variables (struct uploaded_tsv **utsvp);
210
211 static void remote_query_supported (void);
212
213 static void remote_check_symbols (void);
214
215 void _initialize_remote (void);
216
217 struct stop_reply;
218 static void stop_reply_xfree (struct stop_reply *);
219 static void remote_parse_stop_reply (char *, struct stop_reply *);
220 static void push_stop_reply (struct stop_reply *);
221 static void discard_pending_stop_replies_in_queue (struct remote_state *);
222 static int peek_stop_reply (ptid_t ptid);
223
224 static void remote_async_inferior_event_handler (gdb_client_data);
225
226 static void remote_terminal_ours (void);
227
228 static int remote_read_description_p (struct target_ops *target);
229
230 static void remote_console_output (char *msg);
231
232 static int remote_supports_cond_breakpoints (void);
233
234 static int remote_can_run_breakpoint_commands (void);
235
236 /* For "remote". */
237
238 static struct cmd_list_element *remote_cmdlist;
239
240 /* For "set remote" and "show remote". */
241
242 static struct cmd_list_element *remote_set_cmdlist;
243 static struct cmd_list_element *remote_show_cmdlist;
244
245 /* Stub vCont actions support.
246
247 Each field is a boolean flag indicating whether the stub reports
248 support for the corresponding action. */
249
250 struct vCont_action_support
251 {
252 /* vCont;t */
253 int t;
254
255 /* vCont;r */
256 int r;
257 };
258
259 /* Controls whether GDB is willing to use range stepping. */
260
261 static int use_range_stepping = 1;
262
263 #define OPAQUETHREADBYTES 8
264
265 /* a 64 bit opaque identifier */
266 typedef unsigned char threadref[OPAQUETHREADBYTES];
267
268 /* About this many threadisds fit in a packet. */
269
270 #define MAXTHREADLISTRESULTS 32
271
272 /* Description of the remote protocol state for the currently
273 connected target. This is per-target state, and independent of the
274 selected architecture. */
275
276 struct remote_state
277 {
278 /* A buffer to use for incoming packets, and its current size. The
279 buffer is grown dynamically for larger incoming packets.
280 Outgoing packets may also be constructed in this buffer.
281 BUF_SIZE is always at least REMOTE_PACKET_SIZE;
282 REMOTE_PACKET_SIZE should be used to limit the length of outgoing
283 packets. */
284 char *buf;
285 long buf_size;
286
287 /* True if we're going through initial connection setup (finding out
288 about the remote side's threads, relocating symbols, etc.). */
289 int starting_up;
290
291 /* If we negotiated packet size explicitly (and thus can bypass
292 heuristics for the largest packet size that will not overflow
293 a buffer in the stub), this will be set to that packet size.
294 Otherwise zero, meaning to use the guessed size. */
295 long explicit_packet_size;
296
297 /* remote_wait is normally called when the target is running and
298 waits for a stop reply packet. But sometimes we need to call it
299 when the target is already stopped. We can send a "?" packet
300 and have remote_wait read the response. Or, if we already have
301 the response, we can stash it in BUF and tell remote_wait to
302 skip calling getpkt. This flag is set when BUF contains a
303 stop reply packet and the target is not waiting. */
304 int cached_wait_status;
305
306 /* True, if in no ack mode. That is, neither GDB nor the stub will
307 expect acks from each other. The connection is assumed to be
308 reliable. */
309 int noack_mode;
310
311 /* True if we're connected in extended remote mode. */
312 int extended;
313
314 /* True if the stub reported support for multi-process
315 extensions. */
316 int multi_process_aware;
317
318 /* True if we resumed the target and we're waiting for the target to
319 stop. In the mean time, we can't start another command/query.
320 The remote server wouldn't be ready to process it, so we'd
321 timeout waiting for a reply that would never come and eventually
322 we'd close the connection. This can happen in asynchronous mode
323 because we allow GDB commands while the target is running. */
324 int waiting_for_stop_reply;
325
326 /* True if the stub reports support for non-stop mode. */
327 int non_stop_aware;
328
329 /* The status of the stub support for the various vCont actions. */
330 struct vCont_action_support supports_vCont;
331
332 /* True if the stub reports support for conditional tracepoints. */
333 int cond_tracepoints;
334
335 /* True if the stub reports support for target-side breakpoint
336 conditions. */
337 int cond_breakpoints;
338
339 /* True if the stub reports support for target-side breakpoint
340 commands. */
341 int breakpoint_commands;
342
343 /* True if the stub reports support for fast tracepoints. */
344 int fast_tracepoints;
345
346 /* True if the stub reports support for static tracepoints. */
347 int static_tracepoints;
348
349 /* True if the stub reports support for installing tracepoint while
350 tracing. */
351 int install_in_trace;
352
353 /* True if the stub can continue running a trace while GDB is
354 disconnected. */
355 int disconnected_tracing;
356
357 /* True if the stub reports support for enabling and disabling
358 tracepoints while a trace experiment is running. */
359 int enable_disable_tracepoints;
360
361 /* True if the stub can collect strings using tracenz bytecode. */
362 int string_tracing;
363
364 /* True if the stub supports qXfer:libraries-svr4:read with a
365 non-empty annex. */
366 int augmented_libraries_svr4_read;
367
368 /* Nonzero if the user has pressed Ctrl-C, but the target hasn't
369 responded to that. */
370 int ctrlc_pending_p;
371
372 /* Descriptor for I/O to remote machine. Initialize it to NULL so that
373 remote_open knows that we don't have a file open when the program
374 starts. */
375 struct serial *remote_desc;
376
377 /* These are the threads which we last sent to the remote system. The
378 TID member will be -1 for all or -2 for not sent yet. */
379 ptid_t general_thread;
380 ptid_t continue_thread;
381
382 /* This is the traceframe which we last selected on the remote system.
383 It will be -1 if no traceframe is selected. */
384 int remote_traceframe_number;
385
386 char *last_pass_packet;
387
388 /* The last QProgramSignals packet sent to the target. We bypass
389 sending a new program signals list down to the target if the new
390 packet is exactly the same as the last we sent. IOW, we only let
391 the target know about program signals list changes. */
392 char *last_program_signals_packet;
393
394 enum gdb_signal last_sent_signal;
395
396 int last_sent_step;
397
398 char *finished_object;
399 char *finished_annex;
400 ULONGEST finished_offset;
401
402 /* Should we try the 'ThreadInfo' query packet?
403
404 This variable (NOT available to the user: auto-detect only!)
405 determines whether GDB will use the new, simpler "ThreadInfo"
406 query or the older, more complex syntax for thread queries.
407 This is an auto-detect variable (set to true at each connect,
408 and set to false when the target fails to recognize it). */
409 int use_threadinfo_query;
410 int use_threadextra_query;
411
412 void (*async_client_callback) (enum inferior_event_type event_type,
413 void *context);
414 void *async_client_context;
415
416 /* This is set to the data address of the access causing the target
417 to stop for a watchpoint. */
418 CORE_ADDR remote_watch_data_address;
419
420 /* This is non-zero if target stopped for a watchpoint. */
421 int remote_stopped_by_watchpoint_p;
422
423 threadref echo_nextthread;
424 threadref nextthread;
425 threadref resultthreadlist[MAXTHREADLISTRESULTS];
426
427 /* The state of remote notification. */
428 struct remote_notif_state *notif_state;
429 };
430
431 /* Private data that we'll store in (struct thread_info)->private. */
432 struct private_thread_info
433 {
434 char *extra;
435 int core;
436 };
437
438 static void
439 free_private_thread_info (struct private_thread_info *info)
440 {
441 xfree (info->extra);
442 xfree (info);
443 }
444
445 /* Returns true if the multi-process extensions are in effect. */
446 static int
447 remote_multi_process_p (struct remote_state *rs)
448 {
449 return rs->multi_process_aware;
450 }
451
452 /* This data could be associated with a target, but we do not always
453 have access to the current target when we need it, so for now it is
454 static. This will be fine for as long as only one target is in use
455 at a time. */
456 static struct remote_state *remote_state;
457
458 static struct remote_state *
459 get_remote_state_raw (void)
460 {
461 return remote_state;
462 }
463
464 /* Allocate a new struct remote_state with xmalloc, initialize it, and
465 return it. */
466
467 static struct remote_state *
468 new_remote_state (void)
469 {
470 struct remote_state *result = XCNEW (struct remote_state);
471
472 /* The default buffer size is unimportant; it will be expanded
473 whenever a larger buffer is needed. */
474 result->buf_size = 400;
475 result->buf = xmalloc (result->buf_size);
476 result->remote_traceframe_number = -1;
477 result->last_sent_signal = GDB_SIGNAL_0;
478
479 return result;
480 }
481
482 /* Description of the remote protocol for a given architecture. */
483
484 struct packet_reg
485 {
486 long offset; /* Offset into G packet. */
487 long regnum; /* GDB's internal register number. */
488 LONGEST pnum; /* Remote protocol register number. */
489 int in_g_packet; /* Always part of G packet. */
490 /* long size in bytes; == register_size (target_gdbarch (), regnum);
491 at present. */
492 /* char *name; == gdbarch_register_name (target_gdbarch (), regnum);
493 at present. */
494 };
495
496 struct remote_arch_state
497 {
498 /* Description of the remote protocol registers. */
499 long sizeof_g_packet;
500
501 /* Description of the remote protocol registers indexed by REGNUM
502 (making an array gdbarch_num_regs in size). */
503 struct packet_reg *regs;
504
505 /* This is the size (in chars) of the first response to the ``g''
506 packet. It is used as a heuristic when determining the maximum
507 size of memory-read and memory-write packets. A target will
508 typically only reserve a buffer large enough to hold the ``g''
509 packet. The size does not include packet overhead (headers and
510 trailers). */
511 long actual_register_packet_size;
512
513 /* This is the maximum size (in chars) of a non read/write packet.
514 It is also used as a cap on the size of read/write packets. */
515 long remote_packet_size;
516 };
517
518 /* Utility: generate error from an incoming stub packet. */
519 static void
520 trace_error (char *buf)
521 {
522 if (*buf++ != 'E')
523 return; /* not an error msg */
524 switch (*buf)
525 {
526 case '1': /* malformed packet error */
527 if (*++buf == '0') /* general case: */
528 error (_("remote.c: error in outgoing packet."));
529 else
530 error (_("remote.c: error in outgoing packet at field #%ld."),
531 strtol (buf, NULL, 16));
532 default:
533 error (_("Target returns error code '%s'."), buf);
534 }
535 }
536
537 /* Utility: wait for reply from stub, while accepting "O" packets. */
538 static char *
539 remote_get_noisy_reply (char **buf_p,
540 long *sizeof_buf)
541 {
542 do /* Loop on reply from remote stub. */
543 {
544 char *buf;
545
546 QUIT; /* Allow user to bail out with ^C. */
547 getpkt (buf_p, sizeof_buf, 0);
548 buf = *buf_p;
549 if (buf[0] == 'E')
550 trace_error (buf);
551 else if (strncmp (buf, "qRelocInsn:", strlen ("qRelocInsn:")) == 0)
552 {
553 ULONGEST ul;
554 CORE_ADDR from, to, org_to;
555 char *p, *pp;
556 int adjusted_size = 0;
557 volatile struct gdb_exception ex;
558
559 p = buf + strlen ("qRelocInsn:");
560 pp = unpack_varlen_hex (p, &ul);
561 if (*pp != ';')
562 error (_("invalid qRelocInsn packet: %s"), buf);
563 from = ul;
564
565 p = pp + 1;
566 unpack_varlen_hex (p, &ul);
567 to = ul;
568
569 org_to = to;
570
571 TRY_CATCH (ex, RETURN_MASK_ALL)
572 {
573 gdbarch_relocate_instruction (target_gdbarch (), &to, from);
574 }
575 if (ex.reason >= 0)
576 {
577 adjusted_size = to - org_to;
578
579 xsnprintf (buf, *sizeof_buf, "qRelocInsn:%x", adjusted_size);
580 putpkt (buf);
581 }
582 else if (ex.reason < 0 && ex.error == MEMORY_ERROR)
583 {
584 /* Propagate memory errors silently back to the target.
585 The stub may have limited the range of addresses we
586 can write to, for example. */
587 putpkt ("E01");
588 }
589 else
590 {
591 /* Something unexpectedly bad happened. Be verbose so
592 we can tell what, and propagate the error back to the
593 stub, so it doesn't get stuck waiting for a
594 response. */
595 exception_fprintf (gdb_stderr, ex,
596 _("warning: relocating instruction: "));
597 putpkt ("E01");
598 }
599 }
600 else if (buf[0] == 'O' && buf[1] != 'K')
601 remote_console_output (buf + 1); /* 'O' message from stub */
602 else
603 return buf; /* Here's the actual reply. */
604 }
605 while (1);
606 }
607
608 /* Handle for retreving the remote protocol data from gdbarch. */
609 static struct gdbarch_data *remote_gdbarch_data_handle;
610
611 static struct remote_arch_state *
612 get_remote_arch_state (void)
613 {
614 return gdbarch_data (target_gdbarch (), remote_gdbarch_data_handle);
615 }
616
617 /* Fetch the global remote target state. */
618
619 static struct remote_state *
620 get_remote_state (void)
621 {
622 /* Make sure that the remote architecture state has been
623 initialized, because doing so might reallocate rs->buf. Any
624 function which calls getpkt also needs to be mindful of changes
625 to rs->buf, but this call limits the number of places which run
626 into trouble. */
627 get_remote_arch_state ();
628
629 return get_remote_state_raw ();
630 }
631
632 static int
633 compare_pnums (const void *lhs_, const void *rhs_)
634 {
635 const struct packet_reg * const *lhs = lhs_;
636 const struct packet_reg * const *rhs = rhs_;
637
638 if ((*lhs)->pnum < (*rhs)->pnum)
639 return -1;
640 else if ((*lhs)->pnum == (*rhs)->pnum)
641 return 0;
642 else
643 return 1;
644 }
645
646 static int
647 map_regcache_remote_table (struct gdbarch *gdbarch, struct packet_reg *regs)
648 {
649 int regnum, num_remote_regs, offset;
650 struct packet_reg **remote_regs;
651
652 for (regnum = 0; regnum < gdbarch_num_regs (gdbarch); regnum++)
653 {
654 struct packet_reg *r = &regs[regnum];
655
656 if (register_size (gdbarch, regnum) == 0)
657 /* Do not try to fetch zero-sized (placeholder) registers. */
658 r->pnum = -1;
659 else
660 r->pnum = gdbarch_remote_register_number (gdbarch, regnum);
661
662 r->regnum = regnum;
663 }
664
665 /* Define the g/G packet format as the contents of each register
666 with a remote protocol number, in order of ascending protocol
667 number. */
668
669 remote_regs = alloca (gdbarch_num_regs (gdbarch)
670 * sizeof (struct packet_reg *));
671 for (num_remote_regs = 0, regnum = 0;
672 regnum < gdbarch_num_regs (gdbarch);
673 regnum++)
674 if (regs[regnum].pnum != -1)
675 remote_regs[num_remote_regs++] = &regs[regnum];
676
677 qsort (remote_regs, num_remote_regs, sizeof (struct packet_reg *),
678 compare_pnums);
679
680 for (regnum = 0, offset = 0; regnum < num_remote_regs; regnum++)
681 {
682 remote_regs[regnum]->in_g_packet = 1;
683 remote_regs[regnum]->offset = offset;
684 offset += register_size (gdbarch, remote_regs[regnum]->regnum);
685 }
686
687 return offset;
688 }
689
690 /* Given the architecture described by GDBARCH, return the remote
691 protocol register's number and the register's offset in the g/G
692 packets of GDB register REGNUM, in PNUM and POFFSET respectively.
693 If the target does not have a mapping for REGNUM, return false,
694 otherwise, return true. */
695
696 int
697 remote_register_number_and_offset (struct gdbarch *gdbarch, int regnum,
698 int *pnum, int *poffset)
699 {
700 int sizeof_g_packet;
701 struct packet_reg *regs;
702 struct cleanup *old_chain;
703
704 gdb_assert (regnum < gdbarch_num_regs (gdbarch));
705
706 regs = xcalloc (gdbarch_num_regs (gdbarch), sizeof (struct packet_reg));
707 old_chain = make_cleanup (xfree, regs);
708
709 sizeof_g_packet = map_regcache_remote_table (gdbarch, regs);
710
711 *pnum = regs[regnum].pnum;
712 *poffset = regs[regnum].offset;
713
714 do_cleanups (old_chain);
715
716 return *pnum != -1;
717 }
718
719 static void *
720 init_remote_state (struct gdbarch *gdbarch)
721 {
722 struct remote_state *rs = get_remote_state_raw ();
723 struct remote_arch_state *rsa;
724
725 rsa = GDBARCH_OBSTACK_ZALLOC (gdbarch, struct remote_arch_state);
726
727 /* Use the architecture to build a regnum<->pnum table, which will be
728 1:1 unless a feature set specifies otherwise. */
729 rsa->regs = GDBARCH_OBSTACK_CALLOC (gdbarch,
730 gdbarch_num_regs (gdbarch),
731 struct packet_reg);
732
733 /* Record the maximum possible size of the g packet - it may turn out
734 to be smaller. */
735 rsa->sizeof_g_packet = map_regcache_remote_table (gdbarch, rsa->regs);
736
737 /* Default maximum number of characters in a packet body. Many
738 remote stubs have a hardwired buffer size of 400 bytes
739 (c.f. BUFMAX in m68k-stub.c and i386-stub.c). BUFMAX-1 is used
740 as the maximum packet-size to ensure that the packet and an extra
741 NUL character can always fit in the buffer. This stops GDB
742 trashing stubs that try to squeeze an extra NUL into what is
743 already a full buffer (As of 1999-12-04 that was most stubs). */
744 rsa->remote_packet_size = 400 - 1;
745
746 /* This one is filled in when a ``g'' packet is received. */
747 rsa->actual_register_packet_size = 0;
748
749 /* Should rsa->sizeof_g_packet needs more space than the
750 default, adjust the size accordingly. Remember that each byte is
751 encoded as two characters. 32 is the overhead for the packet
752 header / footer. NOTE: cagney/1999-10-26: I suspect that 8
753 (``$NN:G...#NN'') is a better guess, the below has been padded a
754 little. */
755 if (rsa->sizeof_g_packet > ((rsa->remote_packet_size - 32) / 2))
756 rsa->remote_packet_size = (rsa->sizeof_g_packet * 2 + 32);
757
758 /* Make sure that the packet buffer is plenty big enough for
759 this architecture. */
760 if (rs->buf_size < rsa->remote_packet_size)
761 {
762 rs->buf_size = 2 * rsa->remote_packet_size;
763 rs->buf = xrealloc (rs->buf, rs->buf_size);
764 }
765
766 return rsa;
767 }
768
769 /* Return the current allowed size of a remote packet. This is
770 inferred from the current architecture, and should be used to
771 limit the length of outgoing packets. */
772 static long
773 get_remote_packet_size (void)
774 {
775 struct remote_state *rs = get_remote_state ();
776 struct remote_arch_state *rsa = get_remote_arch_state ();
777
778 if (rs->explicit_packet_size)
779 return rs->explicit_packet_size;
780
781 return rsa->remote_packet_size;
782 }
783
784 static struct packet_reg *
785 packet_reg_from_regnum (struct remote_arch_state *rsa, long regnum)
786 {
787 if (regnum < 0 && regnum >= gdbarch_num_regs (target_gdbarch ()))
788 return NULL;
789 else
790 {
791 struct packet_reg *r = &rsa->regs[regnum];
792
793 gdb_assert (r->regnum == regnum);
794 return r;
795 }
796 }
797
798 static struct packet_reg *
799 packet_reg_from_pnum (struct remote_arch_state *rsa, LONGEST pnum)
800 {
801 int i;
802
803 for (i = 0; i < gdbarch_num_regs (target_gdbarch ()); i++)
804 {
805 struct packet_reg *r = &rsa->regs[i];
806
807 if (r->pnum == pnum)
808 return r;
809 }
810 return NULL;
811 }
812
813 static struct target_ops remote_ops;
814
815 static struct target_ops extended_remote_ops;
816
817 /* FIXME: cagney/1999-09-23: Even though getpkt was called with
818 ``forever'' still use the normal timeout mechanism. This is
819 currently used by the ASYNC code to guarentee that target reads
820 during the initial connect always time-out. Once getpkt has been
821 modified to return a timeout indication and, in turn
822 remote_wait()/wait_for_inferior() have gained a timeout parameter
823 this can go away. */
824 static int wait_forever_enabled_p = 1;
825
826 /* Allow the user to specify what sequence to send to the remote
827 when he requests a program interruption: Although ^C is usually
828 what remote systems expect (this is the default, here), it is
829 sometimes preferable to send a break. On other systems such
830 as the Linux kernel, a break followed by g, which is Magic SysRq g
831 is required in order to interrupt the execution. */
832 const char interrupt_sequence_control_c[] = "Ctrl-C";
833 const char interrupt_sequence_break[] = "BREAK";
834 const char interrupt_sequence_break_g[] = "BREAK-g";
835 static const char *const interrupt_sequence_modes[] =
836 {
837 interrupt_sequence_control_c,
838 interrupt_sequence_break,
839 interrupt_sequence_break_g,
840 NULL
841 };
842 static const char *interrupt_sequence_mode = interrupt_sequence_control_c;
843
844 static void
845 show_interrupt_sequence (struct ui_file *file, int from_tty,
846 struct cmd_list_element *c,
847 const char *value)
848 {
849 if (interrupt_sequence_mode == interrupt_sequence_control_c)
850 fprintf_filtered (file,
851 _("Send the ASCII ETX character (Ctrl-c) "
852 "to the remote target to interrupt the "
853 "execution of the program.\n"));
854 else if (interrupt_sequence_mode == interrupt_sequence_break)
855 fprintf_filtered (file,
856 _("send a break signal to the remote target "
857 "to interrupt the execution of the program.\n"));
858 else if (interrupt_sequence_mode == interrupt_sequence_break_g)
859 fprintf_filtered (file,
860 _("Send a break signal and 'g' a.k.a. Magic SysRq g to "
861 "the remote target to interrupt the execution "
862 "of Linux kernel.\n"));
863 else
864 internal_error (__FILE__, __LINE__,
865 _("Invalid value for interrupt_sequence_mode: %s."),
866 interrupt_sequence_mode);
867 }
868
869 /* This boolean variable specifies whether interrupt_sequence is sent
870 to the remote target when gdb connects to it.
871 This is mostly needed when you debug the Linux kernel: The Linux kernel
872 expects BREAK g which is Magic SysRq g for connecting gdb. */
873 static int interrupt_on_connect = 0;
874
875 /* This variable is used to implement the "set/show remotebreak" commands.
876 Since these commands are now deprecated in favor of "set/show remote
877 interrupt-sequence", it no longer has any effect on the code. */
878 static int remote_break;
879
880 static void
881 set_remotebreak (char *args, int from_tty, struct cmd_list_element *c)
882 {
883 if (remote_break)
884 interrupt_sequence_mode = interrupt_sequence_break;
885 else
886 interrupt_sequence_mode = interrupt_sequence_control_c;
887 }
888
889 static void
890 show_remotebreak (struct ui_file *file, int from_tty,
891 struct cmd_list_element *c,
892 const char *value)
893 {
894 }
895
896 /* This variable sets the number of bits in an address that are to be
897 sent in a memory ("M" or "m") packet. Normally, after stripping
898 leading zeros, the entire address would be sent. This variable
899 restricts the address to REMOTE_ADDRESS_SIZE bits. HISTORY: The
900 initial implementation of remote.c restricted the address sent in
901 memory packets to ``host::sizeof long'' bytes - (typically 32
902 bits). Consequently, for 64 bit targets, the upper 32 bits of an
903 address was never sent. Since fixing this bug may cause a break in
904 some remote targets this variable is principly provided to
905 facilitate backward compatibility. */
906
907 static unsigned int remote_address_size;
908
909 /* Temporary to track who currently owns the terminal. See
910 remote_terminal_* for more details. */
911
912 static int remote_async_terminal_ours_p;
913
914 /* The executable file to use for "run" on the remote side. */
915
916 static char *remote_exec_file = "";
917
918 \f
919 /* User configurable variables for the number of characters in a
920 memory read/write packet. MIN (rsa->remote_packet_size,
921 rsa->sizeof_g_packet) is the default. Some targets need smaller
922 values (fifo overruns, et.al.) and some users need larger values
923 (speed up transfers). The variables ``preferred_*'' (the user
924 request), ``current_*'' (what was actually set) and ``forced_*''
925 (Positive - a soft limit, negative - a hard limit). */
926
927 struct memory_packet_config
928 {
929 char *name;
930 long size;
931 int fixed_p;
932 };
933
934 /* Compute the current size of a read/write packet. Since this makes
935 use of ``actual_register_packet_size'' the computation is dynamic. */
936
937 static long
938 get_memory_packet_size (struct memory_packet_config *config)
939 {
940 struct remote_state *rs = get_remote_state ();
941 struct remote_arch_state *rsa = get_remote_arch_state ();
942
943 /* NOTE: The somewhat arbitrary 16k comes from the knowledge (folk
944 law?) that some hosts don't cope very well with large alloca()
945 calls. Eventually the alloca() code will be replaced by calls to
946 xmalloc() and make_cleanups() allowing this restriction to either
947 be lifted or removed. */
948 #ifndef MAX_REMOTE_PACKET_SIZE
949 #define MAX_REMOTE_PACKET_SIZE 16384
950 #endif
951 /* NOTE: 20 ensures we can write at least one byte. */
952 #ifndef MIN_REMOTE_PACKET_SIZE
953 #define MIN_REMOTE_PACKET_SIZE 20
954 #endif
955 long what_they_get;
956 if (config->fixed_p)
957 {
958 if (config->size <= 0)
959 what_they_get = MAX_REMOTE_PACKET_SIZE;
960 else
961 what_they_get = config->size;
962 }
963 else
964 {
965 what_they_get = get_remote_packet_size ();
966 /* Limit the packet to the size specified by the user. */
967 if (config->size > 0
968 && what_they_get > config->size)
969 what_they_get = config->size;
970
971 /* Limit it to the size of the targets ``g'' response unless we have
972 permission from the stub to use a larger packet size. */
973 if (rs->explicit_packet_size == 0
974 && rsa->actual_register_packet_size > 0
975 && what_they_get > rsa->actual_register_packet_size)
976 what_they_get = rsa->actual_register_packet_size;
977 }
978 if (what_they_get > MAX_REMOTE_PACKET_SIZE)
979 what_they_get = MAX_REMOTE_PACKET_SIZE;
980 if (what_they_get < MIN_REMOTE_PACKET_SIZE)
981 what_they_get = MIN_REMOTE_PACKET_SIZE;
982
983 /* Make sure there is room in the global buffer for this packet
984 (including its trailing NUL byte). */
985 if (rs->buf_size < what_they_get + 1)
986 {
987 rs->buf_size = 2 * what_they_get;
988 rs->buf = xrealloc (rs->buf, 2 * what_they_get);
989 }
990
991 return what_they_get;
992 }
993
994 /* Update the size of a read/write packet. If they user wants
995 something really big then do a sanity check. */
996
997 static void
998 set_memory_packet_size (char *args, struct memory_packet_config *config)
999 {
1000 int fixed_p = config->fixed_p;
1001 long size = config->size;
1002
1003 if (args == NULL)
1004 error (_("Argument required (integer, `fixed' or `limited')."));
1005 else if (strcmp (args, "hard") == 0
1006 || strcmp (args, "fixed") == 0)
1007 fixed_p = 1;
1008 else if (strcmp (args, "soft") == 0
1009 || strcmp (args, "limit") == 0)
1010 fixed_p = 0;
1011 else
1012 {
1013 char *end;
1014
1015 size = strtoul (args, &end, 0);
1016 if (args == end)
1017 error (_("Invalid %s (bad syntax)."), config->name);
1018 #if 0
1019 /* Instead of explicitly capping the size of a packet to
1020 MAX_REMOTE_PACKET_SIZE or dissallowing it, the user is
1021 instead allowed to set the size to something arbitrarily
1022 large. */
1023 if (size > MAX_REMOTE_PACKET_SIZE)
1024 error (_("Invalid %s (too large)."), config->name);
1025 #endif
1026 }
1027 /* Extra checks? */
1028 if (fixed_p && !config->fixed_p)
1029 {
1030 if (! query (_("The target may not be able to correctly handle a %s\n"
1031 "of %ld bytes. Change the packet size? "),
1032 config->name, size))
1033 error (_("Packet size not changed."));
1034 }
1035 /* Update the config. */
1036 config->fixed_p = fixed_p;
1037 config->size = size;
1038 }
1039
1040 static void
1041 show_memory_packet_size (struct memory_packet_config *config)
1042 {
1043 printf_filtered (_("The %s is %ld. "), config->name, config->size);
1044 if (config->fixed_p)
1045 printf_filtered (_("Packets are fixed at %ld bytes.\n"),
1046 get_memory_packet_size (config));
1047 else
1048 printf_filtered (_("Packets are limited to %ld bytes.\n"),
1049 get_memory_packet_size (config));
1050 }
1051
1052 static struct memory_packet_config memory_write_packet_config =
1053 {
1054 "memory-write-packet-size",
1055 };
1056
1057 static void
1058 set_memory_write_packet_size (char *args, int from_tty)
1059 {
1060 set_memory_packet_size (args, &memory_write_packet_config);
1061 }
1062
1063 static void
1064 show_memory_write_packet_size (char *args, int from_tty)
1065 {
1066 show_memory_packet_size (&memory_write_packet_config);
1067 }
1068
1069 static long
1070 get_memory_write_packet_size (void)
1071 {
1072 return get_memory_packet_size (&memory_write_packet_config);
1073 }
1074
1075 static struct memory_packet_config memory_read_packet_config =
1076 {
1077 "memory-read-packet-size",
1078 };
1079
1080 static void
1081 set_memory_read_packet_size (char *args, int from_tty)
1082 {
1083 set_memory_packet_size (args, &memory_read_packet_config);
1084 }
1085
1086 static void
1087 show_memory_read_packet_size (char *args, int from_tty)
1088 {
1089 show_memory_packet_size (&memory_read_packet_config);
1090 }
1091
1092 static long
1093 get_memory_read_packet_size (void)
1094 {
1095 long size = get_memory_packet_size (&memory_read_packet_config);
1096
1097 /* FIXME: cagney/1999-11-07: Functions like getpkt() need to get an
1098 extra buffer size argument before the memory read size can be
1099 increased beyond this. */
1100 if (size > get_remote_packet_size ())
1101 size = get_remote_packet_size ();
1102 return size;
1103 }
1104
1105 \f
1106 /* Generic configuration support for packets the stub optionally
1107 supports. Allows the user to specify the use of the packet as well
1108 as allowing GDB to auto-detect support in the remote stub. */
1109
1110 enum packet_support
1111 {
1112 PACKET_SUPPORT_UNKNOWN = 0,
1113 PACKET_ENABLE,
1114 PACKET_DISABLE
1115 };
1116
1117 struct packet_config
1118 {
1119 const char *name;
1120 const char *title;
1121 enum auto_boolean detect;
1122 enum packet_support support;
1123 };
1124
1125 /* Analyze a packet's return value and update the packet config
1126 accordingly. */
1127
1128 enum packet_result
1129 {
1130 PACKET_ERROR,
1131 PACKET_OK,
1132 PACKET_UNKNOWN
1133 };
1134
1135 static void
1136 update_packet_config (struct packet_config *config)
1137 {
1138 switch (config->detect)
1139 {
1140 case AUTO_BOOLEAN_TRUE:
1141 config->support = PACKET_ENABLE;
1142 break;
1143 case AUTO_BOOLEAN_FALSE:
1144 config->support = PACKET_DISABLE;
1145 break;
1146 case AUTO_BOOLEAN_AUTO:
1147 config->support = PACKET_SUPPORT_UNKNOWN;
1148 break;
1149 }
1150 }
1151
1152 static void
1153 show_packet_config_cmd (struct packet_config *config)
1154 {
1155 char *support = "internal-error";
1156
1157 switch (config->support)
1158 {
1159 case PACKET_ENABLE:
1160 support = "enabled";
1161 break;
1162 case PACKET_DISABLE:
1163 support = "disabled";
1164 break;
1165 case PACKET_SUPPORT_UNKNOWN:
1166 support = "unknown";
1167 break;
1168 }
1169 switch (config->detect)
1170 {
1171 case AUTO_BOOLEAN_AUTO:
1172 printf_filtered (_("Support for the `%s' packet "
1173 "is auto-detected, currently %s.\n"),
1174 config->name, support);
1175 break;
1176 case AUTO_BOOLEAN_TRUE:
1177 case AUTO_BOOLEAN_FALSE:
1178 printf_filtered (_("Support for the `%s' packet is currently %s.\n"),
1179 config->name, support);
1180 break;
1181 }
1182 }
1183
1184 static void
1185 add_packet_config_cmd (struct packet_config *config, const char *name,
1186 const char *title, int legacy)
1187 {
1188 char *set_doc;
1189 char *show_doc;
1190 char *cmd_name;
1191
1192 config->name = name;
1193 config->title = title;
1194 config->detect = AUTO_BOOLEAN_AUTO;
1195 config->support = PACKET_SUPPORT_UNKNOWN;
1196 set_doc = xstrprintf ("Set use of remote protocol `%s' (%s) packet",
1197 name, title);
1198 show_doc = xstrprintf ("Show current use of remote "
1199 "protocol `%s' (%s) packet",
1200 name, title);
1201 /* set/show TITLE-packet {auto,on,off} */
1202 cmd_name = xstrprintf ("%s-packet", title);
1203 add_setshow_auto_boolean_cmd (cmd_name, class_obscure,
1204 &config->detect, set_doc,
1205 show_doc, NULL, /* help_doc */
1206 set_remote_protocol_packet_cmd,
1207 show_remote_protocol_packet_cmd,
1208 &remote_set_cmdlist, &remote_show_cmdlist);
1209 /* The command code copies the documentation strings. */
1210 xfree (set_doc);
1211 xfree (show_doc);
1212 /* set/show remote NAME-packet {auto,on,off} -- legacy. */
1213 if (legacy)
1214 {
1215 char *legacy_name;
1216
1217 legacy_name = xstrprintf ("%s-packet", name);
1218 add_alias_cmd (legacy_name, cmd_name, class_obscure, 0,
1219 &remote_set_cmdlist);
1220 add_alias_cmd (legacy_name, cmd_name, class_obscure, 0,
1221 &remote_show_cmdlist);
1222 }
1223 }
1224
1225 static enum packet_result
1226 packet_check_result (const char *buf)
1227 {
1228 if (buf[0] != '\0')
1229 {
1230 /* The stub recognized the packet request. Check that the
1231 operation succeeded. */
1232 if (buf[0] == 'E'
1233 && isxdigit (buf[1]) && isxdigit (buf[2])
1234 && buf[3] == '\0')
1235 /* "Enn" - definitly an error. */
1236 return PACKET_ERROR;
1237
1238 /* Always treat "E." as an error. This will be used for
1239 more verbose error messages, such as E.memtypes. */
1240 if (buf[0] == 'E' && buf[1] == '.')
1241 return PACKET_ERROR;
1242
1243 /* The packet may or may not be OK. Just assume it is. */
1244 return PACKET_OK;
1245 }
1246 else
1247 /* The stub does not support the packet. */
1248 return PACKET_UNKNOWN;
1249 }
1250
1251 static enum packet_result
1252 packet_ok (const char *buf, struct packet_config *config)
1253 {
1254 enum packet_result result;
1255
1256 result = packet_check_result (buf);
1257 switch (result)
1258 {
1259 case PACKET_OK:
1260 case PACKET_ERROR:
1261 /* The stub recognized the packet request. */
1262 switch (config->support)
1263 {
1264 case PACKET_SUPPORT_UNKNOWN:
1265 if (remote_debug)
1266 fprintf_unfiltered (gdb_stdlog,
1267 "Packet %s (%s) is supported\n",
1268 config->name, config->title);
1269 config->support = PACKET_ENABLE;
1270 break;
1271 case PACKET_DISABLE:
1272 internal_error (__FILE__, __LINE__,
1273 _("packet_ok: attempt to use a disabled packet"));
1274 break;
1275 case PACKET_ENABLE:
1276 break;
1277 }
1278 break;
1279 case PACKET_UNKNOWN:
1280 /* The stub does not support the packet. */
1281 switch (config->support)
1282 {
1283 case PACKET_ENABLE:
1284 if (config->detect == AUTO_BOOLEAN_AUTO)
1285 /* If the stub previously indicated that the packet was
1286 supported then there is a protocol error.. */
1287 error (_("Protocol error: %s (%s) conflicting enabled responses."),
1288 config->name, config->title);
1289 else
1290 /* The user set it wrong. */
1291 error (_("Enabled packet %s (%s) not recognized by stub"),
1292 config->name, config->title);
1293 break;
1294 case PACKET_SUPPORT_UNKNOWN:
1295 if (remote_debug)
1296 fprintf_unfiltered (gdb_stdlog,
1297 "Packet %s (%s) is NOT supported\n",
1298 config->name, config->title);
1299 config->support = PACKET_DISABLE;
1300 break;
1301 case PACKET_DISABLE:
1302 break;
1303 }
1304 break;
1305 }
1306
1307 return result;
1308 }
1309
1310 enum {
1311 PACKET_vCont = 0,
1312 PACKET_X,
1313 PACKET_qSymbol,
1314 PACKET_P,
1315 PACKET_p,
1316 PACKET_Z0,
1317 PACKET_Z1,
1318 PACKET_Z2,
1319 PACKET_Z3,
1320 PACKET_Z4,
1321 PACKET_vFile_open,
1322 PACKET_vFile_pread,
1323 PACKET_vFile_pwrite,
1324 PACKET_vFile_close,
1325 PACKET_vFile_unlink,
1326 PACKET_vFile_readlink,
1327 PACKET_qXfer_auxv,
1328 PACKET_qXfer_features,
1329 PACKET_qXfer_libraries,
1330 PACKET_qXfer_libraries_svr4,
1331 PACKET_qXfer_memory_map,
1332 PACKET_qXfer_spu_read,
1333 PACKET_qXfer_spu_write,
1334 PACKET_qXfer_osdata,
1335 PACKET_qXfer_threads,
1336 PACKET_qXfer_statictrace_read,
1337 PACKET_qXfer_traceframe_info,
1338 PACKET_qXfer_uib,
1339 PACKET_qGetTIBAddr,
1340 PACKET_qGetTLSAddr,
1341 PACKET_qSupported,
1342 PACKET_qTStatus,
1343 PACKET_QPassSignals,
1344 PACKET_QProgramSignals,
1345 PACKET_qSearch_memory,
1346 PACKET_vAttach,
1347 PACKET_vRun,
1348 PACKET_QStartNoAckMode,
1349 PACKET_vKill,
1350 PACKET_qXfer_siginfo_read,
1351 PACKET_qXfer_siginfo_write,
1352 PACKET_qAttached,
1353 PACKET_ConditionalTracepoints,
1354 PACKET_ConditionalBreakpoints,
1355 PACKET_BreakpointCommands,
1356 PACKET_FastTracepoints,
1357 PACKET_StaticTracepoints,
1358 PACKET_InstallInTrace,
1359 PACKET_bc,
1360 PACKET_bs,
1361 PACKET_TracepointSource,
1362 PACKET_QAllow,
1363 PACKET_qXfer_fdpic,
1364 PACKET_QDisableRandomization,
1365 PACKET_QAgent,
1366 PACKET_QTBuffer_size,
1367 PACKET_Qbtrace_off,
1368 PACKET_Qbtrace_bts,
1369 PACKET_qXfer_btrace,
1370 PACKET_MAX
1371 };
1372
1373 static struct packet_config remote_protocol_packets[PACKET_MAX];
1374
1375 static void
1376 set_remote_protocol_packet_cmd (char *args, int from_tty,
1377 struct cmd_list_element *c)
1378 {
1379 struct packet_config *packet;
1380
1381 for (packet = remote_protocol_packets;
1382 packet < &remote_protocol_packets[PACKET_MAX];
1383 packet++)
1384 {
1385 if (&packet->detect == c->var)
1386 {
1387 update_packet_config (packet);
1388 return;
1389 }
1390 }
1391 internal_error (__FILE__, __LINE__, _("Could not find config for %s"),
1392 c->name);
1393 }
1394
1395 static void
1396 show_remote_protocol_packet_cmd (struct ui_file *file, int from_tty,
1397 struct cmd_list_element *c,
1398 const char *value)
1399 {
1400 struct packet_config *packet;
1401
1402 for (packet = remote_protocol_packets;
1403 packet < &remote_protocol_packets[PACKET_MAX];
1404 packet++)
1405 {
1406 if (&packet->detect == c->var)
1407 {
1408 show_packet_config_cmd (packet);
1409 return;
1410 }
1411 }
1412 internal_error (__FILE__, __LINE__, _("Could not find config for %s"),
1413 c->name);
1414 }
1415
1416 /* Should we try one of the 'Z' requests? */
1417
1418 enum Z_packet_type
1419 {
1420 Z_PACKET_SOFTWARE_BP,
1421 Z_PACKET_HARDWARE_BP,
1422 Z_PACKET_WRITE_WP,
1423 Z_PACKET_READ_WP,
1424 Z_PACKET_ACCESS_WP,
1425 NR_Z_PACKET_TYPES
1426 };
1427
1428 /* For compatibility with older distributions. Provide a ``set remote
1429 Z-packet ...'' command that updates all the Z packet types. */
1430
1431 static enum auto_boolean remote_Z_packet_detect;
1432
1433 static void
1434 set_remote_protocol_Z_packet_cmd (char *args, int from_tty,
1435 struct cmd_list_element *c)
1436 {
1437 int i;
1438
1439 for (i = 0; i < NR_Z_PACKET_TYPES; i++)
1440 {
1441 remote_protocol_packets[PACKET_Z0 + i].detect = remote_Z_packet_detect;
1442 update_packet_config (&remote_protocol_packets[PACKET_Z0 + i]);
1443 }
1444 }
1445
1446 static void
1447 show_remote_protocol_Z_packet_cmd (struct ui_file *file, int from_tty,
1448 struct cmd_list_element *c,
1449 const char *value)
1450 {
1451 int i;
1452
1453 for (i = 0; i < NR_Z_PACKET_TYPES; i++)
1454 {
1455 show_packet_config_cmd (&remote_protocol_packets[PACKET_Z0 + i]);
1456 }
1457 }
1458
1459 /* Tokens for use by the asynchronous signal handlers for SIGINT. */
1460 static struct async_signal_handler *async_sigint_remote_twice_token;
1461 static struct async_signal_handler *async_sigint_remote_token;
1462
1463 \f
1464 /* Asynchronous signal handle registered as event loop source for
1465 when we have pending events ready to be passed to the core. */
1466
1467 static struct async_event_handler *remote_async_inferior_event_token;
1468
1469 \f
1470
1471 static ptid_t magic_null_ptid;
1472 static ptid_t not_sent_ptid;
1473 static ptid_t any_thread_ptid;
1474
1475 /* Find out if the stub attached to PID (and hence GDB should offer to
1476 detach instead of killing it when bailing out). */
1477
1478 static int
1479 remote_query_attached (int pid)
1480 {
1481 struct remote_state *rs = get_remote_state ();
1482 size_t size = get_remote_packet_size ();
1483
1484 if (remote_protocol_packets[PACKET_qAttached].support == PACKET_DISABLE)
1485 return 0;
1486
1487 if (remote_multi_process_p (rs))
1488 xsnprintf (rs->buf, size, "qAttached:%x", pid);
1489 else
1490 xsnprintf (rs->buf, size, "qAttached");
1491
1492 putpkt (rs->buf);
1493 getpkt (&rs->buf, &rs->buf_size, 0);
1494
1495 switch (packet_ok (rs->buf,
1496 &remote_protocol_packets[PACKET_qAttached]))
1497 {
1498 case PACKET_OK:
1499 if (strcmp (rs->buf, "1") == 0)
1500 return 1;
1501 break;
1502 case PACKET_ERROR:
1503 warning (_("Remote failure reply: %s"), rs->buf);
1504 break;
1505 case PACKET_UNKNOWN:
1506 break;
1507 }
1508
1509 return 0;
1510 }
1511
1512 /* Add PID to GDB's inferior table. If FAKE_PID_P is true, then PID
1513 has been invented by GDB, instead of reported by the target. Since
1514 we can be connected to a remote system before before knowing about
1515 any inferior, mark the target with execution when we find the first
1516 inferior. If ATTACHED is 1, then we had just attached to this
1517 inferior. If it is 0, then we just created this inferior. If it
1518 is -1, then try querying the remote stub to find out if it had
1519 attached to the inferior or not. */
1520
1521 static struct inferior *
1522 remote_add_inferior (int fake_pid_p, int pid, int attached)
1523 {
1524 struct inferior *inf;
1525
1526 /* Check whether this process we're learning about is to be
1527 considered attached, or if is to be considered to have been
1528 spawned by the stub. */
1529 if (attached == -1)
1530 attached = remote_query_attached (pid);
1531
1532 if (gdbarch_has_global_solist (target_gdbarch ()))
1533 {
1534 /* If the target shares code across all inferiors, then every
1535 attach adds a new inferior. */
1536 inf = add_inferior (pid);
1537
1538 /* ... and every inferior is bound to the same program space.
1539 However, each inferior may still have its own address
1540 space. */
1541 inf->aspace = maybe_new_address_space ();
1542 inf->pspace = current_program_space;
1543 }
1544 else
1545 {
1546 /* In the traditional debugging scenario, there's a 1-1 match
1547 between program/address spaces. We simply bind the inferior
1548 to the program space's address space. */
1549 inf = current_inferior ();
1550 inferior_appeared (inf, pid);
1551 }
1552
1553 inf->attach_flag = attached;
1554 inf->fake_pid_p = fake_pid_p;
1555
1556 return inf;
1557 }
1558
1559 /* Add thread PTID to GDB's thread list. Tag it as executing/running
1560 according to RUNNING. */
1561
1562 static void
1563 remote_add_thread (ptid_t ptid, int running)
1564 {
1565 struct remote_state *rs = get_remote_state ();
1566
1567 /* GDB historically didn't pull threads in the initial connection
1568 setup. If the remote target doesn't even have a concept of
1569 threads (e.g., a bare-metal target), even if internally we
1570 consider that a single-threaded target, mentioning a new thread
1571 might be confusing to the user. Be silent then, preserving the
1572 age old behavior. */
1573 if (rs->starting_up)
1574 add_thread_silent (ptid);
1575 else
1576 add_thread (ptid);
1577
1578 set_executing (ptid, running);
1579 set_running (ptid, running);
1580 }
1581
1582 /* Come here when we learn about a thread id from the remote target.
1583 It may be the first time we hear about such thread, so take the
1584 opportunity to add it to GDB's thread list. In case this is the
1585 first time we're noticing its corresponding inferior, add it to
1586 GDB's inferior list as well. */
1587
1588 static void
1589 remote_notice_new_inferior (ptid_t currthread, int running)
1590 {
1591 /* If this is a new thread, add it to GDB's thread list.
1592 If we leave it up to WFI to do this, bad things will happen. */
1593
1594 if (in_thread_list (currthread) && is_exited (currthread))
1595 {
1596 /* We're seeing an event on a thread id we knew had exited.
1597 This has to be a new thread reusing the old id. Add it. */
1598 remote_add_thread (currthread, running);
1599 return;
1600 }
1601
1602 if (!in_thread_list (currthread))
1603 {
1604 struct inferior *inf = NULL;
1605 int pid = ptid_get_pid (currthread);
1606
1607 if (ptid_is_pid (inferior_ptid)
1608 && pid == ptid_get_pid (inferior_ptid))
1609 {
1610 /* inferior_ptid has no thread member yet. This can happen
1611 with the vAttach -> remote_wait,"TAAthread:" path if the
1612 stub doesn't support qC. This is the first stop reported
1613 after an attach, so this is the main thread. Update the
1614 ptid in the thread list. */
1615 if (in_thread_list (pid_to_ptid (pid)))
1616 thread_change_ptid (inferior_ptid, currthread);
1617 else
1618 {
1619 remote_add_thread (currthread, running);
1620 inferior_ptid = currthread;
1621 }
1622 return;
1623 }
1624
1625 if (ptid_equal (magic_null_ptid, inferior_ptid))
1626 {
1627 /* inferior_ptid is not set yet. This can happen with the
1628 vRun -> remote_wait,"TAAthread:" path if the stub
1629 doesn't support qC. This is the first stop reported
1630 after an attach, so this is the main thread. Update the
1631 ptid in the thread list. */
1632 thread_change_ptid (inferior_ptid, currthread);
1633 return;
1634 }
1635
1636 /* When connecting to a target remote, or to a target
1637 extended-remote which already was debugging an inferior, we
1638 may not know about it yet. Add it before adding its child
1639 thread, so notifications are emitted in a sensible order. */
1640 if (!in_inferior_list (ptid_get_pid (currthread)))
1641 {
1642 struct remote_state *rs = get_remote_state ();
1643 int fake_pid_p = !remote_multi_process_p (rs);
1644
1645 inf = remote_add_inferior (fake_pid_p,
1646 ptid_get_pid (currthread), -1);
1647 }
1648
1649 /* This is really a new thread. Add it. */
1650 remote_add_thread (currthread, running);
1651
1652 /* If we found a new inferior, let the common code do whatever
1653 it needs to with it (e.g., read shared libraries, insert
1654 breakpoints), unless we're just setting up an all-stop
1655 connection. */
1656 if (inf != NULL)
1657 {
1658 struct remote_state *rs = get_remote_state ();
1659
1660 if (non_stop || !rs->starting_up)
1661 notice_new_inferior (currthread, running, 0);
1662 }
1663 }
1664 }
1665
1666 /* Return the private thread data, creating it if necessary. */
1667
1668 static struct private_thread_info *
1669 demand_private_info (ptid_t ptid)
1670 {
1671 struct thread_info *info = find_thread_ptid (ptid);
1672
1673 gdb_assert (info);
1674
1675 if (!info->private)
1676 {
1677 info->private = xmalloc (sizeof (*(info->private)));
1678 info->private_dtor = free_private_thread_info;
1679 info->private->core = -1;
1680 info->private->extra = 0;
1681 }
1682
1683 return info->private;
1684 }
1685
1686 /* Call this function as a result of
1687 1) A halt indication (T packet) containing a thread id
1688 2) A direct query of currthread
1689 3) Successful execution of set thread */
1690
1691 static void
1692 record_currthread (struct remote_state *rs, ptid_t currthread)
1693 {
1694 rs->general_thread = currthread;
1695 }
1696
1697 /* If 'QPassSignals' is supported, tell the remote stub what signals
1698 it can simply pass through to the inferior without reporting. */
1699
1700 static void
1701 remote_pass_signals (int numsigs, unsigned char *pass_signals)
1702 {
1703 if (remote_protocol_packets[PACKET_QPassSignals].support != PACKET_DISABLE)
1704 {
1705 char *pass_packet, *p;
1706 int count = 0, i;
1707 struct remote_state *rs = get_remote_state ();
1708
1709 gdb_assert (numsigs < 256);
1710 for (i = 0; i < numsigs; i++)
1711 {
1712 if (pass_signals[i])
1713 count++;
1714 }
1715 pass_packet = xmalloc (count * 3 + strlen ("QPassSignals:") + 1);
1716 strcpy (pass_packet, "QPassSignals:");
1717 p = pass_packet + strlen (pass_packet);
1718 for (i = 0; i < numsigs; i++)
1719 {
1720 if (pass_signals[i])
1721 {
1722 if (i >= 16)
1723 *p++ = tohex (i >> 4);
1724 *p++ = tohex (i & 15);
1725 if (count)
1726 *p++ = ';';
1727 else
1728 break;
1729 count--;
1730 }
1731 }
1732 *p = 0;
1733 if (!rs->last_pass_packet || strcmp (rs->last_pass_packet, pass_packet))
1734 {
1735 char *buf = rs->buf;
1736
1737 putpkt (pass_packet);
1738 getpkt (&rs->buf, &rs->buf_size, 0);
1739 packet_ok (buf, &remote_protocol_packets[PACKET_QPassSignals]);
1740 if (rs->last_pass_packet)
1741 xfree (rs->last_pass_packet);
1742 rs->last_pass_packet = pass_packet;
1743 }
1744 else
1745 xfree (pass_packet);
1746 }
1747 }
1748
1749 /* If 'QProgramSignals' is supported, tell the remote stub what
1750 signals it should pass through to the inferior when detaching. */
1751
1752 static void
1753 remote_program_signals (int numsigs, unsigned char *signals)
1754 {
1755 if (remote_protocol_packets[PACKET_QProgramSignals].support != PACKET_DISABLE)
1756 {
1757 char *packet, *p;
1758 int count = 0, i;
1759 struct remote_state *rs = get_remote_state ();
1760
1761 gdb_assert (numsigs < 256);
1762 for (i = 0; i < numsigs; i++)
1763 {
1764 if (signals[i])
1765 count++;
1766 }
1767 packet = xmalloc (count * 3 + strlen ("QProgramSignals:") + 1);
1768 strcpy (packet, "QProgramSignals:");
1769 p = packet + strlen (packet);
1770 for (i = 0; i < numsigs; i++)
1771 {
1772 if (signal_pass_state (i))
1773 {
1774 if (i >= 16)
1775 *p++ = tohex (i >> 4);
1776 *p++ = tohex (i & 15);
1777 if (count)
1778 *p++ = ';';
1779 else
1780 break;
1781 count--;
1782 }
1783 }
1784 *p = 0;
1785 if (!rs->last_program_signals_packet
1786 || strcmp (rs->last_program_signals_packet, packet) != 0)
1787 {
1788 char *buf = rs->buf;
1789
1790 putpkt (packet);
1791 getpkt (&rs->buf, &rs->buf_size, 0);
1792 packet_ok (buf, &remote_protocol_packets[PACKET_QProgramSignals]);
1793 xfree (rs->last_program_signals_packet);
1794 rs->last_program_signals_packet = packet;
1795 }
1796 else
1797 xfree (packet);
1798 }
1799 }
1800
1801 /* If PTID is MAGIC_NULL_PTID, don't set any thread. If PTID is
1802 MINUS_ONE_PTID, set the thread to -1, so the stub returns the
1803 thread. If GEN is set, set the general thread, if not, then set
1804 the step/continue thread. */
1805 static void
1806 set_thread (struct ptid ptid, int gen)
1807 {
1808 struct remote_state *rs = get_remote_state ();
1809 ptid_t state = gen ? rs->general_thread : rs->continue_thread;
1810 char *buf = rs->buf;
1811 char *endbuf = rs->buf + get_remote_packet_size ();
1812
1813 if (ptid_equal (state, ptid))
1814 return;
1815
1816 *buf++ = 'H';
1817 *buf++ = gen ? 'g' : 'c';
1818 if (ptid_equal (ptid, magic_null_ptid))
1819 xsnprintf (buf, endbuf - buf, "0");
1820 else if (ptid_equal (ptid, any_thread_ptid))
1821 xsnprintf (buf, endbuf - buf, "0");
1822 else if (ptid_equal (ptid, minus_one_ptid))
1823 xsnprintf (buf, endbuf - buf, "-1");
1824 else
1825 write_ptid (buf, endbuf, ptid);
1826 putpkt (rs->buf);
1827 getpkt (&rs->buf, &rs->buf_size, 0);
1828 if (gen)
1829 rs->general_thread = ptid;
1830 else
1831 rs->continue_thread = ptid;
1832 }
1833
1834 static void
1835 set_general_thread (struct ptid ptid)
1836 {
1837 set_thread (ptid, 1);
1838 }
1839
1840 static void
1841 set_continue_thread (struct ptid ptid)
1842 {
1843 set_thread (ptid, 0);
1844 }
1845
1846 /* Change the remote current process. Which thread within the process
1847 ends up selected isn't important, as long as it is the same process
1848 as what INFERIOR_PTID points to.
1849
1850 This comes from that fact that there is no explicit notion of
1851 "selected process" in the protocol. The selected process for
1852 general operations is the process the selected general thread
1853 belongs to. */
1854
1855 static void
1856 set_general_process (void)
1857 {
1858 struct remote_state *rs = get_remote_state ();
1859
1860 /* If the remote can't handle multiple processes, don't bother. */
1861 if (!rs->extended || !remote_multi_process_p (rs))
1862 return;
1863
1864 /* We only need to change the remote current thread if it's pointing
1865 at some other process. */
1866 if (ptid_get_pid (rs->general_thread) != ptid_get_pid (inferior_ptid))
1867 set_general_thread (inferior_ptid);
1868 }
1869
1870 \f
1871 /* Return nonzero if the thread PTID is still alive on the remote
1872 system. */
1873
1874 static int
1875 remote_thread_alive (struct target_ops *ops, ptid_t ptid)
1876 {
1877 struct remote_state *rs = get_remote_state ();
1878 char *p, *endp;
1879
1880 if (ptid_equal (ptid, magic_null_ptid))
1881 /* The main thread is always alive. */
1882 return 1;
1883
1884 if (ptid_get_pid (ptid) != 0 && ptid_get_tid (ptid) == 0)
1885 /* The main thread is always alive. This can happen after a
1886 vAttach, if the remote side doesn't support
1887 multi-threading. */
1888 return 1;
1889
1890 p = rs->buf;
1891 endp = rs->buf + get_remote_packet_size ();
1892
1893 *p++ = 'T';
1894 write_ptid (p, endp, ptid);
1895
1896 putpkt (rs->buf);
1897 getpkt (&rs->buf, &rs->buf_size, 0);
1898 return (rs->buf[0] == 'O' && rs->buf[1] == 'K');
1899 }
1900
1901 /* About these extended threadlist and threadinfo packets. They are
1902 variable length packets but, the fields within them are often fixed
1903 length. They are redundent enough to send over UDP as is the
1904 remote protocol in general. There is a matching unit test module
1905 in libstub. */
1906
1907 /* WARNING: This threadref data structure comes from the remote O.S.,
1908 libstub protocol encoding, and remote.c. It is not particularly
1909 changable. */
1910
1911 /* Right now, the internal structure is int. We want it to be bigger.
1912 Plan to fix this. */
1913
1914 typedef int gdb_threadref; /* Internal GDB thread reference. */
1915
1916 /* gdb_ext_thread_info is an internal GDB data structure which is
1917 equivalent to the reply of the remote threadinfo packet. */
1918
1919 struct gdb_ext_thread_info
1920 {
1921 threadref threadid; /* External form of thread reference. */
1922 int active; /* Has state interesting to GDB?
1923 regs, stack. */
1924 char display[256]; /* Brief state display, name,
1925 blocked/suspended. */
1926 char shortname[32]; /* To be used to name threads. */
1927 char more_display[256]; /* Long info, statistics, queue depth,
1928 whatever. */
1929 };
1930
1931 /* The volume of remote transfers can be limited by submitting
1932 a mask containing bits specifying the desired information.
1933 Use a union of these values as the 'selection' parameter to
1934 get_thread_info. FIXME: Make these TAG names more thread specific. */
1935
1936 #define TAG_THREADID 1
1937 #define TAG_EXISTS 2
1938 #define TAG_DISPLAY 4
1939 #define TAG_THREADNAME 8
1940 #define TAG_MOREDISPLAY 16
1941
1942 #define BUF_THREAD_ID_SIZE (OPAQUETHREADBYTES * 2)
1943
1944 char *unpack_varlen_hex (char *buff, ULONGEST *result);
1945
1946 static char *unpack_nibble (char *buf, int *val);
1947
1948 static char *pack_nibble (char *buf, int nibble);
1949
1950 static char *pack_hex_byte (char *pkt, int /* unsigned char */ byte);
1951
1952 static char *unpack_byte (char *buf, int *value);
1953
1954 static char *pack_int (char *buf, int value);
1955
1956 static char *unpack_int (char *buf, int *value);
1957
1958 static char *unpack_string (char *src, char *dest, int length);
1959
1960 static char *pack_threadid (char *pkt, threadref *id);
1961
1962 static char *unpack_threadid (char *inbuf, threadref *id);
1963
1964 void int_to_threadref (threadref *id, int value);
1965
1966 static int threadref_to_int (threadref *ref);
1967
1968 static void copy_threadref (threadref *dest, threadref *src);
1969
1970 static int threadmatch (threadref *dest, threadref *src);
1971
1972 static char *pack_threadinfo_request (char *pkt, int mode,
1973 threadref *id);
1974
1975 static int remote_unpack_thread_info_response (char *pkt,
1976 threadref *expectedref,
1977 struct gdb_ext_thread_info
1978 *info);
1979
1980
1981 static int remote_get_threadinfo (threadref *threadid,
1982 int fieldset, /*TAG mask */
1983 struct gdb_ext_thread_info *info);
1984
1985 static char *pack_threadlist_request (char *pkt, int startflag,
1986 int threadcount,
1987 threadref *nextthread);
1988
1989 static int parse_threadlist_response (char *pkt,
1990 int result_limit,
1991 threadref *original_echo,
1992 threadref *resultlist,
1993 int *doneflag);
1994
1995 static int remote_get_threadlist (int startflag,
1996 threadref *nextthread,
1997 int result_limit,
1998 int *done,
1999 int *result_count,
2000 threadref *threadlist);
2001
2002 typedef int (*rmt_thread_action) (threadref *ref, void *context);
2003
2004 static int remote_threadlist_iterator (rmt_thread_action stepfunction,
2005 void *context, int looplimit);
2006
2007 static int remote_newthread_step (threadref *ref, void *context);
2008
2009
2010 /* Write a PTID to BUF. ENDBUF points to one-passed-the-end of the
2011 buffer we're allowed to write to. Returns
2012 BUF+CHARACTERS_WRITTEN. */
2013
2014 static char *
2015 write_ptid (char *buf, const char *endbuf, ptid_t ptid)
2016 {
2017 int pid, tid;
2018 struct remote_state *rs = get_remote_state ();
2019
2020 if (remote_multi_process_p (rs))
2021 {
2022 pid = ptid_get_pid (ptid);
2023 if (pid < 0)
2024 buf += xsnprintf (buf, endbuf - buf, "p-%x.", -pid);
2025 else
2026 buf += xsnprintf (buf, endbuf - buf, "p%x.", pid);
2027 }
2028 tid = ptid_get_tid (ptid);
2029 if (tid < 0)
2030 buf += xsnprintf (buf, endbuf - buf, "-%x", -tid);
2031 else
2032 buf += xsnprintf (buf, endbuf - buf, "%x", tid);
2033
2034 return buf;
2035 }
2036
2037 /* Extract a PTID from BUF. If non-null, OBUF is set to the to one
2038 passed the last parsed char. Returns null_ptid on error. */
2039
2040 static ptid_t
2041 read_ptid (char *buf, char **obuf)
2042 {
2043 char *p = buf;
2044 char *pp;
2045 ULONGEST pid = 0, tid = 0;
2046
2047 if (*p == 'p')
2048 {
2049 /* Multi-process ptid. */
2050 pp = unpack_varlen_hex (p + 1, &pid);
2051 if (*pp != '.')
2052 error (_("invalid remote ptid: %s"), p);
2053
2054 p = pp;
2055 pp = unpack_varlen_hex (p + 1, &tid);
2056 if (obuf)
2057 *obuf = pp;
2058 return ptid_build (pid, 0, tid);
2059 }
2060
2061 /* No multi-process. Just a tid. */
2062 pp = unpack_varlen_hex (p, &tid);
2063
2064 /* Since the stub is not sending a process id, then default to
2065 what's in inferior_ptid, unless it's null at this point. If so,
2066 then since there's no way to know the pid of the reported
2067 threads, use the magic number. */
2068 if (ptid_equal (inferior_ptid, null_ptid))
2069 pid = ptid_get_pid (magic_null_ptid);
2070 else
2071 pid = ptid_get_pid (inferior_ptid);
2072
2073 if (obuf)
2074 *obuf = pp;
2075 return ptid_build (pid, 0, tid);
2076 }
2077
2078 /* Encode 64 bits in 16 chars of hex. */
2079
2080 static const char hexchars[] = "0123456789abcdef";
2081
2082 static int
2083 ishex (int ch, int *val)
2084 {
2085 if ((ch >= 'a') && (ch <= 'f'))
2086 {
2087 *val = ch - 'a' + 10;
2088 return 1;
2089 }
2090 if ((ch >= 'A') && (ch <= 'F'))
2091 {
2092 *val = ch - 'A' + 10;
2093 return 1;
2094 }
2095 if ((ch >= '0') && (ch <= '9'))
2096 {
2097 *val = ch - '0';
2098 return 1;
2099 }
2100 return 0;
2101 }
2102
2103 static int
2104 stubhex (int ch)
2105 {
2106 if (ch >= 'a' && ch <= 'f')
2107 return ch - 'a' + 10;
2108 if (ch >= '0' && ch <= '9')
2109 return ch - '0';
2110 if (ch >= 'A' && ch <= 'F')
2111 return ch - 'A' + 10;
2112 return -1;
2113 }
2114
2115 static int
2116 stub_unpack_int (char *buff, int fieldlength)
2117 {
2118 int nibble;
2119 int retval = 0;
2120
2121 while (fieldlength)
2122 {
2123 nibble = stubhex (*buff++);
2124 retval |= nibble;
2125 fieldlength--;
2126 if (fieldlength)
2127 retval = retval << 4;
2128 }
2129 return retval;
2130 }
2131
2132 char *
2133 unpack_varlen_hex (char *buff, /* packet to parse */
2134 ULONGEST *result)
2135 {
2136 int nibble;
2137 ULONGEST retval = 0;
2138
2139 while (ishex (*buff, &nibble))
2140 {
2141 buff++;
2142 retval = retval << 4;
2143 retval |= nibble & 0x0f;
2144 }
2145 *result = retval;
2146 return buff;
2147 }
2148
2149 static char *
2150 unpack_nibble (char *buf, int *val)
2151 {
2152 *val = fromhex (*buf++);
2153 return buf;
2154 }
2155
2156 static char *
2157 pack_nibble (char *buf, int nibble)
2158 {
2159 *buf++ = hexchars[(nibble & 0x0f)];
2160 return buf;
2161 }
2162
2163 static char *
2164 pack_hex_byte (char *pkt, int byte)
2165 {
2166 *pkt++ = hexchars[(byte >> 4) & 0xf];
2167 *pkt++ = hexchars[(byte & 0xf)];
2168 return pkt;
2169 }
2170
2171 static char *
2172 unpack_byte (char *buf, int *value)
2173 {
2174 *value = stub_unpack_int (buf, 2);
2175 return buf + 2;
2176 }
2177
2178 static char *
2179 pack_int (char *buf, int value)
2180 {
2181 buf = pack_hex_byte (buf, (value >> 24) & 0xff);
2182 buf = pack_hex_byte (buf, (value >> 16) & 0xff);
2183 buf = pack_hex_byte (buf, (value >> 8) & 0x0ff);
2184 buf = pack_hex_byte (buf, (value & 0xff));
2185 return buf;
2186 }
2187
2188 static char *
2189 unpack_int (char *buf, int *value)
2190 {
2191 *value = stub_unpack_int (buf, 8);
2192 return buf + 8;
2193 }
2194
2195 #if 0 /* Currently unused, uncomment when needed. */
2196 static char *pack_string (char *pkt, char *string);
2197
2198 static char *
2199 pack_string (char *pkt, char *string)
2200 {
2201 char ch;
2202 int len;
2203
2204 len = strlen (string);
2205 if (len > 200)
2206 len = 200; /* Bigger than most GDB packets, junk??? */
2207 pkt = pack_hex_byte (pkt, len);
2208 while (len-- > 0)
2209 {
2210 ch = *string++;
2211 if ((ch == '\0') || (ch == '#'))
2212 ch = '*'; /* Protect encapsulation. */
2213 *pkt++ = ch;
2214 }
2215 return pkt;
2216 }
2217 #endif /* 0 (unused) */
2218
2219 static char *
2220 unpack_string (char *src, char *dest, int length)
2221 {
2222 while (length--)
2223 *dest++ = *src++;
2224 *dest = '\0';
2225 return src;
2226 }
2227
2228 static char *
2229 pack_threadid (char *pkt, threadref *id)
2230 {
2231 char *limit;
2232 unsigned char *altid;
2233
2234 altid = (unsigned char *) id;
2235 limit = pkt + BUF_THREAD_ID_SIZE;
2236 while (pkt < limit)
2237 pkt = pack_hex_byte (pkt, *altid++);
2238 return pkt;
2239 }
2240
2241
2242 static char *
2243 unpack_threadid (char *inbuf, threadref *id)
2244 {
2245 char *altref;
2246 char *limit = inbuf + BUF_THREAD_ID_SIZE;
2247 int x, y;
2248
2249 altref = (char *) id;
2250
2251 while (inbuf < limit)
2252 {
2253 x = stubhex (*inbuf++);
2254 y = stubhex (*inbuf++);
2255 *altref++ = (x << 4) | y;
2256 }
2257 return inbuf;
2258 }
2259
2260 /* Externally, threadrefs are 64 bits but internally, they are still
2261 ints. This is due to a mismatch of specifications. We would like
2262 to use 64bit thread references internally. This is an adapter
2263 function. */
2264
2265 void
2266 int_to_threadref (threadref *id, int value)
2267 {
2268 unsigned char *scan;
2269
2270 scan = (unsigned char *) id;
2271 {
2272 int i = 4;
2273 while (i--)
2274 *scan++ = 0;
2275 }
2276 *scan++ = (value >> 24) & 0xff;
2277 *scan++ = (value >> 16) & 0xff;
2278 *scan++ = (value >> 8) & 0xff;
2279 *scan++ = (value & 0xff);
2280 }
2281
2282 static int
2283 threadref_to_int (threadref *ref)
2284 {
2285 int i, value = 0;
2286 unsigned char *scan;
2287
2288 scan = *ref;
2289 scan += 4;
2290 i = 4;
2291 while (i-- > 0)
2292 value = (value << 8) | ((*scan++) & 0xff);
2293 return value;
2294 }
2295
2296 static void
2297 copy_threadref (threadref *dest, threadref *src)
2298 {
2299 int i;
2300 unsigned char *csrc, *cdest;
2301
2302 csrc = (unsigned char *) src;
2303 cdest = (unsigned char *) dest;
2304 i = 8;
2305 while (i--)
2306 *cdest++ = *csrc++;
2307 }
2308
2309 static int
2310 threadmatch (threadref *dest, threadref *src)
2311 {
2312 /* Things are broken right now, so just assume we got a match. */
2313 #if 0
2314 unsigned char *srcp, *destp;
2315 int i, result;
2316 srcp = (char *) src;
2317 destp = (char *) dest;
2318
2319 result = 1;
2320 while (i-- > 0)
2321 result &= (*srcp++ == *destp++) ? 1 : 0;
2322 return result;
2323 #endif
2324 return 1;
2325 }
2326
2327 /*
2328 threadid:1, # always request threadid
2329 context_exists:2,
2330 display:4,
2331 unique_name:8,
2332 more_display:16
2333 */
2334
2335 /* Encoding: 'Q':8,'P':8,mask:32,threadid:64 */
2336
2337 static char *
2338 pack_threadinfo_request (char *pkt, int mode, threadref *id)
2339 {
2340 *pkt++ = 'q'; /* Info Query */
2341 *pkt++ = 'P'; /* process or thread info */
2342 pkt = pack_int (pkt, mode); /* mode */
2343 pkt = pack_threadid (pkt, id); /* threadid */
2344 *pkt = '\0'; /* terminate */
2345 return pkt;
2346 }
2347
2348 /* These values tag the fields in a thread info response packet. */
2349 /* Tagging the fields allows us to request specific fields and to
2350 add more fields as time goes by. */
2351
2352 #define TAG_THREADID 1 /* Echo the thread identifier. */
2353 #define TAG_EXISTS 2 /* Is this process defined enough to
2354 fetch registers and its stack? */
2355 #define TAG_DISPLAY 4 /* A short thing maybe to put on a window */
2356 #define TAG_THREADNAME 8 /* string, maps 1-to-1 with a thread is. */
2357 #define TAG_MOREDISPLAY 16 /* Whatever the kernel wants to say about
2358 the process. */
2359
2360 static int
2361 remote_unpack_thread_info_response (char *pkt, threadref *expectedref,
2362 struct gdb_ext_thread_info *info)
2363 {
2364 struct remote_state *rs = get_remote_state ();
2365 int mask, length;
2366 int tag;
2367 threadref ref;
2368 char *limit = pkt + rs->buf_size; /* Plausible parsing limit. */
2369 int retval = 1;
2370
2371 /* info->threadid = 0; FIXME: implement zero_threadref. */
2372 info->active = 0;
2373 info->display[0] = '\0';
2374 info->shortname[0] = '\0';
2375 info->more_display[0] = '\0';
2376
2377 /* Assume the characters indicating the packet type have been
2378 stripped. */
2379 pkt = unpack_int (pkt, &mask); /* arg mask */
2380 pkt = unpack_threadid (pkt, &ref);
2381
2382 if (mask == 0)
2383 warning (_("Incomplete response to threadinfo request."));
2384 if (!threadmatch (&ref, expectedref))
2385 { /* This is an answer to a different request. */
2386 warning (_("ERROR RMT Thread info mismatch."));
2387 return 0;
2388 }
2389 copy_threadref (&info->threadid, &ref);
2390
2391 /* Loop on tagged fields , try to bail if somthing goes wrong. */
2392
2393 /* Packets are terminated with nulls. */
2394 while ((pkt < limit) && mask && *pkt)
2395 {
2396 pkt = unpack_int (pkt, &tag); /* tag */
2397 pkt = unpack_byte (pkt, &length); /* length */
2398 if (!(tag & mask)) /* Tags out of synch with mask. */
2399 {
2400 warning (_("ERROR RMT: threadinfo tag mismatch."));
2401 retval = 0;
2402 break;
2403 }
2404 if (tag == TAG_THREADID)
2405 {
2406 if (length != 16)
2407 {
2408 warning (_("ERROR RMT: length of threadid is not 16."));
2409 retval = 0;
2410 break;
2411 }
2412 pkt = unpack_threadid (pkt, &ref);
2413 mask = mask & ~TAG_THREADID;
2414 continue;
2415 }
2416 if (tag == TAG_EXISTS)
2417 {
2418 info->active = stub_unpack_int (pkt, length);
2419 pkt += length;
2420 mask = mask & ~(TAG_EXISTS);
2421 if (length > 8)
2422 {
2423 warning (_("ERROR RMT: 'exists' length too long."));
2424 retval = 0;
2425 break;
2426 }
2427 continue;
2428 }
2429 if (tag == TAG_THREADNAME)
2430 {
2431 pkt = unpack_string (pkt, &info->shortname[0], length);
2432 mask = mask & ~TAG_THREADNAME;
2433 continue;
2434 }
2435 if (tag == TAG_DISPLAY)
2436 {
2437 pkt = unpack_string (pkt, &info->display[0], length);
2438 mask = mask & ~TAG_DISPLAY;
2439 continue;
2440 }
2441 if (tag == TAG_MOREDISPLAY)
2442 {
2443 pkt = unpack_string (pkt, &info->more_display[0], length);
2444 mask = mask & ~TAG_MOREDISPLAY;
2445 continue;
2446 }
2447 warning (_("ERROR RMT: unknown thread info tag."));
2448 break; /* Not a tag we know about. */
2449 }
2450 return retval;
2451 }
2452
2453 static int
2454 remote_get_threadinfo (threadref *threadid, int fieldset, /* TAG mask */
2455 struct gdb_ext_thread_info *info)
2456 {
2457 struct remote_state *rs = get_remote_state ();
2458 int result;
2459
2460 pack_threadinfo_request (rs->buf, fieldset, threadid);
2461 putpkt (rs->buf);
2462 getpkt (&rs->buf, &rs->buf_size, 0);
2463
2464 if (rs->buf[0] == '\0')
2465 return 0;
2466
2467 result = remote_unpack_thread_info_response (rs->buf + 2,
2468 threadid, info);
2469 return result;
2470 }
2471
2472 /* Format: i'Q':8,i"L":8,initflag:8,batchsize:16,lastthreadid:32 */
2473
2474 static char *
2475 pack_threadlist_request (char *pkt, int startflag, int threadcount,
2476 threadref *nextthread)
2477 {
2478 *pkt++ = 'q'; /* info query packet */
2479 *pkt++ = 'L'; /* Process LIST or threadLIST request */
2480 pkt = pack_nibble (pkt, startflag); /* initflag 1 bytes */
2481 pkt = pack_hex_byte (pkt, threadcount); /* threadcount 2 bytes */
2482 pkt = pack_threadid (pkt, nextthread); /* 64 bit thread identifier */
2483 *pkt = '\0';
2484 return pkt;
2485 }
2486
2487 /* Encoding: 'q':8,'M':8,count:16,done:8,argthreadid:64,(threadid:64)* */
2488
2489 static int
2490 parse_threadlist_response (char *pkt, int result_limit,
2491 threadref *original_echo, threadref *resultlist,
2492 int *doneflag)
2493 {
2494 struct remote_state *rs = get_remote_state ();
2495 char *limit;
2496 int count, resultcount, done;
2497
2498 resultcount = 0;
2499 /* Assume the 'q' and 'M chars have been stripped. */
2500 limit = pkt + (rs->buf_size - BUF_THREAD_ID_SIZE);
2501 /* done parse past here */
2502 pkt = unpack_byte (pkt, &count); /* count field */
2503 pkt = unpack_nibble (pkt, &done);
2504 /* The first threadid is the argument threadid. */
2505 pkt = unpack_threadid (pkt, original_echo); /* should match query packet */
2506 while ((count-- > 0) && (pkt < limit))
2507 {
2508 pkt = unpack_threadid (pkt, resultlist++);
2509 if (resultcount++ >= result_limit)
2510 break;
2511 }
2512 if (doneflag)
2513 *doneflag = done;
2514 return resultcount;
2515 }
2516
2517 static int
2518 remote_get_threadlist (int startflag, threadref *nextthread, int result_limit,
2519 int *done, int *result_count, threadref *threadlist)
2520 {
2521 struct remote_state *rs = get_remote_state ();
2522 int result = 1;
2523
2524 /* Trancate result limit to be smaller than the packet size. */
2525 if ((((result_limit + 1) * BUF_THREAD_ID_SIZE) + 10)
2526 >= get_remote_packet_size ())
2527 result_limit = (get_remote_packet_size () / BUF_THREAD_ID_SIZE) - 2;
2528
2529 pack_threadlist_request (rs->buf, startflag, result_limit, nextthread);
2530 putpkt (rs->buf);
2531 getpkt (&rs->buf, &rs->buf_size, 0);
2532
2533 if (*rs->buf == '\0')
2534 return 0;
2535 else
2536 *result_count =
2537 parse_threadlist_response (rs->buf + 2, result_limit,
2538 &rs->echo_nextthread, threadlist, done);
2539
2540 if (!threadmatch (&rs->echo_nextthread, nextthread))
2541 {
2542 /* FIXME: This is a good reason to drop the packet. */
2543 /* Possably, there is a duplicate response. */
2544 /* Possabilities :
2545 retransmit immediatly - race conditions
2546 retransmit after timeout - yes
2547 exit
2548 wait for packet, then exit
2549 */
2550 warning (_("HMM: threadlist did not echo arg thread, dropping it."));
2551 return 0; /* I choose simply exiting. */
2552 }
2553 if (*result_count <= 0)
2554 {
2555 if (*done != 1)
2556 {
2557 warning (_("RMT ERROR : failed to get remote thread list."));
2558 result = 0;
2559 }
2560 return result; /* break; */
2561 }
2562 if (*result_count > result_limit)
2563 {
2564 *result_count = 0;
2565 warning (_("RMT ERROR: threadlist response longer than requested."));
2566 return 0;
2567 }
2568 return result;
2569 }
2570
2571 /* This is the interface between remote and threads, remotes upper
2572 interface. */
2573
2574 /* remote_find_new_threads retrieves the thread list and for each
2575 thread in the list, looks up the thread in GDB's internal list,
2576 adding the thread if it does not already exist. This involves
2577 getting partial thread lists from the remote target so, polling the
2578 quit_flag is required. */
2579
2580
2581 static int
2582 remote_threadlist_iterator (rmt_thread_action stepfunction, void *context,
2583 int looplimit)
2584 {
2585 struct remote_state *rs = get_remote_state ();
2586 int done, i, result_count;
2587 int startflag = 1;
2588 int result = 1;
2589 int loopcount = 0;
2590
2591 done = 0;
2592 while (!done)
2593 {
2594 if (loopcount++ > looplimit)
2595 {
2596 result = 0;
2597 warning (_("Remote fetch threadlist -infinite loop-."));
2598 break;
2599 }
2600 if (!remote_get_threadlist (startflag, &rs->nextthread,
2601 MAXTHREADLISTRESULTS,
2602 &done, &result_count, rs->resultthreadlist))
2603 {
2604 result = 0;
2605 break;
2606 }
2607 /* Clear for later iterations. */
2608 startflag = 0;
2609 /* Setup to resume next batch of thread references, set nextthread. */
2610 if (result_count >= 1)
2611 copy_threadref (&rs->nextthread,
2612 &rs->resultthreadlist[result_count - 1]);
2613 i = 0;
2614 while (result_count--)
2615 if (!(result = (*stepfunction) (&rs->resultthreadlist[i++], context)))
2616 break;
2617 }
2618 return result;
2619 }
2620
2621 static int
2622 remote_newthread_step (threadref *ref, void *context)
2623 {
2624 int pid = ptid_get_pid (inferior_ptid);
2625 ptid_t ptid = ptid_build (pid, 0, threadref_to_int (ref));
2626
2627 if (!in_thread_list (ptid))
2628 add_thread (ptid);
2629 return 1; /* continue iterator */
2630 }
2631
2632 #define CRAZY_MAX_THREADS 1000
2633
2634 static ptid_t
2635 remote_current_thread (ptid_t oldpid)
2636 {
2637 struct remote_state *rs = get_remote_state ();
2638
2639 putpkt ("qC");
2640 getpkt (&rs->buf, &rs->buf_size, 0);
2641 if (rs->buf[0] == 'Q' && rs->buf[1] == 'C')
2642 return read_ptid (&rs->buf[2], NULL);
2643 else
2644 return oldpid;
2645 }
2646
2647 /* Find new threads for info threads command.
2648 * Original version, using John Metzler's thread protocol.
2649 */
2650
2651 static void
2652 remote_find_new_threads (void)
2653 {
2654 remote_threadlist_iterator (remote_newthread_step, 0,
2655 CRAZY_MAX_THREADS);
2656 }
2657
2658 #if defined(HAVE_LIBEXPAT)
2659
2660 typedef struct thread_item
2661 {
2662 ptid_t ptid;
2663 char *extra;
2664 int core;
2665 } thread_item_t;
2666 DEF_VEC_O(thread_item_t);
2667
2668 struct threads_parsing_context
2669 {
2670 VEC (thread_item_t) *items;
2671 };
2672
2673 static void
2674 start_thread (struct gdb_xml_parser *parser,
2675 const struct gdb_xml_element *element,
2676 void *user_data, VEC(gdb_xml_value_s) *attributes)
2677 {
2678 struct threads_parsing_context *data = user_data;
2679
2680 struct thread_item item;
2681 char *id;
2682 struct gdb_xml_value *attr;
2683
2684 id = xml_find_attribute (attributes, "id")->value;
2685 item.ptid = read_ptid (id, NULL);
2686
2687 attr = xml_find_attribute (attributes, "core");
2688 if (attr != NULL)
2689 item.core = *(ULONGEST *) attr->value;
2690 else
2691 item.core = -1;
2692
2693 item.extra = 0;
2694
2695 VEC_safe_push (thread_item_t, data->items, &item);
2696 }
2697
2698 static void
2699 end_thread (struct gdb_xml_parser *parser,
2700 const struct gdb_xml_element *element,
2701 void *user_data, const char *body_text)
2702 {
2703 struct threads_parsing_context *data = user_data;
2704
2705 if (body_text && *body_text)
2706 VEC_last (thread_item_t, data->items)->extra = xstrdup (body_text);
2707 }
2708
2709 const struct gdb_xml_attribute thread_attributes[] = {
2710 { "id", GDB_XML_AF_NONE, NULL, NULL },
2711 { "core", GDB_XML_AF_OPTIONAL, gdb_xml_parse_attr_ulongest, NULL },
2712 { NULL, GDB_XML_AF_NONE, NULL, NULL }
2713 };
2714
2715 const struct gdb_xml_element thread_children[] = {
2716 { NULL, NULL, NULL, GDB_XML_EF_NONE, NULL, NULL }
2717 };
2718
2719 const struct gdb_xml_element threads_children[] = {
2720 { "thread", thread_attributes, thread_children,
2721 GDB_XML_EF_REPEATABLE | GDB_XML_EF_OPTIONAL,
2722 start_thread, end_thread },
2723 { NULL, NULL, NULL, GDB_XML_EF_NONE, NULL, NULL }
2724 };
2725
2726 const struct gdb_xml_element threads_elements[] = {
2727 { "threads", NULL, threads_children,
2728 GDB_XML_EF_NONE, NULL, NULL },
2729 { NULL, NULL, NULL, GDB_XML_EF_NONE, NULL, NULL }
2730 };
2731
2732 /* Discard the contents of the constructed thread info context. */
2733
2734 static void
2735 clear_threads_parsing_context (void *p)
2736 {
2737 struct threads_parsing_context *context = p;
2738 int i;
2739 struct thread_item *item;
2740
2741 for (i = 0; VEC_iterate (thread_item_t, context->items, i, item); ++i)
2742 xfree (item->extra);
2743
2744 VEC_free (thread_item_t, context->items);
2745 }
2746
2747 #endif
2748
2749 /*
2750 * Find all threads for info threads command.
2751 * Uses new thread protocol contributed by Cisco.
2752 * Falls back and attempts to use the older method (above)
2753 * if the target doesn't respond to the new method.
2754 */
2755
2756 static void
2757 remote_threads_info (struct target_ops *ops)
2758 {
2759 struct remote_state *rs = get_remote_state ();
2760 char *bufp;
2761 ptid_t new_thread;
2762
2763 if (rs->remote_desc == 0) /* paranoia */
2764 error (_("Command can only be used when connected to the remote target."));
2765
2766 #if defined(HAVE_LIBEXPAT)
2767 if (remote_protocol_packets[PACKET_qXfer_threads].support == PACKET_ENABLE)
2768 {
2769 char *xml = target_read_stralloc (&current_target,
2770 TARGET_OBJECT_THREADS, NULL);
2771
2772 struct cleanup *back_to = make_cleanup (xfree, xml);
2773
2774 if (xml && *xml)
2775 {
2776 struct threads_parsing_context context;
2777
2778 context.items = NULL;
2779 make_cleanup (clear_threads_parsing_context, &context);
2780
2781 if (gdb_xml_parse_quick (_("threads"), "threads.dtd",
2782 threads_elements, xml, &context) == 0)
2783 {
2784 int i;
2785 struct thread_item *item;
2786
2787 for (i = 0;
2788 VEC_iterate (thread_item_t, context.items, i, item);
2789 ++i)
2790 {
2791 if (!ptid_equal (item->ptid, null_ptid))
2792 {
2793 struct private_thread_info *info;
2794 /* In non-stop mode, we assume new found threads
2795 are running until proven otherwise with a
2796 stop reply. In all-stop, we can only get
2797 here if all threads are stopped. */
2798 int running = non_stop ? 1 : 0;
2799
2800 remote_notice_new_inferior (item->ptid, running);
2801
2802 info = demand_private_info (item->ptid);
2803 info->core = item->core;
2804 info->extra = item->extra;
2805 item->extra = NULL;
2806 }
2807 }
2808 }
2809 }
2810
2811 do_cleanups (back_to);
2812 return;
2813 }
2814 #endif
2815
2816 if (rs->use_threadinfo_query)
2817 {
2818 putpkt ("qfThreadInfo");
2819 getpkt (&rs->buf, &rs->buf_size, 0);
2820 bufp = rs->buf;
2821 if (bufp[0] != '\0') /* q packet recognized */
2822 {
2823 struct cleanup *old_chain;
2824 char *saved_reply;
2825
2826 /* remote_notice_new_inferior (in the loop below) may make
2827 new RSP calls, which clobber rs->buf. Work with a
2828 copy. */
2829 bufp = saved_reply = xstrdup (rs->buf);
2830 old_chain = make_cleanup (free_current_contents, &saved_reply);
2831
2832 while (*bufp++ == 'm') /* reply contains one or more TID */
2833 {
2834 do
2835 {
2836 new_thread = read_ptid (bufp, &bufp);
2837 if (!ptid_equal (new_thread, null_ptid))
2838 {
2839 /* In non-stop mode, we assume new found threads
2840 are running until proven otherwise with a
2841 stop reply. In all-stop, we can only get
2842 here if all threads are stopped. */
2843 int running = non_stop ? 1 : 0;
2844
2845 remote_notice_new_inferior (new_thread, running);
2846 }
2847 }
2848 while (*bufp++ == ','); /* comma-separated list */
2849 free_current_contents (&saved_reply);
2850 putpkt ("qsThreadInfo");
2851 getpkt (&rs->buf, &rs->buf_size, 0);
2852 bufp = saved_reply = xstrdup (rs->buf);
2853 }
2854 do_cleanups (old_chain);
2855 return; /* done */
2856 }
2857 }
2858
2859 /* Only qfThreadInfo is supported in non-stop mode. */
2860 if (non_stop)
2861 return;
2862
2863 /* Else fall back to old method based on jmetzler protocol. */
2864 rs->use_threadinfo_query = 0;
2865 remote_find_new_threads ();
2866 return;
2867 }
2868
2869 /*
2870 * Collect a descriptive string about the given thread.
2871 * The target may say anything it wants to about the thread
2872 * (typically info about its blocked / runnable state, name, etc.).
2873 * This string will appear in the info threads display.
2874 *
2875 * Optional: targets are not required to implement this function.
2876 */
2877
2878 static char *
2879 remote_threads_extra_info (struct thread_info *tp)
2880 {
2881 struct remote_state *rs = get_remote_state ();
2882 int result;
2883 int set;
2884 threadref id;
2885 struct gdb_ext_thread_info threadinfo;
2886 static char display_buf[100]; /* arbitrary... */
2887 int n = 0; /* position in display_buf */
2888
2889 if (rs->remote_desc == 0) /* paranoia */
2890 internal_error (__FILE__, __LINE__,
2891 _("remote_threads_extra_info"));
2892
2893 if (ptid_equal (tp->ptid, magic_null_ptid)
2894 || (ptid_get_pid (tp->ptid) != 0 && ptid_get_tid (tp->ptid) == 0))
2895 /* This is the main thread which was added by GDB. The remote
2896 server doesn't know about it. */
2897 return NULL;
2898
2899 if (remote_protocol_packets[PACKET_qXfer_threads].support == PACKET_ENABLE)
2900 {
2901 struct thread_info *info = find_thread_ptid (tp->ptid);
2902
2903 if (info && info->private)
2904 return info->private->extra;
2905 else
2906 return NULL;
2907 }
2908
2909 if (rs->use_threadextra_query)
2910 {
2911 char *b = rs->buf;
2912 char *endb = rs->buf + get_remote_packet_size ();
2913
2914 xsnprintf (b, endb - b, "qThreadExtraInfo,");
2915 b += strlen (b);
2916 write_ptid (b, endb, tp->ptid);
2917
2918 putpkt (rs->buf);
2919 getpkt (&rs->buf, &rs->buf_size, 0);
2920 if (rs->buf[0] != 0)
2921 {
2922 n = min (strlen (rs->buf) / 2, sizeof (display_buf));
2923 result = hex2bin (rs->buf, (gdb_byte *) display_buf, n);
2924 display_buf [result] = '\0';
2925 return display_buf;
2926 }
2927 }
2928
2929 /* If the above query fails, fall back to the old method. */
2930 rs->use_threadextra_query = 0;
2931 set = TAG_THREADID | TAG_EXISTS | TAG_THREADNAME
2932 | TAG_MOREDISPLAY | TAG_DISPLAY;
2933 int_to_threadref (&id, ptid_get_tid (tp->ptid));
2934 if (remote_get_threadinfo (&id, set, &threadinfo))
2935 if (threadinfo.active)
2936 {
2937 if (*threadinfo.shortname)
2938 n += xsnprintf (&display_buf[0], sizeof (display_buf) - n,
2939 " Name: %s,", threadinfo.shortname);
2940 if (*threadinfo.display)
2941 n += xsnprintf (&display_buf[n], sizeof (display_buf) - n,
2942 " State: %s,", threadinfo.display);
2943 if (*threadinfo.more_display)
2944 n += xsnprintf (&display_buf[n], sizeof (display_buf) - n,
2945 " Priority: %s", threadinfo.more_display);
2946
2947 if (n > 0)
2948 {
2949 /* For purely cosmetic reasons, clear up trailing commas. */
2950 if (',' == display_buf[n-1])
2951 display_buf[n-1] = ' ';
2952 return display_buf;
2953 }
2954 }
2955 return NULL;
2956 }
2957 \f
2958
2959 static int
2960 remote_static_tracepoint_marker_at (CORE_ADDR addr,
2961 struct static_tracepoint_marker *marker)
2962 {
2963 struct remote_state *rs = get_remote_state ();
2964 char *p = rs->buf;
2965
2966 xsnprintf (p, get_remote_packet_size (), "qTSTMat:");
2967 p += strlen (p);
2968 p += hexnumstr (p, addr);
2969 putpkt (rs->buf);
2970 getpkt (&rs->buf, &rs->buf_size, 0);
2971 p = rs->buf;
2972
2973 if (*p == 'E')
2974 error (_("Remote failure reply: %s"), p);
2975
2976 if (*p++ == 'm')
2977 {
2978 parse_static_tracepoint_marker_definition (p, &p, marker);
2979 return 1;
2980 }
2981
2982 return 0;
2983 }
2984
2985 static VEC(static_tracepoint_marker_p) *
2986 remote_static_tracepoint_markers_by_strid (const char *strid)
2987 {
2988 struct remote_state *rs = get_remote_state ();
2989 VEC(static_tracepoint_marker_p) *markers = NULL;
2990 struct static_tracepoint_marker *marker = NULL;
2991 struct cleanup *old_chain;
2992 char *p;
2993
2994 /* Ask for a first packet of static tracepoint marker
2995 definition. */
2996 putpkt ("qTfSTM");
2997 getpkt (&rs->buf, &rs->buf_size, 0);
2998 p = rs->buf;
2999 if (*p == 'E')
3000 error (_("Remote failure reply: %s"), p);
3001
3002 old_chain = make_cleanup (free_current_marker, &marker);
3003
3004 while (*p++ == 'm')
3005 {
3006 if (marker == NULL)
3007 marker = XCNEW (struct static_tracepoint_marker);
3008
3009 do
3010 {
3011 parse_static_tracepoint_marker_definition (p, &p, marker);
3012
3013 if (strid == NULL || strcmp (strid, marker->str_id) == 0)
3014 {
3015 VEC_safe_push (static_tracepoint_marker_p,
3016 markers, marker);
3017 marker = NULL;
3018 }
3019 else
3020 {
3021 release_static_tracepoint_marker (marker);
3022 memset (marker, 0, sizeof (*marker));
3023 }
3024 }
3025 while (*p++ == ','); /* comma-separated list */
3026 /* Ask for another packet of static tracepoint definition. */
3027 putpkt ("qTsSTM");
3028 getpkt (&rs->buf, &rs->buf_size, 0);
3029 p = rs->buf;
3030 }
3031
3032 do_cleanups (old_chain);
3033 return markers;
3034 }
3035
3036 \f
3037 /* Implement the to_get_ada_task_ptid function for the remote targets. */
3038
3039 static ptid_t
3040 remote_get_ada_task_ptid (long lwp, long thread)
3041 {
3042 return ptid_build (ptid_get_pid (inferior_ptid), 0, lwp);
3043 }
3044 \f
3045
3046 /* Restart the remote side; this is an extended protocol operation. */
3047
3048 static void
3049 extended_remote_restart (void)
3050 {
3051 struct remote_state *rs = get_remote_state ();
3052
3053 /* Send the restart command; for reasons I don't understand the
3054 remote side really expects a number after the "R". */
3055 xsnprintf (rs->buf, get_remote_packet_size (), "R%x", 0);
3056 putpkt (rs->buf);
3057
3058 remote_fileio_reset ();
3059 }
3060 \f
3061 /* Clean up connection to a remote debugger. */
3062
3063 static void
3064 remote_close (void)
3065 {
3066 struct remote_state *rs = get_remote_state ();
3067
3068 if (rs->remote_desc == NULL)
3069 return; /* already closed */
3070
3071 /* Make sure we leave stdin registered in the event loop, and we
3072 don't leave the async SIGINT signal handler installed. */
3073 remote_terminal_ours ();
3074
3075 serial_close (rs->remote_desc);
3076 rs->remote_desc = NULL;
3077
3078 /* We don't have a connection to the remote stub anymore. Get rid
3079 of all the inferiors and their threads we were controlling.
3080 Reset inferior_ptid to null_ptid first, as otherwise has_stack_frame
3081 will be unable to find the thread corresponding to (pid, 0, 0). */
3082 inferior_ptid = null_ptid;
3083 discard_all_inferiors ();
3084
3085 /* We are closing the remote target, so we should discard
3086 everything of this target. */
3087 discard_pending_stop_replies_in_queue (rs);
3088
3089 if (remote_async_inferior_event_token)
3090 delete_async_event_handler (&remote_async_inferior_event_token);
3091
3092 remote_notif_state_xfree (rs->notif_state);
3093
3094 trace_reset_local_state ();
3095 }
3096
3097 /* Query the remote side for the text, data and bss offsets. */
3098
3099 static void
3100 get_offsets (void)
3101 {
3102 struct remote_state *rs = get_remote_state ();
3103 char *buf;
3104 char *ptr;
3105 int lose, num_segments = 0, do_sections, do_segments;
3106 CORE_ADDR text_addr, data_addr, bss_addr, segments[2];
3107 struct section_offsets *offs;
3108 struct symfile_segment_data *data;
3109
3110 if (symfile_objfile == NULL)
3111 return;
3112
3113 putpkt ("qOffsets");
3114 getpkt (&rs->buf, &rs->buf_size, 0);
3115 buf = rs->buf;
3116
3117 if (buf[0] == '\000')
3118 return; /* Return silently. Stub doesn't support
3119 this command. */
3120 if (buf[0] == 'E')
3121 {
3122 warning (_("Remote failure reply: %s"), buf);
3123 return;
3124 }
3125
3126 /* Pick up each field in turn. This used to be done with scanf, but
3127 scanf will make trouble if CORE_ADDR size doesn't match
3128 conversion directives correctly. The following code will work
3129 with any size of CORE_ADDR. */
3130 text_addr = data_addr = bss_addr = 0;
3131 ptr = buf;
3132 lose = 0;
3133
3134 if (strncmp (ptr, "Text=", 5) == 0)
3135 {
3136 ptr += 5;
3137 /* Don't use strtol, could lose on big values. */
3138 while (*ptr && *ptr != ';')
3139 text_addr = (text_addr << 4) + fromhex (*ptr++);
3140
3141 if (strncmp (ptr, ";Data=", 6) == 0)
3142 {
3143 ptr += 6;
3144 while (*ptr && *ptr != ';')
3145 data_addr = (data_addr << 4) + fromhex (*ptr++);
3146 }
3147 else
3148 lose = 1;
3149
3150 if (!lose && strncmp (ptr, ";Bss=", 5) == 0)
3151 {
3152 ptr += 5;
3153 while (*ptr && *ptr != ';')
3154 bss_addr = (bss_addr << 4) + fromhex (*ptr++);
3155
3156 if (bss_addr != data_addr)
3157 warning (_("Target reported unsupported offsets: %s"), buf);
3158 }
3159 else
3160 lose = 1;
3161 }
3162 else if (strncmp (ptr, "TextSeg=", 8) == 0)
3163 {
3164 ptr += 8;
3165 /* Don't use strtol, could lose on big values. */
3166 while (*ptr && *ptr != ';')
3167 text_addr = (text_addr << 4) + fromhex (*ptr++);
3168 num_segments = 1;
3169
3170 if (strncmp (ptr, ";DataSeg=", 9) == 0)
3171 {
3172 ptr += 9;
3173 while (*ptr && *ptr != ';')
3174 data_addr = (data_addr << 4) + fromhex (*ptr++);
3175 num_segments++;
3176 }
3177 }
3178 else
3179 lose = 1;
3180
3181 if (lose)
3182 error (_("Malformed response to offset query, %s"), buf);
3183 else if (*ptr != '\0')
3184 warning (_("Target reported unsupported offsets: %s"), buf);
3185
3186 offs = ((struct section_offsets *)
3187 alloca (SIZEOF_N_SECTION_OFFSETS (symfile_objfile->num_sections)));
3188 memcpy (offs, symfile_objfile->section_offsets,
3189 SIZEOF_N_SECTION_OFFSETS (symfile_objfile->num_sections));
3190
3191 data = get_symfile_segment_data (symfile_objfile->obfd);
3192 do_segments = (data != NULL);
3193 do_sections = num_segments == 0;
3194
3195 if (num_segments > 0)
3196 {
3197 segments[0] = text_addr;
3198 segments[1] = data_addr;
3199 }
3200 /* If we have two segments, we can still try to relocate everything
3201 by assuming that the .text and .data offsets apply to the whole
3202 text and data segments. Convert the offsets given in the packet
3203 to base addresses for symfile_map_offsets_to_segments. */
3204 else if (data && data->num_segments == 2)
3205 {
3206 segments[0] = data->segment_bases[0] + text_addr;
3207 segments[1] = data->segment_bases[1] + data_addr;
3208 num_segments = 2;
3209 }
3210 /* If the object file has only one segment, assume that it is text
3211 rather than data; main programs with no writable data are rare,
3212 but programs with no code are useless. Of course the code might
3213 have ended up in the data segment... to detect that we would need
3214 the permissions here. */
3215 else if (data && data->num_segments == 1)
3216 {
3217 segments[0] = data->segment_bases[0] + text_addr;
3218 num_segments = 1;
3219 }
3220 /* There's no way to relocate by segment. */
3221 else
3222 do_segments = 0;
3223
3224 if (do_segments)
3225 {
3226 int ret = symfile_map_offsets_to_segments (symfile_objfile->obfd, data,
3227 offs, num_segments, segments);
3228
3229 if (ret == 0 && !do_sections)
3230 error (_("Can not handle qOffsets TextSeg "
3231 "response with this symbol file"));
3232
3233 if (ret > 0)
3234 do_sections = 0;
3235 }
3236
3237 if (data)
3238 free_symfile_segment_data (data);
3239
3240 if (do_sections)
3241 {
3242 offs->offsets[SECT_OFF_TEXT (symfile_objfile)] = text_addr;
3243
3244 /* This is a temporary kludge to force data and bss to use the
3245 same offsets because that's what nlmconv does now. The real
3246 solution requires changes to the stub and remote.c that I
3247 don't have time to do right now. */
3248
3249 offs->offsets[SECT_OFF_DATA (symfile_objfile)] = data_addr;
3250 offs->offsets[SECT_OFF_BSS (symfile_objfile)] = data_addr;
3251 }
3252
3253 objfile_relocate (symfile_objfile, offs);
3254 }
3255
3256 /* Callback for iterate_over_threads. Set the STOP_REQUESTED flags in
3257 threads we know are stopped already. This is used during the
3258 initial remote connection in non-stop mode --- threads that are
3259 reported as already being stopped are left stopped. */
3260
3261 static int
3262 set_stop_requested_callback (struct thread_info *thread, void *data)
3263 {
3264 /* If we have a stop reply for this thread, it must be stopped. */
3265 if (peek_stop_reply (thread->ptid))
3266 set_stop_requested (thread->ptid, 1);
3267
3268 return 0;
3269 }
3270
3271 /* Send interrupt_sequence to remote target. */
3272 static void
3273 send_interrupt_sequence (void)
3274 {
3275 struct remote_state *rs = get_remote_state ();
3276
3277 if (interrupt_sequence_mode == interrupt_sequence_control_c)
3278 remote_serial_write ("\x03", 1);
3279 else if (interrupt_sequence_mode == interrupt_sequence_break)
3280 serial_send_break (rs->remote_desc);
3281 else if (interrupt_sequence_mode == interrupt_sequence_break_g)
3282 {
3283 serial_send_break (rs->remote_desc);
3284 remote_serial_write ("g", 1);
3285 }
3286 else
3287 internal_error (__FILE__, __LINE__,
3288 _("Invalid value for interrupt_sequence_mode: %s."),
3289 interrupt_sequence_mode);
3290 }
3291
3292
3293 /* If STOP_REPLY is a T stop reply, look for the "thread" register,
3294 and extract the PTID. Returns NULL_PTID if not found. */
3295
3296 static ptid_t
3297 stop_reply_extract_thread (char *stop_reply)
3298 {
3299 if (stop_reply[0] == 'T' && strlen (stop_reply) > 3)
3300 {
3301 char *p;
3302
3303 /* Txx r:val ; r:val (...) */
3304 p = &stop_reply[3];
3305
3306 /* Look for "register" named "thread". */
3307 while (*p != '\0')
3308 {
3309 char *p1;
3310
3311 p1 = strchr (p, ':');
3312 if (p1 == NULL)
3313 return null_ptid;
3314
3315 if (strncmp (p, "thread", p1 - p) == 0)
3316 return read_ptid (++p1, &p);
3317
3318 p1 = strchr (p, ';');
3319 if (p1 == NULL)
3320 return null_ptid;
3321 p1++;
3322
3323 p = p1;
3324 }
3325 }
3326
3327 return null_ptid;
3328 }
3329
3330 /* Determine the remote side's current thread. If we have a stop
3331 reply handy (in WAIT_STATUS), maybe it's a T stop reply with a
3332 "thread" register we can extract the current thread from. If not,
3333 ask the remote which is the current thread with qC. The former
3334 method avoids a roundtrip. */
3335
3336 static ptid_t
3337 get_current_thread (char *wait_status)
3338 {
3339 ptid_t ptid;
3340
3341 /* Note we don't use remote_parse_stop_reply as that makes use of
3342 the target architecture, which we haven't yet fully determined at
3343 this point. */
3344 if (wait_status != NULL)
3345 ptid = stop_reply_extract_thread (wait_status);
3346 if (ptid_equal (ptid, null_ptid))
3347 ptid = remote_current_thread (inferior_ptid);
3348
3349 return ptid;
3350 }
3351
3352 /* Query the remote target for which is the current thread/process,
3353 add it to our tables, and update INFERIOR_PTID. The caller is
3354 responsible for setting the state such that the remote end is ready
3355 to return the current thread.
3356
3357 This function is called after handling the '?' or 'vRun' packets,
3358 whose response is a stop reply from which we can also try
3359 extracting the thread. If the target doesn't support the explicit
3360 qC query, we infer the current thread from that stop reply, passed
3361 in in WAIT_STATUS, which may be NULL. */
3362
3363 static void
3364 add_current_inferior_and_thread (char *wait_status)
3365 {
3366 struct remote_state *rs = get_remote_state ();
3367 int fake_pid_p = 0;
3368 ptid_t ptid = null_ptid;
3369
3370 inferior_ptid = null_ptid;
3371
3372 /* Now, if we have thread information, update inferior_ptid. */
3373 ptid = get_current_thread (wait_status);
3374
3375 if (!ptid_equal (ptid, null_ptid))
3376 {
3377 if (!remote_multi_process_p (rs))
3378 fake_pid_p = 1;
3379
3380 inferior_ptid = ptid;
3381 }
3382 else
3383 {
3384 /* Without this, some commands which require an active target
3385 (such as kill) won't work. This variable serves (at least)
3386 double duty as both the pid of the target process (if it has
3387 such), and as a flag indicating that a target is active. */
3388 inferior_ptid = magic_null_ptid;
3389 fake_pid_p = 1;
3390 }
3391
3392 remote_add_inferior (fake_pid_p, ptid_get_pid (inferior_ptid), -1);
3393
3394 /* Add the main thread. */
3395 add_thread_silent (inferior_ptid);
3396 }
3397
3398 static void
3399 remote_start_remote (int from_tty, struct target_ops *target, int extended_p)
3400 {
3401 struct remote_state *rs = get_remote_state ();
3402 struct packet_config *noack_config;
3403 char *wait_status = NULL;
3404
3405 immediate_quit++; /* Allow user to interrupt it. */
3406 QUIT;
3407
3408 if (interrupt_on_connect)
3409 send_interrupt_sequence ();
3410
3411 /* Ack any packet which the remote side has already sent. */
3412 serial_write (rs->remote_desc, "+", 1);
3413
3414 /* Signal other parts that we're going through the initial setup,
3415 and so things may not be stable yet. */
3416 rs->starting_up = 1;
3417
3418 /* The first packet we send to the target is the optional "supported
3419 packets" request. If the target can answer this, it will tell us
3420 which later probes to skip. */
3421 remote_query_supported ();
3422
3423 /* If the stub wants to get a QAllow, compose one and send it. */
3424 if (remote_protocol_packets[PACKET_QAllow].support != PACKET_DISABLE)
3425 remote_set_permissions ();
3426
3427 /* Next, we possibly activate noack mode.
3428
3429 If the QStartNoAckMode packet configuration is set to AUTO,
3430 enable noack mode if the stub reported a wish for it with
3431 qSupported.
3432
3433 If set to TRUE, then enable noack mode even if the stub didn't
3434 report it in qSupported. If the stub doesn't reply OK, the
3435 session ends with an error.
3436
3437 If FALSE, then don't activate noack mode, regardless of what the
3438 stub claimed should be the default with qSupported. */
3439
3440 noack_config = &remote_protocol_packets[PACKET_QStartNoAckMode];
3441
3442 if (noack_config->detect == AUTO_BOOLEAN_TRUE
3443 || (noack_config->detect == AUTO_BOOLEAN_AUTO
3444 && noack_config->support == PACKET_ENABLE))
3445 {
3446 putpkt ("QStartNoAckMode");
3447 getpkt (&rs->buf, &rs->buf_size, 0);
3448 if (packet_ok (rs->buf, noack_config) == PACKET_OK)
3449 rs->noack_mode = 1;
3450 }
3451
3452 if (extended_p)
3453 {
3454 /* Tell the remote that we are using the extended protocol. */
3455 putpkt ("!");
3456 getpkt (&rs->buf, &rs->buf_size, 0);
3457 }
3458
3459 /* Let the target know which signals it is allowed to pass down to
3460 the program. */
3461 update_signals_program_target ();
3462
3463 /* Next, if the target can specify a description, read it. We do
3464 this before anything involving memory or registers. */
3465 target_find_description ();
3466
3467 /* Next, now that we know something about the target, update the
3468 address spaces in the program spaces. */
3469 update_address_spaces ();
3470
3471 /* On OSs where the list of libraries is global to all
3472 processes, we fetch them early. */
3473 if (gdbarch_has_global_solist (target_gdbarch ()))
3474 solib_add (NULL, from_tty, target, auto_solib_add);
3475
3476 if (non_stop)
3477 {
3478 if (!rs->non_stop_aware)
3479 error (_("Non-stop mode requested, but remote "
3480 "does not support non-stop"));
3481
3482 putpkt ("QNonStop:1");
3483 getpkt (&rs->buf, &rs->buf_size, 0);
3484
3485 if (strcmp (rs->buf, "OK") != 0)
3486 error (_("Remote refused setting non-stop mode with: %s"), rs->buf);
3487
3488 /* Find about threads and processes the stub is already
3489 controlling. We default to adding them in the running state.
3490 The '?' query below will then tell us about which threads are
3491 stopped. */
3492 remote_threads_info (target);
3493 }
3494 else if (rs->non_stop_aware)
3495 {
3496 /* Don't assume that the stub can operate in all-stop mode.
3497 Request it explicitly. */
3498 putpkt ("QNonStop:0");
3499 getpkt (&rs->buf, &rs->buf_size, 0);
3500
3501 if (strcmp (rs->buf, "OK") != 0)
3502 error (_("Remote refused setting all-stop mode with: %s"), rs->buf);
3503 }
3504
3505 /* Upload TSVs regardless of whether the target is running or not. The
3506 remote stub, such as GDBserver, may have some predefined or builtin
3507 TSVs, even if the target is not running. */
3508 if (remote_get_trace_status (current_trace_status ()) != -1)
3509 {
3510 struct uploaded_tsv *uploaded_tsvs = NULL;
3511
3512 remote_upload_trace_state_variables (&uploaded_tsvs);
3513 merge_uploaded_trace_state_variables (&uploaded_tsvs);
3514 }
3515
3516 /* Check whether the target is running now. */
3517 putpkt ("?");
3518 getpkt (&rs->buf, &rs->buf_size, 0);
3519
3520 if (!non_stop)
3521 {
3522 ptid_t ptid;
3523 int fake_pid_p = 0;
3524 struct inferior *inf;
3525
3526 if (rs->buf[0] == 'W' || rs->buf[0] == 'X')
3527 {
3528 if (!extended_p)
3529 error (_("The target is not running (try extended-remote?)"));
3530
3531 /* We're connected, but not running. Drop out before we
3532 call start_remote. */
3533 rs->starting_up = 0;
3534 return;
3535 }
3536 else
3537 {
3538 /* Save the reply for later. */
3539 wait_status = alloca (strlen (rs->buf) + 1);
3540 strcpy (wait_status, rs->buf);
3541 }
3542
3543 /* Fetch thread list. */
3544 target_find_new_threads ();
3545
3546 /* Let the stub know that we want it to return the thread. */
3547 set_continue_thread (minus_one_ptid);
3548
3549 if (thread_count () == 0)
3550 {
3551 /* Target has no concept of threads at all. GDB treats
3552 non-threaded target as single-threaded; add a main
3553 thread. */
3554 add_current_inferior_and_thread (wait_status);
3555 }
3556 else
3557 {
3558 /* We have thread information; select the thread the target
3559 says should be current. If we're reconnecting to a
3560 multi-threaded program, this will ideally be the thread
3561 that last reported an event before GDB disconnected. */
3562 inferior_ptid = get_current_thread (wait_status);
3563 if (ptid_equal (inferior_ptid, null_ptid))
3564 {
3565 /* Odd... The target was able to list threads, but not
3566 tell us which thread was current (no "thread"
3567 register in T stop reply?). Just pick the first
3568 thread in the thread list then. */
3569 inferior_ptid = thread_list->ptid;
3570 }
3571 }
3572
3573 /* init_wait_for_inferior should be called before get_offsets in order
3574 to manage `inserted' flag in bp loc in a correct state.
3575 breakpoint_init_inferior, called from init_wait_for_inferior, set
3576 `inserted' flag to 0, while before breakpoint_re_set, called from
3577 start_remote, set `inserted' flag to 1. In the initialization of
3578 inferior, breakpoint_init_inferior should be called first, and then
3579 breakpoint_re_set can be called. If this order is broken, state of
3580 `inserted' flag is wrong, and cause some problems on breakpoint
3581 manipulation. */
3582 init_wait_for_inferior ();
3583
3584 get_offsets (); /* Get text, data & bss offsets. */
3585
3586 /* If we could not find a description using qXfer, and we know
3587 how to do it some other way, try again. This is not
3588 supported for non-stop; it could be, but it is tricky if
3589 there are no stopped threads when we connect. */
3590 if (remote_read_description_p (target)
3591 && gdbarch_target_desc (target_gdbarch ()) == NULL)
3592 {
3593 target_clear_description ();
3594 target_find_description ();
3595 }
3596
3597 /* Use the previously fetched status. */
3598 gdb_assert (wait_status != NULL);
3599 strcpy (rs->buf, wait_status);
3600 rs->cached_wait_status = 1;
3601
3602 immediate_quit--;
3603 start_remote (from_tty); /* Initialize gdb process mechanisms. */
3604 }
3605 else
3606 {
3607 /* Clear WFI global state. Do this before finding about new
3608 threads and inferiors, and setting the current inferior.
3609 Otherwise we would clear the proceed status of the current
3610 inferior when we want its stop_soon state to be preserved
3611 (see notice_new_inferior). */
3612 init_wait_for_inferior ();
3613
3614 /* In non-stop, we will either get an "OK", meaning that there
3615 are no stopped threads at this time; or, a regular stop
3616 reply. In the latter case, there may be more than one thread
3617 stopped --- we pull them all out using the vStopped
3618 mechanism. */
3619 if (strcmp (rs->buf, "OK") != 0)
3620 {
3621 struct notif_client *notif = &notif_client_stop;
3622
3623 /* remote_notif_get_pending_replies acks this one, and gets
3624 the rest out. */
3625 rs->notif_state->pending_event[notif_client_stop.id]
3626 = remote_notif_parse (notif, rs->buf);
3627 remote_notif_get_pending_events (notif);
3628
3629 /* Make sure that threads that were stopped remain
3630 stopped. */
3631 iterate_over_threads (set_stop_requested_callback, NULL);
3632 }
3633
3634 if (target_can_async_p ())
3635 target_async (inferior_event_handler, 0);
3636
3637 if (thread_count () == 0)
3638 {
3639 if (!extended_p)
3640 error (_("The target is not running (try extended-remote?)"));
3641
3642 /* We're connected, but not running. Drop out before we
3643 call start_remote. */
3644 rs->starting_up = 0;
3645 return;
3646 }
3647
3648 /* Let the stub know that we want it to return the thread. */
3649
3650 /* Force the stub to choose a thread. */
3651 set_general_thread (null_ptid);
3652
3653 /* Query it. */
3654 inferior_ptid = remote_current_thread (minus_one_ptid);
3655 if (ptid_equal (inferior_ptid, minus_one_ptid))
3656 error (_("remote didn't report the current thread in non-stop mode"));
3657
3658 get_offsets (); /* Get text, data & bss offsets. */
3659
3660 /* In non-stop mode, any cached wait status will be stored in
3661 the stop reply queue. */
3662 gdb_assert (wait_status == NULL);
3663
3664 /* Report all signals during attach/startup. */
3665 remote_pass_signals (0, NULL);
3666 }
3667
3668 /* If we connected to a live target, do some additional setup. */
3669 if (target_has_execution)
3670 {
3671 if (exec_bfd) /* No use without an exec file. */
3672 remote_check_symbols ();
3673 }
3674
3675 /* Possibly the target has been engaged in a trace run started
3676 previously; find out where things are at. */
3677 if (remote_get_trace_status (current_trace_status ()) != -1)
3678 {
3679 struct uploaded_tp *uploaded_tps = NULL;
3680
3681 if (current_trace_status ()->running)
3682 printf_filtered (_("Trace is already running on the target.\n"));
3683
3684 remote_upload_tracepoints (&uploaded_tps);
3685
3686 merge_uploaded_tracepoints (&uploaded_tps);
3687 }
3688
3689 /* The thread and inferior lists are now synchronized with the
3690 target, our symbols have been relocated, and we're merged the
3691 target's tracepoints with ours. We're done with basic start
3692 up. */
3693 rs->starting_up = 0;
3694
3695 /* If breakpoints are global, insert them now. */
3696 if (gdbarch_has_global_breakpoints (target_gdbarch ())
3697 && breakpoints_always_inserted_mode ())
3698 insert_breakpoints ();
3699 }
3700
3701 /* Open a connection to a remote debugger.
3702 NAME is the filename used for communication. */
3703
3704 static void
3705 remote_open (char *name, int from_tty)
3706 {
3707 remote_open_1 (name, from_tty, &remote_ops, 0);
3708 }
3709
3710 /* Open a connection to a remote debugger using the extended
3711 remote gdb protocol. NAME is the filename used for communication. */
3712
3713 static void
3714 extended_remote_open (char *name, int from_tty)
3715 {
3716 remote_open_1 (name, from_tty, &extended_remote_ops, 1 /*extended_p */);
3717 }
3718
3719 /* Generic code for opening a connection to a remote target. */
3720
3721 static void
3722 init_all_packet_configs (void)
3723 {
3724 int i;
3725
3726 for (i = 0; i < PACKET_MAX; i++)
3727 update_packet_config (&remote_protocol_packets[i]);
3728 }
3729
3730 /* Symbol look-up. */
3731
3732 static void
3733 remote_check_symbols (void)
3734 {
3735 struct remote_state *rs = get_remote_state ();
3736 char *msg, *reply, *tmp;
3737 struct minimal_symbol *sym;
3738 int end;
3739
3740 /* The remote side has no concept of inferiors that aren't running
3741 yet, it only knows about running processes. If we're connected
3742 but our current inferior is not running, we should not invite the
3743 remote target to request symbol lookups related to its
3744 (unrelated) current process. */
3745 if (!target_has_execution)
3746 return;
3747
3748 if (remote_protocol_packets[PACKET_qSymbol].support == PACKET_DISABLE)
3749 return;
3750
3751 /* Make sure the remote is pointing at the right process. Note
3752 there's no way to select "no process". */
3753 set_general_process ();
3754
3755 /* Allocate a message buffer. We can't reuse the input buffer in RS,
3756 because we need both at the same time. */
3757 msg = alloca (get_remote_packet_size ());
3758
3759 /* Invite target to request symbol lookups. */
3760
3761 putpkt ("qSymbol::");
3762 getpkt (&rs->buf, &rs->buf_size, 0);
3763 packet_ok (rs->buf, &remote_protocol_packets[PACKET_qSymbol]);
3764 reply = rs->buf;
3765
3766 while (strncmp (reply, "qSymbol:", 8) == 0)
3767 {
3768 tmp = &reply[8];
3769 end = hex2bin (tmp, (gdb_byte *) msg, strlen (tmp) / 2);
3770 msg[end] = '\0';
3771 sym = lookup_minimal_symbol (msg, NULL, NULL);
3772 if (sym == NULL)
3773 xsnprintf (msg, get_remote_packet_size (), "qSymbol::%s", &reply[8]);
3774 else
3775 {
3776 int addr_size = gdbarch_addr_bit (target_gdbarch ()) / 8;
3777 CORE_ADDR sym_addr = SYMBOL_VALUE_ADDRESS (sym);
3778
3779 /* If this is a function address, return the start of code
3780 instead of any data function descriptor. */
3781 sym_addr = gdbarch_convert_from_func_ptr_addr (target_gdbarch (),
3782 sym_addr,
3783 &current_target);
3784
3785 xsnprintf (msg, get_remote_packet_size (), "qSymbol:%s:%s",
3786 phex_nz (sym_addr, addr_size), &reply[8]);
3787 }
3788
3789 putpkt (msg);
3790 getpkt (&rs->buf, &rs->buf_size, 0);
3791 reply = rs->buf;
3792 }
3793 }
3794
3795 static struct serial *
3796 remote_serial_open (char *name)
3797 {
3798 static int udp_warning = 0;
3799
3800 /* FIXME: Parsing NAME here is a hack. But we want to warn here instead
3801 of in ser-tcp.c, because it is the remote protocol assuming that the
3802 serial connection is reliable and not the serial connection promising
3803 to be. */
3804 if (!udp_warning && strncmp (name, "udp:", 4) == 0)
3805 {
3806 warning (_("The remote protocol may be unreliable over UDP.\n"
3807 "Some events may be lost, rendering further debugging "
3808 "impossible."));
3809 udp_warning = 1;
3810 }
3811
3812 return serial_open (name);
3813 }
3814
3815 /* Inform the target of our permission settings. The permission flags
3816 work without this, but if the target knows the settings, it can do
3817 a couple things. First, it can add its own check, to catch cases
3818 that somehow manage to get by the permissions checks in target
3819 methods. Second, if the target is wired to disallow particular
3820 settings (for instance, a system in the field that is not set up to
3821 be able to stop at a breakpoint), it can object to any unavailable
3822 permissions. */
3823
3824 void
3825 remote_set_permissions (void)
3826 {
3827 struct remote_state *rs = get_remote_state ();
3828
3829 xsnprintf (rs->buf, get_remote_packet_size (), "QAllow:"
3830 "WriteReg:%x;WriteMem:%x;"
3831 "InsertBreak:%x;InsertTrace:%x;"
3832 "InsertFastTrace:%x;Stop:%x",
3833 may_write_registers, may_write_memory,
3834 may_insert_breakpoints, may_insert_tracepoints,
3835 may_insert_fast_tracepoints, may_stop);
3836 putpkt (rs->buf);
3837 getpkt (&rs->buf, &rs->buf_size, 0);
3838
3839 /* If the target didn't like the packet, warn the user. Do not try
3840 to undo the user's settings, that would just be maddening. */
3841 if (strcmp (rs->buf, "OK") != 0)
3842 warning (_("Remote refused setting permissions with: %s"), rs->buf);
3843 }
3844
3845 /* This type describes each known response to the qSupported
3846 packet. */
3847 struct protocol_feature
3848 {
3849 /* The name of this protocol feature. */
3850 const char *name;
3851
3852 /* The default for this protocol feature. */
3853 enum packet_support default_support;
3854
3855 /* The function to call when this feature is reported, or after
3856 qSupported processing if the feature is not supported.
3857 The first argument points to this structure. The second
3858 argument indicates whether the packet requested support be
3859 enabled, disabled, or probed (or the default, if this function
3860 is being called at the end of processing and this feature was
3861 not reported). The third argument may be NULL; if not NULL, it
3862 is a NUL-terminated string taken from the packet following
3863 this feature's name and an equals sign. */
3864 void (*func) (const struct protocol_feature *, enum packet_support,
3865 const char *);
3866
3867 /* The corresponding packet for this feature. Only used if
3868 FUNC is remote_supported_packet. */
3869 int packet;
3870 };
3871
3872 static void
3873 remote_supported_packet (const struct protocol_feature *feature,
3874 enum packet_support support,
3875 const char *argument)
3876 {
3877 if (argument)
3878 {
3879 warning (_("Remote qSupported response supplied an unexpected value for"
3880 " \"%s\"."), feature->name);
3881 return;
3882 }
3883
3884 if (remote_protocol_packets[feature->packet].support
3885 == PACKET_SUPPORT_UNKNOWN)
3886 remote_protocol_packets[feature->packet].support = support;
3887 }
3888
3889 static void
3890 remote_packet_size (const struct protocol_feature *feature,
3891 enum packet_support support, const char *value)
3892 {
3893 struct remote_state *rs = get_remote_state ();
3894
3895 int packet_size;
3896 char *value_end;
3897
3898 if (support != PACKET_ENABLE)
3899 return;
3900
3901 if (value == NULL || *value == '\0')
3902 {
3903 warning (_("Remote target reported \"%s\" without a size."),
3904 feature->name);
3905 return;
3906 }
3907
3908 errno = 0;
3909 packet_size = strtol (value, &value_end, 16);
3910 if (errno != 0 || *value_end != '\0' || packet_size < 0)
3911 {
3912 warning (_("Remote target reported \"%s\" with a bad size: \"%s\"."),
3913 feature->name, value);
3914 return;
3915 }
3916
3917 if (packet_size > MAX_REMOTE_PACKET_SIZE)
3918 {
3919 warning (_("limiting remote suggested packet size (%d bytes) to %d"),
3920 packet_size, MAX_REMOTE_PACKET_SIZE);
3921 packet_size = MAX_REMOTE_PACKET_SIZE;
3922 }
3923
3924 /* Record the new maximum packet size. */
3925 rs->explicit_packet_size = packet_size;
3926 }
3927
3928 static void
3929 remote_multi_process_feature (const struct protocol_feature *feature,
3930 enum packet_support support, const char *value)
3931 {
3932 struct remote_state *rs = get_remote_state ();
3933
3934 rs->multi_process_aware = (support == PACKET_ENABLE);
3935 }
3936
3937 static void
3938 remote_non_stop_feature (const struct protocol_feature *feature,
3939 enum packet_support support, const char *value)
3940 {
3941 struct remote_state *rs = get_remote_state ();
3942
3943 rs->non_stop_aware = (support == PACKET_ENABLE);
3944 }
3945
3946 static void
3947 remote_cond_tracepoint_feature (const struct protocol_feature *feature,
3948 enum packet_support support,
3949 const char *value)
3950 {
3951 struct remote_state *rs = get_remote_state ();
3952
3953 rs->cond_tracepoints = (support == PACKET_ENABLE);
3954 }
3955
3956 static void
3957 remote_cond_breakpoint_feature (const struct protocol_feature *feature,
3958 enum packet_support support,
3959 const char *value)
3960 {
3961 struct remote_state *rs = get_remote_state ();
3962
3963 rs->cond_breakpoints = (support == PACKET_ENABLE);
3964 }
3965
3966 static void
3967 remote_breakpoint_commands_feature (const struct protocol_feature *feature,
3968 enum packet_support support,
3969 const char *value)
3970 {
3971 struct remote_state *rs = get_remote_state ();
3972
3973 rs->breakpoint_commands = (support == PACKET_ENABLE);
3974 }
3975
3976 static void
3977 remote_fast_tracepoint_feature (const struct protocol_feature *feature,
3978 enum packet_support support,
3979 const char *value)
3980 {
3981 struct remote_state *rs = get_remote_state ();
3982
3983 rs->fast_tracepoints = (support == PACKET_ENABLE);
3984 }
3985
3986 static void
3987 remote_static_tracepoint_feature (const struct protocol_feature *feature,
3988 enum packet_support support,
3989 const char *value)
3990 {
3991 struct remote_state *rs = get_remote_state ();
3992
3993 rs->static_tracepoints = (support == PACKET_ENABLE);
3994 }
3995
3996 static void
3997 remote_install_in_trace_feature (const struct protocol_feature *feature,
3998 enum packet_support support,
3999 const char *value)
4000 {
4001 struct remote_state *rs = get_remote_state ();
4002
4003 rs->install_in_trace = (support == PACKET_ENABLE);
4004 }
4005
4006 static void
4007 remote_disconnected_tracing_feature (const struct protocol_feature *feature,
4008 enum packet_support support,
4009 const char *value)
4010 {
4011 struct remote_state *rs = get_remote_state ();
4012
4013 rs->disconnected_tracing = (support == PACKET_ENABLE);
4014 }
4015
4016 static void
4017 remote_enable_disable_tracepoint_feature (const struct protocol_feature *feature,
4018 enum packet_support support,
4019 const char *value)
4020 {
4021 struct remote_state *rs = get_remote_state ();
4022
4023 rs->enable_disable_tracepoints = (support == PACKET_ENABLE);
4024 }
4025
4026 static void
4027 remote_string_tracing_feature (const struct protocol_feature *feature,
4028 enum packet_support support,
4029 const char *value)
4030 {
4031 struct remote_state *rs = get_remote_state ();
4032
4033 rs->string_tracing = (support == PACKET_ENABLE);
4034 }
4035
4036 static void
4037 remote_augmented_libraries_svr4_read_feature
4038 (const struct protocol_feature *feature,
4039 enum packet_support support, const char *value)
4040 {
4041 struct remote_state *rs = get_remote_state ();
4042
4043 rs->augmented_libraries_svr4_read = (support == PACKET_ENABLE);
4044 }
4045
4046 static const struct protocol_feature remote_protocol_features[] = {
4047 { "PacketSize", PACKET_DISABLE, remote_packet_size, -1 },
4048 { "qXfer:auxv:read", PACKET_DISABLE, remote_supported_packet,
4049 PACKET_qXfer_auxv },
4050 { "qXfer:features:read", PACKET_DISABLE, remote_supported_packet,
4051 PACKET_qXfer_features },
4052 { "qXfer:libraries:read", PACKET_DISABLE, remote_supported_packet,
4053 PACKET_qXfer_libraries },
4054 { "qXfer:libraries-svr4:read", PACKET_DISABLE, remote_supported_packet,
4055 PACKET_qXfer_libraries_svr4 },
4056 { "augmented-libraries-svr4-read", PACKET_DISABLE,
4057 remote_augmented_libraries_svr4_read_feature, -1 },
4058 { "qXfer:memory-map:read", PACKET_DISABLE, remote_supported_packet,
4059 PACKET_qXfer_memory_map },
4060 { "qXfer:spu:read", PACKET_DISABLE, remote_supported_packet,
4061 PACKET_qXfer_spu_read },
4062 { "qXfer:spu:write", PACKET_DISABLE, remote_supported_packet,
4063 PACKET_qXfer_spu_write },
4064 { "qXfer:osdata:read", PACKET_DISABLE, remote_supported_packet,
4065 PACKET_qXfer_osdata },
4066 { "qXfer:threads:read", PACKET_DISABLE, remote_supported_packet,
4067 PACKET_qXfer_threads },
4068 { "qXfer:traceframe-info:read", PACKET_DISABLE, remote_supported_packet,
4069 PACKET_qXfer_traceframe_info },
4070 { "QPassSignals", PACKET_DISABLE, remote_supported_packet,
4071 PACKET_QPassSignals },
4072 { "QProgramSignals", PACKET_DISABLE, remote_supported_packet,
4073 PACKET_QProgramSignals },
4074 { "QStartNoAckMode", PACKET_DISABLE, remote_supported_packet,
4075 PACKET_QStartNoAckMode },
4076 { "multiprocess", PACKET_DISABLE, remote_multi_process_feature, -1 },
4077 { "QNonStop", PACKET_DISABLE, remote_non_stop_feature, -1 },
4078 { "qXfer:siginfo:read", PACKET_DISABLE, remote_supported_packet,
4079 PACKET_qXfer_siginfo_read },
4080 { "qXfer:siginfo:write", PACKET_DISABLE, remote_supported_packet,
4081 PACKET_qXfer_siginfo_write },
4082 { "ConditionalTracepoints", PACKET_DISABLE, remote_cond_tracepoint_feature,
4083 PACKET_ConditionalTracepoints },
4084 { "ConditionalBreakpoints", PACKET_DISABLE, remote_cond_breakpoint_feature,
4085 PACKET_ConditionalBreakpoints },
4086 { "BreakpointCommands", PACKET_DISABLE, remote_breakpoint_commands_feature,
4087 PACKET_BreakpointCommands },
4088 { "FastTracepoints", PACKET_DISABLE, remote_fast_tracepoint_feature,
4089 PACKET_FastTracepoints },
4090 { "StaticTracepoints", PACKET_DISABLE, remote_static_tracepoint_feature,
4091 PACKET_StaticTracepoints },
4092 {"InstallInTrace", PACKET_DISABLE, remote_install_in_trace_feature,
4093 PACKET_InstallInTrace},
4094 { "DisconnectedTracing", PACKET_DISABLE, remote_disconnected_tracing_feature,
4095 -1 },
4096 { "ReverseContinue", PACKET_DISABLE, remote_supported_packet,
4097 PACKET_bc },
4098 { "ReverseStep", PACKET_DISABLE, remote_supported_packet,
4099 PACKET_bs },
4100 { "TracepointSource", PACKET_DISABLE, remote_supported_packet,
4101 PACKET_TracepointSource },
4102 { "QAllow", PACKET_DISABLE, remote_supported_packet,
4103 PACKET_QAllow },
4104 { "EnableDisableTracepoints", PACKET_DISABLE,
4105 remote_enable_disable_tracepoint_feature, -1 },
4106 { "qXfer:fdpic:read", PACKET_DISABLE, remote_supported_packet,
4107 PACKET_qXfer_fdpic },
4108 { "qXfer:uib:read", PACKET_DISABLE, remote_supported_packet,
4109 PACKET_qXfer_uib },
4110 { "QDisableRandomization", PACKET_DISABLE, remote_supported_packet,
4111 PACKET_QDisableRandomization },
4112 { "QAgent", PACKET_DISABLE, remote_supported_packet, PACKET_QAgent},
4113 { "QTBuffer:size", PACKET_DISABLE,
4114 remote_supported_packet, PACKET_QTBuffer_size},
4115 { "tracenz", PACKET_DISABLE,
4116 remote_string_tracing_feature, -1 },
4117 { "Qbtrace:off", PACKET_DISABLE, remote_supported_packet, PACKET_Qbtrace_off },
4118 { "Qbtrace:bts", PACKET_DISABLE, remote_supported_packet, PACKET_Qbtrace_bts },
4119 { "qXfer:btrace:read", PACKET_DISABLE, remote_supported_packet,
4120 PACKET_qXfer_btrace }
4121 };
4122
4123 static char *remote_support_xml;
4124
4125 /* Register string appended to "xmlRegisters=" in qSupported query. */
4126
4127 void
4128 register_remote_support_xml (const char *xml)
4129 {
4130 #if defined(HAVE_LIBEXPAT)
4131 if (remote_support_xml == NULL)
4132 remote_support_xml = concat ("xmlRegisters=", xml, (char *) NULL);
4133 else
4134 {
4135 char *copy = xstrdup (remote_support_xml + 13);
4136 char *p = strtok (copy, ",");
4137
4138 do
4139 {
4140 if (strcmp (p, xml) == 0)
4141 {
4142 /* already there */
4143 xfree (copy);
4144 return;
4145 }
4146 }
4147 while ((p = strtok (NULL, ",")) != NULL);
4148 xfree (copy);
4149
4150 remote_support_xml = reconcat (remote_support_xml,
4151 remote_support_xml, ",", xml,
4152 (char *) NULL);
4153 }
4154 #endif
4155 }
4156
4157 static char *
4158 remote_query_supported_append (char *msg, const char *append)
4159 {
4160 if (msg)
4161 return reconcat (msg, msg, ";", append, (char *) NULL);
4162 else
4163 return xstrdup (append);
4164 }
4165
4166 static void
4167 remote_query_supported (void)
4168 {
4169 struct remote_state *rs = get_remote_state ();
4170 char *next;
4171 int i;
4172 unsigned char seen [ARRAY_SIZE (remote_protocol_features)];
4173
4174 /* The packet support flags are handled differently for this packet
4175 than for most others. We treat an error, a disabled packet, and
4176 an empty response identically: any features which must be reported
4177 to be used will be automatically disabled. An empty buffer
4178 accomplishes this, since that is also the representation for a list
4179 containing no features. */
4180
4181 rs->buf[0] = 0;
4182 if (remote_protocol_packets[PACKET_qSupported].support != PACKET_DISABLE)
4183 {
4184 char *q = NULL;
4185 struct cleanup *old_chain = make_cleanup (free_current_contents, &q);
4186
4187 q = remote_query_supported_append (q, "multiprocess+");
4188
4189 if (remote_support_xml)
4190 q = remote_query_supported_append (q, remote_support_xml);
4191
4192 q = remote_query_supported_append (q, "qRelocInsn+");
4193
4194 q = reconcat (q, "qSupported:", q, (char *) NULL);
4195 putpkt (q);
4196
4197 do_cleanups (old_chain);
4198
4199 getpkt (&rs->buf, &rs->buf_size, 0);
4200
4201 /* If an error occured, warn, but do not return - just reset the
4202 buffer to empty and go on to disable features. */
4203 if (packet_ok (rs->buf, &remote_protocol_packets[PACKET_qSupported])
4204 == PACKET_ERROR)
4205 {
4206 warning (_("Remote failure reply: %s"), rs->buf);
4207 rs->buf[0] = 0;
4208 }
4209 }
4210
4211 memset (seen, 0, sizeof (seen));
4212
4213 next = rs->buf;
4214 while (*next)
4215 {
4216 enum packet_support is_supported;
4217 char *p, *end, *name_end, *value;
4218
4219 /* First separate out this item from the rest of the packet. If
4220 there's another item after this, we overwrite the separator
4221 (terminated strings are much easier to work with). */
4222 p = next;
4223 end = strchr (p, ';');
4224 if (end == NULL)
4225 {
4226 end = p + strlen (p);
4227 next = end;
4228 }
4229 else
4230 {
4231 *end = '\0';
4232 next = end + 1;
4233
4234 if (end == p)
4235 {
4236 warning (_("empty item in \"qSupported\" response"));
4237 continue;
4238 }
4239 }
4240
4241 name_end = strchr (p, '=');
4242 if (name_end)
4243 {
4244 /* This is a name=value entry. */
4245 is_supported = PACKET_ENABLE;
4246 value = name_end + 1;
4247 *name_end = '\0';
4248 }
4249 else
4250 {
4251 value = NULL;
4252 switch (end[-1])
4253 {
4254 case '+':
4255 is_supported = PACKET_ENABLE;
4256 break;
4257
4258 case '-':
4259 is_supported = PACKET_DISABLE;
4260 break;
4261
4262 case '?':
4263 is_supported = PACKET_SUPPORT_UNKNOWN;
4264 break;
4265
4266 default:
4267 warning (_("unrecognized item \"%s\" "
4268 "in \"qSupported\" response"), p);
4269 continue;
4270 }
4271 end[-1] = '\0';
4272 }
4273
4274 for (i = 0; i < ARRAY_SIZE (remote_protocol_features); i++)
4275 if (strcmp (remote_protocol_features[i].name, p) == 0)
4276 {
4277 const struct protocol_feature *feature;
4278
4279 seen[i] = 1;
4280 feature = &remote_protocol_features[i];
4281 feature->func (feature, is_supported, value);
4282 break;
4283 }
4284 }
4285
4286 /* If we increased the packet size, make sure to increase the global
4287 buffer size also. We delay this until after parsing the entire
4288 qSupported packet, because this is the same buffer we were
4289 parsing. */
4290 if (rs->buf_size < rs->explicit_packet_size)
4291 {
4292 rs->buf_size = rs->explicit_packet_size;
4293 rs->buf = xrealloc (rs->buf, rs->buf_size);
4294 }
4295
4296 /* Handle the defaults for unmentioned features. */
4297 for (i = 0; i < ARRAY_SIZE (remote_protocol_features); i++)
4298 if (!seen[i])
4299 {
4300 const struct protocol_feature *feature;
4301
4302 feature = &remote_protocol_features[i];
4303 feature->func (feature, feature->default_support, NULL);
4304 }
4305 }
4306
4307 /* Remove any of the remote.c targets from target stack. Upper targets depend
4308 on it so remove them first. */
4309
4310 static void
4311 remote_unpush_target (void)
4312 {
4313 pop_all_targets_above (process_stratum - 1);
4314 }
4315
4316 static void
4317 remote_open_1 (char *name, int from_tty,
4318 struct target_ops *target, int extended_p)
4319 {
4320 struct remote_state *rs = get_remote_state ();
4321
4322 if (name == 0)
4323 error (_("To open a remote debug connection, you need to specify what\n"
4324 "serial device is attached to the remote system\n"
4325 "(e.g. /dev/ttyS0, /dev/ttya, COM1, etc.)."));
4326
4327 /* See FIXME above. */
4328 if (!target_async_permitted)
4329 wait_forever_enabled_p = 1;
4330
4331 /* If we're connected to a running target, target_preopen will kill it.
4332 Ask this question first, before target_preopen has a chance to kill
4333 anything. */
4334 if (rs->remote_desc != NULL && !have_inferiors ())
4335 {
4336 if (from_tty
4337 && !query (_("Already connected to a remote target. Disconnect? ")))
4338 error (_("Still connected."));
4339 }
4340
4341 /* Here the possibly existing remote target gets unpushed. */
4342 target_preopen (from_tty);
4343
4344 /* Make sure we send the passed signals list the next time we resume. */
4345 xfree (rs->last_pass_packet);
4346 rs->last_pass_packet = NULL;
4347
4348 /* Make sure we send the program signals list the next time we
4349 resume. */
4350 xfree (rs->last_program_signals_packet);
4351 rs->last_program_signals_packet = NULL;
4352
4353 remote_fileio_reset ();
4354 reopen_exec_file ();
4355 reread_symbols ();
4356
4357 rs->remote_desc = remote_serial_open (name);
4358 if (!rs->remote_desc)
4359 perror_with_name (name);
4360
4361 if (baud_rate != -1)
4362 {
4363 if (serial_setbaudrate (rs->remote_desc, baud_rate))
4364 {
4365 /* The requested speed could not be set. Error out to
4366 top level after closing remote_desc. Take care to
4367 set remote_desc to NULL to avoid closing remote_desc
4368 more than once. */
4369 serial_close (rs->remote_desc);
4370 rs->remote_desc = NULL;
4371 perror_with_name (name);
4372 }
4373 }
4374
4375 serial_raw (rs->remote_desc);
4376
4377 /* If there is something sitting in the buffer we might take it as a
4378 response to a command, which would be bad. */
4379 serial_flush_input (rs->remote_desc);
4380
4381 if (from_tty)
4382 {
4383 puts_filtered ("Remote debugging using ");
4384 puts_filtered (name);
4385 puts_filtered ("\n");
4386 }
4387 push_target (target); /* Switch to using remote target now. */
4388
4389 /* Register extra event sources in the event loop. */
4390 remote_async_inferior_event_token
4391 = create_async_event_handler (remote_async_inferior_event_handler,
4392 NULL);
4393 rs->notif_state = remote_notif_state_allocate ();
4394
4395 /* Reset the target state; these things will be queried either by
4396 remote_query_supported or as they are needed. */
4397 init_all_packet_configs ();
4398 rs->cached_wait_status = 0;
4399 rs->explicit_packet_size = 0;
4400 rs->noack_mode = 0;
4401 rs->multi_process_aware = 0;
4402 rs->extended = extended_p;
4403 rs->non_stop_aware = 0;
4404 rs->waiting_for_stop_reply = 0;
4405 rs->ctrlc_pending_p = 0;
4406
4407 rs->general_thread = not_sent_ptid;
4408 rs->continue_thread = not_sent_ptid;
4409 rs->remote_traceframe_number = -1;
4410
4411 /* Probe for ability to use "ThreadInfo" query, as required. */
4412 rs->use_threadinfo_query = 1;
4413 rs->use_threadextra_query = 1;
4414
4415 if (target_async_permitted)
4416 {
4417 /* With this target we start out by owning the terminal. */
4418 remote_async_terminal_ours_p = 1;
4419
4420 /* FIXME: cagney/1999-09-23: During the initial connection it is
4421 assumed that the target is already ready and able to respond to
4422 requests. Unfortunately remote_start_remote() eventually calls
4423 wait_for_inferior() with no timeout. wait_forever_enabled_p gets
4424 around this. Eventually a mechanism that allows
4425 wait_for_inferior() to expect/get timeouts will be
4426 implemented. */
4427 wait_forever_enabled_p = 0;
4428 }
4429
4430 /* First delete any symbols previously loaded from shared libraries. */
4431 no_shared_libraries (NULL, 0);
4432
4433 /* Start afresh. */
4434 init_thread_list ();
4435
4436 /* Start the remote connection. If error() or QUIT, discard this
4437 target (we'd otherwise be in an inconsistent state) and then
4438 propogate the error on up the exception chain. This ensures that
4439 the caller doesn't stumble along blindly assuming that the
4440 function succeeded. The CLI doesn't have this problem but other
4441 UI's, such as MI do.
4442
4443 FIXME: cagney/2002-05-19: Instead of re-throwing the exception,
4444 this function should return an error indication letting the
4445 caller restore the previous state. Unfortunately the command
4446 ``target remote'' is directly wired to this function making that
4447 impossible. On a positive note, the CLI side of this problem has
4448 been fixed - the function set_cmd_context() makes it possible for
4449 all the ``target ....'' commands to share a common callback
4450 function. See cli-dump.c. */
4451 {
4452 volatile struct gdb_exception ex;
4453
4454 TRY_CATCH (ex, RETURN_MASK_ALL)
4455 {
4456 remote_start_remote (from_tty, target, extended_p);
4457 }
4458 if (ex.reason < 0)
4459 {
4460 /* Pop the partially set up target - unless something else did
4461 already before throwing the exception. */
4462 if (rs->remote_desc != NULL)
4463 remote_unpush_target ();
4464 if (target_async_permitted)
4465 wait_forever_enabled_p = 1;
4466 throw_exception (ex);
4467 }
4468 }
4469
4470 if (target_async_permitted)
4471 wait_forever_enabled_p = 1;
4472 }
4473
4474 /* This takes a program previously attached to and detaches it. After
4475 this is done, GDB can be used to debug some other program. We
4476 better not have left any breakpoints in the target program or it'll
4477 die when it hits one. */
4478
4479 static void
4480 remote_detach_1 (const char *args, int from_tty, int extended)
4481 {
4482 int pid = ptid_get_pid (inferior_ptid);
4483 struct remote_state *rs = get_remote_state ();
4484
4485 if (args)
4486 error (_("Argument given to \"detach\" when remotely debugging."));
4487
4488 if (!target_has_execution)
4489 error (_("No process to detach from."));
4490
4491 if (from_tty)
4492 {
4493 char *exec_file = get_exec_file (0);
4494 if (exec_file == NULL)
4495 exec_file = "";
4496 printf_unfiltered (_("Detaching from program: %s, %s\n"), exec_file,
4497 target_pid_to_str (pid_to_ptid (pid)));
4498 gdb_flush (gdb_stdout);
4499 }
4500
4501 /* Tell the remote target to detach. */
4502 if (remote_multi_process_p (rs))
4503 xsnprintf (rs->buf, get_remote_packet_size (), "D;%x", pid);
4504 else
4505 strcpy (rs->buf, "D");
4506
4507 putpkt (rs->buf);
4508 getpkt (&rs->buf, &rs->buf_size, 0);
4509
4510 if (rs->buf[0] == 'O' && rs->buf[1] == 'K')
4511 ;
4512 else if (rs->buf[0] == '\0')
4513 error (_("Remote doesn't know how to detach"));
4514 else
4515 error (_("Can't detach process."));
4516
4517 if (from_tty && !extended)
4518 puts_filtered (_("Ending remote debugging.\n"));
4519
4520 target_mourn_inferior ();
4521 }
4522
4523 static void
4524 remote_detach (struct target_ops *ops, const char *args, int from_tty)
4525 {
4526 remote_detach_1 (args, from_tty, 0);
4527 }
4528
4529 static void
4530 extended_remote_detach (struct target_ops *ops, const char *args, int from_tty)
4531 {
4532 remote_detach_1 (args, from_tty, 1);
4533 }
4534
4535 /* Same as remote_detach, but don't send the "D" packet; just disconnect. */
4536
4537 static void
4538 remote_disconnect (struct target_ops *target, char *args, int from_tty)
4539 {
4540 if (args)
4541 error (_("Argument given to \"disconnect\" when remotely debugging."));
4542
4543 /* Make sure we unpush even the extended remote targets; mourn
4544 won't do it. So call remote_mourn_1 directly instead of
4545 target_mourn_inferior. */
4546 remote_mourn_1 (target);
4547
4548 if (from_tty)
4549 puts_filtered ("Ending remote debugging.\n");
4550 }
4551
4552 /* Attach to the process specified by ARGS. If FROM_TTY is non-zero,
4553 be chatty about it. */
4554
4555 static void
4556 extended_remote_attach_1 (struct target_ops *target, char *args, int from_tty)
4557 {
4558 struct remote_state *rs = get_remote_state ();
4559 int pid;
4560 char *wait_status = NULL;
4561
4562 pid = parse_pid_to_attach (args);
4563
4564 /* Remote PID can be freely equal to getpid, do not check it here the same
4565 way as in other targets. */
4566
4567 if (remote_protocol_packets[PACKET_vAttach].support == PACKET_DISABLE)
4568 error (_("This target does not support attaching to a process"));
4569
4570 if (from_tty)
4571 {
4572 char *exec_file = get_exec_file (0);
4573
4574 if (exec_file)
4575 printf_unfiltered (_("Attaching to program: %s, %s\n"), exec_file,
4576 target_pid_to_str (pid_to_ptid (pid)));
4577 else
4578 printf_unfiltered (_("Attaching to %s\n"),
4579 target_pid_to_str (pid_to_ptid (pid)));
4580
4581 gdb_flush (gdb_stdout);
4582 }
4583
4584 xsnprintf (rs->buf, get_remote_packet_size (), "vAttach;%x", pid);
4585 putpkt (rs->buf);
4586 getpkt (&rs->buf, &rs->buf_size, 0);
4587
4588 if (packet_ok (rs->buf,
4589 &remote_protocol_packets[PACKET_vAttach]) == PACKET_OK)
4590 {
4591 if (!non_stop)
4592 {
4593 /* Save the reply for later. */
4594 wait_status = alloca (strlen (rs->buf) + 1);
4595 strcpy (wait_status, rs->buf);
4596 }
4597 else if (strcmp (rs->buf, "OK") != 0)
4598 error (_("Attaching to %s failed with: %s"),
4599 target_pid_to_str (pid_to_ptid (pid)),
4600 rs->buf);
4601 }
4602 else if (remote_protocol_packets[PACKET_vAttach].support == PACKET_DISABLE)
4603 error (_("This target does not support attaching to a process"));
4604 else
4605 error (_("Attaching to %s failed"),
4606 target_pid_to_str (pid_to_ptid (pid)));
4607
4608 set_current_inferior (remote_add_inferior (0, pid, 1));
4609
4610 inferior_ptid = pid_to_ptid (pid);
4611
4612 if (non_stop)
4613 {
4614 struct thread_info *thread;
4615
4616 /* Get list of threads. */
4617 remote_threads_info (target);
4618
4619 thread = first_thread_of_process (pid);
4620 if (thread)
4621 inferior_ptid = thread->ptid;
4622 else
4623 inferior_ptid = pid_to_ptid (pid);
4624
4625 /* Invalidate our notion of the remote current thread. */
4626 record_currthread (rs, minus_one_ptid);
4627 }
4628 else
4629 {
4630 /* Now, if we have thread information, update inferior_ptid. */
4631 inferior_ptid = remote_current_thread (inferior_ptid);
4632
4633 /* Add the main thread to the thread list. */
4634 add_thread_silent (inferior_ptid);
4635 }
4636
4637 /* Next, if the target can specify a description, read it. We do
4638 this before anything involving memory or registers. */
4639 target_find_description ();
4640
4641 if (!non_stop)
4642 {
4643 /* Use the previously fetched status. */
4644 gdb_assert (wait_status != NULL);
4645
4646 if (target_can_async_p ())
4647 {
4648 struct notif_event *reply
4649 = remote_notif_parse (&notif_client_stop, wait_status);
4650
4651 push_stop_reply ((struct stop_reply *) reply);
4652
4653 target_async (inferior_event_handler, 0);
4654 }
4655 else
4656 {
4657 gdb_assert (wait_status != NULL);
4658 strcpy (rs->buf, wait_status);
4659 rs->cached_wait_status = 1;
4660 }
4661 }
4662 else
4663 gdb_assert (wait_status == NULL);
4664 }
4665
4666 static void
4667 extended_remote_attach (struct target_ops *ops, char *args, int from_tty)
4668 {
4669 extended_remote_attach_1 (ops, args, from_tty);
4670 }
4671
4672 /* Convert hex digit A to a number. */
4673
4674 static int
4675 fromhex (int a)
4676 {
4677 if (a >= '0' && a <= '9')
4678 return a - '0';
4679 else if (a >= 'a' && a <= 'f')
4680 return a - 'a' + 10;
4681 else if (a >= 'A' && a <= 'F')
4682 return a - 'A' + 10;
4683 else
4684 error (_("Reply contains invalid hex digit %d"), a);
4685 }
4686
4687 int
4688 hex2bin (const char *hex, gdb_byte *bin, int count)
4689 {
4690 int i;
4691
4692 for (i = 0; i < count; i++)
4693 {
4694 if (hex[0] == 0 || hex[1] == 0)
4695 {
4696 /* Hex string is short, or of uneven length.
4697 Return the count that has been converted so far. */
4698 return i;
4699 }
4700 *bin++ = fromhex (hex[0]) * 16 + fromhex (hex[1]);
4701 hex += 2;
4702 }
4703 return i;
4704 }
4705
4706 /* Convert number NIB to a hex digit. */
4707
4708 static int
4709 tohex (int nib)
4710 {
4711 if (nib < 10)
4712 return '0' + nib;
4713 else
4714 return 'a' + nib - 10;
4715 }
4716
4717 int
4718 bin2hex (const gdb_byte *bin, char *hex, int count)
4719 {
4720 int i;
4721
4722 /* May use a length, or a nul-terminated string as input. */
4723 if (count == 0)
4724 count = strlen ((char *) bin);
4725
4726 for (i = 0; i < count; i++)
4727 {
4728 *hex++ = tohex ((*bin >> 4) & 0xf);
4729 *hex++ = tohex (*bin++ & 0xf);
4730 }
4731 *hex = 0;
4732 return i;
4733 }
4734 \f
4735 /* Check for the availability of vCont. This function should also check
4736 the response. */
4737
4738 static void
4739 remote_vcont_probe (struct remote_state *rs)
4740 {
4741 char *buf;
4742
4743 strcpy (rs->buf, "vCont?");
4744 putpkt (rs->buf);
4745 getpkt (&rs->buf, &rs->buf_size, 0);
4746 buf = rs->buf;
4747
4748 /* Make sure that the features we assume are supported. */
4749 if (strncmp (buf, "vCont", 5) == 0)
4750 {
4751 char *p = &buf[5];
4752 int support_s, support_S, support_c, support_C;
4753
4754 support_s = 0;
4755 support_S = 0;
4756 support_c = 0;
4757 support_C = 0;
4758 rs->supports_vCont.t = 0;
4759 rs->supports_vCont.r = 0;
4760 while (p && *p == ';')
4761 {
4762 p++;
4763 if (*p == 's' && (*(p + 1) == ';' || *(p + 1) == 0))
4764 support_s = 1;
4765 else if (*p == 'S' && (*(p + 1) == ';' || *(p + 1) == 0))
4766 support_S = 1;
4767 else if (*p == 'c' && (*(p + 1) == ';' || *(p + 1) == 0))
4768 support_c = 1;
4769 else if (*p == 'C' && (*(p + 1) == ';' || *(p + 1) == 0))
4770 support_C = 1;
4771 else if (*p == 't' && (*(p + 1) == ';' || *(p + 1) == 0))
4772 rs->supports_vCont.t = 1;
4773 else if (*p == 'r' && (*(p + 1) == ';' || *(p + 1) == 0))
4774 rs->supports_vCont.r = 1;
4775
4776 p = strchr (p, ';');
4777 }
4778
4779 /* If s, S, c, and C are not all supported, we can't use vCont. Clearing
4780 BUF will make packet_ok disable the packet. */
4781 if (!support_s || !support_S || !support_c || !support_C)
4782 buf[0] = 0;
4783 }
4784
4785 packet_ok (buf, &remote_protocol_packets[PACKET_vCont]);
4786 }
4787
4788 /* Helper function for building "vCont" resumptions. Write a
4789 resumption to P. ENDP points to one-passed-the-end of the buffer
4790 we're allowed to write to. Returns BUF+CHARACTERS_WRITTEN. The
4791 thread to be resumed is PTID; STEP and SIGGNAL indicate whether the
4792 resumed thread should be single-stepped and/or signalled. If PTID
4793 equals minus_one_ptid, then all threads are resumed; if PTID
4794 represents a process, then all threads of the process are resumed;
4795 the thread to be stepped and/or signalled is given in the global
4796 INFERIOR_PTID. */
4797
4798 static char *
4799 append_resumption (char *p, char *endp,
4800 ptid_t ptid, int step, enum gdb_signal siggnal)
4801 {
4802 struct remote_state *rs = get_remote_state ();
4803
4804 if (step && siggnal != GDB_SIGNAL_0)
4805 p += xsnprintf (p, endp - p, ";S%02x", siggnal);
4806 else if (step
4807 /* GDB is willing to range step. */
4808 && use_range_stepping
4809 /* Target supports range stepping. */
4810 && rs->supports_vCont.r
4811 /* We don't currently support range stepping multiple
4812 threads with a wildcard (though the protocol allows it,
4813 so stubs shouldn't make an active effort to forbid
4814 it). */
4815 && !(remote_multi_process_p (rs) && ptid_is_pid (ptid)))
4816 {
4817 struct thread_info *tp;
4818
4819 if (ptid_equal (ptid, minus_one_ptid))
4820 {
4821 /* If we don't know about the target thread's tid, then
4822 we're resuming magic_null_ptid (see caller). */
4823 tp = find_thread_ptid (magic_null_ptid);
4824 }
4825 else
4826 tp = find_thread_ptid (ptid);
4827 gdb_assert (tp != NULL);
4828
4829 if (tp->control.may_range_step)
4830 {
4831 int addr_size = gdbarch_addr_bit (target_gdbarch ()) / 8;
4832
4833 p += xsnprintf (p, endp - p, ";r%s,%s",
4834 phex_nz (tp->control.step_range_start,
4835 addr_size),
4836 phex_nz (tp->control.step_range_end,
4837 addr_size));
4838 }
4839 else
4840 p += xsnprintf (p, endp - p, ";s");
4841 }
4842 else if (step)
4843 p += xsnprintf (p, endp - p, ";s");
4844 else if (siggnal != GDB_SIGNAL_0)
4845 p += xsnprintf (p, endp - p, ";C%02x", siggnal);
4846 else
4847 p += xsnprintf (p, endp - p, ";c");
4848
4849 if (remote_multi_process_p (rs) && ptid_is_pid (ptid))
4850 {
4851 ptid_t nptid;
4852
4853 /* All (-1) threads of process. */
4854 nptid = ptid_build (ptid_get_pid (ptid), 0, -1);
4855
4856 p += xsnprintf (p, endp - p, ":");
4857 p = write_ptid (p, endp, nptid);
4858 }
4859 else if (!ptid_equal (ptid, minus_one_ptid))
4860 {
4861 p += xsnprintf (p, endp - p, ":");
4862 p = write_ptid (p, endp, ptid);
4863 }
4864
4865 return p;
4866 }
4867
4868 /* Append a vCont continue-with-signal action for threads that have a
4869 non-zero stop signal. */
4870
4871 static char *
4872 append_pending_thread_resumptions (char *p, char *endp, ptid_t ptid)
4873 {
4874 struct thread_info *thread;
4875
4876 ALL_THREADS (thread)
4877 if (ptid_match (thread->ptid, ptid)
4878 && !ptid_equal (inferior_ptid, thread->ptid)
4879 && thread->suspend.stop_signal != GDB_SIGNAL_0
4880 && signal_pass_state (thread->suspend.stop_signal))
4881 {
4882 p = append_resumption (p, endp, thread->ptid,
4883 0, thread->suspend.stop_signal);
4884 thread->suspend.stop_signal = GDB_SIGNAL_0;
4885 }
4886
4887 return p;
4888 }
4889
4890 /* Resume the remote inferior by using a "vCont" packet. The thread
4891 to be resumed is PTID; STEP and SIGGNAL indicate whether the
4892 resumed thread should be single-stepped and/or signalled. If PTID
4893 equals minus_one_ptid, then all threads are resumed; the thread to
4894 be stepped and/or signalled is given in the global INFERIOR_PTID.
4895 This function returns non-zero iff it resumes the inferior.
4896
4897 This function issues a strict subset of all possible vCont commands at the
4898 moment. */
4899
4900 static int
4901 remote_vcont_resume (ptid_t ptid, int step, enum gdb_signal siggnal)
4902 {
4903 struct remote_state *rs = get_remote_state ();
4904 char *p;
4905 char *endp;
4906
4907 if (remote_protocol_packets[PACKET_vCont].support == PACKET_SUPPORT_UNKNOWN)
4908 remote_vcont_probe (rs);
4909
4910 if (remote_protocol_packets[PACKET_vCont].support == PACKET_DISABLE)
4911 return 0;
4912
4913 p = rs->buf;
4914 endp = rs->buf + get_remote_packet_size ();
4915
4916 /* If we could generate a wider range of packets, we'd have to worry
4917 about overflowing BUF. Should there be a generic
4918 "multi-part-packet" packet? */
4919
4920 p += xsnprintf (p, endp - p, "vCont");
4921
4922 if (ptid_equal (ptid, magic_null_ptid))
4923 {
4924 /* MAGIC_NULL_PTID means that we don't have any active threads,
4925 so we don't have any TID numbers the inferior will
4926 understand. Make sure to only send forms that do not specify
4927 a TID. */
4928 append_resumption (p, endp, minus_one_ptid, step, siggnal);
4929 }
4930 else if (ptid_equal (ptid, minus_one_ptid) || ptid_is_pid (ptid))
4931 {
4932 /* Resume all threads (of all processes, or of a single
4933 process), with preference for INFERIOR_PTID. This assumes
4934 inferior_ptid belongs to the set of all threads we are about
4935 to resume. */
4936 if (step || siggnal != GDB_SIGNAL_0)
4937 {
4938 /* Step inferior_ptid, with or without signal. */
4939 p = append_resumption (p, endp, inferior_ptid, step, siggnal);
4940 }
4941
4942 /* Also pass down any pending signaled resumption for other
4943 threads not the current. */
4944 p = append_pending_thread_resumptions (p, endp, ptid);
4945
4946 /* And continue others without a signal. */
4947 append_resumption (p, endp, ptid, /*step=*/ 0, GDB_SIGNAL_0);
4948 }
4949 else
4950 {
4951 /* Scheduler locking; resume only PTID. */
4952 append_resumption (p, endp, ptid, step, siggnal);
4953 }
4954
4955 gdb_assert (strlen (rs->buf) < get_remote_packet_size ());
4956 putpkt (rs->buf);
4957
4958 if (non_stop)
4959 {
4960 /* In non-stop, the stub replies to vCont with "OK". The stop
4961 reply will be reported asynchronously by means of a `%Stop'
4962 notification. */
4963 getpkt (&rs->buf, &rs->buf_size, 0);
4964 if (strcmp (rs->buf, "OK") != 0)
4965 error (_("Unexpected vCont reply in non-stop mode: %s"), rs->buf);
4966 }
4967
4968 return 1;
4969 }
4970
4971 /* Tell the remote machine to resume. */
4972
4973 static void
4974 remote_resume (struct target_ops *ops,
4975 ptid_t ptid, int step, enum gdb_signal siggnal)
4976 {
4977 struct remote_state *rs = get_remote_state ();
4978 char *buf;
4979
4980 /* In all-stop, we can't mark REMOTE_ASYNC_GET_PENDING_EVENTS_TOKEN
4981 (explained in remote-notif.c:handle_notification) so
4982 remote_notif_process is not called. We need find a place where
4983 it is safe to start a 'vNotif' sequence. It is good to do it
4984 before resuming inferior, because inferior was stopped and no RSP
4985 traffic at that moment. */
4986 if (!non_stop)
4987 remote_notif_process (rs->notif_state, &notif_client_stop);
4988
4989 rs->last_sent_signal = siggnal;
4990 rs->last_sent_step = step;
4991
4992 /* The vCont packet doesn't need to specify threads via Hc. */
4993 /* No reverse support (yet) for vCont. */
4994 if (execution_direction != EXEC_REVERSE)
4995 if (remote_vcont_resume (ptid, step, siggnal))
4996 goto done;
4997
4998 /* All other supported resume packets do use Hc, so set the continue
4999 thread. */
5000 if (ptid_equal (ptid, minus_one_ptid))
5001 set_continue_thread (any_thread_ptid);
5002 else
5003 set_continue_thread (ptid);
5004
5005 buf = rs->buf;
5006 if (execution_direction == EXEC_REVERSE)
5007 {
5008 /* We don't pass signals to the target in reverse exec mode. */
5009 if (info_verbose && siggnal != GDB_SIGNAL_0)
5010 warning (_(" - Can't pass signal %d to target in reverse: ignored."),
5011 siggnal);
5012
5013 if (step
5014 && remote_protocol_packets[PACKET_bs].support == PACKET_DISABLE)
5015 error (_("Remote reverse-step not supported."));
5016 if (!step
5017 && remote_protocol_packets[PACKET_bc].support == PACKET_DISABLE)
5018 error (_("Remote reverse-continue not supported."));
5019
5020 strcpy (buf, step ? "bs" : "bc");
5021 }
5022 else if (siggnal != GDB_SIGNAL_0)
5023 {
5024 buf[0] = step ? 'S' : 'C';
5025 buf[1] = tohex (((int) siggnal >> 4) & 0xf);
5026 buf[2] = tohex (((int) siggnal) & 0xf);
5027 buf[3] = '\0';
5028 }
5029 else
5030 strcpy (buf, step ? "s" : "c");
5031
5032 putpkt (buf);
5033
5034 done:
5035 /* We are about to start executing the inferior, let's register it
5036 with the event loop. NOTE: this is the one place where all the
5037 execution commands end up. We could alternatively do this in each
5038 of the execution commands in infcmd.c. */
5039 /* FIXME: ezannoni 1999-09-28: We may need to move this out of here
5040 into infcmd.c in order to allow inferior function calls to work
5041 NOT asynchronously. */
5042 if (target_can_async_p ())
5043 target_async (inferior_event_handler, 0);
5044
5045 /* We've just told the target to resume. The remote server will
5046 wait for the inferior to stop, and then send a stop reply. In
5047 the mean time, we can't start another command/query ourselves
5048 because the stub wouldn't be ready to process it. This applies
5049 only to the base all-stop protocol, however. In non-stop (which
5050 only supports vCont), the stub replies with an "OK", and is
5051 immediate able to process further serial input. */
5052 if (!non_stop)
5053 rs->waiting_for_stop_reply = 1;
5054 }
5055 \f
5056
5057 /* Set up the signal handler for SIGINT, while the target is
5058 executing, ovewriting the 'regular' SIGINT signal handler. */
5059 static void
5060 async_initialize_sigint_signal_handler (void)
5061 {
5062 signal (SIGINT, async_handle_remote_sigint);
5063 }
5064
5065 /* Signal handler for SIGINT, while the target is executing. */
5066 static void
5067 async_handle_remote_sigint (int sig)
5068 {
5069 signal (sig, async_handle_remote_sigint_twice);
5070 mark_async_signal_handler (async_sigint_remote_token);
5071 }
5072
5073 /* Signal handler for SIGINT, installed after SIGINT has already been
5074 sent once. It will take effect the second time that the user sends
5075 a ^C. */
5076 static void
5077 async_handle_remote_sigint_twice (int sig)
5078 {
5079 signal (sig, async_handle_remote_sigint);
5080 mark_async_signal_handler (async_sigint_remote_twice_token);
5081 }
5082
5083 /* Perform the real interruption of the target execution, in response
5084 to a ^C. */
5085 static void
5086 async_remote_interrupt (gdb_client_data arg)
5087 {
5088 if (remote_debug)
5089 fprintf_unfiltered (gdb_stdlog, "async_remote_interrupt called\n");
5090
5091 target_stop (inferior_ptid);
5092 }
5093
5094 /* Perform interrupt, if the first attempt did not succeed. Just give
5095 up on the target alltogether. */
5096 static void
5097 async_remote_interrupt_twice (gdb_client_data arg)
5098 {
5099 if (remote_debug)
5100 fprintf_unfiltered (gdb_stdlog, "async_remote_interrupt_twice called\n");
5101
5102 interrupt_query ();
5103 }
5104
5105 /* Reinstall the usual SIGINT handlers, after the target has
5106 stopped. */
5107 static void
5108 async_cleanup_sigint_signal_handler (void *dummy)
5109 {
5110 signal (SIGINT, handle_sigint);
5111 }
5112
5113 /* Send ^C to target to halt it. Target will respond, and send us a
5114 packet. */
5115 static void (*ofunc) (int);
5116
5117 /* The command line interface's stop routine. This function is installed
5118 as a signal handler for SIGINT. The first time a user requests a
5119 stop, we call remote_stop to send a break or ^C. If there is no
5120 response from the target (it didn't stop when the user requested it),
5121 we ask the user if he'd like to detach from the target. */
5122 static void
5123 sync_remote_interrupt (int signo)
5124 {
5125 /* If this doesn't work, try more severe steps. */
5126 signal (signo, sync_remote_interrupt_twice);
5127
5128 gdb_call_async_signal_handler (async_sigint_remote_token, 1);
5129 }
5130
5131 /* The user typed ^C twice. */
5132
5133 static void
5134 sync_remote_interrupt_twice (int signo)
5135 {
5136 signal (signo, ofunc);
5137 gdb_call_async_signal_handler (async_sigint_remote_twice_token, 1);
5138 signal (signo, sync_remote_interrupt);
5139 }
5140
5141 /* Non-stop version of target_stop. Uses `vCont;t' to stop a remote
5142 thread, all threads of a remote process, or all threads of all
5143 processes. */
5144
5145 static void
5146 remote_stop_ns (ptid_t ptid)
5147 {
5148 struct remote_state *rs = get_remote_state ();
5149 char *p = rs->buf;
5150 char *endp = rs->buf + get_remote_packet_size ();
5151
5152 if (remote_protocol_packets[PACKET_vCont].support == PACKET_SUPPORT_UNKNOWN)
5153 remote_vcont_probe (rs);
5154
5155 if (!rs->supports_vCont.t)
5156 error (_("Remote server does not support stopping threads"));
5157
5158 if (ptid_equal (ptid, minus_one_ptid)
5159 || (!remote_multi_process_p (rs) && ptid_is_pid (ptid)))
5160 p += xsnprintf (p, endp - p, "vCont;t");
5161 else
5162 {
5163 ptid_t nptid;
5164
5165 p += xsnprintf (p, endp - p, "vCont;t:");
5166
5167 if (ptid_is_pid (ptid))
5168 /* All (-1) threads of process. */
5169 nptid = ptid_build (ptid_get_pid (ptid), 0, -1);
5170 else
5171 {
5172 /* Small optimization: if we already have a stop reply for
5173 this thread, no use in telling the stub we want this
5174 stopped. */
5175 if (peek_stop_reply (ptid))
5176 return;
5177
5178 nptid = ptid;
5179 }
5180
5181 write_ptid (p, endp, nptid);
5182 }
5183
5184 /* In non-stop, we get an immediate OK reply. The stop reply will
5185 come in asynchronously by notification. */
5186 putpkt (rs->buf);
5187 getpkt (&rs->buf, &rs->buf_size, 0);
5188 if (strcmp (rs->buf, "OK") != 0)
5189 error (_("Stopping %s failed: %s"), target_pid_to_str (ptid), rs->buf);
5190 }
5191
5192 /* All-stop version of target_stop. Sends a break or a ^C to stop the
5193 remote target. It is undefined which thread of which process
5194 reports the stop. */
5195
5196 static void
5197 remote_stop_as (ptid_t ptid)
5198 {
5199 struct remote_state *rs = get_remote_state ();
5200
5201 rs->ctrlc_pending_p = 1;
5202
5203 /* If the inferior is stopped already, but the core didn't know
5204 about it yet, just ignore the request. The cached wait status
5205 will be collected in remote_wait. */
5206 if (rs->cached_wait_status)
5207 return;
5208
5209 /* Send interrupt_sequence to remote target. */
5210 send_interrupt_sequence ();
5211 }
5212
5213 /* This is the generic stop called via the target vector. When a target
5214 interrupt is requested, either by the command line or the GUI, we
5215 will eventually end up here. */
5216
5217 static void
5218 remote_stop (ptid_t ptid)
5219 {
5220 if (remote_debug)
5221 fprintf_unfiltered (gdb_stdlog, "remote_stop called\n");
5222
5223 if (non_stop)
5224 remote_stop_ns (ptid);
5225 else
5226 remote_stop_as (ptid);
5227 }
5228
5229 /* Ask the user what to do when an interrupt is received. */
5230
5231 static void
5232 interrupt_query (void)
5233 {
5234 target_terminal_ours ();
5235
5236 if (target_can_async_p ())
5237 {
5238 signal (SIGINT, handle_sigint);
5239 quit ();
5240 }
5241 else
5242 {
5243 if (query (_("Interrupted while waiting for the program.\n\
5244 Give up (and stop debugging it)? ")))
5245 {
5246 remote_unpush_target ();
5247 quit ();
5248 }
5249 }
5250
5251 target_terminal_inferior ();
5252 }
5253
5254 /* Enable/disable target terminal ownership. Most targets can use
5255 terminal groups to control terminal ownership. Remote targets are
5256 different in that explicit transfer of ownership to/from GDB/target
5257 is required. */
5258
5259 static void
5260 remote_terminal_inferior (void)
5261 {
5262 if (!target_async_permitted)
5263 /* Nothing to do. */
5264 return;
5265
5266 /* FIXME: cagney/1999-09-27: Make calls to target_terminal_*()
5267 idempotent. The event-loop GDB talking to an asynchronous target
5268 with a synchronous command calls this function from both
5269 event-top.c and infrun.c/infcmd.c. Once GDB stops trying to
5270 transfer the terminal to the target when it shouldn't this guard
5271 can go away. */
5272 if (!remote_async_terminal_ours_p)
5273 return;
5274 delete_file_handler (input_fd);
5275 remote_async_terminal_ours_p = 0;
5276 async_initialize_sigint_signal_handler ();
5277 /* NOTE: At this point we could also register our selves as the
5278 recipient of all input. Any characters typed could then be
5279 passed on down to the target. */
5280 }
5281
5282 static void
5283 remote_terminal_ours (void)
5284 {
5285 if (!target_async_permitted)
5286 /* Nothing to do. */
5287 return;
5288
5289 /* See FIXME in remote_terminal_inferior. */
5290 if (remote_async_terminal_ours_p)
5291 return;
5292 async_cleanup_sigint_signal_handler (NULL);
5293 add_file_handler (input_fd, stdin_event_handler, 0);
5294 remote_async_terminal_ours_p = 1;
5295 }
5296
5297 static void
5298 remote_console_output (char *msg)
5299 {
5300 char *p;
5301
5302 for (p = msg; p[0] && p[1]; p += 2)
5303 {
5304 char tb[2];
5305 char c = fromhex (p[0]) * 16 + fromhex (p[1]);
5306
5307 tb[0] = c;
5308 tb[1] = 0;
5309 fputs_unfiltered (tb, gdb_stdtarg);
5310 }
5311 gdb_flush (gdb_stdtarg);
5312 }
5313
5314 typedef struct cached_reg
5315 {
5316 int num;
5317 gdb_byte data[MAX_REGISTER_SIZE];
5318 } cached_reg_t;
5319
5320 DEF_VEC_O(cached_reg_t);
5321
5322 typedef struct stop_reply
5323 {
5324 struct notif_event base;
5325
5326 /* The identifier of the thread about this event */
5327 ptid_t ptid;
5328
5329 /* The remote state this event is associated with. When the remote
5330 connection, represented by a remote_state object, is closed,
5331 all the associated stop_reply events should be released. */
5332 struct remote_state *rs;
5333
5334 struct target_waitstatus ws;
5335
5336 /* Expedited registers. This makes remote debugging a bit more
5337 efficient for those targets that provide critical registers as
5338 part of their normal status mechanism (as another roundtrip to
5339 fetch them is avoided). */
5340 VEC(cached_reg_t) *regcache;
5341
5342 int stopped_by_watchpoint_p;
5343 CORE_ADDR watch_data_address;
5344
5345 int core;
5346 } *stop_reply_p;
5347
5348 DECLARE_QUEUE_P (stop_reply_p);
5349 DEFINE_QUEUE_P (stop_reply_p);
5350 /* The list of already fetched and acknowledged stop events. This
5351 queue is used for notification Stop, and other notifications
5352 don't need queue for their events, because the notification events
5353 of Stop can't be consumed immediately, so that events should be
5354 queued first, and be consumed by remote_wait_{ns,as} one per
5355 time. Other notifications can consume their events immediately,
5356 so queue is not needed for them. */
5357 static QUEUE (stop_reply_p) *stop_reply_queue;
5358
5359 static void
5360 stop_reply_xfree (struct stop_reply *r)
5361 {
5362 notif_event_xfree ((struct notif_event *) r);
5363 }
5364
5365 static void
5366 remote_notif_stop_parse (struct notif_client *self, char *buf,
5367 struct notif_event *event)
5368 {
5369 remote_parse_stop_reply (buf, (struct stop_reply *) event);
5370 }
5371
5372 static void
5373 remote_notif_stop_ack (struct notif_client *self, char *buf,
5374 struct notif_event *event)
5375 {
5376 struct stop_reply *stop_reply = (struct stop_reply *) event;
5377
5378 /* acknowledge */
5379 putpkt ((char *) self->ack_command);
5380
5381 if (stop_reply->ws.kind == TARGET_WAITKIND_IGNORE)
5382 /* We got an unknown stop reply. */
5383 error (_("Unknown stop reply"));
5384
5385 push_stop_reply (stop_reply);
5386 }
5387
5388 static int
5389 remote_notif_stop_can_get_pending_events (struct notif_client *self)
5390 {
5391 /* We can't get pending events in remote_notif_process for
5392 notification stop, and we have to do this in remote_wait_ns
5393 instead. If we fetch all queued events from stub, remote stub
5394 may exit and we have no chance to process them back in
5395 remote_wait_ns. */
5396 mark_async_event_handler (remote_async_inferior_event_token);
5397 return 0;
5398 }
5399
5400 static void
5401 stop_reply_dtr (struct notif_event *event)
5402 {
5403 struct stop_reply *r = (struct stop_reply *) event;
5404
5405 VEC_free (cached_reg_t, r->regcache);
5406 }
5407
5408 static struct notif_event *
5409 remote_notif_stop_alloc_reply (void)
5410 {
5411 struct notif_event *r
5412 = (struct notif_event *) XNEW (struct stop_reply);
5413
5414 r->dtr = stop_reply_dtr;
5415
5416 return r;
5417 }
5418
5419 /* A client of notification Stop. */
5420
5421 struct notif_client notif_client_stop =
5422 {
5423 "Stop",
5424 "vStopped",
5425 remote_notif_stop_parse,
5426 remote_notif_stop_ack,
5427 remote_notif_stop_can_get_pending_events,
5428 remote_notif_stop_alloc_reply,
5429 REMOTE_NOTIF_STOP,
5430 };
5431
5432 /* A parameter to pass data in and out. */
5433
5434 struct queue_iter_param
5435 {
5436 void *input;
5437 struct stop_reply *output;
5438 };
5439
5440 /* Remove stop replies in the queue if its pid is equal to the given
5441 inferior's pid. */
5442
5443 static int
5444 remove_stop_reply_for_inferior (QUEUE (stop_reply_p) *q,
5445 QUEUE_ITER (stop_reply_p) *iter,
5446 stop_reply_p event,
5447 void *data)
5448 {
5449 struct queue_iter_param *param = data;
5450 struct inferior *inf = param->input;
5451
5452 if (ptid_get_pid (event->ptid) == inf->pid)
5453 {
5454 stop_reply_xfree (event);
5455 QUEUE_remove_elem (stop_reply_p, q, iter);
5456 }
5457
5458 return 1;
5459 }
5460
5461 /* Discard all pending stop replies of inferior INF. */
5462
5463 static void
5464 discard_pending_stop_replies (struct inferior *inf)
5465 {
5466 int i;
5467 struct queue_iter_param param;
5468 struct stop_reply *reply;
5469 struct remote_state *rs = get_remote_state ();
5470 struct remote_notif_state *rns = rs->notif_state;
5471
5472 /* This function can be notified when an inferior exists. When the
5473 target is not remote, the notification state is NULL. */
5474 if (rs->remote_desc == NULL)
5475 return;
5476
5477 reply = (struct stop_reply *) rns->pending_event[notif_client_stop.id];
5478
5479 /* Discard the in-flight notification. */
5480 if (reply != NULL && ptid_get_pid (reply->ptid) == inf->pid)
5481 {
5482 stop_reply_xfree (reply);
5483 rns->pending_event[notif_client_stop.id] = NULL;
5484 }
5485
5486 param.input = inf;
5487 param.output = NULL;
5488 /* Discard the stop replies we have already pulled with
5489 vStopped. */
5490 QUEUE_iterate (stop_reply_p, stop_reply_queue,
5491 remove_stop_reply_for_inferior, &param);
5492 }
5493
5494 /* If its remote state is equal to the given remote state,
5495 remove EVENT from the stop reply queue. */
5496
5497 static int
5498 remove_stop_reply_of_remote_state (QUEUE (stop_reply_p) *q,
5499 QUEUE_ITER (stop_reply_p) *iter,
5500 stop_reply_p event,
5501 void *data)
5502 {
5503 struct queue_iter_param *param = data;
5504 struct remote_state *rs = param->input;
5505
5506 if (event->rs == rs)
5507 {
5508 stop_reply_xfree (event);
5509 QUEUE_remove_elem (stop_reply_p, q, iter);
5510 }
5511
5512 return 1;
5513 }
5514
5515 /* Discard the stop replies for RS in stop_reply_queue. */
5516
5517 static void
5518 discard_pending_stop_replies_in_queue (struct remote_state *rs)
5519 {
5520 struct queue_iter_param param;
5521
5522 param.input = rs;
5523 param.output = NULL;
5524 /* Discard the stop replies we have already pulled with
5525 vStopped. */
5526 QUEUE_iterate (stop_reply_p, stop_reply_queue,
5527 remove_stop_reply_of_remote_state, &param);
5528 }
5529
5530 /* A parameter to pass data in and out. */
5531
5532 static int
5533 remote_notif_remove_once_on_match (QUEUE (stop_reply_p) *q,
5534 QUEUE_ITER (stop_reply_p) *iter,
5535 stop_reply_p event,
5536 void *data)
5537 {
5538 struct queue_iter_param *param = data;
5539 ptid_t *ptid = param->input;
5540
5541 if (ptid_match (event->ptid, *ptid))
5542 {
5543 param->output = event;
5544 QUEUE_remove_elem (stop_reply_p, q, iter);
5545 return 0;
5546 }
5547
5548 return 1;
5549 }
5550
5551 /* Remove the first reply in 'stop_reply_queue' which matches
5552 PTID. */
5553
5554 static struct stop_reply *
5555 remote_notif_remove_queued_reply (ptid_t ptid)
5556 {
5557 struct queue_iter_param param;
5558
5559 param.input = &ptid;
5560 param.output = NULL;
5561
5562 QUEUE_iterate (stop_reply_p, stop_reply_queue,
5563 remote_notif_remove_once_on_match, &param);
5564 if (notif_debug)
5565 fprintf_unfiltered (gdb_stdlog,
5566 "notif: discard queued event: 'Stop' in %s\n",
5567 target_pid_to_str (ptid));
5568
5569 return param.output;
5570 }
5571
5572 /* Look for a queued stop reply belonging to PTID. If one is found,
5573 remove it from the queue, and return it. Returns NULL if none is
5574 found. If there are still queued events left to process, tell the
5575 event loop to get back to target_wait soon. */
5576
5577 static struct stop_reply *
5578 queued_stop_reply (ptid_t ptid)
5579 {
5580 struct stop_reply *r = remote_notif_remove_queued_reply (ptid);
5581
5582 if (!QUEUE_is_empty (stop_reply_p, stop_reply_queue))
5583 /* There's still at least an event left. */
5584 mark_async_event_handler (remote_async_inferior_event_token);
5585
5586 return r;
5587 }
5588
5589 /* Push a fully parsed stop reply in the stop reply queue. Since we
5590 know that we now have at least one queued event left to pass to the
5591 core side, tell the event loop to get back to target_wait soon. */
5592
5593 static void
5594 push_stop_reply (struct stop_reply *new_event)
5595 {
5596 QUEUE_enque (stop_reply_p, stop_reply_queue, new_event);
5597
5598 if (notif_debug)
5599 fprintf_unfiltered (gdb_stdlog,
5600 "notif: push 'Stop' %s to queue %d\n",
5601 target_pid_to_str (new_event->ptid),
5602 QUEUE_length (stop_reply_p,
5603 stop_reply_queue));
5604
5605 mark_async_event_handler (remote_async_inferior_event_token);
5606 }
5607
5608 static int
5609 stop_reply_match_ptid_and_ws (QUEUE (stop_reply_p) *q,
5610 QUEUE_ITER (stop_reply_p) *iter,
5611 struct stop_reply *event,
5612 void *data)
5613 {
5614 ptid_t *ptid = data;
5615
5616 return !(ptid_equal (*ptid, event->ptid)
5617 && event->ws.kind == TARGET_WAITKIND_STOPPED);
5618 }
5619
5620 /* Returns true if we have a stop reply for PTID. */
5621
5622 static int
5623 peek_stop_reply (ptid_t ptid)
5624 {
5625 return !QUEUE_iterate (stop_reply_p, stop_reply_queue,
5626 stop_reply_match_ptid_and_ws, &ptid);
5627 }
5628
5629 /* Parse the stop reply in BUF. Either the function succeeds, and the
5630 result is stored in EVENT, or throws an error. */
5631
5632 static void
5633 remote_parse_stop_reply (char *buf, struct stop_reply *event)
5634 {
5635 struct remote_arch_state *rsa = get_remote_arch_state ();
5636 ULONGEST addr;
5637 char *p;
5638
5639 event->ptid = null_ptid;
5640 event->rs = get_remote_state ();
5641 event->ws.kind = TARGET_WAITKIND_IGNORE;
5642 event->ws.value.integer = 0;
5643 event->stopped_by_watchpoint_p = 0;
5644 event->regcache = NULL;
5645 event->core = -1;
5646
5647 switch (buf[0])
5648 {
5649 case 'T': /* Status with PC, SP, FP, ... */
5650 /* Expedited reply, containing Signal, {regno, reg} repeat. */
5651 /* format is: 'Tssn...:r...;n...:r...;n...:r...;#cc', where
5652 ss = signal number
5653 n... = register number
5654 r... = register contents
5655 */
5656
5657 p = &buf[3]; /* after Txx */
5658 while (*p)
5659 {
5660 char *p1;
5661 char *p_temp;
5662 int fieldsize;
5663 LONGEST pnum = 0;
5664
5665 /* If the packet contains a register number, save it in
5666 pnum and set p1 to point to the character following it.
5667 Otherwise p1 points to p. */
5668
5669 /* If this packet is an awatch packet, don't parse the 'a'
5670 as a register number. */
5671
5672 if (strncmp (p, "awatch", strlen("awatch")) != 0
5673 && strncmp (p, "core", strlen ("core") != 0))
5674 {
5675 /* Read the ``P'' register number. */
5676 pnum = strtol (p, &p_temp, 16);
5677 p1 = p_temp;
5678 }
5679 else
5680 p1 = p;
5681
5682 if (p1 == p) /* No register number present here. */
5683 {
5684 p1 = strchr (p, ':');
5685 if (p1 == NULL)
5686 error (_("Malformed packet(a) (missing colon): %s\n\
5687 Packet: '%s'\n"),
5688 p, buf);
5689 if (strncmp (p, "thread", p1 - p) == 0)
5690 event->ptid = read_ptid (++p1, &p);
5691 else if ((strncmp (p, "watch", p1 - p) == 0)
5692 || (strncmp (p, "rwatch", p1 - p) == 0)
5693 || (strncmp (p, "awatch", p1 - p) == 0))
5694 {
5695 event->stopped_by_watchpoint_p = 1;
5696 p = unpack_varlen_hex (++p1, &addr);
5697 event->watch_data_address = (CORE_ADDR) addr;
5698 }
5699 else if (strncmp (p, "library", p1 - p) == 0)
5700 {
5701 p1++;
5702 p_temp = p1;
5703 while (*p_temp && *p_temp != ';')
5704 p_temp++;
5705
5706 event->ws.kind = TARGET_WAITKIND_LOADED;
5707 p = p_temp;
5708 }
5709 else if (strncmp (p, "replaylog", p1 - p) == 0)
5710 {
5711 event->ws.kind = TARGET_WAITKIND_NO_HISTORY;
5712 /* p1 will indicate "begin" or "end", but it makes
5713 no difference for now, so ignore it. */
5714 p_temp = strchr (p1 + 1, ';');
5715 if (p_temp)
5716 p = p_temp;
5717 }
5718 else if (strncmp (p, "core", p1 - p) == 0)
5719 {
5720 ULONGEST c;
5721
5722 p = unpack_varlen_hex (++p1, &c);
5723 event->core = c;
5724 }
5725 else
5726 {
5727 /* Silently skip unknown optional info. */
5728 p_temp = strchr (p1 + 1, ';');
5729 if (p_temp)
5730 p = p_temp;
5731 }
5732 }
5733 else
5734 {
5735 struct packet_reg *reg = packet_reg_from_pnum (rsa, pnum);
5736 cached_reg_t cached_reg;
5737
5738 p = p1;
5739
5740 if (*p != ':')
5741 error (_("Malformed packet(b) (missing colon): %s\n\
5742 Packet: '%s'\n"),
5743 p, buf);
5744 ++p;
5745
5746 if (reg == NULL)
5747 error (_("Remote sent bad register number %s: %s\n\
5748 Packet: '%s'\n"),
5749 hex_string (pnum), p, buf);
5750
5751 cached_reg.num = reg->regnum;
5752
5753 fieldsize = hex2bin (p, cached_reg.data,
5754 register_size (target_gdbarch (),
5755 reg->regnum));
5756 p += 2 * fieldsize;
5757 if (fieldsize < register_size (target_gdbarch (),
5758 reg->regnum))
5759 warning (_("Remote reply is too short: %s"), buf);
5760
5761 VEC_safe_push (cached_reg_t, event->regcache, &cached_reg);
5762 }
5763
5764 if (*p != ';')
5765 error (_("Remote register badly formatted: %s\nhere: %s"),
5766 buf, p);
5767 ++p;
5768 }
5769
5770 if (event->ws.kind != TARGET_WAITKIND_IGNORE)
5771 break;
5772
5773 /* fall through */
5774 case 'S': /* Old style status, just signal only. */
5775 {
5776 int sig;
5777
5778 event->ws.kind = TARGET_WAITKIND_STOPPED;
5779 sig = (fromhex (buf[1]) << 4) + fromhex (buf[2]);
5780 if (GDB_SIGNAL_FIRST <= sig && sig < GDB_SIGNAL_LAST)
5781 event->ws.value.sig = (enum gdb_signal) sig;
5782 else
5783 event->ws.value.sig = GDB_SIGNAL_UNKNOWN;
5784 }
5785 break;
5786 case 'W': /* Target exited. */
5787 case 'X':
5788 {
5789 char *p;
5790 int pid;
5791 ULONGEST value;
5792
5793 /* GDB used to accept only 2 hex chars here. Stubs should
5794 only send more if they detect GDB supports multi-process
5795 support. */
5796 p = unpack_varlen_hex (&buf[1], &value);
5797
5798 if (buf[0] == 'W')
5799 {
5800 /* The remote process exited. */
5801 event->ws.kind = TARGET_WAITKIND_EXITED;
5802 event->ws.value.integer = value;
5803 }
5804 else
5805 {
5806 /* The remote process exited with a signal. */
5807 event->ws.kind = TARGET_WAITKIND_SIGNALLED;
5808 if (GDB_SIGNAL_FIRST <= value && value < GDB_SIGNAL_LAST)
5809 event->ws.value.sig = (enum gdb_signal) value;
5810 else
5811 event->ws.value.sig = GDB_SIGNAL_UNKNOWN;
5812 }
5813
5814 /* If no process is specified, assume inferior_ptid. */
5815 pid = ptid_get_pid (inferior_ptid);
5816 if (*p == '\0')
5817 ;
5818 else if (*p == ';')
5819 {
5820 p++;
5821
5822 if (p == '\0')
5823 ;
5824 else if (strncmp (p,
5825 "process:", sizeof ("process:") - 1) == 0)
5826 {
5827 ULONGEST upid;
5828
5829 p += sizeof ("process:") - 1;
5830 unpack_varlen_hex (p, &upid);
5831 pid = upid;
5832 }
5833 else
5834 error (_("unknown stop reply packet: %s"), buf);
5835 }
5836 else
5837 error (_("unknown stop reply packet: %s"), buf);
5838 event->ptid = pid_to_ptid (pid);
5839 }
5840 break;
5841 }
5842
5843 if (non_stop && ptid_equal (event->ptid, null_ptid))
5844 error (_("No process or thread specified in stop reply: %s"), buf);
5845 }
5846
5847 /* When the stub wants to tell GDB about a new notification reply, it
5848 sends a notification (%Stop, for example). Those can come it at
5849 any time, hence, we have to make sure that any pending
5850 putpkt/getpkt sequence we're making is finished, before querying
5851 the stub for more events with the corresponding ack command
5852 (vStopped, for example). E.g., if we started a vStopped sequence
5853 immediately upon receiving the notification, something like this
5854 could happen:
5855
5856 1.1) --> Hg 1
5857 1.2) <-- OK
5858 1.3) --> g
5859 1.4) <-- %Stop
5860 1.5) --> vStopped
5861 1.6) <-- (registers reply to step #1.3)
5862
5863 Obviously, the reply in step #1.6 would be unexpected to a vStopped
5864 query.
5865
5866 To solve this, whenever we parse a %Stop notification successfully,
5867 we mark the REMOTE_ASYNC_GET_PENDING_EVENTS_TOKEN, and carry on
5868 doing whatever we were doing:
5869
5870 2.1) --> Hg 1
5871 2.2) <-- OK
5872 2.3) --> g
5873 2.4) <-- %Stop
5874 <GDB marks the REMOTE_ASYNC_GET_PENDING_EVENTS_TOKEN>
5875 2.5) <-- (registers reply to step #2.3)
5876
5877 Eventualy after step #2.5, we return to the event loop, which
5878 notices there's an event on the
5879 REMOTE_ASYNC_GET_PENDING_EVENTS_TOKEN event and calls the
5880 associated callback --- the function below. At this point, we're
5881 always safe to start a vStopped sequence. :
5882
5883 2.6) --> vStopped
5884 2.7) <-- T05 thread:2
5885 2.8) --> vStopped
5886 2.9) --> OK
5887 */
5888
5889 void
5890 remote_notif_get_pending_events (struct notif_client *nc)
5891 {
5892 struct remote_state *rs = get_remote_state ();
5893
5894 if (rs->notif_state->pending_event[nc->id] != NULL)
5895 {
5896 if (notif_debug)
5897 fprintf_unfiltered (gdb_stdlog,
5898 "notif: process: '%s' ack pending event\n",
5899 nc->name);
5900
5901 /* acknowledge */
5902 nc->ack (nc, rs->buf, rs->notif_state->pending_event[nc->id]);
5903 rs->notif_state->pending_event[nc->id] = NULL;
5904
5905 while (1)
5906 {
5907 getpkt (&rs->buf, &rs->buf_size, 0);
5908 if (strcmp (rs->buf, "OK") == 0)
5909 break;
5910 else
5911 remote_notif_ack (nc, rs->buf);
5912 }
5913 }
5914 else
5915 {
5916 if (notif_debug)
5917 fprintf_unfiltered (gdb_stdlog,
5918 "notif: process: '%s' no pending reply\n",
5919 nc->name);
5920 }
5921 }
5922
5923 /* Called when it is decided that STOP_REPLY holds the info of the
5924 event that is to be returned to the core. This function always
5925 destroys STOP_REPLY. */
5926
5927 static ptid_t
5928 process_stop_reply (struct stop_reply *stop_reply,
5929 struct target_waitstatus *status)
5930 {
5931 ptid_t ptid;
5932
5933 *status = stop_reply->ws;
5934 ptid = stop_reply->ptid;
5935
5936 /* If no thread/process was reported by the stub, assume the current
5937 inferior. */
5938 if (ptid_equal (ptid, null_ptid))
5939 ptid = inferior_ptid;
5940
5941 if (status->kind != TARGET_WAITKIND_EXITED
5942 && status->kind != TARGET_WAITKIND_SIGNALLED)
5943 {
5944 struct remote_state *rs = get_remote_state ();
5945
5946 /* Expedited registers. */
5947 if (stop_reply->regcache)
5948 {
5949 struct regcache *regcache
5950 = get_thread_arch_regcache (ptid, target_gdbarch ());
5951 cached_reg_t *reg;
5952 int ix;
5953
5954 for (ix = 0;
5955 VEC_iterate(cached_reg_t, stop_reply->regcache, ix, reg);
5956 ix++)
5957 regcache_raw_supply (regcache, reg->num, reg->data);
5958 VEC_free (cached_reg_t, stop_reply->regcache);
5959 }
5960
5961 rs->remote_stopped_by_watchpoint_p = stop_reply->stopped_by_watchpoint_p;
5962 rs->remote_watch_data_address = stop_reply->watch_data_address;
5963
5964 remote_notice_new_inferior (ptid, 0);
5965 demand_private_info (ptid)->core = stop_reply->core;
5966 }
5967
5968 stop_reply_xfree (stop_reply);
5969 return ptid;
5970 }
5971
5972 /* The non-stop mode version of target_wait. */
5973
5974 static ptid_t
5975 remote_wait_ns (ptid_t ptid, struct target_waitstatus *status, int options)
5976 {
5977 struct remote_state *rs = get_remote_state ();
5978 struct stop_reply *stop_reply;
5979 int ret;
5980 int is_notif = 0;
5981
5982 /* If in non-stop mode, get out of getpkt even if a
5983 notification is received. */
5984
5985 ret = getpkt_or_notif_sane (&rs->buf, &rs->buf_size,
5986 0 /* forever */, &is_notif);
5987 while (1)
5988 {
5989 if (ret != -1 && !is_notif)
5990 switch (rs->buf[0])
5991 {
5992 case 'E': /* Error of some sort. */
5993 /* We're out of sync with the target now. Did it continue
5994 or not? We can't tell which thread it was in non-stop,
5995 so just ignore this. */
5996 warning (_("Remote failure reply: %s"), rs->buf);
5997 break;
5998 case 'O': /* Console output. */
5999 remote_console_output (rs->buf + 1);
6000 break;
6001 default:
6002 warning (_("Invalid remote reply: %s"), rs->buf);
6003 break;
6004 }
6005
6006 /* Acknowledge a pending stop reply that may have arrived in the
6007 mean time. */
6008 if (rs->notif_state->pending_event[notif_client_stop.id] != NULL)
6009 remote_notif_get_pending_events (&notif_client_stop);
6010
6011 /* If indeed we noticed a stop reply, we're done. */
6012 stop_reply = queued_stop_reply (ptid);
6013 if (stop_reply != NULL)
6014 return process_stop_reply (stop_reply, status);
6015
6016 /* Still no event. If we're just polling for an event, then
6017 return to the event loop. */
6018 if (options & TARGET_WNOHANG)
6019 {
6020 status->kind = TARGET_WAITKIND_IGNORE;
6021 return minus_one_ptid;
6022 }
6023
6024 /* Otherwise do a blocking wait. */
6025 ret = getpkt_or_notif_sane (&rs->buf, &rs->buf_size,
6026 1 /* forever */, &is_notif);
6027 }
6028 }
6029
6030 /* Wait until the remote machine stops, then return, storing status in
6031 STATUS just as `wait' would. */
6032
6033 static ptid_t
6034 remote_wait_as (ptid_t ptid, struct target_waitstatus *status, int options)
6035 {
6036 struct remote_state *rs = get_remote_state ();
6037 ptid_t event_ptid = null_ptid;
6038 char *buf;
6039 struct stop_reply *stop_reply;
6040
6041 again:
6042
6043 status->kind = TARGET_WAITKIND_IGNORE;
6044 status->value.integer = 0;
6045
6046 stop_reply = queued_stop_reply (ptid);
6047 if (stop_reply != NULL)
6048 return process_stop_reply (stop_reply, status);
6049
6050 if (rs->cached_wait_status)
6051 /* Use the cached wait status, but only once. */
6052 rs->cached_wait_status = 0;
6053 else
6054 {
6055 int ret;
6056 int is_notif;
6057
6058 if (!target_is_async_p ())
6059 {
6060 ofunc = signal (SIGINT, sync_remote_interrupt);
6061 /* If the user hit C-c before this packet, or between packets,
6062 pretend that it was hit right here. */
6063 if (check_quit_flag ())
6064 {
6065 clear_quit_flag ();
6066 sync_remote_interrupt (SIGINT);
6067 }
6068 }
6069
6070 /* FIXME: cagney/1999-09-27: If we're in async mode we should
6071 _never_ wait for ever -> test on target_is_async_p().
6072 However, before we do that we need to ensure that the caller
6073 knows how to take the target into/out of async mode. */
6074 ret = getpkt_or_notif_sane (&rs->buf, &rs->buf_size,
6075 wait_forever_enabled_p, &is_notif);
6076
6077 if (!target_is_async_p ())
6078 signal (SIGINT, ofunc);
6079
6080 /* GDB gets a notification. Return to core as this event is
6081 not interesting. */
6082 if (ret != -1 && is_notif)
6083 return minus_one_ptid;
6084 }
6085
6086 buf = rs->buf;
6087
6088 rs->remote_stopped_by_watchpoint_p = 0;
6089
6090 /* We got something. */
6091 rs->waiting_for_stop_reply = 0;
6092
6093 /* Assume that the target has acknowledged Ctrl-C unless we receive
6094 an 'F' or 'O' packet. */
6095 if (buf[0] != 'F' && buf[0] != 'O')
6096 rs->ctrlc_pending_p = 0;
6097
6098 switch (buf[0])
6099 {
6100 case 'E': /* Error of some sort. */
6101 /* We're out of sync with the target now. Did it continue or
6102 not? Not is more likely, so report a stop. */
6103 warning (_("Remote failure reply: %s"), buf);
6104 status->kind = TARGET_WAITKIND_STOPPED;
6105 status->value.sig = GDB_SIGNAL_0;
6106 break;
6107 case 'F': /* File-I/O request. */
6108 remote_fileio_request (buf, rs->ctrlc_pending_p);
6109 rs->ctrlc_pending_p = 0;
6110 break;
6111 case 'T': case 'S': case 'X': case 'W':
6112 {
6113 struct stop_reply *stop_reply
6114 = (struct stop_reply *) remote_notif_parse (&notif_client_stop,
6115 rs->buf);
6116
6117 event_ptid = process_stop_reply (stop_reply, status);
6118 break;
6119 }
6120 case 'O': /* Console output. */
6121 remote_console_output (buf + 1);
6122
6123 /* The target didn't really stop; keep waiting. */
6124 rs->waiting_for_stop_reply = 1;
6125
6126 break;
6127 case '\0':
6128 if (rs->last_sent_signal != GDB_SIGNAL_0)
6129 {
6130 /* Zero length reply means that we tried 'S' or 'C' and the
6131 remote system doesn't support it. */
6132 target_terminal_ours_for_output ();
6133 printf_filtered
6134 ("Can't send signals to this remote system. %s not sent.\n",
6135 gdb_signal_to_name (rs->last_sent_signal));
6136 rs->last_sent_signal = GDB_SIGNAL_0;
6137 target_terminal_inferior ();
6138
6139 strcpy ((char *) buf, rs->last_sent_step ? "s" : "c");
6140 putpkt ((char *) buf);
6141
6142 /* We just told the target to resume, so a stop reply is in
6143 order. */
6144 rs->waiting_for_stop_reply = 1;
6145 break;
6146 }
6147 /* else fallthrough */
6148 default:
6149 warning (_("Invalid remote reply: %s"), buf);
6150 /* Keep waiting. */
6151 rs->waiting_for_stop_reply = 1;
6152 break;
6153 }
6154
6155 if (status->kind == TARGET_WAITKIND_IGNORE)
6156 {
6157 /* Nothing interesting happened. If we're doing a non-blocking
6158 poll, we're done. Otherwise, go back to waiting. */
6159 if (options & TARGET_WNOHANG)
6160 return minus_one_ptid;
6161 else
6162 goto again;
6163 }
6164 else if (status->kind != TARGET_WAITKIND_EXITED
6165 && status->kind != TARGET_WAITKIND_SIGNALLED)
6166 {
6167 if (!ptid_equal (event_ptid, null_ptid))
6168 record_currthread (rs, event_ptid);
6169 else
6170 event_ptid = inferior_ptid;
6171 }
6172 else
6173 /* A process exit. Invalidate our notion of current thread. */
6174 record_currthread (rs, minus_one_ptid);
6175
6176 return event_ptid;
6177 }
6178
6179 /* Wait until the remote machine stops, then return, storing status in
6180 STATUS just as `wait' would. */
6181
6182 static ptid_t
6183 remote_wait (struct target_ops *ops,
6184 ptid_t ptid, struct target_waitstatus *status, int options)
6185 {
6186 ptid_t event_ptid;
6187
6188 if (non_stop)
6189 event_ptid = remote_wait_ns (ptid, status, options);
6190 else
6191 event_ptid = remote_wait_as (ptid, status, options);
6192
6193 if (target_can_async_p ())
6194 {
6195 /* If there are are events left in the queue tell the event loop
6196 to return here. */
6197 if (!QUEUE_is_empty (stop_reply_p, stop_reply_queue))
6198 mark_async_event_handler (remote_async_inferior_event_token);
6199 }
6200
6201 return event_ptid;
6202 }
6203
6204 /* Fetch a single register using a 'p' packet. */
6205
6206 static int
6207 fetch_register_using_p (struct regcache *regcache, struct packet_reg *reg)
6208 {
6209 struct remote_state *rs = get_remote_state ();
6210 char *buf, *p;
6211 char regp[MAX_REGISTER_SIZE];
6212 int i;
6213
6214 if (remote_protocol_packets[PACKET_p].support == PACKET_DISABLE)
6215 return 0;
6216
6217 if (reg->pnum == -1)
6218 return 0;
6219
6220 p = rs->buf;
6221 *p++ = 'p';
6222 p += hexnumstr (p, reg->pnum);
6223 *p++ = '\0';
6224 putpkt (rs->buf);
6225 getpkt (&rs->buf, &rs->buf_size, 0);
6226
6227 buf = rs->buf;
6228
6229 switch (packet_ok (buf, &remote_protocol_packets[PACKET_p]))
6230 {
6231 case PACKET_OK:
6232 break;
6233 case PACKET_UNKNOWN:
6234 return 0;
6235 case PACKET_ERROR:
6236 error (_("Could not fetch register \"%s\"; remote failure reply '%s'"),
6237 gdbarch_register_name (get_regcache_arch (regcache),
6238 reg->regnum),
6239 buf);
6240 }
6241
6242 /* If this register is unfetchable, tell the regcache. */
6243 if (buf[0] == 'x')
6244 {
6245 regcache_raw_supply (regcache, reg->regnum, NULL);
6246 return 1;
6247 }
6248
6249 /* Otherwise, parse and supply the value. */
6250 p = buf;
6251 i = 0;
6252 while (p[0] != 0)
6253 {
6254 if (p[1] == 0)
6255 error (_("fetch_register_using_p: early buf termination"));
6256
6257 regp[i++] = fromhex (p[0]) * 16 + fromhex (p[1]);
6258 p += 2;
6259 }
6260 regcache_raw_supply (regcache, reg->regnum, regp);
6261 return 1;
6262 }
6263
6264 /* Fetch the registers included in the target's 'g' packet. */
6265
6266 static int
6267 send_g_packet (void)
6268 {
6269 struct remote_state *rs = get_remote_state ();
6270 int buf_len;
6271
6272 xsnprintf (rs->buf, get_remote_packet_size (), "g");
6273 remote_send (&rs->buf, &rs->buf_size);
6274
6275 /* We can get out of synch in various cases. If the first character
6276 in the buffer is not a hex character, assume that has happened
6277 and try to fetch another packet to read. */
6278 while ((rs->buf[0] < '0' || rs->buf[0] > '9')
6279 && (rs->buf[0] < 'A' || rs->buf[0] > 'F')
6280 && (rs->buf[0] < 'a' || rs->buf[0] > 'f')
6281 && rs->buf[0] != 'x') /* New: unavailable register value. */
6282 {
6283 if (remote_debug)
6284 fprintf_unfiltered (gdb_stdlog,
6285 "Bad register packet; fetching a new packet\n");
6286 getpkt (&rs->buf, &rs->buf_size, 0);
6287 }
6288
6289 buf_len = strlen (rs->buf);
6290
6291 /* Sanity check the received packet. */
6292 if (buf_len % 2 != 0)
6293 error (_("Remote 'g' packet reply is of odd length: %s"), rs->buf);
6294
6295 return buf_len / 2;
6296 }
6297
6298 static void
6299 process_g_packet (struct regcache *regcache)
6300 {
6301 struct gdbarch *gdbarch = get_regcache_arch (regcache);
6302 struct remote_state *rs = get_remote_state ();
6303 struct remote_arch_state *rsa = get_remote_arch_state ();
6304 int i, buf_len;
6305 char *p;
6306 char *regs;
6307
6308 buf_len = strlen (rs->buf);
6309
6310 /* Further sanity checks, with knowledge of the architecture. */
6311 if (buf_len > 2 * rsa->sizeof_g_packet)
6312 error (_("Remote 'g' packet reply is too long: %s"), rs->buf);
6313
6314 /* Save the size of the packet sent to us by the target. It is used
6315 as a heuristic when determining the max size of packets that the
6316 target can safely receive. */
6317 if (rsa->actual_register_packet_size == 0)
6318 rsa->actual_register_packet_size = buf_len;
6319
6320 /* If this is smaller than we guessed the 'g' packet would be,
6321 update our records. A 'g' reply that doesn't include a register's
6322 value implies either that the register is not available, or that
6323 the 'p' packet must be used. */
6324 if (buf_len < 2 * rsa->sizeof_g_packet)
6325 {
6326 rsa->sizeof_g_packet = buf_len / 2;
6327
6328 for (i = 0; i < gdbarch_num_regs (gdbarch); i++)
6329 {
6330 if (rsa->regs[i].pnum == -1)
6331 continue;
6332
6333 if (rsa->regs[i].offset >= rsa->sizeof_g_packet)
6334 rsa->regs[i].in_g_packet = 0;
6335 else
6336 rsa->regs[i].in_g_packet = 1;
6337 }
6338 }
6339
6340 regs = alloca (rsa->sizeof_g_packet);
6341
6342 /* Unimplemented registers read as all bits zero. */
6343 memset (regs, 0, rsa->sizeof_g_packet);
6344
6345 /* Reply describes registers byte by byte, each byte encoded as two
6346 hex characters. Suck them all up, then supply them to the
6347 register cacheing/storage mechanism. */
6348
6349 p = rs->buf;
6350 for (i = 0; i < rsa->sizeof_g_packet; i++)
6351 {
6352 if (p[0] == 0 || p[1] == 0)
6353 /* This shouldn't happen - we adjusted sizeof_g_packet above. */
6354 internal_error (__FILE__, __LINE__,
6355 _("unexpected end of 'g' packet reply"));
6356
6357 if (p[0] == 'x' && p[1] == 'x')
6358 regs[i] = 0; /* 'x' */
6359 else
6360 regs[i] = fromhex (p[0]) * 16 + fromhex (p[1]);
6361 p += 2;
6362 }
6363
6364 for (i = 0; i < gdbarch_num_regs (gdbarch); i++)
6365 {
6366 struct packet_reg *r = &rsa->regs[i];
6367
6368 if (r->in_g_packet)
6369 {
6370 if (r->offset * 2 >= strlen (rs->buf))
6371 /* This shouldn't happen - we adjusted in_g_packet above. */
6372 internal_error (__FILE__, __LINE__,
6373 _("unexpected end of 'g' packet reply"));
6374 else if (rs->buf[r->offset * 2] == 'x')
6375 {
6376 gdb_assert (r->offset * 2 < strlen (rs->buf));
6377 /* The register isn't available, mark it as such (at
6378 the same time setting the value to zero). */
6379 regcache_raw_supply (regcache, r->regnum, NULL);
6380 }
6381 else
6382 regcache_raw_supply (regcache, r->regnum,
6383 regs + r->offset);
6384 }
6385 }
6386 }
6387
6388 static void
6389 fetch_registers_using_g (struct regcache *regcache)
6390 {
6391 send_g_packet ();
6392 process_g_packet (regcache);
6393 }
6394
6395 /* Make the remote selected traceframe match GDB's selected
6396 traceframe. */
6397
6398 static void
6399 set_remote_traceframe (void)
6400 {
6401 int newnum;
6402 struct remote_state *rs = get_remote_state ();
6403
6404 if (rs->remote_traceframe_number == get_traceframe_number ())
6405 return;
6406
6407 /* Avoid recursion, remote_trace_find calls us again. */
6408 rs->remote_traceframe_number = get_traceframe_number ();
6409
6410 newnum = target_trace_find (tfind_number,
6411 get_traceframe_number (), 0, 0, NULL);
6412
6413 /* Should not happen. If it does, all bets are off. */
6414 if (newnum != get_traceframe_number ())
6415 warning (_("could not set remote traceframe"));
6416 }
6417
6418 static void
6419 remote_fetch_registers (struct target_ops *ops,
6420 struct regcache *regcache, int regnum)
6421 {
6422 struct remote_arch_state *rsa = get_remote_arch_state ();
6423 int i;
6424
6425 set_remote_traceframe ();
6426 set_general_thread (inferior_ptid);
6427
6428 if (regnum >= 0)
6429 {
6430 struct packet_reg *reg = packet_reg_from_regnum (rsa, regnum);
6431
6432 gdb_assert (reg != NULL);
6433
6434 /* If this register might be in the 'g' packet, try that first -
6435 we are likely to read more than one register. If this is the
6436 first 'g' packet, we might be overly optimistic about its
6437 contents, so fall back to 'p'. */
6438 if (reg->in_g_packet)
6439 {
6440 fetch_registers_using_g (regcache);
6441 if (reg->in_g_packet)
6442 return;
6443 }
6444
6445 if (fetch_register_using_p (regcache, reg))
6446 return;
6447
6448 /* This register is not available. */
6449 regcache_raw_supply (regcache, reg->regnum, NULL);
6450
6451 return;
6452 }
6453
6454 fetch_registers_using_g (regcache);
6455
6456 for (i = 0; i < gdbarch_num_regs (get_regcache_arch (regcache)); i++)
6457 if (!rsa->regs[i].in_g_packet)
6458 if (!fetch_register_using_p (regcache, &rsa->regs[i]))
6459 {
6460 /* This register is not available. */
6461 regcache_raw_supply (regcache, i, NULL);
6462 }
6463 }
6464
6465 /* Prepare to store registers. Since we may send them all (using a
6466 'G' request), we have to read out the ones we don't want to change
6467 first. */
6468
6469 static void
6470 remote_prepare_to_store (struct target_ops *self, struct regcache *regcache)
6471 {
6472 struct remote_arch_state *rsa = get_remote_arch_state ();
6473 int i;
6474 gdb_byte buf[MAX_REGISTER_SIZE];
6475
6476 /* Make sure the entire registers array is valid. */
6477 switch (remote_protocol_packets[PACKET_P].support)
6478 {
6479 case PACKET_DISABLE:
6480 case PACKET_SUPPORT_UNKNOWN:
6481 /* Make sure all the necessary registers are cached. */
6482 for (i = 0; i < gdbarch_num_regs (get_regcache_arch (regcache)); i++)
6483 if (rsa->regs[i].in_g_packet)
6484 regcache_raw_read (regcache, rsa->regs[i].regnum, buf);
6485 break;
6486 case PACKET_ENABLE:
6487 break;
6488 }
6489 }
6490
6491 /* Helper: Attempt to store REGNUM using the P packet. Return fail IFF
6492 packet was not recognized. */
6493
6494 static int
6495 store_register_using_P (const struct regcache *regcache,
6496 struct packet_reg *reg)
6497 {
6498 struct gdbarch *gdbarch = get_regcache_arch (regcache);
6499 struct remote_state *rs = get_remote_state ();
6500 /* Try storing a single register. */
6501 char *buf = rs->buf;
6502 gdb_byte regp[MAX_REGISTER_SIZE];
6503 char *p;
6504
6505 if (remote_protocol_packets[PACKET_P].support == PACKET_DISABLE)
6506 return 0;
6507
6508 if (reg->pnum == -1)
6509 return 0;
6510
6511 xsnprintf (buf, get_remote_packet_size (), "P%s=", phex_nz (reg->pnum, 0));
6512 p = buf + strlen (buf);
6513 regcache_raw_collect (regcache, reg->regnum, regp);
6514 bin2hex (regp, p, register_size (gdbarch, reg->regnum));
6515 putpkt (rs->buf);
6516 getpkt (&rs->buf, &rs->buf_size, 0);
6517
6518 switch (packet_ok (rs->buf, &remote_protocol_packets[PACKET_P]))
6519 {
6520 case PACKET_OK:
6521 return 1;
6522 case PACKET_ERROR:
6523 error (_("Could not write register \"%s\"; remote failure reply '%s'"),
6524 gdbarch_register_name (gdbarch, reg->regnum), rs->buf);
6525 case PACKET_UNKNOWN:
6526 return 0;
6527 default:
6528 internal_error (__FILE__, __LINE__, _("Bad result from packet_ok"));
6529 }
6530 }
6531
6532 /* Store register REGNUM, or all registers if REGNUM == -1, from the
6533 contents of the register cache buffer. FIXME: ignores errors. */
6534
6535 static void
6536 store_registers_using_G (const struct regcache *regcache)
6537 {
6538 struct remote_state *rs = get_remote_state ();
6539 struct remote_arch_state *rsa = get_remote_arch_state ();
6540 gdb_byte *regs;
6541 char *p;
6542
6543 /* Extract all the registers in the regcache copying them into a
6544 local buffer. */
6545 {
6546 int i;
6547
6548 regs = alloca (rsa->sizeof_g_packet);
6549 memset (regs, 0, rsa->sizeof_g_packet);
6550 for (i = 0; i < gdbarch_num_regs (get_regcache_arch (regcache)); i++)
6551 {
6552 struct packet_reg *r = &rsa->regs[i];
6553
6554 if (r->in_g_packet)
6555 regcache_raw_collect (regcache, r->regnum, regs + r->offset);
6556 }
6557 }
6558
6559 /* Command describes registers byte by byte,
6560 each byte encoded as two hex characters. */
6561 p = rs->buf;
6562 *p++ = 'G';
6563 /* remote_prepare_to_store insures that rsa->sizeof_g_packet gets
6564 updated. */
6565 bin2hex (regs, p, rsa->sizeof_g_packet);
6566 putpkt (rs->buf);
6567 getpkt (&rs->buf, &rs->buf_size, 0);
6568 if (packet_check_result (rs->buf) == PACKET_ERROR)
6569 error (_("Could not write registers; remote failure reply '%s'"),
6570 rs->buf);
6571 }
6572
6573 /* Store register REGNUM, or all registers if REGNUM == -1, from the contents
6574 of the register cache buffer. FIXME: ignores errors. */
6575
6576 static void
6577 remote_store_registers (struct target_ops *ops,
6578 struct regcache *regcache, int regnum)
6579 {
6580 struct remote_arch_state *rsa = get_remote_arch_state ();
6581 int i;
6582
6583 set_remote_traceframe ();
6584 set_general_thread (inferior_ptid);
6585
6586 if (regnum >= 0)
6587 {
6588 struct packet_reg *reg = packet_reg_from_regnum (rsa, regnum);
6589
6590 gdb_assert (reg != NULL);
6591
6592 /* Always prefer to store registers using the 'P' packet if
6593 possible; we often change only a small number of registers.
6594 Sometimes we change a larger number; we'd need help from a
6595 higher layer to know to use 'G'. */
6596 if (store_register_using_P (regcache, reg))
6597 return;
6598
6599 /* For now, don't complain if we have no way to write the
6600 register. GDB loses track of unavailable registers too
6601 easily. Some day, this may be an error. We don't have
6602 any way to read the register, either... */
6603 if (!reg->in_g_packet)
6604 return;
6605
6606 store_registers_using_G (regcache);
6607 return;
6608 }
6609
6610 store_registers_using_G (regcache);
6611
6612 for (i = 0; i < gdbarch_num_regs (get_regcache_arch (regcache)); i++)
6613 if (!rsa->regs[i].in_g_packet)
6614 if (!store_register_using_P (regcache, &rsa->regs[i]))
6615 /* See above for why we do not issue an error here. */
6616 continue;
6617 }
6618 \f
6619
6620 /* Return the number of hex digits in num. */
6621
6622 static int
6623 hexnumlen (ULONGEST num)
6624 {
6625 int i;
6626
6627 for (i = 0; num != 0; i++)
6628 num >>= 4;
6629
6630 return max (i, 1);
6631 }
6632
6633 /* Set BUF to the minimum number of hex digits representing NUM. */
6634
6635 static int
6636 hexnumstr (char *buf, ULONGEST num)
6637 {
6638 int len = hexnumlen (num);
6639
6640 return hexnumnstr (buf, num, len);
6641 }
6642
6643
6644 /* Set BUF to the hex digits representing NUM, padded to WIDTH characters. */
6645
6646 static int
6647 hexnumnstr (char *buf, ULONGEST num, int width)
6648 {
6649 int i;
6650
6651 buf[width] = '\0';
6652
6653 for (i = width - 1; i >= 0; i--)
6654 {
6655 buf[i] = "0123456789abcdef"[(num & 0xf)];
6656 num >>= 4;
6657 }
6658
6659 return width;
6660 }
6661
6662 /* Mask all but the least significant REMOTE_ADDRESS_SIZE bits. */
6663
6664 static CORE_ADDR
6665 remote_address_masked (CORE_ADDR addr)
6666 {
6667 unsigned int address_size = remote_address_size;
6668
6669 /* If "remoteaddresssize" was not set, default to target address size. */
6670 if (!address_size)
6671 address_size = gdbarch_addr_bit (target_gdbarch ());
6672
6673 if (address_size > 0
6674 && address_size < (sizeof (ULONGEST) * 8))
6675 {
6676 /* Only create a mask when that mask can safely be constructed
6677 in a ULONGEST variable. */
6678 ULONGEST mask = 1;
6679
6680 mask = (mask << address_size) - 1;
6681 addr &= mask;
6682 }
6683 return addr;
6684 }
6685
6686 /* Convert BUFFER, binary data at least LEN bytes long, into escaped
6687 binary data in OUT_BUF. Set *OUT_LEN to the length of the data
6688 encoded in OUT_BUF, and return the number of bytes in OUT_BUF
6689 (which may be more than *OUT_LEN due to escape characters). The
6690 total number of bytes in the output buffer will be at most
6691 OUT_MAXLEN. */
6692
6693 static int
6694 remote_escape_output (const gdb_byte *buffer, int len,
6695 gdb_byte *out_buf, int *out_len,
6696 int out_maxlen)
6697 {
6698 int input_index, output_index;
6699
6700 output_index = 0;
6701 for (input_index = 0; input_index < len; input_index++)
6702 {
6703 gdb_byte b = buffer[input_index];
6704
6705 if (b == '$' || b == '#' || b == '}')
6706 {
6707 /* These must be escaped. */
6708 if (output_index + 2 > out_maxlen)
6709 break;
6710 out_buf[output_index++] = '}';
6711 out_buf[output_index++] = b ^ 0x20;
6712 }
6713 else
6714 {
6715 if (output_index + 1 > out_maxlen)
6716 break;
6717 out_buf[output_index++] = b;
6718 }
6719 }
6720
6721 *out_len = input_index;
6722 return output_index;
6723 }
6724
6725 /* Convert BUFFER, escaped data LEN bytes long, into binary data
6726 in OUT_BUF. Return the number of bytes written to OUT_BUF.
6727 Raise an error if the total number of bytes exceeds OUT_MAXLEN.
6728
6729 This function reverses remote_escape_output. It allows more
6730 escaped characters than that function does, in particular because
6731 '*' must be escaped to avoid the run-length encoding processing
6732 in reading packets. */
6733
6734 static int
6735 remote_unescape_input (const gdb_byte *buffer, int len,
6736 gdb_byte *out_buf, int out_maxlen)
6737 {
6738 int input_index, output_index;
6739 int escaped;
6740
6741 output_index = 0;
6742 escaped = 0;
6743 for (input_index = 0; input_index < len; input_index++)
6744 {
6745 gdb_byte b = buffer[input_index];
6746
6747 if (output_index + 1 > out_maxlen)
6748 {
6749 warning (_("Received too much data from remote target;"
6750 " ignoring overflow."));
6751 return output_index;
6752 }
6753
6754 if (escaped)
6755 {
6756 out_buf[output_index++] = b ^ 0x20;
6757 escaped = 0;
6758 }
6759 else if (b == '}')
6760 escaped = 1;
6761 else
6762 out_buf[output_index++] = b;
6763 }
6764
6765 if (escaped)
6766 error (_("Unmatched escape character in target response."));
6767
6768 return output_index;
6769 }
6770
6771 /* Determine whether the remote target supports binary downloading.
6772 This is accomplished by sending a no-op memory write of zero length
6773 to the target at the specified address. It does not suffice to send
6774 the whole packet, since many stubs strip the eighth bit and
6775 subsequently compute a wrong checksum, which causes real havoc with
6776 remote_write_bytes.
6777
6778 NOTE: This can still lose if the serial line is not eight-bit
6779 clean. In cases like this, the user should clear "remote
6780 X-packet". */
6781
6782 static void
6783 check_binary_download (CORE_ADDR addr)
6784 {
6785 struct remote_state *rs = get_remote_state ();
6786
6787 switch (remote_protocol_packets[PACKET_X].support)
6788 {
6789 case PACKET_DISABLE:
6790 break;
6791 case PACKET_ENABLE:
6792 break;
6793 case PACKET_SUPPORT_UNKNOWN:
6794 {
6795 char *p;
6796
6797 p = rs->buf;
6798 *p++ = 'X';
6799 p += hexnumstr (p, (ULONGEST) addr);
6800 *p++ = ',';
6801 p += hexnumstr (p, (ULONGEST) 0);
6802 *p++ = ':';
6803 *p = '\0';
6804
6805 putpkt_binary (rs->buf, (int) (p - rs->buf));
6806 getpkt (&rs->buf, &rs->buf_size, 0);
6807
6808 if (rs->buf[0] == '\0')
6809 {
6810 if (remote_debug)
6811 fprintf_unfiltered (gdb_stdlog,
6812 "binary downloading NOT "
6813 "supported by target\n");
6814 remote_protocol_packets[PACKET_X].support = PACKET_DISABLE;
6815 }
6816 else
6817 {
6818 if (remote_debug)
6819 fprintf_unfiltered (gdb_stdlog,
6820 "binary downloading supported by target\n");
6821 remote_protocol_packets[PACKET_X].support = PACKET_ENABLE;
6822 }
6823 break;
6824 }
6825 }
6826 }
6827
6828 /* Write memory data directly to the remote machine.
6829 This does not inform the data cache; the data cache uses this.
6830 HEADER is the starting part of the packet.
6831 MEMADDR is the address in the remote memory space.
6832 MYADDR is the address of the buffer in our space.
6833 LEN is the number of bytes.
6834 PACKET_FORMAT should be either 'X' or 'M', and indicates if we
6835 should send data as binary ('X'), or hex-encoded ('M').
6836
6837 The function creates packet of the form
6838 <HEADER><ADDRESS>,<LENGTH>:<DATA>
6839
6840 where encoding of <DATA> is termined by PACKET_FORMAT.
6841
6842 If USE_LENGTH is 0, then the <LENGTH> field and the preceding comma
6843 are omitted.
6844
6845 Returns the number of bytes transferred, or a negative value (an
6846 'enum target_xfer_error' value) for error. Only transfer a single
6847 packet. */
6848
6849 static LONGEST
6850 remote_write_bytes_aux (const char *header, CORE_ADDR memaddr,
6851 const gdb_byte *myaddr, ssize_t len,
6852 char packet_format, int use_length)
6853 {
6854 struct remote_state *rs = get_remote_state ();
6855 char *p;
6856 char *plen = NULL;
6857 int plenlen = 0;
6858 int todo;
6859 int nr_bytes;
6860 int payload_size;
6861 int payload_length;
6862 int header_length;
6863
6864 if (packet_format != 'X' && packet_format != 'M')
6865 internal_error (__FILE__, __LINE__,
6866 _("remote_write_bytes_aux: bad packet format"));
6867
6868 if (len <= 0)
6869 return 0;
6870
6871 payload_size = get_memory_write_packet_size ();
6872
6873 /* The packet buffer will be large enough for the payload;
6874 get_memory_packet_size ensures this. */
6875 rs->buf[0] = '\0';
6876
6877 /* Compute the size of the actual payload by subtracting out the
6878 packet header and footer overhead: "$M<memaddr>,<len>:...#nn". */
6879
6880 payload_size -= strlen ("$,:#NN");
6881 if (!use_length)
6882 /* The comma won't be used. */
6883 payload_size += 1;
6884 header_length = strlen (header);
6885 payload_size -= header_length;
6886 payload_size -= hexnumlen (memaddr);
6887
6888 /* Construct the packet excluding the data: "<header><memaddr>,<len>:". */
6889
6890 strcat (rs->buf, header);
6891 p = rs->buf + strlen (header);
6892
6893 /* Compute a best guess of the number of bytes actually transfered. */
6894 if (packet_format == 'X')
6895 {
6896 /* Best guess at number of bytes that will fit. */
6897 todo = min (len, payload_size);
6898 if (use_length)
6899 payload_size -= hexnumlen (todo);
6900 todo = min (todo, payload_size);
6901 }
6902 else
6903 {
6904 /* Num bytes that will fit. */
6905 todo = min (len, payload_size / 2);
6906 if (use_length)
6907 payload_size -= hexnumlen (todo);
6908 todo = min (todo, payload_size / 2);
6909 }
6910
6911 if (todo <= 0)
6912 internal_error (__FILE__, __LINE__,
6913 _("minimum packet size too small to write data"));
6914
6915 /* If we already need another packet, then try to align the end
6916 of this packet to a useful boundary. */
6917 if (todo > 2 * REMOTE_ALIGN_WRITES && todo < len)
6918 todo = ((memaddr + todo) & ~(REMOTE_ALIGN_WRITES - 1)) - memaddr;
6919
6920 /* Append "<memaddr>". */
6921 memaddr = remote_address_masked (memaddr);
6922 p += hexnumstr (p, (ULONGEST) memaddr);
6923
6924 if (use_length)
6925 {
6926 /* Append ",". */
6927 *p++ = ',';
6928
6929 /* Append <len>. Retain the location/size of <len>. It may need to
6930 be adjusted once the packet body has been created. */
6931 plen = p;
6932 plenlen = hexnumstr (p, (ULONGEST) todo);
6933 p += plenlen;
6934 }
6935
6936 /* Append ":". */
6937 *p++ = ':';
6938 *p = '\0';
6939
6940 /* Append the packet body. */
6941 if (packet_format == 'X')
6942 {
6943 /* Binary mode. Send target system values byte by byte, in
6944 increasing byte addresses. Only escape certain critical
6945 characters. */
6946 payload_length = remote_escape_output (myaddr, todo, (gdb_byte *) p,
6947 &nr_bytes, payload_size);
6948
6949 /* If not all TODO bytes fit, then we'll need another packet. Make
6950 a second try to keep the end of the packet aligned. Don't do
6951 this if the packet is tiny. */
6952 if (nr_bytes < todo && nr_bytes > 2 * REMOTE_ALIGN_WRITES)
6953 {
6954 int new_nr_bytes;
6955
6956 new_nr_bytes = (((memaddr + nr_bytes) & ~(REMOTE_ALIGN_WRITES - 1))
6957 - memaddr);
6958 if (new_nr_bytes != nr_bytes)
6959 payload_length = remote_escape_output (myaddr, new_nr_bytes,
6960 (gdb_byte *) p, &nr_bytes,
6961 payload_size);
6962 }
6963
6964 p += payload_length;
6965 if (use_length && nr_bytes < todo)
6966 {
6967 /* Escape chars have filled up the buffer prematurely,
6968 and we have actually sent fewer bytes than planned.
6969 Fix-up the length field of the packet. Use the same
6970 number of characters as before. */
6971 plen += hexnumnstr (plen, (ULONGEST) nr_bytes, plenlen);
6972 *plen = ':'; /* overwrite \0 from hexnumnstr() */
6973 }
6974 }
6975 else
6976 {
6977 /* Normal mode: Send target system values byte by byte, in
6978 increasing byte addresses. Each byte is encoded as a two hex
6979 value. */
6980 nr_bytes = bin2hex (myaddr, p, todo);
6981 p += 2 * nr_bytes;
6982 }
6983
6984 putpkt_binary (rs->buf, (int) (p - rs->buf));
6985 getpkt (&rs->buf, &rs->buf_size, 0);
6986
6987 if (rs->buf[0] == 'E')
6988 return TARGET_XFER_E_IO;
6989
6990 /* Return NR_BYTES, not TODO, in case escape chars caused us to send
6991 fewer bytes than we'd planned. */
6992 return nr_bytes;
6993 }
6994
6995 /* Write memory data directly to the remote machine.
6996 This does not inform the data cache; the data cache uses this.
6997 MEMADDR is the address in the remote memory space.
6998 MYADDR is the address of the buffer in our space.
6999 LEN is the number of bytes.
7000
7001 Returns number of bytes transferred, or a negative value (an 'enum
7002 target_xfer_error' value) for error. Only transfer a single
7003 packet. */
7004
7005 static LONGEST
7006 remote_write_bytes (CORE_ADDR memaddr, const gdb_byte *myaddr, ssize_t len)
7007 {
7008 char *packet_format = 0;
7009
7010 /* Check whether the target supports binary download. */
7011 check_binary_download (memaddr);
7012
7013 switch (remote_protocol_packets[PACKET_X].support)
7014 {
7015 case PACKET_ENABLE:
7016 packet_format = "X";
7017 break;
7018 case PACKET_DISABLE:
7019 packet_format = "M";
7020 break;
7021 case PACKET_SUPPORT_UNKNOWN:
7022 internal_error (__FILE__, __LINE__,
7023 _("remote_write_bytes: bad internal state"));
7024 default:
7025 internal_error (__FILE__, __LINE__, _("bad switch"));
7026 }
7027
7028 return remote_write_bytes_aux (packet_format,
7029 memaddr, myaddr, len, packet_format[0], 1);
7030 }
7031
7032 /* Read memory data directly from the remote machine.
7033 This does not use the data cache; the data cache uses this.
7034 MEMADDR is the address in the remote memory space.
7035 MYADDR is the address of the buffer in our space.
7036 LEN is the number of bytes.
7037
7038 Returns number of bytes transferred, or a negative value (an 'enum
7039 target_xfer_error' value) for error. */
7040
7041 static LONGEST
7042 remote_read_bytes (CORE_ADDR memaddr, gdb_byte *myaddr, int len)
7043 {
7044 struct remote_state *rs = get_remote_state ();
7045 int max_buf_size; /* Max size of packet output buffer. */
7046 char *p;
7047 int todo;
7048 int i;
7049
7050 if (len <= 0)
7051 return 0;
7052
7053 max_buf_size = get_memory_read_packet_size ();
7054 /* The packet buffer will be large enough for the payload;
7055 get_memory_packet_size ensures this. */
7056
7057 /* Number if bytes that will fit. */
7058 todo = min (len, max_buf_size / 2);
7059
7060 /* Construct "m"<memaddr>","<len>". */
7061 memaddr = remote_address_masked (memaddr);
7062 p = rs->buf;
7063 *p++ = 'm';
7064 p += hexnumstr (p, (ULONGEST) memaddr);
7065 *p++ = ',';
7066 p += hexnumstr (p, (ULONGEST) todo);
7067 *p = '\0';
7068 putpkt (rs->buf);
7069 getpkt (&rs->buf, &rs->buf_size, 0);
7070 if (rs->buf[0] == 'E'
7071 && isxdigit (rs->buf[1]) && isxdigit (rs->buf[2])
7072 && rs->buf[3] == '\0')
7073 return TARGET_XFER_E_IO;
7074 /* Reply describes memory byte by byte, each byte encoded as two hex
7075 characters. */
7076 p = rs->buf;
7077 i = hex2bin (p, myaddr, todo);
7078 /* Return what we have. Let higher layers handle partial reads. */
7079 return i;
7080 }
7081
7082 \f
7083
7084 /* Sends a packet with content determined by the printf format string
7085 FORMAT and the remaining arguments, then gets the reply. Returns
7086 whether the packet was a success, a failure, or unknown. */
7087
7088 static enum packet_result
7089 remote_send_printf (const char *format, ...)
7090 {
7091 struct remote_state *rs = get_remote_state ();
7092 int max_size = get_remote_packet_size ();
7093 va_list ap;
7094
7095 va_start (ap, format);
7096
7097 rs->buf[0] = '\0';
7098 if (vsnprintf (rs->buf, max_size, format, ap) >= max_size)
7099 internal_error (__FILE__, __LINE__, _("Too long remote packet."));
7100
7101 if (putpkt (rs->buf) < 0)
7102 error (_("Communication problem with target."));
7103
7104 rs->buf[0] = '\0';
7105 getpkt (&rs->buf, &rs->buf_size, 0);
7106
7107 return packet_check_result (rs->buf);
7108 }
7109
7110 static void
7111 restore_remote_timeout (void *p)
7112 {
7113 int value = *(int *)p;
7114
7115 remote_timeout = value;
7116 }
7117
7118 /* Flash writing can take quite some time. We'll set
7119 effectively infinite timeout for flash operations.
7120 In future, we'll need to decide on a better approach. */
7121 static const int remote_flash_timeout = 1000;
7122
7123 static void
7124 remote_flash_erase (struct target_ops *ops,
7125 ULONGEST address, LONGEST length)
7126 {
7127 int addr_size = gdbarch_addr_bit (target_gdbarch ()) / 8;
7128 int saved_remote_timeout = remote_timeout;
7129 enum packet_result ret;
7130 struct cleanup *back_to = make_cleanup (restore_remote_timeout,
7131 &saved_remote_timeout);
7132
7133 remote_timeout = remote_flash_timeout;
7134
7135 ret = remote_send_printf ("vFlashErase:%s,%s",
7136 phex (address, addr_size),
7137 phex (length, 4));
7138 switch (ret)
7139 {
7140 case PACKET_UNKNOWN:
7141 error (_("Remote target does not support flash erase"));
7142 case PACKET_ERROR:
7143 error (_("Error erasing flash with vFlashErase packet"));
7144 default:
7145 break;
7146 }
7147
7148 do_cleanups (back_to);
7149 }
7150
7151 static LONGEST
7152 remote_flash_write (struct target_ops *ops,
7153 ULONGEST address, LONGEST length,
7154 const gdb_byte *data)
7155 {
7156 int saved_remote_timeout = remote_timeout;
7157 LONGEST ret;
7158 struct cleanup *back_to = make_cleanup (restore_remote_timeout,
7159 &saved_remote_timeout);
7160
7161 remote_timeout = remote_flash_timeout;
7162 ret = remote_write_bytes_aux ("vFlashWrite:", address, data, length, 'X', 0);
7163 do_cleanups (back_to);
7164
7165 return ret;
7166 }
7167
7168 static void
7169 remote_flash_done (struct target_ops *ops)
7170 {
7171 int saved_remote_timeout = remote_timeout;
7172 int ret;
7173 struct cleanup *back_to = make_cleanup (restore_remote_timeout,
7174 &saved_remote_timeout);
7175
7176 remote_timeout = remote_flash_timeout;
7177 ret = remote_send_printf ("vFlashDone");
7178 do_cleanups (back_to);
7179
7180 switch (ret)
7181 {
7182 case PACKET_UNKNOWN:
7183 error (_("Remote target does not support vFlashDone"));
7184 case PACKET_ERROR:
7185 error (_("Error finishing flash operation"));
7186 default:
7187 break;
7188 }
7189 }
7190
7191 static void
7192 remote_files_info (struct target_ops *ignore)
7193 {
7194 puts_filtered ("Debugging a target over a serial line.\n");
7195 }
7196 \f
7197 /* Stuff for dealing with the packets which are part of this protocol.
7198 See comment at top of file for details. */
7199
7200 /* Close/unpush the remote target, and throw a TARGET_CLOSE_ERROR
7201 error to higher layers. Called when a serial error is detected.
7202 The exception message is STRING, followed by a colon and a blank,
7203 the system error message for errno at function entry and final dot
7204 for output compatibility with throw_perror_with_name. */
7205
7206 static void
7207 unpush_and_perror (const char *string)
7208 {
7209 int saved_errno = errno;
7210
7211 remote_unpush_target ();
7212 throw_error (TARGET_CLOSE_ERROR, "%s: %s.", string,
7213 safe_strerror (saved_errno));
7214 }
7215
7216 /* Read a single character from the remote end. */
7217
7218 static int
7219 readchar (int timeout)
7220 {
7221 int ch;
7222 struct remote_state *rs = get_remote_state ();
7223
7224 ch = serial_readchar (rs->remote_desc, timeout);
7225
7226 if (ch >= 0)
7227 return ch;
7228
7229 switch ((enum serial_rc) ch)
7230 {
7231 case SERIAL_EOF:
7232 remote_unpush_target ();
7233 throw_error (TARGET_CLOSE_ERROR, _("Remote connection closed"));
7234 /* no return */
7235 case SERIAL_ERROR:
7236 unpush_and_perror (_("Remote communication error. "
7237 "Target disconnected."));
7238 /* no return */
7239 case SERIAL_TIMEOUT:
7240 break;
7241 }
7242 return ch;
7243 }
7244
7245 /* Wrapper for serial_write that closes the target and throws if
7246 writing fails. */
7247
7248 static void
7249 remote_serial_write (const char *str, int len)
7250 {
7251 struct remote_state *rs = get_remote_state ();
7252
7253 if (serial_write (rs->remote_desc, str, len))
7254 {
7255 unpush_and_perror (_("Remote communication error. "
7256 "Target disconnected."));
7257 }
7258 }
7259
7260 /* Send the command in *BUF to the remote machine, and read the reply
7261 into *BUF. Report an error if we get an error reply. Resize
7262 *BUF using xrealloc if necessary to hold the result, and update
7263 *SIZEOF_BUF. */
7264
7265 static void
7266 remote_send (char **buf,
7267 long *sizeof_buf)
7268 {
7269 putpkt (*buf);
7270 getpkt (buf, sizeof_buf, 0);
7271
7272 if ((*buf)[0] == 'E')
7273 error (_("Remote failure reply: %s"), *buf);
7274 }
7275
7276 /* Return a pointer to an xmalloc'ed string representing an escaped
7277 version of BUF, of len N. E.g. \n is converted to \\n, \t to \\t,
7278 etc. The caller is responsible for releasing the returned
7279 memory. */
7280
7281 static char *
7282 escape_buffer (const char *buf, int n)
7283 {
7284 struct cleanup *old_chain;
7285 struct ui_file *stb;
7286 char *str;
7287
7288 stb = mem_fileopen ();
7289 old_chain = make_cleanup_ui_file_delete (stb);
7290
7291 fputstrn_unfiltered (buf, n, 0, stb);
7292 str = ui_file_xstrdup (stb, NULL);
7293 do_cleanups (old_chain);
7294 return str;
7295 }
7296
7297 /* Display a null-terminated packet on stdout, for debugging, using C
7298 string notation. */
7299
7300 static void
7301 print_packet (char *buf)
7302 {
7303 puts_filtered ("\"");
7304 fputstr_filtered (buf, '"', gdb_stdout);
7305 puts_filtered ("\"");
7306 }
7307
7308 int
7309 putpkt (char *buf)
7310 {
7311 return putpkt_binary (buf, strlen (buf));
7312 }
7313
7314 /* Send a packet to the remote machine, with error checking. The data
7315 of the packet is in BUF. The string in BUF can be at most
7316 get_remote_packet_size () - 5 to account for the $, # and checksum,
7317 and for a possible /0 if we are debugging (remote_debug) and want
7318 to print the sent packet as a string. */
7319
7320 static int
7321 putpkt_binary (char *buf, int cnt)
7322 {
7323 struct remote_state *rs = get_remote_state ();
7324 int i;
7325 unsigned char csum = 0;
7326 char *buf2 = alloca (cnt + 6);
7327
7328 int ch;
7329 int tcount = 0;
7330 char *p;
7331 char *message;
7332
7333 /* Catch cases like trying to read memory or listing threads while
7334 we're waiting for a stop reply. The remote server wouldn't be
7335 ready to handle this request, so we'd hang and timeout. We don't
7336 have to worry about this in synchronous mode, because in that
7337 case it's not possible to issue a command while the target is
7338 running. This is not a problem in non-stop mode, because in that
7339 case, the stub is always ready to process serial input. */
7340 if (!non_stop && target_can_async_p () && rs->waiting_for_stop_reply)
7341 error (_("Cannot execute this command while the target is running."));
7342
7343 /* We're sending out a new packet. Make sure we don't look at a
7344 stale cached response. */
7345 rs->cached_wait_status = 0;
7346
7347 /* Copy the packet into buffer BUF2, encapsulating it
7348 and giving it a checksum. */
7349
7350 p = buf2;
7351 *p++ = '$';
7352
7353 for (i = 0; i < cnt; i++)
7354 {
7355 csum += buf[i];
7356 *p++ = buf[i];
7357 }
7358 *p++ = '#';
7359 *p++ = tohex ((csum >> 4) & 0xf);
7360 *p++ = tohex (csum & 0xf);
7361
7362 /* Send it over and over until we get a positive ack. */
7363
7364 while (1)
7365 {
7366 int started_error_output = 0;
7367
7368 if (remote_debug)
7369 {
7370 struct cleanup *old_chain;
7371 char *str;
7372
7373 *p = '\0';
7374 str = escape_buffer (buf2, p - buf2);
7375 old_chain = make_cleanup (xfree, str);
7376 fprintf_unfiltered (gdb_stdlog, "Sending packet: %s...", str);
7377 gdb_flush (gdb_stdlog);
7378 do_cleanups (old_chain);
7379 }
7380 remote_serial_write (buf2, p - buf2);
7381
7382 /* If this is a no acks version of the remote protocol, send the
7383 packet and move on. */
7384 if (rs->noack_mode)
7385 break;
7386
7387 /* Read until either a timeout occurs (-2) or '+' is read.
7388 Handle any notification that arrives in the mean time. */
7389 while (1)
7390 {
7391 ch = readchar (remote_timeout);
7392
7393 if (remote_debug)
7394 {
7395 switch (ch)
7396 {
7397 case '+':
7398 case '-':
7399 case SERIAL_TIMEOUT:
7400 case '$':
7401 case '%':
7402 if (started_error_output)
7403 {
7404 putchar_unfiltered ('\n');
7405 started_error_output = 0;
7406 }
7407 }
7408 }
7409
7410 switch (ch)
7411 {
7412 case '+':
7413 if (remote_debug)
7414 fprintf_unfiltered (gdb_stdlog, "Ack\n");
7415 return 1;
7416 case '-':
7417 if (remote_debug)
7418 fprintf_unfiltered (gdb_stdlog, "Nak\n");
7419 /* FALLTHROUGH */
7420 case SERIAL_TIMEOUT:
7421 tcount++;
7422 if (tcount > 3)
7423 return 0;
7424 break; /* Retransmit buffer. */
7425 case '$':
7426 {
7427 if (remote_debug)
7428 fprintf_unfiltered (gdb_stdlog,
7429 "Packet instead of Ack, ignoring it\n");
7430 /* It's probably an old response sent because an ACK
7431 was lost. Gobble up the packet and ack it so it
7432 doesn't get retransmitted when we resend this
7433 packet. */
7434 skip_frame ();
7435 remote_serial_write ("+", 1);
7436 continue; /* Now, go look for +. */
7437 }
7438
7439 case '%':
7440 {
7441 int val;
7442
7443 /* If we got a notification, handle it, and go back to looking
7444 for an ack. */
7445 /* We've found the start of a notification. Now
7446 collect the data. */
7447 val = read_frame (&rs->buf, &rs->buf_size);
7448 if (val >= 0)
7449 {
7450 if (remote_debug)
7451 {
7452 struct cleanup *old_chain;
7453 char *str;
7454
7455 str = escape_buffer (rs->buf, val);
7456 old_chain = make_cleanup (xfree, str);
7457 fprintf_unfiltered (gdb_stdlog,
7458 " Notification received: %s\n",
7459 str);
7460 do_cleanups (old_chain);
7461 }
7462 handle_notification (rs->notif_state, rs->buf);
7463 /* We're in sync now, rewait for the ack. */
7464 tcount = 0;
7465 }
7466 else
7467 {
7468 if (remote_debug)
7469 {
7470 if (!started_error_output)
7471 {
7472 started_error_output = 1;
7473 fprintf_unfiltered (gdb_stdlog, "putpkt: Junk: ");
7474 }
7475 fputc_unfiltered (ch & 0177, gdb_stdlog);
7476 fprintf_unfiltered (gdb_stdlog, "%s", rs->buf);
7477 }
7478 }
7479 continue;
7480 }
7481 /* fall-through */
7482 default:
7483 if (remote_debug)
7484 {
7485 if (!started_error_output)
7486 {
7487 started_error_output = 1;
7488 fprintf_unfiltered (gdb_stdlog, "putpkt: Junk: ");
7489 }
7490 fputc_unfiltered (ch & 0177, gdb_stdlog);
7491 }
7492 continue;
7493 }
7494 break; /* Here to retransmit. */
7495 }
7496
7497 #if 0
7498 /* This is wrong. If doing a long backtrace, the user should be
7499 able to get out next time we call QUIT, without anything as
7500 violent as interrupt_query. If we want to provide a way out of
7501 here without getting to the next QUIT, it should be based on
7502 hitting ^C twice as in remote_wait. */
7503 if (quit_flag)
7504 {
7505 quit_flag = 0;
7506 interrupt_query ();
7507 }
7508 #endif
7509 }
7510 return 0;
7511 }
7512
7513 /* Come here after finding the start of a frame when we expected an
7514 ack. Do our best to discard the rest of this packet. */
7515
7516 static void
7517 skip_frame (void)
7518 {
7519 int c;
7520
7521 while (1)
7522 {
7523 c = readchar (remote_timeout);
7524 switch (c)
7525 {
7526 case SERIAL_TIMEOUT:
7527 /* Nothing we can do. */
7528 return;
7529 case '#':
7530 /* Discard the two bytes of checksum and stop. */
7531 c = readchar (remote_timeout);
7532 if (c >= 0)
7533 c = readchar (remote_timeout);
7534
7535 return;
7536 case '*': /* Run length encoding. */
7537 /* Discard the repeat count. */
7538 c = readchar (remote_timeout);
7539 if (c < 0)
7540 return;
7541 break;
7542 default:
7543 /* A regular character. */
7544 break;
7545 }
7546 }
7547 }
7548
7549 /* Come here after finding the start of the frame. Collect the rest
7550 into *BUF, verifying the checksum, length, and handling run-length
7551 compression. NUL terminate the buffer. If there is not enough room,
7552 expand *BUF using xrealloc.
7553
7554 Returns -1 on error, number of characters in buffer (ignoring the
7555 trailing NULL) on success. (could be extended to return one of the
7556 SERIAL status indications). */
7557
7558 static long
7559 read_frame (char **buf_p,
7560 long *sizeof_buf)
7561 {
7562 unsigned char csum;
7563 long bc;
7564 int c;
7565 char *buf = *buf_p;
7566 struct remote_state *rs = get_remote_state ();
7567
7568 csum = 0;
7569 bc = 0;
7570
7571 while (1)
7572 {
7573 c = readchar (remote_timeout);
7574 switch (c)
7575 {
7576 case SERIAL_TIMEOUT:
7577 if (remote_debug)
7578 fputs_filtered ("Timeout in mid-packet, retrying\n", gdb_stdlog);
7579 return -1;
7580 case '$':
7581 if (remote_debug)
7582 fputs_filtered ("Saw new packet start in middle of old one\n",
7583 gdb_stdlog);
7584 return -1; /* Start a new packet, count retries. */
7585 case '#':
7586 {
7587 unsigned char pktcsum;
7588 int check_0 = 0;
7589 int check_1 = 0;
7590
7591 buf[bc] = '\0';
7592
7593 check_0 = readchar (remote_timeout);
7594 if (check_0 >= 0)
7595 check_1 = readchar (remote_timeout);
7596
7597 if (check_0 == SERIAL_TIMEOUT || check_1 == SERIAL_TIMEOUT)
7598 {
7599 if (remote_debug)
7600 fputs_filtered ("Timeout in checksum, retrying\n",
7601 gdb_stdlog);
7602 return -1;
7603 }
7604 else if (check_0 < 0 || check_1 < 0)
7605 {
7606 if (remote_debug)
7607 fputs_filtered ("Communication error in checksum\n",
7608 gdb_stdlog);
7609 return -1;
7610 }
7611
7612 /* Don't recompute the checksum; with no ack packets we
7613 don't have any way to indicate a packet retransmission
7614 is necessary. */
7615 if (rs->noack_mode)
7616 return bc;
7617
7618 pktcsum = (fromhex (check_0) << 4) | fromhex (check_1);
7619 if (csum == pktcsum)
7620 return bc;
7621
7622 if (remote_debug)
7623 {
7624 struct cleanup *old_chain;
7625 char *str;
7626
7627 str = escape_buffer (buf, bc);
7628 old_chain = make_cleanup (xfree, str);
7629 fprintf_unfiltered (gdb_stdlog,
7630 "Bad checksum, sentsum=0x%x, "
7631 "csum=0x%x, buf=%s\n",
7632 pktcsum, csum, str);
7633 do_cleanups (old_chain);
7634 }
7635 /* Number of characters in buffer ignoring trailing
7636 NULL. */
7637 return -1;
7638 }
7639 case '*': /* Run length encoding. */
7640 {
7641 int repeat;
7642
7643 csum += c;
7644 c = readchar (remote_timeout);
7645 csum += c;
7646 repeat = c - ' ' + 3; /* Compute repeat count. */
7647
7648 /* The character before ``*'' is repeated. */
7649
7650 if (repeat > 0 && repeat <= 255 && bc > 0)
7651 {
7652 if (bc + repeat - 1 >= *sizeof_buf - 1)
7653 {
7654 /* Make some more room in the buffer. */
7655 *sizeof_buf += repeat;
7656 *buf_p = xrealloc (*buf_p, *sizeof_buf);
7657 buf = *buf_p;
7658 }
7659
7660 memset (&buf[bc], buf[bc - 1], repeat);
7661 bc += repeat;
7662 continue;
7663 }
7664
7665 buf[bc] = '\0';
7666 printf_filtered (_("Invalid run length encoding: %s\n"), buf);
7667 return -1;
7668 }
7669 default:
7670 if (bc >= *sizeof_buf - 1)
7671 {
7672 /* Make some more room in the buffer. */
7673 *sizeof_buf *= 2;
7674 *buf_p = xrealloc (*buf_p, *sizeof_buf);
7675 buf = *buf_p;
7676 }
7677
7678 buf[bc++] = c;
7679 csum += c;
7680 continue;
7681 }
7682 }
7683 }
7684
7685 /* Read a packet from the remote machine, with error checking, and
7686 store it in *BUF. Resize *BUF using xrealloc if necessary to hold
7687 the result, and update *SIZEOF_BUF. If FOREVER, wait forever
7688 rather than timing out; this is used (in synchronous mode) to wait
7689 for a target that is is executing user code to stop. */
7690 /* FIXME: ezannoni 2000-02-01 this wrapper is necessary so that we
7691 don't have to change all the calls to getpkt to deal with the
7692 return value, because at the moment I don't know what the right
7693 thing to do it for those. */
7694 void
7695 getpkt (char **buf,
7696 long *sizeof_buf,
7697 int forever)
7698 {
7699 int timed_out;
7700
7701 timed_out = getpkt_sane (buf, sizeof_buf, forever);
7702 }
7703
7704
7705 /* Read a packet from the remote machine, with error checking, and
7706 store it in *BUF. Resize *BUF using xrealloc if necessary to hold
7707 the result, and update *SIZEOF_BUF. If FOREVER, wait forever
7708 rather than timing out; this is used (in synchronous mode) to wait
7709 for a target that is is executing user code to stop. If FOREVER ==
7710 0, this function is allowed to time out gracefully and return an
7711 indication of this to the caller. Otherwise return the number of
7712 bytes read. If EXPECTING_NOTIF, consider receiving a notification
7713 enough reason to return to the caller. *IS_NOTIF is an output
7714 boolean that indicates whether *BUF holds a notification or not
7715 (a regular packet). */
7716
7717 static int
7718 getpkt_or_notif_sane_1 (char **buf, long *sizeof_buf, int forever,
7719 int expecting_notif, int *is_notif)
7720 {
7721 struct remote_state *rs = get_remote_state ();
7722 int c;
7723 int tries;
7724 int timeout;
7725 int val = -1;
7726
7727 /* We're reading a new response. Make sure we don't look at a
7728 previously cached response. */
7729 rs->cached_wait_status = 0;
7730
7731 strcpy (*buf, "timeout");
7732
7733 if (forever)
7734 timeout = watchdog > 0 ? watchdog : -1;
7735 else if (expecting_notif)
7736 timeout = 0; /* There should already be a char in the buffer. If
7737 not, bail out. */
7738 else
7739 timeout = remote_timeout;
7740
7741 #define MAX_TRIES 3
7742
7743 /* Process any number of notifications, and then return when
7744 we get a packet. */
7745 for (;;)
7746 {
7747 /* If we get a timeout or bad checksum, retry up to MAX_TRIES
7748 times. */
7749 for (tries = 1; tries <= MAX_TRIES; tries++)
7750 {
7751 /* This can loop forever if the remote side sends us
7752 characters continuously, but if it pauses, we'll get
7753 SERIAL_TIMEOUT from readchar because of timeout. Then
7754 we'll count that as a retry.
7755
7756 Note that even when forever is set, we will only wait
7757 forever prior to the start of a packet. After that, we
7758 expect characters to arrive at a brisk pace. They should
7759 show up within remote_timeout intervals. */
7760 do
7761 c = readchar (timeout);
7762 while (c != SERIAL_TIMEOUT && c != '$' && c != '%');
7763
7764 if (c == SERIAL_TIMEOUT)
7765 {
7766 if (expecting_notif)
7767 return -1; /* Don't complain, it's normal to not get
7768 anything in this case. */
7769
7770 if (forever) /* Watchdog went off? Kill the target. */
7771 {
7772 QUIT;
7773 remote_unpush_target ();
7774 throw_error (TARGET_CLOSE_ERROR,
7775 _("Watchdog timeout has expired. "
7776 "Target detached."));
7777 }
7778 if (remote_debug)
7779 fputs_filtered ("Timed out.\n", gdb_stdlog);
7780 }
7781 else
7782 {
7783 /* We've found the start of a packet or notification.
7784 Now collect the data. */
7785 val = read_frame (buf, sizeof_buf);
7786 if (val >= 0)
7787 break;
7788 }
7789
7790 remote_serial_write ("-", 1);
7791 }
7792
7793 if (tries > MAX_TRIES)
7794 {
7795 /* We have tried hard enough, and just can't receive the
7796 packet/notification. Give up. */
7797 printf_unfiltered (_("Ignoring packet error, continuing...\n"));
7798
7799 /* Skip the ack char if we're in no-ack mode. */
7800 if (!rs->noack_mode)
7801 remote_serial_write ("+", 1);
7802 return -1;
7803 }
7804
7805 /* If we got an ordinary packet, return that to our caller. */
7806 if (c == '$')
7807 {
7808 if (remote_debug)
7809 {
7810 struct cleanup *old_chain;
7811 char *str;
7812
7813 str = escape_buffer (*buf, val);
7814 old_chain = make_cleanup (xfree, str);
7815 fprintf_unfiltered (gdb_stdlog, "Packet received: %s\n", str);
7816 do_cleanups (old_chain);
7817 }
7818
7819 /* Skip the ack char if we're in no-ack mode. */
7820 if (!rs->noack_mode)
7821 remote_serial_write ("+", 1);
7822 if (is_notif != NULL)
7823 *is_notif = 0;
7824 return val;
7825 }
7826
7827 /* If we got a notification, handle it, and go back to looking
7828 for a packet. */
7829 else
7830 {
7831 gdb_assert (c == '%');
7832
7833 if (remote_debug)
7834 {
7835 struct cleanup *old_chain;
7836 char *str;
7837
7838 str = escape_buffer (*buf, val);
7839 old_chain = make_cleanup (xfree, str);
7840 fprintf_unfiltered (gdb_stdlog,
7841 " Notification received: %s\n",
7842 str);
7843 do_cleanups (old_chain);
7844 }
7845 if (is_notif != NULL)
7846 *is_notif = 1;
7847
7848 handle_notification (rs->notif_state, *buf);
7849
7850 /* Notifications require no acknowledgement. */
7851
7852 if (expecting_notif)
7853 return val;
7854 }
7855 }
7856 }
7857
7858 static int
7859 getpkt_sane (char **buf, long *sizeof_buf, int forever)
7860 {
7861 return getpkt_or_notif_sane_1 (buf, sizeof_buf, forever, 0, NULL);
7862 }
7863
7864 static int
7865 getpkt_or_notif_sane (char **buf, long *sizeof_buf, int forever,
7866 int *is_notif)
7867 {
7868 return getpkt_or_notif_sane_1 (buf, sizeof_buf, forever, 1,
7869 is_notif);
7870 }
7871
7872 \f
7873 static void
7874 remote_kill (struct target_ops *ops)
7875 {
7876 struct gdb_exception ex;
7877
7878 /* Catch errors so the user can quit from gdb even when we
7879 aren't on speaking terms with the remote system. */
7880 TRY_CATCH (ex, RETURN_MASK_ERROR)
7881 {
7882 putpkt ("k");
7883 }
7884 if (ex.reason < 0)
7885 {
7886 if (ex.error == TARGET_CLOSE_ERROR)
7887 {
7888 /* If we got an (EOF) error that caused the target
7889 to go away, then we're done, that's what we wanted.
7890 "k" is susceptible to cause a premature EOF, given
7891 that the remote server isn't actually required to
7892 reply to "k", and it can happen that it doesn't
7893 even get to reply ACK to the "k". */
7894 return;
7895 }
7896
7897 /* Otherwise, something went wrong. We didn't actually kill
7898 the target. Just propagate the exception, and let the
7899 user or higher layers decide what to do. */
7900 throw_exception (ex);
7901 }
7902
7903 /* We've killed the remote end, we get to mourn it. Since this is
7904 target remote, single-process, mourning the inferior also
7905 unpushes remote_ops. */
7906 target_mourn_inferior ();
7907 }
7908
7909 static int
7910 remote_vkill (int pid, struct remote_state *rs)
7911 {
7912 if (remote_protocol_packets[PACKET_vKill].support == PACKET_DISABLE)
7913 return -1;
7914
7915 /* Tell the remote target to detach. */
7916 xsnprintf (rs->buf, get_remote_packet_size (), "vKill;%x", pid);
7917 putpkt (rs->buf);
7918 getpkt (&rs->buf, &rs->buf_size, 0);
7919
7920 if (packet_ok (rs->buf,
7921 &remote_protocol_packets[PACKET_vKill]) == PACKET_OK)
7922 return 0;
7923 else if (remote_protocol_packets[PACKET_vKill].support == PACKET_DISABLE)
7924 return -1;
7925 else
7926 return 1;
7927 }
7928
7929 static void
7930 extended_remote_kill (struct target_ops *ops)
7931 {
7932 int res;
7933 int pid = ptid_get_pid (inferior_ptid);
7934 struct remote_state *rs = get_remote_state ();
7935
7936 res = remote_vkill (pid, rs);
7937 if (res == -1 && !(rs->extended && remote_multi_process_p (rs)))
7938 {
7939 /* Don't try 'k' on a multi-process aware stub -- it has no way
7940 to specify the pid. */
7941
7942 putpkt ("k");
7943 #if 0
7944 getpkt (&rs->buf, &rs->buf_size, 0);
7945 if (rs->buf[0] != 'O' || rs->buf[0] != 'K')
7946 res = 1;
7947 #else
7948 /* Don't wait for it to die. I'm not really sure it matters whether
7949 we do or not. For the existing stubs, kill is a noop. */
7950 res = 0;
7951 #endif
7952 }
7953
7954 if (res != 0)
7955 error (_("Can't kill process"));
7956
7957 target_mourn_inferior ();
7958 }
7959
7960 static void
7961 remote_mourn (struct target_ops *ops)
7962 {
7963 remote_mourn_1 (ops);
7964 }
7965
7966 /* Worker function for remote_mourn. */
7967 static void
7968 remote_mourn_1 (struct target_ops *target)
7969 {
7970 unpush_target (target);
7971
7972 /* remote_close takes care of doing most of the clean up. */
7973 generic_mourn_inferior ();
7974 }
7975
7976 static void
7977 extended_remote_mourn_1 (struct target_ops *target)
7978 {
7979 struct remote_state *rs = get_remote_state ();
7980
7981 /* In case we got here due to an error, but we're going to stay
7982 connected. */
7983 rs->waiting_for_stop_reply = 0;
7984
7985 /* If the current general thread belonged to the process we just
7986 detached from or has exited, the remote side current general
7987 thread becomes undefined. Considering a case like this:
7988
7989 - We just got here due to a detach.
7990 - The process that we're detaching from happens to immediately
7991 report a global breakpoint being hit in non-stop mode, in the
7992 same thread we had selected before.
7993 - GDB attaches to this process again.
7994 - This event happens to be the next event we handle.
7995
7996 GDB would consider that the current general thread didn't need to
7997 be set on the stub side (with Hg), since for all it knew,
7998 GENERAL_THREAD hadn't changed.
7999
8000 Notice that although in all-stop mode, the remote server always
8001 sets the current thread to the thread reporting the stop event,
8002 that doesn't happen in non-stop mode; in non-stop, the stub *must
8003 not* change the current thread when reporting a breakpoint hit,
8004 due to the decoupling of event reporting and event handling.
8005
8006 To keep things simple, we always invalidate our notion of the
8007 current thread. */
8008 record_currthread (rs, minus_one_ptid);
8009
8010 /* Unlike "target remote", we do not want to unpush the target; then
8011 the next time the user says "run", we won't be connected. */
8012
8013 /* Call common code to mark the inferior as not running. */
8014 generic_mourn_inferior ();
8015
8016 if (!have_inferiors ())
8017 {
8018 if (!remote_multi_process_p (rs))
8019 {
8020 /* Check whether the target is running now - some remote stubs
8021 automatically restart after kill. */
8022 putpkt ("?");
8023 getpkt (&rs->buf, &rs->buf_size, 0);
8024
8025 if (rs->buf[0] == 'S' || rs->buf[0] == 'T')
8026 {
8027 /* Assume that the target has been restarted. Set
8028 inferior_ptid so that bits of core GDB realizes
8029 there's something here, e.g., so that the user can
8030 say "kill" again. */
8031 inferior_ptid = magic_null_ptid;
8032 }
8033 }
8034 }
8035 }
8036
8037 static void
8038 extended_remote_mourn (struct target_ops *ops)
8039 {
8040 extended_remote_mourn_1 (ops);
8041 }
8042
8043 static int
8044 extended_remote_supports_disable_randomization (void)
8045 {
8046 return (remote_protocol_packets[PACKET_QDisableRandomization].support
8047 == PACKET_ENABLE);
8048 }
8049
8050 static void
8051 extended_remote_disable_randomization (int val)
8052 {
8053 struct remote_state *rs = get_remote_state ();
8054 char *reply;
8055
8056 xsnprintf (rs->buf, get_remote_packet_size (), "QDisableRandomization:%x",
8057 val);
8058 putpkt (rs->buf);
8059 reply = remote_get_noisy_reply (&target_buf, &target_buf_size);
8060 if (*reply == '\0')
8061 error (_("Target does not support QDisableRandomization."));
8062 if (strcmp (reply, "OK") != 0)
8063 error (_("Bogus QDisableRandomization reply from target: %s"), reply);
8064 }
8065
8066 static int
8067 extended_remote_run (char *args)
8068 {
8069 struct remote_state *rs = get_remote_state ();
8070 int len;
8071
8072 /* If the user has disabled vRun support, or we have detected that
8073 support is not available, do not try it. */
8074 if (remote_protocol_packets[PACKET_vRun].support == PACKET_DISABLE)
8075 return -1;
8076
8077 strcpy (rs->buf, "vRun;");
8078 len = strlen (rs->buf);
8079
8080 if (strlen (remote_exec_file) * 2 + len >= get_remote_packet_size ())
8081 error (_("Remote file name too long for run packet"));
8082 len += 2 * bin2hex ((gdb_byte *) remote_exec_file, rs->buf + len, 0);
8083
8084 gdb_assert (args != NULL);
8085 if (*args)
8086 {
8087 struct cleanup *back_to;
8088 int i;
8089 char **argv;
8090
8091 argv = gdb_buildargv (args);
8092 back_to = make_cleanup ((void (*) (void *)) freeargv, argv);
8093 for (i = 0; argv[i] != NULL; i++)
8094 {
8095 if (strlen (argv[i]) * 2 + 1 + len >= get_remote_packet_size ())
8096 error (_("Argument list too long for run packet"));
8097 rs->buf[len++] = ';';
8098 len += 2 * bin2hex ((gdb_byte *) argv[i], rs->buf + len, 0);
8099 }
8100 do_cleanups (back_to);
8101 }
8102
8103 rs->buf[len++] = '\0';
8104
8105 putpkt (rs->buf);
8106 getpkt (&rs->buf, &rs->buf_size, 0);
8107
8108 if (packet_ok (rs->buf, &remote_protocol_packets[PACKET_vRun]) == PACKET_OK)
8109 {
8110 /* We have a wait response. All is well. */
8111 return 0;
8112 }
8113 else if (remote_protocol_packets[PACKET_vRun].support == PACKET_DISABLE)
8114 /* It wasn't disabled before, but it is now. */
8115 return -1;
8116 else
8117 {
8118 if (remote_exec_file[0] == '\0')
8119 error (_("Running the default executable on the remote target failed; "
8120 "try \"set remote exec-file\"?"));
8121 else
8122 error (_("Running \"%s\" on the remote target failed"),
8123 remote_exec_file);
8124 }
8125 }
8126
8127 /* In the extended protocol we want to be able to do things like
8128 "run" and have them basically work as expected. So we need
8129 a special create_inferior function. We support changing the
8130 executable file and the command line arguments, but not the
8131 environment. */
8132
8133 static void
8134 extended_remote_create_inferior_1 (char *exec_file, char *args,
8135 char **env, int from_tty)
8136 {
8137 int run_worked;
8138 char *stop_reply;
8139 struct remote_state *rs = get_remote_state ();
8140
8141 /* If running asynchronously, register the target file descriptor
8142 with the event loop. */
8143 if (target_can_async_p ())
8144 target_async (inferior_event_handler, 0);
8145
8146 /* Disable address space randomization if requested (and supported). */
8147 if (extended_remote_supports_disable_randomization ())
8148 extended_remote_disable_randomization (disable_randomization);
8149
8150 /* Now restart the remote server. */
8151 run_worked = extended_remote_run (args) != -1;
8152 if (!run_worked)
8153 {
8154 /* vRun was not supported. Fail if we need it to do what the
8155 user requested. */
8156 if (remote_exec_file[0])
8157 error (_("Remote target does not support \"set remote exec-file\""));
8158 if (args[0])
8159 error (_("Remote target does not support \"set args\" or run <ARGS>"));
8160
8161 /* Fall back to "R". */
8162 extended_remote_restart ();
8163 }
8164
8165 if (!have_inferiors ())
8166 {
8167 /* Clean up from the last time we ran, before we mark the target
8168 running again. This will mark breakpoints uninserted, and
8169 get_offsets may insert breakpoints. */
8170 init_thread_list ();
8171 init_wait_for_inferior ();
8172 }
8173
8174 /* vRun's success return is a stop reply. */
8175 stop_reply = run_worked ? rs->buf : NULL;
8176 add_current_inferior_and_thread (stop_reply);
8177
8178 /* Get updated offsets, if the stub uses qOffsets. */
8179 get_offsets ();
8180 }
8181
8182 static void
8183 extended_remote_create_inferior (struct target_ops *ops,
8184 char *exec_file, char *args,
8185 char **env, int from_tty)
8186 {
8187 extended_remote_create_inferior_1 (exec_file, args, env, from_tty);
8188 }
8189 \f
8190
8191 /* Given a location's target info BP_TGT and the packet buffer BUF, output
8192 the list of conditions (in agent expression bytecode format), if any, the
8193 target needs to evaluate. The output is placed into the packet buffer
8194 started from BUF and ended at BUF_END. */
8195
8196 static int
8197 remote_add_target_side_condition (struct gdbarch *gdbarch,
8198 struct bp_target_info *bp_tgt, char *buf,
8199 char *buf_end)
8200 {
8201 struct agent_expr *aexpr = NULL;
8202 int i, ix;
8203 char *pkt;
8204 char *buf_start = buf;
8205
8206 if (VEC_empty (agent_expr_p, bp_tgt->conditions))
8207 return 0;
8208
8209 buf += strlen (buf);
8210 xsnprintf (buf, buf_end - buf, "%s", ";");
8211 buf++;
8212
8213 /* Send conditions to the target and free the vector. */
8214 for (ix = 0;
8215 VEC_iterate (agent_expr_p, bp_tgt->conditions, ix, aexpr);
8216 ix++)
8217 {
8218 xsnprintf (buf, buf_end - buf, "X%x,", aexpr->len);
8219 buf += strlen (buf);
8220 for (i = 0; i < aexpr->len; ++i)
8221 buf = pack_hex_byte (buf, aexpr->buf[i]);
8222 *buf = '\0';
8223 }
8224 return 0;
8225 }
8226
8227 static void
8228 remote_add_target_side_commands (struct gdbarch *gdbarch,
8229 struct bp_target_info *bp_tgt, char *buf)
8230 {
8231 struct agent_expr *aexpr = NULL;
8232 int i, ix;
8233
8234 if (VEC_empty (agent_expr_p, bp_tgt->tcommands))
8235 return;
8236
8237 buf += strlen (buf);
8238
8239 sprintf (buf, ";cmds:%x,", bp_tgt->persist);
8240 buf += strlen (buf);
8241
8242 /* Concatenate all the agent expressions that are commands into the
8243 cmds parameter. */
8244 for (ix = 0;
8245 VEC_iterate (agent_expr_p, bp_tgt->tcommands, ix, aexpr);
8246 ix++)
8247 {
8248 sprintf (buf, "X%x,", aexpr->len);
8249 buf += strlen (buf);
8250 for (i = 0; i < aexpr->len; ++i)
8251 buf = pack_hex_byte (buf, aexpr->buf[i]);
8252 *buf = '\0';
8253 }
8254 }
8255
8256 /* Insert a breakpoint. On targets that have software breakpoint
8257 support, we ask the remote target to do the work; on targets
8258 which don't, we insert a traditional memory breakpoint. */
8259
8260 static int
8261 remote_insert_breakpoint (struct gdbarch *gdbarch,
8262 struct bp_target_info *bp_tgt)
8263 {
8264 /* Try the "Z" s/w breakpoint packet if it is not already disabled.
8265 If it succeeds, then set the support to PACKET_ENABLE. If it
8266 fails, and the user has explicitly requested the Z support then
8267 report an error, otherwise, mark it disabled and go on. */
8268
8269 if (remote_protocol_packets[PACKET_Z0].support != PACKET_DISABLE)
8270 {
8271 CORE_ADDR addr = bp_tgt->placed_address;
8272 struct remote_state *rs;
8273 char *p, *endbuf;
8274 int bpsize;
8275 struct condition_list *cond = NULL;
8276
8277 /* Make sure the remote is pointing at the right process, if
8278 necessary. */
8279 if (!gdbarch_has_global_breakpoints (target_gdbarch ()))
8280 set_general_process ();
8281
8282 gdbarch_remote_breakpoint_from_pc (gdbarch, &addr, &bpsize);
8283
8284 rs = get_remote_state ();
8285 p = rs->buf;
8286 endbuf = rs->buf + get_remote_packet_size ();
8287
8288 *(p++) = 'Z';
8289 *(p++) = '0';
8290 *(p++) = ',';
8291 addr = (ULONGEST) remote_address_masked (addr);
8292 p += hexnumstr (p, addr);
8293 xsnprintf (p, endbuf - p, ",%d", bpsize);
8294
8295 if (remote_supports_cond_breakpoints ())
8296 remote_add_target_side_condition (gdbarch, bp_tgt, p, endbuf);
8297
8298 if (remote_can_run_breakpoint_commands ())
8299 remote_add_target_side_commands (gdbarch, bp_tgt, p);
8300
8301 putpkt (rs->buf);
8302 getpkt (&rs->buf, &rs->buf_size, 0);
8303
8304 switch (packet_ok (rs->buf, &remote_protocol_packets[PACKET_Z0]))
8305 {
8306 case PACKET_ERROR:
8307 return -1;
8308 case PACKET_OK:
8309 bp_tgt->placed_address = addr;
8310 bp_tgt->placed_size = bpsize;
8311 return 0;
8312 case PACKET_UNKNOWN:
8313 break;
8314 }
8315 }
8316
8317 /* If this breakpoint has target-side commands but this stub doesn't
8318 support Z0 packets, throw error. */
8319 if (!VEC_empty (agent_expr_p, bp_tgt->tcommands))
8320 throw_error (NOT_SUPPORTED_ERROR, _("\
8321 Target doesn't support breakpoints that have target side commands."));
8322
8323 return memory_insert_breakpoint (gdbarch, bp_tgt);
8324 }
8325
8326 static int
8327 remote_remove_breakpoint (struct gdbarch *gdbarch,
8328 struct bp_target_info *bp_tgt)
8329 {
8330 CORE_ADDR addr = bp_tgt->placed_address;
8331 struct remote_state *rs = get_remote_state ();
8332
8333 if (remote_protocol_packets[PACKET_Z0].support != PACKET_DISABLE)
8334 {
8335 char *p = rs->buf;
8336 char *endbuf = rs->buf + get_remote_packet_size ();
8337
8338 /* Make sure the remote is pointing at the right process, if
8339 necessary. */
8340 if (!gdbarch_has_global_breakpoints (target_gdbarch ()))
8341 set_general_process ();
8342
8343 *(p++) = 'z';
8344 *(p++) = '0';
8345 *(p++) = ',';
8346
8347 addr = (ULONGEST) remote_address_masked (bp_tgt->placed_address);
8348 p += hexnumstr (p, addr);
8349 xsnprintf (p, endbuf - p, ",%d", bp_tgt->placed_size);
8350
8351 putpkt (rs->buf);
8352 getpkt (&rs->buf, &rs->buf_size, 0);
8353
8354 return (rs->buf[0] == 'E');
8355 }
8356
8357 return memory_remove_breakpoint (gdbarch, bp_tgt);
8358 }
8359
8360 static int
8361 watchpoint_to_Z_packet (int type)
8362 {
8363 switch (type)
8364 {
8365 case hw_write:
8366 return Z_PACKET_WRITE_WP;
8367 break;
8368 case hw_read:
8369 return Z_PACKET_READ_WP;
8370 break;
8371 case hw_access:
8372 return Z_PACKET_ACCESS_WP;
8373 break;
8374 default:
8375 internal_error (__FILE__, __LINE__,
8376 _("hw_bp_to_z: bad watchpoint type %d"), type);
8377 }
8378 }
8379
8380 static int
8381 remote_insert_watchpoint (CORE_ADDR addr, int len, int type,
8382 struct expression *cond)
8383 {
8384 struct remote_state *rs = get_remote_state ();
8385 char *endbuf = rs->buf + get_remote_packet_size ();
8386 char *p;
8387 enum Z_packet_type packet = watchpoint_to_Z_packet (type);
8388
8389 if (remote_protocol_packets[PACKET_Z0 + packet].support == PACKET_DISABLE)
8390 return 1;
8391
8392 /* Make sure the remote is pointing at the right process, if
8393 necessary. */
8394 if (!gdbarch_has_global_breakpoints (target_gdbarch ()))
8395 set_general_process ();
8396
8397 xsnprintf (rs->buf, endbuf - rs->buf, "Z%x,", packet);
8398 p = strchr (rs->buf, '\0');
8399 addr = remote_address_masked (addr);
8400 p += hexnumstr (p, (ULONGEST) addr);
8401 xsnprintf (p, endbuf - p, ",%x", len);
8402
8403 putpkt (rs->buf);
8404 getpkt (&rs->buf, &rs->buf_size, 0);
8405
8406 switch (packet_ok (rs->buf, &remote_protocol_packets[PACKET_Z0 + packet]))
8407 {
8408 case PACKET_ERROR:
8409 return -1;
8410 case PACKET_UNKNOWN:
8411 return 1;
8412 case PACKET_OK:
8413 return 0;
8414 }
8415 internal_error (__FILE__, __LINE__,
8416 _("remote_insert_watchpoint: reached end of function"));
8417 }
8418
8419 static int
8420 remote_watchpoint_addr_within_range (struct target_ops *target, CORE_ADDR addr,
8421 CORE_ADDR start, int length)
8422 {
8423 CORE_ADDR diff = remote_address_masked (addr - start);
8424
8425 return diff < length;
8426 }
8427
8428
8429 static int
8430 remote_remove_watchpoint (CORE_ADDR addr, int len, int type,
8431 struct expression *cond)
8432 {
8433 struct remote_state *rs = get_remote_state ();
8434 char *endbuf = rs->buf + get_remote_packet_size ();
8435 char *p;
8436 enum Z_packet_type packet = watchpoint_to_Z_packet (type);
8437
8438 if (remote_protocol_packets[PACKET_Z0 + packet].support == PACKET_DISABLE)
8439 return -1;
8440
8441 /* Make sure the remote is pointing at the right process, if
8442 necessary. */
8443 if (!gdbarch_has_global_breakpoints (target_gdbarch ()))
8444 set_general_process ();
8445
8446 xsnprintf (rs->buf, endbuf - rs->buf, "z%x,", packet);
8447 p = strchr (rs->buf, '\0');
8448 addr = remote_address_masked (addr);
8449 p += hexnumstr (p, (ULONGEST) addr);
8450 xsnprintf (p, endbuf - p, ",%x", len);
8451 putpkt (rs->buf);
8452 getpkt (&rs->buf, &rs->buf_size, 0);
8453
8454 switch (packet_ok (rs->buf, &remote_protocol_packets[PACKET_Z0 + packet]))
8455 {
8456 case PACKET_ERROR:
8457 case PACKET_UNKNOWN:
8458 return -1;
8459 case PACKET_OK:
8460 return 0;
8461 }
8462 internal_error (__FILE__, __LINE__,
8463 _("remote_remove_watchpoint: reached end of function"));
8464 }
8465
8466
8467 int remote_hw_watchpoint_limit = -1;
8468 int remote_hw_watchpoint_length_limit = -1;
8469 int remote_hw_breakpoint_limit = -1;
8470
8471 static int
8472 remote_region_ok_for_hw_watchpoint (CORE_ADDR addr, int len)
8473 {
8474 if (remote_hw_watchpoint_length_limit == 0)
8475 return 0;
8476 else if (remote_hw_watchpoint_length_limit < 0)
8477 return 1;
8478 else if (len <= remote_hw_watchpoint_length_limit)
8479 return 1;
8480 else
8481 return 0;
8482 }
8483
8484 static int
8485 remote_check_watch_resources (int type, int cnt, int ot)
8486 {
8487 if (type == bp_hardware_breakpoint)
8488 {
8489 if (remote_hw_breakpoint_limit == 0)
8490 return 0;
8491 else if (remote_hw_breakpoint_limit < 0)
8492 return 1;
8493 else if (cnt <= remote_hw_breakpoint_limit)
8494 return 1;
8495 }
8496 else
8497 {
8498 if (remote_hw_watchpoint_limit == 0)
8499 return 0;
8500 else if (remote_hw_watchpoint_limit < 0)
8501 return 1;
8502 else if (ot)
8503 return -1;
8504 else if (cnt <= remote_hw_watchpoint_limit)
8505 return 1;
8506 }
8507 return -1;
8508 }
8509
8510 static int
8511 remote_stopped_by_watchpoint (void)
8512 {
8513 struct remote_state *rs = get_remote_state ();
8514
8515 return rs->remote_stopped_by_watchpoint_p;
8516 }
8517
8518 static int
8519 remote_stopped_data_address (struct target_ops *target, CORE_ADDR *addr_p)
8520 {
8521 struct remote_state *rs = get_remote_state ();
8522 int rc = 0;
8523
8524 if (remote_stopped_by_watchpoint ())
8525 {
8526 *addr_p = rs->remote_watch_data_address;
8527 rc = 1;
8528 }
8529
8530 return rc;
8531 }
8532
8533
8534 static int
8535 remote_insert_hw_breakpoint (struct gdbarch *gdbarch,
8536 struct bp_target_info *bp_tgt)
8537 {
8538 CORE_ADDR addr;
8539 struct remote_state *rs;
8540 char *p, *endbuf;
8541 char *message;
8542
8543 /* The length field should be set to the size of a breakpoint
8544 instruction, even though we aren't inserting one ourselves. */
8545
8546 gdbarch_remote_breakpoint_from_pc
8547 (gdbarch, &bp_tgt->placed_address, &bp_tgt->placed_size);
8548
8549 if (remote_protocol_packets[PACKET_Z1].support == PACKET_DISABLE)
8550 return -1;
8551
8552 /* Make sure the remote is pointing at the right process, if
8553 necessary. */
8554 if (!gdbarch_has_global_breakpoints (target_gdbarch ()))
8555 set_general_process ();
8556
8557 rs = get_remote_state ();
8558 p = rs->buf;
8559 endbuf = rs->buf + get_remote_packet_size ();
8560
8561 *(p++) = 'Z';
8562 *(p++) = '1';
8563 *(p++) = ',';
8564
8565 addr = remote_address_masked (bp_tgt->placed_address);
8566 p += hexnumstr (p, (ULONGEST) addr);
8567 xsnprintf (p, endbuf - p, ",%x", bp_tgt->placed_size);
8568
8569 if (remote_supports_cond_breakpoints ())
8570 remote_add_target_side_condition (gdbarch, bp_tgt, p, endbuf);
8571
8572 if (remote_can_run_breakpoint_commands ())
8573 remote_add_target_side_commands (gdbarch, bp_tgt, p);
8574
8575 putpkt (rs->buf);
8576 getpkt (&rs->buf, &rs->buf_size, 0);
8577
8578 switch (packet_ok (rs->buf, &remote_protocol_packets[PACKET_Z1]))
8579 {
8580 case PACKET_ERROR:
8581 if (rs->buf[1] == '.')
8582 {
8583 message = strchr (rs->buf + 2, '.');
8584 if (message)
8585 error (_("Remote failure reply: %s"), message + 1);
8586 }
8587 return -1;
8588 case PACKET_UNKNOWN:
8589 return -1;
8590 case PACKET_OK:
8591 return 0;
8592 }
8593 internal_error (__FILE__, __LINE__,
8594 _("remote_insert_hw_breakpoint: reached end of function"));
8595 }
8596
8597
8598 static int
8599 remote_remove_hw_breakpoint (struct gdbarch *gdbarch,
8600 struct bp_target_info *bp_tgt)
8601 {
8602 CORE_ADDR addr;
8603 struct remote_state *rs = get_remote_state ();
8604 char *p = rs->buf;
8605 char *endbuf = rs->buf + get_remote_packet_size ();
8606
8607 if (remote_protocol_packets[PACKET_Z1].support == PACKET_DISABLE)
8608 return -1;
8609
8610 /* Make sure the remote is pointing at the right process, if
8611 necessary. */
8612 if (!gdbarch_has_global_breakpoints (target_gdbarch ()))
8613 set_general_process ();
8614
8615 *(p++) = 'z';
8616 *(p++) = '1';
8617 *(p++) = ',';
8618
8619 addr = remote_address_masked (bp_tgt->placed_address);
8620 p += hexnumstr (p, (ULONGEST) addr);
8621 xsnprintf (p, endbuf - p, ",%x", bp_tgt->placed_size);
8622
8623 putpkt (rs->buf);
8624 getpkt (&rs->buf, &rs->buf_size, 0);
8625
8626 switch (packet_ok (rs->buf, &remote_protocol_packets[PACKET_Z1]))
8627 {
8628 case PACKET_ERROR:
8629 case PACKET_UNKNOWN:
8630 return -1;
8631 case PACKET_OK:
8632 return 0;
8633 }
8634 internal_error (__FILE__, __LINE__,
8635 _("remote_remove_hw_breakpoint: reached end of function"));
8636 }
8637
8638 /* Verify memory using the "qCRC:" request. */
8639
8640 static int
8641 remote_verify_memory (struct target_ops *ops,
8642 const gdb_byte *data, CORE_ADDR lma, ULONGEST size)
8643 {
8644 struct remote_state *rs = get_remote_state ();
8645 unsigned long host_crc, target_crc;
8646 char *tmp;
8647
8648 /* Make sure the remote is pointing at the right process. */
8649 set_general_process ();
8650
8651 /* FIXME: assumes lma can fit into long. */
8652 xsnprintf (rs->buf, get_remote_packet_size (), "qCRC:%lx,%lx",
8653 (long) lma, (long) size);
8654 putpkt (rs->buf);
8655
8656 /* Be clever; compute the host_crc before waiting for target
8657 reply. */
8658 host_crc = xcrc32 (data, size, 0xffffffff);
8659
8660 getpkt (&rs->buf, &rs->buf_size, 0);
8661 if (rs->buf[0] == 'E')
8662 return -1;
8663
8664 if (rs->buf[0] != 'C')
8665 error (_("remote target does not support this operation"));
8666
8667 for (target_crc = 0, tmp = &rs->buf[1]; *tmp; tmp++)
8668 target_crc = target_crc * 16 + fromhex (*tmp);
8669
8670 return (host_crc == target_crc);
8671 }
8672
8673 /* compare-sections command
8674
8675 With no arguments, compares each loadable section in the exec bfd
8676 with the same memory range on the target, and reports mismatches.
8677 Useful for verifying the image on the target against the exec file. */
8678
8679 static void
8680 compare_sections_command (char *args, int from_tty)
8681 {
8682 asection *s;
8683 struct cleanup *old_chain;
8684 gdb_byte *sectdata;
8685 const char *sectname;
8686 bfd_size_type size;
8687 bfd_vma lma;
8688 int matched = 0;
8689 int mismatched = 0;
8690 int res;
8691
8692 if (!exec_bfd)
8693 error (_("command cannot be used without an exec file"));
8694
8695 /* Make sure the remote is pointing at the right process. */
8696 set_general_process ();
8697
8698 for (s = exec_bfd->sections; s; s = s->next)
8699 {
8700 if (!(s->flags & SEC_LOAD))
8701 continue; /* Skip non-loadable section. */
8702
8703 size = bfd_get_section_size (s);
8704 if (size == 0)
8705 continue; /* Skip zero-length section. */
8706
8707 sectname = bfd_get_section_name (exec_bfd, s);
8708 if (args && strcmp (args, sectname) != 0)
8709 continue; /* Not the section selected by user. */
8710
8711 matched = 1; /* Do this section. */
8712 lma = s->lma;
8713
8714 sectdata = xmalloc (size);
8715 old_chain = make_cleanup (xfree, sectdata);
8716 bfd_get_section_contents (exec_bfd, s, sectdata, 0, size);
8717
8718 res = target_verify_memory (sectdata, lma, size);
8719
8720 if (res == -1)
8721 error (_("target memory fault, section %s, range %s -- %s"), sectname,
8722 paddress (target_gdbarch (), lma),
8723 paddress (target_gdbarch (), lma + size));
8724
8725 printf_filtered ("Section %s, range %s -- %s: ", sectname,
8726 paddress (target_gdbarch (), lma),
8727 paddress (target_gdbarch (), lma + size));
8728 if (res)
8729 printf_filtered ("matched.\n");
8730 else
8731 {
8732 printf_filtered ("MIS-MATCHED!\n");
8733 mismatched++;
8734 }
8735
8736 do_cleanups (old_chain);
8737 }
8738 if (mismatched > 0)
8739 warning (_("One or more sections of the remote executable does not match\n\
8740 the loaded file\n"));
8741 if (args && !matched)
8742 printf_filtered (_("No loaded section named '%s'.\n"), args);
8743 }
8744
8745 /* Write LEN bytes from WRITEBUF into OBJECT_NAME/ANNEX at OFFSET
8746 into remote target. The number of bytes written to the remote
8747 target is returned, or -1 for error. */
8748
8749 static LONGEST
8750 remote_write_qxfer (struct target_ops *ops, const char *object_name,
8751 const char *annex, const gdb_byte *writebuf,
8752 ULONGEST offset, LONGEST len,
8753 struct packet_config *packet)
8754 {
8755 int i, buf_len;
8756 ULONGEST n;
8757 struct remote_state *rs = get_remote_state ();
8758 int max_size = get_memory_write_packet_size ();
8759
8760 if (packet->support == PACKET_DISABLE)
8761 return -1;
8762
8763 /* Insert header. */
8764 i = snprintf (rs->buf, max_size,
8765 "qXfer:%s:write:%s:%s:",
8766 object_name, annex ? annex : "",
8767 phex_nz (offset, sizeof offset));
8768 max_size -= (i + 1);
8769
8770 /* Escape as much data as fits into rs->buf. */
8771 buf_len = remote_escape_output
8772 (writebuf, len, (gdb_byte *) rs->buf + i, &max_size, max_size);
8773
8774 if (putpkt_binary (rs->buf, i + buf_len) < 0
8775 || getpkt_sane (&rs->buf, &rs->buf_size, 0) < 0
8776 || packet_ok (rs->buf, packet) != PACKET_OK)
8777 return -1;
8778
8779 unpack_varlen_hex (rs->buf, &n);
8780 return n;
8781 }
8782
8783 /* Read OBJECT_NAME/ANNEX from the remote target using a qXfer packet.
8784 Data at OFFSET, of up to LEN bytes, is read into READBUF; the
8785 number of bytes read is returned, or 0 for EOF, or -1 for error.
8786 The number of bytes read may be less than LEN without indicating an
8787 EOF. PACKET is checked and updated to indicate whether the remote
8788 target supports this object. */
8789
8790 static LONGEST
8791 remote_read_qxfer (struct target_ops *ops, const char *object_name,
8792 const char *annex,
8793 gdb_byte *readbuf, ULONGEST offset, LONGEST len,
8794 struct packet_config *packet)
8795 {
8796 struct remote_state *rs = get_remote_state ();
8797 LONGEST i, n, packet_len;
8798
8799 if (packet->support == PACKET_DISABLE)
8800 return -1;
8801
8802 /* Check whether we've cached an end-of-object packet that matches
8803 this request. */
8804 if (rs->finished_object)
8805 {
8806 if (strcmp (object_name, rs->finished_object) == 0
8807 && strcmp (annex ? annex : "", rs->finished_annex) == 0
8808 && offset == rs->finished_offset)
8809 return 0;
8810
8811 /* Otherwise, we're now reading something different. Discard
8812 the cache. */
8813 xfree (rs->finished_object);
8814 xfree (rs->finished_annex);
8815 rs->finished_object = NULL;
8816 rs->finished_annex = NULL;
8817 }
8818
8819 /* Request only enough to fit in a single packet. The actual data
8820 may not, since we don't know how much of it will need to be escaped;
8821 the target is free to respond with slightly less data. We subtract
8822 five to account for the response type and the protocol frame. */
8823 n = min (get_remote_packet_size () - 5, len);
8824 snprintf (rs->buf, get_remote_packet_size () - 4, "qXfer:%s:read:%s:%s,%s",
8825 object_name, annex ? annex : "",
8826 phex_nz (offset, sizeof offset),
8827 phex_nz (n, sizeof n));
8828 i = putpkt (rs->buf);
8829 if (i < 0)
8830 return -1;
8831
8832 rs->buf[0] = '\0';
8833 packet_len = getpkt_sane (&rs->buf, &rs->buf_size, 0);
8834 if (packet_len < 0 || packet_ok (rs->buf, packet) != PACKET_OK)
8835 return -1;
8836
8837 if (rs->buf[0] != 'l' && rs->buf[0] != 'm')
8838 error (_("Unknown remote qXfer reply: %s"), rs->buf);
8839
8840 /* 'm' means there is (or at least might be) more data after this
8841 batch. That does not make sense unless there's at least one byte
8842 of data in this reply. */
8843 if (rs->buf[0] == 'm' && packet_len == 1)
8844 error (_("Remote qXfer reply contained no data."));
8845
8846 /* Got some data. */
8847 i = remote_unescape_input ((gdb_byte *) rs->buf + 1,
8848 packet_len - 1, readbuf, n);
8849
8850 /* 'l' is an EOF marker, possibly including a final block of data,
8851 or possibly empty. If we have the final block of a non-empty
8852 object, record this fact to bypass a subsequent partial read. */
8853 if (rs->buf[0] == 'l' && offset + i > 0)
8854 {
8855 rs->finished_object = xstrdup (object_name);
8856 rs->finished_annex = xstrdup (annex ? annex : "");
8857 rs->finished_offset = offset + i;
8858 }
8859
8860 return i;
8861 }
8862
8863 static LONGEST
8864 remote_xfer_partial (struct target_ops *ops, enum target_object object,
8865 const char *annex, gdb_byte *readbuf,
8866 const gdb_byte *writebuf, ULONGEST offset, ULONGEST len)
8867 {
8868 struct remote_state *rs;
8869 int i;
8870 char *p2;
8871 char query_type;
8872
8873 set_remote_traceframe ();
8874 set_general_thread (inferior_ptid);
8875
8876 rs = get_remote_state ();
8877
8878 /* Handle memory using the standard memory routines. */
8879 if (object == TARGET_OBJECT_MEMORY)
8880 {
8881 LONGEST xfered;
8882
8883 /* If the remote target is connected but not running, we should
8884 pass this request down to a lower stratum (e.g. the executable
8885 file). */
8886 if (!target_has_execution)
8887 return 0;
8888
8889 if (writebuf != NULL)
8890 xfered = remote_write_bytes (offset, writebuf, len);
8891 else
8892 xfered = remote_read_bytes (offset, readbuf, len);
8893
8894 return xfered;
8895 }
8896
8897 /* Handle SPU memory using qxfer packets. */
8898 if (object == TARGET_OBJECT_SPU)
8899 {
8900 if (readbuf)
8901 return remote_read_qxfer (ops, "spu", annex, readbuf, offset, len,
8902 &remote_protocol_packets
8903 [PACKET_qXfer_spu_read]);
8904 else
8905 return remote_write_qxfer (ops, "spu", annex, writebuf, offset, len,
8906 &remote_protocol_packets
8907 [PACKET_qXfer_spu_write]);
8908 }
8909
8910 /* Handle extra signal info using qxfer packets. */
8911 if (object == TARGET_OBJECT_SIGNAL_INFO)
8912 {
8913 if (readbuf)
8914 return remote_read_qxfer (ops, "siginfo", annex, readbuf, offset, len,
8915 &remote_protocol_packets
8916 [PACKET_qXfer_siginfo_read]);
8917 else
8918 return remote_write_qxfer (ops, "siginfo", annex,
8919 writebuf, offset, len,
8920 &remote_protocol_packets
8921 [PACKET_qXfer_siginfo_write]);
8922 }
8923
8924 if (object == TARGET_OBJECT_STATIC_TRACE_DATA)
8925 {
8926 if (readbuf)
8927 return remote_read_qxfer (ops, "statictrace", annex,
8928 readbuf, offset, len,
8929 &remote_protocol_packets
8930 [PACKET_qXfer_statictrace_read]);
8931 else
8932 return -1;
8933 }
8934
8935 /* Only handle flash writes. */
8936 if (writebuf != NULL)
8937 {
8938 LONGEST xfered;
8939
8940 switch (object)
8941 {
8942 case TARGET_OBJECT_FLASH:
8943 return remote_flash_write (ops, offset, len, writebuf);
8944
8945 default:
8946 return -1;
8947 }
8948 }
8949
8950 /* Map pre-existing objects onto letters. DO NOT do this for new
8951 objects!!! Instead specify new query packets. */
8952 switch (object)
8953 {
8954 case TARGET_OBJECT_AVR:
8955 query_type = 'R';
8956 break;
8957
8958 case TARGET_OBJECT_AUXV:
8959 gdb_assert (annex == NULL);
8960 return remote_read_qxfer (ops, "auxv", annex, readbuf, offset, len,
8961 &remote_protocol_packets[PACKET_qXfer_auxv]);
8962
8963 case TARGET_OBJECT_AVAILABLE_FEATURES:
8964 return remote_read_qxfer
8965 (ops, "features", annex, readbuf, offset, len,
8966 &remote_protocol_packets[PACKET_qXfer_features]);
8967
8968 case TARGET_OBJECT_LIBRARIES:
8969 return remote_read_qxfer
8970 (ops, "libraries", annex, readbuf, offset, len,
8971 &remote_protocol_packets[PACKET_qXfer_libraries]);
8972
8973 case TARGET_OBJECT_LIBRARIES_SVR4:
8974 return remote_read_qxfer
8975 (ops, "libraries-svr4", annex, readbuf, offset, len,
8976 &remote_protocol_packets[PACKET_qXfer_libraries_svr4]);
8977
8978 case TARGET_OBJECT_MEMORY_MAP:
8979 gdb_assert (annex == NULL);
8980 return remote_read_qxfer (ops, "memory-map", annex, readbuf, offset, len,
8981 &remote_protocol_packets[PACKET_qXfer_memory_map]);
8982
8983 case TARGET_OBJECT_OSDATA:
8984 /* Should only get here if we're connected. */
8985 gdb_assert (rs->remote_desc);
8986 return remote_read_qxfer
8987 (ops, "osdata", annex, readbuf, offset, len,
8988 &remote_protocol_packets[PACKET_qXfer_osdata]);
8989
8990 case TARGET_OBJECT_THREADS:
8991 gdb_assert (annex == NULL);
8992 return remote_read_qxfer (ops, "threads", annex, readbuf, offset, len,
8993 &remote_protocol_packets[PACKET_qXfer_threads]);
8994
8995 case TARGET_OBJECT_TRACEFRAME_INFO:
8996 gdb_assert (annex == NULL);
8997 return remote_read_qxfer
8998 (ops, "traceframe-info", annex, readbuf, offset, len,
8999 &remote_protocol_packets[PACKET_qXfer_traceframe_info]);
9000
9001 case TARGET_OBJECT_FDPIC:
9002 return remote_read_qxfer (ops, "fdpic", annex, readbuf, offset, len,
9003 &remote_protocol_packets[PACKET_qXfer_fdpic]);
9004
9005 case TARGET_OBJECT_OPENVMS_UIB:
9006 return remote_read_qxfer (ops, "uib", annex, readbuf, offset, len,
9007 &remote_protocol_packets[PACKET_qXfer_uib]);
9008
9009 case TARGET_OBJECT_BTRACE:
9010 return remote_read_qxfer (ops, "btrace", annex, readbuf, offset, len,
9011 &remote_protocol_packets[PACKET_qXfer_btrace]);
9012
9013 default:
9014 return -1;
9015 }
9016
9017 /* Note: a zero OFFSET and LEN can be used to query the minimum
9018 buffer size. */
9019 if (offset == 0 && len == 0)
9020 return (get_remote_packet_size ());
9021 /* Minimum outbuf size is get_remote_packet_size (). If LEN is not
9022 large enough let the caller deal with it. */
9023 if (len < get_remote_packet_size ())
9024 return -1;
9025 len = get_remote_packet_size ();
9026
9027 /* Except for querying the minimum buffer size, target must be open. */
9028 if (!rs->remote_desc)
9029 error (_("remote query is only available after target open"));
9030
9031 gdb_assert (annex != NULL);
9032 gdb_assert (readbuf != NULL);
9033
9034 p2 = rs->buf;
9035 *p2++ = 'q';
9036 *p2++ = query_type;
9037
9038 /* We used one buffer char for the remote protocol q command and
9039 another for the query type. As the remote protocol encapsulation
9040 uses 4 chars plus one extra in case we are debugging
9041 (remote_debug), we have PBUFZIZ - 7 left to pack the query
9042 string. */
9043 i = 0;
9044 while (annex[i] && (i < (get_remote_packet_size () - 8)))
9045 {
9046 /* Bad caller may have sent forbidden characters. */
9047 gdb_assert (isprint (annex[i]) && annex[i] != '$' && annex[i] != '#');
9048 *p2++ = annex[i];
9049 i++;
9050 }
9051 *p2 = '\0';
9052 gdb_assert (annex[i] == '\0');
9053
9054 i = putpkt (rs->buf);
9055 if (i < 0)
9056 return i;
9057
9058 getpkt (&rs->buf, &rs->buf_size, 0);
9059 strcpy ((char *) readbuf, rs->buf);
9060
9061 return strlen ((char *) readbuf);
9062 }
9063
9064 static int
9065 remote_search_memory (struct target_ops* ops,
9066 CORE_ADDR start_addr, ULONGEST search_space_len,
9067 const gdb_byte *pattern, ULONGEST pattern_len,
9068 CORE_ADDR *found_addrp)
9069 {
9070 int addr_size = gdbarch_addr_bit (target_gdbarch ()) / 8;
9071 struct remote_state *rs = get_remote_state ();
9072 int max_size = get_memory_write_packet_size ();
9073 struct packet_config *packet =
9074 &remote_protocol_packets[PACKET_qSearch_memory];
9075 /* Number of packet bytes used to encode the pattern;
9076 this could be more than PATTERN_LEN due to escape characters. */
9077 int escaped_pattern_len;
9078 /* Amount of pattern that was encodable in the packet. */
9079 int used_pattern_len;
9080 int i;
9081 int found;
9082 ULONGEST found_addr;
9083
9084 /* Don't go to the target if we don't have to.
9085 This is done before checking packet->support to avoid the possibility that
9086 a success for this edge case means the facility works in general. */
9087 if (pattern_len > search_space_len)
9088 return 0;
9089 if (pattern_len == 0)
9090 {
9091 *found_addrp = start_addr;
9092 return 1;
9093 }
9094
9095 /* If we already know the packet isn't supported, fall back to the simple
9096 way of searching memory. */
9097
9098 if (packet->support == PACKET_DISABLE)
9099 {
9100 /* Target doesn't provided special support, fall back and use the
9101 standard support (copy memory and do the search here). */
9102 return simple_search_memory (ops, start_addr, search_space_len,
9103 pattern, pattern_len, found_addrp);
9104 }
9105
9106 /* Make sure the remote is pointing at the right process. */
9107 set_general_process ();
9108
9109 /* Insert header. */
9110 i = snprintf (rs->buf, max_size,
9111 "qSearch:memory:%s;%s;",
9112 phex_nz (start_addr, addr_size),
9113 phex_nz (search_space_len, sizeof (search_space_len)));
9114 max_size -= (i + 1);
9115
9116 /* Escape as much data as fits into rs->buf. */
9117 escaped_pattern_len =
9118 remote_escape_output (pattern, pattern_len, (gdb_byte *) rs->buf + i,
9119 &used_pattern_len, max_size);
9120
9121 /* Bail if the pattern is too large. */
9122 if (used_pattern_len != pattern_len)
9123 error (_("Pattern is too large to transmit to remote target."));
9124
9125 if (putpkt_binary (rs->buf, i + escaped_pattern_len) < 0
9126 || getpkt_sane (&rs->buf, &rs->buf_size, 0) < 0
9127 || packet_ok (rs->buf, packet) != PACKET_OK)
9128 {
9129 /* The request may not have worked because the command is not
9130 supported. If so, fall back to the simple way. */
9131 if (packet->support == PACKET_DISABLE)
9132 {
9133 return simple_search_memory (ops, start_addr, search_space_len,
9134 pattern, pattern_len, found_addrp);
9135 }
9136 return -1;
9137 }
9138
9139 if (rs->buf[0] == '0')
9140 found = 0;
9141 else if (rs->buf[0] == '1')
9142 {
9143 found = 1;
9144 if (rs->buf[1] != ',')
9145 error (_("Unknown qSearch:memory reply: %s"), rs->buf);
9146 unpack_varlen_hex (rs->buf + 2, &found_addr);
9147 *found_addrp = found_addr;
9148 }
9149 else
9150 error (_("Unknown qSearch:memory reply: %s"), rs->buf);
9151
9152 return found;
9153 }
9154
9155 static void
9156 remote_rcmd (char *command,
9157 struct ui_file *outbuf)
9158 {
9159 struct remote_state *rs = get_remote_state ();
9160 char *p = rs->buf;
9161
9162 if (!rs->remote_desc)
9163 error (_("remote rcmd is only available after target open"));
9164
9165 /* Send a NULL command across as an empty command. */
9166 if (command == NULL)
9167 command = "";
9168
9169 /* The query prefix. */
9170 strcpy (rs->buf, "qRcmd,");
9171 p = strchr (rs->buf, '\0');
9172
9173 if ((strlen (rs->buf) + strlen (command) * 2 + 8/*misc*/)
9174 > get_remote_packet_size ())
9175 error (_("\"monitor\" command ``%s'' is too long."), command);
9176
9177 /* Encode the actual command. */
9178 bin2hex ((gdb_byte *) command, p, 0);
9179
9180 if (putpkt (rs->buf) < 0)
9181 error (_("Communication problem with target."));
9182
9183 /* get/display the response */
9184 while (1)
9185 {
9186 char *buf;
9187
9188 /* XXX - see also remote_get_noisy_reply(). */
9189 QUIT; /* Allow user to bail out with ^C. */
9190 rs->buf[0] = '\0';
9191 if (getpkt_sane (&rs->buf, &rs->buf_size, 0) == -1)
9192 {
9193 /* Timeout. Continue to (try to) read responses.
9194 This is better than stopping with an error, assuming the stub
9195 is still executing the (long) monitor command.
9196 If needed, the user can interrupt gdb using C-c, obtaining
9197 an effect similar to stop on timeout. */
9198 continue;
9199 }
9200 buf = rs->buf;
9201 if (buf[0] == '\0')
9202 error (_("Target does not support this command."));
9203 if (buf[0] == 'O' && buf[1] != 'K')
9204 {
9205 remote_console_output (buf + 1); /* 'O' message from stub. */
9206 continue;
9207 }
9208 if (strcmp (buf, "OK") == 0)
9209 break;
9210 if (strlen (buf) == 3 && buf[0] == 'E'
9211 && isdigit (buf[1]) && isdigit (buf[2]))
9212 {
9213 error (_("Protocol error with Rcmd"));
9214 }
9215 for (p = buf; p[0] != '\0' && p[1] != '\0'; p += 2)
9216 {
9217 char c = (fromhex (p[0]) << 4) + fromhex (p[1]);
9218
9219 fputc_unfiltered (c, outbuf);
9220 }
9221 break;
9222 }
9223 }
9224
9225 static VEC(mem_region_s) *
9226 remote_memory_map (struct target_ops *ops)
9227 {
9228 VEC(mem_region_s) *result = NULL;
9229 char *text = target_read_stralloc (&current_target,
9230 TARGET_OBJECT_MEMORY_MAP, NULL);
9231
9232 if (text)
9233 {
9234 struct cleanup *back_to = make_cleanup (xfree, text);
9235
9236 result = parse_memory_map (text);
9237 do_cleanups (back_to);
9238 }
9239
9240 return result;
9241 }
9242
9243 static void
9244 packet_command (char *args, int from_tty)
9245 {
9246 struct remote_state *rs = get_remote_state ();
9247
9248 if (!rs->remote_desc)
9249 error (_("command can only be used with remote target"));
9250
9251 if (!args)
9252 error (_("remote-packet command requires packet text as argument"));
9253
9254 puts_filtered ("sending: ");
9255 print_packet (args);
9256 puts_filtered ("\n");
9257 putpkt (args);
9258
9259 getpkt (&rs->buf, &rs->buf_size, 0);
9260 puts_filtered ("received: ");
9261 print_packet (rs->buf);
9262 puts_filtered ("\n");
9263 }
9264
9265 #if 0
9266 /* --------- UNIT_TEST for THREAD oriented PACKETS ------------------- */
9267
9268 static void display_thread_info (struct gdb_ext_thread_info *info);
9269
9270 static void threadset_test_cmd (char *cmd, int tty);
9271
9272 static void threadalive_test (char *cmd, int tty);
9273
9274 static void threadlist_test_cmd (char *cmd, int tty);
9275
9276 int get_and_display_threadinfo (threadref *ref);
9277
9278 static void threadinfo_test_cmd (char *cmd, int tty);
9279
9280 static int thread_display_step (threadref *ref, void *context);
9281
9282 static void threadlist_update_test_cmd (char *cmd, int tty);
9283
9284 static void init_remote_threadtests (void);
9285
9286 #define SAMPLE_THREAD 0x05060708 /* Truncated 64 bit threadid. */
9287
9288 static void
9289 threadset_test_cmd (char *cmd, int tty)
9290 {
9291 int sample_thread = SAMPLE_THREAD;
9292
9293 printf_filtered (_("Remote threadset test\n"));
9294 set_general_thread (sample_thread);
9295 }
9296
9297
9298 static void
9299 threadalive_test (char *cmd, int tty)
9300 {
9301 int sample_thread = SAMPLE_THREAD;
9302 int pid = ptid_get_pid (inferior_ptid);
9303 ptid_t ptid = ptid_build (pid, 0, sample_thread);
9304
9305 if (remote_thread_alive (ptid))
9306 printf_filtered ("PASS: Thread alive test\n");
9307 else
9308 printf_filtered ("FAIL: Thread alive test\n");
9309 }
9310
9311 void output_threadid (char *title, threadref *ref);
9312
9313 void
9314 output_threadid (char *title, threadref *ref)
9315 {
9316 char hexid[20];
9317
9318 pack_threadid (&hexid[0], ref); /* Convert threead id into hex. */
9319 hexid[16] = 0;
9320 printf_filtered ("%s %s\n", title, (&hexid[0]));
9321 }
9322
9323 static void
9324 threadlist_test_cmd (char *cmd, int tty)
9325 {
9326 int startflag = 1;
9327 threadref nextthread;
9328 int done, result_count;
9329 threadref threadlist[3];
9330
9331 printf_filtered ("Remote Threadlist test\n");
9332 if (!remote_get_threadlist (startflag, &nextthread, 3, &done,
9333 &result_count, &threadlist[0]))
9334 printf_filtered ("FAIL: threadlist test\n");
9335 else
9336 {
9337 threadref *scan = threadlist;
9338 threadref *limit = scan + result_count;
9339
9340 while (scan < limit)
9341 output_threadid (" thread ", scan++);
9342 }
9343 }
9344
9345 void
9346 display_thread_info (struct gdb_ext_thread_info *info)
9347 {
9348 output_threadid ("Threadid: ", &info->threadid);
9349 printf_filtered ("Name: %s\n ", info->shortname);
9350 printf_filtered ("State: %s\n", info->display);
9351 printf_filtered ("other: %s\n\n", info->more_display);
9352 }
9353
9354 int
9355 get_and_display_threadinfo (threadref *ref)
9356 {
9357 int result;
9358 int set;
9359 struct gdb_ext_thread_info threadinfo;
9360
9361 set = TAG_THREADID | TAG_EXISTS | TAG_THREADNAME
9362 | TAG_MOREDISPLAY | TAG_DISPLAY;
9363 if (0 != (result = remote_get_threadinfo (ref, set, &threadinfo)))
9364 display_thread_info (&threadinfo);
9365 return result;
9366 }
9367
9368 static void
9369 threadinfo_test_cmd (char *cmd, int tty)
9370 {
9371 int athread = SAMPLE_THREAD;
9372 threadref thread;
9373 int set;
9374
9375 int_to_threadref (&thread, athread);
9376 printf_filtered ("Remote Threadinfo test\n");
9377 if (!get_and_display_threadinfo (&thread))
9378 printf_filtered ("FAIL cannot get thread info\n");
9379 }
9380
9381 static int
9382 thread_display_step (threadref *ref, void *context)
9383 {
9384 /* output_threadid(" threadstep ",ref); *//* simple test */
9385 return get_and_display_threadinfo (ref);
9386 }
9387
9388 static void
9389 threadlist_update_test_cmd (char *cmd, int tty)
9390 {
9391 printf_filtered ("Remote Threadlist update test\n");
9392 remote_threadlist_iterator (thread_display_step, 0, CRAZY_MAX_THREADS);
9393 }
9394
9395 static void
9396 init_remote_threadtests (void)
9397 {
9398 add_com ("tlist", class_obscure, threadlist_test_cmd,
9399 _("Fetch and print the remote list of "
9400 "thread identifiers, one pkt only"));
9401 add_com ("tinfo", class_obscure, threadinfo_test_cmd,
9402 _("Fetch and display info about one thread"));
9403 add_com ("tset", class_obscure, threadset_test_cmd,
9404 _("Test setting to a different thread"));
9405 add_com ("tupd", class_obscure, threadlist_update_test_cmd,
9406 _("Iterate through updating all remote thread info"));
9407 add_com ("talive", class_obscure, threadalive_test,
9408 _(" Remote thread alive test "));
9409 }
9410
9411 #endif /* 0 */
9412
9413 /* Convert a thread ID to a string. Returns the string in a static
9414 buffer. */
9415
9416 static char *
9417 remote_pid_to_str (struct target_ops *ops, ptid_t ptid)
9418 {
9419 static char buf[64];
9420 struct remote_state *rs = get_remote_state ();
9421
9422 if (ptid_equal (ptid, null_ptid))
9423 return normal_pid_to_str (ptid);
9424 else if (ptid_is_pid (ptid))
9425 {
9426 /* Printing an inferior target id. */
9427
9428 /* When multi-process extensions are off, there's no way in the
9429 remote protocol to know the remote process id, if there's any
9430 at all. There's one exception --- when we're connected with
9431 target extended-remote, and we manually attached to a process
9432 with "attach PID". We don't record anywhere a flag that
9433 allows us to distinguish that case from the case of
9434 connecting with extended-remote and the stub already being
9435 attached to a process, and reporting yes to qAttached, hence
9436 no smart special casing here. */
9437 if (!remote_multi_process_p (rs))
9438 {
9439 xsnprintf (buf, sizeof buf, "Remote target");
9440 return buf;
9441 }
9442
9443 return normal_pid_to_str (ptid);
9444 }
9445 else
9446 {
9447 if (ptid_equal (magic_null_ptid, ptid))
9448 xsnprintf (buf, sizeof buf, "Thread <main>");
9449 else if (rs->extended && remote_multi_process_p (rs))
9450 xsnprintf (buf, sizeof buf, "Thread %d.%ld",
9451 ptid_get_pid (ptid), ptid_get_tid (ptid));
9452 else
9453 xsnprintf (buf, sizeof buf, "Thread %ld",
9454 ptid_get_tid (ptid));
9455 return buf;
9456 }
9457 }
9458
9459 /* Get the address of the thread local variable in OBJFILE which is
9460 stored at OFFSET within the thread local storage for thread PTID. */
9461
9462 static CORE_ADDR
9463 remote_get_thread_local_address (struct target_ops *ops,
9464 ptid_t ptid, CORE_ADDR lm, CORE_ADDR offset)
9465 {
9466 if (remote_protocol_packets[PACKET_qGetTLSAddr].support != PACKET_DISABLE)
9467 {
9468 struct remote_state *rs = get_remote_state ();
9469 char *p = rs->buf;
9470 char *endp = rs->buf + get_remote_packet_size ();
9471 enum packet_result result;
9472
9473 strcpy (p, "qGetTLSAddr:");
9474 p += strlen (p);
9475 p = write_ptid (p, endp, ptid);
9476 *p++ = ',';
9477 p += hexnumstr (p, offset);
9478 *p++ = ',';
9479 p += hexnumstr (p, lm);
9480 *p++ = '\0';
9481
9482 putpkt (rs->buf);
9483 getpkt (&rs->buf, &rs->buf_size, 0);
9484 result = packet_ok (rs->buf,
9485 &remote_protocol_packets[PACKET_qGetTLSAddr]);
9486 if (result == PACKET_OK)
9487 {
9488 ULONGEST result;
9489
9490 unpack_varlen_hex (rs->buf, &result);
9491 return result;
9492 }
9493 else if (result == PACKET_UNKNOWN)
9494 throw_error (TLS_GENERIC_ERROR,
9495 _("Remote target doesn't support qGetTLSAddr packet"));
9496 else
9497 throw_error (TLS_GENERIC_ERROR,
9498 _("Remote target failed to process qGetTLSAddr request"));
9499 }
9500 else
9501 throw_error (TLS_GENERIC_ERROR,
9502 _("TLS not supported or disabled on this target"));
9503 /* Not reached. */
9504 return 0;
9505 }
9506
9507 /* Provide thread local base, i.e. Thread Information Block address.
9508 Returns 1 if ptid is found and thread_local_base is non zero. */
9509
9510 static int
9511 remote_get_tib_address (ptid_t ptid, CORE_ADDR *addr)
9512 {
9513 if (remote_protocol_packets[PACKET_qGetTIBAddr].support != PACKET_DISABLE)
9514 {
9515 struct remote_state *rs = get_remote_state ();
9516 char *p = rs->buf;
9517 char *endp = rs->buf + get_remote_packet_size ();
9518 enum packet_result result;
9519
9520 strcpy (p, "qGetTIBAddr:");
9521 p += strlen (p);
9522 p = write_ptid (p, endp, ptid);
9523 *p++ = '\0';
9524
9525 putpkt (rs->buf);
9526 getpkt (&rs->buf, &rs->buf_size, 0);
9527 result = packet_ok (rs->buf,
9528 &remote_protocol_packets[PACKET_qGetTIBAddr]);
9529 if (result == PACKET_OK)
9530 {
9531 ULONGEST result;
9532
9533 unpack_varlen_hex (rs->buf, &result);
9534 if (addr)
9535 *addr = (CORE_ADDR) result;
9536 return 1;
9537 }
9538 else if (result == PACKET_UNKNOWN)
9539 error (_("Remote target doesn't support qGetTIBAddr packet"));
9540 else
9541 error (_("Remote target failed to process qGetTIBAddr request"));
9542 }
9543 else
9544 error (_("qGetTIBAddr not supported or disabled on this target"));
9545 /* Not reached. */
9546 return 0;
9547 }
9548
9549 /* Support for inferring a target description based on the current
9550 architecture and the size of a 'g' packet. While the 'g' packet
9551 can have any size (since optional registers can be left off the
9552 end), some sizes are easily recognizable given knowledge of the
9553 approximate architecture. */
9554
9555 struct remote_g_packet_guess
9556 {
9557 int bytes;
9558 const struct target_desc *tdesc;
9559 };
9560 typedef struct remote_g_packet_guess remote_g_packet_guess_s;
9561 DEF_VEC_O(remote_g_packet_guess_s);
9562
9563 struct remote_g_packet_data
9564 {
9565 VEC(remote_g_packet_guess_s) *guesses;
9566 };
9567
9568 static struct gdbarch_data *remote_g_packet_data_handle;
9569
9570 static void *
9571 remote_g_packet_data_init (struct obstack *obstack)
9572 {
9573 return OBSTACK_ZALLOC (obstack, struct remote_g_packet_data);
9574 }
9575
9576 void
9577 register_remote_g_packet_guess (struct gdbarch *gdbarch, int bytes,
9578 const struct target_desc *tdesc)
9579 {
9580 struct remote_g_packet_data *data
9581 = gdbarch_data (gdbarch, remote_g_packet_data_handle);
9582 struct remote_g_packet_guess new_guess, *guess;
9583 int ix;
9584
9585 gdb_assert (tdesc != NULL);
9586
9587 for (ix = 0;
9588 VEC_iterate (remote_g_packet_guess_s, data->guesses, ix, guess);
9589 ix++)
9590 if (guess->bytes == bytes)
9591 internal_error (__FILE__, __LINE__,
9592 _("Duplicate g packet description added for size %d"),
9593 bytes);
9594
9595 new_guess.bytes = bytes;
9596 new_guess.tdesc = tdesc;
9597 VEC_safe_push (remote_g_packet_guess_s, data->guesses, &new_guess);
9598 }
9599
9600 /* Return 1 if remote_read_description would do anything on this target
9601 and architecture, 0 otherwise. */
9602
9603 static int
9604 remote_read_description_p (struct target_ops *target)
9605 {
9606 struct remote_g_packet_data *data
9607 = gdbarch_data (target_gdbarch (), remote_g_packet_data_handle);
9608
9609 if (!VEC_empty (remote_g_packet_guess_s, data->guesses))
9610 return 1;
9611
9612 return 0;
9613 }
9614
9615 static const struct target_desc *
9616 remote_read_description (struct target_ops *target)
9617 {
9618 struct remote_g_packet_data *data
9619 = gdbarch_data (target_gdbarch (), remote_g_packet_data_handle);
9620
9621 /* Do not try this during initial connection, when we do not know
9622 whether there is a running but stopped thread. */
9623 if (!target_has_execution || ptid_equal (inferior_ptid, null_ptid))
9624 return NULL;
9625
9626 if (!VEC_empty (remote_g_packet_guess_s, data->guesses))
9627 {
9628 struct remote_g_packet_guess *guess;
9629 int ix;
9630 int bytes = send_g_packet ();
9631
9632 for (ix = 0;
9633 VEC_iterate (remote_g_packet_guess_s, data->guesses, ix, guess);
9634 ix++)
9635 if (guess->bytes == bytes)
9636 return guess->tdesc;
9637
9638 /* We discard the g packet. A minor optimization would be to
9639 hold on to it, and fill the register cache once we have selected
9640 an architecture, but it's too tricky to do safely. */
9641 }
9642
9643 return NULL;
9644 }
9645
9646 /* Remote file transfer support. This is host-initiated I/O, not
9647 target-initiated; for target-initiated, see remote-fileio.c. */
9648
9649 /* If *LEFT is at least the length of STRING, copy STRING to
9650 *BUFFER, update *BUFFER to point to the new end of the buffer, and
9651 decrease *LEFT. Otherwise raise an error. */
9652
9653 static void
9654 remote_buffer_add_string (char **buffer, int *left, char *string)
9655 {
9656 int len = strlen (string);
9657
9658 if (len > *left)
9659 error (_("Packet too long for target."));
9660
9661 memcpy (*buffer, string, len);
9662 *buffer += len;
9663 *left -= len;
9664
9665 /* NUL-terminate the buffer as a convenience, if there is
9666 room. */
9667 if (*left)
9668 **buffer = '\0';
9669 }
9670
9671 /* If *LEFT is large enough, hex encode LEN bytes from BYTES into
9672 *BUFFER, update *BUFFER to point to the new end of the buffer, and
9673 decrease *LEFT. Otherwise raise an error. */
9674
9675 static void
9676 remote_buffer_add_bytes (char **buffer, int *left, const gdb_byte *bytes,
9677 int len)
9678 {
9679 if (2 * len > *left)
9680 error (_("Packet too long for target."));
9681
9682 bin2hex (bytes, *buffer, len);
9683 *buffer += 2 * len;
9684 *left -= 2 * len;
9685
9686 /* NUL-terminate the buffer as a convenience, if there is
9687 room. */
9688 if (*left)
9689 **buffer = '\0';
9690 }
9691
9692 /* If *LEFT is large enough, convert VALUE to hex and add it to
9693 *BUFFER, update *BUFFER to point to the new end of the buffer, and
9694 decrease *LEFT. Otherwise raise an error. */
9695
9696 static void
9697 remote_buffer_add_int (char **buffer, int *left, ULONGEST value)
9698 {
9699 int len = hexnumlen (value);
9700
9701 if (len > *left)
9702 error (_("Packet too long for target."));
9703
9704 hexnumstr (*buffer, value);
9705 *buffer += len;
9706 *left -= len;
9707
9708 /* NUL-terminate the buffer as a convenience, if there is
9709 room. */
9710 if (*left)
9711 **buffer = '\0';
9712 }
9713
9714 /* Parse an I/O result packet from BUFFER. Set RETCODE to the return
9715 value, *REMOTE_ERRNO to the remote error number or zero if none
9716 was included, and *ATTACHMENT to point to the start of the annex
9717 if any. The length of the packet isn't needed here; there may
9718 be NUL bytes in BUFFER, but they will be after *ATTACHMENT.
9719
9720 Return 0 if the packet could be parsed, -1 if it could not. If
9721 -1 is returned, the other variables may not be initialized. */
9722
9723 static int
9724 remote_hostio_parse_result (char *buffer, int *retcode,
9725 int *remote_errno, char **attachment)
9726 {
9727 char *p, *p2;
9728
9729 *remote_errno = 0;
9730 *attachment = NULL;
9731
9732 if (buffer[0] != 'F')
9733 return -1;
9734
9735 errno = 0;
9736 *retcode = strtol (&buffer[1], &p, 16);
9737 if (errno != 0 || p == &buffer[1])
9738 return -1;
9739
9740 /* Check for ",errno". */
9741 if (*p == ',')
9742 {
9743 errno = 0;
9744 *remote_errno = strtol (p + 1, &p2, 16);
9745 if (errno != 0 || p + 1 == p2)
9746 return -1;
9747 p = p2;
9748 }
9749
9750 /* Check for ";attachment". If there is no attachment, the
9751 packet should end here. */
9752 if (*p == ';')
9753 {
9754 *attachment = p + 1;
9755 return 0;
9756 }
9757 else if (*p == '\0')
9758 return 0;
9759 else
9760 return -1;
9761 }
9762
9763 /* Send a prepared I/O packet to the target and read its response.
9764 The prepared packet is in the global RS->BUF before this function
9765 is called, and the answer is there when we return.
9766
9767 COMMAND_BYTES is the length of the request to send, which may include
9768 binary data. WHICH_PACKET is the packet configuration to check
9769 before attempting a packet. If an error occurs, *REMOTE_ERRNO
9770 is set to the error number and -1 is returned. Otherwise the value
9771 returned by the function is returned.
9772
9773 ATTACHMENT and ATTACHMENT_LEN should be non-NULL if and only if an
9774 attachment is expected; an error will be reported if there's a
9775 mismatch. If one is found, *ATTACHMENT will be set to point into
9776 the packet buffer and *ATTACHMENT_LEN will be set to the
9777 attachment's length. */
9778
9779 static int
9780 remote_hostio_send_command (int command_bytes, int which_packet,
9781 int *remote_errno, char **attachment,
9782 int *attachment_len)
9783 {
9784 struct remote_state *rs = get_remote_state ();
9785 int ret, bytes_read;
9786 char *attachment_tmp;
9787
9788 if (!rs->remote_desc
9789 || remote_protocol_packets[which_packet].support == PACKET_DISABLE)
9790 {
9791 *remote_errno = FILEIO_ENOSYS;
9792 return -1;
9793 }
9794
9795 putpkt_binary (rs->buf, command_bytes);
9796 bytes_read = getpkt_sane (&rs->buf, &rs->buf_size, 0);
9797
9798 /* If it timed out, something is wrong. Don't try to parse the
9799 buffer. */
9800 if (bytes_read < 0)
9801 {
9802 *remote_errno = FILEIO_EINVAL;
9803 return -1;
9804 }
9805
9806 switch (packet_ok (rs->buf, &remote_protocol_packets[which_packet]))
9807 {
9808 case PACKET_ERROR:
9809 *remote_errno = FILEIO_EINVAL;
9810 return -1;
9811 case PACKET_UNKNOWN:
9812 *remote_errno = FILEIO_ENOSYS;
9813 return -1;
9814 case PACKET_OK:
9815 break;
9816 }
9817
9818 if (remote_hostio_parse_result (rs->buf, &ret, remote_errno,
9819 &attachment_tmp))
9820 {
9821 *remote_errno = FILEIO_EINVAL;
9822 return -1;
9823 }
9824
9825 /* Make sure we saw an attachment if and only if we expected one. */
9826 if ((attachment_tmp == NULL && attachment != NULL)
9827 || (attachment_tmp != NULL && attachment == NULL))
9828 {
9829 *remote_errno = FILEIO_EINVAL;
9830 return -1;
9831 }
9832
9833 /* If an attachment was found, it must point into the packet buffer;
9834 work out how many bytes there were. */
9835 if (attachment_tmp != NULL)
9836 {
9837 *attachment = attachment_tmp;
9838 *attachment_len = bytes_read - (*attachment - rs->buf);
9839 }
9840
9841 return ret;
9842 }
9843
9844 /* Open FILENAME on the remote target, using FLAGS and MODE. Return a
9845 remote file descriptor, or -1 if an error occurs (and set
9846 *REMOTE_ERRNO). */
9847
9848 static int
9849 remote_hostio_open (const char *filename, int flags, int mode,
9850 int *remote_errno)
9851 {
9852 struct remote_state *rs = get_remote_state ();
9853 char *p = rs->buf;
9854 int left = get_remote_packet_size () - 1;
9855
9856 remote_buffer_add_string (&p, &left, "vFile:open:");
9857
9858 remote_buffer_add_bytes (&p, &left, (const gdb_byte *) filename,
9859 strlen (filename));
9860 remote_buffer_add_string (&p, &left, ",");
9861
9862 remote_buffer_add_int (&p, &left, flags);
9863 remote_buffer_add_string (&p, &left, ",");
9864
9865 remote_buffer_add_int (&p, &left, mode);
9866
9867 return remote_hostio_send_command (p - rs->buf, PACKET_vFile_open,
9868 remote_errno, NULL, NULL);
9869 }
9870
9871 /* Write up to LEN bytes from WRITE_BUF to FD on the remote target.
9872 Return the number of bytes written, or -1 if an error occurs (and
9873 set *REMOTE_ERRNO). */
9874
9875 static int
9876 remote_hostio_pwrite (int fd, const gdb_byte *write_buf, int len,
9877 ULONGEST offset, int *remote_errno)
9878 {
9879 struct remote_state *rs = get_remote_state ();
9880 char *p = rs->buf;
9881 int left = get_remote_packet_size ();
9882 int out_len;
9883
9884 remote_buffer_add_string (&p, &left, "vFile:pwrite:");
9885
9886 remote_buffer_add_int (&p, &left, fd);
9887 remote_buffer_add_string (&p, &left, ",");
9888
9889 remote_buffer_add_int (&p, &left, offset);
9890 remote_buffer_add_string (&p, &left, ",");
9891
9892 p += remote_escape_output (write_buf, len, (gdb_byte *) p, &out_len,
9893 get_remote_packet_size () - (p - rs->buf));
9894
9895 return remote_hostio_send_command (p - rs->buf, PACKET_vFile_pwrite,
9896 remote_errno, NULL, NULL);
9897 }
9898
9899 /* Read up to LEN bytes FD on the remote target into READ_BUF
9900 Return the number of bytes read, or -1 if an error occurs (and
9901 set *REMOTE_ERRNO). */
9902
9903 static int
9904 remote_hostio_pread (int fd, gdb_byte *read_buf, int len,
9905 ULONGEST offset, int *remote_errno)
9906 {
9907 struct remote_state *rs = get_remote_state ();
9908 char *p = rs->buf;
9909 char *attachment;
9910 int left = get_remote_packet_size ();
9911 int ret, attachment_len;
9912 int read_len;
9913
9914 remote_buffer_add_string (&p, &left, "vFile:pread:");
9915
9916 remote_buffer_add_int (&p, &left, fd);
9917 remote_buffer_add_string (&p, &left, ",");
9918
9919 remote_buffer_add_int (&p, &left, len);
9920 remote_buffer_add_string (&p, &left, ",");
9921
9922 remote_buffer_add_int (&p, &left, offset);
9923
9924 ret = remote_hostio_send_command (p - rs->buf, PACKET_vFile_pread,
9925 remote_errno, &attachment,
9926 &attachment_len);
9927
9928 if (ret < 0)
9929 return ret;
9930
9931 read_len = remote_unescape_input ((gdb_byte *) attachment, attachment_len,
9932 read_buf, len);
9933 if (read_len != ret)
9934 error (_("Read returned %d, but %d bytes."), ret, (int) read_len);
9935
9936 return ret;
9937 }
9938
9939 /* Close FD on the remote target. Return 0, or -1 if an error occurs
9940 (and set *REMOTE_ERRNO). */
9941
9942 static int
9943 remote_hostio_close (int fd, int *remote_errno)
9944 {
9945 struct remote_state *rs = get_remote_state ();
9946 char *p = rs->buf;
9947 int left = get_remote_packet_size () - 1;
9948
9949 remote_buffer_add_string (&p, &left, "vFile:close:");
9950
9951 remote_buffer_add_int (&p, &left, fd);
9952
9953 return remote_hostio_send_command (p - rs->buf, PACKET_vFile_close,
9954 remote_errno, NULL, NULL);
9955 }
9956
9957 /* Unlink FILENAME on the remote target. Return 0, or -1 if an error
9958 occurs (and set *REMOTE_ERRNO). */
9959
9960 static int
9961 remote_hostio_unlink (const char *filename, int *remote_errno)
9962 {
9963 struct remote_state *rs = get_remote_state ();
9964 char *p = rs->buf;
9965 int left = get_remote_packet_size () - 1;
9966
9967 remote_buffer_add_string (&p, &left, "vFile:unlink:");
9968
9969 remote_buffer_add_bytes (&p, &left, (const gdb_byte *) filename,
9970 strlen (filename));
9971
9972 return remote_hostio_send_command (p - rs->buf, PACKET_vFile_unlink,
9973 remote_errno, NULL, NULL);
9974 }
9975
9976 /* Read value of symbolic link FILENAME on the remote target. Return
9977 a null-terminated string allocated via xmalloc, or NULL if an error
9978 occurs (and set *REMOTE_ERRNO). */
9979
9980 static char *
9981 remote_hostio_readlink (const char *filename, int *remote_errno)
9982 {
9983 struct remote_state *rs = get_remote_state ();
9984 char *p = rs->buf;
9985 char *attachment;
9986 int left = get_remote_packet_size ();
9987 int len, attachment_len;
9988 int read_len;
9989 char *ret;
9990
9991 remote_buffer_add_string (&p, &left, "vFile:readlink:");
9992
9993 remote_buffer_add_bytes (&p, &left, (const gdb_byte *) filename,
9994 strlen (filename));
9995
9996 len = remote_hostio_send_command (p - rs->buf, PACKET_vFile_readlink,
9997 remote_errno, &attachment,
9998 &attachment_len);
9999
10000 if (len < 0)
10001 return NULL;
10002
10003 ret = xmalloc (len + 1);
10004
10005 read_len = remote_unescape_input ((gdb_byte *) attachment, attachment_len,
10006 (gdb_byte *) ret, len);
10007 if (read_len != len)
10008 error (_("Readlink returned %d, but %d bytes."), len, read_len);
10009
10010 ret[len] = '\0';
10011 return ret;
10012 }
10013
10014 static int
10015 remote_fileio_errno_to_host (int errnum)
10016 {
10017 switch (errnum)
10018 {
10019 case FILEIO_EPERM:
10020 return EPERM;
10021 case FILEIO_ENOENT:
10022 return ENOENT;
10023 case FILEIO_EINTR:
10024 return EINTR;
10025 case FILEIO_EIO:
10026 return EIO;
10027 case FILEIO_EBADF:
10028 return EBADF;
10029 case FILEIO_EACCES:
10030 return EACCES;
10031 case FILEIO_EFAULT:
10032 return EFAULT;
10033 case FILEIO_EBUSY:
10034 return EBUSY;
10035 case FILEIO_EEXIST:
10036 return EEXIST;
10037 case FILEIO_ENODEV:
10038 return ENODEV;
10039 case FILEIO_ENOTDIR:
10040 return ENOTDIR;
10041 case FILEIO_EISDIR:
10042 return EISDIR;
10043 case FILEIO_EINVAL:
10044 return EINVAL;
10045 case FILEIO_ENFILE:
10046 return ENFILE;
10047 case FILEIO_EMFILE:
10048 return EMFILE;
10049 case FILEIO_EFBIG:
10050 return EFBIG;
10051 case FILEIO_ENOSPC:
10052 return ENOSPC;
10053 case FILEIO_ESPIPE:
10054 return ESPIPE;
10055 case FILEIO_EROFS:
10056 return EROFS;
10057 case FILEIO_ENOSYS:
10058 return ENOSYS;
10059 case FILEIO_ENAMETOOLONG:
10060 return ENAMETOOLONG;
10061 }
10062 return -1;
10063 }
10064
10065 static char *
10066 remote_hostio_error (int errnum)
10067 {
10068 int host_error = remote_fileio_errno_to_host (errnum);
10069
10070 if (host_error == -1)
10071 error (_("Unknown remote I/O error %d"), errnum);
10072 else
10073 error (_("Remote I/O error: %s"), safe_strerror (host_error));
10074 }
10075
10076 static void
10077 remote_hostio_close_cleanup (void *opaque)
10078 {
10079 int fd = *(int *) opaque;
10080 int remote_errno;
10081
10082 remote_hostio_close (fd, &remote_errno);
10083 }
10084
10085
10086 static void *
10087 remote_bfd_iovec_open (struct bfd *abfd, void *open_closure)
10088 {
10089 const char *filename = bfd_get_filename (abfd);
10090 int fd, remote_errno;
10091 int *stream;
10092
10093 gdb_assert (remote_filename_p (filename));
10094
10095 fd = remote_hostio_open (filename + 7, FILEIO_O_RDONLY, 0, &remote_errno);
10096 if (fd == -1)
10097 {
10098 errno = remote_fileio_errno_to_host (remote_errno);
10099 bfd_set_error (bfd_error_system_call);
10100 return NULL;
10101 }
10102
10103 stream = xmalloc (sizeof (int));
10104 *stream = fd;
10105 return stream;
10106 }
10107
10108 static int
10109 remote_bfd_iovec_close (struct bfd *abfd, void *stream)
10110 {
10111 int fd = *(int *)stream;
10112 int remote_errno;
10113
10114 xfree (stream);
10115
10116 /* Ignore errors on close; these may happen if the remote
10117 connection was already torn down. */
10118 remote_hostio_close (fd, &remote_errno);
10119
10120 /* Zero means success. */
10121 return 0;
10122 }
10123
10124 static file_ptr
10125 remote_bfd_iovec_pread (struct bfd *abfd, void *stream, void *buf,
10126 file_ptr nbytes, file_ptr offset)
10127 {
10128 int fd = *(int *)stream;
10129 int remote_errno;
10130 file_ptr pos, bytes;
10131
10132 pos = 0;
10133 while (nbytes > pos)
10134 {
10135 bytes = remote_hostio_pread (fd, (gdb_byte *) buf + pos, nbytes - pos,
10136 offset + pos, &remote_errno);
10137 if (bytes == 0)
10138 /* Success, but no bytes, means end-of-file. */
10139 break;
10140 if (bytes == -1)
10141 {
10142 errno = remote_fileio_errno_to_host (remote_errno);
10143 bfd_set_error (bfd_error_system_call);
10144 return -1;
10145 }
10146
10147 pos += bytes;
10148 }
10149
10150 return pos;
10151 }
10152
10153 static int
10154 remote_bfd_iovec_stat (struct bfd *abfd, void *stream, struct stat *sb)
10155 {
10156 /* FIXME: We should probably implement remote_hostio_stat. */
10157 sb->st_size = INT_MAX;
10158 return 0;
10159 }
10160
10161 int
10162 remote_filename_p (const char *filename)
10163 {
10164 return strncmp (filename,
10165 REMOTE_SYSROOT_PREFIX,
10166 sizeof (REMOTE_SYSROOT_PREFIX) - 1) == 0;
10167 }
10168
10169 bfd *
10170 remote_bfd_open (const char *remote_file, const char *target)
10171 {
10172 bfd *abfd = gdb_bfd_openr_iovec (remote_file, target,
10173 remote_bfd_iovec_open, NULL,
10174 remote_bfd_iovec_pread,
10175 remote_bfd_iovec_close,
10176 remote_bfd_iovec_stat);
10177
10178 return abfd;
10179 }
10180
10181 void
10182 remote_file_put (const char *local_file, const char *remote_file, int from_tty)
10183 {
10184 struct cleanup *back_to, *close_cleanup;
10185 int retcode, fd, remote_errno, bytes, io_size;
10186 FILE *file;
10187 gdb_byte *buffer;
10188 int bytes_in_buffer;
10189 int saw_eof;
10190 ULONGEST offset;
10191 struct remote_state *rs = get_remote_state ();
10192
10193 if (!rs->remote_desc)
10194 error (_("command can only be used with remote target"));
10195
10196 file = gdb_fopen_cloexec (local_file, "rb");
10197 if (file == NULL)
10198 perror_with_name (local_file);
10199 back_to = make_cleanup_fclose (file);
10200
10201 fd = remote_hostio_open (remote_file, (FILEIO_O_WRONLY | FILEIO_O_CREAT
10202 | FILEIO_O_TRUNC),
10203 0700, &remote_errno);
10204 if (fd == -1)
10205 remote_hostio_error (remote_errno);
10206
10207 /* Send up to this many bytes at once. They won't all fit in the
10208 remote packet limit, so we'll transfer slightly fewer. */
10209 io_size = get_remote_packet_size ();
10210 buffer = xmalloc (io_size);
10211 make_cleanup (xfree, buffer);
10212
10213 close_cleanup = make_cleanup (remote_hostio_close_cleanup, &fd);
10214
10215 bytes_in_buffer = 0;
10216 saw_eof = 0;
10217 offset = 0;
10218 while (bytes_in_buffer || !saw_eof)
10219 {
10220 if (!saw_eof)
10221 {
10222 bytes = fread (buffer + bytes_in_buffer, 1,
10223 io_size - bytes_in_buffer,
10224 file);
10225 if (bytes == 0)
10226 {
10227 if (ferror (file))
10228 error (_("Error reading %s."), local_file);
10229 else
10230 {
10231 /* EOF. Unless there is something still in the
10232 buffer from the last iteration, we are done. */
10233 saw_eof = 1;
10234 if (bytes_in_buffer == 0)
10235 break;
10236 }
10237 }
10238 }
10239 else
10240 bytes = 0;
10241
10242 bytes += bytes_in_buffer;
10243 bytes_in_buffer = 0;
10244
10245 retcode = remote_hostio_pwrite (fd, buffer, bytes,
10246 offset, &remote_errno);
10247
10248 if (retcode < 0)
10249 remote_hostio_error (remote_errno);
10250 else if (retcode == 0)
10251 error (_("Remote write of %d bytes returned 0!"), bytes);
10252 else if (retcode < bytes)
10253 {
10254 /* Short write. Save the rest of the read data for the next
10255 write. */
10256 bytes_in_buffer = bytes - retcode;
10257 memmove (buffer, buffer + retcode, bytes_in_buffer);
10258 }
10259
10260 offset += retcode;
10261 }
10262
10263 discard_cleanups (close_cleanup);
10264 if (remote_hostio_close (fd, &remote_errno))
10265 remote_hostio_error (remote_errno);
10266
10267 if (from_tty)
10268 printf_filtered (_("Successfully sent file \"%s\".\n"), local_file);
10269 do_cleanups (back_to);
10270 }
10271
10272 void
10273 remote_file_get (const char *remote_file, const char *local_file, int from_tty)
10274 {
10275 struct cleanup *back_to, *close_cleanup;
10276 int fd, remote_errno, bytes, io_size;
10277 FILE *file;
10278 gdb_byte *buffer;
10279 ULONGEST offset;
10280 struct remote_state *rs = get_remote_state ();
10281
10282 if (!rs->remote_desc)
10283 error (_("command can only be used with remote target"));
10284
10285 fd = remote_hostio_open (remote_file, FILEIO_O_RDONLY, 0, &remote_errno);
10286 if (fd == -1)
10287 remote_hostio_error (remote_errno);
10288
10289 file = gdb_fopen_cloexec (local_file, "wb");
10290 if (file == NULL)
10291 perror_with_name (local_file);
10292 back_to = make_cleanup_fclose (file);
10293
10294 /* Send up to this many bytes at once. They won't all fit in the
10295 remote packet limit, so we'll transfer slightly fewer. */
10296 io_size = get_remote_packet_size ();
10297 buffer = xmalloc (io_size);
10298 make_cleanup (xfree, buffer);
10299
10300 close_cleanup = make_cleanup (remote_hostio_close_cleanup, &fd);
10301
10302 offset = 0;
10303 while (1)
10304 {
10305 bytes = remote_hostio_pread (fd, buffer, io_size, offset, &remote_errno);
10306 if (bytes == 0)
10307 /* Success, but no bytes, means end-of-file. */
10308 break;
10309 if (bytes == -1)
10310 remote_hostio_error (remote_errno);
10311
10312 offset += bytes;
10313
10314 bytes = fwrite (buffer, 1, bytes, file);
10315 if (bytes == 0)
10316 perror_with_name (local_file);
10317 }
10318
10319 discard_cleanups (close_cleanup);
10320 if (remote_hostio_close (fd, &remote_errno))
10321 remote_hostio_error (remote_errno);
10322
10323 if (from_tty)
10324 printf_filtered (_("Successfully fetched file \"%s\".\n"), remote_file);
10325 do_cleanups (back_to);
10326 }
10327
10328 void
10329 remote_file_delete (const char *remote_file, int from_tty)
10330 {
10331 int retcode, remote_errno;
10332 struct remote_state *rs = get_remote_state ();
10333
10334 if (!rs->remote_desc)
10335 error (_("command can only be used with remote target"));
10336
10337 retcode = remote_hostio_unlink (remote_file, &remote_errno);
10338 if (retcode == -1)
10339 remote_hostio_error (remote_errno);
10340
10341 if (from_tty)
10342 printf_filtered (_("Successfully deleted file \"%s\".\n"), remote_file);
10343 }
10344
10345 static void
10346 remote_put_command (char *args, int from_tty)
10347 {
10348 struct cleanup *back_to;
10349 char **argv;
10350
10351 if (args == NULL)
10352 error_no_arg (_("file to put"));
10353
10354 argv = gdb_buildargv (args);
10355 back_to = make_cleanup_freeargv (argv);
10356 if (argv[0] == NULL || argv[1] == NULL || argv[2] != NULL)
10357 error (_("Invalid parameters to remote put"));
10358
10359 remote_file_put (argv[0], argv[1], from_tty);
10360
10361 do_cleanups (back_to);
10362 }
10363
10364 static void
10365 remote_get_command (char *args, int from_tty)
10366 {
10367 struct cleanup *back_to;
10368 char **argv;
10369
10370 if (args == NULL)
10371 error_no_arg (_("file to get"));
10372
10373 argv = gdb_buildargv (args);
10374 back_to = make_cleanup_freeargv (argv);
10375 if (argv[0] == NULL || argv[1] == NULL || argv[2] != NULL)
10376 error (_("Invalid parameters to remote get"));
10377
10378 remote_file_get (argv[0], argv[1], from_tty);
10379
10380 do_cleanups (back_to);
10381 }
10382
10383 static void
10384 remote_delete_command (char *args, int from_tty)
10385 {
10386 struct cleanup *back_to;
10387 char **argv;
10388
10389 if (args == NULL)
10390 error_no_arg (_("file to delete"));
10391
10392 argv = gdb_buildargv (args);
10393 back_to = make_cleanup_freeargv (argv);
10394 if (argv[0] == NULL || argv[1] != NULL)
10395 error (_("Invalid parameters to remote delete"));
10396
10397 remote_file_delete (argv[0], from_tty);
10398
10399 do_cleanups (back_to);
10400 }
10401
10402 static void
10403 remote_command (char *args, int from_tty)
10404 {
10405 help_list (remote_cmdlist, "remote ", -1, gdb_stdout);
10406 }
10407
10408 static int
10409 remote_can_execute_reverse (void)
10410 {
10411 if (remote_protocol_packets[PACKET_bs].support == PACKET_ENABLE
10412 || remote_protocol_packets[PACKET_bc].support == PACKET_ENABLE)
10413 return 1;
10414 else
10415 return 0;
10416 }
10417
10418 static int
10419 remote_supports_non_stop (void)
10420 {
10421 return 1;
10422 }
10423
10424 static int
10425 remote_supports_disable_randomization (void)
10426 {
10427 /* Only supported in extended mode. */
10428 return 0;
10429 }
10430
10431 static int
10432 remote_supports_multi_process (void)
10433 {
10434 struct remote_state *rs = get_remote_state ();
10435
10436 /* Only extended-remote handles being attached to multiple
10437 processes, even though plain remote can use the multi-process
10438 thread id extensions, so that GDB knows the target process's
10439 PID. */
10440 return rs->extended && remote_multi_process_p (rs);
10441 }
10442
10443 static int
10444 remote_supports_cond_tracepoints (void)
10445 {
10446 struct remote_state *rs = get_remote_state ();
10447
10448 return rs->cond_tracepoints;
10449 }
10450
10451 static int
10452 remote_supports_cond_breakpoints (void)
10453 {
10454 struct remote_state *rs = get_remote_state ();
10455
10456 return rs->cond_breakpoints;
10457 }
10458
10459 static int
10460 remote_supports_fast_tracepoints (void)
10461 {
10462 struct remote_state *rs = get_remote_state ();
10463
10464 return rs->fast_tracepoints;
10465 }
10466
10467 static int
10468 remote_supports_static_tracepoints (void)
10469 {
10470 struct remote_state *rs = get_remote_state ();
10471
10472 return rs->static_tracepoints;
10473 }
10474
10475 static int
10476 remote_supports_install_in_trace (void)
10477 {
10478 struct remote_state *rs = get_remote_state ();
10479
10480 return rs->install_in_trace;
10481 }
10482
10483 static int
10484 remote_supports_enable_disable_tracepoint (void)
10485 {
10486 struct remote_state *rs = get_remote_state ();
10487
10488 return rs->enable_disable_tracepoints;
10489 }
10490
10491 static int
10492 remote_supports_string_tracing (void)
10493 {
10494 struct remote_state *rs = get_remote_state ();
10495
10496 return rs->string_tracing;
10497 }
10498
10499 static int
10500 remote_can_run_breakpoint_commands (void)
10501 {
10502 struct remote_state *rs = get_remote_state ();
10503
10504 return rs->breakpoint_commands;
10505 }
10506
10507 static void
10508 remote_trace_init (void)
10509 {
10510 putpkt ("QTinit");
10511 remote_get_noisy_reply (&target_buf, &target_buf_size);
10512 if (strcmp (target_buf, "OK") != 0)
10513 error (_("Target does not support this command."));
10514 }
10515
10516 static void free_actions_list (char **actions_list);
10517 static void free_actions_list_cleanup_wrapper (void *);
10518 static void
10519 free_actions_list_cleanup_wrapper (void *al)
10520 {
10521 free_actions_list (al);
10522 }
10523
10524 static void
10525 free_actions_list (char **actions_list)
10526 {
10527 int ndx;
10528
10529 if (actions_list == 0)
10530 return;
10531
10532 for (ndx = 0; actions_list[ndx]; ndx++)
10533 xfree (actions_list[ndx]);
10534
10535 xfree (actions_list);
10536 }
10537
10538 /* Recursive routine to walk through command list including loops, and
10539 download packets for each command. */
10540
10541 static void
10542 remote_download_command_source (int num, ULONGEST addr,
10543 struct command_line *cmds)
10544 {
10545 struct remote_state *rs = get_remote_state ();
10546 struct command_line *cmd;
10547
10548 for (cmd = cmds; cmd; cmd = cmd->next)
10549 {
10550 QUIT; /* Allow user to bail out with ^C. */
10551 strcpy (rs->buf, "QTDPsrc:");
10552 encode_source_string (num, addr, "cmd", cmd->line,
10553 rs->buf + strlen (rs->buf),
10554 rs->buf_size - strlen (rs->buf));
10555 putpkt (rs->buf);
10556 remote_get_noisy_reply (&target_buf, &target_buf_size);
10557 if (strcmp (target_buf, "OK"))
10558 warning (_("Target does not support source download."));
10559
10560 if (cmd->control_type == while_control
10561 || cmd->control_type == while_stepping_control)
10562 {
10563 remote_download_command_source (num, addr, *cmd->body_list);
10564
10565 QUIT; /* Allow user to bail out with ^C. */
10566 strcpy (rs->buf, "QTDPsrc:");
10567 encode_source_string (num, addr, "cmd", "end",
10568 rs->buf + strlen (rs->buf),
10569 rs->buf_size - strlen (rs->buf));
10570 putpkt (rs->buf);
10571 remote_get_noisy_reply (&target_buf, &target_buf_size);
10572 if (strcmp (target_buf, "OK"))
10573 warning (_("Target does not support source download."));
10574 }
10575 }
10576 }
10577
10578 static void
10579 remote_download_tracepoint (struct bp_location *loc)
10580 {
10581 #define BUF_SIZE 2048
10582
10583 CORE_ADDR tpaddr;
10584 char addrbuf[40];
10585 char buf[BUF_SIZE];
10586 char **tdp_actions;
10587 char **stepping_actions;
10588 int ndx;
10589 struct cleanup *old_chain = NULL;
10590 struct agent_expr *aexpr;
10591 struct cleanup *aexpr_chain = NULL;
10592 char *pkt;
10593 struct breakpoint *b = loc->owner;
10594 struct tracepoint *t = (struct tracepoint *) b;
10595
10596 encode_actions_rsp (loc, &tdp_actions, &stepping_actions);
10597 old_chain = make_cleanup (free_actions_list_cleanup_wrapper,
10598 tdp_actions);
10599 (void) make_cleanup (free_actions_list_cleanup_wrapper,
10600 stepping_actions);
10601
10602 tpaddr = loc->address;
10603 sprintf_vma (addrbuf, tpaddr);
10604 xsnprintf (buf, BUF_SIZE, "QTDP:%x:%s:%c:%lx:%x", b->number,
10605 addrbuf, /* address */
10606 (b->enable_state == bp_enabled ? 'E' : 'D'),
10607 t->step_count, t->pass_count);
10608 /* Fast tracepoints are mostly handled by the target, but we can
10609 tell the target how big of an instruction block should be moved
10610 around. */
10611 if (b->type == bp_fast_tracepoint)
10612 {
10613 /* Only test for support at download time; we may not know
10614 target capabilities at definition time. */
10615 if (remote_supports_fast_tracepoints ())
10616 {
10617 int isize;
10618
10619 if (gdbarch_fast_tracepoint_valid_at (target_gdbarch (),
10620 tpaddr, &isize, NULL))
10621 xsnprintf (buf + strlen (buf), BUF_SIZE - strlen (buf), ":F%x",
10622 isize);
10623 else
10624 /* If it passed validation at definition but fails now,
10625 something is very wrong. */
10626 internal_error (__FILE__, __LINE__,
10627 _("Fast tracepoint not "
10628 "valid during download"));
10629 }
10630 else
10631 /* Fast tracepoints are functionally identical to regular
10632 tracepoints, so don't take lack of support as a reason to
10633 give up on the trace run. */
10634 warning (_("Target does not support fast tracepoints, "
10635 "downloading %d as regular tracepoint"), b->number);
10636 }
10637 else if (b->type == bp_static_tracepoint)
10638 {
10639 /* Only test for support at download time; we may not know
10640 target capabilities at definition time. */
10641 if (remote_supports_static_tracepoints ())
10642 {
10643 struct static_tracepoint_marker marker;
10644
10645 if (target_static_tracepoint_marker_at (tpaddr, &marker))
10646 strcat (buf, ":S");
10647 else
10648 error (_("Static tracepoint not valid during download"));
10649 }
10650 else
10651 /* Fast tracepoints are functionally identical to regular
10652 tracepoints, so don't take lack of support as a reason
10653 to give up on the trace run. */
10654 error (_("Target does not support static tracepoints"));
10655 }
10656 /* If the tracepoint has a conditional, make it into an agent
10657 expression and append to the definition. */
10658 if (loc->cond)
10659 {
10660 /* Only test support at download time, we may not know target
10661 capabilities at definition time. */
10662 if (remote_supports_cond_tracepoints ())
10663 {
10664 aexpr = gen_eval_for_expr (tpaddr, loc->cond);
10665 aexpr_chain = make_cleanup_free_agent_expr (aexpr);
10666 xsnprintf (buf + strlen (buf), BUF_SIZE - strlen (buf), ":X%x,",
10667 aexpr->len);
10668 pkt = buf + strlen (buf);
10669 for (ndx = 0; ndx < aexpr->len; ++ndx)
10670 pkt = pack_hex_byte (pkt, aexpr->buf[ndx]);
10671 *pkt = '\0';
10672 do_cleanups (aexpr_chain);
10673 }
10674 else
10675 warning (_("Target does not support conditional tracepoints, "
10676 "ignoring tp %d cond"), b->number);
10677 }
10678
10679 if (b->commands || *default_collect)
10680 strcat (buf, "-");
10681 putpkt (buf);
10682 remote_get_noisy_reply (&target_buf, &target_buf_size);
10683 if (strcmp (target_buf, "OK"))
10684 error (_("Target does not support tracepoints."));
10685
10686 /* do_single_steps (t); */
10687 if (tdp_actions)
10688 {
10689 for (ndx = 0; tdp_actions[ndx]; ndx++)
10690 {
10691 QUIT; /* Allow user to bail out with ^C. */
10692 xsnprintf (buf, BUF_SIZE, "QTDP:-%x:%s:%s%c",
10693 b->number, addrbuf, /* address */
10694 tdp_actions[ndx],
10695 ((tdp_actions[ndx + 1] || stepping_actions)
10696 ? '-' : 0));
10697 putpkt (buf);
10698 remote_get_noisy_reply (&target_buf,
10699 &target_buf_size);
10700 if (strcmp (target_buf, "OK"))
10701 error (_("Error on target while setting tracepoints."));
10702 }
10703 }
10704 if (stepping_actions)
10705 {
10706 for (ndx = 0; stepping_actions[ndx]; ndx++)
10707 {
10708 QUIT; /* Allow user to bail out with ^C. */
10709 xsnprintf (buf, BUF_SIZE, "QTDP:-%x:%s:%s%s%s",
10710 b->number, addrbuf, /* address */
10711 ((ndx == 0) ? "S" : ""),
10712 stepping_actions[ndx],
10713 (stepping_actions[ndx + 1] ? "-" : ""));
10714 putpkt (buf);
10715 remote_get_noisy_reply (&target_buf,
10716 &target_buf_size);
10717 if (strcmp (target_buf, "OK"))
10718 error (_("Error on target while setting tracepoints."));
10719 }
10720 }
10721
10722 if (remote_protocol_packets[PACKET_TracepointSource].support
10723 == PACKET_ENABLE)
10724 {
10725 if (b->addr_string)
10726 {
10727 strcpy (buf, "QTDPsrc:");
10728 encode_source_string (b->number, loc->address,
10729 "at", b->addr_string, buf + strlen (buf),
10730 2048 - strlen (buf));
10731
10732 putpkt (buf);
10733 remote_get_noisy_reply (&target_buf, &target_buf_size);
10734 if (strcmp (target_buf, "OK"))
10735 warning (_("Target does not support source download."));
10736 }
10737 if (b->cond_string)
10738 {
10739 strcpy (buf, "QTDPsrc:");
10740 encode_source_string (b->number, loc->address,
10741 "cond", b->cond_string, buf + strlen (buf),
10742 2048 - strlen (buf));
10743 putpkt (buf);
10744 remote_get_noisy_reply (&target_buf, &target_buf_size);
10745 if (strcmp (target_buf, "OK"))
10746 warning (_("Target does not support source download."));
10747 }
10748 remote_download_command_source (b->number, loc->address,
10749 breakpoint_commands (b));
10750 }
10751
10752 do_cleanups (old_chain);
10753 }
10754
10755 static int
10756 remote_can_download_tracepoint (void)
10757 {
10758 struct remote_state *rs = get_remote_state ();
10759 struct trace_status *ts;
10760 int status;
10761
10762 /* Don't try to install tracepoints until we've relocated our
10763 symbols, and fetched and merged the target's tracepoint list with
10764 ours. */
10765 if (rs->starting_up)
10766 return 0;
10767
10768 ts = current_trace_status ();
10769 status = remote_get_trace_status (ts);
10770
10771 if (status == -1 || !ts->running_known || !ts->running)
10772 return 0;
10773
10774 /* If we are in a tracing experiment, but remote stub doesn't support
10775 installing tracepoint in trace, we have to return. */
10776 if (!remote_supports_install_in_trace ())
10777 return 0;
10778
10779 return 1;
10780 }
10781
10782
10783 static void
10784 remote_download_trace_state_variable (struct trace_state_variable *tsv)
10785 {
10786 struct remote_state *rs = get_remote_state ();
10787 char *p;
10788
10789 xsnprintf (rs->buf, get_remote_packet_size (), "QTDV:%x:%s:%x:",
10790 tsv->number, phex ((ULONGEST) tsv->initial_value, 8),
10791 tsv->builtin);
10792 p = rs->buf + strlen (rs->buf);
10793 if ((p - rs->buf) + strlen (tsv->name) * 2 >= get_remote_packet_size ())
10794 error (_("Trace state variable name too long for tsv definition packet"));
10795 p += 2 * bin2hex ((gdb_byte *) (tsv->name), p, 0);
10796 *p++ = '\0';
10797 putpkt (rs->buf);
10798 remote_get_noisy_reply (&target_buf, &target_buf_size);
10799 if (*target_buf == '\0')
10800 error (_("Target does not support this command."));
10801 if (strcmp (target_buf, "OK") != 0)
10802 error (_("Error on target while downloading trace state variable."));
10803 }
10804
10805 static void
10806 remote_enable_tracepoint (struct bp_location *location)
10807 {
10808 struct remote_state *rs = get_remote_state ();
10809 char addr_buf[40];
10810
10811 sprintf_vma (addr_buf, location->address);
10812 xsnprintf (rs->buf, get_remote_packet_size (), "QTEnable:%x:%s",
10813 location->owner->number, addr_buf);
10814 putpkt (rs->buf);
10815 remote_get_noisy_reply (&rs->buf, &rs->buf_size);
10816 if (*rs->buf == '\0')
10817 error (_("Target does not support enabling tracepoints while a trace run is ongoing."));
10818 if (strcmp (rs->buf, "OK") != 0)
10819 error (_("Error on target while enabling tracepoint."));
10820 }
10821
10822 static void
10823 remote_disable_tracepoint (struct bp_location *location)
10824 {
10825 struct remote_state *rs = get_remote_state ();
10826 char addr_buf[40];
10827
10828 sprintf_vma (addr_buf, location->address);
10829 xsnprintf (rs->buf, get_remote_packet_size (), "QTDisable:%x:%s",
10830 location->owner->number, addr_buf);
10831 putpkt (rs->buf);
10832 remote_get_noisy_reply (&rs->buf, &rs->buf_size);
10833 if (*rs->buf == '\0')
10834 error (_("Target does not support disabling tracepoints while a trace run is ongoing."));
10835 if (strcmp (rs->buf, "OK") != 0)
10836 error (_("Error on target while disabling tracepoint."));
10837 }
10838
10839 static void
10840 remote_trace_set_readonly_regions (void)
10841 {
10842 asection *s;
10843 bfd *abfd = NULL;
10844 bfd_size_type size;
10845 bfd_vma vma;
10846 int anysecs = 0;
10847 int offset = 0;
10848
10849 if (!exec_bfd)
10850 return; /* No information to give. */
10851
10852 strcpy (target_buf, "QTro");
10853 offset = strlen (target_buf);
10854 for (s = exec_bfd->sections; s; s = s->next)
10855 {
10856 char tmp1[40], tmp2[40];
10857 int sec_length;
10858
10859 if ((s->flags & SEC_LOAD) == 0 ||
10860 /* (s->flags & SEC_CODE) == 0 || */
10861 (s->flags & SEC_READONLY) == 0)
10862 continue;
10863
10864 anysecs = 1;
10865 vma = bfd_get_section_vma (abfd, s);
10866 size = bfd_get_section_size (s);
10867 sprintf_vma (tmp1, vma);
10868 sprintf_vma (tmp2, vma + size);
10869 sec_length = 1 + strlen (tmp1) + 1 + strlen (tmp2);
10870 if (offset + sec_length + 1 > target_buf_size)
10871 {
10872 if (remote_protocol_packets[PACKET_qXfer_traceframe_info].support
10873 != PACKET_ENABLE)
10874 warning (_("\
10875 Too many sections for read-only sections definition packet."));
10876 break;
10877 }
10878 xsnprintf (target_buf + offset, target_buf_size - offset, ":%s,%s",
10879 tmp1, tmp2);
10880 offset += sec_length;
10881 }
10882 if (anysecs)
10883 {
10884 putpkt (target_buf);
10885 getpkt (&target_buf, &target_buf_size, 0);
10886 }
10887 }
10888
10889 static void
10890 remote_trace_start (void)
10891 {
10892 putpkt ("QTStart");
10893 remote_get_noisy_reply (&target_buf, &target_buf_size);
10894 if (*target_buf == '\0')
10895 error (_("Target does not support this command."));
10896 if (strcmp (target_buf, "OK") != 0)
10897 error (_("Bogus reply from target: %s"), target_buf);
10898 }
10899
10900 static int
10901 remote_get_trace_status (struct trace_status *ts)
10902 {
10903 /* Initialize it just to avoid a GCC false warning. */
10904 char *p = NULL;
10905 /* FIXME we need to get register block size some other way. */
10906 extern int trace_regblock_size;
10907 volatile struct gdb_exception ex;
10908 enum packet_result result;
10909
10910 if (remote_protocol_packets[PACKET_qTStatus].support == PACKET_DISABLE)
10911 return -1;
10912
10913 trace_regblock_size = get_remote_arch_state ()->sizeof_g_packet;
10914
10915 putpkt ("qTStatus");
10916
10917 TRY_CATCH (ex, RETURN_MASK_ERROR)
10918 {
10919 p = remote_get_noisy_reply (&target_buf, &target_buf_size);
10920 }
10921 if (ex.reason < 0)
10922 {
10923 if (ex.error != TARGET_CLOSE_ERROR)
10924 {
10925 exception_fprintf (gdb_stderr, ex, "qTStatus: ");
10926 return -1;
10927 }
10928 throw_exception (ex);
10929 }
10930
10931 result = packet_ok (p, &remote_protocol_packets[PACKET_qTStatus]);
10932
10933 /* If the remote target doesn't do tracing, flag it. */
10934 if (result == PACKET_UNKNOWN)
10935 return -1;
10936
10937 /* We're working with a live target. */
10938 ts->filename = NULL;
10939
10940 if (*p++ != 'T')
10941 error (_("Bogus trace status reply from target: %s"), target_buf);
10942
10943 /* Function 'parse_trace_status' sets default value of each field of
10944 'ts' at first, so we don't have to do it here. */
10945 parse_trace_status (p, ts);
10946
10947 return ts->running;
10948 }
10949
10950 static void
10951 remote_get_tracepoint_status (struct breakpoint *bp,
10952 struct uploaded_tp *utp)
10953 {
10954 struct remote_state *rs = get_remote_state ();
10955 char *reply;
10956 struct bp_location *loc;
10957 struct tracepoint *tp = (struct tracepoint *) bp;
10958 size_t size = get_remote_packet_size ();
10959
10960 if (tp)
10961 {
10962 tp->base.hit_count = 0;
10963 tp->traceframe_usage = 0;
10964 for (loc = tp->base.loc; loc; loc = loc->next)
10965 {
10966 /* If the tracepoint was never downloaded, don't go asking for
10967 any status. */
10968 if (tp->number_on_target == 0)
10969 continue;
10970 xsnprintf (rs->buf, size, "qTP:%x:%s", tp->number_on_target,
10971 phex_nz (loc->address, 0));
10972 putpkt (rs->buf);
10973 reply = remote_get_noisy_reply (&target_buf, &target_buf_size);
10974 if (reply && *reply)
10975 {
10976 if (*reply == 'V')
10977 parse_tracepoint_status (reply + 1, bp, utp);
10978 }
10979 }
10980 }
10981 else if (utp)
10982 {
10983 utp->hit_count = 0;
10984 utp->traceframe_usage = 0;
10985 xsnprintf (rs->buf, size, "qTP:%x:%s", utp->number,
10986 phex_nz (utp->addr, 0));
10987 putpkt (rs->buf);
10988 reply = remote_get_noisy_reply (&target_buf, &target_buf_size);
10989 if (reply && *reply)
10990 {
10991 if (*reply == 'V')
10992 parse_tracepoint_status (reply + 1, bp, utp);
10993 }
10994 }
10995 }
10996
10997 static void
10998 remote_trace_stop (void)
10999 {
11000 putpkt ("QTStop");
11001 remote_get_noisy_reply (&target_buf, &target_buf_size);
11002 if (*target_buf == '\0')
11003 error (_("Target does not support this command."));
11004 if (strcmp (target_buf, "OK") != 0)
11005 error (_("Bogus reply from target: %s"), target_buf);
11006 }
11007
11008 static int
11009 remote_trace_find (enum trace_find_type type, int num,
11010 CORE_ADDR addr1, CORE_ADDR addr2,
11011 int *tpp)
11012 {
11013 struct remote_state *rs = get_remote_state ();
11014 char *endbuf = rs->buf + get_remote_packet_size ();
11015 char *p, *reply;
11016 int target_frameno = -1, target_tracept = -1;
11017
11018 /* Lookups other than by absolute frame number depend on the current
11019 trace selected, so make sure it is correct on the remote end
11020 first. */
11021 if (type != tfind_number)
11022 set_remote_traceframe ();
11023
11024 p = rs->buf;
11025 strcpy (p, "QTFrame:");
11026 p = strchr (p, '\0');
11027 switch (type)
11028 {
11029 case tfind_number:
11030 xsnprintf (p, endbuf - p, "%x", num);
11031 break;
11032 case tfind_pc:
11033 xsnprintf (p, endbuf - p, "pc:%s", phex_nz (addr1, 0));
11034 break;
11035 case tfind_tp:
11036 xsnprintf (p, endbuf - p, "tdp:%x", num);
11037 break;
11038 case tfind_range:
11039 xsnprintf (p, endbuf - p, "range:%s:%s", phex_nz (addr1, 0),
11040 phex_nz (addr2, 0));
11041 break;
11042 case tfind_outside:
11043 xsnprintf (p, endbuf - p, "outside:%s:%s", phex_nz (addr1, 0),
11044 phex_nz (addr2, 0));
11045 break;
11046 default:
11047 error (_("Unknown trace find type %d"), type);
11048 }
11049
11050 putpkt (rs->buf);
11051 reply = remote_get_noisy_reply (&(rs->buf), &rs->buf_size);
11052 if (*reply == '\0')
11053 error (_("Target does not support this command."));
11054
11055 while (reply && *reply)
11056 switch (*reply)
11057 {
11058 case 'F':
11059 p = ++reply;
11060 target_frameno = (int) strtol (p, &reply, 16);
11061 if (reply == p)
11062 error (_("Unable to parse trace frame number"));
11063 /* Don't update our remote traceframe number cache on failure
11064 to select a remote traceframe. */
11065 if (target_frameno == -1)
11066 return -1;
11067 break;
11068 case 'T':
11069 p = ++reply;
11070 target_tracept = (int) strtol (p, &reply, 16);
11071 if (reply == p)
11072 error (_("Unable to parse tracepoint number"));
11073 break;
11074 case 'O': /* "OK"? */
11075 if (reply[1] == 'K' && reply[2] == '\0')
11076 reply += 2;
11077 else
11078 error (_("Bogus reply from target: %s"), reply);
11079 break;
11080 default:
11081 error (_("Bogus reply from target: %s"), reply);
11082 }
11083 if (tpp)
11084 *tpp = target_tracept;
11085
11086 rs->remote_traceframe_number = target_frameno;
11087 return target_frameno;
11088 }
11089
11090 static int
11091 remote_get_trace_state_variable_value (int tsvnum, LONGEST *val)
11092 {
11093 struct remote_state *rs = get_remote_state ();
11094 char *reply;
11095 ULONGEST uval;
11096
11097 set_remote_traceframe ();
11098
11099 xsnprintf (rs->buf, get_remote_packet_size (), "qTV:%x", tsvnum);
11100 putpkt (rs->buf);
11101 reply = remote_get_noisy_reply (&target_buf, &target_buf_size);
11102 if (reply && *reply)
11103 {
11104 if (*reply == 'V')
11105 {
11106 unpack_varlen_hex (reply + 1, &uval);
11107 *val = (LONGEST) uval;
11108 return 1;
11109 }
11110 }
11111 return 0;
11112 }
11113
11114 static int
11115 remote_save_trace_data (const char *filename)
11116 {
11117 struct remote_state *rs = get_remote_state ();
11118 char *p, *reply;
11119
11120 p = rs->buf;
11121 strcpy (p, "QTSave:");
11122 p += strlen (p);
11123 if ((p - rs->buf) + strlen (filename) * 2 >= get_remote_packet_size ())
11124 error (_("Remote file name too long for trace save packet"));
11125 p += 2 * bin2hex ((gdb_byte *) filename, p, 0);
11126 *p++ = '\0';
11127 putpkt (rs->buf);
11128 reply = remote_get_noisy_reply (&target_buf, &target_buf_size);
11129 if (*reply == '\0')
11130 error (_("Target does not support this command."));
11131 if (strcmp (reply, "OK") != 0)
11132 error (_("Bogus reply from target: %s"), reply);
11133 return 0;
11134 }
11135
11136 /* This is basically a memory transfer, but needs to be its own packet
11137 because we don't know how the target actually organizes its trace
11138 memory, plus we want to be able to ask for as much as possible, but
11139 not be unhappy if we don't get as much as we ask for. */
11140
11141 static LONGEST
11142 remote_get_raw_trace_data (gdb_byte *buf, ULONGEST offset, LONGEST len)
11143 {
11144 struct remote_state *rs = get_remote_state ();
11145 char *reply;
11146 char *p;
11147 int rslt;
11148
11149 p = rs->buf;
11150 strcpy (p, "qTBuffer:");
11151 p += strlen (p);
11152 p += hexnumstr (p, offset);
11153 *p++ = ',';
11154 p += hexnumstr (p, len);
11155 *p++ = '\0';
11156
11157 putpkt (rs->buf);
11158 reply = remote_get_noisy_reply (&target_buf, &target_buf_size);
11159 if (reply && *reply)
11160 {
11161 /* 'l' by itself means we're at the end of the buffer and
11162 there is nothing more to get. */
11163 if (*reply == 'l')
11164 return 0;
11165
11166 /* Convert the reply into binary. Limit the number of bytes to
11167 convert according to our passed-in buffer size, rather than
11168 what was returned in the packet; if the target is
11169 unexpectedly generous and gives us a bigger reply than we
11170 asked for, we don't want to crash. */
11171 rslt = hex2bin (target_buf, buf, len);
11172 return rslt;
11173 }
11174
11175 /* Something went wrong, flag as an error. */
11176 return -1;
11177 }
11178
11179 static void
11180 remote_set_disconnected_tracing (int val)
11181 {
11182 struct remote_state *rs = get_remote_state ();
11183
11184 if (rs->disconnected_tracing)
11185 {
11186 char *reply;
11187
11188 xsnprintf (rs->buf, get_remote_packet_size (), "QTDisconnected:%x", val);
11189 putpkt (rs->buf);
11190 reply = remote_get_noisy_reply (&target_buf, &target_buf_size);
11191 if (*reply == '\0')
11192 error (_("Target does not support this command."));
11193 if (strcmp (reply, "OK") != 0)
11194 error (_("Bogus reply from target: %s"), reply);
11195 }
11196 else if (val)
11197 warning (_("Target does not support disconnected tracing."));
11198 }
11199
11200 static int
11201 remote_core_of_thread (struct target_ops *ops, ptid_t ptid)
11202 {
11203 struct thread_info *info = find_thread_ptid (ptid);
11204
11205 if (info && info->private)
11206 return info->private->core;
11207 return -1;
11208 }
11209
11210 static void
11211 remote_set_circular_trace_buffer (int val)
11212 {
11213 struct remote_state *rs = get_remote_state ();
11214 char *reply;
11215
11216 xsnprintf (rs->buf, get_remote_packet_size (), "QTBuffer:circular:%x", val);
11217 putpkt (rs->buf);
11218 reply = remote_get_noisy_reply (&target_buf, &target_buf_size);
11219 if (*reply == '\0')
11220 error (_("Target does not support this command."));
11221 if (strcmp (reply, "OK") != 0)
11222 error (_("Bogus reply from target: %s"), reply);
11223 }
11224
11225 static struct traceframe_info *
11226 remote_traceframe_info (void)
11227 {
11228 char *text;
11229
11230 /* If current traceframe is not selected, don't bother the remote
11231 stub. */
11232 if (get_traceframe_number () < 0)
11233 return NULL;
11234
11235 text = target_read_stralloc (&current_target,
11236 TARGET_OBJECT_TRACEFRAME_INFO, NULL);
11237 if (text != NULL)
11238 {
11239 struct traceframe_info *info;
11240 struct cleanup *back_to = make_cleanup (xfree, text);
11241
11242 info = parse_traceframe_info (text);
11243 do_cleanups (back_to);
11244 return info;
11245 }
11246
11247 return NULL;
11248 }
11249
11250 /* Handle the qTMinFTPILen packet. Returns the minimum length of
11251 instruction on which a fast tracepoint may be placed. Returns -1
11252 if the packet is not supported, and 0 if the minimum instruction
11253 length is unknown. */
11254
11255 static int
11256 remote_get_min_fast_tracepoint_insn_len (void)
11257 {
11258 struct remote_state *rs = get_remote_state ();
11259 char *reply;
11260
11261 /* If we're not debugging a process yet, the IPA can't be
11262 loaded. */
11263 if (!target_has_execution)
11264 return 0;
11265
11266 /* Make sure the remote is pointing at the right process. */
11267 set_general_process ();
11268
11269 xsnprintf (rs->buf, get_remote_packet_size (), "qTMinFTPILen");
11270 putpkt (rs->buf);
11271 reply = remote_get_noisy_reply (&target_buf, &target_buf_size);
11272 if (*reply == '\0')
11273 return -1;
11274 else
11275 {
11276 ULONGEST min_insn_len;
11277
11278 unpack_varlen_hex (reply, &min_insn_len);
11279
11280 return (int) min_insn_len;
11281 }
11282 }
11283
11284 static void
11285 remote_set_trace_buffer_size (LONGEST val)
11286 {
11287 if (remote_protocol_packets[PACKET_QTBuffer_size].support
11288 != PACKET_DISABLE)
11289 {
11290 struct remote_state *rs = get_remote_state ();
11291 char *buf = rs->buf;
11292 char *endbuf = rs->buf + get_remote_packet_size ();
11293 enum packet_result result;
11294
11295 gdb_assert (val >= 0 || val == -1);
11296 buf += xsnprintf (buf, endbuf - buf, "QTBuffer:size:");
11297 /* Send -1 as literal "-1" to avoid host size dependency. */
11298 if (val < 0)
11299 {
11300 *buf++ = '-';
11301 buf += hexnumstr (buf, (ULONGEST) -val);
11302 }
11303 else
11304 buf += hexnumstr (buf, (ULONGEST) val);
11305
11306 putpkt (rs->buf);
11307 remote_get_noisy_reply (&rs->buf, &rs->buf_size);
11308 result = packet_ok (rs->buf,
11309 &remote_protocol_packets[PACKET_QTBuffer_size]);
11310
11311 if (result != PACKET_OK)
11312 warning (_("Bogus reply from target: %s"), rs->buf);
11313 }
11314 }
11315
11316 static int
11317 remote_set_trace_notes (const char *user, const char *notes,
11318 const char *stop_notes)
11319 {
11320 struct remote_state *rs = get_remote_state ();
11321 char *reply;
11322 char *buf = rs->buf;
11323 char *endbuf = rs->buf + get_remote_packet_size ();
11324 int nbytes;
11325
11326 buf += xsnprintf (buf, endbuf - buf, "QTNotes:");
11327 if (user)
11328 {
11329 buf += xsnprintf (buf, endbuf - buf, "user:");
11330 nbytes = bin2hex ((gdb_byte *) user, buf, 0);
11331 buf += 2 * nbytes;
11332 *buf++ = ';';
11333 }
11334 if (notes)
11335 {
11336 buf += xsnprintf (buf, endbuf - buf, "notes:");
11337 nbytes = bin2hex ((gdb_byte *) notes, buf, 0);
11338 buf += 2 * nbytes;
11339 *buf++ = ';';
11340 }
11341 if (stop_notes)
11342 {
11343 buf += xsnprintf (buf, endbuf - buf, "tstop:");
11344 nbytes = bin2hex ((gdb_byte *) stop_notes, buf, 0);
11345 buf += 2 * nbytes;
11346 *buf++ = ';';
11347 }
11348 /* Ensure the buffer is terminated. */
11349 *buf = '\0';
11350
11351 putpkt (rs->buf);
11352 reply = remote_get_noisy_reply (&target_buf, &target_buf_size);
11353 if (*reply == '\0')
11354 return 0;
11355
11356 if (strcmp (reply, "OK") != 0)
11357 error (_("Bogus reply from target: %s"), reply);
11358
11359 return 1;
11360 }
11361
11362 static int
11363 remote_use_agent (int use)
11364 {
11365 if (remote_protocol_packets[PACKET_QAgent].support != PACKET_DISABLE)
11366 {
11367 struct remote_state *rs = get_remote_state ();
11368
11369 /* If the stub supports QAgent. */
11370 xsnprintf (rs->buf, get_remote_packet_size (), "QAgent:%d", use);
11371 putpkt (rs->buf);
11372 getpkt (&rs->buf, &rs->buf_size, 0);
11373
11374 if (strcmp (rs->buf, "OK") == 0)
11375 {
11376 use_agent = use;
11377 return 1;
11378 }
11379 }
11380
11381 return 0;
11382 }
11383
11384 static int
11385 remote_can_use_agent (void)
11386 {
11387 return (remote_protocol_packets[PACKET_QAgent].support != PACKET_DISABLE);
11388 }
11389
11390 struct btrace_target_info
11391 {
11392 /* The ptid of the traced thread. */
11393 ptid_t ptid;
11394 };
11395
11396 /* Check whether the target supports branch tracing. */
11397
11398 static int
11399 remote_supports_btrace (void)
11400 {
11401 if (remote_protocol_packets[PACKET_Qbtrace_off].support != PACKET_ENABLE)
11402 return 0;
11403 if (remote_protocol_packets[PACKET_Qbtrace_bts].support != PACKET_ENABLE)
11404 return 0;
11405 if (remote_protocol_packets[PACKET_qXfer_btrace].support != PACKET_ENABLE)
11406 return 0;
11407
11408 return 1;
11409 }
11410
11411 /* Enable branch tracing. */
11412
11413 static struct btrace_target_info *
11414 remote_enable_btrace (ptid_t ptid)
11415 {
11416 struct btrace_target_info *tinfo = NULL;
11417 struct packet_config *packet = &remote_protocol_packets[PACKET_Qbtrace_bts];
11418 struct remote_state *rs = get_remote_state ();
11419 char *buf = rs->buf;
11420 char *endbuf = rs->buf + get_remote_packet_size ();
11421
11422 if (packet->support != PACKET_ENABLE)
11423 error (_("Target does not support branch tracing."));
11424
11425 set_general_thread (ptid);
11426
11427 buf += xsnprintf (buf, endbuf - buf, "%s", packet->name);
11428 putpkt (rs->buf);
11429 getpkt (&rs->buf, &rs->buf_size, 0);
11430
11431 if (packet_ok (rs->buf, packet) == PACKET_ERROR)
11432 {
11433 if (rs->buf[0] == 'E' && rs->buf[1] == '.')
11434 error (_("Could not enable branch tracing for %s: %s"),
11435 target_pid_to_str (ptid), rs->buf + 2);
11436 else
11437 error (_("Could not enable branch tracing for %s."),
11438 target_pid_to_str (ptid));
11439 }
11440
11441 tinfo = xzalloc (sizeof (*tinfo));
11442 tinfo->ptid = ptid;
11443
11444 return tinfo;
11445 }
11446
11447 /* Disable branch tracing. */
11448
11449 static void
11450 remote_disable_btrace (struct btrace_target_info *tinfo)
11451 {
11452 struct packet_config *packet = &remote_protocol_packets[PACKET_Qbtrace_off];
11453 struct remote_state *rs = get_remote_state ();
11454 char *buf = rs->buf;
11455 char *endbuf = rs->buf + get_remote_packet_size ();
11456
11457 if (packet->support != PACKET_ENABLE)
11458 error (_("Target does not support branch tracing."));
11459
11460 set_general_thread (tinfo->ptid);
11461
11462 buf += xsnprintf (buf, endbuf - buf, "%s", packet->name);
11463 putpkt (rs->buf);
11464 getpkt (&rs->buf, &rs->buf_size, 0);
11465
11466 if (packet_ok (rs->buf, packet) == PACKET_ERROR)
11467 {
11468 if (rs->buf[0] == 'E' && rs->buf[1] == '.')
11469 error (_("Could not disable branch tracing for %s: %s"),
11470 target_pid_to_str (tinfo->ptid), rs->buf + 2);
11471 else
11472 error (_("Could not disable branch tracing for %s."),
11473 target_pid_to_str (tinfo->ptid));
11474 }
11475
11476 xfree (tinfo);
11477 }
11478
11479 /* Teardown branch tracing. */
11480
11481 static void
11482 remote_teardown_btrace (struct btrace_target_info *tinfo)
11483 {
11484 /* We must not talk to the target during teardown. */
11485 xfree (tinfo);
11486 }
11487
11488 /* Read the branch trace. */
11489
11490 static VEC (btrace_block_s) *
11491 remote_read_btrace (struct btrace_target_info *tinfo,
11492 enum btrace_read_type type)
11493 {
11494 struct packet_config *packet = &remote_protocol_packets[PACKET_qXfer_btrace];
11495 struct remote_state *rs = get_remote_state ();
11496 VEC (btrace_block_s) *btrace = NULL;
11497 const char *annex;
11498 char *xml;
11499
11500 if (packet->support != PACKET_ENABLE)
11501 error (_("Target does not support branch tracing."));
11502
11503 #if !defined(HAVE_LIBEXPAT)
11504 error (_("Cannot process branch tracing result. XML parsing not supported."));
11505 #endif
11506
11507 switch (type)
11508 {
11509 case BTRACE_READ_ALL:
11510 annex = "all";
11511 break;
11512 case BTRACE_READ_NEW:
11513 annex = "new";
11514 break;
11515 default:
11516 internal_error (__FILE__, __LINE__,
11517 _("Bad branch tracing read type: %u."),
11518 (unsigned int) type);
11519 }
11520
11521 xml = target_read_stralloc (&current_target,
11522 TARGET_OBJECT_BTRACE, annex);
11523 if (xml != NULL)
11524 {
11525 struct cleanup *cleanup = make_cleanup (xfree, xml);
11526
11527 btrace = parse_xml_btrace (xml);
11528 do_cleanups (cleanup);
11529 }
11530
11531 return btrace;
11532 }
11533
11534 static int
11535 remote_augmented_libraries_svr4_read (void)
11536 {
11537 struct remote_state *rs = get_remote_state ();
11538
11539 return rs->augmented_libraries_svr4_read;
11540 }
11541
11542 static void
11543 init_remote_ops (void)
11544 {
11545 remote_ops.to_shortname = "remote";
11546 remote_ops.to_longname = "Remote serial target in gdb-specific protocol";
11547 remote_ops.to_doc =
11548 "Use a remote computer via a serial line, using a gdb-specific protocol.\n\
11549 Specify the serial device it is connected to\n\
11550 (e.g. /dev/ttyS0, /dev/ttya, COM1, etc.).";
11551 remote_ops.to_open = remote_open;
11552 remote_ops.to_close = remote_close;
11553 remote_ops.to_detach = remote_detach;
11554 remote_ops.to_disconnect = remote_disconnect;
11555 remote_ops.to_resume = remote_resume;
11556 remote_ops.to_wait = remote_wait;
11557 remote_ops.to_fetch_registers = remote_fetch_registers;
11558 remote_ops.to_store_registers = remote_store_registers;
11559 remote_ops.to_prepare_to_store = remote_prepare_to_store;
11560 remote_ops.to_files_info = remote_files_info;
11561 remote_ops.to_insert_breakpoint = remote_insert_breakpoint;
11562 remote_ops.to_remove_breakpoint = remote_remove_breakpoint;
11563 remote_ops.to_stopped_by_watchpoint = remote_stopped_by_watchpoint;
11564 remote_ops.to_stopped_data_address = remote_stopped_data_address;
11565 remote_ops.to_watchpoint_addr_within_range =
11566 remote_watchpoint_addr_within_range;
11567 remote_ops.to_can_use_hw_breakpoint = remote_check_watch_resources;
11568 remote_ops.to_insert_hw_breakpoint = remote_insert_hw_breakpoint;
11569 remote_ops.to_remove_hw_breakpoint = remote_remove_hw_breakpoint;
11570 remote_ops.to_region_ok_for_hw_watchpoint
11571 = remote_region_ok_for_hw_watchpoint;
11572 remote_ops.to_insert_watchpoint = remote_insert_watchpoint;
11573 remote_ops.to_remove_watchpoint = remote_remove_watchpoint;
11574 remote_ops.to_kill = remote_kill;
11575 remote_ops.to_load = generic_load;
11576 remote_ops.to_mourn_inferior = remote_mourn;
11577 remote_ops.to_pass_signals = remote_pass_signals;
11578 remote_ops.to_program_signals = remote_program_signals;
11579 remote_ops.to_thread_alive = remote_thread_alive;
11580 remote_ops.to_find_new_threads = remote_threads_info;
11581 remote_ops.to_pid_to_str = remote_pid_to_str;
11582 remote_ops.to_extra_thread_info = remote_threads_extra_info;
11583 remote_ops.to_get_ada_task_ptid = remote_get_ada_task_ptid;
11584 remote_ops.to_stop = remote_stop;
11585 remote_ops.to_xfer_partial = remote_xfer_partial;
11586 remote_ops.to_rcmd = remote_rcmd;
11587 remote_ops.to_log_command = serial_log_command;
11588 remote_ops.to_get_thread_local_address = remote_get_thread_local_address;
11589 remote_ops.to_stratum = process_stratum;
11590 remote_ops.to_has_all_memory = default_child_has_all_memory;
11591 remote_ops.to_has_memory = default_child_has_memory;
11592 remote_ops.to_has_stack = default_child_has_stack;
11593 remote_ops.to_has_registers = default_child_has_registers;
11594 remote_ops.to_has_execution = default_child_has_execution;
11595 remote_ops.to_has_thread_control = tc_schedlock; /* can lock scheduler */
11596 remote_ops.to_can_execute_reverse = remote_can_execute_reverse;
11597 remote_ops.to_magic = OPS_MAGIC;
11598 remote_ops.to_memory_map = remote_memory_map;
11599 remote_ops.to_flash_erase = remote_flash_erase;
11600 remote_ops.to_flash_done = remote_flash_done;
11601 remote_ops.to_read_description = remote_read_description;
11602 remote_ops.to_search_memory = remote_search_memory;
11603 remote_ops.to_can_async_p = remote_can_async_p;
11604 remote_ops.to_is_async_p = remote_is_async_p;
11605 remote_ops.to_async = remote_async;
11606 remote_ops.to_terminal_inferior = remote_terminal_inferior;
11607 remote_ops.to_terminal_ours = remote_terminal_ours;
11608 remote_ops.to_supports_non_stop = remote_supports_non_stop;
11609 remote_ops.to_supports_multi_process = remote_supports_multi_process;
11610 remote_ops.to_supports_disable_randomization
11611 = remote_supports_disable_randomization;
11612 remote_ops.to_fileio_open = remote_hostio_open;
11613 remote_ops.to_fileio_pwrite = remote_hostio_pwrite;
11614 remote_ops.to_fileio_pread = remote_hostio_pread;
11615 remote_ops.to_fileio_close = remote_hostio_close;
11616 remote_ops.to_fileio_unlink = remote_hostio_unlink;
11617 remote_ops.to_fileio_readlink = remote_hostio_readlink;
11618 remote_ops.to_supports_enable_disable_tracepoint = remote_supports_enable_disable_tracepoint;
11619 remote_ops.to_supports_string_tracing = remote_supports_string_tracing;
11620 remote_ops.to_supports_evaluation_of_breakpoint_conditions = remote_supports_cond_breakpoints;
11621 remote_ops.to_can_run_breakpoint_commands = remote_can_run_breakpoint_commands;
11622 remote_ops.to_trace_init = remote_trace_init;
11623 remote_ops.to_download_tracepoint = remote_download_tracepoint;
11624 remote_ops.to_can_download_tracepoint = remote_can_download_tracepoint;
11625 remote_ops.to_download_trace_state_variable
11626 = remote_download_trace_state_variable;
11627 remote_ops.to_enable_tracepoint = remote_enable_tracepoint;
11628 remote_ops.to_disable_tracepoint = remote_disable_tracepoint;
11629 remote_ops.to_trace_set_readonly_regions = remote_trace_set_readonly_regions;
11630 remote_ops.to_trace_start = remote_trace_start;
11631 remote_ops.to_get_trace_status = remote_get_trace_status;
11632 remote_ops.to_get_tracepoint_status = remote_get_tracepoint_status;
11633 remote_ops.to_trace_stop = remote_trace_stop;
11634 remote_ops.to_trace_find = remote_trace_find;
11635 remote_ops.to_get_trace_state_variable_value
11636 = remote_get_trace_state_variable_value;
11637 remote_ops.to_save_trace_data = remote_save_trace_data;
11638 remote_ops.to_upload_tracepoints = remote_upload_tracepoints;
11639 remote_ops.to_upload_trace_state_variables
11640 = remote_upload_trace_state_variables;
11641 remote_ops.to_get_raw_trace_data = remote_get_raw_trace_data;
11642 remote_ops.to_get_min_fast_tracepoint_insn_len = remote_get_min_fast_tracepoint_insn_len;
11643 remote_ops.to_set_disconnected_tracing = remote_set_disconnected_tracing;
11644 remote_ops.to_set_circular_trace_buffer = remote_set_circular_trace_buffer;
11645 remote_ops.to_set_trace_buffer_size = remote_set_trace_buffer_size;
11646 remote_ops.to_set_trace_notes = remote_set_trace_notes;
11647 remote_ops.to_core_of_thread = remote_core_of_thread;
11648 remote_ops.to_verify_memory = remote_verify_memory;
11649 remote_ops.to_get_tib_address = remote_get_tib_address;
11650 remote_ops.to_set_permissions = remote_set_permissions;
11651 remote_ops.to_static_tracepoint_marker_at
11652 = remote_static_tracepoint_marker_at;
11653 remote_ops.to_static_tracepoint_markers_by_strid
11654 = remote_static_tracepoint_markers_by_strid;
11655 remote_ops.to_traceframe_info = remote_traceframe_info;
11656 remote_ops.to_use_agent = remote_use_agent;
11657 remote_ops.to_can_use_agent = remote_can_use_agent;
11658 remote_ops.to_supports_btrace = remote_supports_btrace;
11659 remote_ops.to_enable_btrace = remote_enable_btrace;
11660 remote_ops.to_disable_btrace = remote_disable_btrace;
11661 remote_ops.to_teardown_btrace = remote_teardown_btrace;
11662 remote_ops.to_read_btrace = remote_read_btrace;
11663 remote_ops.to_augmented_libraries_svr4_read =
11664 remote_augmented_libraries_svr4_read;
11665 }
11666
11667 /* Set up the extended remote vector by making a copy of the standard
11668 remote vector and adding to it. */
11669
11670 static void
11671 init_extended_remote_ops (void)
11672 {
11673 extended_remote_ops = remote_ops;
11674
11675 extended_remote_ops.to_shortname = "extended-remote";
11676 extended_remote_ops.to_longname =
11677 "Extended remote serial target in gdb-specific protocol";
11678 extended_remote_ops.to_doc =
11679 "Use a remote computer via a serial line, using a gdb-specific protocol.\n\
11680 Specify the serial device it is connected to (e.g. /dev/ttya).";
11681 extended_remote_ops.to_open = extended_remote_open;
11682 extended_remote_ops.to_create_inferior = extended_remote_create_inferior;
11683 extended_remote_ops.to_mourn_inferior = extended_remote_mourn;
11684 extended_remote_ops.to_detach = extended_remote_detach;
11685 extended_remote_ops.to_attach = extended_remote_attach;
11686 extended_remote_ops.to_kill = extended_remote_kill;
11687 extended_remote_ops.to_supports_disable_randomization
11688 = extended_remote_supports_disable_randomization;
11689 }
11690
11691 static int
11692 remote_can_async_p (void)
11693 {
11694 struct remote_state *rs = get_remote_state ();
11695
11696 if (!target_async_permitted)
11697 /* We only enable async when the user specifically asks for it. */
11698 return 0;
11699
11700 /* We're async whenever the serial device is. */
11701 return serial_can_async_p (rs->remote_desc);
11702 }
11703
11704 static int
11705 remote_is_async_p (void)
11706 {
11707 struct remote_state *rs = get_remote_state ();
11708
11709 if (!target_async_permitted)
11710 /* We only enable async when the user specifically asks for it. */
11711 return 0;
11712
11713 /* We're async whenever the serial device is. */
11714 return serial_is_async_p (rs->remote_desc);
11715 }
11716
11717 /* Pass the SERIAL event on and up to the client. One day this code
11718 will be able to delay notifying the client of an event until the
11719 point where an entire packet has been received. */
11720
11721 static serial_event_ftype remote_async_serial_handler;
11722
11723 static void
11724 remote_async_serial_handler (struct serial *scb, void *context)
11725 {
11726 struct remote_state *rs = context;
11727
11728 /* Don't propogate error information up to the client. Instead let
11729 the client find out about the error by querying the target. */
11730 rs->async_client_callback (INF_REG_EVENT, rs->async_client_context);
11731 }
11732
11733 static void
11734 remote_async_inferior_event_handler (gdb_client_data data)
11735 {
11736 inferior_event_handler (INF_REG_EVENT, NULL);
11737 }
11738
11739 static void
11740 remote_async (void (*callback) (enum inferior_event_type event_type,
11741 void *context), void *context)
11742 {
11743 struct remote_state *rs = get_remote_state ();
11744
11745 if (callback != NULL)
11746 {
11747 serial_async (rs->remote_desc, remote_async_serial_handler, rs);
11748 rs->async_client_callback = callback;
11749 rs->async_client_context = context;
11750 }
11751 else
11752 serial_async (rs->remote_desc, NULL, NULL);
11753 }
11754
11755 static void
11756 set_remote_cmd (char *args, int from_tty)
11757 {
11758 help_list (remote_set_cmdlist, "set remote ", -1, gdb_stdout);
11759 }
11760
11761 static void
11762 show_remote_cmd (char *args, int from_tty)
11763 {
11764 /* We can't just use cmd_show_list here, because we want to skip
11765 the redundant "show remote Z-packet" and the legacy aliases. */
11766 struct cleanup *showlist_chain;
11767 struct cmd_list_element *list = remote_show_cmdlist;
11768 struct ui_out *uiout = current_uiout;
11769
11770 showlist_chain = make_cleanup_ui_out_tuple_begin_end (uiout, "showlist");
11771 for (; list != NULL; list = list->next)
11772 if (strcmp (list->name, "Z-packet") == 0)
11773 continue;
11774 else if (list->type == not_set_cmd)
11775 /* Alias commands are exactly like the original, except they
11776 don't have the normal type. */
11777 continue;
11778 else
11779 {
11780 struct cleanup *option_chain
11781 = make_cleanup_ui_out_tuple_begin_end (uiout, "option");
11782
11783 ui_out_field_string (uiout, "name", list->name);
11784 ui_out_text (uiout, ": ");
11785 if (list->type == show_cmd)
11786 do_show_command ((char *) NULL, from_tty, list);
11787 else
11788 cmd_func (list, NULL, from_tty);
11789 /* Close the tuple. */
11790 do_cleanups (option_chain);
11791 }
11792
11793 /* Close the tuple. */
11794 do_cleanups (showlist_chain);
11795 }
11796
11797
11798 /* Function to be called whenever a new objfile (shlib) is detected. */
11799 static void
11800 remote_new_objfile (struct objfile *objfile)
11801 {
11802 struct remote_state *rs = get_remote_state ();
11803
11804 if (rs->remote_desc != 0) /* Have a remote connection. */
11805 remote_check_symbols ();
11806 }
11807
11808 /* Pull all the tracepoints defined on the target and create local
11809 data structures representing them. We don't want to create real
11810 tracepoints yet, we don't want to mess up the user's existing
11811 collection. */
11812
11813 static int
11814 remote_upload_tracepoints (struct uploaded_tp **utpp)
11815 {
11816 struct remote_state *rs = get_remote_state ();
11817 char *p;
11818
11819 /* Ask for a first packet of tracepoint definition. */
11820 putpkt ("qTfP");
11821 getpkt (&rs->buf, &rs->buf_size, 0);
11822 p = rs->buf;
11823 while (*p && *p != 'l')
11824 {
11825 parse_tracepoint_definition (p, utpp);
11826 /* Ask for another packet of tracepoint definition. */
11827 putpkt ("qTsP");
11828 getpkt (&rs->buf, &rs->buf_size, 0);
11829 p = rs->buf;
11830 }
11831 return 0;
11832 }
11833
11834 static int
11835 remote_upload_trace_state_variables (struct uploaded_tsv **utsvp)
11836 {
11837 struct remote_state *rs = get_remote_state ();
11838 char *p;
11839
11840 /* Ask for a first packet of variable definition. */
11841 putpkt ("qTfV");
11842 getpkt (&rs->buf, &rs->buf_size, 0);
11843 p = rs->buf;
11844 while (*p && *p != 'l')
11845 {
11846 parse_tsv_definition (p, utsvp);
11847 /* Ask for another packet of variable definition. */
11848 putpkt ("qTsV");
11849 getpkt (&rs->buf, &rs->buf_size, 0);
11850 p = rs->buf;
11851 }
11852 return 0;
11853 }
11854
11855 /* The "set/show range-stepping" show hook. */
11856
11857 static void
11858 show_range_stepping (struct ui_file *file, int from_tty,
11859 struct cmd_list_element *c,
11860 const char *value)
11861 {
11862 fprintf_filtered (file,
11863 _("Debugger's willingness to use range stepping "
11864 "is %s.\n"), value);
11865 }
11866
11867 /* The "set/show range-stepping" set hook. */
11868
11869 static void
11870 set_range_stepping (char *ignore_args, int from_tty,
11871 struct cmd_list_element *c)
11872 {
11873 struct remote_state *rs = get_remote_state ();
11874
11875 /* Whene enabling, check whether range stepping is actually
11876 supported by the target, and warn if not. */
11877 if (use_range_stepping)
11878 {
11879 if (rs->remote_desc != NULL)
11880 {
11881 if (remote_protocol_packets[PACKET_vCont].support == PACKET_SUPPORT_UNKNOWN)
11882 remote_vcont_probe (rs);
11883
11884 if (remote_protocol_packets[PACKET_vCont].support == PACKET_ENABLE
11885 && rs->supports_vCont.r)
11886 return;
11887 }
11888
11889 warning (_("Range stepping is not supported by the current target"));
11890 }
11891 }
11892
11893 void
11894 _initialize_remote (void)
11895 {
11896 struct remote_state *rs;
11897 struct cmd_list_element *cmd;
11898 const char *cmd_name;
11899
11900 /* architecture specific data */
11901 remote_gdbarch_data_handle =
11902 gdbarch_data_register_post_init (init_remote_state);
11903 remote_g_packet_data_handle =
11904 gdbarch_data_register_pre_init (remote_g_packet_data_init);
11905
11906 /* Initialize the per-target state. At the moment there is only one
11907 of these, not one per target. Only one target is active at a
11908 time. */
11909 remote_state = new_remote_state ();
11910
11911 init_remote_ops ();
11912 add_target (&remote_ops);
11913
11914 init_extended_remote_ops ();
11915 add_target (&extended_remote_ops);
11916
11917 /* Hook into new objfile notification. */
11918 observer_attach_new_objfile (remote_new_objfile);
11919 /* We're no longer interested in notification events of an inferior
11920 when it exits. */
11921 observer_attach_inferior_exit (discard_pending_stop_replies);
11922
11923 /* Set up signal handlers. */
11924 async_sigint_remote_token =
11925 create_async_signal_handler (async_remote_interrupt, NULL);
11926 async_sigint_remote_twice_token =
11927 create_async_signal_handler (async_remote_interrupt_twice, NULL);
11928
11929 #if 0
11930 init_remote_threadtests ();
11931 #endif
11932
11933 stop_reply_queue = QUEUE_alloc (stop_reply_p, stop_reply_xfree);
11934 /* set/show remote ... */
11935
11936 add_prefix_cmd ("remote", class_maintenance, set_remote_cmd, _("\
11937 Remote protocol specific variables\n\
11938 Configure various remote-protocol specific variables such as\n\
11939 the packets being used"),
11940 &remote_set_cmdlist, "set remote ",
11941 0 /* allow-unknown */, &setlist);
11942 add_prefix_cmd ("remote", class_maintenance, show_remote_cmd, _("\
11943 Remote protocol specific variables\n\
11944 Configure various remote-protocol specific variables such as\n\
11945 the packets being used"),
11946 &remote_show_cmdlist, "show remote ",
11947 0 /* allow-unknown */, &showlist);
11948
11949 add_cmd ("compare-sections", class_obscure, compare_sections_command, _("\
11950 Compare section data on target to the exec file.\n\
11951 Argument is a single section name (default: all loaded sections)."),
11952 &cmdlist);
11953
11954 add_cmd ("packet", class_maintenance, packet_command, _("\
11955 Send an arbitrary packet to a remote target.\n\
11956 maintenance packet TEXT\n\
11957 If GDB is talking to an inferior via the GDB serial protocol, then\n\
11958 this command sends the string TEXT to the inferior, and displays the\n\
11959 response packet. GDB supplies the initial `$' character, and the\n\
11960 terminating `#' character and checksum."),
11961 &maintenancelist);
11962
11963 add_setshow_boolean_cmd ("remotebreak", no_class, &remote_break, _("\
11964 Set whether to send break if interrupted."), _("\
11965 Show whether to send break if interrupted."), _("\
11966 If set, a break, instead of a cntrl-c, is sent to the remote target."),
11967 set_remotebreak, show_remotebreak,
11968 &setlist, &showlist);
11969 cmd_name = "remotebreak";
11970 cmd = lookup_cmd (&cmd_name, setlist, "", -1, 1);
11971 deprecate_cmd (cmd, "set remote interrupt-sequence");
11972 cmd_name = "remotebreak"; /* needed because lookup_cmd updates the pointer */
11973 cmd = lookup_cmd (&cmd_name, showlist, "", -1, 1);
11974 deprecate_cmd (cmd, "show remote interrupt-sequence");
11975
11976 add_setshow_enum_cmd ("interrupt-sequence", class_support,
11977 interrupt_sequence_modes, &interrupt_sequence_mode,
11978 _("\
11979 Set interrupt sequence to remote target."), _("\
11980 Show interrupt sequence to remote target."), _("\
11981 Valid value is \"Ctrl-C\", \"BREAK\" or \"BREAK-g\". The default is \"Ctrl-C\"."),
11982 NULL, show_interrupt_sequence,
11983 &remote_set_cmdlist,
11984 &remote_show_cmdlist);
11985
11986 add_setshow_boolean_cmd ("interrupt-on-connect", class_support,
11987 &interrupt_on_connect, _("\
11988 Set whether interrupt-sequence is sent to remote target when gdb connects to."), _(" \
11989 Show whether interrupt-sequence is sent to remote target when gdb connects to."), _(" \
11990 If set, interrupt sequence is sent to remote target."),
11991 NULL, NULL,
11992 &remote_set_cmdlist, &remote_show_cmdlist);
11993
11994 /* Install commands for configuring memory read/write packets. */
11995
11996 add_cmd ("remotewritesize", no_class, set_memory_write_packet_size, _("\
11997 Set the maximum number of bytes per memory write packet (deprecated)."),
11998 &setlist);
11999 add_cmd ("remotewritesize", no_class, show_memory_write_packet_size, _("\
12000 Show the maximum number of bytes per memory write packet (deprecated)."),
12001 &showlist);
12002 add_cmd ("memory-write-packet-size", no_class,
12003 set_memory_write_packet_size, _("\
12004 Set the maximum number of bytes per memory-write packet.\n\
12005 Specify the number of bytes in a packet or 0 (zero) for the\n\
12006 default packet size. The actual limit is further reduced\n\
12007 dependent on the target. Specify ``fixed'' to disable the\n\
12008 further restriction and ``limit'' to enable that restriction."),
12009 &remote_set_cmdlist);
12010 add_cmd ("memory-read-packet-size", no_class,
12011 set_memory_read_packet_size, _("\
12012 Set the maximum number of bytes per memory-read packet.\n\
12013 Specify the number of bytes in a packet or 0 (zero) for the\n\
12014 default packet size. The actual limit is further reduced\n\
12015 dependent on the target. Specify ``fixed'' to disable the\n\
12016 further restriction and ``limit'' to enable that restriction."),
12017 &remote_set_cmdlist);
12018 add_cmd ("memory-write-packet-size", no_class,
12019 show_memory_write_packet_size,
12020 _("Show the maximum number of bytes per memory-write packet."),
12021 &remote_show_cmdlist);
12022 add_cmd ("memory-read-packet-size", no_class,
12023 show_memory_read_packet_size,
12024 _("Show the maximum number of bytes per memory-read packet."),
12025 &remote_show_cmdlist);
12026
12027 add_setshow_zinteger_cmd ("hardware-watchpoint-limit", no_class,
12028 &remote_hw_watchpoint_limit, _("\
12029 Set the maximum number of target hardware watchpoints."), _("\
12030 Show the maximum number of target hardware watchpoints."), _("\
12031 Specify a negative limit for unlimited."),
12032 NULL, NULL, /* FIXME: i18n: The maximum
12033 number of target hardware
12034 watchpoints is %s. */
12035 &remote_set_cmdlist, &remote_show_cmdlist);
12036 add_setshow_zinteger_cmd ("hardware-watchpoint-length-limit", no_class,
12037 &remote_hw_watchpoint_length_limit, _("\
12038 Set the maximum length (in bytes) of a target hardware watchpoint."), _("\
12039 Show the maximum length (in bytes) of a target hardware watchpoint."), _("\
12040 Specify a negative limit for unlimited."),
12041 NULL, NULL, /* FIXME: i18n: The maximum
12042 length (in bytes) of a target
12043 hardware watchpoint is %s. */
12044 &remote_set_cmdlist, &remote_show_cmdlist);
12045 add_setshow_zinteger_cmd ("hardware-breakpoint-limit", no_class,
12046 &remote_hw_breakpoint_limit, _("\
12047 Set the maximum number of target hardware breakpoints."), _("\
12048 Show the maximum number of target hardware breakpoints."), _("\
12049 Specify a negative limit for unlimited."),
12050 NULL, NULL, /* FIXME: i18n: The maximum
12051 number of target hardware
12052 breakpoints is %s. */
12053 &remote_set_cmdlist, &remote_show_cmdlist);
12054
12055 add_setshow_zuinteger_cmd ("remoteaddresssize", class_obscure,
12056 &remote_address_size, _("\
12057 Set the maximum size of the address (in bits) in a memory packet."), _("\
12058 Show the maximum size of the address (in bits) in a memory packet."), NULL,
12059 NULL,
12060 NULL, /* FIXME: i18n: */
12061 &setlist, &showlist);
12062
12063 add_packet_config_cmd (&remote_protocol_packets[PACKET_X],
12064 "X", "binary-download", 1);
12065
12066 add_packet_config_cmd (&remote_protocol_packets[PACKET_vCont],
12067 "vCont", "verbose-resume", 0);
12068
12069 add_packet_config_cmd (&remote_protocol_packets[PACKET_QPassSignals],
12070 "QPassSignals", "pass-signals", 0);
12071
12072 add_packet_config_cmd (&remote_protocol_packets[PACKET_QProgramSignals],
12073 "QProgramSignals", "program-signals", 0);
12074
12075 add_packet_config_cmd (&remote_protocol_packets[PACKET_qSymbol],
12076 "qSymbol", "symbol-lookup", 0);
12077
12078 add_packet_config_cmd (&remote_protocol_packets[PACKET_P],
12079 "P", "set-register", 1);
12080
12081 add_packet_config_cmd (&remote_protocol_packets[PACKET_p],
12082 "p", "fetch-register", 1);
12083
12084 add_packet_config_cmd (&remote_protocol_packets[PACKET_Z0],
12085 "Z0", "software-breakpoint", 0);
12086
12087 add_packet_config_cmd (&remote_protocol_packets[PACKET_Z1],
12088 "Z1", "hardware-breakpoint", 0);
12089
12090 add_packet_config_cmd (&remote_protocol_packets[PACKET_Z2],
12091 "Z2", "write-watchpoint", 0);
12092
12093 add_packet_config_cmd (&remote_protocol_packets[PACKET_Z3],
12094 "Z3", "read-watchpoint", 0);
12095
12096 add_packet_config_cmd (&remote_protocol_packets[PACKET_Z4],
12097 "Z4", "access-watchpoint", 0);
12098
12099 add_packet_config_cmd (&remote_protocol_packets[PACKET_qXfer_auxv],
12100 "qXfer:auxv:read", "read-aux-vector", 0);
12101
12102 add_packet_config_cmd (&remote_protocol_packets[PACKET_qXfer_features],
12103 "qXfer:features:read", "target-features", 0);
12104
12105 add_packet_config_cmd (&remote_protocol_packets[PACKET_qXfer_libraries],
12106 "qXfer:libraries:read", "library-info", 0);
12107
12108 add_packet_config_cmd (&remote_protocol_packets[PACKET_qXfer_libraries_svr4],
12109 "qXfer:libraries-svr4:read", "library-info-svr4", 0);
12110
12111 add_packet_config_cmd (&remote_protocol_packets[PACKET_qXfer_memory_map],
12112 "qXfer:memory-map:read", "memory-map", 0);
12113
12114 add_packet_config_cmd (&remote_protocol_packets[PACKET_qXfer_spu_read],
12115 "qXfer:spu:read", "read-spu-object", 0);
12116
12117 add_packet_config_cmd (&remote_protocol_packets[PACKET_qXfer_spu_write],
12118 "qXfer:spu:write", "write-spu-object", 0);
12119
12120 add_packet_config_cmd (&remote_protocol_packets[PACKET_qXfer_osdata],
12121 "qXfer:osdata:read", "osdata", 0);
12122
12123 add_packet_config_cmd (&remote_protocol_packets[PACKET_qXfer_threads],
12124 "qXfer:threads:read", "threads", 0);
12125
12126 add_packet_config_cmd (&remote_protocol_packets[PACKET_qXfer_siginfo_read],
12127 "qXfer:siginfo:read", "read-siginfo-object", 0);
12128
12129 add_packet_config_cmd (&remote_protocol_packets[PACKET_qXfer_siginfo_write],
12130 "qXfer:siginfo:write", "write-siginfo-object", 0);
12131
12132 add_packet_config_cmd
12133 (&remote_protocol_packets[PACKET_qXfer_traceframe_info],
12134 "qXfer:traceframe-info:read", "traceframe-info", 0);
12135
12136 add_packet_config_cmd (&remote_protocol_packets[PACKET_qXfer_uib],
12137 "qXfer:uib:read", "unwind-info-block", 0);
12138
12139 add_packet_config_cmd (&remote_protocol_packets[PACKET_qGetTLSAddr],
12140 "qGetTLSAddr", "get-thread-local-storage-address",
12141 0);
12142
12143 add_packet_config_cmd (&remote_protocol_packets[PACKET_qGetTIBAddr],
12144 "qGetTIBAddr", "get-thread-information-block-address",
12145 0);
12146
12147 add_packet_config_cmd (&remote_protocol_packets[PACKET_bc],
12148 "bc", "reverse-continue", 0);
12149
12150 add_packet_config_cmd (&remote_protocol_packets[PACKET_bs],
12151 "bs", "reverse-step", 0);
12152
12153 add_packet_config_cmd (&remote_protocol_packets[PACKET_qSupported],
12154 "qSupported", "supported-packets", 0);
12155
12156 add_packet_config_cmd (&remote_protocol_packets[PACKET_qSearch_memory],
12157 "qSearch:memory", "search-memory", 0);
12158
12159 add_packet_config_cmd (&remote_protocol_packets[PACKET_qTStatus],
12160 "qTStatus", "trace-status", 0);
12161
12162 add_packet_config_cmd (&remote_protocol_packets[PACKET_vFile_open],
12163 "vFile:open", "hostio-open", 0);
12164
12165 add_packet_config_cmd (&remote_protocol_packets[PACKET_vFile_pread],
12166 "vFile:pread", "hostio-pread", 0);
12167
12168 add_packet_config_cmd (&remote_protocol_packets[PACKET_vFile_pwrite],
12169 "vFile:pwrite", "hostio-pwrite", 0);
12170
12171 add_packet_config_cmd (&remote_protocol_packets[PACKET_vFile_close],
12172 "vFile:close", "hostio-close", 0);
12173
12174 add_packet_config_cmd (&remote_protocol_packets[PACKET_vFile_unlink],
12175 "vFile:unlink", "hostio-unlink", 0);
12176
12177 add_packet_config_cmd (&remote_protocol_packets[PACKET_vFile_readlink],
12178 "vFile:readlink", "hostio-readlink", 0);
12179
12180 add_packet_config_cmd (&remote_protocol_packets[PACKET_vAttach],
12181 "vAttach", "attach", 0);
12182
12183 add_packet_config_cmd (&remote_protocol_packets[PACKET_vRun],
12184 "vRun", "run", 0);
12185
12186 add_packet_config_cmd (&remote_protocol_packets[PACKET_QStartNoAckMode],
12187 "QStartNoAckMode", "noack", 0);
12188
12189 add_packet_config_cmd (&remote_protocol_packets[PACKET_vKill],
12190 "vKill", "kill", 0);
12191
12192 add_packet_config_cmd (&remote_protocol_packets[PACKET_qAttached],
12193 "qAttached", "query-attached", 0);
12194
12195 add_packet_config_cmd (&remote_protocol_packets[PACKET_ConditionalTracepoints],
12196 "ConditionalTracepoints",
12197 "conditional-tracepoints", 0);
12198
12199 add_packet_config_cmd (&remote_protocol_packets[PACKET_ConditionalBreakpoints],
12200 "ConditionalBreakpoints",
12201 "conditional-breakpoints", 0);
12202
12203 add_packet_config_cmd (&remote_protocol_packets[PACKET_BreakpointCommands],
12204 "BreakpointCommands",
12205 "breakpoint-commands", 0);
12206
12207 add_packet_config_cmd (&remote_protocol_packets[PACKET_FastTracepoints],
12208 "FastTracepoints", "fast-tracepoints", 0);
12209
12210 add_packet_config_cmd (&remote_protocol_packets[PACKET_TracepointSource],
12211 "TracepointSource", "TracepointSource", 0);
12212
12213 add_packet_config_cmd (&remote_protocol_packets[PACKET_QAllow],
12214 "QAllow", "allow", 0);
12215
12216 add_packet_config_cmd (&remote_protocol_packets[PACKET_StaticTracepoints],
12217 "StaticTracepoints", "static-tracepoints", 0);
12218
12219 add_packet_config_cmd (&remote_protocol_packets[PACKET_InstallInTrace],
12220 "InstallInTrace", "install-in-trace", 0);
12221
12222 add_packet_config_cmd (&remote_protocol_packets[PACKET_qXfer_statictrace_read],
12223 "qXfer:statictrace:read", "read-sdata-object", 0);
12224
12225 add_packet_config_cmd (&remote_protocol_packets[PACKET_qXfer_fdpic],
12226 "qXfer:fdpic:read", "read-fdpic-loadmap", 0);
12227
12228 add_packet_config_cmd (&remote_protocol_packets[PACKET_QDisableRandomization],
12229 "QDisableRandomization", "disable-randomization", 0);
12230
12231 add_packet_config_cmd (&remote_protocol_packets[PACKET_QAgent],
12232 "QAgent", "agent", 0);
12233
12234 add_packet_config_cmd (&remote_protocol_packets[PACKET_QTBuffer_size],
12235 "QTBuffer:size", "trace-buffer-size", 0);
12236
12237 add_packet_config_cmd (&remote_protocol_packets[PACKET_Qbtrace_off],
12238 "Qbtrace:off", "disable-btrace", 0);
12239
12240 add_packet_config_cmd (&remote_protocol_packets[PACKET_Qbtrace_bts],
12241 "Qbtrace:bts", "enable-btrace", 0);
12242
12243 add_packet_config_cmd (&remote_protocol_packets[PACKET_qXfer_btrace],
12244 "qXfer:btrace", "read-btrace", 0);
12245
12246 /* Keep the old ``set remote Z-packet ...'' working. Each individual
12247 Z sub-packet has its own set and show commands, but users may
12248 have sets to this variable in their .gdbinit files (or in their
12249 documentation). */
12250 add_setshow_auto_boolean_cmd ("Z-packet", class_obscure,
12251 &remote_Z_packet_detect, _("\
12252 Set use of remote protocol `Z' packets"), _("\
12253 Show use of remote protocol `Z' packets "), _("\
12254 When set, GDB will attempt to use the remote breakpoint and watchpoint\n\
12255 packets."),
12256 set_remote_protocol_Z_packet_cmd,
12257 show_remote_protocol_Z_packet_cmd,
12258 /* FIXME: i18n: Use of remote protocol
12259 `Z' packets is %s. */
12260 &remote_set_cmdlist, &remote_show_cmdlist);
12261
12262 add_prefix_cmd ("remote", class_files, remote_command, _("\
12263 Manipulate files on the remote system\n\
12264 Transfer files to and from the remote target system."),
12265 &remote_cmdlist, "remote ",
12266 0 /* allow-unknown */, &cmdlist);
12267
12268 add_cmd ("put", class_files, remote_put_command,
12269 _("Copy a local file to the remote system."),
12270 &remote_cmdlist);
12271
12272 add_cmd ("get", class_files, remote_get_command,
12273 _("Copy a remote file to the local system."),
12274 &remote_cmdlist);
12275
12276 add_cmd ("delete", class_files, remote_delete_command,
12277 _("Delete a remote file."),
12278 &remote_cmdlist);
12279
12280 remote_exec_file = xstrdup ("");
12281 add_setshow_string_noescape_cmd ("exec-file", class_files,
12282 &remote_exec_file, _("\
12283 Set the remote pathname for \"run\""), _("\
12284 Show the remote pathname for \"run\""), NULL, NULL, NULL,
12285 &remote_set_cmdlist, &remote_show_cmdlist);
12286
12287 add_setshow_boolean_cmd ("range-stepping", class_run,
12288 &use_range_stepping, _("\
12289 Enable or disable range stepping."), _("\
12290 Show whether target-assisted range stepping is enabled."), _("\
12291 If on, and the target supports it, when stepping a source line, GDB\n\
12292 tells the target to step the corresponding range of addresses itself instead\n\
12293 of issuing multiple single-steps. This speeds up source level\n\
12294 stepping. If off, GDB always issues single-steps, even if range\n\
12295 stepping is supported by the target. The default is on."),
12296 set_range_stepping,
12297 show_range_stepping,
12298 &setlist,
12299 &showlist);
12300
12301 /* Eventually initialize fileio. See fileio.c */
12302 initialize_remote_fileio (remote_set_cmdlist, remote_show_cmdlist);
12303
12304 /* Take advantage of the fact that the LWP field is not used, to tag
12305 special ptids with it set to != 0. */
12306 magic_null_ptid = ptid_build (42000, 1, -1);
12307 not_sent_ptid = ptid_build (42000, 1, -2);
12308 any_thread_ptid = ptid_build (42000, 1, 0);
12309
12310 target_buf_size = 2048;
12311 target_buf = xmalloc (target_buf_size);
12312 }
12313