Enable 'set print inferior-events' and improve detach/fork/kill/exit messages
[binutils-gdb.git] / gdb / remote.c
1 /* Remote target communications for serial-line targets in custom GDB protocol
2
3 Copyright (C) 1988-2018 Free Software Foundation, Inc.
4
5 This file is part of GDB.
6
7 This program is free software; you can redistribute it and/or modify
8 it under the terms of the GNU General Public License as published by
9 the Free Software Foundation; either version 3 of the License, or
10 (at your option) any later version.
11
12 This program is distributed in the hope that it will be useful,
13 but WITHOUT ANY WARRANTY; without even the implied warranty of
14 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
15 GNU General Public License for more details.
16
17 You should have received a copy of the GNU General Public License
18 along with this program. If not, see <http://www.gnu.org/licenses/>. */
19
20 /* See the GDB User Guide for details of the GDB remote protocol. */
21
22 #include "defs.h"
23 #include <ctype.h>
24 #include <fcntl.h>
25 #include "inferior.h"
26 #include "infrun.h"
27 #include "bfd.h"
28 #include "symfile.h"
29 #include "target.h"
30 /*#include "terminal.h" */
31 #include "gdbcmd.h"
32 #include "objfiles.h"
33 #include "gdb-stabs.h"
34 #include "gdbthread.h"
35 #include "remote.h"
36 #include "remote-notif.h"
37 #include "regcache.h"
38 #include "value.h"
39 #include "observable.h"
40 #include "solib.h"
41 #include "cli/cli-decode.h"
42 #include "cli/cli-setshow.h"
43 #include "target-descriptions.h"
44 #include "gdb_bfd.h"
45 #include "filestuff.h"
46 #include "rsp-low.h"
47 #include "disasm.h"
48 #include "location.h"
49
50 #include "gdb_sys_time.h"
51
52 #include "event-loop.h"
53 #include "event-top.h"
54 #include "inf-loop.h"
55
56 #include <signal.h>
57 #include "serial.h"
58
59 #include "gdbcore.h" /* for exec_bfd */
60
61 #include "remote-fileio.h"
62 #include "gdb/fileio.h"
63 #include <sys/stat.h>
64 #include "xml-support.h"
65
66 #include "memory-map.h"
67
68 #include "tracepoint.h"
69 #include "ax.h"
70 #include "ax-gdb.h"
71 #include "agent.h"
72 #include "btrace.h"
73 #include "record-btrace.h"
74 #include <algorithm>
75 #include "common/scoped_restore.h"
76 #include "environ.h"
77 #include "common/byte-vector.h"
78
79 /* Per-program-space data key. */
80 static const struct program_space_data *remote_pspace_data;
81
82 /* The variable registered as the control variable used by the
83 remote exec-file commands. While the remote exec-file setting is
84 per-program-space, the set/show machinery uses this as the
85 location of the remote exec-file value. */
86 static char *remote_exec_file_var;
87
88 /* The size to align memory write packets, when practical. The protocol
89 does not guarantee any alignment, and gdb will generate short
90 writes and unaligned writes, but even as a best-effort attempt this
91 can improve bulk transfers. For instance, if a write is misaligned
92 relative to the target's data bus, the stub may need to make an extra
93 round trip fetching data from the target. This doesn't make a
94 huge difference, but it's easy to do, so we try to be helpful.
95
96 The alignment chosen is arbitrary; usually data bus width is
97 important here, not the possibly larger cache line size. */
98 enum { REMOTE_ALIGN_WRITES = 16 };
99
100 /* Prototypes for local functions. */
101 static int getpkt_sane (char **buf, long *sizeof_buf, int forever);
102 static int getpkt_or_notif_sane (char **buf, long *sizeof_buf,
103 int forever, int *is_notif);
104
105 static void remote_files_info (struct target_ops *ignore);
106
107 static void remote_prepare_to_store (struct target_ops *self,
108 struct regcache *regcache);
109
110 static void remote_open_1 (const char *, int, struct target_ops *,
111 int extended_p);
112
113 static void remote_close (struct target_ops *self);
114
115 struct remote_state;
116
117 static int remote_vkill (int pid, struct remote_state *rs);
118
119 static void remote_kill_k (void);
120
121 static void remote_mourn (struct target_ops *ops);
122
123 static void extended_remote_restart (void);
124
125 static void remote_send (char **buf, long *sizeof_buf_p);
126
127 static int readchar (int timeout);
128
129 static void remote_serial_write (const char *str, int len);
130
131 static void remote_kill (struct target_ops *ops);
132
133 static int remote_can_async_p (struct target_ops *);
134
135 static int remote_is_async_p (struct target_ops *);
136
137 static void remote_async (struct target_ops *ops, int enable);
138
139 static void remote_thread_events (struct target_ops *ops, int enable);
140
141 static void interrupt_query (void);
142
143 static void set_general_thread (ptid_t ptid);
144 static void set_continue_thread (ptid_t ptid);
145
146 static void get_offsets (void);
147
148 static void skip_frame (void);
149
150 static long read_frame (char **buf_p, long *sizeof_buf);
151
152 static int hexnumlen (ULONGEST num);
153
154 static void init_remote_ops (void);
155
156 static void init_extended_remote_ops (void);
157
158 static void remote_stop (struct target_ops *self, ptid_t);
159
160 static int stubhex (int ch);
161
162 static int hexnumstr (char *, ULONGEST);
163
164 static int hexnumnstr (char *, ULONGEST, int);
165
166 static CORE_ADDR remote_address_masked (CORE_ADDR);
167
168 static void print_packet (const char *);
169
170 static int stub_unpack_int (char *buff, int fieldlength);
171
172 static ptid_t remote_current_thread (ptid_t oldptid);
173
174 static int putpkt_binary (const char *buf, int cnt);
175
176 static void check_binary_download (CORE_ADDR addr);
177
178 struct packet_config;
179
180 static void show_packet_config_cmd (struct packet_config *config);
181
182 static void show_remote_protocol_packet_cmd (struct ui_file *file,
183 int from_tty,
184 struct cmd_list_element *c,
185 const char *value);
186
187 static char *write_ptid (char *buf, const char *endbuf, ptid_t ptid);
188 static ptid_t read_ptid (const char *buf, const char **obuf);
189
190 static void remote_set_permissions (struct target_ops *self);
191
192 static int remote_get_trace_status (struct target_ops *self,
193 struct trace_status *ts);
194
195 static int remote_upload_tracepoints (struct target_ops *self,
196 struct uploaded_tp **utpp);
197
198 static int remote_upload_trace_state_variables (struct target_ops *self,
199 struct uploaded_tsv **utsvp);
200
201 static void remote_query_supported (void);
202
203 static void remote_check_symbols (void);
204
205 struct stop_reply;
206 static void stop_reply_xfree (struct stop_reply *);
207 static void remote_parse_stop_reply (char *, struct stop_reply *);
208 static void push_stop_reply (struct stop_reply *);
209 static void discard_pending_stop_replies_in_queue (struct remote_state *);
210 static int peek_stop_reply (ptid_t ptid);
211
212 struct threads_listing_context;
213 static void remove_new_fork_children (struct threads_listing_context *);
214
215 static void remote_async_inferior_event_handler (gdb_client_data);
216
217 static void remote_terminal_ours (struct target_ops *self);
218
219 static int remote_read_description_p (struct target_ops *target);
220
221 static void remote_console_output (char *msg);
222
223 static int remote_supports_cond_breakpoints (struct target_ops *self);
224
225 static int remote_can_run_breakpoint_commands (struct target_ops *self);
226
227 static void remote_btrace_reset (void);
228
229 static void remote_btrace_maybe_reopen (void);
230
231 static int stop_reply_queue_length (void);
232
233 static void readahead_cache_invalidate (void);
234
235 static void remote_unpush_and_throw (void);
236
237 static struct remote_state *get_remote_state (void);
238
239 /* For "remote". */
240
241 static struct cmd_list_element *remote_cmdlist;
242
243 /* For "set remote" and "show remote". */
244
245 static struct cmd_list_element *remote_set_cmdlist;
246 static struct cmd_list_element *remote_show_cmdlist;
247
248 /* Stub vCont actions support.
249
250 Each field is a boolean flag indicating whether the stub reports
251 support for the corresponding action. */
252
253 struct vCont_action_support
254 {
255 /* vCont;t */
256 int t;
257
258 /* vCont;r */
259 int r;
260
261 /* vCont;s */
262 int s;
263
264 /* vCont;S */
265 int S;
266 };
267
268 /* Controls whether GDB is willing to use range stepping. */
269
270 static int use_range_stepping = 1;
271
272 #define OPAQUETHREADBYTES 8
273
274 /* a 64 bit opaque identifier */
275 typedef unsigned char threadref[OPAQUETHREADBYTES];
276
277 /* About this many threadisds fit in a packet. */
278
279 #define MAXTHREADLISTRESULTS 32
280
281 /* The max number of chars in debug output. The rest of chars are
282 omitted. */
283
284 #define REMOTE_DEBUG_MAX_CHAR 512
285
286 /* Data for the vFile:pread readahead cache. */
287
288 struct readahead_cache
289 {
290 /* The file descriptor for the file that is being cached. -1 if the
291 cache is invalid. */
292 int fd;
293
294 /* The offset into the file that the cache buffer corresponds
295 to. */
296 ULONGEST offset;
297
298 /* The buffer holding the cache contents. */
299 gdb_byte *buf;
300 /* The buffer's size. We try to read as much as fits into a packet
301 at a time. */
302 size_t bufsize;
303
304 /* Cache hit and miss counters. */
305 ULONGEST hit_count;
306 ULONGEST miss_count;
307 };
308
309 /* Description of the remote protocol state for the currently
310 connected target. This is per-target state, and independent of the
311 selected architecture. */
312
313 struct remote_state
314 {
315 /* A buffer to use for incoming packets, and its current size. The
316 buffer is grown dynamically for larger incoming packets.
317 Outgoing packets may also be constructed in this buffer.
318 BUF_SIZE is always at least REMOTE_PACKET_SIZE;
319 REMOTE_PACKET_SIZE should be used to limit the length of outgoing
320 packets. */
321 char *buf;
322 long buf_size;
323
324 /* True if we're going through initial connection setup (finding out
325 about the remote side's threads, relocating symbols, etc.). */
326 int starting_up;
327
328 /* If we negotiated packet size explicitly (and thus can bypass
329 heuristics for the largest packet size that will not overflow
330 a buffer in the stub), this will be set to that packet size.
331 Otherwise zero, meaning to use the guessed size. */
332 long explicit_packet_size;
333
334 /* remote_wait is normally called when the target is running and
335 waits for a stop reply packet. But sometimes we need to call it
336 when the target is already stopped. We can send a "?" packet
337 and have remote_wait read the response. Or, if we already have
338 the response, we can stash it in BUF and tell remote_wait to
339 skip calling getpkt. This flag is set when BUF contains a
340 stop reply packet and the target is not waiting. */
341 int cached_wait_status;
342
343 /* True, if in no ack mode. That is, neither GDB nor the stub will
344 expect acks from each other. The connection is assumed to be
345 reliable. */
346 int noack_mode;
347
348 /* True if we're connected in extended remote mode. */
349 int extended;
350
351 /* True if we resumed the target and we're waiting for the target to
352 stop. In the mean time, we can't start another command/query.
353 The remote server wouldn't be ready to process it, so we'd
354 timeout waiting for a reply that would never come and eventually
355 we'd close the connection. This can happen in asynchronous mode
356 because we allow GDB commands while the target is running. */
357 int waiting_for_stop_reply;
358
359 /* The status of the stub support for the various vCont actions. */
360 struct vCont_action_support supports_vCont;
361
362 /* Nonzero if the user has pressed Ctrl-C, but the target hasn't
363 responded to that. */
364 int ctrlc_pending_p;
365
366 /* True if we saw a Ctrl-C while reading or writing from/to the
367 remote descriptor. At that point it is not safe to send a remote
368 interrupt packet, so we instead remember we saw the Ctrl-C and
369 process it once we're done with sending/receiving the current
370 packet, which should be shortly. If however that takes too long,
371 and the user presses Ctrl-C again, we offer to disconnect. */
372 int got_ctrlc_during_io;
373
374 /* Descriptor for I/O to remote machine. Initialize it to NULL so that
375 remote_open knows that we don't have a file open when the program
376 starts. */
377 struct serial *remote_desc;
378
379 /* These are the threads which we last sent to the remote system. The
380 TID member will be -1 for all or -2 for not sent yet. */
381 ptid_t general_thread;
382 ptid_t continue_thread;
383
384 /* This is the traceframe which we last selected on the remote system.
385 It will be -1 if no traceframe is selected. */
386 int remote_traceframe_number;
387
388 char *last_pass_packet;
389
390 /* The last QProgramSignals packet sent to the target. We bypass
391 sending a new program signals list down to the target if the new
392 packet is exactly the same as the last we sent. IOW, we only let
393 the target know about program signals list changes. */
394 char *last_program_signals_packet;
395
396 enum gdb_signal last_sent_signal;
397
398 int last_sent_step;
399
400 /* The execution direction of the last resume we got. */
401 enum exec_direction_kind last_resume_exec_dir;
402
403 char *finished_object;
404 char *finished_annex;
405 ULONGEST finished_offset;
406
407 /* Should we try the 'ThreadInfo' query packet?
408
409 This variable (NOT available to the user: auto-detect only!)
410 determines whether GDB will use the new, simpler "ThreadInfo"
411 query or the older, more complex syntax for thread queries.
412 This is an auto-detect variable (set to true at each connect,
413 and set to false when the target fails to recognize it). */
414 int use_threadinfo_query;
415 int use_threadextra_query;
416
417 threadref echo_nextthread;
418 threadref nextthread;
419 threadref resultthreadlist[MAXTHREADLISTRESULTS];
420
421 /* The state of remote notification. */
422 struct remote_notif_state *notif_state;
423
424 /* The branch trace configuration. */
425 struct btrace_config btrace_config;
426
427 /* The argument to the last "vFile:setfs:" packet we sent, used
428 to avoid sending repeated unnecessary "vFile:setfs:" packets.
429 Initialized to -1 to indicate that no "vFile:setfs:" packet
430 has yet been sent. */
431 int fs_pid;
432
433 /* A readahead cache for vFile:pread. Often, reading a binary
434 involves a sequence of small reads. E.g., when parsing an ELF
435 file. A readahead cache helps mostly the case of remote
436 debugging on a connection with higher latency, due to the
437 request/reply nature of the RSP. We only cache data for a single
438 file descriptor at a time. */
439 struct readahead_cache readahead_cache;
440 };
441
442 /* Private data that we'll store in (struct thread_info)->priv. */
443 struct remote_thread_info : public private_thread_info
444 {
445 std::string extra;
446 std::string name;
447 int core = -1;
448
449 /* Thread handle, perhaps a pthread_t or thread_t value, stored as a
450 sequence of bytes. */
451 gdb::byte_vector thread_handle;
452
453 /* Whether the target stopped for a breakpoint/watchpoint. */
454 enum target_stop_reason stop_reason = TARGET_STOPPED_BY_NO_REASON;
455
456 /* This is set to the data address of the access causing the target
457 to stop for a watchpoint. */
458 CORE_ADDR watch_data_address = 0;
459
460 /* Fields used by the vCont action coalescing implemented in
461 remote_resume / remote_commit_resume. remote_resume stores each
462 thread's last resume request in these fields, so that a later
463 remote_commit_resume knows which is the proper action for this
464 thread to include in the vCont packet. */
465
466 /* True if the last target_resume call for this thread was a step
467 request, false if a continue request. */
468 int last_resume_step = 0;
469
470 /* The signal specified in the last target_resume call for this
471 thread. */
472 gdb_signal last_resume_sig = GDB_SIGNAL_0;
473
474 /* Whether this thread was already vCont-resumed on the remote
475 side. */
476 int vcont_resumed = 0;
477 };
478
479 /* This data could be associated with a target, but we do not always
480 have access to the current target when we need it, so for now it is
481 static. This will be fine for as long as only one target is in use
482 at a time. */
483 static struct remote_state *remote_state;
484
485 static struct remote_state *
486 get_remote_state_raw (void)
487 {
488 return remote_state;
489 }
490
491 /* Allocate a new struct remote_state with xmalloc, initialize it, and
492 return it. */
493
494 static struct remote_state *
495 new_remote_state (void)
496 {
497 struct remote_state *result = XCNEW (struct remote_state);
498
499 /* The default buffer size is unimportant; it will be expanded
500 whenever a larger buffer is needed. */
501 result->buf_size = 400;
502 result->buf = (char *) xmalloc (result->buf_size);
503 result->remote_traceframe_number = -1;
504 result->last_sent_signal = GDB_SIGNAL_0;
505 result->last_resume_exec_dir = EXEC_FORWARD;
506 result->fs_pid = -1;
507
508 return result;
509 }
510
511 /* Description of the remote protocol for a given architecture. */
512
513 struct packet_reg
514 {
515 long offset; /* Offset into G packet. */
516 long regnum; /* GDB's internal register number. */
517 LONGEST pnum; /* Remote protocol register number. */
518 int in_g_packet; /* Always part of G packet. */
519 /* long size in bytes; == register_size (target_gdbarch (), regnum);
520 at present. */
521 /* char *name; == gdbarch_register_name (target_gdbarch (), regnum);
522 at present. */
523 };
524
525 struct remote_arch_state
526 {
527 /* Description of the remote protocol registers. */
528 long sizeof_g_packet;
529
530 /* Description of the remote protocol registers indexed by REGNUM
531 (making an array gdbarch_num_regs in size). */
532 struct packet_reg *regs;
533
534 /* This is the size (in chars) of the first response to the ``g''
535 packet. It is used as a heuristic when determining the maximum
536 size of memory-read and memory-write packets. A target will
537 typically only reserve a buffer large enough to hold the ``g''
538 packet. The size does not include packet overhead (headers and
539 trailers). */
540 long actual_register_packet_size;
541
542 /* This is the maximum size (in chars) of a non read/write packet.
543 It is also used as a cap on the size of read/write packets. */
544 long remote_packet_size;
545 };
546
547 /* Utility: generate error from an incoming stub packet. */
548 static void
549 trace_error (char *buf)
550 {
551 if (*buf++ != 'E')
552 return; /* not an error msg */
553 switch (*buf)
554 {
555 case '1': /* malformed packet error */
556 if (*++buf == '0') /* general case: */
557 error (_("remote.c: error in outgoing packet."));
558 else
559 error (_("remote.c: error in outgoing packet at field #%ld."),
560 strtol (buf, NULL, 16));
561 default:
562 error (_("Target returns error code '%s'."), buf);
563 }
564 }
565
566 /* Utility: wait for reply from stub, while accepting "O" packets. */
567
568 static char *
569 remote_get_noisy_reply ()
570 {
571 struct remote_state *rs = get_remote_state ();
572
573 do /* Loop on reply from remote stub. */
574 {
575 char *buf;
576
577 QUIT; /* Allow user to bail out with ^C. */
578 getpkt (&rs->buf, &rs->buf_size, 0);
579 buf = rs->buf;
580 if (buf[0] == 'E')
581 trace_error (buf);
582 else if (startswith (buf, "qRelocInsn:"))
583 {
584 ULONGEST ul;
585 CORE_ADDR from, to, org_to;
586 const char *p, *pp;
587 int adjusted_size = 0;
588 int relocated = 0;
589
590 p = buf + strlen ("qRelocInsn:");
591 pp = unpack_varlen_hex (p, &ul);
592 if (*pp != ';')
593 error (_("invalid qRelocInsn packet: %s"), buf);
594 from = ul;
595
596 p = pp + 1;
597 unpack_varlen_hex (p, &ul);
598 to = ul;
599
600 org_to = to;
601
602 TRY
603 {
604 gdbarch_relocate_instruction (target_gdbarch (), &to, from);
605 relocated = 1;
606 }
607 CATCH (ex, RETURN_MASK_ALL)
608 {
609 if (ex.error == MEMORY_ERROR)
610 {
611 /* Propagate memory errors silently back to the
612 target. The stub may have limited the range of
613 addresses we can write to, for example. */
614 }
615 else
616 {
617 /* Something unexpectedly bad happened. Be verbose
618 so we can tell what, and propagate the error back
619 to the stub, so it doesn't get stuck waiting for
620 a response. */
621 exception_fprintf (gdb_stderr, ex,
622 _("warning: relocating instruction: "));
623 }
624 putpkt ("E01");
625 }
626 END_CATCH
627
628 if (relocated)
629 {
630 adjusted_size = to - org_to;
631
632 xsnprintf (buf, rs->buf_size, "qRelocInsn:%x", adjusted_size);
633 putpkt (buf);
634 }
635 }
636 else if (buf[0] == 'O' && buf[1] != 'K')
637 remote_console_output (buf + 1); /* 'O' message from stub */
638 else
639 return buf; /* Here's the actual reply. */
640 }
641 while (1);
642 }
643
644 /* Handle for retreving the remote protocol data from gdbarch. */
645 static struct gdbarch_data *remote_gdbarch_data_handle;
646
647 static struct remote_arch_state *
648 get_remote_arch_state (struct gdbarch *gdbarch)
649 {
650 gdb_assert (gdbarch != NULL);
651 return ((struct remote_arch_state *)
652 gdbarch_data (gdbarch, remote_gdbarch_data_handle));
653 }
654
655 /* Fetch the global remote target state. */
656
657 static struct remote_state *
658 get_remote_state (void)
659 {
660 /* Make sure that the remote architecture state has been
661 initialized, because doing so might reallocate rs->buf. Any
662 function which calls getpkt also needs to be mindful of changes
663 to rs->buf, but this call limits the number of places which run
664 into trouble. */
665 get_remote_arch_state (target_gdbarch ());
666
667 return get_remote_state_raw ();
668 }
669
670 /* Cleanup routine for the remote module's pspace data. */
671
672 static void
673 remote_pspace_data_cleanup (struct program_space *pspace, void *arg)
674 {
675 char *remote_exec_file = (char *) arg;
676
677 xfree (remote_exec_file);
678 }
679
680 /* Fetch the remote exec-file from the current program space. */
681
682 static const char *
683 get_remote_exec_file (void)
684 {
685 char *remote_exec_file;
686
687 remote_exec_file
688 = (char *) program_space_data (current_program_space,
689 remote_pspace_data);
690 if (remote_exec_file == NULL)
691 return "";
692
693 return remote_exec_file;
694 }
695
696 /* Set the remote exec file for PSPACE. */
697
698 static void
699 set_pspace_remote_exec_file (struct program_space *pspace,
700 char *remote_exec_file)
701 {
702 char *old_file = (char *) program_space_data (pspace, remote_pspace_data);
703
704 xfree (old_file);
705 set_program_space_data (pspace, remote_pspace_data,
706 xstrdup (remote_exec_file));
707 }
708
709 /* The "set/show remote exec-file" set command hook. */
710
711 static void
712 set_remote_exec_file (const char *ignored, int from_tty,
713 struct cmd_list_element *c)
714 {
715 gdb_assert (remote_exec_file_var != NULL);
716 set_pspace_remote_exec_file (current_program_space, remote_exec_file_var);
717 }
718
719 /* The "set/show remote exec-file" show command hook. */
720
721 static void
722 show_remote_exec_file (struct ui_file *file, int from_tty,
723 struct cmd_list_element *cmd, const char *value)
724 {
725 fprintf_filtered (file, "%s\n", remote_exec_file_var);
726 }
727
728 static int
729 compare_pnums (const void *lhs_, const void *rhs_)
730 {
731 const struct packet_reg * const *lhs
732 = (const struct packet_reg * const *) lhs_;
733 const struct packet_reg * const *rhs
734 = (const struct packet_reg * const *) rhs_;
735
736 if ((*lhs)->pnum < (*rhs)->pnum)
737 return -1;
738 else if ((*lhs)->pnum == (*rhs)->pnum)
739 return 0;
740 else
741 return 1;
742 }
743
744 static int
745 map_regcache_remote_table (struct gdbarch *gdbarch, struct packet_reg *regs)
746 {
747 int regnum, num_remote_regs, offset;
748 struct packet_reg **remote_regs;
749
750 for (regnum = 0; regnum < gdbarch_num_regs (gdbarch); regnum++)
751 {
752 struct packet_reg *r = &regs[regnum];
753
754 if (register_size (gdbarch, regnum) == 0)
755 /* Do not try to fetch zero-sized (placeholder) registers. */
756 r->pnum = -1;
757 else
758 r->pnum = gdbarch_remote_register_number (gdbarch, regnum);
759
760 r->regnum = regnum;
761 }
762
763 /* Define the g/G packet format as the contents of each register
764 with a remote protocol number, in order of ascending protocol
765 number. */
766
767 remote_regs = XALLOCAVEC (struct packet_reg *, gdbarch_num_regs (gdbarch));
768 for (num_remote_regs = 0, regnum = 0;
769 regnum < gdbarch_num_regs (gdbarch);
770 regnum++)
771 if (regs[regnum].pnum != -1)
772 remote_regs[num_remote_regs++] = &regs[regnum];
773
774 qsort (remote_regs, num_remote_regs, sizeof (struct packet_reg *),
775 compare_pnums);
776
777 for (regnum = 0, offset = 0; regnum < num_remote_regs; regnum++)
778 {
779 remote_regs[regnum]->in_g_packet = 1;
780 remote_regs[regnum]->offset = offset;
781 offset += register_size (gdbarch, remote_regs[regnum]->regnum);
782 }
783
784 return offset;
785 }
786
787 /* Given the architecture described by GDBARCH, return the remote
788 protocol register's number and the register's offset in the g/G
789 packets of GDB register REGNUM, in PNUM and POFFSET respectively.
790 If the target does not have a mapping for REGNUM, return false,
791 otherwise, return true. */
792
793 int
794 remote_register_number_and_offset (struct gdbarch *gdbarch, int regnum,
795 int *pnum, int *poffset)
796 {
797 gdb_assert (regnum < gdbarch_num_regs (gdbarch));
798
799 std::vector<packet_reg> regs (gdbarch_num_regs (gdbarch));
800
801 map_regcache_remote_table (gdbarch, regs.data ());
802
803 *pnum = regs[regnum].pnum;
804 *poffset = regs[regnum].offset;
805
806 return *pnum != -1;
807 }
808
809 static void *
810 init_remote_state (struct gdbarch *gdbarch)
811 {
812 struct remote_state *rs = get_remote_state_raw ();
813 struct remote_arch_state *rsa;
814
815 rsa = GDBARCH_OBSTACK_ZALLOC (gdbarch, struct remote_arch_state);
816
817 /* Use the architecture to build a regnum<->pnum table, which will be
818 1:1 unless a feature set specifies otherwise. */
819 rsa->regs = GDBARCH_OBSTACK_CALLOC (gdbarch,
820 gdbarch_num_regs (gdbarch),
821 struct packet_reg);
822
823 /* Record the maximum possible size of the g packet - it may turn out
824 to be smaller. */
825 rsa->sizeof_g_packet = map_regcache_remote_table (gdbarch, rsa->regs);
826
827 /* Default maximum number of characters in a packet body. Many
828 remote stubs have a hardwired buffer size of 400 bytes
829 (c.f. BUFMAX in m68k-stub.c and i386-stub.c). BUFMAX-1 is used
830 as the maximum packet-size to ensure that the packet and an extra
831 NUL character can always fit in the buffer. This stops GDB
832 trashing stubs that try to squeeze an extra NUL into what is
833 already a full buffer (As of 1999-12-04 that was most stubs). */
834 rsa->remote_packet_size = 400 - 1;
835
836 /* This one is filled in when a ``g'' packet is received. */
837 rsa->actual_register_packet_size = 0;
838
839 /* Should rsa->sizeof_g_packet needs more space than the
840 default, adjust the size accordingly. Remember that each byte is
841 encoded as two characters. 32 is the overhead for the packet
842 header / footer. NOTE: cagney/1999-10-26: I suspect that 8
843 (``$NN:G...#NN'') is a better guess, the below has been padded a
844 little. */
845 if (rsa->sizeof_g_packet > ((rsa->remote_packet_size - 32) / 2))
846 rsa->remote_packet_size = (rsa->sizeof_g_packet * 2 + 32);
847
848 /* Make sure that the packet buffer is plenty big enough for
849 this architecture. */
850 if (rs->buf_size < rsa->remote_packet_size)
851 {
852 rs->buf_size = 2 * rsa->remote_packet_size;
853 rs->buf = (char *) xrealloc (rs->buf, rs->buf_size);
854 }
855
856 return rsa;
857 }
858
859 /* Return the current allowed size of a remote packet. This is
860 inferred from the current architecture, and should be used to
861 limit the length of outgoing packets. */
862 static long
863 get_remote_packet_size (void)
864 {
865 struct remote_state *rs = get_remote_state ();
866 remote_arch_state *rsa = get_remote_arch_state (target_gdbarch ());
867
868 if (rs->explicit_packet_size)
869 return rs->explicit_packet_size;
870
871 return rsa->remote_packet_size;
872 }
873
874 static struct packet_reg *
875 packet_reg_from_regnum (struct gdbarch *gdbarch, struct remote_arch_state *rsa,
876 long regnum)
877 {
878 if (regnum < 0 && regnum >= gdbarch_num_regs (gdbarch))
879 return NULL;
880 else
881 {
882 struct packet_reg *r = &rsa->regs[regnum];
883
884 gdb_assert (r->regnum == regnum);
885 return r;
886 }
887 }
888
889 static struct packet_reg *
890 packet_reg_from_pnum (struct gdbarch *gdbarch, struct remote_arch_state *rsa,
891 LONGEST pnum)
892 {
893 int i;
894
895 for (i = 0; i < gdbarch_num_regs (gdbarch); i++)
896 {
897 struct packet_reg *r = &rsa->regs[i];
898
899 if (r->pnum == pnum)
900 return r;
901 }
902 return NULL;
903 }
904
905 static struct target_ops remote_ops;
906
907 static struct target_ops extended_remote_ops;
908
909 /* FIXME: cagney/1999-09-23: Even though getpkt was called with
910 ``forever'' still use the normal timeout mechanism. This is
911 currently used by the ASYNC code to guarentee that target reads
912 during the initial connect always time-out. Once getpkt has been
913 modified to return a timeout indication and, in turn
914 remote_wait()/wait_for_inferior() have gained a timeout parameter
915 this can go away. */
916 static int wait_forever_enabled_p = 1;
917
918 /* Allow the user to specify what sequence to send to the remote
919 when he requests a program interruption: Although ^C is usually
920 what remote systems expect (this is the default, here), it is
921 sometimes preferable to send a break. On other systems such
922 as the Linux kernel, a break followed by g, which is Magic SysRq g
923 is required in order to interrupt the execution. */
924 const char interrupt_sequence_control_c[] = "Ctrl-C";
925 const char interrupt_sequence_break[] = "BREAK";
926 const char interrupt_sequence_break_g[] = "BREAK-g";
927 static const char *const interrupt_sequence_modes[] =
928 {
929 interrupt_sequence_control_c,
930 interrupt_sequence_break,
931 interrupt_sequence_break_g,
932 NULL
933 };
934 static const char *interrupt_sequence_mode = interrupt_sequence_control_c;
935
936 static void
937 show_interrupt_sequence (struct ui_file *file, int from_tty,
938 struct cmd_list_element *c,
939 const char *value)
940 {
941 if (interrupt_sequence_mode == interrupt_sequence_control_c)
942 fprintf_filtered (file,
943 _("Send the ASCII ETX character (Ctrl-c) "
944 "to the remote target to interrupt the "
945 "execution of the program.\n"));
946 else if (interrupt_sequence_mode == interrupt_sequence_break)
947 fprintf_filtered (file,
948 _("send a break signal to the remote target "
949 "to interrupt the execution of the program.\n"));
950 else if (interrupt_sequence_mode == interrupt_sequence_break_g)
951 fprintf_filtered (file,
952 _("Send a break signal and 'g' a.k.a. Magic SysRq g to "
953 "the remote target to interrupt the execution "
954 "of Linux kernel.\n"));
955 else
956 internal_error (__FILE__, __LINE__,
957 _("Invalid value for interrupt_sequence_mode: %s."),
958 interrupt_sequence_mode);
959 }
960
961 /* This boolean variable specifies whether interrupt_sequence is sent
962 to the remote target when gdb connects to it.
963 This is mostly needed when you debug the Linux kernel: The Linux kernel
964 expects BREAK g which is Magic SysRq g for connecting gdb. */
965 static int interrupt_on_connect = 0;
966
967 /* This variable is used to implement the "set/show remotebreak" commands.
968 Since these commands are now deprecated in favor of "set/show remote
969 interrupt-sequence", it no longer has any effect on the code. */
970 static int remote_break;
971
972 static void
973 set_remotebreak (const char *args, int from_tty, struct cmd_list_element *c)
974 {
975 if (remote_break)
976 interrupt_sequence_mode = interrupt_sequence_break;
977 else
978 interrupt_sequence_mode = interrupt_sequence_control_c;
979 }
980
981 static void
982 show_remotebreak (struct ui_file *file, int from_tty,
983 struct cmd_list_element *c,
984 const char *value)
985 {
986 }
987
988 /* This variable sets the number of bits in an address that are to be
989 sent in a memory ("M" or "m") packet. Normally, after stripping
990 leading zeros, the entire address would be sent. This variable
991 restricts the address to REMOTE_ADDRESS_SIZE bits. HISTORY: The
992 initial implementation of remote.c restricted the address sent in
993 memory packets to ``host::sizeof long'' bytes - (typically 32
994 bits). Consequently, for 64 bit targets, the upper 32 bits of an
995 address was never sent. Since fixing this bug may cause a break in
996 some remote targets this variable is principly provided to
997 facilitate backward compatibility. */
998
999 static unsigned int remote_address_size;
1000
1001 \f
1002 /* User configurable variables for the number of characters in a
1003 memory read/write packet. MIN (rsa->remote_packet_size,
1004 rsa->sizeof_g_packet) is the default. Some targets need smaller
1005 values (fifo overruns, et.al.) and some users need larger values
1006 (speed up transfers). The variables ``preferred_*'' (the user
1007 request), ``current_*'' (what was actually set) and ``forced_*''
1008 (Positive - a soft limit, negative - a hard limit). */
1009
1010 struct memory_packet_config
1011 {
1012 const char *name;
1013 long size;
1014 int fixed_p;
1015 };
1016
1017 /* The default max memory-write-packet-size. The 16k is historical.
1018 (It came from older GDB's using alloca for buffers and the
1019 knowledge (folklore?) that some hosts don't cope very well with
1020 large alloca calls.) */
1021 #define DEFAULT_MAX_MEMORY_PACKET_SIZE 16384
1022
1023 /* The minimum remote packet size for memory transfers. Ensures we
1024 can write at least one byte. */
1025 #define MIN_MEMORY_PACKET_SIZE 20
1026
1027 /* Compute the current size of a read/write packet. Since this makes
1028 use of ``actual_register_packet_size'' the computation is dynamic. */
1029
1030 static long
1031 get_memory_packet_size (struct memory_packet_config *config)
1032 {
1033 struct remote_state *rs = get_remote_state ();
1034 remote_arch_state *rsa = get_remote_arch_state (target_gdbarch ());
1035
1036 long what_they_get;
1037 if (config->fixed_p)
1038 {
1039 if (config->size <= 0)
1040 what_they_get = DEFAULT_MAX_MEMORY_PACKET_SIZE;
1041 else
1042 what_they_get = config->size;
1043 }
1044 else
1045 {
1046 what_they_get = get_remote_packet_size ();
1047 /* Limit the packet to the size specified by the user. */
1048 if (config->size > 0
1049 && what_they_get > config->size)
1050 what_they_get = config->size;
1051
1052 /* Limit it to the size of the targets ``g'' response unless we have
1053 permission from the stub to use a larger packet size. */
1054 if (rs->explicit_packet_size == 0
1055 && rsa->actual_register_packet_size > 0
1056 && what_they_get > rsa->actual_register_packet_size)
1057 what_they_get = rsa->actual_register_packet_size;
1058 }
1059 if (what_they_get < MIN_MEMORY_PACKET_SIZE)
1060 what_they_get = MIN_MEMORY_PACKET_SIZE;
1061
1062 /* Make sure there is room in the global buffer for this packet
1063 (including its trailing NUL byte). */
1064 if (rs->buf_size < what_they_get + 1)
1065 {
1066 rs->buf_size = 2 * what_they_get;
1067 rs->buf = (char *) xrealloc (rs->buf, 2 * what_they_get);
1068 }
1069
1070 return what_they_get;
1071 }
1072
1073 /* Update the size of a read/write packet. If they user wants
1074 something really big then do a sanity check. */
1075
1076 static void
1077 set_memory_packet_size (const char *args, struct memory_packet_config *config)
1078 {
1079 int fixed_p = config->fixed_p;
1080 long size = config->size;
1081
1082 if (args == NULL)
1083 error (_("Argument required (integer, `fixed' or `limited')."));
1084 else if (strcmp (args, "hard") == 0
1085 || strcmp (args, "fixed") == 0)
1086 fixed_p = 1;
1087 else if (strcmp (args, "soft") == 0
1088 || strcmp (args, "limit") == 0)
1089 fixed_p = 0;
1090 else
1091 {
1092 char *end;
1093
1094 size = strtoul (args, &end, 0);
1095 if (args == end)
1096 error (_("Invalid %s (bad syntax)."), config->name);
1097
1098 /* Instead of explicitly capping the size of a packet to or
1099 disallowing it, the user is allowed to set the size to
1100 something arbitrarily large. */
1101 }
1102
1103 /* So that the query shows the correct value. */
1104 if (size <= 0)
1105 size = DEFAULT_MAX_MEMORY_PACKET_SIZE;
1106
1107 /* Extra checks? */
1108 if (fixed_p && !config->fixed_p)
1109 {
1110 if (! query (_("The target may not be able to correctly handle a %s\n"
1111 "of %ld bytes. Change the packet size? "),
1112 config->name, size))
1113 error (_("Packet size not changed."));
1114 }
1115 /* Update the config. */
1116 config->fixed_p = fixed_p;
1117 config->size = size;
1118 }
1119
1120 static void
1121 show_memory_packet_size (struct memory_packet_config *config)
1122 {
1123 printf_filtered (_("The %s is %ld. "), config->name, config->size);
1124 if (config->fixed_p)
1125 printf_filtered (_("Packets are fixed at %ld bytes.\n"),
1126 get_memory_packet_size (config));
1127 else
1128 printf_filtered (_("Packets are limited to %ld bytes.\n"),
1129 get_memory_packet_size (config));
1130 }
1131
1132 static struct memory_packet_config memory_write_packet_config =
1133 {
1134 "memory-write-packet-size",
1135 };
1136
1137 static void
1138 set_memory_write_packet_size (const char *args, int from_tty)
1139 {
1140 set_memory_packet_size (args, &memory_write_packet_config);
1141 }
1142
1143 static void
1144 show_memory_write_packet_size (const char *args, int from_tty)
1145 {
1146 show_memory_packet_size (&memory_write_packet_config);
1147 }
1148
1149 static long
1150 get_memory_write_packet_size (void)
1151 {
1152 return get_memory_packet_size (&memory_write_packet_config);
1153 }
1154
1155 static struct memory_packet_config memory_read_packet_config =
1156 {
1157 "memory-read-packet-size",
1158 };
1159
1160 static void
1161 set_memory_read_packet_size (const char *args, int from_tty)
1162 {
1163 set_memory_packet_size (args, &memory_read_packet_config);
1164 }
1165
1166 static void
1167 show_memory_read_packet_size (const char *args, int from_tty)
1168 {
1169 show_memory_packet_size (&memory_read_packet_config);
1170 }
1171
1172 static long
1173 get_memory_read_packet_size (void)
1174 {
1175 long size = get_memory_packet_size (&memory_read_packet_config);
1176
1177 /* FIXME: cagney/1999-11-07: Functions like getpkt() need to get an
1178 extra buffer size argument before the memory read size can be
1179 increased beyond this. */
1180 if (size > get_remote_packet_size ())
1181 size = get_remote_packet_size ();
1182 return size;
1183 }
1184
1185 \f
1186 /* Generic configuration support for packets the stub optionally
1187 supports. Allows the user to specify the use of the packet as well
1188 as allowing GDB to auto-detect support in the remote stub. */
1189
1190 enum packet_support
1191 {
1192 PACKET_SUPPORT_UNKNOWN = 0,
1193 PACKET_ENABLE,
1194 PACKET_DISABLE
1195 };
1196
1197 struct packet_config
1198 {
1199 const char *name;
1200 const char *title;
1201
1202 /* If auto, GDB auto-detects support for this packet or feature,
1203 either through qSupported, or by trying the packet and looking
1204 at the response. If true, GDB assumes the target supports this
1205 packet. If false, the packet is disabled. Configs that don't
1206 have an associated command always have this set to auto. */
1207 enum auto_boolean detect;
1208
1209 /* Does the target support this packet? */
1210 enum packet_support support;
1211 };
1212
1213 /* Analyze a packet's return value and update the packet config
1214 accordingly. */
1215
1216 enum packet_result
1217 {
1218 PACKET_ERROR,
1219 PACKET_OK,
1220 PACKET_UNKNOWN
1221 };
1222
1223 static enum packet_support packet_config_support (struct packet_config *config);
1224 static enum packet_support packet_support (int packet);
1225
1226 static void
1227 show_packet_config_cmd (struct packet_config *config)
1228 {
1229 const char *support = "internal-error";
1230
1231 switch (packet_config_support (config))
1232 {
1233 case PACKET_ENABLE:
1234 support = "enabled";
1235 break;
1236 case PACKET_DISABLE:
1237 support = "disabled";
1238 break;
1239 case PACKET_SUPPORT_UNKNOWN:
1240 support = "unknown";
1241 break;
1242 }
1243 switch (config->detect)
1244 {
1245 case AUTO_BOOLEAN_AUTO:
1246 printf_filtered (_("Support for the `%s' packet "
1247 "is auto-detected, currently %s.\n"),
1248 config->name, support);
1249 break;
1250 case AUTO_BOOLEAN_TRUE:
1251 case AUTO_BOOLEAN_FALSE:
1252 printf_filtered (_("Support for the `%s' packet is currently %s.\n"),
1253 config->name, support);
1254 break;
1255 }
1256 }
1257
1258 static void
1259 add_packet_config_cmd (struct packet_config *config, const char *name,
1260 const char *title, int legacy)
1261 {
1262 char *set_doc;
1263 char *show_doc;
1264 char *cmd_name;
1265
1266 config->name = name;
1267 config->title = title;
1268 set_doc = xstrprintf ("Set use of remote protocol `%s' (%s) packet",
1269 name, title);
1270 show_doc = xstrprintf ("Show current use of remote "
1271 "protocol `%s' (%s) packet",
1272 name, title);
1273 /* set/show TITLE-packet {auto,on,off} */
1274 cmd_name = xstrprintf ("%s-packet", title);
1275 add_setshow_auto_boolean_cmd (cmd_name, class_obscure,
1276 &config->detect, set_doc,
1277 show_doc, NULL, /* help_doc */
1278 NULL,
1279 show_remote_protocol_packet_cmd,
1280 &remote_set_cmdlist, &remote_show_cmdlist);
1281 /* The command code copies the documentation strings. */
1282 xfree (set_doc);
1283 xfree (show_doc);
1284 /* set/show remote NAME-packet {auto,on,off} -- legacy. */
1285 if (legacy)
1286 {
1287 char *legacy_name;
1288
1289 legacy_name = xstrprintf ("%s-packet", name);
1290 add_alias_cmd (legacy_name, cmd_name, class_obscure, 0,
1291 &remote_set_cmdlist);
1292 add_alias_cmd (legacy_name, cmd_name, class_obscure, 0,
1293 &remote_show_cmdlist);
1294 }
1295 }
1296
1297 static enum packet_result
1298 packet_check_result (const char *buf)
1299 {
1300 if (buf[0] != '\0')
1301 {
1302 /* The stub recognized the packet request. Check that the
1303 operation succeeded. */
1304 if (buf[0] == 'E'
1305 && isxdigit (buf[1]) && isxdigit (buf[2])
1306 && buf[3] == '\0')
1307 /* "Enn" - definitly an error. */
1308 return PACKET_ERROR;
1309
1310 /* Always treat "E." as an error. This will be used for
1311 more verbose error messages, such as E.memtypes. */
1312 if (buf[0] == 'E' && buf[1] == '.')
1313 return PACKET_ERROR;
1314
1315 /* The packet may or may not be OK. Just assume it is. */
1316 return PACKET_OK;
1317 }
1318 else
1319 /* The stub does not support the packet. */
1320 return PACKET_UNKNOWN;
1321 }
1322
1323 static enum packet_result
1324 packet_ok (const char *buf, struct packet_config *config)
1325 {
1326 enum packet_result result;
1327
1328 if (config->detect != AUTO_BOOLEAN_TRUE
1329 && config->support == PACKET_DISABLE)
1330 internal_error (__FILE__, __LINE__,
1331 _("packet_ok: attempt to use a disabled packet"));
1332
1333 result = packet_check_result (buf);
1334 switch (result)
1335 {
1336 case PACKET_OK:
1337 case PACKET_ERROR:
1338 /* The stub recognized the packet request. */
1339 if (config->support == PACKET_SUPPORT_UNKNOWN)
1340 {
1341 if (remote_debug)
1342 fprintf_unfiltered (gdb_stdlog,
1343 "Packet %s (%s) is supported\n",
1344 config->name, config->title);
1345 config->support = PACKET_ENABLE;
1346 }
1347 break;
1348 case PACKET_UNKNOWN:
1349 /* The stub does not support the packet. */
1350 if (config->detect == AUTO_BOOLEAN_AUTO
1351 && config->support == PACKET_ENABLE)
1352 {
1353 /* If the stub previously indicated that the packet was
1354 supported then there is a protocol error. */
1355 error (_("Protocol error: %s (%s) conflicting enabled responses."),
1356 config->name, config->title);
1357 }
1358 else if (config->detect == AUTO_BOOLEAN_TRUE)
1359 {
1360 /* The user set it wrong. */
1361 error (_("Enabled packet %s (%s) not recognized by stub"),
1362 config->name, config->title);
1363 }
1364
1365 if (remote_debug)
1366 fprintf_unfiltered (gdb_stdlog,
1367 "Packet %s (%s) is NOT supported\n",
1368 config->name, config->title);
1369 config->support = PACKET_DISABLE;
1370 break;
1371 }
1372
1373 return result;
1374 }
1375
1376 enum {
1377 PACKET_vCont = 0,
1378 PACKET_X,
1379 PACKET_qSymbol,
1380 PACKET_P,
1381 PACKET_p,
1382 PACKET_Z0,
1383 PACKET_Z1,
1384 PACKET_Z2,
1385 PACKET_Z3,
1386 PACKET_Z4,
1387 PACKET_vFile_setfs,
1388 PACKET_vFile_open,
1389 PACKET_vFile_pread,
1390 PACKET_vFile_pwrite,
1391 PACKET_vFile_close,
1392 PACKET_vFile_unlink,
1393 PACKET_vFile_readlink,
1394 PACKET_vFile_fstat,
1395 PACKET_qXfer_auxv,
1396 PACKET_qXfer_features,
1397 PACKET_qXfer_exec_file,
1398 PACKET_qXfer_libraries,
1399 PACKET_qXfer_libraries_svr4,
1400 PACKET_qXfer_memory_map,
1401 PACKET_qXfer_spu_read,
1402 PACKET_qXfer_spu_write,
1403 PACKET_qXfer_osdata,
1404 PACKET_qXfer_threads,
1405 PACKET_qXfer_statictrace_read,
1406 PACKET_qXfer_traceframe_info,
1407 PACKET_qXfer_uib,
1408 PACKET_qGetTIBAddr,
1409 PACKET_qGetTLSAddr,
1410 PACKET_qSupported,
1411 PACKET_qTStatus,
1412 PACKET_QPassSignals,
1413 PACKET_QCatchSyscalls,
1414 PACKET_QProgramSignals,
1415 PACKET_QSetWorkingDir,
1416 PACKET_QStartupWithShell,
1417 PACKET_QEnvironmentHexEncoded,
1418 PACKET_QEnvironmentReset,
1419 PACKET_QEnvironmentUnset,
1420 PACKET_qCRC,
1421 PACKET_qSearch_memory,
1422 PACKET_vAttach,
1423 PACKET_vRun,
1424 PACKET_QStartNoAckMode,
1425 PACKET_vKill,
1426 PACKET_qXfer_siginfo_read,
1427 PACKET_qXfer_siginfo_write,
1428 PACKET_qAttached,
1429
1430 /* Support for conditional tracepoints. */
1431 PACKET_ConditionalTracepoints,
1432
1433 /* Support for target-side breakpoint conditions. */
1434 PACKET_ConditionalBreakpoints,
1435
1436 /* Support for target-side breakpoint commands. */
1437 PACKET_BreakpointCommands,
1438
1439 /* Support for fast tracepoints. */
1440 PACKET_FastTracepoints,
1441
1442 /* Support for static tracepoints. */
1443 PACKET_StaticTracepoints,
1444
1445 /* Support for installing tracepoints while a trace experiment is
1446 running. */
1447 PACKET_InstallInTrace,
1448
1449 PACKET_bc,
1450 PACKET_bs,
1451 PACKET_TracepointSource,
1452 PACKET_QAllow,
1453 PACKET_qXfer_fdpic,
1454 PACKET_QDisableRandomization,
1455 PACKET_QAgent,
1456 PACKET_QTBuffer_size,
1457 PACKET_Qbtrace_off,
1458 PACKET_Qbtrace_bts,
1459 PACKET_Qbtrace_pt,
1460 PACKET_qXfer_btrace,
1461
1462 /* Support for the QNonStop packet. */
1463 PACKET_QNonStop,
1464
1465 /* Support for the QThreadEvents packet. */
1466 PACKET_QThreadEvents,
1467
1468 /* Support for multi-process extensions. */
1469 PACKET_multiprocess_feature,
1470
1471 /* Support for enabling and disabling tracepoints while a trace
1472 experiment is running. */
1473 PACKET_EnableDisableTracepoints_feature,
1474
1475 /* Support for collecting strings using the tracenz bytecode. */
1476 PACKET_tracenz_feature,
1477
1478 /* Support for continuing to run a trace experiment while GDB is
1479 disconnected. */
1480 PACKET_DisconnectedTracing_feature,
1481
1482 /* Support for qXfer:libraries-svr4:read with a non-empty annex. */
1483 PACKET_augmented_libraries_svr4_read_feature,
1484
1485 /* Support for the qXfer:btrace-conf:read packet. */
1486 PACKET_qXfer_btrace_conf,
1487
1488 /* Support for the Qbtrace-conf:bts:size packet. */
1489 PACKET_Qbtrace_conf_bts_size,
1490
1491 /* Support for swbreak+ feature. */
1492 PACKET_swbreak_feature,
1493
1494 /* Support for hwbreak+ feature. */
1495 PACKET_hwbreak_feature,
1496
1497 /* Support for fork events. */
1498 PACKET_fork_event_feature,
1499
1500 /* Support for vfork events. */
1501 PACKET_vfork_event_feature,
1502
1503 /* Support for the Qbtrace-conf:pt:size packet. */
1504 PACKET_Qbtrace_conf_pt_size,
1505
1506 /* Support for exec events. */
1507 PACKET_exec_event_feature,
1508
1509 /* Support for query supported vCont actions. */
1510 PACKET_vContSupported,
1511
1512 /* Support remote CTRL-C. */
1513 PACKET_vCtrlC,
1514
1515 /* Support TARGET_WAITKIND_NO_RESUMED. */
1516 PACKET_no_resumed,
1517
1518 PACKET_MAX
1519 };
1520
1521 static struct packet_config remote_protocol_packets[PACKET_MAX];
1522
1523 /* Returns the packet's corresponding "set remote foo-packet" command
1524 state. See struct packet_config for more details. */
1525
1526 static enum auto_boolean
1527 packet_set_cmd_state (int packet)
1528 {
1529 return remote_protocol_packets[packet].detect;
1530 }
1531
1532 /* Returns whether a given packet or feature is supported. This takes
1533 into account the state of the corresponding "set remote foo-packet"
1534 command, which may be used to bypass auto-detection. */
1535
1536 static enum packet_support
1537 packet_config_support (struct packet_config *config)
1538 {
1539 switch (config->detect)
1540 {
1541 case AUTO_BOOLEAN_TRUE:
1542 return PACKET_ENABLE;
1543 case AUTO_BOOLEAN_FALSE:
1544 return PACKET_DISABLE;
1545 case AUTO_BOOLEAN_AUTO:
1546 return config->support;
1547 default:
1548 gdb_assert_not_reached (_("bad switch"));
1549 }
1550 }
1551
1552 /* Same as packet_config_support, but takes the packet's enum value as
1553 argument. */
1554
1555 static enum packet_support
1556 packet_support (int packet)
1557 {
1558 struct packet_config *config = &remote_protocol_packets[packet];
1559
1560 return packet_config_support (config);
1561 }
1562
1563 static void
1564 show_remote_protocol_packet_cmd (struct ui_file *file, int from_tty,
1565 struct cmd_list_element *c,
1566 const char *value)
1567 {
1568 struct packet_config *packet;
1569
1570 for (packet = remote_protocol_packets;
1571 packet < &remote_protocol_packets[PACKET_MAX];
1572 packet++)
1573 {
1574 if (&packet->detect == c->var)
1575 {
1576 show_packet_config_cmd (packet);
1577 return;
1578 }
1579 }
1580 internal_error (__FILE__, __LINE__, _("Could not find config for %s"),
1581 c->name);
1582 }
1583
1584 /* Should we try one of the 'Z' requests? */
1585
1586 enum Z_packet_type
1587 {
1588 Z_PACKET_SOFTWARE_BP,
1589 Z_PACKET_HARDWARE_BP,
1590 Z_PACKET_WRITE_WP,
1591 Z_PACKET_READ_WP,
1592 Z_PACKET_ACCESS_WP,
1593 NR_Z_PACKET_TYPES
1594 };
1595
1596 /* For compatibility with older distributions. Provide a ``set remote
1597 Z-packet ...'' command that updates all the Z packet types. */
1598
1599 static enum auto_boolean remote_Z_packet_detect;
1600
1601 static void
1602 set_remote_protocol_Z_packet_cmd (const char *args, int from_tty,
1603 struct cmd_list_element *c)
1604 {
1605 int i;
1606
1607 for (i = 0; i < NR_Z_PACKET_TYPES; i++)
1608 remote_protocol_packets[PACKET_Z0 + i].detect = remote_Z_packet_detect;
1609 }
1610
1611 static void
1612 show_remote_protocol_Z_packet_cmd (struct ui_file *file, int from_tty,
1613 struct cmd_list_element *c,
1614 const char *value)
1615 {
1616 int i;
1617
1618 for (i = 0; i < NR_Z_PACKET_TYPES; i++)
1619 {
1620 show_packet_config_cmd (&remote_protocol_packets[PACKET_Z0 + i]);
1621 }
1622 }
1623
1624 /* Returns true if the multi-process extensions are in effect. */
1625
1626 static int
1627 remote_multi_process_p (struct remote_state *rs)
1628 {
1629 return packet_support (PACKET_multiprocess_feature) == PACKET_ENABLE;
1630 }
1631
1632 /* Returns true if fork events are supported. */
1633
1634 static int
1635 remote_fork_event_p (struct remote_state *rs)
1636 {
1637 return packet_support (PACKET_fork_event_feature) == PACKET_ENABLE;
1638 }
1639
1640 /* Returns true if vfork events are supported. */
1641
1642 static int
1643 remote_vfork_event_p (struct remote_state *rs)
1644 {
1645 return packet_support (PACKET_vfork_event_feature) == PACKET_ENABLE;
1646 }
1647
1648 /* Returns true if exec events are supported. */
1649
1650 static int
1651 remote_exec_event_p (struct remote_state *rs)
1652 {
1653 return packet_support (PACKET_exec_event_feature) == PACKET_ENABLE;
1654 }
1655
1656 /* Insert fork catchpoint target routine. If fork events are enabled
1657 then return success, nothing more to do. */
1658
1659 static int
1660 remote_insert_fork_catchpoint (struct target_ops *ops, int pid)
1661 {
1662 struct remote_state *rs = get_remote_state ();
1663
1664 return !remote_fork_event_p (rs);
1665 }
1666
1667 /* Remove fork catchpoint target routine. Nothing to do, just
1668 return success. */
1669
1670 static int
1671 remote_remove_fork_catchpoint (struct target_ops *ops, int pid)
1672 {
1673 return 0;
1674 }
1675
1676 /* Insert vfork catchpoint target routine. If vfork events are enabled
1677 then return success, nothing more to do. */
1678
1679 static int
1680 remote_insert_vfork_catchpoint (struct target_ops *ops, int pid)
1681 {
1682 struct remote_state *rs = get_remote_state ();
1683
1684 return !remote_vfork_event_p (rs);
1685 }
1686
1687 /* Remove vfork catchpoint target routine. Nothing to do, just
1688 return success. */
1689
1690 static int
1691 remote_remove_vfork_catchpoint (struct target_ops *ops, int pid)
1692 {
1693 return 0;
1694 }
1695
1696 /* Insert exec catchpoint target routine. If exec events are
1697 enabled, just return success. */
1698
1699 static int
1700 remote_insert_exec_catchpoint (struct target_ops *ops, int pid)
1701 {
1702 struct remote_state *rs = get_remote_state ();
1703
1704 return !remote_exec_event_p (rs);
1705 }
1706
1707 /* Remove exec catchpoint target routine. Nothing to do, just
1708 return success. */
1709
1710 static int
1711 remote_remove_exec_catchpoint (struct target_ops *ops, int pid)
1712 {
1713 return 0;
1714 }
1715
1716 \f
1717 /* Asynchronous signal handle registered as event loop source for
1718 when we have pending events ready to be passed to the core. */
1719
1720 static struct async_event_handler *remote_async_inferior_event_token;
1721
1722 \f
1723
1724 static ptid_t magic_null_ptid;
1725 static ptid_t not_sent_ptid;
1726 static ptid_t any_thread_ptid;
1727
1728 /* Find out if the stub attached to PID (and hence GDB should offer to
1729 detach instead of killing it when bailing out). */
1730
1731 static int
1732 remote_query_attached (int pid)
1733 {
1734 struct remote_state *rs = get_remote_state ();
1735 size_t size = get_remote_packet_size ();
1736
1737 if (packet_support (PACKET_qAttached) == PACKET_DISABLE)
1738 return 0;
1739
1740 if (remote_multi_process_p (rs))
1741 xsnprintf (rs->buf, size, "qAttached:%x", pid);
1742 else
1743 xsnprintf (rs->buf, size, "qAttached");
1744
1745 putpkt (rs->buf);
1746 getpkt (&rs->buf, &rs->buf_size, 0);
1747
1748 switch (packet_ok (rs->buf,
1749 &remote_protocol_packets[PACKET_qAttached]))
1750 {
1751 case PACKET_OK:
1752 if (strcmp (rs->buf, "1") == 0)
1753 return 1;
1754 break;
1755 case PACKET_ERROR:
1756 warning (_("Remote failure reply: %s"), rs->buf);
1757 break;
1758 case PACKET_UNKNOWN:
1759 break;
1760 }
1761
1762 return 0;
1763 }
1764
1765 /* Add PID to GDB's inferior table. If FAKE_PID_P is true, then PID
1766 has been invented by GDB, instead of reported by the target. Since
1767 we can be connected to a remote system before before knowing about
1768 any inferior, mark the target with execution when we find the first
1769 inferior. If ATTACHED is 1, then we had just attached to this
1770 inferior. If it is 0, then we just created this inferior. If it
1771 is -1, then try querying the remote stub to find out if it had
1772 attached to the inferior or not. If TRY_OPEN_EXEC is true then
1773 attempt to open this inferior's executable as the main executable
1774 if no main executable is open already. */
1775
1776 static struct inferior *
1777 remote_add_inferior (int fake_pid_p, int pid, int attached,
1778 int try_open_exec)
1779 {
1780 struct inferior *inf;
1781
1782 /* Check whether this process we're learning about is to be
1783 considered attached, or if is to be considered to have been
1784 spawned by the stub. */
1785 if (attached == -1)
1786 attached = remote_query_attached (pid);
1787
1788 if (gdbarch_has_global_solist (target_gdbarch ()))
1789 {
1790 /* If the target shares code across all inferiors, then every
1791 attach adds a new inferior. */
1792 inf = add_inferior (pid);
1793
1794 /* ... and every inferior is bound to the same program space.
1795 However, each inferior may still have its own address
1796 space. */
1797 inf->aspace = maybe_new_address_space ();
1798 inf->pspace = current_program_space;
1799 }
1800 else
1801 {
1802 /* In the traditional debugging scenario, there's a 1-1 match
1803 between program/address spaces. We simply bind the inferior
1804 to the program space's address space. */
1805 inf = current_inferior ();
1806 inferior_appeared (inf, pid);
1807 }
1808
1809 inf->attach_flag = attached;
1810 inf->fake_pid_p = fake_pid_p;
1811
1812 /* If no main executable is currently open then attempt to
1813 open the file that was executed to create this inferior. */
1814 if (try_open_exec && get_exec_file (0) == NULL)
1815 exec_file_locate_attach (pid, 0, 1);
1816
1817 return inf;
1818 }
1819
1820 static remote_thread_info *get_remote_thread_info (thread_info *thread);
1821
1822 /* Add thread PTID to GDB's thread list. Tag it as executing/running
1823 according to RUNNING. */
1824
1825 static void
1826 remote_add_thread (ptid_t ptid, int running, int executing)
1827 {
1828 struct remote_state *rs = get_remote_state ();
1829 struct thread_info *thread;
1830
1831 /* GDB historically didn't pull threads in the initial connection
1832 setup. If the remote target doesn't even have a concept of
1833 threads (e.g., a bare-metal target), even if internally we
1834 consider that a single-threaded target, mentioning a new thread
1835 might be confusing to the user. Be silent then, preserving the
1836 age old behavior. */
1837 if (rs->starting_up)
1838 thread = add_thread_silent (ptid);
1839 else
1840 thread = add_thread (ptid);
1841
1842 get_remote_thread_info (thread)->vcont_resumed = executing;
1843 set_executing (ptid, executing);
1844 set_running (ptid, running);
1845 }
1846
1847 /* Come here when we learn about a thread id from the remote target.
1848 It may be the first time we hear about such thread, so take the
1849 opportunity to add it to GDB's thread list. In case this is the
1850 first time we're noticing its corresponding inferior, add it to
1851 GDB's inferior list as well. EXECUTING indicates whether the
1852 thread is (internally) executing or stopped. */
1853
1854 static void
1855 remote_notice_new_inferior (ptid_t currthread, int executing)
1856 {
1857 /* In non-stop mode, we assume new found threads are (externally)
1858 running until proven otherwise with a stop reply. In all-stop,
1859 we can only get here if all threads are stopped. */
1860 int running = target_is_non_stop_p () ? 1 : 0;
1861
1862 /* If this is a new thread, add it to GDB's thread list.
1863 If we leave it up to WFI to do this, bad things will happen. */
1864
1865 if (in_thread_list (currthread) && is_exited (currthread))
1866 {
1867 /* We're seeing an event on a thread id we knew had exited.
1868 This has to be a new thread reusing the old id. Add it. */
1869 remote_add_thread (currthread, running, executing);
1870 return;
1871 }
1872
1873 if (!in_thread_list (currthread))
1874 {
1875 struct inferior *inf = NULL;
1876 int pid = ptid_get_pid (currthread);
1877
1878 if (ptid_is_pid (inferior_ptid)
1879 && pid == ptid_get_pid (inferior_ptid))
1880 {
1881 /* inferior_ptid has no thread member yet. This can happen
1882 with the vAttach -> remote_wait,"TAAthread:" path if the
1883 stub doesn't support qC. This is the first stop reported
1884 after an attach, so this is the main thread. Update the
1885 ptid in the thread list. */
1886 if (in_thread_list (pid_to_ptid (pid)))
1887 thread_change_ptid (inferior_ptid, currthread);
1888 else
1889 {
1890 remote_add_thread (currthread, running, executing);
1891 inferior_ptid = currthread;
1892 }
1893 return;
1894 }
1895
1896 if (ptid_equal (magic_null_ptid, inferior_ptid))
1897 {
1898 /* inferior_ptid is not set yet. This can happen with the
1899 vRun -> remote_wait,"TAAthread:" path if the stub
1900 doesn't support qC. This is the first stop reported
1901 after an attach, so this is the main thread. Update the
1902 ptid in the thread list. */
1903 thread_change_ptid (inferior_ptid, currthread);
1904 return;
1905 }
1906
1907 /* When connecting to a target remote, or to a target
1908 extended-remote which already was debugging an inferior, we
1909 may not know about it yet. Add it before adding its child
1910 thread, so notifications are emitted in a sensible order. */
1911 if (!in_inferior_list (ptid_get_pid (currthread)))
1912 {
1913 struct remote_state *rs = get_remote_state ();
1914 int fake_pid_p = !remote_multi_process_p (rs);
1915
1916 inf = remote_add_inferior (fake_pid_p,
1917 ptid_get_pid (currthread), -1, 1);
1918 }
1919
1920 /* This is really a new thread. Add it. */
1921 remote_add_thread (currthread, running, executing);
1922
1923 /* If we found a new inferior, let the common code do whatever
1924 it needs to with it (e.g., read shared libraries, insert
1925 breakpoints), unless we're just setting up an all-stop
1926 connection. */
1927 if (inf != NULL)
1928 {
1929 struct remote_state *rs = get_remote_state ();
1930
1931 if (!rs->starting_up)
1932 notice_new_inferior (currthread, executing, 0);
1933 }
1934 }
1935 }
1936
1937 /* Return THREAD's private thread data, creating it if necessary. */
1938
1939 static remote_thread_info *
1940 get_remote_thread_info (thread_info *thread)
1941 {
1942 gdb_assert (thread != NULL);
1943
1944 if (thread->priv == NULL)
1945 thread->priv.reset (new remote_thread_info);
1946
1947 return static_cast<remote_thread_info *> (thread->priv.get ());
1948 }
1949
1950 /* Return PTID's private thread data, creating it if necessary. */
1951
1952 static remote_thread_info *
1953 get_remote_thread_info (ptid_t ptid)
1954 {
1955 struct thread_info *info = find_thread_ptid (ptid);
1956
1957 return get_remote_thread_info (info);
1958 }
1959
1960 /* Call this function as a result of
1961 1) A halt indication (T packet) containing a thread id
1962 2) A direct query of currthread
1963 3) Successful execution of set thread */
1964
1965 static void
1966 record_currthread (struct remote_state *rs, ptid_t currthread)
1967 {
1968 rs->general_thread = currthread;
1969 }
1970
1971 /* If 'QPassSignals' is supported, tell the remote stub what signals
1972 it can simply pass through to the inferior without reporting. */
1973
1974 static void
1975 remote_pass_signals (struct target_ops *self,
1976 int numsigs, unsigned char *pass_signals)
1977 {
1978 if (packet_support (PACKET_QPassSignals) != PACKET_DISABLE)
1979 {
1980 char *pass_packet, *p;
1981 int count = 0, i;
1982 struct remote_state *rs = get_remote_state ();
1983
1984 gdb_assert (numsigs < 256);
1985 for (i = 0; i < numsigs; i++)
1986 {
1987 if (pass_signals[i])
1988 count++;
1989 }
1990 pass_packet = (char *) xmalloc (count * 3 + strlen ("QPassSignals:") + 1);
1991 strcpy (pass_packet, "QPassSignals:");
1992 p = pass_packet + strlen (pass_packet);
1993 for (i = 0; i < numsigs; i++)
1994 {
1995 if (pass_signals[i])
1996 {
1997 if (i >= 16)
1998 *p++ = tohex (i >> 4);
1999 *p++ = tohex (i & 15);
2000 if (count)
2001 *p++ = ';';
2002 else
2003 break;
2004 count--;
2005 }
2006 }
2007 *p = 0;
2008 if (!rs->last_pass_packet || strcmp (rs->last_pass_packet, pass_packet))
2009 {
2010 putpkt (pass_packet);
2011 getpkt (&rs->buf, &rs->buf_size, 0);
2012 packet_ok (rs->buf, &remote_protocol_packets[PACKET_QPassSignals]);
2013 if (rs->last_pass_packet)
2014 xfree (rs->last_pass_packet);
2015 rs->last_pass_packet = pass_packet;
2016 }
2017 else
2018 xfree (pass_packet);
2019 }
2020 }
2021
2022 /* If 'QCatchSyscalls' is supported, tell the remote stub
2023 to report syscalls to GDB. */
2024
2025 static int
2026 remote_set_syscall_catchpoint (struct target_ops *self,
2027 int pid, bool needed, int any_count,
2028 gdb::array_view<const int> syscall_counts)
2029 {
2030 const char *catch_packet;
2031 enum packet_result result;
2032 int n_sysno = 0;
2033
2034 if (packet_support (PACKET_QCatchSyscalls) == PACKET_DISABLE)
2035 {
2036 /* Not supported. */
2037 return 1;
2038 }
2039
2040 if (needed && any_count == 0)
2041 {
2042 /* Count how many syscalls are to be caught. */
2043 for (size_t i = 0; i < syscall_counts.size (); i++)
2044 {
2045 if (syscall_counts[i] != 0)
2046 n_sysno++;
2047 }
2048 }
2049
2050 if (remote_debug)
2051 {
2052 fprintf_unfiltered (gdb_stdlog,
2053 "remote_set_syscall_catchpoint "
2054 "pid %d needed %d any_count %d n_sysno %d\n",
2055 pid, needed, any_count, n_sysno);
2056 }
2057
2058 std::string built_packet;
2059 if (needed)
2060 {
2061 /* Prepare a packet with the sysno list, assuming max 8+1
2062 characters for a sysno. If the resulting packet size is too
2063 big, fallback on the non-selective packet. */
2064 const int maxpktsz = strlen ("QCatchSyscalls:1") + n_sysno * 9 + 1;
2065 built_packet.reserve (maxpktsz);
2066 built_packet = "QCatchSyscalls:1";
2067 if (any_count == 0)
2068 {
2069 /* Add in each syscall to be caught. */
2070 for (size_t i = 0; i < syscall_counts.size (); i++)
2071 {
2072 if (syscall_counts[i] != 0)
2073 string_appendf (built_packet, ";%zx", i);
2074 }
2075 }
2076 if (built_packet.size () > get_remote_packet_size ())
2077 {
2078 /* catch_packet too big. Fallback to less efficient
2079 non selective mode, with GDB doing the filtering. */
2080 catch_packet = "QCatchSyscalls:1";
2081 }
2082 else
2083 catch_packet = built_packet.c_str ();
2084 }
2085 else
2086 catch_packet = "QCatchSyscalls:0";
2087
2088 struct remote_state *rs = get_remote_state ();
2089
2090 putpkt (catch_packet);
2091 getpkt (&rs->buf, &rs->buf_size, 0);
2092 result = packet_ok (rs->buf, &remote_protocol_packets[PACKET_QCatchSyscalls]);
2093 if (result == PACKET_OK)
2094 return 0;
2095 else
2096 return -1;
2097 }
2098
2099 /* If 'QProgramSignals' is supported, tell the remote stub what
2100 signals it should pass through to the inferior when detaching. */
2101
2102 static void
2103 remote_program_signals (struct target_ops *self,
2104 int numsigs, unsigned char *signals)
2105 {
2106 if (packet_support (PACKET_QProgramSignals) != PACKET_DISABLE)
2107 {
2108 char *packet, *p;
2109 int count = 0, i;
2110 struct remote_state *rs = get_remote_state ();
2111
2112 gdb_assert (numsigs < 256);
2113 for (i = 0; i < numsigs; i++)
2114 {
2115 if (signals[i])
2116 count++;
2117 }
2118 packet = (char *) xmalloc (count * 3 + strlen ("QProgramSignals:") + 1);
2119 strcpy (packet, "QProgramSignals:");
2120 p = packet + strlen (packet);
2121 for (i = 0; i < numsigs; i++)
2122 {
2123 if (signal_pass_state (i))
2124 {
2125 if (i >= 16)
2126 *p++ = tohex (i >> 4);
2127 *p++ = tohex (i & 15);
2128 if (count)
2129 *p++ = ';';
2130 else
2131 break;
2132 count--;
2133 }
2134 }
2135 *p = 0;
2136 if (!rs->last_program_signals_packet
2137 || strcmp (rs->last_program_signals_packet, packet) != 0)
2138 {
2139 putpkt (packet);
2140 getpkt (&rs->buf, &rs->buf_size, 0);
2141 packet_ok (rs->buf, &remote_protocol_packets[PACKET_QProgramSignals]);
2142 xfree (rs->last_program_signals_packet);
2143 rs->last_program_signals_packet = packet;
2144 }
2145 else
2146 xfree (packet);
2147 }
2148 }
2149
2150 /* If PTID is MAGIC_NULL_PTID, don't set any thread. If PTID is
2151 MINUS_ONE_PTID, set the thread to -1, so the stub returns the
2152 thread. If GEN is set, set the general thread, if not, then set
2153 the step/continue thread. */
2154 static void
2155 set_thread (ptid_t ptid, int gen)
2156 {
2157 struct remote_state *rs = get_remote_state ();
2158 ptid_t state = gen ? rs->general_thread : rs->continue_thread;
2159 char *buf = rs->buf;
2160 char *endbuf = rs->buf + get_remote_packet_size ();
2161
2162 if (ptid_equal (state, ptid))
2163 return;
2164
2165 *buf++ = 'H';
2166 *buf++ = gen ? 'g' : 'c';
2167 if (ptid_equal (ptid, magic_null_ptid))
2168 xsnprintf (buf, endbuf - buf, "0");
2169 else if (ptid_equal (ptid, any_thread_ptid))
2170 xsnprintf (buf, endbuf - buf, "0");
2171 else if (ptid_equal (ptid, minus_one_ptid))
2172 xsnprintf (buf, endbuf - buf, "-1");
2173 else
2174 write_ptid (buf, endbuf, ptid);
2175 putpkt (rs->buf);
2176 getpkt (&rs->buf, &rs->buf_size, 0);
2177 if (gen)
2178 rs->general_thread = ptid;
2179 else
2180 rs->continue_thread = ptid;
2181 }
2182
2183 static void
2184 set_general_thread (ptid_t ptid)
2185 {
2186 set_thread (ptid, 1);
2187 }
2188
2189 static void
2190 set_continue_thread (ptid_t ptid)
2191 {
2192 set_thread (ptid, 0);
2193 }
2194
2195 /* Change the remote current process. Which thread within the process
2196 ends up selected isn't important, as long as it is the same process
2197 as what INFERIOR_PTID points to.
2198
2199 This comes from that fact that there is no explicit notion of
2200 "selected process" in the protocol. The selected process for
2201 general operations is the process the selected general thread
2202 belongs to. */
2203
2204 static void
2205 set_general_process (void)
2206 {
2207 struct remote_state *rs = get_remote_state ();
2208
2209 /* If the remote can't handle multiple processes, don't bother. */
2210 if (!remote_multi_process_p (rs))
2211 return;
2212
2213 /* We only need to change the remote current thread if it's pointing
2214 at some other process. */
2215 if (ptid_get_pid (rs->general_thread) != ptid_get_pid (inferior_ptid))
2216 set_general_thread (inferior_ptid);
2217 }
2218
2219 \f
2220 /* Return nonzero if this is the main thread that we made up ourselves
2221 to model non-threaded targets as single-threaded. */
2222
2223 static int
2224 remote_thread_always_alive (struct target_ops *ops, ptid_t ptid)
2225 {
2226 if (ptid_equal (ptid, magic_null_ptid))
2227 /* The main thread is always alive. */
2228 return 1;
2229
2230 if (ptid_get_pid (ptid) != 0 && ptid_get_lwp (ptid) == 0)
2231 /* The main thread is always alive. This can happen after a
2232 vAttach, if the remote side doesn't support
2233 multi-threading. */
2234 return 1;
2235
2236 return 0;
2237 }
2238
2239 /* Return nonzero if the thread PTID is still alive on the remote
2240 system. */
2241
2242 static int
2243 remote_thread_alive (struct target_ops *ops, ptid_t ptid)
2244 {
2245 struct remote_state *rs = get_remote_state ();
2246 char *p, *endp;
2247
2248 /* Check if this is a thread that we made up ourselves to model
2249 non-threaded targets as single-threaded. */
2250 if (remote_thread_always_alive (ops, ptid))
2251 return 1;
2252
2253 p = rs->buf;
2254 endp = rs->buf + get_remote_packet_size ();
2255
2256 *p++ = 'T';
2257 write_ptid (p, endp, ptid);
2258
2259 putpkt (rs->buf);
2260 getpkt (&rs->buf, &rs->buf_size, 0);
2261 return (rs->buf[0] == 'O' && rs->buf[1] == 'K');
2262 }
2263
2264 /* Return a pointer to a thread name if we know it and NULL otherwise.
2265 The thread_info object owns the memory for the name. */
2266
2267 static const char *
2268 remote_thread_name (struct target_ops *ops, struct thread_info *info)
2269 {
2270 if (info->priv != NULL)
2271 {
2272 const std::string &name = get_remote_thread_info (info)->name;
2273 return !name.empty () ? name.c_str () : NULL;
2274 }
2275
2276 return NULL;
2277 }
2278
2279 /* About these extended threadlist and threadinfo packets. They are
2280 variable length packets but, the fields within them are often fixed
2281 length. They are redundent enough to send over UDP as is the
2282 remote protocol in general. There is a matching unit test module
2283 in libstub. */
2284
2285 /* WARNING: This threadref data structure comes from the remote O.S.,
2286 libstub protocol encoding, and remote.c. It is not particularly
2287 changable. */
2288
2289 /* Right now, the internal structure is int. We want it to be bigger.
2290 Plan to fix this. */
2291
2292 typedef int gdb_threadref; /* Internal GDB thread reference. */
2293
2294 /* gdb_ext_thread_info is an internal GDB data structure which is
2295 equivalent to the reply of the remote threadinfo packet. */
2296
2297 struct gdb_ext_thread_info
2298 {
2299 threadref threadid; /* External form of thread reference. */
2300 int active; /* Has state interesting to GDB?
2301 regs, stack. */
2302 char display[256]; /* Brief state display, name,
2303 blocked/suspended. */
2304 char shortname[32]; /* To be used to name threads. */
2305 char more_display[256]; /* Long info, statistics, queue depth,
2306 whatever. */
2307 };
2308
2309 /* The volume of remote transfers can be limited by submitting
2310 a mask containing bits specifying the desired information.
2311 Use a union of these values as the 'selection' parameter to
2312 get_thread_info. FIXME: Make these TAG names more thread specific. */
2313
2314 #define TAG_THREADID 1
2315 #define TAG_EXISTS 2
2316 #define TAG_DISPLAY 4
2317 #define TAG_THREADNAME 8
2318 #define TAG_MOREDISPLAY 16
2319
2320 #define BUF_THREAD_ID_SIZE (OPAQUETHREADBYTES * 2)
2321
2322 static char *unpack_nibble (char *buf, int *val);
2323
2324 static char *unpack_byte (char *buf, int *value);
2325
2326 static char *pack_int (char *buf, int value);
2327
2328 static char *unpack_int (char *buf, int *value);
2329
2330 static char *unpack_string (char *src, char *dest, int length);
2331
2332 static char *pack_threadid (char *pkt, threadref *id);
2333
2334 static char *unpack_threadid (char *inbuf, threadref *id);
2335
2336 void int_to_threadref (threadref *id, int value);
2337
2338 static int threadref_to_int (threadref *ref);
2339
2340 static void copy_threadref (threadref *dest, threadref *src);
2341
2342 static int threadmatch (threadref *dest, threadref *src);
2343
2344 static char *pack_threadinfo_request (char *pkt, int mode,
2345 threadref *id);
2346
2347 static int remote_unpack_thread_info_response (char *pkt,
2348 threadref *expectedref,
2349 struct gdb_ext_thread_info
2350 *info);
2351
2352
2353 static int remote_get_threadinfo (threadref *threadid,
2354 int fieldset, /*TAG mask */
2355 struct gdb_ext_thread_info *info);
2356
2357 static char *pack_threadlist_request (char *pkt, int startflag,
2358 int threadcount,
2359 threadref *nextthread);
2360
2361 static int parse_threadlist_response (char *pkt,
2362 int result_limit,
2363 threadref *original_echo,
2364 threadref *resultlist,
2365 int *doneflag);
2366
2367 static int remote_get_threadlist (int startflag,
2368 threadref *nextthread,
2369 int result_limit,
2370 int *done,
2371 int *result_count,
2372 threadref *threadlist);
2373
2374 typedef int (*rmt_thread_action) (threadref *ref, void *context);
2375
2376 static int remote_threadlist_iterator (rmt_thread_action stepfunction,
2377 void *context, int looplimit);
2378
2379 static int remote_newthread_step (threadref *ref, void *context);
2380
2381
2382 /* Write a PTID to BUF. ENDBUF points to one-passed-the-end of the
2383 buffer we're allowed to write to. Returns
2384 BUF+CHARACTERS_WRITTEN. */
2385
2386 static char *
2387 write_ptid (char *buf, const char *endbuf, ptid_t ptid)
2388 {
2389 int pid, tid;
2390 struct remote_state *rs = get_remote_state ();
2391
2392 if (remote_multi_process_p (rs))
2393 {
2394 pid = ptid_get_pid (ptid);
2395 if (pid < 0)
2396 buf += xsnprintf (buf, endbuf - buf, "p-%x.", -pid);
2397 else
2398 buf += xsnprintf (buf, endbuf - buf, "p%x.", pid);
2399 }
2400 tid = ptid_get_lwp (ptid);
2401 if (tid < 0)
2402 buf += xsnprintf (buf, endbuf - buf, "-%x", -tid);
2403 else
2404 buf += xsnprintf (buf, endbuf - buf, "%x", tid);
2405
2406 return buf;
2407 }
2408
2409 /* Extract a PTID from BUF. If non-null, OBUF is set to one past the
2410 last parsed char. Returns null_ptid if no thread id is found, and
2411 throws an error if the thread id has an invalid format. */
2412
2413 static ptid_t
2414 read_ptid (const char *buf, const char **obuf)
2415 {
2416 const char *p = buf;
2417 const char *pp;
2418 ULONGEST pid = 0, tid = 0;
2419
2420 if (*p == 'p')
2421 {
2422 /* Multi-process ptid. */
2423 pp = unpack_varlen_hex (p + 1, &pid);
2424 if (*pp != '.')
2425 error (_("invalid remote ptid: %s"), p);
2426
2427 p = pp;
2428 pp = unpack_varlen_hex (p + 1, &tid);
2429 if (obuf)
2430 *obuf = pp;
2431 return ptid_build (pid, tid, 0);
2432 }
2433
2434 /* No multi-process. Just a tid. */
2435 pp = unpack_varlen_hex (p, &tid);
2436
2437 /* Return null_ptid when no thread id is found. */
2438 if (p == pp)
2439 {
2440 if (obuf)
2441 *obuf = pp;
2442 return null_ptid;
2443 }
2444
2445 /* Since the stub is not sending a process id, then default to
2446 what's in inferior_ptid, unless it's null at this point. If so,
2447 then since there's no way to know the pid of the reported
2448 threads, use the magic number. */
2449 if (ptid_equal (inferior_ptid, null_ptid))
2450 pid = ptid_get_pid (magic_null_ptid);
2451 else
2452 pid = ptid_get_pid (inferior_ptid);
2453
2454 if (obuf)
2455 *obuf = pp;
2456 return ptid_build (pid, tid, 0);
2457 }
2458
2459 static int
2460 stubhex (int ch)
2461 {
2462 if (ch >= 'a' && ch <= 'f')
2463 return ch - 'a' + 10;
2464 if (ch >= '0' && ch <= '9')
2465 return ch - '0';
2466 if (ch >= 'A' && ch <= 'F')
2467 return ch - 'A' + 10;
2468 return -1;
2469 }
2470
2471 static int
2472 stub_unpack_int (char *buff, int fieldlength)
2473 {
2474 int nibble;
2475 int retval = 0;
2476
2477 while (fieldlength)
2478 {
2479 nibble = stubhex (*buff++);
2480 retval |= nibble;
2481 fieldlength--;
2482 if (fieldlength)
2483 retval = retval << 4;
2484 }
2485 return retval;
2486 }
2487
2488 static char *
2489 unpack_nibble (char *buf, int *val)
2490 {
2491 *val = fromhex (*buf++);
2492 return buf;
2493 }
2494
2495 static char *
2496 unpack_byte (char *buf, int *value)
2497 {
2498 *value = stub_unpack_int (buf, 2);
2499 return buf + 2;
2500 }
2501
2502 static char *
2503 pack_int (char *buf, int value)
2504 {
2505 buf = pack_hex_byte (buf, (value >> 24) & 0xff);
2506 buf = pack_hex_byte (buf, (value >> 16) & 0xff);
2507 buf = pack_hex_byte (buf, (value >> 8) & 0x0ff);
2508 buf = pack_hex_byte (buf, (value & 0xff));
2509 return buf;
2510 }
2511
2512 static char *
2513 unpack_int (char *buf, int *value)
2514 {
2515 *value = stub_unpack_int (buf, 8);
2516 return buf + 8;
2517 }
2518
2519 #if 0 /* Currently unused, uncomment when needed. */
2520 static char *pack_string (char *pkt, char *string);
2521
2522 static char *
2523 pack_string (char *pkt, char *string)
2524 {
2525 char ch;
2526 int len;
2527
2528 len = strlen (string);
2529 if (len > 200)
2530 len = 200; /* Bigger than most GDB packets, junk??? */
2531 pkt = pack_hex_byte (pkt, len);
2532 while (len-- > 0)
2533 {
2534 ch = *string++;
2535 if ((ch == '\0') || (ch == '#'))
2536 ch = '*'; /* Protect encapsulation. */
2537 *pkt++ = ch;
2538 }
2539 return pkt;
2540 }
2541 #endif /* 0 (unused) */
2542
2543 static char *
2544 unpack_string (char *src, char *dest, int length)
2545 {
2546 while (length--)
2547 *dest++ = *src++;
2548 *dest = '\0';
2549 return src;
2550 }
2551
2552 static char *
2553 pack_threadid (char *pkt, threadref *id)
2554 {
2555 char *limit;
2556 unsigned char *altid;
2557
2558 altid = (unsigned char *) id;
2559 limit = pkt + BUF_THREAD_ID_SIZE;
2560 while (pkt < limit)
2561 pkt = pack_hex_byte (pkt, *altid++);
2562 return pkt;
2563 }
2564
2565
2566 static char *
2567 unpack_threadid (char *inbuf, threadref *id)
2568 {
2569 char *altref;
2570 char *limit = inbuf + BUF_THREAD_ID_SIZE;
2571 int x, y;
2572
2573 altref = (char *) id;
2574
2575 while (inbuf < limit)
2576 {
2577 x = stubhex (*inbuf++);
2578 y = stubhex (*inbuf++);
2579 *altref++ = (x << 4) | y;
2580 }
2581 return inbuf;
2582 }
2583
2584 /* Externally, threadrefs are 64 bits but internally, they are still
2585 ints. This is due to a mismatch of specifications. We would like
2586 to use 64bit thread references internally. This is an adapter
2587 function. */
2588
2589 void
2590 int_to_threadref (threadref *id, int value)
2591 {
2592 unsigned char *scan;
2593
2594 scan = (unsigned char *) id;
2595 {
2596 int i = 4;
2597 while (i--)
2598 *scan++ = 0;
2599 }
2600 *scan++ = (value >> 24) & 0xff;
2601 *scan++ = (value >> 16) & 0xff;
2602 *scan++ = (value >> 8) & 0xff;
2603 *scan++ = (value & 0xff);
2604 }
2605
2606 static int
2607 threadref_to_int (threadref *ref)
2608 {
2609 int i, value = 0;
2610 unsigned char *scan;
2611
2612 scan = *ref;
2613 scan += 4;
2614 i = 4;
2615 while (i-- > 0)
2616 value = (value << 8) | ((*scan++) & 0xff);
2617 return value;
2618 }
2619
2620 static void
2621 copy_threadref (threadref *dest, threadref *src)
2622 {
2623 int i;
2624 unsigned char *csrc, *cdest;
2625
2626 csrc = (unsigned char *) src;
2627 cdest = (unsigned char *) dest;
2628 i = 8;
2629 while (i--)
2630 *cdest++ = *csrc++;
2631 }
2632
2633 static int
2634 threadmatch (threadref *dest, threadref *src)
2635 {
2636 /* Things are broken right now, so just assume we got a match. */
2637 #if 0
2638 unsigned char *srcp, *destp;
2639 int i, result;
2640 srcp = (char *) src;
2641 destp = (char *) dest;
2642
2643 result = 1;
2644 while (i-- > 0)
2645 result &= (*srcp++ == *destp++) ? 1 : 0;
2646 return result;
2647 #endif
2648 return 1;
2649 }
2650
2651 /*
2652 threadid:1, # always request threadid
2653 context_exists:2,
2654 display:4,
2655 unique_name:8,
2656 more_display:16
2657 */
2658
2659 /* Encoding: 'Q':8,'P':8,mask:32,threadid:64 */
2660
2661 static char *
2662 pack_threadinfo_request (char *pkt, int mode, threadref *id)
2663 {
2664 *pkt++ = 'q'; /* Info Query */
2665 *pkt++ = 'P'; /* process or thread info */
2666 pkt = pack_int (pkt, mode); /* mode */
2667 pkt = pack_threadid (pkt, id); /* threadid */
2668 *pkt = '\0'; /* terminate */
2669 return pkt;
2670 }
2671
2672 /* These values tag the fields in a thread info response packet. */
2673 /* Tagging the fields allows us to request specific fields and to
2674 add more fields as time goes by. */
2675
2676 #define TAG_THREADID 1 /* Echo the thread identifier. */
2677 #define TAG_EXISTS 2 /* Is this process defined enough to
2678 fetch registers and its stack? */
2679 #define TAG_DISPLAY 4 /* A short thing maybe to put on a window */
2680 #define TAG_THREADNAME 8 /* string, maps 1-to-1 with a thread is. */
2681 #define TAG_MOREDISPLAY 16 /* Whatever the kernel wants to say about
2682 the process. */
2683
2684 static int
2685 remote_unpack_thread_info_response (char *pkt, threadref *expectedref,
2686 struct gdb_ext_thread_info *info)
2687 {
2688 struct remote_state *rs = get_remote_state ();
2689 int mask, length;
2690 int tag;
2691 threadref ref;
2692 char *limit = pkt + rs->buf_size; /* Plausible parsing limit. */
2693 int retval = 1;
2694
2695 /* info->threadid = 0; FIXME: implement zero_threadref. */
2696 info->active = 0;
2697 info->display[0] = '\0';
2698 info->shortname[0] = '\0';
2699 info->more_display[0] = '\0';
2700
2701 /* Assume the characters indicating the packet type have been
2702 stripped. */
2703 pkt = unpack_int (pkt, &mask); /* arg mask */
2704 pkt = unpack_threadid (pkt, &ref);
2705
2706 if (mask == 0)
2707 warning (_("Incomplete response to threadinfo request."));
2708 if (!threadmatch (&ref, expectedref))
2709 { /* This is an answer to a different request. */
2710 warning (_("ERROR RMT Thread info mismatch."));
2711 return 0;
2712 }
2713 copy_threadref (&info->threadid, &ref);
2714
2715 /* Loop on tagged fields , try to bail if somthing goes wrong. */
2716
2717 /* Packets are terminated with nulls. */
2718 while ((pkt < limit) && mask && *pkt)
2719 {
2720 pkt = unpack_int (pkt, &tag); /* tag */
2721 pkt = unpack_byte (pkt, &length); /* length */
2722 if (!(tag & mask)) /* Tags out of synch with mask. */
2723 {
2724 warning (_("ERROR RMT: threadinfo tag mismatch."));
2725 retval = 0;
2726 break;
2727 }
2728 if (tag == TAG_THREADID)
2729 {
2730 if (length != 16)
2731 {
2732 warning (_("ERROR RMT: length of threadid is not 16."));
2733 retval = 0;
2734 break;
2735 }
2736 pkt = unpack_threadid (pkt, &ref);
2737 mask = mask & ~TAG_THREADID;
2738 continue;
2739 }
2740 if (tag == TAG_EXISTS)
2741 {
2742 info->active = stub_unpack_int (pkt, length);
2743 pkt += length;
2744 mask = mask & ~(TAG_EXISTS);
2745 if (length > 8)
2746 {
2747 warning (_("ERROR RMT: 'exists' length too long."));
2748 retval = 0;
2749 break;
2750 }
2751 continue;
2752 }
2753 if (tag == TAG_THREADNAME)
2754 {
2755 pkt = unpack_string (pkt, &info->shortname[0], length);
2756 mask = mask & ~TAG_THREADNAME;
2757 continue;
2758 }
2759 if (tag == TAG_DISPLAY)
2760 {
2761 pkt = unpack_string (pkt, &info->display[0], length);
2762 mask = mask & ~TAG_DISPLAY;
2763 continue;
2764 }
2765 if (tag == TAG_MOREDISPLAY)
2766 {
2767 pkt = unpack_string (pkt, &info->more_display[0], length);
2768 mask = mask & ~TAG_MOREDISPLAY;
2769 continue;
2770 }
2771 warning (_("ERROR RMT: unknown thread info tag."));
2772 break; /* Not a tag we know about. */
2773 }
2774 return retval;
2775 }
2776
2777 static int
2778 remote_get_threadinfo (threadref *threadid, int fieldset, /* TAG mask */
2779 struct gdb_ext_thread_info *info)
2780 {
2781 struct remote_state *rs = get_remote_state ();
2782 int result;
2783
2784 pack_threadinfo_request (rs->buf, fieldset, threadid);
2785 putpkt (rs->buf);
2786 getpkt (&rs->buf, &rs->buf_size, 0);
2787
2788 if (rs->buf[0] == '\0')
2789 return 0;
2790
2791 result = remote_unpack_thread_info_response (rs->buf + 2,
2792 threadid, info);
2793 return result;
2794 }
2795
2796 /* Format: i'Q':8,i"L":8,initflag:8,batchsize:16,lastthreadid:32 */
2797
2798 static char *
2799 pack_threadlist_request (char *pkt, int startflag, int threadcount,
2800 threadref *nextthread)
2801 {
2802 *pkt++ = 'q'; /* info query packet */
2803 *pkt++ = 'L'; /* Process LIST or threadLIST request */
2804 pkt = pack_nibble (pkt, startflag); /* initflag 1 bytes */
2805 pkt = pack_hex_byte (pkt, threadcount); /* threadcount 2 bytes */
2806 pkt = pack_threadid (pkt, nextthread); /* 64 bit thread identifier */
2807 *pkt = '\0';
2808 return pkt;
2809 }
2810
2811 /* Encoding: 'q':8,'M':8,count:16,done:8,argthreadid:64,(threadid:64)* */
2812
2813 static int
2814 parse_threadlist_response (char *pkt, int result_limit,
2815 threadref *original_echo, threadref *resultlist,
2816 int *doneflag)
2817 {
2818 struct remote_state *rs = get_remote_state ();
2819 char *limit;
2820 int count, resultcount, done;
2821
2822 resultcount = 0;
2823 /* Assume the 'q' and 'M chars have been stripped. */
2824 limit = pkt + (rs->buf_size - BUF_THREAD_ID_SIZE);
2825 /* done parse past here */
2826 pkt = unpack_byte (pkt, &count); /* count field */
2827 pkt = unpack_nibble (pkt, &done);
2828 /* The first threadid is the argument threadid. */
2829 pkt = unpack_threadid (pkt, original_echo); /* should match query packet */
2830 while ((count-- > 0) && (pkt < limit))
2831 {
2832 pkt = unpack_threadid (pkt, resultlist++);
2833 if (resultcount++ >= result_limit)
2834 break;
2835 }
2836 if (doneflag)
2837 *doneflag = done;
2838 return resultcount;
2839 }
2840
2841 /* Fetch the next batch of threads from the remote. Returns -1 if the
2842 qL packet is not supported, 0 on error and 1 on success. */
2843
2844 static int
2845 remote_get_threadlist (int startflag, threadref *nextthread, int result_limit,
2846 int *done, int *result_count, threadref *threadlist)
2847 {
2848 struct remote_state *rs = get_remote_state ();
2849 int result = 1;
2850
2851 /* Trancate result limit to be smaller than the packet size. */
2852 if ((((result_limit + 1) * BUF_THREAD_ID_SIZE) + 10)
2853 >= get_remote_packet_size ())
2854 result_limit = (get_remote_packet_size () / BUF_THREAD_ID_SIZE) - 2;
2855
2856 pack_threadlist_request (rs->buf, startflag, result_limit, nextthread);
2857 putpkt (rs->buf);
2858 getpkt (&rs->buf, &rs->buf_size, 0);
2859 if (*rs->buf == '\0')
2860 {
2861 /* Packet not supported. */
2862 return -1;
2863 }
2864
2865 *result_count =
2866 parse_threadlist_response (rs->buf + 2, result_limit,
2867 &rs->echo_nextthread, threadlist, done);
2868
2869 if (!threadmatch (&rs->echo_nextthread, nextthread))
2870 {
2871 /* FIXME: This is a good reason to drop the packet. */
2872 /* Possably, there is a duplicate response. */
2873 /* Possabilities :
2874 retransmit immediatly - race conditions
2875 retransmit after timeout - yes
2876 exit
2877 wait for packet, then exit
2878 */
2879 warning (_("HMM: threadlist did not echo arg thread, dropping it."));
2880 return 0; /* I choose simply exiting. */
2881 }
2882 if (*result_count <= 0)
2883 {
2884 if (*done != 1)
2885 {
2886 warning (_("RMT ERROR : failed to get remote thread list."));
2887 result = 0;
2888 }
2889 return result; /* break; */
2890 }
2891 if (*result_count > result_limit)
2892 {
2893 *result_count = 0;
2894 warning (_("RMT ERROR: threadlist response longer than requested."));
2895 return 0;
2896 }
2897 return result;
2898 }
2899
2900 /* Fetch the list of remote threads, with the qL packet, and call
2901 STEPFUNCTION for each thread found. Stops iterating and returns 1
2902 if STEPFUNCTION returns true. Stops iterating and returns 0 if the
2903 STEPFUNCTION returns false. If the packet is not supported,
2904 returns -1. */
2905
2906 static int
2907 remote_threadlist_iterator (rmt_thread_action stepfunction, void *context,
2908 int looplimit)
2909 {
2910 struct remote_state *rs = get_remote_state ();
2911 int done, i, result_count;
2912 int startflag = 1;
2913 int result = 1;
2914 int loopcount = 0;
2915
2916 done = 0;
2917 while (!done)
2918 {
2919 if (loopcount++ > looplimit)
2920 {
2921 result = 0;
2922 warning (_("Remote fetch threadlist -infinite loop-."));
2923 break;
2924 }
2925 result = remote_get_threadlist (startflag, &rs->nextthread,
2926 MAXTHREADLISTRESULTS,
2927 &done, &result_count,
2928 rs->resultthreadlist);
2929 if (result <= 0)
2930 break;
2931 /* Clear for later iterations. */
2932 startflag = 0;
2933 /* Setup to resume next batch of thread references, set nextthread. */
2934 if (result_count >= 1)
2935 copy_threadref (&rs->nextthread,
2936 &rs->resultthreadlist[result_count - 1]);
2937 i = 0;
2938 while (result_count--)
2939 {
2940 if (!(*stepfunction) (&rs->resultthreadlist[i++], context))
2941 {
2942 result = 0;
2943 break;
2944 }
2945 }
2946 }
2947 return result;
2948 }
2949
2950 /* A thread found on the remote target. */
2951
2952 struct thread_item
2953 {
2954 explicit thread_item (ptid_t ptid_)
2955 : ptid (ptid_)
2956 {}
2957
2958 thread_item (thread_item &&other) = default;
2959 thread_item &operator= (thread_item &&other) = default;
2960
2961 DISABLE_COPY_AND_ASSIGN (thread_item);
2962
2963 /* The thread's PTID. */
2964 ptid_t ptid;
2965
2966 /* The thread's extra info. */
2967 std::string extra;
2968
2969 /* The thread's name. */
2970 std::string name;
2971
2972 /* The core the thread was running on. -1 if not known. */
2973 int core = -1;
2974
2975 /* The thread handle associated with the thread. */
2976 gdb::byte_vector thread_handle;
2977 };
2978
2979 /* Context passed around to the various methods listing remote
2980 threads. As new threads are found, they're added to the ITEMS
2981 vector. */
2982
2983 struct threads_listing_context
2984 {
2985 /* Return true if this object contains an entry for a thread with ptid
2986 PTID. */
2987
2988 bool contains_thread (ptid_t ptid) const
2989 {
2990 auto match_ptid = [&] (const thread_item &item)
2991 {
2992 return item.ptid == ptid;
2993 };
2994
2995 auto it = std::find_if (this->items.begin (),
2996 this->items.end (),
2997 match_ptid);
2998
2999 return it != this->items.end ();
3000 }
3001
3002 /* Remove the thread with ptid PTID. */
3003
3004 void remove_thread (ptid_t ptid)
3005 {
3006 auto match_ptid = [&] (const thread_item &item)
3007 {
3008 return item.ptid == ptid;
3009 };
3010
3011 auto it = std::remove_if (this->items.begin (),
3012 this->items.end (),
3013 match_ptid);
3014
3015 if (it != this->items.end ())
3016 this->items.erase (it);
3017 }
3018
3019 /* The threads found on the remote target. */
3020 std::vector<thread_item> items;
3021 };
3022
3023 static int
3024 remote_newthread_step (threadref *ref, void *data)
3025 {
3026 struct threads_listing_context *context
3027 = (struct threads_listing_context *) data;
3028 int pid = inferior_ptid.pid ();
3029 int lwp = threadref_to_int (ref);
3030 ptid_t ptid (pid, lwp);
3031
3032 context->items.emplace_back (ptid);
3033
3034 return 1; /* continue iterator */
3035 }
3036
3037 #define CRAZY_MAX_THREADS 1000
3038
3039 static ptid_t
3040 remote_current_thread (ptid_t oldpid)
3041 {
3042 struct remote_state *rs = get_remote_state ();
3043
3044 putpkt ("qC");
3045 getpkt (&rs->buf, &rs->buf_size, 0);
3046 if (rs->buf[0] == 'Q' && rs->buf[1] == 'C')
3047 {
3048 const char *obuf;
3049 ptid_t result;
3050
3051 result = read_ptid (&rs->buf[2], &obuf);
3052 if (*obuf != '\0' && remote_debug)
3053 fprintf_unfiltered (gdb_stdlog,
3054 "warning: garbage in qC reply\n");
3055
3056 return result;
3057 }
3058 else
3059 return oldpid;
3060 }
3061
3062 /* List remote threads using the deprecated qL packet. */
3063
3064 static int
3065 remote_get_threads_with_ql (struct target_ops *ops,
3066 struct threads_listing_context *context)
3067 {
3068 if (remote_threadlist_iterator (remote_newthread_step, context,
3069 CRAZY_MAX_THREADS) >= 0)
3070 return 1;
3071
3072 return 0;
3073 }
3074
3075 #if defined(HAVE_LIBEXPAT)
3076
3077 static void
3078 start_thread (struct gdb_xml_parser *parser,
3079 const struct gdb_xml_element *element,
3080 void *user_data,
3081 std::vector<gdb_xml_value> &attributes)
3082 {
3083 struct threads_listing_context *data
3084 = (struct threads_listing_context *) user_data;
3085 struct gdb_xml_value *attr;
3086
3087 char *id = (char *) xml_find_attribute (attributes, "id")->value.get ();
3088 ptid_t ptid = read_ptid (id, NULL);
3089
3090 data->items.emplace_back (ptid);
3091 thread_item &item = data->items.back ();
3092
3093 attr = xml_find_attribute (attributes, "core");
3094 if (attr != NULL)
3095 item.core = *(ULONGEST *) attr->value.get ();
3096
3097 attr = xml_find_attribute (attributes, "name");
3098 if (attr != NULL)
3099 item.name = (const char *) attr->value.get ();
3100
3101 attr = xml_find_attribute (attributes, "handle");
3102 if (attr != NULL)
3103 item.thread_handle = hex2bin ((const char *) attr->value.get ());
3104 }
3105
3106 static void
3107 end_thread (struct gdb_xml_parser *parser,
3108 const struct gdb_xml_element *element,
3109 void *user_data, const char *body_text)
3110 {
3111 struct threads_listing_context *data
3112 = (struct threads_listing_context *) user_data;
3113
3114 if (body_text != NULL && *body_text != '\0')
3115 data->items.back ().extra = body_text;
3116 }
3117
3118 const struct gdb_xml_attribute thread_attributes[] = {
3119 { "id", GDB_XML_AF_NONE, NULL, NULL },
3120 { "core", GDB_XML_AF_OPTIONAL, gdb_xml_parse_attr_ulongest, NULL },
3121 { "name", GDB_XML_AF_OPTIONAL, NULL, NULL },
3122 { "handle", GDB_XML_AF_OPTIONAL, NULL, NULL },
3123 { NULL, GDB_XML_AF_NONE, NULL, NULL }
3124 };
3125
3126 const struct gdb_xml_element thread_children[] = {
3127 { NULL, NULL, NULL, GDB_XML_EF_NONE, NULL, NULL }
3128 };
3129
3130 const struct gdb_xml_element threads_children[] = {
3131 { "thread", thread_attributes, thread_children,
3132 GDB_XML_EF_REPEATABLE | GDB_XML_EF_OPTIONAL,
3133 start_thread, end_thread },
3134 { NULL, NULL, NULL, GDB_XML_EF_NONE, NULL, NULL }
3135 };
3136
3137 const struct gdb_xml_element threads_elements[] = {
3138 { "threads", NULL, threads_children,
3139 GDB_XML_EF_NONE, NULL, NULL },
3140 { NULL, NULL, NULL, GDB_XML_EF_NONE, NULL, NULL }
3141 };
3142
3143 #endif
3144
3145 /* List remote threads using qXfer:threads:read. */
3146
3147 static int
3148 remote_get_threads_with_qxfer (struct target_ops *ops,
3149 struct threads_listing_context *context)
3150 {
3151 #if defined(HAVE_LIBEXPAT)
3152 if (packet_support (PACKET_qXfer_threads) == PACKET_ENABLE)
3153 {
3154 gdb::optional<gdb::char_vector> xml
3155 = target_read_stralloc (ops, TARGET_OBJECT_THREADS, NULL);
3156
3157 if (xml && (*xml)[0] != '\0')
3158 {
3159 gdb_xml_parse_quick (_("threads"), "threads.dtd",
3160 threads_elements, xml->data (), context);
3161 }
3162
3163 return 1;
3164 }
3165 #endif
3166
3167 return 0;
3168 }
3169
3170 /* List remote threads using qfThreadInfo/qsThreadInfo. */
3171
3172 static int
3173 remote_get_threads_with_qthreadinfo (struct target_ops *ops,
3174 struct threads_listing_context *context)
3175 {
3176 struct remote_state *rs = get_remote_state ();
3177
3178 if (rs->use_threadinfo_query)
3179 {
3180 const char *bufp;
3181
3182 putpkt ("qfThreadInfo");
3183 getpkt (&rs->buf, &rs->buf_size, 0);
3184 bufp = rs->buf;
3185 if (bufp[0] != '\0') /* q packet recognized */
3186 {
3187 while (*bufp++ == 'm') /* reply contains one or more TID */
3188 {
3189 do
3190 {
3191 ptid_t ptid = read_ptid (bufp, &bufp);
3192 context->items.emplace_back (ptid);
3193 }
3194 while (*bufp++ == ','); /* comma-separated list */
3195 putpkt ("qsThreadInfo");
3196 getpkt (&rs->buf, &rs->buf_size, 0);
3197 bufp = rs->buf;
3198 }
3199 return 1;
3200 }
3201 else
3202 {
3203 /* Packet not recognized. */
3204 rs->use_threadinfo_query = 0;
3205 }
3206 }
3207
3208 return 0;
3209 }
3210
3211 /* Implement the to_update_thread_list function for the remote
3212 targets. */
3213
3214 static void
3215 remote_update_thread_list (struct target_ops *ops)
3216 {
3217 struct threads_listing_context context;
3218 int got_list = 0;
3219
3220 /* We have a few different mechanisms to fetch the thread list. Try
3221 them all, starting with the most preferred one first, falling
3222 back to older methods. */
3223 if (remote_get_threads_with_qxfer (ops, &context)
3224 || remote_get_threads_with_qthreadinfo (ops, &context)
3225 || remote_get_threads_with_ql (ops, &context))
3226 {
3227 struct thread_info *tp, *tmp;
3228
3229 got_list = 1;
3230
3231 if (context.items.empty ()
3232 && remote_thread_always_alive (ops, inferior_ptid))
3233 {
3234 /* Some targets don't really support threads, but still
3235 reply an (empty) thread list in response to the thread
3236 listing packets, instead of replying "packet not
3237 supported". Exit early so we don't delete the main
3238 thread. */
3239 return;
3240 }
3241
3242 /* CONTEXT now holds the current thread list on the remote
3243 target end. Delete GDB-side threads no longer found on the
3244 target. */
3245 ALL_THREADS_SAFE (tp, tmp)
3246 {
3247 if (!context.contains_thread (tp->ptid))
3248 {
3249 /* Not found. */
3250 delete_thread (tp->ptid);
3251 }
3252 }
3253
3254 /* Remove any unreported fork child threads from CONTEXT so
3255 that we don't interfere with follow fork, which is where
3256 creation of such threads is handled. */
3257 remove_new_fork_children (&context);
3258
3259 /* And now add threads we don't know about yet to our list. */
3260 for (thread_item &item : context.items)
3261 {
3262 if (item.ptid != null_ptid)
3263 {
3264 /* In non-stop mode, we assume new found threads are
3265 executing until proven otherwise with a stop reply.
3266 In all-stop, we can only get here if all threads are
3267 stopped. */
3268 int executing = target_is_non_stop_p () ? 1 : 0;
3269
3270 remote_notice_new_inferior (item.ptid, executing);
3271
3272 remote_thread_info *info = get_remote_thread_info (item.ptid);
3273 info->core = item.core;
3274 info->extra = std::move (item.extra);
3275 info->name = std::move (item.name);
3276 info->thread_handle = std::move (item.thread_handle);
3277 }
3278 }
3279 }
3280
3281 if (!got_list)
3282 {
3283 /* If no thread listing method is supported, then query whether
3284 each known thread is alive, one by one, with the T packet.
3285 If the target doesn't support threads at all, then this is a
3286 no-op. See remote_thread_alive. */
3287 prune_threads ();
3288 }
3289 }
3290
3291 /*
3292 * Collect a descriptive string about the given thread.
3293 * The target may say anything it wants to about the thread
3294 * (typically info about its blocked / runnable state, name, etc.).
3295 * This string will appear in the info threads display.
3296 *
3297 * Optional: targets are not required to implement this function.
3298 */
3299
3300 static const char *
3301 remote_threads_extra_info (struct target_ops *self, struct thread_info *tp)
3302 {
3303 struct remote_state *rs = get_remote_state ();
3304 int result;
3305 int set;
3306 threadref id;
3307 struct gdb_ext_thread_info threadinfo;
3308 static char display_buf[100]; /* arbitrary... */
3309 int n = 0; /* position in display_buf */
3310
3311 if (rs->remote_desc == 0) /* paranoia */
3312 internal_error (__FILE__, __LINE__,
3313 _("remote_threads_extra_info"));
3314
3315 if (ptid_equal (tp->ptid, magic_null_ptid)
3316 || (ptid_get_pid (tp->ptid) != 0 && ptid_get_lwp (tp->ptid) == 0))
3317 /* This is the main thread which was added by GDB. The remote
3318 server doesn't know about it. */
3319 return NULL;
3320
3321 if (packet_support (PACKET_qXfer_threads) == PACKET_ENABLE)
3322 {
3323 struct thread_info *info = find_thread_ptid (tp->ptid);
3324
3325 if (info != NULL && info->priv != NULL)
3326 {
3327 const std::string &extra = get_remote_thread_info (info)->extra;
3328 return !extra.empty () ? extra.c_str () : NULL;
3329 }
3330 else
3331 return NULL;
3332 }
3333
3334 if (rs->use_threadextra_query)
3335 {
3336 char *b = rs->buf;
3337 char *endb = rs->buf + get_remote_packet_size ();
3338
3339 xsnprintf (b, endb - b, "qThreadExtraInfo,");
3340 b += strlen (b);
3341 write_ptid (b, endb, tp->ptid);
3342
3343 putpkt (rs->buf);
3344 getpkt (&rs->buf, &rs->buf_size, 0);
3345 if (rs->buf[0] != 0)
3346 {
3347 n = std::min (strlen (rs->buf) / 2, sizeof (display_buf));
3348 result = hex2bin (rs->buf, (gdb_byte *) display_buf, n);
3349 display_buf [result] = '\0';
3350 return display_buf;
3351 }
3352 }
3353
3354 /* If the above query fails, fall back to the old method. */
3355 rs->use_threadextra_query = 0;
3356 set = TAG_THREADID | TAG_EXISTS | TAG_THREADNAME
3357 | TAG_MOREDISPLAY | TAG_DISPLAY;
3358 int_to_threadref (&id, ptid_get_lwp (tp->ptid));
3359 if (remote_get_threadinfo (&id, set, &threadinfo))
3360 if (threadinfo.active)
3361 {
3362 if (*threadinfo.shortname)
3363 n += xsnprintf (&display_buf[0], sizeof (display_buf) - n,
3364 " Name: %s,", threadinfo.shortname);
3365 if (*threadinfo.display)
3366 n += xsnprintf (&display_buf[n], sizeof (display_buf) - n,
3367 " State: %s,", threadinfo.display);
3368 if (*threadinfo.more_display)
3369 n += xsnprintf (&display_buf[n], sizeof (display_buf) - n,
3370 " Priority: %s", threadinfo.more_display);
3371
3372 if (n > 0)
3373 {
3374 /* For purely cosmetic reasons, clear up trailing commas. */
3375 if (',' == display_buf[n-1])
3376 display_buf[n-1] = ' ';
3377 return display_buf;
3378 }
3379 }
3380 return NULL;
3381 }
3382 \f
3383
3384 static bool
3385 remote_static_tracepoint_marker_at (struct target_ops *self, CORE_ADDR addr,
3386 struct static_tracepoint_marker *marker)
3387 {
3388 struct remote_state *rs = get_remote_state ();
3389 char *p = rs->buf;
3390
3391 xsnprintf (p, get_remote_packet_size (), "qTSTMat:");
3392 p += strlen (p);
3393 p += hexnumstr (p, addr);
3394 putpkt (rs->buf);
3395 getpkt (&rs->buf, &rs->buf_size, 0);
3396 p = rs->buf;
3397
3398 if (*p == 'E')
3399 error (_("Remote failure reply: %s"), p);
3400
3401 if (*p++ == 'm')
3402 {
3403 parse_static_tracepoint_marker_definition (p, NULL, marker);
3404 return true;
3405 }
3406
3407 return false;
3408 }
3409
3410 static std::vector<static_tracepoint_marker>
3411 remote_static_tracepoint_markers_by_strid (struct target_ops *self,
3412 const char *strid)
3413 {
3414 struct remote_state *rs = get_remote_state ();
3415 std::vector<static_tracepoint_marker> markers;
3416 const char *p;
3417 static_tracepoint_marker marker;
3418
3419 /* Ask for a first packet of static tracepoint marker
3420 definition. */
3421 putpkt ("qTfSTM");
3422 getpkt (&rs->buf, &rs->buf_size, 0);
3423 p = rs->buf;
3424 if (*p == 'E')
3425 error (_("Remote failure reply: %s"), p);
3426
3427 while (*p++ == 'm')
3428 {
3429 do
3430 {
3431 parse_static_tracepoint_marker_definition (p, &p, &marker);
3432
3433 if (strid == NULL || marker.str_id == strid)
3434 markers.push_back (std::move (marker));
3435 }
3436 while (*p++ == ','); /* comma-separated list */
3437 /* Ask for another packet of static tracepoint definition. */
3438 putpkt ("qTsSTM");
3439 getpkt (&rs->buf, &rs->buf_size, 0);
3440 p = rs->buf;
3441 }
3442
3443 return markers;
3444 }
3445
3446 \f
3447 /* Implement the to_get_ada_task_ptid function for the remote targets. */
3448
3449 static ptid_t
3450 remote_get_ada_task_ptid (struct target_ops *self, long lwp, long thread)
3451 {
3452 return ptid_build (ptid_get_pid (inferior_ptid), lwp, 0);
3453 }
3454 \f
3455
3456 /* Restart the remote side; this is an extended protocol operation. */
3457
3458 static void
3459 extended_remote_restart (void)
3460 {
3461 struct remote_state *rs = get_remote_state ();
3462
3463 /* Send the restart command; for reasons I don't understand the
3464 remote side really expects a number after the "R". */
3465 xsnprintf (rs->buf, get_remote_packet_size (), "R%x", 0);
3466 putpkt (rs->buf);
3467
3468 remote_fileio_reset ();
3469 }
3470 \f
3471 /* Clean up connection to a remote debugger. */
3472
3473 static void
3474 remote_close (struct target_ops *self)
3475 {
3476 struct remote_state *rs = get_remote_state ();
3477
3478 if (rs->remote_desc == NULL)
3479 return; /* already closed */
3480
3481 /* Make sure we leave stdin registered in the event loop. */
3482 remote_terminal_ours (self);
3483
3484 serial_close (rs->remote_desc);
3485 rs->remote_desc = NULL;
3486
3487 /* We don't have a connection to the remote stub anymore. Get rid
3488 of all the inferiors and their threads we were controlling.
3489 Reset inferior_ptid to null_ptid first, as otherwise has_stack_frame
3490 will be unable to find the thread corresponding to (pid, 0, 0). */
3491 inferior_ptid = null_ptid;
3492 discard_all_inferiors ();
3493
3494 /* We are closing the remote target, so we should discard
3495 everything of this target. */
3496 discard_pending_stop_replies_in_queue (rs);
3497
3498 if (remote_async_inferior_event_token)
3499 delete_async_event_handler (&remote_async_inferior_event_token);
3500
3501 remote_notif_state_xfree (rs->notif_state);
3502
3503 trace_reset_local_state ();
3504 }
3505
3506 /* Query the remote side for the text, data and bss offsets. */
3507
3508 static void
3509 get_offsets (void)
3510 {
3511 struct remote_state *rs = get_remote_state ();
3512 char *buf;
3513 char *ptr;
3514 int lose, num_segments = 0, do_sections, do_segments;
3515 CORE_ADDR text_addr, data_addr, bss_addr, segments[2];
3516 struct section_offsets *offs;
3517 struct symfile_segment_data *data;
3518
3519 if (symfile_objfile == NULL)
3520 return;
3521
3522 putpkt ("qOffsets");
3523 getpkt (&rs->buf, &rs->buf_size, 0);
3524 buf = rs->buf;
3525
3526 if (buf[0] == '\000')
3527 return; /* Return silently. Stub doesn't support
3528 this command. */
3529 if (buf[0] == 'E')
3530 {
3531 warning (_("Remote failure reply: %s"), buf);
3532 return;
3533 }
3534
3535 /* Pick up each field in turn. This used to be done with scanf, but
3536 scanf will make trouble if CORE_ADDR size doesn't match
3537 conversion directives correctly. The following code will work
3538 with any size of CORE_ADDR. */
3539 text_addr = data_addr = bss_addr = 0;
3540 ptr = buf;
3541 lose = 0;
3542
3543 if (startswith (ptr, "Text="))
3544 {
3545 ptr += 5;
3546 /* Don't use strtol, could lose on big values. */
3547 while (*ptr && *ptr != ';')
3548 text_addr = (text_addr << 4) + fromhex (*ptr++);
3549
3550 if (startswith (ptr, ";Data="))
3551 {
3552 ptr += 6;
3553 while (*ptr && *ptr != ';')
3554 data_addr = (data_addr << 4) + fromhex (*ptr++);
3555 }
3556 else
3557 lose = 1;
3558
3559 if (!lose && startswith (ptr, ";Bss="))
3560 {
3561 ptr += 5;
3562 while (*ptr && *ptr != ';')
3563 bss_addr = (bss_addr << 4) + fromhex (*ptr++);
3564
3565 if (bss_addr != data_addr)
3566 warning (_("Target reported unsupported offsets: %s"), buf);
3567 }
3568 else
3569 lose = 1;
3570 }
3571 else if (startswith (ptr, "TextSeg="))
3572 {
3573 ptr += 8;
3574 /* Don't use strtol, could lose on big values. */
3575 while (*ptr && *ptr != ';')
3576 text_addr = (text_addr << 4) + fromhex (*ptr++);
3577 num_segments = 1;
3578
3579 if (startswith (ptr, ";DataSeg="))
3580 {
3581 ptr += 9;
3582 while (*ptr && *ptr != ';')
3583 data_addr = (data_addr << 4) + fromhex (*ptr++);
3584 num_segments++;
3585 }
3586 }
3587 else
3588 lose = 1;
3589
3590 if (lose)
3591 error (_("Malformed response to offset query, %s"), buf);
3592 else if (*ptr != '\0')
3593 warning (_("Target reported unsupported offsets: %s"), buf);
3594
3595 offs = ((struct section_offsets *)
3596 alloca (SIZEOF_N_SECTION_OFFSETS (symfile_objfile->num_sections)));
3597 memcpy (offs, symfile_objfile->section_offsets,
3598 SIZEOF_N_SECTION_OFFSETS (symfile_objfile->num_sections));
3599
3600 data = get_symfile_segment_data (symfile_objfile->obfd);
3601 do_segments = (data != NULL);
3602 do_sections = num_segments == 0;
3603
3604 if (num_segments > 0)
3605 {
3606 segments[0] = text_addr;
3607 segments[1] = data_addr;
3608 }
3609 /* If we have two segments, we can still try to relocate everything
3610 by assuming that the .text and .data offsets apply to the whole
3611 text and data segments. Convert the offsets given in the packet
3612 to base addresses for symfile_map_offsets_to_segments. */
3613 else if (data && data->num_segments == 2)
3614 {
3615 segments[0] = data->segment_bases[0] + text_addr;
3616 segments[1] = data->segment_bases[1] + data_addr;
3617 num_segments = 2;
3618 }
3619 /* If the object file has only one segment, assume that it is text
3620 rather than data; main programs with no writable data are rare,
3621 but programs with no code are useless. Of course the code might
3622 have ended up in the data segment... to detect that we would need
3623 the permissions here. */
3624 else if (data && data->num_segments == 1)
3625 {
3626 segments[0] = data->segment_bases[0] + text_addr;
3627 num_segments = 1;
3628 }
3629 /* There's no way to relocate by segment. */
3630 else
3631 do_segments = 0;
3632
3633 if (do_segments)
3634 {
3635 int ret = symfile_map_offsets_to_segments (symfile_objfile->obfd, data,
3636 offs, num_segments, segments);
3637
3638 if (ret == 0 && !do_sections)
3639 error (_("Can not handle qOffsets TextSeg "
3640 "response with this symbol file"));
3641
3642 if (ret > 0)
3643 do_sections = 0;
3644 }
3645
3646 if (data)
3647 free_symfile_segment_data (data);
3648
3649 if (do_sections)
3650 {
3651 offs->offsets[SECT_OFF_TEXT (symfile_objfile)] = text_addr;
3652
3653 /* This is a temporary kludge to force data and bss to use the
3654 same offsets because that's what nlmconv does now. The real
3655 solution requires changes to the stub and remote.c that I
3656 don't have time to do right now. */
3657
3658 offs->offsets[SECT_OFF_DATA (symfile_objfile)] = data_addr;
3659 offs->offsets[SECT_OFF_BSS (symfile_objfile)] = data_addr;
3660 }
3661
3662 objfile_relocate (symfile_objfile, offs);
3663 }
3664
3665 /* Send interrupt_sequence to remote target. */
3666 static void
3667 send_interrupt_sequence (void)
3668 {
3669 struct remote_state *rs = get_remote_state ();
3670
3671 if (interrupt_sequence_mode == interrupt_sequence_control_c)
3672 remote_serial_write ("\x03", 1);
3673 else if (interrupt_sequence_mode == interrupt_sequence_break)
3674 serial_send_break (rs->remote_desc);
3675 else if (interrupt_sequence_mode == interrupt_sequence_break_g)
3676 {
3677 serial_send_break (rs->remote_desc);
3678 remote_serial_write ("g", 1);
3679 }
3680 else
3681 internal_error (__FILE__, __LINE__,
3682 _("Invalid value for interrupt_sequence_mode: %s."),
3683 interrupt_sequence_mode);
3684 }
3685
3686
3687 /* If STOP_REPLY is a T stop reply, look for the "thread" register,
3688 and extract the PTID. Returns NULL_PTID if not found. */
3689
3690 static ptid_t
3691 stop_reply_extract_thread (char *stop_reply)
3692 {
3693 if (stop_reply[0] == 'T' && strlen (stop_reply) > 3)
3694 {
3695 const char *p;
3696
3697 /* Txx r:val ; r:val (...) */
3698 p = &stop_reply[3];
3699
3700 /* Look for "register" named "thread". */
3701 while (*p != '\0')
3702 {
3703 const char *p1;
3704
3705 p1 = strchr (p, ':');
3706 if (p1 == NULL)
3707 return null_ptid;
3708
3709 if (strncmp (p, "thread", p1 - p) == 0)
3710 return read_ptid (++p1, &p);
3711
3712 p1 = strchr (p, ';');
3713 if (p1 == NULL)
3714 return null_ptid;
3715 p1++;
3716
3717 p = p1;
3718 }
3719 }
3720
3721 return null_ptid;
3722 }
3723
3724 /* Determine the remote side's current thread. If we have a stop
3725 reply handy (in WAIT_STATUS), maybe it's a T stop reply with a
3726 "thread" register we can extract the current thread from. If not,
3727 ask the remote which is the current thread with qC. The former
3728 method avoids a roundtrip. */
3729
3730 static ptid_t
3731 get_current_thread (char *wait_status)
3732 {
3733 ptid_t ptid = null_ptid;
3734
3735 /* Note we don't use remote_parse_stop_reply as that makes use of
3736 the target architecture, which we haven't yet fully determined at
3737 this point. */
3738 if (wait_status != NULL)
3739 ptid = stop_reply_extract_thread (wait_status);
3740 if (ptid_equal (ptid, null_ptid))
3741 ptid = remote_current_thread (inferior_ptid);
3742
3743 return ptid;
3744 }
3745
3746 /* Query the remote target for which is the current thread/process,
3747 add it to our tables, and update INFERIOR_PTID. The caller is
3748 responsible for setting the state such that the remote end is ready
3749 to return the current thread.
3750
3751 This function is called after handling the '?' or 'vRun' packets,
3752 whose response is a stop reply from which we can also try
3753 extracting the thread. If the target doesn't support the explicit
3754 qC query, we infer the current thread from that stop reply, passed
3755 in in WAIT_STATUS, which may be NULL. */
3756
3757 static void
3758 add_current_inferior_and_thread (char *wait_status)
3759 {
3760 struct remote_state *rs = get_remote_state ();
3761 int fake_pid_p = 0;
3762
3763 inferior_ptid = null_ptid;
3764
3765 /* Now, if we have thread information, update inferior_ptid. */
3766 ptid_t curr_ptid = get_current_thread (wait_status);
3767
3768 if (curr_ptid != null_ptid)
3769 {
3770 if (!remote_multi_process_p (rs))
3771 fake_pid_p = 1;
3772 }
3773 else
3774 {
3775 /* Without this, some commands which require an active target
3776 (such as kill) won't work. This variable serves (at least)
3777 double duty as both the pid of the target process (if it has
3778 such), and as a flag indicating that a target is active. */
3779 curr_ptid = magic_null_ptid;
3780 fake_pid_p = 1;
3781 }
3782
3783 remote_add_inferior (fake_pid_p, ptid_get_pid (curr_ptid), -1, 1);
3784
3785 /* Add the main thread and switch to it. Don't try reading
3786 registers yet, since we haven't fetched the target description
3787 yet. */
3788 thread_info *tp = add_thread_silent (curr_ptid);
3789 switch_to_thread_no_regs (tp);
3790 }
3791
3792 /* Print info about a thread that was found already stopped on
3793 connection. */
3794
3795 static void
3796 print_one_stopped_thread (struct thread_info *thread)
3797 {
3798 struct target_waitstatus *ws = &thread->suspend.waitstatus;
3799
3800 switch_to_thread (thread->ptid);
3801 stop_pc = get_frame_pc (get_current_frame ());
3802 set_current_sal_from_frame (get_current_frame ());
3803
3804 thread->suspend.waitstatus_pending_p = 0;
3805
3806 if (ws->kind == TARGET_WAITKIND_STOPPED)
3807 {
3808 enum gdb_signal sig = ws->value.sig;
3809
3810 if (signal_print_state (sig))
3811 gdb::observers::signal_received.notify (sig);
3812 }
3813 gdb::observers::normal_stop.notify (NULL, 1);
3814 }
3815
3816 /* Process all initial stop replies the remote side sent in response
3817 to the ? packet. These indicate threads that were already stopped
3818 on initial connection. We mark these threads as stopped and print
3819 their current frame before giving the user the prompt. */
3820
3821 static void
3822 process_initial_stop_replies (int from_tty)
3823 {
3824 int pending_stop_replies = stop_reply_queue_length ();
3825 struct inferior *inf;
3826 struct thread_info *thread;
3827 struct thread_info *selected = NULL;
3828 struct thread_info *lowest_stopped = NULL;
3829 struct thread_info *first = NULL;
3830
3831 /* Consume the initial pending events. */
3832 while (pending_stop_replies-- > 0)
3833 {
3834 ptid_t waiton_ptid = minus_one_ptid;
3835 ptid_t event_ptid;
3836 struct target_waitstatus ws;
3837 int ignore_event = 0;
3838 struct thread_info *thread;
3839
3840 memset (&ws, 0, sizeof (ws));
3841 event_ptid = target_wait (waiton_ptid, &ws, TARGET_WNOHANG);
3842 if (remote_debug)
3843 print_target_wait_results (waiton_ptid, event_ptid, &ws);
3844
3845 switch (ws.kind)
3846 {
3847 case TARGET_WAITKIND_IGNORE:
3848 case TARGET_WAITKIND_NO_RESUMED:
3849 case TARGET_WAITKIND_SIGNALLED:
3850 case TARGET_WAITKIND_EXITED:
3851 /* We shouldn't see these, but if we do, just ignore. */
3852 if (remote_debug)
3853 fprintf_unfiltered (gdb_stdlog, "remote: event ignored\n");
3854 ignore_event = 1;
3855 break;
3856
3857 case TARGET_WAITKIND_EXECD:
3858 xfree (ws.value.execd_pathname);
3859 break;
3860 default:
3861 break;
3862 }
3863
3864 if (ignore_event)
3865 continue;
3866
3867 thread = find_thread_ptid (event_ptid);
3868
3869 if (ws.kind == TARGET_WAITKIND_STOPPED)
3870 {
3871 enum gdb_signal sig = ws.value.sig;
3872
3873 /* Stubs traditionally report SIGTRAP as initial signal,
3874 instead of signal 0. Suppress it. */
3875 if (sig == GDB_SIGNAL_TRAP)
3876 sig = GDB_SIGNAL_0;
3877 thread->suspend.stop_signal = sig;
3878 ws.value.sig = sig;
3879 }
3880
3881 thread->suspend.waitstatus = ws;
3882
3883 if (ws.kind != TARGET_WAITKIND_STOPPED
3884 || ws.value.sig != GDB_SIGNAL_0)
3885 thread->suspend.waitstatus_pending_p = 1;
3886
3887 set_executing (event_ptid, 0);
3888 set_running (event_ptid, 0);
3889 get_remote_thread_info (thread)->vcont_resumed = 0;
3890 }
3891
3892 /* "Notice" the new inferiors before anything related to
3893 registers/memory. */
3894 ALL_INFERIORS (inf)
3895 {
3896 if (inf->pid == 0)
3897 continue;
3898
3899 inf->needs_setup = 1;
3900
3901 if (non_stop)
3902 {
3903 thread = any_live_thread_of_process (inf->pid);
3904 notice_new_inferior (thread->ptid,
3905 thread->state == THREAD_RUNNING,
3906 from_tty);
3907 }
3908 }
3909
3910 /* If all-stop on top of non-stop, pause all threads. Note this
3911 records the threads' stop pc, so must be done after "noticing"
3912 the inferiors. */
3913 if (!non_stop)
3914 {
3915 stop_all_threads ();
3916
3917 /* If all threads of an inferior were already stopped, we
3918 haven't setup the inferior yet. */
3919 ALL_INFERIORS (inf)
3920 {
3921 if (inf->pid == 0)
3922 continue;
3923
3924 if (inf->needs_setup)
3925 {
3926 thread = any_live_thread_of_process (inf->pid);
3927 switch_to_thread_no_regs (thread);
3928 setup_inferior (0);
3929 }
3930 }
3931 }
3932
3933 /* Now go over all threads that are stopped, and print their current
3934 frame. If all-stop, then if there's a signalled thread, pick
3935 that as current. */
3936 ALL_NON_EXITED_THREADS (thread)
3937 {
3938 if (first == NULL)
3939 first = thread;
3940
3941 if (!non_stop)
3942 set_running (thread->ptid, 0);
3943 else if (thread->state != THREAD_STOPPED)
3944 continue;
3945
3946 if (selected == NULL
3947 && thread->suspend.waitstatus_pending_p)
3948 selected = thread;
3949
3950 if (lowest_stopped == NULL
3951 || thread->inf->num < lowest_stopped->inf->num
3952 || thread->per_inf_num < lowest_stopped->per_inf_num)
3953 lowest_stopped = thread;
3954
3955 if (non_stop)
3956 print_one_stopped_thread (thread);
3957 }
3958
3959 /* In all-stop, we only print the status of one thread, and leave
3960 others with their status pending. */
3961 if (!non_stop)
3962 {
3963 thread = selected;
3964 if (thread == NULL)
3965 thread = lowest_stopped;
3966 if (thread == NULL)
3967 thread = first;
3968
3969 print_one_stopped_thread (thread);
3970 }
3971
3972 /* For "info program". */
3973 thread = inferior_thread ();
3974 if (thread->state == THREAD_STOPPED)
3975 set_last_target_status (inferior_ptid, thread->suspend.waitstatus);
3976 }
3977
3978 /* Start the remote connection and sync state. */
3979
3980 static void
3981 remote_start_remote (int from_tty, struct target_ops *target, int extended_p)
3982 {
3983 struct remote_state *rs = get_remote_state ();
3984 struct packet_config *noack_config;
3985 char *wait_status = NULL;
3986
3987 /* Signal other parts that we're going through the initial setup,
3988 and so things may not be stable yet. E.g., we don't try to
3989 install tracepoints until we've relocated symbols. Also, a
3990 Ctrl-C before we're connected and synced up can't interrupt the
3991 target. Instead, it offers to drop the (potentially wedged)
3992 connection. */
3993 rs->starting_up = 1;
3994
3995 QUIT;
3996
3997 if (interrupt_on_connect)
3998 send_interrupt_sequence ();
3999
4000 /* Ack any packet which the remote side has already sent. */
4001 remote_serial_write ("+", 1);
4002
4003 /* The first packet we send to the target is the optional "supported
4004 packets" request. If the target can answer this, it will tell us
4005 which later probes to skip. */
4006 remote_query_supported ();
4007
4008 /* If the stub wants to get a QAllow, compose one and send it. */
4009 if (packet_support (PACKET_QAllow) != PACKET_DISABLE)
4010 remote_set_permissions (target);
4011
4012 /* gdbserver < 7.7 (before its fix from 2013-12-11) did reply to any
4013 unknown 'v' packet with string "OK". "OK" gets interpreted by GDB
4014 as a reply to known packet. For packet "vFile:setfs:" it is an
4015 invalid reply and GDB would return error in
4016 remote_hostio_set_filesystem, making remote files access impossible.
4017 Disable "vFile:setfs:" in such case. Do not disable other 'v' packets as
4018 other "vFile" packets get correctly detected even on gdbserver < 7.7. */
4019 {
4020 const char v_mustreplyempty[] = "vMustReplyEmpty";
4021
4022 putpkt (v_mustreplyempty);
4023 getpkt (&rs->buf, &rs->buf_size, 0);
4024 if (strcmp (rs->buf, "OK") == 0)
4025 remote_protocol_packets[PACKET_vFile_setfs].support = PACKET_DISABLE;
4026 else if (strcmp (rs->buf, "") != 0)
4027 error (_("Remote replied unexpectedly to '%s': %s"), v_mustreplyempty,
4028 rs->buf);
4029 }
4030
4031 /* Next, we possibly activate noack mode.
4032
4033 If the QStartNoAckMode packet configuration is set to AUTO,
4034 enable noack mode if the stub reported a wish for it with
4035 qSupported.
4036
4037 If set to TRUE, then enable noack mode even if the stub didn't
4038 report it in qSupported. If the stub doesn't reply OK, the
4039 session ends with an error.
4040
4041 If FALSE, then don't activate noack mode, regardless of what the
4042 stub claimed should be the default with qSupported. */
4043
4044 noack_config = &remote_protocol_packets[PACKET_QStartNoAckMode];
4045 if (packet_config_support (noack_config) != PACKET_DISABLE)
4046 {
4047 putpkt ("QStartNoAckMode");
4048 getpkt (&rs->buf, &rs->buf_size, 0);
4049 if (packet_ok (rs->buf, noack_config) == PACKET_OK)
4050 rs->noack_mode = 1;
4051 }
4052
4053 if (extended_p)
4054 {
4055 /* Tell the remote that we are using the extended protocol. */
4056 putpkt ("!");
4057 getpkt (&rs->buf, &rs->buf_size, 0);
4058 }
4059
4060 /* Let the target know which signals it is allowed to pass down to
4061 the program. */
4062 update_signals_program_target ();
4063
4064 /* Next, if the target can specify a description, read it. We do
4065 this before anything involving memory or registers. */
4066 target_find_description ();
4067
4068 /* Next, now that we know something about the target, update the
4069 address spaces in the program spaces. */
4070 update_address_spaces ();
4071
4072 /* On OSs where the list of libraries is global to all
4073 processes, we fetch them early. */
4074 if (gdbarch_has_global_solist (target_gdbarch ()))
4075 solib_add (NULL, from_tty, auto_solib_add);
4076
4077 if (target_is_non_stop_p ())
4078 {
4079 if (packet_support (PACKET_QNonStop) != PACKET_ENABLE)
4080 error (_("Non-stop mode requested, but remote "
4081 "does not support non-stop"));
4082
4083 putpkt ("QNonStop:1");
4084 getpkt (&rs->buf, &rs->buf_size, 0);
4085
4086 if (strcmp (rs->buf, "OK") != 0)
4087 error (_("Remote refused setting non-stop mode with: %s"), rs->buf);
4088
4089 /* Find about threads and processes the stub is already
4090 controlling. We default to adding them in the running state.
4091 The '?' query below will then tell us about which threads are
4092 stopped. */
4093 remote_update_thread_list (target);
4094 }
4095 else if (packet_support (PACKET_QNonStop) == PACKET_ENABLE)
4096 {
4097 /* Don't assume that the stub can operate in all-stop mode.
4098 Request it explicitly. */
4099 putpkt ("QNonStop:0");
4100 getpkt (&rs->buf, &rs->buf_size, 0);
4101
4102 if (strcmp (rs->buf, "OK") != 0)
4103 error (_("Remote refused setting all-stop mode with: %s"), rs->buf);
4104 }
4105
4106 /* Upload TSVs regardless of whether the target is running or not. The
4107 remote stub, such as GDBserver, may have some predefined or builtin
4108 TSVs, even if the target is not running. */
4109 if (remote_get_trace_status (target, current_trace_status ()) != -1)
4110 {
4111 struct uploaded_tsv *uploaded_tsvs = NULL;
4112
4113 remote_upload_trace_state_variables (target, &uploaded_tsvs);
4114 merge_uploaded_trace_state_variables (&uploaded_tsvs);
4115 }
4116
4117 /* Check whether the target is running now. */
4118 putpkt ("?");
4119 getpkt (&rs->buf, &rs->buf_size, 0);
4120
4121 if (!target_is_non_stop_p ())
4122 {
4123 if (rs->buf[0] == 'W' || rs->buf[0] == 'X')
4124 {
4125 if (!extended_p)
4126 error (_("The target is not running (try extended-remote?)"));
4127
4128 /* We're connected, but not running. Drop out before we
4129 call start_remote. */
4130 rs->starting_up = 0;
4131 return;
4132 }
4133 else
4134 {
4135 /* Save the reply for later. */
4136 wait_status = (char *) alloca (strlen (rs->buf) + 1);
4137 strcpy (wait_status, rs->buf);
4138 }
4139
4140 /* Fetch thread list. */
4141 target_update_thread_list ();
4142
4143 /* Let the stub know that we want it to return the thread. */
4144 set_continue_thread (minus_one_ptid);
4145
4146 if (thread_count () == 0)
4147 {
4148 /* Target has no concept of threads at all. GDB treats
4149 non-threaded target as single-threaded; add a main
4150 thread. */
4151 add_current_inferior_and_thread (wait_status);
4152 }
4153 else
4154 {
4155 /* We have thread information; select the thread the target
4156 says should be current. If we're reconnecting to a
4157 multi-threaded program, this will ideally be the thread
4158 that last reported an event before GDB disconnected. */
4159 inferior_ptid = get_current_thread (wait_status);
4160 if (ptid_equal (inferior_ptid, null_ptid))
4161 {
4162 /* Odd... The target was able to list threads, but not
4163 tell us which thread was current (no "thread"
4164 register in T stop reply?). Just pick the first
4165 thread in the thread list then. */
4166
4167 if (remote_debug)
4168 fprintf_unfiltered (gdb_stdlog,
4169 "warning: couldn't determine remote "
4170 "current thread; picking first in list.\n");
4171
4172 inferior_ptid = thread_list->ptid;
4173 }
4174 }
4175
4176 /* init_wait_for_inferior should be called before get_offsets in order
4177 to manage `inserted' flag in bp loc in a correct state.
4178 breakpoint_init_inferior, called from init_wait_for_inferior, set
4179 `inserted' flag to 0, while before breakpoint_re_set, called from
4180 start_remote, set `inserted' flag to 1. In the initialization of
4181 inferior, breakpoint_init_inferior should be called first, and then
4182 breakpoint_re_set can be called. If this order is broken, state of
4183 `inserted' flag is wrong, and cause some problems on breakpoint
4184 manipulation. */
4185 init_wait_for_inferior ();
4186
4187 get_offsets (); /* Get text, data & bss offsets. */
4188
4189 /* If we could not find a description using qXfer, and we know
4190 how to do it some other way, try again. This is not
4191 supported for non-stop; it could be, but it is tricky if
4192 there are no stopped threads when we connect. */
4193 if (remote_read_description_p (target)
4194 && gdbarch_target_desc (target_gdbarch ()) == NULL)
4195 {
4196 target_clear_description ();
4197 target_find_description ();
4198 }
4199
4200 /* Use the previously fetched status. */
4201 gdb_assert (wait_status != NULL);
4202 strcpy (rs->buf, wait_status);
4203 rs->cached_wait_status = 1;
4204
4205 start_remote (from_tty); /* Initialize gdb process mechanisms. */
4206 }
4207 else
4208 {
4209 /* Clear WFI global state. Do this before finding about new
4210 threads and inferiors, and setting the current inferior.
4211 Otherwise we would clear the proceed status of the current
4212 inferior when we want its stop_soon state to be preserved
4213 (see notice_new_inferior). */
4214 init_wait_for_inferior ();
4215
4216 /* In non-stop, we will either get an "OK", meaning that there
4217 are no stopped threads at this time; or, a regular stop
4218 reply. In the latter case, there may be more than one thread
4219 stopped --- we pull them all out using the vStopped
4220 mechanism. */
4221 if (strcmp (rs->buf, "OK") != 0)
4222 {
4223 struct notif_client *notif = &notif_client_stop;
4224
4225 /* remote_notif_get_pending_replies acks this one, and gets
4226 the rest out. */
4227 rs->notif_state->pending_event[notif_client_stop.id]
4228 = remote_notif_parse (notif, rs->buf);
4229 remote_notif_get_pending_events (notif);
4230 }
4231
4232 if (thread_count () == 0)
4233 {
4234 if (!extended_p)
4235 error (_("The target is not running (try extended-remote?)"));
4236
4237 /* We're connected, but not running. Drop out before we
4238 call start_remote. */
4239 rs->starting_up = 0;
4240 return;
4241 }
4242
4243 /* In non-stop mode, any cached wait status will be stored in
4244 the stop reply queue. */
4245 gdb_assert (wait_status == NULL);
4246
4247 /* Report all signals during attach/startup. */
4248 remote_pass_signals (target, 0, NULL);
4249
4250 /* If there are already stopped threads, mark them stopped and
4251 report their stops before giving the prompt to the user. */
4252 process_initial_stop_replies (from_tty);
4253
4254 if (target_can_async_p ())
4255 target_async (1);
4256 }
4257
4258 /* If we connected to a live target, do some additional setup. */
4259 if (target_has_execution)
4260 {
4261 if (symfile_objfile) /* No use without a symbol-file. */
4262 remote_check_symbols ();
4263 }
4264
4265 /* Possibly the target has been engaged in a trace run started
4266 previously; find out where things are at. */
4267 if (remote_get_trace_status (target, current_trace_status ()) != -1)
4268 {
4269 struct uploaded_tp *uploaded_tps = NULL;
4270
4271 if (current_trace_status ()->running)
4272 printf_filtered (_("Trace is already running on the target.\n"));
4273
4274 remote_upload_tracepoints (target, &uploaded_tps);
4275
4276 merge_uploaded_tracepoints (&uploaded_tps);
4277 }
4278
4279 /* Possibly the target has been engaged in a btrace record started
4280 previously; find out where things are at. */
4281 remote_btrace_maybe_reopen ();
4282
4283 /* The thread and inferior lists are now synchronized with the
4284 target, our symbols have been relocated, and we're merged the
4285 target's tracepoints with ours. We're done with basic start
4286 up. */
4287 rs->starting_up = 0;
4288
4289 /* Maybe breakpoints are global and need to be inserted now. */
4290 if (breakpoints_should_be_inserted_now ())
4291 insert_breakpoints ();
4292 }
4293
4294 /* Open a connection to a remote debugger.
4295 NAME is the filename used for communication. */
4296
4297 static void
4298 remote_open (const char *name, int from_tty)
4299 {
4300 remote_open_1 (name, from_tty, &remote_ops, 0);
4301 }
4302
4303 /* Open a connection to a remote debugger using the extended
4304 remote gdb protocol. NAME is the filename used for communication. */
4305
4306 static void
4307 extended_remote_open (const char *name, int from_tty)
4308 {
4309 remote_open_1 (name, from_tty, &extended_remote_ops, 1 /*extended_p */);
4310 }
4311
4312 /* Reset all packets back to "unknown support". Called when opening a
4313 new connection to a remote target. */
4314
4315 static void
4316 reset_all_packet_configs_support (void)
4317 {
4318 int i;
4319
4320 for (i = 0; i < PACKET_MAX; i++)
4321 remote_protocol_packets[i].support = PACKET_SUPPORT_UNKNOWN;
4322 }
4323
4324 /* Initialize all packet configs. */
4325
4326 static void
4327 init_all_packet_configs (void)
4328 {
4329 int i;
4330
4331 for (i = 0; i < PACKET_MAX; i++)
4332 {
4333 remote_protocol_packets[i].detect = AUTO_BOOLEAN_AUTO;
4334 remote_protocol_packets[i].support = PACKET_SUPPORT_UNKNOWN;
4335 }
4336 }
4337
4338 /* Symbol look-up. */
4339
4340 static void
4341 remote_check_symbols (void)
4342 {
4343 char *msg, *reply, *tmp;
4344 int end;
4345 long reply_size;
4346 struct cleanup *old_chain;
4347
4348 /* The remote side has no concept of inferiors that aren't running
4349 yet, it only knows about running processes. If we're connected
4350 but our current inferior is not running, we should not invite the
4351 remote target to request symbol lookups related to its
4352 (unrelated) current process. */
4353 if (!target_has_execution)
4354 return;
4355
4356 if (packet_support (PACKET_qSymbol) == PACKET_DISABLE)
4357 return;
4358
4359 /* Make sure the remote is pointing at the right process. Note
4360 there's no way to select "no process". */
4361 set_general_process ();
4362
4363 /* Allocate a message buffer. We can't reuse the input buffer in RS,
4364 because we need both at the same time. */
4365 msg = (char *) xmalloc (get_remote_packet_size ());
4366 old_chain = make_cleanup (xfree, msg);
4367 reply = (char *) xmalloc (get_remote_packet_size ());
4368 make_cleanup (free_current_contents, &reply);
4369 reply_size = get_remote_packet_size ();
4370
4371 /* Invite target to request symbol lookups. */
4372
4373 putpkt ("qSymbol::");
4374 getpkt (&reply, &reply_size, 0);
4375 packet_ok (reply, &remote_protocol_packets[PACKET_qSymbol]);
4376
4377 while (startswith (reply, "qSymbol:"))
4378 {
4379 struct bound_minimal_symbol sym;
4380
4381 tmp = &reply[8];
4382 end = hex2bin (tmp, (gdb_byte *) msg, strlen (tmp) / 2);
4383 msg[end] = '\0';
4384 sym = lookup_minimal_symbol (msg, NULL, NULL);
4385 if (sym.minsym == NULL)
4386 xsnprintf (msg, get_remote_packet_size (), "qSymbol::%s", &reply[8]);
4387 else
4388 {
4389 int addr_size = gdbarch_addr_bit (target_gdbarch ()) / 8;
4390 CORE_ADDR sym_addr = BMSYMBOL_VALUE_ADDRESS (sym);
4391
4392 /* If this is a function address, return the start of code
4393 instead of any data function descriptor. */
4394 sym_addr = gdbarch_convert_from_func_ptr_addr (target_gdbarch (),
4395 sym_addr,
4396 &current_target);
4397
4398 xsnprintf (msg, get_remote_packet_size (), "qSymbol:%s:%s",
4399 phex_nz (sym_addr, addr_size), &reply[8]);
4400 }
4401
4402 putpkt (msg);
4403 getpkt (&reply, &reply_size, 0);
4404 }
4405
4406 do_cleanups (old_chain);
4407 }
4408
4409 static struct serial *
4410 remote_serial_open (const char *name)
4411 {
4412 static int udp_warning = 0;
4413
4414 /* FIXME: Parsing NAME here is a hack. But we want to warn here instead
4415 of in ser-tcp.c, because it is the remote protocol assuming that the
4416 serial connection is reliable and not the serial connection promising
4417 to be. */
4418 if (!udp_warning && startswith (name, "udp:"))
4419 {
4420 warning (_("The remote protocol may be unreliable over UDP.\n"
4421 "Some events may be lost, rendering further debugging "
4422 "impossible."));
4423 udp_warning = 1;
4424 }
4425
4426 return serial_open (name);
4427 }
4428
4429 /* Inform the target of our permission settings. The permission flags
4430 work without this, but if the target knows the settings, it can do
4431 a couple things. First, it can add its own check, to catch cases
4432 that somehow manage to get by the permissions checks in target
4433 methods. Second, if the target is wired to disallow particular
4434 settings (for instance, a system in the field that is not set up to
4435 be able to stop at a breakpoint), it can object to any unavailable
4436 permissions. */
4437
4438 void
4439 remote_set_permissions (struct target_ops *self)
4440 {
4441 struct remote_state *rs = get_remote_state ();
4442
4443 xsnprintf (rs->buf, get_remote_packet_size (), "QAllow:"
4444 "WriteReg:%x;WriteMem:%x;"
4445 "InsertBreak:%x;InsertTrace:%x;"
4446 "InsertFastTrace:%x;Stop:%x",
4447 may_write_registers, may_write_memory,
4448 may_insert_breakpoints, may_insert_tracepoints,
4449 may_insert_fast_tracepoints, may_stop);
4450 putpkt (rs->buf);
4451 getpkt (&rs->buf, &rs->buf_size, 0);
4452
4453 /* If the target didn't like the packet, warn the user. Do not try
4454 to undo the user's settings, that would just be maddening. */
4455 if (strcmp (rs->buf, "OK") != 0)
4456 warning (_("Remote refused setting permissions with: %s"), rs->buf);
4457 }
4458
4459 /* This type describes each known response to the qSupported
4460 packet. */
4461 struct protocol_feature
4462 {
4463 /* The name of this protocol feature. */
4464 const char *name;
4465
4466 /* The default for this protocol feature. */
4467 enum packet_support default_support;
4468
4469 /* The function to call when this feature is reported, or after
4470 qSupported processing if the feature is not supported.
4471 The first argument points to this structure. The second
4472 argument indicates whether the packet requested support be
4473 enabled, disabled, or probed (or the default, if this function
4474 is being called at the end of processing and this feature was
4475 not reported). The third argument may be NULL; if not NULL, it
4476 is a NUL-terminated string taken from the packet following
4477 this feature's name and an equals sign. */
4478 void (*func) (const struct protocol_feature *, enum packet_support,
4479 const char *);
4480
4481 /* The corresponding packet for this feature. Only used if
4482 FUNC is remote_supported_packet. */
4483 int packet;
4484 };
4485
4486 static void
4487 remote_supported_packet (const struct protocol_feature *feature,
4488 enum packet_support support,
4489 const char *argument)
4490 {
4491 if (argument)
4492 {
4493 warning (_("Remote qSupported response supplied an unexpected value for"
4494 " \"%s\"."), feature->name);
4495 return;
4496 }
4497
4498 remote_protocol_packets[feature->packet].support = support;
4499 }
4500
4501 static void
4502 remote_packet_size (const struct protocol_feature *feature,
4503 enum packet_support support, const char *value)
4504 {
4505 struct remote_state *rs = get_remote_state ();
4506
4507 int packet_size;
4508 char *value_end;
4509
4510 if (support != PACKET_ENABLE)
4511 return;
4512
4513 if (value == NULL || *value == '\0')
4514 {
4515 warning (_("Remote target reported \"%s\" without a size."),
4516 feature->name);
4517 return;
4518 }
4519
4520 errno = 0;
4521 packet_size = strtol (value, &value_end, 16);
4522 if (errno != 0 || *value_end != '\0' || packet_size < 0)
4523 {
4524 warning (_("Remote target reported \"%s\" with a bad size: \"%s\"."),
4525 feature->name, value);
4526 return;
4527 }
4528
4529 /* Record the new maximum packet size. */
4530 rs->explicit_packet_size = packet_size;
4531 }
4532
4533 static const struct protocol_feature remote_protocol_features[] = {
4534 { "PacketSize", PACKET_DISABLE, remote_packet_size, -1 },
4535 { "qXfer:auxv:read", PACKET_DISABLE, remote_supported_packet,
4536 PACKET_qXfer_auxv },
4537 { "qXfer:exec-file:read", PACKET_DISABLE, remote_supported_packet,
4538 PACKET_qXfer_exec_file },
4539 { "qXfer:features:read", PACKET_DISABLE, remote_supported_packet,
4540 PACKET_qXfer_features },
4541 { "qXfer:libraries:read", PACKET_DISABLE, remote_supported_packet,
4542 PACKET_qXfer_libraries },
4543 { "qXfer:libraries-svr4:read", PACKET_DISABLE, remote_supported_packet,
4544 PACKET_qXfer_libraries_svr4 },
4545 { "augmented-libraries-svr4-read", PACKET_DISABLE,
4546 remote_supported_packet, PACKET_augmented_libraries_svr4_read_feature },
4547 { "qXfer:memory-map:read", PACKET_DISABLE, remote_supported_packet,
4548 PACKET_qXfer_memory_map },
4549 { "qXfer:spu:read", PACKET_DISABLE, remote_supported_packet,
4550 PACKET_qXfer_spu_read },
4551 { "qXfer:spu:write", PACKET_DISABLE, remote_supported_packet,
4552 PACKET_qXfer_spu_write },
4553 { "qXfer:osdata:read", PACKET_DISABLE, remote_supported_packet,
4554 PACKET_qXfer_osdata },
4555 { "qXfer:threads:read", PACKET_DISABLE, remote_supported_packet,
4556 PACKET_qXfer_threads },
4557 { "qXfer:traceframe-info:read", PACKET_DISABLE, remote_supported_packet,
4558 PACKET_qXfer_traceframe_info },
4559 { "QPassSignals", PACKET_DISABLE, remote_supported_packet,
4560 PACKET_QPassSignals },
4561 { "QCatchSyscalls", PACKET_DISABLE, remote_supported_packet,
4562 PACKET_QCatchSyscalls },
4563 { "QProgramSignals", PACKET_DISABLE, remote_supported_packet,
4564 PACKET_QProgramSignals },
4565 { "QSetWorkingDir", PACKET_DISABLE, remote_supported_packet,
4566 PACKET_QSetWorkingDir },
4567 { "QStartupWithShell", PACKET_DISABLE, remote_supported_packet,
4568 PACKET_QStartupWithShell },
4569 { "QEnvironmentHexEncoded", PACKET_DISABLE, remote_supported_packet,
4570 PACKET_QEnvironmentHexEncoded },
4571 { "QEnvironmentReset", PACKET_DISABLE, remote_supported_packet,
4572 PACKET_QEnvironmentReset },
4573 { "QEnvironmentUnset", PACKET_DISABLE, remote_supported_packet,
4574 PACKET_QEnvironmentUnset },
4575 { "QStartNoAckMode", PACKET_DISABLE, remote_supported_packet,
4576 PACKET_QStartNoAckMode },
4577 { "multiprocess", PACKET_DISABLE, remote_supported_packet,
4578 PACKET_multiprocess_feature },
4579 { "QNonStop", PACKET_DISABLE, remote_supported_packet, PACKET_QNonStop },
4580 { "qXfer:siginfo:read", PACKET_DISABLE, remote_supported_packet,
4581 PACKET_qXfer_siginfo_read },
4582 { "qXfer:siginfo:write", PACKET_DISABLE, remote_supported_packet,
4583 PACKET_qXfer_siginfo_write },
4584 { "ConditionalTracepoints", PACKET_DISABLE, remote_supported_packet,
4585 PACKET_ConditionalTracepoints },
4586 { "ConditionalBreakpoints", PACKET_DISABLE, remote_supported_packet,
4587 PACKET_ConditionalBreakpoints },
4588 { "BreakpointCommands", PACKET_DISABLE, remote_supported_packet,
4589 PACKET_BreakpointCommands },
4590 { "FastTracepoints", PACKET_DISABLE, remote_supported_packet,
4591 PACKET_FastTracepoints },
4592 { "StaticTracepoints", PACKET_DISABLE, remote_supported_packet,
4593 PACKET_StaticTracepoints },
4594 {"InstallInTrace", PACKET_DISABLE, remote_supported_packet,
4595 PACKET_InstallInTrace},
4596 { "DisconnectedTracing", PACKET_DISABLE, remote_supported_packet,
4597 PACKET_DisconnectedTracing_feature },
4598 { "ReverseContinue", PACKET_DISABLE, remote_supported_packet,
4599 PACKET_bc },
4600 { "ReverseStep", PACKET_DISABLE, remote_supported_packet,
4601 PACKET_bs },
4602 { "TracepointSource", PACKET_DISABLE, remote_supported_packet,
4603 PACKET_TracepointSource },
4604 { "QAllow", PACKET_DISABLE, remote_supported_packet,
4605 PACKET_QAllow },
4606 { "EnableDisableTracepoints", PACKET_DISABLE, remote_supported_packet,
4607 PACKET_EnableDisableTracepoints_feature },
4608 { "qXfer:fdpic:read", PACKET_DISABLE, remote_supported_packet,
4609 PACKET_qXfer_fdpic },
4610 { "qXfer:uib:read", PACKET_DISABLE, remote_supported_packet,
4611 PACKET_qXfer_uib },
4612 { "QDisableRandomization", PACKET_DISABLE, remote_supported_packet,
4613 PACKET_QDisableRandomization },
4614 { "QAgent", PACKET_DISABLE, remote_supported_packet, PACKET_QAgent},
4615 { "QTBuffer:size", PACKET_DISABLE,
4616 remote_supported_packet, PACKET_QTBuffer_size},
4617 { "tracenz", PACKET_DISABLE, remote_supported_packet, PACKET_tracenz_feature },
4618 { "Qbtrace:off", PACKET_DISABLE, remote_supported_packet, PACKET_Qbtrace_off },
4619 { "Qbtrace:bts", PACKET_DISABLE, remote_supported_packet, PACKET_Qbtrace_bts },
4620 { "Qbtrace:pt", PACKET_DISABLE, remote_supported_packet, PACKET_Qbtrace_pt },
4621 { "qXfer:btrace:read", PACKET_DISABLE, remote_supported_packet,
4622 PACKET_qXfer_btrace },
4623 { "qXfer:btrace-conf:read", PACKET_DISABLE, remote_supported_packet,
4624 PACKET_qXfer_btrace_conf },
4625 { "Qbtrace-conf:bts:size", PACKET_DISABLE, remote_supported_packet,
4626 PACKET_Qbtrace_conf_bts_size },
4627 { "swbreak", PACKET_DISABLE, remote_supported_packet, PACKET_swbreak_feature },
4628 { "hwbreak", PACKET_DISABLE, remote_supported_packet, PACKET_hwbreak_feature },
4629 { "fork-events", PACKET_DISABLE, remote_supported_packet,
4630 PACKET_fork_event_feature },
4631 { "vfork-events", PACKET_DISABLE, remote_supported_packet,
4632 PACKET_vfork_event_feature },
4633 { "exec-events", PACKET_DISABLE, remote_supported_packet,
4634 PACKET_exec_event_feature },
4635 { "Qbtrace-conf:pt:size", PACKET_DISABLE, remote_supported_packet,
4636 PACKET_Qbtrace_conf_pt_size },
4637 { "vContSupported", PACKET_DISABLE, remote_supported_packet, PACKET_vContSupported },
4638 { "QThreadEvents", PACKET_DISABLE, remote_supported_packet, PACKET_QThreadEvents },
4639 { "no-resumed", PACKET_DISABLE, remote_supported_packet, PACKET_no_resumed },
4640 };
4641
4642 static char *remote_support_xml;
4643
4644 /* Register string appended to "xmlRegisters=" in qSupported query. */
4645
4646 void
4647 register_remote_support_xml (const char *xml)
4648 {
4649 #if defined(HAVE_LIBEXPAT)
4650 if (remote_support_xml == NULL)
4651 remote_support_xml = concat ("xmlRegisters=", xml, (char *) NULL);
4652 else
4653 {
4654 char *copy = xstrdup (remote_support_xml + 13);
4655 char *p = strtok (copy, ",");
4656
4657 do
4658 {
4659 if (strcmp (p, xml) == 0)
4660 {
4661 /* already there */
4662 xfree (copy);
4663 return;
4664 }
4665 }
4666 while ((p = strtok (NULL, ",")) != NULL);
4667 xfree (copy);
4668
4669 remote_support_xml = reconcat (remote_support_xml,
4670 remote_support_xml, ",", xml,
4671 (char *) NULL);
4672 }
4673 #endif
4674 }
4675
4676 static char *
4677 remote_query_supported_append (char *msg, const char *append)
4678 {
4679 if (msg)
4680 return reconcat (msg, msg, ";", append, (char *) NULL);
4681 else
4682 return xstrdup (append);
4683 }
4684
4685 static void
4686 remote_query_supported (void)
4687 {
4688 struct remote_state *rs = get_remote_state ();
4689 char *next;
4690 int i;
4691 unsigned char seen [ARRAY_SIZE (remote_protocol_features)];
4692
4693 /* The packet support flags are handled differently for this packet
4694 than for most others. We treat an error, a disabled packet, and
4695 an empty response identically: any features which must be reported
4696 to be used will be automatically disabled. An empty buffer
4697 accomplishes this, since that is also the representation for a list
4698 containing no features. */
4699
4700 rs->buf[0] = 0;
4701 if (packet_support (PACKET_qSupported) != PACKET_DISABLE)
4702 {
4703 char *q = NULL;
4704 struct cleanup *old_chain = make_cleanup (free_current_contents, &q);
4705
4706 if (packet_set_cmd_state (PACKET_multiprocess_feature) != AUTO_BOOLEAN_FALSE)
4707 q = remote_query_supported_append (q, "multiprocess+");
4708
4709 if (packet_set_cmd_state (PACKET_swbreak_feature) != AUTO_BOOLEAN_FALSE)
4710 q = remote_query_supported_append (q, "swbreak+");
4711 if (packet_set_cmd_state (PACKET_hwbreak_feature) != AUTO_BOOLEAN_FALSE)
4712 q = remote_query_supported_append (q, "hwbreak+");
4713
4714 q = remote_query_supported_append (q, "qRelocInsn+");
4715
4716 if (packet_set_cmd_state (PACKET_fork_event_feature)
4717 != AUTO_BOOLEAN_FALSE)
4718 q = remote_query_supported_append (q, "fork-events+");
4719 if (packet_set_cmd_state (PACKET_vfork_event_feature)
4720 != AUTO_BOOLEAN_FALSE)
4721 q = remote_query_supported_append (q, "vfork-events+");
4722 if (packet_set_cmd_state (PACKET_exec_event_feature)
4723 != AUTO_BOOLEAN_FALSE)
4724 q = remote_query_supported_append (q, "exec-events+");
4725
4726 if (packet_set_cmd_state (PACKET_vContSupported) != AUTO_BOOLEAN_FALSE)
4727 q = remote_query_supported_append (q, "vContSupported+");
4728
4729 if (packet_set_cmd_state (PACKET_QThreadEvents) != AUTO_BOOLEAN_FALSE)
4730 q = remote_query_supported_append (q, "QThreadEvents+");
4731
4732 if (packet_set_cmd_state (PACKET_no_resumed) != AUTO_BOOLEAN_FALSE)
4733 q = remote_query_supported_append (q, "no-resumed+");
4734
4735 /* Keep this one last to work around a gdbserver <= 7.10 bug in
4736 the qSupported:xmlRegisters=i386 handling. */
4737 if (remote_support_xml != NULL
4738 && packet_support (PACKET_qXfer_features) != PACKET_DISABLE)
4739 q = remote_query_supported_append (q, remote_support_xml);
4740
4741 q = reconcat (q, "qSupported:", q, (char *) NULL);
4742 putpkt (q);
4743
4744 do_cleanups (old_chain);
4745
4746 getpkt (&rs->buf, &rs->buf_size, 0);
4747
4748 /* If an error occured, warn, but do not return - just reset the
4749 buffer to empty and go on to disable features. */
4750 if (packet_ok (rs->buf, &remote_protocol_packets[PACKET_qSupported])
4751 == PACKET_ERROR)
4752 {
4753 warning (_("Remote failure reply: %s"), rs->buf);
4754 rs->buf[0] = 0;
4755 }
4756 }
4757
4758 memset (seen, 0, sizeof (seen));
4759
4760 next = rs->buf;
4761 while (*next)
4762 {
4763 enum packet_support is_supported;
4764 char *p, *end, *name_end, *value;
4765
4766 /* First separate out this item from the rest of the packet. If
4767 there's another item after this, we overwrite the separator
4768 (terminated strings are much easier to work with). */
4769 p = next;
4770 end = strchr (p, ';');
4771 if (end == NULL)
4772 {
4773 end = p + strlen (p);
4774 next = end;
4775 }
4776 else
4777 {
4778 *end = '\0';
4779 next = end + 1;
4780
4781 if (end == p)
4782 {
4783 warning (_("empty item in \"qSupported\" response"));
4784 continue;
4785 }
4786 }
4787
4788 name_end = strchr (p, '=');
4789 if (name_end)
4790 {
4791 /* This is a name=value entry. */
4792 is_supported = PACKET_ENABLE;
4793 value = name_end + 1;
4794 *name_end = '\0';
4795 }
4796 else
4797 {
4798 value = NULL;
4799 switch (end[-1])
4800 {
4801 case '+':
4802 is_supported = PACKET_ENABLE;
4803 break;
4804
4805 case '-':
4806 is_supported = PACKET_DISABLE;
4807 break;
4808
4809 case '?':
4810 is_supported = PACKET_SUPPORT_UNKNOWN;
4811 break;
4812
4813 default:
4814 warning (_("unrecognized item \"%s\" "
4815 "in \"qSupported\" response"), p);
4816 continue;
4817 }
4818 end[-1] = '\0';
4819 }
4820
4821 for (i = 0; i < ARRAY_SIZE (remote_protocol_features); i++)
4822 if (strcmp (remote_protocol_features[i].name, p) == 0)
4823 {
4824 const struct protocol_feature *feature;
4825
4826 seen[i] = 1;
4827 feature = &remote_protocol_features[i];
4828 feature->func (feature, is_supported, value);
4829 break;
4830 }
4831 }
4832
4833 /* If we increased the packet size, make sure to increase the global
4834 buffer size also. We delay this until after parsing the entire
4835 qSupported packet, because this is the same buffer we were
4836 parsing. */
4837 if (rs->buf_size < rs->explicit_packet_size)
4838 {
4839 rs->buf_size = rs->explicit_packet_size;
4840 rs->buf = (char *) xrealloc (rs->buf, rs->buf_size);
4841 }
4842
4843 /* Handle the defaults for unmentioned features. */
4844 for (i = 0; i < ARRAY_SIZE (remote_protocol_features); i++)
4845 if (!seen[i])
4846 {
4847 const struct protocol_feature *feature;
4848
4849 feature = &remote_protocol_features[i];
4850 feature->func (feature, feature->default_support, NULL);
4851 }
4852 }
4853
4854 /* Serial QUIT handler for the remote serial descriptor.
4855
4856 Defers handling a Ctrl-C until we're done with the current
4857 command/response packet sequence, unless:
4858
4859 - We're setting up the connection. Don't send a remote interrupt
4860 request, as we're not fully synced yet. Quit immediately
4861 instead.
4862
4863 - The target has been resumed in the foreground
4864 (target_terminal::is_ours is false) with a synchronous resume
4865 packet, and we're blocked waiting for the stop reply, thus a
4866 Ctrl-C should be immediately sent to the target.
4867
4868 - We get a second Ctrl-C while still within the same serial read or
4869 write. In that case the serial is seemingly wedged --- offer to
4870 quit/disconnect.
4871
4872 - We see a second Ctrl-C without target response, after having
4873 previously interrupted the target. In that case the target/stub
4874 is probably wedged --- offer to quit/disconnect.
4875 */
4876
4877 static void
4878 remote_serial_quit_handler (void)
4879 {
4880 struct remote_state *rs = get_remote_state ();
4881
4882 if (check_quit_flag ())
4883 {
4884 /* If we're starting up, we're not fully synced yet. Quit
4885 immediately. */
4886 if (rs->starting_up)
4887 quit ();
4888 else if (rs->got_ctrlc_during_io)
4889 {
4890 if (query (_("The target is not responding to GDB commands.\n"
4891 "Stop debugging it? ")))
4892 remote_unpush_and_throw ();
4893 }
4894 /* If ^C has already been sent once, offer to disconnect. */
4895 else if (!target_terminal::is_ours () && rs->ctrlc_pending_p)
4896 interrupt_query ();
4897 /* All-stop protocol, and blocked waiting for stop reply. Send
4898 an interrupt request. */
4899 else if (!target_terminal::is_ours () && rs->waiting_for_stop_reply)
4900 target_interrupt ();
4901 else
4902 rs->got_ctrlc_during_io = 1;
4903 }
4904 }
4905
4906 /* Remove any of the remote.c targets from target stack. Upper targets depend
4907 on it so remove them first. */
4908
4909 static void
4910 remote_unpush_target (void)
4911 {
4912 pop_all_targets_at_and_above (process_stratum);
4913 }
4914
4915 static void
4916 remote_unpush_and_throw (void)
4917 {
4918 remote_unpush_target ();
4919 throw_error (TARGET_CLOSE_ERROR, _("Disconnected from target."));
4920 }
4921
4922 static void
4923 remote_open_1 (const char *name, int from_tty,
4924 struct target_ops *target, int extended_p)
4925 {
4926 struct remote_state *rs = get_remote_state ();
4927
4928 if (name == 0)
4929 error (_("To open a remote debug connection, you need to specify what\n"
4930 "serial device is attached to the remote system\n"
4931 "(e.g. /dev/ttyS0, /dev/ttya, COM1, etc.)."));
4932
4933 /* See FIXME above. */
4934 if (!target_async_permitted)
4935 wait_forever_enabled_p = 1;
4936
4937 /* If we're connected to a running target, target_preopen will kill it.
4938 Ask this question first, before target_preopen has a chance to kill
4939 anything. */
4940 if (rs->remote_desc != NULL && !have_inferiors ())
4941 {
4942 if (from_tty
4943 && !query (_("Already connected to a remote target. Disconnect? ")))
4944 error (_("Still connected."));
4945 }
4946
4947 /* Here the possibly existing remote target gets unpushed. */
4948 target_preopen (from_tty);
4949
4950 /* Make sure we send the passed signals list the next time we resume. */
4951 xfree (rs->last_pass_packet);
4952 rs->last_pass_packet = NULL;
4953
4954 /* Make sure we send the program signals list the next time we
4955 resume. */
4956 xfree (rs->last_program_signals_packet);
4957 rs->last_program_signals_packet = NULL;
4958
4959 remote_fileio_reset ();
4960 reopen_exec_file ();
4961 reread_symbols ();
4962
4963 rs->remote_desc = remote_serial_open (name);
4964 if (!rs->remote_desc)
4965 perror_with_name (name);
4966
4967 if (baud_rate != -1)
4968 {
4969 if (serial_setbaudrate (rs->remote_desc, baud_rate))
4970 {
4971 /* The requested speed could not be set. Error out to
4972 top level after closing remote_desc. Take care to
4973 set remote_desc to NULL to avoid closing remote_desc
4974 more than once. */
4975 serial_close (rs->remote_desc);
4976 rs->remote_desc = NULL;
4977 perror_with_name (name);
4978 }
4979 }
4980
4981 serial_setparity (rs->remote_desc, serial_parity);
4982 serial_raw (rs->remote_desc);
4983
4984 /* If there is something sitting in the buffer we might take it as a
4985 response to a command, which would be bad. */
4986 serial_flush_input (rs->remote_desc);
4987
4988 if (from_tty)
4989 {
4990 puts_filtered ("Remote debugging using ");
4991 puts_filtered (name);
4992 puts_filtered ("\n");
4993 }
4994 push_target (target); /* Switch to using remote target now. */
4995
4996 /* Register extra event sources in the event loop. */
4997 remote_async_inferior_event_token
4998 = create_async_event_handler (remote_async_inferior_event_handler,
4999 NULL);
5000 rs->notif_state = remote_notif_state_allocate ();
5001
5002 /* Reset the target state; these things will be queried either by
5003 remote_query_supported or as they are needed. */
5004 reset_all_packet_configs_support ();
5005 rs->cached_wait_status = 0;
5006 rs->explicit_packet_size = 0;
5007 rs->noack_mode = 0;
5008 rs->extended = extended_p;
5009 rs->waiting_for_stop_reply = 0;
5010 rs->ctrlc_pending_p = 0;
5011 rs->got_ctrlc_during_io = 0;
5012
5013 rs->general_thread = not_sent_ptid;
5014 rs->continue_thread = not_sent_ptid;
5015 rs->remote_traceframe_number = -1;
5016
5017 rs->last_resume_exec_dir = EXEC_FORWARD;
5018
5019 /* Probe for ability to use "ThreadInfo" query, as required. */
5020 rs->use_threadinfo_query = 1;
5021 rs->use_threadextra_query = 1;
5022
5023 readahead_cache_invalidate ();
5024
5025 if (target_async_permitted)
5026 {
5027 /* FIXME: cagney/1999-09-23: During the initial connection it is
5028 assumed that the target is already ready and able to respond to
5029 requests. Unfortunately remote_start_remote() eventually calls
5030 wait_for_inferior() with no timeout. wait_forever_enabled_p gets
5031 around this. Eventually a mechanism that allows
5032 wait_for_inferior() to expect/get timeouts will be
5033 implemented. */
5034 wait_forever_enabled_p = 0;
5035 }
5036
5037 /* First delete any symbols previously loaded from shared libraries. */
5038 no_shared_libraries (NULL, 0);
5039
5040 /* Start afresh. */
5041 init_thread_list ();
5042
5043 /* Start the remote connection. If error() or QUIT, discard this
5044 target (we'd otherwise be in an inconsistent state) and then
5045 propogate the error on up the exception chain. This ensures that
5046 the caller doesn't stumble along blindly assuming that the
5047 function succeeded. The CLI doesn't have this problem but other
5048 UI's, such as MI do.
5049
5050 FIXME: cagney/2002-05-19: Instead of re-throwing the exception,
5051 this function should return an error indication letting the
5052 caller restore the previous state. Unfortunately the command
5053 ``target remote'' is directly wired to this function making that
5054 impossible. On a positive note, the CLI side of this problem has
5055 been fixed - the function set_cmd_context() makes it possible for
5056 all the ``target ....'' commands to share a common callback
5057 function. See cli-dump.c. */
5058 {
5059
5060 TRY
5061 {
5062 remote_start_remote (from_tty, target, extended_p);
5063 }
5064 CATCH (ex, RETURN_MASK_ALL)
5065 {
5066 /* Pop the partially set up target - unless something else did
5067 already before throwing the exception. */
5068 if (rs->remote_desc != NULL)
5069 remote_unpush_target ();
5070 if (target_async_permitted)
5071 wait_forever_enabled_p = 1;
5072 throw_exception (ex);
5073 }
5074 END_CATCH
5075 }
5076
5077 remote_btrace_reset ();
5078
5079 if (target_async_permitted)
5080 wait_forever_enabled_p = 1;
5081 }
5082
5083 /* Detach the specified process. */
5084
5085 static void
5086 remote_detach_pid (int pid)
5087 {
5088 struct remote_state *rs = get_remote_state ();
5089
5090 if (remote_multi_process_p (rs))
5091 xsnprintf (rs->buf, get_remote_packet_size (), "D;%x", pid);
5092 else
5093 strcpy (rs->buf, "D");
5094
5095 putpkt (rs->buf);
5096 getpkt (&rs->buf, &rs->buf_size, 0);
5097
5098 if (rs->buf[0] == 'O' && rs->buf[1] == 'K')
5099 ;
5100 else if (rs->buf[0] == '\0')
5101 error (_("Remote doesn't know how to detach"));
5102 else
5103 error (_("Can't detach process."));
5104 }
5105
5106 /* This detaches a program to which we previously attached, using
5107 inferior_ptid to identify the process. After this is done, GDB
5108 can be used to debug some other program. We better not have left
5109 any breakpoints in the target program or it'll die when it hits
5110 one. */
5111
5112 static void
5113 remote_detach_1 (int from_tty, inferior *inf)
5114 {
5115 int pid = ptid_get_pid (inferior_ptid);
5116 struct remote_state *rs = get_remote_state ();
5117 struct thread_info *tp = find_thread_ptid (inferior_ptid);
5118 int is_fork_parent;
5119
5120 if (!target_has_execution)
5121 error (_("No process to detach from."));
5122
5123 target_announce_detach (from_tty);
5124
5125 /* Tell the remote target to detach. */
5126 remote_detach_pid (pid);
5127
5128 /* Exit only if this is the only active inferior. */
5129 if (from_tty && !rs->extended && number_of_live_inferiors () == 1)
5130 puts_filtered (_("Ending remote debugging.\n"));
5131
5132 /* Check to see if we are detaching a fork parent. Note that if we
5133 are detaching a fork child, tp == NULL. */
5134 is_fork_parent = (tp != NULL
5135 && tp->pending_follow.kind == TARGET_WAITKIND_FORKED);
5136
5137 /* If doing detach-on-fork, we don't mourn, because that will delete
5138 breakpoints that should be available for the followed inferior. */
5139 if (!is_fork_parent)
5140 {
5141 std::string infpid = target_pid_to_str (inferior_ptid);
5142
5143 target_mourn_inferior (inferior_ptid);
5144 if (print_inferior_events)
5145 printf_unfiltered (_("[Inferior %d (%s) detached]\n"),
5146 inf->num, infpid.c_str ());
5147 }
5148 else
5149 {
5150 inferior_ptid = null_ptid;
5151 detach_inferior (pid);
5152 }
5153 }
5154
5155 static void
5156 remote_detach (struct target_ops *ops, inferior *inf, int from_tty)
5157 {
5158 remote_detach_1 (from_tty, inf);
5159 }
5160
5161 static void
5162 extended_remote_detach (struct target_ops *ops, inferior *inf, int from_tty)
5163 {
5164 remote_detach_1 (from_tty, inf);
5165 }
5166
5167 /* Target follow-fork function for remote targets. On entry, and
5168 at return, the current inferior is the fork parent.
5169
5170 Note that although this is currently only used for extended-remote,
5171 it is named remote_follow_fork in anticipation of using it for the
5172 remote target as well. */
5173
5174 static int
5175 remote_follow_fork (struct target_ops *ops, int follow_child,
5176 int detach_fork)
5177 {
5178 struct remote_state *rs = get_remote_state ();
5179 enum target_waitkind kind = inferior_thread ()->pending_follow.kind;
5180
5181 if ((kind == TARGET_WAITKIND_FORKED && remote_fork_event_p (rs))
5182 || (kind == TARGET_WAITKIND_VFORKED && remote_vfork_event_p (rs)))
5183 {
5184 /* When following the parent and detaching the child, we detach
5185 the child here. For the case of following the child and
5186 detaching the parent, the detach is done in the target-
5187 independent follow fork code in infrun.c. We can't use
5188 target_detach when detaching an unfollowed child because
5189 the client side doesn't know anything about the child. */
5190 if (detach_fork && !follow_child)
5191 {
5192 /* Detach the fork child. */
5193 ptid_t child_ptid;
5194 pid_t child_pid;
5195
5196 child_ptid = inferior_thread ()->pending_follow.value.related_pid;
5197 child_pid = ptid_get_pid (child_ptid);
5198
5199 remote_detach_pid (child_pid);
5200 }
5201 }
5202 return 0;
5203 }
5204
5205 /* Target follow-exec function for remote targets. Save EXECD_PATHNAME
5206 in the program space of the new inferior. On entry and at return the
5207 current inferior is the exec'ing inferior. INF is the new exec'd
5208 inferior, which may be the same as the exec'ing inferior unless
5209 follow-exec-mode is "new". */
5210
5211 static void
5212 remote_follow_exec (struct target_ops *ops,
5213 struct inferior *inf, char *execd_pathname)
5214 {
5215 /* We know that this is a target file name, so if it has the "target:"
5216 prefix we strip it off before saving it in the program space. */
5217 if (is_target_filename (execd_pathname))
5218 execd_pathname += strlen (TARGET_SYSROOT_PREFIX);
5219
5220 set_pspace_remote_exec_file (inf->pspace, execd_pathname);
5221 }
5222
5223 /* Same as remote_detach, but don't send the "D" packet; just disconnect. */
5224
5225 static void
5226 remote_disconnect (struct target_ops *target, const char *args, int from_tty)
5227 {
5228 if (args)
5229 error (_("Argument given to \"disconnect\" when remotely debugging."));
5230
5231 /* Make sure we unpush even the extended remote targets. Calling
5232 target_mourn_inferior won't unpush, and remote_mourn won't
5233 unpush if there is more than one inferior left. */
5234 unpush_target (target);
5235 generic_mourn_inferior ();
5236
5237 if (from_tty)
5238 puts_filtered ("Ending remote debugging.\n");
5239 }
5240
5241 /* Attach to the process specified by ARGS. If FROM_TTY is non-zero,
5242 be chatty about it. */
5243
5244 static void
5245 extended_remote_attach (struct target_ops *target, const char *args,
5246 int from_tty)
5247 {
5248 struct remote_state *rs = get_remote_state ();
5249 int pid;
5250 char *wait_status = NULL;
5251
5252 pid = parse_pid_to_attach (args);
5253
5254 /* Remote PID can be freely equal to getpid, do not check it here the same
5255 way as in other targets. */
5256
5257 if (packet_support (PACKET_vAttach) == PACKET_DISABLE)
5258 error (_("This target does not support attaching to a process"));
5259
5260 if (from_tty)
5261 {
5262 char *exec_file = get_exec_file (0);
5263
5264 if (exec_file)
5265 printf_unfiltered (_("Attaching to program: %s, %s\n"), exec_file,
5266 target_pid_to_str (pid_to_ptid (pid)));
5267 else
5268 printf_unfiltered (_("Attaching to %s\n"),
5269 target_pid_to_str (pid_to_ptid (pid)));
5270
5271 gdb_flush (gdb_stdout);
5272 }
5273
5274 xsnprintf (rs->buf, get_remote_packet_size (), "vAttach;%x", pid);
5275 putpkt (rs->buf);
5276 getpkt (&rs->buf, &rs->buf_size, 0);
5277
5278 switch (packet_ok (rs->buf,
5279 &remote_protocol_packets[PACKET_vAttach]))
5280 {
5281 case PACKET_OK:
5282 if (!target_is_non_stop_p ())
5283 {
5284 /* Save the reply for later. */
5285 wait_status = (char *) alloca (strlen (rs->buf) + 1);
5286 strcpy (wait_status, rs->buf);
5287 }
5288 else if (strcmp (rs->buf, "OK") != 0)
5289 error (_("Attaching to %s failed with: %s"),
5290 target_pid_to_str (pid_to_ptid (pid)),
5291 rs->buf);
5292 break;
5293 case PACKET_UNKNOWN:
5294 error (_("This target does not support attaching to a process"));
5295 default:
5296 error (_("Attaching to %s failed"),
5297 target_pid_to_str (pid_to_ptid (pid)));
5298 }
5299
5300 set_current_inferior (remote_add_inferior (0, pid, 1, 0));
5301
5302 inferior_ptid = pid_to_ptid (pid);
5303
5304 if (target_is_non_stop_p ())
5305 {
5306 struct thread_info *thread;
5307
5308 /* Get list of threads. */
5309 remote_update_thread_list (target);
5310
5311 thread = first_thread_of_process (pid);
5312 if (thread)
5313 inferior_ptid = thread->ptid;
5314 else
5315 inferior_ptid = pid_to_ptid (pid);
5316
5317 /* Invalidate our notion of the remote current thread. */
5318 record_currthread (rs, minus_one_ptid);
5319 }
5320 else
5321 {
5322 /* Now, if we have thread information, update inferior_ptid. */
5323 inferior_ptid = remote_current_thread (inferior_ptid);
5324
5325 /* Add the main thread to the thread list. */
5326 thread_info *thr = add_thread_silent (inferior_ptid);
5327 /* Don't consider the thread stopped until we've processed the
5328 saved stop reply. */
5329 set_executing (thr->ptid, true);
5330 }
5331
5332 /* Next, if the target can specify a description, read it. We do
5333 this before anything involving memory or registers. */
5334 target_find_description ();
5335
5336 if (!target_is_non_stop_p ())
5337 {
5338 /* Use the previously fetched status. */
5339 gdb_assert (wait_status != NULL);
5340
5341 if (target_can_async_p ())
5342 {
5343 struct notif_event *reply
5344 = remote_notif_parse (&notif_client_stop, wait_status);
5345
5346 push_stop_reply ((struct stop_reply *) reply);
5347
5348 target_async (1);
5349 }
5350 else
5351 {
5352 gdb_assert (wait_status != NULL);
5353 strcpy (rs->buf, wait_status);
5354 rs->cached_wait_status = 1;
5355 }
5356 }
5357 else
5358 gdb_assert (wait_status == NULL);
5359 }
5360
5361 /* Implementation of the to_post_attach method. */
5362
5363 static void
5364 extended_remote_post_attach (struct target_ops *ops, int pid)
5365 {
5366 /* Get text, data & bss offsets. */
5367 get_offsets ();
5368
5369 /* In certain cases GDB might not have had the chance to start
5370 symbol lookup up until now. This could happen if the debugged
5371 binary is not using shared libraries, the vsyscall page is not
5372 present (on Linux) and the binary itself hadn't changed since the
5373 debugging process was started. */
5374 if (symfile_objfile != NULL)
5375 remote_check_symbols();
5376 }
5377
5378 \f
5379 /* Check for the availability of vCont. This function should also check
5380 the response. */
5381
5382 static void
5383 remote_vcont_probe (struct remote_state *rs)
5384 {
5385 char *buf;
5386
5387 strcpy (rs->buf, "vCont?");
5388 putpkt (rs->buf);
5389 getpkt (&rs->buf, &rs->buf_size, 0);
5390 buf = rs->buf;
5391
5392 /* Make sure that the features we assume are supported. */
5393 if (startswith (buf, "vCont"))
5394 {
5395 char *p = &buf[5];
5396 int support_c, support_C;
5397
5398 rs->supports_vCont.s = 0;
5399 rs->supports_vCont.S = 0;
5400 support_c = 0;
5401 support_C = 0;
5402 rs->supports_vCont.t = 0;
5403 rs->supports_vCont.r = 0;
5404 while (p && *p == ';')
5405 {
5406 p++;
5407 if (*p == 's' && (*(p + 1) == ';' || *(p + 1) == 0))
5408 rs->supports_vCont.s = 1;
5409 else if (*p == 'S' && (*(p + 1) == ';' || *(p + 1) == 0))
5410 rs->supports_vCont.S = 1;
5411 else if (*p == 'c' && (*(p + 1) == ';' || *(p + 1) == 0))
5412 support_c = 1;
5413 else if (*p == 'C' && (*(p + 1) == ';' || *(p + 1) == 0))
5414 support_C = 1;
5415 else if (*p == 't' && (*(p + 1) == ';' || *(p + 1) == 0))
5416 rs->supports_vCont.t = 1;
5417 else if (*p == 'r' && (*(p + 1) == ';' || *(p + 1) == 0))
5418 rs->supports_vCont.r = 1;
5419
5420 p = strchr (p, ';');
5421 }
5422
5423 /* If c, and C are not all supported, we can't use vCont. Clearing
5424 BUF will make packet_ok disable the packet. */
5425 if (!support_c || !support_C)
5426 buf[0] = 0;
5427 }
5428
5429 packet_ok (buf, &remote_protocol_packets[PACKET_vCont]);
5430 }
5431
5432 /* Helper function for building "vCont" resumptions. Write a
5433 resumption to P. ENDP points to one-passed-the-end of the buffer
5434 we're allowed to write to. Returns BUF+CHARACTERS_WRITTEN. The
5435 thread to be resumed is PTID; STEP and SIGGNAL indicate whether the
5436 resumed thread should be single-stepped and/or signalled. If PTID
5437 equals minus_one_ptid, then all threads are resumed; if PTID
5438 represents a process, then all threads of the process are resumed;
5439 the thread to be stepped and/or signalled is given in the global
5440 INFERIOR_PTID. */
5441
5442 static char *
5443 append_resumption (char *p, char *endp,
5444 ptid_t ptid, int step, enum gdb_signal siggnal)
5445 {
5446 struct remote_state *rs = get_remote_state ();
5447
5448 if (step && siggnal != GDB_SIGNAL_0)
5449 p += xsnprintf (p, endp - p, ";S%02x", siggnal);
5450 else if (step
5451 /* GDB is willing to range step. */
5452 && use_range_stepping
5453 /* Target supports range stepping. */
5454 && rs->supports_vCont.r
5455 /* We don't currently support range stepping multiple
5456 threads with a wildcard (though the protocol allows it,
5457 so stubs shouldn't make an active effort to forbid
5458 it). */
5459 && !(remote_multi_process_p (rs) && ptid_is_pid (ptid)))
5460 {
5461 struct thread_info *tp;
5462
5463 if (ptid_equal (ptid, minus_one_ptid))
5464 {
5465 /* If we don't know about the target thread's tid, then
5466 we're resuming magic_null_ptid (see caller). */
5467 tp = find_thread_ptid (magic_null_ptid);
5468 }
5469 else
5470 tp = find_thread_ptid (ptid);
5471 gdb_assert (tp != NULL);
5472
5473 if (tp->control.may_range_step)
5474 {
5475 int addr_size = gdbarch_addr_bit (target_gdbarch ()) / 8;
5476
5477 p += xsnprintf (p, endp - p, ";r%s,%s",
5478 phex_nz (tp->control.step_range_start,
5479 addr_size),
5480 phex_nz (tp->control.step_range_end,
5481 addr_size));
5482 }
5483 else
5484 p += xsnprintf (p, endp - p, ";s");
5485 }
5486 else if (step)
5487 p += xsnprintf (p, endp - p, ";s");
5488 else if (siggnal != GDB_SIGNAL_0)
5489 p += xsnprintf (p, endp - p, ";C%02x", siggnal);
5490 else
5491 p += xsnprintf (p, endp - p, ";c");
5492
5493 if (remote_multi_process_p (rs) && ptid_is_pid (ptid))
5494 {
5495 ptid_t nptid;
5496
5497 /* All (-1) threads of process. */
5498 nptid = ptid_build (ptid_get_pid (ptid), -1, 0);
5499
5500 p += xsnprintf (p, endp - p, ":");
5501 p = write_ptid (p, endp, nptid);
5502 }
5503 else if (!ptid_equal (ptid, minus_one_ptid))
5504 {
5505 p += xsnprintf (p, endp - p, ":");
5506 p = write_ptid (p, endp, ptid);
5507 }
5508
5509 return p;
5510 }
5511
5512 /* Clear the thread's private info on resume. */
5513
5514 static void
5515 resume_clear_thread_private_info (struct thread_info *thread)
5516 {
5517 if (thread->priv != NULL)
5518 {
5519 remote_thread_info *priv = get_remote_thread_info (thread);
5520
5521 priv->stop_reason = TARGET_STOPPED_BY_NO_REASON;
5522 priv->watch_data_address = 0;
5523 }
5524 }
5525
5526 /* Append a vCont continue-with-signal action for threads that have a
5527 non-zero stop signal. */
5528
5529 static char *
5530 append_pending_thread_resumptions (char *p, char *endp, ptid_t ptid)
5531 {
5532 struct thread_info *thread;
5533
5534 ALL_NON_EXITED_THREADS (thread)
5535 if (ptid_match (thread->ptid, ptid)
5536 && !ptid_equal (inferior_ptid, thread->ptid)
5537 && thread->suspend.stop_signal != GDB_SIGNAL_0)
5538 {
5539 p = append_resumption (p, endp, thread->ptid,
5540 0, thread->suspend.stop_signal);
5541 thread->suspend.stop_signal = GDB_SIGNAL_0;
5542 resume_clear_thread_private_info (thread);
5543 }
5544
5545 return p;
5546 }
5547
5548 /* Set the target running, using the packets that use Hc
5549 (c/s/C/S). */
5550
5551 static void
5552 remote_resume_with_hc (struct target_ops *ops,
5553 ptid_t ptid, int step, enum gdb_signal siggnal)
5554 {
5555 struct remote_state *rs = get_remote_state ();
5556 struct thread_info *thread;
5557 char *buf;
5558
5559 rs->last_sent_signal = siggnal;
5560 rs->last_sent_step = step;
5561
5562 /* The c/s/C/S resume packets use Hc, so set the continue
5563 thread. */
5564 if (ptid_equal (ptid, minus_one_ptid))
5565 set_continue_thread (any_thread_ptid);
5566 else
5567 set_continue_thread (ptid);
5568
5569 ALL_NON_EXITED_THREADS (thread)
5570 resume_clear_thread_private_info (thread);
5571
5572 buf = rs->buf;
5573 if (execution_direction == EXEC_REVERSE)
5574 {
5575 /* We don't pass signals to the target in reverse exec mode. */
5576 if (info_verbose && siggnal != GDB_SIGNAL_0)
5577 warning (_(" - Can't pass signal %d to target in reverse: ignored."),
5578 siggnal);
5579
5580 if (step && packet_support (PACKET_bs) == PACKET_DISABLE)
5581 error (_("Remote reverse-step not supported."));
5582 if (!step && packet_support (PACKET_bc) == PACKET_DISABLE)
5583 error (_("Remote reverse-continue not supported."));
5584
5585 strcpy (buf, step ? "bs" : "bc");
5586 }
5587 else if (siggnal != GDB_SIGNAL_0)
5588 {
5589 buf[0] = step ? 'S' : 'C';
5590 buf[1] = tohex (((int) siggnal >> 4) & 0xf);
5591 buf[2] = tohex (((int) siggnal) & 0xf);
5592 buf[3] = '\0';
5593 }
5594 else
5595 strcpy (buf, step ? "s" : "c");
5596
5597 putpkt (buf);
5598 }
5599
5600 /* Resume the remote inferior by using a "vCont" packet. The thread
5601 to be resumed is PTID; STEP and SIGGNAL indicate whether the
5602 resumed thread should be single-stepped and/or signalled. If PTID
5603 equals minus_one_ptid, then all threads are resumed; the thread to
5604 be stepped and/or signalled is given in the global INFERIOR_PTID.
5605 This function returns non-zero iff it resumes the inferior.
5606
5607 This function issues a strict subset of all possible vCont commands
5608 at the moment. */
5609
5610 static int
5611 remote_resume_with_vcont (ptid_t ptid, int step, enum gdb_signal siggnal)
5612 {
5613 struct remote_state *rs = get_remote_state ();
5614 char *p;
5615 char *endp;
5616
5617 /* No reverse execution actions defined for vCont. */
5618 if (execution_direction == EXEC_REVERSE)
5619 return 0;
5620
5621 if (packet_support (PACKET_vCont) == PACKET_SUPPORT_UNKNOWN)
5622 remote_vcont_probe (rs);
5623
5624 if (packet_support (PACKET_vCont) == PACKET_DISABLE)
5625 return 0;
5626
5627 p = rs->buf;
5628 endp = rs->buf + get_remote_packet_size ();
5629
5630 /* If we could generate a wider range of packets, we'd have to worry
5631 about overflowing BUF. Should there be a generic
5632 "multi-part-packet" packet? */
5633
5634 p += xsnprintf (p, endp - p, "vCont");
5635
5636 if (ptid_equal (ptid, magic_null_ptid))
5637 {
5638 /* MAGIC_NULL_PTID means that we don't have any active threads,
5639 so we don't have any TID numbers the inferior will
5640 understand. Make sure to only send forms that do not specify
5641 a TID. */
5642 append_resumption (p, endp, minus_one_ptid, step, siggnal);
5643 }
5644 else if (ptid_equal (ptid, minus_one_ptid) || ptid_is_pid (ptid))
5645 {
5646 /* Resume all threads (of all processes, or of a single
5647 process), with preference for INFERIOR_PTID. This assumes
5648 inferior_ptid belongs to the set of all threads we are about
5649 to resume. */
5650 if (step || siggnal != GDB_SIGNAL_0)
5651 {
5652 /* Step inferior_ptid, with or without signal. */
5653 p = append_resumption (p, endp, inferior_ptid, step, siggnal);
5654 }
5655
5656 /* Also pass down any pending signaled resumption for other
5657 threads not the current. */
5658 p = append_pending_thread_resumptions (p, endp, ptid);
5659
5660 /* And continue others without a signal. */
5661 append_resumption (p, endp, ptid, /*step=*/ 0, GDB_SIGNAL_0);
5662 }
5663 else
5664 {
5665 /* Scheduler locking; resume only PTID. */
5666 append_resumption (p, endp, ptid, step, siggnal);
5667 }
5668
5669 gdb_assert (strlen (rs->buf) < get_remote_packet_size ());
5670 putpkt (rs->buf);
5671
5672 if (target_is_non_stop_p ())
5673 {
5674 /* In non-stop, the stub replies to vCont with "OK". The stop
5675 reply will be reported asynchronously by means of a `%Stop'
5676 notification. */
5677 getpkt (&rs->buf, &rs->buf_size, 0);
5678 if (strcmp (rs->buf, "OK") != 0)
5679 error (_("Unexpected vCont reply in non-stop mode: %s"), rs->buf);
5680 }
5681
5682 return 1;
5683 }
5684
5685 /* Tell the remote machine to resume. */
5686
5687 static void
5688 remote_resume (struct target_ops *ops,
5689 ptid_t ptid, int step, enum gdb_signal siggnal)
5690 {
5691 struct remote_state *rs = get_remote_state ();
5692
5693 /* When connected in non-stop mode, the core resumes threads
5694 individually. Resuming remote threads directly in target_resume
5695 would thus result in sending one packet per thread. Instead, to
5696 minimize roundtrip latency, here we just store the resume
5697 request; the actual remote resumption will be done in
5698 target_commit_resume / remote_commit_resume, where we'll be able
5699 to do vCont action coalescing. */
5700 if (target_is_non_stop_p () && execution_direction != EXEC_REVERSE)
5701 {
5702 remote_thread_info *remote_thr;
5703
5704 if (ptid_equal (minus_one_ptid, ptid) || ptid_is_pid (ptid))
5705 remote_thr = get_remote_thread_info (inferior_ptid);
5706 else
5707 remote_thr = get_remote_thread_info (ptid);
5708
5709 remote_thr->last_resume_step = step;
5710 remote_thr->last_resume_sig = siggnal;
5711 return;
5712 }
5713
5714 /* In all-stop, we can't mark REMOTE_ASYNC_GET_PENDING_EVENTS_TOKEN
5715 (explained in remote-notif.c:handle_notification) so
5716 remote_notif_process is not called. We need find a place where
5717 it is safe to start a 'vNotif' sequence. It is good to do it
5718 before resuming inferior, because inferior was stopped and no RSP
5719 traffic at that moment. */
5720 if (!target_is_non_stop_p ())
5721 remote_notif_process (rs->notif_state, &notif_client_stop);
5722
5723 rs->last_resume_exec_dir = execution_direction;
5724
5725 /* Prefer vCont, and fallback to s/c/S/C, which use Hc. */
5726 if (!remote_resume_with_vcont (ptid, step, siggnal))
5727 remote_resume_with_hc (ops, ptid, step, siggnal);
5728
5729 /* We are about to start executing the inferior, let's register it
5730 with the event loop. NOTE: this is the one place where all the
5731 execution commands end up. We could alternatively do this in each
5732 of the execution commands in infcmd.c. */
5733 /* FIXME: ezannoni 1999-09-28: We may need to move this out of here
5734 into infcmd.c in order to allow inferior function calls to work
5735 NOT asynchronously. */
5736 if (target_can_async_p ())
5737 target_async (1);
5738
5739 /* We've just told the target to resume. The remote server will
5740 wait for the inferior to stop, and then send a stop reply. In
5741 the mean time, we can't start another command/query ourselves
5742 because the stub wouldn't be ready to process it. This applies
5743 only to the base all-stop protocol, however. In non-stop (which
5744 only supports vCont), the stub replies with an "OK", and is
5745 immediate able to process further serial input. */
5746 if (!target_is_non_stop_p ())
5747 rs->waiting_for_stop_reply = 1;
5748 }
5749
5750 static void check_pending_events_prevent_wildcard_vcont
5751 (int *may_global_wildcard_vcont);
5752 static int is_pending_fork_parent_thread (struct thread_info *thread);
5753
5754 /* Private per-inferior info for target remote processes. */
5755
5756 struct remote_inferior : public private_inferior
5757 {
5758 /* Whether we can send a wildcard vCont for this process. */
5759 bool may_wildcard_vcont = true;
5760 };
5761
5762 /* Get the remote private inferior data associated to INF. */
5763
5764 static remote_inferior *
5765 get_remote_inferior (inferior *inf)
5766 {
5767 if (inf->priv == NULL)
5768 inf->priv.reset (new remote_inferior);
5769
5770 return static_cast<remote_inferior *> (inf->priv.get ());
5771 }
5772
5773 /* Structure used to track the construction of a vCont packet in the
5774 outgoing packet buffer. This is used to send multiple vCont
5775 packets if we have more actions than would fit a single packet. */
5776
5777 struct vcont_builder
5778 {
5779 /* Pointer to the first action. P points here if no action has been
5780 appended yet. */
5781 char *first_action;
5782
5783 /* Where the next action will be appended. */
5784 char *p;
5785
5786 /* The end of the buffer. Must never write past this. */
5787 char *endp;
5788 };
5789
5790 /* Prepare the outgoing buffer for a new vCont packet. */
5791
5792 static void
5793 vcont_builder_restart (struct vcont_builder *builder)
5794 {
5795 struct remote_state *rs = get_remote_state ();
5796
5797 builder->p = rs->buf;
5798 builder->endp = rs->buf + get_remote_packet_size ();
5799 builder->p += xsnprintf (builder->p, builder->endp - builder->p, "vCont");
5800 builder->first_action = builder->p;
5801 }
5802
5803 /* If the vCont packet being built has any action, send it to the
5804 remote end. */
5805
5806 static void
5807 vcont_builder_flush (struct vcont_builder *builder)
5808 {
5809 struct remote_state *rs;
5810
5811 if (builder->p == builder->first_action)
5812 return;
5813
5814 rs = get_remote_state ();
5815 putpkt (rs->buf);
5816 getpkt (&rs->buf, &rs->buf_size, 0);
5817 if (strcmp (rs->buf, "OK") != 0)
5818 error (_("Unexpected vCont reply in non-stop mode: %s"), rs->buf);
5819 }
5820
5821 /* The largest action is range-stepping, with its two addresses. This
5822 is more than sufficient. If a new, bigger action is created, it'll
5823 quickly trigger a failed assertion in append_resumption (and we'll
5824 just bump this). */
5825 #define MAX_ACTION_SIZE 200
5826
5827 /* Append a new vCont action in the outgoing packet being built. If
5828 the action doesn't fit the packet along with previous actions, push
5829 what we've got so far to the remote end and start over a new vCont
5830 packet (with the new action). */
5831
5832 static void
5833 vcont_builder_push_action (struct vcont_builder *builder,
5834 ptid_t ptid, int step, enum gdb_signal siggnal)
5835 {
5836 char buf[MAX_ACTION_SIZE + 1];
5837 char *endp;
5838 size_t rsize;
5839
5840 endp = append_resumption (buf, buf + sizeof (buf),
5841 ptid, step, siggnal);
5842
5843 /* Check whether this new action would fit in the vCont packet along
5844 with previous actions. If not, send what we've got so far and
5845 start a new vCont packet. */
5846 rsize = endp - buf;
5847 if (rsize > builder->endp - builder->p)
5848 {
5849 vcont_builder_flush (builder);
5850 vcont_builder_restart (builder);
5851
5852 /* Should now fit. */
5853 gdb_assert (rsize <= builder->endp - builder->p);
5854 }
5855
5856 memcpy (builder->p, buf, rsize);
5857 builder->p += rsize;
5858 *builder->p = '\0';
5859 }
5860
5861 /* to_commit_resume implementation. */
5862
5863 static void
5864 remote_commit_resume (struct target_ops *ops)
5865 {
5866 struct inferior *inf;
5867 struct thread_info *tp;
5868 int any_process_wildcard;
5869 int may_global_wildcard_vcont;
5870 struct vcont_builder vcont_builder;
5871
5872 /* If connected in all-stop mode, we'd send the remote resume
5873 request directly from remote_resume. Likewise if
5874 reverse-debugging, as there are no defined vCont actions for
5875 reverse execution. */
5876 if (!target_is_non_stop_p () || execution_direction == EXEC_REVERSE)
5877 return;
5878
5879 /* Try to send wildcard actions ("vCont;c" or "vCont;c:pPID.-1")
5880 instead of resuming all threads of each process individually.
5881 However, if any thread of a process must remain halted, we can't
5882 send wildcard resumes and must send one action per thread.
5883
5884 Care must be taken to not resume threads/processes the server
5885 side already told us are stopped, but the core doesn't know about
5886 yet, because the events are still in the vStopped notification
5887 queue. For example:
5888
5889 #1 => vCont s:p1.1;c
5890 #2 <= OK
5891 #3 <= %Stopped T05 p1.1
5892 #4 => vStopped
5893 #5 <= T05 p1.2
5894 #6 => vStopped
5895 #7 <= OK
5896 #8 (infrun handles the stop for p1.1 and continues stepping)
5897 #9 => vCont s:p1.1;c
5898
5899 The last vCont above would resume thread p1.2 by mistake, because
5900 the server has no idea that the event for p1.2 had not been
5901 handled yet.
5902
5903 The server side must similarly ignore resume actions for the
5904 thread that has a pending %Stopped notification (and any other
5905 threads with events pending), until GDB acks the notification
5906 with vStopped. Otherwise, e.g., the following case is
5907 mishandled:
5908
5909 #1 => g (or any other packet)
5910 #2 <= [registers]
5911 #3 <= %Stopped T05 p1.2
5912 #4 => vCont s:p1.1;c
5913 #5 <= OK
5914
5915 Above, the server must not resume thread p1.2. GDB can't know
5916 that p1.2 stopped until it acks the %Stopped notification, and
5917 since from GDB's perspective all threads should be running, it
5918 sends a "c" action.
5919
5920 Finally, special care must also be given to handling fork/vfork
5921 events. A (v)fork event actually tells us that two processes
5922 stopped -- the parent and the child. Until we follow the fork,
5923 we must not resume the child. Therefore, if we have a pending
5924 fork follow, we must not send a global wildcard resume action
5925 (vCont;c). We can still send process-wide wildcards though. */
5926
5927 /* Start by assuming a global wildcard (vCont;c) is possible. */
5928 may_global_wildcard_vcont = 1;
5929
5930 /* And assume every process is individually wildcard-able too. */
5931 ALL_NON_EXITED_INFERIORS (inf)
5932 {
5933 remote_inferior *priv = get_remote_inferior (inf);
5934
5935 priv->may_wildcard_vcont = true;
5936 }
5937
5938 /* Check for any pending events (not reported or processed yet) and
5939 disable process and global wildcard resumes appropriately. */
5940 check_pending_events_prevent_wildcard_vcont (&may_global_wildcard_vcont);
5941
5942 ALL_NON_EXITED_THREADS (tp)
5943 {
5944 /* If a thread of a process is not meant to be resumed, then we
5945 can't wildcard that process. */
5946 if (!tp->executing)
5947 {
5948 get_remote_inferior (tp->inf)->may_wildcard_vcont = false;
5949
5950 /* And if we can't wildcard a process, we can't wildcard
5951 everything either. */
5952 may_global_wildcard_vcont = 0;
5953 continue;
5954 }
5955
5956 /* If a thread is the parent of an unfollowed fork, then we
5957 can't do a global wildcard, as that would resume the fork
5958 child. */
5959 if (is_pending_fork_parent_thread (tp))
5960 may_global_wildcard_vcont = 0;
5961 }
5962
5963 /* Now let's build the vCont packet(s). Actions must be appended
5964 from narrower to wider scopes (thread -> process -> global). If
5965 we end up with too many actions for a single packet vcont_builder
5966 flushes the current vCont packet to the remote side and starts a
5967 new one. */
5968 vcont_builder_restart (&vcont_builder);
5969
5970 /* Threads first. */
5971 ALL_NON_EXITED_THREADS (tp)
5972 {
5973 remote_thread_info *remote_thr = get_remote_thread_info (tp);
5974
5975 if (!tp->executing || remote_thr->vcont_resumed)
5976 continue;
5977
5978 gdb_assert (!thread_is_in_step_over_chain (tp));
5979
5980 if (!remote_thr->last_resume_step
5981 && remote_thr->last_resume_sig == GDB_SIGNAL_0
5982 && get_remote_inferior (tp->inf)->may_wildcard_vcont)
5983 {
5984 /* We'll send a wildcard resume instead. */
5985 remote_thr->vcont_resumed = 1;
5986 continue;
5987 }
5988
5989 vcont_builder_push_action (&vcont_builder, tp->ptid,
5990 remote_thr->last_resume_step,
5991 remote_thr->last_resume_sig);
5992 remote_thr->vcont_resumed = 1;
5993 }
5994
5995 /* Now check whether we can send any process-wide wildcard. This is
5996 to avoid sending a global wildcard in the case nothing is
5997 supposed to be resumed. */
5998 any_process_wildcard = 0;
5999
6000 ALL_NON_EXITED_INFERIORS (inf)
6001 {
6002 if (get_remote_inferior (inf)->may_wildcard_vcont)
6003 {
6004 any_process_wildcard = 1;
6005 break;
6006 }
6007 }
6008
6009 if (any_process_wildcard)
6010 {
6011 /* If all processes are wildcard-able, then send a single "c"
6012 action, otherwise, send an "all (-1) threads of process"
6013 continue action for each running process, if any. */
6014 if (may_global_wildcard_vcont)
6015 {
6016 vcont_builder_push_action (&vcont_builder, minus_one_ptid,
6017 0, GDB_SIGNAL_0);
6018 }
6019 else
6020 {
6021 ALL_NON_EXITED_INFERIORS (inf)
6022 {
6023 if (get_remote_inferior (inf)->may_wildcard_vcont)
6024 {
6025 vcont_builder_push_action (&vcont_builder,
6026 pid_to_ptid (inf->pid),
6027 0, GDB_SIGNAL_0);
6028 }
6029 }
6030 }
6031 }
6032
6033 vcont_builder_flush (&vcont_builder);
6034 }
6035
6036 \f
6037
6038 /* Non-stop version of target_stop. Uses `vCont;t' to stop a remote
6039 thread, all threads of a remote process, or all threads of all
6040 processes. */
6041
6042 static void
6043 remote_stop_ns (ptid_t ptid)
6044 {
6045 struct remote_state *rs = get_remote_state ();
6046 char *p = rs->buf;
6047 char *endp = rs->buf + get_remote_packet_size ();
6048
6049 if (packet_support (PACKET_vCont) == PACKET_SUPPORT_UNKNOWN)
6050 remote_vcont_probe (rs);
6051
6052 if (!rs->supports_vCont.t)
6053 error (_("Remote server does not support stopping threads"));
6054
6055 if (ptid_equal (ptid, minus_one_ptid)
6056 || (!remote_multi_process_p (rs) && ptid_is_pid (ptid)))
6057 p += xsnprintf (p, endp - p, "vCont;t");
6058 else
6059 {
6060 ptid_t nptid;
6061
6062 p += xsnprintf (p, endp - p, "vCont;t:");
6063
6064 if (ptid_is_pid (ptid))
6065 /* All (-1) threads of process. */
6066 nptid = ptid_build (ptid_get_pid (ptid), -1, 0);
6067 else
6068 {
6069 /* Small optimization: if we already have a stop reply for
6070 this thread, no use in telling the stub we want this
6071 stopped. */
6072 if (peek_stop_reply (ptid))
6073 return;
6074
6075 nptid = ptid;
6076 }
6077
6078 write_ptid (p, endp, nptid);
6079 }
6080
6081 /* In non-stop, we get an immediate OK reply. The stop reply will
6082 come in asynchronously by notification. */
6083 putpkt (rs->buf);
6084 getpkt (&rs->buf, &rs->buf_size, 0);
6085 if (strcmp (rs->buf, "OK") != 0)
6086 error (_("Stopping %s failed: %s"), target_pid_to_str (ptid), rs->buf);
6087 }
6088
6089 /* All-stop version of target_interrupt. Sends a break or a ^C to
6090 interrupt the remote target. It is undefined which thread of which
6091 process reports the interrupt. */
6092
6093 static void
6094 remote_interrupt_as (void)
6095 {
6096 struct remote_state *rs = get_remote_state ();
6097
6098 rs->ctrlc_pending_p = 1;
6099
6100 /* If the inferior is stopped already, but the core didn't know
6101 about it yet, just ignore the request. The cached wait status
6102 will be collected in remote_wait. */
6103 if (rs->cached_wait_status)
6104 return;
6105
6106 /* Send interrupt_sequence to remote target. */
6107 send_interrupt_sequence ();
6108 }
6109
6110 /* Non-stop version of target_interrupt. Uses `vCtrlC' to interrupt
6111 the remote target. It is undefined which thread of which process
6112 reports the interrupt. Throws an error if the packet is not
6113 supported by the server. */
6114
6115 static void
6116 remote_interrupt_ns (void)
6117 {
6118 struct remote_state *rs = get_remote_state ();
6119 char *p = rs->buf;
6120 char *endp = rs->buf + get_remote_packet_size ();
6121
6122 xsnprintf (p, endp - p, "vCtrlC");
6123
6124 /* In non-stop, we get an immediate OK reply. The stop reply will
6125 come in asynchronously by notification. */
6126 putpkt (rs->buf);
6127 getpkt (&rs->buf, &rs->buf_size, 0);
6128
6129 switch (packet_ok (rs->buf, &remote_protocol_packets[PACKET_vCtrlC]))
6130 {
6131 case PACKET_OK:
6132 break;
6133 case PACKET_UNKNOWN:
6134 error (_("No support for interrupting the remote target."));
6135 case PACKET_ERROR:
6136 error (_("Interrupting target failed: %s"), rs->buf);
6137 }
6138 }
6139
6140 /* Implement the to_stop function for the remote targets. */
6141
6142 static void
6143 remote_stop (struct target_ops *self, ptid_t ptid)
6144 {
6145 if (remote_debug)
6146 fprintf_unfiltered (gdb_stdlog, "remote_stop called\n");
6147
6148 if (target_is_non_stop_p ())
6149 remote_stop_ns (ptid);
6150 else
6151 {
6152 /* We don't currently have a way to transparently pause the
6153 remote target in all-stop mode. Interrupt it instead. */
6154 remote_interrupt_as ();
6155 }
6156 }
6157
6158 /* Implement the to_interrupt function for the remote targets. */
6159
6160 static void
6161 remote_interrupt (struct target_ops *self)
6162 {
6163 if (remote_debug)
6164 fprintf_unfiltered (gdb_stdlog, "remote_interrupt called\n");
6165
6166 if (target_is_non_stop_p ())
6167 remote_interrupt_ns ();
6168 else
6169 remote_interrupt_as ();
6170 }
6171
6172 /* Implement the to_pass_ctrlc function for the remote targets. */
6173
6174 static void
6175 remote_pass_ctrlc (struct target_ops *self)
6176 {
6177 struct remote_state *rs = get_remote_state ();
6178
6179 if (remote_debug)
6180 fprintf_unfiltered (gdb_stdlog, "remote_pass_ctrlc called\n");
6181
6182 /* If we're starting up, we're not fully synced yet. Quit
6183 immediately. */
6184 if (rs->starting_up)
6185 quit ();
6186 /* If ^C has already been sent once, offer to disconnect. */
6187 else if (rs->ctrlc_pending_p)
6188 interrupt_query ();
6189 else
6190 target_interrupt ();
6191 }
6192
6193 /* Ask the user what to do when an interrupt is received. */
6194
6195 static void
6196 interrupt_query (void)
6197 {
6198 struct remote_state *rs = get_remote_state ();
6199
6200 if (rs->waiting_for_stop_reply && rs->ctrlc_pending_p)
6201 {
6202 if (query (_("The target is not responding to interrupt requests.\n"
6203 "Stop debugging it? ")))
6204 {
6205 remote_unpush_target ();
6206 throw_error (TARGET_CLOSE_ERROR, _("Disconnected from target."));
6207 }
6208 }
6209 else
6210 {
6211 if (query (_("Interrupted while waiting for the program.\n"
6212 "Give up waiting? ")))
6213 quit ();
6214 }
6215 }
6216
6217 /* Enable/disable target terminal ownership. Most targets can use
6218 terminal groups to control terminal ownership. Remote targets are
6219 different in that explicit transfer of ownership to/from GDB/target
6220 is required. */
6221
6222 static void
6223 remote_terminal_inferior (struct target_ops *self)
6224 {
6225 /* NOTE: At this point we could also register our selves as the
6226 recipient of all input. Any characters typed could then be
6227 passed on down to the target. */
6228 }
6229
6230 static void
6231 remote_terminal_ours (struct target_ops *self)
6232 {
6233 }
6234
6235 static void
6236 remote_console_output (char *msg)
6237 {
6238 char *p;
6239
6240 for (p = msg; p[0] && p[1]; p += 2)
6241 {
6242 char tb[2];
6243 char c = fromhex (p[0]) * 16 + fromhex (p[1]);
6244
6245 tb[0] = c;
6246 tb[1] = 0;
6247 fputs_unfiltered (tb, gdb_stdtarg);
6248 }
6249 gdb_flush (gdb_stdtarg);
6250 }
6251
6252 DEF_VEC_O(cached_reg_t);
6253
6254 typedef struct stop_reply
6255 {
6256 struct notif_event base;
6257
6258 /* The identifier of the thread about this event */
6259 ptid_t ptid;
6260
6261 /* The remote state this event is associated with. When the remote
6262 connection, represented by a remote_state object, is closed,
6263 all the associated stop_reply events should be released. */
6264 struct remote_state *rs;
6265
6266 struct target_waitstatus ws;
6267
6268 /* The architecture associated with the expedited registers. */
6269 gdbarch *arch;
6270
6271 /* Expedited registers. This makes remote debugging a bit more
6272 efficient for those targets that provide critical registers as
6273 part of their normal status mechanism (as another roundtrip to
6274 fetch them is avoided). */
6275 VEC(cached_reg_t) *regcache;
6276
6277 enum target_stop_reason stop_reason;
6278
6279 CORE_ADDR watch_data_address;
6280
6281 int core;
6282 } *stop_reply_p;
6283
6284 DECLARE_QUEUE_P (stop_reply_p);
6285 DEFINE_QUEUE_P (stop_reply_p);
6286 /* The list of already fetched and acknowledged stop events. This
6287 queue is used for notification Stop, and other notifications
6288 don't need queue for their events, because the notification events
6289 of Stop can't be consumed immediately, so that events should be
6290 queued first, and be consumed by remote_wait_{ns,as} one per
6291 time. Other notifications can consume their events immediately,
6292 so queue is not needed for them. */
6293 static QUEUE (stop_reply_p) *stop_reply_queue;
6294
6295 static void
6296 stop_reply_xfree (struct stop_reply *r)
6297 {
6298 notif_event_xfree ((struct notif_event *) r);
6299 }
6300
6301 /* Return the length of the stop reply queue. */
6302
6303 static int
6304 stop_reply_queue_length (void)
6305 {
6306 return QUEUE_length (stop_reply_p, stop_reply_queue);
6307 }
6308
6309 static void
6310 remote_notif_stop_parse (struct notif_client *self, char *buf,
6311 struct notif_event *event)
6312 {
6313 remote_parse_stop_reply (buf, (struct stop_reply *) event);
6314 }
6315
6316 static void
6317 remote_notif_stop_ack (struct notif_client *self, char *buf,
6318 struct notif_event *event)
6319 {
6320 struct stop_reply *stop_reply = (struct stop_reply *) event;
6321
6322 /* acknowledge */
6323 putpkt (self->ack_command);
6324
6325 if (stop_reply->ws.kind == TARGET_WAITKIND_IGNORE)
6326 /* We got an unknown stop reply. */
6327 error (_("Unknown stop reply"));
6328
6329 push_stop_reply (stop_reply);
6330 }
6331
6332 static int
6333 remote_notif_stop_can_get_pending_events (struct notif_client *self)
6334 {
6335 /* We can't get pending events in remote_notif_process for
6336 notification stop, and we have to do this in remote_wait_ns
6337 instead. If we fetch all queued events from stub, remote stub
6338 may exit and we have no chance to process them back in
6339 remote_wait_ns. */
6340 mark_async_event_handler (remote_async_inferior_event_token);
6341 return 0;
6342 }
6343
6344 static void
6345 stop_reply_dtr (struct notif_event *event)
6346 {
6347 struct stop_reply *r = (struct stop_reply *) event;
6348 cached_reg_t *reg;
6349 int ix;
6350
6351 for (ix = 0;
6352 VEC_iterate (cached_reg_t, r->regcache, ix, reg);
6353 ix++)
6354 xfree (reg->data);
6355
6356 VEC_free (cached_reg_t, r->regcache);
6357 }
6358
6359 static struct notif_event *
6360 remote_notif_stop_alloc_reply (void)
6361 {
6362 /* We cast to a pointer to the "base class". */
6363 struct notif_event *r = (struct notif_event *) XNEW (struct stop_reply);
6364
6365 r->dtr = stop_reply_dtr;
6366
6367 return r;
6368 }
6369
6370 /* A client of notification Stop. */
6371
6372 struct notif_client notif_client_stop =
6373 {
6374 "Stop",
6375 "vStopped",
6376 remote_notif_stop_parse,
6377 remote_notif_stop_ack,
6378 remote_notif_stop_can_get_pending_events,
6379 remote_notif_stop_alloc_reply,
6380 REMOTE_NOTIF_STOP,
6381 };
6382
6383 /* A parameter to pass data in and out. */
6384
6385 struct queue_iter_param
6386 {
6387 void *input;
6388 struct stop_reply *output;
6389 };
6390
6391 /* Determine if THREAD_PTID is a pending fork parent thread. ARG contains
6392 the pid of the process that owns the threads we want to check, or
6393 -1 if we want to check all threads. */
6394
6395 static int
6396 is_pending_fork_parent (struct target_waitstatus *ws, int event_pid,
6397 ptid_t thread_ptid)
6398 {
6399 if (ws->kind == TARGET_WAITKIND_FORKED
6400 || ws->kind == TARGET_WAITKIND_VFORKED)
6401 {
6402 if (event_pid == -1 || event_pid == ptid_get_pid (thread_ptid))
6403 return 1;
6404 }
6405
6406 return 0;
6407 }
6408
6409 /* Return the thread's pending status used to determine whether the
6410 thread is a fork parent stopped at a fork event. */
6411
6412 static struct target_waitstatus *
6413 thread_pending_fork_status (struct thread_info *thread)
6414 {
6415 if (thread->suspend.waitstatus_pending_p)
6416 return &thread->suspend.waitstatus;
6417 else
6418 return &thread->pending_follow;
6419 }
6420
6421 /* Determine if THREAD is a pending fork parent thread. */
6422
6423 static int
6424 is_pending_fork_parent_thread (struct thread_info *thread)
6425 {
6426 struct target_waitstatus *ws = thread_pending_fork_status (thread);
6427 int pid = -1;
6428
6429 return is_pending_fork_parent (ws, pid, thread->ptid);
6430 }
6431
6432 /* Check whether EVENT is a fork event, and if it is, remove the
6433 fork child from the context list passed in DATA. */
6434
6435 static int
6436 remove_child_of_pending_fork (QUEUE (stop_reply_p) *q,
6437 QUEUE_ITER (stop_reply_p) *iter,
6438 stop_reply_p event,
6439 void *data)
6440 {
6441 struct queue_iter_param *param = (struct queue_iter_param *) data;
6442 struct threads_listing_context *context
6443 = (struct threads_listing_context *) param->input;
6444
6445 if (event->ws.kind == TARGET_WAITKIND_FORKED
6446 || event->ws.kind == TARGET_WAITKIND_VFORKED
6447 || event->ws.kind == TARGET_WAITKIND_THREAD_EXITED)
6448 context->remove_thread (event->ws.value.related_pid);
6449
6450 return 1;
6451 }
6452
6453 /* If CONTEXT contains any fork child threads that have not been
6454 reported yet, remove them from the CONTEXT list. If such a
6455 thread exists it is because we are stopped at a fork catchpoint
6456 and have not yet called follow_fork, which will set up the
6457 host-side data structures for the new process. */
6458
6459 static void
6460 remove_new_fork_children (struct threads_listing_context *context)
6461 {
6462 struct thread_info * thread;
6463 int pid = -1;
6464 struct notif_client *notif = &notif_client_stop;
6465 struct queue_iter_param param;
6466
6467 /* For any threads stopped at a fork event, remove the corresponding
6468 fork child threads from the CONTEXT list. */
6469 ALL_NON_EXITED_THREADS (thread)
6470 {
6471 struct target_waitstatus *ws = thread_pending_fork_status (thread);
6472
6473 if (is_pending_fork_parent (ws, pid, thread->ptid))
6474 context->remove_thread (ws->value.related_pid);
6475 }
6476
6477 /* Check for any pending fork events (not reported or processed yet)
6478 in process PID and remove those fork child threads from the
6479 CONTEXT list as well. */
6480 remote_notif_get_pending_events (notif);
6481 param.input = context;
6482 param.output = NULL;
6483 QUEUE_iterate (stop_reply_p, stop_reply_queue,
6484 remove_child_of_pending_fork, &param);
6485 }
6486
6487 /* Check whether EVENT would prevent a global or process wildcard
6488 vCont action. */
6489
6490 static int
6491 check_pending_event_prevents_wildcard_vcont_callback
6492 (QUEUE (stop_reply_p) *q,
6493 QUEUE_ITER (stop_reply_p) *iter,
6494 stop_reply_p event,
6495 void *data)
6496 {
6497 struct inferior *inf;
6498 int *may_global_wildcard_vcont = (int *) data;
6499
6500 if (event->ws.kind == TARGET_WAITKIND_NO_RESUMED
6501 || event->ws.kind == TARGET_WAITKIND_NO_HISTORY)
6502 return 1;
6503
6504 if (event->ws.kind == TARGET_WAITKIND_FORKED
6505 || event->ws.kind == TARGET_WAITKIND_VFORKED)
6506 *may_global_wildcard_vcont = 0;
6507
6508 inf = find_inferior_ptid (event->ptid);
6509
6510 /* This may be the first time we heard about this process.
6511 Regardless, we must not do a global wildcard resume, otherwise
6512 we'd resume this process too. */
6513 *may_global_wildcard_vcont = 0;
6514 if (inf != NULL)
6515 get_remote_inferior (inf)->may_wildcard_vcont = false;
6516
6517 return 1;
6518 }
6519
6520 /* Check whether any event pending in the vStopped queue would prevent
6521 a global or process wildcard vCont action. Clear
6522 *may_global_wildcard if we can't do a global wildcard (vCont;c),
6523 and clear the event inferior's may_wildcard_vcont flag if we can't
6524 do a process-wide wildcard resume (vCont;c:pPID.-1). */
6525
6526 static void
6527 check_pending_events_prevent_wildcard_vcont (int *may_global_wildcard)
6528 {
6529 struct notif_client *notif = &notif_client_stop;
6530
6531 remote_notif_get_pending_events (notif);
6532 QUEUE_iterate (stop_reply_p, stop_reply_queue,
6533 check_pending_event_prevents_wildcard_vcont_callback,
6534 may_global_wildcard);
6535 }
6536
6537 /* Remove stop replies in the queue if its pid is equal to the given
6538 inferior's pid. */
6539
6540 static int
6541 remove_stop_reply_for_inferior (QUEUE (stop_reply_p) *q,
6542 QUEUE_ITER (stop_reply_p) *iter,
6543 stop_reply_p event,
6544 void *data)
6545 {
6546 struct queue_iter_param *param = (struct queue_iter_param *) data;
6547 struct inferior *inf = (struct inferior *) param->input;
6548
6549 if (ptid_get_pid (event->ptid) == inf->pid)
6550 {
6551 stop_reply_xfree (event);
6552 QUEUE_remove_elem (stop_reply_p, q, iter);
6553 }
6554
6555 return 1;
6556 }
6557
6558 /* Discard all pending stop replies of inferior INF. */
6559
6560 static void
6561 discard_pending_stop_replies (struct inferior *inf)
6562 {
6563 struct queue_iter_param param;
6564 struct stop_reply *reply;
6565 struct remote_state *rs = get_remote_state ();
6566 struct remote_notif_state *rns = rs->notif_state;
6567
6568 /* This function can be notified when an inferior exists. When the
6569 target is not remote, the notification state is NULL. */
6570 if (rs->remote_desc == NULL)
6571 return;
6572
6573 reply = (struct stop_reply *) rns->pending_event[notif_client_stop.id];
6574
6575 /* Discard the in-flight notification. */
6576 if (reply != NULL && ptid_get_pid (reply->ptid) == inf->pid)
6577 {
6578 stop_reply_xfree (reply);
6579 rns->pending_event[notif_client_stop.id] = NULL;
6580 }
6581
6582 param.input = inf;
6583 param.output = NULL;
6584 /* Discard the stop replies we have already pulled with
6585 vStopped. */
6586 QUEUE_iterate (stop_reply_p, stop_reply_queue,
6587 remove_stop_reply_for_inferior, &param);
6588 }
6589
6590 /* If its remote state is equal to the given remote state,
6591 remove EVENT from the stop reply queue. */
6592
6593 static int
6594 remove_stop_reply_of_remote_state (QUEUE (stop_reply_p) *q,
6595 QUEUE_ITER (stop_reply_p) *iter,
6596 stop_reply_p event,
6597 void *data)
6598 {
6599 struct queue_iter_param *param = (struct queue_iter_param *) data;
6600 struct remote_state *rs = (struct remote_state *) param->input;
6601
6602 if (event->rs == rs)
6603 {
6604 stop_reply_xfree (event);
6605 QUEUE_remove_elem (stop_reply_p, q, iter);
6606 }
6607
6608 return 1;
6609 }
6610
6611 /* Discard the stop replies for RS in stop_reply_queue. */
6612
6613 static void
6614 discard_pending_stop_replies_in_queue (struct remote_state *rs)
6615 {
6616 struct queue_iter_param param;
6617
6618 param.input = rs;
6619 param.output = NULL;
6620 /* Discard the stop replies we have already pulled with
6621 vStopped. */
6622 QUEUE_iterate (stop_reply_p, stop_reply_queue,
6623 remove_stop_reply_of_remote_state, &param);
6624 }
6625
6626 /* A parameter to pass data in and out. */
6627
6628 static int
6629 remote_notif_remove_once_on_match (QUEUE (stop_reply_p) *q,
6630 QUEUE_ITER (stop_reply_p) *iter,
6631 stop_reply_p event,
6632 void *data)
6633 {
6634 struct queue_iter_param *param = (struct queue_iter_param *) data;
6635 ptid_t *ptid = (ptid_t *) param->input;
6636
6637 if (ptid_match (event->ptid, *ptid))
6638 {
6639 param->output = event;
6640 QUEUE_remove_elem (stop_reply_p, q, iter);
6641 return 0;
6642 }
6643
6644 return 1;
6645 }
6646
6647 /* Remove the first reply in 'stop_reply_queue' which matches
6648 PTID. */
6649
6650 static struct stop_reply *
6651 remote_notif_remove_queued_reply (ptid_t ptid)
6652 {
6653 struct queue_iter_param param;
6654
6655 param.input = &ptid;
6656 param.output = NULL;
6657
6658 QUEUE_iterate (stop_reply_p, stop_reply_queue,
6659 remote_notif_remove_once_on_match, &param);
6660 if (notif_debug)
6661 fprintf_unfiltered (gdb_stdlog,
6662 "notif: discard queued event: 'Stop' in %s\n",
6663 target_pid_to_str (ptid));
6664
6665 return param.output;
6666 }
6667
6668 /* Look for a queued stop reply belonging to PTID. If one is found,
6669 remove it from the queue, and return it. Returns NULL if none is
6670 found. If there are still queued events left to process, tell the
6671 event loop to get back to target_wait soon. */
6672
6673 static struct stop_reply *
6674 queued_stop_reply (ptid_t ptid)
6675 {
6676 struct stop_reply *r = remote_notif_remove_queued_reply (ptid);
6677
6678 if (!QUEUE_is_empty (stop_reply_p, stop_reply_queue))
6679 /* There's still at least an event left. */
6680 mark_async_event_handler (remote_async_inferior_event_token);
6681
6682 return r;
6683 }
6684
6685 /* Push a fully parsed stop reply in the stop reply queue. Since we
6686 know that we now have at least one queued event left to pass to the
6687 core side, tell the event loop to get back to target_wait soon. */
6688
6689 static void
6690 push_stop_reply (struct stop_reply *new_event)
6691 {
6692 QUEUE_enque (stop_reply_p, stop_reply_queue, new_event);
6693
6694 if (notif_debug)
6695 fprintf_unfiltered (gdb_stdlog,
6696 "notif: push 'Stop' %s to queue %d\n",
6697 target_pid_to_str (new_event->ptid),
6698 QUEUE_length (stop_reply_p,
6699 stop_reply_queue));
6700
6701 mark_async_event_handler (remote_async_inferior_event_token);
6702 }
6703
6704 static int
6705 stop_reply_match_ptid_and_ws (QUEUE (stop_reply_p) *q,
6706 QUEUE_ITER (stop_reply_p) *iter,
6707 struct stop_reply *event,
6708 void *data)
6709 {
6710 ptid_t *ptid = (ptid_t *) data;
6711
6712 return !(ptid_equal (*ptid, event->ptid)
6713 && event->ws.kind == TARGET_WAITKIND_STOPPED);
6714 }
6715
6716 /* Returns true if we have a stop reply for PTID. */
6717
6718 static int
6719 peek_stop_reply (ptid_t ptid)
6720 {
6721 return !QUEUE_iterate (stop_reply_p, stop_reply_queue,
6722 stop_reply_match_ptid_and_ws, &ptid);
6723 }
6724
6725 /* Helper for remote_parse_stop_reply. Return nonzero if the substring
6726 starting with P and ending with PEND matches PREFIX. */
6727
6728 static int
6729 strprefix (const char *p, const char *pend, const char *prefix)
6730 {
6731 for ( ; p < pend; p++, prefix++)
6732 if (*p != *prefix)
6733 return 0;
6734 return *prefix == '\0';
6735 }
6736
6737 /* Parse the stop reply in BUF. Either the function succeeds, and the
6738 result is stored in EVENT, or throws an error. */
6739
6740 static void
6741 remote_parse_stop_reply (char *buf, struct stop_reply *event)
6742 {
6743 remote_arch_state *rsa = NULL;
6744 ULONGEST addr;
6745 const char *p;
6746 int skipregs = 0;
6747
6748 event->ptid = null_ptid;
6749 event->rs = get_remote_state ();
6750 event->ws.kind = TARGET_WAITKIND_IGNORE;
6751 event->ws.value.integer = 0;
6752 event->stop_reason = TARGET_STOPPED_BY_NO_REASON;
6753 event->regcache = NULL;
6754 event->core = -1;
6755
6756 switch (buf[0])
6757 {
6758 case 'T': /* Status with PC, SP, FP, ... */
6759 /* Expedited reply, containing Signal, {regno, reg} repeat. */
6760 /* format is: 'Tssn...:r...;n...:r...;n...:r...;#cc', where
6761 ss = signal number
6762 n... = register number
6763 r... = register contents
6764 */
6765
6766 p = &buf[3]; /* after Txx */
6767 while (*p)
6768 {
6769 const char *p1;
6770 int fieldsize;
6771
6772 p1 = strchr (p, ':');
6773 if (p1 == NULL)
6774 error (_("Malformed packet(a) (missing colon): %s\n\
6775 Packet: '%s'\n"),
6776 p, buf);
6777 if (p == p1)
6778 error (_("Malformed packet(a) (missing register number): %s\n\
6779 Packet: '%s'\n"),
6780 p, buf);
6781
6782 /* Some "registers" are actually extended stop information.
6783 Note if you're adding a new entry here: GDB 7.9 and
6784 earlier assume that all register "numbers" that start
6785 with an hex digit are real register numbers. Make sure
6786 the server only sends such a packet if it knows the
6787 client understands it. */
6788
6789 if (strprefix (p, p1, "thread"))
6790 event->ptid = read_ptid (++p1, &p);
6791 else if (strprefix (p, p1, "syscall_entry"))
6792 {
6793 ULONGEST sysno;
6794
6795 event->ws.kind = TARGET_WAITKIND_SYSCALL_ENTRY;
6796 p = unpack_varlen_hex (++p1, &sysno);
6797 event->ws.value.syscall_number = (int) sysno;
6798 }
6799 else if (strprefix (p, p1, "syscall_return"))
6800 {
6801 ULONGEST sysno;
6802
6803 event->ws.kind = TARGET_WAITKIND_SYSCALL_RETURN;
6804 p = unpack_varlen_hex (++p1, &sysno);
6805 event->ws.value.syscall_number = (int) sysno;
6806 }
6807 else if (strprefix (p, p1, "watch")
6808 || strprefix (p, p1, "rwatch")
6809 || strprefix (p, p1, "awatch"))
6810 {
6811 event->stop_reason = TARGET_STOPPED_BY_WATCHPOINT;
6812 p = unpack_varlen_hex (++p1, &addr);
6813 event->watch_data_address = (CORE_ADDR) addr;
6814 }
6815 else if (strprefix (p, p1, "swbreak"))
6816 {
6817 event->stop_reason = TARGET_STOPPED_BY_SW_BREAKPOINT;
6818
6819 /* Make sure the stub doesn't forget to indicate support
6820 with qSupported. */
6821 if (packet_support (PACKET_swbreak_feature) != PACKET_ENABLE)
6822 error (_("Unexpected swbreak stop reason"));
6823
6824 /* The value part is documented as "must be empty",
6825 though we ignore it, in case we ever decide to make
6826 use of it in a backward compatible way. */
6827 p = strchrnul (p1 + 1, ';');
6828 }
6829 else if (strprefix (p, p1, "hwbreak"))
6830 {
6831 event->stop_reason = TARGET_STOPPED_BY_HW_BREAKPOINT;
6832
6833 /* Make sure the stub doesn't forget to indicate support
6834 with qSupported. */
6835 if (packet_support (PACKET_hwbreak_feature) != PACKET_ENABLE)
6836 error (_("Unexpected hwbreak stop reason"));
6837
6838 /* See above. */
6839 p = strchrnul (p1 + 1, ';');
6840 }
6841 else if (strprefix (p, p1, "library"))
6842 {
6843 event->ws.kind = TARGET_WAITKIND_LOADED;
6844 p = strchrnul (p1 + 1, ';');
6845 }
6846 else if (strprefix (p, p1, "replaylog"))
6847 {
6848 event->ws.kind = TARGET_WAITKIND_NO_HISTORY;
6849 /* p1 will indicate "begin" or "end", but it makes
6850 no difference for now, so ignore it. */
6851 p = strchrnul (p1 + 1, ';');
6852 }
6853 else if (strprefix (p, p1, "core"))
6854 {
6855 ULONGEST c;
6856
6857 p = unpack_varlen_hex (++p1, &c);
6858 event->core = c;
6859 }
6860 else if (strprefix (p, p1, "fork"))
6861 {
6862 event->ws.value.related_pid = read_ptid (++p1, &p);
6863 event->ws.kind = TARGET_WAITKIND_FORKED;
6864 }
6865 else if (strprefix (p, p1, "vfork"))
6866 {
6867 event->ws.value.related_pid = read_ptid (++p1, &p);
6868 event->ws.kind = TARGET_WAITKIND_VFORKED;
6869 }
6870 else if (strprefix (p, p1, "vforkdone"))
6871 {
6872 event->ws.kind = TARGET_WAITKIND_VFORK_DONE;
6873 p = strchrnul (p1 + 1, ';');
6874 }
6875 else if (strprefix (p, p1, "exec"))
6876 {
6877 ULONGEST ignored;
6878 char pathname[PATH_MAX];
6879 int pathlen;
6880
6881 /* Determine the length of the execd pathname. */
6882 p = unpack_varlen_hex (++p1, &ignored);
6883 pathlen = (p - p1) / 2;
6884
6885 /* Save the pathname for event reporting and for
6886 the next run command. */
6887 hex2bin (p1, (gdb_byte *) pathname, pathlen);
6888 pathname[pathlen] = '\0';
6889
6890 /* This is freed during event handling. */
6891 event->ws.value.execd_pathname = xstrdup (pathname);
6892 event->ws.kind = TARGET_WAITKIND_EXECD;
6893
6894 /* Skip the registers included in this packet, since
6895 they may be for an architecture different from the
6896 one used by the original program. */
6897 skipregs = 1;
6898 }
6899 else if (strprefix (p, p1, "create"))
6900 {
6901 event->ws.kind = TARGET_WAITKIND_THREAD_CREATED;
6902 p = strchrnul (p1 + 1, ';');
6903 }
6904 else
6905 {
6906 ULONGEST pnum;
6907 const char *p_temp;
6908
6909 if (skipregs)
6910 {
6911 p = strchrnul (p1 + 1, ';');
6912 p++;
6913 continue;
6914 }
6915
6916 /* Maybe a real ``P'' register number. */
6917 p_temp = unpack_varlen_hex (p, &pnum);
6918 /* If the first invalid character is the colon, we got a
6919 register number. Otherwise, it's an unknown stop
6920 reason. */
6921 if (p_temp == p1)
6922 {
6923 /* If we haven't parsed the event's thread yet, find
6924 it now, in order to find the architecture of the
6925 reported expedited registers. */
6926 if (event->ptid == null_ptid)
6927 {
6928 const char *thr = strstr (p1 + 1, ";thread:");
6929 if (thr != NULL)
6930 event->ptid = read_ptid (thr + strlen (";thread:"),
6931 NULL);
6932 else
6933 {
6934 /* Either the current thread hasn't changed,
6935 or the inferior is not multi-threaded.
6936 The event must be for the thread we last
6937 set as (or learned as being) current. */
6938 event->ptid = event->rs->general_thread;
6939 }
6940 }
6941
6942 if (rsa == NULL)
6943 {
6944 inferior *inf = (event->ptid == null_ptid
6945 ? NULL
6946 : find_inferior_ptid (event->ptid));
6947 /* If this is the first time we learn anything
6948 about this process, skip the registers
6949 included in this packet, since we don't yet
6950 know which architecture to use to parse them.
6951 We'll determine the architecture later when
6952 we process the stop reply and retrieve the
6953 target description, via
6954 remote_notice_new_inferior ->
6955 post_create_inferior. */
6956 if (inf == NULL)
6957 {
6958 p = strchrnul (p1 + 1, ';');
6959 p++;
6960 continue;
6961 }
6962
6963 event->arch = inf->gdbarch;
6964 rsa = get_remote_arch_state (event->arch);
6965 }
6966
6967 packet_reg *reg
6968 = packet_reg_from_pnum (event->arch, rsa, pnum);
6969 cached_reg_t cached_reg;
6970
6971 if (reg == NULL)
6972 error (_("Remote sent bad register number %s: %s\n\
6973 Packet: '%s'\n"),
6974 hex_string (pnum), p, buf);
6975
6976 cached_reg.num = reg->regnum;
6977 cached_reg.data = (gdb_byte *)
6978 xmalloc (register_size (event->arch, reg->regnum));
6979
6980 p = p1 + 1;
6981 fieldsize = hex2bin (p, cached_reg.data,
6982 register_size (event->arch, reg->regnum));
6983 p += 2 * fieldsize;
6984 if (fieldsize < register_size (event->arch, reg->regnum))
6985 warning (_("Remote reply is too short: %s"), buf);
6986
6987 VEC_safe_push (cached_reg_t, event->regcache, &cached_reg);
6988 }
6989 else
6990 {
6991 /* Not a number. Silently skip unknown optional
6992 info. */
6993 p = strchrnul (p1 + 1, ';');
6994 }
6995 }
6996
6997 if (*p != ';')
6998 error (_("Remote register badly formatted: %s\nhere: %s"),
6999 buf, p);
7000 ++p;
7001 }
7002
7003 if (event->ws.kind != TARGET_WAITKIND_IGNORE)
7004 break;
7005
7006 /* fall through */
7007 case 'S': /* Old style status, just signal only. */
7008 {
7009 int sig;
7010
7011 event->ws.kind = TARGET_WAITKIND_STOPPED;
7012 sig = (fromhex (buf[1]) << 4) + fromhex (buf[2]);
7013 if (GDB_SIGNAL_FIRST <= sig && sig < GDB_SIGNAL_LAST)
7014 event->ws.value.sig = (enum gdb_signal) sig;
7015 else
7016 event->ws.value.sig = GDB_SIGNAL_UNKNOWN;
7017 }
7018 break;
7019 case 'w': /* Thread exited. */
7020 {
7021 const char *p;
7022 ULONGEST value;
7023
7024 event->ws.kind = TARGET_WAITKIND_THREAD_EXITED;
7025 p = unpack_varlen_hex (&buf[1], &value);
7026 event->ws.value.integer = value;
7027 if (*p != ';')
7028 error (_("stop reply packet badly formatted: %s"), buf);
7029 event->ptid = read_ptid (++p, NULL);
7030 break;
7031 }
7032 case 'W': /* Target exited. */
7033 case 'X':
7034 {
7035 const char *p;
7036 int pid;
7037 ULONGEST value;
7038
7039 /* GDB used to accept only 2 hex chars here. Stubs should
7040 only send more if they detect GDB supports multi-process
7041 support. */
7042 p = unpack_varlen_hex (&buf[1], &value);
7043
7044 if (buf[0] == 'W')
7045 {
7046 /* The remote process exited. */
7047 event->ws.kind = TARGET_WAITKIND_EXITED;
7048 event->ws.value.integer = value;
7049 }
7050 else
7051 {
7052 /* The remote process exited with a signal. */
7053 event->ws.kind = TARGET_WAITKIND_SIGNALLED;
7054 if (GDB_SIGNAL_FIRST <= value && value < GDB_SIGNAL_LAST)
7055 event->ws.value.sig = (enum gdb_signal) value;
7056 else
7057 event->ws.value.sig = GDB_SIGNAL_UNKNOWN;
7058 }
7059
7060 /* If no process is specified, assume inferior_ptid. */
7061 pid = ptid_get_pid (inferior_ptid);
7062 if (*p == '\0')
7063 ;
7064 else if (*p == ';')
7065 {
7066 p++;
7067
7068 if (*p == '\0')
7069 ;
7070 else if (startswith (p, "process:"))
7071 {
7072 ULONGEST upid;
7073
7074 p += sizeof ("process:") - 1;
7075 unpack_varlen_hex (p, &upid);
7076 pid = upid;
7077 }
7078 else
7079 error (_("unknown stop reply packet: %s"), buf);
7080 }
7081 else
7082 error (_("unknown stop reply packet: %s"), buf);
7083 event->ptid = pid_to_ptid (pid);
7084 }
7085 break;
7086 case 'N':
7087 event->ws.kind = TARGET_WAITKIND_NO_RESUMED;
7088 event->ptid = minus_one_ptid;
7089 break;
7090 }
7091
7092 if (target_is_non_stop_p () && ptid_equal (event->ptid, null_ptid))
7093 error (_("No process or thread specified in stop reply: %s"), buf);
7094 }
7095
7096 /* When the stub wants to tell GDB about a new notification reply, it
7097 sends a notification (%Stop, for example). Those can come it at
7098 any time, hence, we have to make sure that any pending
7099 putpkt/getpkt sequence we're making is finished, before querying
7100 the stub for more events with the corresponding ack command
7101 (vStopped, for example). E.g., if we started a vStopped sequence
7102 immediately upon receiving the notification, something like this
7103 could happen:
7104
7105 1.1) --> Hg 1
7106 1.2) <-- OK
7107 1.3) --> g
7108 1.4) <-- %Stop
7109 1.5) --> vStopped
7110 1.6) <-- (registers reply to step #1.3)
7111
7112 Obviously, the reply in step #1.6 would be unexpected to a vStopped
7113 query.
7114
7115 To solve this, whenever we parse a %Stop notification successfully,
7116 we mark the REMOTE_ASYNC_GET_PENDING_EVENTS_TOKEN, and carry on
7117 doing whatever we were doing:
7118
7119 2.1) --> Hg 1
7120 2.2) <-- OK
7121 2.3) --> g
7122 2.4) <-- %Stop
7123 <GDB marks the REMOTE_ASYNC_GET_PENDING_EVENTS_TOKEN>
7124 2.5) <-- (registers reply to step #2.3)
7125
7126 Eventualy after step #2.5, we return to the event loop, which
7127 notices there's an event on the
7128 REMOTE_ASYNC_GET_PENDING_EVENTS_TOKEN event and calls the
7129 associated callback --- the function below. At this point, we're
7130 always safe to start a vStopped sequence. :
7131
7132 2.6) --> vStopped
7133 2.7) <-- T05 thread:2
7134 2.8) --> vStopped
7135 2.9) --> OK
7136 */
7137
7138 void
7139 remote_notif_get_pending_events (struct notif_client *nc)
7140 {
7141 struct remote_state *rs = get_remote_state ();
7142
7143 if (rs->notif_state->pending_event[nc->id] != NULL)
7144 {
7145 if (notif_debug)
7146 fprintf_unfiltered (gdb_stdlog,
7147 "notif: process: '%s' ack pending event\n",
7148 nc->name);
7149
7150 /* acknowledge */
7151 nc->ack (nc, rs->buf, rs->notif_state->pending_event[nc->id]);
7152 rs->notif_state->pending_event[nc->id] = NULL;
7153
7154 while (1)
7155 {
7156 getpkt (&rs->buf, &rs->buf_size, 0);
7157 if (strcmp (rs->buf, "OK") == 0)
7158 break;
7159 else
7160 remote_notif_ack (nc, rs->buf);
7161 }
7162 }
7163 else
7164 {
7165 if (notif_debug)
7166 fprintf_unfiltered (gdb_stdlog,
7167 "notif: process: '%s' no pending reply\n",
7168 nc->name);
7169 }
7170 }
7171
7172 /* Called when it is decided that STOP_REPLY holds the info of the
7173 event that is to be returned to the core. This function always
7174 destroys STOP_REPLY. */
7175
7176 static ptid_t
7177 process_stop_reply (struct stop_reply *stop_reply,
7178 struct target_waitstatus *status)
7179 {
7180 ptid_t ptid;
7181
7182 *status = stop_reply->ws;
7183 ptid = stop_reply->ptid;
7184
7185 /* If no thread/process was reported by the stub, assume the current
7186 inferior. */
7187 if (ptid_equal (ptid, null_ptid))
7188 ptid = inferior_ptid;
7189
7190 if (status->kind != TARGET_WAITKIND_EXITED
7191 && status->kind != TARGET_WAITKIND_SIGNALLED
7192 && status->kind != TARGET_WAITKIND_NO_RESUMED)
7193 {
7194 /* Expedited registers. */
7195 if (stop_reply->regcache)
7196 {
7197 struct regcache *regcache
7198 = get_thread_arch_regcache (ptid, stop_reply->arch);
7199 cached_reg_t *reg;
7200 int ix;
7201
7202 for (ix = 0;
7203 VEC_iterate (cached_reg_t, stop_reply->regcache, ix, reg);
7204 ix++)
7205 {
7206 regcache_raw_supply (regcache, reg->num, reg->data);
7207 xfree (reg->data);
7208 }
7209
7210 VEC_free (cached_reg_t, stop_reply->regcache);
7211 }
7212
7213 remote_notice_new_inferior (ptid, 0);
7214 remote_thread_info *remote_thr = get_remote_thread_info (ptid);
7215 remote_thr->core = stop_reply->core;
7216 remote_thr->stop_reason = stop_reply->stop_reason;
7217 remote_thr->watch_data_address = stop_reply->watch_data_address;
7218 remote_thr->vcont_resumed = 0;
7219 }
7220
7221 stop_reply_xfree (stop_reply);
7222 return ptid;
7223 }
7224
7225 /* The non-stop mode version of target_wait. */
7226
7227 static ptid_t
7228 remote_wait_ns (ptid_t ptid, struct target_waitstatus *status, int options)
7229 {
7230 struct remote_state *rs = get_remote_state ();
7231 struct stop_reply *stop_reply;
7232 int ret;
7233 int is_notif = 0;
7234
7235 /* If in non-stop mode, get out of getpkt even if a
7236 notification is received. */
7237
7238 ret = getpkt_or_notif_sane (&rs->buf, &rs->buf_size,
7239 0 /* forever */, &is_notif);
7240 while (1)
7241 {
7242 if (ret != -1 && !is_notif)
7243 switch (rs->buf[0])
7244 {
7245 case 'E': /* Error of some sort. */
7246 /* We're out of sync with the target now. Did it continue
7247 or not? We can't tell which thread it was in non-stop,
7248 so just ignore this. */
7249 warning (_("Remote failure reply: %s"), rs->buf);
7250 break;
7251 case 'O': /* Console output. */
7252 remote_console_output (rs->buf + 1);
7253 break;
7254 default:
7255 warning (_("Invalid remote reply: %s"), rs->buf);
7256 break;
7257 }
7258
7259 /* Acknowledge a pending stop reply that may have arrived in the
7260 mean time. */
7261 if (rs->notif_state->pending_event[notif_client_stop.id] != NULL)
7262 remote_notif_get_pending_events (&notif_client_stop);
7263
7264 /* If indeed we noticed a stop reply, we're done. */
7265 stop_reply = queued_stop_reply (ptid);
7266 if (stop_reply != NULL)
7267 return process_stop_reply (stop_reply, status);
7268
7269 /* Still no event. If we're just polling for an event, then
7270 return to the event loop. */
7271 if (options & TARGET_WNOHANG)
7272 {
7273 status->kind = TARGET_WAITKIND_IGNORE;
7274 return minus_one_ptid;
7275 }
7276
7277 /* Otherwise do a blocking wait. */
7278 ret = getpkt_or_notif_sane (&rs->buf, &rs->buf_size,
7279 1 /* forever */, &is_notif);
7280 }
7281 }
7282
7283 /* Wait until the remote machine stops, then return, storing status in
7284 STATUS just as `wait' would. */
7285
7286 static ptid_t
7287 remote_wait_as (ptid_t ptid, struct target_waitstatus *status, int options)
7288 {
7289 struct remote_state *rs = get_remote_state ();
7290 ptid_t event_ptid = null_ptid;
7291 char *buf;
7292 struct stop_reply *stop_reply;
7293
7294 again:
7295
7296 status->kind = TARGET_WAITKIND_IGNORE;
7297 status->value.integer = 0;
7298
7299 stop_reply = queued_stop_reply (ptid);
7300 if (stop_reply != NULL)
7301 return process_stop_reply (stop_reply, status);
7302
7303 if (rs->cached_wait_status)
7304 /* Use the cached wait status, but only once. */
7305 rs->cached_wait_status = 0;
7306 else
7307 {
7308 int ret;
7309 int is_notif;
7310 int forever = ((options & TARGET_WNOHANG) == 0
7311 && wait_forever_enabled_p);
7312
7313 if (!rs->waiting_for_stop_reply)
7314 {
7315 status->kind = TARGET_WAITKIND_NO_RESUMED;
7316 return minus_one_ptid;
7317 }
7318
7319 /* FIXME: cagney/1999-09-27: If we're in async mode we should
7320 _never_ wait for ever -> test on target_is_async_p().
7321 However, before we do that we need to ensure that the caller
7322 knows how to take the target into/out of async mode. */
7323 ret = getpkt_or_notif_sane (&rs->buf, &rs->buf_size,
7324 forever, &is_notif);
7325
7326 /* GDB gets a notification. Return to core as this event is
7327 not interesting. */
7328 if (ret != -1 && is_notif)
7329 return minus_one_ptid;
7330
7331 if (ret == -1 && (options & TARGET_WNOHANG) != 0)
7332 return minus_one_ptid;
7333 }
7334
7335 buf = rs->buf;
7336
7337 /* Assume that the target has acknowledged Ctrl-C unless we receive
7338 an 'F' or 'O' packet. */
7339 if (buf[0] != 'F' && buf[0] != 'O')
7340 rs->ctrlc_pending_p = 0;
7341
7342 switch (buf[0])
7343 {
7344 case 'E': /* Error of some sort. */
7345 /* We're out of sync with the target now. Did it continue or
7346 not? Not is more likely, so report a stop. */
7347 rs->waiting_for_stop_reply = 0;
7348
7349 warning (_("Remote failure reply: %s"), buf);
7350 status->kind = TARGET_WAITKIND_STOPPED;
7351 status->value.sig = GDB_SIGNAL_0;
7352 break;
7353 case 'F': /* File-I/O request. */
7354 /* GDB may access the inferior memory while handling the File-I/O
7355 request, but we don't want GDB accessing memory while waiting
7356 for a stop reply. See the comments in putpkt_binary. Set
7357 waiting_for_stop_reply to 0 temporarily. */
7358 rs->waiting_for_stop_reply = 0;
7359 remote_fileio_request (buf, rs->ctrlc_pending_p);
7360 rs->ctrlc_pending_p = 0;
7361 /* GDB handled the File-I/O request, and the target is running
7362 again. Keep waiting for events. */
7363 rs->waiting_for_stop_reply = 1;
7364 break;
7365 case 'N': case 'T': case 'S': case 'X': case 'W':
7366 {
7367 struct stop_reply *stop_reply;
7368
7369 /* There is a stop reply to handle. */
7370 rs->waiting_for_stop_reply = 0;
7371
7372 stop_reply
7373 = (struct stop_reply *) remote_notif_parse (&notif_client_stop,
7374 rs->buf);
7375
7376 event_ptid = process_stop_reply (stop_reply, status);
7377 break;
7378 }
7379 case 'O': /* Console output. */
7380 remote_console_output (buf + 1);
7381 break;
7382 case '\0':
7383 if (rs->last_sent_signal != GDB_SIGNAL_0)
7384 {
7385 /* Zero length reply means that we tried 'S' or 'C' and the
7386 remote system doesn't support it. */
7387 target_terminal::ours_for_output ();
7388 printf_filtered
7389 ("Can't send signals to this remote system. %s not sent.\n",
7390 gdb_signal_to_name (rs->last_sent_signal));
7391 rs->last_sent_signal = GDB_SIGNAL_0;
7392 target_terminal::inferior ();
7393
7394 strcpy (buf, rs->last_sent_step ? "s" : "c");
7395 putpkt (buf);
7396 break;
7397 }
7398 /* else fallthrough */
7399 default:
7400 warning (_("Invalid remote reply: %s"), buf);
7401 break;
7402 }
7403
7404 if (status->kind == TARGET_WAITKIND_NO_RESUMED)
7405 return minus_one_ptid;
7406 else if (status->kind == TARGET_WAITKIND_IGNORE)
7407 {
7408 /* Nothing interesting happened. If we're doing a non-blocking
7409 poll, we're done. Otherwise, go back to waiting. */
7410 if (options & TARGET_WNOHANG)
7411 return minus_one_ptid;
7412 else
7413 goto again;
7414 }
7415 else if (status->kind != TARGET_WAITKIND_EXITED
7416 && status->kind != TARGET_WAITKIND_SIGNALLED)
7417 {
7418 if (!ptid_equal (event_ptid, null_ptid))
7419 record_currthread (rs, event_ptid);
7420 else
7421 event_ptid = inferior_ptid;
7422 }
7423 else
7424 /* A process exit. Invalidate our notion of current thread. */
7425 record_currthread (rs, minus_one_ptid);
7426
7427 return event_ptid;
7428 }
7429
7430 /* Wait until the remote machine stops, then return, storing status in
7431 STATUS just as `wait' would. */
7432
7433 static ptid_t
7434 remote_wait (struct target_ops *ops,
7435 ptid_t ptid, struct target_waitstatus *status, int options)
7436 {
7437 ptid_t event_ptid;
7438
7439 if (target_is_non_stop_p ())
7440 event_ptid = remote_wait_ns (ptid, status, options);
7441 else
7442 event_ptid = remote_wait_as (ptid, status, options);
7443
7444 if (target_is_async_p ())
7445 {
7446 /* If there are are events left in the queue tell the event loop
7447 to return here. */
7448 if (!QUEUE_is_empty (stop_reply_p, stop_reply_queue))
7449 mark_async_event_handler (remote_async_inferior_event_token);
7450 }
7451
7452 return event_ptid;
7453 }
7454
7455 /* Fetch a single register using a 'p' packet. */
7456
7457 static int
7458 fetch_register_using_p (struct regcache *regcache, struct packet_reg *reg)
7459 {
7460 struct gdbarch *gdbarch = regcache->arch ();
7461 struct remote_state *rs = get_remote_state ();
7462 char *buf, *p;
7463 gdb_byte *regp = (gdb_byte *) alloca (register_size (gdbarch, reg->regnum));
7464 int i;
7465
7466 if (packet_support (PACKET_p) == PACKET_DISABLE)
7467 return 0;
7468
7469 if (reg->pnum == -1)
7470 return 0;
7471
7472 p = rs->buf;
7473 *p++ = 'p';
7474 p += hexnumstr (p, reg->pnum);
7475 *p++ = '\0';
7476 putpkt (rs->buf);
7477 getpkt (&rs->buf, &rs->buf_size, 0);
7478
7479 buf = rs->buf;
7480
7481 switch (packet_ok (buf, &remote_protocol_packets[PACKET_p]))
7482 {
7483 case PACKET_OK:
7484 break;
7485 case PACKET_UNKNOWN:
7486 return 0;
7487 case PACKET_ERROR:
7488 error (_("Could not fetch register \"%s\"; remote failure reply '%s'"),
7489 gdbarch_register_name (regcache->arch (),
7490 reg->regnum),
7491 buf);
7492 }
7493
7494 /* If this register is unfetchable, tell the regcache. */
7495 if (buf[0] == 'x')
7496 {
7497 regcache_raw_supply (regcache, reg->regnum, NULL);
7498 return 1;
7499 }
7500
7501 /* Otherwise, parse and supply the value. */
7502 p = buf;
7503 i = 0;
7504 while (p[0] != 0)
7505 {
7506 if (p[1] == 0)
7507 error (_("fetch_register_using_p: early buf termination"));
7508
7509 regp[i++] = fromhex (p[0]) * 16 + fromhex (p[1]);
7510 p += 2;
7511 }
7512 regcache_raw_supply (regcache, reg->regnum, regp);
7513 return 1;
7514 }
7515
7516 /* Fetch the registers included in the target's 'g' packet. */
7517
7518 static int
7519 send_g_packet (void)
7520 {
7521 struct remote_state *rs = get_remote_state ();
7522 int buf_len;
7523
7524 xsnprintf (rs->buf, get_remote_packet_size (), "g");
7525 remote_send (&rs->buf, &rs->buf_size);
7526
7527 /* We can get out of synch in various cases. If the first character
7528 in the buffer is not a hex character, assume that has happened
7529 and try to fetch another packet to read. */
7530 while ((rs->buf[0] < '0' || rs->buf[0] > '9')
7531 && (rs->buf[0] < 'A' || rs->buf[0] > 'F')
7532 && (rs->buf[0] < 'a' || rs->buf[0] > 'f')
7533 && rs->buf[0] != 'x') /* New: unavailable register value. */
7534 {
7535 if (remote_debug)
7536 fprintf_unfiltered (gdb_stdlog,
7537 "Bad register packet; fetching a new packet\n");
7538 getpkt (&rs->buf, &rs->buf_size, 0);
7539 }
7540
7541 buf_len = strlen (rs->buf);
7542
7543 /* Sanity check the received packet. */
7544 if (buf_len % 2 != 0)
7545 error (_("Remote 'g' packet reply is of odd length: %s"), rs->buf);
7546
7547 return buf_len / 2;
7548 }
7549
7550 static void
7551 process_g_packet (struct regcache *regcache)
7552 {
7553 struct gdbarch *gdbarch = regcache->arch ();
7554 struct remote_state *rs = get_remote_state ();
7555 remote_arch_state *rsa = get_remote_arch_state (gdbarch);
7556 int i, buf_len;
7557 char *p;
7558 char *regs;
7559
7560 buf_len = strlen (rs->buf);
7561
7562 /* Further sanity checks, with knowledge of the architecture. */
7563 if (buf_len > 2 * rsa->sizeof_g_packet)
7564 error (_("Remote 'g' packet reply is too long (expected %ld bytes, got %d "
7565 "bytes): %s"), rsa->sizeof_g_packet, buf_len / 2, rs->buf);
7566
7567 /* Save the size of the packet sent to us by the target. It is used
7568 as a heuristic when determining the max size of packets that the
7569 target can safely receive. */
7570 if (rsa->actual_register_packet_size == 0)
7571 rsa->actual_register_packet_size = buf_len;
7572
7573 /* If this is smaller than we guessed the 'g' packet would be,
7574 update our records. A 'g' reply that doesn't include a register's
7575 value implies either that the register is not available, or that
7576 the 'p' packet must be used. */
7577 if (buf_len < 2 * rsa->sizeof_g_packet)
7578 {
7579 long sizeof_g_packet = buf_len / 2;
7580
7581 for (i = 0; i < gdbarch_num_regs (gdbarch); i++)
7582 {
7583 long offset = rsa->regs[i].offset;
7584 long reg_size = register_size (gdbarch, i);
7585
7586 if (rsa->regs[i].pnum == -1)
7587 continue;
7588
7589 if (offset >= sizeof_g_packet)
7590 rsa->regs[i].in_g_packet = 0;
7591 else if (offset + reg_size > sizeof_g_packet)
7592 error (_("Truncated register %d in remote 'g' packet"), i);
7593 else
7594 rsa->regs[i].in_g_packet = 1;
7595 }
7596
7597 /* Looks valid enough, we can assume this is the correct length
7598 for a 'g' packet. It's important not to adjust
7599 rsa->sizeof_g_packet if we have truncated registers otherwise
7600 this "if" won't be run the next time the method is called
7601 with a packet of the same size and one of the internal errors
7602 below will trigger instead. */
7603 rsa->sizeof_g_packet = sizeof_g_packet;
7604 }
7605
7606 regs = (char *) alloca (rsa->sizeof_g_packet);
7607
7608 /* Unimplemented registers read as all bits zero. */
7609 memset (regs, 0, rsa->sizeof_g_packet);
7610
7611 /* Reply describes registers byte by byte, each byte encoded as two
7612 hex characters. Suck them all up, then supply them to the
7613 register cacheing/storage mechanism. */
7614
7615 p = rs->buf;
7616 for (i = 0; i < rsa->sizeof_g_packet; i++)
7617 {
7618 if (p[0] == 0 || p[1] == 0)
7619 /* This shouldn't happen - we adjusted sizeof_g_packet above. */
7620 internal_error (__FILE__, __LINE__,
7621 _("unexpected end of 'g' packet reply"));
7622
7623 if (p[0] == 'x' && p[1] == 'x')
7624 regs[i] = 0; /* 'x' */
7625 else
7626 regs[i] = fromhex (p[0]) * 16 + fromhex (p[1]);
7627 p += 2;
7628 }
7629
7630 for (i = 0; i < gdbarch_num_regs (gdbarch); i++)
7631 {
7632 struct packet_reg *r = &rsa->regs[i];
7633 long reg_size = register_size (gdbarch, i);
7634
7635 if (r->in_g_packet)
7636 {
7637 if ((r->offset + reg_size) * 2 > strlen (rs->buf))
7638 /* This shouldn't happen - we adjusted in_g_packet above. */
7639 internal_error (__FILE__, __LINE__,
7640 _("unexpected end of 'g' packet reply"));
7641 else if (rs->buf[r->offset * 2] == 'x')
7642 {
7643 gdb_assert (r->offset * 2 < strlen (rs->buf));
7644 /* The register isn't available, mark it as such (at
7645 the same time setting the value to zero). */
7646 regcache_raw_supply (regcache, r->regnum, NULL);
7647 }
7648 else
7649 regcache_raw_supply (regcache, r->regnum,
7650 regs + r->offset);
7651 }
7652 }
7653 }
7654
7655 static void
7656 fetch_registers_using_g (struct regcache *regcache)
7657 {
7658 send_g_packet ();
7659 process_g_packet (regcache);
7660 }
7661
7662 /* Make the remote selected traceframe match GDB's selected
7663 traceframe. */
7664
7665 static void
7666 set_remote_traceframe (void)
7667 {
7668 int newnum;
7669 struct remote_state *rs = get_remote_state ();
7670
7671 if (rs->remote_traceframe_number == get_traceframe_number ())
7672 return;
7673
7674 /* Avoid recursion, remote_trace_find calls us again. */
7675 rs->remote_traceframe_number = get_traceframe_number ();
7676
7677 newnum = target_trace_find (tfind_number,
7678 get_traceframe_number (), 0, 0, NULL);
7679
7680 /* Should not happen. If it does, all bets are off. */
7681 if (newnum != get_traceframe_number ())
7682 warning (_("could not set remote traceframe"));
7683 }
7684
7685 static void
7686 remote_fetch_registers (struct target_ops *ops,
7687 struct regcache *regcache, int regnum)
7688 {
7689 struct gdbarch *gdbarch = regcache->arch ();
7690 remote_arch_state *rsa = get_remote_arch_state (gdbarch);
7691 int i;
7692
7693 set_remote_traceframe ();
7694 set_general_thread (regcache_get_ptid (regcache));
7695
7696 if (regnum >= 0)
7697 {
7698 packet_reg *reg = packet_reg_from_regnum (gdbarch, rsa, regnum);
7699
7700 gdb_assert (reg != NULL);
7701
7702 /* If this register might be in the 'g' packet, try that first -
7703 we are likely to read more than one register. If this is the
7704 first 'g' packet, we might be overly optimistic about its
7705 contents, so fall back to 'p'. */
7706 if (reg->in_g_packet)
7707 {
7708 fetch_registers_using_g (regcache);
7709 if (reg->in_g_packet)
7710 return;
7711 }
7712
7713 if (fetch_register_using_p (regcache, reg))
7714 return;
7715
7716 /* This register is not available. */
7717 regcache_raw_supply (regcache, reg->regnum, NULL);
7718
7719 return;
7720 }
7721
7722 fetch_registers_using_g (regcache);
7723
7724 for (i = 0; i < gdbarch_num_regs (gdbarch); i++)
7725 if (!rsa->regs[i].in_g_packet)
7726 if (!fetch_register_using_p (regcache, &rsa->regs[i]))
7727 {
7728 /* This register is not available. */
7729 regcache_raw_supply (regcache, i, NULL);
7730 }
7731 }
7732
7733 /* Prepare to store registers. Since we may send them all (using a
7734 'G' request), we have to read out the ones we don't want to change
7735 first. */
7736
7737 static void
7738 remote_prepare_to_store (struct target_ops *self, struct regcache *regcache)
7739 {
7740 remote_arch_state *rsa = get_remote_arch_state (regcache->arch ());
7741 int i;
7742
7743 /* Make sure the entire registers array is valid. */
7744 switch (packet_support (PACKET_P))
7745 {
7746 case PACKET_DISABLE:
7747 case PACKET_SUPPORT_UNKNOWN:
7748 /* Make sure all the necessary registers are cached. */
7749 for (i = 0; i < gdbarch_num_regs (regcache->arch ()); i++)
7750 if (rsa->regs[i].in_g_packet)
7751 regcache_raw_update (regcache, rsa->regs[i].regnum);
7752 break;
7753 case PACKET_ENABLE:
7754 break;
7755 }
7756 }
7757
7758 /* Helper: Attempt to store REGNUM using the P packet. Return fail IFF
7759 packet was not recognized. */
7760
7761 static int
7762 store_register_using_P (const struct regcache *regcache,
7763 struct packet_reg *reg)
7764 {
7765 struct gdbarch *gdbarch = regcache->arch ();
7766 struct remote_state *rs = get_remote_state ();
7767 /* Try storing a single register. */
7768 char *buf = rs->buf;
7769 gdb_byte *regp = (gdb_byte *) alloca (register_size (gdbarch, reg->regnum));
7770 char *p;
7771
7772 if (packet_support (PACKET_P) == PACKET_DISABLE)
7773 return 0;
7774
7775 if (reg->pnum == -1)
7776 return 0;
7777
7778 xsnprintf (buf, get_remote_packet_size (), "P%s=", phex_nz (reg->pnum, 0));
7779 p = buf + strlen (buf);
7780 regcache_raw_collect (regcache, reg->regnum, regp);
7781 bin2hex (regp, p, register_size (gdbarch, reg->regnum));
7782 putpkt (rs->buf);
7783 getpkt (&rs->buf, &rs->buf_size, 0);
7784
7785 switch (packet_ok (rs->buf, &remote_protocol_packets[PACKET_P]))
7786 {
7787 case PACKET_OK:
7788 return 1;
7789 case PACKET_ERROR:
7790 error (_("Could not write register \"%s\"; remote failure reply '%s'"),
7791 gdbarch_register_name (gdbarch, reg->regnum), rs->buf);
7792 case PACKET_UNKNOWN:
7793 return 0;
7794 default:
7795 internal_error (__FILE__, __LINE__, _("Bad result from packet_ok"));
7796 }
7797 }
7798
7799 /* Store register REGNUM, or all registers if REGNUM == -1, from the
7800 contents of the register cache buffer. FIXME: ignores errors. */
7801
7802 static void
7803 store_registers_using_G (const struct regcache *regcache)
7804 {
7805 struct remote_state *rs = get_remote_state ();
7806 remote_arch_state *rsa = get_remote_arch_state (regcache->arch ());
7807 gdb_byte *regs;
7808 char *p;
7809
7810 /* Extract all the registers in the regcache copying them into a
7811 local buffer. */
7812 {
7813 int i;
7814
7815 regs = (gdb_byte *) alloca (rsa->sizeof_g_packet);
7816 memset (regs, 0, rsa->sizeof_g_packet);
7817 for (i = 0; i < gdbarch_num_regs (regcache->arch ()); i++)
7818 {
7819 struct packet_reg *r = &rsa->regs[i];
7820
7821 if (r->in_g_packet)
7822 regcache_raw_collect (regcache, r->regnum, regs + r->offset);
7823 }
7824 }
7825
7826 /* Command describes registers byte by byte,
7827 each byte encoded as two hex characters. */
7828 p = rs->buf;
7829 *p++ = 'G';
7830 bin2hex (regs, p, rsa->sizeof_g_packet);
7831 putpkt (rs->buf);
7832 getpkt (&rs->buf, &rs->buf_size, 0);
7833 if (packet_check_result (rs->buf) == PACKET_ERROR)
7834 error (_("Could not write registers; remote failure reply '%s'"),
7835 rs->buf);
7836 }
7837
7838 /* Store register REGNUM, or all registers if REGNUM == -1, from the contents
7839 of the register cache buffer. FIXME: ignores errors. */
7840
7841 static void
7842 remote_store_registers (struct target_ops *ops,
7843 struct regcache *regcache, int regnum)
7844 {
7845 struct gdbarch *gdbarch = regcache->arch ();
7846 remote_arch_state *rsa = get_remote_arch_state (gdbarch);
7847 int i;
7848
7849 set_remote_traceframe ();
7850 set_general_thread (regcache_get_ptid (regcache));
7851
7852 if (regnum >= 0)
7853 {
7854 packet_reg *reg = packet_reg_from_regnum (gdbarch, rsa, regnum);
7855
7856 gdb_assert (reg != NULL);
7857
7858 /* Always prefer to store registers using the 'P' packet if
7859 possible; we often change only a small number of registers.
7860 Sometimes we change a larger number; we'd need help from a
7861 higher layer to know to use 'G'. */
7862 if (store_register_using_P (regcache, reg))
7863 return;
7864
7865 /* For now, don't complain if we have no way to write the
7866 register. GDB loses track of unavailable registers too
7867 easily. Some day, this may be an error. We don't have
7868 any way to read the register, either... */
7869 if (!reg->in_g_packet)
7870 return;
7871
7872 store_registers_using_G (regcache);
7873 return;
7874 }
7875
7876 store_registers_using_G (regcache);
7877
7878 for (i = 0; i < gdbarch_num_regs (gdbarch); i++)
7879 if (!rsa->regs[i].in_g_packet)
7880 if (!store_register_using_P (regcache, &rsa->regs[i]))
7881 /* See above for why we do not issue an error here. */
7882 continue;
7883 }
7884 \f
7885
7886 /* Return the number of hex digits in num. */
7887
7888 static int
7889 hexnumlen (ULONGEST num)
7890 {
7891 int i;
7892
7893 for (i = 0; num != 0; i++)
7894 num >>= 4;
7895
7896 return std::max (i, 1);
7897 }
7898
7899 /* Set BUF to the minimum number of hex digits representing NUM. */
7900
7901 static int
7902 hexnumstr (char *buf, ULONGEST num)
7903 {
7904 int len = hexnumlen (num);
7905
7906 return hexnumnstr (buf, num, len);
7907 }
7908
7909
7910 /* Set BUF to the hex digits representing NUM, padded to WIDTH characters. */
7911
7912 static int
7913 hexnumnstr (char *buf, ULONGEST num, int width)
7914 {
7915 int i;
7916
7917 buf[width] = '\0';
7918
7919 for (i = width - 1; i >= 0; i--)
7920 {
7921 buf[i] = "0123456789abcdef"[(num & 0xf)];
7922 num >>= 4;
7923 }
7924
7925 return width;
7926 }
7927
7928 /* Mask all but the least significant REMOTE_ADDRESS_SIZE bits. */
7929
7930 static CORE_ADDR
7931 remote_address_masked (CORE_ADDR addr)
7932 {
7933 unsigned int address_size = remote_address_size;
7934
7935 /* If "remoteaddresssize" was not set, default to target address size. */
7936 if (!address_size)
7937 address_size = gdbarch_addr_bit (target_gdbarch ());
7938
7939 if (address_size > 0
7940 && address_size < (sizeof (ULONGEST) * 8))
7941 {
7942 /* Only create a mask when that mask can safely be constructed
7943 in a ULONGEST variable. */
7944 ULONGEST mask = 1;
7945
7946 mask = (mask << address_size) - 1;
7947 addr &= mask;
7948 }
7949 return addr;
7950 }
7951
7952 /* Determine whether the remote target supports binary downloading.
7953 This is accomplished by sending a no-op memory write of zero length
7954 to the target at the specified address. It does not suffice to send
7955 the whole packet, since many stubs strip the eighth bit and
7956 subsequently compute a wrong checksum, which causes real havoc with
7957 remote_write_bytes.
7958
7959 NOTE: This can still lose if the serial line is not eight-bit
7960 clean. In cases like this, the user should clear "remote
7961 X-packet". */
7962
7963 static void
7964 check_binary_download (CORE_ADDR addr)
7965 {
7966 struct remote_state *rs = get_remote_state ();
7967
7968 switch (packet_support (PACKET_X))
7969 {
7970 case PACKET_DISABLE:
7971 break;
7972 case PACKET_ENABLE:
7973 break;
7974 case PACKET_SUPPORT_UNKNOWN:
7975 {
7976 char *p;
7977
7978 p = rs->buf;
7979 *p++ = 'X';
7980 p += hexnumstr (p, (ULONGEST) addr);
7981 *p++ = ',';
7982 p += hexnumstr (p, (ULONGEST) 0);
7983 *p++ = ':';
7984 *p = '\0';
7985
7986 putpkt_binary (rs->buf, (int) (p - rs->buf));
7987 getpkt (&rs->buf, &rs->buf_size, 0);
7988
7989 if (rs->buf[0] == '\0')
7990 {
7991 if (remote_debug)
7992 fprintf_unfiltered (gdb_stdlog,
7993 "binary downloading NOT "
7994 "supported by target\n");
7995 remote_protocol_packets[PACKET_X].support = PACKET_DISABLE;
7996 }
7997 else
7998 {
7999 if (remote_debug)
8000 fprintf_unfiltered (gdb_stdlog,
8001 "binary downloading supported by target\n");
8002 remote_protocol_packets[PACKET_X].support = PACKET_ENABLE;
8003 }
8004 break;
8005 }
8006 }
8007 }
8008
8009 /* Helper function to resize the payload in order to try to get a good
8010 alignment. We try to write an amount of data such that the next write will
8011 start on an address aligned on REMOTE_ALIGN_WRITES. */
8012
8013 static int
8014 align_for_efficient_write (int todo, CORE_ADDR memaddr)
8015 {
8016 return ((memaddr + todo) & ~(REMOTE_ALIGN_WRITES - 1)) - memaddr;
8017 }
8018
8019 /* Write memory data directly to the remote machine.
8020 This does not inform the data cache; the data cache uses this.
8021 HEADER is the starting part of the packet.
8022 MEMADDR is the address in the remote memory space.
8023 MYADDR is the address of the buffer in our space.
8024 LEN_UNITS is the number of addressable units to write.
8025 UNIT_SIZE is the length in bytes of an addressable unit.
8026 PACKET_FORMAT should be either 'X' or 'M', and indicates if we
8027 should send data as binary ('X'), or hex-encoded ('M').
8028
8029 The function creates packet of the form
8030 <HEADER><ADDRESS>,<LENGTH>:<DATA>
8031
8032 where encoding of <DATA> is terminated by PACKET_FORMAT.
8033
8034 If USE_LENGTH is 0, then the <LENGTH> field and the preceding comma
8035 are omitted.
8036
8037 Return the transferred status, error or OK (an
8038 'enum target_xfer_status' value). Save the number of addressable units
8039 transferred in *XFERED_LEN_UNITS. Only transfer a single packet.
8040
8041 On a platform with an addressable memory size of 2 bytes (UNIT_SIZE == 2), an
8042 exchange between gdb and the stub could look like (?? in place of the
8043 checksum):
8044
8045 -> $m1000,4#??
8046 <- aaaabbbbccccdddd
8047
8048 -> $M1000,3:eeeeffffeeee#??
8049 <- OK
8050
8051 -> $m1000,4#??
8052 <- eeeeffffeeeedddd */
8053
8054 static enum target_xfer_status
8055 remote_write_bytes_aux (const char *header, CORE_ADDR memaddr,
8056 const gdb_byte *myaddr, ULONGEST len_units,
8057 int unit_size, ULONGEST *xfered_len_units,
8058 char packet_format, int use_length)
8059 {
8060 struct remote_state *rs = get_remote_state ();
8061 char *p;
8062 char *plen = NULL;
8063 int plenlen = 0;
8064 int todo_units;
8065 int units_written;
8066 int payload_capacity_bytes;
8067 int payload_length_bytes;
8068
8069 if (packet_format != 'X' && packet_format != 'M')
8070 internal_error (__FILE__, __LINE__,
8071 _("remote_write_bytes_aux: bad packet format"));
8072
8073 if (len_units == 0)
8074 return TARGET_XFER_EOF;
8075
8076 payload_capacity_bytes = get_memory_write_packet_size ();
8077
8078 /* The packet buffer will be large enough for the payload;
8079 get_memory_packet_size ensures this. */
8080 rs->buf[0] = '\0';
8081
8082 /* Compute the size of the actual payload by subtracting out the
8083 packet header and footer overhead: "$M<memaddr>,<len>:...#nn". */
8084
8085 payload_capacity_bytes -= strlen ("$,:#NN");
8086 if (!use_length)
8087 /* The comma won't be used. */
8088 payload_capacity_bytes += 1;
8089 payload_capacity_bytes -= strlen (header);
8090 payload_capacity_bytes -= hexnumlen (memaddr);
8091
8092 /* Construct the packet excluding the data: "<header><memaddr>,<len>:". */
8093
8094 strcat (rs->buf, header);
8095 p = rs->buf + strlen (header);
8096
8097 /* Compute a best guess of the number of bytes actually transfered. */
8098 if (packet_format == 'X')
8099 {
8100 /* Best guess at number of bytes that will fit. */
8101 todo_units = std::min (len_units,
8102 (ULONGEST) payload_capacity_bytes / unit_size);
8103 if (use_length)
8104 payload_capacity_bytes -= hexnumlen (todo_units);
8105 todo_units = std::min (todo_units, payload_capacity_bytes / unit_size);
8106 }
8107 else
8108 {
8109 /* Number of bytes that will fit. */
8110 todo_units
8111 = std::min (len_units,
8112 (ULONGEST) (payload_capacity_bytes / unit_size) / 2);
8113 if (use_length)
8114 payload_capacity_bytes -= hexnumlen (todo_units);
8115 todo_units = std::min (todo_units,
8116 (payload_capacity_bytes / unit_size) / 2);
8117 }
8118
8119 if (todo_units <= 0)
8120 internal_error (__FILE__, __LINE__,
8121 _("minimum packet size too small to write data"));
8122
8123 /* If we already need another packet, then try to align the end
8124 of this packet to a useful boundary. */
8125 if (todo_units > 2 * REMOTE_ALIGN_WRITES && todo_units < len_units)
8126 todo_units = align_for_efficient_write (todo_units, memaddr);
8127
8128 /* Append "<memaddr>". */
8129 memaddr = remote_address_masked (memaddr);
8130 p += hexnumstr (p, (ULONGEST) memaddr);
8131
8132 if (use_length)
8133 {
8134 /* Append ",". */
8135 *p++ = ',';
8136
8137 /* Append the length and retain its location and size. It may need to be
8138 adjusted once the packet body has been created. */
8139 plen = p;
8140 plenlen = hexnumstr (p, (ULONGEST) todo_units);
8141 p += plenlen;
8142 }
8143
8144 /* Append ":". */
8145 *p++ = ':';
8146 *p = '\0';
8147
8148 /* Append the packet body. */
8149 if (packet_format == 'X')
8150 {
8151 /* Binary mode. Send target system values byte by byte, in
8152 increasing byte addresses. Only escape certain critical
8153 characters. */
8154 payload_length_bytes =
8155 remote_escape_output (myaddr, todo_units, unit_size, (gdb_byte *) p,
8156 &units_written, payload_capacity_bytes);
8157
8158 /* If not all TODO units fit, then we'll need another packet. Make
8159 a second try to keep the end of the packet aligned. Don't do
8160 this if the packet is tiny. */
8161 if (units_written < todo_units && units_written > 2 * REMOTE_ALIGN_WRITES)
8162 {
8163 int new_todo_units;
8164
8165 new_todo_units = align_for_efficient_write (units_written, memaddr);
8166
8167 if (new_todo_units != units_written)
8168 payload_length_bytes =
8169 remote_escape_output (myaddr, new_todo_units, unit_size,
8170 (gdb_byte *) p, &units_written,
8171 payload_capacity_bytes);
8172 }
8173
8174 p += payload_length_bytes;
8175 if (use_length && units_written < todo_units)
8176 {
8177 /* Escape chars have filled up the buffer prematurely,
8178 and we have actually sent fewer units than planned.
8179 Fix-up the length field of the packet. Use the same
8180 number of characters as before. */
8181 plen += hexnumnstr (plen, (ULONGEST) units_written,
8182 plenlen);
8183 *plen = ':'; /* overwrite \0 from hexnumnstr() */
8184 }
8185 }
8186 else
8187 {
8188 /* Normal mode: Send target system values byte by byte, in
8189 increasing byte addresses. Each byte is encoded as a two hex
8190 value. */
8191 p += 2 * bin2hex (myaddr, p, todo_units * unit_size);
8192 units_written = todo_units;
8193 }
8194
8195 putpkt_binary (rs->buf, (int) (p - rs->buf));
8196 getpkt (&rs->buf, &rs->buf_size, 0);
8197
8198 if (rs->buf[0] == 'E')
8199 return TARGET_XFER_E_IO;
8200
8201 /* Return UNITS_WRITTEN, not TODO_UNITS, in case escape chars caused us to
8202 send fewer units than we'd planned. */
8203 *xfered_len_units = (ULONGEST) units_written;
8204 return (*xfered_len_units != 0) ? TARGET_XFER_OK : TARGET_XFER_EOF;
8205 }
8206
8207 /* Write memory data directly to the remote machine.
8208 This does not inform the data cache; the data cache uses this.
8209 MEMADDR is the address in the remote memory space.
8210 MYADDR is the address of the buffer in our space.
8211 LEN is the number of bytes.
8212
8213 Return the transferred status, error or OK (an
8214 'enum target_xfer_status' value). Save the number of bytes
8215 transferred in *XFERED_LEN. Only transfer a single packet. */
8216
8217 static enum target_xfer_status
8218 remote_write_bytes (CORE_ADDR memaddr, const gdb_byte *myaddr, ULONGEST len,
8219 int unit_size, ULONGEST *xfered_len)
8220 {
8221 const char *packet_format = NULL;
8222
8223 /* Check whether the target supports binary download. */
8224 check_binary_download (memaddr);
8225
8226 switch (packet_support (PACKET_X))
8227 {
8228 case PACKET_ENABLE:
8229 packet_format = "X";
8230 break;
8231 case PACKET_DISABLE:
8232 packet_format = "M";
8233 break;
8234 case PACKET_SUPPORT_UNKNOWN:
8235 internal_error (__FILE__, __LINE__,
8236 _("remote_write_bytes: bad internal state"));
8237 default:
8238 internal_error (__FILE__, __LINE__, _("bad switch"));
8239 }
8240
8241 return remote_write_bytes_aux (packet_format,
8242 memaddr, myaddr, len, unit_size, xfered_len,
8243 packet_format[0], 1);
8244 }
8245
8246 /* Read memory data directly from the remote machine.
8247 This does not use the data cache; the data cache uses this.
8248 MEMADDR is the address in the remote memory space.
8249 MYADDR is the address of the buffer in our space.
8250 LEN_UNITS is the number of addressable memory units to read..
8251 UNIT_SIZE is the length in bytes of an addressable unit.
8252
8253 Return the transferred status, error or OK (an
8254 'enum target_xfer_status' value). Save the number of bytes
8255 transferred in *XFERED_LEN_UNITS.
8256
8257 See the comment of remote_write_bytes_aux for an example of
8258 memory read/write exchange between gdb and the stub. */
8259
8260 static enum target_xfer_status
8261 remote_read_bytes_1 (CORE_ADDR memaddr, gdb_byte *myaddr, ULONGEST len_units,
8262 int unit_size, ULONGEST *xfered_len_units)
8263 {
8264 struct remote_state *rs = get_remote_state ();
8265 int buf_size_bytes; /* Max size of packet output buffer. */
8266 char *p;
8267 int todo_units;
8268 int decoded_bytes;
8269
8270 buf_size_bytes = get_memory_read_packet_size ();
8271 /* The packet buffer will be large enough for the payload;
8272 get_memory_packet_size ensures this. */
8273
8274 /* Number of units that will fit. */
8275 todo_units = std::min (len_units,
8276 (ULONGEST) (buf_size_bytes / unit_size) / 2);
8277
8278 /* Construct "m"<memaddr>","<len>". */
8279 memaddr = remote_address_masked (memaddr);
8280 p = rs->buf;
8281 *p++ = 'm';
8282 p += hexnumstr (p, (ULONGEST) memaddr);
8283 *p++ = ',';
8284 p += hexnumstr (p, (ULONGEST) todo_units);
8285 *p = '\0';
8286 putpkt (rs->buf);
8287 getpkt (&rs->buf, &rs->buf_size, 0);
8288 if (rs->buf[0] == 'E'
8289 && isxdigit (rs->buf[1]) && isxdigit (rs->buf[2])
8290 && rs->buf[3] == '\0')
8291 return TARGET_XFER_E_IO;
8292 /* Reply describes memory byte by byte, each byte encoded as two hex
8293 characters. */
8294 p = rs->buf;
8295 decoded_bytes = hex2bin (p, myaddr, todo_units * unit_size);
8296 /* Return what we have. Let higher layers handle partial reads. */
8297 *xfered_len_units = (ULONGEST) (decoded_bytes / unit_size);
8298 return (*xfered_len_units != 0) ? TARGET_XFER_OK : TARGET_XFER_EOF;
8299 }
8300
8301 /* Using the set of read-only target sections of remote, read live
8302 read-only memory.
8303
8304 For interface/parameters/return description see target.h,
8305 to_xfer_partial. */
8306
8307 static enum target_xfer_status
8308 remote_xfer_live_readonly_partial (struct target_ops *ops, gdb_byte *readbuf,
8309 ULONGEST memaddr, ULONGEST len,
8310 int unit_size, ULONGEST *xfered_len)
8311 {
8312 struct target_section *secp;
8313 struct target_section_table *table;
8314
8315 secp = target_section_by_addr (ops, memaddr);
8316 if (secp != NULL
8317 && (bfd_get_section_flags (secp->the_bfd_section->owner,
8318 secp->the_bfd_section)
8319 & SEC_READONLY))
8320 {
8321 struct target_section *p;
8322 ULONGEST memend = memaddr + len;
8323
8324 table = target_get_section_table (ops);
8325
8326 for (p = table->sections; p < table->sections_end; p++)
8327 {
8328 if (memaddr >= p->addr)
8329 {
8330 if (memend <= p->endaddr)
8331 {
8332 /* Entire transfer is within this section. */
8333 return remote_read_bytes_1 (memaddr, readbuf, len, unit_size,
8334 xfered_len);
8335 }
8336 else if (memaddr >= p->endaddr)
8337 {
8338 /* This section ends before the transfer starts. */
8339 continue;
8340 }
8341 else
8342 {
8343 /* This section overlaps the transfer. Just do half. */
8344 len = p->endaddr - memaddr;
8345 return remote_read_bytes_1 (memaddr, readbuf, len, unit_size,
8346 xfered_len);
8347 }
8348 }
8349 }
8350 }
8351
8352 return TARGET_XFER_EOF;
8353 }
8354
8355 /* Similar to remote_read_bytes_1, but it reads from the remote stub
8356 first if the requested memory is unavailable in traceframe.
8357 Otherwise, fall back to remote_read_bytes_1. */
8358
8359 static enum target_xfer_status
8360 remote_read_bytes (struct target_ops *ops, CORE_ADDR memaddr,
8361 gdb_byte *myaddr, ULONGEST len, int unit_size,
8362 ULONGEST *xfered_len)
8363 {
8364 if (len == 0)
8365 return TARGET_XFER_EOF;
8366
8367 if (get_traceframe_number () != -1)
8368 {
8369 std::vector<mem_range> available;
8370
8371 /* If we fail to get the set of available memory, then the
8372 target does not support querying traceframe info, and so we
8373 attempt reading from the traceframe anyway (assuming the
8374 target implements the old QTro packet then). */
8375 if (traceframe_available_memory (&available, memaddr, len))
8376 {
8377 if (available.empty () || available[0].start != memaddr)
8378 {
8379 enum target_xfer_status res;
8380
8381 /* Don't read into the traceframe's available
8382 memory. */
8383 if (!available.empty ())
8384 {
8385 LONGEST oldlen = len;
8386
8387 len = available[0].start - memaddr;
8388 gdb_assert (len <= oldlen);
8389 }
8390
8391 /* This goes through the topmost target again. */
8392 res = remote_xfer_live_readonly_partial (ops, myaddr, memaddr,
8393 len, unit_size, xfered_len);
8394 if (res == TARGET_XFER_OK)
8395 return TARGET_XFER_OK;
8396 else
8397 {
8398 /* No use trying further, we know some memory starting
8399 at MEMADDR isn't available. */
8400 *xfered_len = len;
8401 return (*xfered_len != 0) ?
8402 TARGET_XFER_UNAVAILABLE : TARGET_XFER_EOF;
8403 }
8404 }
8405
8406 /* Don't try to read more than how much is available, in
8407 case the target implements the deprecated QTro packet to
8408 cater for older GDBs (the target's knowledge of read-only
8409 sections may be outdated by now). */
8410 len = available[0].length;
8411 }
8412 }
8413
8414 return remote_read_bytes_1 (memaddr, myaddr, len, unit_size, xfered_len);
8415 }
8416
8417 \f
8418
8419 /* Sends a packet with content determined by the printf format string
8420 FORMAT and the remaining arguments, then gets the reply. Returns
8421 whether the packet was a success, a failure, or unknown. */
8422
8423 static enum packet_result remote_send_printf (const char *format, ...)
8424 ATTRIBUTE_PRINTF (1, 2);
8425
8426 static enum packet_result
8427 remote_send_printf (const char *format, ...)
8428 {
8429 struct remote_state *rs = get_remote_state ();
8430 int max_size = get_remote_packet_size ();
8431 va_list ap;
8432
8433 va_start (ap, format);
8434
8435 rs->buf[0] = '\0';
8436 if (vsnprintf (rs->buf, max_size, format, ap) >= max_size)
8437 internal_error (__FILE__, __LINE__, _("Too long remote packet."));
8438
8439 if (putpkt (rs->buf) < 0)
8440 error (_("Communication problem with target."));
8441
8442 rs->buf[0] = '\0';
8443 getpkt (&rs->buf, &rs->buf_size, 0);
8444
8445 return packet_check_result (rs->buf);
8446 }
8447
8448 /* Flash writing can take quite some time. We'll set
8449 effectively infinite timeout for flash operations.
8450 In future, we'll need to decide on a better approach. */
8451 static const int remote_flash_timeout = 1000;
8452
8453 static void
8454 remote_flash_erase (struct target_ops *ops,
8455 ULONGEST address, LONGEST length)
8456 {
8457 int addr_size = gdbarch_addr_bit (target_gdbarch ()) / 8;
8458 enum packet_result ret;
8459 scoped_restore restore_timeout
8460 = make_scoped_restore (&remote_timeout, remote_flash_timeout);
8461
8462 ret = remote_send_printf ("vFlashErase:%s,%s",
8463 phex (address, addr_size),
8464 phex (length, 4));
8465 switch (ret)
8466 {
8467 case PACKET_UNKNOWN:
8468 error (_("Remote target does not support flash erase"));
8469 case PACKET_ERROR:
8470 error (_("Error erasing flash with vFlashErase packet"));
8471 default:
8472 break;
8473 }
8474 }
8475
8476 static enum target_xfer_status
8477 remote_flash_write (struct target_ops *ops, ULONGEST address,
8478 ULONGEST length, ULONGEST *xfered_len,
8479 const gdb_byte *data)
8480 {
8481 scoped_restore restore_timeout
8482 = make_scoped_restore (&remote_timeout, remote_flash_timeout);
8483 return remote_write_bytes_aux ("vFlashWrite:", address, data, length, 1,
8484 xfered_len,'X', 0);
8485 }
8486
8487 static void
8488 remote_flash_done (struct target_ops *ops)
8489 {
8490 int ret;
8491
8492 scoped_restore restore_timeout
8493 = make_scoped_restore (&remote_timeout, remote_flash_timeout);
8494
8495 ret = remote_send_printf ("vFlashDone");
8496
8497 switch (ret)
8498 {
8499 case PACKET_UNKNOWN:
8500 error (_("Remote target does not support vFlashDone"));
8501 case PACKET_ERROR:
8502 error (_("Error finishing flash operation"));
8503 default:
8504 break;
8505 }
8506 }
8507
8508 static void
8509 remote_files_info (struct target_ops *ignore)
8510 {
8511 puts_filtered ("Debugging a target over a serial line.\n");
8512 }
8513 \f
8514 /* Stuff for dealing with the packets which are part of this protocol.
8515 See comment at top of file for details. */
8516
8517 /* Close/unpush the remote target, and throw a TARGET_CLOSE_ERROR
8518 error to higher layers. Called when a serial error is detected.
8519 The exception message is STRING, followed by a colon and a blank,
8520 the system error message for errno at function entry and final dot
8521 for output compatibility with throw_perror_with_name. */
8522
8523 static void
8524 unpush_and_perror (const char *string)
8525 {
8526 int saved_errno = errno;
8527
8528 remote_unpush_target ();
8529 throw_error (TARGET_CLOSE_ERROR, "%s: %s.", string,
8530 safe_strerror (saved_errno));
8531 }
8532
8533 /* Read a single character from the remote end. The current quit
8534 handler is overridden to avoid quitting in the middle of packet
8535 sequence, as that would break communication with the remote server.
8536 See remote_serial_quit_handler for more detail. */
8537
8538 static int
8539 readchar (int timeout)
8540 {
8541 int ch;
8542 struct remote_state *rs = get_remote_state ();
8543
8544 {
8545 scoped_restore restore_quit
8546 = make_scoped_restore (&quit_handler, remote_serial_quit_handler);
8547
8548 rs->got_ctrlc_during_io = 0;
8549
8550 ch = serial_readchar (rs->remote_desc, timeout);
8551
8552 if (rs->got_ctrlc_during_io)
8553 set_quit_flag ();
8554 }
8555
8556 if (ch >= 0)
8557 return ch;
8558
8559 switch ((enum serial_rc) ch)
8560 {
8561 case SERIAL_EOF:
8562 remote_unpush_target ();
8563 throw_error (TARGET_CLOSE_ERROR, _("Remote connection closed"));
8564 /* no return */
8565 case SERIAL_ERROR:
8566 unpush_and_perror (_("Remote communication error. "
8567 "Target disconnected."));
8568 /* no return */
8569 case SERIAL_TIMEOUT:
8570 break;
8571 }
8572 return ch;
8573 }
8574
8575 /* Wrapper for serial_write that closes the target and throws if
8576 writing fails. The current quit handler is overridden to avoid
8577 quitting in the middle of packet sequence, as that would break
8578 communication with the remote server. See
8579 remote_serial_quit_handler for more detail. */
8580
8581 static void
8582 remote_serial_write (const char *str, int len)
8583 {
8584 struct remote_state *rs = get_remote_state ();
8585
8586 scoped_restore restore_quit
8587 = make_scoped_restore (&quit_handler, remote_serial_quit_handler);
8588
8589 rs->got_ctrlc_during_io = 0;
8590
8591 if (serial_write (rs->remote_desc, str, len))
8592 {
8593 unpush_and_perror (_("Remote communication error. "
8594 "Target disconnected."));
8595 }
8596
8597 if (rs->got_ctrlc_during_io)
8598 set_quit_flag ();
8599 }
8600
8601 /* Send the command in *BUF to the remote machine, and read the reply
8602 into *BUF. Report an error if we get an error reply. Resize
8603 *BUF using xrealloc if necessary to hold the result, and update
8604 *SIZEOF_BUF. */
8605
8606 static void
8607 remote_send (char **buf,
8608 long *sizeof_buf)
8609 {
8610 putpkt (*buf);
8611 getpkt (buf, sizeof_buf, 0);
8612
8613 if ((*buf)[0] == 'E')
8614 error (_("Remote failure reply: %s"), *buf);
8615 }
8616
8617 /* Return a string representing an escaped version of BUF, of len N.
8618 E.g. \n is converted to \\n, \t to \\t, etc. */
8619
8620 static std::string
8621 escape_buffer (const char *buf, int n)
8622 {
8623 string_file stb;
8624
8625 stb.putstrn (buf, n, '\\');
8626 return std::move (stb.string ());
8627 }
8628
8629 /* Display a null-terminated packet on stdout, for debugging, using C
8630 string notation. */
8631
8632 static void
8633 print_packet (const char *buf)
8634 {
8635 puts_filtered ("\"");
8636 fputstr_filtered (buf, '"', gdb_stdout);
8637 puts_filtered ("\"");
8638 }
8639
8640 int
8641 putpkt (const char *buf)
8642 {
8643 return putpkt_binary (buf, strlen (buf));
8644 }
8645
8646 /* Send a packet to the remote machine, with error checking. The data
8647 of the packet is in BUF. The string in BUF can be at most
8648 get_remote_packet_size () - 5 to account for the $, # and checksum,
8649 and for a possible /0 if we are debugging (remote_debug) and want
8650 to print the sent packet as a string. */
8651
8652 static int
8653 putpkt_binary (const char *buf, int cnt)
8654 {
8655 struct remote_state *rs = get_remote_state ();
8656 int i;
8657 unsigned char csum = 0;
8658 gdb::def_vector<char> data (cnt + 6);
8659 char *buf2 = data.data ();
8660
8661 int ch;
8662 int tcount = 0;
8663 char *p;
8664
8665 /* Catch cases like trying to read memory or listing threads while
8666 we're waiting for a stop reply. The remote server wouldn't be
8667 ready to handle this request, so we'd hang and timeout. We don't
8668 have to worry about this in synchronous mode, because in that
8669 case it's not possible to issue a command while the target is
8670 running. This is not a problem in non-stop mode, because in that
8671 case, the stub is always ready to process serial input. */
8672 if (!target_is_non_stop_p ()
8673 && target_is_async_p ()
8674 && rs->waiting_for_stop_reply)
8675 {
8676 error (_("Cannot execute this command while the target is running.\n"
8677 "Use the \"interrupt\" command to stop the target\n"
8678 "and then try again."));
8679 }
8680
8681 /* We're sending out a new packet. Make sure we don't look at a
8682 stale cached response. */
8683 rs->cached_wait_status = 0;
8684
8685 /* Copy the packet into buffer BUF2, encapsulating it
8686 and giving it a checksum. */
8687
8688 p = buf2;
8689 *p++ = '$';
8690
8691 for (i = 0; i < cnt; i++)
8692 {
8693 csum += buf[i];
8694 *p++ = buf[i];
8695 }
8696 *p++ = '#';
8697 *p++ = tohex ((csum >> 4) & 0xf);
8698 *p++ = tohex (csum & 0xf);
8699
8700 /* Send it over and over until we get a positive ack. */
8701
8702 while (1)
8703 {
8704 int started_error_output = 0;
8705
8706 if (remote_debug)
8707 {
8708 *p = '\0';
8709
8710 int len = (int) (p - buf2);
8711
8712 std::string str
8713 = escape_buffer (buf2, std::min (len, REMOTE_DEBUG_MAX_CHAR));
8714
8715 fprintf_unfiltered (gdb_stdlog, "Sending packet: %s", str.c_str ());
8716
8717 if (len > REMOTE_DEBUG_MAX_CHAR)
8718 fprintf_unfiltered (gdb_stdlog, "[%d bytes omitted]",
8719 len - REMOTE_DEBUG_MAX_CHAR);
8720
8721 fprintf_unfiltered (gdb_stdlog, "...");
8722
8723 gdb_flush (gdb_stdlog);
8724 }
8725 remote_serial_write (buf2, p - buf2);
8726
8727 /* If this is a no acks version of the remote protocol, send the
8728 packet and move on. */
8729 if (rs->noack_mode)
8730 break;
8731
8732 /* Read until either a timeout occurs (-2) or '+' is read.
8733 Handle any notification that arrives in the mean time. */
8734 while (1)
8735 {
8736 ch = readchar (remote_timeout);
8737
8738 if (remote_debug)
8739 {
8740 switch (ch)
8741 {
8742 case '+':
8743 case '-':
8744 case SERIAL_TIMEOUT:
8745 case '$':
8746 case '%':
8747 if (started_error_output)
8748 {
8749 putchar_unfiltered ('\n');
8750 started_error_output = 0;
8751 }
8752 }
8753 }
8754
8755 switch (ch)
8756 {
8757 case '+':
8758 if (remote_debug)
8759 fprintf_unfiltered (gdb_stdlog, "Ack\n");
8760 return 1;
8761 case '-':
8762 if (remote_debug)
8763 fprintf_unfiltered (gdb_stdlog, "Nak\n");
8764 /* FALLTHROUGH */
8765 case SERIAL_TIMEOUT:
8766 tcount++;
8767 if (tcount > 3)
8768 return 0;
8769 break; /* Retransmit buffer. */
8770 case '$':
8771 {
8772 if (remote_debug)
8773 fprintf_unfiltered (gdb_stdlog,
8774 "Packet instead of Ack, ignoring it\n");
8775 /* It's probably an old response sent because an ACK
8776 was lost. Gobble up the packet and ack it so it
8777 doesn't get retransmitted when we resend this
8778 packet. */
8779 skip_frame ();
8780 remote_serial_write ("+", 1);
8781 continue; /* Now, go look for +. */
8782 }
8783
8784 case '%':
8785 {
8786 int val;
8787
8788 /* If we got a notification, handle it, and go back to looking
8789 for an ack. */
8790 /* We've found the start of a notification. Now
8791 collect the data. */
8792 val = read_frame (&rs->buf, &rs->buf_size);
8793 if (val >= 0)
8794 {
8795 if (remote_debug)
8796 {
8797 std::string str = escape_buffer (rs->buf, val);
8798
8799 fprintf_unfiltered (gdb_stdlog,
8800 " Notification received: %s\n",
8801 str.c_str ());
8802 }
8803 handle_notification (rs->notif_state, rs->buf);
8804 /* We're in sync now, rewait for the ack. */
8805 tcount = 0;
8806 }
8807 else
8808 {
8809 if (remote_debug)
8810 {
8811 if (!started_error_output)
8812 {
8813 started_error_output = 1;
8814 fprintf_unfiltered (gdb_stdlog, "putpkt: Junk: ");
8815 }
8816 fputc_unfiltered (ch & 0177, gdb_stdlog);
8817 fprintf_unfiltered (gdb_stdlog, "%s", rs->buf);
8818 }
8819 }
8820 continue;
8821 }
8822 /* fall-through */
8823 default:
8824 if (remote_debug)
8825 {
8826 if (!started_error_output)
8827 {
8828 started_error_output = 1;
8829 fprintf_unfiltered (gdb_stdlog, "putpkt: Junk: ");
8830 }
8831 fputc_unfiltered (ch & 0177, gdb_stdlog);
8832 }
8833 continue;
8834 }
8835 break; /* Here to retransmit. */
8836 }
8837
8838 #if 0
8839 /* This is wrong. If doing a long backtrace, the user should be
8840 able to get out next time we call QUIT, without anything as
8841 violent as interrupt_query. If we want to provide a way out of
8842 here without getting to the next QUIT, it should be based on
8843 hitting ^C twice as in remote_wait. */
8844 if (quit_flag)
8845 {
8846 quit_flag = 0;
8847 interrupt_query ();
8848 }
8849 #endif
8850 }
8851
8852 return 0;
8853 }
8854
8855 /* Come here after finding the start of a frame when we expected an
8856 ack. Do our best to discard the rest of this packet. */
8857
8858 static void
8859 skip_frame (void)
8860 {
8861 int c;
8862
8863 while (1)
8864 {
8865 c = readchar (remote_timeout);
8866 switch (c)
8867 {
8868 case SERIAL_TIMEOUT:
8869 /* Nothing we can do. */
8870 return;
8871 case '#':
8872 /* Discard the two bytes of checksum and stop. */
8873 c = readchar (remote_timeout);
8874 if (c >= 0)
8875 c = readchar (remote_timeout);
8876
8877 return;
8878 case '*': /* Run length encoding. */
8879 /* Discard the repeat count. */
8880 c = readchar (remote_timeout);
8881 if (c < 0)
8882 return;
8883 break;
8884 default:
8885 /* A regular character. */
8886 break;
8887 }
8888 }
8889 }
8890
8891 /* Come here after finding the start of the frame. Collect the rest
8892 into *BUF, verifying the checksum, length, and handling run-length
8893 compression. NUL terminate the buffer. If there is not enough room,
8894 expand *BUF using xrealloc.
8895
8896 Returns -1 on error, number of characters in buffer (ignoring the
8897 trailing NULL) on success. (could be extended to return one of the
8898 SERIAL status indications). */
8899
8900 static long
8901 read_frame (char **buf_p,
8902 long *sizeof_buf)
8903 {
8904 unsigned char csum;
8905 long bc;
8906 int c;
8907 char *buf = *buf_p;
8908 struct remote_state *rs = get_remote_state ();
8909
8910 csum = 0;
8911 bc = 0;
8912
8913 while (1)
8914 {
8915 c = readchar (remote_timeout);
8916 switch (c)
8917 {
8918 case SERIAL_TIMEOUT:
8919 if (remote_debug)
8920 fputs_filtered ("Timeout in mid-packet, retrying\n", gdb_stdlog);
8921 return -1;
8922 case '$':
8923 if (remote_debug)
8924 fputs_filtered ("Saw new packet start in middle of old one\n",
8925 gdb_stdlog);
8926 return -1; /* Start a new packet, count retries. */
8927 case '#':
8928 {
8929 unsigned char pktcsum;
8930 int check_0 = 0;
8931 int check_1 = 0;
8932
8933 buf[bc] = '\0';
8934
8935 check_0 = readchar (remote_timeout);
8936 if (check_0 >= 0)
8937 check_1 = readchar (remote_timeout);
8938
8939 if (check_0 == SERIAL_TIMEOUT || check_1 == SERIAL_TIMEOUT)
8940 {
8941 if (remote_debug)
8942 fputs_filtered ("Timeout in checksum, retrying\n",
8943 gdb_stdlog);
8944 return -1;
8945 }
8946 else if (check_0 < 0 || check_1 < 0)
8947 {
8948 if (remote_debug)
8949 fputs_filtered ("Communication error in checksum\n",
8950 gdb_stdlog);
8951 return -1;
8952 }
8953
8954 /* Don't recompute the checksum; with no ack packets we
8955 don't have any way to indicate a packet retransmission
8956 is necessary. */
8957 if (rs->noack_mode)
8958 return bc;
8959
8960 pktcsum = (fromhex (check_0) << 4) | fromhex (check_1);
8961 if (csum == pktcsum)
8962 return bc;
8963
8964 if (remote_debug)
8965 {
8966 std::string str = escape_buffer (buf, bc);
8967
8968 fprintf_unfiltered (gdb_stdlog,
8969 "Bad checksum, sentsum=0x%x, "
8970 "csum=0x%x, buf=%s\n",
8971 pktcsum, csum, str.c_str ());
8972 }
8973 /* Number of characters in buffer ignoring trailing
8974 NULL. */
8975 return -1;
8976 }
8977 case '*': /* Run length encoding. */
8978 {
8979 int repeat;
8980
8981 csum += c;
8982 c = readchar (remote_timeout);
8983 csum += c;
8984 repeat = c - ' ' + 3; /* Compute repeat count. */
8985
8986 /* The character before ``*'' is repeated. */
8987
8988 if (repeat > 0 && repeat <= 255 && bc > 0)
8989 {
8990 if (bc + repeat - 1 >= *sizeof_buf - 1)
8991 {
8992 /* Make some more room in the buffer. */
8993 *sizeof_buf += repeat;
8994 *buf_p = (char *) xrealloc (*buf_p, *sizeof_buf);
8995 buf = *buf_p;
8996 }
8997
8998 memset (&buf[bc], buf[bc - 1], repeat);
8999 bc += repeat;
9000 continue;
9001 }
9002
9003 buf[bc] = '\0';
9004 printf_filtered (_("Invalid run length encoding: %s\n"), buf);
9005 return -1;
9006 }
9007 default:
9008 if (bc >= *sizeof_buf - 1)
9009 {
9010 /* Make some more room in the buffer. */
9011 *sizeof_buf *= 2;
9012 *buf_p = (char *) xrealloc (*buf_p, *sizeof_buf);
9013 buf = *buf_p;
9014 }
9015
9016 buf[bc++] = c;
9017 csum += c;
9018 continue;
9019 }
9020 }
9021 }
9022
9023 /* Read a packet from the remote machine, with error checking, and
9024 store it in *BUF. Resize *BUF using xrealloc if necessary to hold
9025 the result, and update *SIZEOF_BUF. If FOREVER, wait forever
9026 rather than timing out; this is used (in synchronous mode) to wait
9027 for a target that is is executing user code to stop. */
9028 /* FIXME: ezannoni 2000-02-01 this wrapper is necessary so that we
9029 don't have to change all the calls to getpkt to deal with the
9030 return value, because at the moment I don't know what the right
9031 thing to do it for those. */
9032 void
9033 getpkt (char **buf,
9034 long *sizeof_buf,
9035 int forever)
9036 {
9037 getpkt_sane (buf, sizeof_buf, forever);
9038 }
9039
9040
9041 /* Read a packet from the remote machine, with error checking, and
9042 store it in *BUF. Resize *BUF using xrealloc if necessary to hold
9043 the result, and update *SIZEOF_BUF. If FOREVER, wait forever
9044 rather than timing out; this is used (in synchronous mode) to wait
9045 for a target that is is executing user code to stop. If FOREVER ==
9046 0, this function is allowed to time out gracefully and return an
9047 indication of this to the caller. Otherwise return the number of
9048 bytes read. If EXPECTING_NOTIF, consider receiving a notification
9049 enough reason to return to the caller. *IS_NOTIF is an output
9050 boolean that indicates whether *BUF holds a notification or not
9051 (a regular packet). */
9052
9053 static int
9054 getpkt_or_notif_sane_1 (char **buf, long *sizeof_buf, int forever,
9055 int expecting_notif, int *is_notif)
9056 {
9057 struct remote_state *rs = get_remote_state ();
9058 int c;
9059 int tries;
9060 int timeout;
9061 int val = -1;
9062
9063 /* We're reading a new response. Make sure we don't look at a
9064 previously cached response. */
9065 rs->cached_wait_status = 0;
9066
9067 strcpy (*buf, "timeout");
9068
9069 if (forever)
9070 timeout = watchdog > 0 ? watchdog : -1;
9071 else if (expecting_notif)
9072 timeout = 0; /* There should already be a char in the buffer. If
9073 not, bail out. */
9074 else
9075 timeout = remote_timeout;
9076
9077 #define MAX_TRIES 3
9078
9079 /* Process any number of notifications, and then return when
9080 we get a packet. */
9081 for (;;)
9082 {
9083 /* If we get a timeout or bad checksum, retry up to MAX_TRIES
9084 times. */
9085 for (tries = 1; tries <= MAX_TRIES; tries++)
9086 {
9087 /* This can loop forever if the remote side sends us
9088 characters continuously, but if it pauses, we'll get
9089 SERIAL_TIMEOUT from readchar because of timeout. Then
9090 we'll count that as a retry.
9091
9092 Note that even when forever is set, we will only wait
9093 forever prior to the start of a packet. After that, we
9094 expect characters to arrive at a brisk pace. They should
9095 show up within remote_timeout intervals. */
9096 do
9097 c = readchar (timeout);
9098 while (c != SERIAL_TIMEOUT && c != '$' && c != '%');
9099
9100 if (c == SERIAL_TIMEOUT)
9101 {
9102 if (expecting_notif)
9103 return -1; /* Don't complain, it's normal to not get
9104 anything in this case. */
9105
9106 if (forever) /* Watchdog went off? Kill the target. */
9107 {
9108 remote_unpush_target ();
9109 throw_error (TARGET_CLOSE_ERROR,
9110 _("Watchdog timeout has expired. "
9111 "Target detached."));
9112 }
9113 if (remote_debug)
9114 fputs_filtered ("Timed out.\n", gdb_stdlog);
9115 }
9116 else
9117 {
9118 /* We've found the start of a packet or notification.
9119 Now collect the data. */
9120 val = read_frame (buf, sizeof_buf);
9121 if (val >= 0)
9122 break;
9123 }
9124
9125 remote_serial_write ("-", 1);
9126 }
9127
9128 if (tries > MAX_TRIES)
9129 {
9130 /* We have tried hard enough, and just can't receive the
9131 packet/notification. Give up. */
9132 printf_unfiltered (_("Ignoring packet error, continuing...\n"));
9133
9134 /* Skip the ack char if we're in no-ack mode. */
9135 if (!rs->noack_mode)
9136 remote_serial_write ("+", 1);
9137 return -1;
9138 }
9139
9140 /* If we got an ordinary packet, return that to our caller. */
9141 if (c == '$')
9142 {
9143 if (remote_debug)
9144 {
9145 std::string str
9146 = escape_buffer (*buf,
9147 std::min (val, REMOTE_DEBUG_MAX_CHAR));
9148
9149 fprintf_unfiltered (gdb_stdlog, "Packet received: %s",
9150 str.c_str ());
9151
9152 if (val > REMOTE_DEBUG_MAX_CHAR)
9153 fprintf_unfiltered (gdb_stdlog, "[%d bytes omitted]",
9154 val - REMOTE_DEBUG_MAX_CHAR);
9155
9156 fprintf_unfiltered (gdb_stdlog, "\n");
9157 }
9158
9159 /* Skip the ack char if we're in no-ack mode. */
9160 if (!rs->noack_mode)
9161 remote_serial_write ("+", 1);
9162 if (is_notif != NULL)
9163 *is_notif = 0;
9164 return val;
9165 }
9166
9167 /* If we got a notification, handle it, and go back to looking
9168 for a packet. */
9169 else
9170 {
9171 gdb_assert (c == '%');
9172
9173 if (remote_debug)
9174 {
9175 std::string str = escape_buffer (*buf, val);
9176
9177 fprintf_unfiltered (gdb_stdlog,
9178 " Notification received: %s\n",
9179 str.c_str ());
9180 }
9181 if (is_notif != NULL)
9182 *is_notif = 1;
9183
9184 handle_notification (rs->notif_state, *buf);
9185
9186 /* Notifications require no acknowledgement. */
9187
9188 if (expecting_notif)
9189 return val;
9190 }
9191 }
9192 }
9193
9194 static int
9195 getpkt_sane (char **buf, long *sizeof_buf, int forever)
9196 {
9197 return getpkt_or_notif_sane_1 (buf, sizeof_buf, forever, 0, NULL);
9198 }
9199
9200 static int
9201 getpkt_or_notif_sane (char **buf, long *sizeof_buf, int forever,
9202 int *is_notif)
9203 {
9204 return getpkt_or_notif_sane_1 (buf, sizeof_buf, forever, 1,
9205 is_notif);
9206 }
9207
9208 /* Check whether EVENT is a fork event for the process specified
9209 by the pid passed in DATA, and if it is, kill the fork child. */
9210
9211 static int
9212 kill_child_of_pending_fork (QUEUE (stop_reply_p) *q,
9213 QUEUE_ITER (stop_reply_p) *iter,
9214 stop_reply_p event,
9215 void *data)
9216 {
9217 struct queue_iter_param *param = (struct queue_iter_param *) data;
9218 int parent_pid = *(int *) param->input;
9219
9220 if (is_pending_fork_parent (&event->ws, parent_pid, event->ptid))
9221 {
9222 struct remote_state *rs = get_remote_state ();
9223 int child_pid = ptid_get_pid (event->ws.value.related_pid);
9224 int res;
9225
9226 res = remote_vkill (child_pid, rs);
9227 if (res != 0)
9228 error (_("Can't kill fork child process %d"), child_pid);
9229 }
9230
9231 return 1;
9232 }
9233
9234 /* Kill any new fork children of process PID that haven't been
9235 processed by follow_fork. */
9236
9237 static void
9238 kill_new_fork_children (int pid, struct remote_state *rs)
9239 {
9240 struct thread_info *thread;
9241 struct notif_client *notif = &notif_client_stop;
9242 struct queue_iter_param param;
9243
9244 /* Kill the fork child threads of any threads in process PID
9245 that are stopped at a fork event. */
9246 ALL_NON_EXITED_THREADS (thread)
9247 {
9248 struct target_waitstatus *ws = &thread->pending_follow;
9249
9250 if (is_pending_fork_parent (ws, pid, thread->ptid))
9251 {
9252 struct remote_state *rs = get_remote_state ();
9253 int child_pid = ptid_get_pid (ws->value.related_pid);
9254 int res;
9255
9256 res = remote_vkill (child_pid, rs);
9257 if (res != 0)
9258 error (_("Can't kill fork child process %d"), child_pid);
9259 }
9260 }
9261
9262 /* Check for any pending fork events (not reported or processed yet)
9263 in process PID and kill those fork child threads as well. */
9264 remote_notif_get_pending_events (notif);
9265 param.input = &pid;
9266 param.output = NULL;
9267 QUEUE_iterate (stop_reply_p, stop_reply_queue,
9268 kill_child_of_pending_fork, &param);
9269 }
9270
9271 \f
9272 /* Target hook to kill the current inferior. */
9273
9274 static void
9275 remote_kill (struct target_ops *ops)
9276 {
9277 int res = -1;
9278 int pid = ptid_get_pid (inferior_ptid);
9279 struct remote_state *rs = get_remote_state ();
9280
9281 if (packet_support (PACKET_vKill) != PACKET_DISABLE)
9282 {
9283 /* If we're stopped while forking and we haven't followed yet,
9284 kill the child task. We need to do this before killing the
9285 parent task because if this is a vfork then the parent will
9286 be sleeping. */
9287 kill_new_fork_children (pid, rs);
9288
9289 res = remote_vkill (pid, rs);
9290 if (res == 0)
9291 {
9292 target_mourn_inferior (inferior_ptid);
9293 return;
9294 }
9295 }
9296
9297 /* If we are in 'target remote' mode and we are killing the only
9298 inferior, then we will tell gdbserver to exit and unpush the
9299 target. */
9300 if (res == -1 && !remote_multi_process_p (rs)
9301 && number_of_live_inferiors () == 1)
9302 {
9303 remote_kill_k ();
9304
9305 /* We've killed the remote end, we get to mourn it. If we are
9306 not in extended mode, mourning the inferior also unpushes
9307 remote_ops from the target stack, which closes the remote
9308 connection. */
9309 target_mourn_inferior (inferior_ptid);
9310
9311 return;
9312 }
9313
9314 error (_("Can't kill process"));
9315 }
9316
9317 /* Send a kill request to the target using the 'vKill' packet. */
9318
9319 static int
9320 remote_vkill (int pid, struct remote_state *rs)
9321 {
9322 if (packet_support (PACKET_vKill) == PACKET_DISABLE)
9323 return -1;
9324
9325 /* Tell the remote target to detach. */
9326 xsnprintf (rs->buf, get_remote_packet_size (), "vKill;%x", pid);
9327 putpkt (rs->buf);
9328 getpkt (&rs->buf, &rs->buf_size, 0);
9329
9330 switch (packet_ok (rs->buf,
9331 &remote_protocol_packets[PACKET_vKill]))
9332 {
9333 case PACKET_OK:
9334 return 0;
9335 case PACKET_ERROR:
9336 return 1;
9337 case PACKET_UNKNOWN:
9338 return -1;
9339 default:
9340 internal_error (__FILE__, __LINE__, _("Bad result from packet_ok"));
9341 }
9342 }
9343
9344 /* Send a kill request to the target using the 'k' packet. */
9345
9346 static void
9347 remote_kill_k (void)
9348 {
9349 /* Catch errors so the user can quit from gdb even when we
9350 aren't on speaking terms with the remote system. */
9351 TRY
9352 {
9353 putpkt ("k");
9354 }
9355 CATCH (ex, RETURN_MASK_ERROR)
9356 {
9357 if (ex.error == TARGET_CLOSE_ERROR)
9358 {
9359 /* If we got an (EOF) error that caused the target
9360 to go away, then we're done, that's what we wanted.
9361 "k" is susceptible to cause a premature EOF, given
9362 that the remote server isn't actually required to
9363 reply to "k", and it can happen that it doesn't
9364 even get to reply ACK to the "k". */
9365 return;
9366 }
9367
9368 /* Otherwise, something went wrong. We didn't actually kill
9369 the target. Just propagate the exception, and let the
9370 user or higher layers decide what to do. */
9371 throw_exception (ex);
9372 }
9373 END_CATCH
9374 }
9375
9376 static void
9377 remote_mourn (struct target_ops *target)
9378 {
9379 struct remote_state *rs = get_remote_state ();
9380
9381 /* In 'target remote' mode with one inferior, we close the connection. */
9382 if (!rs->extended && number_of_live_inferiors () <= 1)
9383 {
9384 unpush_target (target);
9385
9386 /* remote_close takes care of doing most of the clean up. */
9387 generic_mourn_inferior ();
9388 return;
9389 }
9390
9391 /* In case we got here due to an error, but we're going to stay
9392 connected. */
9393 rs->waiting_for_stop_reply = 0;
9394
9395 /* If the current general thread belonged to the process we just
9396 detached from or has exited, the remote side current general
9397 thread becomes undefined. Considering a case like this:
9398
9399 - We just got here due to a detach.
9400 - The process that we're detaching from happens to immediately
9401 report a global breakpoint being hit in non-stop mode, in the
9402 same thread we had selected before.
9403 - GDB attaches to this process again.
9404 - This event happens to be the next event we handle.
9405
9406 GDB would consider that the current general thread didn't need to
9407 be set on the stub side (with Hg), since for all it knew,
9408 GENERAL_THREAD hadn't changed.
9409
9410 Notice that although in all-stop mode, the remote server always
9411 sets the current thread to the thread reporting the stop event,
9412 that doesn't happen in non-stop mode; in non-stop, the stub *must
9413 not* change the current thread when reporting a breakpoint hit,
9414 due to the decoupling of event reporting and event handling.
9415
9416 To keep things simple, we always invalidate our notion of the
9417 current thread. */
9418 record_currthread (rs, minus_one_ptid);
9419
9420 /* Call common code to mark the inferior as not running. */
9421 generic_mourn_inferior ();
9422
9423 if (!have_inferiors ())
9424 {
9425 if (!remote_multi_process_p (rs))
9426 {
9427 /* Check whether the target is running now - some remote stubs
9428 automatically restart after kill. */
9429 putpkt ("?");
9430 getpkt (&rs->buf, &rs->buf_size, 0);
9431
9432 if (rs->buf[0] == 'S' || rs->buf[0] == 'T')
9433 {
9434 /* Assume that the target has been restarted. Set
9435 inferior_ptid so that bits of core GDB realizes
9436 there's something here, e.g., so that the user can
9437 say "kill" again. */
9438 inferior_ptid = magic_null_ptid;
9439 }
9440 }
9441 }
9442 }
9443
9444 static int
9445 extended_remote_supports_disable_randomization (struct target_ops *self)
9446 {
9447 return packet_support (PACKET_QDisableRandomization) == PACKET_ENABLE;
9448 }
9449
9450 static void
9451 extended_remote_disable_randomization (int val)
9452 {
9453 struct remote_state *rs = get_remote_state ();
9454 char *reply;
9455
9456 xsnprintf (rs->buf, get_remote_packet_size (), "QDisableRandomization:%x",
9457 val);
9458 putpkt (rs->buf);
9459 reply = remote_get_noisy_reply ();
9460 if (*reply == '\0')
9461 error (_("Target does not support QDisableRandomization."));
9462 if (strcmp (reply, "OK") != 0)
9463 error (_("Bogus QDisableRandomization reply from target: %s"), reply);
9464 }
9465
9466 static int
9467 extended_remote_run (const std::string &args)
9468 {
9469 struct remote_state *rs = get_remote_state ();
9470 int len;
9471 const char *remote_exec_file = get_remote_exec_file ();
9472
9473 /* If the user has disabled vRun support, or we have detected that
9474 support is not available, do not try it. */
9475 if (packet_support (PACKET_vRun) == PACKET_DISABLE)
9476 return -1;
9477
9478 strcpy (rs->buf, "vRun;");
9479 len = strlen (rs->buf);
9480
9481 if (strlen (remote_exec_file) * 2 + len >= get_remote_packet_size ())
9482 error (_("Remote file name too long for run packet"));
9483 len += 2 * bin2hex ((gdb_byte *) remote_exec_file, rs->buf + len,
9484 strlen (remote_exec_file));
9485
9486 if (!args.empty ())
9487 {
9488 int i;
9489
9490 gdb_argv argv (args.c_str ());
9491 for (i = 0; argv[i] != NULL; i++)
9492 {
9493 if (strlen (argv[i]) * 2 + 1 + len >= get_remote_packet_size ())
9494 error (_("Argument list too long for run packet"));
9495 rs->buf[len++] = ';';
9496 len += 2 * bin2hex ((gdb_byte *) argv[i], rs->buf + len,
9497 strlen (argv[i]));
9498 }
9499 }
9500
9501 rs->buf[len++] = '\0';
9502
9503 putpkt (rs->buf);
9504 getpkt (&rs->buf, &rs->buf_size, 0);
9505
9506 switch (packet_ok (rs->buf, &remote_protocol_packets[PACKET_vRun]))
9507 {
9508 case PACKET_OK:
9509 /* We have a wait response. All is well. */
9510 return 0;
9511 case PACKET_UNKNOWN:
9512 return -1;
9513 case PACKET_ERROR:
9514 if (remote_exec_file[0] == '\0')
9515 error (_("Running the default executable on the remote target failed; "
9516 "try \"set remote exec-file\"?"));
9517 else
9518 error (_("Running \"%s\" on the remote target failed"),
9519 remote_exec_file);
9520 default:
9521 gdb_assert_not_reached (_("bad switch"));
9522 }
9523 }
9524
9525 /* Helper function to send set/unset environment packets. ACTION is
9526 either "set" or "unset". PACKET is either "QEnvironmentHexEncoded"
9527 or "QEnvironmentUnsetVariable". VALUE is the variable to be
9528 sent. */
9529
9530 static void
9531 send_environment_packet (struct remote_state *rs,
9532 const char *action,
9533 const char *packet,
9534 const char *value)
9535 {
9536 /* Convert the environment variable to an hex string, which
9537 is the best format to be transmitted over the wire. */
9538 std::string encoded_value = bin2hex ((const gdb_byte *) value,
9539 strlen (value));
9540
9541 xsnprintf (rs->buf, get_remote_packet_size (),
9542 "%s:%s", packet, encoded_value.c_str ());
9543
9544 putpkt (rs->buf);
9545 getpkt (&rs->buf, &rs->buf_size, 0);
9546 if (strcmp (rs->buf, "OK") != 0)
9547 warning (_("Unable to %s environment variable '%s' on remote."),
9548 action, value);
9549 }
9550
9551 /* Helper function to handle the QEnvironment* packets. */
9552
9553 static void
9554 extended_remote_environment_support (struct remote_state *rs)
9555 {
9556 if (packet_support (PACKET_QEnvironmentReset) != PACKET_DISABLE)
9557 {
9558 putpkt ("QEnvironmentReset");
9559 getpkt (&rs->buf, &rs->buf_size, 0);
9560 if (strcmp (rs->buf, "OK") != 0)
9561 warning (_("Unable to reset environment on remote."));
9562 }
9563
9564 gdb_environ *e = &current_inferior ()->environment;
9565
9566 if (packet_support (PACKET_QEnvironmentHexEncoded) != PACKET_DISABLE)
9567 for (const std::string &el : e->user_set_env ())
9568 send_environment_packet (rs, "set", "QEnvironmentHexEncoded",
9569 el.c_str ());
9570
9571 if (packet_support (PACKET_QEnvironmentUnset) != PACKET_DISABLE)
9572 for (const std::string &el : e->user_unset_env ())
9573 send_environment_packet (rs, "unset", "QEnvironmentUnset", el.c_str ());
9574 }
9575
9576 /* Helper function to set the current working directory for the
9577 inferior in the remote target. */
9578
9579 static void
9580 extended_remote_set_inferior_cwd (struct remote_state *rs)
9581 {
9582 if (packet_support (PACKET_QSetWorkingDir) != PACKET_DISABLE)
9583 {
9584 const char *inferior_cwd = get_inferior_cwd ();
9585
9586 if (inferior_cwd != NULL)
9587 {
9588 std::string hexpath = bin2hex ((const gdb_byte *) inferior_cwd,
9589 strlen (inferior_cwd));
9590
9591 xsnprintf (rs->buf, get_remote_packet_size (),
9592 "QSetWorkingDir:%s", hexpath.c_str ());
9593 }
9594 else
9595 {
9596 /* An empty inferior_cwd means that the user wants us to
9597 reset the remote server's inferior's cwd. */
9598 xsnprintf (rs->buf, get_remote_packet_size (),
9599 "QSetWorkingDir:");
9600 }
9601
9602 putpkt (rs->buf);
9603 getpkt (&rs->buf, &rs->buf_size, 0);
9604 if (packet_ok (rs->buf,
9605 &remote_protocol_packets[PACKET_QSetWorkingDir])
9606 != PACKET_OK)
9607 error (_("\
9608 Remote replied unexpectedly while setting the inferior's working\n\
9609 directory: %s"),
9610 rs->buf);
9611
9612 }
9613 }
9614
9615 /* In the extended protocol we want to be able to do things like
9616 "run" and have them basically work as expected. So we need
9617 a special create_inferior function. We support changing the
9618 executable file and the command line arguments, but not the
9619 environment. */
9620
9621 static void
9622 extended_remote_create_inferior (struct target_ops *ops,
9623 const char *exec_file,
9624 const std::string &args,
9625 char **env, int from_tty)
9626 {
9627 int run_worked;
9628 char *stop_reply;
9629 struct remote_state *rs = get_remote_state ();
9630 const char *remote_exec_file = get_remote_exec_file ();
9631
9632 /* If running asynchronously, register the target file descriptor
9633 with the event loop. */
9634 if (target_can_async_p ())
9635 target_async (1);
9636
9637 /* Disable address space randomization if requested (and supported). */
9638 if (extended_remote_supports_disable_randomization (ops))
9639 extended_remote_disable_randomization (disable_randomization);
9640
9641 /* If startup-with-shell is on, we inform gdbserver to start the
9642 remote inferior using a shell. */
9643 if (packet_support (PACKET_QStartupWithShell) != PACKET_DISABLE)
9644 {
9645 xsnprintf (rs->buf, get_remote_packet_size (),
9646 "QStartupWithShell:%d", startup_with_shell ? 1 : 0);
9647 putpkt (rs->buf);
9648 getpkt (&rs->buf, &rs->buf_size, 0);
9649 if (strcmp (rs->buf, "OK") != 0)
9650 error (_("\
9651 Remote replied unexpectedly while setting startup-with-shell: %s"),
9652 rs->buf);
9653 }
9654
9655 extended_remote_environment_support (rs);
9656
9657 extended_remote_set_inferior_cwd (rs);
9658
9659 /* Now restart the remote server. */
9660 run_worked = extended_remote_run (args) != -1;
9661 if (!run_worked)
9662 {
9663 /* vRun was not supported. Fail if we need it to do what the
9664 user requested. */
9665 if (remote_exec_file[0])
9666 error (_("Remote target does not support \"set remote exec-file\""));
9667 if (!args.empty ())
9668 error (_("Remote target does not support \"set args\" or run <ARGS>"));
9669
9670 /* Fall back to "R". */
9671 extended_remote_restart ();
9672 }
9673
9674 if (!have_inferiors ())
9675 {
9676 /* Clean up from the last time we ran, before we mark the target
9677 running again. This will mark breakpoints uninserted, and
9678 get_offsets may insert breakpoints. */
9679 init_thread_list ();
9680 init_wait_for_inferior ();
9681 }
9682
9683 /* vRun's success return is a stop reply. */
9684 stop_reply = run_worked ? rs->buf : NULL;
9685 add_current_inferior_and_thread (stop_reply);
9686
9687 /* Get updated offsets, if the stub uses qOffsets. */
9688 get_offsets ();
9689 }
9690 \f
9691
9692 /* Given a location's target info BP_TGT and the packet buffer BUF, output
9693 the list of conditions (in agent expression bytecode format), if any, the
9694 target needs to evaluate. The output is placed into the packet buffer
9695 started from BUF and ended at BUF_END. */
9696
9697 static int
9698 remote_add_target_side_condition (struct gdbarch *gdbarch,
9699 struct bp_target_info *bp_tgt, char *buf,
9700 char *buf_end)
9701 {
9702 if (bp_tgt->conditions.empty ())
9703 return 0;
9704
9705 buf += strlen (buf);
9706 xsnprintf (buf, buf_end - buf, "%s", ";");
9707 buf++;
9708
9709 /* Send conditions to the target. */
9710 for (agent_expr *aexpr : bp_tgt->conditions)
9711 {
9712 xsnprintf (buf, buf_end - buf, "X%x,", aexpr->len);
9713 buf += strlen (buf);
9714 for (int i = 0; i < aexpr->len; ++i)
9715 buf = pack_hex_byte (buf, aexpr->buf[i]);
9716 *buf = '\0';
9717 }
9718 return 0;
9719 }
9720
9721 static void
9722 remote_add_target_side_commands (struct gdbarch *gdbarch,
9723 struct bp_target_info *bp_tgt, char *buf)
9724 {
9725 if (bp_tgt->tcommands.empty ())
9726 return;
9727
9728 buf += strlen (buf);
9729
9730 sprintf (buf, ";cmds:%x,", bp_tgt->persist);
9731 buf += strlen (buf);
9732
9733 /* Concatenate all the agent expressions that are commands into the
9734 cmds parameter. */
9735 for (agent_expr *aexpr : bp_tgt->tcommands)
9736 {
9737 sprintf (buf, "X%x,", aexpr->len);
9738 buf += strlen (buf);
9739 for (int i = 0; i < aexpr->len; ++i)
9740 buf = pack_hex_byte (buf, aexpr->buf[i]);
9741 *buf = '\0';
9742 }
9743 }
9744
9745 /* Insert a breakpoint. On targets that have software breakpoint
9746 support, we ask the remote target to do the work; on targets
9747 which don't, we insert a traditional memory breakpoint. */
9748
9749 static int
9750 remote_insert_breakpoint (struct target_ops *ops,
9751 struct gdbarch *gdbarch,
9752 struct bp_target_info *bp_tgt)
9753 {
9754 /* Try the "Z" s/w breakpoint packet if it is not already disabled.
9755 If it succeeds, then set the support to PACKET_ENABLE. If it
9756 fails, and the user has explicitly requested the Z support then
9757 report an error, otherwise, mark it disabled and go on. */
9758
9759 if (packet_support (PACKET_Z0) != PACKET_DISABLE)
9760 {
9761 CORE_ADDR addr = bp_tgt->reqstd_address;
9762 struct remote_state *rs;
9763 char *p, *endbuf;
9764
9765 /* Make sure the remote is pointing at the right process, if
9766 necessary. */
9767 if (!gdbarch_has_global_breakpoints (target_gdbarch ()))
9768 set_general_process ();
9769
9770 rs = get_remote_state ();
9771 p = rs->buf;
9772 endbuf = rs->buf + get_remote_packet_size ();
9773
9774 *(p++) = 'Z';
9775 *(p++) = '0';
9776 *(p++) = ',';
9777 addr = (ULONGEST) remote_address_masked (addr);
9778 p += hexnumstr (p, addr);
9779 xsnprintf (p, endbuf - p, ",%d", bp_tgt->kind);
9780
9781 if (remote_supports_cond_breakpoints (ops))
9782 remote_add_target_side_condition (gdbarch, bp_tgt, p, endbuf);
9783
9784 if (remote_can_run_breakpoint_commands (ops))
9785 remote_add_target_side_commands (gdbarch, bp_tgt, p);
9786
9787 putpkt (rs->buf);
9788 getpkt (&rs->buf, &rs->buf_size, 0);
9789
9790 switch (packet_ok (rs->buf, &remote_protocol_packets[PACKET_Z0]))
9791 {
9792 case PACKET_ERROR:
9793 return -1;
9794 case PACKET_OK:
9795 return 0;
9796 case PACKET_UNKNOWN:
9797 break;
9798 }
9799 }
9800
9801 /* If this breakpoint has target-side commands but this stub doesn't
9802 support Z0 packets, throw error. */
9803 if (!bp_tgt->tcommands.empty ())
9804 throw_error (NOT_SUPPORTED_ERROR, _("\
9805 Target doesn't support breakpoints that have target side commands."));
9806
9807 return memory_insert_breakpoint (ops, gdbarch, bp_tgt);
9808 }
9809
9810 static int
9811 remote_remove_breakpoint (struct target_ops *ops,
9812 struct gdbarch *gdbarch,
9813 struct bp_target_info *bp_tgt,
9814 enum remove_bp_reason reason)
9815 {
9816 CORE_ADDR addr = bp_tgt->placed_address;
9817 struct remote_state *rs = get_remote_state ();
9818
9819 if (packet_support (PACKET_Z0) != PACKET_DISABLE)
9820 {
9821 char *p = rs->buf;
9822 char *endbuf = rs->buf + get_remote_packet_size ();
9823
9824 /* Make sure the remote is pointing at the right process, if
9825 necessary. */
9826 if (!gdbarch_has_global_breakpoints (target_gdbarch ()))
9827 set_general_process ();
9828
9829 *(p++) = 'z';
9830 *(p++) = '0';
9831 *(p++) = ',';
9832
9833 addr = (ULONGEST) remote_address_masked (bp_tgt->placed_address);
9834 p += hexnumstr (p, addr);
9835 xsnprintf (p, endbuf - p, ",%d", bp_tgt->kind);
9836
9837 putpkt (rs->buf);
9838 getpkt (&rs->buf, &rs->buf_size, 0);
9839
9840 return (rs->buf[0] == 'E');
9841 }
9842
9843 return memory_remove_breakpoint (ops, gdbarch, bp_tgt, reason);
9844 }
9845
9846 static enum Z_packet_type
9847 watchpoint_to_Z_packet (int type)
9848 {
9849 switch (type)
9850 {
9851 case hw_write:
9852 return Z_PACKET_WRITE_WP;
9853 break;
9854 case hw_read:
9855 return Z_PACKET_READ_WP;
9856 break;
9857 case hw_access:
9858 return Z_PACKET_ACCESS_WP;
9859 break;
9860 default:
9861 internal_error (__FILE__, __LINE__,
9862 _("hw_bp_to_z: bad watchpoint type %d"), type);
9863 }
9864 }
9865
9866 static int
9867 remote_insert_watchpoint (struct target_ops *self, CORE_ADDR addr, int len,
9868 enum target_hw_bp_type type, struct expression *cond)
9869 {
9870 struct remote_state *rs = get_remote_state ();
9871 char *endbuf = rs->buf + get_remote_packet_size ();
9872 char *p;
9873 enum Z_packet_type packet = watchpoint_to_Z_packet (type);
9874
9875 if (packet_support (PACKET_Z0 + packet) == PACKET_DISABLE)
9876 return 1;
9877
9878 /* Make sure the remote is pointing at the right process, if
9879 necessary. */
9880 if (!gdbarch_has_global_breakpoints (target_gdbarch ()))
9881 set_general_process ();
9882
9883 xsnprintf (rs->buf, endbuf - rs->buf, "Z%x,", packet);
9884 p = strchr (rs->buf, '\0');
9885 addr = remote_address_masked (addr);
9886 p += hexnumstr (p, (ULONGEST) addr);
9887 xsnprintf (p, endbuf - p, ",%x", len);
9888
9889 putpkt (rs->buf);
9890 getpkt (&rs->buf, &rs->buf_size, 0);
9891
9892 switch (packet_ok (rs->buf, &remote_protocol_packets[PACKET_Z0 + packet]))
9893 {
9894 case PACKET_ERROR:
9895 return -1;
9896 case PACKET_UNKNOWN:
9897 return 1;
9898 case PACKET_OK:
9899 return 0;
9900 }
9901 internal_error (__FILE__, __LINE__,
9902 _("remote_insert_watchpoint: reached end of function"));
9903 }
9904
9905 static int
9906 remote_watchpoint_addr_within_range (struct target_ops *target, CORE_ADDR addr,
9907 CORE_ADDR start, int length)
9908 {
9909 CORE_ADDR diff = remote_address_masked (addr - start);
9910
9911 return diff < length;
9912 }
9913
9914
9915 static int
9916 remote_remove_watchpoint (struct target_ops *self, CORE_ADDR addr, int len,
9917 enum target_hw_bp_type type, struct expression *cond)
9918 {
9919 struct remote_state *rs = get_remote_state ();
9920 char *endbuf = rs->buf + get_remote_packet_size ();
9921 char *p;
9922 enum Z_packet_type packet = watchpoint_to_Z_packet (type);
9923
9924 if (packet_support (PACKET_Z0 + packet) == PACKET_DISABLE)
9925 return -1;
9926
9927 /* Make sure the remote is pointing at the right process, if
9928 necessary. */
9929 if (!gdbarch_has_global_breakpoints (target_gdbarch ()))
9930 set_general_process ();
9931
9932 xsnprintf (rs->buf, endbuf - rs->buf, "z%x,", packet);
9933 p = strchr (rs->buf, '\0');
9934 addr = remote_address_masked (addr);
9935 p += hexnumstr (p, (ULONGEST) addr);
9936 xsnprintf (p, endbuf - p, ",%x", len);
9937 putpkt (rs->buf);
9938 getpkt (&rs->buf, &rs->buf_size, 0);
9939
9940 switch (packet_ok (rs->buf, &remote_protocol_packets[PACKET_Z0 + packet]))
9941 {
9942 case PACKET_ERROR:
9943 case PACKET_UNKNOWN:
9944 return -1;
9945 case PACKET_OK:
9946 return 0;
9947 }
9948 internal_error (__FILE__, __LINE__,
9949 _("remote_remove_watchpoint: reached end of function"));
9950 }
9951
9952
9953 int remote_hw_watchpoint_limit = -1;
9954 int remote_hw_watchpoint_length_limit = -1;
9955 int remote_hw_breakpoint_limit = -1;
9956
9957 static int
9958 remote_region_ok_for_hw_watchpoint (struct target_ops *self,
9959 CORE_ADDR addr, int len)
9960 {
9961 if (remote_hw_watchpoint_length_limit == 0)
9962 return 0;
9963 else if (remote_hw_watchpoint_length_limit < 0)
9964 return 1;
9965 else if (len <= remote_hw_watchpoint_length_limit)
9966 return 1;
9967 else
9968 return 0;
9969 }
9970
9971 static int
9972 remote_check_watch_resources (struct target_ops *self,
9973 enum bptype type, int cnt, int ot)
9974 {
9975 if (type == bp_hardware_breakpoint)
9976 {
9977 if (remote_hw_breakpoint_limit == 0)
9978 return 0;
9979 else if (remote_hw_breakpoint_limit < 0)
9980 return 1;
9981 else if (cnt <= remote_hw_breakpoint_limit)
9982 return 1;
9983 }
9984 else
9985 {
9986 if (remote_hw_watchpoint_limit == 0)
9987 return 0;
9988 else if (remote_hw_watchpoint_limit < 0)
9989 return 1;
9990 else if (ot)
9991 return -1;
9992 else if (cnt <= remote_hw_watchpoint_limit)
9993 return 1;
9994 }
9995 return -1;
9996 }
9997
9998 /* The to_stopped_by_sw_breakpoint method of target remote. */
9999
10000 static int
10001 remote_stopped_by_sw_breakpoint (struct target_ops *ops)
10002 {
10003 struct thread_info *thread = inferior_thread ();
10004
10005 return (thread->priv != NULL
10006 && (get_remote_thread_info (thread)->stop_reason
10007 == TARGET_STOPPED_BY_SW_BREAKPOINT));
10008 }
10009
10010 /* The to_supports_stopped_by_sw_breakpoint method of target
10011 remote. */
10012
10013 static int
10014 remote_supports_stopped_by_sw_breakpoint (struct target_ops *ops)
10015 {
10016 return (packet_support (PACKET_swbreak_feature) == PACKET_ENABLE);
10017 }
10018
10019 /* The to_stopped_by_hw_breakpoint method of target remote. */
10020
10021 static int
10022 remote_stopped_by_hw_breakpoint (struct target_ops *ops)
10023 {
10024 struct thread_info *thread = inferior_thread ();
10025
10026 return (thread->priv != NULL
10027 && (get_remote_thread_info (thread)->stop_reason
10028 == TARGET_STOPPED_BY_HW_BREAKPOINT));
10029 }
10030
10031 /* The to_supports_stopped_by_hw_breakpoint method of target
10032 remote. */
10033
10034 static int
10035 remote_supports_stopped_by_hw_breakpoint (struct target_ops *ops)
10036 {
10037 return (packet_support (PACKET_hwbreak_feature) == PACKET_ENABLE);
10038 }
10039
10040 static int
10041 remote_stopped_by_watchpoint (struct target_ops *ops)
10042 {
10043 struct thread_info *thread = inferior_thread ();
10044
10045 return (thread->priv != NULL
10046 && (get_remote_thread_info (thread)->stop_reason
10047 == TARGET_STOPPED_BY_WATCHPOINT));
10048 }
10049
10050 static int
10051 remote_stopped_data_address (struct target_ops *target, CORE_ADDR *addr_p)
10052 {
10053 struct thread_info *thread = inferior_thread ();
10054
10055 if (thread->priv != NULL
10056 && (get_remote_thread_info (thread)->stop_reason
10057 == TARGET_STOPPED_BY_WATCHPOINT))
10058 {
10059 *addr_p = get_remote_thread_info (thread)->watch_data_address;
10060 return 1;
10061 }
10062
10063 return 0;
10064 }
10065
10066
10067 static int
10068 remote_insert_hw_breakpoint (struct target_ops *self, struct gdbarch *gdbarch,
10069 struct bp_target_info *bp_tgt)
10070 {
10071 CORE_ADDR addr = bp_tgt->reqstd_address;
10072 struct remote_state *rs;
10073 char *p, *endbuf;
10074 char *message;
10075
10076 if (packet_support (PACKET_Z1) == PACKET_DISABLE)
10077 return -1;
10078
10079 /* Make sure the remote is pointing at the right process, if
10080 necessary. */
10081 if (!gdbarch_has_global_breakpoints (target_gdbarch ()))
10082 set_general_process ();
10083
10084 rs = get_remote_state ();
10085 p = rs->buf;
10086 endbuf = rs->buf + get_remote_packet_size ();
10087
10088 *(p++) = 'Z';
10089 *(p++) = '1';
10090 *(p++) = ',';
10091
10092 addr = remote_address_masked (addr);
10093 p += hexnumstr (p, (ULONGEST) addr);
10094 xsnprintf (p, endbuf - p, ",%x", bp_tgt->kind);
10095
10096 if (remote_supports_cond_breakpoints (self))
10097 remote_add_target_side_condition (gdbarch, bp_tgt, p, endbuf);
10098
10099 if (remote_can_run_breakpoint_commands (self))
10100 remote_add_target_side_commands (gdbarch, bp_tgt, p);
10101
10102 putpkt (rs->buf);
10103 getpkt (&rs->buf, &rs->buf_size, 0);
10104
10105 switch (packet_ok (rs->buf, &remote_protocol_packets[PACKET_Z1]))
10106 {
10107 case PACKET_ERROR:
10108 if (rs->buf[1] == '.')
10109 {
10110 message = strchr (rs->buf + 2, '.');
10111 if (message)
10112 error (_("Remote failure reply: %s"), message + 1);
10113 }
10114 return -1;
10115 case PACKET_UNKNOWN:
10116 return -1;
10117 case PACKET_OK:
10118 return 0;
10119 }
10120 internal_error (__FILE__, __LINE__,
10121 _("remote_insert_hw_breakpoint: reached end of function"));
10122 }
10123
10124
10125 static int
10126 remote_remove_hw_breakpoint (struct target_ops *self, struct gdbarch *gdbarch,
10127 struct bp_target_info *bp_tgt)
10128 {
10129 CORE_ADDR addr;
10130 struct remote_state *rs = get_remote_state ();
10131 char *p = rs->buf;
10132 char *endbuf = rs->buf + get_remote_packet_size ();
10133
10134 if (packet_support (PACKET_Z1) == PACKET_DISABLE)
10135 return -1;
10136
10137 /* Make sure the remote is pointing at the right process, if
10138 necessary. */
10139 if (!gdbarch_has_global_breakpoints (target_gdbarch ()))
10140 set_general_process ();
10141
10142 *(p++) = 'z';
10143 *(p++) = '1';
10144 *(p++) = ',';
10145
10146 addr = remote_address_masked (bp_tgt->placed_address);
10147 p += hexnumstr (p, (ULONGEST) addr);
10148 xsnprintf (p, endbuf - p, ",%x", bp_tgt->kind);
10149
10150 putpkt (rs->buf);
10151 getpkt (&rs->buf, &rs->buf_size, 0);
10152
10153 switch (packet_ok (rs->buf, &remote_protocol_packets[PACKET_Z1]))
10154 {
10155 case PACKET_ERROR:
10156 case PACKET_UNKNOWN:
10157 return -1;
10158 case PACKET_OK:
10159 return 0;
10160 }
10161 internal_error (__FILE__, __LINE__,
10162 _("remote_remove_hw_breakpoint: reached end of function"));
10163 }
10164
10165 /* Verify memory using the "qCRC:" request. */
10166
10167 static int
10168 remote_verify_memory (struct target_ops *ops,
10169 const gdb_byte *data, CORE_ADDR lma, ULONGEST size)
10170 {
10171 struct remote_state *rs = get_remote_state ();
10172 unsigned long host_crc, target_crc;
10173 char *tmp;
10174
10175 /* It doesn't make sense to use qCRC if the remote target is
10176 connected but not running. */
10177 if (target_has_execution && packet_support (PACKET_qCRC) != PACKET_DISABLE)
10178 {
10179 enum packet_result result;
10180
10181 /* Make sure the remote is pointing at the right process. */
10182 set_general_process ();
10183
10184 /* FIXME: assumes lma can fit into long. */
10185 xsnprintf (rs->buf, get_remote_packet_size (), "qCRC:%lx,%lx",
10186 (long) lma, (long) size);
10187 putpkt (rs->buf);
10188
10189 /* Be clever; compute the host_crc before waiting for target
10190 reply. */
10191 host_crc = xcrc32 (data, size, 0xffffffff);
10192
10193 getpkt (&rs->buf, &rs->buf_size, 0);
10194
10195 result = packet_ok (rs->buf,
10196 &remote_protocol_packets[PACKET_qCRC]);
10197 if (result == PACKET_ERROR)
10198 return -1;
10199 else if (result == PACKET_OK)
10200 {
10201 for (target_crc = 0, tmp = &rs->buf[1]; *tmp; tmp++)
10202 target_crc = target_crc * 16 + fromhex (*tmp);
10203
10204 return (host_crc == target_crc);
10205 }
10206 }
10207
10208 return simple_verify_memory (ops, data, lma, size);
10209 }
10210
10211 /* compare-sections command
10212
10213 With no arguments, compares each loadable section in the exec bfd
10214 with the same memory range on the target, and reports mismatches.
10215 Useful for verifying the image on the target against the exec file. */
10216
10217 static void
10218 compare_sections_command (const char *args, int from_tty)
10219 {
10220 asection *s;
10221 const char *sectname;
10222 bfd_size_type size;
10223 bfd_vma lma;
10224 int matched = 0;
10225 int mismatched = 0;
10226 int res;
10227 int read_only = 0;
10228
10229 if (!exec_bfd)
10230 error (_("command cannot be used without an exec file"));
10231
10232 /* Make sure the remote is pointing at the right process. */
10233 set_general_process ();
10234
10235 if (args != NULL && strcmp (args, "-r") == 0)
10236 {
10237 read_only = 1;
10238 args = NULL;
10239 }
10240
10241 for (s = exec_bfd->sections; s; s = s->next)
10242 {
10243 if (!(s->flags & SEC_LOAD))
10244 continue; /* Skip non-loadable section. */
10245
10246 if (read_only && (s->flags & SEC_READONLY) == 0)
10247 continue; /* Skip writeable sections */
10248
10249 size = bfd_get_section_size (s);
10250 if (size == 0)
10251 continue; /* Skip zero-length section. */
10252
10253 sectname = bfd_get_section_name (exec_bfd, s);
10254 if (args && strcmp (args, sectname) != 0)
10255 continue; /* Not the section selected by user. */
10256
10257 matched = 1; /* Do this section. */
10258 lma = s->lma;
10259
10260 gdb::byte_vector sectdata (size);
10261 bfd_get_section_contents (exec_bfd, s, sectdata.data (), 0, size);
10262
10263 res = target_verify_memory (sectdata.data (), lma, size);
10264
10265 if (res == -1)
10266 error (_("target memory fault, section %s, range %s -- %s"), sectname,
10267 paddress (target_gdbarch (), lma),
10268 paddress (target_gdbarch (), lma + size));
10269
10270 printf_filtered ("Section %s, range %s -- %s: ", sectname,
10271 paddress (target_gdbarch (), lma),
10272 paddress (target_gdbarch (), lma + size));
10273 if (res)
10274 printf_filtered ("matched.\n");
10275 else
10276 {
10277 printf_filtered ("MIS-MATCHED!\n");
10278 mismatched++;
10279 }
10280 }
10281 if (mismatched > 0)
10282 warning (_("One or more sections of the target image does not match\n\
10283 the loaded file\n"));
10284 if (args && !matched)
10285 printf_filtered (_("No loaded section named '%s'.\n"), args);
10286 }
10287
10288 /* Write LEN bytes from WRITEBUF into OBJECT_NAME/ANNEX at OFFSET
10289 into remote target. The number of bytes written to the remote
10290 target is returned, or -1 for error. */
10291
10292 static enum target_xfer_status
10293 remote_write_qxfer (struct target_ops *ops, const char *object_name,
10294 const char *annex, const gdb_byte *writebuf,
10295 ULONGEST offset, LONGEST len, ULONGEST *xfered_len,
10296 struct packet_config *packet)
10297 {
10298 int i, buf_len;
10299 ULONGEST n;
10300 struct remote_state *rs = get_remote_state ();
10301 int max_size = get_memory_write_packet_size ();
10302
10303 if (packet_config_support (packet) == PACKET_DISABLE)
10304 return TARGET_XFER_E_IO;
10305
10306 /* Insert header. */
10307 i = snprintf (rs->buf, max_size,
10308 "qXfer:%s:write:%s:%s:",
10309 object_name, annex ? annex : "",
10310 phex_nz (offset, sizeof offset));
10311 max_size -= (i + 1);
10312
10313 /* Escape as much data as fits into rs->buf. */
10314 buf_len = remote_escape_output
10315 (writebuf, len, 1, (gdb_byte *) rs->buf + i, &max_size, max_size);
10316
10317 if (putpkt_binary (rs->buf, i + buf_len) < 0
10318 || getpkt_sane (&rs->buf, &rs->buf_size, 0) < 0
10319 || packet_ok (rs->buf, packet) != PACKET_OK)
10320 return TARGET_XFER_E_IO;
10321
10322 unpack_varlen_hex (rs->buf, &n);
10323
10324 *xfered_len = n;
10325 return (*xfered_len != 0) ? TARGET_XFER_OK : TARGET_XFER_EOF;
10326 }
10327
10328 /* Read OBJECT_NAME/ANNEX from the remote target using a qXfer packet.
10329 Data at OFFSET, of up to LEN bytes, is read into READBUF; the
10330 number of bytes read is returned, or 0 for EOF, or -1 for error.
10331 The number of bytes read may be less than LEN without indicating an
10332 EOF. PACKET is checked and updated to indicate whether the remote
10333 target supports this object. */
10334
10335 static enum target_xfer_status
10336 remote_read_qxfer (struct target_ops *ops, const char *object_name,
10337 const char *annex,
10338 gdb_byte *readbuf, ULONGEST offset, LONGEST len,
10339 ULONGEST *xfered_len,
10340 struct packet_config *packet)
10341 {
10342 struct remote_state *rs = get_remote_state ();
10343 LONGEST i, n, packet_len;
10344
10345 if (packet_config_support (packet) == PACKET_DISABLE)
10346 return TARGET_XFER_E_IO;
10347
10348 /* Check whether we've cached an end-of-object packet that matches
10349 this request. */
10350 if (rs->finished_object)
10351 {
10352 if (strcmp (object_name, rs->finished_object) == 0
10353 && strcmp (annex ? annex : "", rs->finished_annex) == 0
10354 && offset == rs->finished_offset)
10355 return TARGET_XFER_EOF;
10356
10357
10358 /* Otherwise, we're now reading something different. Discard
10359 the cache. */
10360 xfree (rs->finished_object);
10361 xfree (rs->finished_annex);
10362 rs->finished_object = NULL;
10363 rs->finished_annex = NULL;
10364 }
10365
10366 /* Request only enough to fit in a single packet. The actual data
10367 may not, since we don't know how much of it will need to be escaped;
10368 the target is free to respond with slightly less data. We subtract
10369 five to account for the response type and the protocol frame. */
10370 n = std::min<LONGEST> (get_remote_packet_size () - 5, len);
10371 snprintf (rs->buf, get_remote_packet_size () - 4, "qXfer:%s:read:%s:%s,%s",
10372 object_name, annex ? annex : "",
10373 phex_nz (offset, sizeof offset),
10374 phex_nz (n, sizeof n));
10375 i = putpkt (rs->buf);
10376 if (i < 0)
10377 return TARGET_XFER_E_IO;
10378
10379 rs->buf[0] = '\0';
10380 packet_len = getpkt_sane (&rs->buf, &rs->buf_size, 0);
10381 if (packet_len < 0 || packet_ok (rs->buf, packet) != PACKET_OK)
10382 return TARGET_XFER_E_IO;
10383
10384 if (rs->buf[0] != 'l' && rs->buf[0] != 'm')
10385 error (_("Unknown remote qXfer reply: %s"), rs->buf);
10386
10387 /* 'm' means there is (or at least might be) more data after this
10388 batch. That does not make sense unless there's at least one byte
10389 of data in this reply. */
10390 if (rs->buf[0] == 'm' && packet_len == 1)
10391 error (_("Remote qXfer reply contained no data."));
10392
10393 /* Got some data. */
10394 i = remote_unescape_input ((gdb_byte *) rs->buf + 1,
10395 packet_len - 1, readbuf, n);
10396
10397 /* 'l' is an EOF marker, possibly including a final block of data,
10398 or possibly empty. If we have the final block of a non-empty
10399 object, record this fact to bypass a subsequent partial read. */
10400 if (rs->buf[0] == 'l' && offset + i > 0)
10401 {
10402 rs->finished_object = xstrdup (object_name);
10403 rs->finished_annex = xstrdup (annex ? annex : "");
10404 rs->finished_offset = offset + i;
10405 }
10406
10407 if (i == 0)
10408 return TARGET_XFER_EOF;
10409 else
10410 {
10411 *xfered_len = i;
10412 return TARGET_XFER_OK;
10413 }
10414 }
10415
10416 static enum target_xfer_status
10417 remote_xfer_partial (struct target_ops *ops, enum target_object object,
10418 const char *annex, gdb_byte *readbuf,
10419 const gdb_byte *writebuf, ULONGEST offset, ULONGEST len,
10420 ULONGEST *xfered_len)
10421 {
10422 struct remote_state *rs;
10423 int i;
10424 char *p2;
10425 char query_type;
10426 int unit_size = gdbarch_addressable_memory_unit_size (target_gdbarch ());
10427
10428 set_remote_traceframe ();
10429 set_general_thread (inferior_ptid);
10430
10431 rs = get_remote_state ();
10432
10433 /* Handle memory using the standard memory routines. */
10434 if (object == TARGET_OBJECT_MEMORY)
10435 {
10436 /* If the remote target is connected but not running, we should
10437 pass this request down to a lower stratum (e.g. the executable
10438 file). */
10439 if (!target_has_execution)
10440 return TARGET_XFER_EOF;
10441
10442 if (writebuf != NULL)
10443 return remote_write_bytes (offset, writebuf, len, unit_size,
10444 xfered_len);
10445 else
10446 return remote_read_bytes (ops, offset, readbuf, len, unit_size,
10447 xfered_len);
10448 }
10449
10450 /* Handle SPU memory using qxfer packets. */
10451 if (object == TARGET_OBJECT_SPU)
10452 {
10453 if (readbuf)
10454 return remote_read_qxfer (ops, "spu", annex, readbuf, offset, len,
10455 xfered_len, &remote_protocol_packets
10456 [PACKET_qXfer_spu_read]);
10457 else
10458 return remote_write_qxfer (ops, "spu", annex, writebuf, offset, len,
10459 xfered_len, &remote_protocol_packets
10460 [PACKET_qXfer_spu_write]);
10461 }
10462
10463 /* Handle extra signal info using qxfer packets. */
10464 if (object == TARGET_OBJECT_SIGNAL_INFO)
10465 {
10466 if (readbuf)
10467 return remote_read_qxfer (ops, "siginfo", annex, readbuf, offset, len,
10468 xfered_len, &remote_protocol_packets
10469 [PACKET_qXfer_siginfo_read]);
10470 else
10471 return remote_write_qxfer (ops, "siginfo", annex,
10472 writebuf, offset, len, xfered_len,
10473 &remote_protocol_packets
10474 [PACKET_qXfer_siginfo_write]);
10475 }
10476
10477 if (object == TARGET_OBJECT_STATIC_TRACE_DATA)
10478 {
10479 if (readbuf)
10480 return remote_read_qxfer (ops, "statictrace", annex,
10481 readbuf, offset, len, xfered_len,
10482 &remote_protocol_packets
10483 [PACKET_qXfer_statictrace_read]);
10484 else
10485 return TARGET_XFER_E_IO;
10486 }
10487
10488 /* Only handle flash writes. */
10489 if (writebuf != NULL)
10490 {
10491 switch (object)
10492 {
10493 case TARGET_OBJECT_FLASH:
10494 return remote_flash_write (ops, offset, len, xfered_len,
10495 writebuf);
10496
10497 default:
10498 return TARGET_XFER_E_IO;
10499 }
10500 }
10501
10502 /* Map pre-existing objects onto letters. DO NOT do this for new
10503 objects!!! Instead specify new query packets. */
10504 switch (object)
10505 {
10506 case TARGET_OBJECT_AVR:
10507 query_type = 'R';
10508 break;
10509
10510 case TARGET_OBJECT_AUXV:
10511 gdb_assert (annex == NULL);
10512 return remote_read_qxfer (ops, "auxv", annex, readbuf, offset, len,
10513 xfered_len,
10514 &remote_protocol_packets[PACKET_qXfer_auxv]);
10515
10516 case TARGET_OBJECT_AVAILABLE_FEATURES:
10517 return remote_read_qxfer
10518 (ops, "features", annex, readbuf, offset, len, xfered_len,
10519 &remote_protocol_packets[PACKET_qXfer_features]);
10520
10521 case TARGET_OBJECT_LIBRARIES:
10522 return remote_read_qxfer
10523 (ops, "libraries", annex, readbuf, offset, len, xfered_len,
10524 &remote_protocol_packets[PACKET_qXfer_libraries]);
10525
10526 case TARGET_OBJECT_LIBRARIES_SVR4:
10527 return remote_read_qxfer
10528 (ops, "libraries-svr4", annex, readbuf, offset, len, xfered_len,
10529 &remote_protocol_packets[PACKET_qXfer_libraries_svr4]);
10530
10531 case TARGET_OBJECT_MEMORY_MAP:
10532 gdb_assert (annex == NULL);
10533 return remote_read_qxfer (ops, "memory-map", annex, readbuf, offset, len,
10534 xfered_len,
10535 &remote_protocol_packets[PACKET_qXfer_memory_map]);
10536
10537 case TARGET_OBJECT_OSDATA:
10538 /* Should only get here if we're connected. */
10539 gdb_assert (rs->remote_desc);
10540 return remote_read_qxfer
10541 (ops, "osdata", annex, readbuf, offset, len, xfered_len,
10542 &remote_protocol_packets[PACKET_qXfer_osdata]);
10543
10544 case TARGET_OBJECT_THREADS:
10545 gdb_assert (annex == NULL);
10546 return remote_read_qxfer (ops, "threads", annex, readbuf, offset, len,
10547 xfered_len,
10548 &remote_protocol_packets[PACKET_qXfer_threads]);
10549
10550 case TARGET_OBJECT_TRACEFRAME_INFO:
10551 gdb_assert (annex == NULL);
10552 return remote_read_qxfer
10553 (ops, "traceframe-info", annex, readbuf, offset, len, xfered_len,
10554 &remote_protocol_packets[PACKET_qXfer_traceframe_info]);
10555
10556 case TARGET_OBJECT_FDPIC:
10557 return remote_read_qxfer (ops, "fdpic", annex, readbuf, offset, len,
10558 xfered_len,
10559 &remote_protocol_packets[PACKET_qXfer_fdpic]);
10560
10561 case TARGET_OBJECT_OPENVMS_UIB:
10562 return remote_read_qxfer (ops, "uib", annex, readbuf, offset, len,
10563 xfered_len,
10564 &remote_protocol_packets[PACKET_qXfer_uib]);
10565
10566 case TARGET_OBJECT_BTRACE:
10567 return remote_read_qxfer (ops, "btrace", annex, readbuf, offset, len,
10568 xfered_len,
10569 &remote_protocol_packets[PACKET_qXfer_btrace]);
10570
10571 case TARGET_OBJECT_BTRACE_CONF:
10572 return remote_read_qxfer (ops, "btrace-conf", annex, readbuf, offset,
10573 len, xfered_len,
10574 &remote_protocol_packets[PACKET_qXfer_btrace_conf]);
10575
10576 case TARGET_OBJECT_EXEC_FILE:
10577 return remote_read_qxfer (ops, "exec-file", annex, readbuf, offset,
10578 len, xfered_len,
10579 &remote_protocol_packets[PACKET_qXfer_exec_file]);
10580
10581 default:
10582 return TARGET_XFER_E_IO;
10583 }
10584
10585 /* Minimum outbuf size is get_remote_packet_size (). If LEN is not
10586 large enough let the caller deal with it. */
10587 if (len < get_remote_packet_size ())
10588 return TARGET_XFER_E_IO;
10589 len = get_remote_packet_size ();
10590
10591 /* Except for querying the minimum buffer size, target must be open. */
10592 if (!rs->remote_desc)
10593 error (_("remote query is only available after target open"));
10594
10595 gdb_assert (annex != NULL);
10596 gdb_assert (readbuf != NULL);
10597
10598 p2 = rs->buf;
10599 *p2++ = 'q';
10600 *p2++ = query_type;
10601
10602 /* We used one buffer char for the remote protocol q command and
10603 another for the query type. As the remote protocol encapsulation
10604 uses 4 chars plus one extra in case we are debugging
10605 (remote_debug), we have PBUFZIZ - 7 left to pack the query
10606 string. */
10607 i = 0;
10608 while (annex[i] && (i < (get_remote_packet_size () - 8)))
10609 {
10610 /* Bad caller may have sent forbidden characters. */
10611 gdb_assert (isprint (annex[i]) && annex[i] != '$' && annex[i] != '#');
10612 *p2++ = annex[i];
10613 i++;
10614 }
10615 *p2 = '\0';
10616 gdb_assert (annex[i] == '\0');
10617
10618 i = putpkt (rs->buf);
10619 if (i < 0)
10620 return TARGET_XFER_E_IO;
10621
10622 getpkt (&rs->buf, &rs->buf_size, 0);
10623 strcpy ((char *) readbuf, rs->buf);
10624
10625 *xfered_len = strlen ((char *) readbuf);
10626 return (*xfered_len != 0) ? TARGET_XFER_OK : TARGET_XFER_EOF;
10627 }
10628
10629 /* Implementation of to_get_memory_xfer_limit. */
10630
10631 static ULONGEST
10632 remote_get_memory_xfer_limit (struct target_ops *ops)
10633 {
10634 return get_memory_write_packet_size ();
10635 }
10636
10637 static int
10638 remote_search_memory (struct target_ops* ops,
10639 CORE_ADDR start_addr, ULONGEST search_space_len,
10640 const gdb_byte *pattern, ULONGEST pattern_len,
10641 CORE_ADDR *found_addrp)
10642 {
10643 int addr_size = gdbarch_addr_bit (target_gdbarch ()) / 8;
10644 struct remote_state *rs = get_remote_state ();
10645 int max_size = get_memory_write_packet_size ();
10646 struct packet_config *packet =
10647 &remote_protocol_packets[PACKET_qSearch_memory];
10648 /* Number of packet bytes used to encode the pattern;
10649 this could be more than PATTERN_LEN due to escape characters. */
10650 int escaped_pattern_len;
10651 /* Amount of pattern that was encodable in the packet. */
10652 int used_pattern_len;
10653 int i;
10654 int found;
10655 ULONGEST found_addr;
10656
10657 /* Don't go to the target if we don't have to. This is done before
10658 checking packet_config_support to avoid the possibility that a
10659 success for this edge case means the facility works in
10660 general. */
10661 if (pattern_len > search_space_len)
10662 return 0;
10663 if (pattern_len == 0)
10664 {
10665 *found_addrp = start_addr;
10666 return 1;
10667 }
10668
10669 /* If we already know the packet isn't supported, fall back to the simple
10670 way of searching memory. */
10671
10672 if (packet_config_support (packet) == PACKET_DISABLE)
10673 {
10674 /* Target doesn't provided special support, fall back and use the
10675 standard support (copy memory and do the search here). */
10676 return simple_search_memory (ops, start_addr, search_space_len,
10677 pattern, pattern_len, found_addrp);
10678 }
10679
10680 /* Make sure the remote is pointing at the right process. */
10681 set_general_process ();
10682
10683 /* Insert header. */
10684 i = snprintf (rs->buf, max_size,
10685 "qSearch:memory:%s;%s;",
10686 phex_nz (start_addr, addr_size),
10687 phex_nz (search_space_len, sizeof (search_space_len)));
10688 max_size -= (i + 1);
10689
10690 /* Escape as much data as fits into rs->buf. */
10691 escaped_pattern_len =
10692 remote_escape_output (pattern, pattern_len, 1, (gdb_byte *) rs->buf + i,
10693 &used_pattern_len, max_size);
10694
10695 /* Bail if the pattern is too large. */
10696 if (used_pattern_len != pattern_len)
10697 error (_("Pattern is too large to transmit to remote target."));
10698
10699 if (putpkt_binary (rs->buf, i + escaped_pattern_len) < 0
10700 || getpkt_sane (&rs->buf, &rs->buf_size, 0) < 0
10701 || packet_ok (rs->buf, packet) != PACKET_OK)
10702 {
10703 /* The request may not have worked because the command is not
10704 supported. If so, fall back to the simple way. */
10705 if (packet_config_support (packet) == PACKET_DISABLE)
10706 {
10707 return simple_search_memory (ops, start_addr, search_space_len,
10708 pattern, pattern_len, found_addrp);
10709 }
10710 return -1;
10711 }
10712
10713 if (rs->buf[0] == '0')
10714 found = 0;
10715 else if (rs->buf[0] == '1')
10716 {
10717 found = 1;
10718 if (rs->buf[1] != ',')
10719 error (_("Unknown qSearch:memory reply: %s"), rs->buf);
10720 unpack_varlen_hex (rs->buf + 2, &found_addr);
10721 *found_addrp = found_addr;
10722 }
10723 else
10724 error (_("Unknown qSearch:memory reply: %s"), rs->buf);
10725
10726 return found;
10727 }
10728
10729 static void
10730 remote_rcmd (struct target_ops *self, const char *command,
10731 struct ui_file *outbuf)
10732 {
10733 struct remote_state *rs = get_remote_state ();
10734 char *p = rs->buf;
10735
10736 if (!rs->remote_desc)
10737 error (_("remote rcmd is only available after target open"));
10738
10739 /* Send a NULL command across as an empty command. */
10740 if (command == NULL)
10741 command = "";
10742
10743 /* The query prefix. */
10744 strcpy (rs->buf, "qRcmd,");
10745 p = strchr (rs->buf, '\0');
10746
10747 if ((strlen (rs->buf) + strlen (command) * 2 + 8/*misc*/)
10748 > get_remote_packet_size ())
10749 error (_("\"monitor\" command ``%s'' is too long."), command);
10750
10751 /* Encode the actual command. */
10752 bin2hex ((const gdb_byte *) command, p, strlen (command));
10753
10754 if (putpkt (rs->buf) < 0)
10755 error (_("Communication problem with target."));
10756
10757 /* get/display the response */
10758 while (1)
10759 {
10760 char *buf;
10761
10762 /* XXX - see also remote_get_noisy_reply(). */
10763 QUIT; /* Allow user to bail out with ^C. */
10764 rs->buf[0] = '\0';
10765 if (getpkt_sane (&rs->buf, &rs->buf_size, 0) == -1)
10766 {
10767 /* Timeout. Continue to (try to) read responses.
10768 This is better than stopping with an error, assuming the stub
10769 is still executing the (long) monitor command.
10770 If needed, the user can interrupt gdb using C-c, obtaining
10771 an effect similar to stop on timeout. */
10772 continue;
10773 }
10774 buf = rs->buf;
10775 if (buf[0] == '\0')
10776 error (_("Target does not support this command."));
10777 if (buf[0] == 'O' && buf[1] != 'K')
10778 {
10779 remote_console_output (buf + 1); /* 'O' message from stub. */
10780 continue;
10781 }
10782 if (strcmp (buf, "OK") == 0)
10783 break;
10784 if (strlen (buf) == 3 && buf[0] == 'E'
10785 && isdigit (buf[1]) && isdigit (buf[2]))
10786 {
10787 error (_("Protocol error with Rcmd"));
10788 }
10789 for (p = buf; p[0] != '\0' && p[1] != '\0'; p += 2)
10790 {
10791 char c = (fromhex (p[0]) << 4) + fromhex (p[1]);
10792
10793 fputc_unfiltered (c, outbuf);
10794 }
10795 break;
10796 }
10797 }
10798
10799 static std::vector<mem_region>
10800 remote_memory_map (struct target_ops *ops)
10801 {
10802 std::vector<mem_region> result;
10803 gdb::optional<gdb::char_vector> text
10804 = target_read_stralloc (&current_target, TARGET_OBJECT_MEMORY_MAP, NULL);
10805
10806 if (text)
10807 result = parse_memory_map (text->data ());
10808
10809 return result;
10810 }
10811
10812 static void
10813 packet_command (const char *args, int from_tty)
10814 {
10815 struct remote_state *rs = get_remote_state ();
10816
10817 if (!rs->remote_desc)
10818 error (_("command can only be used with remote target"));
10819
10820 if (!args)
10821 error (_("remote-packet command requires packet text as argument"));
10822
10823 puts_filtered ("sending: ");
10824 print_packet (args);
10825 puts_filtered ("\n");
10826 putpkt (args);
10827
10828 getpkt (&rs->buf, &rs->buf_size, 0);
10829 puts_filtered ("received: ");
10830 print_packet (rs->buf);
10831 puts_filtered ("\n");
10832 }
10833
10834 #if 0
10835 /* --------- UNIT_TEST for THREAD oriented PACKETS ------------------- */
10836
10837 static void display_thread_info (struct gdb_ext_thread_info *info);
10838
10839 static void threadset_test_cmd (char *cmd, int tty);
10840
10841 static void threadalive_test (char *cmd, int tty);
10842
10843 static void threadlist_test_cmd (char *cmd, int tty);
10844
10845 int get_and_display_threadinfo (threadref *ref);
10846
10847 static void threadinfo_test_cmd (char *cmd, int tty);
10848
10849 static int thread_display_step (threadref *ref, void *context);
10850
10851 static void threadlist_update_test_cmd (char *cmd, int tty);
10852
10853 static void init_remote_threadtests (void);
10854
10855 #define SAMPLE_THREAD 0x05060708 /* Truncated 64 bit threadid. */
10856
10857 static void
10858 threadset_test_cmd (const char *cmd, int tty)
10859 {
10860 int sample_thread = SAMPLE_THREAD;
10861
10862 printf_filtered (_("Remote threadset test\n"));
10863 set_general_thread (sample_thread);
10864 }
10865
10866
10867 static void
10868 threadalive_test (const char *cmd, int tty)
10869 {
10870 int sample_thread = SAMPLE_THREAD;
10871 int pid = ptid_get_pid (inferior_ptid);
10872 ptid_t ptid = ptid_build (pid, sample_thread, 0);
10873
10874 if (remote_thread_alive (ptid))
10875 printf_filtered ("PASS: Thread alive test\n");
10876 else
10877 printf_filtered ("FAIL: Thread alive test\n");
10878 }
10879
10880 void output_threadid (char *title, threadref *ref);
10881
10882 void
10883 output_threadid (char *title, threadref *ref)
10884 {
10885 char hexid[20];
10886
10887 pack_threadid (&hexid[0], ref); /* Convert threead id into hex. */
10888 hexid[16] = 0;
10889 printf_filtered ("%s %s\n", title, (&hexid[0]));
10890 }
10891
10892 static void
10893 threadlist_test_cmd (const char *cmd, int tty)
10894 {
10895 int startflag = 1;
10896 threadref nextthread;
10897 int done, result_count;
10898 threadref threadlist[3];
10899
10900 printf_filtered ("Remote Threadlist test\n");
10901 if (!remote_get_threadlist (startflag, &nextthread, 3, &done,
10902 &result_count, &threadlist[0]))
10903 printf_filtered ("FAIL: threadlist test\n");
10904 else
10905 {
10906 threadref *scan = threadlist;
10907 threadref *limit = scan + result_count;
10908
10909 while (scan < limit)
10910 output_threadid (" thread ", scan++);
10911 }
10912 }
10913
10914 void
10915 display_thread_info (struct gdb_ext_thread_info *info)
10916 {
10917 output_threadid ("Threadid: ", &info->threadid);
10918 printf_filtered ("Name: %s\n ", info->shortname);
10919 printf_filtered ("State: %s\n", info->display);
10920 printf_filtered ("other: %s\n\n", info->more_display);
10921 }
10922
10923 int
10924 get_and_display_threadinfo (threadref *ref)
10925 {
10926 int result;
10927 int set;
10928 struct gdb_ext_thread_info threadinfo;
10929
10930 set = TAG_THREADID | TAG_EXISTS | TAG_THREADNAME
10931 | TAG_MOREDISPLAY | TAG_DISPLAY;
10932 if (0 != (result = remote_get_threadinfo (ref, set, &threadinfo)))
10933 display_thread_info (&threadinfo);
10934 return result;
10935 }
10936
10937 static void
10938 threadinfo_test_cmd (const char *cmd, int tty)
10939 {
10940 int athread = SAMPLE_THREAD;
10941 threadref thread;
10942 int set;
10943
10944 int_to_threadref (&thread, athread);
10945 printf_filtered ("Remote Threadinfo test\n");
10946 if (!get_and_display_threadinfo (&thread))
10947 printf_filtered ("FAIL cannot get thread info\n");
10948 }
10949
10950 static int
10951 thread_display_step (threadref *ref, void *context)
10952 {
10953 /* output_threadid(" threadstep ",ref); *//* simple test */
10954 return get_and_display_threadinfo (ref);
10955 }
10956
10957 static void
10958 threadlist_update_test_cmd (const char *cmd, int tty)
10959 {
10960 printf_filtered ("Remote Threadlist update test\n");
10961 remote_threadlist_iterator (thread_display_step, 0, CRAZY_MAX_THREADS);
10962 }
10963
10964 static void
10965 init_remote_threadtests (void)
10966 {
10967 add_com ("tlist", class_obscure, threadlist_test_cmd,
10968 _("Fetch and print the remote list of "
10969 "thread identifiers, one pkt only"));
10970 add_com ("tinfo", class_obscure, threadinfo_test_cmd,
10971 _("Fetch and display info about one thread"));
10972 add_com ("tset", class_obscure, threadset_test_cmd,
10973 _("Test setting to a different thread"));
10974 add_com ("tupd", class_obscure, threadlist_update_test_cmd,
10975 _("Iterate through updating all remote thread info"));
10976 add_com ("talive", class_obscure, threadalive_test,
10977 _(" Remote thread alive test "));
10978 }
10979
10980 #endif /* 0 */
10981
10982 /* Convert a thread ID to a string. Returns the string in a static
10983 buffer. */
10984
10985 static const char *
10986 remote_pid_to_str (struct target_ops *ops, ptid_t ptid)
10987 {
10988 static char buf[64];
10989 struct remote_state *rs = get_remote_state ();
10990
10991 if (ptid_equal (ptid, null_ptid))
10992 return normal_pid_to_str (ptid);
10993 else if (ptid_is_pid (ptid))
10994 {
10995 /* Printing an inferior target id. */
10996
10997 /* When multi-process extensions are off, there's no way in the
10998 remote protocol to know the remote process id, if there's any
10999 at all. There's one exception --- when we're connected with
11000 target extended-remote, and we manually attached to a process
11001 with "attach PID". We don't record anywhere a flag that
11002 allows us to distinguish that case from the case of
11003 connecting with extended-remote and the stub already being
11004 attached to a process, and reporting yes to qAttached, hence
11005 no smart special casing here. */
11006 if (!remote_multi_process_p (rs))
11007 {
11008 xsnprintf (buf, sizeof buf, "Remote target");
11009 return buf;
11010 }
11011
11012 return normal_pid_to_str (ptid);
11013 }
11014 else
11015 {
11016 if (ptid_equal (magic_null_ptid, ptid))
11017 xsnprintf (buf, sizeof buf, "Thread <main>");
11018 else if (remote_multi_process_p (rs))
11019 if (ptid_get_lwp (ptid) == 0)
11020 return normal_pid_to_str (ptid);
11021 else
11022 xsnprintf (buf, sizeof buf, "Thread %d.%ld",
11023 ptid_get_pid (ptid), ptid_get_lwp (ptid));
11024 else
11025 xsnprintf (buf, sizeof buf, "Thread %ld",
11026 ptid_get_lwp (ptid));
11027 return buf;
11028 }
11029 }
11030
11031 /* Get the address of the thread local variable in OBJFILE which is
11032 stored at OFFSET within the thread local storage for thread PTID. */
11033
11034 static CORE_ADDR
11035 remote_get_thread_local_address (struct target_ops *ops,
11036 ptid_t ptid, CORE_ADDR lm, CORE_ADDR offset)
11037 {
11038 if (packet_support (PACKET_qGetTLSAddr) != PACKET_DISABLE)
11039 {
11040 struct remote_state *rs = get_remote_state ();
11041 char *p = rs->buf;
11042 char *endp = rs->buf + get_remote_packet_size ();
11043 enum packet_result result;
11044
11045 strcpy (p, "qGetTLSAddr:");
11046 p += strlen (p);
11047 p = write_ptid (p, endp, ptid);
11048 *p++ = ',';
11049 p += hexnumstr (p, offset);
11050 *p++ = ',';
11051 p += hexnumstr (p, lm);
11052 *p++ = '\0';
11053
11054 putpkt (rs->buf);
11055 getpkt (&rs->buf, &rs->buf_size, 0);
11056 result = packet_ok (rs->buf,
11057 &remote_protocol_packets[PACKET_qGetTLSAddr]);
11058 if (result == PACKET_OK)
11059 {
11060 ULONGEST result;
11061
11062 unpack_varlen_hex (rs->buf, &result);
11063 return result;
11064 }
11065 else if (result == PACKET_UNKNOWN)
11066 throw_error (TLS_GENERIC_ERROR,
11067 _("Remote target doesn't support qGetTLSAddr packet"));
11068 else
11069 throw_error (TLS_GENERIC_ERROR,
11070 _("Remote target failed to process qGetTLSAddr request"));
11071 }
11072 else
11073 throw_error (TLS_GENERIC_ERROR,
11074 _("TLS not supported or disabled on this target"));
11075 /* Not reached. */
11076 return 0;
11077 }
11078
11079 /* Provide thread local base, i.e. Thread Information Block address.
11080 Returns 1 if ptid is found and thread_local_base is non zero. */
11081
11082 static int
11083 remote_get_tib_address (struct target_ops *self, ptid_t ptid, CORE_ADDR *addr)
11084 {
11085 if (packet_support (PACKET_qGetTIBAddr) != PACKET_DISABLE)
11086 {
11087 struct remote_state *rs = get_remote_state ();
11088 char *p = rs->buf;
11089 char *endp = rs->buf + get_remote_packet_size ();
11090 enum packet_result result;
11091
11092 strcpy (p, "qGetTIBAddr:");
11093 p += strlen (p);
11094 p = write_ptid (p, endp, ptid);
11095 *p++ = '\0';
11096
11097 putpkt (rs->buf);
11098 getpkt (&rs->buf, &rs->buf_size, 0);
11099 result = packet_ok (rs->buf,
11100 &remote_protocol_packets[PACKET_qGetTIBAddr]);
11101 if (result == PACKET_OK)
11102 {
11103 ULONGEST result;
11104
11105 unpack_varlen_hex (rs->buf, &result);
11106 if (addr)
11107 *addr = (CORE_ADDR) result;
11108 return 1;
11109 }
11110 else if (result == PACKET_UNKNOWN)
11111 error (_("Remote target doesn't support qGetTIBAddr packet"));
11112 else
11113 error (_("Remote target failed to process qGetTIBAddr request"));
11114 }
11115 else
11116 error (_("qGetTIBAddr not supported or disabled on this target"));
11117 /* Not reached. */
11118 return 0;
11119 }
11120
11121 /* Support for inferring a target description based on the current
11122 architecture and the size of a 'g' packet. While the 'g' packet
11123 can have any size (since optional registers can be left off the
11124 end), some sizes are easily recognizable given knowledge of the
11125 approximate architecture. */
11126
11127 struct remote_g_packet_guess
11128 {
11129 int bytes;
11130 const struct target_desc *tdesc;
11131 };
11132 typedef struct remote_g_packet_guess remote_g_packet_guess_s;
11133 DEF_VEC_O(remote_g_packet_guess_s);
11134
11135 struct remote_g_packet_data
11136 {
11137 VEC(remote_g_packet_guess_s) *guesses;
11138 };
11139
11140 static struct gdbarch_data *remote_g_packet_data_handle;
11141
11142 static void *
11143 remote_g_packet_data_init (struct obstack *obstack)
11144 {
11145 return OBSTACK_ZALLOC (obstack, struct remote_g_packet_data);
11146 }
11147
11148 void
11149 register_remote_g_packet_guess (struct gdbarch *gdbarch, int bytes,
11150 const struct target_desc *tdesc)
11151 {
11152 struct remote_g_packet_data *data
11153 = ((struct remote_g_packet_data *)
11154 gdbarch_data (gdbarch, remote_g_packet_data_handle));
11155 struct remote_g_packet_guess new_guess, *guess;
11156 int ix;
11157
11158 gdb_assert (tdesc != NULL);
11159
11160 for (ix = 0;
11161 VEC_iterate (remote_g_packet_guess_s, data->guesses, ix, guess);
11162 ix++)
11163 if (guess->bytes == bytes)
11164 internal_error (__FILE__, __LINE__,
11165 _("Duplicate g packet description added for size %d"),
11166 bytes);
11167
11168 new_guess.bytes = bytes;
11169 new_guess.tdesc = tdesc;
11170 VEC_safe_push (remote_g_packet_guess_s, data->guesses, &new_guess);
11171 }
11172
11173 /* Return 1 if remote_read_description would do anything on this target
11174 and architecture, 0 otherwise. */
11175
11176 static int
11177 remote_read_description_p (struct target_ops *target)
11178 {
11179 struct remote_g_packet_data *data
11180 = ((struct remote_g_packet_data *)
11181 gdbarch_data (target_gdbarch (), remote_g_packet_data_handle));
11182
11183 if (!VEC_empty (remote_g_packet_guess_s, data->guesses))
11184 return 1;
11185
11186 return 0;
11187 }
11188
11189 static const struct target_desc *
11190 remote_read_description (struct target_ops *target)
11191 {
11192 struct remote_g_packet_data *data
11193 = ((struct remote_g_packet_data *)
11194 gdbarch_data (target_gdbarch (), remote_g_packet_data_handle));
11195
11196 /* Do not try this during initial connection, when we do not know
11197 whether there is a running but stopped thread. */
11198 if (!target_has_execution || ptid_equal (inferior_ptid, null_ptid))
11199 return target->beneath->to_read_description (target->beneath);
11200
11201 if (!VEC_empty (remote_g_packet_guess_s, data->guesses))
11202 {
11203 struct remote_g_packet_guess *guess;
11204 int ix;
11205 int bytes = send_g_packet ();
11206
11207 for (ix = 0;
11208 VEC_iterate (remote_g_packet_guess_s, data->guesses, ix, guess);
11209 ix++)
11210 if (guess->bytes == bytes)
11211 return guess->tdesc;
11212
11213 /* We discard the g packet. A minor optimization would be to
11214 hold on to it, and fill the register cache once we have selected
11215 an architecture, but it's too tricky to do safely. */
11216 }
11217
11218 return target->beneath->to_read_description (target->beneath);
11219 }
11220
11221 /* Remote file transfer support. This is host-initiated I/O, not
11222 target-initiated; for target-initiated, see remote-fileio.c. */
11223
11224 /* If *LEFT is at least the length of STRING, copy STRING to
11225 *BUFFER, update *BUFFER to point to the new end of the buffer, and
11226 decrease *LEFT. Otherwise raise an error. */
11227
11228 static void
11229 remote_buffer_add_string (char **buffer, int *left, const char *string)
11230 {
11231 int len = strlen (string);
11232
11233 if (len > *left)
11234 error (_("Packet too long for target."));
11235
11236 memcpy (*buffer, string, len);
11237 *buffer += len;
11238 *left -= len;
11239
11240 /* NUL-terminate the buffer as a convenience, if there is
11241 room. */
11242 if (*left)
11243 **buffer = '\0';
11244 }
11245
11246 /* If *LEFT is large enough, hex encode LEN bytes from BYTES into
11247 *BUFFER, update *BUFFER to point to the new end of the buffer, and
11248 decrease *LEFT. Otherwise raise an error. */
11249
11250 static void
11251 remote_buffer_add_bytes (char **buffer, int *left, const gdb_byte *bytes,
11252 int len)
11253 {
11254 if (2 * len > *left)
11255 error (_("Packet too long for target."));
11256
11257 bin2hex (bytes, *buffer, len);
11258 *buffer += 2 * len;
11259 *left -= 2 * len;
11260
11261 /* NUL-terminate the buffer as a convenience, if there is
11262 room. */
11263 if (*left)
11264 **buffer = '\0';
11265 }
11266
11267 /* If *LEFT is large enough, convert VALUE to hex and add it to
11268 *BUFFER, update *BUFFER to point to the new end of the buffer, and
11269 decrease *LEFT. Otherwise raise an error. */
11270
11271 static void
11272 remote_buffer_add_int (char **buffer, int *left, ULONGEST value)
11273 {
11274 int len = hexnumlen (value);
11275
11276 if (len > *left)
11277 error (_("Packet too long for target."));
11278
11279 hexnumstr (*buffer, value);
11280 *buffer += len;
11281 *left -= len;
11282
11283 /* NUL-terminate the buffer as a convenience, if there is
11284 room. */
11285 if (*left)
11286 **buffer = '\0';
11287 }
11288
11289 /* Parse an I/O result packet from BUFFER. Set RETCODE to the return
11290 value, *REMOTE_ERRNO to the remote error number or zero if none
11291 was included, and *ATTACHMENT to point to the start of the annex
11292 if any. The length of the packet isn't needed here; there may
11293 be NUL bytes in BUFFER, but they will be after *ATTACHMENT.
11294
11295 Return 0 if the packet could be parsed, -1 if it could not. If
11296 -1 is returned, the other variables may not be initialized. */
11297
11298 static int
11299 remote_hostio_parse_result (char *buffer, int *retcode,
11300 int *remote_errno, char **attachment)
11301 {
11302 char *p, *p2;
11303
11304 *remote_errno = 0;
11305 *attachment = NULL;
11306
11307 if (buffer[0] != 'F')
11308 return -1;
11309
11310 errno = 0;
11311 *retcode = strtol (&buffer[1], &p, 16);
11312 if (errno != 0 || p == &buffer[1])
11313 return -1;
11314
11315 /* Check for ",errno". */
11316 if (*p == ',')
11317 {
11318 errno = 0;
11319 *remote_errno = strtol (p + 1, &p2, 16);
11320 if (errno != 0 || p + 1 == p2)
11321 return -1;
11322 p = p2;
11323 }
11324
11325 /* Check for ";attachment". If there is no attachment, the
11326 packet should end here. */
11327 if (*p == ';')
11328 {
11329 *attachment = p + 1;
11330 return 0;
11331 }
11332 else if (*p == '\0')
11333 return 0;
11334 else
11335 return -1;
11336 }
11337
11338 /* Send a prepared I/O packet to the target and read its response.
11339 The prepared packet is in the global RS->BUF before this function
11340 is called, and the answer is there when we return.
11341
11342 COMMAND_BYTES is the length of the request to send, which may include
11343 binary data. WHICH_PACKET is the packet configuration to check
11344 before attempting a packet. If an error occurs, *REMOTE_ERRNO
11345 is set to the error number and -1 is returned. Otherwise the value
11346 returned by the function is returned.
11347
11348 ATTACHMENT and ATTACHMENT_LEN should be non-NULL if and only if an
11349 attachment is expected; an error will be reported if there's a
11350 mismatch. If one is found, *ATTACHMENT will be set to point into
11351 the packet buffer and *ATTACHMENT_LEN will be set to the
11352 attachment's length. */
11353
11354 static int
11355 remote_hostio_send_command (int command_bytes, int which_packet,
11356 int *remote_errno, char **attachment,
11357 int *attachment_len)
11358 {
11359 struct remote_state *rs = get_remote_state ();
11360 int ret, bytes_read;
11361 char *attachment_tmp;
11362
11363 if (packet_support (which_packet) == PACKET_DISABLE)
11364 {
11365 *remote_errno = FILEIO_ENOSYS;
11366 return -1;
11367 }
11368
11369 putpkt_binary (rs->buf, command_bytes);
11370 bytes_read = getpkt_sane (&rs->buf, &rs->buf_size, 0);
11371
11372 /* If it timed out, something is wrong. Don't try to parse the
11373 buffer. */
11374 if (bytes_read < 0)
11375 {
11376 *remote_errno = FILEIO_EINVAL;
11377 return -1;
11378 }
11379
11380 switch (packet_ok (rs->buf, &remote_protocol_packets[which_packet]))
11381 {
11382 case PACKET_ERROR:
11383 *remote_errno = FILEIO_EINVAL;
11384 return -1;
11385 case PACKET_UNKNOWN:
11386 *remote_errno = FILEIO_ENOSYS;
11387 return -1;
11388 case PACKET_OK:
11389 break;
11390 }
11391
11392 if (remote_hostio_parse_result (rs->buf, &ret, remote_errno,
11393 &attachment_tmp))
11394 {
11395 *remote_errno = FILEIO_EINVAL;
11396 return -1;
11397 }
11398
11399 /* Make sure we saw an attachment if and only if we expected one. */
11400 if ((attachment_tmp == NULL && attachment != NULL)
11401 || (attachment_tmp != NULL && attachment == NULL))
11402 {
11403 *remote_errno = FILEIO_EINVAL;
11404 return -1;
11405 }
11406
11407 /* If an attachment was found, it must point into the packet buffer;
11408 work out how many bytes there were. */
11409 if (attachment_tmp != NULL)
11410 {
11411 *attachment = attachment_tmp;
11412 *attachment_len = bytes_read - (*attachment - rs->buf);
11413 }
11414
11415 return ret;
11416 }
11417
11418 /* Invalidate the readahead cache. */
11419
11420 static void
11421 readahead_cache_invalidate (void)
11422 {
11423 struct remote_state *rs = get_remote_state ();
11424
11425 rs->readahead_cache.fd = -1;
11426 }
11427
11428 /* Invalidate the readahead cache if it is holding data for FD. */
11429
11430 static void
11431 readahead_cache_invalidate_fd (int fd)
11432 {
11433 struct remote_state *rs = get_remote_state ();
11434
11435 if (rs->readahead_cache.fd == fd)
11436 rs->readahead_cache.fd = -1;
11437 }
11438
11439 /* Set the filesystem remote_hostio functions that take FILENAME
11440 arguments will use. Return 0 on success, or -1 if an error
11441 occurs (and set *REMOTE_ERRNO). */
11442
11443 static int
11444 remote_hostio_set_filesystem (struct inferior *inf, int *remote_errno)
11445 {
11446 struct remote_state *rs = get_remote_state ();
11447 int required_pid = (inf == NULL || inf->fake_pid_p) ? 0 : inf->pid;
11448 char *p = rs->buf;
11449 int left = get_remote_packet_size () - 1;
11450 char arg[9];
11451 int ret;
11452
11453 if (packet_support (PACKET_vFile_setfs) == PACKET_DISABLE)
11454 return 0;
11455
11456 if (rs->fs_pid != -1 && required_pid == rs->fs_pid)
11457 return 0;
11458
11459 remote_buffer_add_string (&p, &left, "vFile:setfs:");
11460
11461 xsnprintf (arg, sizeof (arg), "%x", required_pid);
11462 remote_buffer_add_string (&p, &left, arg);
11463
11464 ret = remote_hostio_send_command (p - rs->buf, PACKET_vFile_setfs,
11465 remote_errno, NULL, NULL);
11466
11467 if (packet_support (PACKET_vFile_setfs) == PACKET_DISABLE)
11468 return 0;
11469
11470 if (ret == 0)
11471 rs->fs_pid = required_pid;
11472
11473 return ret;
11474 }
11475
11476 /* Implementation of to_fileio_open. */
11477
11478 static int
11479 remote_hostio_open (struct target_ops *self,
11480 struct inferior *inf, const char *filename,
11481 int flags, int mode, int warn_if_slow,
11482 int *remote_errno)
11483 {
11484 struct remote_state *rs = get_remote_state ();
11485 char *p = rs->buf;
11486 int left = get_remote_packet_size () - 1;
11487
11488 if (warn_if_slow)
11489 {
11490 static int warning_issued = 0;
11491
11492 printf_unfiltered (_("Reading %s from remote target...\n"),
11493 filename);
11494
11495 if (!warning_issued)
11496 {
11497 warning (_("File transfers from remote targets can be slow."
11498 " Use \"set sysroot\" to access files locally"
11499 " instead."));
11500 warning_issued = 1;
11501 }
11502 }
11503
11504 if (remote_hostio_set_filesystem (inf, remote_errno) != 0)
11505 return -1;
11506
11507 remote_buffer_add_string (&p, &left, "vFile:open:");
11508
11509 remote_buffer_add_bytes (&p, &left, (const gdb_byte *) filename,
11510 strlen (filename));
11511 remote_buffer_add_string (&p, &left, ",");
11512
11513 remote_buffer_add_int (&p, &left, flags);
11514 remote_buffer_add_string (&p, &left, ",");
11515
11516 remote_buffer_add_int (&p, &left, mode);
11517
11518 return remote_hostio_send_command (p - rs->buf, PACKET_vFile_open,
11519 remote_errno, NULL, NULL);
11520 }
11521
11522 /* Implementation of to_fileio_pwrite. */
11523
11524 static int
11525 remote_hostio_pwrite (struct target_ops *self,
11526 int fd, const gdb_byte *write_buf, int len,
11527 ULONGEST offset, int *remote_errno)
11528 {
11529 struct remote_state *rs = get_remote_state ();
11530 char *p = rs->buf;
11531 int left = get_remote_packet_size ();
11532 int out_len;
11533
11534 readahead_cache_invalidate_fd (fd);
11535
11536 remote_buffer_add_string (&p, &left, "vFile:pwrite:");
11537
11538 remote_buffer_add_int (&p, &left, fd);
11539 remote_buffer_add_string (&p, &left, ",");
11540
11541 remote_buffer_add_int (&p, &left, offset);
11542 remote_buffer_add_string (&p, &left, ",");
11543
11544 p += remote_escape_output (write_buf, len, 1, (gdb_byte *) p, &out_len,
11545 get_remote_packet_size () - (p - rs->buf));
11546
11547 return remote_hostio_send_command (p - rs->buf, PACKET_vFile_pwrite,
11548 remote_errno, NULL, NULL);
11549 }
11550
11551 /* Helper for the implementation of to_fileio_pread. Read the file
11552 from the remote side with vFile:pread. */
11553
11554 static int
11555 remote_hostio_pread_vFile (struct target_ops *self,
11556 int fd, gdb_byte *read_buf, int len,
11557 ULONGEST offset, int *remote_errno)
11558 {
11559 struct remote_state *rs = get_remote_state ();
11560 char *p = rs->buf;
11561 char *attachment;
11562 int left = get_remote_packet_size ();
11563 int ret, attachment_len;
11564 int read_len;
11565
11566 remote_buffer_add_string (&p, &left, "vFile:pread:");
11567
11568 remote_buffer_add_int (&p, &left, fd);
11569 remote_buffer_add_string (&p, &left, ",");
11570
11571 remote_buffer_add_int (&p, &left, len);
11572 remote_buffer_add_string (&p, &left, ",");
11573
11574 remote_buffer_add_int (&p, &left, offset);
11575
11576 ret = remote_hostio_send_command (p - rs->buf, PACKET_vFile_pread,
11577 remote_errno, &attachment,
11578 &attachment_len);
11579
11580 if (ret < 0)
11581 return ret;
11582
11583 read_len = remote_unescape_input ((gdb_byte *) attachment, attachment_len,
11584 read_buf, len);
11585 if (read_len != ret)
11586 error (_("Read returned %d, but %d bytes."), ret, (int) read_len);
11587
11588 return ret;
11589 }
11590
11591 /* Serve pread from the readahead cache. Returns number of bytes
11592 read, or 0 if the request can't be served from the cache. */
11593
11594 static int
11595 remote_hostio_pread_from_cache (struct remote_state *rs,
11596 int fd, gdb_byte *read_buf, size_t len,
11597 ULONGEST offset)
11598 {
11599 struct readahead_cache *cache = &rs->readahead_cache;
11600
11601 if (cache->fd == fd
11602 && cache->offset <= offset
11603 && offset < cache->offset + cache->bufsize)
11604 {
11605 ULONGEST max = cache->offset + cache->bufsize;
11606
11607 if (offset + len > max)
11608 len = max - offset;
11609
11610 memcpy (read_buf, cache->buf + offset - cache->offset, len);
11611 return len;
11612 }
11613
11614 return 0;
11615 }
11616
11617 /* Implementation of to_fileio_pread. */
11618
11619 static int
11620 remote_hostio_pread (struct target_ops *self,
11621 int fd, gdb_byte *read_buf, int len,
11622 ULONGEST offset, int *remote_errno)
11623 {
11624 int ret;
11625 struct remote_state *rs = get_remote_state ();
11626 struct readahead_cache *cache = &rs->readahead_cache;
11627
11628 ret = remote_hostio_pread_from_cache (rs, fd, read_buf, len, offset);
11629 if (ret > 0)
11630 {
11631 cache->hit_count++;
11632
11633 if (remote_debug)
11634 fprintf_unfiltered (gdb_stdlog, "readahead cache hit %s\n",
11635 pulongest (cache->hit_count));
11636 return ret;
11637 }
11638
11639 cache->miss_count++;
11640 if (remote_debug)
11641 fprintf_unfiltered (gdb_stdlog, "readahead cache miss %s\n",
11642 pulongest (cache->miss_count));
11643
11644 cache->fd = fd;
11645 cache->offset = offset;
11646 cache->bufsize = get_remote_packet_size ();
11647 cache->buf = (gdb_byte *) xrealloc (cache->buf, cache->bufsize);
11648
11649 ret = remote_hostio_pread_vFile (self, cache->fd, cache->buf, cache->bufsize,
11650 cache->offset, remote_errno);
11651 if (ret <= 0)
11652 {
11653 readahead_cache_invalidate_fd (fd);
11654 return ret;
11655 }
11656
11657 cache->bufsize = ret;
11658 return remote_hostio_pread_from_cache (rs, fd, read_buf, len, offset);
11659 }
11660
11661 /* Implementation of to_fileio_close. */
11662
11663 static int
11664 remote_hostio_close (struct target_ops *self, int fd, int *remote_errno)
11665 {
11666 struct remote_state *rs = get_remote_state ();
11667 char *p = rs->buf;
11668 int left = get_remote_packet_size () - 1;
11669
11670 readahead_cache_invalidate_fd (fd);
11671
11672 remote_buffer_add_string (&p, &left, "vFile:close:");
11673
11674 remote_buffer_add_int (&p, &left, fd);
11675
11676 return remote_hostio_send_command (p - rs->buf, PACKET_vFile_close,
11677 remote_errno, NULL, NULL);
11678 }
11679
11680 /* Implementation of to_fileio_unlink. */
11681
11682 static int
11683 remote_hostio_unlink (struct target_ops *self,
11684 struct inferior *inf, const char *filename,
11685 int *remote_errno)
11686 {
11687 struct remote_state *rs = get_remote_state ();
11688 char *p = rs->buf;
11689 int left = get_remote_packet_size () - 1;
11690
11691 if (remote_hostio_set_filesystem (inf, remote_errno) != 0)
11692 return -1;
11693
11694 remote_buffer_add_string (&p, &left, "vFile:unlink:");
11695
11696 remote_buffer_add_bytes (&p, &left, (const gdb_byte *) filename,
11697 strlen (filename));
11698
11699 return remote_hostio_send_command (p - rs->buf, PACKET_vFile_unlink,
11700 remote_errno, NULL, NULL);
11701 }
11702
11703 /* Implementation of to_fileio_readlink. */
11704
11705 static gdb::optional<std::string>
11706 remote_hostio_readlink (struct target_ops *self,
11707 struct inferior *inf, const char *filename,
11708 int *remote_errno)
11709 {
11710 struct remote_state *rs = get_remote_state ();
11711 char *p = rs->buf;
11712 char *attachment;
11713 int left = get_remote_packet_size ();
11714 int len, attachment_len;
11715 int read_len;
11716
11717 if (remote_hostio_set_filesystem (inf, remote_errno) != 0)
11718 return {};
11719
11720 remote_buffer_add_string (&p, &left, "vFile:readlink:");
11721
11722 remote_buffer_add_bytes (&p, &left, (const gdb_byte *) filename,
11723 strlen (filename));
11724
11725 len = remote_hostio_send_command (p - rs->buf, PACKET_vFile_readlink,
11726 remote_errno, &attachment,
11727 &attachment_len);
11728
11729 if (len < 0)
11730 return {};
11731
11732 std::string ret (len, '\0');
11733
11734 read_len = remote_unescape_input ((gdb_byte *) attachment, attachment_len,
11735 (gdb_byte *) &ret[0], len);
11736 if (read_len != len)
11737 error (_("Readlink returned %d, but %d bytes."), len, read_len);
11738
11739 return ret;
11740 }
11741
11742 /* Implementation of to_fileio_fstat. */
11743
11744 static int
11745 remote_hostio_fstat (struct target_ops *self,
11746 int fd, struct stat *st,
11747 int *remote_errno)
11748 {
11749 struct remote_state *rs = get_remote_state ();
11750 char *p = rs->buf;
11751 int left = get_remote_packet_size ();
11752 int attachment_len, ret;
11753 char *attachment;
11754 struct fio_stat fst;
11755 int read_len;
11756
11757 remote_buffer_add_string (&p, &left, "vFile:fstat:");
11758
11759 remote_buffer_add_int (&p, &left, fd);
11760
11761 ret = remote_hostio_send_command (p - rs->buf, PACKET_vFile_fstat,
11762 remote_errno, &attachment,
11763 &attachment_len);
11764 if (ret < 0)
11765 {
11766 if (*remote_errno != FILEIO_ENOSYS)
11767 return ret;
11768
11769 /* Strictly we should return -1, ENOSYS here, but when
11770 "set sysroot remote:" was implemented in August 2008
11771 BFD's need for a stat function was sidestepped with
11772 this hack. This was not remedied until March 2015
11773 so we retain the previous behavior to avoid breaking
11774 compatibility.
11775
11776 Note that the memset is a March 2015 addition; older
11777 GDBs set st_size *and nothing else* so the structure
11778 would have garbage in all other fields. This might
11779 break something but retaining the previous behavior
11780 here would be just too wrong. */
11781
11782 memset (st, 0, sizeof (struct stat));
11783 st->st_size = INT_MAX;
11784 return 0;
11785 }
11786
11787 read_len = remote_unescape_input ((gdb_byte *) attachment, attachment_len,
11788 (gdb_byte *) &fst, sizeof (fst));
11789
11790 if (read_len != ret)
11791 error (_("vFile:fstat returned %d, but %d bytes."), ret, read_len);
11792
11793 if (read_len != sizeof (fst))
11794 error (_("vFile:fstat returned %d bytes, but expecting %d."),
11795 read_len, (int) sizeof (fst));
11796
11797 remote_fileio_to_host_stat (&fst, st);
11798
11799 return 0;
11800 }
11801
11802 /* Implementation of to_filesystem_is_local. */
11803
11804 static int
11805 remote_filesystem_is_local (struct target_ops *self)
11806 {
11807 /* Valgrind GDB presents itself as a remote target but works
11808 on the local filesystem: it does not implement remote get
11809 and users are not expected to set a sysroot. To handle
11810 this case we treat the remote filesystem as local if the
11811 sysroot is exactly TARGET_SYSROOT_PREFIX and if the stub
11812 does not support vFile:open. */
11813 if (strcmp (gdb_sysroot, TARGET_SYSROOT_PREFIX) == 0)
11814 {
11815 enum packet_support ps = packet_support (PACKET_vFile_open);
11816
11817 if (ps == PACKET_SUPPORT_UNKNOWN)
11818 {
11819 int fd, remote_errno;
11820
11821 /* Try opening a file to probe support. The supplied
11822 filename is irrelevant, we only care about whether
11823 the stub recognizes the packet or not. */
11824 fd = remote_hostio_open (self, NULL, "just probing",
11825 FILEIO_O_RDONLY, 0700, 0,
11826 &remote_errno);
11827
11828 if (fd >= 0)
11829 remote_hostio_close (self, fd, &remote_errno);
11830
11831 ps = packet_support (PACKET_vFile_open);
11832 }
11833
11834 if (ps == PACKET_DISABLE)
11835 {
11836 static int warning_issued = 0;
11837
11838 if (!warning_issued)
11839 {
11840 warning (_("remote target does not support file"
11841 " transfer, attempting to access files"
11842 " from local filesystem."));
11843 warning_issued = 1;
11844 }
11845
11846 return 1;
11847 }
11848 }
11849
11850 return 0;
11851 }
11852
11853 static int
11854 remote_fileio_errno_to_host (int errnum)
11855 {
11856 switch (errnum)
11857 {
11858 case FILEIO_EPERM:
11859 return EPERM;
11860 case FILEIO_ENOENT:
11861 return ENOENT;
11862 case FILEIO_EINTR:
11863 return EINTR;
11864 case FILEIO_EIO:
11865 return EIO;
11866 case FILEIO_EBADF:
11867 return EBADF;
11868 case FILEIO_EACCES:
11869 return EACCES;
11870 case FILEIO_EFAULT:
11871 return EFAULT;
11872 case FILEIO_EBUSY:
11873 return EBUSY;
11874 case FILEIO_EEXIST:
11875 return EEXIST;
11876 case FILEIO_ENODEV:
11877 return ENODEV;
11878 case FILEIO_ENOTDIR:
11879 return ENOTDIR;
11880 case FILEIO_EISDIR:
11881 return EISDIR;
11882 case FILEIO_EINVAL:
11883 return EINVAL;
11884 case FILEIO_ENFILE:
11885 return ENFILE;
11886 case FILEIO_EMFILE:
11887 return EMFILE;
11888 case FILEIO_EFBIG:
11889 return EFBIG;
11890 case FILEIO_ENOSPC:
11891 return ENOSPC;
11892 case FILEIO_ESPIPE:
11893 return ESPIPE;
11894 case FILEIO_EROFS:
11895 return EROFS;
11896 case FILEIO_ENOSYS:
11897 return ENOSYS;
11898 case FILEIO_ENAMETOOLONG:
11899 return ENAMETOOLONG;
11900 }
11901 return -1;
11902 }
11903
11904 static char *
11905 remote_hostio_error (int errnum)
11906 {
11907 int host_error = remote_fileio_errno_to_host (errnum);
11908
11909 if (host_error == -1)
11910 error (_("Unknown remote I/O error %d"), errnum);
11911 else
11912 error (_("Remote I/O error: %s"), safe_strerror (host_error));
11913 }
11914
11915 static void
11916 remote_hostio_close_cleanup (void *opaque)
11917 {
11918 int fd = *(int *) opaque;
11919 int remote_errno;
11920
11921 remote_hostio_close (find_target_at (process_stratum), fd, &remote_errno);
11922 }
11923
11924 void
11925 remote_file_put (const char *local_file, const char *remote_file, int from_tty)
11926 {
11927 struct cleanup *back_to, *close_cleanup;
11928 int retcode, fd, remote_errno, bytes, io_size;
11929 gdb_byte *buffer;
11930 int bytes_in_buffer;
11931 int saw_eof;
11932 ULONGEST offset;
11933 struct remote_state *rs = get_remote_state ();
11934
11935 if (!rs->remote_desc)
11936 error (_("command can only be used with remote target"));
11937
11938 gdb_file_up file = gdb_fopen_cloexec (local_file, "rb");
11939 if (file == NULL)
11940 perror_with_name (local_file);
11941
11942 fd = remote_hostio_open (find_target_at (process_stratum), NULL,
11943 remote_file, (FILEIO_O_WRONLY | FILEIO_O_CREAT
11944 | FILEIO_O_TRUNC),
11945 0700, 0, &remote_errno);
11946 if (fd == -1)
11947 remote_hostio_error (remote_errno);
11948
11949 /* Send up to this many bytes at once. They won't all fit in the
11950 remote packet limit, so we'll transfer slightly fewer. */
11951 io_size = get_remote_packet_size ();
11952 buffer = (gdb_byte *) xmalloc (io_size);
11953 back_to = make_cleanup (xfree, buffer);
11954
11955 close_cleanup = make_cleanup (remote_hostio_close_cleanup, &fd);
11956
11957 bytes_in_buffer = 0;
11958 saw_eof = 0;
11959 offset = 0;
11960 while (bytes_in_buffer || !saw_eof)
11961 {
11962 if (!saw_eof)
11963 {
11964 bytes = fread (buffer + bytes_in_buffer, 1,
11965 io_size - bytes_in_buffer,
11966 file.get ());
11967 if (bytes == 0)
11968 {
11969 if (ferror (file.get ()))
11970 error (_("Error reading %s."), local_file);
11971 else
11972 {
11973 /* EOF. Unless there is something still in the
11974 buffer from the last iteration, we are done. */
11975 saw_eof = 1;
11976 if (bytes_in_buffer == 0)
11977 break;
11978 }
11979 }
11980 }
11981 else
11982 bytes = 0;
11983
11984 bytes += bytes_in_buffer;
11985 bytes_in_buffer = 0;
11986
11987 retcode = remote_hostio_pwrite (find_target_at (process_stratum),
11988 fd, buffer, bytes,
11989 offset, &remote_errno);
11990
11991 if (retcode < 0)
11992 remote_hostio_error (remote_errno);
11993 else if (retcode == 0)
11994 error (_("Remote write of %d bytes returned 0!"), bytes);
11995 else if (retcode < bytes)
11996 {
11997 /* Short write. Save the rest of the read data for the next
11998 write. */
11999 bytes_in_buffer = bytes - retcode;
12000 memmove (buffer, buffer + retcode, bytes_in_buffer);
12001 }
12002
12003 offset += retcode;
12004 }
12005
12006 discard_cleanups (close_cleanup);
12007 if (remote_hostio_close (find_target_at (process_stratum), fd, &remote_errno))
12008 remote_hostio_error (remote_errno);
12009
12010 if (from_tty)
12011 printf_filtered (_("Successfully sent file \"%s\".\n"), local_file);
12012 do_cleanups (back_to);
12013 }
12014
12015 void
12016 remote_file_get (const char *remote_file, const char *local_file, int from_tty)
12017 {
12018 struct cleanup *back_to, *close_cleanup;
12019 int fd, remote_errno, bytes, io_size;
12020 gdb_byte *buffer;
12021 ULONGEST offset;
12022 struct remote_state *rs = get_remote_state ();
12023
12024 if (!rs->remote_desc)
12025 error (_("command can only be used with remote target"));
12026
12027 fd = remote_hostio_open (find_target_at (process_stratum), NULL,
12028 remote_file, FILEIO_O_RDONLY, 0, 0,
12029 &remote_errno);
12030 if (fd == -1)
12031 remote_hostio_error (remote_errno);
12032
12033 gdb_file_up file = gdb_fopen_cloexec (local_file, "wb");
12034 if (file == NULL)
12035 perror_with_name (local_file);
12036
12037 /* Send up to this many bytes at once. They won't all fit in the
12038 remote packet limit, so we'll transfer slightly fewer. */
12039 io_size = get_remote_packet_size ();
12040 buffer = (gdb_byte *) xmalloc (io_size);
12041 back_to = make_cleanup (xfree, buffer);
12042
12043 close_cleanup = make_cleanup (remote_hostio_close_cleanup, &fd);
12044
12045 offset = 0;
12046 while (1)
12047 {
12048 bytes = remote_hostio_pread (find_target_at (process_stratum),
12049 fd, buffer, io_size, offset, &remote_errno);
12050 if (bytes == 0)
12051 /* Success, but no bytes, means end-of-file. */
12052 break;
12053 if (bytes == -1)
12054 remote_hostio_error (remote_errno);
12055
12056 offset += bytes;
12057
12058 bytes = fwrite (buffer, 1, bytes, file.get ());
12059 if (bytes == 0)
12060 perror_with_name (local_file);
12061 }
12062
12063 discard_cleanups (close_cleanup);
12064 if (remote_hostio_close (find_target_at (process_stratum), fd, &remote_errno))
12065 remote_hostio_error (remote_errno);
12066
12067 if (from_tty)
12068 printf_filtered (_("Successfully fetched file \"%s\".\n"), remote_file);
12069 do_cleanups (back_to);
12070 }
12071
12072 void
12073 remote_file_delete (const char *remote_file, int from_tty)
12074 {
12075 int retcode, remote_errno;
12076 struct remote_state *rs = get_remote_state ();
12077
12078 if (!rs->remote_desc)
12079 error (_("command can only be used with remote target"));
12080
12081 retcode = remote_hostio_unlink (find_target_at (process_stratum),
12082 NULL, remote_file, &remote_errno);
12083 if (retcode == -1)
12084 remote_hostio_error (remote_errno);
12085
12086 if (from_tty)
12087 printf_filtered (_("Successfully deleted file \"%s\".\n"), remote_file);
12088 }
12089
12090 static void
12091 remote_put_command (const char *args, int from_tty)
12092 {
12093 if (args == NULL)
12094 error_no_arg (_("file to put"));
12095
12096 gdb_argv argv (args);
12097 if (argv[0] == NULL || argv[1] == NULL || argv[2] != NULL)
12098 error (_("Invalid parameters to remote put"));
12099
12100 remote_file_put (argv[0], argv[1], from_tty);
12101 }
12102
12103 static void
12104 remote_get_command (const char *args, int from_tty)
12105 {
12106 if (args == NULL)
12107 error_no_arg (_("file to get"));
12108
12109 gdb_argv argv (args);
12110 if (argv[0] == NULL || argv[1] == NULL || argv[2] != NULL)
12111 error (_("Invalid parameters to remote get"));
12112
12113 remote_file_get (argv[0], argv[1], from_tty);
12114 }
12115
12116 static void
12117 remote_delete_command (const char *args, int from_tty)
12118 {
12119 if (args == NULL)
12120 error_no_arg (_("file to delete"));
12121
12122 gdb_argv argv (args);
12123 if (argv[0] == NULL || argv[1] != NULL)
12124 error (_("Invalid parameters to remote delete"));
12125
12126 remote_file_delete (argv[0], from_tty);
12127 }
12128
12129 static void
12130 remote_command (const char *args, int from_tty)
12131 {
12132 help_list (remote_cmdlist, "remote ", all_commands, gdb_stdout);
12133 }
12134
12135 static int
12136 remote_can_execute_reverse (struct target_ops *self)
12137 {
12138 if (packet_support (PACKET_bs) == PACKET_ENABLE
12139 || packet_support (PACKET_bc) == PACKET_ENABLE)
12140 return 1;
12141 else
12142 return 0;
12143 }
12144
12145 static int
12146 remote_supports_non_stop (struct target_ops *self)
12147 {
12148 return 1;
12149 }
12150
12151 static int
12152 remote_supports_disable_randomization (struct target_ops *self)
12153 {
12154 /* Only supported in extended mode. */
12155 return 0;
12156 }
12157
12158 static int
12159 remote_supports_multi_process (struct target_ops *self)
12160 {
12161 struct remote_state *rs = get_remote_state ();
12162
12163 return remote_multi_process_p (rs);
12164 }
12165
12166 static int
12167 remote_supports_cond_tracepoints (void)
12168 {
12169 return packet_support (PACKET_ConditionalTracepoints) == PACKET_ENABLE;
12170 }
12171
12172 static int
12173 remote_supports_cond_breakpoints (struct target_ops *self)
12174 {
12175 return packet_support (PACKET_ConditionalBreakpoints) == PACKET_ENABLE;
12176 }
12177
12178 static int
12179 remote_supports_fast_tracepoints (void)
12180 {
12181 return packet_support (PACKET_FastTracepoints) == PACKET_ENABLE;
12182 }
12183
12184 static int
12185 remote_supports_static_tracepoints (void)
12186 {
12187 return packet_support (PACKET_StaticTracepoints) == PACKET_ENABLE;
12188 }
12189
12190 static int
12191 remote_supports_install_in_trace (void)
12192 {
12193 return packet_support (PACKET_InstallInTrace) == PACKET_ENABLE;
12194 }
12195
12196 static int
12197 remote_supports_enable_disable_tracepoint (struct target_ops *self)
12198 {
12199 return (packet_support (PACKET_EnableDisableTracepoints_feature)
12200 == PACKET_ENABLE);
12201 }
12202
12203 static int
12204 remote_supports_string_tracing (struct target_ops *self)
12205 {
12206 return packet_support (PACKET_tracenz_feature) == PACKET_ENABLE;
12207 }
12208
12209 static int
12210 remote_can_run_breakpoint_commands (struct target_ops *self)
12211 {
12212 return packet_support (PACKET_BreakpointCommands) == PACKET_ENABLE;
12213 }
12214
12215 static void
12216 remote_trace_init (struct target_ops *self)
12217 {
12218 struct remote_state *rs = get_remote_state ();
12219
12220 putpkt ("QTinit");
12221 remote_get_noisy_reply ();
12222 if (strcmp (rs->buf, "OK") != 0)
12223 error (_("Target does not support this command."));
12224 }
12225
12226 /* Recursive routine to walk through command list including loops, and
12227 download packets for each command. */
12228
12229 static void
12230 remote_download_command_source (int num, ULONGEST addr,
12231 struct command_line *cmds)
12232 {
12233 struct remote_state *rs = get_remote_state ();
12234 struct command_line *cmd;
12235
12236 for (cmd = cmds; cmd; cmd = cmd->next)
12237 {
12238 QUIT; /* Allow user to bail out with ^C. */
12239 strcpy (rs->buf, "QTDPsrc:");
12240 encode_source_string (num, addr, "cmd", cmd->line,
12241 rs->buf + strlen (rs->buf),
12242 rs->buf_size - strlen (rs->buf));
12243 putpkt (rs->buf);
12244 remote_get_noisy_reply ();
12245 if (strcmp (rs->buf, "OK"))
12246 warning (_("Target does not support source download."));
12247
12248 if (cmd->control_type == while_control
12249 || cmd->control_type == while_stepping_control)
12250 {
12251 remote_download_command_source (num, addr, *cmd->body_list);
12252
12253 QUIT; /* Allow user to bail out with ^C. */
12254 strcpy (rs->buf, "QTDPsrc:");
12255 encode_source_string (num, addr, "cmd", "end",
12256 rs->buf + strlen (rs->buf),
12257 rs->buf_size - strlen (rs->buf));
12258 putpkt (rs->buf);
12259 remote_get_noisy_reply ();
12260 if (strcmp (rs->buf, "OK"))
12261 warning (_("Target does not support source download."));
12262 }
12263 }
12264 }
12265
12266 static void
12267 remote_download_tracepoint (struct target_ops *self, struct bp_location *loc)
12268 {
12269 #define BUF_SIZE 2048
12270
12271 CORE_ADDR tpaddr;
12272 char addrbuf[40];
12273 char buf[BUF_SIZE];
12274 std::vector<std::string> tdp_actions;
12275 std::vector<std::string> stepping_actions;
12276 char *pkt;
12277 struct breakpoint *b = loc->owner;
12278 struct tracepoint *t = (struct tracepoint *) b;
12279 struct remote_state *rs = get_remote_state ();
12280
12281 encode_actions_rsp (loc, &tdp_actions, &stepping_actions);
12282
12283 tpaddr = loc->address;
12284 sprintf_vma (addrbuf, tpaddr);
12285 xsnprintf (buf, BUF_SIZE, "QTDP:%x:%s:%c:%lx:%x", b->number,
12286 addrbuf, /* address */
12287 (b->enable_state == bp_enabled ? 'E' : 'D'),
12288 t->step_count, t->pass_count);
12289 /* Fast tracepoints are mostly handled by the target, but we can
12290 tell the target how big of an instruction block should be moved
12291 around. */
12292 if (b->type == bp_fast_tracepoint)
12293 {
12294 /* Only test for support at download time; we may not know
12295 target capabilities at definition time. */
12296 if (remote_supports_fast_tracepoints ())
12297 {
12298 if (gdbarch_fast_tracepoint_valid_at (loc->gdbarch, tpaddr,
12299 NULL))
12300 xsnprintf (buf + strlen (buf), BUF_SIZE - strlen (buf), ":F%x",
12301 gdb_insn_length (loc->gdbarch, tpaddr));
12302 else
12303 /* If it passed validation at definition but fails now,
12304 something is very wrong. */
12305 internal_error (__FILE__, __LINE__,
12306 _("Fast tracepoint not "
12307 "valid during download"));
12308 }
12309 else
12310 /* Fast tracepoints are functionally identical to regular
12311 tracepoints, so don't take lack of support as a reason to
12312 give up on the trace run. */
12313 warning (_("Target does not support fast tracepoints, "
12314 "downloading %d as regular tracepoint"), b->number);
12315 }
12316 else if (b->type == bp_static_tracepoint)
12317 {
12318 /* Only test for support at download time; we may not know
12319 target capabilities at definition time. */
12320 if (remote_supports_static_tracepoints ())
12321 {
12322 struct static_tracepoint_marker marker;
12323
12324 if (target_static_tracepoint_marker_at (tpaddr, &marker))
12325 strcat (buf, ":S");
12326 else
12327 error (_("Static tracepoint not valid during download"));
12328 }
12329 else
12330 /* Fast tracepoints are functionally identical to regular
12331 tracepoints, so don't take lack of support as a reason
12332 to give up on the trace run. */
12333 error (_("Target does not support static tracepoints"));
12334 }
12335 /* If the tracepoint has a conditional, make it into an agent
12336 expression and append to the definition. */
12337 if (loc->cond)
12338 {
12339 /* Only test support at download time, we may not know target
12340 capabilities at definition time. */
12341 if (remote_supports_cond_tracepoints ())
12342 {
12343 agent_expr_up aexpr = gen_eval_for_expr (tpaddr, loc->cond.get ());
12344 xsnprintf (buf + strlen (buf), BUF_SIZE - strlen (buf), ":X%x,",
12345 aexpr->len);
12346 pkt = buf + strlen (buf);
12347 for (int ndx = 0; ndx < aexpr->len; ++ndx)
12348 pkt = pack_hex_byte (pkt, aexpr->buf[ndx]);
12349 *pkt = '\0';
12350 }
12351 else
12352 warning (_("Target does not support conditional tracepoints, "
12353 "ignoring tp %d cond"), b->number);
12354 }
12355
12356 if (b->commands || *default_collect)
12357 strcat (buf, "-");
12358 putpkt (buf);
12359 remote_get_noisy_reply ();
12360 if (strcmp (rs->buf, "OK"))
12361 error (_("Target does not support tracepoints."));
12362
12363 /* do_single_steps (t); */
12364 for (auto action_it = tdp_actions.begin ();
12365 action_it != tdp_actions.end (); action_it++)
12366 {
12367 QUIT; /* Allow user to bail out with ^C. */
12368
12369 bool has_more = (action_it != tdp_actions.end ()
12370 || !stepping_actions.empty ());
12371
12372 xsnprintf (buf, BUF_SIZE, "QTDP:-%x:%s:%s%c",
12373 b->number, addrbuf, /* address */
12374 action_it->c_str (),
12375 has_more ? '-' : 0);
12376 putpkt (buf);
12377 remote_get_noisy_reply ();
12378 if (strcmp (rs->buf, "OK"))
12379 error (_("Error on target while setting tracepoints."));
12380 }
12381
12382 for (auto action_it = stepping_actions.begin ();
12383 action_it != stepping_actions.end (); action_it++)
12384 {
12385 QUIT; /* Allow user to bail out with ^C. */
12386
12387 bool is_first = action_it == stepping_actions.begin ();
12388 bool has_more = action_it != stepping_actions.end ();
12389
12390 xsnprintf (buf, BUF_SIZE, "QTDP:-%x:%s:%s%s%s",
12391 b->number, addrbuf, /* address */
12392 is_first ? "S" : "",
12393 action_it->c_str (),
12394 has_more ? "-" : "");
12395 putpkt (buf);
12396 remote_get_noisy_reply ();
12397 if (strcmp (rs->buf, "OK"))
12398 error (_("Error on target while setting tracepoints."));
12399 }
12400
12401 if (packet_support (PACKET_TracepointSource) == PACKET_ENABLE)
12402 {
12403 if (b->location != NULL)
12404 {
12405 strcpy (buf, "QTDPsrc:");
12406 encode_source_string (b->number, loc->address, "at",
12407 event_location_to_string (b->location.get ()),
12408 buf + strlen (buf), 2048 - strlen (buf));
12409 putpkt (buf);
12410 remote_get_noisy_reply ();
12411 if (strcmp (rs->buf, "OK"))
12412 warning (_("Target does not support source download."));
12413 }
12414 if (b->cond_string)
12415 {
12416 strcpy (buf, "QTDPsrc:");
12417 encode_source_string (b->number, loc->address,
12418 "cond", b->cond_string, buf + strlen (buf),
12419 2048 - strlen (buf));
12420 putpkt (buf);
12421 remote_get_noisy_reply ();
12422 if (strcmp (rs->buf, "OK"))
12423 warning (_("Target does not support source download."));
12424 }
12425 remote_download_command_source (b->number, loc->address,
12426 breakpoint_commands (b));
12427 }
12428 }
12429
12430 static int
12431 remote_can_download_tracepoint (struct target_ops *self)
12432 {
12433 struct remote_state *rs = get_remote_state ();
12434 struct trace_status *ts;
12435 int status;
12436
12437 /* Don't try to install tracepoints until we've relocated our
12438 symbols, and fetched and merged the target's tracepoint list with
12439 ours. */
12440 if (rs->starting_up)
12441 return 0;
12442
12443 ts = current_trace_status ();
12444 status = remote_get_trace_status (self, ts);
12445
12446 if (status == -1 || !ts->running_known || !ts->running)
12447 return 0;
12448
12449 /* If we are in a tracing experiment, but remote stub doesn't support
12450 installing tracepoint in trace, we have to return. */
12451 if (!remote_supports_install_in_trace ())
12452 return 0;
12453
12454 return 1;
12455 }
12456
12457
12458 static void
12459 remote_download_trace_state_variable (struct target_ops *self,
12460 const trace_state_variable &tsv)
12461 {
12462 struct remote_state *rs = get_remote_state ();
12463 char *p;
12464
12465 xsnprintf (rs->buf, get_remote_packet_size (), "QTDV:%x:%s:%x:",
12466 tsv.number, phex ((ULONGEST) tsv.initial_value, 8),
12467 tsv.builtin);
12468 p = rs->buf + strlen (rs->buf);
12469 if ((p - rs->buf) + tsv.name.length () * 2 >= get_remote_packet_size ())
12470 error (_("Trace state variable name too long for tsv definition packet"));
12471 p += 2 * bin2hex ((gdb_byte *) (tsv.name.data ()), p, tsv.name.length ());
12472 *p++ = '\0';
12473 putpkt (rs->buf);
12474 remote_get_noisy_reply ();
12475 if (*rs->buf == '\0')
12476 error (_("Target does not support this command."));
12477 if (strcmp (rs->buf, "OK") != 0)
12478 error (_("Error on target while downloading trace state variable."));
12479 }
12480
12481 static void
12482 remote_enable_tracepoint (struct target_ops *self,
12483 struct bp_location *location)
12484 {
12485 struct remote_state *rs = get_remote_state ();
12486 char addr_buf[40];
12487
12488 sprintf_vma (addr_buf, location->address);
12489 xsnprintf (rs->buf, get_remote_packet_size (), "QTEnable:%x:%s",
12490 location->owner->number, addr_buf);
12491 putpkt (rs->buf);
12492 remote_get_noisy_reply ();
12493 if (*rs->buf == '\0')
12494 error (_("Target does not support enabling tracepoints while a trace run is ongoing."));
12495 if (strcmp (rs->buf, "OK") != 0)
12496 error (_("Error on target while enabling tracepoint."));
12497 }
12498
12499 static void
12500 remote_disable_tracepoint (struct target_ops *self,
12501 struct bp_location *location)
12502 {
12503 struct remote_state *rs = get_remote_state ();
12504 char addr_buf[40];
12505
12506 sprintf_vma (addr_buf, location->address);
12507 xsnprintf (rs->buf, get_remote_packet_size (), "QTDisable:%x:%s",
12508 location->owner->number, addr_buf);
12509 putpkt (rs->buf);
12510 remote_get_noisy_reply ();
12511 if (*rs->buf == '\0')
12512 error (_("Target does not support disabling tracepoints while a trace run is ongoing."));
12513 if (strcmp (rs->buf, "OK") != 0)
12514 error (_("Error on target while disabling tracepoint."));
12515 }
12516
12517 static void
12518 remote_trace_set_readonly_regions (struct target_ops *self)
12519 {
12520 asection *s;
12521 bfd *abfd = NULL;
12522 bfd_size_type size;
12523 bfd_vma vma;
12524 int anysecs = 0;
12525 int offset = 0;
12526
12527 if (!exec_bfd)
12528 return; /* No information to give. */
12529
12530 struct remote_state *rs = get_remote_state ();
12531
12532 strcpy (rs->buf, "QTro");
12533 offset = strlen (rs->buf);
12534 for (s = exec_bfd->sections; s; s = s->next)
12535 {
12536 char tmp1[40], tmp2[40];
12537 int sec_length;
12538
12539 if ((s->flags & SEC_LOAD) == 0 ||
12540 /* (s->flags & SEC_CODE) == 0 || */
12541 (s->flags & SEC_READONLY) == 0)
12542 continue;
12543
12544 anysecs = 1;
12545 vma = bfd_get_section_vma (abfd, s);
12546 size = bfd_get_section_size (s);
12547 sprintf_vma (tmp1, vma);
12548 sprintf_vma (tmp2, vma + size);
12549 sec_length = 1 + strlen (tmp1) + 1 + strlen (tmp2);
12550 if (offset + sec_length + 1 > rs->buf_size)
12551 {
12552 if (packet_support (PACKET_qXfer_traceframe_info) != PACKET_ENABLE)
12553 warning (_("\
12554 Too many sections for read-only sections definition packet."));
12555 break;
12556 }
12557 xsnprintf (rs->buf + offset, rs->buf_size - offset, ":%s,%s",
12558 tmp1, tmp2);
12559 offset += sec_length;
12560 }
12561 if (anysecs)
12562 {
12563 putpkt (rs->buf);
12564 getpkt (&rs->buf, &rs->buf_size, 0);
12565 }
12566 }
12567
12568 static void
12569 remote_trace_start (struct target_ops *self)
12570 {
12571 struct remote_state *rs = get_remote_state ();
12572
12573 putpkt ("QTStart");
12574 remote_get_noisy_reply ();
12575 if (*rs->buf == '\0')
12576 error (_("Target does not support this command."));
12577 if (strcmp (rs->buf, "OK") != 0)
12578 error (_("Bogus reply from target: %s"), rs->buf);
12579 }
12580
12581 static int
12582 remote_get_trace_status (struct target_ops *self, struct trace_status *ts)
12583 {
12584 /* Initialize it just to avoid a GCC false warning. */
12585 char *p = NULL;
12586 /* FIXME we need to get register block size some other way. */
12587 extern int trace_regblock_size;
12588 enum packet_result result;
12589 struct remote_state *rs = get_remote_state ();
12590
12591 if (packet_support (PACKET_qTStatus) == PACKET_DISABLE)
12592 return -1;
12593
12594 trace_regblock_size
12595 = get_remote_arch_state (target_gdbarch ())->sizeof_g_packet;
12596
12597 putpkt ("qTStatus");
12598
12599 TRY
12600 {
12601 p = remote_get_noisy_reply ();
12602 }
12603 CATCH (ex, RETURN_MASK_ERROR)
12604 {
12605 if (ex.error != TARGET_CLOSE_ERROR)
12606 {
12607 exception_fprintf (gdb_stderr, ex, "qTStatus: ");
12608 return -1;
12609 }
12610 throw_exception (ex);
12611 }
12612 END_CATCH
12613
12614 result = packet_ok (p, &remote_protocol_packets[PACKET_qTStatus]);
12615
12616 /* If the remote target doesn't do tracing, flag it. */
12617 if (result == PACKET_UNKNOWN)
12618 return -1;
12619
12620 /* We're working with a live target. */
12621 ts->filename = NULL;
12622
12623 if (*p++ != 'T')
12624 error (_("Bogus trace status reply from target: %s"), rs->buf);
12625
12626 /* Function 'parse_trace_status' sets default value of each field of
12627 'ts' at first, so we don't have to do it here. */
12628 parse_trace_status (p, ts);
12629
12630 return ts->running;
12631 }
12632
12633 static void
12634 remote_get_tracepoint_status (struct target_ops *self, struct breakpoint *bp,
12635 struct uploaded_tp *utp)
12636 {
12637 struct remote_state *rs = get_remote_state ();
12638 char *reply;
12639 struct bp_location *loc;
12640 struct tracepoint *tp = (struct tracepoint *) bp;
12641 size_t size = get_remote_packet_size ();
12642
12643 if (tp)
12644 {
12645 tp->hit_count = 0;
12646 tp->traceframe_usage = 0;
12647 for (loc = tp->loc; loc; loc = loc->next)
12648 {
12649 /* If the tracepoint was never downloaded, don't go asking for
12650 any status. */
12651 if (tp->number_on_target == 0)
12652 continue;
12653 xsnprintf (rs->buf, size, "qTP:%x:%s", tp->number_on_target,
12654 phex_nz (loc->address, 0));
12655 putpkt (rs->buf);
12656 reply = remote_get_noisy_reply ();
12657 if (reply && *reply)
12658 {
12659 if (*reply == 'V')
12660 parse_tracepoint_status (reply + 1, bp, utp);
12661 }
12662 }
12663 }
12664 else if (utp)
12665 {
12666 utp->hit_count = 0;
12667 utp->traceframe_usage = 0;
12668 xsnprintf (rs->buf, size, "qTP:%x:%s", utp->number,
12669 phex_nz (utp->addr, 0));
12670 putpkt (rs->buf);
12671 reply = remote_get_noisy_reply ();
12672 if (reply && *reply)
12673 {
12674 if (*reply == 'V')
12675 parse_tracepoint_status (reply + 1, bp, utp);
12676 }
12677 }
12678 }
12679
12680 static void
12681 remote_trace_stop (struct target_ops *self)
12682 {
12683 struct remote_state *rs = get_remote_state ();
12684
12685 putpkt ("QTStop");
12686 remote_get_noisy_reply ();
12687 if (*rs->buf == '\0')
12688 error (_("Target does not support this command."));
12689 if (strcmp (rs->buf, "OK") != 0)
12690 error (_("Bogus reply from target: %s"), rs->buf);
12691 }
12692
12693 static int
12694 remote_trace_find (struct target_ops *self,
12695 enum trace_find_type type, int num,
12696 CORE_ADDR addr1, CORE_ADDR addr2,
12697 int *tpp)
12698 {
12699 struct remote_state *rs = get_remote_state ();
12700 char *endbuf = rs->buf + get_remote_packet_size ();
12701 char *p, *reply;
12702 int target_frameno = -1, target_tracept = -1;
12703
12704 /* Lookups other than by absolute frame number depend on the current
12705 trace selected, so make sure it is correct on the remote end
12706 first. */
12707 if (type != tfind_number)
12708 set_remote_traceframe ();
12709
12710 p = rs->buf;
12711 strcpy (p, "QTFrame:");
12712 p = strchr (p, '\0');
12713 switch (type)
12714 {
12715 case tfind_number:
12716 xsnprintf (p, endbuf - p, "%x", num);
12717 break;
12718 case tfind_pc:
12719 xsnprintf (p, endbuf - p, "pc:%s", phex_nz (addr1, 0));
12720 break;
12721 case tfind_tp:
12722 xsnprintf (p, endbuf - p, "tdp:%x", num);
12723 break;
12724 case tfind_range:
12725 xsnprintf (p, endbuf - p, "range:%s:%s", phex_nz (addr1, 0),
12726 phex_nz (addr2, 0));
12727 break;
12728 case tfind_outside:
12729 xsnprintf (p, endbuf - p, "outside:%s:%s", phex_nz (addr1, 0),
12730 phex_nz (addr2, 0));
12731 break;
12732 default:
12733 error (_("Unknown trace find type %d"), type);
12734 }
12735
12736 putpkt (rs->buf);
12737 reply = remote_get_noisy_reply ();
12738 if (*reply == '\0')
12739 error (_("Target does not support this command."));
12740
12741 while (reply && *reply)
12742 switch (*reply)
12743 {
12744 case 'F':
12745 p = ++reply;
12746 target_frameno = (int) strtol (p, &reply, 16);
12747 if (reply == p)
12748 error (_("Unable to parse trace frame number"));
12749 /* Don't update our remote traceframe number cache on failure
12750 to select a remote traceframe. */
12751 if (target_frameno == -1)
12752 return -1;
12753 break;
12754 case 'T':
12755 p = ++reply;
12756 target_tracept = (int) strtol (p, &reply, 16);
12757 if (reply == p)
12758 error (_("Unable to parse tracepoint number"));
12759 break;
12760 case 'O': /* "OK"? */
12761 if (reply[1] == 'K' && reply[2] == '\0')
12762 reply += 2;
12763 else
12764 error (_("Bogus reply from target: %s"), reply);
12765 break;
12766 default:
12767 error (_("Bogus reply from target: %s"), reply);
12768 }
12769 if (tpp)
12770 *tpp = target_tracept;
12771
12772 rs->remote_traceframe_number = target_frameno;
12773 return target_frameno;
12774 }
12775
12776 static int
12777 remote_get_trace_state_variable_value (struct target_ops *self,
12778 int tsvnum, LONGEST *val)
12779 {
12780 struct remote_state *rs = get_remote_state ();
12781 char *reply;
12782 ULONGEST uval;
12783
12784 set_remote_traceframe ();
12785
12786 xsnprintf (rs->buf, get_remote_packet_size (), "qTV:%x", tsvnum);
12787 putpkt (rs->buf);
12788 reply = remote_get_noisy_reply ();
12789 if (reply && *reply)
12790 {
12791 if (*reply == 'V')
12792 {
12793 unpack_varlen_hex (reply + 1, &uval);
12794 *val = (LONGEST) uval;
12795 return 1;
12796 }
12797 }
12798 return 0;
12799 }
12800
12801 static int
12802 remote_save_trace_data (struct target_ops *self, const char *filename)
12803 {
12804 struct remote_state *rs = get_remote_state ();
12805 char *p, *reply;
12806
12807 p = rs->buf;
12808 strcpy (p, "QTSave:");
12809 p += strlen (p);
12810 if ((p - rs->buf) + strlen (filename) * 2 >= get_remote_packet_size ())
12811 error (_("Remote file name too long for trace save packet"));
12812 p += 2 * bin2hex ((gdb_byte *) filename, p, strlen (filename));
12813 *p++ = '\0';
12814 putpkt (rs->buf);
12815 reply = remote_get_noisy_reply ();
12816 if (*reply == '\0')
12817 error (_("Target does not support this command."));
12818 if (strcmp (reply, "OK") != 0)
12819 error (_("Bogus reply from target: %s"), reply);
12820 return 0;
12821 }
12822
12823 /* This is basically a memory transfer, but needs to be its own packet
12824 because we don't know how the target actually organizes its trace
12825 memory, plus we want to be able to ask for as much as possible, but
12826 not be unhappy if we don't get as much as we ask for. */
12827
12828 static LONGEST
12829 remote_get_raw_trace_data (struct target_ops *self,
12830 gdb_byte *buf, ULONGEST offset, LONGEST len)
12831 {
12832 struct remote_state *rs = get_remote_state ();
12833 char *reply;
12834 char *p;
12835 int rslt;
12836
12837 p = rs->buf;
12838 strcpy (p, "qTBuffer:");
12839 p += strlen (p);
12840 p += hexnumstr (p, offset);
12841 *p++ = ',';
12842 p += hexnumstr (p, len);
12843 *p++ = '\0';
12844
12845 putpkt (rs->buf);
12846 reply = remote_get_noisy_reply ();
12847 if (reply && *reply)
12848 {
12849 /* 'l' by itself means we're at the end of the buffer and
12850 there is nothing more to get. */
12851 if (*reply == 'l')
12852 return 0;
12853
12854 /* Convert the reply into binary. Limit the number of bytes to
12855 convert according to our passed-in buffer size, rather than
12856 what was returned in the packet; if the target is
12857 unexpectedly generous and gives us a bigger reply than we
12858 asked for, we don't want to crash. */
12859 rslt = hex2bin (reply, buf, len);
12860 return rslt;
12861 }
12862
12863 /* Something went wrong, flag as an error. */
12864 return -1;
12865 }
12866
12867 static void
12868 remote_set_disconnected_tracing (struct target_ops *self, int val)
12869 {
12870 struct remote_state *rs = get_remote_state ();
12871
12872 if (packet_support (PACKET_DisconnectedTracing_feature) == PACKET_ENABLE)
12873 {
12874 char *reply;
12875
12876 xsnprintf (rs->buf, get_remote_packet_size (), "QTDisconnected:%x", val);
12877 putpkt (rs->buf);
12878 reply = remote_get_noisy_reply ();
12879 if (*reply == '\0')
12880 error (_("Target does not support this command."));
12881 if (strcmp (reply, "OK") != 0)
12882 error (_("Bogus reply from target: %s"), reply);
12883 }
12884 else if (val)
12885 warning (_("Target does not support disconnected tracing."));
12886 }
12887
12888 static int
12889 remote_core_of_thread (struct target_ops *ops, ptid_t ptid)
12890 {
12891 struct thread_info *info = find_thread_ptid (ptid);
12892
12893 if (info != NULL && info->priv != NULL)
12894 return get_remote_thread_info (info)->core;
12895
12896 return -1;
12897 }
12898
12899 static void
12900 remote_set_circular_trace_buffer (struct target_ops *self, int val)
12901 {
12902 struct remote_state *rs = get_remote_state ();
12903 char *reply;
12904
12905 xsnprintf (rs->buf, get_remote_packet_size (), "QTBuffer:circular:%x", val);
12906 putpkt (rs->buf);
12907 reply = remote_get_noisy_reply ();
12908 if (*reply == '\0')
12909 error (_("Target does not support this command."));
12910 if (strcmp (reply, "OK") != 0)
12911 error (_("Bogus reply from target: %s"), reply);
12912 }
12913
12914 static traceframe_info_up
12915 remote_traceframe_info (struct target_ops *self)
12916 {
12917 gdb::optional<gdb::char_vector> text
12918 = target_read_stralloc (&current_target, TARGET_OBJECT_TRACEFRAME_INFO,
12919 NULL);
12920 if (text)
12921 return parse_traceframe_info (text->data ());
12922
12923 return NULL;
12924 }
12925
12926 /* Handle the qTMinFTPILen packet. Returns the minimum length of
12927 instruction on which a fast tracepoint may be placed. Returns -1
12928 if the packet is not supported, and 0 if the minimum instruction
12929 length is unknown. */
12930
12931 static int
12932 remote_get_min_fast_tracepoint_insn_len (struct target_ops *self)
12933 {
12934 struct remote_state *rs = get_remote_state ();
12935 char *reply;
12936
12937 /* If we're not debugging a process yet, the IPA can't be
12938 loaded. */
12939 if (!target_has_execution)
12940 return 0;
12941
12942 /* Make sure the remote is pointing at the right process. */
12943 set_general_process ();
12944
12945 xsnprintf (rs->buf, get_remote_packet_size (), "qTMinFTPILen");
12946 putpkt (rs->buf);
12947 reply = remote_get_noisy_reply ();
12948 if (*reply == '\0')
12949 return -1;
12950 else
12951 {
12952 ULONGEST min_insn_len;
12953
12954 unpack_varlen_hex (reply, &min_insn_len);
12955
12956 return (int) min_insn_len;
12957 }
12958 }
12959
12960 static void
12961 remote_set_trace_buffer_size (struct target_ops *self, LONGEST val)
12962 {
12963 if (packet_support (PACKET_QTBuffer_size) != PACKET_DISABLE)
12964 {
12965 struct remote_state *rs = get_remote_state ();
12966 char *buf = rs->buf;
12967 char *endbuf = rs->buf + get_remote_packet_size ();
12968 enum packet_result result;
12969
12970 gdb_assert (val >= 0 || val == -1);
12971 buf += xsnprintf (buf, endbuf - buf, "QTBuffer:size:");
12972 /* Send -1 as literal "-1" to avoid host size dependency. */
12973 if (val < 0)
12974 {
12975 *buf++ = '-';
12976 buf += hexnumstr (buf, (ULONGEST) -val);
12977 }
12978 else
12979 buf += hexnumstr (buf, (ULONGEST) val);
12980
12981 putpkt (rs->buf);
12982 remote_get_noisy_reply ();
12983 result = packet_ok (rs->buf,
12984 &remote_protocol_packets[PACKET_QTBuffer_size]);
12985
12986 if (result != PACKET_OK)
12987 warning (_("Bogus reply from target: %s"), rs->buf);
12988 }
12989 }
12990
12991 static int
12992 remote_set_trace_notes (struct target_ops *self,
12993 const char *user, const char *notes,
12994 const char *stop_notes)
12995 {
12996 struct remote_state *rs = get_remote_state ();
12997 char *reply;
12998 char *buf = rs->buf;
12999 char *endbuf = rs->buf + get_remote_packet_size ();
13000 int nbytes;
13001
13002 buf += xsnprintf (buf, endbuf - buf, "QTNotes:");
13003 if (user)
13004 {
13005 buf += xsnprintf (buf, endbuf - buf, "user:");
13006 nbytes = bin2hex ((gdb_byte *) user, buf, strlen (user));
13007 buf += 2 * nbytes;
13008 *buf++ = ';';
13009 }
13010 if (notes)
13011 {
13012 buf += xsnprintf (buf, endbuf - buf, "notes:");
13013 nbytes = bin2hex ((gdb_byte *) notes, buf, strlen (notes));
13014 buf += 2 * nbytes;
13015 *buf++ = ';';
13016 }
13017 if (stop_notes)
13018 {
13019 buf += xsnprintf (buf, endbuf - buf, "tstop:");
13020 nbytes = bin2hex ((gdb_byte *) stop_notes, buf, strlen (stop_notes));
13021 buf += 2 * nbytes;
13022 *buf++ = ';';
13023 }
13024 /* Ensure the buffer is terminated. */
13025 *buf = '\0';
13026
13027 putpkt (rs->buf);
13028 reply = remote_get_noisy_reply ();
13029 if (*reply == '\0')
13030 return 0;
13031
13032 if (strcmp (reply, "OK") != 0)
13033 error (_("Bogus reply from target: %s"), reply);
13034
13035 return 1;
13036 }
13037
13038 static int
13039 remote_use_agent (struct target_ops *self, int use)
13040 {
13041 if (packet_support (PACKET_QAgent) != PACKET_DISABLE)
13042 {
13043 struct remote_state *rs = get_remote_state ();
13044
13045 /* If the stub supports QAgent. */
13046 xsnprintf (rs->buf, get_remote_packet_size (), "QAgent:%d", use);
13047 putpkt (rs->buf);
13048 getpkt (&rs->buf, &rs->buf_size, 0);
13049
13050 if (strcmp (rs->buf, "OK") == 0)
13051 {
13052 use_agent = use;
13053 return 1;
13054 }
13055 }
13056
13057 return 0;
13058 }
13059
13060 static int
13061 remote_can_use_agent (struct target_ops *self)
13062 {
13063 return (packet_support (PACKET_QAgent) != PACKET_DISABLE);
13064 }
13065
13066 struct btrace_target_info
13067 {
13068 /* The ptid of the traced thread. */
13069 ptid_t ptid;
13070
13071 /* The obtained branch trace configuration. */
13072 struct btrace_config conf;
13073 };
13074
13075 /* Reset our idea of our target's btrace configuration. */
13076
13077 static void
13078 remote_btrace_reset (void)
13079 {
13080 struct remote_state *rs = get_remote_state ();
13081
13082 memset (&rs->btrace_config, 0, sizeof (rs->btrace_config));
13083 }
13084
13085 /* Synchronize the configuration with the target. */
13086
13087 static void
13088 btrace_sync_conf (const struct btrace_config *conf)
13089 {
13090 struct packet_config *packet;
13091 struct remote_state *rs;
13092 char *buf, *pos, *endbuf;
13093
13094 rs = get_remote_state ();
13095 buf = rs->buf;
13096 endbuf = buf + get_remote_packet_size ();
13097
13098 packet = &remote_protocol_packets[PACKET_Qbtrace_conf_bts_size];
13099 if (packet_config_support (packet) == PACKET_ENABLE
13100 && conf->bts.size != rs->btrace_config.bts.size)
13101 {
13102 pos = buf;
13103 pos += xsnprintf (pos, endbuf - pos, "%s=0x%x", packet->name,
13104 conf->bts.size);
13105
13106 putpkt (buf);
13107 getpkt (&buf, &rs->buf_size, 0);
13108
13109 if (packet_ok (buf, packet) == PACKET_ERROR)
13110 {
13111 if (buf[0] == 'E' && buf[1] == '.')
13112 error (_("Failed to configure the BTS buffer size: %s"), buf + 2);
13113 else
13114 error (_("Failed to configure the BTS buffer size."));
13115 }
13116
13117 rs->btrace_config.bts.size = conf->bts.size;
13118 }
13119
13120 packet = &remote_protocol_packets[PACKET_Qbtrace_conf_pt_size];
13121 if (packet_config_support (packet) == PACKET_ENABLE
13122 && conf->pt.size != rs->btrace_config.pt.size)
13123 {
13124 pos = buf;
13125 pos += xsnprintf (pos, endbuf - pos, "%s=0x%x", packet->name,
13126 conf->pt.size);
13127
13128 putpkt (buf);
13129 getpkt (&buf, &rs->buf_size, 0);
13130
13131 if (packet_ok (buf, packet) == PACKET_ERROR)
13132 {
13133 if (buf[0] == 'E' && buf[1] == '.')
13134 error (_("Failed to configure the trace buffer size: %s"), buf + 2);
13135 else
13136 error (_("Failed to configure the trace buffer size."));
13137 }
13138
13139 rs->btrace_config.pt.size = conf->pt.size;
13140 }
13141 }
13142
13143 /* Read the current thread's btrace configuration from the target and
13144 store it into CONF. */
13145
13146 static void
13147 btrace_read_config (struct btrace_config *conf)
13148 {
13149 gdb::optional<gdb::char_vector> xml
13150 = target_read_stralloc (&current_target, TARGET_OBJECT_BTRACE_CONF, "");
13151 if (xml)
13152 parse_xml_btrace_conf (conf, xml->data ());
13153 }
13154
13155 /* Maybe reopen target btrace. */
13156
13157 static void
13158 remote_btrace_maybe_reopen (void)
13159 {
13160 struct remote_state *rs = get_remote_state ();
13161 struct thread_info *tp;
13162 int btrace_target_pushed = 0;
13163 int warned = 0;
13164
13165 scoped_restore_current_thread restore_thread;
13166
13167 ALL_NON_EXITED_THREADS (tp)
13168 {
13169 set_general_thread (tp->ptid);
13170
13171 memset (&rs->btrace_config, 0x00, sizeof (struct btrace_config));
13172 btrace_read_config (&rs->btrace_config);
13173
13174 if (rs->btrace_config.format == BTRACE_FORMAT_NONE)
13175 continue;
13176
13177 #if !defined (HAVE_LIBIPT)
13178 if (rs->btrace_config.format == BTRACE_FORMAT_PT)
13179 {
13180 if (!warned)
13181 {
13182 warned = 1;
13183 warning (_("Target is recording using Intel Processor Trace "
13184 "but support was disabled at compile time."));
13185 }
13186
13187 continue;
13188 }
13189 #endif /* !defined (HAVE_LIBIPT) */
13190
13191 /* Push target, once, but before anything else happens. This way our
13192 changes to the threads will be cleaned up by unpushing the target
13193 in case btrace_read_config () throws. */
13194 if (!btrace_target_pushed)
13195 {
13196 btrace_target_pushed = 1;
13197 record_btrace_push_target ();
13198 printf_filtered (_("Target is recording using %s.\n"),
13199 btrace_format_string (rs->btrace_config.format));
13200 }
13201
13202 tp->btrace.target = XCNEW (struct btrace_target_info);
13203 tp->btrace.target->ptid = tp->ptid;
13204 tp->btrace.target->conf = rs->btrace_config;
13205 }
13206 }
13207
13208 /* Enable branch tracing. */
13209
13210 static struct btrace_target_info *
13211 remote_enable_btrace (struct target_ops *self, ptid_t ptid,
13212 const struct btrace_config *conf)
13213 {
13214 struct btrace_target_info *tinfo = NULL;
13215 struct packet_config *packet = NULL;
13216 struct remote_state *rs = get_remote_state ();
13217 char *buf = rs->buf;
13218 char *endbuf = rs->buf + get_remote_packet_size ();
13219
13220 switch (conf->format)
13221 {
13222 case BTRACE_FORMAT_BTS:
13223 packet = &remote_protocol_packets[PACKET_Qbtrace_bts];
13224 break;
13225
13226 case BTRACE_FORMAT_PT:
13227 packet = &remote_protocol_packets[PACKET_Qbtrace_pt];
13228 break;
13229 }
13230
13231 if (packet == NULL || packet_config_support (packet) != PACKET_ENABLE)
13232 error (_("Target does not support branch tracing."));
13233
13234 btrace_sync_conf (conf);
13235
13236 set_general_thread (ptid);
13237
13238 buf += xsnprintf (buf, endbuf - buf, "%s", packet->name);
13239 putpkt (rs->buf);
13240 getpkt (&rs->buf, &rs->buf_size, 0);
13241
13242 if (packet_ok (rs->buf, packet) == PACKET_ERROR)
13243 {
13244 if (rs->buf[0] == 'E' && rs->buf[1] == '.')
13245 error (_("Could not enable branch tracing for %s: %s"),
13246 target_pid_to_str (ptid), rs->buf + 2);
13247 else
13248 error (_("Could not enable branch tracing for %s."),
13249 target_pid_to_str (ptid));
13250 }
13251
13252 tinfo = XCNEW (struct btrace_target_info);
13253 tinfo->ptid = ptid;
13254
13255 /* If we fail to read the configuration, we lose some information, but the
13256 tracing itself is not impacted. */
13257 TRY
13258 {
13259 btrace_read_config (&tinfo->conf);
13260 }
13261 CATCH (err, RETURN_MASK_ERROR)
13262 {
13263 if (err.message != NULL)
13264 warning ("%s", err.message);
13265 }
13266 END_CATCH
13267
13268 return tinfo;
13269 }
13270
13271 /* Disable branch tracing. */
13272
13273 static void
13274 remote_disable_btrace (struct target_ops *self,
13275 struct btrace_target_info *tinfo)
13276 {
13277 struct packet_config *packet = &remote_protocol_packets[PACKET_Qbtrace_off];
13278 struct remote_state *rs = get_remote_state ();
13279 char *buf = rs->buf;
13280 char *endbuf = rs->buf + get_remote_packet_size ();
13281
13282 if (packet_config_support (packet) != PACKET_ENABLE)
13283 error (_("Target does not support branch tracing."));
13284
13285 set_general_thread (tinfo->ptid);
13286
13287 buf += xsnprintf (buf, endbuf - buf, "%s", packet->name);
13288 putpkt (rs->buf);
13289 getpkt (&rs->buf, &rs->buf_size, 0);
13290
13291 if (packet_ok (rs->buf, packet) == PACKET_ERROR)
13292 {
13293 if (rs->buf[0] == 'E' && rs->buf[1] == '.')
13294 error (_("Could not disable branch tracing for %s: %s"),
13295 target_pid_to_str (tinfo->ptid), rs->buf + 2);
13296 else
13297 error (_("Could not disable branch tracing for %s."),
13298 target_pid_to_str (tinfo->ptid));
13299 }
13300
13301 xfree (tinfo);
13302 }
13303
13304 /* Teardown branch tracing. */
13305
13306 static void
13307 remote_teardown_btrace (struct target_ops *self,
13308 struct btrace_target_info *tinfo)
13309 {
13310 /* We must not talk to the target during teardown. */
13311 xfree (tinfo);
13312 }
13313
13314 /* Read the branch trace. */
13315
13316 static enum btrace_error
13317 remote_read_btrace (struct target_ops *self,
13318 struct btrace_data *btrace,
13319 struct btrace_target_info *tinfo,
13320 enum btrace_read_type type)
13321 {
13322 struct packet_config *packet = &remote_protocol_packets[PACKET_qXfer_btrace];
13323 const char *annex;
13324
13325 if (packet_config_support (packet) != PACKET_ENABLE)
13326 error (_("Target does not support branch tracing."));
13327
13328 #if !defined(HAVE_LIBEXPAT)
13329 error (_("Cannot process branch tracing result. XML parsing not supported."));
13330 #endif
13331
13332 switch (type)
13333 {
13334 case BTRACE_READ_ALL:
13335 annex = "all";
13336 break;
13337 case BTRACE_READ_NEW:
13338 annex = "new";
13339 break;
13340 case BTRACE_READ_DELTA:
13341 annex = "delta";
13342 break;
13343 default:
13344 internal_error (__FILE__, __LINE__,
13345 _("Bad branch tracing read type: %u."),
13346 (unsigned int) type);
13347 }
13348
13349 gdb::optional<gdb::char_vector> xml
13350 = target_read_stralloc (&current_target, TARGET_OBJECT_BTRACE, annex);
13351 if (!xml)
13352 return BTRACE_ERR_UNKNOWN;
13353
13354 parse_xml_btrace (btrace, xml->data ());
13355
13356 return BTRACE_ERR_NONE;
13357 }
13358
13359 static const struct btrace_config *
13360 remote_btrace_conf (struct target_ops *self,
13361 const struct btrace_target_info *tinfo)
13362 {
13363 return &tinfo->conf;
13364 }
13365
13366 static int
13367 remote_augmented_libraries_svr4_read (struct target_ops *self)
13368 {
13369 return (packet_support (PACKET_augmented_libraries_svr4_read_feature)
13370 == PACKET_ENABLE);
13371 }
13372
13373 /* Implementation of to_load. */
13374
13375 static void
13376 remote_load (struct target_ops *self, const char *name, int from_tty)
13377 {
13378 generic_load (name, from_tty);
13379 }
13380
13381 /* Accepts an integer PID; returns a string representing a file that
13382 can be opened on the remote side to get the symbols for the child
13383 process. Returns NULL if the operation is not supported. */
13384
13385 static char *
13386 remote_pid_to_exec_file (struct target_ops *self, int pid)
13387 {
13388 static gdb::optional<gdb::char_vector> filename;
13389 struct inferior *inf;
13390 char *annex = NULL;
13391
13392 if (packet_support (PACKET_qXfer_exec_file) != PACKET_ENABLE)
13393 return NULL;
13394
13395 inf = find_inferior_pid (pid);
13396 if (inf == NULL)
13397 internal_error (__FILE__, __LINE__,
13398 _("not currently attached to process %d"), pid);
13399
13400 if (!inf->fake_pid_p)
13401 {
13402 const int annex_size = 9;
13403
13404 annex = (char *) alloca (annex_size);
13405 xsnprintf (annex, annex_size, "%x", pid);
13406 }
13407
13408 filename = target_read_stralloc (&current_target,
13409 TARGET_OBJECT_EXEC_FILE, annex);
13410
13411 return filename ? filename->data () : nullptr;
13412 }
13413
13414 /* Implement the to_can_do_single_step target_ops method. */
13415
13416 static int
13417 remote_can_do_single_step (struct target_ops *ops)
13418 {
13419 /* We can only tell whether target supports single step or not by
13420 supported s and S vCont actions if the stub supports vContSupported
13421 feature. If the stub doesn't support vContSupported feature,
13422 we have conservatively to think target doesn't supports single
13423 step. */
13424 if (packet_support (PACKET_vContSupported) == PACKET_ENABLE)
13425 {
13426 struct remote_state *rs = get_remote_state ();
13427
13428 if (packet_support (PACKET_vCont) == PACKET_SUPPORT_UNKNOWN)
13429 remote_vcont_probe (rs);
13430
13431 return rs->supports_vCont.s && rs->supports_vCont.S;
13432 }
13433 else
13434 return 0;
13435 }
13436
13437 /* Implementation of the to_execution_direction method for the remote
13438 target. */
13439
13440 static enum exec_direction_kind
13441 remote_execution_direction (struct target_ops *self)
13442 {
13443 struct remote_state *rs = get_remote_state ();
13444
13445 return rs->last_resume_exec_dir;
13446 }
13447
13448 /* Return pointer to the thread_info struct which corresponds to
13449 THREAD_HANDLE (having length HANDLE_LEN). */
13450
13451 static struct thread_info *
13452 remote_thread_handle_to_thread_info (struct target_ops *ops,
13453 const gdb_byte *thread_handle,
13454 int handle_len,
13455 struct inferior *inf)
13456 {
13457 struct thread_info *tp;
13458
13459 ALL_NON_EXITED_THREADS (tp)
13460 {
13461 remote_thread_info *priv = get_remote_thread_info (tp);
13462
13463 if (tp->inf == inf && priv != NULL)
13464 {
13465 if (handle_len != priv->thread_handle.size ())
13466 error (_("Thread handle size mismatch: %d vs %zu (from remote)"),
13467 handle_len, priv->thread_handle.size ());
13468 if (memcmp (thread_handle, priv->thread_handle.data (),
13469 handle_len) == 0)
13470 return tp;
13471 }
13472 }
13473
13474 return NULL;
13475 }
13476
13477 static void
13478 init_remote_ops (void)
13479 {
13480 remote_ops.to_shortname = "remote";
13481 remote_ops.to_longname = "Remote serial target in gdb-specific protocol";
13482 remote_ops.to_doc =
13483 "Use a remote computer via a serial line, using a gdb-specific protocol.\n\
13484 Specify the serial device it is connected to\n\
13485 (e.g. /dev/ttyS0, /dev/ttya, COM1, etc.).";
13486 remote_ops.to_open = remote_open;
13487 remote_ops.to_close = remote_close;
13488 remote_ops.to_detach = remote_detach;
13489 remote_ops.to_disconnect = remote_disconnect;
13490 remote_ops.to_resume = remote_resume;
13491 remote_ops.to_commit_resume = remote_commit_resume;
13492 remote_ops.to_wait = remote_wait;
13493 remote_ops.to_fetch_registers = remote_fetch_registers;
13494 remote_ops.to_store_registers = remote_store_registers;
13495 remote_ops.to_prepare_to_store = remote_prepare_to_store;
13496 remote_ops.to_files_info = remote_files_info;
13497 remote_ops.to_insert_breakpoint = remote_insert_breakpoint;
13498 remote_ops.to_remove_breakpoint = remote_remove_breakpoint;
13499 remote_ops.to_stopped_by_sw_breakpoint = remote_stopped_by_sw_breakpoint;
13500 remote_ops.to_supports_stopped_by_sw_breakpoint = remote_supports_stopped_by_sw_breakpoint;
13501 remote_ops.to_stopped_by_hw_breakpoint = remote_stopped_by_hw_breakpoint;
13502 remote_ops.to_supports_stopped_by_hw_breakpoint = remote_supports_stopped_by_hw_breakpoint;
13503 remote_ops.to_stopped_by_watchpoint = remote_stopped_by_watchpoint;
13504 remote_ops.to_stopped_data_address = remote_stopped_data_address;
13505 remote_ops.to_watchpoint_addr_within_range =
13506 remote_watchpoint_addr_within_range;
13507 remote_ops.to_can_use_hw_breakpoint = remote_check_watch_resources;
13508 remote_ops.to_insert_hw_breakpoint = remote_insert_hw_breakpoint;
13509 remote_ops.to_remove_hw_breakpoint = remote_remove_hw_breakpoint;
13510 remote_ops.to_region_ok_for_hw_watchpoint
13511 = remote_region_ok_for_hw_watchpoint;
13512 remote_ops.to_insert_watchpoint = remote_insert_watchpoint;
13513 remote_ops.to_remove_watchpoint = remote_remove_watchpoint;
13514 remote_ops.to_kill = remote_kill;
13515 remote_ops.to_load = remote_load;
13516 remote_ops.to_mourn_inferior = remote_mourn;
13517 remote_ops.to_pass_signals = remote_pass_signals;
13518 remote_ops.to_set_syscall_catchpoint = remote_set_syscall_catchpoint;
13519 remote_ops.to_program_signals = remote_program_signals;
13520 remote_ops.to_thread_alive = remote_thread_alive;
13521 remote_ops.to_thread_name = remote_thread_name;
13522 remote_ops.to_update_thread_list = remote_update_thread_list;
13523 remote_ops.to_pid_to_str = remote_pid_to_str;
13524 remote_ops.to_extra_thread_info = remote_threads_extra_info;
13525 remote_ops.to_get_ada_task_ptid = remote_get_ada_task_ptid;
13526 remote_ops.to_stop = remote_stop;
13527 remote_ops.to_interrupt = remote_interrupt;
13528 remote_ops.to_pass_ctrlc = remote_pass_ctrlc;
13529 remote_ops.to_xfer_partial = remote_xfer_partial;
13530 remote_ops.to_get_memory_xfer_limit = remote_get_memory_xfer_limit;
13531 remote_ops.to_rcmd = remote_rcmd;
13532 remote_ops.to_pid_to_exec_file = remote_pid_to_exec_file;
13533 remote_ops.to_log_command = serial_log_command;
13534 remote_ops.to_get_thread_local_address = remote_get_thread_local_address;
13535 remote_ops.to_stratum = process_stratum;
13536 remote_ops.to_has_all_memory = default_child_has_all_memory;
13537 remote_ops.to_has_memory = default_child_has_memory;
13538 remote_ops.to_has_stack = default_child_has_stack;
13539 remote_ops.to_has_registers = default_child_has_registers;
13540 remote_ops.to_has_execution = default_child_has_execution;
13541 remote_ops.to_has_thread_control = tc_schedlock; /* can lock scheduler */
13542 remote_ops.to_can_execute_reverse = remote_can_execute_reverse;
13543 remote_ops.to_magic = OPS_MAGIC;
13544 remote_ops.to_memory_map = remote_memory_map;
13545 remote_ops.to_flash_erase = remote_flash_erase;
13546 remote_ops.to_flash_done = remote_flash_done;
13547 remote_ops.to_read_description = remote_read_description;
13548 remote_ops.to_search_memory = remote_search_memory;
13549 remote_ops.to_can_async_p = remote_can_async_p;
13550 remote_ops.to_is_async_p = remote_is_async_p;
13551 remote_ops.to_async = remote_async;
13552 remote_ops.to_thread_events = remote_thread_events;
13553 remote_ops.to_can_do_single_step = remote_can_do_single_step;
13554 remote_ops.to_terminal_inferior = remote_terminal_inferior;
13555 remote_ops.to_terminal_ours = remote_terminal_ours;
13556 remote_ops.to_supports_non_stop = remote_supports_non_stop;
13557 remote_ops.to_supports_multi_process = remote_supports_multi_process;
13558 remote_ops.to_supports_disable_randomization
13559 = remote_supports_disable_randomization;
13560 remote_ops.to_filesystem_is_local = remote_filesystem_is_local;
13561 remote_ops.to_fileio_open = remote_hostio_open;
13562 remote_ops.to_fileio_pwrite = remote_hostio_pwrite;
13563 remote_ops.to_fileio_pread = remote_hostio_pread;
13564 remote_ops.to_fileio_fstat = remote_hostio_fstat;
13565 remote_ops.to_fileio_close = remote_hostio_close;
13566 remote_ops.to_fileio_unlink = remote_hostio_unlink;
13567 remote_ops.to_fileio_readlink = remote_hostio_readlink;
13568 remote_ops.to_supports_enable_disable_tracepoint = remote_supports_enable_disable_tracepoint;
13569 remote_ops.to_supports_string_tracing = remote_supports_string_tracing;
13570 remote_ops.to_supports_evaluation_of_breakpoint_conditions = remote_supports_cond_breakpoints;
13571 remote_ops.to_can_run_breakpoint_commands = remote_can_run_breakpoint_commands;
13572 remote_ops.to_trace_init = remote_trace_init;
13573 remote_ops.to_download_tracepoint = remote_download_tracepoint;
13574 remote_ops.to_can_download_tracepoint = remote_can_download_tracepoint;
13575 remote_ops.to_download_trace_state_variable
13576 = remote_download_trace_state_variable;
13577 remote_ops.to_enable_tracepoint = remote_enable_tracepoint;
13578 remote_ops.to_disable_tracepoint = remote_disable_tracepoint;
13579 remote_ops.to_trace_set_readonly_regions = remote_trace_set_readonly_regions;
13580 remote_ops.to_trace_start = remote_trace_start;
13581 remote_ops.to_get_trace_status = remote_get_trace_status;
13582 remote_ops.to_get_tracepoint_status = remote_get_tracepoint_status;
13583 remote_ops.to_trace_stop = remote_trace_stop;
13584 remote_ops.to_trace_find = remote_trace_find;
13585 remote_ops.to_get_trace_state_variable_value
13586 = remote_get_trace_state_variable_value;
13587 remote_ops.to_save_trace_data = remote_save_trace_data;
13588 remote_ops.to_upload_tracepoints = remote_upload_tracepoints;
13589 remote_ops.to_upload_trace_state_variables
13590 = remote_upload_trace_state_variables;
13591 remote_ops.to_get_raw_trace_data = remote_get_raw_trace_data;
13592 remote_ops.to_get_min_fast_tracepoint_insn_len = remote_get_min_fast_tracepoint_insn_len;
13593 remote_ops.to_set_disconnected_tracing = remote_set_disconnected_tracing;
13594 remote_ops.to_set_circular_trace_buffer = remote_set_circular_trace_buffer;
13595 remote_ops.to_set_trace_buffer_size = remote_set_trace_buffer_size;
13596 remote_ops.to_set_trace_notes = remote_set_trace_notes;
13597 remote_ops.to_core_of_thread = remote_core_of_thread;
13598 remote_ops.to_verify_memory = remote_verify_memory;
13599 remote_ops.to_get_tib_address = remote_get_tib_address;
13600 remote_ops.to_set_permissions = remote_set_permissions;
13601 remote_ops.to_static_tracepoint_marker_at
13602 = remote_static_tracepoint_marker_at;
13603 remote_ops.to_static_tracepoint_markers_by_strid
13604 = remote_static_tracepoint_markers_by_strid;
13605 remote_ops.to_traceframe_info = remote_traceframe_info;
13606 remote_ops.to_use_agent = remote_use_agent;
13607 remote_ops.to_can_use_agent = remote_can_use_agent;
13608 remote_ops.to_enable_btrace = remote_enable_btrace;
13609 remote_ops.to_disable_btrace = remote_disable_btrace;
13610 remote_ops.to_teardown_btrace = remote_teardown_btrace;
13611 remote_ops.to_read_btrace = remote_read_btrace;
13612 remote_ops.to_btrace_conf = remote_btrace_conf;
13613 remote_ops.to_augmented_libraries_svr4_read =
13614 remote_augmented_libraries_svr4_read;
13615 remote_ops.to_follow_fork = remote_follow_fork;
13616 remote_ops.to_follow_exec = remote_follow_exec;
13617 remote_ops.to_insert_fork_catchpoint = remote_insert_fork_catchpoint;
13618 remote_ops.to_remove_fork_catchpoint = remote_remove_fork_catchpoint;
13619 remote_ops.to_insert_vfork_catchpoint = remote_insert_vfork_catchpoint;
13620 remote_ops.to_remove_vfork_catchpoint = remote_remove_vfork_catchpoint;
13621 remote_ops.to_insert_exec_catchpoint = remote_insert_exec_catchpoint;
13622 remote_ops.to_remove_exec_catchpoint = remote_remove_exec_catchpoint;
13623 remote_ops.to_execution_direction = remote_execution_direction;
13624 remote_ops.to_thread_handle_to_thread_info =
13625 remote_thread_handle_to_thread_info;
13626 }
13627
13628 /* Set up the extended remote vector by making a copy of the standard
13629 remote vector and adding to it. */
13630
13631 static void
13632 init_extended_remote_ops (void)
13633 {
13634 extended_remote_ops = remote_ops;
13635
13636 extended_remote_ops.to_shortname = "extended-remote";
13637 extended_remote_ops.to_longname =
13638 "Extended remote serial target in gdb-specific protocol";
13639 extended_remote_ops.to_doc =
13640 "Use a remote computer via a serial line, using a gdb-specific protocol.\n\
13641 Specify the serial device it is connected to (e.g. /dev/ttya).";
13642 extended_remote_ops.to_open = extended_remote_open;
13643 extended_remote_ops.to_create_inferior = extended_remote_create_inferior;
13644 extended_remote_ops.to_detach = extended_remote_detach;
13645 extended_remote_ops.to_attach = extended_remote_attach;
13646 extended_remote_ops.to_post_attach = extended_remote_post_attach;
13647 extended_remote_ops.to_supports_disable_randomization
13648 = extended_remote_supports_disable_randomization;
13649 }
13650
13651 static int
13652 remote_can_async_p (struct target_ops *ops)
13653 {
13654 struct remote_state *rs = get_remote_state ();
13655
13656 /* We don't go async if the user has explicitly prevented it with the
13657 "maint set target-async" command. */
13658 if (!target_async_permitted)
13659 return 0;
13660
13661 /* We're async whenever the serial device is. */
13662 return serial_can_async_p (rs->remote_desc);
13663 }
13664
13665 static int
13666 remote_is_async_p (struct target_ops *ops)
13667 {
13668 struct remote_state *rs = get_remote_state ();
13669
13670 if (!target_async_permitted)
13671 /* We only enable async when the user specifically asks for it. */
13672 return 0;
13673
13674 /* We're async whenever the serial device is. */
13675 return serial_is_async_p (rs->remote_desc);
13676 }
13677
13678 /* Pass the SERIAL event on and up to the client. One day this code
13679 will be able to delay notifying the client of an event until the
13680 point where an entire packet has been received. */
13681
13682 static serial_event_ftype remote_async_serial_handler;
13683
13684 static void
13685 remote_async_serial_handler (struct serial *scb, void *context)
13686 {
13687 /* Don't propogate error information up to the client. Instead let
13688 the client find out about the error by querying the target. */
13689 inferior_event_handler (INF_REG_EVENT, NULL);
13690 }
13691
13692 static void
13693 remote_async_inferior_event_handler (gdb_client_data data)
13694 {
13695 inferior_event_handler (INF_REG_EVENT, NULL);
13696 }
13697
13698 static void
13699 remote_async (struct target_ops *ops, int enable)
13700 {
13701 struct remote_state *rs = get_remote_state ();
13702
13703 if (enable)
13704 {
13705 serial_async (rs->remote_desc, remote_async_serial_handler, rs);
13706
13707 /* If there are pending events in the stop reply queue tell the
13708 event loop to process them. */
13709 if (!QUEUE_is_empty (stop_reply_p, stop_reply_queue))
13710 mark_async_event_handler (remote_async_inferior_event_token);
13711 /* For simplicity, below we clear the pending events token
13712 without remembering whether it is marked, so here we always
13713 mark it. If there's actually no pending notification to
13714 process, this ends up being a no-op (other than a spurious
13715 event-loop wakeup). */
13716 if (target_is_non_stop_p ())
13717 mark_async_event_handler (rs->notif_state->get_pending_events_token);
13718 }
13719 else
13720 {
13721 serial_async (rs->remote_desc, NULL, NULL);
13722 /* If the core is disabling async, it doesn't want to be
13723 disturbed with target events. Clear all async event sources
13724 too. */
13725 clear_async_event_handler (remote_async_inferior_event_token);
13726 if (target_is_non_stop_p ())
13727 clear_async_event_handler (rs->notif_state->get_pending_events_token);
13728 }
13729 }
13730
13731 /* Implementation of the to_thread_events method. */
13732
13733 static void
13734 remote_thread_events (struct target_ops *ops, int enable)
13735 {
13736 struct remote_state *rs = get_remote_state ();
13737 size_t size = get_remote_packet_size ();
13738
13739 if (packet_support (PACKET_QThreadEvents) == PACKET_DISABLE)
13740 return;
13741
13742 xsnprintf (rs->buf, size, "QThreadEvents:%x", enable ? 1 : 0);
13743 putpkt (rs->buf);
13744 getpkt (&rs->buf, &rs->buf_size, 0);
13745
13746 switch (packet_ok (rs->buf,
13747 &remote_protocol_packets[PACKET_QThreadEvents]))
13748 {
13749 case PACKET_OK:
13750 if (strcmp (rs->buf, "OK") != 0)
13751 error (_("Remote refused setting thread events: %s"), rs->buf);
13752 break;
13753 case PACKET_ERROR:
13754 warning (_("Remote failure reply: %s"), rs->buf);
13755 break;
13756 case PACKET_UNKNOWN:
13757 break;
13758 }
13759 }
13760
13761 static void
13762 set_remote_cmd (const char *args, int from_tty)
13763 {
13764 help_list (remote_set_cmdlist, "set remote ", all_commands, gdb_stdout);
13765 }
13766
13767 static void
13768 show_remote_cmd (const char *args, int from_tty)
13769 {
13770 /* We can't just use cmd_show_list here, because we want to skip
13771 the redundant "show remote Z-packet" and the legacy aliases. */
13772 struct cmd_list_element *list = remote_show_cmdlist;
13773 struct ui_out *uiout = current_uiout;
13774
13775 ui_out_emit_tuple tuple_emitter (uiout, "showlist");
13776 for (; list != NULL; list = list->next)
13777 if (strcmp (list->name, "Z-packet") == 0)
13778 continue;
13779 else if (list->type == not_set_cmd)
13780 /* Alias commands are exactly like the original, except they
13781 don't have the normal type. */
13782 continue;
13783 else
13784 {
13785 ui_out_emit_tuple option_emitter (uiout, "option");
13786
13787 uiout->field_string ("name", list->name);
13788 uiout->text (": ");
13789 if (list->type == show_cmd)
13790 do_show_command (NULL, from_tty, list);
13791 else
13792 cmd_func (list, NULL, from_tty);
13793 }
13794 }
13795
13796
13797 /* Function to be called whenever a new objfile (shlib) is detected. */
13798 static void
13799 remote_new_objfile (struct objfile *objfile)
13800 {
13801 struct remote_state *rs = get_remote_state ();
13802
13803 if (rs->remote_desc != 0) /* Have a remote connection. */
13804 remote_check_symbols ();
13805 }
13806
13807 /* Pull all the tracepoints defined on the target and create local
13808 data structures representing them. We don't want to create real
13809 tracepoints yet, we don't want to mess up the user's existing
13810 collection. */
13811
13812 static int
13813 remote_upload_tracepoints (struct target_ops *self, struct uploaded_tp **utpp)
13814 {
13815 struct remote_state *rs = get_remote_state ();
13816 char *p;
13817
13818 /* Ask for a first packet of tracepoint definition. */
13819 putpkt ("qTfP");
13820 getpkt (&rs->buf, &rs->buf_size, 0);
13821 p = rs->buf;
13822 while (*p && *p != 'l')
13823 {
13824 parse_tracepoint_definition (p, utpp);
13825 /* Ask for another packet of tracepoint definition. */
13826 putpkt ("qTsP");
13827 getpkt (&rs->buf, &rs->buf_size, 0);
13828 p = rs->buf;
13829 }
13830 return 0;
13831 }
13832
13833 static int
13834 remote_upload_trace_state_variables (struct target_ops *self,
13835 struct uploaded_tsv **utsvp)
13836 {
13837 struct remote_state *rs = get_remote_state ();
13838 char *p;
13839
13840 /* Ask for a first packet of variable definition. */
13841 putpkt ("qTfV");
13842 getpkt (&rs->buf, &rs->buf_size, 0);
13843 p = rs->buf;
13844 while (*p && *p != 'l')
13845 {
13846 parse_tsv_definition (p, utsvp);
13847 /* Ask for another packet of variable definition. */
13848 putpkt ("qTsV");
13849 getpkt (&rs->buf, &rs->buf_size, 0);
13850 p = rs->buf;
13851 }
13852 return 0;
13853 }
13854
13855 /* The "set/show range-stepping" show hook. */
13856
13857 static void
13858 show_range_stepping (struct ui_file *file, int from_tty,
13859 struct cmd_list_element *c,
13860 const char *value)
13861 {
13862 fprintf_filtered (file,
13863 _("Debugger's willingness to use range stepping "
13864 "is %s.\n"), value);
13865 }
13866
13867 /* The "set/show range-stepping" set hook. */
13868
13869 static void
13870 set_range_stepping (const char *ignore_args, int from_tty,
13871 struct cmd_list_element *c)
13872 {
13873 struct remote_state *rs = get_remote_state ();
13874
13875 /* Whene enabling, check whether range stepping is actually
13876 supported by the target, and warn if not. */
13877 if (use_range_stepping)
13878 {
13879 if (rs->remote_desc != NULL)
13880 {
13881 if (packet_support (PACKET_vCont) == PACKET_SUPPORT_UNKNOWN)
13882 remote_vcont_probe (rs);
13883
13884 if (packet_support (PACKET_vCont) == PACKET_ENABLE
13885 && rs->supports_vCont.r)
13886 return;
13887 }
13888
13889 warning (_("Range stepping is not supported by the current target"));
13890 }
13891 }
13892
13893 void
13894 _initialize_remote (void)
13895 {
13896 struct cmd_list_element *cmd;
13897 const char *cmd_name;
13898
13899 /* architecture specific data */
13900 remote_gdbarch_data_handle =
13901 gdbarch_data_register_post_init (init_remote_state);
13902 remote_g_packet_data_handle =
13903 gdbarch_data_register_pre_init (remote_g_packet_data_init);
13904
13905 remote_pspace_data
13906 = register_program_space_data_with_cleanup (NULL,
13907 remote_pspace_data_cleanup);
13908
13909 /* Initialize the per-target state. At the moment there is only one
13910 of these, not one per target. Only one target is active at a
13911 time. */
13912 remote_state = new_remote_state ();
13913
13914 init_remote_ops ();
13915 add_target (&remote_ops);
13916
13917 init_extended_remote_ops ();
13918 add_target (&extended_remote_ops);
13919
13920 /* Hook into new objfile notification. */
13921 gdb::observers::new_objfile.attach (remote_new_objfile);
13922 /* We're no longer interested in notification events of an inferior
13923 when it exits. */
13924 gdb::observers::inferior_exit.attach (discard_pending_stop_replies);
13925
13926 #if 0
13927 init_remote_threadtests ();
13928 #endif
13929
13930 stop_reply_queue = QUEUE_alloc (stop_reply_p, stop_reply_xfree);
13931 /* set/show remote ... */
13932
13933 add_prefix_cmd ("remote", class_maintenance, set_remote_cmd, _("\
13934 Remote protocol specific variables\n\
13935 Configure various remote-protocol specific variables such as\n\
13936 the packets being used"),
13937 &remote_set_cmdlist, "set remote ",
13938 0 /* allow-unknown */, &setlist);
13939 add_prefix_cmd ("remote", class_maintenance, show_remote_cmd, _("\
13940 Remote protocol specific variables\n\
13941 Configure various remote-protocol specific variables such as\n\
13942 the packets being used"),
13943 &remote_show_cmdlist, "show remote ",
13944 0 /* allow-unknown */, &showlist);
13945
13946 add_cmd ("compare-sections", class_obscure, compare_sections_command, _("\
13947 Compare section data on target to the exec file.\n\
13948 Argument is a single section name (default: all loaded sections).\n\
13949 To compare only read-only loaded sections, specify the -r option."),
13950 &cmdlist);
13951
13952 add_cmd ("packet", class_maintenance, packet_command, _("\
13953 Send an arbitrary packet to a remote target.\n\
13954 maintenance packet TEXT\n\
13955 If GDB is talking to an inferior via the GDB serial protocol, then\n\
13956 this command sends the string TEXT to the inferior, and displays the\n\
13957 response packet. GDB supplies the initial `$' character, and the\n\
13958 terminating `#' character and checksum."),
13959 &maintenancelist);
13960
13961 add_setshow_boolean_cmd ("remotebreak", no_class, &remote_break, _("\
13962 Set whether to send break if interrupted."), _("\
13963 Show whether to send break if interrupted."), _("\
13964 If set, a break, instead of a cntrl-c, is sent to the remote target."),
13965 set_remotebreak, show_remotebreak,
13966 &setlist, &showlist);
13967 cmd_name = "remotebreak";
13968 cmd = lookup_cmd (&cmd_name, setlist, "", -1, 1);
13969 deprecate_cmd (cmd, "set remote interrupt-sequence");
13970 cmd_name = "remotebreak"; /* needed because lookup_cmd updates the pointer */
13971 cmd = lookup_cmd (&cmd_name, showlist, "", -1, 1);
13972 deprecate_cmd (cmd, "show remote interrupt-sequence");
13973
13974 add_setshow_enum_cmd ("interrupt-sequence", class_support,
13975 interrupt_sequence_modes, &interrupt_sequence_mode,
13976 _("\
13977 Set interrupt sequence to remote target."), _("\
13978 Show interrupt sequence to remote target."), _("\
13979 Valid value is \"Ctrl-C\", \"BREAK\" or \"BREAK-g\". The default is \"Ctrl-C\"."),
13980 NULL, show_interrupt_sequence,
13981 &remote_set_cmdlist,
13982 &remote_show_cmdlist);
13983
13984 add_setshow_boolean_cmd ("interrupt-on-connect", class_support,
13985 &interrupt_on_connect, _("\
13986 Set whether interrupt-sequence is sent to remote target when gdb connects to."), _(" \
13987 Show whether interrupt-sequence is sent to remote target when gdb connects to."), _(" \
13988 If set, interrupt sequence is sent to remote target."),
13989 NULL, NULL,
13990 &remote_set_cmdlist, &remote_show_cmdlist);
13991
13992 /* Install commands for configuring memory read/write packets. */
13993
13994 add_cmd ("remotewritesize", no_class, set_memory_write_packet_size, _("\
13995 Set the maximum number of bytes per memory write packet (deprecated)."),
13996 &setlist);
13997 add_cmd ("remotewritesize", no_class, show_memory_write_packet_size, _("\
13998 Show the maximum number of bytes per memory write packet (deprecated)."),
13999 &showlist);
14000 add_cmd ("memory-write-packet-size", no_class,
14001 set_memory_write_packet_size, _("\
14002 Set the maximum number of bytes per memory-write packet.\n\
14003 Specify the number of bytes in a packet or 0 (zero) for the\n\
14004 default packet size. The actual limit is further reduced\n\
14005 dependent on the target. Specify ``fixed'' to disable the\n\
14006 further restriction and ``limit'' to enable that restriction."),
14007 &remote_set_cmdlist);
14008 add_cmd ("memory-read-packet-size", no_class,
14009 set_memory_read_packet_size, _("\
14010 Set the maximum number of bytes per memory-read packet.\n\
14011 Specify the number of bytes in a packet or 0 (zero) for the\n\
14012 default packet size. The actual limit is further reduced\n\
14013 dependent on the target. Specify ``fixed'' to disable the\n\
14014 further restriction and ``limit'' to enable that restriction."),
14015 &remote_set_cmdlist);
14016 add_cmd ("memory-write-packet-size", no_class,
14017 show_memory_write_packet_size,
14018 _("Show the maximum number of bytes per memory-write packet."),
14019 &remote_show_cmdlist);
14020 add_cmd ("memory-read-packet-size", no_class,
14021 show_memory_read_packet_size,
14022 _("Show the maximum number of bytes per memory-read packet."),
14023 &remote_show_cmdlist);
14024
14025 add_setshow_zinteger_cmd ("hardware-watchpoint-limit", no_class,
14026 &remote_hw_watchpoint_limit, _("\
14027 Set the maximum number of target hardware watchpoints."), _("\
14028 Show the maximum number of target hardware watchpoints."), _("\
14029 Specify a negative limit for unlimited."),
14030 NULL, NULL, /* FIXME: i18n: The maximum
14031 number of target hardware
14032 watchpoints is %s. */
14033 &remote_set_cmdlist, &remote_show_cmdlist);
14034 add_setshow_zinteger_cmd ("hardware-watchpoint-length-limit", no_class,
14035 &remote_hw_watchpoint_length_limit, _("\
14036 Set the maximum length (in bytes) of a target hardware watchpoint."), _("\
14037 Show the maximum length (in bytes) of a target hardware watchpoint."), _("\
14038 Specify a negative limit for unlimited."),
14039 NULL, NULL, /* FIXME: i18n: The maximum
14040 length (in bytes) of a target
14041 hardware watchpoint is %s. */
14042 &remote_set_cmdlist, &remote_show_cmdlist);
14043 add_setshow_zinteger_cmd ("hardware-breakpoint-limit", no_class,
14044 &remote_hw_breakpoint_limit, _("\
14045 Set the maximum number of target hardware breakpoints."), _("\
14046 Show the maximum number of target hardware breakpoints."), _("\
14047 Specify a negative limit for unlimited."),
14048 NULL, NULL, /* FIXME: i18n: The maximum
14049 number of target hardware
14050 breakpoints is %s. */
14051 &remote_set_cmdlist, &remote_show_cmdlist);
14052
14053 add_setshow_zuinteger_cmd ("remoteaddresssize", class_obscure,
14054 &remote_address_size, _("\
14055 Set the maximum size of the address (in bits) in a memory packet."), _("\
14056 Show the maximum size of the address (in bits) in a memory packet."), NULL,
14057 NULL,
14058 NULL, /* FIXME: i18n: */
14059 &setlist, &showlist);
14060
14061 init_all_packet_configs ();
14062
14063 add_packet_config_cmd (&remote_protocol_packets[PACKET_X],
14064 "X", "binary-download", 1);
14065
14066 add_packet_config_cmd (&remote_protocol_packets[PACKET_vCont],
14067 "vCont", "verbose-resume", 0);
14068
14069 add_packet_config_cmd (&remote_protocol_packets[PACKET_QPassSignals],
14070 "QPassSignals", "pass-signals", 0);
14071
14072 add_packet_config_cmd (&remote_protocol_packets[PACKET_QCatchSyscalls],
14073 "QCatchSyscalls", "catch-syscalls", 0);
14074
14075 add_packet_config_cmd (&remote_protocol_packets[PACKET_QProgramSignals],
14076 "QProgramSignals", "program-signals", 0);
14077
14078 add_packet_config_cmd (&remote_protocol_packets[PACKET_QSetWorkingDir],
14079 "QSetWorkingDir", "set-working-dir", 0);
14080
14081 add_packet_config_cmd (&remote_protocol_packets[PACKET_QStartupWithShell],
14082 "QStartupWithShell", "startup-with-shell", 0);
14083
14084 add_packet_config_cmd (&remote_protocol_packets
14085 [PACKET_QEnvironmentHexEncoded],
14086 "QEnvironmentHexEncoded", "environment-hex-encoded",
14087 0);
14088
14089 add_packet_config_cmd (&remote_protocol_packets[PACKET_QEnvironmentReset],
14090 "QEnvironmentReset", "environment-reset",
14091 0);
14092
14093 add_packet_config_cmd (&remote_protocol_packets[PACKET_QEnvironmentUnset],
14094 "QEnvironmentUnset", "environment-unset",
14095 0);
14096
14097 add_packet_config_cmd (&remote_protocol_packets[PACKET_qSymbol],
14098 "qSymbol", "symbol-lookup", 0);
14099
14100 add_packet_config_cmd (&remote_protocol_packets[PACKET_P],
14101 "P", "set-register", 1);
14102
14103 add_packet_config_cmd (&remote_protocol_packets[PACKET_p],
14104 "p", "fetch-register", 1);
14105
14106 add_packet_config_cmd (&remote_protocol_packets[PACKET_Z0],
14107 "Z0", "software-breakpoint", 0);
14108
14109 add_packet_config_cmd (&remote_protocol_packets[PACKET_Z1],
14110 "Z1", "hardware-breakpoint", 0);
14111
14112 add_packet_config_cmd (&remote_protocol_packets[PACKET_Z2],
14113 "Z2", "write-watchpoint", 0);
14114
14115 add_packet_config_cmd (&remote_protocol_packets[PACKET_Z3],
14116 "Z3", "read-watchpoint", 0);
14117
14118 add_packet_config_cmd (&remote_protocol_packets[PACKET_Z4],
14119 "Z4", "access-watchpoint", 0);
14120
14121 add_packet_config_cmd (&remote_protocol_packets[PACKET_qXfer_auxv],
14122 "qXfer:auxv:read", "read-aux-vector", 0);
14123
14124 add_packet_config_cmd (&remote_protocol_packets[PACKET_qXfer_exec_file],
14125 "qXfer:exec-file:read", "pid-to-exec-file", 0);
14126
14127 add_packet_config_cmd (&remote_protocol_packets[PACKET_qXfer_features],
14128 "qXfer:features:read", "target-features", 0);
14129
14130 add_packet_config_cmd (&remote_protocol_packets[PACKET_qXfer_libraries],
14131 "qXfer:libraries:read", "library-info", 0);
14132
14133 add_packet_config_cmd (&remote_protocol_packets[PACKET_qXfer_libraries_svr4],
14134 "qXfer:libraries-svr4:read", "library-info-svr4", 0);
14135
14136 add_packet_config_cmd (&remote_protocol_packets[PACKET_qXfer_memory_map],
14137 "qXfer:memory-map:read", "memory-map", 0);
14138
14139 add_packet_config_cmd (&remote_protocol_packets[PACKET_qXfer_spu_read],
14140 "qXfer:spu:read", "read-spu-object", 0);
14141
14142 add_packet_config_cmd (&remote_protocol_packets[PACKET_qXfer_spu_write],
14143 "qXfer:spu:write", "write-spu-object", 0);
14144
14145 add_packet_config_cmd (&remote_protocol_packets[PACKET_qXfer_osdata],
14146 "qXfer:osdata:read", "osdata", 0);
14147
14148 add_packet_config_cmd (&remote_protocol_packets[PACKET_qXfer_threads],
14149 "qXfer:threads:read", "threads", 0);
14150
14151 add_packet_config_cmd (&remote_protocol_packets[PACKET_qXfer_siginfo_read],
14152 "qXfer:siginfo:read", "read-siginfo-object", 0);
14153
14154 add_packet_config_cmd (&remote_protocol_packets[PACKET_qXfer_siginfo_write],
14155 "qXfer:siginfo:write", "write-siginfo-object", 0);
14156
14157 add_packet_config_cmd
14158 (&remote_protocol_packets[PACKET_qXfer_traceframe_info],
14159 "qXfer:traceframe-info:read", "traceframe-info", 0);
14160
14161 add_packet_config_cmd (&remote_protocol_packets[PACKET_qXfer_uib],
14162 "qXfer:uib:read", "unwind-info-block", 0);
14163
14164 add_packet_config_cmd (&remote_protocol_packets[PACKET_qGetTLSAddr],
14165 "qGetTLSAddr", "get-thread-local-storage-address",
14166 0);
14167
14168 add_packet_config_cmd (&remote_protocol_packets[PACKET_qGetTIBAddr],
14169 "qGetTIBAddr", "get-thread-information-block-address",
14170 0);
14171
14172 add_packet_config_cmd (&remote_protocol_packets[PACKET_bc],
14173 "bc", "reverse-continue", 0);
14174
14175 add_packet_config_cmd (&remote_protocol_packets[PACKET_bs],
14176 "bs", "reverse-step", 0);
14177
14178 add_packet_config_cmd (&remote_protocol_packets[PACKET_qSupported],
14179 "qSupported", "supported-packets", 0);
14180
14181 add_packet_config_cmd (&remote_protocol_packets[PACKET_qSearch_memory],
14182 "qSearch:memory", "search-memory", 0);
14183
14184 add_packet_config_cmd (&remote_protocol_packets[PACKET_qTStatus],
14185 "qTStatus", "trace-status", 0);
14186
14187 add_packet_config_cmd (&remote_protocol_packets[PACKET_vFile_setfs],
14188 "vFile:setfs", "hostio-setfs", 0);
14189
14190 add_packet_config_cmd (&remote_protocol_packets[PACKET_vFile_open],
14191 "vFile:open", "hostio-open", 0);
14192
14193 add_packet_config_cmd (&remote_protocol_packets[PACKET_vFile_pread],
14194 "vFile:pread", "hostio-pread", 0);
14195
14196 add_packet_config_cmd (&remote_protocol_packets[PACKET_vFile_pwrite],
14197 "vFile:pwrite", "hostio-pwrite", 0);
14198
14199 add_packet_config_cmd (&remote_protocol_packets[PACKET_vFile_close],
14200 "vFile:close", "hostio-close", 0);
14201
14202 add_packet_config_cmd (&remote_protocol_packets[PACKET_vFile_unlink],
14203 "vFile:unlink", "hostio-unlink", 0);
14204
14205 add_packet_config_cmd (&remote_protocol_packets[PACKET_vFile_readlink],
14206 "vFile:readlink", "hostio-readlink", 0);
14207
14208 add_packet_config_cmd (&remote_protocol_packets[PACKET_vFile_fstat],
14209 "vFile:fstat", "hostio-fstat", 0);
14210
14211 add_packet_config_cmd (&remote_protocol_packets[PACKET_vAttach],
14212 "vAttach", "attach", 0);
14213
14214 add_packet_config_cmd (&remote_protocol_packets[PACKET_vRun],
14215 "vRun", "run", 0);
14216
14217 add_packet_config_cmd (&remote_protocol_packets[PACKET_QStartNoAckMode],
14218 "QStartNoAckMode", "noack", 0);
14219
14220 add_packet_config_cmd (&remote_protocol_packets[PACKET_vKill],
14221 "vKill", "kill", 0);
14222
14223 add_packet_config_cmd (&remote_protocol_packets[PACKET_qAttached],
14224 "qAttached", "query-attached", 0);
14225
14226 add_packet_config_cmd (&remote_protocol_packets[PACKET_ConditionalTracepoints],
14227 "ConditionalTracepoints",
14228 "conditional-tracepoints", 0);
14229
14230 add_packet_config_cmd (&remote_protocol_packets[PACKET_ConditionalBreakpoints],
14231 "ConditionalBreakpoints",
14232 "conditional-breakpoints", 0);
14233
14234 add_packet_config_cmd (&remote_protocol_packets[PACKET_BreakpointCommands],
14235 "BreakpointCommands",
14236 "breakpoint-commands", 0);
14237
14238 add_packet_config_cmd (&remote_protocol_packets[PACKET_FastTracepoints],
14239 "FastTracepoints", "fast-tracepoints", 0);
14240
14241 add_packet_config_cmd (&remote_protocol_packets[PACKET_TracepointSource],
14242 "TracepointSource", "TracepointSource", 0);
14243
14244 add_packet_config_cmd (&remote_protocol_packets[PACKET_QAllow],
14245 "QAllow", "allow", 0);
14246
14247 add_packet_config_cmd (&remote_protocol_packets[PACKET_StaticTracepoints],
14248 "StaticTracepoints", "static-tracepoints", 0);
14249
14250 add_packet_config_cmd (&remote_protocol_packets[PACKET_InstallInTrace],
14251 "InstallInTrace", "install-in-trace", 0);
14252
14253 add_packet_config_cmd (&remote_protocol_packets[PACKET_qXfer_statictrace_read],
14254 "qXfer:statictrace:read", "read-sdata-object", 0);
14255
14256 add_packet_config_cmd (&remote_protocol_packets[PACKET_qXfer_fdpic],
14257 "qXfer:fdpic:read", "read-fdpic-loadmap", 0);
14258
14259 add_packet_config_cmd (&remote_protocol_packets[PACKET_QDisableRandomization],
14260 "QDisableRandomization", "disable-randomization", 0);
14261
14262 add_packet_config_cmd (&remote_protocol_packets[PACKET_QAgent],
14263 "QAgent", "agent", 0);
14264
14265 add_packet_config_cmd (&remote_protocol_packets[PACKET_QTBuffer_size],
14266 "QTBuffer:size", "trace-buffer-size", 0);
14267
14268 add_packet_config_cmd (&remote_protocol_packets[PACKET_Qbtrace_off],
14269 "Qbtrace:off", "disable-btrace", 0);
14270
14271 add_packet_config_cmd (&remote_protocol_packets[PACKET_Qbtrace_bts],
14272 "Qbtrace:bts", "enable-btrace-bts", 0);
14273
14274 add_packet_config_cmd (&remote_protocol_packets[PACKET_Qbtrace_pt],
14275 "Qbtrace:pt", "enable-btrace-pt", 0);
14276
14277 add_packet_config_cmd (&remote_protocol_packets[PACKET_qXfer_btrace],
14278 "qXfer:btrace", "read-btrace", 0);
14279
14280 add_packet_config_cmd (&remote_protocol_packets[PACKET_qXfer_btrace_conf],
14281 "qXfer:btrace-conf", "read-btrace-conf", 0);
14282
14283 add_packet_config_cmd (&remote_protocol_packets[PACKET_Qbtrace_conf_bts_size],
14284 "Qbtrace-conf:bts:size", "btrace-conf-bts-size", 0);
14285
14286 add_packet_config_cmd (&remote_protocol_packets[PACKET_multiprocess_feature],
14287 "multiprocess-feature", "multiprocess-feature", 0);
14288
14289 add_packet_config_cmd (&remote_protocol_packets[PACKET_swbreak_feature],
14290 "swbreak-feature", "swbreak-feature", 0);
14291
14292 add_packet_config_cmd (&remote_protocol_packets[PACKET_hwbreak_feature],
14293 "hwbreak-feature", "hwbreak-feature", 0);
14294
14295 add_packet_config_cmd (&remote_protocol_packets[PACKET_fork_event_feature],
14296 "fork-event-feature", "fork-event-feature", 0);
14297
14298 add_packet_config_cmd (&remote_protocol_packets[PACKET_vfork_event_feature],
14299 "vfork-event-feature", "vfork-event-feature", 0);
14300
14301 add_packet_config_cmd (&remote_protocol_packets[PACKET_Qbtrace_conf_pt_size],
14302 "Qbtrace-conf:pt:size", "btrace-conf-pt-size", 0);
14303
14304 add_packet_config_cmd (&remote_protocol_packets[PACKET_vContSupported],
14305 "vContSupported", "verbose-resume-supported", 0);
14306
14307 add_packet_config_cmd (&remote_protocol_packets[PACKET_exec_event_feature],
14308 "exec-event-feature", "exec-event-feature", 0);
14309
14310 add_packet_config_cmd (&remote_protocol_packets[PACKET_vCtrlC],
14311 "vCtrlC", "ctrl-c", 0);
14312
14313 add_packet_config_cmd (&remote_protocol_packets[PACKET_QThreadEvents],
14314 "QThreadEvents", "thread-events", 0);
14315
14316 add_packet_config_cmd (&remote_protocol_packets[PACKET_no_resumed],
14317 "N stop reply", "no-resumed-stop-reply", 0);
14318
14319 /* Assert that we've registered "set remote foo-packet" commands
14320 for all packet configs. */
14321 {
14322 int i;
14323
14324 for (i = 0; i < PACKET_MAX; i++)
14325 {
14326 /* Ideally all configs would have a command associated. Some
14327 still don't though. */
14328 int excepted;
14329
14330 switch (i)
14331 {
14332 case PACKET_QNonStop:
14333 case PACKET_EnableDisableTracepoints_feature:
14334 case PACKET_tracenz_feature:
14335 case PACKET_DisconnectedTracing_feature:
14336 case PACKET_augmented_libraries_svr4_read_feature:
14337 case PACKET_qCRC:
14338 /* Additions to this list need to be well justified:
14339 pre-existing packets are OK; new packets are not. */
14340 excepted = 1;
14341 break;
14342 default:
14343 excepted = 0;
14344 break;
14345 }
14346
14347 /* This catches both forgetting to add a config command, and
14348 forgetting to remove a packet from the exception list. */
14349 gdb_assert (excepted == (remote_protocol_packets[i].name == NULL));
14350 }
14351 }
14352
14353 /* Keep the old ``set remote Z-packet ...'' working. Each individual
14354 Z sub-packet has its own set and show commands, but users may
14355 have sets to this variable in their .gdbinit files (or in their
14356 documentation). */
14357 add_setshow_auto_boolean_cmd ("Z-packet", class_obscure,
14358 &remote_Z_packet_detect, _("\
14359 Set use of remote protocol `Z' packets"), _("\
14360 Show use of remote protocol `Z' packets "), _("\
14361 When set, GDB will attempt to use the remote breakpoint and watchpoint\n\
14362 packets."),
14363 set_remote_protocol_Z_packet_cmd,
14364 show_remote_protocol_Z_packet_cmd,
14365 /* FIXME: i18n: Use of remote protocol
14366 `Z' packets is %s. */
14367 &remote_set_cmdlist, &remote_show_cmdlist);
14368
14369 add_prefix_cmd ("remote", class_files, remote_command, _("\
14370 Manipulate files on the remote system\n\
14371 Transfer files to and from the remote target system."),
14372 &remote_cmdlist, "remote ",
14373 0 /* allow-unknown */, &cmdlist);
14374
14375 add_cmd ("put", class_files, remote_put_command,
14376 _("Copy a local file to the remote system."),
14377 &remote_cmdlist);
14378
14379 add_cmd ("get", class_files, remote_get_command,
14380 _("Copy a remote file to the local system."),
14381 &remote_cmdlist);
14382
14383 add_cmd ("delete", class_files, remote_delete_command,
14384 _("Delete a remote file."),
14385 &remote_cmdlist);
14386
14387 add_setshow_string_noescape_cmd ("exec-file", class_files,
14388 &remote_exec_file_var, _("\
14389 Set the remote pathname for \"run\""), _("\
14390 Show the remote pathname for \"run\""), NULL,
14391 set_remote_exec_file,
14392 show_remote_exec_file,
14393 &remote_set_cmdlist,
14394 &remote_show_cmdlist);
14395
14396 add_setshow_boolean_cmd ("range-stepping", class_run,
14397 &use_range_stepping, _("\
14398 Enable or disable range stepping."), _("\
14399 Show whether target-assisted range stepping is enabled."), _("\
14400 If on, and the target supports it, when stepping a source line, GDB\n\
14401 tells the target to step the corresponding range of addresses itself instead\n\
14402 of issuing multiple single-steps. This speeds up source level\n\
14403 stepping. If off, GDB always issues single-steps, even if range\n\
14404 stepping is supported by the target. The default is on."),
14405 set_range_stepping,
14406 show_range_stepping,
14407 &setlist,
14408 &showlist);
14409
14410 /* Eventually initialize fileio. See fileio.c */
14411 initialize_remote_fileio (remote_set_cmdlist, remote_show_cmdlist);
14412
14413 /* Take advantage of the fact that the TID field is not used, to tag
14414 special ptids with it set to != 0. */
14415 magic_null_ptid = ptid_build (42000, -1, 1);
14416 not_sent_ptid = ptid_build (42000, -2, 1);
14417 any_thread_ptid = ptid_build (42000, 0, 1);
14418 }