8024ffed3c2112ca8ece86a16d9b1725a3d83edc
[binutils-gdb.git] / gdb / riscv-tdep.c
1 /* Target-dependent code for the RISC-V architecture, for GDB.
2
3 Copyright (C) 2018-2023 Free Software Foundation, Inc.
4
5 This file is part of GDB.
6
7 This program is free software; you can redistribute it and/or modify
8 it under the terms of the GNU General Public License as published by
9 the Free Software Foundation; either version 3 of the License, or
10 (at your option) any later version.
11
12 This program is distributed in the hope that it will be useful,
13 but WITHOUT ANY WARRANTY; without even the implied warranty of
14 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
15 GNU General Public License for more details.
16
17 You should have received a copy of the GNU General Public License
18 along with this program. If not, see <http://www.gnu.org/licenses/>. */
19
20 #include "defs.h"
21 #include "frame.h"
22 #include "inferior.h"
23 #include "symtab.h"
24 #include "value.h"
25 #include "gdbcmd.h"
26 #include "language.h"
27 #include "gdbcore.h"
28 #include "symfile.h"
29 #include "objfiles.h"
30 #include "gdbtypes.h"
31 #include "target.h"
32 #include "arch-utils.h"
33 #include "regcache.h"
34 #include "osabi.h"
35 #include "riscv-tdep.h"
36 #include "reggroups.h"
37 #include "opcode/riscv.h"
38 #include "elf/riscv.h"
39 #include "elf-bfd.h"
40 #include "symcat.h"
41 #include "dis-asm.h"
42 #include "frame-unwind.h"
43 #include "frame-base.h"
44 #include "trad-frame.h"
45 #include "infcall.h"
46 #include "floatformat.h"
47 #include "remote.h"
48 #include "target-descriptions.h"
49 #include "dwarf2/frame.h"
50 #include "user-regs.h"
51 #include "valprint.h"
52 #include "gdbsupport/common-defs.h"
53 #include "opcode/riscv-opc.h"
54 #include "cli/cli-decode.h"
55 #include "observable.h"
56 #include "prologue-value.h"
57 #include "arch/riscv.h"
58 #include "riscv-ravenscar-thread.h"
59 #include "safe-ctype.h"
60
61 /* The stack must be 16-byte aligned. */
62 #define SP_ALIGNMENT 16
63
64 /* The biggest alignment that the target supports. */
65 #define BIGGEST_ALIGNMENT 16
66
67 /* Define a series of is_XXX_insn functions to check if the value INSN
68 is an instance of instruction XXX. */
69 #define DECLARE_INSN(INSN_NAME, INSN_MATCH, INSN_MASK) \
70 static inline bool is_ ## INSN_NAME ## _insn (long insn) \
71 { \
72 return (insn & INSN_MASK) == INSN_MATCH; \
73 }
74 #include "opcode/riscv-opc.h"
75 #undef DECLARE_INSN
76
77 /* When this is set to non-zero debugging information about breakpoint
78 kinds will be printed. */
79
80 static unsigned int riscv_debug_breakpoints = 0;
81
82 /* When this is set to non-zero debugging information about inferior calls
83 will be printed. */
84
85 static unsigned int riscv_debug_infcall = 0;
86
87 /* When this is set to non-zero debugging information about stack unwinding
88 will be printed. */
89
90 static unsigned int riscv_debug_unwinder = 0;
91
92 /* When this is set to non-zero debugging information about gdbarch
93 initialisation will be printed. */
94
95 static unsigned int riscv_debug_gdbarch = 0;
96
97 /* The names of the RISC-V target description features. */
98 const char *riscv_feature_name_csr = "org.gnu.gdb.riscv.csr";
99 static const char *riscv_feature_name_cpu = "org.gnu.gdb.riscv.cpu";
100 static const char *riscv_feature_name_fpu = "org.gnu.gdb.riscv.fpu";
101 static const char *riscv_feature_name_virtual = "org.gnu.gdb.riscv.virtual";
102 static const char *riscv_feature_name_vector = "org.gnu.gdb.riscv.vector";
103
104 /* The current set of options to be passed to the disassembler. */
105 static char *riscv_disassembler_options;
106
107 /* Cached information about a frame. */
108
109 struct riscv_unwind_cache
110 {
111 /* The register from which we can calculate the frame base. This is
112 usually $sp or $fp. */
113 int frame_base_reg;
114
115 /* The offset from the current value in register FRAME_BASE_REG to the
116 actual frame base address. */
117 int frame_base_offset;
118
119 /* Information about previous register values. */
120 trad_frame_saved_reg *regs;
121
122 /* The id for this frame. */
123 struct frame_id this_id;
124
125 /* The base (stack) address for this frame. This is the stack pointer
126 value on entry to this frame before any adjustments are made. */
127 CORE_ADDR frame_base;
128 };
129
130 /* RISC-V specific register group for CSRs. */
131
132 static const reggroup *csr_reggroup = nullptr;
133
134 /* Callback function for user_reg_add. */
135
136 static struct value *
137 value_of_riscv_user_reg (frame_info_ptr frame, const void *baton)
138 {
139 const int *reg_p = (const int *) baton;
140 return value_of_register (*reg_p, frame);
141 }
142
143 /* Information about a register alias that needs to be set up for this
144 target. These are collected when the target's XML description is
145 analysed, and then processed later, once the gdbarch has been created. */
146
147 class riscv_pending_register_alias
148 {
149 public:
150 /* Constructor. */
151
152 riscv_pending_register_alias (const char *name, const void *baton)
153 : m_name (name),
154 m_baton (baton)
155 { /* Nothing. */ }
156
157 /* Convert this into a user register for GDBARCH. */
158
159 void create (struct gdbarch *gdbarch) const
160 {
161 user_reg_add (gdbarch, m_name, value_of_riscv_user_reg, m_baton);
162 }
163
164 private:
165 /* The name for this alias. */
166 const char *m_name;
167
168 /* The baton value for passing to user_reg_add. This must point to some
169 data that will live for at least as long as the gdbarch object to
170 which the user register is attached. */
171 const void *m_baton;
172 };
173
174 /* A set of registers that we expect to find in a tdesc_feature. These
175 are use in RISCV_GDBARCH_INIT when processing the target description. */
176
177 struct riscv_register_feature
178 {
179 explicit riscv_register_feature (const char *feature_name)
180 : m_feature_name (feature_name)
181 { /* Delete. */ }
182
183 riscv_register_feature () = delete;
184 DISABLE_COPY_AND_ASSIGN (riscv_register_feature);
185
186 /* Information for a single register. */
187 struct register_info
188 {
189 /* The GDB register number for this register. */
190 int regnum;
191
192 /* List of names for this register. The first name in this list is the
193 preferred name, the name GDB should use when describing this
194 register. */
195 std::vector<const char *> names;
196
197 /* Look in FEATURE for a register with a name from this classes names
198 list. If the register is found then register its number with
199 TDESC_DATA and add all its aliases to the ALIASES list.
200 PREFER_FIRST_NAME_P is used when deciding which aliases to create. */
201 bool check (struct tdesc_arch_data *tdesc_data,
202 const struct tdesc_feature *feature,
203 bool prefer_first_name_p,
204 std::vector<riscv_pending_register_alias> *aliases) const;
205 };
206
207 /* Return the name of this feature. */
208 const char *name () const
209 { return m_feature_name; }
210
211 protected:
212
213 /* Return a target description feature extracted from TDESC for this
214 register feature. Will return nullptr if there is no feature in TDESC
215 with the name M_FEATURE_NAME. */
216 const struct tdesc_feature *tdesc_feature (const struct target_desc *tdesc) const
217 {
218 return tdesc_find_feature (tdesc, name ());
219 }
220
221 /* List of all the registers that we expect that we might find in this
222 register set. */
223 std::vector<struct register_info> m_registers;
224
225 private:
226
227 /* The name for this feature. This is the name used to find this feature
228 within the target description. */
229 const char *m_feature_name;
230 };
231
232 /* See description in the class declaration above. */
233
234 bool
235 riscv_register_feature::register_info::check
236 (struct tdesc_arch_data *tdesc_data,
237 const struct tdesc_feature *feature,
238 bool prefer_first_name_p,
239 std::vector<riscv_pending_register_alias> *aliases) const
240 {
241 for (const char *name : this->names)
242 {
243 bool found = tdesc_numbered_register (feature, tdesc_data,
244 this->regnum, name);
245 if (found)
246 {
247 /* We know that the target description mentions this
248 register. In RISCV_REGISTER_NAME we ensure that GDB
249 always uses the first name for each register, so here we
250 add aliases for all of the remaining names. */
251 int start_index = prefer_first_name_p ? 1 : 0;
252 for (int i = start_index; i < this->names.size (); ++i)
253 {
254 const char *alias = this->names[i];
255 if (alias == name && !prefer_first_name_p)
256 continue;
257 aliases->emplace_back (alias, (void *) &this->regnum);
258 }
259 return true;
260 }
261 }
262 return false;
263 }
264
265 /* Class representing the x-registers feature set. */
266
267 struct riscv_xreg_feature : public riscv_register_feature
268 {
269 riscv_xreg_feature ()
270 : riscv_register_feature (riscv_feature_name_cpu)
271 {
272 m_registers = {
273 { RISCV_ZERO_REGNUM + 0, { "zero", "x0" } },
274 { RISCV_ZERO_REGNUM + 1, { "ra", "x1" } },
275 { RISCV_ZERO_REGNUM + 2, { "sp", "x2" } },
276 { RISCV_ZERO_REGNUM + 3, { "gp", "x3" } },
277 { RISCV_ZERO_REGNUM + 4, { "tp", "x4" } },
278 { RISCV_ZERO_REGNUM + 5, { "t0", "x5" } },
279 { RISCV_ZERO_REGNUM + 6, { "t1", "x6" } },
280 { RISCV_ZERO_REGNUM + 7, { "t2", "x7" } },
281 { RISCV_ZERO_REGNUM + 8, { "fp", "x8", "s0" } },
282 { RISCV_ZERO_REGNUM + 9, { "s1", "x9" } },
283 { RISCV_ZERO_REGNUM + 10, { "a0", "x10" } },
284 { RISCV_ZERO_REGNUM + 11, { "a1", "x11" } },
285 { RISCV_ZERO_REGNUM + 12, { "a2", "x12" } },
286 { RISCV_ZERO_REGNUM + 13, { "a3", "x13" } },
287 { RISCV_ZERO_REGNUM + 14, { "a4", "x14" } },
288 { RISCV_ZERO_REGNUM + 15, { "a5", "x15" } },
289 { RISCV_ZERO_REGNUM + 16, { "a6", "x16" } },
290 { RISCV_ZERO_REGNUM + 17, { "a7", "x17" } },
291 { RISCV_ZERO_REGNUM + 18, { "s2", "x18" } },
292 { RISCV_ZERO_REGNUM + 19, { "s3", "x19" } },
293 { RISCV_ZERO_REGNUM + 20, { "s4", "x20" } },
294 { RISCV_ZERO_REGNUM + 21, { "s5", "x21" } },
295 { RISCV_ZERO_REGNUM + 22, { "s6", "x22" } },
296 { RISCV_ZERO_REGNUM + 23, { "s7", "x23" } },
297 { RISCV_ZERO_REGNUM + 24, { "s8", "x24" } },
298 { RISCV_ZERO_REGNUM + 25, { "s9", "x25" } },
299 { RISCV_ZERO_REGNUM + 26, { "s10", "x26" } },
300 { RISCV_ZERO_REGNUM + 27, { "s11", "x27" } },
301 { RISCV_ZERO_REGNUM + 28, { "t3", "x28" } },
302 { RISCV_ZERO_REGNUM + 29, { "t4", "x29" } },
303 { RISCV_ZERO_REGNUM + 30, { "t5", "x30" } },
304 { RISCV_ZERO_REGNUM + 31, { "t6", "x31" } },
305 { RISCV_ZERO_REGNUM + 32, { "pc" } }
306 };
307 }
308
309 /* Return the preferred name for the register with gdb register number
310 REGNUM, which must be in the inclusive range RISCV_ZERO_REGNUM to
311 RISCV_PC_REGNUM. */
312 const char *register_name (int regnum) const
313 {
314 gdb_assert (regnum >= RISCV_ZERO_REGNUM && regnum <= m_registers.size ());
315 return m_registers[regnum].names[0];
316 }
317
318 /* Check this feature within TDESC, record the registers from this
319 feature into TDESC_DATA and update ALIASES and FEATURES. */
320 bool check (const struct target_desc *tdesc,
321 struct tdesc_arch_data *tdesc_data,
322 std::vector<riscv_pending_register_alias> *aliases,
323 struct riscv_gdbarch_features *features) const
324 {
325 const struct tdesc_feature *feature_cpu = tdesc_feature (tdesc);
326
327 if (feature_cpu == nullptr)
328 return false;
329
330 bool seen_an_optional_reg_p = false;
331 for (const auto &reg : m_registers)
332 {
333 bool found = reg.check (tdesc_data, feature_cpu, true, aliases);
334
335 bool is_optional_reg_p = (reg.regnum >= RISCV_ZERO_REGNUM + 16
336 && reg.regnum < RISCV_ZERO_REGNUM + 32);
337
338 if (!found && (!is_optional_reg_p || seen_an_optional_reg_p))
339 return false;
340 else if (found && is_optional_reg_p)
341 seen_an_optional_reg_p = true;
342 }
343
344 /* Check that all of the core cpu registers have the same bitsize. */
345 int xlen_bitsize = tdesc_register_bitsize (feature_cpu, "pc");
346
347 bool valid_p = true;
348 for (auto &tdesc_reg : feature_cpu->registers)
349 valid_p &= (tdesc_reg->bitsize == xlen_bitsize);
350
351 features->xlen = (xlen_bitsize / 8);
352 features->embedded = !seen_an_optional_reg_p;
353
354 return valid_p;
355 }
356 };
357
358 /* An instance of the x-register feature set. */
359
360 static const struct riscv_xreg_feature riscv_xreg_feature;
361
362 /* Class representing the f-registers feature set. */
363
364 struct riscv_freg_feature : public riscv_register_feature
365 {
366 riscv_freg_feature ()
367 : riscv_register_feature (riscv_feature_name_fpu)
368 {
369 m_registers = {
370 { RISCV_FIRST_FP_REGNUM + 0, { "ft0", "f0" } },
371 { RISCV_FIRST_FP_REGNUM + 1, { "ft1", "f1" } },
372 { RISCV_FIRST_FP_REGNUM + 2, { "ft2", "f2" } },
373 { RISCV_FIRST_FP_REGNUM + 3, { "ft3", "f3" } },
374 { RISCV_FIRST_FP_REGNUM + 4, { "ft4", "f4" } },
375 { RISCV_FIRST_FP_REGNUM + 5, { "ft5", "f5" } },
376 { RISCV_FIRST_FP_REGNUM + 6, { "ft6", "f6" } },
377 { RISCV_FIRST_FP_REGNUM + 7, { "ft7", "f7" } },
378 { RISCV_FIRST_FP_REGNUM + 8, { "fs0", "f8" } },
379 { RISCV_FIRST_FP_REGNUM + 9, { "fs1", "f9" } },
380 { RISCV_FIRST_FP_REGNUM + 10, { "fa0", "f10" } },
381 { RISCV_FIRST_FP_REGNUM + 11, { "fa1", "f11" } },
382 { RISCV_FIRST_FP_REGNUM + 12, { "fa2", "f12" } },
383 { RISCV_FIRST_FP_REGNUM + 13, { "fa3", "f13" } },
384 { RISCV_FIRST_FP_REGNUM + 14, { "fa4", "f14" } },
385 { RISCV_FIRST_FP_REGNUM + 15, { "fa5", "f15" } },
386 { RISCV_FIRST_FP_REGNUM + 16, { "fa6", "f16" } },
387 { RISCV_FIRST_FP_REGNUM + 17, { "fa7", "f17" } },
388 { RISCV_FIRST_FP_REGNUM + 18, { "fs2", "f18" } },
389 { RISCV_FIRST_FP_REGNUM + 19, { "fs3", "f19" } },
390 { RISCV_FIRST_FP_REGNUM + 20, { "fs4", "f20" } },
391 { RISCV_FIRST_FP_REGNUM + 21, { "fs5", "f21" } },
392 { RISCV_FIRST_FP_REGNUM + 22, { "fs6", "f22" } },
393 { RISCV_FIRST_FP_REGNUM + 23, { "fs7", "f23" } },
394 { RISCV_FIRST_FP_REGNUM + 24, { "fs8", "f24" } },
395 { RISCV_FIRST_FP_REGNUM + 25, { "fs9", "f25" } },
396 { RISCV_FIRST_FP_REGNUM + 26, { "fs10", "f26" } },
397 { RISCV_FIRST_FP_REGNUM + 27, { "fs11", "f27" } },
398 { RISCV_FIRST_FP_REGNUM + 28, { "ft8", "f28" } },
399 { RISCV_FIRST_FP_REGNUM + 29, { "ft9", "f29" } },
400 { RISCV_FIRST_FP_REGNUM + 30, { "ft10", "f30" } },
401 { RISCV_FIRST_FP_REGNUM + 31, { "ft11", "f31" } },
402 { RISCV_CSR_FFLAGS_REGNUM, { "fflags", "csr1" } },
403 { RISCV_CSR_FRM_REGNUM, { "frm", "csr2" } },
404 { RISCV_CSR_FCSR_REGNUM, { "fcsr", "csr3" } },
405 };
406 }
407
408 /* Return the preferred name for the register with gdb register number
409 REGNUM, which must be in the inclusive range RISCV_FIRST_FP_REGNUM to
410 RISCV_LAST_FP_REGNUM. */
411 const char *register_name (int regnum) const
412 {
413 gdb_static_assert (RISCV_LAST_FP_REGNUM == RISCV_FIRST_FP_REGNUM + 31);
414 gdb_assert (regnum >= RISCV_FIRST_FP_REGNUM
415 && regnum <= RISCV_LAST_FP_REGNUM);
416 regnum -= RISCV_FIRST_FP_REGNUM;
417 return m_registers[regnum].names[0];
418 }
419
420 /* Check this feature within TDESC, record the registers from this
421 feature into TDESC_DATA and update ALIASES and FEATURES. */
422 bool check (const struct target_desc *tdesc,
423 struct tdesc_arch_data *tdesc_data,
424 std::vector<riscv_pending_register_alias> *aliases,
425 struct riscv_gdbarch_features *features) const
426 {
427 const struct tdesc_feature *feature_fpu = tdesc_feature (tdesc);
428
429 /* It's fine if this feature is missing. Update the architecture
430 feature set and return. */
431 if (feature_fpu == nullptr)
432 {
433 features->flen = 0;
434 return true;
435 }
436
437 /* Check all of the floating pointer registers are present. We also
438 check that the floating point CSRs are present too, though if these
439 are missing this is not fatal. */
440 for (const auto &reg : m_registers)
441 {
442 bool found = reg.check (tdesc_data, feature_fpu, true, aliases);
443
444 bool is_ctrl_reg_p = reg.regnum > RISCV_LAST_FP_REGNUM;
445
446 if (!found && !is_ctrl_reg_p)
447 return false;
448 }
449
450 /* Look through all of the floating point registers (not the FP CSRs
451 though), and check they all have the same bitsize. Use this bitsize
452 to update the feature set for this gdbarch. */
453 int fp_bitsize = -1;
454 for (const auto &reg : m_registers)
455 {
456 /* Stop once we get to the CSRs which are at the end of the
457 M_REGISTERS list. */
458 if (reg.regnum > RISCV_LAST_FP_REGNUM)
459 break;
460
461 int reg_bitsize = -1;
462 for (const char *name : reg.names)
463 {
464 if (tdesc_unnumbered_register (feature_fpu, name))
465 {
466 reg_bitsize = tdesc_register_bitsize (feature_fpu, name);
467 break;
468 }
469 }
470 gdb_assert (reg_bitsize != -1);
471 if (fp_bitsize == -1)
472 fp_bitsize = reg_bitsize;
473 else if (fp_bitsize != reg_bitsize)
474 return false;
475 }
476
477 features->flen = (fp_bitsize / 8);
478 return true;
479 }
480 };
481
482 /* An instance of the f-register feature set. */
483
484 static const struct riscv_freg_feature riscv_freg_feature;
485
486 /* Class representing the virtual registers. These are not physical
487 registers on the hardware, but might be available from the target.
488 These are not pseudo registers, reading these really does result in a
489 register read from the target, it is just that there might not be a
490 physical register backing the result. */
491
492 struct riscv_virtual_feature : public riscv_register_feature
493 {
494 riscv_virtual_feature ()
495 : riscv_register_feature (riscv_feature_name_virtual)
496 {
497 m_registers = {
498 { RISCV_PRIV_REGNUM, { "priv" } }
499 };
500 }
501
502 bool check (const struct target_desc *tdesc,
503 struct tdesc_arch_data *tdesc_data,
504 std::vector<riscv_pending_register_alias> *aliases,
505 struct riscv_gdbarch_features *features) const
506 {
507 const struct tdesc_feature *feature_virtual = tdesc_feature (tdesc);
508
509 /* It's fine if this feature is missing. */
510 if (feature_virtual == nullptr)
511 return true;
512
513 /* We don't check the return value from the call to check here, all the
514 registers in this feature are optional. */
515 for (const auto &reg : m_registers)
516 reg.check (tdesc_data, feature_virtual, true, aliases);
517
518 return true;
519 }
520 };
521
522 /* An instance of the virtual register feature. */
523
524 static const struct riscv_virtual_feature riscv_virtual_feature;
525
526 /* Class representing the CSR feature. */
527
528 struct riscv_csr_feature : public riscv_register_feature
529 {
530 riscv_csr_feature ()
531 : riscv_register_feature (riscv_feature_name_csr)
532 {
533 m_registers = {
534 #define DECLARE_CSR(NAME,VALUE,CLASS,DEFINE_VER,ABORT_VER) \
535 { RISCV_ ## VALUE ## _REGNUM, { # NAME } },
536 #include "opcode/riscv-opc.h"
537 #undef DECLARE_CSR
538 };
539 riscv_create_csr_aliases ();
540 }
541
542 bool check (const struct target_desc *tdesc,
543 struct tdesc_arch_data *tdesc_data,
544 std::vector<riscv_pending_register_alias> *aliases,
545 struct riscv_gdbarch_features *features) const
546 {
547 const struct tdesc_feature *feature_csr = tdesc_feature (tdesc);
548
549 /* It's fine if this feature is missing. */
550 if (feature_csr == nullptr)
551 return true;
552
553 /* We don't check the return value from the call to check here, all the
554 registers in this feature are optional. */
555 for (const auto &reg : m_registers)
556 reg.check (tdesc_data, feature_csr, true, aliases);
557
558 return true;
559 }
560
561 private:
562
563 /* Complete RISCV_CSR_FEATURE, building the CSR alias names and adding them
564 to the name list for each register. */
565
566 void
567 riscv_create_csr_aliases ()
568 {
569 for (auto &reg : m_registers)
570 {
571 int csr_num = reg.regnum - RISCV_FIRST_CSR_REGNUM;
572 gdb::unique_xmalloc_ptr<char> alias = xstrprintf ("csr%d", csr_num);
573 reg.names.push_back (alias.release ());
574 }
575 }
576 };
577
578 /* An instance of the csr register feature. */
579
580 static const struct riscv_csr_feature riscv_csr_feature;
581
582 /* Class representing the v-registers feature set. */
583
584 struct riscv_vector_feature : public riscv_register_feature
585 {
586 riscv_vector_feature ()
587 : riscv_register_feature (riscv_feature_name_vector)
588 {
589 m_registers = {
590 { RISCV_V0_REGNUM + 0, { "v0" } },
591 { RISCV_V0_REGNUM + 1, { "v1" } },
592 { RISCV_V0_REGNUM + 2, { "v2" } },
593 { RISCV_V0_REGNUM + 3, { "v3" } },
594 { RISCV_V0_REGNUM + 4, { "v4" } },
595 { RISCV_V0_REGNUM + 5, { "v5" } },
596 { RISCV_V0_REGNUM + 6, { "v6" } },
597 { RISCV_V0_REGNUM + 7, { "v7" } },
598 { RISCV_V0_REGNUM + 8, { "v8" } },
599 { RISCV_V0_REGNUM + 9, { "v9" } },
600 { RISCV_V0_REGNUM + 10, { "v10" } },
601 { RISCV_V0_REGNUM + 11, { "v11" } },
602 { RISCV_V0_REGNUM + 12, { "v12" } },
603 { RISCV_V0_REGNUM + 13, { "v13" } },
604 { RISCV_V0_REGNUM + 14, { "v14" } },
605 { RISCV_V0_REGNUM + 15, { "v15" } },
606 { RISCV_V0_REGNUM + 16, { "v16" } },
607 { RISCV_V0_REGNUM + 17, { "v17" } },
608 { RISCV_V0_REGNUM + 18, { "v18" } },
609 { RISCV_V0_REGNUM + 19, { "v19" } },
610 { RISCV_V0_REGNUM + 20, { "v20" } },
611 { RISCV_V0_REGNUM + 21, { "v21" } },
612 { RISCV_V0_REGNUM + 22, { "v22" } },
613 { RISCV_V0_REGNUM + 23, { "v23" } },
614 { RISCV_V0_REGNUM + 24, { "v24" } },
615 { RISCV_V0_REGNUM + 25, { "v25" } },
616 { RISCV_V0_REGNUM + 26, { "v26" } },
617 { RISCV_V0_REGNUM + 27, { "v27" } },
618 { RISCV_V0_REGNUM + 28, { "v28" } },
619 { RISCV_V0_REGNUM + 29, { "v29" } },
620 { RISCV_V0_REGNUM + 30, { "v30" } },
621 { RISCV_V0_REGNUM + 31, { "v31" } },
622 };
623 }
624
625 /* Return the preferred name for the register with gdb register number
626 REGNUM, which must be in the inclusive range RISCV_V0_REGNUM to
627 RISCV_V0_REGNUM + 31. */
628 const char *register_name (int regnum) const
629 {
630 gdb_assert (regnum >= RISCV_V0_REGNUM
631 && regnum <= RISCV_V0_REGNUM + 31);
632 regnum -= RISCV_V0_REGNUM;
633 return m_registers[regnum].names[0];
634 }
635
636 /* Check this feature within TDESC, record the registers from this
637 feature into TDESC_DATA and update ALIASES and FEATURES. */
638 bool check (const struct target_desc *tdesc,
639 struct tdesc_arch_data *tdesc_data,
640 std::vector<riscv_pending_register_alias> *aliases,
641 struct riscv_gdbarch_features *features) const
642 {
643 const struct tdesc_feature *feature_vector = tdesc_feature (tdesc);
644
645 /* It's fine if this feature is missing. Update the architecture
646 feature set and return. */
647 if (feature_vector == nullptr)
648 {
649 features->vlen = 0;
650 return true;
651 }
652
653 /* Check all of the vector registers are present. */
654 for (const auto &reg : m_registers)
655 {
656 if (!reg.check (tdesc_data, feature_vector, true, aliases))
657 return false;
658 }
659
660 /* Look through all of the vector registers and check they all have the
661 same bitsize. Use this bitsize to update the feature set for this
662 gdbarch. */
663 int vector_bitsize = -1;
664 for (const auto &reg : m_registers)
665 {
666 int reg_bitsize = -1;
667 for (const char *name : reg.names)
668 {
669 if (tdesc_unnumbered_register (feature_vector, name))
670 {
671 reg_bitsize = tdesc_register_bitsize (feature_vector, name);
672 break;
673 }
674 }
675 gdb_assert (reg_bitsize != -1);
676 if (vector_bitsize == -1)
677 vector_bitsize = reg_bitsize;
678 else if (vector_bitsize != reg_bitsize)
679 return false;
680 }
681
682 features->vlen = (vector_bitsize / 8);
683 return true;
684 }
685 };
686
687 /* An instance of the v-register feature set. */
688
689 static const struct riscv_vector_feature riscv_vector_feature;
690
691 /* Controls whether we place compressed breakpoints or not. When in auto
692 mode GDB tries to determine if the target supports compressed
693 breakpoints, and uses them if it does. */
694
695 static enum auto_boolean use_compressed_breakpoints;
696
697 /* The show callback for 'show riscv use-compressed-breakpoints'. */
698
699 static void
700 show_use_compressed_breakpoints (struct ui_file *file, int from_tty,
701 struct cmd_list_element *c,
702 const char *value)
703 {
704 gdb_printf (file,
705 _("Debugger's use of compressed breakpoints is set "
706 "to %s.\n"), value);
707 }
708
709 /* The set and show lists for 'set riscv' and 'show riscv' prefixes. */
710
711 static struct cmd_list_element *setriscvcmdlist = NULL;
712 static struct cmd_list_element *showriscvcmdlist = NULL;
713
714 /* The set and show lists for 'set riscv' and 'show riscv' prefixes. */
715
716 static struct cmd_list_element *setdebugriscvcmdlist = NULL;
717 static struct cmd_list_element *showdebugriscvcmdlist = NULL;
718
719 /* The show callback for all 'show debug riscv VARNAME' variables. */
720
721 static void
722 show_riscv_debug_variable (struct ui_file *file, int from_tty,
723 struct cmd_list_element *c,
724 const char *value)
725 {
726 gdb_printf (file,
727 _("RiscV debug variable `%s' is set to: %s\n"),
728 c->name, value);
729 }
730
731 /* See riscv-tdep.h. */
732
733 int
734 riscv_isa_xlen (struct gdbarch *gdbarch)
735 {
736 riscv_gdbarch_tdep *tdep = gdbarch_tdep<riscv_gdbarch_tdep> (gdbarch);
737 return tdep->isa_features.xlen;
738 }
739
740 /* See riscv-tdep.h. */
741
742 int
743 riscv_abi_xlen (struct gdbarch *gdbarch)
744 {
745 riscv_gdbarch_tdep *tdep = gdbarch_tdep<riscv_gdbarch_tdep> (gdbarch);
746 return tdep->abi_features.xlen;
747 }
748
749 /* See riscv-tdep.h. */
750
751 int
752 riscv_isa_flen (struct gdbarch *gdbarch)
753 {
754 riscv_gdbarch_tdep *tdep = gdbarch_tdep<riscv_gdbarch_tdep> (gdbarch);
755 return tdep->isa_features.flen;
756 }
757
758 /* See riscv-tdep.h. */
759
760 int
761 riscv_abi_flen (struct gdbarch *gdbarch)
762 {
763 riscv_gdbarch_tdep *tdep = gdbarch_tdep<riscv_gdbarch_tdep> (gdbarch);
764 return tdep->abi_features.flen;
765 }
766
767 /* See riscv-tdep.h. */
768
769 bool
770 riscv_abi_embedded (struct gdbarch *gdbarch)
771 {
772 riscv_gdbarch_tdep *tdep = gdbarch_tdep<riscv_gdbarch_tdep> (gdbarch);
773 return tdep->abi_features.embedded;
774 }
775
776 /* Return true if the target for GDBARCH has floating point hardware. */
777
778 static bool
779 riscv_has_fp_regs (struct gdbarch *gdbarch)
780 {
781 return (riscv_isa_flen (gdbarch) > 0);
782 }
783
784 /* Return true if GDBARCH is using any of the floating point hardware ABIs. */
785
786 static bool
787 riscv_has_fp_abi (struct gdbarch *gdbarch)
788 {
789 riscv_gdbarch_tdep *tdep = gdbarch_tdep<riscv_gdbarch_tdep> (gdbarch);
790 return tdep->abi_features.flen > 0;
791 }
792
793 /* Return true if REGNO is a floating pointer register. */
794
795 static bool
796 riscv_is_fp_regno_p (int regno)
797 {
798 return (regno >= RISCV_FIRST_FP_REGNUM
799 && regno <= RISCV_LAST_FP_REGNUM);
800 }
801
802 /* Implement the breakpoint_kind_from_pc gdbarch method. */
803
804 static int
805 riscv_breakpoint_kind_from_pc (struct gdbarch *gdbarch, CORE_ADDR *pcptr)
806 {
807 if (use_compressed_breakpoints == AUTO_BOOLEAN_AUTO)
808 {
809 bool unaligned_p = false;
810 gdb_byte buf[1];
811
812 /* Some targets don't support unaligned reads. The address can only
813 be unaligned if the C extension is supported. So it is safe to
814 use a compressed breakpoint in this case. */
815 if (*pcptr & 0x2)
816 unaligned_p = true;
817 else
818 {
819 /* Read the opcode byte to determine the instruction length. If
820 the read fails this may be because we tried to set the
821 breakpoint at an invalid address, in this case we provide a
822 fake result which will give a breakpoint length of 4.
823 Hopefully when we try to actually insert the breakpoint we
824 will see a failure then too which will be reported to the
825 user. */
826 if (target_read_code (*pcptr, buf, 1) == -1)
827 buf[0] = 0;
828 }
829
830 if (riscv_debug_breakpoints)
831 {
832 const char *bp = (unaligned_p || riscv_insn_length (buf[0]) == 2
833 ? "C.EBREAK" : "EBREAK");
834
835 gdb_printf (gdb_stdlog, "Using %s for breakpoint at %s ",
836 bp, paddress (gdbarch, *pcptr));
837 if (unaligned_p)
838 gdb_printf (gdb_stdlog, "(unaligned address)\n");
839 else
840 gdb_printf (gdb_stdlog, "(instruction length %d)\n",
841 riscv_insn_length (buf[0]));
842 }
843 if (unaligned_p || riscv_insn_length (buf[0]) == 2)
844 return 2;
845 else
846 return 4;
847 }
848 else if (use_compressed_breakpoints == AUTO_BOOLEAN_TRUE)
849 return 2;
850 else
851 return 4;
852 }
853
854 /* Implement the sw_breakpoint_from_kind gdbarch method. */
855
856 static const gdb_byte *
857 riscv_sw_breakpoint_from_kind (struct gdbarch *gdbarch, int kind, int *size)
858 {
859 static const gdb_byte ebreak[] = { 0x73, 0x00, 0x10, 0x00, };
860 static const gdb_byte c_ebreak[] = { 0x02, 0x90 };
861
862 *size = kind;
863 switch (kind)
864 {
865 case 2:
866 return c_ebreak;
867 case 4:
868 return ebreak;
869 default:
870 gdb_assert_not_reached ("unhandled breakpoint kind");
871 }
872 }
873
874 /* Implement the register_name gdbarch method. This is used instead of
875 the function supplied by calling TDESC_USE_REGISTERS so that we can
876 ensure the preferred names are offered for x-regs and f-regs. */
877
878 static const char *
879 riscv_register_name (struct gdbarch *gdbarch, int regnum)
880 {
881 /* Lookup the name through the target description. If we get back NULL
882 then this is an unknown register. If we do get a name back then we
883 look up the registers preferred name below. */
884 const char *name = tdesc_register_name (gdbarch, regnum);
885 gdb_assert (name != nullptr);
886 if (name[0] == '\0')
887 return name;
888
889 /* We want GDB to use the ABI names for registers even if the target
890 gives us a target description with the architectural name. For
891 example we want to see 'ra' instead of 'x1' whatever the target
892 description called it. */
893 if (regnum >= RISCV_ZERO_REGNUM && regnum < RISCV_FIRST_FP_REGNUM)
894 return riscv_xreg_feature.register_name (regnum);
895
896 /* Like with the x-regs we prefer the abi names for the floating point
897 registers. If the target doesn't have floating point registers then
898 the tdesc_register_name call above should have returned an empty
899 string. */
900 if (regnum >= RISCV_FIRST_FP_REGNUM && regnum <= RISCV_LAST_FP_REGNUM)
901 {
902 gdb_assert (riscv_has_fp_regs (gdbarch));
903 return riscv_freg_feature.register_name (regnum);
904 }
905
906 /* Some targets (QEMU) are reporting these three registers twice, once
907 in the FPU feature, and once in the CSR feature. Both of these read
908 the same underlying state inside the target, but naming the register
909 twice in the target description results in GDB having two registers
910 with the same name, only one of which can ever be accessed, but both
911 will show up in 'info register all'. Unless, we identify the
912 duplicate copies of these registers (in riscv_tdesc_unknown_reg) and
913 then hide the registers here by giving them no name. */
914 riscv_gdbarch_tdep *tdep = gdbarch_tdep<riscv_gdbarch_tdep> (gdbarch);
915 if (tdep->duplicate_fflags_regnum == regnum
916 || tdep->duplicate_frm_regnum == regnum
917 || tdep->duplicate_fcsr_regnum == regnum)
918 return "";
919
920 /* The remaining registers are different. For all other registers on the
921 machine we prefer to see the names that the target description
922 provides. This is particularly important for CSRs which might be
923 renamed over time. If GDB keeps track of the "latest" name, but a
924 particular target provides an older name then we don't want to force
925 users to see the newer name in register output.
926
927 The other case that reaches here are any registers that the target
928 provided that GDB is completely unaware of. For these we have no
929 choice but to accept the target description name.
930
931 Just accept whatever name TDESC_REGISTER_NAME returned. */
932 return name;
933 }
934
935 /* Implement gdbarch_pseudo_register_read. Read pseudo-register REGNUM
936 from REGCACHE and place the register value into BUF. BUF is sized
937 based on the type of register REGNUM, all of BUF should be written too,
938 the result should be sign or zero extended as appropriate. */
939
940 static enum register_status
941 riscv_pseudo_register_read (struct gdbarch *gdbarch,
942 readable_regcache *regcache,
943 int regnum, gdb_byte *buf)
944 {
945 riscv_gdbarch_tdep *tdep = gdbarch_tdep<riscv_gdbarch_tdep> (gdbarch);
946
947 if (regnum == tdep->fflags_regnum || regnum == tdep->frm_regnum)
948 {
949 /* Clear BUF. */
950 memset (buf, 0, register_size (gdbarch, regnum));
951
952 /* Read the first byte of the fcsr register, this contains both frm
953 and fflags. */
954 enum register_status status
955 = regcache->raw_read_part (RISCV_CSR_FCSR_REGNUM, 0, 1, buf);
956
957 if (status != REG_VALID)
958 return status;
959
960 /* Extract the appropriate parts. */
961 if (regnum == tdep->fflags_regnum)
962 buf[0] &= 0x1f;
963 else if (regnum == tdep->frm_regnum)
964 buf[0] = (buf[0] >> 5) & 0x7;
965
966 return REG_VALID;
967 }
968
969 return REG_UNKNOWN;
970 }
971
972 /* Implement gdbarch_pseudo_register_write. Write the contents of BUF into
973 pseudo-register REGNUM in REGCACHE. BUF is sized based on the type of
974 register REGNUM. */
975
976 static void
977 riscv_pseudo_register_write (struct gdbarch *gdbarch,
978 struct regcache *regcache, int regnum,
979 const gdb_byte *buf)
980 {
981 riscv_gdbarch_tdep *tdep = gdbarch_tdep<riscv_gdbarch_tdep> (gdbarch);
982
983 if (regnum == tdep->fflags_regnum || regnum == tdep->frm_regnum)
984 {
985 int fcsr_regnum = RISCV_CSR_FCSR_REGNUM;
986 gdb_byte raw_buf[register_size (gdbarch, fcsr_regnum)];
987
988 regcache->raw_read (fcsr_regnum, raw_buf);
989
990 if (regnum == tdep->fflags_regnum)
991 raw_buf[0] = (raw_buf[0] & ~0x1f) | (buf[0] & 0x1f);
992 else if (regnum == tdep->frm_regnum)
993 raw_buf[0] = (raw_buf[0] & ~(0x7 << 5)) | ((buf[0] & 0x7) << 5);
994
995 regcache->raw_write (fcsr_regnum, raw_buf);
996 }
997 else
998 gdb_assert_not_reached ("unknown pseudo register %d", regnum);
999 }
1000
1001 /* Implement the cannot_store_register gdbarch method. The zero register
1002 (x0) is read-only on RISC-V. */
1003
1004 static int
1005 riscv_cannot_store_register (struct gdbarch *gdbarch, int regnum)
1006 {
1007 return regnum == RISCV_ZERO_REGNUM;
1008 }
1009
1010 /* Construct a type for 64-bit FP registers. */
1011
1012 static struct type *
1013 riscv_fpreg_d_type (struct gdbarch *gdbarch)
1014 {
1015 riscv_gdbarch_tdep *tdep = gdbarch_tdep<riscv_gdbarch_tdep> (gdbarch);
1016
1017 if (tdep->riscv_fpreg_d_type == nullptr)
1018 {
1019 const struct builtin_type *bt = builtin_type (gdbarch);
1020
1021 /* The type we're building is this: */
1022 #if 0
1023 union __gdb_builtin_type_fpreg_d
1024 {
1025 float f;
1026 double d;
1027 };
1028 #endif
1029
1030 struct type *t;
1031
1032 t = arch_composite_type (gdbarch,
1033 "__gdb_builtin_type_fpreg_d", TYPE_CODE_UNION);
1034 append_composite_type_field (t, "float", bt->builtin_float);
1035 append_composite_type_field (t, "double", bt->builtin_double);
1036 t->set_is_vector (true);
1037 t->set_name ("builtin_type_fpreg_d");
1038 tdep->riscv_fpreg_d_type = t;
1039 }
1040
1041 return tdep->riscv_fpreg_d_type;
1042 }
1043
1044 /* Implement the register_type gdbarch method. This is installed as an
1045 for the override setup by TDESC_USE_REGISTERS, for most registers we
1046 delegate the type choice to the target description, but for a few
1047 registers we try to improve the types if the target description has
1048 taken a simplistic approach. */
1049
1050 static struct type *
1051 riscv_register_type (struct gdbarch *gdbarch, int regnum)
1052 {
1053 struct type *type = tdesc_register_type (gdbarch, regnum);
1054 int xlen = riscv_isa_xlen (gdbarch);
1055
1056 /* We want to perform some specific type "fixes" in cases where we feel
1057 that we really can do better than the target description. For all
1058 other cases we just return what the target description says. */
1059 if (riscv_is_fp_regno_p (regnum))
1060 {
1061 /* This spots the case for RV64 where the double is defined as
1062 either 'ieee_double' or 'float' (which is the generic name that
1063 converts to 'double' on 64-bit). In these cases its better to
1064 present the registers using a union type. */
1065 int flen = riscv_isa_flen (gdbarch);
1066 if (flen == 8
1067 && type->code () == TYPE_CODE_FLT
1068 && type->length () == flen
1069 && (strcmp (type->name (), "builtin_type_ieee_double") == 0
1070 || strcmp (type->name (), "double") == 0))
1071 type = riscv_fpreg_d_type (gdbarch);
1072 }
1073
1074 if ((regnum == gdbarch_pc_regnum (gdbarch)
1075 || regnum == RISCV_RA_REGNUM
1076 || regnum == RISCV_FP_REGNUM
1077 || regnum == RISCV_SP_REGNUM
1078 || regnum == RISCV_GP_REGNUM
1079 || regnum == RISCV_TP_REGNUM)
1080 && type->code () == TYPE_CODE_INT
1081 && type->length () == xlen)
1082 {
1083 /* This spots the case where some interesting registers are defined
1084 as simple integers of the expected size, we force these registers
1085 to be pointers as we believe that is more useful. */
1086 if (regnum == gdbarch_pc_regnum (gdbarch)
1087 || regnum == RISCV_RA_REGNUM)
1088 type = builtin_type (gdbarch)->builtin_func_ptr;
1089 else if (regnum == RISCV_FP_REGNUM
1090 || regnum == RISCV_SP_REGNUM
1091 || regnum == RISCV_GP_REGNUM
1092 || regnum == RISCV_TP_REGNUM)
1093 type = builtin_type (gdbarch)->builtin_data_ptr;
1094 }
1095
1096 return type;
1097 }
1098
1099 /* Helper for riscv_print_registers_info, prints info for a single register
1100 REGNUM. */
1101
1102 static void
1103 riscv_print_one_register_info (struct gdbarch *gdbarch,
1104 struct ui_file *file,
1105 frame_info_ptr frame,
1106 int regnum)
1107 {
1108 const char *name = gdbarch_register_name (gdbarch, regnum);
1109 struct value *val;
1110 struct type *regtype;
1111 int print_raw_format;
1112 enum tab_stops { value_column_1 = 15 };
1113
1114 gdb_puts (name, file);
1115 print_spaces (value_column_1 - strlen (name), file);
1116
1117 try
1118 {
1119 val = value_of_register (regnum, frame);
1120 regtype = val->type ();
1121 }
1122 catch (const gdb_exception_error &ex)
1123 {
1124 /* Handle failure to read a register without interrupting the entire
1125 'info registers' flow. */
1126 gdb_printf (file, "%s\n", ex.what ());
1127 return;
1128 }
1129
1130 print_raw_format = (val->entirely_available ()
1131 && !val->optimized_out ());
1132
1133 if (regtype->code () == TYPE_CODE_FLT
1134 || (regtype->code () == TYPE_CODE_UNION
1135 && regtype->num_fields () == 2
1136 && regtype->field (0).type ()->code () == TYPE_CODE_FLT
1137 && regtype->field (1).type ()->code () == TYPE_CODE_FLT)
1138 || (regtype->code () == TYPE_CODE_UNION
1139 && regtype->num_fields () == 3
1140 && regtype->field (0).type ()->code () == TYPE_CODE_FLT
1141 && regtype->field (1).type ()->code () == TYPE_CODE_FLT
1142 && regtype->field (2).type ()->code () == TYPE_CODE_FLT))
1143 {
1144 struct value_print_options opts;
1145 const gdb_byte *valaddr = val->contents_for_printing ().data ();
1146 enum bfd_endian byte_order = type_byte_order (regtype);
1147
1148 get_user_print_options (&opts);
1149 opts.deref_ref = true;
1150
1151 common_val_print (val, file, 0, &opts, current_language);
1152
1153 if (print_raw_format)
1154 {
1155 gdb_printf (file, "\t(raw ");
1156 print_hex_chars (file, valaddr, regtype->length (), byte_order,
1157 true);
1158 gdb_printf (file, ")");
1159 }
1160 }
1161 else
1162 {
1163 struct value_print_options opts;
1164 riscv_gdbarch_tdep *tdep = gdbarch_tdep<riscv_gdbarch_tdep> (gdbarch);
1165
1166 /* Print the register in hex. */
1167 get_formatted_print_options (&opts, 'x');
1168 opts.deref_ref = true;
1169 common_val_print (val, file, 0, &opts, current_language);
1170
1171 if (print_raw_format)
1172 {
1173 if (regnum == RISCV_CSR_MSTATUS_REGNUM)
1174 {
1175 LONGEST d;
1176 int size = register_size (gdbarch, regnum);
1177 unsigned xlen;
1178
1179 /* The SD field is always in the upper bit of MSTATUS, regardless
1180 of the number of bits in MSTATUS. */
1181 d = value_as_long (val);
1182 xlen = size * 8;
1183 gdb_printf (file,
1184 "\tSD:%X VM:%02X MXR:%X PUM:%X MPRV:%X XS:%X "
1185 "FS:%X MPP:%x HPP:%X SPP:%X MPIE:%X HPIE:%X "
1186 "SPIE:%X UPIE:%X MIE:%X HIE:%X SIE:%X UIE:%X",
1187 (int) ((d >> (xlen - 1)) & 0x1),
1188 (int) ((d >> 24) & 0x1f),
1189 (int) ((d >> 19) & 0x1),
1190 (int) ((d >> 18) & 0x1),
1191 (int) ((d >> 17) & 0x1),
1192 (int) ((d >> 15) & 0x3),
1193 (int) ((d >> 13) & 0x3),
1194 (int) ((d >> 11) & 0x3),
1195 (int) ((d >> 9) & 0x3),
1196 (int) ((d >> 8) & 0x1),
1197 (int) ((d >> 7) & 0x1),
1198 (int) ((d >> 6) & 0x1),
1199 (int) ((d >> 5) & 0x1),
1200 (int) ((d >> 4) & 0x1),
1201 (int) ((d >> 3) & 0x1),
1202 (int) ((d >> 2) & 0x1),
1203 (int) ((d >> 1) & 0x1),
1204 (int) ((d >> 0) & 0x1));
1205 }
1206 else if (regnum == RISCV_CSR_MISA_REGNUM)
1207 {
1208 int base;
1209 unsigned xlen, i;
1210 LONGEST d;
1211 int size = register_size (gdbarch, regnum);
1212
1213 /* The MXL field is always in the upper two bits of MISA,
1214 regardless of the number of bits in MISA. Mask out other
1215 bits to ensure we have a positive value. */
1216 d = value_as_long (val);
1217 base = (d >> ((size * 8) - 2)) & 0x3;
1218 xlen = 16;
1219
1220 for (; base > 0; base--)
1221 xlen *= 2;
1222 gdb_printf (file, "\tRV%d", xlen);
1223
1224 for (i = 0; i < 26; i++)
1225 {
1226 if (d & (1 << i))
1227 gdb_printf (file, "%c", 'A' + i);
1228 }
1229 }
1230 else if (regnum == RISCV_CSR_FCSR_REGNUM
1231 || regnum == tdep->fflags_regnum
1232 || regnum == tdep->frm_regnum)
1233 {
1234 LONGEST d = value_as_long (val);
1235
1236 gdb_printf (file, "\t");
1237 if (regnum != tdep->frm_regnum)
1238 gdb_printf (file,
1239 "NV:%d DZ:%d OF:%d UF:%d NX:%d",
1240 (int) ((d >> 4) & 0x1),
1241 (int) ((d >> 3) & 0x1),
1242 (int) ((d >> 2) & 0x1),
1243 (int) ((d >> 1) & 0x1),
1244 (int) ((d >> 0) & 0x1));
1245
1246 if (regnum != tdep->fflags_regnum)
1247 {
1248 static const char * const sfrm[] =
1249 {
1250 _("RNE (round to nearest; ties to even)"),
1251 _("RTZ (Round towards zero)"),
1252 _("RDN (Round down towards -INF)"),
1253 _("RUP (Round up towards +INF)"),
1254 _("RMM (Round to nearest; ties to max magnitude)"),
1255 _("INVALID[5]"),
1256 _("INVALID[6]"),
1257 /* A value of 0x7 indicates dynamic rounding mode when
1258 used within an instructions rounding-mode field, but
1259 is invalid within the FRM register. */
1260 _("INVALID[7] (Dynamic rounding mode)"),
1261 };
1262 int frm = ((regnum == RISCV_CSR_FCSR_REGNUM)
1263 ? (d >> 5) : d) & 0x7;
1264
1265 gdb_printf (file, "%sFRM:%i [%s]",
1266 (regnum == RISCV_CSR_FCSR_REGNUM
1267 ? " " : ""),
1268 frm, sfrm[frm]);
1269 }
1270 }
1271 else if (regnum == RISCV_PRIV_REGNUM)
1272 {
1273 LONGEST d;
1274 uint8_t priv;
1275
1276 d = value_as_long (val);
1277 priv = d & 0xff;
1278
1279 if (priv < 4)
1280 {
1281 static const char * const sprv[] =
1282 {
1283 "User/Application",
1284 "Supervisor",
1285 "Hypervisor",
1286 "Machine"
1287 };
1288 gdb_printf (file, "\tprv:%d [%s]",
1289 priv, sprv[priv]);
1290 }
1291 else
1292 gdb_printf (file, "\tprv:%d [INVALID]", priv);
1293 }
1294 else
1295 {
1296 /* If not a vector register, print it also according to its
1297 natural format. */
1298 if (regtype->is_vector () == 0)
1299 {
1300 get_user_print_options (&opts);
1301 opts.deref_ref = true;
1302 gdb_printf (file, "\t");
1303 common_val_print (val, file, 0, &opts, current_language);
1304 }
1305 }
1306 }
1307 }
1308 gdb_printf (file, "\n");
1309 }
1310
1311 /* Return true if REGNUM is a valid CSR register. The CSR register space
1312 is sparsely populated, so not every number is a named CSR. */
1313
1314 static bool
1315 riscv_is_regnum_a_named_csr (int regnum)
1316 {
1317 gdb_assert (regnum >= RISCV_FIRST_CSR_REGNUM
1318 && regnum <= RISCV_LAST_CSR_REGNUM);
1319
1320 switch (regnum)
1321 {
1322 #define DECLARE_CSR(name, num, class, define_ver, abort_ver) case RISCV_ ## num ## _REGNUM:
1323 #include "opcode/riscv-opc.h"
1324 #undef DECLARE_CSR
1325 return true;
1326
1327 default:
1328 return false;
1329 }
1330 }
1331
1332 /* Return true if REGNUM is an unknown CSR identified in
1333 riscv_tdesc_unknown_reg for GDBARCH. */
1334
1335 static bool
1336 riscv_is_unknown_csr (struct gdbarch *gdbarch, int regnum)
1337 {
1338 riscv_gdbarch_tdep *tdep = gdbarch_tdep<riscv_gdbarch_tdep> (gdbarch);
1339 return (regnum >= tdep->unknown_csrs_first_regnum
1340 && regnum < (tdep->unknown_csrs_first_regnum
1341 + tdep->unknown_csrs_count));
1342 }
1343
1344 /* Implement the register_reggroup_p gdbarch method. Is REGNUM a member
1345 of REGGROUP? */
1346
1347 static int
1348 riscv_register_reggroup_p (struct gdbarch *gdbarch, int regnum,
1349 const struct reggroup *reggroup)
1350 {
1351 riscv_gdbarch_tdep *tdep = gdbarch_tdep<riscv_gdbarch_tdep> (gdbarch);
1352
1353 /* Used by 'info registers' and 'info registers <groupname>'. */
1354
1355 if (gdbarch_register_name (gdbarch, regnum)[0] == '\0')
1356 return 0;
1357
1358 if (regnum > RISCV_LAST_REGNUM && regnum < gdbarch_num_regs (gdbarch))
1359 {
1360 /* Any extra registers from the CSR tdesc_feature (identified in
1361 riscv_tdesc_unknown_reg) are removed from the save/restore groups
1362 as some targets (QEMU) report CSRs which then can't be read and
1363 having unreadable registers in the save/restore group breaks
1364 things like inferior calls.
1365
1366 The unknown CSRs are also removed from the general group, and
1367 added into both the csr and system group. This is inline with the
1368 known CSRs (see below). */
1369 if (riscv_is_unknown_csr (gdbarch, regnum))
1370 {
1371 if (reggroup == restore_reggroup || reggroup == save_reggroup
1372 || reggroup == general_reggroup)
1373 return 0;
1374 else if (reggroup == system_reggroup || reggroup == csr_reggroup)
1375 return 1;
1376 }
1377
1378 /* This is some other unknown register from the target description.
1379 In this case we trust whatever the target description says about
1380 which groups this register should be in. */
1381 int ret = tdesc_register_in_reggroup_p (gdbarch, regnum, reggroup);
1382 if (ret != -1)
1383 return ret;
1384
1385 return default_register_reggroup_p (gdbarch, regnum, reggroup);
1386 }
1387
1388 if (reggroup == all_reggroup)
1389 {
1390 if (regnum < RISCV_FIRST_CSR_REGNUM || regnum >= RISCV_PRIV_REGNUM)
1391 return 1;
1392 if (riscv_is_regnum_a_named_csr (regnum))
1393 return 1;
1394 return 0;
1395 }
1396 else if (reggroup == float_reggroup)
1397 return (riscv_is_fp_regno_p (regnum)
1398 || regnum == RISCV_CSR_FCSR_REGNUM
1399 || regnum == tdep->fflags_regnum
1400 || regnum == tdep->frm_regnum);
1401 else if (reggroup == general_reggroup)
1402 return regnum < RISCV_FIRST_FP_REGNUM;
1403 else if (reggroup == restore_reggroup || reggroup == save_reggroup)
1404 {
1405 if (riscv_has_fp_regs (gdbarch))
1406 return (regnum <= RISCV_LAST_FP_REGNUM
1407 || regnum == RISCV_CSR_FCSR_REGNUM
1408 || regnum == tdep->fflags_regnum
1409 || regnum == tdep->frm_regnum);
1410 else
1411 return regnum < RISCV_FIRST_FP_REGNUM;
1412 }
1413 else if (reggroup == system_reggroup || reggroup == csr_reggroup)
1414 {
1415 if (regnum == RISCV_PRIV_REGNUM)
1416 return 1;
1417 if (regnum < RISCV_FIRST_CSR_REGNUM || regnum > RISCV_LAST_CSR_REGNUM)
1418 return 0;
1419 if (riscv_is_regnum_a_named_csr (regnum))
1420 return 1;
1421 return 0;
1422 }
1423 else if (reggroup == vector_reggroup)
1424 return (regnum >= RISCV_V0_REGNUM && regnum <= RISCV_V31_REGNUM);
1425 else
1426 return 0;
1427 }
1428
1429 /* Return the name for pseudo-register REGNUM for GDBARCH. */
1430
1431 static const char *
1432 riscv_pseudo_register_name (struct gdbarch *gdbarch, int regnum)
1433 {
1434 riscv_gdbarch_tdep *tdep = gdbarch_tdep<riscv_gdbarch_tdep> (gdbarch);
1435
1436 if (regnum == tdep->fflags_regnum)
1437 return "fflags";
1438 else if (regnum == tdep->frm_regnum)
1439 return "frm";
1440 else
1441 gdb_assert_not_reached ("unknown pseudo register number %d", regnum);
1442 }
1443
1444 /* Return the type for pseudo-register REGNUM for GDBARCH. */
1445
1446 static struct type *
1447 riscv_pseudo_register_type (struct gdbarch *gdbarch, int regnum)
1448 {
1449 riscv_gdbarch_tdep *tdep = gdbarch_tdep<riscv_gdbarch_tdep> (gdbarch);
1450
1451 if (regnum == tdep->fflags_regnum || regnum == tdep->frm_regnum)
1452 return builtin_type (gdbarch)->builtin_int32;
1453 else
1454 gdb_assert_not_reached ("unknown pseudo register number %d", regnum);
1455 }
1456
1457 /* Return true (non-zero) if pseudo-register REGNUM from GDBARCH is a
1458 member of REGGROUP, otherwise return false (zero). */
1459
1460 static int
1461 riscv_pseudo_register_reggroup_p (struct gdbarch *gdbarch, int regnum,
1462 const struct reggroup *reggroup)
1463 {
1464 /* The standard function will also work for pseudo-registers. */
1465 return riscv_register_reggroup_p (gdbarch, regnum, reggroup);
1466 }
1467
1468 /* Implement the print_registers_info gdbarch method. This is used by
1469 'info registers' and 'info all-registers'. */
1470
1471 static void
1472 riscv_print_registers_info (struct gdbarch *gdbarch,
1473 struct ui_file *file,
1474 frame_info_ptr frame,
1475 int regnum, int print_all)
1476 {
1477 if (regnum != -1)
1478 {
1479 /* Print one specified register. */
1480 if (*(gdbarch_register_name (gdbarch, regnum)) == '\0')
1481 error (_("Not a valid register for the current processor type"));
1482 riscv_print_one_register_info (gdbarch, file, frame, regnum);
1483 }
1484 else
1485 {
1486 const struct reggroup *reggroup;
1487
1488 if (print_all)
1489 reggroup = all_reggroup;
1490 else
1491 reggroup = general_reggroup;
1492
1493 for (regnum = 0; regnum < gdbarch_num_cooked_regs (gdbarch); ++regnum)
1494 {
1495 /* Zero never changes, so might as well hide by default. */
1496 if (regnum == RISCV_ZERO_REGNUM && !print_all)
1497 continue;
1498
1499 /* Registers with no name are not valid on this ISA. */
1500 if (*(gdbarch_register_name (gdbarch, regnum)) == '\0')
1501 continue;
1502
1503 /* Is the register in the group we're interested in? */
1504 if (!gdbarch_register_reggroup_p (gdbarch, regnum, reggroup))
1505 continue;
1506
1507 riscv_print_one_register_info (gdbarch, file, frame, regnum);
1508 }
1509 }
1510 }
1511
1512 /* Class that handles one decoded RiscV instruction. */
1513
1514 class riscv_insn
1515 {
1516 public:
1517
1518 /* Enum of all the opcodes that GDB cares about during the prologue scan. */
1519 enum opcode
1520 {
1521 /* Unknown value is used at initialisation time. */
1522 UNKNOWN = 0,
1523
1524 /* These instructions are all the ones we are interested in during the
1525 prologue scan. */
1526 ADD,
1527 ADDI,
1528 ADDIW,
1529 ADDW,
1530 AUIPC,
1531 LUI,
1532 SD,
1533 SW,
1534 LD,
1535 LW,
1536 MV,
1537 /* These are needed for software breakpoint support. */
1538 JAL,
1539 JALR,
1540 BEQ,
1541 BNE,
1542 BLT,
1543 BGE,
1544 BLTU,
1545 BGEU,
1546 /* These are needed for stepping over atomic sequences. */
1547 LR,
1548 SC,
1549 /* This instruction is used to do a syscall. */
1550 ECALL,
1551
1552 /* Other instructions are not interesting during the prologue scan, and
1553 are ignored. */
1554 OTHER
1555 };
1556
1557 riscv_insn ()
1558 : m_length (0),
1559 m_opcode (OTHER),
1560 m_rd (0),
1561 m_rs1 (0),
1562 m_rs2 (0)
1563 {
1564 /* Nothing. */
1565 }
1566
1567 void decode (struct gdbarch *gdbarch, CORE_ADDR pc);
1568
1569 /* Get the length of the instruction in bytes. */
1570 int length () const
1571 { return m_length; }
1572
1573 /* Get the opcode for this instruction. */
1574 enum opcode opcode () const
1575 { return m_opcode; }
1576
1577 /* Get destination register field for this instruction. This is only
1578 valid if the OPCODE implies there is such a field for this
1579 instruction. */
1580 int rd () const
1581 { return m_rd; }
1582
1583 /* Get the RS1 register field for this instruction. This is only valid
1584 if the OPCODE implies there is such a field for this instruction. */
1585 int rs1 () const
1586 { return m_rs1; }
1587
1588 /* Get the RS2 register field for this instruction. This is only valid
1589 if the OPCODE implies there is such a field for this instruction. */
1590 int rs2 () const
1591 { return m_rs2; }
1592
1593 /* Get the immediate for this instruction in signed form. This is only
1594 valid if the OPCODE implies there is such a field for this
1595 instruction. */
1596 int imm_signed () const
1597 { return m_imm.s; }
1598
1599 private:
1600
1601 /* Extract 5 bit register field at OFFSET from instruction OPCODE. */
1602 int decode_register_index (unsigned long opcode, int offset)
1603 {
1604 return (opcode >> offset) & 0x1F;
1605 }
1606
1607 /* Extract 5 bit register field at OFFSET from instruction OPCODE. */
1608 int decode_register_index_short (unsigned long opcode, int offset)
1609 {
1610 return ((opcode >> offset) & 0x7) + 8;
1611 }
1612
1613 /* Helper for DECODE, decode 32-bit R-type instruction. */
1614 void decode_r_type_insn (enum opcode opcode, ULONGEST ival)
1615 {
1616 m_opcode = opcode;
1617 m_rd = decode_register_index (ival, OP_SH_RD);
1618 m_rs1 = decode_register_index (ival, OP_SH_RS1);
1619 m_rs2 = decode_register_index (ival, OP_SH_RS2);
1620 }
1621
1622 /* Helper for DECODE, decode 16-bit compressed R-type instruction. */
1623 void decode_cr_type_insn (enum opcode opcode, ULONGEST ival)
1624 {
1625 m_opcode = opcode;
1626 m_rd = m_rs1 = decode_register_index (ival, OP_SH_CRS1S);
1627 m_rs2 = decode_register_index (ival, OP_SH_CRS2);
1628 }
1629
1630 /* Helper for DECODE, decode 32-bit I-type instruction. */
1631 void decode_i_type_insn (enum opcode opcode, ULONGEST ival)
1632 {
1633 m_opcode = opcode;
1634 m_rd = decode_register_index (ival, OP_SH_RD);
1635 m_rs1 = decode_register_index (ival, OP_SH_RS1);
1636 m_imm.s = EXTRACT_ITYPE_IMM (ival);
1637 }
1638
1639 /* Helper for DECODE, decode 16-bit compressed I-type instruction. */
1640 void decode_ci_type_insn (enum opcode opcode, ULONGEST ival)
1641 {
1642 m_opcode = opcode;
1643 m_rd = m_rs1 = decode_register_index (ival, OP_SH_CRS1S);
1644 m_imm.s = EXTRACT_CITYPE_IMM (ival);
1645 }
1646
1647 /* Helper for DECODE, decode 16-bit compressed CL-type instruction. */
1648 void decode_cl_type_insn (enum opcode opcode, ULONGEST ival)
1649 {
1650 m_opcode = opcode;
1651 m_rd = decode_register_index_short (ival, OP_SH_CRS2S);
1652 m_rs1 = decode_register_index_short (ival, OP_SH_CRS1S);
1653 m_imm.s = EXTRACT_CLTYPE_IMM (ival);
1654 }
1655
1656 /* Helper for DECODE, decode 32-bit S-type instruction. */
1657 void decode_s_type_insn (enum opcode opcode, ULONGEST ival)
1658 {
1659 m_opcode = opcode;
1660 m_rs1 = decode_register_index (ival, OP_SH_RS1);
1661 m_rs2 = decode_register_index (ival, OP_SH_RS2);
1662 m_imm.s = EXTRACT_STYPE_IMM (ival);
1663 }
1664
1665 /* Helper for DECODE, decode 16-bit CS-type instruction. The immediate
1666 encoding is different for each CS format instruction, so extracting
1667 the immediate is left up to the caller, who should pass the extracted
1668 immediate value through in IMM. */
1669 void decode_cs_type_insn (enum opcode opcode, ULONGEST ival, int imm)
1670 {
1671 m_opcode = opcode;
1672 m_imm.s = imm;
1673 m_rs1 = decode_register_index_short (ival, OP_SH_CRS1S);
1674 m_rs2 = decode_register_index_short (ival, OP_SH_CRS2S);
1675 }
1676
1677 /* Helper for DECODE, decode 16-bit CSS-type instruction. The immediate
1678 encoding is different for each CSS format instruction, so extracting
1679 the immediate is left up to the caller, who should pass the extracted
1680 immediate value through in IMM. */
1681 void decode_css_type_insn (enum opcode opcode, ULONGEST ival, int imm)
1682 {
1683 m_opcode = opcode;
1684 m_imm.s = imm;
1685 m_rs1 = RISCV_SP_REGNUM;
1686 /* Not a compressed register number in this case. */
1687 m_rs2 = decode_register_index (ival, OP_SH_CRS2);
1688 }
1689
1690 /* Helper for DECODE, decode 32-bit U-type instruction. */
1691 void decode_u_type_insn (enum opcode opcode, ULONGEST ival)
1692 {
1693 m_opcode = opcode;
1694 m_rd = decode_register_index (ival, OP_SH_RD);
1695 m_imm.s = EXTRACT_UTYPE_IMM (ival);
1696 }
1697
1698 /* Helper for DECODE, decode 32-bit J-type instruction. */
1699 void decode_j_type_insn (enum opcode opcode, ULONGEST ival)
1700 {
1701 m_opcode = opcode;
1702 m_rd = decode_register_index (ival, OP_SH_RD);
1703 m_imm.s = EXTRACT_JTYPE_IMM (ival);
1704 }
1705
1706 /* Helper for DECODE, decode 32-bit J-type instruction. */
1707 void decode_cj_type_insn (enum opcode opcode, ULONGEST ival)
1708 {
1709 m_opcode = opcode;
1710 m_imm.s = EXTRACT_CJTYPE_IMM (ival);
1711 }
1712
1713 void decode_b_type_insn (enum opcode opcode, ULONGEST ival)
1714 {
1715 m_opcode = opcode;
1716 m_rs1 = decode_register_index (ival, OP_SH_RS1);
1717 m_rs2 = decode_register_index (ival, OP_SH_RS2);
1718 m_imm.s = EXTRACT_BTYPE_IMM (ival);
1719 }
1720
1721 void decode_cb_type_insn (enum opcode opcode, ULONGEST ival)
1722 {
1723 m_opcode = opcode;
1724 m_rs1 = decode_register_index_short (ival, OP_SH_CRS1S);
1725 m_imm.s = EXTRACT_CBTYPE_IMM (ival);
1726 }
1727
1728 /* Fetch instruction from target memory at ADDR, return the content of
1729 the instruction, and update LEN with the instruction length. */
1730 static ULONGEST fetch_instruction (struct gdbarch *gdbarch,
1731 CORE_ADDR addr, int *len);
1732
1733 /* The length of the instruction in bytes. Should be 2 or 4. */
1734 int m_length;
1735
1736 /* The instruction opcode. */
1737 enum opcode m_opcode;
1738
1739 /* The three possible registers an instruction might reference. Not
1740 every instruction fills in all of these registers. Which fields are
1741 valid depends on the opcode. The naming of these fields matches the
1742 naming in the riscv isa manual. */
1743 int m_rd;
1744 int m_rs1;
1745 int m_rs2;
1746
1747 /* Possible instruction immediate. This is only valid if the instruction
1748 format contains an immediate, not all instruction, whether this is
1749 valid depends on the opcode. Despite only having one format for now
1750 the immediate is packed into a union, later instructions might require
1751 an unsigned formatted immediate, having the union in place now will
1752 reduce the need for code churn later. */
1753 union riscv_insn_immediate
1754 {
1755 riscv_insn_immediate ()
1756 : s (0)
1757 {
1758 /* Nothing. */
1759 }
1760
1761 int s;
1762 } m_imm;
1763 };
1764
1765 /* Fetch instruction from target memory at ADDR, return the content of the
1766 instruction, and update LEN with the instruction length. */
1767
1768 ULONGEST
1769 riscv_insn::fetch_instruction (struct gdbarch *gdbarch,
1770 CORE_ADDR addr, int *len)
1771 {
1772 enum bfd_endian byte_order = gdbarch_byte_order_for_code (gdbarch);
1773 gdb_byte buf[RISCV_MAX_INSN_LEN];
1774 int instlen, status;
1775
1776 /* All insns are at least 16 bits. */
1777 status = target_read_memory (addr, buf, 2);
1778 if (status)
1779 memory_error (TARGET_XFER_E_IO, addr);
1780
1781 /* If we need more, grab it now. */
1782 instlen = riscv_insn_length (buf[0]);
1783 gdb_assert (instlen <= sizeof (buf));
1784 *len = instlen;
1785
1786 if (instlen > 2)
1787 {
1788 status = target_read_memory (addr + 2, buf + 2, instlen - 2);
1789 if (status)
1790 memory_error (TARGET_XFER_E_IO, addr + 2);
1791 }
1792
1793 return extract_unsigned_integer (buf, instlen, byte_order);
1794 }
1795
1796 /* Fetch from target memory an instruction at PC and decode it. This can
1797 throw an error if the memory access fails, callers are responsible for
1798 handling this error if that is appropriate. */
1799
1800 void
1801 riscv_insn::decode (struct gdbarch *gdbarch, CORE_ADDR pc)
1802 {
1803 ULONGEST ival;
1804
1805 /* Fetch the instruction, and the instructions length. */
1806 ival = fetch_instruction (gdbarch, pc, &m_length);
1807
1808 if (m_length == 4)
1809 {
1810 if (is_add_insn (ival))
1811 decode_r_type_insn (ADD, ival);
1812 else if (is_addw_insn (ival))
1813 decode_r_type_insn (ADDW, ival);
1814 else if (is_addi_insn (ival))
1815 decode_i_type_insn (ADDI, ival);
1816 else if (is_addiw_insn (ival))
1817 decode_i_type_insn (ADDIW, ival);
1818 else if (is_auipc_insn (ival))
1819 decode_u_type_insn (AUIPC, ival);
1820 else if (is_lui_insn (ival))
1821 decode_u_type_insn (LUI, ival);
1822 else if (is_sd_insn (ival))
1823 decode_s_type_insn (SD, ival);
1824 else if (is_sw_insn (ival))
1825 decode_s_type_insn (SW, ival);
1826 else if (is_jal_insn (ival))
1827 decode_j_type_insn (JAL, ival);
1828 else if (is_jalr_insn (ival))
1829 decode_i_type_insn (JALR, ival);
1830 else if (is_beq_insn (ival))
1831 decode_b_type_insn (BEQ, ival);
1832 else if (is_bne_insn (ival))
1833 decode_b_type_insn (BNE, ival);
1834 else if (is_blt_insn (ival))
1835 decode_b_type_insn (BLT, ival);
1836 else if (is_bge_insn (ival))
1837 decode_b_type_insn (BGE, ival);
1838 else if (is_bltu_insn (ival))
1839 decode_b_type_insn (BLTU, ival);
1840 else if (is_bgeu_insn (ival))
1841 decode_b_type_insn (BGEU, ival);
1842 else if (is_lr_w_insn (ival))
1843 decode_r_type_insn (LR, ival);
1844 else if (is_lr_d_insn (ival))
1845 decode_r_type_insn (LR, ival);
1846 else if (is_sc_w_insn (ival))
1847 decode_r_type_insn (SC, ival);
1848 else if (is_sc_d_insn (ival))
1849 decode_r_type_insn (SC, ival);
1850 else if (is_ecall_insn (ival))
1851 decode_i_type_insn (ECALL, ival);
1852 else if (is_ld_insn (ival))
1853 decode_i_type_insn (LD, ival);
1854 else if (is_lw_insn (ival))
1855 decode_i_type_insn (LW, ival);
1856 else
1857 /* None of the other fields are valid in this case. */
1858 m_opcode = OTHER;
1859 }
1860 else if (m_length == 2)
1861 {
1862 int xlen = riscv_isa_xlen (gdbarch);
1863
1864 /* C_ADD and C_JALR have the same opcode. If RS2 is 0, then this is a
1865 C_JALR. So must try to match C_JALR first as it has more bits in
1866 mask. */
1867 if (is_c_jalr_insn (ival))
1868 decode_cr_type_insn (JALR, ival);
1869 else if (is_c_add_insn (ival))
1870 decode_cr_type_insn (ADD, ival);
1871 /* C_ADDW is RV64 and RV128 only. */
1872 else if (xlen != 4 && is_c_addw_insn (ival))
1873 decode_cr_type_insn (ADDW, ival);
1874 else if (is_c_addi_insn (ival))
1875 decode_ci_type_insn (ADDI, ival);
1876 /* C_ADDIW and C_JAL have the same opcode. C_ADDIW is RV64 and RV128
1877 only and C_JAL is RV32 only. */
1878 else if (xlen != 4 && is_c_addiw_insn (ival))
1879 decode_ci_type_insn (ADDIW, ival);
1880 else if (xlen == 4 && is_c_jal_insn (ival))
1881 decode_cj_type_insn (JAL, ival);
1882 /* C_ADDI16SP and C_LUI have the same opcode. If RD is 2, then this is a
1883 C_ADDI16SP. So must try to match C_ADDI16SP first as it has more bits
1884 in mask. */
1885 else if (is_c_addi16sp_insn (ival))
1886 {
1887 m_opcode = ADDI;
1888 m_rd = m_rs1 = decode_register_index (ival, OP_SH_RD);
1889 m_imm.s = EXTRACT_CITYPE_ADDI16SP_IMM (ival);
1890 }
1891 else if (is_c_addi4spn_insn (ival))
1892 {
1893 m_opcode = ADDI;
1894 m_rd = decode_register_index_short (ival, OP_SH_CRS2S);
1895 m_rs1 = RISCV_SP_REGNUM;
1896 m_imm.s = EXTRACT_CIWTYPE_ADDI4SPN_IMM (ival);
1897 }
1898 else if (is_c_lui_insn (ival))
1899 {
1900 m_opcode = LUI;
1901 m_rd = decode_register_index (ival, OP_SH_CRS1S);
1902 m_imm.s = EXTRACT_CITYPE_LUI_IMM (ival);
1903 }
1904 /* C_SD and C_FSW have the same opcode. C_SD is RV64 and RV128 only,
1905 and C_FSW is RV32 only. */
1906 else if (xlen != 4 && is_c_sd_insn (ival))
1907 decode_cs_type_insn (SD, ival, EXTRACT_CLTYPE_LD_IMM (ival));
1908 else if (is_c_sw_insn (ival))
1909 decode_cs_type_insn (SW, ival, EXTRACT_CLTYPE_LW_IMM (ival));
1910 else if (is_c_swsp_insn (ival))
1911 decode_css_type_insn (SW, ival, EXTRACT_CSSTYPE_SWSP_IMM (ival));
1912 else if (xlen != 4 && is_c_sdsp_insn (ival))
1913 decode_css_type_insn (SD, ival, EXTRACT_CSSTYPE_SDSP_IMM (ival));
1914 /* C_JR and C_MV have the same opcode. If RS2 is 0, then this is a C_JR.
1915 So must try to match C_JR first as it has more bits in mask. */
1916 else if (is_c_jr_insn (ival))
1917 decode_cr_type_insn (JALR, ival);
1918 else if (is_c_mv_insn (ival))
1919 decode_cr_type_insn (MV, ival);
1920 else if (is_c_j_insn (ival))
1921 decode_cj_type_insn (JAL, ival);
1922 else if (is_c_beqz_insn (ival))
1923 decode_cb_type_insn (BEQ, ival);
1924 else if (is_c_bnez_insn (ival))
1925 decode_cb_type_insn (BNE, ival);
1926 else if (is_c_ld_insn (ival))
1927 decode_cl_type_insn (LD, ival);
1928 else if (is_c_lw_insn (ival))
1929 decode_cl_type_insn (LW, ival);
1930 else
1931 /* None of the other fields of INSN are valid in this case. */
1932 m_opcode = OTHER;
1933 }
1934 else
1935 {
1936 /* 6 bytes or more. If the instruction is longer than 8 bytes, we don't
1937 have full instruction bits in ival. At least, such long instructions
1938 are not defined yet, so just ignore it. */
1939 gdb_assert (m_length > 0 && m_length % 2 == 0);
1940 m_opcode = OTHER;
1941 }
1942 }
1943
1944 /* The prologue scanner. This is currently only used for skipping the
1945 prologue of a function when the DWARF information is not sufficient.
1946 However, it is written with filling of the frame cache in mind, which
1947 is why different groups of stack setup instructions are split apart
1948 during the core of the inner loop. In the future, the intention is to
1949 extend this function to fully support building up a frame cache that
1950 can unwind register values when there is no DWARF information. */
1951
1952 static CORE_ADDR
1953 riscv_scan_prologue (struct gdbarch *gdbarch,
1954 CORE_ADDR start_pc, CORE_ADDR end_pc,
1955 struct riscv_unwind_cache *cache)
1956 {
1957 CORE_ADDR cur_pc, next_pc, after_prologue_pc;
1958 CORE_ADDR end_prologue_addr = 0;
1959
1960 /* Find an upper limit on the function prologue using the debug
1961 information. If the debug information could not be used to provide
1962 that bound, then use an arbitrary large number as the upper bound. */
1963 after_prologue_pc = skip_prologue_using_sal (gdbarch, start_pc);
1964 if (after_prologue_pc == 0)
1965 after_prologue_pc = start_pc + 100; /* Arbitrary large number. */
1966 if (after_prologue_pc < end_pc)
1967 end_pc = after_prologue_pc;
1968
1969 pv_t regs[RISCV_NUM_INTEGER_REGS]; /* Number of GPR. */
1970 for (int regno = 0; regno < RISCV_NUM_INTEGER_REGS; regno++)
1971 regs[regno] = pv_register (regno, 0);
1972 pv_area stack (RISCV_SP_REGNUM, gdbarch_addr_bit (gdbarch));
1973
1974 if (riscv_debug_unwinder)
1975 gdb_printf
1976 (gdb_stdlog,
1977 "Prologue scan for function starting at %s (limit %s)\n",
1978 core_addr_to_string (start_pc),
1979 core_addr_to_string (end_pc));
1980
1981 for (next_pc = cur_pc = start_pc; cur_pc < end_pc; cur_pc = next_pc)
1982 {
1983 struct riscv_insn insn;
1984
1985 /* Decode the current instruction, and decide where the next
1986 instruction lives based on the size of this instruction. */
1987 insn.decode (gdbarch, cur_pc);
1988 gdb_assert (insn.length () > 0);
1989 next_pc = cur_pc + insn.length ();
1990
1991 /* Look for common stack adjustment insns. */
1992 if ((insn.opcode () == riscv_insn::ADDI
1993 || insn.opcode () == riscv_insn::ADDIW)
1994 && insn.rd () == RISCV_SP_REGNUM
1995 && insn.rs1 () == RISCV_SP_REGNUM)
1996 {
1997 /* Handle: addi sp, sp, -i
1998 or: addiw sp, sp, -i */
1999 gdb_assert (insn.rd () < RISCV_NUM_INTEGER_REGS);
2000 gdb_assert (insn.rs1 () < RISCV_NUM_INTEGER_REGS);
2001 regs[insn.rd ()]
2002 = pv_add_constant (regs[insn.rs1 ()], insn.imm_signed ());
2003 }
2004 else if ((insn.opcode () == riscv_insn::SW
2005 || insn.opcode () == riscv_insn::SD)
2006 && (insn.rs1 () == RISCV_SP_REGNUM
2007 || insn.rs1 () == RISCV_FP_REGNUM))
2008 {
2009 /* Handle: sw reg, offset(sp)
2010 or: sd reg, offset(sp)
2011 or: sw reg, offset(s0)
2012 or: sd reg, offset(s0) */
2013 /* Instruction storing a register onto the stack. */
2014 gdb_assert (insn.rs1 () < RISCV_NUM_INTEGER_REGS);
2015 gdb_assert (insn.rs2 () < RISCV_NUM_INTEGER_REGS);
2016 stack.store (pv_add_constant (regs[insn.rs1 ()], insn.imm_signed ()),
2017 (insn.opcode () == riscv_insn::SW ? 4 : 8),
2018 regs[insn.rs2 ()]);
2019 }
2020 else if (insn.opcode () == riscv_insn::ADDI
2021 && insn.rd () == RISCV_FP_REGNUM
2022 && insn.rs1 () == RISCV_SP_REGNUM)
2023 {
2024 /* Handle: addi s0, sp, size */
2025 /* Instructions setting up the frame pointer. */
2026 gdb_assert (insn.rd () < RISCV_NUM_INTEGER_REGS);
2027 gdb_assert (insn.rs1 () < RISCV_NUM_INTEGER_REGS);
2028 regs[insn.rd ()]
2029 = pv_add_constant (regs[insn.rs1 ()], insn.imm_signed ());
2030 }
2031 else if ((insn.opcode () == riscv_insn::ADD
2032 || insn.opcode () == riscv_insn::ADDW)
2033 && insn.rd () == RISCV_FP_REGNUM
2034 && insn.rs1 () == RISCV_SP_REGNUM
2035 && insn.rs2 () == RISCV_ZERO_REGNUM)
2036 {
2037 /* Handle: add s0, sp, 0
2038 or: addw s0, sp, 0 */
2039 /* Instructions setting up the frame pointer. */
2040 gdb_assert (insn.rd () < RISCV_NUM_INTEGER_REGS);
2041 gdb_assert (insn.rs1 () < RISCV_NUM_INTEGER_REGS);
2042 regs[insn.rd ()] = pv_add_constant (regs[insn.rs1 ()], 0);
2043 }
2044 else if ((insn.opcode () == riscv_insn::ADDI
2045 && insn.rd () == RISCV_ZERO_REGNUM
2046 && insn.rs1 () == RISCV_ZERO_REGNUM
2047 && insn.imm_signed () == 0))
2048 {
2049 /* Handle: add x0, x0, 0 (NOP) */
2050 }
2051 else if (insn.opcode () == riscv_insn::AUIPC)
2052 {
2053 gdb_assert (insn.rd () < RISCV_NUM_INTEGER_REGS);
2054 regs[insn.rd ()] = pv_constant (cur_pc + insn.imm_signed ());
2055 }
2056 else if (insn.opcode () == riscv_insn::LUI)
2057 {
2058 /* Handle: lui REG, n
2059 Where REG is not gp register. */
2060 gdb_assert (insn.rd () < RISCV_NUM_INTEGER_REGS);
2061 regs[insn.rd ()] = pv_constant (insn.imm_signed ());
2062 }
2063 else if (insn.opcode () == riscv_insn::ADDI)
2064 {
2065 /* Handle: addi REG1, REG2, IMM */
2066 gdb_assert (insn.rd () < RISCV_NUM_INTEGER_REGS);
2067 gdb_assert (insn.rs1 () < RISCV_NUM_INTEGER_REGS);
2068 regs[insn.rd ()]
2069 = pv_add_constant (regs[insn.rs1 ()], insn.imm_signed ());
2070 }
2071 else if (insn.opcode () == riscv_insn::ADD)
2072 {
2073 /* Handle: add REG1, REG2, REG3 */
2074 gdb_assert (insn.rd () < RISCV_NUM_INTEGER_REGS);
2075 gdb_assert (insn.rs1 () < RISCV_NUM_INTEGER_REGS);
2076 gdb_assert (insn.rs2 () < RISCV_NUM_INTEGER_REGS);
2077 regs[insn.rd ()] = pv_add (regs[insn.rs1 ()], regs[insn.rs2 ()]);
2078 }
2079 else if (insn.opcode () == riscv_insn::LD
2080 || insn.opcode () == riscv_insn::LW)
2081 {
2082 /* Handle: ld reg, offset(rs1)
2083 or: c.ld reg, offset(rs1)
2084 or: lw reg, offset(rs1)
2085 or: c.lw reg, offset(rs1) */
2086 gdb_assert (insn.rd () < RISCV_NUM_INTEGER_REGS);
2087 gdb_assert (insn.rs1 () < RISCV_NUM_INTEGER_REGS);
2088 regs[insn.rd ()]
2089 = stack.fetch (pv_add_constant (regs[insn.rs1 ()],
2090 insn.imm_signed ()),
2091 (insn.opcode () == riscv_insn::LW ? 4 : 8));
2092 }
2093 else if (insn.opcode () == riscv_insn::MV)
2094 {
2095 /* Handle: c.mv RD, RS2 */
2096 gdb_assert (insn.rd () < RISCV_NUM_INTEGER_REGS);
2097 gdb_assert (insn.rs2 () < RISCV_NUM_INTEGER_REGS);
2098 gdb_assert (insn.rs2 () > 0);
2099 regs[insn.rd ()] = regs[insn.rs2 ()];
2100 }
2101 else
2102 {
2103 end_prologue_addr = cur_pc;
2104 break;
2105 }
2106 }
2107
2108 if (end_prologue_addr == 0)
2109 end_prologue_addr = cur_pc;
2110
2111 if (riscv_debug_unwinder)
2112 gdb_printf (gdb_stdlog, "End of prologue at %s\n",
2113 core_addr_to_string (end_prologue_addr));
2114
2115 if (cache != NULL)
2116 {
2117 /* Figure out if it is a frame pointer or just a stack pointer. Also
2118 the offset held in the pv_t is from the original register value to
2119 the current value, which for a grows down stack means a negative
2120 value. The FRAME_BASE_OFFSET is the negation of this, how to get
2121 from the current value to the original value. */
2122 if (pv_is_register (regs[RISCV_FP_REGNUM], RISCV_SP_REGNUM))
2123 {
2124 cache->frame_base_reg = RISCV_FP_REGNUM;
2125 cache->frame_base_offset = -regs[RISCV_FP_REGNUM].k;
2126 }
2127 else
2128 {
2129 cache->frame_base_reg = RISCV_SP_REGNUM;
2130 cache->frame_base_offset = -regs[RISCV_SP_REGNUM].k;
2131 }
2132
2133 /* Assign offset from old SP to all saved registers. As we don't
2134 have the previous value for the frame base register at this
2135 point, we store the offset as the address in the trad_frame, and
2136 then convert this to an actual address later. */
2137 for (int i = 0; i <= RISCV_NUM_INTEGER_REGS; i++)
2138 {
2139 CORE_ADDR offset;
2140 if (stack.find_reg (gdbarch, i, &offset))
2141 {
2142 if (riscv_debug_unwinder)
2143 {
2144 /* Display OFFSET as a signed value, the offsets are from
2145 the frame base address to the registers location on
2146 the stack, with a descending stack this means the
2147 offsets are always negative. */
2148 gdb_printf (gdb_stdlog,
2149 "Register $%s at stack offset %s\n",
2150 gdbarch_register_name (gdbarch, i),
2151 plongest ((LONGEST) offset));
2152 }
2153 cache->regs[i].set_addr (offset);
2154 }
2155 }
2156 }
2157
2158 return end_prologue_addr;
2159 }
2160
2161 /* Implement the riscv_skip_prologue gdbarch method. */
2162
2163 static CORE_ADDR
2164 riscv_skip_prologue (struct gdbarch *gdbarch, CORE_ADDR pc)
2165 {
2166 CORE_ADDR func_addr;
2167
2168 /* See if we can determine the end of the prologue via the symbol
2169 table. If so, then return either PC, or the PC after the
2170 prologue, whichever is greater. */
2171 if (find_pc_partial_function (pc, NULL, &func_addr, NULL))
2172 {
2173 CORE_ADDR post_prologue_pc
2174 = skip_prologue_using_sal (gdbarch, func_addr);
2175
2176 if (post_prologue_pc != 0)
2177 return std::max (pc, post_prologue_pc);
2178 }
2179
2180 /* Can't determine prologue from the symbol table, need to examine
2181 instructions. Pass -1 for the end address to indicate the prologue
2182 scanner can scan as far as it needs to find the end of the prologue. */
2183 return riscv_scan_prologue (gdbarch, pc, ((CORE_ADDR) -1), NULL);
2184 }
2185
2186 /* Implement the gdbarch push dummy code callback. */
2187
2188 static CORE_ADDR
2189 riscv_push_dummy_code (struct gdbarch *gdbarch, CORE_ADDR sp,
2190 CORE_ADDR funaddr, struct value **args, int nargs,
2191 struct type *value_type, CORE_ADDR *real_pc,
2192 CORE_ADDR *bp_addr, struct regcache *regcache)
2193 {
2194 /* A nop instruction is 'add x0, x0, 0'. */
2195 static const gdb_byte nop_insn[] = { 0x13, 0x00, 0x00, 0x00 };
2196
2197 /* Allocate space for a breakpoint, and keep the stack correctly
2198 aligned. The space allocated here must be at least big enough to
2199 accommodate the NOP_INSN defined above. */
2200 sp -= 16;
2201 *bp_addr = sp;
2202 *real_pc = funaddr;
2203
2204 /* When we insert a breakpoint we select whether to use a compressed
2205 breakpoint or not based on the existing contents of the memory.
2206
2207 If the breakpoint is being placed onto the stack as part of setting up
2208 for an inferior call from GDB, then the existing stack contents may
2209 randomly appear to be a compressed instruction, causing GDB to insert
2210 a compressed breakpoint. If this happens on a target that does not
2211 support compressed instructions then this could cause problems.
2212
2213 To prevent this issue we write an uncompressed nop onto the stack at
2214 the location where the breakpoint will be inserted. In this way we
2215 ensure that we always use an uncompressed breakpoint, which should
2216 work on all targets.
2217
2218 We call TARGET_WRITE_MEMORY here so that if the write fails we don't
2219 throw an exception. Instead we ignore the error and move on. The
2220 assumption is that either GDB will error later when actually trying to
2221 insert a software breakpoint, or GDB will use hardware breakpoints and
2222 there will be no need to write to memory later. */
2223 int status = target_write_memory (*bp_addr, nop_insn, sizeof (nop_insn));
2224
2225 if (riscv_debug_breakpoints || riscv_debug_infcall)
2226 gdb_printf (gdb_stdlog,
2227 "Writing %s-byte nop instruction to %s: %s\n",
2228 plongest (sizeof (nop_insn)),
2229 paddress (gdbarch, *bp_addr),
2230 (status == 0 ? "success" : "failed"));
2231
2232 return sp;
2233 }
2234
2235 /* Implement the gdbarch type alignment method, overrides the generic
2236 alignment algorithm for anything that is RISC-V specific. */
2237
2238 static ULONGEST
2239 riscv_type_align (gdbarch *gdbarch, type *type)
2240 {
2241 type = check_typedef (type);
2242 if (type->code () == TYPE_CODE_ARRAY && type->is_vector ())
2243 return std::min (type->length (), (ULONGEST) BIGGEST_ALIGNMENT);
2244
2245 /* Anything else will be aligned by the generic code. */
2246 return 0;
2247 }
2248
2249 /* Holds information about a single argument either being passed to an
2250 inferior function, or returned from an inferior function. This includes
2251 information about the size, type, etc of the argument, and also
2252 information about how the argument will be passed (or returned). */
2253
2254 struct riscv_arg_info
2255 {
2256 /* Contents of the argument. */
2257 const gdb_byte *contents;
2258
2259 /* Length of argument. */
2260 int length;
2261
2262 /* Alignment required for an argument of this type. */
2263 int align;
2264
2265 /* The type for this argument. */
2266 struct type *type;
2267
2268 /* Each argument can have either 1 or 2 locations assigned to it. Each
2269 location describes where part of the argument will be placed. The
2270 second location is valid based on the LOC_TYPE and C_LENGTH fields
2271 of the first location (which is always valid). */
2272 struct location
2273 {
2274 /* What type of location this is. */
2275 enum location_type
2276 {
2277 /* Argument passed in a register. */
2278 in_reg,
2279
2280 /* Argument passed as an on stack argument. */
2281 on_stack,
2282
2283 /* Argument passed by reference. The second location is always
2284 valid for a BY_REF argument, and describes where the address
2285 of the BY_REF argument should be placed. */
2286 by_ref
2287 } loc_type;
2288
2289 /* Information that depends on the location type. */
2290 union
2291 {
2292 /* Which register number to use. */
2293 int regno;
2294
2295 /* The offset into the stack region. */
2296 int offset;
2297 } loc_data;
2298
2299 /* The length of contents covered by this location. If this is less
2300 than the total length of the argument, then the second location
2301 will be valid, and will describe where the rest of the argument
2302 will go. */
2303 int c_length;
2304
2305 /* The offset within CONTENTS for this part of the argument. This can
2306 be non-zero even for the first part (the first field of a struct can
2307 have a non-zero offset due to padding). For the second part of the
2308 argument, this might be the C_LENGTH value of the first part,
2309 however, if we are passing a structure in two registers, and there's
2310 is padding between the first and second field, then this offset
2311 might be greater than the length of the first argument part. When
2312 the second argument location is not holding part of the argument
2313 value, but is instead holding the address of a reference argument,
2314 then this offset will be set to 0. */
2315 int c_offset;
2316 } argloc[2];
2317
2318 /* TRUE if this is an unnamed argument. */
2319 bool is_unnamed;
2320 };
2321
2322 /* Information about a set of registers being used for passing arguments as
2323 part of a function call. The register set must be numerically
2324 sequential from NEXT_REGNUM to LAST_REGNUM. The register set can be
2325 disabled from use by setting NEXT_REGNUM greater than LAST_REGNUM. */
2326
2327 struct riscv_arg_reg
2328 {
2329 riscv_arg_reg (int first, int last)
2330 : next_regnum (first),
2331 last_regnum (last)
2332 {
2333 /* Nothing. */
2334 }
2335
2336 /* The GDB register number to use in this set. */
2337 int next_regnum;
2338
2339 /* The last GDB register number to use in this set. */
2340 int last_regnum;
2341 };
2342
2343 /* Arguments can be passed as on stack arguments, or by reference. The
2344 on stack arguments must be in a continuous region starting from $sp,
2345 while the by reference arguments can be anywhere, but we'll put them
2346 on the stack after (at higher address) the on stack arguments.
2347
2348 This might not be the right approach to take. The ABI is clear that
2349 an argument passed by reference can be modified by the callee, which
2350 us placing the argument (temporarily) onto the stack will not achieve
2351 (changes will be lost). There's also the possibility that very large
2352 arguments could overflow the stack.
2353
2354 This struct is used to track offset into these two areas for where
2355 arguments are to be placed. */
2356 struct riscv_memory_offsets
2357 {
2358 riscv_memory_offsets ()
2359 : arg_offset (0),
2360 ref_offset (0)
2361 {
2362 /* Nothing. */
2363 }
2364
2365 /* Offset into on stack argument area. */
2366 int arg_offset;
2367
2368 /* Offset into the pass by reference area. */
2369 int ref_offset;
2370 };
2371
2372 /* Holds information about where arguments to a call will be placed. This
2373 is updated as arguments are added onto the call, and can be used to
2374 figure out where the next argument should be placed. */
2375
2376 struct riscv_call_info
2377 {
2378 riscv_call_info (struct gdbarch *gdbarch)
2379 : int_regs (RISCV_A0_REGNUM, RISCV_A0_REGNUM + 7),
2380 float_regs (RISCV_FA0_REGNUM, RISCV_FA0_REGNUM + 7)
2381 {
2382 xlen = riscv_abi_xlen (gdbarch);
2383 flen = riscv_abi_flen (gdbarch);
2384
2385 /* Reduce the number of integer argument registers when using the
2386 embedded abi (i.e. rv32e). */
2387 if (riscv_abi_embedded (gdbarch))
2388 int_regs.last_regnum = RISCV_A0_REGNUM + 5;
2389
2390 /* Disable use of floating point registers if needed. */
2391 if (!riscv_has_fp_abi (gdbarch))
2392 float_regs.next_regnum = float_regs.last_regnum + 1;
2393 }
2394
2395 /* Track the memory areas used for holding in-memory arguments to a
2396 call. */
2397 struct riscv_memory_offsets memory;
2398
2399 /* Holds information about the next integer register to use for passing
2400 an argument. */
2401 struct riscv_arg_reg int_regs;
2402
2403 /* Holds information about the next floating point register to use for
2404 passing an argument. */
2405 struct riscv_arg_reg float_regs;
2406
2407 /* The XLEN and FLEN are copied in to this structure for convenience, and
2408 are just the results of calling RISCV_ABI_XLEN and RISCV_ABI_FLEN. */
2409 int xlen;
2410 int flen;
2411 };
2412
2413 /* Return the number of registers available for use as parameters in the
2414 register set REG. Returned value can be 0 or more. */
2415
2416 static int
2417 riscv_arg_regs_available (struct riscv_arg_reg *reg)
2418 {
2419 if (reg->next_regnum > reg->last_regnum)
2420 return 0;
2421
2422 return (reg->last_regnum - reg->next_regnum + 1);
2423 }
2424
2425 /* If there is at least one register available in the register set REG then
2426 the next register from REG is assigned to LOC and the length field of
2427 LOC is updated to LENGTH. The register set REG is updated to indicate
2428 that the assigned register is no longer available and the function
2429 returns true.
2430
2431 If there are no registers available in REG then the function returns
2432 false, and LOC and REG are unchanged. */
2433
2434 static bool
2435 riscv_assign_reg_location (struct riscv_arg_info::location *loc,
2436 struct riscv_arg_reg *reg,
2437 int length, int offset)
2438 {
2439 if (reg->next_regnum <= reg->last_regnum)
2440 {
2441 loc->loc_type = riscv_arg_info::location::in_reg;
2442 loc->loc_data.regno = reg->next_regnum;
2443 reg->next_regnum++;
2444 loc->c_length = length;
2445 loc->c_offset = offset;
2446 return true;
2447 }
2448
2449 return false;
2450 }
2451
2452 /* Assign LOC a location as the next stack parameter, and update MEMORY to
2453 record that an area of stack has been used to hold the parameter
2454 described by LOC.
2455
2456 The length field of LOC is updated to LENGTH, the length of the
2457 parameter being stored, and ALIGN is the alignment required by the
2458 parameter, which will affect how memory is allocated out of MEMORY. */
2459
2460 static void
2461 riscv_assign_stack_location (struct riscv_arg_info::location *loc,
2462 struct riscv_memory_offsets *memory,
2463 int length, int align)
2464 {
2465 loc->loc_type = riscv_arg_info::location::on_stack;
2466 memory->arg_offset
2467 = align_up (memory->arg_offset, align);
2468 loc->loc_data.offset = memory->arg_offset;
2469 memory->arg_offset += length;
2470 loc->c_length = length;
2471
2472 /* Offset is always 0, either we're the first location part, in which
2473 case we're reading content from the start of the argument, or we're
2474 passing the address of a reference argument, so 0. */
2475 loc->c_offset = 0;
2476 }
2477
2478 /* Update AINFO, which describes an argument that should be passed or
2479 returned using the integer ABI. The argloc fields within AINFO are
2480 updated to describe the location in which the argument will be passed to
2481 a function, or returned from a function.
2482
2483 The CINFO structure contains the ongoing call information, the holds
2484 information such as which argument registers are remaining to be
2485 assigned to parameter, and how much memory has been used by parameters
2486 so far.
2487
2488 By examining the state of CINFO a suitable location can be selected,
2489 and assigned to AINFO. */
2490
2491 static void
2492 riscv_call_arg_scalar_int (struct riscv_arg_info *ainfo,
2493 struct riscv_call_info *cinfo)
2494 {
2495 if (TYPE_HAS_DYNAMIC_LENGTH (ainfo->type)
2496 || ainfo->length > (2 * cinfo->xlen))
2497 {
2498 /* Argument is going to be passed by reference. */
2499 ainfo->argloc[0].loc_type
2500 = riscv_arg_info::location::by_ref;
2501 cinfo->memory.ref_offset
2502 = align_up (cinfo->memory.ref_offset, ainfo->align);
2503 ainfo->argloc[0].loc_data.offset = cinfo->memory.ref_offset;
2504 cinfo->memory.ref_offset += ainfo->length;
2505 ainfo->argloc[0].c_length = ainfo->length;
2506
2507 /* The second location for this argument is given over to holding the
2508 address of the by-reference data. Pass 0 for the offset as this
2509 is not part of the actual argument value. */
2510 if (!riscv_assign_reg_location (&ainfo->argloc[1],
2511 &cinfo->int_regs,
2512 cinfo->xlen, 0))
2513 riscv_assign_stack_location (&ainfo->argloc[1],
2514 &cinfo->memory, cinfo->xlen,
2515 cinfo->xlen);
2516 }
2517 else
2518 {
2519 int len = std::min (ainfo->length, cinfo->xlen);
2520 int align = std::max (ainfo->align, cinfo->xlen);
2521
2522 /* Unnamed arguments in registers that require 2*XLEN alignment are
2523 passed in an aligned register pair. */
2524 if (ainfo->is_unnamed && (align == cinfo->xlen * 2)
2525 && cinfo->int_regs.next_regnum & 1)
2526 cinfo->int_regs.next_regnum++;
2527
2528 if (!riscv_assign_reg_location (&ainfo->argloc[0],
2529 &cinfo->int_regs, len, 0))
2530 riscv_assign_stack_location (&ainfo->argloc[0],
2531 &cinfo->memory, len, align);
2532
2533 if (len < ainfo->length)
2534 {
2535 len = ainfo->length - len;
2536 if (!riscv_assign_reg_location (&ainfo->argloc[1],
2537 &cinfo->int_regs, len,
2538 cinfo->xlen))
2539 riscv_assign_stack_location (&ainfo->argloc[1],
2540 &cinfo->memory, len, cinfo->xlen);
2541 }
2542 }
2543 }
2544
2545 /* Like RISCV_CALL_ARG_SCALAR_INT, except the argument described by AINFO
2546 is being passed with the floating point ABI. */
2547
2548 static void
2549 riscv_call_arg_scalar_float (struct riscv_arg_info *ainfo,
2550 struct riscv_call_info *cinfo)
2551 {
2552 if (ainfo->length > cinfo->flen || ainfo->is_unnamed)
2553 return riscv_call_arg_scalar_int (ainfo, cinfo);
2554 else
2555 {
2556 if (!riscv_assign_reg_location (&ainfo->argloc[0],
2557 &cinfo->float_regs,
2558 ainfo->length, 0))
2559 return riscv_call_arg_scalar_int (ainfo, cinfo);
2560 }
2561 }
2562
2563 /* Like RISCV_CALL_ARG_SCALAR_INT, except the argument described by AINFO
2564 is a complex floating point argument, and is therefore handled
2565 differently to other argument types. */
2566
2567 static void
2568 riscv_call_arg_complex_float (struct riscv_arg_info *ainfo,
2569 struct riscv_call_info *cinfo)
2570 {
2571 if (ainfo->length <= (2 * cinfo->flen)
2572 && riscv_arg_regs_available (&cinfo->float_regs) >= 2
2573 && !ainfo->is_unnamed)
2574 {
2575 bool result;
2576 int len = ainfo->length / 2;
2577
2578 result = riscv_assign_reg_location (&ainfo->argloc[0],
2579 &cinfo->float_regs, len, 0);
2580 gdb_assert (result);
2581
2582 result = riscv_assign_reg_location (&ainfo->argloc[1],
2583 &cinfo->float_regs, len, len);
2584 gdb_assert (result);
2585 }
2586 else
2587 return riscv_call_arg_scalar_int (ainfo, cinfo);
2588 }
2589
2590 /* A structure used for holding information about a structure type within
2591 the inferior program. The RiscV ABI has special rules for handling some
2592 structures with a single field or with two fields. The counting of
2593 fields here is done after flattening out all nested structures. */
2594
2595 class riscv_struct_info
2596 {
2597 public:
2598 riscv_struct_info ()
2599 : m_number_of_fields (0),
2600 m_types { nullptr, nullptr },
2601 m_offsets { 0, 0 }
2602 {
2603 /* Nothing. */
2604 }
2605
2606 /* Analyse TYPE descending into nested structures, count the number of
2607 scalar fields and record the types of the first two fields found. */
2608 void analyse (struct type *type)
2609 {
2610 analyse_inner (type, 0);
2611 }
2612
2613 /* The number of scalar fields found in the analysed type. This is
2614 currently only accurate if the value returned is 0, 1, or 2 as the
2615 analysis stops counting when the number of fields is 3. This is
2616 because the RiscV ABI only has special cases for 1 or 2 fields,
2617 anything else we just don't care about. */
2618 int number_of_fields () const
2619 { return m_number_of_fields; }
2620
2621 /* Return the type for scalar field INDEX within the analysed type. Will
2622 return nullptr if there is no field at that index. Only INDEX values
2623 0 and 1 can be requested as the RiscV ABI only has special cases for
2624 structures with 1 or 2 fields. */
2625 struct type *field_type (int index) const
2626 {
2627 gdb_assert (index < (sizeof (m_types) / sizeof (m_types[0])));
2628 return m_types[index];
2629 }
2630
2631 /* Return the offset of scalar field INDEX within the analysed type. Will
2632 return 0 if there is no field at that index. Only INDEX values 0 and
2633 1 can be requested as the RiscV ABI only has special cases for
2634 structures with 1 or 2 fields. */
2635 int field_offset (int index) const
2636 {
2637 gdb_assert (index < (sizeof (m_offsets) / sizeof (m_offsets[0])));
2638 return m_offsets[index];
2639 }
2640
2641 private:
2642 /* The number of scalar fields found within the structure after recursing
2643 into nested structures. */
2644 int m_number_of_fields;
2645
2646 /* The types of the first two scalar fields found within the structure
2647 after recursing into nested structures. */
2648 struct type *m_types[2];
2649
2650 /* The offsets of the first two scalar fields found within the structure
2651 after recursing into nested structures. */
2652 int m_offsets[2];
2653
2654 /* Recursive core for ANALYSE, the OFFSET parameter tracks the byte
2655 offset from the start of the top level structure being analysed. */
2656 void analyse_inner (struct type *type, int offset);
2657 };
2658
2659 /* See description in class declaration. */
2660
2661 void
2662 riscv_struct_info::analyse_inner (struct type *type, int offset)
2663 {
2664 unsigned int count = type->num_fields ();
2665 unsigned int i;
2666
2667 for (i = 0; i < count; ++i)
2668 {
2669 if (type->field (i).loc_kind () != FIELD_LOC_KIND_BITPOS)
2670 continue;
2671
2672 struct type *field_type = type->field (i).type ();
2673 field_type = check_typedef (field_type);
2674 int field_offset
2675 = offset + type->field (i).loc_bitpos () / TARGET_CHAR_BIT;
2676
2677 switch (field_type->code ())
2678 {
2679 case TYPE_CODE_STRUCT:
2680 analyse_inner (field_type, field_offset);
2681 break;
2682
2683 default:
2684 /* RiscV only flattens out structures. Anything else does not
2685 need to be flattened, we just record the type, and when we
2686 look at the analysis results we'll realise this is not a
2687 structure we can special case, and pass the structure in
2688 memory. */
2689 if (m_number_of_fields < 2)
2690 {
2691 m_types[m_number_of_fields] = field_type;
2692 m_offsets[m_number_of_fields] = field_offset;
2693 }
2694 m_number_of_fields++;
2695 break;
2696 }
2697
2698 /* RiscV only has special handling for structures with 1 or 2 scalar
2699 fields, any more than that and the structure is just passed in
2700 memory. We can safely drop out early when we find 3 or more
2701 fields then. */
2702
2703 if (m_number_of_fields > 2)
2704 return;
2705 }
2706 }
2707
2708 /* Like RISCV_CALL_ARG_SCALAR_INT, except the argument described by AINFO
2709 is a structure. Small structures on RiscV have some special case
2710 handling in order that the structure might be passed in register.
2711 Larger structures are passed in memory. After assigning location
2712 information to AINFO, CINFO will have been updated. */
2713
2714 static void
2715 riscv_call_arg_struct (struct riscv_arg_info *ainfo,
2716 struct riscv_call_info *cinfo)
2717 {
2718 if (riscv_arg_regs_available (&cinfo->float_regs) >= 1)
2719 {
2720 struct riscv_struct_info sinfo;
2721
2722 sinfo.analyse (ainfo->type);
2723 if (sinfo.number_of_fields () == 1
2724 && sinfo.field_type(0)->code () == TYPE_CODE_COMPLEX)
2725 {
2726 /* The following is similar to RISCV_CALL_ARG_COMPLEX_FLOAT,
2727 except we use the type of the complex field instead of the
2728 type from AINFO, and the first location might be at a non-zero
2729 offset. */
2730 if (sinfo.field_type (0)->length () <= (2 * cinfo->flen)
2731 && riscv_arg_regs_available (&cinfo->float_regs) >= 2
2732 && !ainfo->is_unnamed)
2733 {
2734 bool result;
2735 int len = sinfo.field_type (0)->length () / 2;
2736 int offset = sinfo.field_offset (0);
2737
2738 result = riscv_assign_reg_location (&ainfo->argloc[0],
2739 &cinfo->float_regs, len,
2740 offset);
2741 gdb_assert (result);
2742
2743 result = riscv_assign_reg_location (&ainfo->argloc[1],
2744 &cinfo->float_regs, len,
2745 (offset + len));
2746 gdb_assert (result);
2747 }
2748 else
2749 riscv_call_arg_scalar_int (ainfo, cinfo);
2750 return;
2751 }
2752
2753 if (sinfo.number_of_fields () == 1
2754 && sinfo.field_type(0)->code () == TYPE_CODE_FLT)
2755 {
2756 /* The following is similar to RISCV_CALL_ARG_SCALAR_FLOAT,
2757 except we use the type of the first scalar field instead of
2758 the type from AINFO. Also the location might be at a non-zero
2759 offset. */
2760 if (sinfo.field_type (0)->length () > cinfo->flen
2761 || ainfo->is_unnamed)
2762 riscv_call_arg_scalar_int (ainfo, cinfo);
2763 else
2764 {
2765 int offset = sinfo.field_offset (0);
2766 int len = sinfo.field_type (0)->length ();
2767
2768 if (!riscv_assign_reg_location (&ainfo->argloc[0],
2769 &cinfo->float_regs,
2770 len, offset))
2771 riscv_call_arg_scalar_int (ainfo, cinfo);
2772 }
2773 return;
2774 }
2775
2776 if (sinfo.number_of_fields () == 2
2777 && sinfo.field_type(0)->code () == TYPE_CODE_FLT
2778 && sinfo.field_type (0)->length () <= cinfo->flen
2779 && sinfo.field_type(1)->code () == TYPE_CODE_FLT
2780 && sinfo.field_type (1)->length () <= cinfo->flen
2781 && riscv_arg_regs_available (&cinfo->float_regs) >= 2)
2782 {
2783 int len0 = sinfo.field_type (0)->length ();
2784 int offset = sinfo.field_offset (0);
2785 if (!riscv_assign_reg_location (&ainfo->argloc[0],
2786 &cinfo->float_regs, len0, offset))
2787 error (_("failed during argument setup"));
2788
2789 int len1 = sinfo.field_type (1)->length ();
2790 offset = sinfo.field_offset (1);
2791 gdb_assert (len1 <= (ainfo->type->length ()
2792 - sinfo.field_type (0)->length ()));
2793
2794 if (!riscv_assign_reg_location (&ainfo->argloc[1],
2795 &cinfo->float_regs,
2796 len1, offset))
2797 error (_("failed during argument setup"));
2798 return;
2799 }
2800
2801 if (sinfo.number_of_fields () == 2
2802 && riscv_arg_regs_available (&cinfo->int_regs) >= 1
2803 && (sinfo.field_type(0)->code () == TYPE_CODE_FLT
2804 && sinfo.field_type (0)->length () <= cinfo->flen
2805 && is_integral_type (sinfo.field_type (1))
2806 && sinfo.field_type (1)->length () <= cinfo->xlen))
2807 {
2808 int len0 = sinfo.field_type (0)->length ();
2809 int offset = sinfo.field_offset (0);
2810 if (!riscv_assign_reg_location (&ainfo->argloc[0],
2811 &cinfo->float_regs, len0, offset))
2812 error (_("failed during argument setup"));
2813
2814 int len1 = sinfo.field_type (1)->length ();
2815 offset = sinfo.field_offset (1);
2816 gdb_assert (len1 <= cinfo->xlen);
2817 if (!riscv_assign_reg_location (&ainfo->argloc[1],
2818 &cinfo->int_regs, len1, offset))
2819 error (_("failed during argument setup"));
2820 return;
2821 }
2822
2823 if (sinfo.number_of_fields () == 2
2824 && riscv_arg_regs_available (&cinfo->int_regs) >= 1
2825 && (is_integral_type (sinfo.field_type (0))
2826 && sinfo.field_type (0)->length () <= cinfo->xlen
2827 && sinfo.field_type(1)->code () == TYPE_CODE_FLT
2828 && sinfo.field_type (1)->length () <= cinfo->flen))
2829 {
2830 int len0 = sinfo.field_type (0)->length ();
2831 int len1 = sinfo.field_type (1)->length ();
2832
2833 gdb_assert (len0 <= cinfo->xlen);
2834 gdb_assert (len1 <= cinfo->flen);
2835
2836 int offset = sinfo.field_offset (0);
2837 if (!riscv_assign_reg_location (&ainfo->argloc[0],
2838 &cinfo->int_regs, len0, offset))
2839 error (_("failed during argument setup"));
2840
2841 offset = sinfo.field_offset (1);
2842 if (!riscv_assign_reg_location (&ainfo->argloc[1],
2843 &cinfo->float_regs,
2844 len1, offset))
2845 error (_("failed during argument setup"));
2846
2847 return;
2848 }
2849 }
2850
2851 /* Non of the structure flattening cases apply, so we just pass using
2852 the integer ABI. */
2853 riscv_call_arg_scalar_int (ainfo, cinfo);
2854 }
2855
2856 /* Assign a location to call (or return) argument AINFO, the location is
2857 selected from CINFO which holds information about what call argument
2858 locations are available for use next. The TYPE is the type of the
2859 argument being passed, this information is recorded into AINFO (along
2860 with some additional information derived from the type). IS_UNNAMED
2861 is true if this is an unnamed (stdarg) argument, this info is also
2862 recorded into AINFO.
2863
2864 After assigning a location to AINFO, CINFO will have been updated. */
2865
2866 static void
2867 riscv_arg_location (struct gdbarch *gdbarch,
2868 struct riscv_arg_info *ainfo,
2869 struct riscv_call_info *cinfo,
2870 struct type *type, bool is_unnamed)
2871 {
2872 ainfo->type = type;
2873 ainfo->length = ainfo->type->length ();
2874 ainfo->align = type_align (ainfo->type);
2875 ainfo->is_unnamed = is_unnamed;
2876 ainfo->contents = nullptr;
2877 ainfo->argloc[0].c_length = 0;
2878 ainfo->argloc[1].c_length = 0;
2879
2880 switch (ainfo->type->code ())
2881 {
2882 case TYPE_CODE_INT:
2883 case TYPE_CODE_BOOL:
2884 case TYPE_CODE_CHAR:
2885 case TYPE_CODE_RANGE:
2886 case TYPE_CODE_ENUM:
2887 case TYPE_CODE_PTR:
2888 case TYPE_CODE_FIXED_POINT:
2889 if (ainfo->length <= cinfo->xlen)
2890 {
2891 ainfo->type = builtin_type (gdbarch)->builtin_long;
2892 ainfo->length = cinfo->xlen;
2893 }
2894 else if (ainfo->length <= (2 * cinfo->xlen))
2895 {
2896 ainfo->type = builtin_type (gdbarch)->builtin_long_long;
2897 ainfo->length = 2 * cinfo->xlen;
2898 }
2899
2900 /* Recalculate the alignment requirement. */
2901 ainfo->align = type_align (ainfo->type);
2902 riscv_call_arg_scalar_int (ainfo, cinfo);
2903 break;
2904
2905 case TYPE_CODE_FLT:
2906 riscv_call_arg_scalar_float (ainfo, cinfo);
2907 break;
2908
2909 case TYPE_CODE_COMPLEX:
2910 riscv_call_arg_complex_float (ainfo, cinfo);
2911 break;
2912
2913 case TYPE_CODE_STRUCT:
2914 if (!TYPE_HAS_DYNAMIC_LENGTH (ainfo->type))
2915 {
2916 riscv_call_arg_struct (ainfo, cinfo);
2917 break;
2918 }
2919 /* FALLTHROUGH */
2920
2921 default:
2922 riscv_call_arg_scalar_int (ainfo, cinfo);
2923 break;
2924 }
2925 }
2926
2927 /* Used for printing debug information about the call argument location in
2928 INFO to STREAM. The addresses in SP_REFS and SP_ARGS are the base
2929 addresses for the location of pass-by-reference and
2930 arguments-on-the-stack memory areas. */
2931
2932 static void
2933 riscv_print_arg_location (ui_file *stream, struct gdbarch *gdbarch,
2934 struct riscv_arg_info *info,
2935 CORE_ADDR sp_refs, CORE_ADDR sp_args)
2936 {
2937 gdb_printf (stream, "type: '%s', length: 0x%x, alignment: 0x%x",
2938 TYPE_SAFE_NAME (info->type), info->length, info->align);
2939 switch (info->argloc[0].loc_type)
2940 {
2941 case riscv_arg_info::location::in_reg:
2942 gdb_printf
2943 (stream, ", register %s",
2944 gdbarch_register_name (gdbarch, info->argloc[0].loc_data.regno));
2945 if (info->argloc[0].c_length < info->length)
2946 {
2947 switch (info->argloc[1].loc_type)
2948 {
2949 case riscv_arg_info::location::in_reg:
2950 gdb_printf
2951 (stream, ", register %s",
2952 gdbarch_register_name (gdbarch,
2953 info->argloc[1].loc_data.regno));
2954 break;
2955
2956 case riscv_arg_info::location::on_stack:
2957 gdb_printf (stream, ", on stack at offset 0x%x",
2958 info->argloc[1].loc_data.offset);
2959 break;
2960
2961 case riscv_arg_info::location::by_ref:
2962 default:
2963 /* The second location should never be a reference, any
2964 argument being passed by reference just places its address
2965 in the first location and is done. */
2966 error (_("invalid argument location"));
2967 break;
2968 }
2969
2970 if (info->argloc[1].c_offset > info->argloc[0].c_length)
2971 gdb_printf (stream, " (offset 0x%x)",
2972 info->argloc[1].c_offset);
2973 }
2974 break;
2975
2976 case riscv_arg_info::location::on_stack:
2977 gdb_printf (stream, ", on stack at offset 0x%x",
2978 info->argloc[0].loc_data.offset);
2979 break;
2980
2981 case riscv_arg_info::location::by_ref:
2982 gdb_printf
2983 (stream, ", by reference, data at offset 0x%x (%s)",
2984 info->argloc[0].loc_data.offset,
2985 core_addr_to_string (sp_refs + info->argloc[0].loc_data.offset));
2986 if (info->argloc[1].loc_type
2987 == riscv_arg_info::location::in_reg)
2988 gdb_printf
2989 (stream, ", address in register %s",
2990 gdbarch_register_name (gdbarch, info->argloc[1].loc_data.regno));
2991 else
2992 {
2993 gdb_assert (info->argloc[1].loc_type
2994 == riscv_arg_info::location::on_stack);
2995 gdb_printf
2996 (stream, ", address on stack at offset 0x%x (%s)",
2997 info->argloc[1].loc_data.offset,
2998 core_addr_to_string (sp_args + info->argloc[1].loc_data.offset));
2999 }
3000 break;
3001
3002 default:
3003 gdb_assert_not_reached ("unknown argument location type");
3004 }
3005 }
3006
3007 /* Wrapper around REGCACHE->cooked_write. Places the LEN bytes of DATA
3008 into a buffer that is at least as big as the register REGNUM, padding
3009 out the DATA with either 0x00, or 0xff. For floating point registers
3010 0xff is used, for everyone else 0x00 is used. */
3011
3012 static void
3013 riscv_regcache_cooked_write (int regnum, const gdb_byte *data, int len,
3014 struct regcache *regcache, int flen)
3015 {
3016 gdb_byte tmp [sizeof (ULONGEST)];
3017
3018 /* FP values in FP registers must be NaN-boxed. */
3019 if (riscv_is_fp_regno_p (regnum) && len < flen)
3020 memset (tmp, -1, sizeof (tmp));
3021 else
3022 memset (tmp, 0, sizeof (tmp));
3023 memcpy (tmp, data, len);
3024 regcache->cooked_write (regnum, tmp);
3025 }
3026
3027 /* Implement the push dummy call gdbarch callback. */
3028
3029 static CORE_ADDR
3030 riscv_push_dummy_call (struct gdbarch *gdbarch,
3031 struct value *function,
3032 struct regcache *regcache,
3033 CORE_ADDR bp_addr,
3034 int nargs,
3035 struct value **args,
3036 CORE_ADDR sp,
3037 function_call_return_method return_method,
3038 CORE_ADDR struct_addr)
3039 {
3040 int i;
3041 CORE_ADDR sp_args, sp_refs;
3042 enum bfd_endian byte_order = gdbarch_byte_order (gdbarch);
3043
3044 struct riscv_arg_info *arg_info =
3045 (struct riscv_arg_info *) alloca (nargs * sizeof (struct riscv_arg_info));
3046
3047 struct riscv_call_info call_info (gdbarch);
3048
3049 CORE_ADDR osp = sp;
3050
3051 struct type *ftype = check_typedef (function->type ());
3052
3053 if (ftype->code () == TYPE_CODE_PTR)
3054 ftype = check_typedef (ftype->target_type ());
3055
3056 /* We'll use register $a0 if we're returning a struct. */
3057 if (return_method == return_method_struct)
3058 ++call_info.int_regs.next_regnum;
3059
3060 for (i = 0; i < nargs; ++i)
3061 {
3062 struct value *arg_value;
3063 struct type *arg_type;
3064 struct riscv_arg_info *info = &arg_info[i];
3065
3066 arg_value = args[i];
3067 arg_type = check_typedef (arg_value->type ());
3068
3069 riscv_arg_location (gdbarch, info, &call_info, arg_type,
3070 ftype->has_varargs () && i >= ftype->num_fields ());
3071
3072 if (info->type != arg_type)
3073 arg_value = value_cast (info->type, arg_value);
3074 info->contents = arg_value->contents ().data ();
3075 }
3076
3077 /* Adjust the stack pointer and align it. */
3078 sp = sp_refs = align_down (sp - call_info.memory.ref_offset, SP_ALIGNMENT);
3079 sp = sp_args = align_down (sp - call_info.memory.arg_offset, SP_ALIGNMENT);
3080
3081 if (riscv_debug_infcall > 0)
3082 {
3083 gdb_printf (gdb_stdlog, "dummy call args:\n");
3084 gdb_printf (gdb_stdlog, ": floating point ABI %s in use\n",
3085 (riscv_has_fp_abi (gdbarch) ? "is" : "is not"));
3086 gdb_printf (gdb_stdlog, ": xlen: %d\n: flen: %d\n",
3087 call_info.xlen, call_info.flen);
3088 if (return_method == return_method_struct)
3089 gdb_printf (gdb_stdlog,
3090 "[*] struct return pointer in register $A0\n");
3091 for (i = 0; i < nargs; ++i)
3092 {
3093 struct riscv_arg_info *info = &arg_info [i];
3094
3095 gdb_printf (gdb_stdlog, "[%2d] ", i);
3096 riscv_print_arg_location (gdb_stdlog, gdbarch, info, sp_refs, sp_args);
3097 gdb_printf (gdb_stdlog, "\n");
3098 }
3099 if (call_info.memory.arg_offset > 0
3100 || call_info.memory.ref_offset > 0)
3101 {
3102 gdb_printf (gdb_stdlog, " Original sp: %s\n",
3103 core_addr_to_string (osp));
3104 gdb_printf (gdb_stdlog, "Stack required (for args): 0x%x\n",
3105 call_info.memory.arg_offset);
3106 gdb_printf (gdb_stdlog, "Stack required (for refs): 0x%x\n",
3107 call_info.memory.ref_offset);
3108 gdb_printf (gdb_stdlog, " Stack allocated: %s\n",
3109 core_addr_to_string_nz (osp - sp));
3110 }
3111 }
3112
3113 /* Now load the argument into registers, or onto the stack. */
3114
3115 if (return_method == return_method_struct)
3116 {
3117 gdb_byte buf[sizeof (LONGEST)];
3118
3119 store_unsigned_integer (buf, call_info.xlen, byte_order, struct_addr);
3120 regcache->cooked_write (RISCV_A0_REGNUM, buf);
3121 }
3122
3123 for (i = 0; i < nargs; ++i)
3124 {
3125 CORE_ADDR dst;
3126 int second_arg_length = 0;
3127 const gdb_byte *second_arg_data;
3128 struct riscv_arg_info *info = &arg_info [i];
3129
3130 gdb_assert (info->length > 0);
3131
3132 switch (info->argloc[0].loc_type)
3133 {
3134 case riscv_arg_info::location::in_reg:
3135 {
3136 gdb_assert (info->argloc[0].c_length <= info->length);
3137
3138 riscv_regcache_cooked_write (info->argloc[0].loc_data.regno,
3139 (info->contents
3140 + info->argloc[0].c_offset),
3141 info->argloc[0].c_length,
3142 regcache, call_info.flen);
3143 second_arg_length =
3144 (((info->argloc[0].c_length + info->argloc[0].c_offset) < info->length)
3145 ? info->argloc[1].c_length : 0);
3146 second_arg_data = info->contents + info->argloc[1].c_offset;
3147 }
3148 break;
3149
3150 case riscv_arg_info::location::on_stack:
3151 dst = sp_args + info->argloc[0].loc_data.offset;
3152 write_memory (dst, info->contents, info->length);
3153 second_arg_length = 0;
3154 break;
3155
3156 case riscv_arg_info::location::by_ref:
3157 dst = sp_refs + info->argloc[0].loc_data.offset;
3158 write_memory (dst, info->contents, info->length);
3159
3160 second_arg_length = call_info.xlen;
3161 second_arg_data = (gdb_byte *) &dst;
3162 break;
3163
3164 default:
3165 gdb_assert_not_reached ("unknown argument location type");
3166 }
3167
3168 if (second_arg_length > 0)
3169 {
3170 switch (info->argloc[1].loc_type)
3171 {
3172 case riscv_arg_info::location::in_reg:
3173 {
3174 gdb_assert ((riscv_is_fp_regno_p (info->argloc[1].loc_data.regno)
3175 && second_arg_length <= call_info.flen)
3176 || second_arg_length <= call_info.xlen);
3177 riscv_regcache_cooked_write (info->argloc[1].loc_data.regno,
3178 second_arg_data,
3179 second_arg_length,
3180 regcache, call_info.flen);
3181 }
3182 break;
3183
3184 case riscv_arg_info::location::on_stack:
3185 {
3186 CORE_ADDR arg_addr;
3187
3188 arg_addr = sp_args + info->argloc[1].loc_data.offset;
3189 write_memory (arg_addr, second_arg_data, second_arg_length);
3190 break;
3191 }
3192
3193 case riscv_arg_info::location::by_ref:
3194 default:
3195 /* The second location should never be a reference, any
3196 argument being passed by reference just places its address
3197 in the first location and is done. */
3198 error (_("invalid argument location"));
3199 break;
3200 }
3201 }
3202 }
3203
3204 /* Set the dummy return value to bp_addr.
3205 A dummy breakpoint will be setup to execute the call. */
3206
3207 if (riscv_debug_infcall > 0)
3208 gdb_printf (gdb_stdlog, ": writing $ra = %s\n",
3209 core_addr_to_string (bp_addr));
3210 regcache_cooked_write_unsigned (regcache, RISCV_RA_REGNUM, bp_addr);
3211
3212 /* Finally, update the stack pointer. */
3213
3214 if (riscv_debug_infcall > 0)
3215 gdb_printf (gdb_stdlog, ": writing $sp = %s\n",
3216 core_addr_to_string (sp));
3217 regcache_cooked_write_unsigned (regcache, RISCV_SP_REGNUM, sp);
3218
3219 return sp;
3220 }
3221
3222 /* Implement the return_value gdbarch method. */
3223
3224 static enum return_value_convention
3225 riscv_return_value (struct gdbarch *gdbarch,
3226 struct value *function,
3227 struct type *type,
3228 struct regcache *regcache,
3229 struct value **read_value,
3230 const gdb_byte *writebuf)
3231 {
3232 struct riscv_call_info call_info (gdbarch);
3233 struct riscv_arg_info info;
3234 struct type *arg_type;
3235
3236 arg_type = check_typedef (type);
3237 riscv_arg_location (gdbarch, &info, &call_info, arg_type, false);
3238
3239 if (riscv_debug_infcall > 0)
3240 {
3241 gdb_printf (gdb_stdlog, "riscv return value:\n");
3242 gdb_printf (gdb_stdlog, "[R] ");
3243 riscv_print_arg_location (gdb_stdlog, gdbarch, &info, 0, 0);
3244 gdb_printf (gdb_stdlog, "\n");
3245 }
3246
3247 if (read_value != nullptr || writebuf != nullptr)
3248 {
3249 unsigned int arg_len;
3250 struct value *abi_val;
3251 gdb_byte *readbuf = nullptr;
3252 int regnum;
3253
3254 /* We only do one thing at a time. */
3255 gdb_assert (read_value == nullptr || writebuf == nullptr);
3256
3257 /* In some cases the argument is not returned as the declared type,
3258 and we need to cast to or from the ABI type in order to
3259 correctly access the argument. When writing to the machine we
3260 do the cast here, when reading from the machine the cast occurs
3261 later, after extracting the value. As the ABI type can be
3262 larger than the declared type, then the read or write buffers
3263 passed in might be too small. Here we ensure that we are using
3264 buffers of sufficient size. */
3265 if (writebuf != nullptr)
3266 {
3267 struct value *arg_val;
3268
3269 if (is_fixed_point_type (arg_type))
3270 {
3271 /* Convert the argument to the type used to pass
3272 the return value, but being careful to preserve
3273 the fact that the value needs to be returned
3274 unscaled. */
3275 gdb_mpz unscaled;
3276
3277 unscaled.read (gdb::make_array_view (writebuf,
3278 arg_type->length ()),
3279 type_byte_order (arg_type),
3280 arg_type->is_unsigned ());
3281 abi_val = value::allocate (info.type);
3282 unscaled.write (abi_val->contents_raw (),
3283 type_byte_order (info.type),
3284 info.type->is_unsigned ());
3285 }
3286 else
3287 {
3288 arg_val = value_from_contents (arg_type, writebuf);
3289 abi_val = value_cast (info.type, arg_val);
3290 }
3291 writebuf = abi_val->contents_raw ().data ();
3292 }
3293 else
3294 {
3295 abi_val = value::allocate (info.type);
3296 readbuf = abi_val->contents_raw ().data ();
3297 }
3298 arg_len = info.type->length ();
3299
3300 switch (info.argloc[0].loc_type)
3301 {
3302 /* Return value in register(s). */
3303 case riscv_arg_info::location::in_reg:
3304 {
3305 regnum = info.argloc[0].loc_data.regno;
3306 gdb_assert (info.argloc[0].c_length <= arg_len);
3307 gdb_assert (info.argloc[0].c_length
3308 <= register_size (gdbarch, regnum));
3309
3310 if (readbuf)
3311 {
3312 gdb_byte *ptr = readbuf + info.argloc[0].c_offset;
3313 regcache->cooked_read_part (regnum, 0,
3314 info.argloc[0].c_length,
3315 ptr);
3316 }
3317
3318 if (writebuf)
3319 {
3320 const gdb_byte *ptr = writebuf + info.argloc[0].c_offset;
3321 riscv_regcache_cooked_write (regnum, ptr,
3322 info.argloc[0].c_length,
3323 regcache, call_info.flen);
3324 }
3325
3326 /* A return value in register can have a second part in a
3327 second register. */
3328 if (info.argloc[1].c_length > 0)
3329 {
3330 switch (info.argloc[1].loc_type)
3331 {
3332 case riscv_arg_info::location::in_reg:
3333 regnum = info.argloc[1].loc_data.regno;
3334
3335 gdb_assert ((info.argloc[0].c_length
3336 + info.argloc[1].c_length) <= arg_len);
3337 gdb_assert (info.argloc[1].c_length
3338 <= register_size (gdbarch, regnum));
3339
3340 if (readbuf)
3341 {
3342 readbuf += info.argloc[1].c_offset;
3343 regcache->cooked_read_part (regnum, 0,
3344 info.argloc[1].c_length,
3345 readbuf);
3346 }
3347
3348 if (writebuf)
3349 {
3350 const gdb_byte *ptr
3351 = writebuf + info.argloc[1].c_offset;
3352 riscv_regcache_cooked_write
3353 (regnum, ptr, info.argloc[1].c_length,
3354 regcache, call_info.flen);
3355 }
3356 break;
3357
3358 case riscv_arg_info::location::by_ref:
3359 case riscv_arg_info::location::on_stack:
3360 default:
3361 error (_("invalid argument location"));
3362 break;
3363 }
3364 }
3365 }
3366 break;
3367
3368 /* Return value by reference will have its address in A0. */
3369 case riscv_arg_info::location::by_ref:
3370 {
3371 ULONGEST addr;
3372
3373 regcache_cooked_read_unsigned (regcache, RISCV_A0_REGNUM,
3374 &addr);
3375 if (read_value != nullptr)
3376 {
3377 abi_val = value_at_non_lval (type, addr);
3378 /* Also reset the expected type, so that the cast
3379 later on is a no-op. If the cast is not a no-op,
3380 and if the return type is variably-sized, then the
3381 type of ABI_VAL will differ from ARG_TYPE due to
3382 dynamic type resolution, and so will most likely
3383 fail. */
3384 arg_type = abi_val->type ();
3385 }
3386 if (writebuf != nullptr)
3387 write_memory (addr, writebuf, info.length);
3388 }
3389 break;
3390
3391 case riscv_arg_info::location::on_stack:
3392 default:
3393 error (_("invalid argument location"));
3394 break;
3395 }
3396
3397 /* This completes the cast from abi type back to the declared type
3398 in the case that we are reading from the machine. See the
3399 comment at the head of this block for more details. */
3400 if (read_value != nullptr)
3401 {
3402 if (is_fixed_point_type (arg_type))
3403 {
3404 /* Convert abi_val to the actual return type, but
3405 being careful to preserve the fact that abi_val
3406 is unscaled. */
3407 gdb_mpz unscaled;
3408
3409 unscaled.read (abi_val->contents (),
3410 type_byte_order (info.type),
3411 info.type->is_unsigned ());
3412 *read_value = value::allocate (arg_type);
3413 unscaled.write ((*read_value)->contents_raw (),
3414 type_byte_order (arg_type),
3415 arg_type->is_unsigned ());
3416 }
3417 else
3418 *read_value = value_cast (arg_type, abi_val);
3419 }
3420 }
3421
3422 switch (info.argloc[0].loc_type)
3423 {
3424 case riscv_arg_info::location::in_reg:
3425 return RETURN_VALUE_REGISTER_CONVENTION;
3426 case riscv_arg_info::location::by_ref:
3427 return RETURN_VALUE_ABI_PRESERVES_ADDRESS;
3428 case riscv_arg_info::location::on_stack:
3429 default:
3430 error (_("invalid argument location"));
3431 }
3432 }
3433
3434 /* Implement the frame_align gdbarch method. */
3435
3436 static CORE_ADDR
3437 riscv_frame_align (struct gdbarch *gdbarch, CORE_ADDR addr)
3438 {
3439 return align_down (addr, 16);
3440 }
3441
3442 /* Generate, or return the cached frame cache for the RiscV frame
3443 unwinder. */
3444
3445 static struct riscv_unwind_cache *
3446 riscv_frame_cache (frame_info_ptr this_frame, void **this_cache)
3447 {
3448 CORE_ADDR pc, start_addr;
3449 struct riscv_unwind_cache *cache;
3450 struct gdbarch *gdbarch = get_frame_arch (this_frame);
3451 int numregs, regno;
3452
3453 if ((*this_cache) != NULL)
3454 return (struct riscv_unwind_cache *) *this_cache;
3455
3456 cache = FRAME_OBSTACK_ZALLOC (struct riscv_unwind_cache);
3457 cache->regs = trad_frame_alloc_saved_regs (this_frame);
3458 (*this_cache) = cache;
3459
3460 /* Scan the prologue, filling in the cache. */
3461 start_addr = get_frame_func (this_frame);
3462 pc = get_frame_pc (this_frame);
3463 riscv_scan_prologue (gdbarch, start_addr, pc, cache);
3464
3465 /* We can now calculate the frame base address. */
3466 cache->frame_base
3467 = (get_frame_register_unsigned (this_frame, cache->frame_base_reg)
3468 + cache->frame_base_offset);
3469 if (riscv_debug_unwinder)
3470 gdb_printf (gdb_stdlog, "Frame base is %s ($%s + 0x%x)\n",
3471 core_addr_to_string (cache->frame_base),
3472 gdbarch_register_name (gdbarch,
3473 cache->frame_base_reg),
3474 cache->frame_base_offset);
3475
3476 /* The prologue scanner sets the address of registers stored to the stack
3477 as the offset of that register from the frame base. The prologue
3478 scanner doesn't know the actual frame base value, and so is unable to
3479 compute the exact address. We do now know the frame base value, so
3480 update the address of registers stored to the stack. */
3481 numregs = gdbarch_num_regs (gdbarch) + gdbarch_num_pseudo_regs (gdbarch);
3482 for (regno = 0; regno < numregs; ++regno)
3483 {
3484 if (cache->regs[regno].is_addr ())
3485 cache->regs[regno].set_addr (cache->regs[regno].addr ()
3486 + cache->frame_base);
3487 }
3488
3489 /* The previous $pc can be found wherever the $ra value can be found.
3490 The previous $ra value is gone, this would have been stored be the
3491 previous frame if required. */
3492 cache->regs[gdbarch_pc_regnum (gdbarch)] = cache->regs[RISCV_RA_REGNUM];
3493 cache->regs[RISCV_RA_REGNUM].set_unknown ();
3494
3495 /* Build the frame id. */
3496 cache->this_id = frame_id_build (cache->frame_base, start_addr);
3497
3498 /* The previous $sp value is the frame base value. */
3499 cache->regs[gdbarch_sp_regnum (gdbarch)].set_value (cache->frame_base);
3500
3501 return cache;
3502 }
3503
3504 /* Implement the this_id callback for RiscV frame unwinder. */
3505
3506 static void
3507 riscv_frame_this_id (frame_info_ptr this_frame,
3508 void **prologue_cache,
3509 struct frame_id *this_id)
3510 {
3511 struct riscv_unwind_cache *cache;
3512
3513 try
3514 {
3515 cache = riscv_frame_cache (this_frame, prologue_cache);
3516 *this_id = cache->this_id;
3517 }
3518 catch (const gdb_exception_error &ex)
3519 {
3520 /* Ignore errors, this leaves the frame id as the predefined outer
3521 frame id which terminates the backtrace at this point. */
3522 }
3523 }
3524
3525 /* Implement the prev_register callback for RiscV frame unwinder. */
3526
3527 static struct value *
3528 riscv_frame_prev_register (frame_info_ptr this_frame,
3529 void **prologue_cache,
3530 int regnum)
3531 {
3532 struct riscv_unwind_cache *cache;
3533
3534 cache = riscv_frame_cache (this_frame, prologue_cache);
3535 return trad_frame_get_prev_register (this_frame, cache->regs, regnum);
3536 }
3537
3538 /* Structure defining the RiscV normal frame unwind functions. Since we
3539 are the fallback unwinder (DWARF unwinder is used first), we use the
3540 default frame sniffer, which always accepts the frame. */
3541
3542 static const struct frame_unwind riscv_frame_unwind =
3543 {
3544 /*.name =*/ "riscv prologue",
3545 /*.type =*/ NORMAL_FRAME,
3546 /*.stop_reason =*/ default_frame_unwind_stop_reason,
3547 /*.this_id =*/ riscv_frame_this_id,
3548 /*.prev_register =*/ riscv_frame_prev_register,
3549 /*.unwind_data =*/ NULL,
3550 /*.sniffer =*/ default_frame_sniffer,
3551 /*.dealloc_cache =*/ NULL,
3552 /*.prev_arch =*/ NULL,
3553 };
3554
3555 /* Extract a set of required target features out of ABFD. If ABFD is
3556 nullptr then a RISCV_GDBARCH_FEATURES is returned in its default state. */
3557
3558 static struct riscv_gdbarch_features
3559 riscv_features_from_bfd (const bfd *abfd)
3560 {
3561 struct riscv_gdbarch_features features;
3562
3563 /* Now try to improve on the defaults by looking at the binary we are
3564 going to execute. We assume the user knows what they are doing and
3565 that the target will match the binary. Remember, this code path is
3566 only used at all if the target hasn't given us a description, so this
3567 is really a last ditched effort to do something sane before giving
3568 up. */
3569 if (abfd != nullptr && bfd_get_flavour (abfd) == bfd_target_elf_flavour)
3570 {
3571 unsigned char eclass = elf_elfheader (abfd)->e_ident[EI_CLASS];
3572 int e_flags = elf_elfheader (abfd)->e_flags;
3573
3574 if (eclass == ELFCLASS32)
3575 features.xlen = 4;
3576 else if (eclass == ELFCLASS64)
3577 features.xlen = 8;
3578 else
3579 internal_error (_("unknown ELF header class %d"), eclass);
3580
3581 if (e_flags & EF_RISCV_FLOAT_ABI_DOUBLE)
3582 features.flen = 8;
3583 else if (e_flags & EF_RISCV_FLOAT_ABI_SINGLE)
3584 features.flen = 4;
3585
3586 if (e_flags & EF_RISCV_RVE)
3587 {
3588 if (features.xlen == 8)
3589 {
3590 warning (_("64-bit ELF with RV32E flag set! Assuming 32-bit"));
3591 features.xlen = 4;
3592 }
3593 features.embedded = true;
3594 }
3595 }
3596
3597 return features;
3598 }
3599
3600 /* Find a suitable default target description. Use the contents of INFO,
3601 specifically the bfd object being executed, to guide the selection of a
3602 suitable default target description. */
3603
3604 static const struct target_desc *
3605 riscv_find_default_target_description (const struct gdbarch_info info)
3606 {
3607 /* Extract desired feature set from INFO. */
3608 struct riscv_gdbarch_features features
3609 = riscv_features_from_bfd (info.abfd);
3610
3611 /* If the XLEN field is still 0 then we got nothing useful from INFO.BFD,
3612 maybe there was no bfd object. In this case we fall back to a minimal
3613 useful target with no floating point, the x-register size is selected
3614 based on the architecture from INFO. */
3615 if (features.xlen == 0)
3616 features.xlen = info.bfd_arch_info->bits_per_word == 32 ? 4 : 8;
3617
3618 /* Now build a target description based on the feature set. */
3619 return riscv_lookup_target_description (features);
3620 }
3621
3622 /* Add all the RISC-V specific register groups into GDBARCH. */
3623
3624 static void
3625 riscv_add_reggroups (struct gdbarch *gdbarch)
3626 {
3627 reggroup_add (gdbarch, csr_reggroup);
3628 }
3629
3630 /* Implement the "dwarf2_reg_to_regnum" gdbarch method. */
3631
3632 static int
3633 riscv_dwarf_reg_to_regnum (struct gdbarch *gdbarch, int reg)
3634 {
3635 if (reg <= RISCV_DWARF_REGNUM_X31)
3636 return RISCV_ZERO_REGNUM + (reg - RISCV_DWARF_REGNUM_X0);
3637
3638 else if (reg <= RISCV_DWARF_REGNUM_F31)
3639 return RISCV_FIRST_FP_REGNUM + (reg - RISCV_DWARF_REGNUM_F0);
3640
3641 else if (reg >= RISCV_DWARF_FIRST_CSR && reg <= RISCV_DWARF_LAST_CSR)
3642 return RISCV_FIRST_CSR_REGNUM + (reg - RISCV_DWARF_FIRST_CSR);
3643
3644 else if (reg >= RISCV_DWARF_REGNUM_V0 && reg <= RISCV_DWARF_REGNUM_V31)
3645 return RISCV_V0_REGNUM + (reg - RISCV_DWARF_REGNUM_V0);
3646
3647 return -1;
3648 }
3649
3650 /* Implement the gcc_target_options method. We have to select the arch and abi
3651 from the feature info. We have enough feature info to select the abi, but
3652 not enough info for the arch given all of the possible architecture
3653 extensions. So choose reasonable defaults for now. */
3654
3655 static std::string
3656 riscv_gcc_target_options (struct gdbarch *gdbarch)
3657 {
3658 int isa_xlen = riscv_isa_xlen (gdbarch);
3659 int isa_flen = riscv_isa_flen (gdbarch);
3660 int abi_xlen = riscv_abi_xlen (gdbarch);
3661 int abi_flen = riscv_abi_flen (gdbarch);
3662 std::string target_options;
3663
3664 target_options = "-march=rv";
3665 if (isa_xlen == 8)
3666 target_options += "64";
3667 else
3668 target_options += "32";
3669 if (isa_flen == 8)
3670 target_options += "gc";
3671 else if (isa_flen == 4)
3672 target_options += "imafc";
3673 else
3674 target_options += "imac";
3675
3676 target_options += " -mabi=";
3677 if (abi_xlen == 8)
3678 target_options += "lp64";
3679 else
3680 target_options += "ilp32";
3681 if (abi_flen == 8)
3682 target_options += "d";
3683 else if (abi_flen == 4)
3684 target_options += "f";
3685
3686 /* The gdb loader doesn't handle link-time relaxation relocations. */
3687 target_options += " -mno-relax";
3688
3689 return target_options;
3690 }
3691
3692 /* Call back from tdesc_use_registers, called for each unknown register
3693 found in the target description.
3694
3695 See target-description.h (typedef tdesc_unknown_register_ftype) for a
3696 discussion of the arguments and return values. */
3697
3698 static int
3699 riscv_tdesc_unknown_reg (struct gdbarch *gdbarch, tdesc_feature *feature,
3700 const char *reg_name, int possible_regnum)
3701 {
3702 /* At one point in time GDB had an incorrect default target description
3703 that duplicated the fflags, frm, and fcsr registers in both the FPU
3704 and CSR register sets.
3705
3706 Some targets (QEMU) copied these target descriptions into their source
3707 tree, and so we're now stuck working with some versions of QEMU that
3708 declare the same registers twice.
3709
3710 To make matters worse, if GDB tries to read or write to these
3711 registers using the register number assigned in the FPU feature set,
3712 then QEMU will fail to read the register, so we must use the register
3713 number declared in the CSR feature set.
3714
3715 Luckily, GDB scans the FPU feature first, and then the CSR feature,
3716 which means that the CSR feature will be the one we end up using, the
3717 versions of these registers in the FPU feature will appear as unknown
3718 registers and will be passed through to this code.
3719
3720 To prevent these duplicate registers showing up in any of the register
3721 lists, and to prevent GDB every trying to access the FPU feature copies,
3722 we spot the three problematic registers here, and record the register
3723 number that GDB has assigned them. Then in riscv_register_name we will
3724 return no name for the three duplicates, this hides the duplicates from
3725 the user. */
3726 if (strcmp (tdesc_feature_name (feature), riscv_freg_feature.name ()) == 0)
3727 {
3728 riscv_gdbarch_tdep *tdep = gdbarch_tdep<riscv_gdbarch_tdep> (gdbarch);
3729 int *regnum_ptr = nullptr;
3730
3731 if (strcmp (reg_name, "fflags") == 0)
3732 regnum_ptr = &tdep->duplicate_fflags_regnum;
3733 else if (strcmp (reg_name, "frm") == 0)
3734 regnum_ptr = &tdep->duplicate_frm_regnum;
3735 else if (strcmp (reg_name, "fcsr") == 0)
3736 regnum_ptr = &tdep->duplicate_fcsr_regnum;
3737
3738 if (regnum_ptr != nullptr)
3739 {
3740 /* This means the register appears more than twice in the target
3741 description. Just let GDB add this as another register.
3742 We'll have duplicates in the register name list, but there's
3743 not much more we can do. */
3744 if (*regnum_ptr != -1)
3745 return -1;
3746
3747 /* Record the number assigned to this register, then return the
3748 number (so it actually gets assigned to this register). */
3749 *regnum_ptr = possible_regnum;
3750 return possible_regnum;
3751 }
3752 }
3753
3754 /* Any unknown registers in the CSR feature are recorded within a single
3755 block so we can easily identify these registers when making choices
3756 about register groups in riscv_register_reggroup_p. */
3757 if (strcmp (tdesc_feature_name (feature), riscv_csr_feature.name ()) == 0)
3758 {
3759 riscv_gdbarch_tdep *tdep = gdbarch_tdep<riscv_gdbarch_tdep> (gdbarch);
3760 if (tdep->unknown_csrs_first_regnum == -1)
3761 tdep->unknown_csrs_first_regnum = possible_regnum;
3762 gdb_assert (tdep->unknown_csrs_first_regnum
3763 + tdep->unknown_csrs_count == possible_regnum);
3764 tdep->unknown_csrs_count++;
3765 return possible_regnum;
3766 }
3767
3768 /* Some other unknown register. Don't assign this a number now, it will
3769 be assigned a number automatically later by the target description
3770 handling code. */
3771 return -1;
3772 }
3773
3774 /* Implement the gnu_triplet_regexp method. A single compiler supports both
3775 32-bit and 64-bit code, and may be named riscv32 or riscv64 or (not
3776 recommended) riscv. */
3777
3778 static const char *
3779 riscv_gnu_triplet_regexp (struct gdbarch *gdbarch)
3780 {
3781 return "riscv(32|64)?";
3782 }
3783
3784 /* Implementation of `gdbarch_stap_is_single_operand', as defined in
3785 gdbarch.h. */
3786
3787 static int
3788 riscv_stap_is_single_operand (struct gdbarch *gdbarch, const char *s)
3789 {
3790 return (ISDIGIT (*s) /* Literal number. */
3791 || *s == '(' /* Register indirection. */
3792 || ISALPHA (*s)); /* Register value. */
3793 }
3794
3795 /* String that appears before a register name in a SystemTap register
3796 indirect expression. */
3797
3798 static const char *const stap_register_indirection_prefixes[] =
3799 {
3800 "(", nullptr
3801 };
3802
3803 /* String that appears after a register name in a SystemTap register
3804 indirect expression. */
3805
3806 static const char *const stap_register_indirection_suffixes[] =
3807 {
3808 ")", nullptr
3809 };
3810
3811 /* Initialize the current architecture based on INFO. If possible,
3812 re-use an architecture from ARCHES, which is a list of
3813 architectures already created during this debugging session.
3814
3815 Called e.g. at program startup, when reading a core file, and when
3816 reading a binary file. */
3817
3818 static struct gdbarch *
3819 riscv_gdbarch_init (struct gdbarch_info info,
3820 struct gdbarch_list *arches)
3821 {
3822 struct riscv_gdbarch_features features;
3823 const struct target_desc *tdesc = info.target_desc;
3824
3825 /* Ensure we always have a target description. */
3826 if (!tdesc_has_registers (tdesc))
3827 tdesc = riscv_find_default_target_description (info);
3828 gdb_assert (tdesc != nullptr);
3829
3830 if (riscv_debug_gdbarch)
3831 gdb_printf (gdb_stdlog, "Have got a target description\n");
3832
3833 tdesc_arch_data_up tdesc_data = tdesc_data_alloc ();
3834 std::vector<riscv_pending_register_alias> pending_aliases;
3835
3836 bool valid_p = (riscv_xreg_feature.check (tdesc, tdesc_data.get (),
3837 &pending_aliases, &features)
3838 && riscv_freg_feature.check (tdesc, tdesc_data.get (),
3839 &pending_aliases, &features)
3840 && riscv_virtual_feature.check (tdesc, tdesc_data.get (),
3841 &pending_aliases, &features)
3842 && riscv_csr_feature.check (tdesc, tdesc_data.get (),
3843 &pending_aliases, &features)
3844 && riscv_vector_feature.check (tdesc, tdesc_data.get (),
3845 &pending_aliases, &features));
3846 if (!valid_p)
3847 {
3848 if (riscv_debug_gdbarch)
3849 gdb_printf (gdb_stdlog, "Target description is not valid\n");
3850 return NULL;
3851 }
3852
3853 if (tdesc_found_register (tdesc_data.get (), RISCV_CSR_FFLAGS_REGNUM))
3854 features.has_fflags_reg = true;
3855 if (tdesc_found_register (tdesc_data.get (), RISCV_CSR_FRM_REGNUM))
3856 features.has_frm_reg = true;
3857 if (tdesc_found_register (tdesc_data.get (), RISCV_CSR_FCSR_REGNUM))
3858 features.has_fcsr_reg = true;
3859
3860 /* Have a look at what the supplied (if any) bfd object requires of the
3861 target, then check that this matches with what the target is
3862 providing. */
3863 struct riscv_gdbarch_features abi_features
3864 = riscv_features_from_bfd (info.abfd);
3865
3866 /* If the ABI_FEATURES xlen is 0 then this indicates we got no useful abi
3867 features from the INFO object. In this case we just treat the
3868 hardware features as defining the abi. */
3869 if (abi_features.xlen == 0)
3870 abi_features = features;
3871
3872 /* In theory a binary compiled for RV32 could run on an RV64 target,
3873 however, this has not been tested in GDB yet, so for now we require
3874 that the requested xlen match the targets xlen. */
3875 if (abi_features.xlen != features.xlen)
3876 error (_("bfd requires xlen %d, but target has xlen %d"),
3877 abi_features.xlen, features.xlen);
3878 /* We do support running binaries compiled for 32-bit float on targets
3879 with 64-bit float, so we only complain if the binary requires more
3880 than the target has available. */
3881 if (abi_features.flen > features.flen)
3882 error (_("bfd requires flen %d, but target has flen %d"),
3883 abi_features.flen, features.flen);
3884
3885 /* Find a candidate among the list of pre-declared architectures. */
3886 for (arches = gdbarch_list_lookup_by_info (arches, &info);
3887 arches != NULL;
3888 arches = gdbarch_list_lookup_by_info (arches->next, &info))
3889 {
3890 /* Check that the feature set of the ARCHES matches the feature set
3891 we are looking for. If it doesn't then we can't reuse this
3892 gdbarch. */
3893 riscv_gdbarch_tdep *other_tdep
3894 = gdbarch_tdep<riscv_gdbarch_tdep> (arches->gdbarch);
3895
3896 if (other_tdep->isa_features != features
3897 || other_tdep->abi_features != abi_features)
3898 continue;
3899
3900 break;
3901 }
3902
3903 if (arches != NULL)
3904 return arches->gdbarch;
3905
3906 /* None found, so create a new architecture from the information provided. */
3907 gdbarch *gdbarch
3908 = gdbarch_alloc (&info, gdbarch_tdep_up (new riscv_gdbarch_tdep));
3909 riscv_gdbarch_tdep *tdep = gdbarch_tdep<riscv_gdbarch_tdep> (gdbarch);
3910
3911 tdep->isa_features = features;
3912 tdep->abi_features = abi_features;
3913
3914 /* Target data types. */
3915 set_gdbarch_short_bit (gdbarch, 16);
3916 set_gdbarch_int_bit (gdbarch, 32);
3917 set_gdbarch_long_bit (gdbarch, riscv_isa_xlen (gdbarch) * 8);
3918 set_gdbarch_long_long_bit (gdbarch, 64);
3919 set_gdbarch_float_bit (gdbarch, 32);
3920 set_gdbarch_double_bit (gdbarch, 64);
3921 set_gdbarch_long_double_bit (gdbarch, 128);
3922 set_gdbarch_long_double_format (gdbarch, floatformats_ieee_quad);
3923 set_gdbarch_ptr_bit (gdbarch, riscv_isa_xlen (gdbarch) * 8);
3924 set_gdbarch_char_signed (gdbarch, 0);
3925 set_gdbarch_type_align (gdbarch, riscv_type_align);
3926
3927 /* Information about the target architecture. */
3928 set_gdbarch_return_value_as_value (gdbarch, riscv_return_value);
3929 set_gdbarch_breakpoint_kind_from_pc (gdbarch, riscv_breakpoint_kind_from_pc);
3930 set_gdbarch_sw_breakpoint_from_kind (gdbarch, riscv_sw_breakpoint_from_kind);
3931 set_gdbarch_have_nonsteppable_watchpoint (gdbarch, 1);
3932
3933 /* Functions to analyze frames. */
3934 set_gdbarch_skip_prologue (gdbarch, riscv_skip_prologue);
3935 set_gdbarch_inner_than (gdbarch, core_addr_lessthan);
3936 set_gdbarch_frame_align (gdbarch, riscv_frame_align);
3937
3938 /* Functions handling dummy frames. */
3939 set_gdbarch_call_dummy_location (gdbarch, ON_STACK);
3940 set_gdbarch_push_dummy_code (gdbarch, riscv_push_dummy_code);
3941 set_gdbarch_push_dummy_call (gdbarch, riscv_push_dummy_call);
3942
3943 /* Frame unwinders. Use DWARF debug info if available, otherwise use our own
3944 unwinder. */
3945 dwarf2_append_unwinders (gdbarch);
3946 frame_unwind_append_unwinder (gdbarch, &riscv_frame_unwind);
3947
3948 /* Register architecture. */
3949 riscv_add_reggroups (gdbarch);
3950
3951 /* Internal <-> external register number maps. */
3952 set_gdbarch_dwarf2_reg_to_regnum (gdbarch, riscv_dwarf_reg_to_regnum);
3953
3954 /* We reserve all possible register numbers for the known registers.
3955 This means the target description mechanism will add any target
3956 specific registers after this number. This helps make debugging GDB
3957 just a little easier. */
3958 set_gdbarch_num_regs (gdbarch, RISCV_LAST_REGNUM + 1);
3959
3960 /* Some specific register numbers GDB likes to know about. */
3961 set_gdbarch_sp_regnum (gdbarch, RISCV_SP_REGNUM);
3962 set_gdbarch_pc_regnum (gdbarch, RISCV_PC_REGNUM);
3963
3964 set_gdbarch_print_registers_info (gdbarch, riscv_print_registers_info);
3965
3966 set_tdesc_pseudo_register_name (gdbarch, riscv_pseudo_register_name);
3967 set_tdesc_pseudo_register_type (gdbarch, riscv_pseudo_register_type);
3968 set_tdesc_pseudo_register_reggroup_p (gdbarch,
3969 riscv_pseudo_register_reggroup_p);
3970 set_gdbarch_pseudo_register_read (gdbarch, riscv_pseudo_register_read);
3971 set_gdbarch_pseudo_register_write (gdbarch, riscv_pseudo_register_write);
3972
3973 /* Finalise the target description registers. */
3974 tdesc_use_registers (gdbarch, tdesc, std::move (tdesc_data),
3975 riscv_tdesc_unknown_reg);
3976
3977 /* Calculate the number of pseudo registers we need. The fflags and frm
3978 registers are sub-fields of the fcsr CSR register (csr3). However,
3979 these registers can also be accessed directly as separate CSR
3980 registers (fflags is csr1, and frm is csr2). And so, some targets
3981 might choose to offer direct access to all three registers in the
3982 target description, while other targets might choose to only offer
3983 access to fcsr.
3984
3985 As we scan the target description we spot which of fcsr, fflags, and
3986 frm are available. If fcsr is available but either of fflags and/or
3987 frm are not available, then we add pseudo-registers to provide the
3988 missing functionality.
3989
3990 This has to be done after the call to tdesc_use_registers as we don't
3991 know the final register number until after that call, and the pseudo
3992 register numbers need to be after the physical registers. */
3993 int num_pseudo_regs = 0;
3994 int next_pseudo_regnum = gdbarch_num_regs (gdbarch);
3995
3996 if (features.has_fflags_reg)
3997 tdep->fflags_regnum = RISCV_CSR_FFLAGS_REGNUM;
3998 else if (features.has_fcsr_reg)
3999 {
4000 tdep->fflags_regnum = next_pseudo_regnum;
4001 pending_aliases.emplace_back ("csr1", (void *) &tdep->fflags_regnum);
4002 next_pseudo_regnum++;
4003 num_pseudo_regs++;
4004 }
4005
4006 if (features.has_frm_reg)
4007 tdep->frm_regnum = RISCV_CSR_FRM_REGNUM;
4008 else if (features.has_fcsr_reg)
4009 {
4010 tdep->frm_regnum = next_pseudo_regnum;
4011 pending_aliases.emplace_back ("csr2", (void *) &tdep->frm_regnum);
4012 next_pseudo_regnum++;
4013 num_pseudo_regs++;
4014 }
4015
4016 set_gdbarch_num_pseudo_regs (gdbarch, num_pseudo_regs);
4017
4018 /* Override the register type callback setup by the target description
4019 mechanism. This allows us to provide special type for floating point
4020 registers. */
4021 set_gdbarch_register_type (gdbarch, riscv_register_type);
4022
4023 /* Override the register name callback setup by the target description
4024 mechanism. This allows us to force our preferred names for the
4025 registers, no matter what the target description called them. */
4026 set_gdbarch_register_name (gdbarch, riscv_register_name);
4027
4028 /* Tell GDB which RISC-V registers are read-only. */
4029 set_gdbarch_cannot_store_register (gdbarch, riscv_cannot_store_register);
4030
4031 /* Override the register group callback setup by the target description
4032 mechanism. This allows us to force registers into the groups we
4033 want, ignoring what the target tells us. */
4034 set_gdbarch_register_reggroup_p (gdbarch, riscv_register_reggroup_p);
4035
4036 /* Create register aliases for alternative register names. We only
4037 create aliases for registers which were mentioned in the target
4038 description. */
4039 for (const auto &alias : pending_aliases)
4040 alias.create (gdbarch);
4041
4042 /* Compile command hooks. */
4043 set_gdbarch_gcc_target_options (gdbarch, riscv_gcc_target_options);
4044 set_gdbarch_gnu_triplet_regexp (gdbarch, riscv_gnu_triplet_regexp);
4045
4046 /* Disassembler options support. */
4047 set_gdbarch_valid_disassembler_options (gdbarch,
4048 disassembler_options_riscv ());
4049 set_gdbarch_disassembler_options (gdbarch, &riscv_disassembler_options);
4050
4051 /* SystemTap Support. */
4052 set_gdbarch_stap_is_single_operand (gdbarch, riscv_stap_is_single_operand);
4053 set_gdbarch_stap_register_indirection_prefixes
4054 (gdbarch, stap_register_indirection_prefixes);
4055 set_gdbarch_stap_register_indirection_suffixes
4056 (gdbarch, stap_register_indirection_suffixes);
4057
4058 /* Hook in OS ABI-specific overrides, if they have been registered. */
4059 gdbarch_init_osabi (info, gdbarch);
4060
4061 register_riscv_ravenscar_ops (gdbarch);
4062
4063 return gdbarch;
4064 }
4065
4066 /* This decodes the current instruction and determines the address of the
4067 next instruction. */
4068
4069 static CORE_ADDR
4070 riscv_next_pc (struct regcache *regcache, CORE_ADDR pc)
4071 {
4072 struct gdbarch *gdbarch = regcache->arch ();
4073 const riscv_gdbarch_tdep *tdep
4074 = gdbarch_tdep<riscv_gdbarch_tdep> (gdbarch);
4075 struct riscv_insn insn;
4076 CORE_ADDR next_pc;
4077
4078 insn.decode (gdbarch, pc);
4079 next_pc = pc + insn.length ();
4080
4081 if (insn.opcode () == riscv_insn::JAL)
4082 next_pc = pc + insn.imm_signed ();
4083 else if (insn.opcode () == riscv_insn::JALR)
4084 {
4085 LONGEST source;
4086 regcache->cooked_read (insn.rs1 (), &source);
4087 next_pc = (source + insn.imm_signed ()) & ~(CORE_ADDR) 0x1;
4088 }
4089 else if (insn.opcode () == riscv_insn::BEQ)
4090 {
4091 LONGEST src1, src2;
4092 regcache->cooked_read (insn.rs1 (), &src1);
4093 regcache->cooked_read (insn.rs2 (), &src2);
4094 if (src1 == src2)
4095 next_pc = pc + insn.imm_signed ();
4096 }
4097 else if (insn.opcode () == riscv_insn::BNE)
4098 {
4099 LONGEST src1, src2;
4100 regcache->cooked_read (insn.rs1 (), &src1);
4101 regcache->cooked_read (insn.rs2 (), &src2);
4102 if (src1 != src2)
4103 next_pc = pc + insn.imm_signed ();
4104 }
4105 else if (insn.opcode () == riscv_insn::BLT)
4106 {
4107 LONGEST src1, src2;
4108 regcache->cooked_read (insn.rs1 (), &src1);
4109 regcache->cooked_read (insn.rs2 (), &src2);
4110 if (src1 < src2)
4111 next_pc = pc + insn.imm_signed ();
4112 }
4113 else if (insn.opcode () == riscv_insn::BGE)
4114 {
4115 LONGEST src1, src2;
4116 regcache->cooked_read (insn.rs1 (), &src1);
4117 regcache->cooked_read (insn.rs2 (), &src2);
4118 if (src1 >= src2)
4119 next_pc = pc + insn.imm_signed ();
4120 }
4121 else if (insn.opcode () == riscv_insn::BLTU)
4122 {
4123 ULONGEST src1, src2;
4124 regcache->cooked_read (insn.rs1 (), &src1);
4125 regcache->cooked_read (insn.rs2 (), &src2);
4126 if (src1 < src2)
4127 next_pc = pc + insn.imm_signed ();
4128 }
4129 else if (insn.opcode () == riscv_insn::BGEU)
4130 {
4131 ULONGEST src1, src2;
4132 regcache->cooked_read (insn.rs1 (), &src1);
4133 regcache->cooked_read (insn.rs2 (), &src2);
4134 if (src1 >= src2)
4135 next_pc = pc + insn.imm_signed ();
4136 }
4137 else if (insn.opcode () == riscv_insn::ECALL)
4138 {
4139 if (tdep->syscall_next_pc != nullptr)
4140 next_pc = tdep->syscall_next_pc (get_current_frame ());
4141 }
4142
4143 return next_pc;
4144 }
4145
4146 /* We can't put a breakpoint in the middle of a lr/sc atomic sequence, so look
4147 for the end of the sequence and put the breakpoint there. */
4148
4149 static bool
4150 riscv_next_pc_atomic_sequence (struct regcache *regcache, CORE_ADDR pc,
4151 CORE_ADDR *next_pc)
4152 {
4153 struct gdbarch *gdbarch = regcache->arch ();
4154 struct riscv_insn insn;
4155 CORE_ADDR cur_step_pc = pc;
4156 CORE_ADDR last_addr = 0;
4157
4158 /* First instruction has to be a load reserved. */
4159 insn.decode (gdbarch, cur_step_pc);
4160 if (insn.opcode () != riscv_insn::LR)
4161 return false;
4162 cur_step_pc = cur_step_pc + insn.length ();
4163
4164 /* Next instruction should be branch to exit. */
4165 insn.decode (gdbarch, cur_step_pc);
4166 if (insn.opcode () != riscv_insn::BNE)
4167 return false;
4168 last_addr = cur_step_pc + insn.imm_signed ();
4169 cur_step_pc = cur_step_pc + insn.length ();
4170
4171 /* Next instruction should be store conditional. */
4172 insn.decode (gdbarch, cur_step_pc);
4173 if (insn.opcode () != riscv_insn::SC)
4174 return false;
4175 cur_step_pc = cur_step_pc + insn.length ();
4176
4177 /* Next instruction should be branch to start. */
4178 insn.decode (gdbarch, cur_step_pc);
4179 if (insn.opcode () != riscv_insn::BNE)
4180 return false;
4181 if (pc != (cur_step_pc + insn.imm_signed ()))
4182 return false;
4183 cur_step_pc = cur_step_pc + insn.length ();
4184
4185 /* We should now be at the end of the sequence. */
4186 if (cur_step_pc != last_addr)
4187 return false;
4188
4189 *next_pc = cur_step_pc;
4190 return true;
4191 }
4192
4193 /* This is called just before we want to resume the inferior, if we want to
4194 single-step it but there is no hardware or kernel single-step support. We
4195 find the target of the coming instruction and breakpoint it. */
4196
4197 std::vector<CORE_ADDR>
4198 riscv_software_single_step (struct regcache *regcache)
4199 {
4200 CORE_ADDR pc, next_pc;
4201
4202 pc = regcache_read_pc (regcache);
4203
4204 if (riscv_next_pc_atomic_sequence (regcache, pc, &next_pc))
4205 return {next_pc};
4206
4207 next_pc = riscv_next_pc (regcache, pc);
4208
4209 return {next_pc};
4210 }
4211
4212 /* Create RISC-V specific reggroups. */
4213
4214 static void
4215 riscv_init_reggroups ()
4216 {
4217 csr_reggroup = reggroup_new ("csr", USER_REGGROUP);
4218 }
4219
4220 /* See riscv-tdep.h. */
4221
4222 void
4223 riscv_supply_regset (const struct regset *regset,
4224 struct regcache *regcache, int regnum,
4225 const void *regs, size_t len)
4226 {
4227 regcache->supply_regset (regset, regnum, regs, len);
4228
4229 if (regnum == -1 || regnum == RISCV_ZERO_REGNUM)
4230 regcache->raw_supply_zeroed (RISCV_ZERO_REGNUM);
4231
4232 struct gdbarch *gdbarch = regcache->arch ();
4233 riscv_gdbarch_tdep *tdep = gdbarch_tdep<riscv_gdbarch_tdep> (gdbarch);
4234
4235 if (regnum == -1
4236 || regnum == tdep->fflags_regnum
4237 || regnum == tdep->frm_regnum)
4238 {
4239 int fcsr_regnum = RISCV_CSR_FCSR_REGNUM;
4240
4241 /* Ensure that FCSR has been read into REGCACHE. */
4242 if (regnum != -1)
4243 regcache->supply_regset (regset, fcsr_regnum, regs, len);
4244
4245 /* Grab the FCSR value if it is now in the regcache. We must check
4246 the status first as, if the register was not supplied by REGSET,
4247 this call will trigger a recursive attempt to fetch the
4248 registers. */
4249 if (regcache->get_register_status (fcsr_regnum) == REG_VALID)
4250 {
4251 /* If we have an fcsr register then we should have fflags and frm
4252 too, either provided by the target, or provided as a pseudo
4253 register by GDB. */
4254 gdb_assert (tdep->fflags_regnum >= 0);
4255 gdb_assert (tdep->frm_regnum >= 0);
4256
4257 ULONGEST fcsr_val;
4258 regcache->raw_read (fcsr_regnum, &fcsr_val);
4259
4260 /* Extract the fflags and frm values. */
4261 ULONGEST fflags_val = fcsr_val & 0x1f;
4262 ULONGEST frm_val = (fcsr_val >> 5) & 0x7;
4263
4264 /* And supply these if needed. We can only supply real
4265 registers, so don't try to supply fflags or frm if they are
4266 implemented as pseudo-registers. */
4267 if ((regnum == -1 || regnum == tdep->fflags_regnum)
4268 && tdep->fflags_regnum < gdbarch_num_regs (gdbarch))
4269 regcache->raw_supply_integer (tdep->fflags_regnum,
4270 (gdb_byte *) &fflags_val,
4271 sizeof (fflags_val),
4272 /* is_signed */ false);
4273
4274 if ((regnum == -1 || regnum == tdep->frm_regnum)
4275 && tdep->frm_regnum < gdbarch_num_regs (gdbarch))
4276 regcache->raw_supply_integer (tdep->frm_regnum,
4277 (gdb_byte *)&frm_val,
4278 sizeof (fflags_val),
4279 /* is_signed */ false);
4280 }
4281 }
4282 }
4283
4284 void _initialize_riscv_tdep ();
4285 void
4286 _initialize_riscv_tdep ()
4287 {
4288 riscv_init_reggroups ();
4289
4290 gdbarch_register (bfd_arch_riscv, riscv_gdbarch_init, NULL);
4291
4292 /* Add root prefix command for all "set debug riscv" and "show debug
4293 riscv" commands. */
4294 add_setshow_prefix_cmd ("riscv", no_class,
4295 _("RISC-V specific debug commands."),
4296 _("RISC-V specific debug commands."),
4297 &setdebugriscvcmdlist, &showdebugriscvcmdlist,
4298 &setdebuglist, &showdebuglist);
4299
4300 add_setshow_zuinteger_cmd ("breakpoints", class_maintenance,
4301 &riscv_debug_breakpoints, _("\
4302 Set riscv breakpoint debugging."), _("\
4303 Show riscv breakpoint debugging."), _("\
4304 When non-zero, print debugging information for the riscv specific parts\n\
4305 of the breakpoint mechanism."),
4306 NULL,
4307 show_riscv_debug_variable,
4308 &setdebugriscvcmdlist, &showdebugriscvcmdlist);
4309
4310 add_setshow_zuinteger_cmd ("infcall", class_maintenance,
4311 &riscv_debug_infcall, _("\
4312 Set riscv inferior call debugging."), _("\
4313 Show riscv inferior call debugging."), _("\
4314 When non-zero, print debugging information for the riscv specific parts\n\
4315 of the inferior call mechanism."),
4316 NULL,
4317 show_riscv_debug_variable,
4318 &setdebugriscvcmdlist, &showdebugriscvcmdlist);
4319
4320 add_setshow_zuinteger_cmd ("unwinder", class_maintenance,
4321 &riscv_debug_unwinder, _("\
4322 Set riscv stack unwinding debugging."), _("\
4323 Show riscv stack unwinding debugging."), _("\
4324 When non-zero, print debugging information for the riscv specific parts\n\
4325 of the stack unwinding mechanism."),
4326 NULL,
4327 show_riscv_debug_variable,
4328 &setdebugriscvcmdlist, &showdebugriscvcmdlist);
4329
4330 add_setshow_zuinteger_cmd ("gdbarch", class_maintenance,
4331 &riscv_debug_gdbarch, _("\
4332 Set riscv gdbarch initialisation debugging."), _("\
4333 Show riscv gdbarch initialisation debugging."), _("\
4334 When non-zero, print debugging information for the riscv gdbarch\n\
4335 initialisation process."),
4336 NULL,
4337 show_riscv_debug_variable,
4338 &setdebugriscvcmdlist, &showdebugriscvcmdlist);
4339
4340 /* Add root prefix command for all "set riscv" and "show riscv" commands. */
4341 add_setshow_prefix_cmd ("riscv", no_class,
4342 _("RISC-V specific commands."),
4343 _("RISC-V specific commands."),
4344 &setriscvcmdlist, &showriscvcmdlist,
4345 &setlist, &showlist);
4346
4347
4348 use_compressed_breakpoints = AUTO_BOOLEAN_AUTO;
4349 add_setshow_auto_boolean_cmd ("use-compressed-breakpoints", no_class,
4350 &use_compressed_breakpoints,
4351 _("\
4352 Set debugger's use of compressed breakpoints."), _(" \
4353 Show debugger's use of compressed breakpoints."), _("\
4354 Debugging compressed code requires compressed breakpoints to be used. If\n\
4355 left to 'auto' then gdb will use them if the existing instruction is a\n\
4356 compressed instruction. If that doesn't give the correct behavior, then\n\
4357 this option can be used."),
4358 NULL,
4359 show_use_compressed_breakpoints,
4360 &setriscvcmdlist,
4361 &showriscvcmdlist);
4362 }