PR29482 - strip: heap-buffer-overflow
[binutils-gdb.git] / gdb / rl78-tdep.c
1 /* Target-dependent code for the Renesas RL78 for GDB, the GNU debugger.
2
3 Copyright (C) 2011-2022 Free Software Foundation, Inc.
4
5 Contributed by Red Hat, Inc.
6
7 This file is part of GDB.
8
9 This program is free software; you can redistribute it and/or modify
10 it under the terms of the GNU General Public License as published by
11 the Free Software Foundation; either version 3 of the License, or
12 (at your option) any later version.
13
14 This program is distributed in the hope that it will be useful,
15 but WITHOUT ANY WARRANTY; without even the implied warranty of
16 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
17 GNU General Public License for more details.
18
19 You should have received a copy of the GNU General Public License
20 along with this program. If not, see <http://www.gnu.org/licenses/>. */
21
22 #include "defs.h"
23 #include "arch-utils.h"
24 #include "prologue-value.h"
25 #include "target.h"
26 #include "regcache.h"
27 #include "opcode/rl78.h"
28 #include "dis-asm.h"
29 #include "gdbtypes.h"
30 #include "frame.h"
31 #include "frame-unwind.h"
32 #include "frame-base.h"
33 #include "value.h"
34 #include "gdbcore.h"
35 #include "dwarf2/frame.h"
36 #include "reggroups.h"
37 #include "gdbarch.h"
38
39 #include "elf/rl78.h"
40 #include "elf-bfd.h"
41
42 /* Register Banks. */
43
44 enum
45 {
46 RL78_BANK0 = 0,
47 RL78_BANK1 = 1,
48 RL78_BANK2 = 2,
49 RL78_BANK3 = 3,
50 RL78_NUMBANKS = 4,
51 RL78_REGS_PER_BANK = 8
52 };
53
54 /* Register Numbers. */
55
56 enum
57 {
58 /* All general purpose registers are 8 bits wide. */
59 RL78_RAW_BANK0_R0_REGNUM = 0,
60 RL78_RAW_BANK0_R1_REGNUM,
61 RL78_RAW_BANK0_R2_REGNUM,
62 RL78_RAW_BANK0_R3_REGNUM,
63 RL78_RAW_BANK0_R4_REGNUM,
64 RL78_RAW_BANK0_R5_REGNUM,
65 RL78_RAW_BANK0_R6_REGNUM,
66 RL78_RAW_BANK0_R7_REGNUM,
67
68 RL78_RAW_BANK1_R0_REGNUM,
69 RL78_RAW_BANK1_R1_REGNUM,
70 RL78_RAW_BANK1_R2_REGNUM,
71 RL78_RAW_BANK1_R3_REGNUM,
72 RL78_RAW_BANK1_R4_REGNUM,
73 RL78_RAW_BANK1_R5_REGNUM,
74 RL78_RAW_BANK1_R6_REGNUM,
75 RL78_RAW_BANK1_R7_REGNUM,
76
77 RL78_RAW_BANK2_R0_REGNUM,
78 RL78_RAW_BANK2_R1_REGNUM,
79 RL78_RAW_BANK2_R2_REGNUM,
80 RL78_RAW_BANK2_R3_REGNUM,
81 RL78_RAW_BANK2_R4_REGNUM,
82 RL78_RAW_BANK2_R5_REGNUM,
83 RL78_RAW_BANK2_R6_REGNUM,
84 RL78_RAW_BANK2_R7_REGNUM,
85
86 RL78_RAW_BANK3_R0_REGNUM,
87 RL78_RAW_BANK3_R1_REGNUM,
88 RL78_RAW_BANK3_R2_REGNUM,
89 RL78_RAW_BANK3_R3_REGNUM,
90 RL78_RAW_BANK3_R4_REGNUM,
91 RL78_RAW_BANK3_R5_REGNUM,
92 RL78_RAW_BANK3_R6_REGNUM,
93 RL78_RAW_BANK3_R7_REGNUM,
94
95 RL78_PSW_REGNUM, /* 8 bits */
96 RL78_ES_REGNUM, /* 8 bits */
97 RL78_CS_REGNUM, /* 8 bits */
98 RL78_RAW_PC_REGNUM, /* 20 bits; we'll use 32 bits for it. */
99
100 /* Fixed address SFRs (some of those above are SFRs too.) */
101 RL78_SPL_REGNUM, /* 8 bits; lower half of SP */
102 RL78_SPH_REGNUM, /* 8 bits; upper half of SP */
103 RL78_PMC_REGNUM, /* 8 bits */
104 RL78_MEM_REGNUM, /* 8 bits ?? */
105
106 RL78_NUM_REGS,
107
108 /* Pseudo registers. */
109 RL78_PC_REGNUM = RL78_NUM_REGS,
110 RL78_SP_REGNUM,
111
112 RL78_X_REGNUM,
113 RL78_A_REGNUM,
114 RL78_C_REGNUM,
115 RL78_B_REGNUM,
116 RL78_E_REGNUM,
117 RL78_D_REGNUM,
118 RL78_L_REGNUM,
119 RL78_H_REGNUM,
120
121 RL78_AX_REGNUM,
122 RL78_BC_REGNUM,
123 RL78_DE_REGNUM,
124 RL78_HL_REGNUM,
125
126 RL78_BANK0_R0_REGNUM,
127 RL78_BANK0_R1_REGNUM,
128 RL78_BANK0_R2_REGNUM,
129 RL78_BANK0_R3_REGNUM,
130 RL78_BANK0_R4_REGNUM,
131 RL78_BANK0_R5_REGNUM,
132 RL78_BANK0_R6_REGNUM,
133 RL78_BANK0_R7_REGNUM,
134
135 RL78_BANK1_R0_REGNUM,
136 RL78_BANK1_R1_REGNUM,
137 RL78_BANK1_R2_REGNUM,
138 RL78_BANK1_R3_REGNUM,
139 RL78_BANK1_R4_REGNUM,
140 RL78_BANK1_R5_REGNUM,
141 RL78_BANK1_R6_REGNUM,
142 RL78_BANK1_R7_REGNUM,
143
144 RL78_BANK2_R0_REGNUM,
145 RL78_BANK2_R1_REGNUM,
146 RL78_BANK2_R2_REGNUM,
147 RL78_BANK2_R3_REGNUM,
148 RL78_BANK2_R4_REGNUM,
149 RL78_BANK2_R5_REGNUM,
150 RL78_BANK2_R6_REGNUM,
151 RL78_BANK2_R7_REGNUM,
152
153 RL78_BANK3_R0_REGNUM,
154 RL78_BANK3_R1_REGNUM,
155 RL78_BANK3_R2_REGNUM,
156 RL78_BANK3_R3_REGNUM,
157 RL78_BANK3_R4_REGNUM,
158 RL78_BANK3_R5_REGNUM,
159 RL78_BANK3_R6_REGNUM,
160 RL78_BANK3_R7_REGNUM,
161
162 RL78_BANK0_RP0_REGNUM,
163 RL78_BANK0_RP1_REGNUM,
164 RL78_BANK0_RP2_REGNUM,
165 RL78_BANK0_RP3_REGNUM,
166
167 RL78_BANK1_RP0_REGNUM,
168 RL78_BANK1_RP1_REGNUM,
169 RL78_BANK1_RP2_REGNUM,
170 RL78_BANK1_RP3_REGNUM,
171
172 RL78_BANK2_RP0_REGNUM,
173 RL78_BANK2_RP1_REGNUM,
174 RL78_BANK2_RP2_REGNUM,
175 RL78_BANK2_RP3_REGNUM,
176
177 RL78_BANK3_RP0_REGNUM,
178 RL78_BANK3_RP1_REGNUM,
179 RL78_BANK3_RP2_REGNUM,
180 RL78_BANK3_RP3_REGNUM,
181
182 /* These are the same as the above 16 registers, but have
183 a pointer type for use as base registers in expression
184 evaluation. These are not user visible registers. */
185 RL78_BANK0_RP0_PTR_REGNUM,
186 RL78_BANK0_RP1_PTR_REGNUM,
187 RL78_BANK0_RP2_PTR_REGNUM,
188 RL78_BANK0_RP3_PTR_REGNUM,
189
190 RL78_BANK1_RP0_PTR_REGNUM,
191 RL78_BANK1_RP1_PTR_REGNUM,
192 RL78_BANK1_RP2_PTR_REGNUM,
193 RL78_BANK1_RP3_PTR_REGNUM,
194
195 RL78_BANK2_RP0_PTR_REGNUM,
196 RL78_BANK2_RP1_PTR_REGNUM,
197 RL78_BANK2_RP2_PTR_REGNUM,
198 RL78_BANK2_RP3_PTR_REGNUM,
199
200 RL78_BANK3_RP0_PTR_REGNUM,
201 RL78_BANK3_RP1_PTR_REGNUM,
202 RL78_BANK3_RP2_PTR_REGNUM,
203 RL78_BANK3_RP3_PTR_REGNUM,
204
205 RL78_NUM_TOTAL_REGS,
206 RL78_NUM_PSEUDO_REGS = RL78_NUM_TOTAL_REGS - RL78_NUM_REGS
207 };
208
209 #define RL78_SP_ADDR 0xffff8
210
211 /* Architecture specific data. */
212
213 struct rl78_gdbarch_tdep : gdbarch_tdep_base
214 {
215 /* The ELF header flags specify the multilib used. */
216 int elf_flags = 0;
217
218 struct type *rl78_void = nullptr,
219 *rl78_uint8 = nullptr,
220 *rl78_int8 = nullptr,
221 *rl78_uint16 = nullptr,
222 *rl78_int16 = nullptr,
223 *rl78_uint32 = nullptr,
224 *rl78_int32 = nullptr,
225 *rl78_data_pointer = nullptr,
226 *rl78_code_pointer = nullptr,
227 *rl78_psw_type = nullptr;
228 };
229
230 /* This structure holds the results of a prologue analysis. */
231
232 struct rl78_prologue
233 {
234 /* The offset from the frame base to the stack pointer --- always
235 zero or negative.
236
237 Calling this a "size" is a bit misleading, but given that the
238 stack grows downwards, using offsets for everything keeps one
239 from going completely sign-crazy: you never change anything's
240 sign for an ADD instruction; always change the second operand's
241 sign for a SUB instruction; and everything takes care of
242 itself. */
243 int frame_size;
244
245 /* Non-zero if this function has initialized the frame pointer from
246 the stack pointer, zero otherwise. */
247 int has_frame_ptr;
248
249 /* If has_frame_ptr is non-zero, this is the offset from the frame
250 base to where the frame pointer points. This is always zero or
251 negative. */
252 int frame_ptr_offset;
253
254 /* The address of the first instruction at which the frame has been
255 set up and the arguments are where the debug info says they are
256 --- as best as we can tell. */
257 CORE_ADDR prologue_end;
258
259 /* reg_offset[R] is the offset from the CFA at which register R is
260 saved, or 1 if register R has not been saved. (Real values are
261 always zero or negative.) */
262 int reg_offset[RL78_NUM_TOTAL_REGS];
263 };
264
265 /* Construct type for PSW register. */
266
267 static struct type *
268 rl78_psw_type (struct gdbarch *gdbarch)
269 {
270 rl78_gdbarch_tdep *tdep = gdbarch_tdep<rl78_gdbarch_tdep> (gdbarch);
271
272 if (tdep->rl78_psw_type == NULL)
273 {
274 tdep->rl78_psw_type = arch_flags_type (gdbarch,
275 "builtin_type_rl78_psw", 8);
276 append_flags_type_flag (tdep->rl78_psw_type, 0, "CY");
277 append_flags_type_flag (tdep->rl78_psw_type, 1, "ISP0");
278 append_flags_type_flag (tdep->rl78_psw_type, 2, "ISP1");
279 append_flags_type_flag (tdep->rl78_psw_type, 3, "RBS0");
280 append_flags_type_flag (tdep->rl78_psw_type, 4, "AC");
281 append_flags_type_flag (tdep->rl78_psw_type, 5, "RBS1");
282 append_flags_type_flag (tdep->rl78_psw_type, 6, "Z");
283 append_flags_type_flag (tdep->rl78_psw_type, 7, "IE");
284 }
285
286 return tdep->rl78_psw_type;
287 }
288
289 /* Implement the "register_type" gdbarch method. */
290
291 static struct type *
292 rl78_register_type (struct gdbarch *gdbarch, int reg_nr)
293 {
294 rl78_gdbarch_tdep *tdep = gdbarch_tdep<rl78_gdbarch_tdep> (gdbarch);
295
296 if (reg_nr == RL78_PC_REGNUM)
297 return tdep->rl78_code_pointer;
298 else if (reg_nr == RL78_RAW_PC_REGNUM)
299 return tdep->rl78_uint32;
300 else if (reg_nr == RL78_PSW_REGNUM)
301 return rl78_psw_type (gdbarch);
302 else if (reg_nr <= RL78_MEM_REGNUM
303 || (RL78_X_REGNUM <= reg_nr && reg_nr <= RL78_H_REGNUM)
304 || (RL78_BANK0_R0_REGNUM <= reg_nr
305 && reg_nr <= RL78_BANK3_R7_REGNUM))
306 return tdep->rl78_int8;
307 else if (reg_nr == RL78_SP_REGNUM
308 || (RL78_BANK0_RP0_PTR_REGNUM <= reg_nr
309 && reg_nr <= RL78_BANK3_RP3_PTR_REGNUM))
310 return tdep->rl78_data_pointer;
311 else
312 return tdep->rl78_int16;
313 }
314
315 /* Implement the "register_name" gdbarch method. */
316
317 static const char *
318 rl78_register_name (struct gdbarch *gdbarch, int regnr)
319 {
320 static const char *const reg_names[] =
321 {
322 "", /* bank0_r0 */
323 "", /* bank0_r1 */
324 "", /* bank0_r2 */
325 "", /* bank0_r3 */
326 "", /* bank0_r4 */
327 "", /* bank0_r5 */
328 "", /* bank0_r6 */
329 "", /* bank0_r7 */
330
331 "", /* bank1_r0 */
332 "", /* bank1_r1 */
333 "", /* bank1_r2 */
334 "", /* bank1_r3 */
335 "", /* bank1_r4 */
336 "", /* bank1_r5 */
337 "", /* bank1_r6 */
338 "", /* bank1_r7 */
339
340 "", /* bank2_r0 */
341 "", /* bank2_r1 */
342 "", /* bank2_r2 */
343 "", /* bank2_r3 */
344 "", /* bank2_r4 */
345 "", /* bank2_r5 */
346 "", /* bank2_r6 */
347 "", /* bank2_r7 */
348
349 "", /* bank3_r0 */
350 "", /* bank3_r1 */
351 "", /* bank3_r2 */
352 "", /* bank3_r3 */
353 "", /* bank3_r4 */
354 "", /* bank3_r5 */
355 "", /* bank3_r6 */
356 "", /* bank3_r7 */
357
358 "psw",
359 "es",
360 "cs",
361 "",
362
363 "", /* spl */
364 "", /* sph */
365 "pmc",
366 "mem",
367
368 "pc",
369 "sp",
370
371 "x",
372 "a",
373 "c",
374 "b",
375 "e",
376 "d",
377 "l",
378 "h",
379
380 "ax",
381 "bc",
382 "de",
383 "hl",
384
385 "bank0_r0",
386 "bank0_r1",
387 "bank0_r2",
388 "bank0_r3",
389 "bank0_r4",
390 "bank0_r5",
391 "bank0_r6",
392 "bank0_r7",
393
394 "bank1_r0",
395 "bank1_r1",
396 "bank1_r2",
397 "bank1_r3",
398 "bank1_r4",
399 "bank1_r5",
400 "bank1_r6",
401 "bank1_r7",
402
403 "bank2_r0",
404 "bank2_r1",
405 "bank2_r2",
406 "bank2_r3",
407 "bank2_r4",
408 "bank2_r5",
409 "bank2_r6",
410 "bank2_r7",
411
412 "bank3_r0",
413 "bank3_r1",
414 "bank3_r2",
415 "bank3_r3",
416 "bank3_r4",
417 "bank3_r5",
418 "bank3_r6",
419 "bank3_r7",
420
421 "bank0_rp0",
422 "bank0_rp1",
423 "bank0_rp2",
424 "bank0_rp3",
425
426 "bank1_rp0",
427 "bank1_rp1",
428 "bank1_rp2",
429 "bank1_rp3",
430
431 "bank2_rp0",
432 "bank2_rp1",
433 "bank2_rp2",
434 "bank2_rp3",
435
436 "bank3_rp0",
437 "bank3_rp1",
438 "bank3_rp2",
439 "bank3_rp3",
440
441 /* The 16 register slots would be named
442 bank0_rp0_ptr_regnum ... bank3_rp3_ptr_regnum, but we don't
443 want these to be user visible registers. */
444 "", "", "", "", "", "", "", "", "", "", "", "", "", "", "", ""
445 };
446
447 return reg_names[regnr];
448 }
449
450 /* Implement the "register_name" gdbarch method for the g10 variant. */
451
452 static const char *
453 rl78_g10_register_name (struct gdbarch *gdbarch, int regnr)
454 {
455 static const char *const reg_names[] =
456 {
457 "", /* bank0_r0 */
458 "", /* bank0_r1 */
459 "", /* bank0_r2 */
460 "", /* bank0_r3 */
461 "", /* bank0_r4 */
462 "", /* bank0_r5 */
463 "", /* bank0_r6 */
464 "", /* bank0_r7 */
465
466 "", /* bank1_r0 */
467 "", /* bank1_r1 */
468 "", /* bank1_r2 */
469 "", /* bank1_r3 */
470 "", /* bank1_r4 */
471 "", /* bank1_r5 */
472 "", /* bank1_r6 */
473 "", /* bank1_r7 */
474
475 "", /* bank2_r0 */
476 "", /* bank2_r1 */
477 "", /* bank2_r2 */
478 "", /* bank2_r3 */
479 "", /* bank2_r4 */
480 "", /* bank2_r5 */
481 "", /* bank2_r6 */
482 "", /* bank2_r7 */
483
484 "", /* bank3_r0 */
485 "", /* bank3_r1 */
486 "", /* bank3_r2 */
487 "", /* bank3_r3 */
488 "", /* bank3_r4 */
489 "", /* bank3_r5 */
490 "", /* bank3_r6 */
491 "", /* bank3_r7 */
492
493 "psw",
494 "es",
495 "cs",
496 "",
497
498 "", /* spl */
499 "", /* sph */
500 "pmc",
501 "mem",
502
503 "pc",
504 "sp",
505
506 "x",
507 "a",
508 "c",
509 "b",
510 "e",
511 "d",
512 "l",
513 "h",
514
515 "ax",
516 "bc",
517 "de",
518 "hl",
519
520 "bank0_r0",
521 "bank0_r1",
522 "bank0_r2",
523 "bank0_r3",
524 "bank0_r4",
525 "bank0_r5",
526 "bank0_r6",
527 "bank0_r7",
528
529 "",
530 "",
531 "",
532 "",
533 "",
534 "",
535 "",
536 "",
537
538 "",
539 "",
540 "",
541 "",
542 "",
543 "",
544 "",
545 "",
546
547 "",
548 "",
549 "",
550 "",
551 "",
552 "",
553 "",
554 "",
555
556 "bank0_rp0",
557 "bank0_rp1",
558 "bank0_rp2",
559 "bank0_rp3",
560
561 "",
562 "",
563 "",
564 "",
565
566 "",
567 "",
568 "",
569 "",
570
571 "",
572 "",
573 "",
574 "",
575
576 /* The 16 register slots would be named
577 bank0_rp0_ptr_regnum ... bank3_rp3_ptr_regnum, but we don't
578 want these to be user visible registers. */
579 "", "", "", "", "", "", "", "", "", "", "", "", "", "", "", ""
580 };
581
582 return reg_names[regnr];
583 }
584
585 /* Implement the "register_reggroup_p" gdbarch method. */
586
587 static int
588 rl78_register_reggroup_p (struct gdbarch *gdbarch, int regnum,
589 const struct reggroup *group)
590 {
591 if (group == all_reggroup)
592 return 1;
593
594 /* All other registers are saved and restored. */
595 if (group == save_reggroup || group == restore_reggroup)
596 {
597 if ((regnum < RL78_NUM_REGS
598 && regnum != RL78_SPL_REGNUM
599 && regnum != RL78_SPH_REGNUM
600 && regnum != RL78_RAW_PC_REGNUM)
601 || regnum == RL78_SP_REGNUM
602 || regnum == RL78_PC_REGNUM)
603 return 1;
604 else
605 return 0;
606 }
607
608 if ((RL78_BANK0_R0_REGNUM <= regnum && regnum <= RL78_BANK3_R7_REGNUM)
609 || regnum == RL78_ES_REGNUM
610 || regnum == RL78_CS_REGNUM
611 || regnum == RL78_SPL_REGNUM
612 || regnum == RL78_SPH_REGNUM
613 || regnum == RL78_PMC_REGNUM
614 || regnum == RL78_MEM_REGNUM
615 || regnum == RL78_RAW_PC_REGNUM
616 || (RL78_BANK0_RP0_REGNUM <= regnum && regnum <= RL78_BANK3_RP3_REGNUM))
617 return group == system_reggroup;
618
619 return group == general_reggroup;
620 }
621
622 /* Strip bits to form an instruction address. (When fetching a
623 32-bit address from the stack, the high eight bits are garbage.
624 This function strips off those unused bits.) */
625
626 static CORE_ADDR
627 rl78_make_instruction_address (CORE_ADDR addr)
628 {
629 return addr & 0xffffff;
630 }
631
632 /* Set / clear bits necessary to make a data address. */
633
634 static CORE_ADDR
635 rl78_make_data_address (CORE_ADDR addr)
636 {
637 return (addr & 0xffff) | 0xf0000;
638 }
639
640 /* Implement the "pseudo_register_read" gdbarch method. */
641
642 static enum register_status
643 rl78_pseudo_register_read (struct gdbarch *gdbarch,
644 readable_regcache *regcache,
645 int reg, gdb_byte *buffer)
646 {
647 enum register_status status;
648
649 if (RL78_BANK0_R0_REGNUM <= reg && reg <= RL78_BANK3_R7_REGNUM)
650 {
651 int raw_regnum = RL78_RAW_BANK0_R0_REGNUM
652 + (reg - RL78_BANK0_R0_REGNUM);
653
654 status = regcache->raw_read (raw_regnum, buffer);
655 }
656 else if (RL78_BANK0_RP0_REGNUM <= reg && reg <= RL78_BANK3_RP3_REGNUM)
657 {
658 int raw_regnum = 2 * (reg - RL78_BANK0_RP0_REGNUM)
659 + RL78_RAW_BANK0_R0_REGNUM;
660
661 status = regcache->raw_read (raw_regnum, buffer);
662 if (status == REG_VALID)
663 status = regcache->raw_read (raw_regnum + 1, buffer + 1);
664 }
665 else if (RL78_BANK0_RP0_PTR_REGNUM <= reg && reg <= RL78_BANK3_RP3_PTR_REGNUM)
666 {
667 int raw_regnum = 2 * (reg - RL78_BANK0_RP0_PTR_REGNUM)
668 + RL78_RAW_BANK0_R0_REGNUM;
669
670 status = regcache->raw_read (raw_regnum, buffer);
671 if (status == REG_VALID)
672 status = regcache->raw_read (raw_regnum + 1, buffer + 1);
673 }
674 else if (reg == RL78_SP_REGNUM)
675 {
676 status = regcache->raw_read (RL78_SPL_REGNUM, buffer);
677 if (status == REG_VALID)
678 status = regcache->raw_read (RL78_SPH_REGNUM, buffer + 1);
679 }
680 else if (reg == RL78_PC_REGNUM)
681 {
682 gdb_byte rawbuf[4];
683
684 status = regcache->raw_read (RL78_RAW_PC_REGNUM, rawbuf);
685 memcpy (buffer, rawbuf, 3);
686 }
687 else if (RL78_X_REGNUM <= reg && reg <= RL78_H_REGNUM)
688 {
689 ULONGEST psw;
690
691 status = regcache->raw_read (RL78_PSW_REGNUM, &psw);
692 if (status == REG_VALID)
693 {
694 /* RSB0 is at bit 3; RSBS1 is at bit 5. */
695 int bank = ((psw >> 3) & 1) | ((psw >> 4) & 1);
696 int raw_regnum = RL78_RAW_BANK0_R0_REGNUM + bank * RL78_REGS_PER_BANK
697 + (reg - RL78_X_REGNUM);
698 status = regcache->raw_read (raw_regnum, buffer);
699 }
700 }
701 else if (RL78_AX_REGNUM <= reg && reg <= RL78_HL_REGNUM)
702 {
703 ULONGEST psw;
704
705 status = regcache->raw_read (RL78_PSW_REGNUM, &psw);
706 if (status == REG_VALID)
707 {
708 /* RSB0 is at bit 3; RSBS1 is at bit 5. */
709 int bank = ((psw >> 3) & 1) | ((psw >> 4) & 1);
710 int raw_regnum = RL78_RAW_BANK0_R0_REGNUM + bank * RL78_REGS_PER_BANK
711 + 2 * (reg - RL78_AX_REGNUM);
712 status = regcache->raw_read (raw_regnum, buffer);
713 if (status == REG_VALID)
714 status = regcache->raw_read (raw_regnum + 1, buffer + 1);
715 }
716 }
717 else
718 gdb_assert_not_reached ("invalid pseudo register number");
719 return status;
720 }
721
722 /* Implement the "pseudo_register_write" gdbarch method. */
723
724 static void
725 rl78_pseudo_register_write (struct gdbarch *gdbarch,
726 struct regcache *regcache,
727 int reg, const gdb_byte *buffer)
728 {
729 if (RL78_BANK0_R0_REGNUM <= reg && reg <= RL78_BANK3_R7_REGNUM)
730 {
731 int raw_regnum = RL78_RAW_BANK0_R0_REGNUM
732 + (reg - RL78_BANK0_R0_REGNUM);
733
734 regcache->raw_write (raw_regnum, buffer);
735 }
736 else if (RL78_BANK0_RP0_REGNUM <= reg && reg <= RL78_BANK3_RP3_REGNUM)
737 {
738 int raw_regnum = 2 * (reg - RL78_BANK0_RP0_REGNUM)
739 + RL78_RAW_BANK0_R0_REGNUM;
740
741 regcache->raw_write (raw_regnum, buffer);
742 regcache->raw_write (raw_regnum + 1, buffer + 1);
743 }
744 else if (RL78_BANK0_RP0_PTR_REGNUM <= reg && reg <= RL78_BANK3_RP3_PTR_REGNUM)
745 {
746 int raw_regnum = 2 * (reg - RL78_BANK0_RP0_PTR_REGNUM)
747 + RL78_RAW_BANK0_R0_REGNUM;
748
749 regcache->raw_write (raw_regnum, buffer);
750 regcache->raw_write (raw_regnum + 1, buffer + 1);
751 }
752 else if (reg == RL78_SP_REGNUM)
753 {
754 regcache->raw_write (RL78_SPL_REGNUM, buffer);
755 regcache->raw_write (RL78_SPH_REGNUM, buffer + 1);
756 }
757 else if (reg == RL78_PC_REGNUM)
758 {
759 gdb_byte rawbuf[4];
760
761 memcpy (rawbuf, buffer, 3);
762 rawbuf[3] = 0;
763 regcache->raw_write (RL78_RAW_PC_REGNUM, rawbuf);
764 }
765 else if (RL78_X_REGNUM <= reg && reg <= RL78_H_REGNUM)
766 {
767 ULONGEST psw;
768 int bank;
769 int raw_regnum;
770
771 regcache_raw_read_unsigned (regcache, RL78_PSW_REGNUM, &psw);
772 bank = ((psw >> 3) & 1) | ((psw >> 4) & 1);
773 /* RSB0 is at bit 3; RSBS1 is at bit 5. */
774 raw_regnum = RL78_RAW_BANK0_R0_REGNUM + bank * RL78_REGS_PER_BANK
775 + (reg - RL78_X_REGNUM);
776 regcache->raw_write (raw_regnum, buffer);
777 }
778 else if (RL78_AX_REGNUM <= reg && reg <= RL78_HL_REGNUM)
779 {
780 ULONGEST psw;
781 int bank, raw_regnum;
782
783 regcache_raw_read_unsigned (regcache, RL78_PSW_REGNUM, &psw);
784 bank = ((psw >> 3) & 1) | ((psw >> 4) & 1);
785 /* RSB0 is at bit 3; RSBS1 is at bit 5. */
786 raw_regnum = RL78_RAW_BANK0_R0_REGNUM + bank * RL78_REGS_PER_BANK
787 + 2 * (reg - RL78_AX_REGNUM);
788 regcache->raw_write (raw_regnum, buffer);
789 regcache->raw_write (raw_regnum + 1, buffer + 1);
790 }
791 else
792 gdb_assert_not_reached ("invalid pseudo register number");
793 }
794
795 /* The documented BRK instruction is actually a two byte sequence,
796 {0x61, 0xcc}, but instructions may be as short as one byte.
797 Correspondence with Renesas revealed that the one byte sequence
798 0xff is used when a one byte breakpoint instruction is required. */
799 constexpr gdb_byte rl78_break_insn[] = { 0xff };
800
801 typedef BP_MANIPULATION (rl78_break_insn) rl78_breakpoint;
802
803 /* Define a "handle" struct for fetching the next opcode. */
804
805 struct rl78_get_opcode_byte_handle
806 {
807 CORE_ADDR pc;
808 };
809
810 static int
811 opc_reg_to_gdb_regnum (int opcreg)
812 {
813 switch (opcreg)
814 {
815 case RL78_Reg_X:
816 return RL78_X_REGNUM;
817 case RL78_Reg_A:
818 return RL78_A_REGNUM;
819 case RL78_Reg_C:
820 return RL78_C_REGNUM;
821 case RL78_Reg_B:
822 return RL78_B_REGNUM;
823 case RL78_Reg_E:
824 return RL78_E_REGNUM;
825 case RL78_Reg_D:
826 return RL78_D_REGNUM;
827 case RL78_Reg_L:
828 return RL78_L_REGNUM;
829 case RL78_Reg_H:
830 return RL78_H_REGNUM;
831 case RL78_Reg_AX:
832 return RL78_AX_REGNUM;
833 case RL78_Reg_BC:
834 return RL78_BC_REGNUM;
835 case RL78_Reg_DE:
836 return RL78_DE_REGNUM;
837 case RL78_Reg_HL:
838 return RL78_HL_REGNUM;
839 case RL78_Reg_SP:
840 return RL78_SP_REGNUM;
841 case RL78_Reg_PSW:
842 return RL78_PSW_REGNUM;
843 case RL78_Reg_CS:
844 return RL78_CS_REGNUM;
845 case RL78_Reg_ES:
846 return RL78_ES_REGNUM;
847 case RL78_Reg_PMC:
848 return RL78_PMC_REGNUM;
849 case RL78_Reg_MEM:
850 return RL78_MEM_REGNUM;
851 default:
852 internal_error (__FILE__, __LINE__,
853 _("Undefined mapping for opc reg %d"),
854 opcreg);
855 }
856
857 /* Not reached. */
858 return 0;
859 }
860
861 /* Fetch a byte on behalf of the opcode decoder. HANDLE contains
862 the memory address of the next byte to fetch. If successful,
863 the address in the handle is updated and the byte fetched is
864 returned as the value of the function. If not successful, -1
865 is returned. */
866
867 static int
868 rl78_get_opcode_byte (void *handle)
869 {
870 struct rl78_get_opcode_byte_handle *opcdata
871 = (struct rl78_get_opcode_byte_handle *) handle;
872 int status;
873 gdb_byte byte;
874
875 status = target_read_memory (opcdata->pc, &byte, 1);
876 if (status == 0)
877 {
878 opcdata->pc += 1;
879 return byte;
880 }
881 else
882 return -1;
883 }
884
885 /* Function for finding saved registers in a 'struct pv_area'; this
886 function is passed to pv_area::scan.
887
888 If VALUE is a saved register, ADDR says it was saved at a constant
889 offset from the frame base, and SIZE indicates that the whole
890 register was saved, record its offset. */
891
892 static void
893 check_for_saved (void *result_untyped, pv_t addr, CORE_ADDR size,
894 pv_t value)
895 {
896 struct rl78_prologue *result = (struct rl78_prologue *) result_untyped;
897
898 if (value.kind == pvk_register
899 && value.k == 0
900 && pv_is_register (addr, RL78_SP_REGNUM)
901 && size == register_size (target_gdbarch (), value.reg))
902 result->reg_offset[value.reg] = addr.k;
903 }
904
905 /* Analyze a prologue starting at START_PC, going no further than
906 LIMIT_PC. Fill in RESULT as appropriate. */
907
908 static void
909 rl78_analyze_prologue (CORE_ADDR start_pc,
910 CORE_ADDR limit_pc, struct rl78_prologue *result)
911 {
912 CORE_ADDR pc, next_pc;
913 int rn;
914 pv_t reg[RL78_NUM_TOTAL_REGS];
915 CORE_ADDR after_last_frame_setup_insn = start_pc;
916 int bank = 0;
917
918 memset (result, 0, sizeof (*result));
919
920 for (rn = 0; rn < RL78_NUM_TOTAL_REGS; rn++)
921 {
922 reg[rn] = pv_register (rn, 0);
923 result->reg_offset[rn] = 1;
924 }
925
926 pv_area stack (RL78_SP_REGNUM, gdbarch_addr_bit (target_gdbarch ()));
927
928 /* The call instruction has saved the return address on the stack. */
929 reg[RL78_SP_REGNUM] = pv_add_constant (reg[RL78_SP_REGNUM], -4);
930 stack.store (reg[RL78_SP_REGNUM], 4, reg[RL78_PC_REGNUM]);
931
932 pc = start_pc;
933 while (pc < limit_pc)
934 {
935 int bytes_read;
936 struct rl78_get_opcode_byte_handle opcode_handle;
937 RL78_Opcode_Decoded opc;
938
939 opcode_handle.pc = pc;
940 bytes_read = rl78_decode_opcode (pc, &opc, rl78_get_opcode_byte,
941 &opcode_handle, RL78_ISA_DEFAULT);
942 next_pc = pc + bytes_read;
943
944 if (opc.id == RLO_sel)
945 {
946 bank = opc.op[1].addend;
947 }
948 else if (opc.id == RLO_mov
949 && opc.op[0].type == RL78_Operand_PreDec
950 && opc.op[0].reg == RL78_Reg_SP
951 && opc.op[1].type == RL78_Operand_Register)
952 {
953 int rsrc = (bank * RL78_REGS_PER_BANK)
954 + 2 * (opc.op[1].reg - RL78_Reg_AX);
955
956 reg[RL78_SP_REGNUM] = pv_add_constant (reg[RL78_SP_REGNUM], -1);
957 stack.store (reg[RL78_SP_REGNUM], 1, reg[rsrc]);
958 reg[RL78_SP_REGNUM] = pv_add_constant (reg[RL78_SP_REGNUM], -1);
959 stack.store (reg[RL78_SP_REGNUM], 1, reg[rsrc + 1]);
960 after_last_frame_setup_insn = next_pc;
961 }
962 else if (opc.id == RLO_sub
963 && opc.op[0].type == RL78_Operand_Register
964 && opc.op[0].reg == RL78_Reg_SP
965 && opc.op[1].type == RL78_Operand_Immediate)
966 {
967 int addend = opc.op[1].addend;
968
969 reg[RL78_SP_REGNUM] = pv_add_constant (reg[RL78_SP_REGNUM],
970 -addend);
971 after_last_frame_setup_insn = next_pc;
972 }
973 else if (opc.id == RLO_mov
974 && opc.size == RL78_Word
975 && opc.op[0].type == RL78_Operand_Register
976 && opc.op[1].type == RL78_Operand_Indirect
977 && opc.op[1].addend == RL78_SP_ADDR)
978 {
979 reg[opc_reg_to_gdb_regnum (opc.op[0].reg)]
980 = reg[RL78_SP_REGNUM];
981 }
982 else if (opc.id == RLO_sub
983 && opc.size == RL78_Word
984 && opc.op[0].type == RL78_Operand_Register
985 && opc.op[1].type == RL78_Operand_Immediate)
986 {
987 int addend = opc.op[1].addend;
988 int regnum = opc_reg_to_gdb_regnum (opc.op[0].reg);
989
990 reg[regnum] = pv_add_constant (reg[regnum], -addend);
991 }
992 else if (opc.id == RLO_mov
993 && opc.size == RL78_Word
994 && opc.op[0].type == RL78_Operand_Indirect
995 && opc.op[0].addend == RL78_SP_ADDR
996 && opc.op[1].type == RL78_Operand_Register)
997 {
998 reg[RL78_SP_REGNUM]
999 = reg[opc_reg_to_gdb_regnum (opc.op[1].reg)];
1000 after_last_frame_setup_insn = next_pc;
1001 }
1002 else
1003 {
1004 /* Terminate the prologue scan. */
1005 break;
1006 }
1007
1008 pc = next_pc;
1009 }
1010
1011 /* Is the frame size (offset, really) a known constant? */
1012 if (pv_is_register (reg[RL78_SP_REGNUM], RL78_SP_REGNUM))
1013 result->frame_size = reg[RL78_SP_REGNUM].k;
1014
1015 /* Record where all the registers were saved. */
1016 stack.scan (check_for_saved, (void *) result);
1017
1018 result->prologue_end = after_last_frame_setup_insn;
1019 }
1020
1021 /* Implement the "addr_bits_remove" gdbarch method. */
1022
1023 static CORE_ADDR
1024 rl78_addr_bits_remove (struct gdbarch *gdbarch, CORE_ADDR addr)
1025 {
1026 return addr & 0xffffff;
1027 }
1028
1029 /* Implement the "address_to_pointer" gdbarch method. */
1030
1031 static void
1032 rl78_address_to_pointer (struct gdbarch *gdbarch,
1033 struct type *type, gdb_byte *buf, CORE_ADDR addr)
1034 {
1035 enum bfd_endian byte_order = gdbarch_byte_order (gdbarch);
1036
1037 store_unsigned_integer (buf, TYPE_LENGTH (type), byte_order,
1038 addr & 0xffffff);
1039 }
1040
1041 /* Implement the "pointer_to_address" gdbarch method. */
1042
1043 static CORE_ADDR
1044 rl78_pointer_to_address (struct gdbarch *gdbarch,
1045 struct type *type, const gdb_byte *buf)
1046 {
1047 enum bfd_endian byte_order = gdbarch_byte_order (gdbarch);
1048 CORE_ADDR addr
1049 = extract_unsigned_integer (buf, TYPE_LENGTH (type), byte_order);
1050
1051 /* Is it a code address? */
1052 if (TYPE_TARGET_TYPE (type)->code () == TYPE_CODE_FUNC
1053 || TYPE_TARGET_TYPE (type)->code () == TYPE_CODE_METHOD
1054 || TYPE_CODE_SPACE (TYPE_TARGET_TYPE (type))
1055 || TYPE_LENGTH (type) == 4)
1056 return rl78_make_instruction_address (addr);
1057 else
1058 return rl78_make_data_address (addr);
1059 }
1060
1061 /* Implement the "skip_prologue" gdbarch method. */
1062
1063 static CORE_ADDR
1064 rl78_skip_prologue (struct gdbarch *gdbarch, CORE_ADDR pc)
1065 {
1066 const char *name;
1067 CORE_ADDR func_addr, func_end;
1068 struct rl78_prologue p;
1069
1070 /* Try to find the extent of the function that contains PC. */
1071 if (!find_pc_partial_function (pc, &name, &func_addr, &func_end))
1072 return pc;
1073
1074 rl78_analyze_prologue (pc, func_end, &p);
1075 return p.prologue_end;
1076 }
1077
1078 /* Implement the "unwind_pc" gdbarch method. */
1079
1080 static CORE_ADDR
1081 rl78_unwind_pc (struct gdbarch *arch, struct frame_info *next_frame)
1082 {
1083 return rl78_addr_bits_remove
1084 (arch, frame_unwind_register_unsigned (next_frame,
1085 RL78_PC_REGNUM));
1086 }
1087
1088 /* Given a frame described by THIS_FRAME, decode the prologue of its
1089 associated function if there is not cache entry as specified by
1090 THIS_PROLOGUE_CACHE. Save the decoded prologue in the cache and
1091 return that struct as the value of this function. */
1092
1093 static struct rl78_prologue *
1094 rl78_analyze_frame_prologue (struct frame_info *this_frame,
1095 void **this_prologue_cache)
1096 {
1097 if (!*this_prologue_cache)
1098 {
1099 CORE_ADDR func_start, stop_addr;
1100
1101 *this_prologue_cache = FRAME_OBSTACK_ZALLOC (struct rl78_prologue);
1102
1103 func_start = get_frame_func (this_frame);
1104 stop_addr = get_frame_pc (this_frame);
1105
1106 /* If we couldn't find any function containing the PC, then
1107 just initialize the prologue cache, but don't do anything. */
1108 if (!func_start)
1109 stop_addr = func_start;
1110
1111 rl78_analyze_prologue (func_start, stop_addr,
1112 (struct rl78_prologue *) *this_prologue_cache);
1113 }
1114
1115 return (struct rl78_prologue *) *this_prologue_cache;
1116 }
1117
1118 /* Given a frame and a prologue cache, return this frame's base. */
1119
1120 static CORE_ADDR
1121 rl78_frame_base (struct frame_info *this_frame, void **this_prologue_cache)
1122 {
1123 struct rl78_prologue *p
1124 = rl78_analyze_frame_prologue (this_frame, this_prologue_cache);
1125 CORE_ADDR sp = get_frame_register_unsigned (this_frame, RL78_SP_REGNUM);
1126
1127 return rl78_make_data_address (sp - p->frame_size);
1128 }
1129
1130 /* Implement the "frame_this_id" method for unwinding frames. */
1131
1132 static void
1133 rl78_this_id (struct frame_info *this_frame,
1134 void **this_prologue_cache, struct frame_id *this_id)
1135 {
1136 *this_id = frame_id_build (rl78_frame_base (this_frame,
1137 this_prologue_cache),
1138 get_frame_func (this_frame));
1139 }
1140
1141 /* Implement the "frame_prev_register" method for unwinding frames. */
1142
1143 static struct value *
1144 rl78_prev_register (struct frame_info *this_frame,
1145 void **this_prologue_cache, int regnum)
1146 {
1147 struct rl78_prologue *p
1148 = rl78_analyze_frame_prologue (this_frame, this_prologue_cache);
1149 CORE_ADDR frame_base = rl78_frame_base (this_frame, this_prologue_cache);
1150
1151 if (regnum == RL78_SP_REGNUM)
1152 return frame_unwind_got_constant (this_frame, regnum, frame_base);
1153
1154 else if (regnum == RL78_SPL_REGNUM)
1155 return frame_unwind_got_constant (this_frame, regnum,
1156 (frame_base & 0xff));
1157
1158 else if (regnum == RL78_SPH_REGNUM)
1159 return frame_unwind_got_constant (this_frame, regnum,
1160 ((frame_base >> 8) & 0xff));
1161
1162 /* If prologue analysis says we saved this register somewhere,
1163 return a description of the stack slot holding it. */
1164 else if (p->reg_offset[regnum] != 1)
1165 {
1166 struct value *rv =
1167 frame_unwind_got_memory (this_frame, regnum,
1168 frame_base + p->reg_offset[regnum]);
1169
1170 if (regnum == RL78_PC_REGNUM)
1171 {
1172 ULONGEST pc = rl78_make_instruction_address (value_as_long (rv));
1173
1174 return frame_unwind_got_constant (this_frame, regnum, pc);
1175 }
1176 return rv;
1177 }
1178
1179 /* Otherwise, presume we haven't changed the value of this
1180 register, and get it from the next frame. */
1181 else
1182 return frame_unwind_got_register (this_frame, regnum, regnum);
1183 }
1184
1185 static const struct frame_unwind rl78_unwind =
1186 {
1187 "rl78 prologue",
1188 NORMAL_FRAME,
1189 default_frame_unwind_stop_reason,
1190 rl78_this_id,
1191 rl78_prev_register,
1192 NULL,
1193 default_frame_sniffer
1194 };
1195
1196 /* Implement the "dwarf_reg_to_regnum" gdbarch method. */
1197
1198 static int
1199 rl78_dwarf_reg_to_regnum (struct gdbarch *gdbarch, int reg)
1200 {
1201 if (0 <= reg && reg <= 31)
1202 {
1203 if ((reg & 1) == 0)
1204 /* Map even registers to their 16-bit counterparts which have a
1205 pointer type. This is usually what is required from the DWARF
1206 info. */
1207 return (reg >> 1) + RL78_BANK0_RP0_PTR_REGNUM;
1208 else
1209 return reg;
1210 }
1211 else if (reg == 32)
1212 return RL78_SP_REGNUM;
1213 else if (reg == 33)
1214 return -1; /* ap */
1215 else if (reg == 34)
1216 return RL78_PSW_REGNUM;
1217 else if (reg == 35)
1218 return RL78_ES_REGNUM;
1219 else if (reg == 36)
1220 return RL78_CS_REGNUM;
1221 else if (reg == 37)
1222 return RL78_PC_REGNUM;
1223 else
1224 return -1;
1225 }
1226
1227 /* Implement the `register_sim_regno' gdbarch method. */
1228
1229 static int
1230 rl78_register_sim_regno (struct gdbarch *gdbarch, int regnum)
1231 {
1232 gdb_assert (regnum < RL78_NUM_REGS);
1233
1234 /* So long as regnum is in [0, RL78_NUM_REGS), it's valid. We
1235 just want to override the default here which disallows register
1236 numbers which have no names. */
1237 return regnum;
1238 }
1239
1240 /* Implement the "return_value" gdbarch method. */
1241
1242 static enum return_value_convention
1243 rl78_return_value (struct gdbarch *gdbarch,
1244 struct value *function,
1245 struct type *valtype,
1246 struct regcache *regcache,
1247 gdb_byte *readbuf, const gdb_byte *writebuf)
1248 {
1249 enum bfd_endian byte_order = gdbarch_byte_order (gdbarch);
1250 ULONGEST valtype_len = TYPE_LENGTH (valtype);
1251 rl78_gdbarch_tdep *tdep = gdbarch_tdep<rl78_gdbarch_tdep> (gdbarch);
1252 int is_g10 = tdep->elf_flags & E_FLAG_RL78_G10;
1253
1254 if (valtype_len > 8)
1255 return RETURN_VALUE_STRUCT_CONVENTION;
1256
1257 if (readbuf)
1258 {
1259 ULONGEST u;
1260 int argreg = RL78_RAW_BANK1_R0_REGNUM;
1261 CORE_ADDR g10_raddr = 0xffec8;
1262 int offset = 0;
1263
1264 while (valtype_len > 0)
1265 {
1266 if (is_g10)
1267 u = read_memory_integer (g10_raddr, 1,
1268 gdbarch_byte_order (gdbarch));
1269 else
1270 regcache_cooked_read_unsigned (regcache, argreg, &u);
1271 store_unsigned_integer (readbuf + offset, 1, byte_order, u);
1272 valtype_len -= 1;
1273 offset += 1;
1274 argreg++;
1275 g10_raddr++;
1276 }
1277 }
1278
1279 if (writebuf)
1280 {
1281 ULONGEST u;
1282 int argreg = RL78_RAW_BANK1_R0_REGNUM;
1283 CORE_ADDR g10_raddr = 0xffec8;
1284 int offset = 0;
1285
1286 while (valtype_len > 0)
1287 {
1288 u = extract_unsigned_integer (writebuf + offset, 1, byte_order);
1289 if (is_g10) {
1290 gdb_byte b = u & 0xff;
1291 write_memory (g10_raddr, &b, 1);
1292 }
1293 else
1294 regcache_cooked_write_unsigned (regcache, argreg, u);
1295 valtype_len -= 1;
1296 offset += 1;
1297 argreg++;
1298 g10_raddr++;
1299 }
1300 }
1301
1302 return RETURN_VALUE_REGISTER_CONVENTION;
1303 }
1304
1305
1306 /* Implement the "frame_align" gdbarch method. */
1307
1308 static CORE_ADDR
1309 rl78_frame_align (struct gdbarch *gdbarch, CORE_ADDR sp)
1310 {
1311 return rl78_make_data_address (align_down (sp, 2));
1312 }
1313
1314
1315 /* Implement the "dummy_id" gdbarch method. */
1316
1317 static struct frame_id
1318 rl78_dummy_id (struct gdbarch *gdbarch, struct frame_info *this_frame)
1319 {
1320 return
1321 frame_id_build (rl78_make_data_address
1322 (get_frame_register_unsigned
1323 (this_frame, RL78_SP_REGNUM)),
1324 get_frame_pc (this_frame));
1325 }
1326
1327
1328 /* Implement the "push_dummy_call" gdbarch method. */
1329
1330 static CORE_ADDR
1331 rl78_push_dummy_call (struct gdbarch *gdbarch, struct value *function,
1332 struct regcache *regcache, CORE_ADDR bp_addr,
1333 int nargs, struct value **args, CORE_ADDR sp,
1334 function_call_return_method return_method,
1335 CORE_ADDR struct_addr)
1336 {
1337 enum bfd_endian byte_order = gdbarch_byte_order (gdbarch);
1338 gdb_byte buf[4];
1339 int i;
1340
1341 /* Push arguments in reverse order. */
1342 for (i = nargs - 1; i >= 0; i--)
1343 {
1344 struct type *value_type = value_enclosing_type (args[i]);
1345 int len = TYPE_LENGTH (value_type);
1346 int container_len = (len + 1) & ~1;
1347
1348 sp -= container_len;
1349 write_memory (rl78_make_data_address (sp),
1350 value_contents_all (args[i]).data (), len);
1351 }
1352
1353 /* Store struct value address. */
1354 if (return_method == return_method_struct)
1355 {
1356 store_unsigned_integer (buf, 2, byte_order, struct_addr);
1357 sp -= 2;
1358 write_memory (rl78_make_data_address (sp), buf, 2);
1359 }
1360
1361 /* Store return address. */
1362 sp -= 4;
1363 store_unsigned_integer (buf, 4, byte_order, bp_addr);
1364 write_memory (rl78_make_data_address (sp), buf, 4);
1365
1366 /* Finally, update the stack pointer... */
1367 regcache_cooked_write_unsigned (regcache, RL78_SP_REGNUM, sp);
1368
1369 /* DWARF2/GCC uses the stack address *before* the function call as a
1370 frame's CFA. */
1371 return rl78_make_data_address (sp + 4);
1372 }
1373
1374 /* Allocate and initialize a gdbarch object. */
1375
1376 static struct gdbarch *
1377 rl78_gdbarch_init (struct gdbarch_info info, struct gdbarch_list *arches)
1378 {
1379 struct gdbarch *gdbarch;
1380 int elf_flags;
1381
1382 /* Extract the elf_flags if available. */
1383 if (info.abfd != NULL
1384 && bfd_get_flavour (info.abfd) == bfd_target_elf_flavour)
1385 elf_flags = elf_elfheader (info.abfd)->e_flags;
1386 else
1387 elf_flags = 0;
1388
1389
1390 /* Try to find the architecture in the list of already defined
1391 architectures. */
1392 for (arches = gdbarch_list_lookup_by_info (arches, &info);
1393 arches != NULL;
1394 arches = gdbarch_list_lookup_by_info (arches->next, &info))
1395 {
1396 rl78_gdbarch_tdep *tdep
1397 = gdbarch_tdep<rl78_gdbarch_tdep> (arches->gdbarch);
1398
1399 if (tdep->elf_flags != elf_flags)
1400 continue;
1401
1402 return arches->gdbarch;
1403 }
1404
1405 /* None found, create a new architecture from the information
1406 provided. */
1407 rl78_gdbarch_tdep * tdep = new rl78_gdbarch_tdep;
1408 gdbarch = gdbarch_alloc (&info, tdep);
1409 tdep->elf_flags = elf_flags;
1410
1411 /* Initialize types. */
1412 tdep->rl78_void = arch_type (gdbarch, TYPE_CODE_VOID, TARGET_CHAR_BIT,
1413 "void");
1414 tdep->rl78_uint8 = arch_integer_type (gdbarch, 8, 1, "uint8_t");
1415 tdep->rl78_int8 = arch_integer_type (gdbarch, 8, 0, "int8_t");
1416 tdep->rl78_uint16 = arch_integer_type (gdbarch, 16, 1, "uint16_t");
1417 tdep->rl78_int16 = arch_integer_type (gdbarch, 16, 0, "int16_t");
1418 tdep->rl78_uint32 = arch_integer_type (gdbarch, 32, 1, "uint32_t");
1419 tdep->rl78_int32 = arch_integer_type (gdbarch, 32, 0, "int32_t");
1420
1421 tdep->rl78_data_pointer
1422 = arch_pointer_type (gdbarch, 16, "rl78_data_addr_t", tdep->rl78_void);
1423 tdep->rl78_code_pointer
1424 = arch_pointer_type (gdbarch, 32, "rl78_code_addr_t", tdep->rl78_void);
1425
1426 /* Registers. */
1427 set_gdbarch_num_regs (gdbarch, RL78_NUM_REGS);
1428 set_gdbarch_num_pseudo_regs (gdbarch, RL78_NUM_PSEUDO_REGS);
1429 if (tdep->elf_flags & E_FLAG_RL78_G10)
1430 set_gdbarch_register_name (gdbarch, rl78_g10_register_name);
1431 else
1432 set_gdbarch_register_name (gdbarch, rl78_register_name);
1433 set_gdbarch_register_type (gdbarch, rl78_register_type);
1434 set_gdbarch_pc_regnum (gdbarch, RL78_PC_REGNUM);
1435 set_gdbarch_sp_regnum (gdbarch, RL78_SP_REGNUM);
1436 set_gdbarch_pseudo_register_read (gdbarch, rl78_pseudo_register_read);
1437 set_gdbarch_pseudo_register_write (gdbarch, rl78_pseudo_register_write);
1438 set_gdbarch_dwarf2_reg_to_regnum (gdbarch, rl78_dwarf_reg_to_regnum);
1439 set_gdbarch_register_reggroup_p (gdbarch, rl78_register_reggroup_p);
1440 set_gdbarch_register_sim_regno (gdbarch, rl78_register_sim_regno);
1441
1442 /* Data types. */
1443 set_gdbarch_char_signed (gdbarch, 0);
1444 set_gdbarch_short_bit (gdbarch, 16);
1445 set_gdbarch_int_bit (gdbarch, 16);
1446 set_gdbarch_long_bit (gdbarch, 32);
1447 set_gdbarch_long_long_bit (gdbarch, 64);
1448 set_gdbarch_ptr_bit (gdbarch, 16);
1449 set_gdbarch_addr_bit (gdbarch, 32);
1450 set_gdbarch_dwarf2_addr_size (gdbarch, 4);
1451 set_gdbarch_float_bit (gdbarch, 32);
1452 set_gdbarch_float_format (gdbarch, floatformats_ieee_single);
1453 set_gdbarch_double_bit (gdbarch, 32);
1454 set_gdbarch_long_double_bit (gdbarch, 64);
1455 set_gdbarch_double_format (gdbarch, floatformats_ieee_single);
1456 set_gdbarch_long_double_format (gdbarch, floatformats_ieee_double);
1457 set_gdbarch_pointer_to_address (gdbarch, rl78_pointer_to_address);
1458 set_gdbarch_address_to_pointer (gdbarch, rl78_address_to_pointer);
1459 set_gdbarch_addr_bits_remove (gdbarch, rl78_addr_bits_remove);
1460
1461 /* Breakpoints. */
1462 set_gdbarch_breakpoint_kind_from_pc (gdbarch, rl78_breakpoint::kind_from_pc);
1463 set_gdbarch_sw_breakpoint_from_kind (gdbarch, rl78_breakpoint::bp_from_kind);
1464 set_gdbarch_decr_pc_after_break (gdbarch, 1);
1465
1466 /* Frames, prologues, etc. */
1467 set_gdbarch_inner_than (gdbarch, core_addr_lessthan);
1468 set_gdbarch_skip_prologue (gdbarch, rl78_skip_prologue);
1469 set_gdbarch_unwind_pc (gdbarch, rl78_unwind_pc);
1470 set_gdbarch_frame_align (gdbarch, rl78_frame_align);
1471
1472 dwarf2_append_unwinders (gdbarch);
1473 frame_unwind_append_unwinder (gdbarch, &rl78_unwind);
1474
1475 /* Dummy frames, return values. */
1476 set_gdbarch_dummy_id (gdbarch, rl78_dummy_id);
1477 set_gdbarch_push_dummy_call (gdbarch, rl78_push_dummy_call);
1478 set_gdbarch_return_value (gdbarch, rl78_return_value);
1479
1480 /* Virtual tables. */
1481 set_gdbarch_vbit_in_delta (gdbarch, 1);
1482
1483 return gdbarch;
1484 }
1485
1486 /* Register the above initialization routine. */
1487
1488 void _initialize_rl78_tdep ();
1489 void
1490 _initialize_rl78_tdep ()
1491 {
1492 register_gdbarch_init (bfd_arch_rl78, rl78_gdbarch_init);
1493 }