* aix-thread.c (aix_thread_xfer_memory): Replace by ...
[binutils-gdb.git] / gdb / rs6000-nat.c
1 /* IBM RS/6000 native-dependent code for GDB, the GNU debugger.
2
3 Copyright (C) 1986, 1987, 1989, 1991, 1992, 1993, 1994, 1995, 1996, 1997,
4 1998, 1999, 2000, 2001, 2002, 2003, 2004, 2007
5 Free Software Foundation, Inc.
6
7 This file is part of GDB.
8
9 This program is free software; you can redistribute it and/or modify
10 it under the terms of the GNU General Public License as published by
11 the Free Software Foundation; either version 2 of the License, or
12 (at your option) any later version.
13
14 This program is distributed in the hope that it will be useful,
15 but WITHOUT ANY WARRANTY; without even the implied warranty of
16 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
17 GNU General Public License for more details.
18
19 You should have received a copy of the GNU General Public License
20 along with this program; if not, write to the Free Software
21 Foundation, Inc., 51 Franklin Street, Fifth Floor,
22 Boston, MA 02110-1301, USA. */
23
24 #include "defs.h"
25 #include "inferior.h"
26 #include "target.h"
27 #include "gdbcore.h"
28 #include "xcoffsolib.h"
29 #include "symfile.h"
30 #include "objfiles.h"
31 #include "libbfd.h" /* For bfd_default_set_arch_mach (FIXME) */
32 #include "bfd.h"
33 #include "exceptions.h"
34 #include "gdb-stabs.h"
35 #include "regcache.h"
36 #include "arch-utils.h"
37 #include "inf-ptrace.h"
38 #include "ppc-tdep.h"
39 #include "rs6000-tdep.h"
40 #include "exec.h"
41 #include "gdb_stdint.h"
42
43 #include <sys/ptrace.h>
44 #include <sys/reg.h>
45
46 #include <sys/param.h>
47 #include <sys/dir.h>
48 #include <sys/user.h>
49 #include <signal.h>
50 #include <sys/ioctl.h>
51 #include <fcntl.h>
52 #include <errno.h>
53
54 #include <a.out.h>
55 #include <sys/file.h>
56 #include "gdb_stat.h"
57 #include <sys/core.h>
58 #define __LDINFO_PTRACE32__ /* for __ld_info32 */
59 #define __LDINFO_PTRACE64__ /* for __ld_info64 */
60 #include <sys/ldr.h>
61 #include <sys/systemcfg.h>
62
63 /* On AIX4.3+, sys/ldr.h provides different versions of struct ld_info for
64 debugging 32-bit and 64-bit processes. Define a typedef and macros for
65 accessing fields in the appropriate structures. */
66
67 /* In 32-bit compilation mode (which is the only mode from which ptrace()
68 works on 4.3), __ld_info32 is #defined as equivalent to ld_info. */
69
70 #ifdef __ld_info32
71 # define ARCH3264
72 #endif
73
74 /* Return whether the current architecture is 64-bit. */
75
76 #ifndef ARCH3264
77 # define ARCH64() 0
78 #else
79 # define ARCH64() (register_size (current_gdbarch, 0) == 8)
80 #endif
81
82 /* Union of 32-bit and 64-bit ".reg" core file sections. */
83
84 typedef union {
85 #ifdef ARCH3264
86 struct __context64 r64;
87 #else
88 struct mstsave r64;
89 #endif
90 struct mstsave r32;
91 } CoreRegs;
92
93 /* Union of 32-bit and 64-bit versions of ld_info. */
94
95 typedef union {
96 #ifndef ARCH3264
97 struct ld_info l32;
98 struct ld_info l64;
99 #else
100 struct __ld_info32 l32;
101 struct __ld_info64 l64;
102 #endif
103 } LdInfo;
104
105 /* If compiling with 32-bit and 64-bit debugging capability (e.g. AIX 4.x),
106 declare and initialize a variable named VAR suitable for use as the arch64
107 parameter to the various LDI_*() macros. */
108
109 #ifndef ARCH3264
110 # define ARCH64_DECL(var)
111 #else
112 # define ARCH64_DECL(var) int var = ARCH64 ()
113 #endif
114
115 /* Return LDI's FIELD for a 64-bit process if ARCH64 and for a 32-bit process
116 otherwise. This technique only works for FIELDs with the same data type in
117 32-bit and 64-bit versions of ld_info. */
118
119 #ifndef ARCH3264
120 # define LDI_FIELD(ldi, arch64, field) (ldi)->l32.ldinfo_##field
121 #else
122 # define LDI_FIELD(ldi, arch64, field) \
123 (arch64 ? (ldi)->l64.ldinfo_##field : (ldi)->l32.ldinfo_##field)
124 #endif
125
126 /* Return various LDI fields for a 64-bit process if ARCH64 and for a 32-bit
127 process otherwise. */
128
129 #define LDI_NEXT(ldi, arch64) LDI_FIELD(ldi, arch64, next)
130 #define LDI_FD(ldi, arch64) LDI_FIELD(ldi, arch64, fd)
131 #define LDI_FILENAME(ldi, arch64) LDI_FIELD(ldi, arch64, filename)
132
133 extern struct vmap *map_vmap (bfd * bf, bfd * arch);
134
135 static void vmap_exec (void);
136
137 static void vmap_ldinfo (LdInfo *);
138
139 static struct vmap *add_vmap (LdInfo *);
140
141 static int objfile_symbol_add (void *);
142
143 static void vmap_symtab (struct vmap *);
144
145 static void fetch_core_registers (char *, unsigned int, int, CORE_ADDR);
146
147 static void exec_one_dummy_insn (void);
148
149 extern void fixup_breakpoints (CORE_ADDR low, CORE_ADDR high, CORE_ADDR delta);
150
151 /* Given REGNO, a gdb register number, return the corresponding
152 number suitable for use as a ptrace() parameter. Return -1 if
153 there's no suitable mapping. Also, set the int pointed to by
154 ISFLOAT to indicate whether REGNO is a floating point register. */
155
156 static int
157 regmap (int regno, int *isfloat)
158 {
159 struct gdbarch_tdep *tdep = gdbarch_tdep (current_gdbarch);
160
161 *isfloat = 0;
162 if (tdep->ppc_gp0_regnum <= regno
163 && regno < tdep->ppc_gp0_regnum + ppc_num_gprs)
164 return regno;
165 else if (tdep->ppc_fp0_regnum >= 0
166 && tdep->ppc_fp0_regnum <= regno
167 && regno < tdep->ppc_fp0_regnum + ppc_num_fprs)
168 {
169 *isfloat = 1;
170 return regno - tdep->ppc_fp0_regnum + FPR0;
171 }
172 else if (regno == PC_REGNUM)
173 return IAR;
174 else if (regno == tdep->ppc_ps_regnum)
175 return MSR;
176 else if (regno == tdep->ppc_cr_regnum)
177 return CR;
178 else if (regno == tdep->ppc_lr_regnum)
179 return LR;
180 else if (regno == tdep->ppc_ctr_regnum)
181 return CTR;
182 else if (regno == tdep->ppc_xer_regnum)
183 return XER;
184 else if (tdep->ppc_fpscr_regnum >= 0
185 && regno == tdep->ppc_fpscr_regnum)
186 return FPSCR;
187 else if (tdep->ppc_mq_regnum >= 0 && regno == tdep->ppc_mq_regnum)
188 return MQ;
189 else
190 return -1;
191 }
192
193 /* Call ptrace(REQ, ID, ADDR, DATA, BUF). */
194
195 static int
196 rs6000_ptrace32 (int req, int id, int *addr, int data, int *buf)
197 {
198 int ret = ptrace (req, id, (int *)addr, data, buf);
199 #if 0
200 printf ("rs6000_ptrace32 (%d, %d, 0x%x, %08x, 0x%x) = 0x%x\n",
201 req, id, (unsigned int)addr, data, (unsigned int)buf, ret);
202 #endif
203 return ret;
204 }
205
206 /* Call ptracex(REQ, ID, ADDR, DATA, BUF). */
207
208 static int
209 rs6000_ptrace64 (int req, int id, long long addr, int data, void *buf)
210 {
211 #ifdef ARCH3264
212 int ret = ptracex (req, id, addr, data, buf);
213 #else
214 int ret = 0;
215 #endif
216 #if 0
217 printf ("rs6000_ptrace64 (%d, %d, 0x%llx, %08x, 0x%x) = 0x%x\n",
218 req, id, addr, data, (unsigned int)buf, ret);
219 #endif
220 return ret;
221 }
222
223 /* Fetch register REGNO from the inferior. */
224
225 static void
226 fetch_register (int regno)
227 {
228 int addr[MAX_REGISTER_SIZE];
229 int nr, isfloat;
230
231 /* Retrieved values may be -1, so infer errors from errno. */
232 errno = 0;
233
234 nr = regmap (regno, &isfloat);
235
236 /* Floating-point registers. */
237 if (isfloat)
238 rs6000_ptrace32 (PT_READ_FPR, PIDGET (inferior_ptid), addr, nr, 0);
239
240 /* Bogus register number. */
241 else if (nr < 0)
242 {
243 if (regno >= NUM_REGS)
244 fprintf_unfiltered (gdb_stderr,
245 "gdb error: register no %d not implemented.\n",
246 regno);
247 return;
248 }
249
250 /* Fixed-point registers. */
251 else
252 {
253 if (!ARCH64 ())
254 *addr = rs6000_ptrace32 (PT_READ_GPR, PIDGET (inferior_ptid), (int *)nr, 0, 0);
255 else
256 {
257 /* PT_READ_GPR requires the buffer parameter to point to long long,
258 even if the register is really only 32 bits. */
259 long long buf;
260 rs6000_ptrace64 (PT_READ_GPR, PIDGET (inferior_ptid), nr, 0, &buf);
261 if (register_size (current_gdbarch, regno) == 8)
262 memcpy (addr, &buf, 8);
263 else
264 *addr = buf;
265 }
266 }
267
268 if (!errno)
269 regcache_raw_supply (current_regcache, regno, (char *) addr);
270 else
271 {
272 #if 0
273 /* FIXME: this happens 3 times at the start of each 64-bit program. */
274 perror ("ptrace read");
275 #endif
276 errno = 0;
277 }
278 }
279
280 /* Store register REGNO back into the inferior. */
281
282 static void
283 store_register (int regno)
284 {
285 int addr[MAX_REGISTER_SIZE];
286 int nr, isfloat;
287
288 /* Fetch the register's value from the register cache. */
289 regcache_raw_collect (current_regcache, regno, addr);
290
291 /* -1 can be a successful return value, so infer errors from errno. */
292 errno = 0;
293
294 nr = regmap (regno, &isfloat);
295
296 /* Floating-point registers. */
297 if (isfloat)
298 rs6000_ptrace32 (PT_WRITE_FPR, PIDGET (inferior_ptid), addr, nr, 0);
299
300 /* Bogus register number. */
301 else if (nr < 0)
302 {
303 if (regno >= NUM_REGS)
304 fprintf_unfiltered (gdb_stderr,
305 "gdb error: register no %d not implemented.\n",
306 regno);
307 }
308
309 /* Fixed-point registers. */
310 else
311 {
312 if (regno == SP_REGNUM)
313 /* Execute one dummy instruction (which is a breakpoint) in inferior
314 process to give kernel a chance to do internal housekeeping.
315 Otherwise the following ptrace(2) calls will mess up user stack
316 since kernel will get confused about the bottom of the stack
317 (%sp). */
318 exec_one_dummy_insn ();
319
320 /* The PT_WRITE_GPR operation is rather odd. For 32-bit inferiors,
321 the register's value is passed by value, but for 64-bit inferiors,
322 the address of a buffer containing the value is passed. */
323 if (!ARCH64 ())
324 rs6000_ptrace32 (PT_WRITE_GPR, PIDGET (inferior_ptid), (int *)nr, *addr, 0);
325 else
326 {
327 /* PT_WRITE_GPR requires the buffer parameter to point to an 8-byte
328 area, even if the register is really only 32 bits. */
329 long long buf;
330 if (register_size (current_gdbarch, regno) == 8)
331 memcpy (&buf, addr, 8);
332 else
333 buf = *addr;
334 rs6000_ptrace64 (PT_WRITE_GPR, PIDGET (inferior_ptid), nr, 0, &buf);
335 }
336 }
337
338 if (errno)
339 {
340 perror ("ptrace write");
341 errno = 0;
342 }
343 }
344
345 /* Read from the inferior all registers if REGNO == -1 and just register
346 REGNO otherwise. */
347
348 static void
349 rs6000_fetch_inferior_registers (int regno)
350 {
351 if (regno != -1)
352 fetch_register (regno);
353
354 else
355 {
356 struct gdbarch_tdep *tdep = gdbarch_tdep (current_gdbarch);
357
358 /* Read 32 general purpose registers. */
359 for (regno = tdep->ppc_gp0_regnum;
360 regno < tdep->ppc_gp0_regnum + ppc_num_gprs;
361 regno++)
362 {
363 fetch_register (regno);
364 }
365
366 /* Read general purpose floating point registers. */
367 if (tdep->ppc_fp0_regnum >= 0)
368 for (regno = 0; regno < ppc_num_fprs; regno++)
369 fetch_register (tdep->ppc_fp0_regnum + regno);
370
371 /* Read special registers. */
372 fetch_register (PC_REGNUM);
373 fetch_register (tdep->ppc_ps_regnum);
374 fetch_register (tdep->ppc_cr_regnum);
375 fetch_register (tdep->ppc_lr_regnum);
376 fetch_register (tdep->ppc_ctr_regnum);
377 fetch_register (tdep->ppc_xer_regnum);
378 if (tdep->ppc_fpscr_regnum >= 0)
379 fetch_register (tdep->ppc_fpscr_regnum);
380 if (tdep->ppc_mq_regnum >= 0)
381 fetch_register (tdep->ppc_mq_regnum);
382 }
383 }
384
385 /* Store our register values back into the inferior.
386 If REGNO is -1, do this for all registers.
387 Otherwise, REGNO specifies which register (so we can save time). */
388
389 static void
390 rs6000_store_inferior_registers (int regno)
391 {
392 if (regno != -1)
393 store_register (regno);
394
395 else
396 {
397 struct gdbarch_tdep *tdep = gdbarch_tdep (current_gdbarch);
398
399 /* Write general purpose registers first. */
400 for (regno = tdep->ppc_gp0_regnum;
401 regno < tdep->ppc_gp0_regnum + ppc_num_gprs;
402 regno++)
403 {
404 store_register (regno);
405 }
406
407 /* Write floating point registers. */
408 if (tdep->ppc_fp0_regnum >= 0)
409 for (regno = 0; regno < ppc_num_fprs; regno++)
410 store_register (tdep->ppc_fp0_regnum + regno);
411
412 /* Write special registers. */
413 store_register (PC_REGNUM);
414 store_register (tdep->ppc_ps_regnum);
415 store_register (tdep->ppc_cr_regnum);
416 store_register (tdep->ppc_lr_regnum);
417 store_register (tdep->ppc_ctr_regnum);
418 store_register (tdep->ppc_xer_regnum);
419 if (tdep->ppc_fpscr_regnum >= 0)
420 store_register (tdep->ppc_fpscr_regnum);
421 if (tdep->ppc_mq_regnum >= 0)
422 store_register (tdep->ppc_mq_regnum);
423 }
424 }
425
426
427 /* Attempt a transfer all LEN bytes starting at OFFSET between the
428 inferior's OBJECT:ANNEX space and GDB's READBUF/WRITEBUF buffer.
429 Return the number of bytes actually transferred. */
430
431 static LONGEST
432 rs6000_xfer_partial (struct target_ops *ops, enum target_object object,
433 const char *annex, gdb_byte *readbuf,
434 const gdb_byte *writebuf,
435 ULONGEST offset, LONGEST len)
436 {
437 pid_t pid = ptid_get_pid (inferior_ptid);
438 int arch64 = ARCH64 ();
439
440 switch (object)
441 {
442 case TARGET_OBJECT_MEMORY:
443 {
444 union
445 {
446 PTRACE_TYPE_RET word;
447 gdb_byte byte[sizeof (PTRACE_TYPE_RET)];
448 } buffer;
449 ULONGEST rounded_offset;
450 LONGEST partial_len;
451
452 /* Round the start offset down to the next long word
453 boundary. */
454 rounded_offset = offset & -(ULONGEST) sizeof (PTRACE_TYPE_RET);
455
456 /* Since ptrace will transfer a single word starting at that
457 rounded_offset the partial_len needs to be adjusted down to
458 that (remember this function only does a single transfer).
459 Should the required length be even less, adjust it down
460 again. */
461 partial_len = (rounded_offset + sizeof (PTRACE_TYPE_RET)) - offset;
462 if (partial_len > len)
463 partial_len = len;
464
465 if (writebuf)
466 {
467 /* If OFFSET:PARTIAL_LEN is smaller than
468 ROUNDED_OFFSET:WORDSIZE then a read/modify write will
469 be needed. Read in the entire word. */
470 if (rounded_offset < offset
471 || (offset + partial_len
472 < rounded_offset + sizeof (PTRACE_TYPE_RET)))
473 {
474 /* Need part of initial word -- fetch it. */
475 if (arch64)
476 buffer.word = rs6000_ptrace64 (PT_READ_I, pid,
477 rounded_offset, 0, NULL);
478 else
479 buffer.word = rs6000_ptrace32 (PT_READ_I, pid,
480 (int *)(uintptr_t)rounded_offset,
481 0, NULL);
482 }
483
484 /* Copy data to be written over corresponding part of
485 buffer. */
486 memcpy (buffer.byte + (offset - rounded_offset),
487 writebuf, partial_len);
488
489 errno = 0;
490 if (arch64)
491 rs6000_ptrace64 (PT_WRITE_D, pid,
492 rounded_offset, buffer.word, NULL);
493 else
494 rs6000_ptrace32 (PT_WRITE_D, pid,
495 (int *)(uintptr_t)rounded_offset, buffer.word, NULL);
496 if (errno)
497 return 0;
498 }
499
500 if (readbuf)
501 {
502 errno = 0;
503 if (arch64)
504 buffer.word = rs6000_ptrace64 (PT_READ_I, pid,
505 rounded_offset, 0, NULL);
506 else
507 buffer.word = rs6000_ptrace32 (PT_READ_I, pid,
508 (int *)(uintptr_t)rounded_offset,
509 0, NULL);
510 if (errno)
511 return 0;
512
513 /* Copy appropriate bytes out of the buffer. */
514 memcpy (readbuf, buffer.byte + (offset - rounded_offset),
515 partial_len);
516 }
517
518 return partial_len;
519 }
520
521 default:
522 return -1;
523 }
524 }
525
526
527 /* Execute one dummy breakpoint instruction. This way we give the kernel
528 a chance to do some housekeeping and update inferior's internal data,
529 including u_area. */
530
531 static void
532 exec_one_dummy_insn (void)
533 {
534 #define DUMMY_INSN_ADDR gdbarch_tdep (current_gdbarch)->text_segment_base+0x200
535
536 int ret, status, pid;
537 CORE_ADDR prev_pc;
538 void *bp;
539
540 /* We plant one dummy breakpoint into DUMMY_INSN_ADDR address. We
541 assume that this address will never be executed again by the real
542 code. */
543
544 bp = deprecated_insert_raw_breakpoint (DUMMY_INSN_ADDR);
545
546 /* You might think this could be done with a single ptrace call, and
547 you'd be correct for just about every platform I've ever worked
548 on. However, rs6000-ibm-aix4.1.3 seems to have screwed this up --
549 the inferior never hits the breakpoint (it's also worth noting
550 powerpc-ibm-aix4.1.3 works correctly). */
551 prev_pc = read_pc ();
552 write_pc (DUMMY_INSN_ADDR);
553 if (ARCH64 ())
554 ret = rs6000_ptrace64 (PT_CONTINUE, PIDGET (inferior_ptid), 1, 0, NULL);
555 else
556 ret = rs6000_ptrace32 (PT_CONTINUE, PIDGET (inferior_ptid), (int *)1, 0, NULL);
557
558 if (ret != 0)
559 perror ("pt_continue");
560
561 do
562 {
563 pid = wait (&status);
564 }
565 while (pid != PIDGET (inferior_ptid));
566
567 write_pc (prev_pc);
568 deprecated_remove_raw_breakpoint (bp);
569 }
570
571 /* Fetch registers from the register section in core bfd. */
572
573 static void
574 fetch_core_registers (char *core_reg_sect, unsigned core_reg_size,
575 int which, CORE_ADDR reg_addr)
576 {
577 CoreRegs *regs;
578 int regi;
579 struct gdbarch_tdep *tdep = gdbarch_tdep (current_gdbarch);
580
581 if (which != 0)
582 {
583 fprintf_unfiltered
584 (gdb_stderr,
585 "Gdb error: unknown parameter to fetch_core_registers().\n");
586 return;
587 }
588
589 regs = (CoreRegs *) core_reg_sect;
590
591 /* Put the register values from the core file section in the regcache. */
592
593 if (ARCH64 ())
594 {
595 for (regi = 0; regi < ppc_num_gprs; regi++)
596 regcache_raw_supply (current_regcache, tdep->ppc_gp0_regnum + regi,
597 (char *) &regs->r64.gpr[regi]);
598
599 if (tdep->ppc_fp0_regnum >= 0)
600 for (regi = 0; regi < ppc_num_fprs; regi++)
601 regcache_raw_supply (current_regcache, tdep->ppc_fp0_regnum + regi,
602 (char *) &regs->r64.fpr[regi]);
603
604 regcache_raw_supply (current_regcache, PC_REGNUM,
605 (char *) &regs->r64.iar);
606 regcache_raw_supply (current_regcache, tdep->ppc_ps_regnum,
607 (char *) &regs->r64.msr);
608 regcache_raw_supply (current_regcache, tdep->ppc_cr_regnum,
609 (char *) &regs->r64.cr);
610 regcache_raw_supply (current_regcache, tdep->ppc_lr_regnum,
611 (char *) &regs->r64.lr);
612 regcache_raw_supply (current_regcache, tdep->ppc_ctr_regnum,
613 (char *) &regs->r64.ctr);
614 regcache_raw_supply (current_regcache, tdep->ppc_xer_regnum,
615 (char *) &regs->r64.xer);
616 if (tdep->ppc_fpscr_regnum >= 0)
617 regcache_raw_supply (current_regcache, tdep->ppc_fpscr_regnum,
618 (char *) &regs->r64.fpscr);
619 }
620 else
621 {
622 for (regi = 0; regi < ppc_num_gprs; regi++)
623 regcache_raw_supply (current_regcache, tdep->ppc_gp0_regnum + regi,
624 (char *) &regs->r32.gpr[regi]);
625
626 if (tdep->ppc_fp0_regnum >= 0)
627 for (regi = 0; regi < ppc_num_fprs; regi++)
628 regcache_raw_supply (current_regcache, tdep->ppc_fp0_regnum + regi,
629 (char *) &regs->r32.fpr[regi]);
630
631 regcache_raw_supply (current_regcache, PC_REGNUM,
632 (char *) &regs->r32.iar);
633 regcache_raw_supply (current_regcache, tdep->ppc_ps_regnum,
634 (char *) &regs->r32.msr);
635 regcache_raw_supply (current_regcache, tdep->ppc_cr_regnum,
636 (char *) &regs->r32.cr);
637 regcache_raw_supply (current_regcache, tdep->ppc_lr_regnum,
638 (char *) &regs->r32.lr);
639 regcache_raw_supply (current_regcache, tdep->ppc_ctr_regnum,
640 (char *) &regs->r32.ctr);
641 regcache_raw_supply (current_regcache, tdep->ppc_xer_regnum,
642 (char *) &regs->r32.xer);
643 if (tdep->ppc_fpscr_regnum >= 0)
644 regcache_raw_supply (current_regcache, tdep->ppc_fpscr_regnum,
645 (char *) &regs->r32.fpscr);
646 if (tdep->ppc_mq_regnum >= 0)
647 regcache_raw_supply (current_regcache, tdep->ppc_mq_regnum,
648 (char *) &regs->r32.mq);
649 }
650 }
651 \f
652
653 /* Copy information about text and data sections from LDI to VP for a 64-bit
654 process if ARCH64 and for a 32-bit process otherwise. */
655
656 static void
657 vmap_secs (struct vmap *vp, LdInfo *ldi, int arch64)
658 {
659 if (arch64)
660 {
661 vp->tstart = (CORE_ADDR) ldi->l64.ldinfo_textorg;
662 vp->tend = vp->tstart + ldi->l64.ldinfo_textsize;
663 vp->dstart = (CORE_ADDR) ldi->l64.ldinfo_dataorg;
664 vp->dend = vp->dstart + ldi->l64.ldinfo_datasize;
665 }
666 else
667 {
668 vp->tstart = (unsigned long) ldi->l32.ldinfo_textorg;
669 vp->tend = vp->tstart + ldi->l32.ldinfo_textsize;
670 vp->dstart = (unsigned long) ldi->l32.ldinfo_dataorg;
671 vp->dend = vp->dstart + ldi->l32.ldinfo_datasize;
672 }
673
674 /* The run time loader maps the file header in addition to the text
675 section and returns a pointer to the header in ldinfo_textorg.
676 Adjust the text start address to point to the real start address
677 of the text section. */
678 vp->tstart += vp->toffs;
679 }
680
681 /* handle symbol translation on vmapping */
682
683 static void
684 vmap_symtab (struct vmap *vp)
685 {
686 struct objfile *objfile;
687 struct section_offsets *new_offsets;
688 int i;
689
690 objfile = vp->objfile;
691 if (objfile == NULL)
692 {
693 /* OK, it's not an objfile we opened ourselves.
694 Currently, that can only happen with the exec file, so
695 relocate the symbols for the symfile. */
696 if (symfile_objfile == NULL)
697 return;
698 objfile = symfile_objfile;
699 }
700 else if (!vp->loaded)
701 /* If symbols are not yet loaded, offsets are not yet valid. */
702 return;
703
704 new_offsets =
705 (struct section_offsets *)
706 alloca (SIZEOF_N_SECTION_OFFSETS (objfile->num_sections));
707
708 for (i = 0; i < objfile->num_sections; ++i)
709 new_offsets->offsets[i] = ANOFFSET (objfile->section_offsets, i);
710
711 /* The symbols in the object file are linked to the VMA of the section,
712 relocate them VMA relative. */
713 new_offsets->offsets[SECT_OFF_TEXT (objfile)] = vp->tstart - vp->tvma;
714 new_offsets->offsets[SECT_OFF_DATA (objfile)] = vp->dstart - vp->dvma;
715 new_offsets->offsets[SECT_OFF_BSS (objfile)] = vp->dstart - vp->dvma;
716
717 objfile_relocate (objfile, new_offsets);
718 }
719 \f
720 /* Add symbols for an objfile. */
721
722 static int
723 objfile_symbol_add (void *arg)
724 {
725 struct objfile *obj = (struct objfile *) arg;
726
727 syms_from_objfile (obj, NULL, 0, 0, 0, 0);
728 new_symfile_objfile (obj, 0, 0);
729 return 1;
730 }
731
732 /* Add symbols for a vmap. Return zero upon error. */
733
734 int
735 vmap_add_symbols (struct vmap *vp)
736 {
737 if (catch_errors (objfile_symbol_add, vp->objfile,
738 "Error while reading shared library symbols:\n",
739 RETURN_MASK_ALL))
740 {
741 /* Note this is only done if symbol reading was successful. */
742 vp->loaded = 1;
743 vmap_symtab (vp);
744 return 1;
745 }
746 return 0;
747 }
748
749 /* Add a new vmap entry based on ldinfo() information.
750
751 If ldi->ldinfo_fd is not valid (e.g. this struct ld_info is from a
752 core file), the caller should set it to -1, and we will open the file.
753
754 Return the vmap new entry. */
755
756 static struct vmap *
757 add_vmap (LdInfo *ldi)
758 {
759 bfd *abfd, *last;
760 char *mem, *objname, *filename;
761 struct objfile *obj;
762 struct vmap *vp;
763 int fd;
764 ARCH64_DECL (arch64);
765
766 /* This ldi structure was allocated using alloca() in
767 xcoff_relocate_symtab(). Now we need to have persistent object
768 and member names, so we should save them. */
769
770 filename = LDI_FILENAME (ldi, arch64);
771 mem = filename + strlen (filename) + 1;
772 mem = savestring (mem, strlen (mem));
773 objname = savestring (filename, strlen (filename));
774
775 fd = LDI_FD (ldi, arch64);
776 if (fd < 0)
777 /* Note that this opens it once for every member; a possible
778 enhancement would be to only open it once for every object. */
779 abfd = bfd_openr (objname, gnutarget);
780 else
781 abfd = bfd_fdopenr (objname, gnutarget, fd);
782 if (!abfd)
783 {
784 warning (_("Could not open `%s' as an executable file: %s"),
785 objname, bfd_errmsg (bfd_get_error ()));
786 return NULL;
787 }
788
789 /* make sure we have an object file */
790
791 if (bfd_check_format (abfd, bfd_object))
792 vp = map_vmap (abfd, 0);
793
794 else if (bfd_check_format (abfd, bfd_archive))
795 {
796 last = 0;
797 /* FIXME??? am I tossing BFDs? bfd? */
798 while ((last = bfd_openr_next_archived_file (abfd, last)))
799 if (DEPRECATED_STREQ (mem, last->filename))
800 break;
801
802 if (!last)
803 {
804 warning (_("\"%s\": member \"%s\" missing."), objname, mem);
805 bfd_close (abfd);
806 return NULL;
807 }
808
809 if (!bfd_check_format (last, bfd_object))
810 {
811 warning (_("\"%s\": member \"%s\" not in executable format: %s."),
812 objname, mem, bfd_errmsg (bfd_get_error ()));
813 bfd_close (last);
814 bfd_close (abfd);
815 return NULL;
816 }
817
818 vp = map_vmap (last, abfd);
819 }
820 else
821 {
822 warning (_("\"%s\": not in executable format: %s."),
823 objname, bfd_errmsg (bfd_get_error ()));
824 bfd_close (abfd);
825 return NULL;
826 }
827 obj = allocate_objfile (vp->bfd, 0);
828 vp->objfile = obj;
829
830 /* Always add symbols for the main objfile. */
831 if (vp == vmap || auto_solib_add)
832 vmap_add_symbols (vp);
833 return vp;
834 }
835 \f
836 /* update VMAP info with ldinfo() information
837 Input is ptr to ldinfo() results. */
838
839 static void
840 vmap_ldinfo (LdInfo *ldi)
841 {
842 struct stat ii, vi;
843 struct vmap *vp;
844 int got_one, retried;
845 int got_exec_file = 0;
846 uint next;
847 int arch64 = ARCH64 ();
848
849 /* For each *ldi, see if we have a corresponding *vp.
850 If so, update the mapping, and symbol table.
851 If not, add an entry and symbol table. */
852
853 do
854 {
855 char *name = LDI_FILENAME (ldi, arch64);
856 char *memb = name + strlen (name) + 1;
857 int fd = LDI_FD (ldi, arch64);
858
859 retried = 0;
860
861 if (fstat (fd, &ii) < 0)
862 {
863 /* The kernel sets ld_info to -1, if the process is still using the
864 object, and the object is removed. Keep the symbol info for the
865 removed object and issue a warning. */
866 warning (_("%s (fd=%d) has disappeared, keeping its symbols"),
867 name, fd);
868 continue;
869 }
870 retry:
871 for (got_one = 0, vp = vmap; vp; vp = vp->nxt)
872 {
873 struct objfile *objfile;
874
875 /* First try to find a `vp', which is the same as in ldinfo.
876 If not the same, just continue and grep the next `vp'. If same,
877 relocate its tstart, tend, dstart, dend values. If no such `vp'
878 found, get out of this for loop, add this ldi entry as a new vmap
879 (add_vmap) and come back, find its `vp' and so on... */
880
881 /* The filenames are not always sufficient to match on. */
882
883 if ((name[0] == '/' && !DEPRECATED_STREQ (name, vp->name))
884 || (memb[0] && !DEPRECATED_STREQ (memb, vp->member)))
885 continue;
886
887 /* See if we are referring to the same file.
888 We have to check objfile->obfd, symfile.c:reread_symbols might
889 have updated the obfd after a change. */
890 objfile = vp->objfile == NULL ? symfile_objfile : vp->objfile;
891 if (objfile == NULL
892 || objfile->obfd == NULL
893 || bfd_stat (objfile->obfd, &vi) < 0)
894 {
895 warning (_("Unable to stat %s, keeping its symbols"), name);
896 continue;
897 }
898
899 if (ii.st_dev != vi.st_dev || ii.st_ino != vi.st_ino)
900 continue;
901
902 if (!retried)
903 close (fd);
904
905 ++got_one;
906
907 /* Found a corresponding VMAP. Remap! */
908
909 vmap_secs (vp, ldi, arch64);
910
911 /* The objfile is only NULL for the exec file. */
912 if (vp->objfile == NULL)
913 got_exec_file = 1;
914
915 /* relocate symbol table(s). */
916 vmap_symtab (vp);
917
918 /* Announce new object files. Doing this after symbol relocation
919 makes aix-thread.c's job easier. */
920 if (deprecated_target_new_objfile_hook && vp->objfile)
921 deprecated_target_new_objfile_hook (vp->objfile);
922
923 /* There may be more, so we don't break out of the loop. */
924 }
925
926 /* if there was no matching *vp, we must perforce create the sucker(s) */
927 if (!got_one && !retried)
928 {
929 add_vmap (ldi);
930 ++retried;
931 goto retry;
932 }
933 }
934 while ((next = LDI_NEXT (ldi, arch64))
935 && (ldi = (void *) (next + (char *) ldi)));
936
937 /* If we don't find the symfile_objfile anywhere in the ldinfo, it
938 is unlikely that the symbol file is relocated to the proper
939 address. And we might have attached to a process which is
940 running a different copy of the same executable. */
941 if (symfile_objfile != NULL && !got_exec_file)
942 {
943 warning (_("Symbol file %s\nis not mapped; discarding it.\n\
944 If in fact that file has symbols which the mapped files listed by\n\
945 \"info files\" lack, you can load symbols with the \"symbol-file\" or\n\
946 \"add-symbol-file\" commands (note that you must take care of relocating\n\
947 symbols to the proper address)."),
948 symfile_objfile->name);
949 free_objfile (symfile_objfile);
950 symfile_objfile = NULL;
951 }
952 breakpoint_re_set ();
953 }
954 \f
955 /* As well as symbol tables, exec_sections need relocation. After
956 the inferior process' termination, there will be a relocated symbol
957 table exist with no corresponding inferior process. At that time, we
958 need to use `exec' bfd, rather than the inferior process's memory space
959 to look up symbols.
960
961 `exec_sections' need to be relocated only once, as long as the exec
962 file remains unchanged.
963 */
964
965 static void
966 vmap_exec (void)
967 {
968 static bfd *execbfd;
969 int i;
970
971 if (execbfd == exec_bfd)
972 return;
973
974 execbfd = exec_bfd;
975
976 if (!vmap || !exec_ops.to_sections)
977 error (_("vmap_exec: vmap or exec_ops.to_sections == 0."));
978
979 for (i = 0; &exec_ops.to_sections[i] < exec_ops.to_sections_end; i++)
980 {
981 if (DEPRECATED_STREQ (".text", exec_ops.to_sections[i].the_bfd_section->name))
982 {
983 exec_ops.to_sections[i].addr += vmap->tstart - vmap->tvma;
984 exec_ops.to_sections[i].endaddr += vmap->tstart - vmap->tvma;
985 }
986 else if (DEPRECATED_STREQ (".data", exec_ops.to_sections[i].the_bfd_section->name))
987 {
988 exec_ops.to_sections[i].addr += vmap->dstart - vmap->dvma;
989 exec_ops.to_sections[i].endaddr += vmap->dstart - vmap->dvma;
990 }
991 else if (DEPRECATED_STREQ (".bss", exec_ops.to_sections[i].the_bfd_section->name))
992 {
993 exec_ops.to_sections[i].addr += vmap->dstart - vmap->dvma;
994 exec_ops.to_sections[i].endaddr += vmap->dstart - vmap->dvma;
995 }
996 }
997 }
998
999 /* Set the current architecture from the host running GDB. Called when
1000 starting a child process. */
1001
1002 void
1003 rs6000_create_inferior (int pid)
1004 {
1005 enum bfd_architecture arch;
1006 unsigned long mach;
1007 bfd abfd;
1008 struct gdbarch_info info;
1009
1010 if (__power_rs ())
1011 {
1012 arch = bfd_arch_rs6000;
1013 mach = bfd_mach_rs6k;
1014 }
1015 else
1016 {
1017 arch = bfd_arch_powerpc;
1018 mach = bfd_mach_ppc;
1019 }
1020
1021 /* FIXME: schauer/2002-02-25:
1022 We don't know if we are executing a 32 or 64 bit executable,
1023 and have no way to pass the proper word size to rs6000_gdbarch_init.
1024 So we have to avoid switching to a new architecture, if the architecture
1025 matches already.
1026 Blindly calling rs6000_gdbarch_init used to work in older versions of
1027 GDB, as rs6000_gdbarch_init incorrectly used the previous tdep to
1028 determine the wordsize. */
1029 if (exec_bfd)
1030 {
1031 const struct bfd_arch_info *exec_bfd_arch_info;
1032
1033 exec_bfd_arch_info = bfd_get_arch_info (exec_bfd);
1034 if (arch == exec_bfd_arch_info->arch)
1035 return;
1036 }
1037
1038 bfd_default_set_arch_mach (&abfd, arch, mach);
1039
1040 gdbarch_info_init (&info);
1041 info.bfd_arch_info = bfd_get_arch_info (&abfd);
1042 info.abfd = exec_bfd;
1043
1044 if (!gdbarch_update_p (info))
1045 internal_error (__FILE__, __LINE__,
1046 _("rs6000_create_inferior: failed to select architecture"));
1047 }
1048
1049 \f
1050 /* xcoff_relocate_symtab - hook for symbol table relocation.
1051 also reads shared libraries. */
1052
1053 void
1054 xcoff_relocate_symtab (unsigned int pid)
1055 {
1056 int load_segs = 64; /* number of load segments */
1057 int rc;
1058 LdInfo *ldi = NULL;
1059 int arch64 = ARCH64 ();
1060 int ldisize = arch64 ? sizeof (ldi->l64) : sizeof (ldi->l32);
1061 int size;
1062
1063 do
1064 {
1065 size = load_segs * ldisize;
1066 ldi = (void *) xrealloc (ldi, size);
1067
1068 #if 0
1069 /* According to my humble theory, AIX has some timing problems and
1070 when the user stack grows, kernel doesn't update stack info in time
1071 and ptrace calls step on user stack. That is why we sleep here a
1072 little, and give kernel to update its internals. */
1073 usleep (36000);
1074 #endif
1075
1076 if (arch64)
1077 rc = rs6000_ptrace64 (PT_LDINFO, pid, (unsigned long) ldi, size, NULL);
1078 else
1079 rc = rs6000_ptrace32 (PT_LDINFO, pid, (int *) ldi, size, NULL);
1080
1081 if (rc == -1)
1082 {
1083 if (errno == ENOMEM)
1084 load_segs *= 2;
1085 else
1086 perror_with_name (_("ptrace ldinfo"));
1087 }
1088 else
1089 {
1090 vmap_ldinfo (ldi);
1091 vmap_exec (); /* relocate the exec and core sections as well. */
1092 }
1093 } while (rc == -1);
1094 if (ldi)
1095 xfree (ldi);
1096 }
1097 \f
1098 /* Core file stuff. */
1099
1100 /* Relocate symtabs and read in shared library info, based on symbols
1101 from the core file. */
1102
1103 void
1104 xcoff_relocate_core (struct target_ops *target)
1105 {
1106 struct bfd_section *ldinfo_sec;
1107 int offset = 0;
1108 LdInfo *ldi;
1109 struct vmap *vp;
1110 int arch64 = ARCH64 ();
1111
1112 /* Size of a struct ld_info except for the variable-length filename. */
1113 int nonfilesz = (int)LDI_FILENAME ((LdInfo *)0, arch64);
1114
1115 /* Allocated size of buffer. */
1116 int buffer_size = nonfilesz;
1117 char *buffer = xmalloc (buffer_size);
1118 struct cleanup *old = make_cleanup (free_current_contents, &buffer);
1119
1120 ldinfo_sec = bfd_get_section_by_name (core_bfd, ".ldinfo");
1121 if (ldinfo_sec == NULL)
1122 {
1123 bfd_err:
1124 fprintf_filtered (gdb_stderr, "Couldn't get ldinfo from core file: %s\n",
1125 bfd_errmsg (bfd_get_error ()));
1126 do_cleanups (old);
1127 return;
1128 }
1129 do
1130 {
1131 int i;
1132 int names_found = 0;
1133
1134 /* Read in everything but the name. */
1135 if (bfd_get_section_contents (core_bfd, ldinfo_sec, buffer,
1136 offset, nonfilesz) == 0)
1137 goto bfd_err;
1138
1139 /* Now the name. */
1140 i = nonfilesz;
1141 do
1142 {
1143 if (i == buffer_size)
1144 {
1145 buffer_size *= 2;
1146 buffer = xrealloc (buffer, buffer_size);
1147 }
1148 if (bfd_get_section_contents (core_bfd, ldinfo_sec, &buffer[i],
1149 offset + i, 1) == 0)
1150 goto bfd_err;
1151 if (buffer[i++] == '\0')
1152 ++names_found;
1153 }
1154 while (names_found < 2);
1155
1156 ldi = (LdInfo *) buffer;
1157
1158 /* Can't use a file descriptor from the core file; need to open it. */
1159 if (arch64)
1160 ldi->l64.ldinfo_fd = -1;
1161 else
1162 ldi->l32.ldinfo_fd = -1;
1163
1164 /* The first ldinfo is for the exec file, allocated elsewhere. */
1165 if (offset == 0 && vmap != NULL)
1166 vp = vmap;
1167 else
1168 vp = add_vmap (ldi);
1169
1170 /* Process next shared library upon error. */
1171 offset += LDI_NEXT (ldi, arch64);
1172 if (vp == NULL)
1173 continue;
1174
1175 vmap_secs (vp, ldi, arch64);
1176
1177 /* Unless this is the exec file,
1178 add our sections to the section table for the core target. */
1179 if (vp != vmap)
1180 {
1181 struct section_table *stp;
1182
1183 target_resize_to_sections (target, 2);
1184 stp = target->to_sections_end - 2;
1185
1186 stp->bfd = vp->bfd;
1187 stp->the_bfd_section = bfd_get_section_by_name (stp->bfd, ".text");
1188 stp->addr = vp->tstart;
1189 stp->endaddr = vp->tend;
1190 stp++;
1191
1192 stp->bfd = vp->bfd;
1193 stp->the_bfd_section = bfd_get_section_by_name (stp->bfd, ".data");
1194 stp->addr = vp->dstart;
1195 stp->endaddr = vp->dend;
1196 }
1197
1198 vmap_symtab (vp);
1199
1200 if (deprecated_target_new_objfile_hook && vp != vmap && vp->objfile)
1201 deprecated_target_new_objfile_hook (vp->objfile);
1202 }
1203 while (LDI_NEXT (ldi, arch64) != 0);
1204 vmap_exec ();
1205 breakpoint_re_set ();
1206 do_cleanups (old);
1207 }
1208 \f
1209 /* Under AIX, we have to pass the correct TOC pointer to a function
1210 when calling functions in the inferior.
1211 We try to find the relative toc offset of the objfile containing PC
1212 and add the current load address of the data segment from the vmap. */
1213
1214 static CORE_ADDR
1215 find_toc_address (CORE_ADDR pc)
1216 {
1217 struct vmap *vp;
1218 extern CORE_ADDR get_toc_offset (struct objfile *); /* xcoffread.c */
1219
1220 for (vp = vmap; vp; vp = vp->nxt)
1221 {
1222 if (pc >= vp->tstart && pc < vp->tend)
1223 {
1224 /* vp->objfile is only NULL for the exec file. */
1225 return vp->dstart + get_toc_offset (vp->objfile == NULL
1226 ? symfile_objfile
1227 : vp->objfile);
1228 }
1229 }
1230 error (_("Unable to find TOC entry for pc %s."), hex_string (pc));
1231 }
1232 \f
1233 /* Register that we are able to handle rs6000 core file formats. */
1234
1235 static struct core_fns rs6000_core_fns =
1236 {
1237 bfd_target_xcoff_flavour, /* core_flavour */
1238 default_check_format, /* check_format */
1239 default_core_sniffer, /* core_sniffer */
1240 fetch_core_registers, /* core_read_registers */
1241 NULL /* next */
1242 };
1243
1244 void
1245 _initialize_core_rs6000 (void)
1246 {
1247 struct target_ops *t;
1248
1249 t = inf_ptrace_target ();
1250 t->to_fetch_registers = rs6000_fetch_inferior_registers;
1251 t->to_store_registers = rs6000_store_inferior_registers;
1252 t->to_xfer_partial = rs6000_xfer_partial;
1253 add_target (t);
1254
1255 /* Initialize hook in rs6000-tdep.c for determining the TOC address
1256 when calling functions in the inferior. */
1257 rs6000_find_toc_address_hook = find_toc_address;
1258
1259 deprecated_add_core_fns (&rs6000_core_fns);
1260 }