* elf64-alpha.c (elf64_alpha_check_relocs): Only put maybe_dynamic
[binutils-gdb.git] / gdb / rs6000-tdep.c
1 /* Target-dependent code for GDB, the GNU debugger.
2 Copyright 1986, 1987, 1989, 1991, 1992, 1993, 1994, 1995, 1996, 1997,
3 1998, 1999, 2000, 2001, 2002
4 Free Software Foundation, Inc.
5
6 This file is part of GDB.
7
8 This program is free software; you can redistribute it and/or modify
9 it under the terms of the GNU General Public License as published by
10 the Free Software Foundation; either version 2 of the License, or
11 (at your option) any later version.
12
13 This program is distributed in the hope that it will be useful,
14 but WITHOUT ANY WARRANTY; without even the implied warranty of
15 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
16 GNU General Public License for more details.
17
18 You should have received a copy of the GNU General Public License
19 along with this program; if not, write to the Free Software
20 Foundation, Inc., 59 Temple Place - Suite 330,
21 Boston, MA 02111-1307, USA. */
22
23 #include "defs.h"
24 #include "frame.h"
25 #include "inferior.h"
26 #include "symtab.h"
27 #include "target.h"
28 #include "gdbcore.h"
29 #include "gdbcmd.h"
30 #include "symfile.h"
31 #include "objfiles.h"
32 #include "arch-utils.h"
33 #include "regcache.h"
34 #include "doublest.h"
35 #include "value.h"
36 #include "parser-defs.h"
37
38 #include "libbfd.h" /* for bfd_default_set_arch_mach */
39 #include "coff/internal.h" /* for libcoff.h */
40 #include "libcoff.h" /* for xcoff_data */
41 #include "coff/xcoff.h"
42 #include "libxcoff.h"
43
44 #include "elf-bfd.h"
45
46 #include "solib-svr4.h"
47 #include "ppc-tdep.h"
48
49 /* If the kernel has to deliver a signal, it pushes a sigcontext
50 structure on the stack and then calls the signal handler, passing
51 the address of the sigcontext in an argument register. Usually
52 the signal handler doesn't save this register, so we have to
53 access the sigcontext structure via an offset from the signal handler
54 frame.
55 The following constants were determined by experimentation on AIX 3.2. */
56 #define SIG_FRAME_PC_OFFSET 96
57 #define SIG_FRAME_LR_OFFSET 108
58 #define SIG_FRAME_FP_OFFSET 284
59
60 /* To be used by skip_prologue. */
61
62 struct rs6000_framedata
63 {
64 int offset; /* total size of frame --- the distance
65 by which we decrement sp to allocate
66 the frame */
67 int saved_gpr; /* smallest # of saved gpr */
68 int saved_fpr; /* smallest # of saved fpr */
69 int saved_vr; /* smallest # of saved vr */
70 int saved_ev; /* smallest # of saved ev */
71 int alloca_reg; /* alloca register number (frame ptr) */
72 char frameless; /* true if frameless functions. */
73 char nosavedpc; /* true if pc not saved. */
74 int gpr_offset; /* offset of saved gprs from prev sp */
75 int fpr_offset; /* offset of saved fprs from prev sp */
76 int vr_offset; /* offset of saved vrs from prev sp */
77 int ev_offset; /* offset of saved evs from prev sp */
78 int lr_offset; /* offset of saved lr */
79 int cr_offset; /* offset of saved cr */
80 int vrsave_offset; /* offset of saved vrsave register */
81 };
82
83 /* Description of a single register. */
84
85 struct reg
86 {
87 char *name; /* name of register */
88 unsigned char sz32; /* size on 32-bit arch, 0 if nonextant */
89 unsigned char sz64; /* size on 64-bit arch, 0 if nonextant */
90 unsigned char fpr; /* whether register is floating-point */
91 unsigned char pseudo; /* whether register is pseudo */
92 };
93
94 /* Breakpoint shadows for the single step instructions will be kept here. */
95
96 static struct sstep_breaks
97 {
98 /* Address, or 0 if this is not in use. */
99 CORE_ADDR address;
100 /* Shadow contents. */
101 char data[4];
102 }
103 stepBreaks[2];
104
105 /* Hook for determining the TOC address when calling functions in the
106 inferior under AIX. The initialization code in rs6000-nat.c sets
107 this hook to point to find_toc_address. */
108
109 CORE_ADDR (*rs6000_find_toc_address_hook) (CORE_ADDR) = NULL;
110
111 /* Hook to set the current architecture when starting a child process.
112 rs6000-nat.c sets this. */
113
114 void (*rs6000_set_host_arch_hook) (int) = NULL;
115
116 /* Static function prototypes */
117
118 static CORE_ADDR branch_dest (int opcode, int instr, CORE_ADDR pc,
119 CORE_ADDR safety);
120 static CORE_ADDR skip_prologue (CORE_ADDR, CORE_ADDR,
121 struct rs6000_framedata *);
122 static void frame_get_saved_regs (struct frame_info * fi,
123 struct rs6000_framedata * fdatap);
124 static CORE_ADDR frame_initial_stack_address (struct frame_info *);
125
126 /* Is REGNO an AltiVec register? Return 1 if so, 0 otherwise. */
127 int
128 altivec_register_p (int regno)
129 {
130 struct gdbarch_tdep *tdep = gdbarch_tdep (current_gdbarch);
131 if (tdep->ppc_vr0_regnum < 0 || tdep->ppc_vrsave_regnum < 0)
132 return 0;
133 else
134 return (regno >= tdep->ppc_vr0_regnum && regno <= tdep->ppc_vrsave_regnum);
135 }
136
137 /* Read a LEN-byte address from debugged memory address MEMADDR. */
138
139 static CORE_ADDR
140 read_memory_addr (CORE_ADDR memaddr, int len)
141 {
142 return read_memory_unsigned_integer (memaddr, len);
143 }
144
145 static CORE_ADDR
146 rs6000_skip_prologue (CORE_ADDR pc)
147 {
148 struct rs6000_framedata frame;
149 pc = skip_prologue (pc, 0, &frame);
150 return pc;
151 }
152
153
154 /* Fill in fi->saved_regs */
155
156 struct frame_extra_info
157 {
158 /* Functions calling alloca() change the value of the stack
159 pointer. We need to use initial stack pointer (which is saved in
160 r31 by gcc) in such cases. If a compiler emits traceback table,
161 then we should use the alloca register specified in traceback
162 table. FIXME. */
163 CORE_ADDR initial_sp; /* initial stack pointer. */
164 };
165
166 void
167 rs6000_init_extra_frame_info (int fromleaf, struct frame_info *fi)
168 {
169 fi->extra_info = (struct frame_extra_info *)
170 frame_obstack_alloc (sizeof (struct frame_extra_info));
171 fi->extra_info->initial_sp = 0;
172 if (fi->next != (CORE_ADDR) 0
173 && fi->pc < TEXT_SEGMENT_BASE)
174 /* We're in get_prev_frame */
175 /* and this is a special signal frame. */
176 /* (fi->pc will be some low address in the kernel, */
177 /* to which the signal handler returns). */
178 fi->signal_handler_caller = 1;
179 }
180
181 /* Put here the code to store, into a struct frame_saved_regs,
182 the addresses of the saved registers of frame described by FRAME_INFO.
183 This includes special registers such as pc and fp saved in special
184 ways in the stack frame. sp is even more special:
185 the address we return for it IS the sp for the next frame. */
186
187 /* In this implementation for RS/6000, we do *not* save sp. I am
188 not sure if it will be needed. The following function takes care of gpr's
189 and fpr's only. */
190
191 void
192 rs6000_frame_init_saved_regs (struct frame_info *fi)
193 {
194 frame_get_saved_regs (fi, NULL);
195 }
196
197 static CORE_ADDR
198 rs6000_frame_args_address (struct frame_info *fi)
199 {
200 if (fi->extra_info->initial_sp != 0)
201 return fi->extra_info->initial_sp;
202 else
203 return frame_initial_stack_address (fi);
204 }
205
206 /* Immediately after a function call, return the saved pc.
207 Can't go through the frames for this because on some machines
208 the new frame is not set up until the new function executes
209 some instructions. */
210
211 static CORE_ADDR
212 rs6000_saved_pc_after_call (struct frame_info *fi)
213 {
214 return read_register (gdbarch_tdep (current_gdbarch)->ppc_lr_regnum);
215 }
216
217 /* Calculate the destination of a branch/jump. Return -1 if not a branch. */
218
219 static CORE_ADDR
220 branch_dest (int opcode, int instr, CORE_ADDR pc, CORE_ADDR safety)
221 {
222 CORE_ADDR dest;
223 int immediate;
224 int absolute;
225 int ext_op;
226
227 absolute = (int) ((instr >> 1) & 1);
228
229 switch (opcode)
230 {
231 case 18:
232 immediate = ((instr & ~3) << 6) >> 6; /* br unconditional */
233 if (absolute)
234 dest = immediate;
235 else
236 dest = pc + immediate;
237 break;
238
239 case 16:
240 immediate = ((instr & ~3) << 16) >> 16; /* br conditional */
241 if (absolute)
242 dest = immediate;
243 else
244 dest = pc + immediate;
245 break;
246
247 case 19:
248 ext_op = (instr >> 1) & 0x3ff;
249
250 if (ext_op == 16) /* br conditional register */
251 {
252 dest = read_register (gdbarch_tdep (current_gdbarch)->ppc_lr_regnum) & ~3;
253
254 /* If we are about to return from a signal handler, dest is
255 something like 0x3c90. The current frame is a signal handler
256 caller frame, upon completion of the sigreturn system call
257 execution will return to the saved PC in the frame. */
258 if (dest < TEXT_SEGMENT_BASE)
259 {
260 struct frame_info *fi;
261
262 fi = get_current_frame ();
263 if (fi != NULL)
264 dest = read_memory_addr (fi->frame + SIG_FRAME_PC_OFFSET,
265 gdbarch_tdep (current_gdbarch)->wordsize);
266 }
267 }
268
269 else if (ext_op == 528) /* br cond to count reg */
270 {
271 dest = read_register (gdbarch_tdep (current_gdbarch)->ppc_ctr_regnum) & ~3;
272
273 /* If we are about to execute a system call, dest is something
274 like 0x22fc or 0x3b00. Upon completion the system call
275 will return to the address in the link register. */
276 if (dest < TEXT_SEGMENT_BASE)
277 dest = read_register (gdbarch_tdep (current_gdbarch)->ppc_lr_regnum) & ~3;
278 }
279 else
280 return -1;
281 break;
282
283 default:
284 return -1;
285 }
286 return (dest < TEXT_SEGMENT_BASE) ? safety : dest;
287 }
288
289
290 /* Sequence of bytes for breakpoint instruction. */
291
292 #define BIG_BREAKPOINT { 0x7d, 0x82, 0x10, 0x08 }
293 #define LITTLE_BREAKPOINT { 0x08, 0x10, 0x82, 0x7d }
294
295 const static unsigned char *
296 rs6000_breakpoint_from_pc (CORE_ADDR *bp_addr, int *bp_size)
297 {
298 static unsigned char big_breakpoint[] = BIG_BREAKPOINT;
299 static unsigned char little_breakpoint[] = LITTLE_BREAKPOINT;
300 *bp_size = 4;
301 if (TARGET_BYTE_ORDER == BFD_ENDIAN_BIG)
302 return big_breakpoint;
303 else
304 return little_breakpoint;
305 }
306
307
308 /* AIX does not support PT_STEP. Simulate it. */
309
310 void
311 rs6000_software_single_step (enum target_signal signal,
312 int insert_breakpoints_p)
313 {
314 CORE_ADDR dummy;
315 int breakp_sz;
316 const char *breakp = rs6000_breakpoint_from_pc (&dummy, &breakp_sz);
317 int ii, insn;
318 CORE_ADDR loc;
319 CORE_ADDR breaks[2];
320 int opcode;
321
322 if (insert_breakpoints_p)
323 {
324
325 loc = read_pc ();
326
327 insn = read_memory_integer (loc, 4);
328
329 breaks[0] = loc + breakp_sz;
330 opcode = insn >> 26;
331 breaks[1] = branch_dest (opcode, insn, loc, breaks[0]);
332
333 /* Don't put two breakpoints on the same address. */
334 if (breaks[1] == breaks[0])
335 breaks[1] = -1;
336
337 stepBreaks[1].address = 0;
338
339 for (ii = 0; ii < 2; ++ii)
340 {
341
342 /* ignore invalid breakpoint. */
343 if (breaks[ii] == -1)
344 continue;
345 target_insert_breakpoint (breaks[ii], stepBreaks[ii].data);
346 stepBreaks[ii].address = breaks[ii];
347 }
348
349 }
350 else
351 {
352
353 /* remove step breakpoints. */
354 for (ii = 0; ii < 2; ++ii)
355 if (stepBreaks[ii].address != 0)
356 target_remove_breakpoint (stepBreaks[ii].address,
357 stepBreaks[ii].data);
358 }
359 errno = 0; /* FIXME, don't ignore errors! */
360 /* What errors? {read,write}_memory call error(). */
361 }
362
363
364 /* return pc value after skipping a function prologue and also return
365 information about a function frame.
366
367 in struct rs6000_framedata fdata:
368 - frameless is TRUE, if function does not have a frame.
369 - nosavedpc is TRUE, if function does not save %pc value in its frame.
370 - offset is the initial size of this stack frame --- the amount by
371 which we decrement the sp to allocate the frame.
372 - saved_gpr is the number of the first saved gpr.
373 - saved_fpr is the number of the first saved fpr.
374 - saved_vr is the number of the first saved vr.
375 - saved_ev is the number of the first saved ev.
376 - alloca_reg is the number of the register used for alloca() handling.
377 Otherwise -1.
378 - gpr_offset is the offset of the first saved gpr from the previous frame.
379 - fpr_offset is the offset of the first saved fpr from the previous frame.
380 - vr_offset is the offset of the first saved vr from the previous frame.
381 - ev_offset is the offset of the first saved ev from the previous frame.
382 - lr_offset is the offset of the saved lr
383 - cr_offset is the offset of the saved cr
384 - vrsave_offset is the offset of the saved vrsave register
385 */
386
387 #define SIGNED_SHORT(x) \
388 ((sizeof (short) == 2) \
389 ? ((int)(short)(x)) \
390 : ((int)((((x) & 0xffff) ^ 0x8000) - 0x8000)))
391
392 #define GET_SRC_REG(x) (((x) >> 21) & 0x1f)
393
394 /* Limit the number of skipped non-prologue instructions, as the examining
395 of the prologue is expensive. */
396 static int max_skip_non_prologue_insns = 10;
397
398 /* Given PC representing the starting address of a function, and
399 LIM_PC which is the (sloppy) limit to which to scan when looking
400 for a prologue, attempt to further refine this limit by using
401 the line data in the symbol table. If successful, a better guess
402 on where the prologue ends is returned, otherwise the previous
403 value of lim_pc is returned. */
404 static CORE_ADDR
405 refine_prologue_limit (CORE_ADDR pc, CORE_ADDR lim_pc)
406 {
407 struct symtab_and_line prologue_sal;
408
409 prologue_sal = find_pc_line (pc, 0);
410 if (prologue_sal.line != 0)
411 {
412 int i;
413 CORE_ADDR addr = prologue_sal.end;
414
415 /* Handle the case in which compiler's optimizer/scheduler
416 has moved instructions into the prologue. We scan ahead
417 in the function looking for address ranges whose corresponding
418 line number is less than or equal to the first one that we
419 found for the function. (It can be less than when the
420 scheduler puts a body instruction before the first prologue
421 instruction.) */
422 for (i = 2 * max_skip_non_prologue_insns;
423 i > 0 && (lim_pc == 0 || addr < lim_pc);
424 i--)
425 {
426 struct symtab_and_line sal;
427
428 sal = find_pc_line (addr, 0);
429 if (sal.line == 0)
430 break;
431 if (sal.line <= prologue_sal.line
432 && sal.symtab == prologue_sal.symtab)
433 {
434 prologue_sal = sal;
435 }
436 addr = sal.end;
437 }
438
439 if (lim_pc == 0 || prologue_sal.end < lim_pc)
440 lim_pc = prologue_sal.end;
441 }
442 return lim_pc;
443 }
444
445
446 static CORE_ADDR
447 skip_prologue (CORE_ADDR pc, CORE_ADDR lim_pc, struct rs6000_framedata *fdata)
448 {
449 CORE_ADDR orig_pc = pc;
450 CORE_ADDR last_prologue_pc = pc;
451 CORE_ADDR li_found_pc = 0;
452 char buf[4];
453 unsigned long op;
454 long offset = 0;
455 long vr_saved_offset = 0;
456 int lr_reg = -1;
457 int cr_reg = -1;
458 int vr_reg = -1;
459 int ev_reg = -1;
460 long ev_offset = 0;
461 int vrsave_reg = -1;
462 int reg;
463 int framep = 0;
464 int minimal_toc_loaded = 0;
465 int prev_insn_was_prologue_insn = 1;
466 int num_skip_non_prologue_insns = 0;
467 const struct bfd_arch_info *arch_info = gdbarch_bfd_arch_info (current_gdbarch);
468 struct gdbarch_tdep *tdep = gdbarch_tdep (current_gdbarch);
469
470 /* Attempt to find the end of the prologue when no limit is specified.
471 Note that refine_prologue_limit() has been written so that it may
472 be used to "refine" the limits of non-zero PC values too, but this
473 is only safe if we 1) trust the line information provided by the
474 compiler and 2) iterate enough to actually find the end of the
475 prologue.
476
477 It may become a good idea at some point (for both performance and
478 accuracy) to unconditionally call refine_prologue_limit(). But,
479 until we can make a clear determination that this is beneficial,
480 we'll play it safe and only use it to obtain a limit when none
481 has been specified. */
482 if (lim_pc == 0)
483 lim_pc = refine_prologue_limit (pc, lim_pc);
484
485 memset (fdata, 0, sizeof (struct rs6000_framedata));
486 fdata->saved_gpr = -1;
487 fdata->saved_fpr = -1;
488 fdata->saved_vr = -1;
489 fdata->saved_ev = -1;
490 fdata->alloca_reg = -1;
491 fdata->frameless = 1;
492 fdata->nosavedpc = 1;
493
494 for (;; pc += 4)
495 {
496 /* Sometimes it isn't clear if an instruction is a prologue
497 instruction or not. When we encounter one of these ambiguous
498 cases, we'll set prev_insn_was_prologue_insn to 0 (false).
499 Otherwise, we'll assume that it really is a prologue instruction. */
500 if (prev_insn_was_prologue_insn)
501 last_prologue_pc = pc;
502
503 /* Stop scanning if we've hit the limit. */
504 if (lim_pc != 0 && pc >= lim_pc)
505 break;
506
507 prev_insn_was_prologue_insn = 1;
508
509 /* Fetch the instruction and convert it to an integer. */
510 if (target_read_memory (pc, buf, 4))
511 break;
512 op = extract_signed_integer (buf, 4);
513
514 if ((op & 0xfc1fffff) == 0x7c0802a6)
515 { /* mflr Rx */
516 lr_reg = (op & 0x03e00000) | 0x90010000;
517 continue;
518
519 }
520 else if ((op & 0xfc1fffff) == 0x7c000026)
521 { /* mfcr Rx */
522 cr_reg = (op & 0x03e00000) | 0x90010000;
523 continue;
524
525 }
526 else if ((op & 0xfc1f0000) == 0xd8010000)
527 { /* stfd Rx,NUM(r1) */
528 reg = GET_SRC_REG (op);
529 if (fdata->saved_fpr == -1 || fdata->saved_fpr > reg)
530 {
531 fdata->saved_fpr = reg;
532 fdata->fpr_offset = SIGNED_SHORT (op) + offset;
533 }
534 continue;
535
536 }
537 else if (((op & 0xfc1f0000) == 0xbc010000) || /* stm Rx, NUM(r1) */
538 (((op & 0xfc1f0000) == 0x90010000 || /* st rx,NUM(r1) */
539 (op & 0xfc1f0003) == 0xf8010000) && /* std rx,NUM(r1) */
540 (op & 0x03e00000) >= 0x01a00000)) /* rx >= r13 */
541 {
542
543 reg = GET_SRC_REG (op);
544 if (fdata->saved_gpr == -1 || fdata->saved_gpr > reg)
545 {
546 fdata->saved_gpr = reg;
547 if ((op & 0xfc1f0003) == 0xf8010000)
548 op = (op >> 1) << 1;
549 fdata->gpr_offset = SIGNED_SHORT (op) + offset;
550 }
551 continue;
552
553 }
554 else if ((op & 0xffff0000) == 0x60000000)
555 {
556 /* nop */
557 /* Allow nops in the prologue, but do not consider them to
558 be part of the prologue unless followed by other prologue
559 instructions. */
560 prev_insn_was_prologue_insn = 0;
561 continue;
562
563 }
564 else if ((op & 0xffff0000) == 0x3c000000)
565 { /* addis 0,0,NUM, used
566 for >= 32k frames */
567 fdata->offset = (op & 0x0000ffff) << 16;
568 fdata->frameless = 0;
569 continue;
570
571 }
572 else if ((op & 0xffff0000) == 0x60000000)
573 { /* ori 0,0,NUM, 2nd ha
574 lf of >= 32k frames */
575 fdata->offset |= (op & 0x0000ffff);
576 fdata->frameless = 0;
577 continue;
578
579 }
580 else if (lr_reg != -1 && (op & 0xffff0000) == lr_reg)
581 { /* st Rx,NUM(r1)
582 where Rx == lr */
583 fdata->lr_offset = SIGNED_SHORT (op) + offset;
584 fdata->nosavedpc = 0;
585 lr_reg = 0;
586 continue;
587
588 }
589 else if (cr_reg != -1 && (op & 0xffff0000) == cr_reg)
590 { /* st Rx,NUM(r1)
591 where Rx == cr */
592 fdata->cr_offset = SIGNED_SHORT (op) + offset;
593 cr_reg = 0;
594 continue;
595
596 }
597 else if (op == 0x48000005)
598 { /* bl .+4 used in
599 -mrelocatable */
600 continue;
601
602 }
603 else if (op == 0x48000004)
604 { /* b .+4 (xlc) */
605 break;
606
607 }
608 else if ((op & 0xffff0000) == 0x3fc00000 || /* addis 30,0,foo@ha, used
609 in V.4 -mminimal-toc */
610 (op & 0xffff0000) == 0x3bde0000)
611 { /* addi 30,30,foo@l */
612 continue;
613
614 }
615 else if ((op & 0xfc000001) == 0x48000001)
616 { /* bl foo,
617 to save fprs??? */
618
619 fdata->frameless = 0;
620 /* Don't skip over the subroutine call if it is not within
621 the first three instructions of the prologue. */
622 if ((pc - orig_pc) > 8)
623 break;
624
625 op = read_memory_integer (pc + 4, 4);
626
627 /* At this point, make sure this is not a trampoline
628 function (a function that simply calls another functions,
629 and nothing else). If the next is not a nop, this branch
630 was part of the function prologue. */
631
632 if (op == 0x4def7b82 || op == 0) /* crorc 15, 15, 15 */
633 break; /* don't skip over
634 this branch */
635 continue;
636
637 /* update stack pointer */
638 }
639 else if ((op & 0xffff0000) == 0x94210000 || /* stu r1,NUM(r1) */
640 (op & 0xffff0003) == 0xf8210001) /* stdu r1,NUM(r1) */
641 {
642 fdata->frameless = 0;
643 if ((op & 0xffff0003) == 0xf8210001)
644 op = (op >> 1) << 1;
645 fdata->offset = SIGNED_SHORT (op);
646 offset = fdata->offset;
647 continue;
648
649 }
650 else if (op == 0x7c21016e)
651 { /* stwux 1,1,0 */
652 fdata->frameless = 0;
653 offset = fdata->offset;
654 continue;
655
656 /* Load up minimal toc pointer */
657 }
658 else if ((op >> 22) == 0x20f
659 && !minimal_toc_loaded)
660 { /* l r31,... or l r30,... */
661 minimal_toc_loaded = 1;
662 continue;
663
664 /* move parameters from argument registers to local variable
665 registers */
666 }
667 else if ((op & 0xfc0007fe) == 0x7c000378 && /* mr(.) Rx,Ry */
668 (((op >> 21) & 31) >= 3) && /* R3 >= Ry >= R10 */
669 (((op >> 21) & 31) <= 10) &&
670 ((long) ((op >> 16) & 31) >= fdata->saved_gpr)) /* Rx: local var reg */
671 {
672 continue;
673
674 /* store parameters in stack */
675 }
676 else if ((op & 0xfc1f0003) == 0xf8010000 || /* std rx,NUM(r1) */
677 (op & 0xfc1f0000) == 0xd8010000 || /* stfd Rx,NUM(r1) */
678 (op & 0xfc1f0000) == 0xfc010000) /* frsp, fp?,NUM(r1) */
679 {
680 continue;
681
682 /* store parameters in stack via frame pointer */
683 }
684 else if (framep &&
685 ((op & 0xfc1f0000) == 0x901f0000 || /* st rx,NUM(r1) */
686 (op & 0xfc1f0000) == 0xd81f0000 || /* stfd Rx,NUM(r1) */
687 (op & 0xfc1f0000) == 0xfc1f0000))
688 { /* frsp, fp?,NUM(r1) */
689 continue;
690
691 /* Set up frame pointer */
692 }
693 else if (op == 0x603f0000 /* oril r31, r1, 0x0 */
694 || op == 0x7c3f0b78)
695 { /* mr r31, r1 */
696 fdata->frameless = 0;
697 framep = 1;
698 fdata->alloca_reg = (tdep->ppc_gp0_regnum + 31);
699 continue;
700
701 /* Another way to set up the frame pointer. */
702 }
703 else if ((op & 0xfc1fffff) == 0x38010000)
704 { /* addi rX, r1, 0x0 */
705 fdata->frameless = 0;
706 framep = 1;
707 fdata->alloca_reg = (tdep->ppc_gp0_regnum
708 + ((op & ~0x38010000) >> 21));
709 continue;
710 }
711 /* AltiVec related instructions. */
712 /* Store the vrsave register (spr 256) in another register for
713 later manipulation, or load a register into the vrsave
714 register. 2 instructions are used: mfvrsave and
715 mtvrsave. They are shorthand notation for mfspr Rn, SPR256
716 and mtspr SPR256, Rn. */
717 /* mfspr Rn SPR256 == 011111 nnnnn 0000001000 01010100110
718 mtspr SPR256 Rn == 011111 nnnnn 0000001000 01110100110 */
719 else if ((op & 0xfc1fffff) == 0x7c0042a6) /* mfvrsave Rn */
720 {
721 vrsave_reg = GET_SRC_REG (op);
722 continue;
723 }
724 else if ((op & 0xfc1fffff) == 0x7c0043a6) /* mtvrsave Rn */
725 {
726 continue;
727 }
728 /* Store the register where vrsave was saved to onto the stack:
729 rS is the register where vrsave was stored in a previous
730 instruction. */
731 /* 100100 sssss 00001 dddddddd dddddddd */
732 else if ((op & 0xfc1f0000) == 0x90010000) /* stw rS, d(r1) */
733 {
734 if (vrsave_reg == GET_SRC_REG (op))
735 {
736 fdata->vrsave_offset = SIGNED_SHORT (op) + offset;
737 vrsave_reg = -1;
738 }
739 continue;
740 }
741 /* Compute the new value of vrsave, by modifying the register
742 where vrsave was saved to. */
743 else if (((op & 0xfc000000) == 0x64000000) /* oris Ra, Rs, UIMM */
744 || ((op & 0xfc000000) == 0x60000000))/* ori Ra, Rs, UIMM */
745 {
746 continue;
747 }
748 /* li r0, SIMM (short for addi r0, 0, SIMM). This is the first
749 in a pair of insns to save the vector registers on the
750 stack. */
751 /* 001110 00000 00000 iiii iiii iiii iiii */
752 /* 001110 01110 00000 iiii iiii iiii iiii */
753 else if ((op & 0xffff0000) == 0x38000000 /* li r0, SIMM */
754 || (op & 0xffff0000) == 0x39c00000) /* li r14, SIMM */
755 {
756 li_found_pc = pc;
757 vr_saved_offset = SIGNED_SHORT (op);
758 }
759 /* Store vector register S at (r31+r0) aligned to 16 bytes. */
760 /* 011111 sssss 11111 00000 00111001110 */
761 else if ((op & 0xfc1fffff) == 0x7c1f01ce) /* stvx Vs, R31, R0 */
762 {
763 if (pc == (li_found_pc + 4))
764 {
765 vr_reg = GET_SRC_REG (op);
766 /* If this is the first vector reg to be saved, or if
767 it has a lower number than others previously seen,
768 reupdate the frame info. */
769 if (fdata->saved_vr == -1 || fdata->saved_vr > vr_reg)
770 {
771 fdata->saved_vr = vr_reg;
772 fdata->vr_offset = vr_saved_offset + offset;
773 }
774 vr_saved_offset = -1;
775 vr_reg = -1;
776 li_found_pc = 0;
777 }
778 }
779 /* End AltiVec related instructions. */
780
781 /* Start BookE related instructions. */
782 /* Store gen register S at (r31+uimm).
783 Any register less than r13 is volatile, so we don't care. */
784 /* 000100 sssss 11111 iiiii 01100100001 */
785 else if (arch_info->mach == bfd_mach_ppc_e500
786 && (op & 0xfc1f07ff) == 0x101f0321) /* evstdd Rs,uimm(R31) */
787 {
788 if ((op & 0x03e00000) >= 0x01a00000) /* Rs >= r13 */
789 {
790 unsigned int imm;
791 ev_reg = GET_SRC_REG (op);
792 imm = (op >> 11) & 0x1f;
793 ev_offset = imm * 8;
794 /* If this is the first vector reg to be saved, or if
795 it has a lower number than others previously seen,
796 reupdate the frame info. */
797 if (fdata->saved_ev == -1 || fdata->saved_ev > ev_reg)
798 {
799 fdata->saved_ev = ev_reg;
800 fdata->ev_offset = ev_offset + offset;
801 }
802 }
803 continue;
804 }
805 /* Store gen register rS at (r1+rB). */
806 /* 000100 sssss 00001 bbbbb 01100100000 */
807 else if (arch_info->mach == bfd_mach_ppc_e500
808 && (op & 0xffe007ff) == 0x13e00320) /* evstddx RS,R1,Rb */
809 {
810 if (pc == (li_found_pc + 4))
811 {
812 ev_reg = GET_SRC_REG (op);
813 /* If this is the first vector reg to be saved, or if
814 it has a lower number than others previously seen,
815 reupdate the frame info. */
816 /* We know the contents of rB from the previous instruction. */
817 if (fdata->saved_ev == -1 || fdata->saved_ev > ev_reg)
818 {
819 fdata->saved_ev = ev_reg;
820 fdata->ev_offset = vr_saved_offset + offset;
821 }
822 vr_saved_offset = -1;
823 ev_reg = -1;
824 li_found_pc = 0;
825 }
826 continue;
827 }
828 /* Store gen register r31 at (rA+uimm). */
829 /* 000100 11111 aaaaa iiiii 01100100001 */
830 else if (arch_info->mach == bfd_mach_ppc_e500
831 && (op & 0xffe007ff) == 0x13e00321) /* evstdd R31,Ra,UIMM */
832 {
833 /* Wwe know that the source register is 31 already, but
834 it can't hurt to compute it. */
835 ev_reg = GET_SRC_REG (op);
836 ev_offset = ((op >> 11) & 0x1f) * 8;
837 /* If this is the first vector reg to be saved, or if
838 it has a lower number than others previously seen,
839 reupdate the frame info. */
840 if (fdata->saved_ev == -1 || fdata->saved_ev > ev_reg)
841 {
842 fdata->saved_ev = ev_reg;
843 fdata->ev_offset = ev_offset + offset;
844 }
845
846 continue;
847 }
848 /* Store gen register S at (r31+r0).
849 Store param on stack when offset from SP bigger than 4 bytes. */
850 /* 000100 sssss 11111 00000 01100100000 */
851 else if (arch_info->mach == bfd_mach_ppc_e500
852 && (op & 0xfc1fffff) == 0x101f0320) /* evstddx Rs,R31,R0 */
853 {
854 if (pc == (li_found_pc + 4))
855 {
856 if ((op & 0x03e00000) >= 0x01a00000)
857 {
858 ev_reg = GET_SRC_REG (op);
859 /* If this is the first vector reg to be saved, or if
860 it has a lower number than others previously seen,
861 reupdate the frame info. */
862 /* We know the contents of r0 from the previous
863 instruction. */
864 if (fdata->saved_ev == -1 || fdata->saved_ev > ev_reg)
865 {
866 fdata->saved_ev = ev_reg;
867 fdata->ev_offset = vr_saved_offset + offset;
868 }
869 ev_reg = -1;
870 }
871 vr_saved_offset = -1;
872 li_found_pc = 0;
873 continue;
874 }
875 }
876 /* End BookE related instructions. */
877
878 else
879 {
880 /* Not a recognized prologue instruction.
881 Handle optimizer code motions into the prologue by continuing
882 the search if we have no valid frame yet or if the return
883 address is not yet saved in the frame. */
884 if (fdata->frameless == 0
885 && (lr_reg == -1 || fdata->nosavedpc == 0))
886 break;
887
888 if (op == 0x4e800020 /* blr */
889 || op == 0x4e800420) /* bctr */
890 /* Do not scan past epilogue in frameless functions or
891 trampolines. */
892 break;
893 if ((op & 0xf4000000) == 0x40000000) /* bxx */
894 /* Never skip branches. */
895 break;
896
897 if (num_skip_non_prologue_insns++ > max_skip_non_prologue_insns)
898 /* Do not scan too many insns, scanning insns is expensive with
899 remote targets. */
900 break;
901
902 /* Continue scanning. */
903 prev_insn_was_prologue_insn = 0;
904 continue;
905 }
906 }
907
908 #if 0
909 /* I have problems with skipping over __main() that I need to address
910 * sometime. Previously, I used to use misc_function_vector which
911 * didn't work as well as I wanted to be. -MGO */
912
913 /* If the first thing after skipping a prolog is a branch to a function,
914 this might be a call to an initializer in main(), introduced by gcc2.
915 We'd like to skip over it as well. Fortunately, xlc does some extra
916 work before calling a function right after a prologue, thus we can
917 single out such gcc2 behaviour. */
918
919
920 if ((op & 0xfc000001) == 0x48000001)
921 { /* bl foo, an initializer function? */
922 op = read_memory_integer (pc + 4, 4);
923
924 if (op == 0x4def7b82)
925 { /* cror 0xf, 0xf, 0xf (nop) */
926
927 /* Check and see if we are in main. If so, skip over this
928 initializer function as well. */
929
930 tmp = find_pc_misc_function (pc);
931 if (tmp >= 0 && STREQ (misc_function_vector[tmp].name, main_name ()))
932 return pc + 8;
933 }
934 }
935 #endif /* 0 */
936
937 fdata->offset = -fdata->offset;
938 return last_prologue_pc;
939 }
940
941
942 /*************************************************************************
943 Support for creating pushing a dummy frame into the stack, and popping
944 frames, etc.
945 *************************************************************************/
946
947
948 /* Pop the innermost frame, go back to the caller. */
949
950 static void
951 rs6000_pop_frame (void)
952 {
953 CORE_ADDR pc, lr, sp, prev_sp, addr; /* %pc, %lr, %sp */
954 struct rs6000_framedata fdata;
955 struct frame_info *frame = get_current_frame ();
956 int ii, wordsize;
957
958 pc = read_pc ();
959 sp = FRAME_FP (frame);
960
961 if (PC_IN_CALL_DUMMY (frame->pc, frame->frame, frame->frame))
962 {
963 generic_pop_dummy_frame ();
964 flush_cached_frames ();
965 return;
966 }
967
968 /* Make sure that all registers are valid. */
969 read_register_bytes (0, NULL, REGISTER_BYTES);
970
971 /* Figure out previous %pc value. If the function is frameless, it is
972 still in the link register, otherwise walk the frames and retrieve the
973 saved %pc value in the previous frame. */
974
975 addr = get_pc_function_start (frame->pc);
976 (void) skip_prologue (addr, frame->pc, &fdata);
977
978 wordsize = gdbarch_tdep (current_gdbarch)->wordsize;
979 if (fdata.frameless)
980 prev_sp = sp;
981 else
982 prev_sp = read_memory_addr (sp, wordsize);
983 if (fdata.lr_offset == 0)
984 lr = read_register (gdbarch_tdep (current_gdbarch)->ppc_lr_regnum);
985 else
986 lr = read_memory_addr (prev_sp + fdata.lr_offset, wordsize);
987
988 /* reset %pc value. */
989 write_register (PC_REGNUM, lr);
990
991 /* reset register values if any was saved earlier. */
992
993 if (fdata.saved_gpr != -1)
994 {
995 addr = prev_sp + fdata.gpr_offset;
996 for (ii = fdata.saved_gpr; ii <= 31; ++ii)
997 {
998 read_memory (addr, &registers[REGISTER_BYTE (ii)], wordsize);
999 addr += wordsize;
1000 }
1001 }
1002
1003 if (fdata.saved_fpr != -1)
1004 {
1005 addr = prev_sp + fdata.fpr_offset;
1006 for (ii = fdata.saved_fpr; ii <= 31; ++ii)
1007 {
1008 read_memory (addr, &registers[REGISTER_BYTE (ii + FP0_REGNUM)], 8);
1009 addr += 8;
1010 }
1011 }
1012
1013 write_register (SP_REGNUM, prev_sp);
1014 target_store_registers (-1);
1015 flush_cached_frames ();
1016 }
1017
1018 /* Fixup the call sequence of a dummy function, with the real function
1019 address. Its arguments will be passed by gdb. */
1020
1021 static void
1022 rs6000_fix_call_dummy (char *dummyname, CORE_ADDR pc, CORE_ADDR fun,
1023 int nargs, struct value **args, struct type *type,
1024 int gcc_p)
1025 {
1026 int ii;
1027 CORE_ADDR target_addr;
1028
1029 if (rs6000_find_toc_address_hook != NULL)
1030 {
1031 CORE_ADDR tocvalue = (*rs6000_find_toc_address_hook) (fun);
1032 write_register (gdbarch_tdep (current_gdbarch)->ppc_toc_regnum,
1033 tocvalue);
1034 }
1035 }
1036
1037 /* All the ABI's require 16 byte alignment. */
1038 static CORE_ADDR
1039 rs6000_frame_align (struct gdbarch *gdbarch, CORE_ADDR addr)
1040 {
1041 return (addr & -16);
1042 }
1043
1044 /* Pass the arguments in either registers, or in the stack. In RS/6000,
1045 the first eight words of the argument list (that might be less than
1046 eight parameters if some parameters occupy more than one word) are
1047 passed in r3..r10 registers. float and double parameters are
1048 passed in fpr's, in addition to that. Rest of the parameters if any
1049 are passed in user stack. There might be cases in which half of the
1050 parameter is copied into registers, the other half is pushed into
1051 stack.
1052
1053 Stack must be aligned on 64-bit boundaries when synthesizing
1054 function calls.
1055
1056 If the function is returning a structure, then the return address is passed
1057 in r3, then the first 7 words of the parameters can be passed in registers,
1058 starting from r4. */
1059
1060 static CORE_ADDR
1061 rs6000_push_arguments (int nargs, struct value **args, CORE_ADDR sp,
1062 int struct_return, CORE_ADDR struct_addr)
1063 {
1064 int ii;
1065 int len = 0;
1066 int argno; /* current argument number */
1067 int argbytes; /* current argument byte */
1068 char tmp_buffer[50];
1069 int f_argno = 0; /* current floating point argno */
1070 int wordsize = gdbarch_tdep (current_gdbarch)->wordsize;
1071
1072 struct value *arg = 0;
1073 struct type *type;
1074
1075 CORE_ADDR saved_sp;
1076
1077 /* The first eight words of ther arguments are passed in registers.
1078 Copy them appropriately.
1079
1080 If the function is returning a `struct', then the first word (which
1081 will be passed in r3) is used for struct return address. In that
1082 case we should advance one word and start from r4 register to copy
1083 parameters. */
1084
1085 ii = struct_return ? 1 : 0;
1086
1087 /*
1088 effectively indirect call... gcc does...
1089
1090 return_val example( float, int);
1091
1092 eabi:
1093 float in fp0, int in r3
1094 offset of stack on overflow 8/16
1095 for varargs, must go by type.
1096 power open:
1097 float in r3&r4, int in r5
1098 offset of stack on overflow different
1099 both:
1100 return in r3 or f0. If no float, must study how gcc emulates floats;
1101 pay attention to arg promotion.
1102 User may have to cast\args to handle promotion correctly
1103 since gdb won't know if prototype supplied or not.
1104 */
1105
1106 for (argno = 0, argbytes = 0; argno < nargs && ii < 8; ++ii)
1107 {
1108 int reg_size = REGISTER_RAW_SIZE (ii + 3);
1109
1110 arg = args[argno];
1111 type = check_typedef (VALUE_TYPE (arg));
1112 len = TYPE_LENGTH (type);
1113
1114 if (TYPE_CODE (type) == TYPE_CODE_FLT)
1115 {
1116
1117 /* Floating point arguments are passed in fpr's, as well as gpr's.
1118 There are 13 fpr's reserved for passing parameters. At this point
1119 there is no way we would run out of them. */
1120
1121 if (len > 8)
1122 printf_unfiltered (
1123 "Fatal Error: a floating point parameter #%d with a size > 8 is found!\n", argno);
1124
1125 memcpy (&registers[REGISTER_BYTE (FP0_REGNUM + 1 + f_argno)],
1126 VALUE_CONTENTS (arg),
1127 len);
1128 ++f_argno;
1129 }
1130
1131 if (len > reg_size)
1132 {
1133
1134 /* Argument takes more than one register. */
1135 while (argbytes < len)
1136 {
1137 memset (&registers[REGISTER_BYTE (ii + 3)], 0, reg_size);
1138 memcpy (&registers[REGISTER_BYTE (ii + 3)],
1139 ((char *) VALUE_CONTENTS (arg)) + argbytes,
1140 (len - argbytes) > reg_size
1141 ? reg_size : len - argbytes);
1142 ++ii, argbytes += reg_size;
1143
1144 if (ii >= 8)
1145 goto ran_out_of_registers_for_arguments;
1146 }
1147 argbytes = 0;
1148 --ii;
1149 }
1150 else
1151 {
1152 /* Argument can fit in one register. No problem. */
1153 int adj = TARGET_BYTE_ORDER == BFD_ENDIAN_BIG ? reg_size - len : 0;
1154 memset (&registers[REGISTER_BYTE (ii + 3)], 0, reg_size);
1155 memcpy ((char *)&registers[REGISTER_BYTE (ii + 3)] + adj,
1156 VALUE_CONTENTS (arg), len);
1157 }
1158 ++argno;
1159 }
1160
1161 ran_out_of_registers_for_arguments:
1162
1163 saved_sp = read_sp ();
1164
1165 /* Location for 8 parameters are always reserved. */
1166 sp -= wordsize * 8;
1167
1168 /* Another six words for back chain, TOC register, link register, etc. */
1169 sp -= wordsize * 6;
1170
1171 /* Stack pointer must be quadword aligned. */
1172 sp &= -16;
1173
1174 /* If there are more arguments, allocate space for them in
1175 the stack, then push them starting from the ninth one. */
1176
1177 if ((argno < nargs) || argbytes)
1178 {
1179 int space = 0, jj;
1180
1181 if (argbytes)
1182 {
1183 space += ((len - argbytes + 3) & -4);
1184 jj = argno + 1;
1185 }
1186 else
1187 jj = argno;
1188
1189 for (; jj < nargs; ++jj)
1190 {
1191 struct value *val = args[jj];
1192 space += ((TYPE_LENGTH (VALUE_TYPE (val))) + 3) & -4;
1193 }
1194
1195 /* Add location required for the rest of the parameters. */
1196 space = (space + 15) & -16;
1197 sp -= space;
1198
1199 /* This is another instance we need to be concerned about
1200 securing our stack space. If we write anything underneath %sp
1201 (r1), we might conflict with the kernel who thinks he is free
1202 to use this area. So, update %sp first before doing anything
1203 else. */
1204
1205 write_register (SP_REGNUM, sp);
1206
1207 /* If the last argument copied into the registers didn't fit there
1208 completely, push the rest of it into stack. */
1209
1210 if (argbytes)
1211 {
1212 write_memory (sp + 24 + (ii * 4),
1213 ((char *) VALUE_CONTENTS (arg)) + argbytes,
1214 len - argbytes);
1215 ++argno;
1216 ii += ((len - argbytes + 3) & -4) / 4;
1217 }
1218
1219 /* Push the rest of the arguments into stack. */
1220 for (; argno < nargs; ++argno)
1221 {
1222
1223 arg = args[argno];
1224 type = check_typedef (VALUE_TYPE (arg));
1225 len = TYPE_LENGTH (type);
1226
1227
1228 /* Float types should be passed in fpr's, as well as in the
1229 stack. */
1230 if (TYPE_CODE (type) == TYPE_CODE_FLT && f_argno < 13)
1231 {
1232
1233 if (len > 8)
1234 printf_unfiltered (
1235 "Fatal Error: a floating point parameter #%d with a size > 8 is found!\n", argno);
1236
1237 memcpy (&registers[REGISTER_BYTE (FP0_REGNUM + 1 + f_argno)],
1238 VALUE_CONTENTS (arg),
1239 len);
1240 ++f_argno;
1241 }
1242
1243 write_memory (sp + 24 + (ii * 4), (char *) VALUE_CONTENTS (arg), len);
1244 ii += ((len + 3) & -4) / 4;
1245 }
1246 }
1247 else
1248 /* Secure stack areas first, before doing anything else. */
1249 write_register (SP_REGNUM, sp);
1250
1251 /* set back chain properly */
1252 store_address (tmp_buffer, 4, saved_sp);
1253 write_memory (sp, tmp_buffer, 4);
1254
1255 target_store_registers (-1);
1256 return sp;
1257 }
1258
1259 /* Function: ppc_push_return_address (pc, sp)
1260 Set up the return address for the inferior function call. */
1261
1262 static CORE_ADDR
1263 ppc_push_return_address (CORE_ADDR pc, CORE_ADDR sp)
1264 {
1265 write_register (gdbarch_tdep (current_gdbarch)->ppc_lr_regnum,
1266 CALL_DUMMY_ADDRESS ());
1267 return sp;
1268 }
1269
1270 /* Extract a function return value of type TYPE from raw register array
1271 REGBUF, and copy that return value into VALBUF in virtual format. */
1272 static void
1273 e500_extract_return_value (struct type *valtype, struct regcache *regbuf, void *valbuf)
1274 {
1275 int offset = 0;
1276 int vallen = TYPE_LENGTH (valtype);
1277 struct gdbarch_tdep *tdep = gdbarch_tdep (current_gdbarch);
1278
1279 if (TYPE_CODE (valtype) == TYPE_CODE_ARRAY
1280 && vallen == 8
1281 && TYPE_VECTOR (valtype))
1282 {
1283 regcache_raw_read (regbuf, tdep->ppc_ev0_regnum + 3, valbuf);
1284 }
1285 else
1286 {
1287 /* Return value is copied starting from r3. Note that r3 for us
1288 is a pseudo register. */
1289 int offset = 0;
1290 int return_regnum = tdep->ppc_gp0_regnum + 3;
1291 int reg_size = REGISTER_RAW_SIZE (return_regnum);
1292 int reg_part_size;
1293 char *val_buffer;
1294 int copied = 0;
1295 int i = 0;
1296
1297 /* Compute where we will start storing the value from. */
1298 if (TARGET_BYTE_ORDER == BFD_ENDIAN_BIG)
1299 {
1300 if (vallen <= reg_size)
1301 offset = reg_size - vallen;
1302 else
1303 offset = reg_size + (reg_size - vallen);
1304 }
1305
1306 /* How big does the local buffer need to be? */
1307 if (vallen <= reg_size)
1308 val_buffer = alloca (reg_size);
1309 else
1310 val_buffer = alloca (vallen);
1311
1312 /* Read all we need into our private buffer. We copy it in
1313 chunks that are as long as one register, never shorter, even
1314 if the value is smaller than the register. */
1315 while (copied < vallen)
1316 {
1317 reg_part_size = REGISTER_RAW_SIZE (return_regnum + i);
1318 /* It is a pseudo/cooked register. */
1319 regcache_cooked_read (regbuf, return_regnum + i,
1320 val_buffer + copied);
1321 copied += reg_part_size;
1322 i++;
1323 }
1324 /* Put the stuff in the return buffer. */
1325 memcpy (valbuf, val_buffer + offset, vallen);
1326 }
1327 }
1328
1329 static void
1330 rs6000_extract_return_value (struct type *valtype, char *regbuf, char *valbuf)
1331 {
1332 int offset = 0;
1333 struct gdbarch_tdep *tdep = gdbarch_tdep (current_gdbarch);
1334
1335 if (TYPE_CODE (valtype) == TYPE_CODE_FLT)
1336 {
1337
1338 double dd;
1339 float ff;
1340 /* floats and doubles are returned in fpr1. fpr's have a size of 8 bytes.
1341 We need to truncate the return value into float size (4 byte) if
1342 necessary. */
1343
1344 if (TYPE_LENGTH (valtype) > 4) /* this is a double */
1345 memcpy (valbuf,
1346 &regbuf[REGISTER_BYTE (FP0_REGNUM + 1)],
1347 TYPE_LENGTH (valtype));
1348 else
1349 { /* float */
1350 memcpy (&dd, &regbuf[REGISTER_BYTE (FP0_REGNUM + 1)], 8);
1351 ff = (float) dd;
1352 memcpy (valbuf, &ff, sizeof (float));
1353 }
1354 }
1355 else if (TYPE_CODE (valtype) == TYPE_CODE_ARRAY
1356 && TYPE_LENGTH (valtype) == 16
1357 && TYPE_VECTOR (valtype))
1358 {
1359 memcpy (valbuf, regbuf + REGISTER_BYTE (tdep->ppc_vr0_regnum + 2),
1360 TYPE_LENGTH (valtype));
1361 }
1362 else
1363 {
1364 /* return value is copied starting from r3. */
1365 if (TARGET_BYTE_ORDER == BFD_ENDIAN_BIG
1366 && TYPE_LENGTH (valtype) < REGISTER_RAW_SIZE (3))
1367 offset = REGISTER_RAW_SIZE (3) - TYPE_LENGTH (valtype);
1368
1369 memcpy (valbuf,
1370 regbuf + REGISTER_BYTE (3) + offset,
1371 TYPE_LENGTH (valtype));
1372 }
1373 }
1374
1375 /* Return whether handle_inferior_event() should proceed through code
1376 starting at PC in function NAME when stepping.
1377
1378 The AIX -bbigtoc linker option generates functions @FIX0, @FIX1, etc. to
1379 handle memory references that are too distant to fit in instructions
1380 generated by the compiler. For example, if 'foo' in the following
1381 instruction:
1382
1383 lwz r9,foo(r2)
1384
1385 is greater than 32767, the linker might replace the lwz with a branch to
1386 somewhere in @FIX1 that does the load in 2 instructions and then branches
1387 back to where execution should continue.
1388
1389 GDB should silently step over @FIX code, just like AIX dbx does.
1390 Unfortunately, the linker uses the "b" instruction for the branches,
1391 meaning that the link register doesn't get set. Therefore, GDB's usual
1392 step_over_function() mechanism won't work.
1393
1394 Instead, use the IN_SOLIB_RETURN_TRAMPOLINE and SKIP_TRAMPOLINE_CODE hooks
1395 in handle_inferior_event() to skip past @FIX code. */
1396
1397 int
1398 rs6000_in_solib_return_trampoline (CORE_ADDR pc, char *name)
1399 {
1400 return name && !strncmp (name, "@FIX", 4);
1401 }
1402
1403 /* Skip code that the user doesn't want to see when stepping:
1404
1405 1. Indirect function calls use a piece of trampoline code to do context
1406 switching, i.e. to set the new TOC table. Skip such code if we are on
1407 its first instruction (as when we have single-stepped to here).
1408
1409 2. Skip shared library trampoline code (which is different from
1410 indirect function call trampolines).
1411
1412 3. Skip bigtoc fixup code.
1413
1414 Result is desired PC to step until, or NULL if we are not in
1415 code that should be skipped. */
1416
1417 CORE_ADDR
1418 rs6000_skip_trampoline_code (CORE_ADDR pc)
1419 {
1420 register unsigned int ii, op;
1421 int rel;
1422 CORE_ADDR solib_target_pc;
1423 struct minimal_symbol *msymbol;
1424
1425 static unsigned trampoline_code[] =
1426 {
1427 0x800b0000, /* l r0,0x0(r11) */
1428 0x90410014, /* st r2,0x14(r1) */
1429 0x7c0903a6, /* mtctr r0 */
1430 0x804b0004, /* l r2,0x4(r11) */
1431 0x816b0008, /* l r11,0x8(r11) */
1432 0x4e800420, /* bctr */
1433 0x4e800020, /* br */
1434 0
1435 };
1436
1437 /* Check for bigtoc fixup code. */
1438 msymbol = lookup_minimal_symbol_by_pc (pc);
1439 if (msymbol && rs6000_in_solib_return_trampoline (pc, SYMBOL_NAME (msymbol)))
1440 {
1441 /* Double-check that the third instruction from PC is relative "b". */
1442 op = read_memory_integer (pc + 8, 4);
1443 if ((op & 0xfc000003) == 0x48000000)
1444 {
1445 /* Extract bits 6-29 as a signed 24-bit relative word address and
1446 add it to the containing PC. */
1447 rel = ((int)(op << 6) >> 6);
1448 return pc + 8 + rel;
1449 }
1450 }
1451
1452 /* If pc is in a shared library trampoline, return its target. */
1453 solib_target_pc = find_solib_trampoline_target (pc);
1454 if (solib_target_pc)
1455 return solib_target_pc;
1456
1457 for (ii = 0; trampoline_code[ii]; ++ii)
1458 {
1459 op = read_memory_integer (pc + (ii * 4), 4);
1460 if (op != trampoline_code[ii])
1461 return 0;
1462 }
1463 ii = read_register (11); /* r11 holds destination addr */
1464 pc = read_memory_addr (ii, gdbarch_tdep (current_gdbarch)->wordsize); /* (r11) value */
1465 return pc;
1466 }
1467
1468 /* Determines whether the function FI has a frame on the stack or not. */
1469
1470 int
1471 rs6000_frameless_function_invocation (struct frame_info *fi)
1472 {
1473 CORE_ADDR func_start;
1474 struct rs6000_framedata fdata;
1475
1476 /* Don't even think about framelessness except on the innermost frame
1477 or if the function was interrupted by a signal. */
1478 if (fi->next != NULL && !fi->next->signal_handler_caller)
1479 return 0;
1480
1481 func_start = get_pc_function_start (fi->pc);
1482
1483 /* If we failed to find the start of the function, it is a mistake
1484 to inspect the instructions. */
1485
1486 if (!func_start)
1487 {
1488 /* A frame with a zero PC is usually created by dereferencing a NULL
1489 function pointer, normally causing an immediate core dump of the
1490 inferior. Mark function as frameless, as the inferior has no chance
1491 of setting up a stack frame. */
1492 if (fi->pc == 0)
1493 return 1;
1494 else
1495 return 0;
1496 }
1497
1498 (void) skip_prologue (func_start, fi->pc, &fdata);
1499 return fdata.frameless;
1500 }
1501
1502 /* Return the PC saved in a frame. */
1503
1504 CORE_ADDR
1505 rs6000_frame_saved_pc (struct frame_info *fi)
1506 {
1507 CORE_ADDR func_start;
1508 struct rs6000_framedata fdata;
1509 struct gdbarch_tdep *tdep = gdbarch_tdep (current_gdbarch);
1510 int wordsize = tdep->wordsize;
1511
1512 if (fi->signal_handler_caller)
1513 return read_memory_addr (fi->frame + SIG_FRAME_PC_OFFSET, wordsize);
1514
1515 if (PC_IN_CALL_DUMMY (fi->pc, fi->frame, fi->frame))
1516 return deprecated_read_register_dummy (fi->pc, fi->frame, PC_REGNUM);
1517
1518 func_start = get_pc_function_start (fi->pc);
1519
1520 /* If we failed to find the start of the function, it is a mistake
1521 to inspect the instructions. */
1522 if (!func_start)
1523 return 0;
1524
1525 (void) skip_prologue (func_start, fi->pc, &fdata);
1526
1527 if (fdata.lr_offset == 0 && fi->next != NULL)
1528 {
1529 if (fi->next->signal_handler_caller)
1530 return read_memory_addr (fi->next->frame + SIG_FRAME_LR_OFFSET,
1531 wordsize);
1532 else if (PC_IN_CALL_DUMMY (get_next_frame (fi)->pc, 0, 0))
1533 /* The link register wasn't saved by this frame and the next
1534 (inner, newer) frame is a dummy. Get the link register
1535 value by unwinding it from that [dummy] frame. */
1536 {
1537 ULONGEST lr;
1538 frame_unwind_unsigned_register (get_next_frame (fi),
1539 tdep->ppc_lr_regnum, &lr);
1540 return lr;
1541 }
1542 else
1543 return read_memory_addr (FRAME_CHAIN (fi) + tdep->lr_frame_offset,
1544 wordsize);
1545 }
1546
1547 if (fdata.lr_offset == 0)
1548 return read_register (gdbarch_tdep (current_gdbarch)->ppc_lr_regnum);
1549
1550 return read_memory_addr (FRAME_CHAIN (fi) + fdata.lr_offset, wordsize);
1551 }
1552
1553 /* If saved registers of frame FI are not known yet, read and cache them.
1554 &FDATAP contains rs6000_framedata; TDATAP can be NULL,
1555 in which case the framedata are read. */
1556
1557 static void
1558 frame_get_saved_regs (struct frame_info *fi, struct rs6000_framedata *fdatap)
1559 {
1560 CORE_ADDR frame_addr;
1561 struct rs6000_framedata work_fdata;
1562 struct gdbarch_tdep * tdep = gdbarch_tdep (current_gdbarch);
1563 int wordsize = tdep->wordsize;
1564
1565 if (fi->saved_regs)
1566 return;
1567
1568 if (fdatap == NULL)
1569 {
1570 fdatap = &work_fdata;
1571 (void) skip_prologue (get_pc_function_start (fi->pc), fi->pc, fdatap);
1572 }
1573
1574 frame_saved_regs_zalloc (fi);
1575
1576 /* If there were any saved registers, figure out parent's stack
1577 pointer. */
1578 /* The following is true only if the frame doesn't have a call to
1579 alloca(), FIXME. */
1580
1581 if (fdatap->saved_fpr == 0
1582 && fdatap->saved_gpr == 0
1583 && fdatap->saved_vr == 0
1584 && fdatap->saved_ev == 0
1585 && fdatap->lr_offset == 0
1586 && fdatap->cr_offset == 0
1587 && fdatap->vr_offset == 0
1588 && fdatap->ev_offset == 0)
1589 frame_addr = 0;
1590 else
1591 /* NOTE: cagney/2002-04-14: The ->frame points to the inner-most
1592 address of the current frame. Things might be easier if the
1593 ->frame pointed to the outer-most address of the frame. In the
1594 mean time, the address of the prev frame is used as the base
1595 address of this frame. */
1596 frame_addr = FRAME_CHAIN (fi);
1597
1598 /* if != -1, fdatap->saved_fpr is the smallest number of saved_fpr.
1599 All fpr's from saved_fpr to fp31 are saved. */
1600
1601 if (fdatap->saved_fpr >= 0)
1602 {
1603 int i;
1604 CORE_ADDR fpr_addr = frame_addr + fdatap->fpr_offset;
1605 for (i = fdatap->saved_fpr; i < 32; i++)
1606 {
1607 fi->saved_regs[FP0_REGNUM + i] = fpr_addr;
1608 fpr_addr += 8;
1609 }
1610 }
1611
1612 /* if != -1, fdatap->saved_gpr is the smallest number of saved_gpr.
1613 All gpr's from saved_gpr to gpr31 are saved. */
1614
1615 if (fdatap->saved_gpr >= 0)
1616 {
1617 int i;
1618 CORE_ADDR gpr_addr = frame_addr + fdatap->gpr_offset;
1619 for (i = fdatap->saved_gpr; i < 32; i++)
1620 {
1621 fi->saved_regs[i] = gpr_addr;
1622 gpr_addr += wordsize;
1623 }
1624 }
1625
1626 /* if != -1, fdatap->saved_vr is the smallest number of saved_vr.
1627 All vr's from saved_vr to vr31 are saved. */
1628 if (tdep->ppc_vr0_regnum != -1 && tdep->ppc_vrsave_regnum != -1)
1629 {
1630 if (fdatap->saved_vr >= 0)
1631 {
1632 int i;
1633 CORE_ADDR vr_addr = frame_addr + fdatap->vr_offset;
1634 for (i = fdatap->saved_vr; i < 32; i++)
1635 {
1636 fi->saved_regs[tdep->ppc_vr0_regnum + i] = vr_addr;
1637 vr_addr += REGISTER_RAW_SIZE (tdep->ppc_vr0_regnum);
1638 }
1639 }
1640 }
1641
1642 /* if != -1, fdatap->saved_ev is the smallest number of saved_ev.
1643 All vr's from saved_ev to ev31 are saved. ????? */
1644 if (tdep->ppc_ev0_regnum != -1 && tdep->ppc_ev31_regnum != -1)
1645 {
1646 if (fdatap->saved_ev >= 0)
1647 {
1648 int i;
1649 CORE_ADDR ev_addr = frame_addr + fdatap->ev_offset;
1650 for (i = fdatap->saved_ev; i < 32; i++)
1651 {
1652 fi->saved_regs[tdep->ppc_ev0_regnum + i] = ev_addr;
1653 fi->saved_regs[tdep->ppc_gp0_regnum + i] = ev_addr + 4;
1654 ev_addr += REGISTER_RAW_SIZE (tdep->ppc_ev0_regnum);
1655 }
1656 }
1657 }
1658
1659 /* If != 0, fdatap->cr_offset is the offset from the frame that holds
1660 the CR. */
1661 if (fdatap->cr_offset != 0)
1662 fi->saved_regs[tdep->ppc_cr_regnum] = frame_addr + fdatap->cr_offset;
1663
1664 /* If != 0, fdatap->lr_offset is the offset from the frame that holds
1665 the LR. */
1666 if (fdatap->lr_offset != 0)
1667 fi->saved_regs[tdep->ppc_lr_regnum] = frame_addr + fdatap->lr_offset;
1668
1669 /* If != 0, fdatap->vrsave_offset is the offset from the frame that holds
1670 the VRSAVE. */
1671 if (fdatap->vrsave_offset != 0)
1672 fi->saved_regs[tdep->ppc_vrsave_regnum] = frame_addr + fdatap->vrsave_offset;
1673 }
1674
1675 /* Return the address of a frame. This is the inital %sp value when the frame
1676 was first allocated. For functions calling alloca(), it might be saved in
1677 an alloca register. */
1678
1679 static CORE_ADDR
1680 frame_initial_stack_address (struct frame_info *fi)
1681 {
1682 CORE_ADDR tmpaddr;
1683 struct rs6000_framedata fdata;
1684 struct frame_info *callee_fi;
1685
1686 /* If the initial stack pointer (frame address) of this frame is known,
1687 just return it. */
1688
1689 if (fi->extra_info->initial_sp)
1690 return fi->extra_info->initial_sp;
1691
1692 /* Find out if this function is using an alloca register. */
1693
1694 (void) skip_prologue (get_pc_function_start (fi->pc), fi->pc, &fdata);
1695
1696 /* If saved registers of this frame are not known yet, read and
1697 cache them. */
1698
1699 if (!fi->saved_regs)
1700 frame_get_saved_regs (fi, &fdata);
1701
1702 /* If no alloca register used, then fi->frame is the value of the %sp for
1703 this frame, and it is good enough. */
1704
1705 if (fdata.alloca_reg < 0)
1706 {
1707 fi->extra_info->initial_sp = fi->frame;
1708 return fi->extra_info->initial_sp;
1709 }
1710
1711 /* There is an alloca register, use its value, in the current frame,
1712 as the initial stack pointer. */
1713 {
1714 char *tmpbuf = alloca (MAX_REGISTER_RAW_SIZE);
1715 if (frame_register_read (fi, fdata.alloca_reg, tmpbuf))
1716 {
1717 fi->extra_info->initial_sp
1718 = extract_unsigned_integer (tmpbuf,
1719 REGISTER_RAW_SIZE (fdata.alloca_reg));
1720 }
1721 else
1722 /* NOTE: cagney/2002-04-17: At present the only time
1723 frame_register_read will fail is when the register isn't
1724 available. If that does happen, use the frame. */
1725 fi->extra_info->initial_sp = fi->frame;
1726 }
1727 return fi->extra_info->initial_sp;
1728 }
1729
1730 /* Describe the pointer in each stack frame to the previous stack frame
1731 (its caller). */
1732
1733 /* FRAME_CHAIN takes a frame's nominal address
1734 and produces the frame's chain-pointer. */
1735
1736 /* In the case of the RS/6000, the frame's nominal address
1737 is the address of a 4-byte word containing the calling frame's address. */
1738
1739 CORE_ADDR
1740 rs6000_frame_chain (struct frame_info *thisframe)
1741 {
1742 CORE_ADDR fp, fpp, lr;
1743 int wordsize = gdbarch_tdep (current_gdbarch)->wordsize;
1744
1745 if (PC_IN_CALL_DUMMY (thisframe->pc, thisframe->frame, thisframe->frame))
1746 /* A dummy frame always correctly chains back to the previous
1747 frame. */
1748 return read_memory_addr ((thisframe)->frame, wordsize);
1749
1750 if (inside_entry_file (thisframe->pc) ||
1751 thisframe->pc == entry_point_address ())
1752 return 0;
1753
1754 if (thisframe->signal_handler_caller)
1755 fp = read_memory_addr (thisframe->frame + SIG_FRAME_FP_OFFSET,
1756 wordsize);
1757 else if (thisframe->next != NULL
1758 && thisframe->next->signal_handler_caller
1759 && FRAMELESS_FUNCTION_INVOCATION (thisframe))
1760 /* A frameless function interrupted by a signal did not change the
1761 frame pointer. */
1762 fp = FRAME_FP (thisframe);
1763 else
1764 fp = read_memory_addr ((thisframe)->frame, wordsize);
1765 return fp;
1766 }
1767
1768 /* Return the size of register REG when words are WORDSIZE bytes long. If REG
1769 isn't available with that word size, return 0. */
1770
1771 static int
1772 regsize (const struct reg *reg, int wordsize)
1773 {
1774 return wordsize == 8 ? reg->sz64 : reg->sz32;
1775 }
1776
1777 /* Return the name of register number N, or null if no such register exists
1778 in the current architecture. */
1779
1780 static const char *
1781 rs6000_register_name (int n)
1782 {
1783 struct gdbarch_tdep *tdep = gdbarch_tdep (current_gdbarch);
1784 const struct reg *reg = tdep->regs + n;
1785
1786 if (!regsize (reg, tdep->wordsize))
1787 return NULL;
1788 return reg->name;
1789 }
1790
1791 /* Index within `registers' of the first byte of the space for
1792 register N. */
1793
1794 static int
1795 rs6000_register_byte (int n)
1796 {
1797 return gdbarch_tdep (current_gdbarch)->regoff[n];
1798 }
1799
1800 /* Return the number of bytes of storage in the actual machine representation
1801 for register N if that register is available, else return 0. */
1802
1803 static int
1804 rs6000_register_raw_size (int n)
1805 {
1806 struct gdbarch_tdep *tdep = gdbarch_tdep (current_gdbarch);
1807 const struct reg *reg = tdep->regs + n;
1808 return regsize (reg, tdep->wordsize);
1809 }
1810
1811 /* Return the GDB type object for the "standard" data type
1812 of data in register N. */
1813
1814 static struct type *
1815 rs6000_register_virtual_type (int n)
1816 {
1817 struct gdbarch_tdep *tdep = gdbarch_tdep (current_gdbarch);
1818 const struct reg *reg = tdep->regs + n;
1819
1820 if (reg->fpr)
1821 return builtin_type_double;
1822 else
1823 {
1824 int size = regsize (reg, tdep->wordsize);
1825 switch (size)
1826 {
1827 case 8:
1828 if (tdep->ppc_ev0_regnum <= n && n <= tdep->ppc_ev31_regnum)
1829 return builtin_type_vec64;
1830 else
1831 return builtin_type_int64;
1832 break;
1833 case 16:
1834 return builtin_type_vec128;
1835 break;
1836 default:
1837 return builtin_type_int32;
1838 break;
1839 }
1840 }
1841 }
1842
1843 /* For the PowerPC, it appears that the debug info marks float parameters as
1844 floats regardless of whether the function is prototyped, but the actual
1845 values are always passed in as doubles. Tell gdb to always assume that
1846 floats are passed as doubles and then converted in the callee. */
1847
1848 static int
1849 rs6000_coerce_float_to_double (struct type *formal, struct type *actual)
1850 {
1851 return 1;
1852 }
1853
1854 /* Return whether register N requires conversion when moving from raw format
1855 to virtual format.
1856
1857 The register format for RS/6000 floating point registers is always
1858 double, we need a conversion if the memory format is float. */
1859
1860 static int
1861 rs6000_register_convertible (int n)
1862 {
1863 const struct reg *reg = gdbarch_tdep (current_gdbarch)->regs + n;
1864 return reg->fpr;
1865 }
1866
1867 /* Convert data from raw format for register N in buffer FROM
1868 to virtual format with type TYPE in buffer TO. */
1869
1870 static void
1871 rs6000_register_convert_to_virtual (int n, struct type *type,
1872 char *from, char *to)
1873 {
1874 if (TYPE_LENGTH (type) != REGISTER_RAW_SIZE (n))
1875 {
1876 double val = extract_floating (from, REGISTER_RAW_SIZE (n));
1877 store_floating (to, TYPE_LENGTH (type), val);
1878 }
1879 else
1880 memcpy (to, from, REGISTER_RAW_SIZE (n));
1881 }
1882
1883 /* Convert data from virtual format with type TYPE in buffer FROM
1884 to raw format for register N in buffer TO. */
1885
1886 static void
1887 rs6000_register_convert_to_raw (struct type *type, int n,
1888 char *from, char *to)
1889 {
1890 if (TYPE_LENGTH (type) != REGISTER_RAW_SIZE (n))
1891 {
1892 double val = extract_floating (from, TYPE_LENGTH (type));
1893 store_floating (to, REGISTER_RAW_SIZE (n), val);
1894 }
1895 else
1896 memcpy (to, from, REGISTER_RAW_SIZE (n));
1897 }
1898
1899 static void
1900 e500_pseudo_register_read (struct gdbarch *gdbarch, struct regcache *regcache,
1901 int reg_nr, void *buffer)
1902 {
1903 int base_regnum;
1904 int offset = 0;
1905 char *temp_buffer = (char*) alloca (MAX_REGISTER_RAW_SIZE);
1906 struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch);
1907
1908 if (reg_nr >= tdep->ppc_gp0_regnum
1909 && reg_nr <= tdep->ppc_gplast_regnum)
1910 {
1911 base_regnum = reg_nr - tdep->ppc_gp0_regnum + tdep->ppc_ev0_regnum;
1912
1913 /* Build the value in the provided buffer. */
1914 /* Read the raw register of which this one is the lower portion. */
1915 regcache_raw_read (regcache, base_regnum, temp_buffer);
1916 if (TARGET_BYTE_ORDER == BFD_ENDIAN_BIG)
1917 offset = 4;
1918 memcpy ((char *) buffer, temp_buffer + offset, 4);
1919 }
1920 }
1921
1922 static void
1923 e500_pseudo_register_write (struct gdbarch *gdbarch, struct regcache *regcache,
1924 int reg_nr, const void *buffer)
1925 {
1926 int base_regnum;
1927 int offset = 0;
1928 char *temp_buffer = (char*) alloca (MAX_REGISTER_RAW_SIZE);
1929 struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch);
1930
1931 if (reg_nr >= tdep->ppc_gp0_regnum
1932 && reg_nr <= tdep->ppc_gplast_regnum)
1933 {
1934 base_regnum = reg_nr - tdep->ppc_gp0_regnum + tdep->ppc_ev0_regnum;
1935 /* reg_nr is 32 bit here, and base_regnum is 64 bits. */
1936 if (TARGET_BYTE_ORDER == BFD_ENDIAN_BIG)
1937 offset = 4;
1938
1939 /* Let's read the value of the base register into a temporary
1940 buffer, so that overwriting the last four bytes with the new
1941 value of the pseudo will leave the upper 4 bytes unchanged. */
1942 regcache_raw_read (regcache, base_regnum, temp_buffer);
1943
1944 /* Write as an 8 byte quantity. */
1945 memcpy (temp_buffer + offset, (char *) buffer, 4);
1946 regcache_raw_write (regcache, base_regnum, temp_buffer);
1947 }
1948 }
1949
1950 /* Convert a dwarf2 register number to a gdb REGNUM. */
1951 static int
1952 e500_dwarf2_reg_to_regnum (int num)
1953 {
1954 int regnum;
1955 if (0 <= num && num <= 31)
1956 return num + gdbarch_tdep (current_gdbarch)->ppc_gp0_regnum;
1957 else
1958 return num;
1959 }
1960
1961 /* Convert a dbx stab register number (from `r' declaration) to a gdb
1962 REGNUM. */
1963 static int
1964 rs6000_stab_reg_to_regnum (int num)
1965 {
1966 int regnum;
1967 switch (num)
1968 {
1969 case 64:
1970 regnum = gdbarch_tdep (current_gdbarch)->ppc_mq_regnum;
1971 break;
1972 case 65:
1973 regnum = gdbarch_tdep (current_gdbarch)->ppc_lr_regnum;
1974 break;
1975 case 66:
1976 regnum = gdbarch_tdep (current_gdbarch)->ppc_ctr_regnum;
1977 break;
1978 case 76:
1979 regnum = gdbarch_tdep (current_gdbarch)->ppc_xer_regnum;
1980 break;
1981 default:
1982 regnum = num;
1983 break;
1984 }
1985 return regnum;
1986 }
1987
1988 /* Store the address of the place in which to copy the structure the
1989 subroutine will return. */
1990
1991 static void
1992 rs6000_store_struct_return (CORE_ADDR addr, CORE_ADDR sp)
1993 {
1994 struct gdbarch_tdep *tdep = gdbarch_tdep (current_gdbarch);
1995 write_register (tdep->ppc_gp0_regnum + 3, addr);
1996 }
1997
1998 /* Write into appropriate registers a function return value
1999 of type TYPE, given in virtual format. */
2000 static void
2001 e500_store_return_value (struct type *type, char *valbuf)
2002 {
2003 struct gdbarch_tdep *tdep = gdbarch_tdep (current_gdbarch);
2004
2005 /* Everything is returned in GPR3 and up. */
2006 int copied = 0;
2007 int i = 0;
2008 int len = TYPE_LENGTH (type);
2009 while (copied < len)
2010 {
2011 int regnum = gdbarch_tdep (current_gdbarch)->ppc_gp0_regnum + 3 + i;
2012 int reg_size = REGISTER_RAW_SIZE (regnum);
2013 char *reg_val_buf = alloca (reg_size);
2014
2015 memcpy (reg_val_buf, valbuf + copied, reg_size);
2016 copied += reg_size;
2017 write_register_gen (regnum, reg_val_buf);
2018 i++;
2019 }
2020 }
2021
2022 static void
2023 rs6000_store_return_value (struct type *type, char *valbuf)
2024 {
2025 struct gdbarch_tdep *tdep = gdbarch_tdep (current_gdbarch);
2026
2027 if (TYPE_CODE (type) == TYPE_CODE_FLT)
2028
2029 /* Floating point values are returned starting from FPR1 and up.
2030 Say a double_double_double type could be returned in
2031 FPR1/FPR2/FPR3 triple. */
2032
2033 write_register_bytes (REGISTER_BYTE (FP0_REGNUM + 1), valbuf,
2034 TYPE_LENGTH (type));
2035 else if (TYPE_CODE (type) == TYPE_CODE_ARRAY)
2036 {
2037 if (TYPE_LENGTH (type) == 16
2038 && TYPE_VECTOR (type))
2039 write_register_bytes (REGISTER_BYTE (tdep->ppc_vr0_regnum + 2),
2040 valbuf, TYPE_LENGTH (type));
2041 }
2042 else
2043 /* Everything else is returned in GPR3 and up. */
2044 write_register_bytes (REGISTER_BYTE (gdbarch_tdep (current_gdbarch)->ppc_gp0_regnum + 3),
2045 valbuf, TYPE_LENGTH (type));
2046 }
2047
2048 /* Extract from an array REGBUF containing the (raw) register state
2049 the address in which a function should return its structure value,
2050 as a CORE_ADDR (or an expression that can be used as one). */
2051
2052 static CORE_ADDR
2053 rs6000_extract_struct_value_address (struct regcache *regcache)
2054 {
2055 /* FIXME: cagney/2002-09-26: PR gdb/724: When making an inferior
2056 function call GDB knows the address of the struct return value
2057 and hence, should not need to call this function. Unfortunately,
2058 the current hand_function_call() code only saves the most recent
2059 struct address leading to occasional calls. The code should
2060 instead maintain a stack of such addresses (in the dummy frame
2061 object). */
2062 /* NOTE: cagney/2002-09-26: Return 0 which indicates that we've
2063 really got no idea where the return value is being stored. While
2064 r3, on function entry, contained the address it will have since
2065 been reused (scratch) and hence wouldn't be valid */
2066 return 0;
2067 }
2068
2069 /* Return whether PC is in a dummy function call.
2070
2071 FIXME: This just checks for the end of the stack, which is broken
2072 for things like stepping through gcc nested function stubs. */
2073
2074 static int
2075 rs6000_pc_in_call_dummy (CORE_ADDR pc, CORE_ADDR sp, CORE_ADDR fp)
2076 {
2077 return sp < pc && pc < fp;
2078 }
2079
2080 /* Hook called when a new child process is started. */
2081
2082 void
2083 rs6000_create_inferior (int pid)
2084 {
2085 if (rs6000_set_host_arch_hook)
2086 rs6000_set_host_arch_hook (pid);
2087 }
2088 \f
2089 /* Support for CONVERT_FROM_FUNC_PTR_ADDR(ADDR).
2090
2091 Usually a function pointer's representation is simply the address
2092 of the function. On the RS/6000 however, a function pointer is
2093 represented by a pointer to a TOC entry. This TOC entry contains
2094 three words, the first word is the address of the function, the
2095 second word is the TOC pointer (r2), and the third word is the
2096 static chain value. Throughout GDB it is currently assumed that a
2097 function pointer contains the address of the function, which is not
2098 easy to fix. In addition, the conversion of a function address to
2099 a function pointer would require allocation of a TOC entry in the
2100 inferior's memory space, with all its drawbacks. To be able to
2101 call C++ virtual methods in the inferior (which are called via
2102 function pointers), find_function_addr uses this function to get the
2103 function address from a function pointer. */
2104
2105 /* Return real function address if ADDR (a function pointer) is in the data
2106 space and is therefore a special function pointer. */
2107
2108 CORE_ADDR
2109 rs6000_convert_from_func_ptr_addr (CORE_ADDR addr)
2110 {
2111 struct obj_section *s;
2112
2113 s = find_pc_section (addr);
2114 if (s && s->the_bfd_section->flags & SEC_CODE)
2115 return addr;
2116
2117 /* ADDR is in the data space, so it's a special function pointer. */
2118 return read_memory_addr (addr, gdbarch_tdep (current_gdbarch)->wordsize);
2119 }
2120 \f
2121
2122 /* Handling the various POWER/PowerPC variants. */
2123
2124
2125 /* The arrays here called registers_MUMBLE hold information about available
2126 registers.
2127
2128 For each family of PPC variants, I've tried to isolate out the
2129 common registers and put them up front, so that as long as you get
2130 the general family right, GDB will correctly identify the registers
2131 common to that family. The common register sets are:
2132
2133 For the 60x family: hid0 hid1 iabr dabr pir
2134
2135 For the 505 and 860 family: eie eid nri
2136
2137 For the 403 and 403GC: icdbdr esr dear evpr cdbcr tsr tcr pit tbhi
2138 tblo srr2 srr3 dbsr dbcr iac1 iac2 dac1 dac2 dccr iccr pbl1
2139 pbu1 pbl2 pbu2
2140
2141 Most of these register groups aren't anything formal. I arrived at
2142 them by looking at the registers that occurred in more than one
2143 processor.
2144
2145 Note: kevinb/2002-04-30: Support for the fpscr register was added
2146 during April, 2002. Slot 70 is being used for PowerPC and slot 71
2147 for Power. For PowerPC, slot 70 was unused and was already in the
2148 PPC_UISA_SPRS which is ideally where fpscr should go. For Power,
2149 slot 70 was being used for "mq", so the next available slot (71)
2150 was chosen. It would have been nice to be able to make the
2151 register numbers the same across processor cores, but this wasn't
2152 possible without either 1) renumbering some registers for some
2153 processors or 2) assigning fpscr to a really high slot that's
2154 larger than any current register number. Doing (1) is bad because
2155 existing stubs would break. Doing (2) is undesirable because it
2156 would introduce a really large gap between fpscr and the rest of
2157 the registers for most processors. */
2158
2159 /* Convenience macros for populating register arrays. */
2160
2161 /* Within another macro, convert S to a string. */
2162
2163 #define STR(s) #s
2164
2165 /* Return a struct reg defining register NAME that's 32 bits on 32-bit systems
2166 and 64 bits on 64-bit systems. */
2167 #define R(name) { STR(name), 4, 8, 0, 0 }
2168
2169 /* Return a struct reg defining register NAME that's 32 bits on all
2170 systems. */
2171 #define R4(name) { STR(name), 4, 4, 0, 0 }
2172
2173 /* Return a struct reg defining register NAME that's 64 bits on all
2174 systems. */
2175 #define R8(name) { STR(name), 8, 8, 0, 0 }
2176
2177 /* Return a struct reg defining register NAME that's 128 bits on all
2178 systems. */
2179 #define R16(name) { STR(name), 16, 16, 0, 0 }
2180
2181 /* Return a struct reg defining floating-point register NAME. */
2182 #define F(name) { STR(name), 8, 8, 1, 0 }
2183
2184 /* Return a struct reg defining a pseudo register NAME. */
2185 #define P(name) { STR(name), 4, 8, 0, 1}
2186
2187 /* Return a struct reg defining register NAME that's 32 bits on 32-bit
2188 systems and that doesn't exist on 64-bit systems. */
2189 #define R32(name) { STR(name), 4, 0, 0, 0 }
2190
2191 /* Return a struct reg defining register NAME that's 64 bits on 64-bit
2192 systems and that doesn't exist on 32-bit systems. */
2193 #define R64(name) { STR(name), 0, 8, 0, 0 }
2194
2195 /* Return a struct reg placeholder for a register that doesn't exist. */
2196 #define R0 { 0, 0, 0, 0, 0 }
2197
2198 /* UISA registers common across all architectures, including POWER. */
2199
2200 #define COMMON_UISA_REGS \
2201 /* 0 */ R(r0), R(r1), R(r2), R(r3), R(r4), R(r5), R(r6), R(r7), \
2202 /* 8 */ R(r8), R(r9), R(r10),R(r11),R(r12),R(r13),R(r14),R(r15), \
2203 /* 16 */ R(r16),R(r17),R(r18),R(r19),R(r20),R(r21),R(r22),R(r23), \
2204 /* 24 */ R(r24),R(r25),R(r26),R(r27),R(r28),R(r29),R(r30),R(r31), \
2205 /* 32 */ F(f0), F(f1), F(f2), F(f3), F(f4), F(f5), F(f6), F(f7), \
2206 /* 40 */ F(f8), F(f9), F(f10),F(f11),F(f12),F(f13),F(f14),F(f15), \
2207 /* 48 */ F(f16),F(f17),F(f18),F(f19),F(f20),F(f21),F(f22),F(f23), \
2208 /* 56 */ F(f24),F(f25),F(f26),F(f27),F(f28),F(f29),F(f30),F(f31), \
2209 /* 64 */ R(pc), R(ps)
2210
2211 #define COMMON_UISA_NOFP_REGS \
2212 /* 0 */ R(r0), R(r1), R(r2), R(r3), R(r4), R(r5), R(r6), R(r7), \
2213 /* 8 */ R(r8), R(r9), R(r10),R(r11),R(r12),R(r13),R(r14),R(r15), \
2214 /* 16 */ R(r16),R(r17),R(r18),R(r19),R(r20),R(r21),R(r22),R(r23), \
2215 /* 24 */ R(r24),R(r25),R(r26),R(r27),R(r28),R(r29),R(r30),R(r31), \
2216 /* 32 */ R0, R0, R0, R0, R0, R0, R0, R0, \
2217 /* 40 */ R0, R0, R0, R0, R0, R0, R0, R0, \
2218 /* 48 */ R0, R0, R0, R0, R0, R0, R0, R0, \
2219 /* 56 */ R0, R0, R0, R0, R0, R0, R0, R0, \
2220 /* 64 */ R(pc), R(ps)
2221
2222 /* UISA-level SPRs for PowerPC. */
2223 #define PPC_UISA_SPRS \
2224 /* 66 */ R4(cr), R(lr), R(ctr), R4(xer), R4(fpscr)
2225
2226 /* UISA-level SPRs for PowerPC without floating point support. */
2227 #define PPC_UISA_NOFP_SPRS \
2228 /* 66 */ R4(cr), R(lr), R(ctr), R4(xer), R0
2229
2230 /* Segment registers, for PowerPC. */
2231 #define PPC_SEGMENT_REGS \
2232 /* 71 */ R32(sr0), R32(sr1), R32(sr2), R32(sr3), \
2233 /* 75 */ R32(sr4), R32(sr5), R32(sr6), R32(sr7), \
2234 /* 79 */ R32(sr8), R32(sr9), R32(sr10), R32(sr11), \
2235 /* 83 */ R32(sr12), R32(sr13), R32(sr14), R32(sr15)
2236
2237 /* OEA SPRs for PowerPC. */
2238 #define PPC_OEA_SPRS \
2239 /* 87 */ R4(pvr), \
2240 /* 88 */ R(ibat0u), R(ibat0l), R(ibat1u), R(ibat1l), \
2241 /* 92 */ R(ibat2u), R(ibat2l), R(ibat3u), R(ibat3l), \
2242 /* 96 */ R(dbat0u), R(dbat0l), R(dbat1u), R(dbat1l), \
2243 /* 100 */ R(dbat2u), R(dbat2l), R(dbat3u), R(dbat3l), \
2244 /* 104 */ R(sdr1), R64(asr), R(dar), R4(dsisr), \
2245 /* 108 */ R(sprg0), R(sprg1), R(sprg2), R(sprg3), \
2246 /* 112 */ R(srr0), R(srr1), R(tbl), R(tbu), \
2247 /* 116 */ R4(dec), R(dabr), R4(ear)
2248
2249 /* AltiVec registers. */
2250 #define PPC_ALTIVEC_REGS \
2251 /*119*/R16(vr0), R16(vr1), R16(vr2), R16(vr3), R16(vr4), R16(vr5), R16(vr6), R16(vr7), \
2252 /*127*/R16(vr8), R16(vr9), R16(vr10),R16(vr11),R16(vr12),R16(vr13),R16(vr14),R16(vr15), \
2253 /*135*/R16(vr16),R16(vr17),R16(vr18),R16(vr19),R16(vr20),R16(vr21),R16(vr22),R16(vr23), \
2254 /*143*/R16(vr24),R16(vr25),R16(vr26),R16(vr27),R16(vr28),R16(vr29),R16(vr30),R16(vr31), \
2255 /*151*/R4(vscr), R4(vrsave)
2256
2257 /* Vectors of hi-lo general purpose registers. */
2258 #define PPC_EV_REGS \
2259 /* 0*/R8(ev0), R8(ev1), R8(ev2), R8(ev3), R8(ev4), R8(ev5), R8(ev6), R8(ev7), \
2260 /* 8*/R8(ev8), R8(ev9), R8(ev10),R8(ev11),R8(ev12),R8(ev13),R8(ev14),R8(ev15), \
2261 /*16*/R8(ev16),R8(ev17),R8(ev18),R8(ev19),R8(ev20),R8(ev21),R8(ev22),R8(ev23), \
2262 /*24*/R8(ev24),R8(ev25),R8(ev26),R8(ev27),R8(ev28),R8(ev29),R8(ev30),R8(ev31)
2263
2264 /* Lower half of the EV registers. */
2265 #define PPC_GPRS_PSEUDO_REGS \
2266 /* 0 */ P(r0), P(r1), P(r2), P(r3), P(r4), P(r5), P(r6), P(r7), \
2267 /* 8 */ P(r8), P(r9), P(r10),P(r11),P(r12),P(r13),P(r14),P(r15), \
2268 /* 16 */ P(r16),P(r17),P(r18),P(r19),P(r20),P(r21),P(r22),P(r23), \
2269 /* 24 */ P(r24),P(r25),P(r26),P(r27),P(r28),P(r29),P(r30),P(r31), \
2270
2271 /* IBM POWER (pre-PowerPC) architecture, user-level view. We only cover
2272 user-level SPR's. */
2273 static const struct reg registers_power[] =
2274 {
2275 COMMON_UISA_REGS,
2276 /* 66 */ R4(cnd), R(lr), R(cnt), R4(xer), R4(mq),
2277 /* 71 */ R4(fpscr)
2278 };
2279
2280 /* PowerPC UISA - a PPC processor as viewed by user-level code. A UISA-only
2281 view of the PowerPC. */
2282 static const struct reg registers_powerpc[] =
2283 {
2284 COMMON_UISA_REGS,
2285 PPC_UISA_SPRS,
2286 PPC_ALTIVEC_REGS
2287 };
2288
2289 /* PowerPC UISA - a PPC processor as viewed by user-level
2290 code, but without floating point registers. */
2291 static const struct reg registers_powerpc_nofp[] =
2292 {
2293 COMMON_UISA_NOFP_REGS,
2294 PPC_UISA_SPRS
2295 };
2296
2297 /* IBM PowerPC 403. */
2298 static const struct reg registers_403[] =
2299 {
2300 COMMON_UISA_REGS,
2301 PPC_UISA_SPRS,
2302 PPC_SEGMENT_REGS,
2303 PPC_OEA_SPRS,
2304 /* 119 */ R(icdbdr), R(esr), R(dear), R(evpr),
2305 /* 123 */ R(cdbcr), R(tsr), R(tcr), R(pit),
2306 /* 127 */ R(tbhi), R(tblo), R(srr2), R(srr3),
2307 /* 131 */ R(dbsr), R(dbcr), R(iac1), R(iac2),
2308 /* 135 */ R(dac1), R(dac2), R(dccr), R(iccr),
2309 /* 139 */ R(pbl1), R(pbu1), R(pbl2), R(pbu2)
2310 };
2311
2312 /* IBM PowerPC 403GC. */
2313 static const struct reg registers_403GC[] =
2314 {
2315 COMMON_UISA_REGS,
2316 PPC_UISA_SPRS,
2317 PPC_SEGMENT_REGS,
2318 PPC_OEA_SPRS,
2319 /* 119 */ R(icdbdr), R(esr), R(dear), R(evpr),
2320 /* 123 */ R(cdbcr), R(tsr), R(tcr), R(pit),
2321 /* 127 */ R(tbhi), R(tblo), R(srr2), R(srr3),
2322 /* 131 */ R(dbsr), R(dbcr), R(iac1), R(iac2),
2323 /* 135 */ R(dac1), R(dac2), R(dccr), R(iccr),
2324 /* 139 */ R(pbl1), R(pbu1), R(pbl2), R(pbu2),
2325 /* 143 */ R(zpr), R(pid), R(sgr), R(dcwr),
2326 /* 147 */ R(tbhu), R(tblu)
2327 };
2328
2329 /* Motorola PowerPC 505. */
2330 static const struct reg registers_505[] =
2331 {
2332 COMMON_UISA_REGS,
2333 PPC_UISA_SPRS,
2334 PPC_SEGMENT_REGS,
2335 PPC_OEA_SPRS,
2336 /* 119 */ R(eie), R(eid), R(nri)
2337 };
2338
2339 /* Motorola PowerPC 860 or 850. */
2340 static const struct reg registers_860[] =
2341 {
2342 COMMON_UISA_REGS,
2343 PPC_UISA_SPRS,
2344 PPC_SEGMENT_REGS,
2345 PPC_OEA_SPRS,
2346 /* 119 */ R(eie), R(eid), R(nri), R(cmpa),
2347 /* 123 */ R(cmpb), R(cmpc), R(cmpd), R(icr),
2348 /* 127 */ R(der), R(counta), R(countb), R(cmpe),
2349 /* 131 */ R(cmpf), R(cmpg), R(cmph), R(lctrl1),
2350 /* 135 */ R(lctrl2), R(ictrl), R(bar), R(ic_cst),
2351 /* 139 */ R(ic_adr), R(ic_dat), R(dc_cst), R(dc_adr),
2352 /* 143 */ R(dc_dat), R(dpdr), R(dpir), R(immr),
2353 /* 147 */ R(mi_ctr), R(mi_ap), R(mi_epn), R(mi_twc),
2354 /* 151 */ R(mi_rpn), R(md_ctr), R(m_casid), R(md_ap),
2355 /* 155 */ R(md_epn), R(md_twb), R(md_twc), R(md_rpn),
2356 /* 159 */ R(m_tw), R(mi_dbcam), R(mi_dbram0), R(mi_dbram1),
2357 /* 163 */ R(md_dbcam), R(md_dbram0), R(md_dbram1)
2358 };
2359
2360 /* Motorola PowerPC 601. Note that the 601 has different register numbers
2361 for reading and writing RTCU and RTCL. However, how one reads and writes a
2362 register is the stub's problem. */
2363 static const struct reg registers_601[] =
2364 {
2365 COMMON_UISA_REGS,
2366 PPC_UISA_SPRS,
2367 PPC_SEGMENT_REGS,
2368 PPC_OEA_SPRS,
2369 /* 119 */ R(hid0), R(hid1), R(iabr), R(dabr),
2370 /* 123 */ R(pir), R(mq), R(rtcu), R(rtcl)
2371 };
2372
2373 /* Motorola PowerPC 602. */
2374 static const struct reg registers_602[] =
2375 {
2376 COMMON_UISA_REGS,
2377 PPC_UISA_SPRS,
2378 PPC_SEGMENT_REGS,
2379 PPC_OEA_SPRS,
2380 /* 119 */ R(hid0), R(hid1), R(iabr), R0,
2381 /* 123 */ R0, R(tcr), R(ibr), R(esassr),
2382 /* 127 */ R(sebr), R(ser), R(sp), R(lt)
2383 };
2384
2385 /* Motorola/IBM PowerPC 603 or 603e. */
2386 static const struct reg registers_603[] =
2387 {
2388 COMMON_UISA_REGS,
2389 PPC_UISA_SPRS,
2390 PPC_SEGMENT_REGS,
2391 PPC_OEA_SPRS,
2392 /* 119 */ R(hid0), R(hid1), R(iabr), R0,
2393 /* 123 */ R0, R(dmiss), R(dcmp), R(hash1),
2394 /* 127 */ R(hash2), R(imiss), R(icmp), R(rpa)
2395 };
2396
2397 /* Motorola PowerPC 604 or 604e. */
2398 static const struct reg registers_604[] =
2399 {
2400 COMMON_UISA_REGS,
2401 PPC_UISA_SPRS,
2402 PPC_SEGMENT_REGS,
2403 PPC_OEA_SPRS,
2404 /* 119 */ R(hid0), R(hid1), R(iabr), R(dabr),
2405 /* 123 */ R(pir), R(mmcr0), R(pmc1), R(pmc2),
2406 /* 127 */ R(sia), R(sda)
2407 };
2408
2409 /* Motorola/IBM PowerPC 750 or 740. */
2410 static const struct reg registers_750[] =
2411 {
2412 COMMON_UISA_REGS,
2413 PPC_UISA_SPRS,
2414 PPC_SEGMENT_REGS,
2415 PPC_OEA_SPRS,
2416 /* 119 */ R(hid0), R(hid1), R(iabr), R(dabr),
2417 /* 123 */ R0, R(ummcr0), R(upmc1), R(upmc2),
2418 /* 127 */ R(usia), R(ummcr1), R(upmc3), R(upmc4),
2419 /* 131 */ R(mmcr0), R(pmc1), R(pmc2), R(sia),
2420 /* 135 */ R(mmcr1), R(pmc3), R(pmc4), R(l2cr),
2421 /* 139 */ R(ictc), R(thrm1), R(thrm2), R(thrm3)
2422 };
2423
2424
2425 /* Motorola PowerPC 7400. */
2426 static const struct reg registers_7400[] =
2427 {
2428 /* gpr0-gpr31, fpr0-fpr31 */
2429 COMMON_UISA_REGS,
2430 /* ctr, xre, lr, cr */
2431 PPC_UISA_SPRS,
2432 /* sr0-sr15 */
2433 PPC_SEGMENT_REGS,
2434 PPC_OEA_SPRS,
2435 /* vr0-vr31, vrsave, vscr */
2436 PPC_ALTIVEC_REGS
2437 /* FIXME? Add more registers? */
2438 };
2439
2440 /* Motorola e500. */
2441 static const struct reg registers_e500[] =
2442 {
2443 R(pc), R(ps),
2444 /* cr, lr, ctr, xer, "" */
2445 PPC_UISA_NOFP_SPRS,
2446 /* 7...38 */
2447 PPC_EV_REGS,
2448 /* 39...70 */
2449 PPC_GPRS_PSEUDO_REGS
2450 };
2451
2452 /* Information about a particular processor variant. */
2453
2454 struct variant
2455 {
2456 /* Name of this variant. */
2457 char *name;
2458
2459 /* English description of the variant. */
2460 char *description;
2461
2462 /* bfd_arch_info.arch corresponding to variant. */
2463 enum bfd_architecture arch;
2464
2465 /* bfd_arch_info.mach corresponding to variant. */
2466 unsigned long mach;
2467
2468 /* Number of real registers. */
2469 int nregs;
2470
2471 /* Number of pseudo registers. */
2472 int npregs;
2473
2474 /* Number of total registers (the sum of nregs and npregs). */
2475 int num_tot_regs;
2476
2477 /* Table of register names; registers[R] is the name of the register
2478 number R. */
2479 const struct reg *regs;
2480 };
2481
2482 #define tot_num_registers(list) (sizeof (list) / sizeof((list)[0]))
2483
2484 static int
2485 num_registers (const struct reg *reg_list, int num_tot_regs)
2486 {
2487 int i;
2488 int nregs = 0;
2489
2490 for (i = 0; i < num_tot_regs; i++)
2491 if (!reg_list[i].pseudo)
2492 nregs++;
2493
2494 return nregs;
2495 }
2496
2497 static int
2498 num_pseudo_registers (const struct reg *reg_list, int num_tot_regs)
2499 {
2500 int i;
2501 int npregs = 0;
2502
2503 for (i = 0; i < num_tot_regs; i++)
2504 if (reg_list[i].pseudo)
2505 npregs ++;
2506
2507 return npregs;
2508 }
2509
2510 /* Information in this table comes from the following web sites:
2511 IBM: http://www.chips.ibm.com:80/products/embedded/
2512 Motorola: http://www.mot.com/SPS/PowerPC/
2513
2514 I'm sure I've got some of the variant descriptions not quite right.
2515 Please report any inaccuracies you find to GDB's maintainer.
2516
2517 If you add entries to this table, please be sure to allow the new
2518 value as an argument to the --with-cpu flag, in configure.in. */
2519
2520 static struct variant variants[] =
2521 {
2522
2523 {"powerpc", "PowerPC user-level", bfd_arch_powerpc,
2524 bfd_mach_ppc, -1, -1, tot_num_registers (registers_powerpc),
2525 registers_powerpc},
2526 {"power", "POWER user-level", bfd_arch_rs6000,
2527 bfd_mach_rs6k, -1, -1, tot_num_registers (registers_power),
2528 registers_power},
2529 {"403", "IBM PowerPC 403", bfd_arch_powerpc,
2530 bfd_mach_ppc_403, -1, -1, tot_num_registers (registers_403),
2531 registers_403},
2532 {"601", "Motorola PowerPC 601", bfd_arch_powerpc,
2533 bfd_mach_ppc_601, -1, -1, tot_num_registers (registers_601),
2534 registers_601},
2535 {"602", "Motorola PowerPC 602", bfd_arch_powerpc,
2536 bfd_mach_ppc_602, -1, -1, tot_num_registers (registers_602),
2537 registers_602},
2538 {"603", "Motorola/IBM PowerPC 603 or 603e", bfd_arch_powerpc,
2539 bfd_mach_ppc_603, -1, -1, tot_num_registers (registers_603),
2540 registers_603},
2541 {"604", "Motorola PowerPC 604 or 604e", bfd_arch_powerpc,
2542 604, -1, -1, tot_num_registers (registers_604),
2543 registers_604},
2544 {"403GC", "IBM PowerPC 403GC", bfd_arch_powerpc,
2545 bfd_mach_ppc_403gc, -1, -1, tot_num_registers (registers_403GC),
2546 registers_403GC},
2547 {"505", "Motorola PowerPC 505", bfd_arch_powerpc,
2548 bfd_mach_ppc_505, -1, -1, tot_num_registers (registers_505),
2549 registers_505},
2550 {"860", "Motorola PowerPC 860 or 850", bfd_arch_powerpc,
2551 bfd_mach_ppc_860, -1, -1, tot_num_registers (registers_860),
2552 registers_860},
2553 {"750", "Motorola/IBM PowerPC 750 or 740", bfd_arch_powerpc,
2554 bfd_mach_ppc_750, -1, -1, tot_num_registers (registers_750),
2555 registers_750},
2556 {"7400", "Motorola/IBM PowerPC 7400 (G4)", bfd_arch_powerpc,
2557 bfd_mach_ppc_7400, -1, -1, tot_num_registers (registers_7400),
2558 registers_7400},
2559 {"e500", "Motorola PowerPC e500", bfd_arch_powerpc,
2560 bfd_mach_ppc_e500, -1, -1, tot_num_registers (registers_e500),
2561 registers_e500},
2562
2563 /* 64-bit */
2564 {"powerpc64", "PowerPC 64-bit user-level", bfd_arch_powerpc,
2565 bfd_mach_ppc64, -1, -1, tot_num_registers (registers_powerpc),
2566 registers_powerpc},
2567 {"620", "Motorola PowerPC 620", bfd_arch_powerpc,
2568 bfd_mach_ppc_620, -1, -1, tot_num_registers (registers_powerpc),
2569 registers_powerpc},
2570 {"630", "Motorola PowerPC 630", bfd_arch_powerpc,
2571 bfd_mach_ppc_630, -1, -1, tot_num_registers (registers_powerpc),
2572 registers_powerpc},
2573 {"a35", "PowerPC A35", bfd_arch_powerpc,
2574 bfd_mach_ppc_a35, -1, -1, tot_num_registers (registers_powerpc),
2575 registers_powerpc},
2576 {"rs64ii", "PowerPC rs64ii", bfd_arch_powerpc,
2577 bfd_mach_ppc_rs64ii, -1, -1, tot_num_registers (registers_powerpc),
2578 registers_powerpc},
2579 {"rs64iii", "PowerPC rs64iii", bfd_arch_powerpc,
2580 bfd_mach_ppc_rs64iii, -1, -1, tot_num_registers (registers_powerpc),
2581 registers_powerpc},
2582
2583 /* FIXME: I haven't checked the register sets of the following. */
2584 {"rs1", "IBM POWER RS1", bfd_arch_rs6000,
2585 bfd_mach_rs6k_rs1, -1, -1, tot_num_registers (registers_power),
2586 registers_power},
2587 {"rsc", "IBM POWER RSC", bfd_arch_rs6000,
2588 bfd_mach_rs6k_rsc, -1, -1, tot_num_registers (registers_power),
2589 registers_power},
2590 {"rs2", "IBM POWER RS2", bfd_arch_rs6000,
2591 bfd_mach_rs6k_rs2, -1, -1, tot_num_registers (registers_power),
2592 registers_power},
2593
2594 {0, 0, 0, 0, 0, 0, 0, 0}
2595 };
2596
2597 /* Initialize the number of registers and pseudo registers in each variant. */
2598
2599 static void
2600 init_variants (void)
2601 {
2602 struct variant *v;
2603
2604 for (v = variants; v->name; v++)
2605 {
2606 if (v->nregs == -1)
2607 v->nregs = num_registers (v->regs, v->num_tot_regs);
2608 if (v->npregs == -1)
2609 v->npregs = num_pseudo_registers (v->regs, v->num_tot_regs);
2610 }
2611 }
2612
2613 /* Return the variant corresponding to architecture ARCH and machine number
2614 MACH. If no such variant exists, return null. */
2615
2616 static const struct variant *
2617 find_variant_by_arch (enum bfd_architecture arch, unsigned long mach)
2618 {
2619 const struct variant *v;
2620
2621 for (v = variants; v->name; v++)
2622 if (arch == v->arch && mach == v->mach)
2623 return v;
2624
2625 return NULL;
2626 }
2627
2628 static int
2629 gdb_print_insn_powerpc (bfd_vma memaddr, disassemble_info *info)
2630 {
2631 if (TARGET_BYTE_ORDER == BFD_ENDIAN_BIG)
2632 return print_insn_big_powerpc (memaddr, info);
2633 else
2634 return print_insn_little_powerpc (memaddr, info);
2635 }
2636 \f
2637 /* Initialize the current architecture based on INFO. If possible, re-use an
2638 architecture from ARCHES, which is a list of architectures already created
2639 during this debugging session.
2640
2641 Called e.g. at program startup, when reading a core file, and when reading
2642 a binary file. */
2643
2644 static struct gdbarch *
2645 rs6000_gdbarch_init (struct gdbarch_info info, struct gdbarch_list *arches)
2646 {
2647 struct gdbarch *gdbarch;
2648 struct gdbarch_tdep *tdep;
2649 int wordsize, from_xcoff_exec, from_elf_exec, power, i, off;
2650 struct reg *regs;
2651 const struct variant *v;
2652 enum bfd_architecture arch;
2653 unsigned long mach;
2654 bfd abfd;
2655 int sysv_abi;
2656 enum gdb_osabi osabi = GDB_OSABI_UNKNOWN;
2657 asection *sect;
2658
2659 from_xcoff_exec = info.abfd && info.abfd->format == bfd_object &&
2660 bfd_get_flavour (info.abfd) == bfd_target_xcoff_flavour;
2661
2662 from_elf_exec = info.abfd && info.abfd->format == bfd_object &&
2663 bfd_get_flavour (info.abfd) == bfd_target_elf_flavour;
2664
2665 sysv_abi = info.abfd && bfd_get_flavour (info.abfd) == bfd_target_elf_flavour;
2666
2667 if (info.abfd)
2668 osabi = gdbarch_lookup_osabi (info.abfd);
2669
2670 /* Check word size. If INFO is from a binary file, infer it from
2671 that, else choose a likely default. */
2672 if (from_xcoff_exec)
2673 {
2674 if (bfd_xcoff_is_xcoff64 (info.abfd))
2675 wordsize = 8;
2676 else
2677 wordsize = 4;
2678 }
2679 else if (from_elf_exec)
2680 {
2681 if (elf_elfheader (info.abfd)->e_ident[EI_CLASS] == ELFCLASS64)
2682 wordsize = 8;
2683 else
2684 wordsize = 4;
2685 }
2686 else
2687 {
2688 if (info.bfd_arch_info != NULL && info.bfd_arch_info->bits_per_word != 0)
2689 wordsize = info.bfd_arch_info->bits_per_word /
2690 info.bfd_arch_info->bits_per_byte;
2691 else
2692 wordsize = 4;
2693 }
2694
2695 /* Find a candidate among extant architectures. */
2696 for (arches = gdbarch_list_lookup_by_info (arches, &info);
2697 arches != NULL;
2698 arches = gdbarch_list_lookup_by_info (arches->next, &info))
2699 {
2700 /* Word size in the various PowerPC bfd_arch_info structs isn't
2701 meaningful, because 64-bit CPUs can run in 32-bit mode. So, perform
2702 separate word size check. */
2703 tdep = gdbarch_tdep (arches->gdbarch);
2704 if (tdep && tdep->wordsize == wordsize && tdep->osabi == osabi)
2705 return arches->gdbarch;
2706 }
2707
2708 /* None found, create a new architecture from INFO, whose bfd_arch_info
2709 validity depends on the source:
2710 - executable useless
2711 - rs6000_host_arch() good
2712 - core file good
2713 - "set arch" trust blindly
2714 - GDB startup useless but harmless */
2715
2716 if (!from_xcoff_exec)
2717 {
2718 arch = info.bfd_arch_info->arch;
2719 mach = info.bfd_arch_info->mach;
2720 }
2721 else
2722 {
2723 arch = bfd_arch_powerpc;
2724 mach = 0;
2725 bfd_default_set_arch_mach (&abfd, arch, mach);
2726 info.bfd_arch_info = bfd_get_arch_info (&abfd);
2727 }
2728 tdep = xmalloc (sizeof (struct gdbarch_tdep));
2729 tdep->wordsize = wordsize;
2730 tdep->osabi = osabi;
2731
2732 /* For e500 executables, the apuinfo section is of help here. Such
2733 section contains the identifier and revision number of each
2734 Application-specific Processing Unit that is present on the
2735 chip. The content of the section is determined by the assembler
2736 which looks at each instruction and determines which unit (and
2737 which version of it) can execute it. In our case we just look for
2738 the existance of the section. */
2739
2740 if (info.abfd)
2741 {
2742 sect = bfd_get_section_by_name (info.abfd, ".PPC.EMB.apuinfo");
2743 if (sect)
2744 {
2745 arch = info.bfd_arch_info->arch;
2746 mach = bfd_mach_ppc_e500;
2747 bfd_default_set_arch_mach (&abfd, arch, mach);
2748 info.bfd_arch_info = bfd_get_arch_info (&abfd);
2749 }
2750 }
2751
2752 gdbarch = gdbarch_alloc (&info, tdep);
2753 power = arch == bfd_arch_rs6000;
2754
2755 /* Initialize the number of real and pseudo registers in each variant. */
2756 init_variants ();
2757
2758 /* Choose variant. */
2759 v = find_variant_by_arch (arch, mach);
2760 if (!v)
2761 return NULL;
2762
2763 tdep->regs = v->regs;
2764
2765 tdep->ppc_gp0_regnum = 0;
2766 tdep->ppc_gplast_regnum = 31;
2767 tdep->ppc_toc_regnum = 2;
2768 tdep->ppc_ps_regnum = 65;
2769 tdep->ppc_cr_regnum = 66;
2770 tdep->ppc_lr_regnum = 67;
2771 tdep->ppc_ctr_regnum = 68;
2772 tdep->ppc_xer_regnum = 69;
2773 if (v->mach == bfd_mach_ppc_601)
2774 tdep->ppc_mq_regnum = 124;
2775 else if (power)
2776 tdep->ppc_mq_regnum = 70;
2777 else
2778 tdep->ppc_mq_regnum = -1;
2779 tdep->ppc_fpscr_regnum = power ? 71 : 70;
2780
2781 set_gdbarch_pc_regnum (gdbarch, 64);
2782 set_gdbarch_sp_regnum (gdbarch, 1);
2783 set_gdbarch_fp_regnum (gdbarch, 1);
2784 set_gdbarch_deprecated_extract_return_value (gdbarch,
2785 rs6000_extract_return_value);
2786 set_gdbarch_deprecated_store_return_value (gdbarch, rs6000_store_return_value);
2787
2788 if (v->arch == bfd_arch_powerpc)
2789 switch (v->mach)
2790 {
2791 case bfd_mach_ppc:
2792 tdep->ppc_vr0_regnum = 71;
2793 tdep->ppc_vrsave_regnum = 104;
2794 tdep->ppc_ev0_regnum = -1;
2795 tdep->ppc_ev31_regnum = -1;
2796 break;
2797 case bfd_mach_ppc_7400:
2798 tdep->ppc_vr0_regnum = 119;
2799 tdep->ppc_vrsave_regnum = 152;
2800 tdep->ppc_ev0_regnum = -1;
2801 tdep->ppc_ev31_regnum = -1;
2802 break;
2803 case bfd_mach_ppc_e500:
2804 tdep->ppc_gp0_regnum = 39;
2805 tdep->ppc_gplast_regnum = 70;
2806 tdep->ppc_toc_regnum = -1;
2807 tdep->ppc_ps_regnum = 1;
2808 tdep->ppc_cr_regnum = 2;
2809 tdep->ppc_lr_regnum = 3;
2810 tdep->ppc_ctr_regnum = 4;
2811 tdep->ppc_xer_regnum = 5;
2812 tdep->ppc_ev0_regnum = 7;
2813 tdep->ppc_ev31_regnum = 38;
2814 set_gdbarch_pc_regnum (gdbarch, 0);
2815 set_gdbarch_sp_regnum (gdbarch, 40);
2816 set_gdbarch_fp_regnum (gdbarch, 40);
2817 set_gdbarch_dwarf2_reg_to_regnum (gdbarch, e500_dwarf2_reg_to_regnum);
2818 set_gdbarch_pseudo_register_read (gdbarch, e500_pseudo_register_read);
2819 set_gdbarch_pseudo_register_write (gdbarch, e500_pseudo_register_write);
2820 set_gdbarch_extract_return_value (gdbarch, e500_extract_return_value);
2821 set_gdbarch_deprecated_store_return_value (gdbarch, e500_store_return_value);
2822 break;
2823 default:
2824 tdep->ppc_vr0_regnum = -1;
2825 tdep->ppc_vrsave_regnum = -1;
2826 tdep->ppc_ev0_regnum = -1;
2827 tdep->ppc_ev31_regnum = -1;
2828 break;
2829 }
2830
2831 /* Set lr_frame_offset. */
2832 if (wordsize == 8)
2833 tdep->lr_frame_offset = 16;
2834 else if (sysv_abi)
2835 tdep->lr_frame_offset = 4;
2836 else
2837 tdep->lr_frame_offset = 8;
2838
2839 /* Calculate byte offsets in raw register array. */
2840 tdep->regoff = xmalloc (v->num_tot_regs * sizeof (int));
2841 for (i = off = 0; i < v->num_tot_regs; i++)
2842 {
2843 tdep->regoff[i] = off;
2844 off += regsize (v->regs + i, wordsize);
2845 }
2846
2847 /* Select instruction printer. */
2848 if (arch == power)
2849 set_gdbarch_print_insn (gdbarch, print_insn_rs6000);
2850 else
2851 set_gdbarch_print_insn (gdbarch, gdb_print_insn_powerpc);
2852
2853 set_gdbarch_read_pc (gdbarch, generic_target_read_pc);
2854 set_gdbarch_write_pc (gdbarch, generic_target_write_pc);
2855 set_gdbarch_read_fp (gdbarch, generic_target_read_fp);
2856 set_gdbarch_read_sp (gdbarch, generic_target_read_sp);
2857 set_gdbarch_write_sp (gdbarch, generic_target_write_sp);
2858
2859 set_gdbarch_num_regs (gdbarch, v->nregs);
2860 set_gdbarch_num_pseudo_regs (gdbarch, v->npregs);
2861 set_gdbarch_register_name (gdbarch, rs6000_register_name);
2862 set_gdbarch_register_size (gdbarch, wordsize);
2863 set_gdbarch_register_bytes (gdbarch, off);
2864 set_gdbarch_register_byte (gdbarch, rs6000_register_byte);
2865 set_gdbarch_register_raw_size (gdbarch, rs6000_register_raw_size);
2866 set_gdbarch_max_register_raw_size (gdbarch, 16);
2867 set_gdbarch_register_virtual_size (gdbarch, generic_register_size);
2868 set_gdbarch_max_register_virtual_size (gdbarch, 16);
2869 set_gdbarch_register_virtual_type (gdbarch, rs6000_register_virtual_type);
2870
2871 set_gdbarch_ptr_bit (gdbarch, wordsize * TARGET_CHAR_BIT);
2872 set_gdbarch_short_bit (gdbarch, 2 * TARGET_CHAR_BIT);
2873 set_gdbarch_int_bit (gdbarch, 4 * TARGET_CHAR_BIT);
2874 set_gdbarch_long_bit (gdbarch, wordsize * TARGET_CHAR_BIT);
2875 set_gdbarch_long_long_bit (gdbarch, 8 * TARGET_CHAR_BIT);
2876 set_gdbarch_float_bit (gdbarch, 4 * TARGET_CHAR_BIT);
2877 set_gdbarch_double_bit (gdbarch, 8 * TARGET_CHAR_BIT);
2878 set_gdbarch_long_double_bit (gdbarch, 8 * TARGET_CHAR_BIT);
2879 set_gdbarch_char_signed (gdbarch, 0);
2880
2881 set_gdbarch_use_generic_dummy_frames (gdbarch, 1);
2882 set_gdbarch_call_dummy_length (gdbarch, 0);
2883 set_gdbarch_call_dummy_location (gdbarch, AT_ENTRY_POINT);
2884 set_gdbarch_call_dummy_address (gdbarch, entry_point_address);
2885 set_gdbarch_call_dummy_breakpoint_offset_p (gdbarch, 1);
2886 set_gdbarch_call_dummy_breakpoint_offset (gdbarch, 0);
2887 set_gdbarch_call_dummy_start_offset (gdbarch, 0);
2888 set_gdbarch_pc_in_call_dummy (gdbarch, generic_pc_in_call_dummy);
2889 set_gdbarch_call_dummy_p (gdbarch, 1);
2890 set_gdbarch_call_dummy_stack_adjust_p (gdbarch, 0);
2891 set_gdbarch_get_saved_register (gdbarch, generic_unwind_get_saved_register);
2892 set_gdbarch_fix_call_dummy (gdbarch, rs6000_fix_call_dummy);
2893 set_gdbarch_frame_align (gdbarch, rs6000_frame_align);
2894 set_gdbarch_push_dummy_frame (gdbarch, generic_push_dummy_frame);
2895 set_gdbarch_save_dummy_frame_tos (gdbarch, generic_save_dummy_frame_tos);
2896 set_gdbarch_push_return_address (gdbarch, ppc_push_return_address);
2897 set_gdbarch_believe_pcc_promotion (gdbarch, 1);
2898 set_gdbarch_coerce_float_to_double (gdbarch, rs6000_coerce_float_to_double);
2899
2900 set_gdbarch_register_convertible (gdbarch, rs6000_register_convertible);
2901 set_gdbarch_register_convert_to_virtual (gdbarch, rs6000_register_convert_to_virtual);
2902 set_gdbarch_register_convert_to_raw (gdbarch, rs6000_register_convert_to_raw);
2903 set_gdbarch_stab_reg_to_regnum (gdbarch, rs6000_stab_reg_to_regnum);
2904 /* Note: kevinb/2002-04-12: I'm not convinced that rs6000_push_arguments()
2905 is correct for the SysV ABI when the wordsize is 8, but I'm also
2906 fairly certain that ppc_sysv_abi_push_arguments() will give even
2907 worse results since it only works for 32-bit code. So, for the moment,
2908 we're better off calling rs6000_push_arguments() since it works for
2909 64-bit code. At some point in the future, this matter needs to be
2910 revisited. */
2911 if (sysv_abi && wordsize == 4)
2912 set_gdbarch_push_arguments (gdbarch, ppc_sysv_abi_push_arguments);
2913 else
2914 set_gdbarch_push_arguments (gdbarch, rs6000_push_arguments);
2915
2916 set_gdbarch_store_struct_return (gdbarch, rs6000_store_struct_return);
2917 set_gdbarch_extract_struct_value_address (gdbarch, rs6000_extract_struct_value_address);
2918 set_gdbarch_pop_frame (gdbarch, rs6000_pop_frame);
2919
2920 set_gdbarch_skip_prologue (gdbarch, rs6000_skip_prologue);
2921 set_gdbarch_inner_than (gdbarch, core_addr_lessthan);
2922 set_gdbarch_decr_pc_after_break (gdbarch, 0);
2923 set_gdbarch_function_start_offset (gdbarch, 0);
2924 set_gdbarch_breakpoint_from_pc (gdbarch, rs6000_breakpoint_from_pc);
2925
2926 /* Not sure on this. FIXMEmgo */
2927 set_gdbarch_frame_args_skip (gdbarch, 8);
2928
2929 if (sysv_abi)
2930 set_gdbarch_use_struct_convention (gdbarch,
2931 ppc_sysv_abi_use_struct_convention);
2932 else
2933 set_gdbarch_use_struct_convention (gdbarch,
2934 generic_use_struct_convention);
2935
2936 set_gdbarch_frame_chain_valid (gdbarch, file_frame_chain_valid);
2937
2938 set_gdbarch_frameless_function_invocation (gdbarch,
2939 rs6000_frameless_function_invocation);
2940 set_gdbarch_frame_chain (gdbarch, rs6000_frame_chain);
2941 set_gdbarch_frame_saved_pc (gdbarch, rs6000_frame_saved_pc);
2942
2943 set_gdbarch_frame_init_saved_regs (gdbarch, rs6000_frame_init_saved_regs);
2944 set_gdbarch_init_extra_frame_info (gdbarch, rs6000_init_extra_frame_info);
2945
2946 if (!sysv_abi)
2947 {
2948 /* Handle RS/6000 function pointers (which are really function
2949 descriptors). */
2950 set_gdbarch_convert_from_func_ptr_addr (gdbarch,
2951 rs6000_convert_from_func_ptr_addr);
2952 }
2953 set_gdbarch_frame_args_address (gdbarch, rs6000_frame_args_address);
2954 set_gdbarch_frame_locals_address (gdbarch, rs6000_frame_args_address);
2955 set_gdbarch_saved_pc_after_call (gdbarch, rs6000_saved_pc_after_call);
2956
2957 /* We can't tell how many args there are
2958 now that the C compiler delays popping them. */
2959 set_gdbarch_frame_num_args (gdbarch, frame_num_args_unknown);
2960
2961 /* Hook in ABI-specific overrides, if they have been registered. */
2962 gdbarch_init_osabi (info, gdbarch, osabi);
2963
2964 return gdbarch;
2965 }
2966
2967 static void
2968 rs6000_dump_tdep (struct gdbarch *current_gdbarch, struct ui_file *file)
2969 {
2970 struct gdbarch_tdep *tdep = gdbarch_tdep (current_gdbarch);
2971
2972 if (tdep == NULL)
2973 return;
2974
2975 fprintf_unfiltered (file, "rs6000_dump_tdep: OS ABI = %s\n",
2976 gdbarch_osabi_name (tdep->osabi));
2977 }
2978
2979 static struct cmd_list_element *info_powerpc_cmdlist = NULL;
2980
2981 static void
2982 rs6000_info_powerpc_command (char *args, int from_tty)
2983 {
2984 help_list (info_powerpc_cmdlist, "info powerpc ", class_info, gdb_stdout);
2985 }
2986
2987 /* Initialization code. */
2988
2989 void
2990 _initialize_rs6000_tdep (void)
2991 {
2992 gdbarch_register (bfd_arch_rs6000, rs6000_gdbarch_init, rs6000_dump_tdep);
2993 gdbarch_register (bfd_arch_powerpc, rs6000_gdbarch_init, rs6000_dump_tdep);
2994
2995 /* Add root prefix command for "info powerpc" commands */
2996 add_prefix_cmd ("powerpc", class_info, rs6000_info_powerpc_command,
2997 "Various POWERPC info specific commands.",
2998 &info_powerpc_cmdlist, "info powerpc ", 0, &infolist);
2999 }