Synthesize array descriptors with -fgnat-encodings=minimal
[binutils-gdb.git] / gdb / rs6000-tdep.c
1 /* Target-dependent code for GDB, the GNU debugger.
2
3 Copyright (C) 1986-2020 Free Software Foundation, Inc.
4
5 This file is part of GDB.
6
7 This program is free software; you can redistribute it and/or modify
8 it under the terms of the GNU General Public License as published by
9 the Free Software Foundation; either version 3 of the License, or
10 (at your option) any later version.
11
12 This program is distributed in the hope that it will be useful,
13 but WITHOUT ANY WARRANTY; without even the implied warranty of
14 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
15 GNU General Public License for more details.
16
17 You should have received a copy of the GNU General Public License
18 along with this program. If not, see <http://www.gnu.org/licenses/>. */
19
20 #include "defs.h"
21 #include "frame.h"
22 #include "inferior.h"
23 #include "infrun.h"
24 #include "symtab.h"
25 #include "target.h"
26 #include "gdbcore.h"
27 #include "gdbcmd.h"
28 #include "objfiles.h"
29 #include "arch-utils.h"
30 #include "regcache.h"
31 #include "regset.h"
32 #include "target-float.h"
33 #include "value.h"
34 #include "parser-defs.h"
35 #include "osabi.h"
36 #include "infcall.h"
37 #include "sim-regno.h"
38 #include "gdb/sim-ppc.h"
39 #include "reggroups.h"
40 #include "dwarf2/frame.h"
41 #include "target-descriptions.h"
42 #include "user-regs.h"
43 #include "record-full.h"
44 #include "auxv.h"
45
46 #include "coff/internal.h" /* for libcoff.h */
47 #include "libcoff.h" /* for xcoff_data */
48 #include "coff/xcoff.h"
49 #include "libxcoff.h"
50
51 #include "elf-bfd.h"
52 #include "elf/ppc.h"
53 #include "elf/ppc64.h"
54
55 #include "solib-svr4.h"
56 #include "ppc-tdep.h"
57 #include "ppc-ravenscar-thread.h"
58
59 #include "dis-asm.h"
60
61 #include "trad-frame.h"
62 #include "frame-unwind.h"
63 #include "frame-base.h"
64
65 #include "ax.h"
66 #include "ax-gdb.h"
67 #include <algorithm>
68
69 #include "features/rs6000/powerpc-32.c"
70 #include "features/rs6000/powerpc-altivec32.c"
71 #include "features/rs6000/powerpc-vsx32.c"
72 #include "features/rs6000/powerpc-403.c"
73 #include "features/rs6000/powerpc-403gc.c"
74 #include "features/rs6000/powerpc-405.c"
75 #include "features/rs6000/powerpc-505.c"
76 #include "features/rs6000/powerpc-601.c"
77 #include "features/rs6000/powerpc-602.c"
78 #include "features/rs6000/powerpc-603.c"
79 #include "features/rs6000/powerpc-604.c"
80 #include "features/rs6000/powerpc-64.c"
81 #include "features/rs6000/powerpc-altivec64.c"
82 #include "features/rs6000/powerpc-vsx64.c"
83 #include "features/rs6000/powerpc-7400.c"
84 #include "features/rs6000/powerpc-750.c"
85 #include "features/rs6000/powerpc-860.c"
86 #include "features/rs6000/powerpc-e500.c"
87 #include "features/rs6000/rs6000.c"
88
89 /* Determine if regnum is an SPE pseudo-register. */
90 #define IS_SPE_PSEUDOREG(tdep, regnum) ((tdep)->ppc_ev0_regnum >= 0 \
91 && (regnum) >= (tdep)->ppc_ev0_regnum \
92 && (regnum) < (tdep)->ppc_ev0_regnum + 32)
93
94 /* Determine if regnum is a decimal float pseudo-register. */
95 #define IS_DFP_PSEUDOREG(tdep, regnum) ((tdep)->ppc_dl0_regnum >= 0 \
96 && (regnum) >= (tdep)->ppc_dl0_regnum \
97 && (regnum) < (tdep)->ppc_dl0_regnum + 16)
98
99 /* Determine if regnum is a "vX" alias for the raw "vrX" vector
100 registers. */
101 #define IS_V_ALIAS_PSEUDOREG(tdep, regnum) (\
102 (tdep)->ppc_v0_alias_regnum >= 0 \
103 && (regnum) >= (tdep)->ppc_v0_alias_regnum \
104 && (regnum) < (tdep)->ppc_v0_alias_regnum + ppc_num_vrs)
105
106 /* Determine if regnum is a POWER7 VSX register. */
107 #define IS_VSX_PSEUDOREG(tdep, regnum) ((tdep)->ppc_vsr0_regnum >= 0 \
108 && (regnum) >= (tdep)->ppc_vsr0_regnum \
109 && (regnum) < (tdep)->ppc_vsr0_regnum + ppc_num_vsrs)
110
111 /* Determine if regnum is a POWER7 Extended FP register. */
112 #define IS_EFP_PSEUDOREG(tdep, regnum) ((tdep)->ppc_efpr0_regnum >= 0 \
113 && (regnum) >= (tdep)->ppc_efpr0_regnum \
114 && (regnum) < (tdep)->ppc_efpr0_regnum + ppc_num_efprs)
115
116 /* Determine if regnum is a checkpointed decimal float
117 pseudo-register. */
118 #define IS_CDFP_PSEUDOREG(tdep, regnum) ((tdep)->ppc_cdl0_regnum >= 0 \
119 && (regnum) >= (tdep)->ppc_cdl0_regnum \
120 && (regnum) < (tdep)->ppc_cdl0_regnum + 16)
121
122 /* Determine if regnum is a Checkpointed POWER7 VSX register. */
123 #define IS_CVSX_PSEUDOREG(tdep, regnum) ((tdep)->ppc_cvsr0_regnum >= 0 \
124 && (regnum) >= (tdep)->ppc_cvsr0_regnum \
125 && (regnum) < (tdep)->ppc_cvsr0_regnum + ppc_num_vsrs)
126
127 /* Determine if regnum is a Checkpointed POWER7 Extended FP register. */
128 #define IS_CEFP_PSEUDOREG(tdep, regnum) ((tdep)->ppc_cefpr0_regnum >= 0 \
129 && (regnum) >= (tdep)->ppc_cefpr0_regnum \
130 && (regnum) < (tdep)->ppc_cefpr0_regnum + ppc_num_efprs)
131
132 /* Holds the current set of options to be passed to the disassembler. */
133 static char *powerpc_disassembler_options;
134
135 /* The list of available "set powerpc ..." and "show powerpc ..."
136 commands. */
137 static struct cmd_list_element *setpowerpccmdlist = NULL;
138 static struct cmd_list_element *showpowerpccmdlist = NULL;
139
140 static enum auto_boolean powerpc_soft_float_global = AUTO_BOOLEAN_AUTO;
141
142 /* The vector ABI to use. Keep this in sync with powerpc_vector_abi. */
143 static const char *const powerpc_vector_strings[] =
144 {
145 "auto",
146 "generic",
147 "altivec",
148 "spe",
149 NULL
150 };
151
152 /* A variable that can be configured by the user. */
153 static enum powerpc_vector_abi powerpc_vector_abi_global = POWERPC_VEC_AUTO;
154 static const char *powerpc_vector_abi_string = "auto";
155
156 /* To be used by skip_prologue. */
157
158 struct rs6000_framedata
159 {
160 int offset; /* total size of frame --- the distance
161 by which we decrement sp to allocate
162 the frame */
163 int saved_gpr; /* smallest # of saved gpr */
164 unsigned int gpr_mask; /* Each bit is an individual saved GPR. */
165 int saved_fpr; /* smallest # of saved fpr */
166 int saved_vr; /* smallest # of saved vr */
167 int saved_ev; /* smallest # of saved ev */
168 int alloca_reg; /* alloca register number (frame ptr) */
169 char frameless; /* true if frameless functions. */
170 char nosavedpc; /* true if pc not saved. */
171 char used_bl; /* true if link register clobbered */
172 int gpr_offset; /* offset of saved gprs from prev sp */
173 int fpr_offset; /* offset of saved fprs from prev sp */
174 int vr_offset; /* offset of saved vrs from prev sp */
175 int ev_offset; /* offset of saved evs from prev sp */
176 int lr_offset; /* offset of saved lr */
177 int lr_register; /* register of saved lr, if trustworthy */
178 int cr_offset; /* offset of saved cr */
179 int vrsave_offset; /* offset of saved vrsave register */
180 };
181
182
183 /* Is REGNO a VSX register? Return 1 if so, 0 otherwise. */
184 int
185 vsx_register_p (struct gdbarch *gdbarch, int regno)
186 {
187 struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch);
188 if (tdep->ppc_vsr0_regnum < 0)
189 return 0;
190 else
191 return (regno >= tdep->ppc_vsr0_upper_regnum && regno
192 <= tdep->ppc_vsr0_upper_regnum + 31);
193 }
194
195 /* Is REGNO an AltiVec register? Return 1 if so, 0 otherwise. */
196 int
197 altivec_register_p (struct gdbarch *gdbarch, int regno)
198 {
199 struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch);
200 if (tdep->ppc_vr0_regnum < 0 || tdep->ppc_vrsave_regnum < 0)
201 return 0;
202 else
203 return (regno >= tdep->ppc_vr0_regnum && regno <= tdep->ppc_vrsave_regnum);
204 }
205
206
207 /* Return true if REGNO is an SPE register, false otherwise. */
208 int
209 spe_register_p (struct gdbarch *gdbarch, int regno)
210 {
211 struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch);
212
213 /* Is it a reference to EV0 -- EV31, and do we have those? */
214 if (IS_SPE_PSEUDOREG (tdep, regno))
215 return 1;
216
217 /* Is it a reference to one of the raw upper GPR halves? */
218 if (tdep->ppc_ev0_upper_regnum >= 0
219 && tdep->ppc_ev0_upper_regnum <= regno
220 && regno < tdep->ppc_ev0_upper_regnum + ppc_num_gprs)
221 return 1;
222
223 /* Is it a reference to the 64-bit accumulator, and do we have that? */
224 if (tdep->ppc_acc_regnum >= 0
225 && tdep->ppc_acc_regnum == regno)
226 return 1;
227
228 /* Is it a reference to the SPE floating-point status and control register,
229 and do we have that? */
230 if (tdep->ppc_spefscr_regnum >= 0
231 && tdep->ppc_spefscr_regnum == regno)
232 return 1;
233
234 return 0;
235 }
236
237
238 /* Return non-zero if the architecture described by GDBARCH has
239 floating-point registers (f0 --- f31 and fpscr). */
240 int
241 ppc_floating_point_unit_p (struct gdbarch *gdbarch)
242 {
243 struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch);
244
245 return (tdep->ppc_fp0_regnum >= 0
246 && tdep->ppc_fpscr_regnum >= 0);
247 }
248
249 /* Return non-zero if the architecture described by GDBARCH has
250 Altivec registers (vr0 --- vr31, vrsave and vscr). */
251 int
252 ppc_altivec_support_p (struct gdbarch *gdbarch)
253 {
254 struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch);
255
256 return (tdep->ppc_vr0_regnum >= 0
257 && tdep->ppc_vrsave_regnum >= 0);
258 }
259
260 /* Check that TABLE[GDB_REGNO] is not already initialized, and then
261 set it to SIM_REGNO.
262
263 This is a helper function for init_sim_regno_table, constructing
264 the table mapping GDB register numbers to sim register numbers; we
265 initialize every element in that table to -1 before we start
266 filling it in. */
267 static void
268 set_sim_regno (int *table, int gdb_regno, int sim_regno)
269 {
270 /* Make sure we don't try to assign any given GDB register a sim
271 register number more than once. */
272 gdb_assert (table[gdb_regno] == -1);
273 table[gdb_regno] = sim_regno;
274 }
275
276
277 /* Initialize ARCH->tdep->sim_regno, the table mapping GDB register
278 numbers to simulator register numbers, based on the values placed
279 in the ARCH->tdep->ppc_foo_regnum members. */
280 static void
281 init_sim_regno_table (struct gdbarch *arch)
282 {
283 struct gdbarch_tdep *tdep = gdbarch_tdep (arch);
284 int total_regs = gdbarch_num_regs (arch);
285 int *sim_regno = GDBARCH_OBSTACK_CALLOC (arch, total_regs, int);
286 int i;
287 static const char *const segment_regs[] = {
288 "sr0", "sr1", "sr2", "sr3", "sr4", "sr5", "sr6", "sr7",
289 "sr8", "sr9", "sr10", "sr11", "sr12", "sr13", "sr14", "sr15"
290 };
291
292 /* Presume that all registers not explicitly mentioned below are
293 unavailable from the sim. */
294 for (i = 0; i < total_regs; i++)
295 sim_regno[i] = -1;
296
297 /* General-purpose registers. */
298 for (i = 0; i < ppc_num_gprs; i++)
299 set_sim_regno (sim_regno, tdep->ppc_gp0_regnum + i, sim_ppc_r0_regnum + i);
300
301 /* Floating-point registers. */
302 if (tdep->ppc_fp0_regnum >= 0)
303 for (i = 0; i < ppc_num_fprs; i++)
304 set_sim_regno (sim_regno,
305 tdep->ppc_fp0_regnum + i,
306 sim_ppc_f0_regnum + i);
307 if (tdep->ppc_fpscr_regnum >= 0)
308 set_sim_regno (sim_regno, tdep->ppc_fpscr_regnum, sim_ppc_fpscr_regnum);
309
310 set_sim_regno (sim_regno, gdbarch_pc_regnum (arch), sim_ppc_pc_regnum);
311 set_sim_regno (sim_regno, tdep->ppc_ps_regnum, sim_ppc_ps_regnum);
312 set_sim_regno (sim_regno, tdep->ppc_cr_regnum, sim_ppc_cr_regnum);
313
314 /* Segment registers. */
315 for (i = 0; i < ppc_num_srs; i++)
316 {
317 int gdb_regno;
318
319 gdb_regno = user_reg_map_name_to_regnum (arch, segment_regs[i], -1);
320 if (gdb_regno >= 0)
321 set_sim_regno (sim_regno, gdb_regno, sim_ppc_sr0_regnum + i);
322 }
323
324 /* Altivec registers. */
325 if (tdep->ppc_vr0_regnum >= 0)
326 {
327 for (i = 0; i < ppc_num_vrs; i++)
328 set_sim_regno (sim_regno,
329 tdep->ppc_vr0_regnum + i,
330 sim_ppc_vr0_regnum + i);
331
332 /* FIXME: jimb/2004-07-15: when we have tdep->ppc_vscr_regnum,
333 we can treat this more like the other cases. */
334 set_sim_regno (sim_regno,
335 tdep->ppc_vr0_regnum + ppc_num_vrs,
336 sim_ppc_vscr_regnum);
337 }
338 /* vsave is a special-purpose register, so the code below handles it. */
339
340 /* SPE APU (E500) registers. */
341 if (tdep->ppc_ev0_upper_regnum >= 0)
342 for (i = 0; i < ppc_num_gprs; i++)
343 set_sim_regno (sim_regno,
344 tdep->ppc_ev0_upper_regnum + i,
345 sim_ppc_rh0_regnum + i);
346 if (tdep->ppc_acc_regnum >= 0)
347 set_sim_regno (sim_regno, tdep->ppc_acc_regnum, sim_ppc_acc_regnum);
348 /* spefscr is a special-purpose register, so the code below handles it. */
349
350 #ifdef WITH_PPC_SIM
351 /* Now handle all special-purpose registers. Verify that they
352 haven't mistakenly been assigned numbers by any of the above
353 code. */
354 for (i = 0; i < sim_ppc_num_sprs; i++)
355 {
356 const char *spr_name = sim_spr_register_name (i);
357 int gdb_regno = -1;
358
359 if (spr_name != NULL)
360 gdb_regno = user_reg_map_name_to_regnum (arch, spr_name, -1);
361
362 if (gdb_regno != -1)
363 set_sim_regno (sim_regno, gdb_regno, sim_ppc_spr0_regnum + i);
364 }
365 #endif
366
367 /* Drop the initialized array into place. */
368 tdep->sim_regno = sim_regno;
369 }
370
371
372 /* Given a GDB register number REG, return the corresponding SIM
373 register number. */
374 static int
375 rs6000_register_sim_regno (struct gdbarch *gdbarch, int reg)
376 {
377 struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch);
378 int sim_regno;
379
380 if (tdep->sim_regno == NULL)
381 init_sim_regno_table (gdbarch);
382
383 gdb_assert (0 <= reg && reg <= gdbarch_num_cooked_regs (gdbarch));
384 sim_regno = tdep->sim_regno[reg];
385
386 if (sim_regno >= 0)
387 return sim_regno;
388 else
389 return LEGACY_SIM_REGNO_IGNORE;
390 }
391
392 \f
393
394 /* Register set support functions. */
395
396 /* REGS + OFFSET contains register REGNUM in a field REGSIZE wide.
397 Write the register to REGCACHE. */
398
399 void
400 ppc_supply_reg (struct regcache *regcache, int regnum,
401 const gdb_byte *regs, size_t offset, int regsize)
402 {
403 if (regnum != -1 && offset != -1)
404 {
405 if (regsize > 4)
406 {
407 struct gdbarch *gdbarch = regcache->arch ();
408 int gdb_regsize = register_size (gdbarch, regnum);
409 if (gdb_regsize < regsize
410 && gdbarch_byte_order (gdbarch) == BFD_ENDIAN_BIG)
411 offset += regsize - gdb_regsize;
412 }
413 regcache->raw_supply (regnum, regs + offset);
414 }
415 }
416
417 /* Read register REGNUM from REGCACHE and store to REGS + OFFSET
418 in a field REGSIZE wide. Zero pad as necessary. */
419
420 void
421 ppc_collect_reg (const struct regcache *regcache, int regnum,
422 gdb_byte *regs, size_t offset, int regsize)
423 {
424 if (regnum != -1 && offset != -1)
425 {
426 if (regsize > 4)
427 {
428 struct gdbarch *gdbarch = regcache->arch ();
429 int gdb_regsize = register_size (gdbarch, regnum);
430 if (gdb_regsize < regsize)
431 {
432 if (gdbarch_byte_order (gdbarch) == BFD_ENDIAN_BIG)
433 {
434 memset (regs + offset, 0, regsize - gdb_regsize);
435 offset += regsize - gdb_regsize;
436 }
437 else
438 memset (regs + offset + regsize - gdb_regsize, 0,
439 regsize - gdb_regsize);
440 }
441 }
442 regcache->raw_collect (regnum, regs + offset);
443 }
444 }
445
446 static int
447 ppc_greg_offset (struct gdbarch *gdbarch,
448 struct gdbarch_tdep *tdep,
449 const struct ppc_reg_offsets *offsets,
450 int regnum,
451 int *regsize)
452 {
453 *regsize = offsets->gpr_size;
454 if (regnum >= tdep->ppc_gp0_regnum
455 && regnum < tdep->ppc_gp0_regnum + ppc_num_gprs)
456 return (offsets->r0_offset
457 + (regnum - tdep->ppc_gp0_regnum) * offsets->gpr_size);
458
459 if (regnum == gdbarch_pc_regnum (gdbarch))
460 return offsets->pc_offset;
461
462 if (regnum == tdep->ppc_ps_regnum)
463 return offsets->ps_offset;
464
465 if (regnum == tdep->ppc_lr_regnum)
466 return offsets->lr_offset;
467
468 if (regnum == tdep->ppc_ctr_regnum)
469 return offsets->ctr_offset;
470
471 *regsize = offsets->xr_size;
472 if (regnum == tdep->ppc_cr_regnum)
473 return offsets->cr_offset;
474
475 if (regnum == tdep->ppc_xer_regnum)
476 return offsets->xer_offset;
477
478 if (regnum == tdep->ppc_mq_regnum)
479 return offsets->mq_offset;
480
481 return -1;
482 }
483
484 static int
485 ppc_fpreg_offset (struct gdbarch_tdep *tdep,
486 const struct ppc_reg_offsets *offsets,
487 int regnum)
488 {
489 if (regnum >= tdep->ppc_fp0_regnum
490 && regnum < tdep->ppc_fp0_regnum + ppc_num_fprs)
491 return offsets->f0_offset + (regnum - tdep->ppc_fp0_regnum) * 8;
492
493 if (regnum == tdep->ppc_fpscr_regnum)
494 return offsets->fpscr_offset;
495
496 return -1;
497 }
498
499 /* Supply register REGNUM in the general-purpose register set REGSET
500 from the buffer specified by GREGS and LEN to register cache
501 REGCACHE. If REGNUM is -1, do this for all registers in REGSET. */
502
503 void
504 ppc_supply_gregset (const struct regset *regset, struct regcache *regcache,
505 int regnum, const void *gregs, size_t len)
506 {
507 struct gdbarch *gdbarch = regcache->arch ();
508 struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch);
509 const struct ppc_reg_offsets *offsets
510 = (const struct ppc_reg_offsets *) regset->regmap;
511 size_t offset;
512 int regsize;
513
514 if (regnum == -1)
515 {
516 int i;
517 int gpr_size = offsets->gpr_size;
518
519 for (i = tdep->ppc_gp0_regnum, offset = offsets->r0_offset;
520 i < tdep->ppc_gp0_regnum + ppc_num_gprs;
521 i++, offset += gpr_size)
522 ppc_supply_reg (regcache, i, (const gdb_byte *) gregs, offset,
523 gpr_size);
524
525 ppc_supply_reg (regcache, gdbarch_pc_regnum (gdbarch),
526 (const gdb_byte *) gregs, offsets->pc_offset, gpr_size);
527 ppc_supply_reg (regcache, tdep->ppc_ps_regnum,
528 (const gdb_byte *) gregs, offsets->ps_offset, gpr_size);
529 ppc_supply_reg (regcache, tdep->ppc_lr_regnum,
530 (const gdb_byte *) gregs, offsets->lr_offset, gpr_size);
531 ppc_supply_reg (regcache, tdep->ppc_ctr_regnum,
532 (const gdb_byte *) gregs, offsets->ctr_offset, gpr_size);
533 ppc_supply_reg (regcache, tdep->ppc_cr_regnum,
534 (const gdb_byte *) gregs, offsets->cr_offset,
535 offsets->xr_size);
536 ppc_supply_reg (regcache, tdep->ppc_xer_regnum,
537 (const gdb_byte *) gregs, offsets->xer_offset,
538 offsets->xr_size);
539 ppc_supply_reg (regcache, tdep->ppc_mq_regnum,
540 (const gdb_byte *) gregs, offsets->mq_offset,
541 offsets->xr_size);
542 return;
543 }
544
545 offset = ppc_greg_offset (gdbarch, tdep, offsets, regnum, &regsize);
546 ppc_supply_reg (regcache, regnum, (const gdb_byte *) gregs, offset, regsize);
547 }
548
549 /* Supply register REGNUM in the floating-point register set REGSET
550 from the buffer specified by FPREGS and LEN to register cache
551 REGCACHE. If REGNUM is -1, do this for all registers in REGSET. */
552
553 void
554 ppc_supply_fpregset (const struct regset *regset, struct regcache *regcache,
555 int regnum, const void *fpregs, size_t len)
556 {
557 struct gdbarch *gdbarch = regcache->arch ();
558 struct gdbarch_tdep *tdep;
559 const struct ppc_reg_offsets *offsets;
560 size_t offset;
561
562 if (!ppc_floating_point_unit_p (gdbarch))
563 return;
564
565 tdep = gdbarch_tdep (gdbarch);
566 offsets = (const struct ppc_reg_offsets *) regset->regmap;
567 if (regnum == -1)
568 {
569 int i;
570
571 for (i = tdep->ppc_fp0_regnum, offset = offsets->f0_offset;
572 i < tdep->ppc_fp0_regnum + ppc_num_fprs;
573 i++, offset += 8)
574 ppc_supply_reg (regcache, i, (const gdb_byte *) fpregs, offset, 8);
575
576 ppc_supply_reg (regcache, tdep->ppc_fpscr_regnum,
577 (const gdb_byte *) fpregs, offsets->fpscr_offset,
578 offsets->fpscr_size);
579 return;
580 }
581
582 offset = ppc_fpreg_offset (tdep, offsets, regnum);
583 ppc_supply_reg (regcache, regnum, (const gdb_byte *) fpregs, offset,
584 regnum == tdep->ppc_fpscr_regnum ? offsets->fpscr_size : 8);
585 }
586
587 /* Collect register REGNUM in the general-purpose register set
588 REGSET from register cache REGCACHE into the buffer specified by
589 GREGS and LEN. If REGNUM is -1, do this for all registers in
590 REGSET. */
591
592 void
593 ppc_collect_gregset (const struct regset *regset,
594 const struct regcache *regcache,
595 int regnum, void *gregs, size_t len)
596 {
597 struct gdbarch *gdbarch = regcache->arch ();
598 struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch);
599 const struct ppc_reg_offsets *offsets
600 = (const struct ppc_reg_offsets *) regset->regmap;
601 size_t offset;
602 int regsize;
603
604 if (regnum == -1)
605 {
606 int i;
607 int gpr_size = offsets->gpr_size;
608
609 for (i = tdep->ppc_gp0_regnum, offset = offsets->r0_offset;
610 i < tdep->ppc_gp0_regnum + ppc_num_gprs;
611 i++, offset += gpr_size)
612 ppc_collect_reg (regcache, i, (gdb_byte *) gregs, offset, gpr_size);
613
614 ppc_collect_reg (regcache, gdbarch_pc_regnum (gdbarch),
615 (gdb_byte *) gregs, offsets->pc_offset, gpr_size);
616 ppc_collect_reg (regcache, tdep->ppc_ps_regnum,
617 (gdb_byte *) gregs, offsets->ps_offset, gpr_size);
618 ppc_collect_reg (regcache, tdep->ppc_lr_regnum,
619 (gdb_byte *) gregs, offsets->lr_offset, gpr_size);
620 ppc_collect_reg (regcache, tdep->ppc_ctr_regnum,
621 (gdb_byte *) gregs, offsets->ctr_offset, gpr_size);
622 ppc_collect_reg (regcache, tdep->ppc_cr_regnum,
623 (gdb_byte *) gregs, offsets->cr_offset,
624 offsets->xr_size);
625 ppc_collect_reg (regcache, tdep->ppc_xer_regnum,
626 (gdb_byte *) gregs, offsets->xer_offset,
627 offsets->xr_size);
628 ppc_collect_reg (regcache, tdep->ppc_mq_regnum,
629 (gdb_byte *) gregs, offsets->mq_offset,
630 offsets->xr_size);
631 return;
632 }
633
634 offset = ppc_greg_offset (gdbarch, tdep, offsets, regnum, &regsize);
635 ppc_collect_reg (regcache, regnum, (gdb_byte *) gregs, offset, regsize);
636 }
637
638 /* Collect register REGNUM in the floating-point register set
639 REGSET from register cache REGCACHE into the buffer specified by
640 FPREGS and LEN. If REGNUM is -1, do this for all registers in
641 REGSET. */
642
643 void
644 ppc_collect_fpregset (const struct regset *regset,
645 const struct regcache *regcache,
646 int regnum, void *fpregs, size_t len)
647 {
648 struct gdbarch *gdbarch = regcache->arch ();
649 struct gdbarch_tdep *tdep;
650 const struct ppc_reg_offsets *offsets;
651 size_t offset;
652
653 if (!ppc_floating_point_unit_p (gdbarch))
654 return;
655
656 tdep = gdbarch_tdep (gdbarch);
657 offsets = (const struct ppc_reg_offsets *) regset->regmap;
658 if (regnum == -1)
659 {
660 int i;
661
662 for (i = tdep->ppc_fp0_regnum, offset = offsets->f0_offset;
663 i < tdep->ppc_fp0_regnum + ppc_num_fprs;
664 i++, offset += 8)
665 ppc_collect_reg (regcache, i, (gdb_byte *) fpregs, offset, 8);
666
667 ppc_collect_reg (regcache, tdep->ppc_fpscr_regnum,
668 (gdb_byte *) fpregs, offsets->fpscr_offset,
669 offsets->fpscr_size);
670 return;
671 }
672
673 offset = ppc_fpreg_offset (tdep, offsets, regnum);
674 ppc_collect_reg (regcache, regnum, (gdb_byte *) fpregs, offset,
675 regnum == tdep->ppc_fpscr_regnum ? offsets->fpscr_size : 8);
676 }
677
678 static int
679 insn_changes_sp_or_jumps (unsigned long insn)
680 {
681 int opcode = (insn >> 26) & 0x03f;
682 int sd = (insn >> 21) & 0x01f;
683 int a = (insn >> 16) & 0x01f;
684 int subcode = (insn >> 1) & 0x3ff;
685
686 /* Changes the stack pointer. */
687
688 /* NOTE: There are many ways to change the value of a given register.
689 The ways below are those used when the register is R1, the SP,
690 in a funtion's epilogue. */
691
692 if (opcode == 31 && subcode == 444 && a == 1)
693 return 1; /* mr R1,Rn */
694 if (opcode == 14 && sd == 1)
695 return 1; /* addi R1,Rn,simm */
696 if (opcode == 58 && sd == 1)
697 return 1; /* ld R1,ds(Rn) */
698
699 /* Transfers control. */
700
701 if (opcode == 18)
702 return 1; /* b */
703 if (opcode == 16)
704 return 1; /* bc */
705 if (opcode == 19 && subcode == 16)
706 return 1; /* bclr */
707 if (opcode == 19 && subcode == 528)
708 return 1; /* bcctr */
709
710 return 0;
711 }
712
713 /* Return true if we are in the function's epilogue, i.e. after the
714 instruction that destroyed the function's stack frame.
715
716 1) scan forward from the point of execution:
717 a) If you find an instruction that modifies the stack pointer
718 or transfers control (except a return), execution is not in
719 an epilogue, return.
720 b) Stop scanning if you find a return instruction or reach the
721 end of the function or reach the hard limit for the size of
722 an epilogue.
723 2) scan backward from the point of execution:
724 a) If you find an instruction that modifies the stack pointer,
725 execution *is* in an epilogue, return.
726 b) Stop scanning if you reach an instruction that transfers
727 control or the beginning of the function or reach the hard
728 limit for the size of an epilogue. */
729
730 static int
731 rs6000_in_function_epilogue_frame_p (struct frame_info *curfrm,
732 struct gdbarch *gdbarch, CORE_ADDR pc)
733 {
734 struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch);
735 enum bfd_endian byte_order = gdbarch_byte_order (gdbarch);
736 bfd_byte insn_buf[PPC_INSN_SIZE];
737 CORE_ADDR scan_pc, func_start, func_end, epilogue_start, epilogue_end;
738 unsigned long insn;
739
740 /* Find the search limits based on function boundaries and hard limit. */
741
742 if (!find_pc_partial_function (pc, NULL, &func_start, &func_end))
743 return 0;
744
745 epilogue_start = pc - PPC_MAX_EPILOGUE_INSTRUCTIONS * PPC_INSN_SIZE;
746 if (epilogue_start < func_start) epilogue_start = func_start;
747
748 epilogue_end = pc + PPC_MAX_EPILOGUE_INSTRUCTIONS * PPC_INSN_SIZE;
749 if (epilogue_end > func_end) epilogue_end = func_end;
750
751 /* Scan forward until next 'blr'. */
752
753 for (scan_pc = pc; scan_pc < epilogue_end; scan_pc += PPC_INSN_SIZE)
754 {
755 if (!safe_frame_unwind_memory (curfrm, scan_pc, insn_buf, PPC_INSN_SIZE))
756 return 0;
757 insn = extract_unsigned_integer (insn_buf, PPC_INSN_SIZE, byte_order);
758 if (insn == 0x4e800020)
759 break;
760 /* Assume a bctr is a tail call unless it points strictly within
761 this function. */
762 if (insn == 0x4e800420)
763 {
764 CORE_ADDR ctr = get_frame_register_unsigned (curfrm,
765 tdep->ppc_ctr_regnum);
766 if (ctr > func_start && ctr < func_end)
767 return 0;
768 else
769 break;
770 }
771 if (insn_changes_sp_or_jumps (insn))
772 return 0;
773 }
774
775 /* Scan backward until adjustment to stack pointer (R1). */
776
777 for (scan_pc = pc - PPC_INSN_SIZE;
778 scan_pc >= epilogue_start;
779 scan_pc -= PPC_INSN_SIZE)
780 {
781 if (!safe_frame_unwind_memory (curfrm, scan_pc, insn_buf, PPC_INSN_SIZE))
782 return 0;
783 insn = extract_unsigned_integer (insn_buf, PPC_INSN_SIZE, byte_order);
784 if (insn_changes_sp_or_jumps (insn))
785 return 1;
786 }
787
788 return 0;
789 }
790
791 /* Implement the stack_frame_destroyed_p gdbarch method. */
792
793 static int
794 rs6000_stack_frame_destroyed_p (struct gdbarch *gdbarch, CORE_ADDR pc)
795 {
796 return rs6000_in_function_epilogue_frame_p (get_current_frame (),
797 gdbarch, pc);
798 }
799
800 /* Get the ith function argument for the current function. */
801 static CORE_ADDR
802 rs6000_fetch_pointer_argument (struct frame_info *frame, int argi,
803 struct type *type)
804 {
805 return get_frame_register_unsigned (frame, 3 + argi);
806 }
807
808 /* Sequence of bytes for breakpoint instruction. */
809
810 constexpr gdb_byte big_breakpoint[] = { 0x7d, 0x82, 0x10, 0x08 };
811 constexpr gdb_byte little_breakpoint[] = { 0x08, 0x10, 0x82, 0x7d };
812
813 typedef BP_MANIPULATION_ENDIAN (little_breakpoint, big_breakpoint)
814 rs6000_breakpoint;
815
816 /* Instruction masks for displaced stepping. */
817 #define BRANCH_MASK 0xfc000000
818 #define BP_MASK 0xFC0007FE
819 #define B_INSN 0x48000000
820 #define BC_INSN 0x40000000
821 #define BXL_INSN 0x4c000000
822 #define BP_INSN 0x7C000008
823
824 /* Instruction masks used during single-stepping of atomic
825 sequences. */
826 #define LOAD_AND_RESERVE_MASK 0xfc0007fe
827 #define LWARX_INSTRUCTION 0x7c000028
828 #define LDARX_INSTRUCTION 0x7c0000A8
829 #define LBARX_INSTRUCTION 0x7c000068
830 #define LHARX_INSTRUCTION 0x7c0000e8
831 #define LQARX_INSTRUCTION 0x7c000228
832 #define STORE_CONDITIONAL_MASK 0xfc0007ff
833 #define STWCX_INSTRUCTION 0x7c00012d
834 #define STDCX_INSTRUCTION 0x7c0001ad
835 #define STBCX_INSTRUCTION 0x7c00056d
836 #define STHCX_INSTRUCTION 0x7c0005ad
837 #define STQCX_INSTRUCTION 0x7c00016d
838
839 /* Check if insn is one of the Load And Reserve instructions used for atomic
840 sequences. */
841 #define IS_LOAD_AND_RESERVE_INSN(insn) ((insn & LOAD_AND_RESERVE_MASK) == LWARX_INSTRUCTION \
842 || (insn & LOAD_AND_RESERVE_MASK) == LDARX_INSTRUCTION \
843 || (insn & LOAD_AND_RESERVE_MASK) == LBARX_INSTRUCTION \
844 || (insn & LOAD_AND_RESERVE_MASK) == LHARX_INSTRUCTION \
845 || (insn & LOAD_AND_RESERVE_MASK) == LQARX_INSTRUCTION)
846 /* Check if insn is one of the Store Conditional instructions used for atomic
847 sequences. */
848 #define IS_STORE_CONDITIONAL_INSN(insn) ((insn & STORE_CONDITIONAL_MASK) == STWCX_INSTRUCTION \
849 || (insn & STORE_CONDITIONAL_MASK) == STDCX_INSTRUCTION \
850 || (insn & STORE_CONDITIONAL_MASK) == STBCX_INSTRUCTION \
851 || (insn & STORE_CONDITIONAL_MASK) == STHCX_INSTRUCTION \
852 || (insn & STORE_CONDITIONAL_MASK) == STQCX_INSTRUCTION)
853
854 typedef buf_displaced_step_closure ppc_displaced_step_closure;
855
856 /* We can't displaced step atomic sequences. */
857
858 static displaced_step_closure_up
859 ppc_displaced_step_copy_insn (struct gdbarch *gdbarch,
860 CORE_ADDR from, CORE_ADDR to,
861 struct regcache *regs)
862 {
863 size_t len = gdbarch_max_insn_length (gdbarch);
864 std::unique_ptr<ppc_displaced_step_closure> closure
865 (new ppc_displaced_step_closure (len));
866 gdb_byte *buf = closure->buf.data ();
867 enum bfd_endian byte_order = gdbarch_byte_order (gdbarch);
868 int insn;
869
870 read_memory (from, buf, len);
871
872 insn = extract_signed_integer (buf, PPC_INSN_SIZE, byte_order);
873
874 /* Assume all atomic sequences start with a Load and Reserve instruction. */
875 if (IS_LOAD_AND_RESERVE_INSN (insn))
876 {
877 displaced_debug_printf ("can't displaced step atomic sequence at %s",
878 paddress (gdbarch, from));
879
880 return NULL;
881 }
882
883 write_memory (to, buf, len);
884
885 displaced_debug_printf ("copy %s->%s: %s",
886 paddress (gdbarch, from), paddress (gdbarch, to),
887 displaced_step_dump_bytes (buf, len).c_str ());;
888
889 /* This is a work around for a problem with g++ 4.8. */
890 return displaced_step_closure_up (closure.release ());
891 }
892
893 /* Fix up the state of registers and memory after having single-stepped
894 a displaced instruction. */
895 static void
896 ppc_displaced_step_fixup (struct gdbarch *gdbarch,
897 struct displaced_step_closure *closure_,
898 CORE_ADDR from, CORE_ADDR to,
899 struct regcache *regs)
900 {
901 enum bfd_endian byte_order = gdbarch_byte_order (gdbarch);
902 /* Our closure is a copy of the instruction. */
903 ppc_displaced_step_closure *closure = (ppc_displaced_step_closure *) closure_;
904 ULONGEST insn = extract_unsigned_integer (closure->buf.data (),
905 PPC_INSN_SIZE, byte_order);
906 ULONGEST opcode = 0;
907 /* Offset for non PC-relative instructions. */
908 LONGEST offset = PPC_INSN_SIZE;
909
910 opcode = insn & BRANCH_MASK;
911
912 displaced_debug_printf ("(ppc) fixup (%s, %s)",
913 paddress (gdbarch, from), paddress (gdbarch, to));
914
915 /* Handle PC-relative branch instructions. */
916 if (opcode == B_INSN || opcode == BC_INSN || opcode == BXL_INSN)
917 {
918 ULONGEST current_pc;
919
920 /* Read the current PC value after the instruction has been executed
921 in a displaced location. Calculate the offset to be applied to the
922 original PC value before the displaced stepping. */
923 regcache_cooked_read_unsigned (regs, gdbarch_pc_regnum (gdbarch),
924 &current_pc);
925 offset = current_pc - to;
926
927 if (opcode != BXL_INSN)
928 {
929 /* Check for AA bit indicating whether this is an absolute
930 addressing or PC-relative (1: absolute, 0: relative). */
931 if (!(insn & 0x2))
932 {
933 /* PC-relative addressing is being used in the branch. */
934 displaced_debug_printf ("(ppc) branch instruction: %s",
935 paddress (gdbarch, insn));
936 displaced_debug_printf ("(ppc) adjusted PC from %s to %s",
937 paddress (gdbarch, current_pc),
938 paddress (gdbarch, from + offset));
939
940 regcache_cooked_write_unsigned (regs,
941 gdbarch_pc_regnum (gdbarch),
942 from + offset);
943 }
944 }
945 else
946 {
947 /* If we're here, it means we have a branch to LR or CTR. If the
948 branch was taken, the offset is probably greater than 4 (the next
949 instruction), so it's safe to assume that an offset of 4 means we
950 did not take the branch. */
951 if (offset == PPC_INSN_SIZE)
952 regcache_cooked_write_unsigned (regs, gdbarch_pc_regnum (gdbarch),
953 from + PPC_INSN_SIZE);
954 }
955
956 /* Check for LK bit indicating whether we should set the link
957 register to point to the next instruction
958 (1: Set, 0: Don't set). */
959 if (insn & 0x1)
960 {
961 /* Link register needs to be set to the next instruction's PC. */
962 regcache_cooked_write_unsigned (regs,
963 gdbarch_tdep (gdbarch)->ppc_lr_regnum,
964 from + PPC_INSN_SIZE);
965 displaced_debug_printf ("(ppc) adjusted LR to %s",
966 paddress (gdbarch, from + PPC_INSN_SIZE));
967
968 }
969 }
970 /* Check for breakpoints in the inferior. If we've found one, place the PC
971 right at the breakpoint instruction. */
972 else if ((insn & BP_MASK) == BP_INSN)
973 regcache_cooked_write_unsigned (regs, gdbarch_pc_regnum (gdbarch), from);
974 else
975 /* Handle any other instructions that do not fit in the categories above. */
976 regcache_cooked_write_unsigned (regs, gdbarch_pc_regnum (gdbarch),
977 from + offset);
978 }
979
980 /* Always use hardware single-stepping to execute the
981 displaced instruction. */
982 static bool
983 ppc_displaced_step_hw_singlestep (struct gdbarch *gdbarch)
984 {
985 return true;
986 }
987
988 /* Checks for an atomic sequence of instructions beginning with a
989 Load And Reserve instruction and ending with a Store Conditional
990 instruction. If such a sequence is found, attempt to step through it.
991 A breakpoint is placed at the end of the sequence. */
992 std::vector<CORE_ADDR>
993 ppc_deal_with_atomic_sequence (struct regcache *regcache)
994 {
995 struct gdbarch *gdbarch = regcache->arch ();
996 enum bfd_endian byte_order = gdbarch_byte_order (gdbarch);
997 CORE_ADDR pc = regcache_read_pc (regcache);
998 CORE_ADDR breaks[2] = {CORE_ADDR_MAX, CORE_ADDR_MAX};
999 CORE_ADDR loc = pc;
1000 CORE_ADDR closing_insn; /* Instruction that closes the atomic sequence. */
1001 int insn = read_memory_integer (loc, PPC_INSN_SIZE, byte_order);
1002 int insn_count;
1003 int index;
1004 int last_breakpoint = 0; /* Defaults to 0 (no breakpoints placed). */
1005 const int atomic_sequence_length = 16; /* Instruction sequence length. */
1006 int bc_insn_count = 0; /* Conditional branch instruction count. */
1007
1008 /* Assume all atomic sequences start with a Load And Reserve instruction. */
1009 if (!IS_LOAD_AND_RESERVE_INSN (insn))
1010 return {};
1011
1012 /* Assume that no atomic sequence is longer than "atomic_sequence_length"
1013 instructions. */
1014 for (insn_count = 0; insn_count < atomic_sequence_length; ++insn_count)
1015 {
1016 loc += PPC_INSN_SIZE;
1017 insn = read_memory_integer (loc, PPC_INSN_SIZE, byte_order);
1018
1019 /* Assume that there is at most one conditional branch in the atomic
1020 sequence. If a conditional branch is found, put a breakpoint in
1021 its destination address. */
1022 if ((insn & BRANCH_MASK) == BC_INSN)
1023 {
1024 int immediate = ((insn & 0xfffc) ^ 0x8000) - 0x8000;
1025 int absolute = insn & 2;
1026
1027 if (bc_insn_count >= 1)
1028 return {}; /* More than one conditional branch found, fallback
1029 to the standard single-step code. */
1030
1031 if (absolute)
1032 breaks[1] = immediate;
1033 else
1034 breaks[1] = loc + immediate;
1035
1036 bc_insn_count++;
1037 last_breakpoint++;
1038 }
1039
1040 if (IS_STORE_CONDITIONAL_INSN (insn))
1041 break;
1042 }
1043
1044 /* Assume that the atomic sequence ends with a Store Conditional
1045 instruction. */
1046 if (!IS_STORE_CONDITIONAL_INSN (insn))
1047 return {};
1048
1049 closing_insn = loc;
1050 loc += PPC_INSN_SIZE;
1051
1052 /* Insert a breakpoint right after the end of the atomic sequence. */
1053 breaks[0] = loc;
1054
1055 /* Check for duplicated breakpoints. Check also for a breakpoint
1056 placed (branch instruction's destination) anywhere in sequence. */
1057 if (last_breakpoint
1058 && (breaks[1] == breaks[0]
1059 || (breaks[1] >= pc && breaks[1] <= closing_insn)))
1060 last_breakpoint = 0;
1061
1062 std::vector<CORE_ADDR> next_pcs;
1063
1064 for (index = 0; index <= last_breakpoint; index++)
1065 next_pcs.push_back (breaks[index]);
1066
1067 return next_pcs;
1068 }
1069
1070
1071 #define SIGNED_SHORT(x) \
1072 ((sizeof (short) == 2) \
1073 ? ((int)(short)(x)) \
1074 : ((int)((((x) & 0xffff) ^ 0x8000) - 0x8000)))
1075
1076 #define GET_SRC_REG(x) (((x) >> 21) & 0x1f)
1077
1078 /* Limit the number of skipped non-prologue instructions, as the examining
1079 of the prologue is expensive. */
1080 static int max_skip_non_prologue_insns = 10;
1081
1082 /* Return nonzero if the given instruction OP can be part of the prologue
1083 of a function and saves a parameter on the stack. FRAMEP should be
1084 set if one of the previous instructions in the function has set the
1085 Frame Pointer. */
1086
1087 static int
1088 store_param_on_stack_p (unsigned long op, int framep, int *r0_contains_arg)
1089 {
1090 /* Move parameters from argument registers to temporary register. */
1091 if ((op & 0xfc0007fe) == 0x7c000378) /* mr(.) Rx,Ry */
1092 {
1093 /* Rx must be scratch register r0. */
1094 const int rx_regno = (op >> 16) & 31;
1095 /* Ry: Only r3 - r10 are used for parameter passing. */
1096 const int ry_regno = GET_SRC_REG (op);
1097
1098 if (rx_regno == 0 && ry_regno >= 3 && ry_regno <= 10)
1099 {
1100 *r0_contains_arg = 1;
1101 return 1;
1102 }
1103 else
1104 return 0;
1105 }
1106
1107 /* Save a General Purpose Register on stack. */
1108
1109 if ((op & 0xfc1f0003) == 0xf8010000 || /* std Rx,NUM(r1) */
1110 (op & 0xfc1f0000) == 0xd8010000) /* stfd Rx,NUM(r1) */
1111 {
1112 /* Rx: Only r3 - r10 are used for parameter passing. */
1113 const int rx_regno = GET_SRC_REG (op);
1114
1115 return (rx_regno >= 3 && rx_regno <= 10);
1116 }
1117
1118 /* Save a General Purpose Register on stack via the Frame Pointer. */
1119
1120 if (framep &&
1121 ((op & 0xfc1f0000) == 0x901f0000 || /* st rx,NUM(r31) */
1122 (op & 0xfc1f0000) == 0x981f0000 || /* stb Rx,NUM(r31) */
1123 (op & 0xfc1f0000) == 0xd81f0000)) /* stfd Rx,NUM(r31) */
1124 {
1125 /* Rx: Usually, only r3 - r10 are used for parameter passing.
1126 However, the compiler sometimes uses r0 to hold an argument. */
1127 const int rx_regno = GET_SRC_REG (op);
1128
1129 return ((rx_regno >= 3 && rx_regno <= 10)
1130 || (rx_regno == 0 && *r0_contains_arg));
1131 }
1132
1133 if ((op & 0xfc1f0000) == 0xfc010000) /* frsp, fp?,NUM(r1) */
1134 {
1135 /* Only f2 - f8 are used for parameter passing. */
1136 const int src_regno = GET_SRC_REG (op);
1137
1138 return (src_regno >= 2 && src_regno <= 8);
1139 }
1140
1141 if (framep && ((op & 0xfc1f0000) == 0xfc1f0000)) /* frsp, fp?,NUM(r31) */
1142 {
1143 /* Only f2 - f8 are used for parameter passing. */
1144 const int src_regno = GET_SRC_REG (op);
1145
1146 return (src_regno >= 2 && src_regno <= 8);
1147 }
1148
1149 /* Not an insn that saves a parameter on stack. */
1150 return 0;
1151 }
1152
1153 /* Assuming that INSN is a "bl" instruction located at PC, return
1154 nonzero if the destination of the branch is a "blrl" instruction.
1155
1156 This sequence is sometimes found in certain function prologues.
1157 It allows the function to load the LR register with a value that
1158 they can use to access PIC data using PC-relative offsets. */
1159
1160 static int
1161 bl_to_blrl_insn_p (CORE_ADDR pc, int insn, enum bfd_endian byte_order)
1162 {
1163 CORE_ADDR dest;
1164 int immediate;
1165 int absolute;
1166 int dest_insn;
1167
1168 absolute = (int) ((insn >> 1) & 1);
1169 immediate = ((insn & ~3) << 6) >> 6;
1170 if (absolute)
1171 dest = immediate;
1172 else
1173 dest = pc + immediate;
1174
1175 dest_insn = read_memory_integer (dest, 4, byte_order);
1176 if ((dest_insn & 0xfc00ffff) == 0x4c000021) /* blrl */
1177 return 1;
1178
1179 return 0;
1180 }
1181
1182 /* Return true if OP is a stw or std instruction with
1183 register operands RS and RA and any immediate offset.
1184
1185 If WITH_UPDATE is true, also return true if OP is
1186 a stwu or stdu instruction with the same operands.
1187
1188 Return false otherwise.
1189 */
1190 static bool
1191 store_insn_p (unsigned long op, unsigned long rs,
1192 unsigned long ra, bool with_update)
1193 {
1194 rs = rs << 21;
1195 ra = ra << 16;
1196
1197 if (/* std RS, SIMM(RA) */
1198 ((op & 0xffff0003) == (rs | ra | 0xf8000000)) ||
1199 /* stw RS, SIMM(RA) */
1200 ((op & 0xffff0000) == (rs | ra | 0x90000000)))
1201 return true;
1202
1203 if (with_update)
1204 {
1205 if (/* stdu RS, SIMM(RA) */
1206 ((op & 0xffff0003) == (rs | ra | 0xf8000001)) ||
1207 /* stwu RS, SIMM(RA) */
1208 ((op & 0xffff0000) == (rs | ra | 0x94000000)))
1209 return true;
1210 }
1211
1212 return false;
1213 }
1214
1215 /* Masks for decoding a branch-and-link (bl) instruction.
1216
1217 BL_MASK and BL_INSTRUCTION are used in combination with each other.
1218 The former is anded with the opcode in question; if the result of
1219 this masking operation is equal to BL_INSTRUCTION, then the opcode in
1220 question is a ``bl'' instruction.
1221
1222 BL_DISPLACEMENT_MASK is anded with the opcode in order to extract
1223 the branch displacement. */
1224
1225 #define BL_MASK 0xfc000001
1226 #define BL_INSTRUCTION 0x48000001
1227 #define BL_DISPLACEMENT_MASK 0x03fffffc
1228
1229 static unsigned long
1230 rs6000_fetch_instruction (struct gdbarch *gdbarch, const CORE_ADDR pc)
1231 {
1232 enum bfd_endian byte_order = gdbarch_byte_order (gdbarch);
1233 gdb_byte buf[4];
1234 unsigned long op;
1235
1236 /* Fetch the instruction and convert it to an integer. */
1237 if (target_read_memory (pc, buf, 4))
1238 return 0;
1239 op = extract_unsigned_integer (buf, 4, byte_order);
1240
1241 return op;
1242 }
1243
1244 /* GCC generates several well-known sequences of instructions at the begining
1245 of each function prologue when compiling with -fstack-check. If one of
1246 such sequences starts at START_PC, then return the address of the
1247 instruction immediately past this sequence. Otherwise, return START_PC. */
1248
1249 static CORE_ADDR
1250 rs6000_skip_stack_check (struct gdbarch *gdbarch, const CORE_ADDR start_pc)
1251 {
1252 CORE_ADDR pc = start_pc;
1253 unsigned long op = rs6000_fetch_instruction (gdbarch, pc);
1254
1255 /* First possible sequence: A small number of probes.
1256 stw 0, -<some immediate>(1)
1257 [repeat this instruction any (small) number of times]. */
1258
1259 if ((op & 0xffff0000) == 0x90010000)
1260 {
1261 while ((op & 0xffff0000) == 0x90010000)
1262 {
1263 pc = pc + 4;
1264 op = rs6000_fetch_instruction (gdbarch, pc);
1265 }
1266 return pc;
1267 }
1268
1269 /* Second sequence: A probing loop.
1270 addi 12,1,-<some immediate>
1271 lis 0,-<some immediate>
1272 [possibly ori 0,0,<some immediate>]
1273 add 0,12,0
1274 cmpw 0,12,0
1275 beq 0,<disp>
1276 addi 12,12,-<some immediate>
1277 stw 0,0(12)
1278 b <disp>
1279 [possibly one last probe: stw 0,<some immediate>(12)]. */
1280
1281 while (1)
1282 {
1283 /* addi 12,1,-<some immediate> */
1284 if ((op & 0xffff0000) != 0x39810000)
1285 break;
1286
1287 /* lis 0,-<some immediate> */
1288 pc = pc + 4;
1289 op = rs6000_fetch_instruction (gdbarch, pc);
1290 if ((op & 0xffff0000) != 0x3c000000)
1291 break;
1292
1293 pc = pc + 4;
1294 op = rs6000_fetch_instruction (gdbarch, pc);
1295 /* [possibly ori 0,0,<some immediate>] */
1296 if ((op & 0xffff0000) == 0x60000000)
1297 {
1298 pc = pc + 4;
1299 op = rs6000_fetch_instruction (gdbarch, pc);
1300 }
1301 /* add 0,12,0 */
1302 if (op != 0x7c0c0214)
1303 break;
1304
1305 /* cmpw 0,12,0 */
1306 pc = pc + 4;
1307 op = rs6000_fetch_instruction (gdbarch, pc);
1308 if (op != 0x7c0c0000)
1309 break;
1310
1311 /* beq 0,<disp> */
1312 pc = pc + 4;
1313 op = rs6000_fetch_instruction (gdbarch, pc);
1314 if ((op & 0xff9f0001) != 0x41820000)
1315 break;
1316
1317 /* addi 12,12,-<some immediate> */
1318 pc = pc + 4;
1319 op = rs6000_fetch_instruction (gdbarch, pc);
1320 if ((op & 0xffff0000) != 0x398c0000)
1321 break;
1322
1323 /* stw 0,0(12) */
1324 pc = pc + 4;
1325 op = rs6000_fetch_instruction (gdbarch, pc);
1326 if (op != 0x900c0000)
1327 break;
1328
1329 /* b <disp> */
1330 pc = pc + 4;
1331 op = rs6000_fetch_instruction (gdbarch, pc);
1332 if ((op & 0xfc000001) != 0x48000000)
1333 break;
1334
1335 /* [possibly one last probe: stw 0,<some immediate>(12)]. */
1336 pc = pc + 4;
1337 op = rs6000_fetch_instruction (gdbarch, pc);
1338 if ((op & 0xffff0000) == 0x900c0000)
1339 {
1340 pc = pc + 4;
1341 op = rs6000_fetch_instruction (gdbarch, pc);
1342 }
1343
1344 /* We found a valid stack-check sequence, return the new PC. */
1345 return pc;
1346 }
1347
1348 /* Third sequence: No probe; instead, a comparison between the stack size
1349 limit (saved in a run-time global variable) and the current stack
1350 pointer:
1351
1352 addi 0,1,-<some immediate>
1353 lis 12,__gnat_stack_limit@ha
1354 lwz 12,__gnat_stack_limit@l(12)
1355 twllt 0,12
1356
1357 or, with a small variant in the case of a bigger stack frame:
1358 addis 0,1,<some immediate>
1359 addic 0,0,-<some immediate>
1360 lis 12,__gnat_stack_limit@ha
1361 lwz 12,__gnat_stack_limit@l(12)
1362 twllt 0,12
1363 */
1364 while (1)
1365 {
1366 /* addi 0,1,-<some immediate> */
1367 if ((op & 0xffff0000) != 0x38010000)
1368 {
1369 /* small stack frame variant not recognized; try the
1370 big stack frame variant: */
1371
1372 /* addis 0,1,<some immediate> */
1373 if ((op & 0xffff0000) != 0x3c010000)
1374 break;
1375
1376 /* addic 0,0,-<some immediate> */
1377 pc = pc + 4;
1378 op = rs6000_fetch_instruction (gdbarch, pc);
1379 if ((op & 0xffff0000) != 0x30000000)
1380 break;
1381 }
1382
1383 /* lis 12,<some immediate> */
1384 pc = pc + 4;
1385 op = rs6000_fetch_instruction (gdbarch, pc);
1386 if ((op & 0xffff0000) != 0x3d800000)
1387 break;
1388
1389 /* lwz 12,<some immediate>(12) */
1390 pc = pc + 4;
1391 op = rs6000_fetch_instruction (gdbarch, pc);
1392 if ((op & 0xffff0000) != 0x818c0000)
1393 break;
1394
1395 /* twllt 0,12 */
1396 pc = pc + 4;
1397 op = rs6000_fetch_instruction (gdbarch, pc);
1398 if ((op & 0xfffffffe) != 0x7c406008)
1399 break;
1400
1401 /* We found a valid stack-check sequence, return the new PC. */
1402 return pc;
1403 }
1404
1405 /* No stack check code in our prologue, return the start_pc. */
1406 return start_pc;
1407 }
1408
1409 /* return pc value after skipping a function prologue and also return
1410 information about a function frame.
1411
1412 in struct rs6000_framedata fdata:
1413 - frameless is TRUE, if function does not have a frame.
1414 - nosavedpc is TRUE, if function does not save %pc value in its frame.
1415 - offset is the initial size of this stack frame --- the amount by
1416 which we decrement the sp to allocate the frame.
1417 - saved_gpr is the number of the first saved gpr.
1418 - saved_fpr is the number of the first saved fpr.
1419 - saved_vr is the number of the first saved vr.
1420 - saved_ev is the number of the first saved ev.
1421 - alloca_reg is the number of the register used for alloca() handling.
1422 Otherwise -1.
1423 - gpr_offset is the offset of the first saved gpr from the previous frame.
1424 - fpr_offset is the offset of the first saved fpr from the previous frame.
1425 - vr_offset is the offset of the first saved vr from the previous frame.
1426 - ev_offset is the offset of the first saved ev from the previous frame.
1427 - lr_offset is the offset of the saved lr
1428 - cr_offset is the offset of the saved cr
1429 - vrsave_offset is the offset of the saved vrsave register. */
1430
1431 static CORE_ADDR
1432 skip_prologue (struct gdbarch *gdbarch, CORE_ADDR pc, CORE_ADDR lim_pc,
1433 struct rs6000_framedata *fdata)
1434 {
1435 CORE_ADDR orig_pc = pc;
1436 CORE_ADDR last_prologue_pc = pc;
1437 CORE_ADDR li_found_pc = 0;
1438 gdb_byte buf[4];
1439 unsigned long op;
1440 long offset = 0;
1441 long alloca_reg_offset = 0;
1442 long vr_saved_offset = 0;
1443 int lr_reg = -1;
1444 int cr_reg = -1;
1445 int vr_reg = -1;
1446 int ev_reg = -1;
1447 long ev_offset = 0;
1448 int vrsave_reg = -1;
1449 int reg;
1450 int framep = 0;
1451 int minimal_toc_loaded = 0;
1452 int prev_insn_was_prologue_insn = 1;
1453 int num_skip_non_prologue_insns = 0;
1454 int r0_contains_arg = 0;
1455 const struct bfd_arch_info *arch_info = gdbarch_bfd_arch_info (gdbarch);
1456 struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch);
1457 enum bfd_endian byte_order = gdbarch_byte_order (gdbarch);
1458
1459 memset (fdata, 0, sizeof (struct rs6000_framedata));
1460 fdata->saved_gpr = -1;
1461 fdata->saved_fpr = -1;
1462 fdata->saved_vr = -1;
1463 fdata->saved_ev = -1;
1464 fdata->alloca_reg = -1;
1465 fdata->frameless = 1;
1466 fdata->nosavedpc = 1;
1467 fdata->lr_register = -1;
1468
1469 pc = rs6000_skip_stack_check (gdbarch, pc);
1470 if (pc >= lim_pc)
1471 pc = lim_pc;
1472
1473 for (;; pc += 4)
1474 {
1475 /* Sometimes it isn't clear if an instruction is a prologue
1476 instruction or not. When we encounter one of these ambiguous
1477 cases, we'll set prev_insn_was_prologue_insn to 0 (false).
1478 Otherwise, we'll assume that it really is a prologue instruction. */
1479 if (prev_insn_was_prologue_insn)
1480 last_prologue_pc = pc;
1481
1482 /* Stop scanning if we've hit the limit. */
1483 if (pc >= lim_pc)
1484 break;
1485
1486 prev_insn_was_prologue_insn = 1;
1487
1488 /* Fetch the instruction and convert it to an integer. */
1489 if (target_read_memory (pc, buf, 4))
1490 break;
1491 op = extract_unsigned_integer (buf, 4, byte_order);
1492
1493 if ((op & 0xfc1fffff) == 0x7c0802a6)
1494 { /* mflr Rx */
1495 /* Since shared library / PIC code, which needs to get its
1496 address at runtime, can appear to save more than one link
1497 register vis:
1498
1499 *INDENT-OFF*
1500 stwu r1,-304(r1)
1501 mflr r3
1502 bl 0xff570d0 (blrl)
1503 stw r30,296(r1)
1504 mflr r30
1505 stw r31,300(r1)
1506 stw r3,308(r1);
1507 ...
1508 *INDENT-ON*
1509
1510 remember just the first one, but skip over additional
1511 ones. */
1512 if (lr_reg == -1)
1513 lr_reg = (op & 0x03e00000) >> 21;
1514 if (lr_reg == 0)
1515 r0_contains_arg = 0;
1516 continue;
1517 }
1518 else if ((op & 0xfc1fffff) == 0x7c000026)
1519 { /* mfcr Rx */
1520 cr_reg = (op & 0x03e00000) >> 21;
1521 if (cr_reg == 0)
1522 r0_contains_arg = 0;
1523 continue;
1524
1525 }
1526 else if ((op & 0xfc1f0000) == 0xd8010000)
1527 { /* stfd Rx,NUM(r1) */
1528 reg = GET_SRC_REG (op);
1529 if (fdata->saved_fpr == -1 || fdata->saved_fpr > reg)
1530 {
1531 fdata->saved_fpr = reg;
1532 fdata->fpr_offset = SIGNED_SHORT (op) + offset;
1533 }
1534 continue;
1535
1536 }
1537 else if (((op & 0xfc1f0000) == 0xbc010000) || /* stm Rx, NUM(r1) */
1538 (((op & 0xfc1f0000) == 0x90010000 || /* st rx,NUM(r1) */
1539 (op & 0xfc1f0003) == 0xf8010000) && /* std rx,NUM(r1) */
1540 (op & 0x03e00000) >= 0x01a00000)) /* rx >= r13 */
1541 {
1542
1543 reg = GET_SRC_REG (op);
1544 if ((op & 0xfc1f0000) == 0xbc010000)
1545 fdata->gpr_mask |= ~((1U << reg) - 1);
1546 else
1547 fdata->gpr_mask |= 1U << reg;
1548 if (fdata->saved_gpr == -1 || fdata->saved_gpr > reg)
1549 {
1550 fdata->saved_gpr = reg;
1551 if ((op & 0xfc1f0003) == 0xf8010000)
1552 op &= ~3UL;
1553 fdata->gpr_offset = SIGNED_SHORT (op) + offset;
1554 }
1555 continue;
1556
1557 }
1558 else if ((op & 0xffff0000) == 0x3c4c0000
1559 || (op & 0xffff0000) == 0x3c400000
1560 || (op & 0xffff0000) == 0x38420000)
1561 {
1562 /* . 0: addis 2,12,.TOC.-0b@ha
1563 . addi 2,2,.TOC.-0b@l
1564 or
1565 . lis 2,.TOC.@ha
1566 . addi 2,2,.TOC.@l
1567 used by ELFv2 global entry points to set up r2. */
1568 continue;
1569 }
1570 else if (op == 0x60000000)
1571 {
1572 /* nop */
1573 /* Allow nops in the prologue, but do not consider them to
1574 be part of the prologue unless followed by other prologue
1575 instructions. */
1576 prev_insn_was_prologue_insn = 0;
1577 continue;
1578
1579 }
1580 else if ((op & 0xffff0000) == 0x3c000000)
1581 { /* addis 0,0,NUM, used for >= 32k frames */
1582 fdata->offset = (op & 0x0000ffff) << 16;
1583 fdata->frameless = 0;
1584 r0_contains_arg = 0;
1585 continue;
1586
1587 }
1588 else if ((op & 0xffff0000) == 0x60000000)
1589 { /* ori 0,0,NUM, 2nd half of >= 32k frames */
1590 fdata->offset |= (op & 0x0000ffff);
1591 fdata->frameless = 0;
1592 r0_contains_arg = 0;
1593 continue;
1594
1595 }
1596 else if (lr_reg >= 0 &&
1597 ((store_insn_p (op, lr_reg, 1, true)) ||
1598 (framep &&
1599 (store_insn_p (op, lr_reg,
1600 fdata->alloca_reg - tdep->ppc_gp0_regnum,
1601 false)))))
1602 {
1603 if (store_insn_p (op, lr_reg, 1, true))
1604 fdata->lr_offset = offset;
1605 else /* LR save through frame pointer. */
1606 fdata->lr_offset = alloca_reg_offset;
1607
1608 fdata->nosavedpc = 0;
1609 /* Invalidate lr_reg, but don't set it to -1.
1610 That would mean that it had never been set. */
1611 lr_reg = -2;
1612 if ((op & 0xfc000003) == 0xf8000000 || /* std */
1613 (op & 0xfc000000) == 0x90000000) /* stw */
1614 {
1615 /* Does not update r1, so add displacement to lr_offset. */
1616 fdata->lr_offset += SIGNED_SHORT (op);
1617 }
1618 continue;
1619
1620 }
1621 else if (cr_reg >= 0 &&
1622 (store_insn_p (op, cr_reg, 1, true)))
1623 {
1624 fdata->cr_offset = offset;
1625 /* Invalidate cr_reg, but don't set it to -1.
1626 That would mean that it had never been set. */
1627 cr_reg = -2;
1628 if ((op & 0xfc000003) == 0xf8000000 ||
1629 (op & 0xfc000000) == 0x90000000)
1630 {
1631 /* Does not update r1, so add displacement to cr_offset. */
1632 fdata->cr_offset += SIGNED_SHORT (op);
1633 }
1634 continue;
1635
1636 }
1637 else if ((op & 0xfe80ffff) == 0x42800005 && lr_reg != -1)
1638 {
1639 /* bcl 20,xx,.+4 is used to get the current PC, with or without
1640 prediction bits. If the LR has already been saved, we can
1641 skip it. */
1642 continue;
1643 }
1644 else if (op == 0x48000005)
1645 { /* bl .+4 used in
1646 -mrelocatable */
1647 fdata->used_bl = 1;
1648 continue;
1649
1650 }
1651 else if (op == 0x48000004)
1652 { /* b .+4 (xlc) */
1653 break;
1654
1655 }
1656 else if ((op & 0xffff0000) == 0x3fc00000 || /* addis 30,0,foo@ha, used
1657 in V.4 -mminimal-toc */
1658 (op & 0xffff0000) == 0x3bde0000)
1659 { /* addi 30,30,foo@l */
1660 continue;
1661
1662 }
1663 else if ((op & 0xfc000001) == 0x48000001)
1664 { /* bl foo,
1665 to save fprs??? */
1666
1667 fdata->frameless = 0;
1668
1669 /* If the return address has already been saved, we can skip
1670 calls to blrl (for PIC). */
1671 if (lr_reg != -1 && bl_to_blrl_insn_p (pc, op, byte_order))
1672 {
1673 fdata->used_bl = 1;
1674 continue;
1675 }
1676
1677 /* Don't skip over the subroutine call if it is not within
1678 the first three instructions of the prologue and either
1679 we have no line table information or the line info tells
1680 us that the subroutine call is not part of the line
1681 associated with the prologue. */
1682 if ((pc - orig_pc) > 8)
1683 {
1684 struct symtab_and_line prologue_sal = find_pc_line (orig_pc, 0);
1685 struct symtab_and_line this_sal = find_pc_line (pc, 0);
1686
1687 if ((prologue_sal.line == 0)
1688 || (prologue_sal.line != this_sal.line))
1689 break;
1690 }
1691
1692 op = read_memory_integer (pc + 4, 4, byte_order);
1693
1694 /* At this point, make sure this is not a trampoline
1695 function (a function that simply calls another functions,
1696 and nothing else). If the next is not a nop, this branch
1697 was part of the function prologue. */
1698
1699 if (op == 0x4def7b82 || op == 0) /* crorc 15, 15, 15 */
1700 break; /* Don't skip over
1701 this branch. */
1702
1703 fdata->used_bl = 1;
1704 continue;
1705 }
1706 /* update stack pointer */
1707 else if ((op & 0xfc1f0000) == 0x94010000)
1708 { /* stu rX,NUM(r1) || stwu rX,NUM(r1) */
1709 fdata->frameless = 0;
1710 fdata->offset = SIGNED_SHORT (op);
1711 offset = fdata->offset;
1712 continue;
1713 }
1714 else if ((op & 0xfc1f07fa) == 0x7c01016a)
1715 { /* stwux rX,r1,rY || stdux rX,r1,rY */
1716 /* No way to figure out what r1 is going to be. */
1717 fdata->frameless = 0;
1718 offset = fdata->offset;
1719 continue;
1720 }
1721 else if ((op & 0xfc1f0003) == 0xf8010001)
1722 { /* stdu rX,NUM(r1) */
1723 fdata->frameless = 0;
1724 fdata->offset = SIGNED_SHORT (op & ~3UL);
1725 offset = fdata->offset;
1726 continue;
1727 }
1728 else if ((op & 0xffff0000) == 0x38210000)
1729 { /* addi r1,r1,SIMM */
1730 fdata->frameless = 0;
1731 fdata->offset += SIGNED_SHORT (op);
1732 offset = fdata->offset;
1733 continue;
1734 }
1735 /* Load up minimal toc pointer. Do not treat an epilogue restore
1736 of r31 as a minimal TOC load. */
1737 else if (((op >> 22) == 0x20f || /* l r31,... or l r30,... */
1738 (op >> 22) == 0x3af) /* ld r31,... or ld r30,... */
1739 && !framep
1740 && !minimal_toc_loaded)
1741 {
1742 minimal_toc_loaded = 1;
1743 continue;
1744
1745 /* move parameters from argument registers to local variable
1746 registers */
1747 }
1748 else if ((op & 0xfc0007fe) == 0x7c000378 && /* mr(.) Rx,Ry */
1749 (((op >> 21) & 31) >= 3) && /* R3 >= Ry >= R10 */
1750 (((op >> 21) & 31) <= 10) &&
1751 ((long) ((op >> 16) & 31)
1752 >= fdata->saved_gpr)) /* Rx: local var reg */
1753 {
1754 continue;
1755
1756 /* store parameters in stack */
1757 }
1758 /* Move parameters from argument registers to temporary register. */
1759 else if (store_param_on_stack_p (op, framep, &r0_contains_arg))
1760 {
1761 continue;
1762
1763 /* Set up frame pointer */
1764 }
1765 else if (op == 0x603d0000) /* oril r29, r1, 0x0 */
1766 {
1767 fdata->frameless = 0;
1768 framep = 1;
1769 fdata->alloca_reg = (tdep->ppc_gp0_regnum + 29);
1770 alloca_reg_offset = offset;
1771 continue;
1772
1773 /* Another way to set up the frame pointer. */
1774 }
1775 else if (op == 0x603f0000 /* oril r31, r1, 0x0 */
1776 || op == 0x7c3f0b78)
1777 { /* mr r31, r1 */
1778 fdata->frameless = 0;
1779 framep = 1;
1780 fdata->alloca_reg = (tdep->ppc_gp0_regnum + 31);
1781 alloca_reg_offset = offset;
1782 continue;
1783
1784 /* Another way to set up the frame pointer. */
1785 }
1786 else if ((op & 0xfc1fffff) == 0x38010000)
1787 { /* addi rX, r1, 0x0 */
1788 fdata->frameless = 0;
1789 framep = 1;
1790 fdata->alloca_reg = (tdep->ppc_gp0_regnum
1791 + ((op & ~0x38010000) >> 21));
1792 alloca_reg_offset = offset;
1793 continue;
1794 }
1795 /* AltiVec related instructions. */
1796 /* Store the vrsave register (spr 256) in another register for
1797 later manipulation, or load a register into the vrsave
1798 register. 2 instructions are used: mfvrsave and
1799 mtvrsave. They are shorthand notation for mfspr Rn, SPR256
1800 and mtspr SPR256, Rn. */
1801 /* mfspr Rn SPR256 == 011111 nnnnn 0000001000 01010100110
1802 mtspr SPR256 Rn == 011111 nnnnn 0000001000 01110100110 */
1803 else if ((op & 0xfc1fffff) == 0x7c0042a6) /* mfvrsave Rn */
1804 {
1805 vrsave_reg = GET_SRC_REG (op);
1806 continue;
1807 }
1808 else if ((op & 0xfc1fffff) == 0x7c0043a6) /* mtvrsave Rn */
1809 {
1810 continue;
1811 }
1812 /* Store the register where vrsave was saved to onto the stack:
1813 rS is the register where vrsave was stored in a previous
1814 instruction. */
1815 /* 100100 sssss 00001 dddddddd dddddddd */
1816 else if ((op & 0xfc1f0000) == 0x90010000) /* stw rS, d(r1) */
1817 {
1818 if (vrsave_reg == GET_SRC_REG (op))
1819 {
1820 fdata->vrsave_offset = SIGNED_SHORT (op) + offset;
1821 vrsave_reg = -1;
1822 }
1823 continue;
1824 }
1825 /* Compute the new value of vrsave, by modifying the register
1826 where vrsave was saved to. */
1827 else if (((op & 0xfc000000) == 0x64000000) /* oris Ra, Rs, UIMM */
1828 || ((op & 0xfc000000) == 0x60000000))/* ori Ra, Rs, UIMM */
1829 {
1830 continue;
1831 }
1832 /* li r0, SIMM (short for addi r0, 0, SIMM). This is the first
1833 in a pair of insns to save the vector registers on the
1834 stack. */
1835 /* 001110 00000 00000 iiii iiii iiii iiii */
1836 /* 001110 01110 00000 iiii iiii iiii iiii */
1837 else if ((op & 0xffff0000) == 0x38000000 /* li r0, SIMM */
1838 || (op & 0xffff0000) == 0x39c00000) /* li r14, SIMM */
1839 {
1840 if ((op & 0xffff0000) == 0x38000000)
1841 r0_contains_arg = 0;
1842 li_found_pc = pc;
1843 vr_saved_offset = SIGNED_SHORT (op);
1844
1845 /* This insn by itself is not part of the prologue, unless
1846 if part of the pair of insns mentioned above. So do not
1847 record this insn as part of the prologue yet. */
1848 prev_insn_was_prologue_insn = 0;
1849 }
1850 /* Store vector register S at (r31+r0) aligned to 16 bytes. */
1851 /* 011111 sssss 11111 00000 00111001110 */
1852 else if ((op & 0xfc1fffff) == 0x7c1f01ce) /* stvx Vs, R31, R0 */
1853 {
1854 if (pc == (li_found_pc + 4))
1855 {
1856 vr_reg = GET_SRC_REG (op);
1857 /* If this is the first vector reg to be saved, or if
1858 it has a lower number than others previously seen,
1859 reupdate the frame info. */
1860 if (fdata->saved_vr == -1 || fdata->saved_vr > vr_reg)
1861 {
1862 fdata->saved_vr = vr_reg;
1863 fdata->vr_offset = vr_saved_offset + offset;
1864 }
1865 vr_saved_offset = -1;
1866 vr_reg = -1;
1867 li_found_pc = 0;
1868 }
1869 }
1870 /* End AltiVec related instructions. */
1871
1872 /* Start BookE related instructions. */
1873 /* Store gen register S at (r31+uimm).
1874 Any register less than r13 is volatile, so we don't care. */
1875 /* 000100 sssss 11111 iiiii 01100100001 */
1876 else if (arch_info->mach == bfd_mach_ppc_e500
1877 && (op & 0xfc1f07ff) == 0x101f0321) /* evstdd Rs,uimm(R31) */
1878 {
1879 if ((op & 0x03e00000) >= 0x01a00000) /* Rs >= r13 */
1880 {
1881 unsigned int imm;
1882 ev_reg = GET_SRC_REG (op);
1883 imm = (op >> 11) & 0x1f;
1884 ev_offset = imm * 8;
1885 /* If this is the first vector reg to be saved, or if
1886 it has a lower number than others previously seen,
1887 reupdate the frame info. */
1888 if (fdata->saved_ev == -1 || fdata->saved_ev > ev_reg)
1889 {
1890 fdata->saved_ev = ev_reg;
1891 fdata->ev_offset = ev_offset + offset;
1892 }
1893 }
1894 continue;
1895 }
1896 /* Store gen register rS at (r1+rB). */
1897 /* 000100 sssss 00001 bbbbb 01100100000 */
1898 else if (arch_info->mach == bfd_mach_ppc_e500
1899 && (op & 0xffe007ff) == 0x13e00320) /* evstddx RS,R1,Rb */
1900 {
1901 if (pc == (li_found_pc + 4))
1902 {
1903 ev_reg = GET_SRC_REG (op);
1904 /* If this is the first vector reg to be saved, or if
1905 it has a lower number than others previously seen,
1906 reupdate the frame info. */
1907 /* We know the contents of rB from the previous instruction. */
1908 if (fdata->saved_ev == -1 || fdata->saved_ev > ev_reg)
1909 {
1910 fdata->saved_ev = ev_reg;
1911 fdata->ev_offset = vr_saved_offset + offset;
1912 }
1913 vr_saved_offset = -1;
1914 ev_reg = -1;
1915 li_found_pc = 0;
1916 }
1917 continue;
1918 }
1919 /* Store gen register r31 at (rA+uimm). */
1920 /* 000100 11111 aaaaa iiiii 01100100001 */
1921 else if (arch_info->mach == bfd_mach_ppc_e500
1922 && (op & 0xffe007ff) == 0x13e00321) /* evstdd R31,Ra,UIMM */
1923 {
1924 /* Wwe know that the source register is 31 already, but
1925 it can't hurt to compute it. */
1926 ev_reg = GET_SRC_REG (op);
1927 ev_offset = ((op >> 11) & 0x1f) * 8;
1928 /* If this is the first vector reg to be saved, or if
1929 it has a lower number than others previously seen,
1930 reupdate the frame info. */
1931 if (fdata->saved_ev == -1 || fdata->saved_ev > ev_reg)
1932 {
1933 fdata->saved_ev = ev_reg;
1934 fdata->ev_offset = ev_offset + offset;
1935 }
1936
1937 continue;
1938 }
1939 /* Store gen register S at (r31+r0).
1940 Store param on stack when offset from SP bigger than 4 bytes. */
1941 /* 000100 sssss 11111 00000 01100100000 */
1942 else if (arch_info->mach == bfd_mach_ppc_e500
1943 && (op & 0xfc1fffff) == 0x101f0320) /* evstddx Rs,R31,R0 */
1944 {
1945 if (pc == (li_found_pc + 4))
1946 {
1947 if ((op & 0x03e00000) >= 0x01a00000)
1948 {
1949 ev_reg = GET_SRC_REG (op);
1950 /* If this is the first vector reg to be saved, or if
1951 it has a lower number than others previously seen,
1952 reupdate the frame info. */
1953 /* We know the contents of r0 from the previous
1954 instruction. */
1955 if (fdata->saved_ev == -1 || fdata->saved_ev > ev_reg)
1956 {
1957 fdata->saved_ev = ev_reg;
1958 fdata->ev_offset = vr_saved_offset + offset;
1959 }
1960 ev_reg = -1;
1961 }
1962 vr_saved_offset = -1;
1963 li_found_pc = 0;
1964 continue;
1965 }
1966 }
1967 /* End BookE related instructions. */
1968
1969 else
1970 {
1971 /* Not a recognized prologue instruction.
1972 Handle optimizer code motions into the prologue by continuing
1973 the search if we have no valid frame yet or if the return
1974 address is not yet saved in the frame. Also skip instructions
1975 if some of the GPRs expected to be saved are not yet saved. */
1976 if (fdata->frameless == 0 && fdata->nosavedpc == 0
1977 && fdata->saved_gpr != -1)
1978 {
1979 unsigned int all_mask = ~((1U << fdata->saved_gpr) - 1);
1980
1981 if ((fdata->gpr_mask & all_mask) == all_mask)
1982 break;
1983 }
1984
1985 if (op == 0x4e800020 /* blr */
1986 || op == 0x4e800420) /* bctr */
1987 /* Do not scan past epilogue in frameless functions or
1988 trampolines. */
1989 break;
1990 if ((op & 0xf4000000) == 0x40000000) /* bxx */
1991 /* Never skip branches. */
1992 break;
1993
1994 if (num_skip_non_prologue_insns++ > max_skip_non_prologue_insns)
1995 /* Do not scan too many insns, scanning insns is expensive with
1996 remote targets. */
1997 break;
1998
1999 /* Continue scanning. */
2000 prev_insn_was_prologue_insn = 0;
2001 continue;
2002 }
2003 }
2004
2005 #if 0
2006 /* I have problems with skipping over __main() that I need to address
2007 * sometime. Previously, I used to use misc_function_vector which
2008 * didn't work as well as I wanted to be. -MGO */
2009
2010 /* If the first thing after skipping a prolog is a branch to a function,
2011 this might be a call to an initializer in main(), introduced by gcc2.
2012 We'd like to skip over it as well. Fortunately, xlc does some extra
2013 work before calling a function right after a prologue, thus we can
2014 single out such gcc2 behaviour. */
2015
2016
2017 if ((op & 0xfc000001) == 0x48000001)
2018 { /* bl foo, an initializer function? */
2019 op = read_memory_integer (pc + 4, 4, byte_order);
2020
2021 if (op == 0x4def7b82)
2022 { /* cror 0xf, 0xf, 0xf (nop) */
2023
2024 /* Check and see if we are in main. If so, skip over this
2025 initializer function as well. */
2026
2027 tmp = find_pc_misc_function (pc);
2028 if (tmp >= 0
2029 && strcmp (misc_function_vector[tmp].name, main_name ()) == 0)
2030 return pc + 8;
2031 }
2032 }
2033 #endif /* 0 */
2034
2035 if (pc == lim_pc && lr_reg >= 0)
2036 fdata->lr_register = lr_reg;
2037
2038 fdata->offset = -fdata->offset;
2039 return last_prologue_pc;
2040 }
2041
2042 static CORE_ADDR
2043 rs6000_skip_prologue (struct gdbarch *gdbarch, CORE_ADDR pc)
2044 {
2045 struct rs6000_framedata frame;
2046 CORE_ADDR limit_pc, func_addr, func_end_addr = 0;
2047
2048 /* See if we can determine the end of the prologue via the symbol table.
2049 If so, then return either PC, or the PC after the prologue, whichever
2050 is greater. */
2051 if (find_pc_partial_function (pc, NULL, &func_addr, &func_end_addr))
2052 {
2053 CORE_ADDR post_prologue_pc
2054 = skip_prologue_using_sal (gdbarch, func_addr);
2055 if (post_prologue_pc != 0)
2056 return std::max (pc, post_prologue_pc);
2057 }
2058
2059 /* Can't determine prologue from the symbol table, need to examine
2060 instructions. */
2061
2062 /* Find an upper limit on the function prologue using the debug
2063 information. If the debug information could not be used to provide
2064 that bound, then use an arbitrary large number as the upper bound. */
2065 limit_pc = skip_prologue_using_sal (gdbarch, pc);
2066 if (limit_pc == 0)
2067 limit_pc = pc + 100; /* Magic. */
2068
2069 /* Do not allow limit_pc to be past the function end, if we know
2070 where that end is... */
2071 if (func_end_addr && limit_pc > func_end_addr)
2072 limit_pc = func_end_addr;
2073
2074 pc = skip_prologue (gdbarch, pc, limit_pc, &frame);
2075 return pc;
2076 }
2077
2078 /* When compiling for EABI, some versions of GCC emit a call to __eabi
2079 in the prologue of main().
2080
2081 The function below examines the code pointed at by PC and checks to
2082 see if it corresponds to a call to __eabi. If so, it returns the
2083 address of the instruction following that call. Otherwise, it simply
2084 returns PC. */
2085
2086 static CORE_ADDR
2087 rs6000_skip_main_prologue (struct gdbarch *gdbarch, CORE_ADDR pc)
2088 {
2089 enum bfd_endian byte_order = gdbarch_byte_order (gdbarch);
2090 gdb_byte buf[4];
2091 unsigned long op;
2092
2093 if (target_read_memory (pc, buf, 4))
2094 return pc;
2095 op = extract_unsigned_integer (buf, 4, byte_order);
2096
2097 if ((op & BL_MASK) == BL_INSTRUCTION)
2098 {
2099 CORE_ADDR displ = op & BL_DISPLACEMENT_MASK;
2100 CORE_ADDR call_dest = pc + 4 + displ;
2101 struct bound_minimal_symbol s = lookup_minimal_symbol_by_pc (call_dest);
2102
2103 /* We check for ___eabi (three leading underscores) in addition
2104 to __eabi in case the GCC option "-fleading-underscore" was
2105 used to compile the program. */
2106 if (s.minsym != NULL
2107 && s.minsym->linkage_name () != NULL
2108 && (strcmp (s.minsym->linkage_name (), "__eabi") == 0
2109 || strcmp (s.minsym->linkage_name (), "___eabi") == 0))
2110 pc += 4;
2111 }
2112 return pc;
2113 }
2114
2115 /* All the ABI's require 16 byte alignment. */
2116 static CORE_ADDR
2117 rs6000_frame_align (struct gdbarch *gdbarch, CORE_ADDR addr)
2118 {
2119 return (addr & -16);
2120 }
2121
2122 /* Return whether handle_inferior_event() should proceed through code
2123 starting at PC in function NAME when stepping.
2124
2125 The AIX -bbigtoc linker option generates functions @FIX0, @FIX1, etc. to
2126 handle memory references that are too distant to fit in instructions
2127 generated by the compiler. For example, if 'foo' in the following
2128 instruction:
2129
2130 lwz r9,foo(r2)
2131
2132 is greater than 32767, the linker might replace the lwz with a branch to
2133 somewhere in @FIX1 that does the load in 2 instructions and then branches
2134 back to where execution should continue.
2135
2136 GDB should silently step over @FIX code, just like AIX dbx does.
2137 Unfortunately, the linker uses the "b" instruction for the
2138 branches, meaning that the link register doesn't get set.
2139 Therefore, GDB's usual step_over_function () mechanism won't work.
2140
2141 Instead, use the gdbarch_skip_trampoline_code and
2142 gdbarch_skip_trampoline_code hooks in handle_inferior_event() to skip past
2143 @FIX code. */
2144
2145 static int
2146 rs6000_in_solib_return_trampoline (struct gdbarch *gdbarch,
2147 CORE_ADDR pc, const char *name)
2148 {
2149 return name && startswith (name, "@FIX");
2150 }
2151
2152 /* Skip code that the user doesn't want to see when stepping:
2153
2154 1. Indirect function calls use a piece of trampoline code to do context
2155 switching, i.e. to set the new TOC table. Skip such code if we are on
2156 its first instruction (as when we have single-stepped to here).
2157
2158 2. Skip shared library trampoline code (which is different from
2159 indirect function call trampolines).
2160
2161 3. Skip bigtoc fixup code.
2162
2163 Result is desired PC to step until, or NULL if we are not in
2164 code that should be skipped. */
2165
2166 static CORE_ADDR
2167 rs6000_skip_trampoline_code (struct frame_info *frame, CORE_ADDR pc)
2168 {
2169 struct gdbarch *gdbarch = get_frame_arch (frame);
2170 struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch);
2171 enum bfd_endian byte_order = gdbarch_byte_order (gdbarch);
2172 unsigned int ii, op;
2173 int rel;
2174 CORE_ADDR solib_target_pc;
2175 struct bound_minimal_symbol msymbol;
2176
2177 static unsigned trampoline_code[] =
2178 {
2179 0x800b0000, /* l r0,0x0(r11) */
2180 0x90410014, /* st r2,0x14(r1) */
2181 0x7c0903a6, /* mtctr r0 */
2182 0x804b0004, /* l r2,0x4(r11) */
2183 0x816b0008, /* l r11,0x8(r11) */
2184 0x4e800420, /* bctr */
2185 0x4e800020, /* br */
2186 0
2187 };
2188
2189 /* Check for bigtoc fixup code. */
2190 msymbol = lookup_minimal_symbol_by_pc (pc);
2191 if (msymbol.minsym
2192 && rs6000_in_solib_return_trampoline (gdbarch, pc,
2193 msymbol.minsym->linkage_name ()))
2194 {
2195 /* Double-check that the third instruction from PC is relative "b". */
2196 op = read_memory_integer (pc + 8, 4, byte_order);
2197 if ((op & 0xfc000003) == 0x48000000)
2198 {
2199 /* Extract bits 6-29 as a signed 24-bit relative word address and
2200 add it to the containing PC. */
2201 rel = ((int)(op << 6) >> 6);
2202 return pc + 8 + rel;
2203 }
2204 }
2205
2206 /* If pc is in a shared library trampoline, return its target. */
2207 solib_target_pc = find_solib_trampoline_target (frame, pc);
2208 if (solib_target_pc)
2209 return solib_target_pc;
2210
2211 for (ii = 0; trampoline_code[ii]; ++ii)
2212 {
2213 op = read_memory_integer (pc + (ii * 4), 4, byte_order);
2214 if (op != trampoline_code[ii])
2215 return 0;
2216 }
2217 ii = get_frame_register_unsigned (frame, 11); /* r11 holds destination
2218 addr. */
2219 pc = read_memory_unsigned_integer (ii, tdep->wordsize, byte_order);
2220 return pc;
2221 }
2222
2223 /* ISA-specific vector types. */
2224
2225 static struct type *
2226 rs6000_builtin_type_vec64 (struct gdbarch *gdbarch)
2227 {
2228 struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch);
2229
2230 if (!tdep->ppc_builtin_type_vec64)
2231 {
2232 const struct builtin_type *bt = builtin_type (gdbarch);
2233
2234 /* The type we're building is this: */
2235 #if 0
2236 union __gdb_builtin_type_vec64
2237 {
2238 int64_t uint64;
2239 float v2_float[2];
2240 int32_t v2_int32[2];
2241 int16_t v4_int16[4];
2242 int8_t v8_int8[8];
2243 };
2244 #endif
2245
2246 struct type *t;
2247
2248 t = arch_composite_type (gdbarch,
2249 "__ppc_builtin_type_vec64", TYPE_CODE_UNION);
2250 append_composite_type_field (t, "uint64", bt->builtin_int64);
2251 append_composite_type_field (t, "v2_float",
2252 init_vector_type (bt->builtin_float, 2));
2253 append_composite_type_field (t, "v2_int32",
2254 init_vector_type (bt->builtin_int32, 2));
2255 append_composite_type_field (t, "v4_int16",
2256 init_vector_type (bt->builtin_int16, 4));
2257 append_composite_type_field (t, "v8_int8",
2258 init_vector_type (bt->builtin_int8, 8));
2259
2260 t->set_is_vector (true);
2261 t->set_name ("ppc_builtin_type_vec64");
2262 tdep->ppc_builtin_type_vec64 = t;
2263 }
2264
2265 return tdep->ppc_builtin_type_vec64;
2266 }
2267
2268 /* Vector 128 type. */
2269
2270 static struct type *
2271 rs6000_builtin_type_vec128 (struct gdbarch *gdbarch)
2272 {
2273 struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch);
2274
2275 if (!tdep->ppc_builtin_type_vec128)
2276 {
2277 const struct builtin_type *bt = builtin_type (gdbarch);
2278
2279 /* The type we're building is this
2280
2281 type = union __ppc_builtin_type_vec128 {
2282 uint128_t uint128;
2283 double v2_double[2];
2284 float v4_float[4];
2285 int32_t v4_int32[4];
2286 int16_t v8_int16[8];
2287 int8_t v16_int8[16];
2288 }
2289 */
2290
2291 struct type *t;
2292
2293 t = arch_composite_type (gdbarch,
2294 "__ppc_builtin_type_vec128", TYPE_CODE_UNION);
2295 append_composite_type_field (t, "uint128", bt->builtin_uint128);
2296 append_composite_type_field (t, "v2_double",
2297 init_vector_type (bt->builtin_double, 2));
2298 append_composite_type_field (t, "v4_float",
2299 init_vector_type (bt->builtin_float, 4));
2300 append_composite_type_field (t, "v4_int32",
2301 init_vector_type (bt->builtin_int32, 4));
2302 append_composite_type_field (t, "v8_int16",
2303 init_vector_type (bt->builtin_int16, 8));
2304 append_composite_type_field (t, "v16_int8",
2305 init_vector_type (bt->builtin_int8, 16));
2306
2307 t->set_is_vector (true);
2308 t->set_name ("ppc_builtin_type_vec128");
2309 tdep->ppc_builtin_type_vec128 = t;
2310 }
2311
2312 return tdep->ppc_builtin_type_vec128;
2313 }
2314
2315 /* Return the name of register number REGNO, or the empty string if it
2316 is an anonymous register. */
2317
2318 static const char *
2319 rs6000_register_name (struct gdbarch *gdbarch, int regno)
2320 {
2321 struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch);
2322
2323 /* The upper half "registers" have names in the XML description,
2324 but we present only the low GPRs and the full 64-bit registers
2325 to the user. */
2326 if (tdep->ppc_ev0_upper_regnum >= 0
2327 && tdep->ppc_ev0_upper_regnum <= regno
2328 && regno < tdep->ppc_ev0_upper_regnum + ppc_num_gprs)
2329 return "";
2330
2331 /* Hide the upper halves of the vs0~vs31 registers. */
2332 if (tdep->ppc_vsr0_regnum >= 0
2333 && tdep->ppc_vsr0_upper_regnum <= regno
2334 && regno < tdep->ppc_vsr0_upper_regnum + ppc_num_gprs)
2335 return "";
2336
2337 /* Hide the upper halves of the cvs0~cvs31 registers. */
2338 if (PPC_CVSR0_UPPER_REGNUM <= regno
2339 && regno < PPC_CVSR0_UPPER_REGNUM + ppc_num_gprs)
2340 return "";
2341
2342 /* Check if the SPE pseudo registers are available. */
2343 if (IS_SPE_PSEUDOREG (tdep, regno))
2344 {
2345 static const char *const spe_regnames[] = {
2346 "ev0", "ev1", "ev2", "ev3", "ev4", "ev5", "ev6", "ev7",
2347 "ev8", "ev9", "ev10", "ev11", "ev12", "ev13", "ev14", "ev15",
2348 "ev16", "ev17", "ev18", "ev19", "ev20", "ev21", "ev22", "ev23",
2349 "ev24", "ev25", "ev26", "ev27", "ev28", "ev29", "ev30", "ev31",
2350 };
2351 return spe_regnames[regno - tdep->ppc_ev0_regnum];
2352 }
2353
2354 /* Check if the decimal128 pseudo-registers are available. */
2355 if (IS_DFP_PSEUDOREG (tdep, regno))
2356 {
2357 static const char *const dfp128_regnames[] = {
2358 "dl0", "dl1", "dl2", "dl3",
2359 "dl4", "dl5", "dl6", "dl7",
2360 "dl8", "dl9", "dl10", "dl11",
2361 "dl12", "dl13", "dl14", "dl15"
2362 };
2363 return dfp128_regnames[regno - tdep->ppc_dl0_regnum];
2364 }
2365
2366 /* Check if this is a vX alias for a raw vrX vector register. */
2367 if (IS_V_ALIAS_PSEUDOREG (tdep, regno))
2368 {
2369 static const char *const vector_alias_regnames[] = {
2370 "v0", "v1", "v2", "v3", "v4", "v5", "v6", "v7",
2371 "v8", "v9", "v10", "v11", "v12", "v13", "v14", "v15",
2372 "v16", "v17", "v18", "v19", "v20", "v21", "v22", "v23",
2373 "v24", "v25", "v26", "v27", "v28", "v29", "v30", "v31"
2374 };
2375 return vector_alias_regnames[regno - tdep->ppc_v0_alias_regnum];
2376 }
2377
2378 /* Check if this is a VSX pseudo-register. */
2379 if (IS_VSX_PSEUDOREG (tdep, regno))
2380 {
2381 static const char *const vsx_regnames[] = {
2382 "vs0", "vs1", "vs2", "vs3", "vs4", "vs5", "vs6", "vs7",
2383 "vs8", "vs9", "vs10", "vs11", "vs12", "vs13", "vs14",
2384 "vs15", "vs16", "vs17", "vs18", "vs19", "vs20", "vs21",
2385 "vs22", "vs23", "vs24", "vs25", "vs26", "vs27", "vs28",
2386 "vs29", "vs30", "vs31", "vs32", "vs33", "vs34", "vs35",
2387 "vs36", "vs37", "vs38", "vs39", "vs40", "vs41", "vs42",
2388 "vs43", "vs44", "vs45", "vs46", "vs47", "vs48", "vs49",
2389 "vs50", "vs51", "vs52", "vs53", "vs54", "vs55", "vs56",
2390 "vs57", "vs58", "vs59", "vs60", "vs61", "vs62", "vs63"
2391 };
2392 return vsx_regnames[regno - tdep->ppc_vsr0_regnum];
2393 }
2394
2395 /* Check if the this is a Extended FP pseudo-register. */
2396 if (IS_EFP_PSEUDOREG (tdep, regno))
2397 {
2398 static const char *const efpr_regnames[] = {
2399 "f32", "f33", "f34", "f35", "f36", "f37", "f38",
2400 "f39", "f40", "f41", "f42", "f43", "f44", "f45",
2401 "f46", "f47", "f48", "f49", "f50", "f51",
2402 "f52", "f53", "f54", "f55", "f56", "f57",
2403 "f58", "f59", "f60", "f61", "f62", "f63"
2404 };
2405 return efpr_regnames[regno - tdep->ppc_efpr0_regnum];
2406 }
2407
2408 /* Check if this is a Checkpointed DFP pseudo-register. */
2409 if (IS_CDFP_PSEUDOREG (tdep, regno))
2410 {
2411 static const char *const cdfp128_regnames[] = {
2412 "cdl0", "cdl1", "cdl2", "cdl3",
2413 "cdl4", "cdl5", "cdl6", "cdl7",
2414 "cdl8", "cdl9", "cdl10", "cdl11",
2415 "cdl12", "cdl13", "cdl14", "cdl15"
2416 };
2417 return cdfp128_regnames[regno - tdep->ppc_cdl0_regnum];
2418 }
2419
2420 /* Check if this is a Checkpointed VSX pseudo-register. */
2421 if (IS_CVSX_PSEUDOREG (tdep, regno))
2422 {
2423 static const char *const cvsx_regnames[] = {
2424 "cvs0", "cvs1", "cvs2", "cvs3", "cvs4", "cvs5", "cvs6", "cvs7",
2425 "cvs8", "cvs9", "cvs10", "cvs11", "cvs12", "cvs13", "cvs14",
2426 "cvs15", "cvs16", "cvs17", "cvs18", "cvs19", "cvs20", "cvs21",
2427 "cvs22", "cvs23", "cvs24", "cvs25", "cvs26", "cvs27", "cvs28",
2428 "cvs29", "cvs30", "cvs31", "cvs32", "cvs33", "cvs34", "cvs35",
2429 "cvs36", "cvs37", "cvs38", "cvs39", "cvs40", "cvs41", "cvs42",
2430 "cvs43", "cvs44", "cvs45", "cvs46", "cvs47", "cvs48", "cvs49",
2431 "cvs50", "cvs51", "cvs52", "cvs53", "cvs54", "cvs55", "cvs56",
2432 "cvs57", "cvs58", "cvs59", "cvs60", "cvs61", "cvs62", "cvs63"
2433 };
2434 return cvsx_regnames[regno - tdep->ppc_cvsr0_regnum];
2435 }
2436
2437 /* Check if the this is a Checkpointed Extended FP pseudo-register. */
2438 if (IS_CEFP_PSEUDOREG (tdep, regno))
2439 {
2440 static const char *const cefpr_regnames[] = {
2441 "cf32", "cf33", "cf34", "cf35", "cf36", "cf37", "cf38",
2442 "cf39", "cf40", "cf41", "cf42", "cf43", "cf44", "cf45",
2443 "cf46", "cf47", "cf48", "cf49", "cf50", "cf51",
2444 "cf52", "cf53", "cf54", "cf55", "cf56", "cf57",
2445 "cf58", "cf59", "cf60", "cf61", "cf62", "cf63"
2446 };
2447 return cefpr_regnames[regno - tdep->ppc_cefpr0_regnum];
2448 }
2449
2450 return tdesc_register_name (gdbarch, regno);
2451 }
2452
2453 /* Return the GDB type object for the "standard" data type of data in
2454 register N. */
2455
2456 static struct type *
2457 rs6000_pseudo_register_type (struct gdbarch *gdbarch, int regnum)
2458 {
2459 struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch);
2460
2461 /* These are the e500 pseudo-registers. */
2462 if (IS_SPE_PSEUDOREG (tdep, regnum))
2463 return rs6000_builtin_type_vec64 (gdbarch);
2464 else if (IS_DFP_PSEUDOREG (tdep, regnum)
2465 || IS_CDFP_PSEUDOREG (tdep, regnum))
2466 /* PPC decimal128 pseudo-registers. */
2467 return builtin_type (gdbarch)->builtin_declong;
2468 else if (IS_V_ALIAS_PSEUDOREG (tdep, regnum))
2469 return gdbarch_register_type (gdbarch,
2470 tdep->ppc_vr0_regnum
2471 + (regnum
2472 - tdep->ppc_v0_alias_regnum));
2473 else if (IS_VSX_PSEUDOREG (tdep, regnum)
2474 || IS_CVSX_PSEUDOREG (tdep, regnum))
2475 /* POWER7 VSX pseudo-registers. */
2476 return rs6000_builtin_type_vec128 (gdbarch);
2477 else if (IS_EFP_PSEUDOREG (tdep, regnum)
2478 || IS_CEFP_PSEUDOREG (tdep, regnum))
2479 /* POWER7 Extended FP pseudo-registers. */
2480 return builtin_type (gdbarch)->builtin_double;
2481 else
2482 internal_error (__FILE__, __LINE__,
2483 _("rs6000_pseudo_register_type: "
2484 "called on unexpected register '%s' (%d)"),
2485 gdbarch_register_name (gdbarch, regnum), regnum);
2486 }
2487
2488 /* Check if REGNUM is a member of REGGROUP. We only need to handle
2489 the vX aliases for the vector registers by always returning false
2490 to avoid duplicated information in "info register vector/all",
2491 since the raw vrX registers will already show in these cases. For
2492 other pseudo-registers we use the default membership function. */
2493
2494 static int
2495 rs6000_pseudo_register_reggroup_p (struct gdbarch *gdbarch, int regnum,
2496 struct reggroup *group)
2497 {
2498 struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch);
2499
2500 if (IS_V_ALIAS_PSEUDOREG (tdep, regnum))
2501 return 0;
2502 else
2503 return default_register_reggroup_p (gdbarch, regnum, group);
2504 }
2505
2506 /* The register format for RS/6000 floating point registers is always
2507 double, we need a conversion if the memory format is float. */
2508
2509 static int
2510 rs6000_convert_register_p (struct gdbarch *gdbarch, int regnum,
2511 struct type *type)
2512 {
2513 struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch);
2514
2515 return (tdep->ppc_fp0_regnum >= 0
2516 && regnum >= tdep->ppc_fp0_regnum
2517 && regnum < tdep->ppc_fp0_regnum + ppc_num_fprs
2518 && type->code () == TYPE_CODE_FLT
2519 && TYPE_LENGTH (type)
2520 != TYPE_LENGTH (builtin_type (gdbarch)->builtin_double));
2521 }
2522
2523 static int
2524 rs6000_register_to_value (struct frame_info *frame,
2525 int regnum,
2526 struct type *type,
2527 gdb_byte *to,
2528 int *optimizedp, int *unavailablep)
2529 {
2530 struct gdbarch *gdbarch = get_frame_arch (frame);
2531 gdb_byte from[PPC_MAX_REGISTER_SIZE];
2532
2533 gdb_assert (type->code () == TYPE_CODE_FLT);
2534
2535 if (!get_frame_register_bytes (frame, regnum, 0,
2536 register_size (gdbarch, regnum),
2537 from, optimizedp, unavailablep))
2538 return 0;
2539
2540 target_float_convert (from, builtin_type (gdbarch)->builtin_double,
2541 to, type);
2542 *optimizedp = *unavailablep = 0;
2543 return 1;
2544 }
2545
2546 static void
2547 rs6000_value_to_register (struct frame_info *frame,
2548 int regnum,
2549 struct type *type,
2550 const gdb_byte *from)
2551 {
2552 struct gdbarch *gdbarch = get_frame_arch (frame);
2553 gdb_byte to[PPC_MAX_REGISTER_SIZE];
2554
2555 gdb_assert (type->code () == TYPE_CODE_FLT);
2556
2557 target_float_convert (from, type,
2558 to, builtin_type (gdbarch)->builtin_double);
2559 put_frame_register (frame, regnum, to);
2560 }
2561
2562 /* The type of a function that moves the value of REG between CACHE
2563 or BUF --- in either direction. */
2564 typedef enum register_status (*move_ev_register_func) (struct regcache *,
2565 int, void *);
2566
2567 /* Move SPE vector register values between a 64-bit buffer and the two
2568 32-bit raw register halves in a regcache. This function handles
2569 both splitting a 64-bit value into two 32-bit halves, and joining
2570 two halves into a whole 64-bit value, depending on the function
2571 passed as the MOVE argument.
2572
2573 EV_REG must be the number of an SPE evN vector register --- a
2574 pseudoregister. REGCACHE must be a regcache, and BUFFER must be a
2575 64-bit buffer.
2576
2577 Call MOVE once for each 32-bit half of that register, passing
2578 REGCACHE, the number of the raw register corresponding to that
2579 half, and the address of the appropriate half of BUFFER.
2580
2581 For example, passing 'regcache_raw_read' as the MOVE function will
2582 fill BUFFER with the full 64-bit contents of EV_REG. Or, passing
2583 'regcache_raw_supply' will supply the contents of BUFFER to the
2584 appropriate pair of raw registers in REGCACHE.
2585
2586 You may need to cast away some 'const' qualifiers when passing
2587 MOVE, since this function can't tell at compile-time which of
2588 REGCACHE or BUFFER is acting as the source of the data. If C had
2589 co-variant type qualifiers, ... */
2590
2591 static enum register_status
2592 e500_move_ev_register (move_ev_register_func move,
2593 struct regcache *regcache, int ev_reg, void *buffer)
2594 {
2595 struct gdbarch *arch = regcache->arch ();
2596 struct gdbarch_tdep *tdep = gdbarch_tdep (arch);
2597 int reg_index;
2598 gdb_byte *byte_buffer = (gdb_byte *) buffer;
2599 enum register_status status;
2600
2601 gdb_assert (IS_SPE_PSEUDOREG (tdep, ev_reg));
2602
2603 reg_index = ev_reg - tdep->ppc_ev0_regnum;
2604
2605 if (gdbarch_byte_order (arch) == BFD_ENDIAN_BIG)
2606 {
2607 status = move (regcache, tdep->ppc_ev0_upper_regnum + reg_index,
2608 byte_buffer);
2609 if (status == REG_VALID)
2610 status = move (regcache, tdep->ppc_gp0_regnum + reg_index,
2611 byte_buffer + 4);
2612 }
2613 else
2614 {
2615 status = move (regcache, tdep->ppc_gp0_regnum + reg_index, byte_buffer);
2616 if (status == REG_VALID)
2617 status = move (regcache, tdep->ppc_ev0_upper_regnum + reg_index,
2618 byte_buffer + 4);
2619 }
2620
2621 return status;
2622 }
2623
2624 static enum register_status
2625 do_regcache_raw_write (struct regcache *regcache, int regnum, void *buffer)
2626 {
2627 regcache->raw_write (regnum, (const gdb_byte *) buffer);
2628
2629 return REG_VALID;
2630 }
2631
2632 static enum register_status
2633 e500_pseudo_register_read (struct gdbarch *gdbarch, readable_regcache *regcache,
2634 int ev_reg, gdb_byte *buffer)
2635 {
2636 struct gdbarch *arch = regcache->arch ();
2637 struct gdbarch_tdep *tdep = gdbarch_tdep (arch);
2638 int reg_index;
2639 enum register_status status;
2640
2641 gdb_assert (IS_SPE_PSEUDOREG (tdep, ev_reg));
2642
2643 reg_index = ev_reg - tdep->ppc_ev0_regnum;
2644
2645 if (gdbarch_byte_order (arch) == BFD_ENDIAN_BIG)
2646 {
2647 status = regcache->raw_read (tdep->ppc_ev0_upper_regnum + reg_index,
2648 buffer);
2649 if (status == REG_VALID)
2650 status = regcache->raw_read (tdep->ppc_gp0_regnum + reg_index,
2651 buffer + 4);
2652 }
2653 else
2654 {
2655 status = regcache->raw_read (tdep->ppc_gp0_regnum + reg_index, buffer);
2656 if (status == REG_VALID)
2657 status = regcache->raw_read (tdep->ppc_ev0_upper_regnum + reg_index,
2658 buffer + 4);
2659 }
2660
2661 return status;
2662
2663 }
2664
2665 static void
2666 e500_pseudo_register_write (struct gdbarch *gdbarch, struct regcache *regcache,
2667 int reg_nr, const gdb_byte *buffer)
2668 {
2669 e500_move_ev_register (do_regcache_raw_write, regcache,
2670 reg_nr, (void *) buffer);
2671 }
2672
2673 /* Read method for DFP pseudo-registers. */
2674 static enum register_status
2675 dfp_pseudo_register_read (struct gdbarch *gdbarch, readable_regcache *regcache,
2676 int reg_nr, gdb_byte *buffer)
2677 {
2678 struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch);
2679 int reg_index, fp0;
2680 enum register_status status;
2681
2682 if (IS_DFP_PSEUDOREG (tdep, reg_nr))
2683 {
2684 reg_index = reg_nr - tdep->ppc_dl0_regnum;
2685 fp0 = PPC_F0_REGNUM;
2686 }
2687 else
2688 {
2689 gdb_assert (IS_CDFP_PSEUDOREG (tdep, reg_nr));
2690
2691 reg_index = reg_nr - tdep->ppc_cdl0_regnum;
2692 fp0 = PPC_CF0_REGNUM;
2693 }
2694
2695 if (gdbarch_byte_order (gdbarch) == BFD_ENDIAN_BIG)
2696 {
2697 /* Read two FP registers to form a whole dl register. */
2698 status = regcache->raw_read (fp0 + 2 * reg_index, buffer);
2699 if (status == REG_VALID)
2700 status = regcache->raw_read (fp0 + 2 * reg_index + 1,
2701 buffer + 8);
2702 }
2703 else
2704 {
2705 status = regcache->raw_read (fp0 + 2 * reg_index + 1, buffer);
2706 if (status == REG_VALID)
2707 status = regcache->raw_read (fp0 + 2 * reg_index, buffer + 8);
2708 }
2709
2710 return status;
2711 }
2712
2713 /* Write method for DFP pseudo-registers. */
2714 static void
2715 dfp_pseudo_register_write (struct gdbarch *gdbarch, struct regcache *regcache,
2716 int reg_nr, const gdb_byte *buffer)
2717 {
2718 struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch);
2719 int reg_index, fp0;
2720
2721 if (IS_DFP_PSEUDOREG (tdep, reg_nr))
2722 {
2723 reg_index = reg_nr - tdep->ppc_dl0_regnum;
2724 fp0 = PPC_F0_REGNUM;
2725 }
2726 else
2727 {
2728 gdb_assert (IS_CDFP_PSEUDOREG (tdep, reg_nr));
2729
2730 reg_index = reg_nr - tdep->ppc_cdl0_regnum;
2731 fp0 = PPC_CF0_REGNUM;
2732 }
2733
2734 if (gdbarch_byte_order (gdbarch) == BFD_ENDIAN_BIG)
2735 {
2736 /* Write each half of the dl register into a separate
2737 FP register. */
2738 regcache->raw_write (fp0 + 2 * reg_index, buffer);
2739 regcache->raw_write (fp0 + 2 * reg_index + 1, buffer + 8);
2740 }
2741 else
2742 {
2743 regcache->raw_write (fp0 + 2 * reg_index + 1, buffer);
2744 regcache->raw_write (fp0 + 2 * reg_index, buffer + 8);
2745 }
2746 }
2747
2748 /* Read method for the vX aliases for the raw vrX registers. */
2749
2750 static enum register_status
2751 v_alias_pseudo_register_read (struct gdbarch *gdbarch,
2752 readable_regcache *regcache, int reg_nr,
2753 gdb_byte *buffer)
2754 {
2755 struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch);
2756 gdb_assert (IS_V_ALIAS_PSEUDOREG (tdep, reg_nr));
2757
2758 return regcache->raw_read (tdep->ppc_vr0_regnum
2759 + (reg_nr - tdep->ppc_v0_alias_regnum),
2760 buffer);
2761 }
2762
2763 /* Write method for the vX aliases for the raw vrX registers. */
2764
2765 static void
2766 v_alias_pseudo_register_write (struct gdbarch *gdbarch,
2767 struct regcache *regcache,
2768 int reg_nr, const gdb_byte *buffer)
2769 {
2770 struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch);
2771 gdb_assert (IS_V_ALIAS_PSEUDOREG (tdep, reg_nr));
2772
2773 regcache->raw_write (tdep->ppc_vr0_regnum
2774 + (reg_nr - tdep->ppc_v0_alias_regnum), buffer);
2775 }
2776
2777 /* Read method for POWER7 VSX pseudo-registers. */
2778 static enum register_status
2779 vsx_pseudo_register_read (struct gdbarch *gdbarch, readable_regcache *regcache,
2780 int reg_nr, gdb_byte *buffer)
2781 {
2782 struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch);
2783 int reg_index, vr0, fp0, vsr0_upper;
2784 enum register_status status;
2785
2786 if (IS_VSX_PSEUDOREG (tdep, reg_nr))
2787 {
2788 reg_index = reg_nr - tdep->ppc_vsr0_regnum;
2789 vr0 = PPC_VR0_REGNUM;
2790 fp0 = PPC_F0_REGNUM;
2791 vsr0_upper = PPC_VSR0_UPPER_REGNUM;
2792 }
2793 else
2794 {
2795 gdb_assert (IS_CVSX_PSEUDOREG (tdep, reg_nr));
2796
2797 reg_index = reg_nr - tdep->ppc_cvsr0_regnum;
2798 vr0 = PPC_CVR0_REGNUM;
2799 fp0 = PPC_CF0_REGNUM;
2800 vsr0_upper = PPC_CVSR0_UPPER_REGNUM;
2801 }
2802
2803 /* Read the portion that overlaps the VMX registers. */
2804 if (reg_index > 31)
2805 status = regcache->raw_read (vr0 + reg_index - 32, buffer);
2806 else
2807 /* Read the portion that overlaps the FPR registers. */
2808 if (gdbarch_byte_order (gdbarch) == BFD_ENDIAN_BIG)
2809 {
2810 status = regcache->raw_read (fp0 + reg_index, buffer);
2811 if (status == REG_VALID)
2812 status = regcache->raw_read (vsr0_upper + reg_index,
2813 buffer + 8);
2814 }
2815 else
2816 {
2817 status = regcache->raw_read (fp0 + reg_index, buffer + 8);
2818 if (status == REG_VALID)
2819 status = regcache->raw_read (vsr0_upper + reg_index, buffer);
2820 }
2821
2822 return status;
2823 }
2824
2825 /* Write method for POWER7 VSX pseudo-registers. */
2826 static void
2827 vsx_pseudo_register_write (struct gdbarch *gdbarch, struct regcache *regcache,
2828 int reg_nr, const gdb_byte *buffer)
2829 {
2830 struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch);
2831 int reg_index, vr0, fp0, vsr0_upper;
2832
2833 if (IS_VSX_PSEUDOREG (tdep, reg_nr))
2834 {
2835 reg_index = reg_nr - tdep->ppc_vsr0_regnum;
2836 vr0 = PPC_VR0_REGNUM;
2837 fp0 = PPC_F0_REGNUM;
2838 vsr0_upper = PPC_VSR0_UPPER_REGNUM;
2839 }
2840 else
2841 {
2842 gdb_assert (IS_CVSX_PSEUDOREG (tdep, reg_nr));
2843
2844 reg_index = reg_nr - tdep->ppc_cvsr0_regnum;
2845 vr0 = PPC_CVR0_REGNUM;
2846 fp0 = PPC_CF0_REGNUM;
2847 vsr0_upper = PPC_CVSR0_UPPER_REGNUM;
2848 }
2849
2850 /* Write the portion that overlaps the VMX registers. */
2851 if (reg_index > 31)
2852 regcache->raw_write (vr0 + reg_index - 32, buffer);
2853 else
2854 /* Write the portion that overlaps the FPR registers. */
2855 if (gdbarch_byte_order (gdbarch) == BFD_ENDIAN_BIG)
2856 {
2857 regcache->raw_write (fp0 + reg_index, buffer);
2858 regcache->raw_write (vsr0_upper + reg_index, buffer + 8);
2859 }
2860 else
2861 {
2862 regcache->raw_write (fp0 + reg_index, buffer + 8);
2863 regcache->raw_write (vsr0_upper + reg_index, buffer);
2864 }
2865 }
2866
2867 /* Read method for POWER7 Extended FP pseudo-registers. */
2868 static enum register_status
2869 efp_pseudo_register_read (struct gdbarch *gdbarch, readable_regcache *regcache,
2870 int reg_nr, gdb_byte *buffer)
2871 {
2872 struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch);
2873 int reg_index, vr0;
2874
2875 if (IS_EFP_PSEUDOREG (tdep, reg_nr))
2876 {
2877 reg_index = reg_nr - tdep->ppc_efpr0_regnum;
2878 vr0 = PPC_VR0_REGNUM;
2879 }
2880 else
2881 {
2882 gdb_assert (IS_CEFP_PSEUDOREG (tdep, reg_nr));
2883
2884 reg_index = reg_nr - tdep->ppc_cefpr0_regnum;
2885 vr0 = PPC_CVR0_REGNUM;
2886 }
2887
2888 int offset = gdbarch_byte_order (gdbarch) == BFD_ENDIAN_BIG ? 0 : 8;
2889
2890 /* Read the portion that overlaps the VMX register. */
2891 return regcache->raw_read_part (vr0 + reg_index, offset,
2892 register_size (gdbarch, reg_nr),
2893 buffer);
2894 }
2895
2896 /* Write method for POWER7 Extended FP pseudo-registers. */
2897 static void
2898 efp_pseudo_register_write (struct gdbarch *gdbarch, struct regcache *regcache,
2899 int reg_nr, const gdb_byte *buffer)
2900 {
2901 struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch);
2902 int reg_index, vr0;
2903 int offset = gdbarch_byte_order (gdbarch) == BFD_ENDIAN_BIG ? 0 : 8;
2904
2905 if (IS_EFP_PSEUDOREG (tdep, reg_nr))
2906 {
2907 reg_index = reg_nr - tdep->ppc_efpr0_regnum;
2908 vr0 = PPC_VR0_REGNUM;
2909 }
2910 else
2911 {
2912 gdb_assert (IS_CEFP_PSEUDOREG (tdep, reg_nr));
2913
2914 reg_index = reg_nr - tdep->ppc_cefpr0_regnum;
2915 vr0 = PPC_CVR0_REGNUM;
2916
2917 /* The call to raw_write_part fails silently if the initial read
2918 of the read-update-write sequence returns an invalid status,
2919 so we check this manually and throw an error if needed. */
2920 regcache->raw_update (vr0 + reg_index);
2921 if (regcache->get_register_status (vr0 + reg_index) != REG_VALID)
2922 error (_("Cannot write to the checkpointed EFP register, "
2923 "the corresponding vector register is unavailable."));
2924 }
2925
2926 /* Write the portion that overlaps the VMX register. */
2927 regcache->raw_write_part (vr0 + reg_index, offset,
2928 register_size (gdbarch, reg_nr), buffer);
2929 }
2930
2931 static enum register_status
2932 rs6000_pseudo_register_read (struct gdbarch *gdbarch,
2933 readable_regcache *regcache,
2934 int reg_nr, gdb_byte *buffer)
2935 {
2936 struct gdbarch *regcache_arch = regcache->arch ();
2937 struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch);
2938
2939 gdb_assert (regcache_arch == gdbarch);
2940
2941 if (IS_SPE_PSEUDOREG (tdep, reg_nr))
2942 return e500_pseudo_register_read (gdbarch, regcache, reg_nr, buffer);
2943 else if (IS_DFP_PSEUDOREG (tdep, reg_nr)
2944 || IS_CDFP_PSEUDOREG (tdep, reg_nr))
2945 return dfp_pseudo_register_read (gdbarch, regcache, reg_nr, buffer);
2946 else if (IS_V_ALIAS_PSEUDOREG (tdep, reg_nr))
2947 return v_alias_pseudo_register_read (gdbarch, regcache, reg_nr,
2948 buffer);
2949 else if (IS_VSX_PSEUDOREG (tdep, reg_nr)
2950 || IS_CVSX_PSEUDOREG (tdep, reg_nr))
2951 return vsx_pseudo_register_read (gdbarch, regcache, reg_nr, buffer);
2952 else if (IS_EFP_PSEUDOREG (tdep, reg_nr)
2953 || IS_CEFP_PSEUDOREG (tdep, reg_nr))
2954 return efp_pseudo_register_read (gdbarch, regcache, reg_nr, buffer);
2955 else
2956 internal_error (__FILE__, __LINE__,
2957 _("rs6000_pseudo_register_read: "
2958 "called on unexpected register '%s' (%d)"),
2959 gdbarch_register_name (gdbarch, reg_nr), reg_nr);
2960 }
2961
2962 static void
2963 rs6000_pseudo_register_write (struct gdbarch *gdbarch,
2964 struct regcache *regcache,
2965 int reg_nr, const gdb_byte *buffer)
2966 {
2967 struct gdbarch *regcache_arch = regcache->arch ();
2968 struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch);
2969
2970 gdb_assert (regcache_arch == gdbarch);
2971
2972 if (IS_SPE_PSEUDOREG (tdep, reg_nr))
2973 e500_pseudo_register_write (gdbarch, regcache, reg_nr, buffer);
2974 else if (IS_DFP_PSEUDOREG (tdep, reg_nr)
2975 || IS_CDFP_PSEUDOREG (tdep, reg_nr))
2976 dfp_pseudo_register_write (gdbarch, regcache, reg_nr, buffer);
2977 else if (IS_V_ALIAS_PSEUDOREG (tdep, reg_nr))
2978 v_alias_pseudo_register_write (gdbarch, regcache, reg_nr, buffer);
2979 else if (IS_VSX_PSEUDOREG (tdep, reg_nr)
2980 || IS_CVSX_PSEUDOREG (tdep, reg_nr))
2981 vsx_pseudo_register_write (gdbarch, regcache, reg_nr, buffer);
2982 else if (IS_EFP_PSEUDOREG (tdep, reg_nr)
2983 || IS_CEFP_PSEUDOREG (tdep, reg_nr))
2984 efp_pseudo_register_write (gdbarch, regcache, reg_nr, buffer);
2985 else
2986 internal_error (__FILE__, __LINE__,
2987 _("rs6000_pseudo_register_write: "
2988 "called on unexpected register '%s' (%d)"),
2989 gdbarch_register_name (gdbarch, reg_nr), reg_nr);
2990 }
2991
2992 /* Set the register mask in AX with the registers that form the DFP or
2993 checkpointed DFP pseudo-register REG_NR. */
2994
2995 static void
2996 dfp_ax_pseudo_register_collect (struct gdbarch *gdbarch,
2997 struct agent_expr *ax, int reg_nr)
2998 {
2999 struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch);
3000 int reg_index, fp0;
3001
3002 if (IS_DFP_PSEUDOREG (tdep, reg_nr))
3003 {
3004 reg_index = reg_nr - tdep->ppc_dl0_regnum;
3005 fp0 = PPC_F0_REGNUM;
3006 }
3007 else
3008 {
3009 gdb_assert (IS_CDFP_PSEUDOREG (tdep, reg_nr));
3010
3011 reg_index = reg_nr - tdep->ppc_cdl0_regnum;
3012 fp0 = PPC_CF0_REGNUM;
3013 }
3014
3015 ax_reg_mask (ax, fp0 + 2 * reg_index);
3016 ax_reg_mask (ax, fp0 + 2 * reg_index + 1);
3017 }
3018
3019 /* Set the register mask in AX with the raw vector register that
3020 corresponds to its REG_NR alias. */
3021
3022 static void
3023 v_alias_pseudo_register_collect (struct gdbarch *gdbarch,
3024 struct agent_expr *ax, int reg_nr)
3025 {
3026 struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch);
3027 gdb_assert (IS_V_ALIAS_PSEUDOREG (tdep, reg_nr));
3028
3029 ax_reg_mask (ax, tdep->ppc_vr0_regnum
3030 + (reg_nr - tdep->ppc_v0_alias_regnum));
3031 }
3032
3033 /* Set the register mask in AX with the registers that form the VSX or
3034 checkpointed VSX pseudo-register REG_NR. */
3035
3036 static void
3037 vsx_ax_pseudo_register_collect (struct gdbarch *gdbarch,
3038 struct agent_expr *ax, int reg_nr)
3039 {
3040 struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch);
3041 int reg_index, vr0, fp0, vsr0_upper;
3042
3043 if (IS_VSX_PSEUDOREG (tdep, reg_nr))
3044 {
3045 reg_index = reg_nr - tdep->ppc_vsr0_regnum;
3046 vr0 = PPC_VR0_REGNUM;
3047 fp0 = PPC_F0_REGNUM;
3048 vsr0_upper = PPC_VSR0_UPPER_REGNUM;
3049 }
3050 else
3051 {
3052 gdb_assert (IS_CVSX_PSEUDOREG (tdep, reg_nr));
3053
3054 reg_index = reg_nr - tdep->ppc_cvsr0_regnum;
3055 vr0 = PPC_CVR0_REGNUM;
3056 fp0 = PPC_CF0_REGNUM;
3057 vsr0_upper = PPC_CVSR0_UPPER_REGNUM;
3058 }
3059
3060 if (reg_index > 31)
3061 {
3062 ax_reg_mask (ax, vr0 + reg_index - 32);
3063 }
3064 else
3065 {
3066 ax_reg_mask (ax, fp0 + reg_index);
3067 ax_reg_mask (ax, vsr0_upper + reg_index);
3068 }
3069 }
3070
3071 /* Set the register mask in AX with the register that corresponds to
3072 the EFP or checkpointed EFP pseudo-register REG_NR. */
3073
3074 static void
3075 efp_ax_pseudo_register_collect (struct gdbarch *gdbarch,
3076 struct agent_expr *ax, int reg_nr)
3077 {
3078 struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch);
3079 int reg_index, vr0;
3080
3081 if (IS_EFP_PSEUDOREG (tdep, reg_nr))
3082 {
3083 reg_index = reg_nr - tdep->ppc_efpr0_regnum;
3084 vr0 = PPC_VR0_REGNUM;
3085 }
3086 else
3087 {
3088 gdb_assert (IS_CEFP_PSEUDOREG (tdep, reg_nr));
3089
3090 reg_index = reg_nr - tdep->ppc_cefpr0_regnum;
3091 vr0 = PPC_CVR0_REGNUM;
3092 }
3093
3094 ax_reg_mask (ax, vr0 + reg_index);
3095 }
3096
3097 static int
3098 rs6000_ax_pseudo_register_collect (struct gdbarch *gdbarch,
3099 struct agent_expr *ax, int reg_nr)
3100 {
3101 struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch);
3102 if (IS_SPE_PSEUDOREG (tdep, reg_nr))
3103 {
3104 int reg_index = reg_nr - tdep->ppc_ev0_regnum;
3105 ax_reg_mask (ax, tdep->ppc_gp0_regnum + reg_index);
3106 ax_reg_mask (ax, tdep->ppc_ev0_upper_regnum + reg_index);
3107 }
3108 else if (IS_DFP_PSEUDOREG (tdep, reg_nr)
3109 || IS_CDFP_PSEUDOREG (tdep, reg_nr))
3110 {
3111 dfp_ax_pseudo_register_collect (gdbarch, ax, reg_nr);
3112 }
3113 else if (IS_V_ALIAS_PSEUDOREG (tdep, reg_nr))
3114 {
3115 v_alias_pseudo_register_collect (gdbarch, ax, reg_nr);
3116 }
3117 else if (IS_VSX_PSEUDOREG (tdep, reg_nr)
3118 || IS_CVSX_PSEUDOREG (tdep, reg_nr))
3119 {
3120 vsx_ax_pseudo_register_collect (gdbarch, ax, reg_nr);
3121 }
3122 else if (IS_EFP_PSEUDOREG (tdep, reg_nr)
3123 || IS_CEFP_PSEUDOREG (tdep, reg_nr))
3124 {
3125 efp_ax_pseudo_register_collect (gdbarch, ax, reg_nr);
3126 }
3127 else
3128 internal_error (__FILE__, __LINE__,
3129 _("rs6000_pseudo_register_collect: "
3130 "called on unexpected register '%s' (%d)"),
3131 gdbarch_register_name (gdbarch, reg_nr), reg_nr);
3132 return 0;
3133 }
3134
3135
3136 static void
3137 rs6000_gen_return_address (struct gdbarch *gdbarch,
3138 struct agent_expr *ax, struct axs_value *value,
3139 CORE_ADDR scope)
3140 {
3141 struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch);
3142 value->type = register_type (gdbarch, tdep->ppc_lr_regnum);
3143 value->kind = axs_lvalue_register;
3144 value->u.reg = tdep->ppc_lr_regnum;
3145 }
3146
3147
3148 /* Convert a DBX STABS register number to a GDB register number. */
3149 static int
3150 rs6000_stab_reg_to_regnum (struct gdbarch *gdbarch, int num)
3151 {
3152 struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch);
3153
3154 if (0 <= num && num <= 31)
3155 return tdep->ppc_gp0_regnum + num;
3156 else if (32 <= num && num <= 63)
3157 /* FIXME: jimb/2004-05-05: What should we do when the debug info
3158 specifies registers the architecture doesn't have? Our
3159 callers don't check the value we return. */
3160 return tdep->ppc_fp0_regnum + (num - 32);
3161 else if (77 <= num && num <= 108)
3162 return tdep->ppc_vr0_regnum + (num - 77);
3163 else if (1200 <= num && num < 1200 + 32)
3164 return tdep->ppc_ev0_upper_regnum + (num - 1200);
3165 else
3166 switch (num)
3167 {
3168 case 64:
3169 return tdep->ppc_mq_regnum;
3170 case 65:
3171 return tdep->ppc_lr_regnum;
3172 case 66:
3173 return tdep->ppc_ctr_regnum;
3174 case 76:
3175 return tdep->ppc_xer_regnum;
3176 case 109:
3177 return tdep->ppc_vrsave_regnum;
3178 case 110:
3179 return tdep->ppc_vrsave_regnum - 1; /* vscr */
3180 case 111:
3181 return tdep->ppc_acc_regnum;
3182 case 112:
3183 return tdep->ppc_spefscr_regnum;
3184 default:
3185 return num;
3186 }
3187 }
3188
3189
3190 /* Convert a Dwarf 2 register number to a GDB register number. */
3191 static int
3192 rs6000_dwarf2_reg_to_regnum (struct gdbarch *gdbarch, int num)
3193 {
3194 struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch);
3195
3196 if (0 <= num && num <= 31)
3197 return tdep->ppc_gp0_regnum + num;
3198 else if (32 <= num && num <= 63)
3199 /* FIXME: jimb/2004-05-05: What should we do when the debug info
3200 specifies registers the architecture doesn't have? Our
3201 callers don't check the value we return. */
3202 return tdep->ppc_fp0_regnum + (num - 32);
3203 else if (1124 <= num && num < 1124 + 32)
3204 return tdep->ppc_vr0_regnum + (num - 1124);
3205 else if (1200 <= num && num < 1200 + 32)
3206 return tdep->ppc_ev0_upper_regnum + (num - 1200);
3207 else
3208 switch (num)
3209 {
3210 case 64:
3211 return tdep->ppc_cr_regnum;
3212 case 67:
3213 return tdep->ppc_vrsave_regnum - 1; /* vscr */
3214 case 99:
3215 return tdep->ppc_acc_regnum;
3216 case 100:
3217 return tdep->ppc_mq_regnum;
3218 case 101:
3219 return tdep->ppc_xer_regnum;
3220 case 108:
3221 return tdep->ppc_lr_regnum;
3222 case 109:
3223 return tdep->ppc_ctr_regnum;
3224 case 356:
3225 return tdep->ppc_vrsave_regnum;
3226 case 612:
3227 return tdep->ppc_spefscr_regnum;
3228 }
3229
3230 /* Unknown DWARF register number. */
3231 return -1;
3232 }
3233
3234 /* Translate a .eh_frame register to DWARF register, or adjust a
3235 .debug_frame register. */
3236
3237 static int
3238 rs6000_adjust_frame_regnum (struct gdbarch *gdbarch, int num, int eh_frame_p)
3239 {
3240 /* GCC releases before 3.4 use GCC internal register numbering in
3241 .debug_frame (and .debug_info, et cetera). The numbering is
3242 different from the standard SysV numbering for everything except
3243 for GPRs and FPRs. We can not detect this problem in most cases
3244 - to get accurate debug info for variables living in lr, ctr, v0,
3245 et cetera, use a newer version of GCC. But we must detect
3246 one important case - lr is in column 65 in .debug_frame output,
3247 instead of 108.
3248
3249 GCC 3.4, and the "hammer" branch, have a related problem. They
3250 record lr register saves in .debug_frame as 108, but still record
3251 the return column as 65. We fix that up too.
3252
3253 We can do this because 65 is assigned to fpsr, and GCC never
3254 generates debug info referring to it. To add support for
3255 handwritten debug info that restores fpsr, we would need to add a
3256 producer version check to this. */
3257 if (!eh_frame_p)
3258 {
3259 if (num == 65)
3260 return 108;
3261 else
3262 return num;
3263 }
3264
3265 /* .eh_frame is GCC specific. For binary compatibility, it uses GCC
3266 internal register numbering; translate that to the standard DWARF2
3267 register numbering. */
3268 if (0 <= num && num <= 63) /* r0-r31,fp0-fp31 */
3269 return num;
3270 else if (68 <= num && num <= 75) /* cr0-cr8 */
3271 return num - 68 + 86;
3272 else if (77 <= num && num <= 108) /* vr0-vr31 */
3273 return num - 77 + 1124;
3274 else
3275 switch (num)
3276 {
3277 case 64: /* mq */
3278 return 100;
3279 case 65: /* lr */
3280 return 108;
3281 case 66: /* ctr */
3282 return 109;
3283 case 76: /* xer */
3284 return 101;
3285 case 109: /* vrsave */
3286 return 356;
3287 case 110: /* vscr */
3288 return 67;
3289 case 111: /* spe_acc */
3290 return 99;
3291 case 112: /* spefscr */
3292 return 612;
3293 default:
3294 return num;
3295 }
3296 }
3297 \f
3298
3299 /* Handling the various POWER/PowerPC variants. */
3300
3301 /* Information about a particular processor variant. */
3302
3303 struct ppc_variant
3304 {
3305 /* Name of this variant. */
3306 const char *name;
3307
3308 /* English description of the variant. */
3309 const char *description;
3310
3311 /* bfd_arch_info.arch corresponding to variant. */
3312 enum bfd_architecture arch;
3313
3314 /* bfd_arch_info.mach corresponding to variant. */
3315 unsigned long mach;
3316
3317 /* Target description for this variant. */
3318 struct target_desc **tdesc;
3319 };
3320
3321 static struct ppc_variant variants[] =
3322 {
3323 {"powerpc", "PowerPC user-level", bfd_arch_powerpc,
3324 bfd_mach_ppc, &tdesc_powerpc_altivec32},
3325 {"power", "POWER user-level", bfd_arch_rs6000,
3326 bfd_mach_rs6k, &tdesc_rs6000},
3327 {"403", "IBM PowerPC 403", bfd_arch_powerpc,
3328 bfd_mach_ppc_403, &tdesc_powerpc_403},
3329 {"405", "IBM PowerPC 405", bfd_arch_powerpc,
3330 bfd_mach_ppc_405, &tdesc_powerpc_405},
3331 {"601", "Motorola PowerPC 601", bfd_arch_powerpc,
3332 bfd_mach_ppc_601, &tdesc_powerpc_601},
3333 {"602", "Motorola PowerPC 602", bfd_arch_powerpc,
3334 bfd_mach_ppc_602, &tdesc_powerpc_602},
3335 {"603", "Motorola/IBM PowerPC 603 or 603e", bfd_arch_powerpc,
3336 bfd_mach_ppc_603, &tdesc_powerpc_603},
3337 {"604", "Motorola PowerPC 604 or 604e", bfd_arch_powerpc,
3338 604, &tdesc_powerpc_604},
3339 {"403GC", "IBM PowerPC 403GC", bfd_arch_powerpc,
3340 bfd_mach_ppc_403gc, &tdesc_powerpc_403gc},
3341 {"505", "Motorola PowerPC 505", bfd_arch_powerpc,
3342 bfd_mach_ppc_505, &tdesc_powerpc_505},
3343 {"860", "Motorola PowerPC 860 or 850", bfd_arch_powerpc,
3344 bfd_mach_ppc_860, &tdesc_powerpc_860},
3345 {"750", "Motorola/IBM PowerPC 750 or 740", bfd_arch_powerpc,
3346 bfd_mach_ppc_750, &tdesc_powerpc_750},
3347 {"7400", "Motorola/IBM PowerPC 7400 (G4)", bfd_arch_powerpc,
3348 bfd_mach_ppc_7400, &tdesc_powerpc_7400},
3349 {"e500", "Motorola PowerPC e500", bfd_arch_powerpc,
3350 bfd_mach_ppc_e500, &tdesc_powerpc_e500},
3351
3352 /* 64-bit */
3353 {"powerpc64", "PowerPC 64-bit user-level", bfd_arch_powerpc,
3354 bfd_mach_ppc64, &tdesc_powerpc_altivec64},
3355 {"620", "Motorola PowerPC 620", bfd_arch_powerpc,
3356 bfd_mach_ppc_620, &tdesc_powerpc_64},
3357 {"630", "Motorola PowerPC 630", bfd_arch_powerpc,
3358 bfd_mach_ppc_630, &tdesc_powerpc_64},
3359 {"a35", "PowerPC A35", bfd_arch_powerpc,
3360 bfd_mach_ppc_a35, &tdesc_powerpc_64},
3361 {"rs64ii", "PowerPC rs64ii", bfd_arch_powerpc,
3362 bfd_mach_ppc_rs64ii, &tdesc_powerpc_64},
3363 {"rs64iii", "PowerPC rs64iii", bfd_arch_powerpc,
3364 bfd_mach_ppc_rs64iii, &tdesc_powerpc_64},
3365
3366 /* FIXME: I haven't checked the register sets of the following. */
3367 {"rs1", "IBM POWER RS1", bfd_arch_rs6000,
3368 bfd_mach_rs6k_rs1, &tdesc_rs6000},
3369 {"rsc", "IBM POWER RSC", bfd_arch_rs6000,
3370 bfd_mach_rs6k_rsc, &tdesc_rs6000},
3371 {"rs2", "IBM POWER RS2", bfd_arch_rs6000,
3372 bfd_mach_rs6k_rs2, &tdesc_rs6000},
3373
3374 {0, 0, (enum bfd_architecture) 0, 0, 0}
3375 };
3376
3377 /* Return the variant corresponding to architecture ARCH and machine number
3378 MACH. If no such variant exists, return null. */
3379
3380 static const struct ppc_variant *
3381 find_variant_by_arch (enum bfd_architecture arch, unsigned long mach)
3382 {
3383 const struct ppc_variant *v;
3384
3385 for (v = variants; v->name; v++)
3386 if (arch == v->arch && mach == v->mach)
3387 return v;
3388
3389 return NULL;
3390 }
3391
3392 \f
3393
3394 struct rs6000_frame_cache
3395 {
3396 CORE_ADDR base;
3397 CORE_ADDR initial_sp;
3398 struct trad_frame_saved_reg *saved_regs;
3399
3400 /* Set BASE_P to true if this frame cache is properly initialized.
3401 Otherwise set to false because some registers or memory cannot
3402 collected. */
3403 int base_p;
3404 /* Cache PC for building unavailable frame. */
3405 CORE_ADDR pc;
3406 };
3407
3408 static struct rs6000_frame_cache *
3409 rs6000_frame_cache (struct frame_info *this_frame, void **this_cache)
3410 {
3411 struct rs6000_frame_cache *cache;
3412 struct gdbarch *gdbarch = get_frame_arch (this_frame);
3413 struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch);
3414 enum bfd_endian byte_order = gdbarch_byte_order (gdbarch);
3415 struct rs6000_framedata fdata;
3416 int wordsize = tdep->wordsize;
3417 CORE_ADDR func = 0, pc = 0;
3418
3419 if ((*this_cache) != NULL)
3420 return (struct rs6000_frame_cache *) (*this_cache);
3421 cache = FRAME_OBSTACK_ZALLOC (struct rs6000_frame_cache);
3422 (*this_cache) = cache;
3423 cache->pc = 0;
3424 cache->saved_regs = trad_frame_alloc_saved_regs (this_frame);
3425
3426 try
3427 {
3428 func = get_frame_func (this_frame);
3429 cache->pc = func;
3430 pc = get_frame_pc (this_frame);
3431 skip_prologue (gdbarch, func, pc, &fdata);
3432
3433 /* Figure out the parent's stack pointer. */
3434
3435 /* NOTE: cagney/2002-04-14: The ->frame points to the inner-most
3436 address of the current frame. Things might be easier if the
3437 ->frame pointed to the outer-most address of the frame. In
3438 the mean time, the address of the prev frame is used as the
3439 base address of this frame. */
3440 cache->base = get_frame_register_unsigned
3441 (this_frame, gdbarch_sp_regnum (gdbarch));
3442 }
3443 catch (const gdb_exception_error &ex)
3444 {
3445 if (ex.error != NOT_AVAILABLE_ERROR)
3446 throw;
3447 return (struct rs6000_frame_cache *) (*this_cache);
3448 }
3449
3450 /* If the function appears to be frameless, check a couple of likely
3451 indicators that we have simply failed to find the frame setup.
3452 Two common cases of this are missing symbols (i.e.
3453 get_frame_func returns the wrong address or 0), and assembly
3454 stubs which have a fast exit path but set up a frame on the slow
3455 path.
3456
3457 If the LR appears to return to this function, then presume that
3458 we have an ABI compliant frame that we failed to find. */
3459 if (fdata.frameless && fdata.lr_offset == 0)
3460 {
3461 CORE_ADDR saved_lr;
3462 int make_frame = 0;
3463
3464 saved_lr = get_frame_register_unsigned (this_frame, tdep->ppc_lr_regnum);
3465 if (func == 0 && saved_lr == pc)
3466 make_frame = 1;
3467 else if (func != 0)
3468 {
3469 CORE_ADDR saved_func = get_pc_function_start (saved_lr);
3470 if (func == saved_func)
3471 make_frame = 1;
3472 }
3473
3474 if (make_frame)
3475 {
3476 fdata.frameless = 0;
3477 fdata.lr_offset = tdep->lr_frame_offset;
3478 }
3479 }
3480
3481 if (!fdata.frameless)
3482 {
3483 /* Frameless really means stackless. */
3484 ULONGEST backchain;
3485
3486 if (safe_read_memory_unsigned_integer (cache->base, wordsize,
3487 byte_order, &backchain))
3488 cache->base = (CORE_ADDR) backchain;
3489 }
3490
3491 trad_frame_set_value (cache->saved_regs,
3492 gdbarch_sp_regnum (gdbarch), cache->base);
3493
3494 /* if != -1, fdata.saved_fpr is the smallest number of saved_fpr.
3495 All fpr's from saved_fpr to fp31 are saved. */
3496
3497 if (fdata.saved_fpr >= 0)
3498 {
3499 int i;
3500 CORE_ADDR fpr_addr = cache->base + fdata.fpr_offset;
3501
3502 /* If skip_prologue says floating-point registers were saved,
3503 but the current architecture has no floating-point registers,
3504 then that's strange. But we have no indices to even record
3505 the addresses under, so we just ignore it. */
3506 if (ppc_floating_point_unit_p (gdbarch))
3507 for (i = fdata.saved_fpr; i < ppc_num_fprs; i++)
3508 {
3509 cache->saved_regs[tdep->ppc_fp0_regnum + i].addr = fpr_addr;
3510 fpr_addr += 8;
3511 }
3512 }
3513
3514 /* if != -1, fdata.saved_gpr is the smallest number of saved_gpr.
3515 All gpr's from saved_gpr to gpr31 are saved (except during the
3516 prologue). */
3517
3518 if (fdata.saved_gpr >= 0)
3519 {
3520 int i;
3521 CORE_ADDR gpr_addr = cache->base + fdata.gpr_offset;
3522 for (i = fdata.saved_gpr; i < ppc_num_gprs; i++)
3523 {
3524 if (fdata.gpr_mask & (1U << i))
3525 cache->saved_regs[tdep->ppc_gp0_regnum + i].addr = gpr_addr;
3526 gpr_addr += wordsize;
3527 }
3528 }
3529
3530 /* if != -1, fdata.saved_vr is the smallest number of saved_vr.
3531 All vr's from saved_vr to vr31 are saved. */
3532 if (tdep->ppc_vr0_regnum != -1 && tdep->ppc_vrsave_regnum != -1)
3533 {
3534 if (fdata.saved_vr >= 0)
3535 {
3536 int i;
3537 CORE_ADDR vr_addr = cache->base + fdata.vr_offset;
3538 for (i = fdata.saved_vr; i < 32; i++)
3539 {
3540 cache->saved_regs[tdep->ppc_vr0_regnum + i].addr = vr_addr;
3541 vr_addr += register_size (gdbarch, tdep->ppc_vr0_regnum);
3542 }
3543 }
3544 }
3545
3546 /* if != -1, fdata.saved_ev is the smallest number of saved_ev.
3547 All vr's from saved_ev to ev31 are saved. ????? */
3548 if (tdep->ppc_ev0_regnum != -1)
3549 {
3550 if (fdata.saved_ev >= 0)
3551 {
3552 int i;
3553 CORE_ADDR ev_addr = cache->base + fdata.ev_offset;
3554 CORE_ADDR off = (byte_order == BFD_ENDIAN_BIG ? 4 : 0);
3555
3556 for (i = fdata.saved_ev; i < ppc_num_gprs; i++)
3557 {
3558 cache->saved_regs[tdep->ppc_ev0_regnum + i].addr = ev_addr;
3559 cache->saved_regs[tdep->ppc_gp0_regnum + i].addr = ev_addr + off;
3560 ev_addr += register_size (gdbarch, tdep->ppc_ev0_regnum);
3561 }
3562 }
3563 }
3564
3565 /* If != 0, fdata.cr_offset is the offset from the frame that
3566 holds the CR. */
3567 if (fdata.cr_offset != 0)
3568 cache->saved_regs[tdep->ppc_cr_regnum].addr
3569 = cache->base + fdata.cr_offset;
3570
3571 /* If != 0, fdata.lr_offset is the offset from the frame that
3572 holds the LR. */
3573 if (fdata.lr_offset != 0)
3574 cache->saved_regs[tdep->ppc_lr_regnum].addr
3575 = cache->base + fdata.lr_offset;
3576 else if (fdata.lr_register != -1)
3577 cache->saved_regs[tdep->ppc_lr_regnum].realreg = fdata.lr_register;
3578 /* The PC is found in the link register. */
3579 cache->saved_regs[gdbarch_pc_regnum (gdbarch)] =
3580 cache->saved_regs[tdep->ppc_lr_regnum];
3581
3582 /* If != 0, fdata.vrsave_offset is the offset from the frame that
3583 holds the VRSAVE. */
3584 if (fdata.vrsave_offset != 0)
3585 cache->saved_regs[tdep->ppc_vrsave_regnum].addr
3586 = cache->base + fdata.vrsave_offset;
3587
3588 if (fdata.alloca_reg < 0)
3589 /* If no alloca register used, then fi->frame is the value of the
3590 %sp for this frame, and it is good enough. */
3591 cache->initial_sp
3592 = get_frame_register_unsigned (this_frame, gdbarch_sp_regnum (gdbarch));
3593 else
3594 cache->initial_sp
3595 = get_frame_register_unsigned (this_frame, fdata.alloca_reg);
3596
3597 cache->base_p = 1;
3598 return cache;
3599 }
3600
3601 static void
3602 rs6000_frame_this_id (struct frame_info *this_frame, void **this_cache,
3603 struct frame_id *this_id)
3604 {
3605 struct rs6000_frame_cache *info = rs6000_frame_cache (this_frame,
3606 this_cache);
3607
3608 if (!info->base_p)
3609 {
3610 (*this_id) = frame_id_build_unavailable_stack (info->pc);
3611 return;
3612 }
3613
3614 /* This marks the outermost frame. */
3615 if (info->base == 0)
3616 return;
3617
3618 (*this_id) = frame_id_build (info->base, get_frame_func (this_frame));
3619 }
3620
3621 static struct value *
3622 rs6000_frame_prev_register (struct frame_info *this_frame,
3623 void **this_cache, int regnum)
3624 {
3625 struct rs6000_frame_cache *info = rs6000_frame_cache (this_frame,
3626 this_cache);
3627 return trad_frame_get_prev_register (this_frame, info->saved_regs, regnum);
3628 }
3629
3630 static const struct frame_unwind rs6000_frame_unwind =
3631 {
3632 NORMAL_FRAME,
3633 default_frame_unwind_stop_reason,
3634 rs6000_frame_this_id,
3635 rs6000_frame_prev_register,
3636 NULL,
3637 default_frame_sniffer
3638 };
3639
3640 /* Allocate and initialize a frame cache for an epilogue frame.
3641 SP is restored and prev-PC is stored in LR. */
3642
3643 static struct rs6000_frame_cache *
3644 rs6000_epilogue_frame_cache (struct frame_info *this_frame, void **this_cache)
3645 {
3646 struct rs6000_frame_cache *cache;
3647 struct gdbarch *gdbarch = get_frame_arch (this_frame);
3648 struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch);
3649
3650 if (*this_cache)
3651 return (struct rs6000_frame_cache *) *this_cache;
3652
3653 cache = FRAME_OBSTACK_ZALLOC (struct rs6000_frame_cache);
3654 (*this_cache) = cache;
3655 cache->saved_regs = trad_frame_alloc_saved_regs (this_frame);
3656
3657 try
3658 {
3659 /* At this point the stack looks as if we just entered the
3660 function, and the return address is stored in LR. */
3661 CORE_ADDR sp, lr;
3662
3663 sp = get_frame_register_unsigned (this_frame, gdbarch_sp_regnum (gdbarch));
3664 lr = get_frame_register_unsigned (this_frame, tdep->ppc_lr_regnum);
3665
3666 cache->base = sp;
3667 cache->initial_sp = sp;
3668
3669 trad_frame_set_value (cache->saved_regs,
3670 gdbarch_pc_regnum (gdbarch), lr);
3671 }
3672 catch (const gdb_exception_error &ex)
3673 {
3674 if (ex.error != NOT_AVAILABLE_ERROR)
3675 throw;
3676 }
3677
3678 return cache;
3679 }
3680
3681 /* Implementation of frame_unwind.this_id, as defined in frame_unwind.h.
3682 Return the frame ID of an epilogue frame. */
3683
3684 static void
3685 rs6000_epilogue_frame_this_id (struct frame_info *this_frame,
3686 void **this_cache, struct frame_id *this_id)
3687 {
3688 CORE_ADDR pc;
3689 struct rs6000_frame_cache *info =
3690 rs6000_epilogue_frame_cache (this_frame, this_cache);
3691
3692 pc = get_frame_func (this_frame);
3693 if (info->base == 0)
3694 (*this_id) = frame_id_build_unavailable_stack (pc);
3695 else
3696 (*this_id) = frame_id_build (info->base, pc);
3697 }
3698
3699 /* Implementation of frame_unwind.prev_register, as defined in frame_unwind.h.
3700 Return the register value of REGNUM in previous frame. */
3701
3702 static struct value *
3703 rs6000_epilogue_frame_prev_register (struct frame_info *this_frame,
3704 void **this_cache, int regnum)
3705 {
3706 struct rs6000_frame_cache *info =
3707 rs6000_epilogue_frame_cache (this_frame, this_cache);
3708 return trad_frame_get_prev_register (this_frame, info->saved_regs, regnum);
3709 }
3710
3711 /* Implementation of frame_unwind.sniffer, as defined in frame_unwind.h.
3712 Check whether this an epilogue frame. */
3713
3714 static int
3715 rs6000_epilogue_frame_sniffer (const struct frame_unwind *self,
3716 struct frame_info *this_frame,
3717 void **this_prologue_cache)
3718 {
3719 if (frame_relative_level (this_frame) == 0)
3720 return rs6000_in_function_epilogue_frame_p (this_frame,
3721 get_frame_arch (this_frame),
3722 get_frame_pc (this_frame));
3723 else
3724 return 0;
3725 }
3726
3727 /* Frame unwinder for epilogue frame. This is required for reverse step-over
3728 a function without debug information. */
3729
3730 static const struct frame_unwind rs6000_epilogue_frame_unwind =
3731 {
3732 NORMAL_FRAME,
3733 default_frame_unwind_stop_reason,
3734 rs6000_epilogue_frame_this_id, rs6000_epilogue_frame_prev_register,
3735 NULL,
3736 rs6000_epilogue_frame_sniffer
3737 };
3738 \f
3739
3740 static CORE_ADDR
3741 rs6000_frame_base_address (struct frame_info *this_frame, void **this_cache)
3742 {
3743 struct rs6000_frame_cache *info = rs6000_frame_cache (this_frame,
3744 this_cache);
3745 return info->initial_sp;
3746 }
3747
3748 static const struct frame_base rs6000_frame_base = {
3749 &rs6000_frame_unwind,
3750 rs6000_frame_base_address,
3751 rs6000_frame_base_address,
3752 rs6000_frame_base_address
3753 };
3754
3755 static const struct frame_base *
3756 rs6000_frame_base_sniffer (struct frame_info *this_frame)
3757 {
3758 return &rs6000_frame_base;
3759 }
3760
3761 /* DWARF-2 frame support. Used to handle the detection of
3762 clobbered registers during function calls. */
3763
3764 static void
3765 ppc_dwarf2_frame_init_reg (struct gdbarch *gdbarch, int regnum,
3766 struct dwarf2_frame_state_reg *reg,
3767 struct frame_info *this_frame)
3768 {
3769 struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch);
3770
3771 /* PPC32 and PPC64 ABI's are the same regarding volatile and
3772 non-volatile registers. We will use the same code for both. */
3773
3774 /* Call-saved GP registers. */
3775 if ((regnum >= tdep->ppc_gp0_regnum + 14
3776 && regnum <= tdep->ppc_gp0_regnum + 31)
3777 || (regnum == tdep->ppc_gp0_regnum + 1))
3778 reg->how = DWARF2_FRAME_REG_SAME_VALUE;
3779
3780 /* Call-clobbered GP registers. */
3781 if ((regnum >= tdep->ppc_gp0_regnum + 3
3782 && regnum <= tdep->ppc_gp0_regnum + 12)
3783 || (regnum == tdep->ppc_gp0_regnum))
3784 reg->how = DWARF2_FRAME_REG_UNDEFINED;
3785
3786 /* Deal with FP registers, if supported. */
3787 if (tdep->ppc_fp0_regnum >= 0)
3788 {
3789 /* Call-saved FP registers. */
3790 if ((regnum >= tdep->ppc_fp0_regnum + 14
3791 && regnum <= tdep->ppc_fp0_regnum + 31))
3792 reg->how = DWARF2_FRAME_REG_SAME_VALUE;
3793
3794 /* Call-clobbered FP registers. */
3795 if ((regnum >= tdep->ppc_fp0_regnum
3796 && regnum <= tdep->ppc_fp0_regnum + 13))
3797 reg->how = DWARF2_FRAME_REG_UNDEFINED;
3798 }
3799
3800 /* Deal with ALTIVEC registers, if supported. */
3801 if (tdep->ppc_vr0_regnum > 0 && tdep->ppc_vrsave_regnum > 0)
3802 {
3803 /* Call-saved Altivec registers. */
3804 if ((regnum >= tdep->ppc_vr0_regnum + 20
3805 && regnum <= tdep->ppc_vr0_regnum + 31)
3806 || regnum == tdep->ppc_vrsave_regnum)
3807 reg->how = DWARF2_FRAME_REG_SAME_VALUE;
3808
3809 /* Call-clobbered Altivec registers. */
3810 if ((regnum >= tdep->ppc_vr0_regnum
3811 && regnum <= tdep->ppc_vr0_regnum + 19))
3812 reg->how = DWARF2_FRAME_REG_UNDEFINED;
3813 }
3814
3815 /* Handle PC register and Stack Pointer correctly. */
3816 if (regnum == gdbarch_pc_regnum (gdbarch))
3817 reg->how = DWARF2_FRAME_REG_RA;
3818 else if (regnum == gdbarch_sp_regnum (gdbarch))
3819 reg->how = DWARF2_FRAME_REG_CFA;
3820 }
3821
3822
3823 /* Return true if a .gnu_attributes section exists in BFD and it
3824 indicates we are using SPE extensions OR if a .PPC.EMB.apuinfo
3825 section exists in BFD and it indicates that SPE extensions are in
3826 use. Check the .gnu.attributes section first, as the binary might be
3827 compiled for SPE, but not actually using SPE instructions. */
3828
3829 static int
3830 bfd_uses_spe_extensions (bfd *abfd)
3831 {
3832 asection *sect;
3833 gdb_byte *contents = NULL;
3834 bfd_size_type size;
3835 gdb_byte *ptr;
3836 int success = 0;
3837
3838 if (!abfd)
3839 return 0;
3840
3841 #ifdef HAVE_ELF
3842 /* Using Tag_GNU_Power_ABI_Vector here is a bit of a hack, as the user
3843 could be using the SPE vector abi without actually using any spe
3844 bits whatsoever. But it's close enough for now. */
3845 int vector_abi = bfd_elf_get_obj_attr_int (abfd, OBJ_ATTR_GNU,
3846 Tag_GNU_Power_ABI_Vector);
3847 if (vector_abi == 3)
3848 return 1;
3849 #endif
3850
3851 sect = bfd_get_section_by_name (abfd, ".PPC.EMB.apuinfo");
3852 if (!sect)
3853 return 0;
3854
3855 size = bfd_section_size (sect);
3856 contents = (gdb_byte *) xmalloc (size);
3857 if (!bfd_get_section_contents (abfd, sect, contents, 0, size))
3858 {
3859 xfree (contents);
3860 return 0;
3861 }
3862
3863 /* Parse the .PPC.EMB.apuinfo section. The layout is as follows:
3864
3865 struct {
3866 uint32 name_len;
3867 uint32 data_len;
3868 uint32 type;
3869 char name[name_len rounded up to 4-byte alignment];
3870 char data[data_len];
3871 };
3872
3873 Technically, there's only supposed to be one such structure in a
3874 given apuinfo section, but the linker is not always vigilant about
3875 merging apuinfo sections from input files. Just go ahead and parse
3876 them all, exiting early when we discover the binary uses SPE
3877 insns.
3878
3879 It's not specified in what endianness the information in this
3880 section is stored. Assume that it's the endianness of the BFD. */
3881 ptr = contents;
3882 while (1)
3883 {
3884 unsigned int name_len;
3885 unsigned int data_len;
3886 unsigned int type;
3887
3888 /* If we can't read the first three fields, we're done. */
3889 if (size < 12)
3890 break;
3891
3892 name_len = bfd_get_32 (abfd, ptr);
3893 name_len = (name_len + 3) & ~3U; /* Round to 4 bytes. */
3894 data_len = bfd_get_32 (abfd, ptr + 4);
3895 type = bfd_get_32 (abfd, ptr + 8);
3896 ptr += 12;
3897
3898 /* The name must be "APUinfo\0". */
3899 if (name_len != 8
3900 && strcmp ((const char *) ptr, "APUinfo") != 0)
3901 break;
3902 ptr += name_len;
3903
3904 /* The type must be 2. */
3905 if (type != 2)
3906 break;
3907
3908 /* The data is stored as a series of uint32. The upper half of
3909 each uint32 indicates the particular APU used and the lower
3910 half indicates the revision of that APU. We just care about
3911 the upper half. */
3912
3913 /* Not 4-byte quantities. */
3914 if (data_len & 3U)
3915 break;
3916
3917 while (data_len)
3918 {
3919 unsigned int apuinfo = bfd_get_32 (abfd, ptr);
3920 unsigned int apu = apuinfo >> 16;
3921 ptr += 4;
3922 data_len -= 4;
3923
3924 /* The SPE APU is 0x100; the SPEFP APU is 0x101. Accept
3925 either. */
3926 if (apu == 0x100 || apu == 0x101)
3927 {
3928 success = 1;
3929 data_len = 0;
3930 }
3931 }
3932
3933 if (success)
3934 break;
3935 }
3936
3937 xfree (contents);
3938 return success;
3939 }
3940
3941 /* These are macros for parsing instruction fields (I.1.6.28) */
3942
3943 #define PPC_FIELD(value, from, len) \
3944 (((value) >> (32 - (from) - (len))) & ((1 << (len)) - 1))
3945 #define PPC_SEXT(v, bs) \
3946 ((((CORE_ADDR) (v) & (((CORE_ADDR) 1 << (bs)) - 1)) \
3947 ^ ((CORE_ADDR) 1 << ((bs) - 1))) \
3948 - ((CORE_ADDR) 1 << ((bs) - 1)))
3949 #define PPC_OP6(insn) PPC_FIELD (insn, 0, 6)
3950 #define PPC_EXTOP(insn) PPC_FIELD (insn, 21, 10)
3951 #define PPC_RT(insn) PPC_FIELD (insn, 6, 5)
3952 #define PPC_RS(insn) PPC_FIELD (insn, 6, 5)
3953 #define PPC_RA(insn) PPC_FIELD (insn, 11, 5)
3954 #define PPC_RB(insn) PPC_FIELD (insn, 16, 5)
3955 #define PPC_NB(insn) PPC_FIELD (insn, 16, 5)
3956 #define PPC_VRT(insn) PPC_FIELD (insn, 6, 5)
3957 #define PPC_FRT(insn) PPC_FIELD (insn, 6, 5)
3958 #define PPC_SPR(insn) (PPC_FIELD (insn, 11, 5) \
3959 | (PPC_FIELD (insn, 16, 5) << 5))
3960 #define PPC_BO(insn) PPC_FIELD (insn, 6, 5)
3961 #define PPC_T(insn) PPC_FIELD (insn, 6, 5)
3962 #define PPC_D(insn) PPC_SEXT (PPC_FIELD (insn, 16, 16), 16)
3963 #define PPC_DS(insn) PPC_SEXT (PPC_FIELD (insn, 16, 14), 14)
3964 #define PPC_DQ(insn) PPC_SEXT (PPC_FIELD (insn, 16, 12), 12)
3965 #define PPC_BIT(insn,n) ((insn & (1 << (31 - (n)))) ? 1 : 0)
3966 #define PPC_OE(insn) PPC_BIT (insn, 21)
3967 #define PPC_RC(insn) PPC_BIT (insn, 31)
3968 #define PPC_Rc(insn) PPC_BIT (insn, 21)
3969 #define PPC_LK(insn) PPC_BIT (insn, 31)
3970 #define PPC_TX(insn) PPC_BIT (insn, 31)
3971 #define PPC_LEV(insn) PPC_FIELD (insn, 20, 7)
3972
3973 #define PPC_XT(insn) ((PPC_TX (insn) << 5) | PPC_T (insn))
3974 #define PPC_XER_NB(xer) (xer & 0x7f)
3975
3976 /* Record Vector-Scalar Registers.
3977 For VSR less than 32, it's represented by an FPR and an VSR-upper register.
3978 Otherwise, it's just a VR register. Record them accordingly. */
3979
3980 static int
3981 ppc_record_vsr (struct regcache *regcache, struct gdbarch_tdep *tdep, int vsr)
3982 {
3983 if (vsr < 0 || vsr >= 64)
3984 return -1;
3985
3986 if (vsr >= 32)
3987 {
3988 if (tdep->ppc_vr0_regnum >= 0)
3989 record_full_arch_list_add_reg (regcache, tdep->ppc_vr0_regnum + vsr - 32);
3990 }
3991 else
3992 {
3993 if (tdep->ppc_fp0_regnum >= 0)
3994 record_full_arch_list_add_reg (regcache, tdep->ppc_fp0_regnum + vsr);
3995 if (tdep->ppc_vsr0_upper_regnum >= 0)
3996 record_full_arch_list_add_reg (regcache,
3997 tdep->ppc_vsr0_upper_regnum + vsr);
3998 }
3999
4000 return 0;
4001 }
4002
4003 /* Parse and record instructions primary opcode-4 at ADDR.
4004 Return 0 if successful. */
4005
4006 static int
4007 ppc_process_record_op4 (struct gdbarch *gdbarch, struct regcache *regcache,
4008 CORE_ADDR addr, uint32_t insn)
4009 {
4010 struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch);
4011 int ext = PPC_FIELD (insn, 21, 11);
4012 int vra = PPC_FIELD (insn, 11, 5);
4013
4014 switch (ext & 0x3f)
4015 {
4016 case 32: /* Vector Multiply-High-Add Signed Halfword Saturate */
4017 case 33: /* Vector Multiply-High-Round-Add Signed Halfword Saturate */
4018 case 39: /* Vector Multiply-Sum Unsigned Halfword Saturate */
4019 case 41: /* Vector Multiply-Sum Signed Halfword Saturate */
4020 record_full_arch_list_add_reg (regcache, PPC_VSCR_REGNUM);
4021 /* FALL-THROUGH */
4022 case 42: /* Vector Select */
4023 case 43: /* Vector Permute */
4024 case 59: /* Vector Permute Right-indexed */
4025 case 44: /* Vector Shift Left Double by Octet Immediate */
4026 case 45: /* Vector Permute and Exclusive-OR */
4027 case 60: /* Vector Add Extended Unsigned Quadword Modulo */
4028 case 61: /* Vector Add Extended & write Carry Unsigned Quadword */
4029 case 62: /* Vector Subtract Extended Unsigned Quadword Modulo */
4030 case 63: /* Vector Subtract Extended & write Carry Unsigned Quadword */
4031 case 34: /* Vector Multiply-Low-Add Unsigned Halfword Modulo */
4032 case 35: /* Vector Multiply-Sum Unsigned Doubleword Modulo */
4033 case 36: /* Vector Multiply-Sum Unsigned Byte Modulo */
4034 case 37: /* Vector Multiply-Sum Mixed Byte Modulo */
4035 case 38: /* Vector Multiply-Sum Unsigned Halfword Modulo */
4036 case 40: /* Vector Multiply-Sum Signed Halfword Modulo */
4037 case 46: /* Vector Multiply-Add Single-Precision */
4038 case 47: /* Vector Negative Multiply-Subtract Single-Precision */
4039 record_full_arch_list_add_reg (regcache,
4040 tdep->ppc_vr0_regnum + PPC_VRT (insn));
4041 return 0;
4042
4043 case 48: /* Multiply-Add High Doubleword */
4044 case 49: /* Multiply-Add High Doubleword Unsigned */
4045 case 51: /* Multiply-Add Low Doubleword */
4046 record_full_arch_list_add_reg (regcache,
4047 tdep->ppc_gp0_regnum + PPC_RT (insn));
4048 return 0;
4049 }
4050
4051 switch ((ext & 0x1ff))
4052 {
4053 case 385:
4054 if (vra != 0 /* Decimal Convert To Signed Quadword */
4055 && vra != 2 /* Decimal Convert From Signed Quadword */
4056 && vra != 4 /* Decimal Convert To Zoned */
4057 && vra != 5 /* Decimal Convert To National */
4058 && vra != 6 /* Decimal Convert From Zoned */
4059 && vra != 7 /* Decimal Convert From National */
4060 && vra != 31) /* Decimal Set Sign */
4061 break;
4062 /* Fall through. */
4063 /* 5.16 Decimal Integer Arithmetic Instructions */
4064 case 1: /* Decimal Add Modulo */
4065 case 65: /* Decimal Subtract Modulo */
4066
4067 case 193: /* Decimal Shift */
4068 case 129: /* Decimal Unsigned Shift */
4069 case 449: /* Decimal Shift and Round */
4070
4071 case 257: /* Decimal Truncate */
4072 case 321: /* Decimal Unsigned Truncate */
4073
4074 /* Bit-21 should be set. */
4075 if (!PPC_BIT (insn, 21))
4076 break;
4077
4078 record_full_arch_list_add_reg (regcache,
4079 tdep->ppc_vr0_regnum + PPC_VRT (insn));
4080 record_full_arch_list_add_reg (regcache, tdep->ppc_cr_regnum);
4081 return 0;
4082 }
4083
4084 /* Bit-21 is used for RC */
4085 switch (ext & 0x3ff)
4086 {
4087 case 6: /* Vector Compare Equal To Unsigned Byte */
4088 case 70: /* Vector Compare Equal To Unsigned Halfword */
4089 case 134: /* Vector Compare Equal To Unsigned Word */
4090 case 199: /* Vector Compare Equal To Unsigned Doubleword */
4091 case 774: /* Vector Compare Greater Than Signed Byte */
4092 case 838: /* Vector Compare Greater Than Signed Halfword */
4093 case 902: /* Vector Compare Greater Than Signed Word */
4094 case 967: /* Vector Compare Greater Than Signed Doubleword */
4095 case 518: /* Vector Compare Greater Than Unsigned Byte */
4096 case 646: /* Vector Compare Greater Than Unsigned Word */
4097 case 582: /* Vector Compare Greater Than Unsigned Halfword */
4098 case 711: /* Vector Compare Greater Than Unsigned Doubleword */
4099 case 966: /* Vector Compare Bounds Single-Precision */
4100 case 198: /* Vector Compare Equal To Single-Precision */
4101 case 454: /* Vector Compare Greater Than or Equal To Single-Precision */
4102 case 710: /* Vector Compare Greater Than Single-Precision */
4103 case 7: /* Vector Compare Not Equal Byte */
4104 case 71: /* Vector Compare Not Equal Halfword */
4105 case 135: /* Vector Compare Not Equal Word */
4106 case 263: /* Vector Compare Not Equal or Zero Byte */
4107 case 327: /* Vector Compare Not Equal or Zero Halfword */
4108 case 391: /* Vector Compare Not Equal or Zero Word */
4109 if (PPC_Rc (insn))
4110 record_full_arch_list_add_reg (regcache, tdep->ppc_cr_regnum);
4111 record_full_arch_list_add_reg (regcache,
4112 tdep->ppc_vr0_regnum + PPC_VRT (insn));
4113 return 0;
4114 }
4115
4116 if (ext == 1538)
4117 {
4118 switch (vra)
4119 {
4120 case 0: /* Vector Count Leading Zero Least-Significant Bits
4121 Byte */
4122 case 1: /* Vector Count Trailing Zero Least-Significant Bits
4123 Byte */
4124 record_full_arch_list_add_reg (regcache,
4125 tdep->ppc_gp0_regnum + PPC_RT (insn));
4126 return 0;
4127
4128 case 6: /* Vector Negate Word */
4129 case 7: /* Vector Negate Doubleword */
4130 case 8: /* Vector Parity Byte Word */
4131 case 9: /* Vector Parity Byte Doubleword */
4132 case 10: /* Vector Parity Byte Quadword */
4133 case 16: /* Vector Extend Sign Byte To Word */
4134 case 17: /* Vector Extend Sign Halfword To Word */
4135 case 24: /* Vector Extend Sign Byte To Doubleword */
4136 case 25: /* Vector Extend Sign Halfword To Doubleword */
4137 case 26: /* Vector Extend Sign Word To Doubleword */
4138 case 28: /* Vector Count Trailing Zeros Byte */
4139 case 29: /* Vector Count Trailing Zeros Halfword */
4140 case 30: /* Vector Count Trailing Zeros Word */
4141 case 31: /* Vector Count Trailing Zeros Doubleword */
4142 record_full_arch_list_add_reg (regcache,
4143 tdep->ppc_vr0_regnum + PPC_VRT (insn));
4144 return 0;
4145 }
4146 }
4147
4148 switch (ext)
4149 {
4150 case 142: /* Vector Pack Unsigned Halfword Unsigned Saturate */
4151 case 206: /* Vector Pack Unsigned Word Unsigned Saturate */
4152 case 270: /* Vector Pack Signed Halfword Unsigned Saturate */
4153 case 334: /* Vector Pack Signed Word Unsigned Saturate */
4154 case 398: /* Vector Pack Signed Halfword Signed Saturate */
4155 case 462: /* Vector Pack Signed Word Signed Saturate */
4156 case 1230: /* Vector Pack Unsigned Doubleword Unsigned Saturate */
4157 case 1358: /* Vector Pack Signed Doubleword Unsigned Saturate */
4158 case 1486: /* Vector Pack Signed Doubleword Signed Saturate */
4159 case 512: /* Vector Add Unsigned Byte Saturate */
4160 case 576: /* Vector Add Unsigned Halfword Saturate */
4161 case 640: /* Vector Add Unsigned Word Saturate */
4162 case 768: /* Vector Add Signed Byte Saturate */
4163 case 832: /* Vector Add Signed Halfword Saturate */
4164 case 896: /* Vector Add Signed Word Saturate */
4165 case 1536: /* Vector Subtract Unsigned Byte Saturate */
4166 case 1600: /* Vector Subtract Unsigned Halfword Saturate */
4167 case 1664: /* Vector Subtract Unsigned Word Saturate */
4168 case 1792: /* Vector Subtract Signed Byte Saturate */
4169 case 1856: /* Vector Subtract Signed Halfword Saturate */
4170 case 1920: /* Vector Subtract Signed Word Saturate */
4171
4172 case 1544: /* Vector Sum across Quarter Unsigned Byte Saturate */
4173 case 1800: /* Vector Sum across Quarter Signed Byte Saturate */
4174 case 1608: /* Vector Sum across Quarter Signed Halfword Saturate */
4175 case 1672: /* Vector Sum across Half Signed Word Saturate */
4176 case 1928: /* Vector Sum across Signed Word Saturate */
4177 case 970: /* Vector Convert To Signed Fixed-Point Word Saturate */
4178 case 906: /* Vector Convert To Unsigned Fixed-Point Word Saturate */
4179 record_full_arch_list_add_reg (regcache, PPC_VSCR_REGNUM);
4180 /* FALL-THROUGH */
4181 case 12: /* Vector Merge High Byte */
4182 case 14: /* Vector Pack Unsigned Halfword Unsigned Modulo */
4183 case 76: /* Vector Merge High Halfword */
4184 case 78: /* Vector Pack Unsigned Word Unsigned Modulo */
4185 case 140: /* Vector Merge High Word */
4186 case 268: /* Vector Merge Low Byte */
4187 case 332: /* Vector Merge Low Halfword */
4188 case 396: /* Vector Merge Low Word */
4189 case 526: /* Vector Unpack High Signed Byte */
4190 case 590: /* Vector Unpack High Signed Halfword */
4191 case 654: /* Vector Unpack Low Signed Byte */
4192 case 718: /* Vector Unpack Low Signed Halfword */
4193 case 782: /* Vector Pack Pixel */
4194 case 846: /* Vector Unpack High Pixel */
4195 case 974: /* Vector Unpack Low Pixel */
4196 case 1102: /* Vector Pack Unsigned Doubleword Unsigned Modulo */
4197 case 1614: /* Vector Unpack High Signed Word */
4198 case 1676: /* Vector Merge Odd Word */
4199 case 1742: /* Vector Unpack Low Signed Word */
4200 case 1932: /* Vector Merge Even Word */
4201 case 524: /* Vector Splat Byte */
4202 case 588: /* Vector Splat Halfword */
4203 case 652: /* Vector Splat Word */
4204 case 780: /* Vector Splat Immediate Signed Byte */
4205 case 844: /* Vector Splat Immediate Signed Halfword */
4206 case 908: /* Vector Splat Immediate Signed Word */
4207 case 452: /* Vector Shift Left */
4208 case 708: /* Vector Shift Right */
4209 case 1036: /* Vector Shift Left by Octet */
4210 case 1100: /* Vector Shift Right by Octet */
4211 case 0: /* Vector Add Unsigned Byte Modulo */
4212 case 64: /* Vector Add Unsigned Halfword Modulo */
4213 case 128: /* Vector Add Unsigned Word Modulo */
4214 case 192: /* Vector Add Unsigned Doubleword Modulo */
4215 case 256: /* Vector Add Unsigned Quadword Modulo */
4216 case 320: /* Vector Add & write Carry Unsigned Quadword */
4217 case 384: /* Vector Add and Write Carry-Out Unsigned Word */
4218 case 8: /* Vector Multiply Odd Unsigned Byte */
4219 case 72: /* Vector Multiply Odd Unsigned Halfword */
4220 case 136: /* Vector Multiply Odd Unsigned Word */
4221 case 264: /* Vector Multiply Odd Signed Byte */
4222 case 328: /* Vector Multiply Odd Signed Halfword */
4223 case 392: /* Vector Multiply Odd Signed Word */
4224 case 520: /* Vector Multiply Even Unsigned Byte */
4225 case 584: /* Vector Multiply Even Unsigned Halfword */
4226 case 648: /* Vector Multiply Even Unsigned Word */
4227 case 776: /* Vector Multiply Even Signed Byte */
4228 case 840: /* Vector Multiply Even Signed Halfword */
4229 case 904: /* Vector Multiply Even Signed Word */
4230 case 137: /* Vector Multiply Unsigned Word Modulo */
4231 case 1024: /* Vector Subtract Unsigned Byte Modulo */
4232 case 1088: /* Vector Subtract Unsigned Halfword Modulo */
4233 case 1152: /* Vector Subtract Unsigned Word Modulo */
4234 case 1216: /* Vector Subtract Unsigned Doubleword Modulo */
4235 case 1280: /* Vector Subtract Unsigned Quadword Modulo */
4236 case 1344: /* Vector Subtract & write Carry Unsigned Quadword */
4237 case 1408: /* Vector Subtract and Write Carry-Out Unsigned Word */
4238 case 1282: /* Vector Average Signed Byte */
4239 case 1346: /* Vector Average Signed Halfword */
4240 case 1410: /* Vector Average Signed Word */
4241 case 1026: /* Vector Average Unsigned Byte */
4242 case 1090: /* Vector Average Unsigned Halfword */
4243 case 1154: /* Vector Average Unsigned Word */
4244 case 258: /* Vector Maximum Signed Byte */
4245 case 322: /* Vector Maximum Signed Halfword */
4246 case 386: /* Vector Maximum Signed Word */
4247 case 450: /* Vector Maximum Signed Doubleword */
4248 case 2: /* Vector Maximum Unsigned Byte */
4249 case 66: /* Vector Maximum Unsigned Halfword */
4250 case 130: /* Vector Maximum Unsigned Word */
4251 case 194: /* Vector Maximum Unsigned Doubleword */
4252 case 770: /* Vector Minimum Signed Byte */
4253 case 834: /* Vector Minimum Signed Halfword */
4254 case 898: /* Vector Minimum Signed Word */
4255 case 962: /* Vector Minimum Signed Doubleword */
4256 case 514: /* Vector Minimum Unsigned Byte */
4257 case 578: /* Vector Minimum Unsigned Halfword */
4258 case 642: /* Vector Minimum Unsigned Word */
4259 case 706: /* Vector Minimum Unsigned Doubleword */
4260 case 1028: /* Vector Logical AND */
4261 case 1668: /* Vector Logical Equivalent */
4262 case 1092: /* Vector Logical AND with Complement */
4263 case 1412: /* Vector Logical NAND */
4264 case 1348: /* Vector Logical OR with Complement */
4265 case 1156: /* Vector Logical OR */
4266 case 1284: /* Vector Logical NOR */
4267 case 1220: /* Vector Logical XOR */
4268 case 4: /* Vector Rotate Left Byte */
4269 case 132: /* Vector Rotate Left Word VX-form */
4270 case 68: /* Vector Rotate Left Halfword */
4271 case 196: /* Vector Rotate Left Doubleword */
4272 case 260: /* Vector Shift Left Byte */
4273 case 388: /* Vector Shift Left Word */
4274 case 324: /* Vector Shift Left Halfword */
4275 case 1476: /* Vector Shift Left Doubleword */
4276 case 516: /* Vector Shift Right Byte */
4277 case 644: /* Vector Shift Right Word */
4278 case 580: /* Vector Shift Right Halfword */
4279 case 1732: /* Vector Shift Right Doubleword */
4280 case 772: /* Vector Shift Right Algebraic Byte */
4281 case 900: /* Vector Shift Right Algebraic Word */
4282 case 836: /* Vector Shift Right Algebraic Halfword */
4283 case 964: /* Vector Shift Right Algebraic Doubleword */
4284 case 10: /* Vector Add Single-Precision */
4285 case 74: /* Vector Subtract Single-Precision */
4286 case 1034: /* Vector Maximum Single-Precision */
4287 case 1098: /* Vector Minimum Single-Precision */
4288 case 842: /* Vector Convert From Signed Fixed-Point Word */
4289 case 778: /* Vector Convert From Unsigned Fixed-Point Word */
4290 case 714: /* Vector Round to Single-Precision Integer toward -Infinity */
4291 case 522: /* Vector Round to Single-Precision Integer Nearest */
4292 case 650: /* Vector Round to Single-Precision Integer toward +Infinity */
4293 case 586: /* Vector Round to Single-Precision Integer toward Zero */
4294 case 394: /* Vector 2 Raised to the Exponent Estimate Floating-Point */
4295 case 458: /* Vector Log Base 2 Estimate Floating-Point */
4296 case 266: /* Vector Reciprocal Estimate Single-Precision */
4297 case 330: /* Vector Reciprocal Square Root Estimate Single-Precision */
4298 case 1288: /* Vector AES Cipher */
4299 case 1289: /* Vector AES Cipher Last */
4300 case 1352: /* Vector AES Inverse Cipher */
4301 case 1353: /* Vector AES Inverse Cipher Last */
4302 case 1480: /* Vector AES SubBytes */
4303 case 1730: /* Vector SHA-512 Sigma Doubleword */
4304 case 1666: /* Vector SHA-256 Sigma Word */
4305 case 1032: /* Vector Polynomial Multiply-Sum Byte */
4306 case 1160: /* Vector Polynomial Multiply-Sum Word */
4307 case 1096: /* Vector Polynomial Multiply-Sum Halfword */
4308 case 1224: /* Vector Polynomial Multiply-Sum Doubleword */
4309 case 1292: /* Vector Gather Bits by Bytes by Doubleword */
4310 case 1794: /* Vector Count Leading Zeros Byte */
4311 case 1858: /* Vector Count Leading Zeros Halfword */
4312 case 1922: /* Vector Count Leading Zeros Word */
4313 case 1986: /* Vector Count Leading Zeros Doubleword */
4314 case 1795: /* Vector Population Count Byte */
4315 case 1859: /* Vector Population Count Halfword */
4316 case 1923: /* Vector Population Count Word */
4317 case 1987: /* Vector Population Count Doubleword */
4318 case 1356: /* Vector Bit Permute Quadword */
4319 case 1484: /* Vector Bit Permute Doubleword */
4320 case 513: /* Vector Multiply-by-10 Unsigned Quadword */
4321 case 1: /* Vector Multiply-by-10 & write Carry Unsigned
4322 Quadword */
4323 case 577: /* Vector Multiply-by-10 Extended Unsigned Quadword */
4324 case 65: /* Vector Multiply-by-10 Extended & write Carry
4325 Unsigned Quadword */
4326 case 1027: /* Vector Absolute Difference Unsigned Byte */
4327 case 1091: /* Vector Absolute Difference Unsigned Halfword */
4328 case 1155: /* Vector Absolute Difference Unsigned Word */
4329 case 1796: /* Vector Shift Right Variable */
4330 case 1860: /* Vector Shift Left Variable */
4331 case 133: /* Vector Rotate Left Word then Mask Insert */
4332 case 197: /* Vector Rotate Left Doubleword then Mask Insert */
4333 case 389: /* Vector Rotate Left Word then AND with Mask */
4334 case 453: /* Vector Rotate Left Doubleword then AND with Mask */
4335 case 525: /* Vector Extract Unsigned Byte */
4336 case 589: /* Vector Extract Unsigned Halfword */
4337 case 653: /* Vector Extract Unsigned Word */
4338 case 717: /* Vector Extract Doubleword */
4339 case 781: /* Vector Insert Byte */
4340 case 845: /* Vector Insert Halfword */
4341 case 909: /* Vector Insert Word */
4342 case 973: /* Vector Insert Doubleword */
4343 record_full_arch_list_add_reg (regcache,
4344 tdep->ppc_vr0_regnum + PPC_VRT (insn));
4345 return 0;
4346
4347 case 1549: /* Vector Extract Unsigned Byte Left-Indexed */
4348 case 1613: /* Vector Extract Unsigned Halfword Left-Indexed */
4349 case 1677: /* Vector Extract Unsigned Word Left-Indexed */
4350 case 1805: /* Vector Extract Unsigned Byte Right-Indexed */
4351 case 1869: /* Vector Extract Unsigned Halfword Right-Indexed */
4352 case 1933: /* Vector Extract Unsigned Word Right-Indexed */
4353 record_full_arch_list_add_reg (regcache,
4354 tdep->ppc_gp0_regnum + PPC_RT (insn));
4355 return 0;
4356
4357 case 1604: /* Move To Vector Status and Control Register */
4358 record_full_arch_list_add_reg (regcache, PPC_VSCR_REGNUM);
4359 return 0;
4360 case 1540: /* Move From Vector Status and Control Register */
4361 record_full_arch_list_add_reg (regcache,
4362 tdep->ppc_vr0_regnum + PPC_VRT (insn));
4363 return 0;
4364 case 833: /* Decimal Copy Sign */
4365 record_full_arch_list_add_reg (regcache,
4366 tdep->ppc_vr0_regnum + PPC_VRT (insn));
4367 record_full_arch_list_add_reg (regcache, tdep->ppc_cr_regnum);
4368 return 0;
4369 }
4370
4371 fprintf_unfiltered (gdb_stdlog, "Warning: Don't know how to record %08x "
4372 "at %s, 4-%d.\n", insn, paddress (gdbarch, addr), ext);
4373 return -1;
4374 }
4375
4376 /* Parse and record instructions of primary opcode-19 at ADDR.
4377 Return 0 if successful. */
4378
4379 static int
4380 ppc_process_record_op19 (struct gdbarch *gdbarch, struct regcache *regcache,
4381 CORE_ADDR addr, uint32_t insn)
4382 {
4383 struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch);
4384 int ext = PPC_EXTOP (insn);
4385
4386 switch (ext & 0x01f)
4387 {
4388 case 2: /* Add PC Immediate Shifted */
4389 record_full_arch_list_add_reg (regcache,
4390 tdep->ppc_gp0_regnum + PPC_RT (insn));
4391 return 0;
4392 }
4393
4394 switch (ext)
4395 {
4396 case 0: /* Move Condition Register Field */
4397 case 33: /* Condition Register NOR */
4398 case 129: /* Condition Register AND with Complement */
4399 case 193: /* Condition Register XOR */
4400 case 225: /* Condition Register NAND */
4401 case 257: /* Condition Register AND */
4402 case 289: /* Condition Register Equivalent */
4403 case 417: /* Condition Register OR with Complement */
4404 case 449: /* Condition Register OR */
4405 record_full_arch_list_add_reg (regcache, tdep->ppc_cr_regnum);
4406 return 0;
4407
4408 case 16: /* Branch Conditional */
4409 case 560: /* Branch Conditional to Branch Target Address Register */
4410 if ((PPC_BO (insn) & 0x4) == 0)
4411 record_full_arch_list_add_reg (regcache, tdep->ppc_ctr_regnum);
4412 /* FALL-THROUGH */
4413 case 528: /* Branch Conditional to Count Register */
4414 if (PPC_LK (insn))
4415 record_full_arch_list_add_reg (regcache, tdep->ppc_lr_regnum);
4416 return 0;
4417
4418 case 150: /* Instruction Synchronize */
4419 /* Do nothing. */
4420 return 0;
4421 }
4422
4423 fprintf_unfiltered (gdb_stdlog, "Warning: Don't know how to record %08x "
4424 "at %s, 19-%d.\n", insn, paddress (gdbarch, addr), ext);
4425 return -1;
4426 }
4427
4428 /* Parse and record instructions of primary opcode-31 at ADDR.
4429 Return 0 if successful. */
4430
4431 static int
4432 ppc_process_record_op31 (struct gdbarch *gdbarch, struct regcache *regcache,
4433 CORE_ADDR addr, uint32_t insn)
4434 {
4435 struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch);
4436 int ext = PPC_EXTOP (insn);
4437 int tmp, nr, nb, i;
4438 CORE_ADDR at_dcsz, ea = 0;
4439 ULONGEST rb, ra, xer;
4440 int size = 0;
4441
4442 /* These instructions have OE bit. */
4443 switch (ext & 0x1ff)
4444 {
4445 /* These write RT and XER. Update CR if RC is set. */
4446 case 8: /* Subtract from carrying */
4447 case 10: /* Add carrying */
4448 case 136: /* Subtract from extended */
4449 case 138: /* Add extended */
4450 case 200: /* Subtract from zero extended */
4451 case 202: /* Add to zero extended */
4452 case 232: /* Subtract from minus one extended */
4453 case 234: /* Add to minus one extended */
4454 /* CA is always altered, but SO/OV are only altered when OE=1.
4455 In any case, XER is always altered. */
4456 record_full_arch_list_add_reg (regcache, tdep->ppc_xer_regnum);
4457 if (PPC_RC (insn))
4458 record_full_arch_list_add_reg (regcache, tdep->ppc_cr_regnum);
4459 record_full_arch_list_add_reg (regcache,
4460 tdep->ppc_gp0_regnum + PPC_RT (insn));
4461 return 0;
4462
4463 /* These write RT. Update CR if RC is set and update XER if OE is set. */
4464 case 40: /* Subtract from */
4465 case 104: /* Negate */
4466 case 233: /* Multiply low doubleword */
4467 case 235: /* Multiply low word */
4468 case 266: /* Add */
4469 case 393: /* Divide Doubleword Extended Unsigned */
4470 case 395: /* Divide Word Extended Unsigned */
4471 case 425: /* Divide Doubleword Extended */
4472 case 427: /* Divide Word Extended */
4473 case 457: /* Divide Doubleword Unsigned */
4474 case 459: /* Divide Word Unsigned */
4475 case 489: /* Divide Doubleword */
4476 case 491: /* Divide Word */
4477 if (PPC_OE (insn))
4478 record_full_arch_list_add_reg (regcache, tdep->ppc_xer_regnum);
4479 /* FALL-THROUGH */
4480 case 9: /* Multiply High Doubleword Unsigned */
4481 case 11: /* Multiply High Word Unsigned */
4482 case 73: /* Multiply High Doubleword */
4483 case 75: /* Multiply High Word */
4484 if (PPC_RC (insn))
4485 record_full_arch_list_add_reg (regcache, tdep->ppc_cr_regnum);
4486 record_full_arch_list_add_reg (regcache,
4487 tdep->ppc_gp0_regnum + PPC_RT (insn));
4488 return 0;
4489 }
4490
4491 if ((ext & 0x1f) == 15)
4492 {
4493 /* Integer Select. bit[16:20] is used for BC. */
4494 record_full_arch_list_add_reg (regcache,
4495 tdep->ppc_gp0_regnum + PPC_RT (insn));
4496 return 0;
4497 }
4498
4499 if ((ext & 0xff) == 170)
4500 {
4501 /* Add Extended using alternate carry bits */
4502 record_full_arch_list_add_reg (regcache, tdep->ppc_xer_regnum);
4503 record_full_arch_list_add_reg (regcache,
4504 tdep->ppc_gp0_regnum + PPC_RT (insn));
4505 return 0;
4506 }
4507
4508 switch (ext)
4509 {
4510 case 78: /* Determine Leftmost Zero Byte */
4511 if (PPC_RC (insn))
4512 record_full_arch_list_add_reg (regcache, tdep->ppc_cr_regnum);
4513 record_full_arch_list_add_reg (regcache, tdep->ppc_xer_regnum);
4514 record_full_arch_list_add_reg (regcache,
4515 tdep->ppc_gp0_regnum + PPC_RT (insn));
4516 return 0;
4517
4518 /* These only write RT. */
4519 case 19: /* Move from condition register */
4520 /* Move From One Condition Register Field */
4521 case 74: /* Add and Generate Sixes */
4522 case 74 | 0x200: /* Add and Generate Sixes (bit-21 dont-care) */
4523 case 302: /* Move From Branch History Rolling Buffer */
4524 case 339: /* Move From Special Purpose Register */
4525 case 371: /* Move From Time Base [Phased-Out] */
4526 case 309: /* Load Doubleword Monitored Indexed */
4527 case 128: /* Set Boolean */
4528 case 755: /* Deliver A Random Number */
4529 record_full_arch_list_add_reg (regcache,
4530 tdep->ppc_gp0_regnum + PPC_RT (insn));
4531 return 0;
4532
4533 /* These only write to RA. */
4534 case 51: /* Move From VSR Doubleword */
4535 case 115: /* Move From VSR Word and Zero */
4536 case 122: /* Population count bytes */
4537 case 378: /* Population count words */
4538 case 506: /* Population count doublewords */
4539 case 154: /* Parity Word */
4540 case 186: /* Parity Doubleword */
4541 case 252: /* Bit Permute Doubleword */
4542 case 282: /* Convert Declets To Binary Coded Decimal */
4543 case 314: /* Convert Binary Coded Decimal To Declets */
4544 case 508: /* Compare bytes */
4545 case 307: /* Move From VSR Lower Doubleword */
4546 record_full_arch_list_add_reg (regcache,
4547 tdep->ppc_gp0_regnum + PPC_RA (insn));
4548 return 0;
4549
4550 /* These write CR and optional RA. */
4551 case 792: /* Shift Right Algebraic Word */
4552 case 794: /* Shift Right Algebraic Doubleword */
4553 case 824: /* Shift Right Algebraic Word Immediate */
4554 case 826: /* Shift Right Algebraic Doubleword Immediate (413) */
4555 case 826 | 1: /* Shift Right Algebraic Doubleword Immediate (413) */
4556 record_full_arch_list_add_reg (regcache, tdep->ppc_xer_regnum);
4557 record_full_arch_list_add_reg (regcache,
4558 tdep->ppc_gp0_regnum + PPC_RA (insn));
4559 /* FALL-THROUGH */
4560 case 0: /* Compare */
4561 case 32: /* Compare logical */
4562 case 144: /* Move To Condition Register Fields */
4563 /* Move To One Condition Register Field */
4564 case 192: /* Compare Ranged Byte */
4565 case 224: /* Compare Equal Byte */
4566 case 576: /* Move XER to CR Extended */
4567 case 902: /* Paste (should always fail due to single-stepping and
4568 the memory location might not be accessible, so
4569 record only CR) */
4570 record_full_arch_list_add_reg (regcache, tdep->ppc_cr_regnum);
4571 return 0;
4572
4573 /* These write to RT. Update RA if 'update indexed.' */
4574 case 53: /* Load Doubleword with Update Indexed */
4575 case 119: /* Load Byte and Zero with Update Indexed */
4576 case 311: /* Load Halfword and Zero with Update Indexed */
4577 case 55: /* Load Word and Zero with Update Indexed */
4578 case 375: /* Load Halfword Algebraic with Update Indexed */
4579 case 373: /* Load Word Algebraic with Update Indexed */
4580 record_full_arch_list_add_reg (regcache,
4581 tdep->ppc_gp0_regnum + PPC_RA (insn));
4582 /* FALL-THROUGH */
4583 case 21: /* Load Doubleword Indexed */
4584 case 52: /* Load Byte And Reserve Indexed */
4585 case 116: /* Load Halfword And Reserve Indexed */
4586 case 20: /* Load Word And Reserve Indexed */
4587 case 84: /* Load Doubleword And Reserve Indexed */
4588 case 87: /* Load Byte and Zero Indexed */
4589 case 279: /* Load Halfword and Zero Indexed */
4590 case 23: /* Load Word and Zero Indexed */
4591 case 343: /* Load Halfword Algebraic Indexed */
4592 case 341: /* Load Word Algebraic Indexed */
4593 case 790: /* Load Halfword Byte-Reverse Indexed */
4594 case 534: /* Load Word Byte-Reverse Indexed */
4595 case 532: /* Load Doubleword Byte-Reverse Indexed */
4596 case 582: /* Load Word Atomic */
4597 case 614: /* Load Doubleword Atomic */
4598 case 265: /* Modulo Unsigned Doubleword */
4599 case 777: /* Modulo Signed Doubleword */
4600 case 267: /* Modulo Unsigned Word */
4601 case 779: /* Modulo Signed Word */
4602 record_full_arch_list_add_reg (regcache,
4603 tdep->ppc_gp0_regnum + PPC_RT (insn));
4604 return 0;
4605
4606 case 597: /* Load String Word Immediate */
4607 case 533: /* Load String Word Indexed */
4608 if (ext == 597)
4609 {
4610 nr = PPC_NB (insn);
4611 if (nr == 0)
4612 nr = 32;
4613 }
4614 else
4615 {
4616 regcache_raw_read_unsigned (regcache, tdep->ppc_xer_regnum, &xer);
4617 nr = PPC_XER_NB (xer);
4618 }
4619
4620 nr = (nr + 3) >> 2;
4621
4622 /* If n=0, the contents of register RT are undefined. */
4623 if (nr == 0)
4624 nr = 1;
4625
4626 for (i = 0; i < nr; i++)
4627 record_full_arch_list_add_reg (regcache,
4628 tdep->ppc_gp0_regnum
4629 + ((PPC_RT (insn) + i) & 0x1f));
4630 return 0;
4631
4632 case 276: /* Load Quadword And Reserve Indexed */
4633 tmp = tdep->ppc_gp0_regnum + (PPC_RT (insn) & ~1);
4634 record_full_arch_list_add_reg (regcache, tmp);
4635 record_full_arch_list_add_reg (regcache, tmp + 1);
4636 return 0;
4637
4638 /* These write VRT. */
4639 case 6: /* Load Vector for Shift Left Indexed */
4640 case 38: /* Load Vector for Shift Right Indexed */
4641 case 7: /* Load Vector Element Byte Indexed */
4642 case 39: /* Load Vector Element Halfword Indexed */
4643 case 71: /* Load Vector Element Word Indexed */
4644 case 103: /* Load Vector Indexed */
4645 case 359: /* Load Vector Indexed LRU */
4646 record_full_arch_list_add_reg (regcache,
4647 tdep->ppc_vr0_regnum + PPC_VRT (insn));
4648 return 0;
4649
4650 /* These write FRT. Update RA if 'update indexed.' */
4651 case 567: /* Load Floating-Point Single with Update Indexed */
4652 case 631: /* Load Floating-Point Double with Update Indexed */
4653 record_full_arch_list_add_reg (regcache,
4654 tdep->ppc_gp0_regnum + PPC_RA (insn));
4655 /* FALL-THROUGH */
4656 case 535: /* Load Floating-Point Single Indexed */
4657 case 599: /* Load Floating-Point Double Indexed */
4658 case 855: /* Load Floating-Point as Integer Word Algebraic Indexed */
4659 case 887: /* Load Floating-Point as Integer Word and Zero Indexed */
4660 record_full_arch_list_add_reg (regcache,
4661 tdep->ppc_fp0_regnum + PPC_FRT (insn));
4662 return 0;
4663
4664 case 791: /* Load Floating-Point Double Pair Indexed */
4665 tmp = tdep->ppc_fp0_regnum + (PPC_FRT (insn) & ~1);
4666 record_full_arch_list_add_reg (regcache, tmp);
4667 record_full_arch_list_add_reg (regcache, tmp + 1);
4668 return 0;
4669
4670 case 179: /* Move To VSR Doubleword */
4671 case 211: /* Move To VSR Word Algebraic */
4672 case 243: /* Move To VSR Word and Zero */
4673 case 588: /* Load VSX Scalar Doubleword Indexed */
4674 case 524: /* Load VSX Scalar Single-Precision Indexed */
4675 case 76: /* Load VSX Scalar as Integer Word Algebraic Indexed */
4676 case 12: /* Load VSX Scalar as Integer Word and Zero Indexed */
4677 case 844: /* Load VSX Vector Doubleword*2 Indexed */
4678 case 332: /* Load VSX Vector Doubleword & Splat Indexed */
4679 case 780: /* Load VSX Vector Word*4 Indexed */
4680 case 268: /* Load VSX Vector Indexed */
4681 case 364: /* Load VSX Vector Word & Splat Indexed */
4682 case 812: /* Load VSX Vector Halfword*8 Indexed */
4683 case 876: /* Load VSX Vector Byte*16 Indexed */
4684 case 269: /* Load VSX Vector with Length */
4685 case 301: /* Load VSX Vector Left-justified with Length */
4686 case 781: /* Load VSX Scalar as Integer Byte & Zero Indexed */
4687 case 813: /* Load VSX Scalar as Integer Halfword & Zero Indexed */
4688 case 403: /* Move To VSR Word & Splat */
4689 case 435: /* Move To VSR Double Doubleword */
4690 ppc_record_vsr (regcache, tdep, PPC_XT (insn));
4691 return 0;
4692
4693 /* These write RA. Update CR if RC is set. */
4694 case 24: /* Shift Left Word */
4695 case 26: /* Count Leading Zeros Word */
4696 case 27: /* Shift Left Doubleword */
4697 case 28: /* AND */
4698 case 58: /* Count Leading Zeros Doubleword */
4699 case 60: /* AND with Complement */
4700 case 124: /* NOR */
4701 case 284: /* Equivalent */
4702 case 316: /* XOR */
4703 case 476: /* NAND */
4704 case 412: /* OR with Complement */
4705 case 444: /* OR */
4706 case 536: /* Shift Right Word */
4707 case 539: /* Shift Right Doubleword */
4708 case 922: /* Extend Sign Halfword */
4709 case 954: /* Extend Sign Byte */
4710 case 986: /* Extend Sign Word */
4711 case 538: /* Count Trailing Zeros Word */
4712 case 570: /* Count Trailing Zeros Doubleword */
4713 case 890: /* Extend-Sign Word and Shift Left Immediate (445) */
4714 case 890 | 1: /* Extend-Sign Word and Shift Left Immediate (445) */
4715
4716 if (ext == 444 && tdep->ppc_ppr_regnum >= 0
4717 && (PPC_RS (insn) == PPC_RA (insn))
4718 && (PPC_RA (insn) == PPC_RB (insn))
4719 && !PPC_RC (insn))
4720 {
4721 /* or Rx,Rx,Rx alters PRI in PPR. */
4722 record_full_arch_list_add_reg (regcache, tdep->ppc_ppr_regnum);
4723 return 0;
4724 }
4725
4726 if (PPC_RC (insn))
4727 record_full_arch_list_add_reg (regcache, tdep->ppc_cr_regnum);
4728 record_full_arch_list_add_reg (regcache,
4729 tdep->ppc_gp0_regnum + PPC_RA (insn));
4730 return 0;
4731
4732 /* Store memory. */
4733 case 181: /* Store Doubleword with Update Indexed */
4734 case 183: /* Store Word with Update Indexed */
4735 case 247: /* Store Byte with Update Indexed */
4736 case 439: /* Store Half Word with Update Indexed */
4737 case 695: /* Store Floating-Point Single with Update Indexed */
4738 case 759: /* Store Floating-Point Double with Update Indexed */
4739 record_full_arch_list_add_reg (regcache,
4740 tdep->ppc_gp0_regnum + PPC_RA (insn));
4741 /* FALL-THROUGH */
4742 case 135: /* Store Vector Element Byte Indexed */
4743 case 167: /* Store Vector Element Halfword Indexed */
4744 case 199: /* Store Vector Element Word Indexed */
4745 case 231: /* Store Vector Indexed */
4746 case 487: /* Store Vector Indexed LRU */
4747 case 716: /* Store VSX Scalar Doubleword Indexed */
4748 case 140: /* Store VSX Scalar as Integer Word Indexed */
4749 case 652: /* Store VSX Scalar Single-Precision Indexed */
4750 case 972: /* Store VSX Vector Doubleword*2 Indexed */
4751 case 908: /* Store VSX Vector Word*4 Indexed */
4752 case 149: /* Store Doubleword Indexed */
4753 case 151: /* Store Word Indexed */
4754 case 215: /* Store Byte Indexed */
4755 case 407: /* Store Half Word Indexed */
4756 case 694: /* Store Byte Conditional Indexed */
4757 case 726: /* Store Halfword Conditional Indexed */
4758 case 150: /* Store Word Conditional Indexed */
4759 case 214: /* Store Doubleword Conditional Indexed */
4760 case 182: /* Store Quadword Conditional Indexed */
4761 case 662: /* Store Word Byte-Reverse Indexed */
4762 case 918: /* Store Halfword Byte-Reverse Indexed */
4763 case 660: /* Store Doubleword Byte-Reverse Indexed */
4764 case 663: /* Store Floating-Point Single Indexed */
4765 case 727: /* Store Floating-Point Double Indexed */
4766 case 919: /* Store Floating-Point Double Pair Indexed */
4767 case 983: /* Store Floating-Point as Integer Word Indexed */
4768 case 396: /* Store VSX Vector Indexed */
4769 case 940: /* Store VSX Vector Halfword*8 Indexed */
4770 case 1004: /* Store VSX Vector Byte*16 Indexed */
4771 case 909: /* Store VSX Scalar as Integer Byte Indexed */
4772 case 941: /* Store VSX Scalar as Integer Halfword Indexed */
4773 if (ext == 694 || ext == 726 || ext == 150 || ext == 214 || ext == 182)
4774 record_full_arch_list_add_reg (regcache, tdep->ppc_cr_regnum);
4775
4776 ra = 0;
4777 if (PPC_RA (insn) != 0)
4778 regcache_raw_read_unsigned (regcache,
4779 tdep->ppc_gp0_regnum + PPC_RA (insn), &ra);
4780 regcache_raw_read_unsigned (regcache,
4781 tdep->ppc_gp0_regnum + PPC_RB (insn), &rb);
4782 ea = ra + rb;
4783
4784 switch (ext)
4785 {
4786 case 183: /* Store Word with Update Indexed */
4787 case 199: /* Store Vector Element Word Indexed */
4788 case 140: /* Store VSX Scalar as Integer Word Indexed */
4789 case 652: /* Store VSX Scalar Single-Precision Indexed */
4790 case 151: /* Store Word Indexed */
4791 case 150: /* Store Word Conditional Indexed */
4792 case 662: /* Store Word Byte-Reverse Indexed */
4793 case 663: /* Store Floating-Point Single Indexed */
4794 case 695: /* Store Floating-Point Single with Update Indexed */
4795 case 983: /* Store Floating-Point as Integer Word Indexed */
4796 size = 4;
4797 break;
4798 case 247: /* Store Byte with Update Indexed */
4799 case 135: /* Store Vector Element Byte Indexed */
4800 case 215: /* Store Byte Indexed */
4801 case 694: /* Store Byte Conditional Indexed */
4802 case 909: /* Store VSX Scalar as Integer Byte Indexed */
4803 size = 1;
4804 break;
4805 case 439: /* Store Halfword with Update Indexed */
4806 case 167: /* Store Vector Element Halfword Indexed */
4807 case 407: /* Store Halfword Indexed */
4808 case 726: /* Store Halfword Conditional Indexed */
4809 case 918: /* Store Halfword Byte-Reverse Indexed */
4810 case 941: /* Store VSX Scalar as Integer Halfword Indexed */
4811 size = 2;
4812 break;
4813 case 181: /* Store Doubleword with Update Indexed */
4814 case 716: /* Store VSX Scalar Doubleword Indexed */
4815 case 149: /* Store Doubleword Indexed */
4816 case 214: /* Store Doubleword Conditional Indexed */
4817 case 660: /* Store Doubleword Byte-Reverse Indexed */
4818 case 727: /* Store Floating-Point Double Indexed */
4819 case 759: /* Store Floating-Point Double with Update Indexed */
4820 size = 8;
4821 break;
4822 case 972: /* Store VSX Vector Doubleword*2 Indexed */
4823 case 908: /* Store VSX Vector Word*4 Indexed */
4824 case 182: /* Store Quadword Conditional Indexed */
4825 case 231: /* Store Vector Indexed */
4826 case 487: /* Store Vector Indexed LRU */
4827 case 919: /* Store Floating-Point Double Pair Indexed */
4828 case 396: /* Store VSX Vector Indexed */
4829 case 940: /* Store VSX Vector Halfword*8 Indexed */
4830 case 1004: /* Store VSX Vector Byte*16 Indexed */
4831 size = 16;
4832 break;
4833 default:
4834 gdb_assert (0);
4835 }
4836
4837 /* Align address for Store Vector instructions. */
4838 switch (ext)
4839 {
4840 case 167: /* Store Vector Element Halfword Indexed */
4841 addr = addr & ~0x1ULL;
4842 break;
4843
4844 case 199: /* Store Vector Element Word Indexed */
4845 addr = addr & ~0x3ULL;
4846 break;
4847
4848 case 231: /* Store Vector Indexed */
4849 case 487: /* Store Vector Indexed LRU */
4850 addr = addr & ~0xfULL;
4851 break;
4852 }
4853
4854 record_full_arch_list_add_mem (addr, size);
4855 return 0;
4856
4857 case 397: /* Store VSX Vector with Length */
4858 case 429: /* Store VSX Vector Left-justified with Length */
4859 ra = 0;
4860 if (PPC_RA (insn) != 0)
4861 regcache_raw_read_unsigned (regcache,
4862 tdep->ppc_gp0_regnum + PPC_RA (insn), &ra);
4863 ea = ra;
4864 regcache_raw_read_unsigned (regcache,
4865 tdep->ppc_gp0_regnum + PPC_RB (insn), &rb);
4866 /* Store up to 16 bytes. */
4867 nb = (rb & 0xff) > 16 ? 16 : (rb & 0xff);
4868 if (nb > 0)
4869 record_full_arch_list_add_mem (ea, nb);
4870 return 0;
4871
4872 case 710: /* Store Word Atomic */
4873 case 742: /* Store Doubleword Atomic */
4874 ra = 0;
4875 if (PPC_RA (insn) != 0)
4876 regcache_raw_read_unsigned (regcache,
4877 tdep->ppc_gp0_regnum + PPC_RA (insn), &ra);
4878 ea = ra;
4879 switch (ext)
4880 {
4881 case 710: /* Store Word Atomic */
4882 size = 8;
4883 break;
4884 case 742: /* Store Doubleword Atomic */
4885 size = 16;
4886 break;
4887 default:
4888 gdb_assert (0);
4889 }
4890 record_full_arch_list_add_mem (ea, size);
4891 return 0;
4892
4893 case 725: /* Store String Word Immediate */
4894 ra = 0;
4895 if (PPC_RA (insn) != 0)
4896 regcache_raw_read_unsigned (regcache,
4897 tdep->ppc_gp0_regnum + PPC_RA (insn), &ra);
4898 ea += ra;
4899
4900 nb = PPC_NB (insn);
4901 if (nb == 0)
4902 nb = 32;
4903
4904 record_full_arch_list_add_mem (ea, nb);
4905
4906 return 0;
4907
4908 case 661: /* Store String Word Indexed */
4909 ra = 0;
4910 if (PPC_RA (insn) != 0)
4911 regcache_raw_read_unsigned (regcache,
4912 tdep->ppc_gp0_regnum + PPC_RA (insn), &ra);
4913 ea += ra;
4914
4915 regcache_raw_read_unsigned (regcache, tdep->ppc_xer_regnum, &xer);
4916 nb = PPC_XER_NB (xer);
4917
4918 if (nb != 0)
4919 {
4920 regcache_raw_read_unsigned (regcache,
4921 tdep->ppc_gp0_regnum + PPC_RB (insn),
4922 &rb);
4923 ea += rb;
4924 record_full_arch_list_add_mem (ea, nb);
4925 }
4926
4927 return 0;
4928
4929 case 467: /* Move To Special Purpose Register */
4930 switch (PPC_SPR (insn))
4931 {
4932 case 1: /* XER */
4933 record_full_arch_list_add_reg (regcache, tdep->ppc_xer_regnum);
4934 return 0;
4935 case 3: /* DSCR */
4936 if (tdep->ppc_dscr_regnum >= 0)
4937 record_full_arch_list_add_reg (regcache, tdep->ppc_dscr_regnum);
4938 return 0;
4939 case 8: /* LR */
4940 record_full_arch_list_add_reg (regcache, tdep->ppc_lr_regnum);
4941 return 0;
4942 case 9: /* CTR */
4943 record_full_arch_list_add_reg (regcache, tdep->ppc_ctr_regnum);
4944 return 0;
4945 case 256: /* VRSAVE */
4946 record_full_arch_list_add_reg (regcache, tdep->ppc_vrsave_regnum);
4947 return 0;
4948 case 815: /* TAR */
4949 if (tdep->ppc_tar_regnum >= 0)
4950 record_full_arch_list_add_reg (regcache, tdep->ppc_tar_regnum);
4951 return 0;
4952 case 896:
4953 case 898: /* PPR */
4954 if (tdep->ppc_ppr_regnum >= 0)
4955 record_full_arch_list_add_reg (regcache, tdep->ppc_ppr_regnum);
4956 return 0;
4957 }
4958
4959 goto UNKNOWN_OP;
4960
4961 case 147: /* Move To Split Little Endian */
4962 record_full_arch_list_add_reg (regcache, tdep->ppc_ps_regnum);
4963 return 0;
4964
4965 case 512: /* Move to Condition Register from XER */
4966 record_full_arch_list_add_reg (regcache, tdep->ppc_cr_regnum);
4967 record_full_arch_list_add_reg (regcache, tdep->ppc_xer_regnum);
4968 return 0;
4969
4970 case 4: /* Trap Word */
4971 case 68: /* Trap Doubleword */
4972 case 430: /* Clear BHRB */
4973 case 598: /* Synchronize */
4974 case 62: /* Wait for Interrupt */
4975 case 30: /* Wait */
4976 case 22: /* Instruction Cache Block Touch */
4977 case 854: /* Enforce In-order Execution of I/O */
4978 case 246: /* Data Cache Block Touch for Store */
4979 case 54: /* Data Cache Block Store */
4980 case 86: /* Data Cache Block Flush */
4981 case 278: /* Data Cache Block Touch */
4982 case 758: /* Data Cache Block Allocate */
4983 case 982: /* Instruction Cache Block Invalidate */
4984 case 774: /* Copy */
4985 case 838: /* CP_Abort */
4986 return 0;
4987
4988 case 654: /* Transaction Begin */
4989 case 686: /* Transaction End */
4990 case 750: /* Transaction Suspend or Resume */
4991 case 782: /* Transaction Abort Word Conditional */
4992 case 814: /* Transaction Abort Doubleword Conditional */
4993 case 846: /* Transaction Abort Word Conditional Immediate */
4994 case 878: /* Transaction Abort Doubleword Conditional Immediate */
4995 case 910: /* Transaction Abort */
4996 record_full_arch_list_add_reg (regcache, tdep->ppc_ps_regnum);
4997 /* FALL-THROUGH */
4998 case 718: /* Transaction Check */
4999 record_full_arch_list_add_reg (regcache, tdep->ppc_cr_regnum);
5000 return 0;
5001
5002 case 1014: /* Data Cache Block set to Zero */
5003 if (target_auxv_search (current_top_target (), AT_DCACHEBSIZE, &at_dcsz) <= 0
5004 || at_dcsz == 0)
5005 at_dcsz = 128; /* Assume 128-byte cache line size (POWER8) */
5006
5007 ra = 0;
5008 if (PPC_RA (insn) != 0)
5009 regcache_raw_read_unsigned (regcache,
5010 tdep->ppc_gp0_regnum + PPC_RA (insn), &ra);
5011 regcache_raw_read_unsigned (regcache,
5012 tdep->ppc_gp0_regnum + PPC_RB (insn), &rb);
5013 ea = (ra + rb) & ~((ULONGEST) (at_dcsz - 1));
5014 record_full_arch_list_add_mem (ea, at_dcsz);
5015 return 0;
5016 }
5017
5018 UNKNOWN_OP:
5019 fprintf_unfiltered (gdb_stdlog, "Warning: Don't know how to record %08x "
5020 "at %s, 31-%d.\n", insn, paddress (gdbarch, addr), ext);
5021 return -1;
5022 }
5023
5024 /* Parse and record instructions of primary opcode-59 at ADDR.
5025 Return 0 if successful. */
5026
5027 static int
5028 ppc_process_record_op59 (struct gdbarch *gdbarch, struct regcache *regcache,
5029 CORE_ADDR addr, uint32_t insn)
5030 {
5031 struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch);
5032 int ext = PPC_EXTOP (insn);
5033
5034 switch (ext & 0x1f)
5035 {
5036 case 18: /* Floating Divide */
5037 case 20: /* Floating Subtract */
5038 case 21: /* Floating Add */
5039 case 22: /* Floating Square Root */
5040 case 24: /* Floating Reciprocal Estimate */
5041 case 25: /* Floating Multiply */
5042 case 26: /* Floating Reciprocal Square Root Estimate */
5043 case 28: /* Floating Multiply-Subtract */
5044 case 29: /* Floating Multiply-Add */
5045 case 30: /* Floating Negative Multiply-Subtract */
5046 case 31: /* Floating Negative Multiply-Add */
5047 record_full_arch_list_add_reg (regcache,
5048 tdep->ppc_fp0_regnum + PPC_FRT (insn));
5049 if (PPC_RC (insn))
5050 record_full_arch_list_add_reg (regcache, tdep->ppc_cr_regnum);
5051 record_full_arch_list_add_reg (regcache, tdep->ppc_fpscr_regnum);
5052
5053 return 0;
5054 }
5055
5056 switch (ext)
5057 {
5058 case 2: /* DFP Add */
5059 case 3: /* DFP Quantize */
5060 case 34: /* DFP Multiply */
5061 case 35: /* DFP Reround */
5062 case 67: /* DFP Quantize Immediate */
5063 case 99: /* DFP Round To FP Integer With Inexact */
5064 case 227: /* DFP Round To FP Integer Without Inexact */
5065 case 258: /* DFP Convert To DFP Long! */
5066 case 290: /* DFP Convert To Fixed */
5067 case 514: /* DFP Subtract */
5068 case 546: /* DFP Divide */
5069 case 770: /* DFP Round To DFP Short! */
5070 case 802: /* DFP Convert From Fixed */
5071 case 834: /* DFP Encode BCD To DPD */
5072 if (PPC_RC (insn))
5073 record_full_arch_list_add_reg (regcache, tdep->ppc_cr_regnum);
5074 record_full_arch_list_add_reg (regcache,
5075 tdep->ppc_fp0_regnum + PPC_FRT (insn));
5076 record_full_arch_list_add_reg (regcache, tdep->ppc_fpscr_regnum);
5077 return 0;
5078
5079 case 130: /* DFP Compare Ordered */
5080 case 162: /* DFP Test Exponent */
5081 case 194: /* DFP Test Data Class */
5082 case 226: /* DFP Test Data Group */
5083 case 642: /* DFP Compare Unordered */
5084 case 674: /* DFP Test Significance */
5085 case 675: /* DFP Test Significance Immediate */
5086 record_full_arch_list_add_reg (regcache, tdep->ppc_cr_regnum);
5087 record_full_arch_list_add_reg (regcache, tdep->ppc_fpscr_regnum);
5088 return 0;
5089
5090 case 66: /* DFP Shift Significand Left Immediate */
5091 case 98: /* DFP Shift Significand Right Immediate */
5092 case 322: /* DFP Decode DPD To BCD */
5093 case 354: /* DFP Extract Biased Exponent */
5094 case 866: /* DFP Insert Biased Exponent */
5095 record_full_arch_list_add_reg (regcache,
5096 tdep->ppc_fp0_regnum + PPC_FRT (insn));
5097 if (PPC_RC (insn))
5098 record_full_arch_list_add_reg (regcache, tdep->ppc_cr_regnum);
5099 return 0;
5100
5101 case 846: /* Floating Convert From Integer Doubleword Single */
5102 case 974: /* Floating Convert From Integer Doubleword Unsigned
5103 Single */
5104 record_full_arch_list_add_reg (regcache,
5105 tdep->ppc_fp0_regnum + PPC_FRT (insn));
5106 if (PPC_RC (insn))
5107 record_full_arch_list_add_reg (regcache, tdep->ppc_cr_regnum);
5108 record_full_arch_list_add_reg (regcache, tdep->ppc_fpscr_regnum);
5109
5110 return 0;
5111 }
5112
5113 fprintf_unfiltered (gdb_stdlog, "Warning: Don't know how to record %08x "
5114 "at %s, 59-%d.\n", insn, paddress (gdbarch, addr), ext);
5115 return -1;
5116 }
5117
5118 /* Parse and record instructions of primary opcode-60 at ADDR.
5119 Return 0 if successful. */
5120
5121 static int
5122 ppc_process_record_op60 (struct gdbarch *gdbarch, struct regcache *regcache,
5123 CORE_ADDR addr, uint32_t insn)
5124 {
5125 struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch);
5126 int ext = PPC_EXTOP (insn);
5127
5128 switch (ext >> 2)
5129 {
5130 case 0: /* VSX Scalar Add Single-Precision */
5131 case 32: /* VSX Scalar Add Double-Precision */
5132 case 24: /* VSX Scalar Divide Single-Precision */
5133 case 56: /* VSX Scalar Divide Double-Precision */
5134 case 176: /* VSX Scalar Copy Sign Double-Precision */
5135 case 33: /* VSX Scalar Multiply-Add Double-Precision */
5136 case 41: /* ditto */
5137 case 1: /* VSX Scalar Multiply-Add Single-Precision */
5138 case 9: /* ditto */
5139 case 160: /* VSX Scalar Maximum Double-Precision */
5140 case 168: /* VSX Scalar Minimum Double-Precision */
5141 case 49: /* VSX Scalar Multiply-Subtract Double-Precision */
5142 case 57: /* ditto */
5143 case 17: /* VSX Scalar Multiply-Subtract Single-Precision */
5144 case 25: /* ditto */
5145 case 48: /* VSX Scalar Multiply Double-Precision */
5146 case 16: /* VSX Scalar Multiply Single-Precision */
5147 case 161: /* VSX Scalar Negative Multiply-Add Double-Precision */
5148 case 169: /* ditto */
5149 case 129: /* VSX Scalar Negative Multiply-Add Single-Precision */
5150 case 137: /* ditto */
5151 case 177: /* VSX Scalar Negative Multiply-Subtract Double-Precision */
5152 case 185: /* ditto */
5153 case 145: /* VSX Scalar Negative Multiply-Subtract Single-Precision */
5154 case 153: /* ditto */
5155 case 40: /* VSX Scalar Subtract Double-Precision */
5156 case 8: /* VSX Scalar Subtract Single-Precision */
5157 case 96: /* VSX Vector Add Double-Precision */
5158 case 64: /* VSX Vector Add Single-Precision */
5159 case 120: /* VSX Vector Divide Double-Precision */
5160 case 88: /* VSX Vector Divide Single-Precision */
5161 case 97: /* VSX Vector Multiply-Add Double-Precision */
5162 case 105: /* ditto */
5163 case 65: /* VSX Vector Multiply-Add Single-Precision */
5164 case 73: /* ditto */
5165 case 224: /* VSX Vector Maximum Double-Precision */
5166 case 192: /* VSX Vector Maximum Single-Precision */
5167 case 232: /* VSX Vector Minimum Double-Precision */
5168 case 200: /* VSX Vector Minimum Single-Precision */
5169 case 113: /* VSX Vector Multiply-Subtract Double-Precision */
5170 case 121: /* ditto */
5171 case 81: /* VSX Vector Multiply-Subtract Single-Precision */
5172 case 89: /* ditto */
5173 case 112: /* VSX Vector Multiply Double-Precision */
5174 case 80: /* VSX Vector Multiply Single-Precision */
5175 case 225: /* VSX Vector Negative Multiply-Add Double-Precision */
5176 case 233: /* ditto */
5177 case 193: /* VSX Vector Negative Multiply-Add Single-Precision */
5178 case 201: /* ditto */
5179 case 241: /* VSX Vector Negative Multiply-Subtract Double-Precision */
5180 case 249: /* ditto */
5181 case 209: /* VSX Vector Negative Multiply-Subtract Single-Precision */
5182 case 217: /* ditto */
5183 case 104: /* VSX Vector Subtract Double-Precision */
5184 case 72: /* VSX Vector Subtract Single-Precision */
5185 case 128: /* VSX Scalar Maximum Type-C Double-Precision */
5186 case 136: /* VSX Scalar Minimum Type-C Double-Precision */
5187 case 144: /* VSX Scalar Maximum Type-J Double-Precision */
5188 case 152: /* VSX Scalar Minimum Type-J Double-Precision */
5189 case 3: /* VSX Scalar Compare Equal Double-Precision */
5190 case 11: /* VSX Scalar Compare Greater Than Double-Precision */
5191 case 19: /* VSX Scalar Compare Greater Than or Equal
5192 Double-Precision */
5193 record_full_arch_list_add_reg (regcache, tdep->ppc_fpscr_regnum);
5194 /* FALL-THROUGH */
5195 case 240: /* VSX Vector Copy Sign Double-Precision */
5196 case 208: /* VSX Vector Copy Sign Single-Precision */
5197 case 130: /* VSX Logical AND */
5198 case 138: /* VSX Logical AND with Complement */
5199 case 186: /* VSX Logical Equivalence */
5200 case 178: /* VSX Logical NAND */
5201 case 170: /* VSX Logical OR with Complement */
5202 case 162: /* VSX Logical NOR */
5203 case 146: /* VSX Logical OR */
5204 case 154: /* VSX Logical XOR */
5205 case 18: /* VSX Merge High Word */
5206 case 50: /* VSX Merge Low Word */
5207 case 10: /* VSX Permute Doubleword Immediate (DM=0) */
5208 case 10 | 0x20: /* VSX Permute Doubleword Immediate (DM=1) */
5209 case 10 | 0x40: /* VSX Permute Doubleword Immediate (DM=2) */
5210 case 10 | 0x60: /* VSX Permute Doubleword Immediate (DM=3) */
5211 case 2: /* VSX Shift Left Double by Word Immediate (SHW=0) */
5212 case 2 | 0x20: /* VSX Shift Left Double by Word Immediate (SHW=1) */
5213 case 2 | 0x40: /* VSX Shift Left Double by Word Immediate (SHW=2) */
5214 case 2 | 0x60: /* VSX Shift Left Double by Word Immediate (SHW=3) */
5215 case 216: /* VSX Vector Insert Exponent Single-Precision */
5216 case 248: /* VSX Vector Insert Exponent Double-Precision */
5217 case 26: /* VSX Vector Permute */
5218 case 58: /* VSX Vector Permute Right-indexed */
5219 case 213: /* VSX Vector Test Data Class Single-Precision (DC=0) */
5220 case 213 | 0x8: /* VSX Vector Test Data Class Single-Precision (DC=1) */
5221 case 245: /* VSX Vector Test Data Class Double-Precision (DC=0) */
5222 case 245 | 0x8: /* VSX Vector Test Data Class Double-Precision (DC=1) */
5223 ppc_record_vsr (regcache, tdep, PPC_XT (insn));
5224 return 0;
5225
5226 case 61: /* VSX Scalar Test for software Divide Double-Precision */
5227 case 125: /* VSX Vector Test for software Divide Double-Precision */
5228 case 93: /* VSX Vector Test for software Divide Single-Precision */
5229 record_full_arch_list_add_reg (regcache, tdep->ppc_cr_regnum);
5230 return 0;
5231
5232 case 35: /* VSX Scalar Compare Unordered Double-Precision */
5233 case 43: /* VSX Scalar Compare Ordered Double-Precision */
5234 case 59: /* VSX Scalar Compare Exponents Double-Precision */
5235 record_full_arch_list_add_reg (regcache, tdep->ppc_cr_regnum);
5236 record_full_arch_list_add_reg (regcache, tdep->ppc_fpscr_regnum);
5237 return 0;
5238 }
5239
5240 switch ((ext >> 2) & 0x7f) /* Mask out Rc-bit. */
5241 {
5242 case 99: /* VSX Vector Compare Equal To Double-Precision */
5243 case 67: /* VSX Vector Compare Equal To Single-Precision */
5244 case 115: /* VSX Vector Compare Greater Than or
5245 Equal To Double-Precision */
5246 case 83: /* VSX Vector Compare Greater Than or
5247 Equal To Single-Precision */
5248 case 107: /* VSX Vector Compare Greater Than Double-Precision */
5249 case 75: /* VSX Vector Compare Greater Than Single-Precision */
5250 if (PPC_Rc (insn))
5251 record_full_arch_list_add_reg (regcache, tdep->ppc_cr_regnum);
5252 record_full_arch_list_add_reg (regcache, tdep->ppc_fpscr_regnum);
5253 ppc_record_vsr (regcache, tdep, PPC_XT (insn));
5254 return 0;
5255 }
5256
5257 switch (ext >> 1)
5258 {
5259 case 265: /* VSX Scalar round Double-Precision to
5260 Single-Precision and Convert to
5261 Single-Precision format */
5262 case 344: /* VSX Scalar truncate Double-Precision to
5263 Integer and Convert to Signed Integer
5264 Doubleword format with Saturate */
5265 case 88: /* VSX Scalar truncate Double-Precision to
5266 Integer and Convert to Signed Integer Word
5267 Format with Saturate */
5268 case 328: /* VSX Scalar truncate Double-Precision integer
5269 and Convert to Unsigned Integer Doubleword
5270 Format with Saturate */
5271 case 72: /* VSX Scalar truncate Double-Precision to
5272 Integer and Convert to Unsigned Integer Word
5273 Format with Saturate */
5274 case 329: /* VSX Scalar Convert Single-Precision to
5275 Double-Precision format */
5276 case 376: /* VSX Scalar Convert Signed Integer
5277 Doubleword to floating-point format and
5278 Round to Double-Precision format */
5279 case 312: /* VSX Scalar Convert Signed Integer
5280 Doubleword to floating-point format and
5281 round to Single-Precision */
5282 case 360: /* VSX Scalar Convert Unsigned Integer
5283 Doubleword to floating-point format and
5284 Round to Double-Precision format */
5285 case 296: /* VSX Scalar Convert Unsigned Integer
5286 Doubleword to floating-point format and
5287 Round to Single-Precision */
5288 case 73: /* VSX Scalar Round to Double-Precision Integer
5289 Using Round to Nearest Away */
5290 case 107: /* VSX Scalar Round to Double-Precision Integer
5291 Exact using Current rounding mode */
5292 case 121: /* VSX Scalar Round to Double-Precision Integer
5293 Using Round toward -Infinity */
5294 case 105: /* VSX Scalar Round to Double-Precision Integer
5295 Using Round toward +Infinity */
5296 case 89: /* VSX Scalar Round to Double-Precision Integer
5297 Using Round toward Zero */
5298 case 90: /* VSX Scalar Reciprocal Estimate Double-Precision */
5299 case 26: /* VSX Scalar Reciprocal Estimate Single-Precision */
5300 case 281: /* VSX Scalar Round to Single-Precision */
5301 case 74: /* VSX Scalar Reciprocal Square Root Estimate
5302 Double-Precision */
5303 case 10: /* VSX Scalar Reciprocal Square Root Estimate
5304 Single-Precision */
5305 case 75: /* VSX Scalar Square Root Double-Precision */
5306 case 11: /* VSX Scalar Square Root Single-Precision */
5307 case 393: /* VSX Vector round Double-Precision to
5308 Single-Precision and Convert to
5309 Single-Precision format */
5310 case 472: /* VSX Vector truncate Double-Precision to
5311 Integer and Convert to Signed Integer
5312 Doubleword format with Saturate */
5313 case 216: /* VSX Vector truncate Double-Precision to
5314 Integer and Convert to Signed Integer Word
5315 Format with Saturate */
5316 case 456: /* VSX Vector truncate Double-Precision to
5317 Integer and Convert to Unsigned Integer
5318 Doubleword format with Saturate */
5319 case 200: /* VSX Vector truncate Double-Precision to
5320 Integer and Convert to Unsigned Integer Word
5321 Format with Saturate */
5322 case 457: /* VSX Vector Convert Single-Precision to
5323 Double-Precision format */
5324 case 408: /* VSX Vector truncate Single-Precision to
5325 Integer and Convert to Signed Integer
5326 Doubleword format with Saturate */
5327 case 152: /* VSX Vector truncate Single-Precision to
5328 Integer and Convert to Signed Integer Word
5329 Format with Saturate */
5330 case 392: /* VSX Vector truncate Single-Precision to
5331 Integer and Convert to Unsigned Integer
5332 Doubleword format with Saturate */
5333 case 136: /* VSX Vector truncate Single-Precision to
5334 Integer and Convert to Unsigned Integer Word
5335 Format with Saturate */
5336 case 504: /* VSX Vector Convert and round Signed Integer
5337 Doubleword to Double-Precision format */
5338 case 440: /* VSX Vector Convert and round Signed Integer
5339 Doubleword to Single-Precision format */
5340 case 248: /* VSX Vector Convert Signed Integer Word to
5341 Double-Precision format */
5342 case 184: /* VSX Vector Convert and round Signed Integer
5343 Word to Single-Precision format */
5344 case 488: /* VSX Vector Convert and round Unsigned
5345 Integer Doubleword to Double-Precision format */
5346 case 424: /* VSX Vector Convert and round Unsigned
5347 Integer Doubleword to Single-Precision format */
5348 case 232: /* VSX Vector Convert and round Unsigned
5349 Integer Word to Double-Precision format */
5350 case 168: /* VSX Vector Convert and round Unsigned
5351 Integer Word to Single-Precision format */
5352 case 201: /* VSX Vector Round to Double-Precision
5353 Integer using round to Nearest Away */
5354 case 235: /* VSX Vector Round to Double-Precision
5355 Integer Exact using Current rounding mode */
5356 case 249: /* VSX Vector Round to Double-Precision
5357 Integer using round toward -Infinity */
5358 case 233: /* VSX Vector Round to Double-Precision
5359 Integer using round toward +Infinity */
5360 case 217: /* VSX Vector Round to Double-Precision
5361 Integer using round toward Zero */
5362 case 218: /* VSX Vector Reciprocal Estimate Double-Precision */
5363 case 154: /* VSX Vector Reciprocal Estimate Single-Precision */
5364 case 137: /* VSX Vector Round to Single-Precision Integer
5365 Using Round to Nearest Away */
5366 case 171: /* VSX Vector Round to Single-Precision Integer
5367 Exact Using Current rounding mode */
5368 case 185: /* VSX Vector Round to Single-Precision Integer
5369 Using Round toward -Infinity */
5370 case 169: /* VSX Vector Round to Single-Precision Integer
5371 Using Round toward +Infinity */
5372 case 153: /* VSX Vector Round to Single-Precision Integer
5373 Using round toward Zero */
5374 case 202: /* VSX Vector Reciprocal Square Root Estimate
5375 Double-Precision */
5376 case 138: /* VSX Vector Reciprocal Square Root Estimate
5377 Single-Precision */
5378 case 203: /* VSX Vector Square Root Double-Precision */
5379 case 139: /* VSX Vector Square Root Single-Precision */
5380 record_full_arch_list_add_reg (regcache, tdep->ppc_fpscr_regnum);
5381 /* FALL-THROUGH */
5382 case 345: /* VSX Scalar Absolute Value Double-Precision */
5383 case 267: /* VSX Scalar Convert Scalar Single-Precision to
5384 Vector Single-Precision format Non-signalling */
5385 case 331: /* VSX Scalar Convert Single-Precision to
5386 Double-Precision format Non-signalling */
5387 case 361: /* VSX Scalar Negative Absolute Value Double-Precision */
5388 case 377: /* VSX Scalar Negate Double-Precision */
5389 case 473: /* VSX Vector Absolute Value Double-Precision */
5390 case 409: /* VSX Vector Absolute Value Single-Precision */
5391 case 489: /* VSX Vector Negative Absolute Value Double-Precision */
5392 case 425: /* VSX Vector Negative Absolute Value Single-Precision */
5393 case 505: /* VSX Vector Negate Double-Precision */
5394 case 441: /* VSX Vector Negate Single-Precision */
5395 case 164: /* VSX Splat Word */
5396 case 165: /* VSX Vector Extract Unsigned Word */
5397 case 181: /* VSX Vector Insert Word */
5398 ppc_record_vsr (regcache, tdep, PPC_XT (insn));
5399 return 0;
5400
5401 case 298: /* VSX Scalar Test Data Class Single-Precision */
5402 case 362: /* VSX Scalar Test Data Class Double-Precision */
5403 record_full_arch_list_add_reg (regcache, tdep->ppc_fpscr_regnum);
5404 /* FALL-THROUGH */
5405 case 106: /* VSX Scalar Test for software Square Root
5406 Double-Precision */
5407 case 234: /* VSX Vector Test for software Square Root
5408 Double-Precision */
5409 case 170: /* VSX Vector Test for software Square Root
5410 Single-Precision */
5411 record_full_arch_list_add_reg (regcache, tdep->ppc_cr_regnum);
5412 return 0;
5413
5414 case 347:
5415 switch (PPC_FIELD (insn, 11, 5))
5416 {
5417 case 0: /* VSX Scalar Extract Exponent Double-Precision */
5418 case 1: /* VSX Scalar Extract Significand Double-Precision */
5419 record_full_arch_list_add_reg (regcache,
5420 tdep->ppc_gp0_regnum + PPC_RT (insn));
5421 return 0;
5422 case 16: /* VSX Scalar Convert Half-Precision format to
5423 Double-Precision format */
5424 case 17: /* VSX Scalar round & Convert Double-Precision format
5425 to Half-Precision format */
5426 record_full_arch_list_add_reg (regcache, tdep->ppc_fpscr_regnum);
5427 ppc_record_vsr (regcache, tdep, PPC_XT (insn));
5428 return 0;
5429 }
5430 break;
5431
5432 case 475:
5433 switch (PPC_FIELD (insn, 11, 5))
5434 {
5435 case 24: /* VSX Vector Convert Half-Precision format to
5436 Single-Precision format */
5437 case 25: /* VSX Vector round and Convert Single-Precision format
5438 to Half-Precision format */
5439 record_full_arch_list_add_reg (regcache, tdep->ppc_fpscr_regnum);
5440 /* FALL-THROUGH */
5441 case 0: /* VSX Vector Extract Exponent Double-Precision */
5442 case 1: /* VSX Vector Extract Significand Double-Precision */
5443 case 7: /* VSX Vector Byte-Reverse Halfword */
5444 case 8: /* VSX Vector Extract Exponent Single-Precision */
5445 case 9: /* VSX Vector Extract Significand Single-Precision */
5446 case 15: /* VSX Vector Byte-Reverse Word */
5447 case 23: /* VSX Vector Byte-Reverse Doubleword */
5448 case 31: /* VSX Vector Byte-Reverse Quadword */
5449 ppc_record_vsr (regcache, tdep, PPC_XT (insn));
5450 return 0;
5451 }
5452 break;
5453 }
5454
5455 switch (ext)
5456 {
5457 case 360: /* VSX Vector Splat Immediate Byte */
5458 if (PPC_FIELD (insn, 11, 2) == 0)
5459 {
5460 ppc_record_vsr (regcache, tdep, PPC_XT (insn));
5461 return 0;
5462 }
5463 break;
5464 case 918: /* VSX Scalar Insert Exponent Double-Precision */
5465 ppc_record_vsr (regcache, tdep, PPC_XT (insn));
5466 return 0;
5467 }
5468
5469 if (((ext >> 3) & 0x3) == 3) /* VSX Select */
5470 {
5471 ppc_record_vsr (regcache, tdep, PPC_XT (insn));
5472 return 0;
5473 }
5474
5475 fprintf_unfiltered (gdb_stdlog, "Warning: Don't know how to record %08x "
5476 "at %s, 60-%d.\n", insn, paddress (gdbarch, addr), ext);
5477 return -1;
5478 }
5479
5480 /* Parse and record instructions of primary opcode-61 at ADDR.
5481 Return 0 if successful. */
5482
5483 static int
5484 ppc_process_record_op61 (struct gdbarch *gdbarch, struct regcache *regcache,
5485 CORE_ADDR addr, uint32_t insn)
5486 {
5487 struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch);
5488 ULONGEST ea = 0;
5489 int size;
5490
5491 switch (insn & 0x3)
5492 {
5493 case 0: /* Store Floating-Point Double Pair */
5494 case 2: /* Store VSX Scalar Doubleword */
5495 case 3: /* Store VSX Scalar Single */
5496 if (PPC_RA (insn) != 0)
5497 regcache_raw_read_unsigned (regcache,
5498 tdep->ppc_gp0_regnum + PPC_RA (insn),
5499 &ea);
5500 ea += PPC_DS (insn) << 2;
5501 switch (insn & 0x3)
5502 {
5503 case 0: /* Store Floating-Point Double Pair */
5504 size = 16;
5505 break;
5506 case 2: /* Store VSX Scalar Doubleword */
5507 size = 8;
5508 break;
5509 case 3: /* Store VSX Scalar Single */
5510 size = 4;
5511 break;
5512 default:
5513 gdb_assert (0);
5514 }
5515 record_full_arch_list_add_mem (ea, size);
5516 return 0;
5517 }
5518
5519 switch (insn & 0x7)
5520 {
5521 case 1: /* Load VSX Vector */
5522 ppc_record_vsr (regcache, tdep, PPC_XT (insn));
5523 return 0;
5524 case 5: /* Store VSX Vector */
5525 if (PPC_RA (insn) != 0)
5526 regcache_raw_read_unsigned (regcache,
5527 tdep->ppc_gp0_regnum + PPC_RA (insn),
5528 &ea);
5529 ea += PPC_DQ (insn) << 4;
5530 record_full_arch_list_add_mem (ea, 16);
5531 return 0;
5532 }
5533
5534 fprintf_unfiltered (gdb_stdlog, "Warning: Don't know how to record %08x "
5535 "at %s.\n", insn, paddress (gdbarch, addr));
5536 return -1;
5537 }
5538
5539 /* Parse and record instructions of primary opcode-63 at ADDR.
5540 Return 0 if successful. */
5541
5542 static int
5543 ppc_process_record_op63 (struct gdbarch *gdbarch, struct regcache *regcache,
5544 CORE_ADDR addr, uint32_t insn)
5545 {
5546 struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch);
5547 int ext = PPC_EXTOP (insn);
5548 int tmp;
5549
5550 switch (ext & 0x1f)
5551 {
5552 case 18: /* Floating Divide */
5553 case 20: /* Floating Subtract */
5554 case 21: /* Floating Add */
5555 case 22: /* Floating Square Root */
5556 case 24: /* Floating Reciprocal Estimate */
5557 case 25: /* Floating Multiply */
5558 case 26: /* Floating Reciprocal Square Root Estimate */
5559 case 28: /* Floating Multiply-Subtract */
5560 case 29: /* Floating Multiply-Add */
5561 case 30: /* Floating Negative Multiply-Subtract */
5562 case 31: /* Floating Negative Multiply-Add */
5563 record_full_arch_list_add_reg (regcache,
5564 tdep->ppc_fp0_regnum + PPC_FRT (insn));
5565 if (PPC_RC (insn))
5566 record_full_arch_list_add_reg (regcache, tdep->ppc_cr_regnum);
5567 record_full_arch_list_add_reg (regcache, tdep->ppc_fpscr_regnum);
5568 return 0;
5569
5570 case 23: /* Floating Select */
5571 record_full_arch_list_add_reg (regcache,
5572 tdep->ppc_fp0_regnum + PPC_FRT (insn));
5573 if (PPC_RC (insn))
5574 record_full_arch_list_add_reg (regcache, tdep->ppc_cr_regnum);
5575 return 0;
5576 }
5577
5578 switch (ext & 0xff)
5579 {
5580 case 5: /* VSX Scalar Round to Quad-Precision Integer */
5581 case 37: /* VSX Scalar Round Quad-Precision to Double-Extended
5582 Precision */
5583 record_full_arch_list_add_reg (regcache, tdep->ppc_fpscr_regnum);
5584 ppc_record_vsr (regcache, tdep, PPC_VRT (insn) + 32);
5585 return 0;
5586 }
5587
5588 switch (ext)
5589 {
5590 case 2: /* DFP Add Quad */
5591 case 3: /* DFP Quantize Quad */
5592 case 34: /* DFP Multiply Quad */
5593 case 35: /* DFP Reround Quad */
5594 case 67: /* DFP Quantize Immediate Quad */
5595 case 99: /* DFP Round To FP Integer With Inexact Quad */
5596 case 227: /* DFP Round To FP Integer Without Inexact Quad */
5597 case 258: /* DFP Convert To DFP Extended Quad */
5598 case 514: /* DFP Subtract Quad */
5599 case 546: /* DFP Divide Quad */
5600 case 770: /* DFP Round To DFP Long Quad */
5601 case 802: /* DFP Convert From Fixed Quad */
5602 case 834: /* DFP Encode BCD To DPD Quad */
5603 if (PPC_RC (insn))
5604 record_full_arch_list_add_reg (regcache, tdep->ppc_cr_regnum);
5605 tmp = tdep->ppc_fp0_regnum + (PPC_FRT (insn) & ~1);
5606 record_full_arch_list_add_reg (regcache, tmp);
5607 record_full_arch_list_add_reg (regcache, tmp + 1);
5608 record_full_arch_list_add_reg (regcache, tdep->ppc_fpscr_regnum);
5609 return 0;
5610
5611 case 130: /* DFP Compare Ordered Quad */
5612 case 162: /* DFP Test Exponent Quad */
5613 case 194: /* DFP Test Data Class Quad */
5614 case 226: /* DFP Test Data Group Quad */
5615 case 642: /* DFP Compare Unordered Quad */
5616 case 674: /* DFP Test Significance Quad */
5617 case 675: /* DFP Test Significance Immediate Quad */
5618 record_full_arch_list_add_reg (regcache, tdep->ppc_cr_regnum);
5619 record_full_arch_list_add_reg (regcache, tdep->ppc_fpscr_regnum);
5620 return 0;
5621
5622 case 66: /* DFP Shift Significand Left Immediate Quad */
5623 case 98: /* DFP Shift Significand Right Immediate Quad */
5624 case 322: /* DFP Decode DPD To BCD Quad */
5625 case 866: /* DFP Insert Biased Exponent Quad */
5626 tmp = tdep->ppc_fp0_regnum + (PPC_FRT (insn) & ~1);
5627 record_full_arch_list_add_reg (regcache, tmp);
5628 record_full_arch_list_add_reg (regcache, tmp + 1);
5629 if (PPC_RC (insn))
5630 record_full_arch_list_add_reg (regcache, tdep->ppc_cr_regnum);
5631 return 0;
5632
5633 case 290: /* DFP Convert To Fixed Quad */
5634 record_full_arch_list_add_reg (regcache,
5635 tdep->ppc_fp0_regnum + PPC_FRT (insn));
5636 if (PPC_RC (insn))
5637 record_full_arch_list_add_reg (regcache, tdep->ppc_cr_regnum);
5638 record_full_arch_list_add_reg (regcache, tdep->ppc_fpscr_regnum);
5639 return 0;
5640
5641 case 354: /* DFP Extract Biased Exponent Quad */
5642 record_full_arch_list_add_reg (regcache,
5643 tdep->ppc_fp0_regnum + PPC_FRT (insn));
5644 if (PPC_RC (insn))
5645 record_full_arch_list_add_reg (regcache, tdep->ppc_cr_regnum);
5646 return 0;
5647
5648 case 12: /* Floating Round to Single-Precision */
5649 case 14: /* Floating Convert To Integer Word */
5650 case 15: /* Floating Convert To Integer Word
5651 with round toward Zero */
5652 case 142: /* Floating Convert To Integer Word Unsigned */
5653 case 143: /* Floating Convert To Integer Word Unsigned
5654 with round toward Zero */
5655 case 392: /* Floating Round to Integer Nearest */
5656 case 424: /* Floating Round to Integer Toward Zero */
5657 case 456: /* Floating Round to Integer Plus */
5658 case 488: /* Floating Round to Integer Minus */
5659 case 814: /* Floating Convert To Integer Doubleword */
5660 case 815: /* Floating Convert To Integer Doubleword
5661 with round toward Zero */
5662 case 846: /* Floating Convert From Integer Doubleword */
5663 case 942: /* Floating Convert To Integer Doubleword Unsigned */
5664 case 943: /* Floating Convert To Integer Doubleword Unsigned
5665 with round toward Zero */
5666 case 974: /* Floating Convert From Integer Doubleword Unsigned */
5667 record_full_arch_list_add_reg (regcache,
5668 tdep->ppc_fp0_regnum + PPC_FRT (insn));
5669 if (PPC_RC (insn))
5670 record_full_arch_list_add_reg (regcache, tdep->ppc_cr_regnum);
5671 record_full_arch_list_add_reg (regcache, tdep->ppc_fpscr_regnum);
5672 return 0;
5673
5674 case 583:
5675 switch (PPC_FIELD (insn, 11, 5))
5676 {
5677 case 1: /* Move From FPSCR & Clear Enables */
5678 case 20: /* Move From FPSCR Control & set DRN */
5679 case 21: /* Move From FPSCR Control & set DRN Immediate */
5680 case 22: /* Move From FPSCR Control & set RN */
5681 case 23: /* Move From FPSCR Control & set RN Immediate */
5682 record_full_arch_list_add_reg (regcache, tdep->ppc_fpscr_regnum);
5683 /* Fall through. */
5684 case 0: /* Move From FPSCR */
5685 case 24: /* Move From FPSCR Lightweight */
5686 if (PPC_FIELD (insn, 11, 5) == 0 && PPC_RC (insn))
5687 record_full_arch_list_add_reg (regcache, tdep->ppc_cr_regnum);
5688 record_full_arch_list_add_reg (regcache,
5689 tdep->ppc_fp0_regnum
5690 + PPC_FRT (insn));
5691 return 0;
5692 }
5693 break;
5694
5695 case 8: /* Floating Copy Sign */
5696 case 40: /* Floating Negate */
5697 case 72: /* Floating Move Register */
5698 case 136: /* Floating Negative Absolute Value */
5699 case 264: /* Floating Absolute Value */
5700 record_full_arch_list_add_reg (regcache,
5701 tdep->ppc_fp0_regnum + PPC_FRT (insn));
5702 if (PPC_RC (insn))
5703 record_full_arch_list_add_reg (regcache, tdep->ppc_cr_regnum);
5704 return 0;
5705
5706 case 838: /* Floating Merge Odd Word */
5707 case 966: /* Floating Merge Even Word */
5708 record_full_arch_list_add_reg (regcache,
5709 tdep->ppc_fp0_regnum + PPC_FRT (insn));
5710 return 0;
5711
5712 case 38: /* Move To FPSCR Bit 1 */
5713 case 70: /* Move To FPSCR Bit 0 */
5714 case 134: /* Move To FPSCR Field Immediate */
5715 case 711: /* Move To FPSCR Fields */
5716 if (PPC_RC (insn))
5717 record_full_arch_list_add_reg (regcache, tdep->ppc_cr_regnum);
5718 record_full_arch_list_add_reg (regcache, tdep->ppc_fpscr_regnum);
5719 return 0;
5720
5721 case 0: /* Floating Compare Unordered */
5722 case 32: /* Floating Compare Ordered */
5723 case 64: /* Move to Condition Register from FPSCR */
5724 case 132: /* VSX Scalar Compare Ordered Quad-Precision */
5725 case 164: /* VSX Scalar Compare Exponents Quad-Precision */
5726 case 644: /* VSX Scalar Compare Unordered Quad-Precision */
5727 case 708: /* VSX Scalar Test Data Class Quad-Precision */
5728 record_full_arch_list_add_reg (regcache, tdep->ppc_fpscr_regnum);
5729 /* FALL-THROUGH */
5730 case 128: /* Floating Test for software Divide */
5731 case 160: /* Floating Test for software Square Root */
5732 record_full_arch_list_add_reg (regcache, tdep->ppc_cr_regnum);
5733 return 0;
5734
5735 case 4: /* VSX Scalar Add Quad-Precision */
5736 case 36: /* VSX Scalar Multiply Quad-Precision */
5737 case 388: /* VSX Scalar Multiply-Add Quad-Precision */
5738 case 420: /* VSX Scalar Multiply-Subtract Quad-Precision */
5739 case 452: /* VSX Scalar Negative Multiply-Add Quad-Precision */
5740 case 484: /* VSX Scalar Negative Multiply-Subtract
5741 Quad-Precision */
5742 case 516: /* VSX Scalar Subtract Quad-Precision */
5743 case 548: /* VSX Scalar Divide Quad-Precision */
5744 record_full_arch_list_add_reg (regcache, tdep->ppc_fpscr_regnum);
5745 /* FALL-THROUGH */
5746 case 100: /* VSX Scalar Copy Sign Quad-Precision */
5747 case 868: /* VSX Scalar Insert Exponent Quad-Precision */
5748 ppc_record_vsr (regcache, tdep, PPC_VRT (insn) + 32);
5749 return 0;
5750
5751 case 804:
5752 switch (PPC_FIELD (insn, 11, 5))
5753 {
5754 case 27: /* VSX Scalar Square Root Quad-Precision */
5755 record_full_arch_list_add_reg (regcache, tdep->ppc_fpscr_regnum);
5756 /* FALL-THROUGH */
5757 case 0: /* VSX Scalar Absolute Quad-Precision */
5758 case 2: /* VSX Scalar Extract Exponent Quad-Precision */
5759 case 8: /* VSX Scalar Negative Absolute Quad-Precision */
5760 case 16: /* VSX Scalar Negate Quad-Precision */
5761 case 18: /* VSX Scalar Extract Significand Quad-Precision */
5762 ppc_record_vsr (regcache, tdep, PPC_VRT (insn) + 32);
5763 return 0;
5764 }
5765 break;
5766
5767 case 836:
5768 switch (PPC_FIELD (insn, 11, 5))
5769 {
5770 case 1: /* VSX Scalar truncate & Convert Quad-Precision format
5771 to Unsigned Word format */
5772 case 2: /* VSX Scalar Convert Unsigned Doubleword format to
5773 Quad-Precision format */
5774 case 9: /* VSX Scalar truncate & Convert Quad-Precision format
5775 to Signed Word format */
5776 case 10: /* VSX Scalar Convert Signed Doubleword format to
5777 Quad-Precision format */
5778 case 17: /* VSX Scalar truncate & Convert Quad-Precision format
5779 to Unsigned Doubleword format */
5780 case 20: /* VSX Scalar round & Convert Quad-Precision format to
5781 Double-Precision format */
5782 case 22: /* VSX Scalar Convert Double-Precision format to
5783 Quad-Precision format */
5784 case 25: /* VSX Scalar truncate & Convert Quad-Precision format
5785 to Signed Doubleword format */
5786 record_full_arch_list_add_reg (regcache, tdep->ppc_fpscr_regnum);
5787 ppc_record_vsr (regcache, tdep, PPC_VRT (insn) + 32);
5788 return 0;
5789 }
5790 }
5791
5792 fprintf_unfiltered (gdb_stdlog, "Warning: Don't know how to record %08x "
5793 "at %s, 63-%d.\n", insn, paddress (gdbarch, addr), ext);
5794 return -1;
5795 }
5796
5797 /* Parse the current instruction and record the values of the registers and
5798 memory that will be changed in current instruction to "record_arch_list".
5799 Return -1 if something wrong. */
5800
5801 int
5802 ppc_process_record (struct gdbarch *gdbarch, struct regcache *regcache,
5803 CORE_ADDR addr)
5804 {
5805 struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch);
5806 enum bfd_endian byte_order = gdbarch_byte_order (gdbarch);
5807 uint32_t insn;
5808 int op6, tmp, i;
5809
5810 insn = read_memory_unsigned_integer (addr, 4, byte_order);
5811 op6 = PPC_OP6 (insn);
5812
5813 switch (op6)
5814 {
5815 case 2: /* Trap Doubleword Immediate */
5816 case 3: /* Trap Word Immediate */
5817 /* Do nothing. */
5818 break;
5819
5820 case 4:
5821 if (ppc_process_record_op4 (gdbarch, regcache, addr, insn) != 0)
5822 return -1;
5823 break;
5824
5825 case 17: /* System call */
5826 if (PPC_LEV (insn) != 0)
5827 goto UNKNOWN_OP;
5828
5829 if (tdep->ppc_syscall_record != NULL)
5830 {
5831 if (tdep->ppc_syscall_record (regcache) != 0)
5832 return -1;
5833 }
5834 else
5835 {
5836 printf_unfiltered (_("no syscall record support\n"));
5837 return -1;
5838 }
5839 break;
5840
5841 case 7: /* Multiply Low Immediate */
5842 record_full_arch_list_add_reg (regcache,
5843 tdep->ppc_gp0_regnum + PPC_RT (insn));
5844 break;
5845
5846 case 8: /* Subtract From Immediate Carrying */
5847 record_full_arch_list_add_reg (regcache, tdep->ppc_xer_regnum);
5848 record_full_arch_list_add_reg (regcache,
5849 tdep->ppc_gp0_regnum + PPC_RT (insn));
5850 break;
5851
5852 case 10: /* Compare Logical Immediate */
5853 case 11: /* Compare Immediate */
5854 record_full_arch_list_add_reg (regcache, tdep->ppc_cr_regnum);
5855 break;
5856
5857 case 13: /* Add Immediate Carrying and Record */
5858 record_full_arch_list_add_reg (regcache, tdep->ppc_cr_regnum);
5859 /* FALL-THROUGH */
5860 case 12: /* Add Immediate Carrying */
5861 record_full_arch_list_add_reg (regcache, tdep->ppc_xer_regnum);
5862 /* FALL-THROUGH */
5863 case 14: /* Add Immediate */
5864 case 15: /* Add Immediate Shifted */
5865 record_full_arch_list_add_reg (regcache,
5866 tdep->ppc_gp0_regnum + PPC_RT (insn));
5867 break;
5868
5869 case 16: /* Branch Conditional */
5870 if ((PPC_BO (insn) & 0x4) == 0)
5871 record_full_arch_list_add_reg (regcache, tdep->ppc_ctr_regnum);
5872 /* FALL-THROUGH */
5873 case 18: /* Branch */
5874 if (PPC_LK (insn))
5875 record_full_arch_list_add_reg (regcache, tdep->ppc_lr_regnum);
5876 break;
5877
5878 case 19:
5879 if (ppc_process_record_op19 (gdbarch, regcache, addr, insn) != 0)
5880 return -1;
5881 break;
5882
5883 case 20: /* Rotate Left Word Immediate then Mask Insert */
5884 case 21: /* Rotate Left Word Immediate then AND with Mask */
5885 case 23: /* Rotate Left Word then AND with Mask */
5886 case 30: /* Rotate Left Doubleword Immediate then Clear Left */
5887 /* Rotate Left Doubleword Immediate then Clear Right */
5888 /* Rotate Left Doubleword Immediate then Clear */
5889 /* Rotate Left Doubleword then Clear Left */
5890 /* Rotate Left Doubleword then Clear Right */
5891 /* Rotate Left Doubleword Immediate then Mask Insert */
5892 if (PPC_RC (insn))
5893 record_full_arch_list_add_reg (regcache, tdep->ppc_cr_regnum);
5894 record_full_arch_list_add_reg (regcache,
5895 tdep->ppc_gp0_regnum + PPC_RA (insn));
5896 break;
5897
5898 case 28: /* AND Immediate */
5899 case 29: /* AND Immediate Shifted */
5900 record_full_arch_list_add_reg (regcache, tdep->ppc_cr_regnum);
5901 /* FALL-THROUGH */
5902 case 24: /* OR Immediate */
5903 case 25: /* OR Immediate Shifted */
5904 case 26: /* XOR Immediate */
5905 case 27: /* XOR Immediate Shifted */
5906 record_full_arch_list_add_reg (regcache,
5907 tdep->ppc_gp0_regnum + PPC_RA (insn));
5908 break;
5909
5910 case 31:
5911 if (ppc_process_record_op31 (gdbarch, regcache, addr, insn) != 0)
5912 return -1;
5913 break;
5914
5915 case 33: /* Load Word and Zero with Update */
5916 case 35: /* Load Byte and Zero with Update */
5917 case 41: /* Load Halfword and Zero with Update */
5918 case 43: /* Load Halfword Algebraic with Update */
5919 record_full_arch_list_add_reg (regcache,
5920 tdep->ppc_gp0_regnum + PPC_RA (insn));
5921 /* FALL-THROUGH */
5922 case 32: /* Load Word and Zero */
5923 case 34: /* Load Byte and Zero */
5924 case 40: /* Load Halfword and Zero */
5925 case 42: /* Load Halfword Algebraic */
5926 record_full_arch_list_add_reg (regcache,
5927 tdep->ppc_gp0_regnum + PPC_RT (insn));
5928 break;
5929
5930 case 46: /* Load Multiple Word */
5931 for (i = PPC_RT (insn); i < 32; i++)
5932 record_full_arch_list_add_reg (regcache, tdep->ppc_gp0_regnum + i);
5933 break;
5934
5935 case 56: /* Load Quadword */
5936 tmp = tdep->ppc_gp0_regnum + (PPC_RT (insn) & ~1);
5937 record_full_arch_list_add_reg (regcache, tmp);
5938 record_full_arch_list_add_reg (regcache, tmp + 1);
5939 break;
5940
5941 case 49: /* Load Floating-Point Single with Update */
5942 case 51: /* Load Floating-Point Double with Update */
5943 record_full_arch_list_add_reg (regcache,
5944 tdep->ppc_gp0_regnum + PPC_RA (insn));
5945 /* FALL-THROUGH */
5946 case 48: /* Load Floating-Point Single */
5947 case 50: /* Load Floating-Point Double */
5948 record_full_arch_list_add_reg (regcache,
5949 tdep->ppc_fp0_regnum + PPC_FRT (insn));
5950 break;
5951
5952 case 47: /* Store Multiple Word */
5953 {
5954 ULONGEST iaddr = 0;
5955
5956 if (PPC_RA (insn) != 0)
5957 regcache_raw_read_unsigned (regcache,
5958 tdep->ppc_gp0_regnum + PPC_RA (insn),
5959 &iaddr);
5960
5961 iaddr += PPC_D (insn);
5962 record_full_arch_list_add_mem (iaddr, 4 * (32 - PPC_RS (insn)));
5963 }
5964 break;
5965
5966 case 37: /* Store Word with Update */
5967 case 39: /* Store Byte with Update */
5968 case 45: /* Store Halfword with Update */
5969 case 53: /* Store Floating-Point Single with Update */
5970 case 55: /* Store Floating-Point Double with Update */
5971 record_full_arch_list_add_reg (regcache,
5972 tdep->ppc_gp0_regnum + PPC_RA (insn));
5973 /* FALL-THROUGH */
5974 case 36: /* Store Word */
5975 case 38: /* Store Byte */
5976 case 44: /* Store Halfword */
5977 case 52: /* Store Floating-Point Single */
5978 case 54: /* Store Floating-Point Double */
5979 {
5980 ULONGEST iaddr = 0;
5981 int size = -1;
5982
5983 if (PPC_RA (insn) != 0)
5984 regcache_raw_read_unsigned (regcache,
5985 tdep->ppc_gp0_regnum + PPC_RA (insn),
5986 &iaddr);
5987 iaddr += PPC_D (insn);
5988
5989 if (op6 == 36 || op6 == 37 || op6 == 52 || op6 == 53)
5990 size = 4;
5991 else if (op6 == 54 || op6 == 55)
5992 size = 8;
5993 else if (op6 == 44 || op6 == 45)
5994 size = 2;
5995 else if (op6 == 38 || op6 == 39)
5996 size = 1;
5997 else
5998 gdb_assert (0);
5999
6000 record_full_arch_list_add_mem (iaddr, size);
6001 }
6002 break;
6003
6004 case 57:
6005 switch (insn & 0x3)
6006 {
6007 case 0: /* Load Floating-Point Double Pair */
6008 tmp = tdep->ppc_fp0_regnum + (PPC_RT (insn) & ~1);
6009 record_full_arch_list_add_reg (regcache, tmp);
6010 record_full_arch_list_add_reg (regcache, tmp + 1);
6011 break;
6012 case 2: /* Load VSX Scalar Doubleword */
6013 case 3: /* Load VSX Scalar Single */
6014 ppc_record_vsr (regcache, tdep, PPC_VRT (insn) + 32);
6015 break;
6016 default:
6017 goto UNKNOWN_OP;
6018 }
6019 break;
6020
6021 case 58: /* Load Doubleword */
6022 /* Load Doubleword with Update */
6023 /* Load Word Algebraic */
6024 if (PPC_FIELD (insn, 30, 2) > 2)
6025 goto UNKNOWN_OP;
6026
6027 record_full_arch_list_add_reg (regcache,
6028 tdep->ppc_gp0_regnum + PPC_RT (insn));
6029 if (PPC_BIT (insn, 31))
6030 record_full_arch_list_add_reg (regcache,
6031 tdep->ppc_gp0_regnum + PPC_RA (insn));
6032 break;
6033
6034 case 59:
6035 if (ppc_process_record_op59 (gdbarch, regcache, addr, insn) != 0)
6036 return -1;
6037 break;
6038
6039 case 60:
6040 if (ppc_process_record_op60 (gdbarch, regcache, addr, insn) != 0)
6041 return -1;
6042 break;
6043
6044 case 61:
6045 if (ppc_process_record_op61 (gdbarch, regcache, addr, insn) != 0)
6046 return -1;
6047 break;
6048
6049 case 62: /* Store Doubleword */
6050 /* Store Doubleword with Update */
6051 /* Store Quadword with Update */
6052 {
6053 ULONGEST iaddr = 0;
6054 int size;
6055 int sub2 = PPC_FIELD (insn, 30, 2);
6056
6057 if (sub2 > 2)
6058 goto UNKNOWN_OP;
6059
6060 if (PPC_RA (insn) != 0)
6061 regcache_raw_read_unsigned (regcache,
6062 tdep->ppc_gp0_regnum + PPC_RA (insn),
6063 &iaddr);
6064
6065 size = (sub2 == 2) ? 16 : 8;
6066
6067 iaddr += PPC_DS (insn) << 2;
6068 record_full_arch_list_add_mem (iaddr, size);
6069
6070 if (op6 == 62 && sub2 == 1)
6071 record_full_arch_list_add_reg (regcache,
6072 tdep->ppc_gp0_regnum +
6073 PPC_RA (insn));
6074
6075 break;
6076 }
6077
6078 case 63:
6079 if (ppc_process_record_op63 (gdbarch, regcache, addr, insn) != 0)
6080 return -1;
6081 break;
6082
6083 default:
6084 UNKNOWN_OP:
6085 fprintf_unfiltered (gdb_stdlog, "Warning: Don't know how to record %08x "
6086 "at %s, %d.\n", insn, paddress (gdbarch, addr), op6);
6087 return -1;
6088 }
6089
6090 if (record_full_arch_list_add_reg (regcache, PPC_PC_REGNUM))
6091 return -1;
6092 if (record_full_arch_list_add_end ())
6093 return -1;
6094 return 0;
6095 }
6096
6097 /* Initialize the current architecture based on INFO. If possible, re-use an
6098 architecture from ARCHES, which is a list of architectures already created
6099 during this debugging session.
6100
6101 Called e.g. at program startup, when reading a core file, and when reading
6102 a binary file. */
6103
6104 static struct gdbarch *
6105 rs6000_gdbarch_init (struct gdbarch_info info, struct gdbarch_list *arches)
6106 {
6107 struct gdbarch *gdbarch;
6108 struct gdbarch_tdep *tdep;
6109 int wordsize, from_xcoff_exec, from_elf_exec;
6110 enum bfd_architecture arch;
6111 unsigned long mach;
6112 bfd abfd;
6113 enum auto_boolean soft_float_flag = powerpc_soft_float_global;
6114 int soft_float;
6115 enum powerpc_long_double_abi long_double_abi = POWERPC_LONG_DOUBLE_AUTO;
6116 enum powerpc_vector_abi vector_abi = powerpc_vector_abi_global;
6117 enum powerpc_elf_abi elf_abi = POWERPC_ELF_AUTO;
6118 int have_fpu = 0, have_spe = 0, have_mq = 0, have_altivec = 0;
6119 int have_dfp = 0, have_vsx = 0, have_ppr = 0, have_dscr = 0;
6120 int have_tar = 0, have_ebb = 0, have_pmu = 0, have_htm_spr = 0;
6121 int have_htm_core = 0, have_htm_fpu = 0, have_htm_altivec = 0;
6122 int have_htm_vsx = 0, have_htm_ppr = 0, have_htm_dscr = 0;
6123 int have_htm_tar = 0;
6124 int tdesc_wordsize = -1;
6125 const struct target_desc *tdesc = info.target_desc;
6126 tdesc_arch_data_up tdesc_data;
6127 int num_pseudoregs = 0;
6128 int cur_reg;
6129
6130 from_xcoff_exec = info.abfd && info.abfd->format == bfd_object &&
6131 bfd_get_flavour (info.abfd) == bfd_target_xcoff_flavour;
6132
6133 from_elf_exec = info.abfd && info.abfd->format == bfd_object &&
6134 bfd_get_flavour (info.abfd) == bfd_target_elf_flavour;
6135
6136 /* Check word size. If INFO is from a binary file, infer it from
6137 that, else choose a likely default. */
6138 if (from_xcoff_exec)
6139 {
6140 if (bfd_xcoff_is_xcoff64 (info.abfd))
6141 wordsize = 8;
6142 else
6143 wordsize = 4;
6144 }
6145 else if (from_elf_exec)
6146 {
6147 if (elf_elfheader (info.abfd)->e_ident[EI_CLASS] == ELFCLASS64)
6148 wordsize = 8;
6149 else
6150 wordsize = 4;
6151 }
6152 else if (tdesc_has_registers (tdesc))
6153 wordsize = -1;
6154 else
6155 {
6156 if (info.bfd_arch_info != NULL && info.bfd_arch_info->bits_per_word != 0)
6157 wordsize = (info.bfd_arch_info->bits_per_word
6158 / info.bfd_arch_info->bits_per_byte);
6159 else
6160 wordsize = 4;
6161 }
6162
6163 /* Get the architecture and machine from the BFD. */
6164 arch = info.bfd_arch_info->arch;
6165 mach = info.bfd_arch_info->mach;
6166
6167 /* For e500 executables, the apuinfo section is of help here. Such
6168 section contains the identifier and revision number of each
6169 Application-specific Processing Unit that is present on the
6170 chip. The content of the section is determined by the assembler
6171 which looks at each instruction and determines which unit (and
6172 which version of it) can execute it. Grovel through the section
6173 looking for relevant e500 APUs. */
6174
6175 if (bfd_uses_spe_extensions (info.abfd))
6176 {
6177 arch = info.bfd_arch_info->arch;
6178 mach = bfd_mach_ppc_e500;
6179 bfd_default_set_arch_mach (&abfd, arch, mach);
6180 info.bfd_arch_info = bfd_get_arch_info (&abfd);
6181 }
6182
6183 /* Find a default target description which describes our register
6184 layout, if we do not already have one. */
6185 if (! tdesc_has_registers (tdesc))
6186 {
6187 const struct ppc_variant *v;
6188
6189 /* Choose variant. */
6190 v = find_variant_by_arch (arch, mach);
6191 if (!v)
6192 return NULL;
6193
6194 tdesc = *v->tdesc;
6195 }
6196
6197 gdb_assert (tdesc_has_registers (tdesc));
6198
6199 /* Check any target description for validity. */
6200 if (tdesc_has_registers (tdesc))
6201 {
6202 static const char *const gprs[] = {
6203 "r0", "r1", "r2", "r3", "r4", "r5", "r6", "r7",
6204 "r8", "r9", "r10", "r11", "r12", "r13", "r14", "r15",
6205 "r16", "r17", "r18", "r19", "r20", "r21", "r22", "r23",
6206 "r24", "r25", "r26", "r27", "r28", "r29", "r30", "r31"
6207 };
6208 const struct tdesc_feature *feature;
6209 int i, valid_p;
6210 static const char *const msr_names[] = { "msr", "ps" };
6211 static const char *const cr_names[] = { "cr", "cnd" };
6212 static const char *const ctr_names[] = { "ctr", "cnt" };
6213
6214 feature = tdesc_find_feature (tdesc,
6215 "org.gnu.gdb.power.core");
6216 if (feature == NULL)
6217 return NULL;
6218
6219 tdesc_data = tdesc_data_alloc ();
6220
6221 valid_p = 1;
6222 for (i = 0; i < ppc_num_gprs; i++)
6223 valid_p &= tdesc_numbered_register (feature, tdesc_data.get (),
6224 i, gprs[i]);
6225 valid_p &= tdesc_numbered_register (feature, tdesc_data.get (),
6226 PPC_PC_REGNUM, "pc");
6227 valid_p &= tdesc_numbered_register (feature, tdesc_data.get (),
6228 PPC_LR_REGNUM, "lr");
6229 valid_p &= tdesc_numbered_register (feature, tdesc_data.get (),
6230 PPC_XER_REGNUM, "xer");
6231
6232 /* Allow alternate names for these registers, to accomodate GDB's
6233 historic naming. */
6234 valid_p &= tdesc_numbered_register_choices (feature, tdesc_data.get (),
6235 PPC_MSR_REGNUM, msr_names);
6236 valid_p &= tdesc_numbered_register_choices (feature, tdesc_data.get (),
6237 PPC_CR_REGNUM, cr_names);
6238 valid_p &= tdesc_numbered_register_choices (feature, tdesc_data.get (),
6239 PPC_CTR_REGNUM, ctr_names);
6240
6241 if (!valid_p)
6242 return NULL;
6243
6244 have_mq = tdesc_numbered_register (feature, tdesc_data.get (),
6245 PPC_MQ_REGNUM, "mq");
6246
6247 tdesc_wordsize = tdesc_register_bitsize (feature, "pc") / 8;
6248 if (wordsize == -1)
6249 wordsize = tdesc_wordsize;
6250
6251 feature = tdesc_find_feature (tdesc,
6252 "org.gnu.gdb.power.fpu");
6253 if (feature != NULL)
6254 {
6255 static const char *const fprs[] = {
6256 "f0", "f1", "f2", "f3", "f4", "f5", "f6", "f7",
6257 "f8", "f9", "f10", "f11", "f12", "f13", "f14", "f15",
6258 "f16", "f17", "f18", "f19", "f20", "f21", "f22", "f23",
6259 "f24", "f25", "f26", "f27", "f28", "f29", "f30", "f31"
6260 };
6261 valid_p = 1;
6262 for (i = 0; i < ppc_num_fprs; i++)
6263 valid_p &= tdesc_numbered_register (feature, tdesc_data.get (),
6264 PPC_F0_REGNUM + i, fprs[i]);
6265 valid_p &= tdesc_numbered_register (feature, tdesc_data.get (),
6266 PPC_FPSCR_REGNUM, "fpscr");
6267
6268 if (!valid_p)
6269 return NULL;
6270 have_fpu = 1;
6271
6272 /* The fpscr register was expanded in isa 2.05 to 64 bits
6273 along with the addition of the decimal floating point
6274 facility. */
6275 if (tdesc_register_bitsize (feature, "fpscr") > 32)
6276 have_dfp = 1;
6277 }
6278 else
6279 have_fpu = 0;
6280
6281 feature = tdesc_find_feature (tdesc,
6282 "org.gnu.gdb.power.altivec");
6283 if (feature != NULL)
6284 {
6285 static const char *const vector_regs[] = {
6286 "vr0", "vr1", "vr2", "vr3", "vr4", "vr5", "vr6", "vr7",
6287 "vr8", "vr9", "vr10", "vr11", "vr12", "vr13", "vr14", "vr15",
6288 "vr16", "vr17", "vr18", "vr19", "vr20", "vr21", "vr22", "vr23",
6289 "vr24", "vr25", "vr26", "vr27", "vr28", "vr29", "vr30", "vr31"
6290 };
6291
6292 valid_p = 1;
6293 for (i = 0; i < ppc_num_gprs; i++)
6294 valid_p &= tdesc_numbered_register (feature, tdesc_data.get (),
6295 PPC_VR0_REGNUM + i,
6296 vector_regs[i]);
6297 valid_p &= tdesc_numbered_register (feature, tdesc_data.get (),
6298 PPC_VSCR_REGNUM, "vscr");
6299 valid_p &= tdesc_numbered_register (feature, tdesc_data.get (),
6300 PPC_VRSAVE_REGNUM, "vrsave");
6301
6302 if (have_spe || !valid_p)
6303 return NULL;
6304 have_altivec = 1;
6305 }
6306 else
6307 have_altivec = 0;
6308
6309 /* Check for POWER7 VSX registers support. */
6310 feature = tdesc_find_feature (tdesc,
6311 "org.gnu.gdb.power.vsx");
6312
6313 if (feature != NULL)
6314 {
6315 static const char *const vsx_regs[] = {
6316 "vs0h", "vs1h", "vs2h", "vs3h", "vs4h", "vs5h",
6317 "vs6h", "vs7h", "vs8h", "vs9h", "vs10h", "vs11h",
6318 "vs12h", "vs13h", "vs14h", "vs15h", "vs16h", "vs17h",
6319 "vs18h", "vs19h", "vs20h", "vs21h", "vs22h", "vs23h",
6320 "vs24h", "vs25h", "vs26h", "vs27h", "vs28h", "vs29h",
6321 "vs30h", "vs31h"
6322 };
6323
6324 valid_p = 1;
6325
6326 for (i = 0; i < ppc_num_vshrs; i++)
6327 valid_p &= tdesc_numbered_register (feature, tdesc_data.get (),
6328 PPC_VSR0_UPPER_REGNUM + i,
6329 vsx_regs[i]);
6330
6331 if (!valid_p || !have_fpu || !have_altivec)
6332 return NULL;
6333
6334 have_vsx = 1;
6335 }
6336 else
6337 have_vsx = 0;
6338
6339 /* On machines supporting the SPE APU, the general-purpose registers
6340 are 64 bits long. There are SIMD vector instructions to treat them
6341 as pairs of floats, but the rest of the instruction set treats them
6342 as 32-bit registers, and only operates on their lower halves.
6343
6344 In the GDB regcache, we treat their high and low halves as separate
6345 registers. The low halves we present as the general-purpose
6346 registers, and then we have pseudo-registers that stitch together
6347 the upper and lower halves and present them as pseudo-registers.
6348
6349 Thus, the target description is expected to supply the upper
6350 halves separately. */
6351
6352 feature = tdesc_find_feature (tdesc,
6353 "org.gnu.gdb.power.spe");
6354 if (feature != NULL)
6355 {
6356 static const char *const upper_spe[] = {
6357 "ev0h", "ev1h", "ev2h", "ev3h",
6358 "ev4h", "ev5h", "ev6h", "ev7h",
6359 "ev8h", "ev9h", "ev10h", "ev11h",
6360 "ev12h", "ev13h", "ev14h", "ev15h",
6361 "ev16h", "ev17h", "ev18h", "ev19h",
6362 "ev20h", "ev21h", "ev22h", "ev23h",
6363 "ev24h", "ev25h", "ev26h", "ev27h",
6364 "ev28h", "ev29h", "ev30h", "ev31h"
6365 };
6366
6367 valid_p = 1;
6368 for (i = 0; i < ppc_num_gprs; i++)
6369 valid_p &= tdesc_numbered_register (feature, tdesc_data.get (),
6370 PPC_SPE_UPPER_GP0_REGNUM + i,
6371 upper_spe[i]);
6372 valid_p &= tdesc_numbered_register (feature, tdesc_data.get (),
6373 PPC_SPE_ACC_REGNUM, "acc");
6374 valid_p &= tdesc_numbered_register (feature, tdesc_data.get (),
6375 PPC_SPE_FSCR_REGNUM, "spefscr");
6376
6377 if (have_mq || have_fpu || !valid_p)
6378 return NULL;
6379 have_spe = 1;
6380 }
6381 else
6382 have_spe = 0;
6383
6384 /* Program Priority Register. */
6385 feature = tdesc_find_feature (tdesc,
6386 "org.gnu.gdb.power.ppr");
6387 if (feature != NULL)
6388 {
6389 valid_p = 1;
6390 valid_p &= tdesc_numbered_register (feature, tdesc_data.get (),
6391 PPC_PPR_REGNUM, "ppr");
6392
6393 if (!valid_p)
6394 return NULL;
6395 have_ppr = 1;
6396 }
6397 else
6398 have_ppr = 0;
6399
6400 /* Data Stream Control Register. */
6401 feature = tdesc_find_feature (tdesc,
6402 "org.gnu.gdb.power.dscr");
6403 if (feature != NULL)
6404 {
6405 valid_p = 1;
6406 valid_p &= tdesc_numbered_register (feature, tdesc_data.get (),
6407 PPC_DSCR_REGNUM, "dscr");
6408
6409 if (!valid_p)
6410 return NULL;
6411 have_dscr = 1;
6412 }
6413 else
6414 have_dscr = 0;
6415
6416 /* Target Address Register. */
6417 feature = tdesc_find_feature (tdesc,
6418 "org.gnu.gdb.power.tar");
6419 if (feature != NULL)
6420 {
6421 valid_p = 1;
6422 valid_p &= tdesc_numbered_register (feature, tdesc_data.get (),
6423 PPC_TAR_REGNUM, "tar");
6424
6425 if (!valid_p)
6426 return NULL;
6427 have_tar = 1;
6428 }
6429 else
6430 have_tar = 0;
6431
6432 /* Event-based Branching Registers. */
6433 feature = tdesc_find_feature (tdesc,
6434 "org.gnu.gdb.power.ebb");
6435 if (feature != NULL)
6436 {
6437 static const char *const ebb_regs[] = {
6438 "bescr", "ebbhr", "ebbrr"
6439 };
6440
6441 valid_p = 1;
6442 for (i = 0; i < ARRAY_SIZE (ebb_regs); i++)
6443 valid_p &= tdesc_numbered_register (feature, tdesc_data.get (),
6444 PPC_BESCR_REGNUM + i,
6445 ebb_regs[i]);
6446 if (!valid_p)
6447 return NULL;
6448 have_ebb = 1;
6449 }
6450 else
6451 have_ebb = 0;
6452
6453 /* Subset of the ISA 2.07 Performance Monitor Registers provided
6454 by Linux. */
6455 feature = tdesc_find_feature (tdesc,
6456 "org.gnu.gdb.power.linux.pmu");
6457 if (feature != NULL)
6458 {
6459 valid_p = 1;
6460
6461 valid_p &= tdesc_numbered_register (feature, tdesc_data.get (),
6462 PPC_MMCR0_REGNUM,
6463 "mmcr0");
6464 valid_p &= tdesc_numbered_register (feature, tdesc_data.get (),
6465 PPC_MMCR2_REGNUM,
6466 "mmcr2");
6467 valid_p &= tdesc_numbered_register (feature, tdesc_data.get (),
6468 PPC_SIAR_REGNUM,
6469 "siar");
6470 valid_p &= tdesc_numbered_register (feature, tdesc_data.get (),
6471 PPC_SDAR_REGNUM,
6472 "sdar");
6473 valid_p &= tdesc_numbered_register (feature, tdesc_data.get (),
6474 PPC_SIER_REGNUM,
6475 "sier");
6476
6477 if (!valid_p)
6478 return NULL;
6479 have_pmu = 1;
6480 }
6481 else
6482 have_pmu = 0;
6483
6484 /* Hardware Transactional Memory Registers. */
6485 feature = tdesc_find_feature (tdesc,
6486 "org.gnu.gdb.power.htm.spr");
6487 if (feature != NULL)
6488 {
6489 static const char *const tm_spr_regs[] = {
6490 "tfhar", "texasr", "tfiar"
6491 };
6492
6493 valid_p = 1;
6494 for (i = 0; i < ARRAY_SIZE (tm_spr_regs); i++)
6495 valid_p &= tdesc_numbered_register (feature, tdesc_data.get (),
6496 PPC_TFHAR_REGNUM + i,
6497 tm_spr_regs[i]);
6498 if (!valid_p)
6499 return NULL;
6500
6501 have_htm_spr = 1;
6502 }
6503 else
6504 have_htm_spr = 0;
6505
6506 feature = tdesc_find_feature (tdesc,
6507 "org.gnu.gdb.power.htm.core");
6508 if (feature != NULL)
6509 {
6510 static const char *const cgprs[] = {
6511 "cr0", "cr1", "cr2", "cr3", "cr4", "cr5", "cr6", "cr7",
6512 "cr8", "cr9", "cr10", "cr11", "cr12", "cr13", "cr14",
6513 "cr15", "cr16", "cr17", "cr18", "cr19", "cr20", "cr21",
6514 "cr22", "cr23", "cr24", "cr25", "cr26", "cr27", "cr28",
6515 "cr29", "cr30", "cr31", "ccr", "cxer", "clr", "cctr"
6516 };
6517
6518 valid_p = 1;
6519
6520 for (i = 0; i < ARRAY_SIZE (cgprs); i++)
6521 valid_p &= tdesc_numbered_register (feature, tdesc_data.get (),
6522 PPC_CR0_REGNUM + i,
6523 cgprs[i]);
6524 if (!valid_p)
6525 return NULL;
6526
6527 have_htm_core = 1;
6528 }
6529 else
6530 have_htm_core = 0;
6531
6532 feature = tdesc_find_feature (tdesc,
6533 "org.gnu.gdb.power.htm.fpu");
6534 if (feature != NULL)
6535 {
6536 valid_p = 1;
6537
6538 static const char *const cfprs[] = {
6539 "cf0", "cf1", "cf2", "cf3", "cf4", "cf5", "cf6", "cf7",
6540 "cf8", "cf9", "cf10", "cf11", "cf12", "cf13", "cf14", "cf15",
6541 "cf16", "cf17", "cf18", "cf19", "cf20", "cf21", "cf22",
6542 "cf23", "cf24", "cf25", "cf26", "cf27", "cf28", "cf29",
6543 "cf30", "cf31", "cfpscr"
6544 };
6545
6546 for (i = 0; i < ARRAY_SIZE (cfprs); i++)
6547 valid_p &= tdesc_numbered_register (feature, tdesc_data.get (),
6548 PPC_CF0_REGNUM + i,
6549 cfprs[i]);
6550
6551 if (!valid_p)
6552 return NULL;
6553 have_htm_fpu = 1;
6554 }
6555 else
6556 have_htm_fpu = 0;
6557
6558 feature = tdesc_find_feature (tdesc,
6559 "org.gnu.gdb.power.htm.altivec");
6560 if (feature != NULL)
6561 {
6562 valid_p = 1;
6563
6564 static const char *const cvmx[] = {
6565 "cvr0", "cvr1", "cvr2", "cvr3", "cvr4", "cvr5", "cvr6",
6566 "cvr7", "cvr8", "cvr9", "cvr10", "cvr11", "cvr12", "cvr13",
6567 "cvr14", "cvr15","cvr16", "cvr17", "cvr18", "cvr19", "cvr20",
6568 "cvr21", "cvr22", "cvr23", "cvr24", "cvr25", "cvr26",
6569 "cvr27", "cvr28", "cvr29", "cvr30", "cvr31", "cvscr",
6570 "cvrsave"
6571 };
6572
6573 for (i = 0; i < ARRAY_SIZE (cvmx); i++)
6574 valid_p &= tdesc_numbered_register (feature, tdesc_data.get (),
6575 PPC_CVR0_REGNUM + i,
6576 cvmx[i]);
6577
6578 if (!valid_p)
6579 return NULL;
6580 have_htm_altivec = 1;
6581 }
6582 else
6583 have_htm_altivec = 0;
6584
6585 feature = tdesc_find_feature (tdesc,
6586 "org.gnu.gdb.power.htm.vsx");
6587 if (feature != NULL)
6588 {
6589 valid_p = 1;
6590
6591 static const char *const cvsx[] = {
6592 "cvs0h", "cvs1h", "cvs2h", "cvs3h", "cvs4h", "cvs5h",
6593 "cvs6h", "cvs7h", "cvs8h", "cvs9h", "cvs10h", "cvs11h",
6594 "cvs12h", "cvs13h", "cvs14h", "cvs15h", "cvs16h", "cvs17h",
6595 "cvs18h", "cvs19h", "cvs20h", "cvs21h", "cvs22h", "cvs23h",
6596 "cvs24h", "cvs25h", "cvs26h", "cvs27h", "cvs28h", "cvs29h",
6597 "cvs30h", "cvs31h"
6598 };
6599
6600 for (i = 0; i < ARRAY_SIZE (cvsx); i++)
6601 valid_p &= tdesc_numbered_register (feature, tdesc_data.get (),
6602 (PPC_CVSR0_UPPER_REGNUM
6603 + i),
6604 cvsx[i]);
6605
6606 if (!valid_p || !have_htm_fpu || !have_htm_altivec)
6607 return NULL;
6608 have_htm_vsx = 1;
6609 }
6610 else
6611 have_htm_vsx = 0;
6612
6613 feature = tdesc_find_feature (tdesc,
6614 "org.gnu.gdb.power.htm.ppr");
6615 if (feature != NULL)
6616 {
6617 valid_p = tdesc_numbered_register (feature, tdesc_data.get (),
6618 PPC_CPPR_REGNUM, "cppr");
6619
6620 if (!valid_p)
6621 return NULL;
6622 have_htm_ppr = 1;
6623 }
6624 else
6625 have_htm_ppr = 0;
6626
6627 feature = tdesc_find_feature (tdesc,
6628 "org.gnu.gdb.power.htm.dscr");
6629 if (feature != NULL)
6630 {
6631 valid_p = tdesc_numbered_register (feature, tdesc_data.get (),
6632 PPC_CDSCR_REGNUM, "cdscr");
6633
6634 if (!valid_p)
6635 return NULL;
6636 have_htm_dscr = 1;
6637 }
6638 else
6639 have_htm_dscr = 0;
6640
6641 feature = tdesc_find_feature (tdesc,
6642 "org.gnu.gdb.power.htm.tar");
6643 if (feature != NULL)
6644 {
6645 valid_p = tdesc_numbered_register (feature, tdesc_data.get (),
6646 PPC_CTAR_REGNUM, "ctar");
6647
6648 if (!valid_p)
6649 return NULL;
6650 have_htm_tar = 1;
6651 }
6652 else
6653 have_htm_tar = 0;
6654 }
6655
6656 /* If we have a 64-bit binary on a 32-bit target, complain. Also
6657 complain for a 32-bit binary on a 64-bit target; we do not yet
6658 support that. For instance, the 32-bit ABI routines expect
6659 32-bit GPRs.
6660
6661 As long as there isn't an explicit target description, we'll
6662 choose one based on the BFD architecture and get a word size
6663 matching the binary (probably powerpc:common or
6664 powerpc:common64). So there is only trouble if a 64-bit target
6665 supplies a 64-bit description while debugging a 32-bit
6666 binary. */
6667 if (tdesc_wordsize != -1 && tdesc_wordsize != wordsize)
6668 return NULL;
6669
6670 #ifdef HAVE_ELF
6671 if (from_elf_exec)
6672 {
6673 switch (elf_elfheader (info.abfd)->e_flags & EF_PPC64_ABI)
6674 {
6675 case 1:
6676 elf_abi = POWERPC_ELF_V1;
6677 break;
6678 case 2:
6679 elf_abi = POWERPC_ELF_V2;
6680 break;
6681 default:
6682 break;
6683 }
6684 }
6685
6686 if (soft_float_flag == AUTO_BOOLEAN_AUTO && from_elf_exec)
6687 {
6688 switch (bfd_elf_get_obj_attr_int (info.abfd, OBJ_ATTR_GNU,
6689 Tag_GNU_Power_ABI_FP) & 3)
6690 {
6691 case 1:
6692 soft_float_flag = AUTO_BOOLEAN_FALSE;
6693 break;
6694 case 2:
6695 soft_float_flag = AUTO_BOOLEAN_TRUE;
6696 break;
6697 default:
6698 break;
6699 }
6700 }
6701
6702 if (long_double_abi == POWERPC_LONG_DOUBLE_AUTO && from_elf_exec)
6703 {
6704 switch (bfd_elf_get_obj_attr_int (info.abfd, OBJ_ATTR_GNU,
6705 Tag_GNU_Power_ABI_FP) >> 2)
6706 {
6707 case 1:
6708 long_double_abi = POWERPC_LONG_DOUBLE_IBM128;
6709 break;
6710 case 3:
6711 long_double_abi = POWERPC_LONG_DOUBLE_IEEE128;
6712 break;
6713 default:
6714 break;
6715 }
6716 }
6717
6718 if (vector_abi == POWERPC_VEC_AUTO && from_elf_exec)
6719 {
6720 switch (bfd_elf_get_obj_attr_int (info.abfd, OBJ_ATTR_GNU,
6721 Tag_GNU_Power_ABI_Vector))
6722 {
6723 case 1:
6724 vector_abi = POWERPC_VEC_GENERIC;
6725 break;
6726 case 2:
6727 vector_abi = POWERPC_VEC_ALTIVEC;
6728 break;
6729 case 3:
6730 vector_abi = POWERPC_VEC_SPE;
6731 break;
6732 default:
6733 break;
6734 }
6735 }
6736 #endif
6737
6738 /* At this point, the only supported ELF-based 64-bit little-endian
6739 operating system is GNU/Linux, and this uses the ELFv2 ABI by
6740 default. All other supported ELF-based operating systems use the
6741 ELFv1 ABI by default. Therefore, if the ABI marker is missing,
6742 e.g. because we run a legacy binary, or have attached to a process
6743 and have not found any associated binary file, set the default
6744 according to this heuristic. */
6745 if (elf_abi == POWERPC_ELF_AUTO)
6746 {
6747 if (wordsize == 8 && info.byte_order == BFD_ENDIAN_LITTLE)
6748 elf_abi = POWERPC_ELF_V2;
6749 else
6750 elf_abi = POWERPC_ELF_V1;
6751 }
6752
6753 if (soft_float_flag == AUTO_BOOLEAN_TRUE)
6754 soft_float = 1;
6755 else if (soft_float_flag == AUTO_BOOLEAN_FALSE)
6756 soft_float = 0;
6757 else
6758 soft_float = !have_fpu;
6759
6760 /* If we have a hard float binary or setting but no floating point
6761 registers, downgrade to soft float anyway. We're still somewhat
6762 useful in this scenario. */
6763 if (!soft_float && !have_fpu)
6764 soft_float = 1;
6765
6766 /* Similarly for vector registers. */
6767 if (vector_abi == POWERPC_VEC_ALTIVEC && !have_altivec)
6768 vector_abi = POWERPC_VEC_GENERIC;
6769
6770 if (vector_abi == POWERPC_VEC_SPE && !have_spe)
6771 vector_abi = POWERPC_VEC_GENERIC;
6772
6773 if (vector_abi == POWERPC_VEC_AUTO)
6774 {
6775 if (have_altivec)
6776 vector_abi = POWERPC_VEC_ALTIVEC;
6777 else if (have_spe)
6778 vector_abi = POWERPC_VEC_SPE;
6779 else
6780 vector_abi = POWERPC_VEC_GENERIC;
6781 }
6782
6783 /* Do not limit the vector ABI based on available hardware, since we
6784 do not yet know what hardware we'll decide we have. Yuck! FIXME! */
6785
6786 /* Find a candidate among extant architectures. */
6787 for (arches = gdbarch_list_lookup_by_info (arches, &info);
6788 arches != NULL;
6789 arches = gdbarch_list_lookup_by_info (arches->next, &info))
6790 {
6791 /* Word size in the various PowerPC bfd_arch_info structs isn't
6792 meaningful, because 64-bit CPUs can run in 32-bit mode. So, perform
6793 separate word size check. */
6794 tdep = gdbarch_tdep (arches->gdbarch);
6795 if (tdep && tdep->elf_abi != elf_abi)
6796 continue;
6797 if (tdep && tdep->soft_float != soft_float)
6798 continue;
6799 if (tdep && tdep->long_double_abi != long_double_abi)
6800 continue;
6801 if (tdep && tdep->vector_abi != vector_abi)
6802 continue;
6803 if (tdep && tdep->wordsize == wordsize)
6804 return arches->gdbarch;
6805 }
6806
6807 /* None found, create a new architecture from INFO, whose bfd_arch_info
6808 validity depends on the source:
6809 - executable useless
6810 - rs6000_host_arch() good
6811 - core file good
6812 - "set arch" trust blindly
6813 - GDB startup useless but harmless */
6814
6815 tdep = XCNEW (struct gdbarch_tdep);
6816 tdep->wordsize = wordsize;
6817 tdep->elf_abi = elf_abi;
6818 tdep->soft_float = soft_float;
6819 tdep->long_double_abi = long_double_abi;
6820 tdep->vector_abi = vector_abi;
6821
6822 gdbarch = gdbarch_alloc (&info, tdep);
6823
6824 tdep->ppc_gp0_regnum = PPC_R0_REGNUM;
6825 tdep->ppc_toc_regnum = PPC_R0_REGNUM + 2;
6826 tdep->ppc_ps_regnum = PPC_MSR_REGNUM;
6827 tdep->ppc_cr_regnum = PPC_CR_REGNUM;
6828 tdep->ppc_lr_regnum = PPC_LR_REGNUM;
6829 tdep->ppc_ctr_regnum = PPC_CTR_REGNUM;
6830 tdep->ppc_xer_regnum = PPC_XER_REGNUM;
6831 tdep->ppc_mq_regnum = have_mq ? PPC_MQ_REGNUM : -1;
6832
6833 tdep->ppc_fp0_regnum = have_fpu ? PPC_F0_REGNUM : -1;
6834 tdep->ppc_fpscr_regnum = have_fpu ? PPC_FPSCR_REGNUM : -1;
6835 tdep->ppc_vsr0_upper_regnum = have_vsx ? PPC_VSR0_UPPER_REGNUM : -1;
6836 tdep->ppc_vr0_regnum = have_altivec ? PPC_VR0_REGNUM : -1;
6837 tdep->ppc_vrsave_regnum = have_altivec ? PPC_VRSAVE_REGNUM : -1;
6838 tdep->ppc_ev0_upper_regnum = have_spe ? PPC_SPE_UPPER_GP0_REGNUM : -1;
6839 tdep->ppc_acc_regnum = have_spe ? PPC_SPE_ACC_REGNUM : -1;
6840 tdep->ppc_spefscr_regnum = have_spe ? PPC_SPE_FSCR_REGNUM : -1;
6841 tdep->ppc_ppr_regnum = have_ppr ? PPC_PPR_REGNUM : -1;
6842 tdep->ppc_dscr_regnum = have_dscr ? PPC_DSCR_REGNUM : -1;
6843 tdep->ppc_tar_regnum = have_tar ? PPC_TAR_REGNUM : -1;
6844 tdep->have_ebb = have_ebb;
6845
6846 /* If additional pmu registers are added, care must be taken when
6847 setting new fields in the tdep below, to maintain compatibility
6848 with features that only provide some of the registers. Currently
6849 gdb access to the pmu registers is only supported in linux, and
6850 linux only provides a subset of the pmu registers defined in the
6851 architecture. */
6852
6853 tdep->ppc_mmcr0_regnum = have_pmu ? PPC_MMCR0_REGNUM : -1;
6854 tdep->ppc_mmcr2_regnum = have_pmu ? PPC_MMCR2_REGNUM : -1;
6855 tdep->ppc_siar_regnum = have_pmu ? PPC_SIAR_REGNUM : -1;
6856 tdep->ppc_sdar_regnum = have_pmu ? PPC_SDAR_REGNUM : -1;
6857 tdep->ppc_sier_regnum = have_pmu ? PPC_SIER_REGNUM : -1;
6858
6859 tdep->have_htm_spr = have_htm_spr;
6860 tdep->have_htm_core = have_htm_core;
6861 tdep->have_htm_fpu = have_htm_fpu;
6862 tdep->have_htm_altivec = have_htm_altivec;
6863 tdep->have_htm_vsx = have_htm_vsx;
6864 tdep->ppc_cppr_regnum = have_htm_ppr ? PPC_CPPR_REGNUM : -1;
6865 tdep->ppc_cdscr_regnum = have_htm_dscr ? PPC_CDSCR_REGNUM : -1;
6866 tdep->ppc_ctar_regnum = have_htm_tar ? PPC_CTAR_REGNUM : -1;
6867
6868 set_gdbarch_pc_regnum (gdbarch, PPC_PC_REGNUM);
6869 set_gdbarch_sp_regnum (gdbarch, PPC_R0_REGNUM + 1);
6870 set_gdbarch_fp0_regnum (gdbarch, tdep->ppc_fp0_regnum);
6871 set_gdbarch_register_sim_regno (gdbarch, rs6000_register_sim_regno);
6872
6873 /* The XML specification for PowerPC sensibly calls the MSR "msr".
6874 GDB traditionally called it "ps", though, so let GDB add an
6875 alias. */
6876 set_gdbarch_ps_regnum (gdbarch, tdep->ppc_ps_regnum);
6877
6878 if (wordsize == 8)
6879 set_gdbarch_return_value (gdbarch, ppc64_sysv_abi_return_value);
6880 else
6881 set_gdbarch_return_value (gdbarch, ppc_sysv_abi_return_value);
6882
6883 /* Set lr_frame_offset. */
6884 if (wordsize == 8)
6885 tdep->lr_frame_offset = 16;
6886 else
6887 tdep->lr_frame_offset = 4;
6888
6889 if (have_spe || have_dfp || have_altivec
6890 || have_vsx || have_htm_fpu || have_htm_vsx)
6891 {
6892 set_gdbarch_pseudo_register_read (gdbarch, rs6000_pseudo_register_read);
6893 set_gdbarch_pseudo_register_write (gdbarch,
6894 rs6000_pseudo_register_write);
6895 set_gdbarch_ax_pseudo_register_collect (gdbarch,
6896 rs6000_ax_pseudo_register_collect);
6897 }
6898
6899 set_gdbarch_gen_return_address (gdbarch, rs6000_gen_return_address);
6900
6901 set_gdbarch_have_nonsteppable_watchpoint (gdbarch, 1);
6902
6903 set_gdbarch_num_regs (gdbarch, PPC_NUM_REGS);
6904
6905 if (have_spe)
6906 num_pseudoregs += 32;
6907 if (have_dfp)
6908 num_pseudoregs += 16;
6909 if (have_altivec)
6910 num_pseudoregs += 32;
6911 if (have_vsx)
6912 /* Include both VSX and Extended FP registers. */
6913 num_pseudoregs += 96;
6914 if (have_htm_fpu)
6915 num_pseudoregs += 16;
6916 /* Include both checkpointed VSX and EFP registers. */
6917 if (have_htm_vsx)
6918 num_pseudoregs += 64 + 32;
6919
6920 set_gdbarch_num_pseudo_regs (gdbarch, num_pseudoregs);
6921
6922 set_gdbarch_ptr_bit (gdbarch, wordsize * TARGET_CHAR_BIT);
6923 set_gdbarch_short_bit (gdbarch, 2 * TARGET_CHAR_BIT);
6924 set_gdbarch_int_bit (gdbarch, 4 * TARGET_CHAR_BIT);
6925 set_gdbarch_long_bit (gdbarch, wordsize * TARGET_CHAR_BIT);
6926 set_gdbarch_long_long_bit (gdbarch, 8 * TARGET_CHAR_BIT);
6927 set_gdbarch_float_bit (gdbarch, 4 * TARGET_CHAR_BIT);
6928 set_gdbarch_double_bit (gdbarch, 8 * TARGET_CHAR_BIT);
6929 set_gdbarch_long_double_bit (gdbarch, 16 * TARGET_CHAR_BIT);
6930 set_gdbarch_char_signed (gdbarch, 0);
6931
6932 set_gdbarch_frame_align (gdbarch, rs6000_frame_align);
6933 if (wordsize == 8)
6934 /* PPC64 SYSV. */
6935 set_gdbarch_frame_red_zone_size (gdbarch, 288);
6936
6937 set_gdbarch_convert_register_p (gdbarch, rs6000_convert_register_p);
6938 set_gdbarch_register_to_value (gdbarch, rs6000_register_to_value);
6939 set_gdbarch_value_to_register (gdbarch, rs6000_value_to_register);
6940
6941 set_gdbarch_stab_reg_to_regnum (gdbarch, rs6000_stab_reg_to_regnum);
6942 set_gdbarch_dwarf2_reg_to_regnum (gdbarch, rs6000_dwarf2_reg_to_regnum);
6943
6944 if (wordsize == 4)
6945 set_gdbarch_push_dummy_call (gdbarch, ppc_sysv_abi_push_dummy_call);
6946 else if (wordsize == 8)
6947 set_gdbarch_push_dummy_call (gdbarch, ppc64_sysv_abi_push_dummy_call);
6948
6949 set_gdbarch_skip_prologue (gdbarch, rs6000_skip_prologue);
6950 set_gdbarch_stack_frame_destroyed_p (gdbarch, rs6000_stack_frame_destroyed_p);
6951 set_gdbarch_skip_main_prologue (gdbarch, rs6000_skip_main_prologue);
6952
6953 set_gdbarch_inner_than (gdbarch, core_addr_lessthan);
6954
6955 set_gdbarch_breakpoint_kind_from_pc (gdbarch,
6956 rs6000_breakpoint::kind_from_pc);
6957 set_gdbarch_sw_breakpoint_from_kind (gdbarch,
6958 rs6000_breakpoint::bp_from_kind);
6959
6960 /* The value of symbols of type N_SO and N_FUN maybe null when
6961 it shouldn't be. */
6962 set_gdbarch_sofun_address_maybe_missing (gdbarch, 1);
6963
6964 /* Handles single stepping of atomic sequences. */
6965 set_gdbarch_software_single_step (gdbarch, ppc_deal_with_atomic_sequence);
6966
6967 /* Not sure on this. FIXMEmgo */
6968 set_gdbarch_frame_args_skip (gdbarch, 8);
6969
6970 /* Helpers for function argument information. */
6971 set_gdbarch_fetch_pointer_argument (gdbarch, rs6000_fetch_pointer_argument);
6972
6973 /* Trampoline. */
6974 set_gdbarch_in_solib_return_trampoline
6975 (gdbarch, rs6000_in_solib_return_trampoline);
6976 set_gdbarch_skip_trampoline_code (gdbarch, rs6000_skip_trampoline_code);
6977
6978 /* Hook in the DWARF CFI frame unwinder. */
6979 dwarf2_append_unwinders (gdbarch);
6980 dwarf2_frame_set_adjust_regnum (gdbarch, rs6000_adjust_frame_regnum);
6981
6982 /* Frame handling. */
6983 dwarf2_frame_set_init_reg (gdbarch, ppc_dwarf2_frame_init_reg);
6984
6985 /* Setup displaced stepping. */
6986 set_gdbarch_displaced_step_copy_insn (gdbarch,
6987 ppc_displaced_step_copy_insn);
6988 set_gdbarch_displaced_step_hw_singlestep (gdbarch,
6989 ppc_displaced_step_hw_singlestep);
6990 set_gdbarch_displaced_step_fixup (gdbarch, ppc_displaced_step_fixup);
6991 set_gdbarch_displaced_step_location (gdbarch,
6992 displaced_step_at_entry_point);
6993
6994 set_gdbarch_max_insn_length (gdbarch, PPC_INSN_SIZE);
6995
6996 /* Hook in ABI-specific overrides, if they have been registered. */
6997 info.target_desc = tdesc;
6998 info.tdesc_data = tdesc_data.get ();
6999 gdbarch_init_osabi (info, gdbarch);
7000
7001 switch (info.osabi)
7002 {
7003 case GDB_OSABI_LINUX:
7004 case GDB_OSABI_NETBSD:
7005 case GDB_OSABI_UNKNOWN:
7006 frame_unwind_append_unwinder (gdbarch, &rs6000_epilogue_frame_unwind);
7007 frame_unwind_append_unwinder (gdbarch, &rs6000_frame_unwind);
7008 frame_base_append_sniffer (gdbarch, rs6000_frame_base_sniffer);
7009 break;
7010 default:
7011 set_gdbarch_believe_pcc_promotion (gdbarch, 1);
7012
7013 frame_unwind_append_unwinder (gdbarch, &rs6000_epilogue_frame_unwind);
7014 frame_unwind_append_unwinder (gdbarch, &rs6000_frame_unwind);
7015 frame_base_append_sniffer (gdbarch, rs6000_frame_base_sniffer);
7016 }
7017
7018 set_tdesc_pseudo_register_type (gdbarch, rs6000_pseudo_register_type);
7019 set_tdesc_pseudo_register_reggroup_p (gdbarch,
7020 rs6000_pseudo_register_reggroup_p);
7021 tdesc_use_registers (gdbarch, tdesc, std::move (tdesc_data));
7022
7023 /* Override the normal target description method to make the SPE upper
7024 halves anonymous. */
7025 set_gdbarch_register_name (gdbarch, rs6000_register_name);
7026
7027 /* Choose register numbers for all supported pseudo-registers. */
7028 tdep->ppc_ev0_regnum = -1;
7029 tdep->ppc_dl0_regnum = -1;
7030 tdep->ppc_v0_alias_regnum = -1;
7031 tdep->ppc_vsr0_regnum = -1;
7032 tdep->ppc_efpr0_regnum = -1;
7033 tdep->ppc_cdl0_regnum = -1;
7034 tdep->ppc_cvsr0_regnum = -1;
7035 tdep->ppc_cefpr0_regnum = -1;
7036
7037 cur_reg = gdbarch_num_regs (gdbarch);
7038
7039 if (have_spe)
7040 {
7041 tdep->ppc_ev0_regnum = cur_reg;
7042 cur_reg += 32;
7043 }
7044 if (have_dfp)
7045 {
7046 tdep->ppc_dl0_regnum = cur_reg;
7047 cur_reg += 16;
7048 }
7049 if (have_altivec)
7050 {
7051 tdep->ppc_v0_alias_regnum = cur_reg;
7052 cur_reg += 32;
7053 }
7054 if (have_vsx)
7055 {
7056 tdep->ppc_vsr0_regnum = cur_reg;
7057 cur_reg += 64;
7058 tdep->ppc_efpr0_regnum = cur_reg;
7059 cur_reg += 32;
7060 }
7061 if (have_htm_fpu)
7062 {
7063 tdep->ppc_cdl0_regnum = cur_reg;
7064 cur_reg += 16;
7065 }
7066 if (have_htm_vsx)
7067 {
7068 tdep->ppc_cvsr0_regnum = cur_reg;
7069 cur_reg += 64;
7070 tdep->ppc_cefpr0_regnum = cur_reg;
7071 cur_reg += 32;
7072 }
7073
7074 gdb_assert (gdbarch_num_cooked_regs (gdbarch) == cur_reg);
7075
7076 /* Register the ravenscar_arch_ops. */
7077 if (mach == bfd_mach_ppc_e500)
7078 register_e500_ravenscar_ops (gdbarch);
7079 else
7080 register_ppc_ravenscar_ops (gdbarch);
7081
7082 set_gdbarch_disassembler_options (gdbarch, &powerpc_disassembler_options);
7083 set_gdbarch_valid_disassembler_options (gdbarch,
7084 disassembler_options_powerpc ());
7085
7086 return gdbarch;
7087 }
7088
7089 static void
7090 rs6000_dump_tdep (struct gdbarch *gdbarch, struct ui_file *file)
7091 {
7092 struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch);
7093
7094 if (tdep == NULL)
7095 return;
7096
7097 /* FIXME: Dump gdbarch_tdep. */
7098 }
7099
7100 static void
7101 powerpc_set_soft_float (const char *args, int from_tty,
7102 struct cmd_list_element *c)
7103 {
7104 struct gdbarch_info info;
7105
7106 /* Update the architecture. */
7107 gdbarch_info_init (&info);
7108 if (!gdbarch_update_p (info))
7109 internal_error (__FILE__, __LINE__, _("could not update architecture"));
7110 }
7111
7112 static void
7113 powerpc_set_vector_abi (const char *args, int from_tty,
7114 struct cmd_list_element *c)
7115 {
7116 struct gdbarch_info info;
7117 int vector_abi;
7118
7119 for (vector_abi = POWERPC_VEC_AUTO;
7120 vector_abi != POWERPC_VEC_LAST;
7121 vector_abi++)
7122 if (strcmp (powerpc_vector_abi_string,
7123 powerpc_vector_strings[vector_abi]) == 0)
7124 {
7125 powerpc_vector_abi_global = (enum powerpc_vector_abi) vector_abi;
7126 break;
7127 }
7128
7129 if (vector_abi == POWERPC_VEC_LAST)
7130 internal_error (__FILE__, __LINE__, _("Invalid vector ABI accepted: %s."),
7131 powerpc_vector_abi_string);
7132
7133 /* Update the architecture. */
7134 gdbarch_info_init (&info);
7135 if (!gdbarch_update_p (info))
7136 internal_error (__FILE__, __LINE__, _("could not update architecture"));
7137 }
7138
7139 /* Show the current setting of the exact watchpoints flag. */
7140
7141 static void
7142 show_powerpc_exact_watchpoints (struct ui_file *file, int from_tty,
7143 struct cmd_list_element *c,
7144 const char *value)
7145 {
7146 fprintf_filtered (file, _("Use of exact watchpoints is %s.\n"), value);
7147 }
7148
7149 /* Read a PPC instruction from memory. */
7150
7151 static unsigned int
7152 read_insn (struct frame_info *frame, CORE_ADDR pc)
7153 {
7154 struct gdbarch *gdbarch = get_frame_arch (frame);
7155 enum bfd_endian byte_order = gdbarch_byte_order (gdbarch);
7156
7157 return read_memory_unsigned_integer (pc, 4, byte_order);
7158 }
7159
7160 /* Return non-zero if the instructions at PC match the series
7161 described in PATTERN, or zero otherwise. PATTERN is an array of
7162 'struct ppc_insn_pattern' objects, terminated by an entry whose
7163 mask is zero.
7164
7165 When the match is successful, fill INSNS[i] with what PATTERN[i]
7166 matched. If PATTERN[i] is optional, and the instruction wasn't
7167 present, set INSNS[i] to 0 (which is not a valid PPC instruction).
7168 INSNS should have as many elements as PATTERN, minus the terminator.
7169 Note that, if PATTERN contains optional instructions which aren't
7170 present in memory, then INSNS will have holes, so INSNS[i] isn't
7171 necessarily the i'th instruction in memory. */
7172
7173 int
7174 ppc_insns_match_pattern (struct frame_info *frame, CORE_ADDR pc,
7175 const struct ppc_insn_pattern *pattern,
7176 unsigned int *insns)
7177 {
7178 int i;
7179 unsigned int insn;
7180
7181 for (i = 0, insn = 0; pattern[i].mask; i++)
7182 {
7183 if (insn == 0)
7184 insn = read_insn (frame, pc);
7185 insns[i] = 0;
7186 if ((insn & pattern[i].mask) == pattern[i].data)
7187 {
7188 insns[i] = insn;
7189 pc += 4;
7190 insn = 0;
7191 }
7192 else if (!pattern[i].optional)
7193 return 0;
7194 }
7195
7196 return 1;
7197 }
7198
7199 /* Return the 'd' field of the d-form instruction INSN, properly
7200 sign-extended. */
7201
7202 CORE_ADDR
7203 ppc_insn_d_field (unsigned int insn)
7204 {
7205 return ((((CORE_ADDR) insn & 0xffff) ^ 0x8000) - 0x8000);
7206 }
7207
7208 /* Return the 'ds' field of the ds-form instruction INSN, with the two
7209 zero bits concatenated at the right, and properly
7210 sign-extended. */
7211
7212 CORE_ADDR
7213 ppc_insn_ds_field (unsigned int insn)
7214 {
7215 return ((((CORE_ADDR) insn & 0xfffc) ^ 0x8000) - 0x8000);
7216 }
7217
7218 /* Initialization code. */
7219
7220 void _initialize_rs6000_tdep ();
7221 void
7222 _initialize_rs6000_tdep ()
7223 {
7224 gdbarch_register (bfd_arch_rs6000, rs6000_gdbarch_init, rs6000_dump_tdep);
7225 gdbarch_register (bfd_arch_powerpc, rs6000_gdbarch_init, rs6000_dump_tdep);
7226
7227 /* Initialize the standard target descriptions. */
7228 initialize_tdesc_powerpc_32 ();
7229 initialize_tdesc_powerpc_altivec32 ();
7230 initialize_tdesc_powerpc_vsx32 ();
7231 initialize_tdesc_powerpc_403 ();
7232 initialize_tdesc_powerpc_403gc ();
7233 initialize_tdesc_powerpc_405 ();
7234 initialize_tdesc_powerpc_505 ();
7235 initialize_tdesc_powerpc_601 ();
7236 initialize_tdesc_powerpc_602 ();
7237 initialize_tdesc_powerpc_603 ();
7238 initialize_tdesc_powerpc_604 ();
7239 initialize_tdesc_powerpc_64 ();
7240 initialize_tdesc_powerpc_altivec64 ();
7241 initialize_tdesc_powerpc_vsx64 ();
7242 initialize_tdesc_powerpc_7400 ();
7243 initialize_tdesc_powerpc_750 ();
7244 initialize_tdesc_powerpc_860 ();
7245 initialize_tdesc_powerpc_e500 ();
7246 initialize_tdesc_rs6000 ();
7247
7248 /* Add root prefix command for all "set powerpc"/"show powerpc"
7249 commands. */
7250 add_basic_prefix_cmd ("powerpc", no_class,
7251 _("Various PowerPC-specific commands."),
7252 &setpowerpccmdlist, "set powerpc ", 0, &setlist);
7253
7254 add_show_prefix_cmd ("powerpc", no_class,
7255 _("Various PowerPC-specific commands."),
7256 &showpowerpccmdlist, "show powerpc ", 0, &showlist);
7257
7258 /* Add a command to allow the user to force the ABI. */
7259 add_setshow_auto_boolean_cmd ("soft-float", class_support,
7260 &powerpc_soft_float_global,
7261 _("Set whether to use a soft-float ABI."),
7262 _("Show whether to use a soft-float ABI."),
7263 NULL,
7264 powerpc_set_soft_float, NULL,
7265 &setpowerpccmdlist, &showpowerpccmdlist);
7266
7267 add_setshow_enum_cmd ("vector-abi", class_support, powerpc_vector_strings,
7268 &powerpc_vector_abi_string,
7269 _("Set the vector ABI."),
7270 _("Show the vector ABI."),
7271 NULL, powerpc_set_vector_abi, NULL,
7272 &setpowerpccmdlist, &showpowerpccmdlist);
7273
7274 add_setshow_boolean_cmd ("exact-watchpoints", class_support,
7275 &target_exact_watchpoints,
7276 _("\
7277 Set whether to use just one debug register for watchpoints on scalars."),
7278 _("\
7279 Show whether to use just one debug register for watchpoints on scalars."),
7280 _("\
7281 If true, GDB will use only one debug register when watching a variable of\n\
7282 scalar type, thus assuming that the variable is accessed through the address\n\
7283 of its first byte."),
7284 NULL, show_powerpc_exact_watchpoints,
7285 &setpowerpccmdlist, &showpowerpccmdlist);
7286 }