d03d36d29d340f13b1ddffc9b0d217ec775e1339
[binutils-gdb.git] / gdb / rs6000-tdep.c
1 /* Target-dependent code for GDB, the GNU debugger.
2 Copyright 1986, 1987, 1989, 1991, 1992, 1993, 1994, 1995, 1996, 1997,
3 1998, 1999, 2000, 2001, 2002, 2003
4 Free Software Foundation, Inc.
5
6 This file is part of GDB.
7
8 This program is free software; you can redistribute it and/or modify
9 it under the terms of the GNU General Public License as published by
10 the Free Software Foundation; either version 2 of the License, or
11 (at your option) any later version.
12
13 This program is distributed in the hope that it will be useful,
14 but WITHOUT ANY WARRANTY; without even the implied warranty of
15 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
16 GNU General Public License for more details.
17
18 You should have received a copy of the GNU General Public License
19 along with this program; if not, write to the Free Software
20 Foundation, Inc., 59 Temple Place - Suite 330,
21 Boston, MA 02111-1307, USA. */
22
23 #include "defs.h"
24 #include "frame.h"
25 #include "inferior.h"
26 #include "symtab.h"
27 #include "target.h"
28 #include "gdbcore.h"
29 #include "gdbcmd.h"
30 #include "symfile.h"
31 #include "objfiles.h"
32 #include "arch-utils.h"
33 #include "regcache.h"
34 #include "doublest.h"
35 #include "value.h"
36 #include "parser-defs.h"
37
38 #include "libbfd.h" /* for bfd_default_set_arch_mach */
39 #include "coff/internal.h" /* for libcoff.h */
40 #include "libcoff.h" /* for xcoff_data */
41 #include "coff/xcoff.h"
42 #include "libxcoff.h"
43
44 #include "elf-bfd.h"
45
46 #include "solib-svr4.h"
47 #include "ppc-tdep.h"
48
49 /* If the kernel has to deliver a signal, it pushes a sigcontext
50 structure on the stack and then calls the signal handler, passing
51 the address of the sigcontext in an argument register. Usually
52 the signal handler doesn't save this register, so we have to
53 access the sigcontext structure via an offset from the signal handler
54 frame.
55 The following constants were determined by experimentation on AIX 3.2. */
56 #define SIG_FRAME_PC_OFFSET 96
57 #define SIG_FRAME_LR_OFFSET 108
58 #define SIG_FRAME_FP_OFFSET 284
59
60 /* To be used by skip_prologue. */
61
62 struct rs6000_framedata
63 {
64 int offset; /* total size of frame --- the distance
65 by which we decrement sp to allocate
66 the frame */
67 int saved_gpr; /* smallest # of saved gpr */
68 int saved_fpr; /* smallest # of saved fpr */
69 int saved_vr; /* smallest # of saved vr */
70 int saved_ev; /* smallest # of saved ev */
71 int alloca_reg; /* alloca register number (frame ptr) */
72 char frameless; /* true if frameless functions. */
73 char nosavedpc; /* true if pc not saved. */
74 int gpr_offset; /* offset of saved gprs from prev sp */
75 int fpr_offset; /* offset of saved fprs from prev sp */
76 int vr_offset; /* offset of saved vrs from prev sp */
77 int ev_offset; /* offset of saved evs from prev sp */
78 int lr_offset; /* offset of saved lr */
79 int cr_offset; /* offset of saved cr */
80 int vrsave_offset; /* offset of saved vrsave register */
81 };
82
83 /* Description of a single register. */
84
85 struct reg
86 {
87 char *name; /* name of register */
88 unsigned char sz32; /* size on 32-bit arch, 0 if nonextant */
89 unsigned char sz64; /* size on 64-bit arch, 0 if nonextant */
90 unsigned char fpr; /* whether register is floating-point */
91 unsigned char pseudo; /* whether register is pseudo */
92 };
93
94 /* Breakpoint shadows for the single step instructions will be kept here. */
95
96 static struct sstep_breaks
97 {
98 /* Address, or 0 if this is not in use. */
99 CORE_ADDR address;
100 /* Shadow contents. */
101 char data[4];
102 }
103 stepBreaks[2];
104
105 /* Hook for determining the TOC address when calling functions in the
106 inferior under AIX. The initialization code in rs6000-nat.c sets
107 this hook to point to find_toc_address. */
108
109 CORE_ADDR (*rs6000_find_toc_address_hook) (CORE_ADDR) = NULL;
110
111 /* Hook to set the current architecture when starting a child process.
112 rs6000-nat.c sets this. */
113
114 void (*rs6000_set_host_arch_hook) (int) = NULL;
115
116 /* Static function prototypes */
117
118 static CORE_ADDR branch_dest (int opcode, int instr, CORE_ADDR pc,
119 CORE_ADDR safety);
120 static CORE_ADDR skip_prologue (CORE_ADDR, CORE_ADDR,
121 struct rs6000_framedata *);
122 static void frame_get_saved_regs (struct frame_info * fi,
123 struct rs6000_framedata * fdatap);
124 static CORE_ADDR frame_initial_stack_address (struct frame_info *);
125
126 /* Is REGNO an AltiVec register? Return 1 if so, 0 otherwise. */
127 int
128 altivec_register_p (int regno)
129 {
130 struct gdbarch_tdep *tdep = gdbarch_tdep (current_gdbarch);
131 if (tdep->ppc_vr0_regnum < 0 || tdep->ppc_vrsave_regnum < 0)
132 return 0;
133 else
134 return (regno >= tdep->ppc_vr0_regnum && regno <= tdep->ppc_vrsave_regnum);
135 }
136
137 /* Read a LEN-byte address from debugged memory address MEMADDR. */
138
139 static CORE_ADDR
140 read_memory_addr (CORE_ADDR memaddr, int len)
141 {
142 return read_memory_unsigned_integer (memaddr, len);
143 }
144
145 static CORE_ADDR
146 rs6000_skip_prologue (CORE_ADDR pc)
147 {
148 struct rs6000_framedata frame;
149 pc = skip_prologue (pc, 0, &frame);
150 return pc;
151 }
152
153
154 /* Fill in fi->saved_regs */
155
156 struct frame_extra_info
157 {
158 /* Functions calling alloca() change the value of the stack
159 pointer. We need to use initial stack pointer (which is saved in
160 r31 by gcc) in such cases. If a compiler emits traceback table,
161 then we should use the alloca register specified in traceback
162 table. FIXME. */
163 CORE_ADDR initial_sp; /* initial stack pointer. */
164 };
165
166 void
167 rs6000_init_extra_frame_info (int fromleaf, struct frame_info *fi)
168 {
169 struct frame_extra_info *extra_info =
170 frame_extra_info_zalloc (fi, sizeof (struct frame_extra_info));
171 extra_info->initial_sp = 0;
172 if (get_next_frame (fi) != NULL
173 && get_frame_pc (fi) < TEXT_SEGMENT_BASE)
174 /* We're in get_prev_frame */
175 /* and this is a special signal frame. */
176 /* (fi->pc will be some low address in the kernel, */
177 /* to which the signal handler returns). */
178 deprecated_set_frame_type (fi, SIGTRAMP_FRAME);
179 }
180
181 /* Put here the code to store, into a struct frame_saved_regs,
182 the addresses of the saved registers of frame described by FRAME_INFO.
183 This includes special registers such as pc and fp saved in special
184 ways in the stack frame. sp is even more special:
185 the address we return for it IS the sp for the next frame. */
186
187 /* In this implementation for RS/6000, we do *not* save sp. I am
188 not sure if it will be needed. The following function takes care of gpr's
189 and fpr's only. */
190
191 void
192 rs6000_frame_init_saved_regs (struct frame_info *fi)
193 {
194 frame_get_saved_regs (fi, NULL);
195 }
196
197 static CORE_ADDR
198 rs6000_frame_args_address (struct frame_info *fi)
199 {
200 struct frame_extra_info *extra_info = get_frame_extra_info (fi);
201 if (extra_info->initial_sp != 0)
202 return extra_info->initial_sp;
203 else
204 return frame_initial_stack_address (fi);
205 }
206
207 /* Immediately after a function call, return the saved pc.
208 Can't go through the frames for this because on some machines
209 the new frame is not set up until the new function executes
210 some instructions. */
211
212 static CORE_ADDR
213 rs6000_saved_pc_after_call (struct frame_info *fi)
214 {
215 return read_register (gdbarch_tdep (current_gdbarch)->ppc_lr_regnum);
216 }
217
218 /* Calculate the destination of a branch/jump. Return -1 if not a branch. */
219
220 static CORE_ADDR
221 branch_dest (int opcode, int instr, CORE_ADDR pc, CORE_ADDR safety)
222 {
223 CORE_ADDR dest;
224 int immediate;
225 int absolute;
226 int ext_op;
227
228 absolute = (int) ((instr >> 1) & 1);
229
230 switch (opcode)
231 {
232 case 18:
233 immediate = ((instr & ~3) << 6) >> 6; /* br unconditional */
234 if (absolute)
235 dest = immediate;
236 else
237 dest = pc + immediate;
238 break;
239
240 case 16:
241 immediate = ((instr & ~3) << 16) >> 16; /* br conditional */
242 if (absolute)
243 dest = immediate;
244 else
245 dest = pc + immediate;
246 break;
247
248 case 19:
249 ext_op = (instr >> 1) & 0x3ff;
250
251 if (ext_op == 16) /* br conditional register */
252 {
253 dest = read_register (gdbarch_tdep (current_gdbarch)->ppc_lr_regnum) & ~3;
254
255 /* If we are about to return from a signal handler, dest is
256 something like 0x3c90. The current frame is a signal handler
257 caller frame, upon completion of the sigreturn system call
258 execution will return to the saved PC in the frame. */
259 if (dest < TEXT_SEGMENT_BASE)
260 {
261 struct frame_info *fi;
262
263 fi = get_current_frame ();
264 if (fi != NULL)
265 dest = read_memory_addr (get_frame_base (fi) + SIG_FRAME_PC_OFFSET,
266 gdbarch_tdep (current_gdbarch)->wordsize);
267 }
268 }
269
270 else if (ext_op == 528) /* br cond to count reg */
271 {
272 dest = read_register (gdbarch_tdep (current_gdbarch)->ppc_ctr_regnum) & ~3;
273
274 /* If we are about to execute a system call, dest is something
275 like 0x22fc or 0x3b00. Upon completion the system call
276 will return to the address in the link register. */
277 if (dest < TEXT_SEGMENT_BASE)
278 dest = read_register (gdbarch_tdep (current_gdbarch)->ppc_lr_regnum) & ~3;
279 }
280 else
281 return -1;
282 break;
283
284 default:
285 return -1;
286 }
287 return (dest < TEXT_SEGMENT_BASE) ? safety : dest;
288 }
289
290
291 /* Sequence of bytes for breakpoint instruction. */
292
293 #define BIG_BREAKPOINT { 0x7d, 0x82, 0x10, 0x08 }
294 #define LITTLE_BREAKPOINT { 0x08, 0x10, 0x82, 0x7d }
295
296 const static unsigned char *
297 rs6000_breakpoint_from_pc (CORE_ADDR *bp_addr, int *bp_size)
298 {
299 static unsigned char big_breakpoint[] = BIG_BREAKPOINT;
300 static unsigned char little_breakpoint[] = LITTLE_BREAKPOINT;
301 *bp_size = 4;
302 if (TARGET_BYTE_ORDER == BFD_ENDIAN_BIG)
303 return big_breakpoint;
304 else
305 return little_breakpoint;
306 }
307
308
309 /* AIX does not support PT_STEP. Simulate it. */
310
311 void
312 rs6000_software_single_step (enum target_signal signal,
313 int insert_breakpoints_p)
314 {
315 CORE_ADDR dummy;
316 int breakp_sz;
317 const char *breakp = rs6000_breakpoint_from_pc (&dummy, &breakp_sz);
318 int ii, insn;
319 CORE_ADDR loc;
320 CORE_ADDR breaks[2];
321 int opcode;
322
323 if (insert_breakpoints_p)
324 {
325
326 loc = read_pc ();
327
328 insn = read_memory_integer (loc, 4);
329
330 breaks[0] = loc + breakp_sz;
331 opcode = insn >> 26;
332 breaks[1] = branch_dest (opcode, insn, loc, breaks[0]);
333
334 /* Don't put two breakpoints on the same address. */
335 if (breaks[1] == breaks[0])
336 breaks[1] = -1;
337
338 stepBreaks[1].address = 0;
339
340 for (ii = 0; ii < 2; ++ii)
341 {
342
343 /* ignore invalid breakpoint. */
344 if (breaks[ii] == -1)
345 continue;
346 target_insert_breakpoint (breaks[ii], stepBreaks[ii].data);
347 stepBreaks[ii].address = breaks[ii];
348 }
349
350 }
351 else
352 {
353
354 /* remove step breakpoints. */
355 for (ii = 0; ii < 2; ++ii)
356 if (stepBreaks[ii].address != 0)
357 target_remove_breakpoint (stepBreaks[ii].address,
358 stepBreaks[ii].data);
359 }
360 errno = 0; /* FIXME, don't ignore errors! */
361 /* What errors? {read,write}_memory call error(). */
362 }
363
364
365 /* return pc value after skipping a function prologue and also return
366 information about a function frame.
367
368 in struct rs6000_framedata fdata:
369 - frameless is TRUE, if function does not have a frame.
370 - nosavedpc is TRUE, if function does not save %pc value in its frame.
371 - offset is the initial size of this stack frame --- the amount by
372 which we decrement the sp to allocate the frame.
373 - saved_gpr is the number of the first saved gpr.
374 - saved_fpr is the number of the first saved fpr.
375 - saved_vr is the number of the first saved vr.
376 - saved_ev is the number of the first saved ev.
377 - alloca_reg is the number of the register used for alloca() handling.
378 Otherwise -1.
379 - gpr_offset is the offset of the first saved gpr from the previous frame.
380 - fpr_offset is the offset of the first saved fpr from the previous frame.
381 - vr_offset is the offset of the first saved vr from the previous frame.
382 - ev_offset is the offset of the first saved ev from the previous frame.
383 - lr_offset is the offset of the saved lr
384 - cr_offset is the offset of the saved cr
385 - vrsave_offset is the offset of the saved vrsave register
386 */
387
388 #define SIGNED_SHORT(x) \
389 ((sizeof (short) == 2) \
390 ? ((int)(short)(x)) \
391 : ((int)((((x) & 0xffff) ^ 0x8000) - 0x8000)))
392
393 #define GET_SRC_REG(x) (((x) >> 21) & 0x1f)
394
395 /* Limit the number of skipped non-prologue instructions, as the examining
396 of the prologue is expensive. */
397 static int max_skip_non_prologue_insns = 10;
398
399 /* Given PC representing the starting address of a function, and
400 LIM_PC which is the (sloppy) limit to which to scan when looking
401 for a prologue, attempt to further refine this limit by using
402 the line data in the symbol table. If successful, a better guess
403 on where the prologue ends is returned, otherwise the previous
404 value of lim_pc is returned. */
405 static CORE_ADDR
406 refine_prologue_limit (CORE_ADDR pc, CORE_ADDR lim_pc)
407 {
408 struct symtab_and_line prologue_sal;
409
410 prologue_sal = find_pc_line (pc, 0);
411 if (prologue_sal.line != 0)
412 {
413 int i;
414 CORE_ADDR addr = prologue_sal.end;
415
416 /* Handle the case in which compiler's optimizer/scheduler
417 has moved instructions into the prologue. We scan ahead
418 in the function looking for address ranges whose corresponding
419 line number is less than or equal to the first one that we
420 found for the function. (It can be less than when the
421 scheduler puts a body instruction before the first prologue
422 instruction.) */
423 for (i = 2 * max_skip_non_prologue_insns;
424 i > 0 && (lim_pc == 0 || addr < lim_pc);
425 i--)
426 {
427 struct symtab_and_line sal;
428
429 sal = find_pc_line (addr, 0);
430 if (sal.line == 0)
431 break;
432 if (sal.line <= prologue_sal.line
433 && sal.symtab == prologue_sal.symtab)
434 {
435 prologue_sal = sal;
436 }
437 addr = sal.end;
438 }
439
440 if (lim_pc == 0 || prologue_sal.end < lim_pc)
441 lim_pc = prologue_sal.end;
442 }
443 return lim_pc;
444 }
445
446
447 static CORE_ADDR
448 skip_prologue (CORE_ADDR pc, CORE_ADDR lim_pc, struct rs6000_framedata *fdata)
449 {
450 CORE_ADDR orig_pc = pc;
451 CORE_ADDR last_prologue_pc = pc;
452 CORE_ADDR li_found_pc = 0;
453 char buf[4];
454 unsigned long op;
455 long offset = 0;
456 long vr_saved_offset = 0;
457 int lr_reg = -1;
458 int cr_reg = -1;
459 int vr_reg = -1;
460 int ev_reg = -1;
461 long ev_offset = 0;
462 int vrsave_reg = -1;
463 int reg;
464 int framep = 0;
465 int minimal_toc_loaded = 0;
466 int prev_insn_was_prologue_insn = 1;
467 int num_skip_non_prologue_insns = 0;
468 const struct bfd_arch_info *arch_info = gdbarch_bfd_arch_info (current_gdbarch);
469 struct gdbarch_tdep *tdep = gdbarch_tdep (current_gdbarch);
470
471 /* Attempt to find the end of the prologue when no limit is specified.
472 Note that refine_prologue_limit() has been written so that it may
473 be used to "refine" the limits of non-zero PC values too, but this
474 is only safe if we 1) trust the line information provided by the
475 compiler and 2) iterate enough to actually find the end of the
476 prologue.
477
478 It may become a good idea at some point (for both performance and
479 accuracy) to unconditionally call refine_prologue_limit(). But,
480 until we can make a clear determination that this is beneficial,
481 we'll play it safe and only use it to obtain a limit when none
482 has been specified. */
483 if (lim_pc == 0)
484 lim_pc = refine_prologue_limit (pc, lim_pc);
485
486 memset (fdata, 0, sizeof (struct rs6000_framedata));
487 fdata->saved_gpr = -1;
488 fdata->saved_fpr = -1;
489 fdata->saved_vr = -1;
490 fdata->saved_ev = -1;
491 fdata->alloca_reg = -1;
492 fdata->frameless = 1;
493 fdata->nosavedpc = 1;
494
495 for (;; pc += 4)
496 {
497 /* Sometimes it isn't clear if an instruction is a prologue
498 instruction or not. When we encounter one of these ambiguous
499 cases, we'll set prev_insn_was_prologue_insn to 0 (false).
500 Otherwise, we'll assume that it really is a prologue instruction. */
501 if (prev_insn_was_prologue_insn)
502 last_prologue_pc = pc;
503
504 /* Stop scanning if we've hit the limit. */
505 if (lim_pc != 0 && pc >= lim_pc)
506 break;
507
508 prev_insn_was_prologue_insn = 1;
509
510 /* Fetch the instruction and convert it to an integer. */
511 if (target_read_memory (pc, buf, 4))
512 break;
513 op = extract_signed_integer (buf, 4);
514
515 if ((op & 0xfc1fffff) == 0x7c0802a6)
516 { /* mflr Rx */
517 lr_reg = (op & 0x03e00000) | 0x90010000;
518 continue;
519
520 }
521 else if ((op & 0xfc1fffff) == 0x7c000026)
522 { /* mfcr Rx */
523 cr_reg = (op & 0x03e00000) | 0x90010000;
524 continue;
525
526 }
527 else if ((op & 0xfc1f0000) == 0xd8010000)
528 { /* stfd Rx,NUM(r1) */
529 reg = GET_SRC_REG (op);
530 if (fdata->saved_fpr == -1 || fdata->saved_fpr > reg)
531 {
532 fdata->saved_fpr = reg;
533 fdata->fpr_offset = SIGNED_SHORT (op) + offset;
534 }
535 continue;
536
537 }
538 else if (((op & 0xfc1f0000) == 0xbc010000) || /* stm Rx, NUM(r1) */
539 (((op & 0xfc1f0000) == 0x90010000 || /* st rx,NUM(r1) */
540 (op & 0xfc1f0003) == 0xf8010000) && /* std rx,NUM(r1) */
541 (op & 0x03e00000) >= 0x01a00000)) /* rx >= r13 */
542 {
543
544 reg = GET_SRC_REG (op);
545 if (fdata->saved_gpr == -1 || fdata->saved_gpr > reg)
546 {
547 fdata->saved_gpr = reg;
548 if ((op & 0xfc1f0003) == 0xf8010000)
549 op = (op >> 1) << 1;
550 fdata->gpr_offset = SIGNED_SHORT (op) + offset;
551 }
552 continue;
553
554 }
555 else if ((op & 0xffff0000) == 0x60000000)
556 {
557 /* nop */
558 /* Allow nops in the prologue, but do not consider them to
559 be part of the prologue unless followed by other prologue
560 instructions. */
561 prev_insn_was_prologue_insn = 0;
562 continue;
563
564 }
565 else if ((op & 0xffff0000) == 0x3c000000)
566 { /* addis 0,0,NUM, used
567 for >= 32k frames */
568 fdata->offset = (op & 0x0000ffff) << 16;
569 fdata->frameless = 0;
570 continue;
571
572 }
573 else if ((op & 0xffff0000) == 0x60000000)
574 { /* ori 0,0,NUM, 2nd ha
575 lf of >= 32k frames */
576 fdata->offset |= (op & 0x0000ffff);
577 fdata->frameless = 0;
578 continue;
579
580 }
581 else if (lr_reg != -1 && (op & 0xffff0000) == lr_reg)
582 { /* st Rx,NUM(r1)
583 where Rx == lr */
584 fdata->lr_offset = SIGNED_SHORT (op) + offset;
585 fdata->nosavedpc = 0;
586 lr_reg = 0;
587 continue;
588
589 }
590 else if (cr_reg != -1 && (op & 0xffff0000) == cr_reg)
591 { /* st Rx,NUM(r1)
592 where Rx == cr */
593 fdata->cr_offset = SIGNED_SHORT (op) + offset;
594 cr_reg = 0;
595 continue;
596
597 }
598 else if (op == 0x48000005)
599 { /* bl .+4 used in
600 -mrelocatable */
601 continue;
602
603 }
604 else if (op == 0x48000004)
605 { /* b .+4 (xlc) */
606 break;
607
608 }
609 else if ((op & 0xffff0000) == 0x3fc00000 || /* addis 30,0,foo@ha, used
610 in V.4 -mminimal-toc */
611 (op & 0xffff0000) == 0x3bde0000)
612 { /* addi 30,30,foo@l */
613 continue;
614
615 }
616 else if ((op & 0xfc000001) == 0x48000001)
617 { /* bl foo,
618 to save fprs??? */
619
620 fdata->frameless = 0;
621 /* Don't skip over the subroutine call if it is not within
622 the first three instructions of the prologue. */
623 if ((pc - orig_pc) > 8)
624 break;
625
626 op = read_memory_integer (pc + 4, 4);
627
628 /* At this point, make sure this is not a trampoline
629 function (a function that simply calls another functions,
630 and nothing else). If the next is not a nop, this branch
631 was part of the function prologue. */
632
633 if (op == 0x4def7b82 || op == 0) /* crorc 15, 15, 15 */
634 break; /* don't skip over
635 this branch */
636 continue;
637
638 /* update stack pointer */
639 }
640 else if ((op & 0xffff0000) == 0x94210000 || /* stu r1,NUM(r1) */
641 (op & 0xffff0003) == 0xf8210001) /* stdu r1,NUM(r1) */
642 {
643 fdata->frameless = 0;
644 if ((op & 0xffff0003) == 0xf8210001)
645 op = (op >> 1) << 1;
646 fdata->offset = SIGNED_SHORT (op);
647 offset = fdata->offset;
648 continue;
649
650 }
651 else if (op == 0x7c21016e)
652 { /* stwux 1,1,0 */
653 fdata->frameless = 0;
654 offset = fdata->offset;
655 continue;
656
657 /* Load up minimal toc pointer */
658 }
659 else if ((op >> 22) == 0x20f
660 && !minimal_toc_loaded)
661 { /* l r31,... or l r30,... */
662 minimal_toc_loaded = 1;
663 continue;
664
665 /* move parameters from argument registers to local variable
666 registers */
667 }
668 else if ((op & 0xfc0007fe) == 0x7c000378 && /* mr(.) Rx,Ry */
669 (((op >> 21) & 31) >= 3) && /* R3 >= Ry >= R10 */
670 (((op >> 21) & 31) <= 10) &&
671 ((long) ((op >> 16) & 31) >= fdata->saved_gpr)) /* Rx: local var reg */
672 {
673 continue;
674
675 /* store parameters in stack */
676 }
677 else if ((op & 0xfc1f0003) == 0xf8010000 || /* std rx,NUM(r1) */
678 (op & 0xfc1f0000) == 0xd8010000 || /* stfd Rx,NUM(r1) */
679 (op & 0xfc1f0000) == 0xfc010000) /* frsp, fp?,NUM(r1) */
680 {
681 continue;
682
683 /* store parameters in stack via frame pointer */
684 }
685 else if (framep &&
686 ((op & 0xfc1f0000) == 0x901f0000 || /* st rx,NUM(r1) */
687 (op & 0xfc1f0000) == 0xd81f0000 || /* stfd Rx,NUM(r1) */
688 (op & 0xfc1f0000) == 0xfc1f0000))
689 { /* frsp, fp?,NUM(r1) */
690 continue;
691
692 /* Set up frame pointer */
693 }
694 else if (op == 0x603f0000 /* oril r31, r1, 0x0 */
695 || op == 0x7c3f0b78)
696 { /* mr r31, r1 */
697 fdata->frameless = 0;
698 framep = 1;
699 fdata->alloca_reg = (tdep->ppc_gp0_regnum + 31);
700 continue;
701
702 /* Another way to set up the frame pointer. */
703 }
704 else if ((op & 0xfc1fffff) == 0x38010000)
705 { /* addi rX, r1, 0x0 */
706 fdata->frameless = 0;
707 framep = 1;
708 fdata->alloca_reg = (tdep->ppc_gp0_regnum
709 + ((op & ~0x38010000) >> 21));
710 continue;
711 }
712 /* AltiVec related instructions. */
713 /* Store the vrsave register (spr 256) in another register for
714 later manipulation, or load a register into the vrsave
715 register. 2 instructions are used: mfvrsave and
716 mtvrsave. They are shorthand notation for mfspr Rn, SPR256
717 and mtspr SPR256, Rn. */
718 /* mfspr Rn SPR256 == 011111 nnnnn 0000001000 01010100110
719 mtspr SPR256 Rn == 011111 nnnnn 0000001000 01110100110 */
720 else if ((op & 0xfc1fffff) == 0x7c0042a6) /* mfvrsave Rn */
721 {
722 vrsave_reg = GET_SRC_REG (op);
723 continue;
724 }
725 else if ((op & 0xfc1fffff) == 0x7c0043a6) /* mtvrsave Rn */
726 {
727 continue;
728 }
729 /* Store the register where vrsave was saved to onto the stack:
730 rS is the register where vrsave was stored in a previous
731 instruction. */
732 /* 100100 sssss 00001 dddddddd dddddddd */
733 else if ((op & 0xfc1f0000) == 0x90010000) /* stw rS, d(r1) */
734 {
735 if (vrsave_reg == GET_SRC_REG (op))
736 {
737 fdata->vrsave_offset = SIGNED_SHORT (op) + offset;
738 vrsave_reg = -1;
739 }
740 continue;
741 }
742 /* Compute the new value of vrsave, by modifying the register
743 where vrsave was saved to. */
744 else if (((op & 0xfc000000) == 0x64000000) /* oris Ra, Rs, UIMM */
745 || ((op & 0xfc000000) == 0x60000000))/* ori Ra, Rs, UIMM */
746 {
747 continue;
748 }
749 /* li r0, SIMM (short for addi r0, 0, SIMM). This is the first
750 in a pair of insns to save the vector registers on the
751 stack. */
752 /* 001110 00000 00000 iiii iiii iiii iiii */
753 /* 001110 01110 00000 iiii iiii iiii iiii */
754 else if ((op & 0xffff0000) == 0x38000000 /* li r0, SIMM */
755 || (op & 0xffff0000) == 0x39c00000) /* li r14, SIMM */
756 {
757 li_found_pc = pc;
758 vr_saved_offset = SIGNED_SHORT (op);
759 }
760 /* Store vector register S at (r31+r0) aligned to 16 bytes. */
761 /* 011111 sssss 11111 00000 00111001110 */
762 else if ((op & 0xfc1fffff) == 0x7c1f01ce) /* stvx Vs, R31, R0 */
763 {
764 if (pc == (li_found_pc + 4))
765 {
766 vr_reg = GET_SRC_REG (op);
767 /* If this is the first vector reg to be saved, or if
768 it has a lower number than others previously seen,
769 reupdate the frame info. */
770 if (fdata->saved_vr == -1 || fdata->saved_vr > vr_reg)
771 {
772 fdata->saved_vr = vr_reg;
773 fdata->vr_offset = vr_saved_offset + offset;
774 }
775 vr_saved_offset = -1;
776 vr_reg = -1;
777 li_found_pc = 0;
778 }
779 }
780 /* End AltiVec related instructions. */
781
782 /* Start BookE related instructions. */
783 /* Store gen register S at (r31+uimm).
784 Any register less than r13 is volatile, so we don't care. */
785 /* 000100 sssss 11111 iiiii 01100100001 */
786 else if (arch_info->mach == bfd_mach_ppc_e500
787 && (op & 0xfc1f07ff) == 0x101f0321) /* evstdd Rs,uimm(R31) */
788 {
789 if ((op & 0x03e00000) >= 0x01a00000) /* Rs >= r13 */
790 {
791 unsigned int imm;
792 ev_reg = GET_SRC_REG (op);
793 imm = (op >> 11) & 0x1f;
794 ev_offset = imm * 8;
795 /* If this is the first vector reg to be saved, or if
796 it has a lower number than others previously seen,
797 reupdate the frame info. */
798 if (fdata->saved_ev == -1 || fdata->saved_ev > ev_reg)
799 {
800 fdata->saved_ev = ev_reg;
801 fdata->ev_offset = ev_offset + offset;
802 }
803 }
804 continue;
805 }
806 /* Store gen register rS at (r1+rB). */
807 /* 000100 sssss 00001 bbbbb 01100100000 */
808 else if (arch_info->mach == bfd_mach_ppc_e500
809 && (op & 0xffe007ff) == 0x13e00320) /* evstddx RS,R1,Rb */
810 {
811 if (pc == (li_found_pc + 4))
812 {
813 ev_reg = GET_SRC_REG (op);
814 /* If this is the first vector reg to be saved, or if
815 it has a lower number than others previously seen,
816 reupdate the frame info. */
817 /* We know the contents of rB from the previous instruction. */
818 if (fdata->saved_ev == -1 || fdata->saved_ev > ev_reg)
819 {
820 fdata->saved_ev = ev_reg;
821 fdata->ev_offset = vr_saved_offset + offset;
822 }
823 vr_saved_offset = -1;
824 ev_reg = -1;
825 li_found_pc = 0;
826 }
827 continue;
828 }
829 /* Store gen register r31 at (rA+uimm). */
830 /* 000100 11111 aaaaa iiiii 01100100001 */
831 else if (arch_info->mach == bfd_mach_ppc_e500
832 && (op & 0xffe007ff) == 0x13e00321) /* evstdd R31,Ra,UIMM */
833 {
834 /* Wwe know that the source register is 31 already, but
835 it can't hurt to compute it. */
836 ev_reg = GET_SRC_REG (op);
837 ev_offset = ((op >> 11) & 0x1f) * 8;
838 /* If this is the first vector reg to be saved, or if
839 it has a lower number than others previously seen,
840 reupdate the frame info. */
841 if (fdata->saved_ev == -1 || fdata->saved_ev > ev_reg)
842 {
843 fdata->saved_ev = ev_reg;
844 fdata->ev_offset = ev_offset + offset;
845 }
846
847 continue;
848 }
849 /* Store gen register S at (r31+r0).
850 Store param on stack when offset from SP bigger than 4 bytes. */
851 /* 000100 sssss 11111 00000 01100100000 */
852 else if (arch_info->mach == bfd_mach_ppc_e500
853 && (op & 0xfc1fffff) == 0x101f0320) /* evstddx Rs,R31,R0 */
854 {
855 if (pc == (li_found_pc + 4))
856 {
857 if ((op & 0x03e00000) >= 0x01a00000)
858 {
859 ev_reg = GET_SRC_REG (op);
860 /* If this is the first vector reg to be saved, or if
861 it has a lower number than others previously seen,
862 reupdate the frame info. */
863 /* We know the contents of r0 from the previous
864 instruction. */
865 if (fdata->saved_ev == -1 || fdata->saved_ev > ev_reg)
866 {
867 fdata->saved_ev = ev_reg;
868 fdata->ev_offset = vr_saved_offset + offset;
869 }
870 ev_reg = -1;
871 }
872 vr_saved_offset = -1;
873 li_found_pc = 0;
874 continue;
875 }
876 }
877 /* End BookE related instructions. */
878
879 else
880 {
881 /* Not a recognized prologue instruction.
882 Handle optimizer code motions into the prologue by continuing
883 the search if we have no valid frame yet or if the return
884 address is not yet saved in the frame. */
885 if (fdata->frameless == 0
886 && (lr_reg == -1 || fdata->nosavedpc == 0))
887 break;
888
889 if (op == 0x4e800020 /* blr */
890 || op == 0x4e800420) /* bctr */
891 /* Do not scan past epilogue in frameless functions or
892 trampolines. */
893 break;
894 if ((op & 0xf4000000) == 0x40000000) /* bxx */
895 /* Never skip branches. */
896 break;
897
898 if (num_skip_non_prologue_insns++ > max_skip_non_prologue_insns)
899 /* Do not scan too many insns, scanning insns is expensive with
900 remote targets. */
901 break;
902
903 /* Continue scanning. */
904 prev_insn_was_prologue_insn = 0;
905 continue;
906 }
907 }
908
909 #if 0
910 /* I have problems with skipping over __main() that I need to address
911 * sometime. Previously, I used to use misc_function_vector which
912 * didn't work as well as I wanted to be. -MGO */
913
914 /* If the first thing after skipping a prolog is a branch to a function,
915 this might be a call to an initializer in main(), introduced by gcc2.
916 We'd like to skip over it as well. Fortunately, xlc does some extra
917 work before calling a function right after a prologue, thus we can
918 single out such gcc2 behaviour. */
919
920
921 if ((op & 0xfc000001) == 0x48000001)
922 { /* bl foo, an initializer function? */
923 op = read_memory_integer (pc + 4, 4);
924
925 if (op == 0x4def7b82)
926 { /* cror 0xf, 0xf, 0xf (nop) */
927
928 /* Check and see if we are in main. If so, skip over this
929 initializer function as well. */
930
931 tmp = find_pc_misc_function (pc);
932 if (tmp >= 0 && STREQ (misc_function_vector[tmp].name, main_name ()))
933 return pc + 8;
934 }
935 }
936 #endif /* 0 */
937
938 fdata->offset = -fdata->offset;
939 return last_prologue_pc;
940 }
941
942
943 /*************************************************************************
944 Support for creating pushing a dummy frame into the stack, and popping
945 frames, etc.
946 *************************************************************************/
947
948
949 /* Pop the innermost frame, go back to the caller. */
950
951 static void
952 rs6000_pop_frame (void)
953 {
954 CORE_ADDR pc, lr, sp, prev_sp, addr; /* %pc, %lr, %sp */
955 struct rs6000_framedata fdata;
956 struct frame_info *frame = get_current_frame ();
957 int ii, wordsize;
958
959 pc = read_pc ();
960 sp = get_frame_base (frame);
961
962 if (DEPRECATED_PC_IN_CALL_DUMMY (get_frame_pc (frame),
963 get_frame_base (frame),
964 get_frame_base (frame)))
965 {
966 generic_pop_dummy_frame ();
967 flush_cached_frames ();
968 return;
969 }
970
971 /* Make sure that all registers are valid. */
972 deprecated_read_register_bytes (0, NULL, REGISTER_BYTES);
973
974 /* Figure out previous %pc value. If the function is frameless, it is
975 still in the link register, otherwise walk the frames and retrieve the
976 saved %pc value in the previous frame. */
977
978 addr = get_pc_function_start (get_frame_pc (frame));
979 (void) skip_prologue (addr, get_frame_pc (frame), &fdata);
980
981 wordsize = gdbarch_tdep (current_gdbarch)->wordsize;
982 if (fdata.frameless)
983 prev_sp = sp;
984 else
985 prev_sp = read_memory_addr (sp, wordsize);
986 if (fdata.lr_offset == 0)
987 lr = read_register (gdbarch_tdep (current_gdbarch)->ppc_lr_regnum);
988 else
989 lr = read_memory_addr (prev_sp + fdata.lr_offset, wordsize);
990
991 /* reset %pc value. */
992 write_register (PC_REGNUM, lr);
993
994 /* reset register values if any was saved earlier. */
995
996 if (fdata.saved_gpr != -1)
997 {
998 addr = prev_sp + fdata.gpr_offset;
999 for (ii = fdata.saved_gpr; ii <= 31; ++ii)
1000 {
1001 read_memory (addr, &deprecated_registers[REGISTER_BYTE (ii)],
1002 wordsize);
1003 addr += wordsize;
1004 }
1005 }
1006
1007 if (fdata.saved_fpr != -1)
1008 {
1009 addr = prev_sp + fdata.fpr_offset;
1010 for (ii = fdata.saved_fpr; ii <= 31; ++ii)
1011 {
1012 read_memory (addr, &deprecated_registers[REGISTER_BYTE (ii + FP0_REGNUM)], 8);
1013 addr += 8;
1014 }
1015 }
1016
1017 write_register (SP_REGNUM, prev_sp);
1018 target_store_registers (-1);
1019 flush_cached_frames ();
1020 }
1021
1022 /* Fixup the call sequence of a dummy function, with the real function
1023 address. Its arguments will be passed by gdb. */
1024
1025 static void
1026 rs6000_fix_call_dummy (char *dummyname, CORE_ADDR pc, CORE_ADDR fun,
1027 int nargs, struct value **args, struct type *type,
1028 int gcc_p)
1029 {
1030 int ii;
1031 CORE_ADDR target_addr;
1032
1033 if (rs6000_find_toc_address_hook != NULL)
1034 {
1035 CORE_ADDR tocvalue = (*rs6000_find_toc_address_hook) (fun);
1036 write_register (gdbarch_tdep (current_gdbarch)->ppc_toc_regnum,
1037 tocvalue);
1038 }
1039 }
1040
1041 /* All the ABI's require 16 byte alignment. */
1042 static CORE_ADDR
1043 rs6000_frame_align (struct gdbarch *gdbarch, CORE_ADDR addr)
1044 {
1045 return (addr & -16);
1046 }
1047
1048 /* Pass the arguments in either registers, or in the stack. In RS/6000,
1049 the first eight words of the argument list (that might be less than
1050 eight parameters if some parameters occupy more than one word) are
1051 passed in r3..r10 registers. float and double parameters are
1052 passed in fpr's, in addition to that. Rest of the parameters if any
1053 are passed in user stack. There might be cases in which half of the
1054 parameter is copied into registers, the other half is pushed into
1055 stack.
1056
1057 Stack must be aligned on 64-bit boundaries when synthesizing
1058 function calls.
1059
1060 If the function is returning a structure, then the return address is passed
1061 in r3, then the first 7 words of the parameters can be passed in registers,
1062 starting from r4. */
1063
1064 static CORE_ADDR
1065 rs6000_push_arguments (int nargs, struct value **args, CORE_ADDR sp,
1066 int struct_return, CORE_ADDR struct_addr)
1067 {
1068 int ii;
1069 int len = 0;
1070 int argno; /* current argument number */
1071 int argbytes; /* current argument byte */
1072 char tmp_buffer[50];
1073 int f_argno = 0; /* current floating point argno */
1074 int wordsize = gdbarch_tdep (current_gdbarch)->wordsize;
1075
1076 struct value *arg = 0;
1077 struct type *type;
1078
1079 CORE_ADDR saved_sp;
1080
1081 /* The first eight words of ther arguments are passed in registers.
1082 Copy them appropriately.
1083
1084 If the function is returning a `struct', then the first word (which
1085 will be passed in r3) is used for struct return address. In that
1086 case we should advance one word and start from r4 register to copy
1087 parameters. */
1088
1089 ii = struct_return ? 1 : 0;
1090
1091 /*
1092 effectively indirect call... gcc does...
1093
1094 return_val example( float, int);
1095
1096 eabi:
1097 float in fp0, int in r3
1098 offset of stack on overflow 8/16
1099 for varargs, must go by type.
1100 power open:
1101 float in r3&r4, int in r5
1102 offset of stack on overflow different
1103 both:
1104 return in r3 or f0. If no float, must study how gcc emulates floats;
1105 pay attention to arg promotion.
1106 User may have to cast\args to handle promotion correctly
1107 since gdb won't know if prototype supplied or not.
1108 */
1109
1110 for (argno = 0, argbytes = 0; argno < nargs && ii < 8; ++ii)
1111 {
1112 int reg_size = REGISTER_RAW_SIZE (ii + 3);
1113
1114 arg = args[argno];
1115 type = check_typedef (VALUE_TYPE (arg));
1116 len = TYPE_LENGTH (type);
1117
1118 if (TYPE_CODE (type) == TYPE_CODE_FLT)
1119 {
1120
1121 /* Floating point arguments are passed in fpr's, as well as gpr's.
1122 There are 13 fpr's reserved for passing parameters. At this point
1123 there is no way we would run out of them. */
1124
1125 if (len > 8)
1126 printf_unfiltered (
1127 "Fatal Error: a floating point parameter #%d with a size > 8 is found!\n", argno);
1128
1129 memcpy (&deprecated_registers[REGISTER_BYTE (FP0_REGNUM + 1 + f_argno)],
1130 VALUE_CONTENTS (arg),
1131 len);
1132 ++f_argno;
1133 }
1134
1135 if (len > reg_size)
1136 {
1137
1138 /* Argument takes more than one register. */
1139 while (argbytes < len)
1140 {
1141 memset (&deprecated_registers[REGISTER_BYTE (ii + 3)], 0,
1142 reg_size);
1143 memcpy (&deprecated_registers[REGISTER_BYTE (ii + 3)],
1144 ((char *) VALUE_CONTENTS (arg)) + argbytes,
1145 (len - argbytes) > reg_size
1146 ? reg_size : len - argbytes);
1147 ++ii, argbytes += reg_size;
1148
1149 if (ii >= 8)
1150 goto ran_out_of_registers_for_arguments;
1151 }
1152 argbytes = 0;
1153 --ii;
1154 }
1155 else
1156 {
1157 /* Argument can fit in one register. No problem. */
1158 int adj = TARGET_BYTE_ORDER == BFD_ENDIAN_BIG ? reg_size - len : 0;
1159 memset (&deprecated_registers[REGISTER_BYTE (ii + 3)], 0, reg_size);
1160 memcpy ((char *)&deprecated_registers[REGISTER_BYTE (ii + 3)] + adj,
1161 VALUE_CONTENTS (arg), len);
1162 }
1163 ++argno;
1164 }
1165
1166 ran_out_of_registers_for_arguments:
1167
1168 saved_sp = read_sp ();
1169
1170 /* Location for 8 parameters are always reserved. */
1171 sp -= wordsize * 8;
1172
1173 /* Another six words for back chain, TOC register, link register, etc. */
1174 sp -= wordsize * 6;
1175
1176 /* Stack pointer must be quadword aligned. */
1177 sp &= -16;
1178
1179 /* If there are more arguments, allocate space for them in
1180 the stack, then push them starting from the ninth one. */
1181
1182 if ((argno < nargs) || argbytes)
1183 {
1184 int space = 0, jj;
1185
1186 if (argbytes)
1187 {
1188 space += ((len - argbytes + 3) & -4);
1189 jj = argno + 1;
1190 }
1191 else
1192 jj = argno;
1193
1194 for (; jj < nargs; ++jj)
1195 {
1196 struct value *val = args[jj];
1197 space += ((TYPE_LENGTH (VALUE_TYPE (val))) + 3) & -4;
1198 }
1199
1200 /* Add location required for the rest of the parameters. */
1201 space = (space + 15) & -16;
1202 sp -= space;
1203
1204 /* This is another instance we need to be concerned about
1205 securing our stack space. If we write anything underneath %sp
1206 (r1), we might conflict with the kernel who thinks he is free
1207 to use this area. So, update %sp first before doing anything
1208 else. */
1209
1210 write_register (SP_REGNUM, sp);
1211
1212 /* If the last argument copied into the registers didn't fit there
1213 completely, push the rest of it into stack. */
1214
1215 if (argbytes)
1216 {
1217 write_memory (sp + 24 + (ii * 4),
1218 ((char *) VALUE_CONTENTS (arg)) + argbytes,
1219 len - argbytes);
1220 ++argno;
1221 ii += ((len - argbytes + 3) & -4) / 4;
1222 }
1223
1224 /* Push the rest of the arguments into stack. */
1225 for (; argno < nargs; ++argno)
1226 {
1227
1228 arg = args[argno];
1229 type = check_typedef (VALUE_TYPE (arg));
1230 len = TYPE_LENGTH (type);
1231
1232
1233 /* Float types should be passed in fpr's, as well as in the
1234 stack. */
1235 if (TYPE_CODE (type) == TYPE_CODE_FLT && f_argno < 13)
1236 {
1237
1238 if (len > 8)
1239 printf_unfiltered (
1240 "Fatal Error: a floating point parameter #%d with a size > 8 is found!\n", argno);
1241
1242 memcpy (&deprecated_registers[REGISTER_BYTE (FP0_REGNUM + 1 + f_argno)],
1243 VALUE_CONTENTS (arg),
1244 len);
1245 ++f_argno;
1246 }
1247
1248 write_memory (sp + 24 + (ii * 4), (char *) VALUE_CONTENTS (arg), len);
1249 ii += ((len + 3) & -4) / 4;
1250 }
1251 }
1252 else
1253 /* Secure stack areas first, before doing anything else. */
1254 write_register (SP_REGNUM, sp);
1255
1256 /* set back chain properly */
1257 store_address (tmp_buffer, 4, saved_sp);
1258 write_memory (sp, tmp_buffer, 4);
1259
1260 target_store_registers (-1);
1261 return sp;
1262 }
1263
1264 /* Function: ppc_push_return_address (pc, sp)
1265 Set up the return address for the inferior function call. */
1266
1267 static CORE_ADDR
1268 ppc_push_return_address (CORE_ADDR pc, CORE_ADDR sp)
1269 {
1270 write_register (gdbarch_tdep (current_gdbarch)->ppc_lr_regnum,
1271 CALL_DUMMY_ADDRESS ());
1272 return sp;
1273 }
1274
1275 /* Extract a function return value of type TYPE from raw register array
1276 REGBUF, and copy that return value into VALBUF in virtual format. */
1277 static void
1278 e500_extract_return_value (struct type *valtype, struct regcache *regbuf, void *valbuf)
1279 {
1280 int offset = 0;
1281 int vallen = TYPE_LENGTH (valtype);
1282 struct gdbarch_tdep *tdep = gdbarch_tdep (current_gdbarch);
1283
1284 if (TYPE_CODE (valtype) == TYPE_CODE_ARRAY
1285 && vallen == 8
1286 && TYPE_VECTOR (valtype))
1287 {
1288 regcache_raw_read (regbuf, tdep->ppc_ev0_regnum + 3, valbuf);
1289 }
1290 else
1291 {
1292 /* Return value is copied starting from r3. Note that r3 for us
1293 is a pseudo register. */
1294 int offset = 0;
1295 int return_regnum = tdep->ppc_gp0_regnum + 3;
1296 int reg_size = REGISTER_RAW_SIZE (return_regnum);
1297 int reg_part_size;
1298 char *val_buffer;
1299 int copied = 0;
1300 int i = 0;
1301
1302 /* Compute where we will start storing the value from. */
1303 if (TARGET_BYTE_ORDER == BFD_ENDIAN_BIG)
1304 {
1305 if (vallen <= reg_size)
1306 offset = reg_size - vallen;
1307 else
1308 offset = reg_size + (reg_size - vallen);
1309 }
1310
1311 /* How big does the local buffer need to be? */
1312 if (vallen <= reg_size)
1313 val_buffer = alloca (reg_size);
1314 else
1315 val_buffer = alloca (vallen);
1316
1317 /* Read all we need into our private buffer. We copy it in
1318 chunks that are as long as one register, never shorter, even
1319 if the value is smaller than the register. */
1320 while (copied < vallen)
1321 {
1322 reg_part_size = REGISTER_RAW_SIZE (return_regnum + i);
1323 /* It is a pseudo/cooked register. */
1324 regcache_cooked_read (regbuf, return_regnum + i,
1325 val_buffer + copied);
1326 copied += reg_part_size;
1327 i++;
1328 }
1329 /* Put the stuff in the return buffer. */
1330 memcpy (valbuf, val_buffer + offset, vallen);
1331 }
1332 }
1333
1334 static void
1335 rs6000_extract_return_value (struct type *valtype, char *regbuf, char *valbuf)
1336 {
1337 int offset = 0;
1338 struct gdbarch_tdep *tdep = gdbarch_tdep (current_gdbarch);
1339
1340 if (TYPE_CODE (valtype) == TYPE_CODE_FLT)
1341 {
1342
1343 double dd;
1344 float ff;
1345 /* floats and doubles are returned in fpr1. fpr's have a size of 8 bytes.
1346 We need to truncate the return value into float size (4 byte) if
1347 necessary. */
1348
1349 if (TYPE_LENGTH (valtype) > 4) /* this is a double */
1350 memcpy (valbuf,
1351 &regbuf[REGISTER_BYTE (FP0_REGNUM + 1)],
1352 TYPE_LENGTH (valtype));
1353 else
1354 { /* float */
1355 memcpy (&dd, &regbuf[REGISTER_BYTE (FP0_REGNUM + 1)], 8);
1356 ff = (float) dd;
1357 memcpy (valbuf, &ff, sizeof (float));
1358 }
1359 }
1360 else if (TYPE_CODE (valtype) == TYPE_CODE_ARRAY
1361 && TYPE_LENGTH (valtype) == 16
1362 && TYPE_VECTOR (valtype))
1363 {
1364 memcpy (valbuf, regbuf + REGISTER_BYTE (tdep->ppc_vr0_regnum + 2),
1365 TYPE_LENGTH (valtype));
1366 }
1367 else
1368 {
1369 /* return value is copied starting from r3. */
1370 if (TARGET_BYTE_ORDER == BFD_ENDIAN_BIG
1371 && TYPE_LENGTH (valtype) < REGISTER_RAW_SIZE (3))
1372 offset = REGISTER_RAW_SIZE (3) - TYPE_LENGTH (valtype);
1373
1374 memcpy (valbuf,
1375 regbuf + REGISTER_BYTE (3) + offset,
1376 TYPE_LENGTH (valtype));
1377 }
1378 }
1379
1380 /* Return whether handle_inferior_event() should proceed through code
1381 starting at PC in function NAME when stepping.
1382
1383 The AIX -bbigtoc linker option generates functions @FIX0, @FIX1, etc. to
1384 handle memory references that are too distant to fit in instructions
1385 generated by the compiler. For example, if 'foo' in the following
1386 instruction:
1387
1388 lwz r9,foo(r2)
1389
1390 is greater than 32767, the linker might replace the lwz with a branch to
1391 somewhere in @FIX1 that does the load in 2 instructions and then branches
1392 back to where execution should continue.
1393
1394 GDB should silently step over @FIX code, just like AIX dbx does.
1395 Unfortunately, the linker uses the "b" instruction for the branches,
1396 meaning that the link register doesn't get set. Therefore, GDB's usual
1397 step_over_function() mechanism won't work.
1398
1399 Instead, use the IN_SOLIB_RETURN_TRAMPOLINE and SKIP_TRAMPOLINE_CODE hooks
1400 in handle_inferior_event() to skip past @FIX code. */
1401
1402 int
1403 rs6000_in_solib_return_trampoline (CORE_ADDR pc, char *name)
1404 {
1405 return name && !strncmp (name, "@FIX", 4);
1406 }
1407
1408 /* Skip code that the user doesn't want to see when stepping:
1409
1410 1. Indirect function calls use a piece of trampoline code to do context
1411 switching, i.e. to set the new TOC table. Skip such code if we are on
1412 its first instruction (as when we have single-stepped to here).
1413
1414 2. Skip shared library trampoline code (which is different from
1415 indirect function call trampolines).
1416
1417 3. Skip bigtoc fixup code.
1418
1419 Result is desired PC to step until, or NULL if we are not in
1420 code that should be skipped. */
1421
1422 CORE_ADDR
1423 rs6000_skip_trampoline_code (CORE_ADDR pc)
1424 {
1425 register unsigned int ii, op;
1426 int rel;
1427 CORE_ADDR solib_target_pc;
1428 struct minimal_symbol *msymbol;
1429
1430 static unsigned trampoline_code[] =
1431 {
1432 0x800b0000, /* l r0,0x0(r11) */
1433 0x90410014, /* st r2,0x14(r1) */
1434 0x7c0903a6, /* mtctr r0 */
1435 0x804b0004, /* l r2,0x4(r11) */
1436 0x816b0008, /* l r11,0x8(r11) */
1437 0x4e800420, /* bctr */
1438 0x4e800020, /* br */
1439 0
1440 };
1441
1442 /* Check for bigtoc fixup code. */
1443 msymbol = lookup_minimal_symbol_by_pc (pc);
1444 if (msymbol && rs6000_in_solib_return_trampoline (pc, SYMBOL_NAME (msymbol)))
1445 {
1446 /* Double-check that the third instruction from PC is relative "b". */
1447 op = read_memory_integer (pc + 8, 4);
1448 if ((op & 0xfc000003) == 0x48000000)
1449 {
1450 /* Extract bits 6-29 as a signed 24-bit relative word address and
1451 add it to the containing PC. */
1452 rel = ((int)(op << 6) >> 6);
1453 return pc + 8 + rel;
1454 }
1455 }
1456
1457 /* If pc is in a shared library trampoline, return its target. */
1458 solib_target_pc = find_solib_trampoline_target (pc);
1459 if (solib_target_pc)
1460 return solib_target_pc;
1461
1462 for (ii = 0; trampoline_code[ii]; ++ii)
1463 {
1464 op = read_memory_integer (pc + (ii * 4), 4);
1465 if (op != trampoline_code[ii])
1466 return 0;
1467 }
1468 ii = read_register (11); /* r11 holds destination addr */
1469 pc = read_memory_addr (ii, gdbarch_tdep (current_gdbarch)->wordsize); /* (r11) value */
1470 return pc;
1471 }
1472
1473 /* Determines whether the function FI has a frame on the stack or not. */
1474
1475 int
1476 rs6000_frameless_function_invocation (struct frame_info *fi)
1477 {
1478 CORE_ADDR func_start;
1479 struct rs6000_framedata fdata;
1480
1481 /* Don't even think about framelessness except on the innermost frame
1482 or if the function was interrupted by a signal. */
1483 if (get_next_frame (fi) != NULL
1484 && !(get_frame_type (get_next_frame (fi)) == SIGTRAMP_FRAME))
1485 return 0;
1486
1487 func_start = get_pc_function_start (get_frame_pc (fi));
1488
1489 /* If we failed to find the start of the function, it is a mistake
1490 to inspect the instructions. */
1491
1492 if (!func_start)
1493 {
1494 /* A frame with a zero PC is usually created by dereferencing a NULL
1495 function pointer, normally causing an immediate core dump of the
1496 inferior. Mark function as frameless, as the inferior has no chance
1497 of setting up a stack frame. */
1498 if (get_frame_pc (fi) == 0)
1499 return 1;
1500 else
1501 return 0;
1502 }
1503
1504 (void) skip_prologue (func_start, get_frame_pc (fi), &fdata);
1505 return fdata.frameless;
1506 }
1507
1508 /* Return the PC saved in a frame. */
1509
1510 CORE_ADDR
1511 rs6000_frame_saved_pc (struct frame_info *fi)
1512 {
1513 CORE_ADDR func_start;
1514 struct rs6000_framedata fdata;
1515 struct gdbarch_tdep *tdep = gdbarch_tdep (current_gdbarch);
1516 int wordsize = tdep->wordsize;
1517
1518 if ((get_frame_type (fi) == SIGTRAMP_FRAME))
1519 return read_memory_addr (get_frame_base (fi) + SIG_FRAME_PC_OFFSET,
1520 wordsize);
1521
1522 if (DEPRECATED_PC_IN_CALL_DUMMY (get_frame_pc (fi),
1523 get_frame_base (fi),
1524 get_frame_base (fi)))
1525 return deprecated_read_register_dummy (get_frame_pc (fi),
1526 get_frame_base (fi), PC_REGNUM);
1527
1528 func_start = get_pc_function_start (get_frame_pc (fi));
1529
1530 /* If we failed to find the start of the function, it is a mistake
1531 to inspect the instructions. */
1532 if (!func_start)
1533 return 0;
1534
1535 (void) skip_prologue (func_start, get_frame_pc (fi), &fdata);
1536
1537 if (fdata.lr_offset == 0 && get_next_frame (fi) != NULL)
1538 {
1539 if ((get_frame_type (get_next_frame (fi)) == SIGTRAMP_FRAME))
1540 return read_memory_addr ((get_frame_base (get_next_frame (fi))
1541 + SIG_FRAME_LR_OFFSET),
1542 wordsize);
1543 else if (DEPRECATED_PC_IN_CALL_DUMMY (get_frame_pc (get_next_frame (fi)), 0, 0))
1544 /* The link register wasn't saved by this frame and the next
1545 (inner, newer) frame is a dummy. Get the link register
1546 value by unwinding it from that [dummy] frame. */
1547 {
1548 ULONGEST lr;
1549 frame_unwind_unsigned_register (get_next_frame (fi),
1550 tdep->ppc_lr_regnum, &lr);
1551 return lr;
1552 }
1553 else
1554 return read_memory_addr (FRAME_CHAIN (fi) + tdep->lr_frame_offset,
1555 wordsize);
1556 }
1557
1558 if (fdata.lr_offset == 0)
1559 return read_register (gdbarch_tdep (current_gdbarch)->ppc_lr_regnum);
1560
1561 return read_memory_addr (FRAME_CHAIN (fi) + fdata.lr_offset, wordsize);
1562 }
1563
1564 /* If saved registers of frame FI are not known yet, read and cache them.
1565 &FDATAP contains rs6000_framedata; TDATAP can be NULL,
1566 in which case the framedata are read. */
1567
1568 static void
1569 frame_get_saved_regs (struct frame_info *fi, struct rs6000_framedata *fdatap)
1570 {
1571 CORE_ADDR frame_addr;
1572 struct rs6000_framedata work_fdata;
1573 struct gdbarch_tdep * tdep = gdbarch_tdep (current_gdbarch);
1574 int wordsize = tdep->wordsize;
1575
1576 if (get_frame_saved_regs (fi))
1577 return;
1578
1579 if (fdatap == NULL)
1580 {
1581 fdatap = &work_fdata;
1582 (void) skip_prologue (get_pc_function_start (get_frame_pc (fi)),
1583 get_frame_pc (fi), fdatap);
1584 }
1585
1586 frame_saved_regs_zalloc (fi);
1587
1588 /* If there were any saved registers, figure out parent's stack
1589 pointer. */
1590 /* The following is true only if the frame doesn't have a call to
1591 alloca(), FIXME. */
1592
1593 if (fdatap->saved_fpr == 0
1594 && fdatap->saved_gpr == 0
1595 && fdatap->saved_vr == 0
1596 && fdatap->saved_ev == 0
1597 && fdatap->lr_offset == 0
1598 && fdatap->cr_offset == 0
1599 && fdatap->vr_offset == 0
1600 && fdatap->ev_offset == 0)
1601 frame_addr = 0;
1602 else
1603 /* NOTE: cagney/2002-04-14: The ->frame points to the inner-most
1604 address of the current frame. Things might be easier if the
1605 ->frame pointed to the outer-most address of the frame. In the
1606 mean time, the address of the prev frame is used as the base
1607 address of this frame. */
1608 frame_addr = FRAME_CHAIN (fi);
1609
1610 /* if != -1, fdatap->saved_fpr is the smallest number of saved_fpr.
1611 All fpr's from saved_fpr to fp31 are saved. */
1612
1613 if (fdatap->saved_fpr >= 0)
1614 {
1615 int i;
1616 CORE_ADDR fpr_addr = frame_addr + fdatap->fpr_offset;
1617 for (i = fdatap->saved_fpr; i < 32; i++)
1618 {
1619 get_frame_saved_regs (fi)[FP0_REGNUM + i] = fpr_addr;
1620 fpr_addr += 8;
1621 }
1622 }
1623
1624 /* if != -1, fdatap->saved_gpr is the smallest number of saved_gpr.
1625 All gpr's from saved_gpr to gpr31 are saved. */
1626
1627 if (fdatap->saved_gpr >= 0)
1628 {
1629 int i;
1630 CORE_ADDR gpr_addr = frame_addr + fdatap->gpr_offset;
1631 for (i = fdatap->saved_gpr; i < 32; i++)
1632 {
1633 get_frame_saved_regs (fi)[i] = gpr_addr;
1634 gpr_addr += wordsize;
1635 }
1636 }
1637
1638 /* if != -1, fdatap->saved_vr is the smallest number of saved_vr.
1639 All vr's from saved_vr to vr31 are saved. */
1640 if (tdep->ppc_vr0_regnum != -1 && tdep->ppc_vrsave_regnum != -1)
1641 {
1642 if (fdatap->saved_vr >= 0)
1643 {
1644 int i;
1645 CORE_ADDR vr_addr = frame_addr + fdatap->vr_offset;
1646 for (i = fdatap->saved_vr; i < 32; i++)
1647 {
1648 get_frame_saved_regs (fi)[tdep->ppc_vr0_regnum + i] = vr_addr;
1649 vr_addr += REGISTER_RAW_SIZE (tdep->ppc_vr0_regnum);
1650 }
1651 }
1652 }
1653
1654 /* if != -1, fdatap->saved_ev is the smallest number of saved_ev.
1655 All vr's from saved_ev to ev31 are saved. ????? */
1656 if (tdep->ppc_ev0_regnum != -1 && tdep->ppc_ev31_regnum != -1)
1657 {
1658 if (fdatap->saved_ev >= 0)
1659 {
1660 int i;
1661 CORE_ADDR ev_addr = frame_addr + fdatap->ev_offset;
1662 for (i = fdatap->saved_ev; i < 32; i++)
1663 {
1664 get_frame_saved_regs (fi)[tdep->ppc_ev0_regnum + i] = ev_addr;
1665 get_frame_saved_regs (fi)[tdep->ppc_gp0_regnum + i] = ev_addr + 4;
1666 ev_addr += REGISTER_RAW_SIZE (tdep->ppc_ev0_regnum);
1667 }
1668 }
1669 }
1670
1671 /* If != 0, fdatap->cr_offset is the offset from the frame that holds
1672 the CR. */
1673 if (fdatap->cr_offset != 0)
1674 get_frame_saved_regs (fi)[tdep->ppc_cr_regnum] = frame_addr + fdatap->cr_offset;
1675
1676 /* If != 0, fdatap->lr_offset is the offset from the frame that holds
1677 the LR. */
1678 if (fdatap->lr_offset != 0)
1679 get_frame_saved_regs (fi)[tdep->ppc_lr_regnum] = frame_addr + fdatap->lr_offset;
1680
1681 /* If != 0, fdatap->vrsave_offset is the offset from the frame that holds
1682 the VRSAVE. */
1683 if (fdatap->vrsave_offset != 0)
1684 get_frame_saved_regs (fi)[tdep->ppc_vrsave_regnum] = frame_addr + fdatap->vrsave_offset;
1685 }
1686
1687 /* Return the address of a frame. This is the inital %sp value when the frame
1688 was first allocated. For functions calling alloca(), it might be saved in
1689 an alloca register. */
1690
1691 static CORE_ADDR
1692 frame_initial_stack_address (struct frame_info *fi)
1693 {
1694 CORE_ADDR tmpaddr;
1695 struct rs6000_framedata fdata;
1696 struct frame_info *callee_fi;
1697
1698 /* If the initial stack pointer (frame address) of this frame is known,
1699 just return it. */
1700
1701 if (get_frame_extra_info (fi)->initial_sp)
1702 return get_frame_extra_info (fi)->initial_sp;
1703
1704 /* Find out if this function is using an alloca register. */
1705
1706 (void) skip_prologue (get_pc_function_start (get_frame_pc (fi)),
1707 get_frame_pc (fi), &fdata);
1708
1709 /* If saved registers of this frame are not known yet, read and
1710 cache them. */
1711
1712 if (!get_frame_saved_regs (fi))
1713 frame_get_saved_regs (fi, &fdata);
1714
1715 /* If no alloca register used, then fi->frame is the value of the %sp for
1716 this frame, and it is good enough. */
1717
1718 if (fdata.alloca_reg < 0)
1719 {
1720 get_frame_extra_info (fi)->initial_sp = get_frame_base (fi);
1721 return get_frame_extra_info (fi)->initial_sp;
1722 }
1723
1724 /* There is an alloca register, use its value, in the current frame,
1725 as the initial stack pointer. */
1726 {
1727 char *tmpbuf = alloca (MAX_REGISTER_RAW_SIZE);
1728 if (frame_register_read (fi, fdata.alloca_reg, tmpbuf))
1729 {
1730 get_frame_extra_info (fi)->initial_sp
1731 = extract_unsigned_integer (tmpbuf,
1732 REGISTER_RAW_SIZE (fdata.alloca_reg));
1733 }
1734 else
1735 /* NOTE: cagney/2002-04-17: At present the only time
1736 frame_register_read will fail is when the register isn't
1737 available. If that does happen, use the frame. */
1738 get_frame_extra_info (fi)->initial_sp = get_frame_base (fi);
1739 }
1740 return get_frame_extra_info (fi)->initial_sp;
1741 }
1742
1743 /* Describe the pointer in each stack frame to the previous stack frame
1744 (its caller). */
1745
1746 /* FRAME_CHAIN takes a frame's nominal address
1747 and produces the frame's chain-pointer. */
1748
1749 /* In the case of the RS/6000, the frame's nominal address
1750 is the address of a 4-byte word containing the calling frame's address. */
1751
1752 CORE_ADDR
1753 rs6000_frame_chain (struct frame_info *thisframe)
1754 {
1755 CORE_ADDR fp, fpp, lr;
1756 int wordsize = gdbarch_tdep (current_gdbarch)->wordsize;
1757
1758 if (DEPRECATED_PC_IN_CALL_DUMMY (get_frame_pc (thisframe),
1759 get_frame_base (thisframe),
1760 get_frame_base (thisframe)))
1761 /* A dummy frame always correctly chains back to the previous
1762 frame. */
1763 return read_memory_addr (get_frame_base (thisframe), wordsize);
1764
1765 if (inside_entry_file (get_frame_pc (thisframe))
1766 || get_frame_pc (thisframe) == entry_point_address ())
1767 return 0;
1768
1769 if ((get_frame_type (thisframe) == SIGTRAMP_FRAME))
1770 fp = read_memory_addr (get_frame_base (thisframe) + SIG_FRAME_FP_OFFSET,
1771 wordsize);
1772 else if (get_next_frame (thisframe) != NULL
1773 && (get_frame_type (get_next_frame (thisframe)) == SIGTRAMP_FRAME)
1774 && FRAMELESS_FUNCTION_INVOCATION (thisframe))
1775 /* A frameless function interrupted by a signal did not change the
1776 frame pointer. */
1777 fp = get_frame_base (thisframe);
1778 else
1779 fp = read_memory_addr (get_frame_base (thisframe), wordsize);
1780 return fp;
1781 }
1782
1783 /* Return the size of register REG when words are WORDSIZE bytes long. If REG
1784 isn't available with that word size, return 0. */
1785
1786 static int
1787 regsize (const struct reg *reg, int wordsize)
1788 {
1789 return wordsize == 8 ? reg->sz64 : reg->sz32;
1790 }
1791
1792 /* Return the name of register number N, or null if no such register exists
1793 in the current architecture. */
1794
1795 static const char *
1796 rs6000_register_name (int n)
1797 {
1798 struct gdbarch_tdep *tdep = gdbarch_tdep (current_gdbarch);
1799 const struct reg *reg = tdep->regs + n;
1800
1801 if (!regsize (reg, tdep->wordsize))
1802 return NULL;
1803 return reg->name;
1804 }
1805
1806 /* Index within `registers' of the first byte of the space for
1807 register N. */
1808
1809 static int
1810 rs6000_register_byte (int n)
1811 {
1812 return gdbarch_tdep (current_gdbarch)->regoff[n];
1813 }
1814
1815 /* Return the number of bytes of storage in the actual machine representation
1816 for register N if that register is available, else return 0. */
1817
1818 static int
1819 rs6000_register_raw_size (int n)
1820 {
1821 struct gdbarch_tdep *tdep = gdbarch_tdep (current_gdbarch);
1822 const struct reg *reg = tdep->regs + n;
1823 return regsize (reg, tdep->wordsize);
1824 }
1825
1826 /* Return the GDB type object for the "standard" data type
1827 of data in register N. */
1828
1829 static struct type *
1830 rs6000_register_virtual_type (int n)
1831 {
1832 struct gdbarch_tdep *tdep = gdbarch_tdep (current_gdbarch);
1833 const struct reg *reg = tdep->regs + n;
1834
1835 if (reg->fpr)
1836 return builtin_type_double;
1837 else
1838 {
1839 int size = regsize (reg, tdep->wordsize);
1840 switch (size)
1841 {
1842 case 8:
1843 if (tdep->ppc_ev0_regnum <= n && n <= tdep->ppc_ev31_regnum)
1844 return builtin_type_vec64;
1845 else
1846 return builtin_type_int64;
1847 break;
1848 case 16:
1849 return builtin_type_vec128;
1850 break;
1851 default:
1852 return builtin_type_int32;
1853 break;
1854 }
1855 }
1856 }
1857
1858 /* Return whether register N requires conversion when moving from raw format
1859 to virtual format.
1860
1861 The register format for RS/6000 floating point registers is always
1862 double, we need a conversion if the memory format is float. */
1863
1864 static int
1865 rs6000_register_convertible (int n)
1866 {
1867 const struct reg *reg = gdbarch_tdep (current_gdbarch)->regs + n;
1868 return reg->fpr;
1869 }
1870
1871 /* Convert data from raw format for register N in buffer FROM
1872 to virtual format with type TYPE in buffer TO. */
1873
1874 static void
1875 rs6000_register_convert_to_virtual (int n, struct type *type,
1876 char *from, char *to)
1877 {
1878 if (TYPE_LENGTH (type) != REGISTER_RAW_SIZE (n))
1879 {
1880 double val = extract_floating (from, REGISTER_RAW_SIZE (n));
1881 store_floating (to, TYPE_LENGTH (type), val);
1882 }
1883 else
1884 memcpy (to, from, REGISTER_RAW_SIZE (n));
1885 }
1886
1887 /* Convert data from virtual format with type TYPE in buffer FROM
1888 to raw format for register N in buffer TO. */
1889
1890 static void
1891 rs6000_register_convert_to_raw (struct type *type, int n,
1892 char *from, char *to)
1893 {
1894 if (TYPE_LENGTH (type) != REGISTER_RAW_SIZE (n))
1895 {
1896 double val = extract_floating (from, TYPE_LENGTH (type));
1897 store_floating (to, REGISTER_RAW_SIZE (n), val);
1898 }
1899 else
1900 memcpy (to, from, REGISTER_RAW_SIZE (n));
1901 }
1902
1903 static void
1904 e500_pseudo_register_read (struct gdbarch *gdbarch, struct regcache *regcache,
1905 int reg_nr, void *buffer)
1906 {
1907 int base_regnum;
1908 int offset = 0;
1909 char *temp_buffer = (char*) alloca (MAX_REGISTER_RAW_SIZE);
1910 struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch);
1911
1912 if (reg_nr >= tdep->ppc_gp0_regnum
1913 && reg_nr <= tdep->ppc_gplast_regnum)
1914 {
1915 base_regnum = reg_nr - tdep->ppc_gp0_regnum + tdep->ppc_ev0_regnum;
1916
1917 /* Build the value in the provided buffer. */
1918 /* Read the raw register of which this one is the lower portion. */
1919 regcache_raw_read (regcache, base_regnum, temp_buffer);
1920 if (TARGET_BYTE_ORDER == BFD_ENDIAN_BIG)
1921 offset = 4;
1922 memcpy ((char *) buffer, temp_buffer + offset, 4);
1923 }
1924 }
1925
1926 static void
1927 e500_pseudo_register_write (struct gdbarch *gdbarch, struct regcache *regcache,
1928 int reg_nr, const void *buffer)
1929 {
1930 int base_regnum;
1931 int offset = 0;
1932 char *temp_buffer = (char*) alloca (MAX_REGISTER_RAW_SIZE);
1933 struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch);
1934
1935 if (reg_nr >= tdep->ppc_gp0_regnum
1936 && reg_nr <= tdep->ppc_gplast_regnum)
1937 {
1938 base_regnum = reg_nr - tdep->ppc_gp0_regnum + tdep->ppc_ev0_regnum;
1939 /* reg_nr is 32 bit here, and base_regnum is 64 bits. */
1940 if (TARGET_BYTE_ORDER == BFD_ENDIAN_BIG)
1941 offset = 4;
1942
1943 /* Let's read the value of the base register into a temporary
1944 buffer, so that overwriting the last four bytes with the new
1945 value of the pseudo will leave the upper 4 bytes unchanged. */
1946 regcache_raw_read (regcache, base_regnum, temp_buffer);
1947
1948 /* Write as an 8 byte quantity. */
1949 memcpy (temp_buffer + offset, (char *) buffer, 4);
1950 regcache_raw_write (regcache, base_regnum, temp_buffer);
1951 }
1952 }
1953
1954 /* Convert a dwarf2 register number to a gdb REGNUM. */
1955 static int
1956 e500_dwarf2_reg_to_regnum (int num)
1957 {
1958 int regnum;
1959 if (0 <= num && num <= 31)
1960 return num + gdbarch_tdep (current_gdbarch)->ppc_gp0_regnum;
1961 else
1962 return num;
1963 }
1964
1965 /* Convert a dbx stab register number (from `r' declaration) to a gdb
1966 REGNUM. */
1967 static int
1968 rs6000_stab_reg_to_regnum (int num)
1969 {
1970 int regnum;
1971 switch (num)
1972 {
1973 case 64:
1974 regnum = gdbarch_tdep (current_gdbarch)->ppc_mq_regnum;
1975 break;
1976 case 65:
1977 regnum = gdbarch_tdep (current_gdbarch)->ppc_lr_regnum;
1978 break;
1979 case 66:
1980 regnum = gdbarch_tdep (current_gdbarch)->ppc_ctr_regnum;
1981 break;
1982 case 76:
1983 regnum = gdbarch_tdep (current_gdbarch)->ppc_xer_regnum;
1984 break;
1985 default:
1986 regnum = num;
1987 break;
1988 }
1989 return regnum;
1990 }
1991
1992 /* Store the address of the place in which to copy the structure the
1993 subroutine will return. */
1994
1995 static void
1996 rs6000_store_struct_return (CORE_ADDR addr, CORE_ADDR sp)
1997 {
1998 struct gdbarch_tdep *tdep = gdbarch_tdep (current_gdbarch);
1999 write_register (tdep->ppc_gp0_regnum + 3, addr);
2000 }
2001
2002 /* Write into appropriate registers a function return value
2003 of type TYPE, given in virtual format. */
2004 static void
2005 e500_store_return_value (struct type *type, char *valbuf)
2006 {
2007 struct gdbarch_tdep *tdep = gdbarch_tdep (current_gdbarch);
2008
2009 /* Everything is returned in GPR3 and up. */
2010 int copied = 0;
2011 int i = 0;
2012 int len = TYPE_LENGTH (type);
2013 while (copied < len)
2014 {
2015 int regnum = gdbarch_tdep (current_gdbarch)->ppc_gp0_regnum + 3 + i;
2016 int reg_size = REGISTER_RAW_SIZE (regnum);
2017 char *reg_val_buf = alloca (reg_size);
2018
2019 memcpy (reg_val_buf, valbuf + copied, reg_size);
2020 copied += reg_size;
2021 deprecated_write_register_gen (regnum, reg_val_buf);
2022 i++;
2023 }
2024 }
2025
2026 static void
2027 rs6000_store_return_value (struct type *type, char *valbuf)
2028 {
2029 struct gdbarch_tdep *tdep = gdbarch_tdep (current_gdbarch);
2030
2031 if (TYPE_CODE (type) == TYPE_CODE_FLT)
2032
2033 /* Floating point values are returned starting from FPR1 and up.
2034 Say a double_double_double type could be returned in
2035 FPR1/FPR2/FPR3 triple. */
2036
2037 deprecated_write_register_bytes (REGISTER_BYTE (FP0_REGNUM + 1), valbuf,
2038 TYPE_LENGTH (type));
2039 else if (TYPE_CODE (type) == TYPE_CODE_ARRAY)
2040 {
2041 if (TYPE_LENGTH (type) == 16
2042 && TYPE_VECTOR (type))
2043 deprecated_write_register_bytes (REGISTER_BYTE (tdep->ppc_vr0_regnum + 2),
2044 valbuf, TYPE_LENGTH (type));
2045 }
2046 else
2047 /* Everything else is returned in GPR3 and up. */
2048 deprecated_write_register_bytes (REGISTER_BYTE (gdbarch_tdep (current_gdbarch)->ppc_gp0_regnum + 3),
2049 valbuf, TYPE_LENGTH (type));
2050 }
2051
2052 /* Extract from an array REGBUF containing the (raw) register state
2053 the address in which a function should return its structure value,
2054 as a CORE_ADDR (or an expression that can be used as one). */
2055
2056 static CORE_ADDR
2057 rs6000_extract_struct_value_address (struct regcache *regcache)
2058 {
2059 /* FIXME: cagney/2002-09-26: PR gdb/724: When making an inferior
2060 function call GDB knows the address of the struct return value
2061 and hence, should not need to call this function. Unfortunately,
2062 the current hand_function_call() code only saves the most recent
2063 struct address leading to occasional calls. The code should
2064 instead maintain a stack of such addresses (in the dummy frame
2065 object). */
2066 /* NOTE: cagney/2002-09-26: Return 0 which indicates that we've
2067 really got no idea where the return value is being stored. While
2068 r3, on function entry, contained the address it will have since
2069 been reused (scratch) and hence wouldn't be valid */
2070 return 0;
2071 }
2072
2073 /* Return whether PC is in a dummy function call.
2074
2075 FIXME: This just checks for the end of the stack, which is broken
2076 for things like stepping through gcc nested function stubs. */
2077
2078 static int
2079 rs6000_pc_in_call_dummy (CORE_ADDR pc, CORE_ADDR sp, CORE_ADDR fp)
2080 {
2081 return sp < pc && pc < fp;
2082 }
2083
2084 /* Hook called when a new child process is started. */
2085
2086 void
2087 rs6000_create_inferior (int pid)
2088 {
2089 if (rs6000_set_host_arch_hook)
2090 rs6000_set_host_arch_hook (pid);
2091 }
2092 \f
2093 /* Support for CONVERT_FROM_FUNC_PTR_ADDR(ADDR).
2094
2095 Usually a function pointer's representation is simply the address
2096 of the function. On the RS/6000 however, a function pointer is
2097 represented by a pointer to a TOC entry. This TOC entry contains
2098 three words, the first word is the address of the function, the
2099 second word is the TOC pointer (r2), and the third word is the
2100 static chain value. Throughout GDB it is currently assumed that a
2101 function pointer contains the address of the function, which is not
2102 easy to fix. In addition, the conversion of a function address to
2103 a function pointer would require allocation of a TOC entry in the
2104 inferior's memory space, with all its drawbacks. To be able to
2105 call C++ virtual methods in the inferior (which are called via
2106 function pointers), find_function_addr uses this function to get the
2107 function address from a function pointer. */
2108
2109 /* Return real function address if ADDR (a function pointer) is in the data
2110 space and is therefore a special function pointer. */
2111
2112 CORE_ADDR
2113 rs6000_convert_from_func_ptr_addr (CORE_ADDR addr)
2114 {
2115 struct obj_section *s;
2116
2117 s = find_pc_section (addr);
2118 if (s && s->the_bfd_section->flags & SEC_CODE)
2119 return addr;
2120
2121 /* ADDR is in the data space, so it's a special function pointer. */
2122 return read_memory_addr (addr, gdbarch_tdep (current_gdbarch)->wordsize);
2123 }
2124 \f
2125
2126 /* Handling the various POWER/PowerPC variants. */
2127
2128
2129 /* The arrays here called registers_MUMBLE hold information about available
2130 registers.
2131
2132 For each family of PPC variants, I've tried to isolate out the
2133 common registers and put them up front, so that as long as you get
2134 the general family right, GDB will correctly identify the registers
2135 common to that family. The common register sets are:
2136
2137 For the 60x family: hid0 hid1 iabr dabr pir
2138
2139 For the 505 and 860 family: eie eid nri
2140
2141 For the 403 and 403GC: icdbdr esr dear evpr cdbcr tsr tcr pit tbhi
2142 tblo srr2 srr3 dbsr dbcr iac1 iac2 dac1 dac2 dccr iccr pbl1
2143 pbu1 pbl2 pbu2
2144
2145 Most of these register groups aren't anything formal. I arrived at
2146 them by looking at the registers that occurred in more than one
2147 processor.
2148
2149 Note: kevinb/2002-04-30: Support for the fpscr register was added
2150 during April, 2002. Slot 70 is being used for PowerPC and slot 71
2151 for Power. For PowerPC, slot 70 was unused and was already in the
2152 PPC_UISA_SPRS which is ideally where fpscr should go. For Power,
2153 slot 70 was being used for "mq", so the next available slot (71)
2154 was chosen. It would have been nice to be able to make the
2155 register numbers the same across processor cores, but this wasn't
2156 possible without either 1) renumbering some registers for some
2157 processors or 2) assigning fpscr to a really high slot that's
2158 larger than any current register number. Doing (1) is bad because
2159 existing stubs would break. Doing (2) is undesirable because it
2160 would introduce a really large gap between fpscr and the rest of
2161 the registers for most processors. */
2162
2163 /* Convenience macros for populating register arrays. */
2164
2165 /* Within another macro, convert S to a string. */
2166
2167 #define STR(s) #s
2168
2169 /* Return a struct reg defining register NAME that's 32 bits on 32-bit systems
2170 and 64 bits on 64-bit systems. */
2171 #define R(name) { STR(name), 4, 8, 0, 0 }
2172
2173 /* Return a struct reg defining register NAME that's 32 bits on all
2174 systems. */
2175 #define R4(name) { STR(name), 4, 4, 0, 0 }
2176
2177 /* Return a struct reg defining register NAME that's 64 bits on all
2178 systems. */
2179 #define R8(name) { STR(name), 8, 8, 0, 0 }
2180
2181 /* Return a struct reg defining register NAME that's 128 bits on all
2182 systems. */
2183 #define R16(name) { STR(name), 16, 16, 0, 0 }
2184
2185 /* Return a struct reg defining floating-point register NAME. */
2186 #define F(name) { STR(name), 8, 8, 1, 0 }
2187
2188 /* Return a struct reg defining a pseudo register NAME. */
2189 #define P(name) { STR(name), 4, 8, 0, 1}
2190
2191 /* Return a struct reg defining register NAME that's 32 bits on 32-bit
2192 systems and that doesn't exist on 64-bit systems. */
2193 #define R32(name) { STR(name), 4, 0, 0, 0 }
2194
2195 /* Return a struct reg defining register NAME that's 64 bits on 64-bit
2196 systems and that doesn't exist on 32-bit systems. */
2197 #define R64(name) { STR(name), 0, 8, 0, 0 }
2198
2199 /* Return a struct reg placeholder for a register that doesn't exist. */
2200 #define R0 { 0, 0, 0, 0, 0 }
2201
2202 /* UISA registers common across all architectures, including POWER. */
2203
2204 #define COMMON_UISA_REGS \
2205 /* 0 */ R(r0), R(r1), R(r2), R(r3), R(r4), R(r5), R(r6), R(r7), \
2206 /* 8 */ R(r8), R(r9), R(r10),R(r11),R(r12),R(r13),R(r14),R(r15), \
2207 /* 16 */ R(r16),R(r17),R(r18),R(r19),R(r20),R(r21),R(r22),R(r23), \
2208 /* 24 */ R(r24),R(r25),R(r26),R(r27),R(r28),R(r29),R(r30),R(r31), \
2209 /* 32 */ F(f0), F(f1), F(f2), F(f3), F(f4), F(f5), F(f6), F(f7), \
2210 /* 40 */ F(f8), F(f9), F(f10),F(f11),F(f12),F(f13),F(f14),F(f15), \
2211 /* 48 */ F(f16),F(f17),F(f18),F(f19),F(f20),F(f21),F(f22),F(f23), \
2212 /* 56 */ F(f24),F(f25),F(f26),F(f27),F(f28),F(f29),F(f30),F(f31), \
2213 /* 64 */ R(pc), R(ps)
2214
2215 #define COMMON_UISA_NOFP_REGS \
2216 /* 0 */ R(r0), R(r1), R(r2), R(r3), R(r4), R(r5), R(r6), R(r7), \
2217 /* 8 */ R(r8), R(r9), R(r10),R(r11),R(r12),R(r13),R(r14),R(r15), \
2218 /* 16 */ R(r16),R(r17),R(r18),R(r19),R(r20),R(r21),R(r22),R(r23), \
2219 /* 24 */ R(r24),R(r25),R(r26),R(r27),R(r28),R(r29),R(r30),R(r31), \
2220 /* 32 */ R0, R0, R0, R0, R0, R0, R0, R0, \
2221 /* 40 */ R0, R0, R0, R0, R0, R0, R0, R0, \
2222 /* 48 */ R0, R0, R0, R0, R0, R0, R0, R0, \
2223 /* 56 */ R0, R0, R0, R0, R0, R0, R0, R0, \
2224 /* 64 */ R(pc), R(ps)
2225
2226 /* UISA-level SPRs for PowerPC. */
2227 #define PPC_UISA_SPRS \
2228 /* 66 */ R4(cr), R(lr), R(ctr), R4(xer), R4(fpscr)
2229
2230 /* UISA-level SPRs for PowerPC without floating point support. */
2231 #define PPC_UISA_NOFP_SPRS \
2232 /* 66 */ R4(cr), R(lr), R(ctr), R4(xer), R0
2233
2234 /* Segment registers, for PowerPC. */
2235 #define PPC_SEGMENT_REGS \
2236 /* 71 */ R32(sr0), R32(sr1), R32(sr2), R32(sr3), \
2237 /* 75 */ R32(sr4), R32(sr5), R32(sr6), R32(sr7), \
2238 /* 79 */ R32(sr8), R32(sr9), R32(sr10), R32(sr11), \
2239 /* 83 */ R32(sr12), R32(sr13), R32(sr14), R32(sr15)
2240
2241 /* OEA SPRs for PowerPC. */
2242 #define PPC_OEA_SPRS \
2243 /* 87 */ R4(pvr), \
2244 /* 88 */ R(ibat0u), R(ibat0l), R(ibat1u), R(ibat1l), \
2245 /* 92 */ R(ibat2u), R(ibat2l), R(ibat3u), R(ibat3l), \
2246 /* 96 */ R(dbat0u), R(dbat0l), R(dbat1u), R(dbat1l), \
2247 /* 100 */ R(dbat2u), R(dbat2l), R(dbat3u), R(dbat3l), \
2248 /* 104 */ R(sdr1), R64(asr), R(dar), R4(dsisr), \
2249 /* 108 */ R(sprg0), R(sprg1), R(sprg2), R(sprg3), \
2250 /* 112 */ R(srr0), R(srr1), R(tbl), R(tbu), \
2251 /* 116 */ R4(dec), R(dabr), R4(ear)
2252
2253 /* AltiVec registers. */
2254 #define PPC_ALTIVEC_REGS \
2255 /*119*/R16(vr0), R16(vr1), R16(vr2), R16(vr3), R16(vr4), R16(vr5), R16(vr6), R16(vr7), \
2256 /*127*/R16(vr8), R16(vr9), R16(vr10),R16(vr11),R16(vr12),R16(vr13),R16(vr14),R16(vr15), \
2257 /*135*/R16(vr16),R16(vr17),R16(vr18),R16(vr19),R16(vr20),R16(vr21),R16(vr22),R16(vr23), \
2258 /*143*/R16(vr24),R16(vr25),R16(vr26),R16(vr27),R16(vr28),R16(vr29),R16(vr30),R16(vr31), \
2259 /*151*/R4(vscr), R4(vrsave)
2260
2261 /* Vectors of hi-lo general purpose registers. */
2262 #define PPC_EV_REGS \
2263 /* 0*/R8(ev0), R8(ev1), R8(ev2), R8(ev3), R8(ev4), R8(ev5), R8(ev6), R8(ev7), \
2264 /* 8*/R8(ev8), R8(ev9), R8(ev10),R8(ev11),R8(ev12),R8(ev13),R8(ev14),R8(ev15), \
2265 /*16*/R8(ev16),R8(ev17),R8(ev18),R8(ev19),R8(ev20),R8(ev21),R8(ev22),R8(ev23), \
2266 /*24*/R8(ev24),R8(ev25),R8(ev26),R8(ev27),R8(ev28),R8(ev29),R8(ev30),R8(ev31)
2267
2268 /* Lower half of the EV registers. */
2269 #define PPC_GPRS_PSEUDO_REGS \
2270 /* 0 */ P(r0), P(r1), P(r2), P(r3), P(r4), P(r5), P(r6), P(r7), \
2271 /* 8 */ P(r8), P(r9), P(r10),P(r11),P(r12),P(r13),P(r14),P(r15), \
2272 /* 16 */ P(r16),P(r17),P(r18),P(r19),P(r20),P(r21),P(r22),P(r23), \
2273 /* 24 */ P(r24),P(r25),P(r26),P(r27),P(r28),P(r29),P(r30),P(r31), \
2274
2275 /* IBM POWER (pre-PowerPC) architecture, user-level view. We only cover
2276 user-level SPR's. */
2277 static const struct reg registers_power[] =
2278 {
2279 COMMON_UISA_REGS,
2280 /* 66 */ R4(cnd), R(lr), R(cnt), R4(xer), R4(mq),
2281 /* 71 */ R4(fpscr)
2282 };
2283
2284 /* PowerPC UISA - a PPC processor as viewed by user-level code. A UISA-only
2285 view of the PowerPC. */
2286 static const struct reg registers_powerpc[] =
2287 {
2288 COMMON_UISA_REGS,
2289 PPC_UISA_SPRS,
2290 PPC_ALTIVEC_REGS
2291 };
2292
2293 /* PowerPC UISA - a PPC processor as viewed by user-level
2294 code, but without floating point registers. */
2295 static const struct reg registers_powerpc_nofp[] =
2296 {
2297 COMMON_UISA_NOFP_REGS,
2298 PPC_UISA_SPRS
2299 };
2300
2301 /* IBM PowerPC 403. */
2302 static const struct reg registers_403[] =
2303 {
2304 COMMON_UISA_REGS,
2305 PPC_UISA_SPRS,
2306 PPC_SEGMENT_REGS,
2307 PPC_OEA_SPRS,
2308 /* 119 */ R(icdbdr), R(esr), R(dear), R(evpr),
2309 /* 123 */ R(cdbcr), R(tsr), R(tcr), R(pit),
2310 /* 127 */ R(tbhi), R(tblo), R(srr2), R(srr3),
2311 /* 131 */ R(dbsr), R(dbcr), R(iac1), R(iac2),
2312 /* 135 */ R(dac1), R(dac2), R(dccr), R(iccr),
2313 /* 139 */ R(pbl1), R(pbu1), R(pbl2), R(pbu2)
2314 };
2315
2316 /* IBM PowerPC 403GC. */
2317 static const struct reg registers_403GC[] =
2318 {
2319 COMMON_UISA_REGS,
2320 PPC_UISA_SPRS,
2321 PPC_SEGMENT_REGS,
2322 PPC_OEA_SPRS,
2323 /* 119 */ R(icdbdr), R(esr), R(dear), R(evpr),
2324 /* 123 */ R(cdbcr), R(tsr), R(tcr), R(pit),
2325 /* 127 */ R(tbhi), R(tblo), R(srr2), R(srr3),
2326 /* 131 */ R(dbsr), R(dbcr), R(iac1), R(iac2),
2327 /* 135 */ R(dac1), R(dac2), R(dccr), R(iccr),
2328 /* 139 */ R(pbl1), R(pbu1), R(pbl2), R(pbu2),
2329 /* 143 */ R(zpr), R(pid), R(sgr), R(dcwr),
2330 /* 147 */ R(tbhu), R(tblu)
2331 };
2332
2333 /* Motorola PowerPC 505. */
2334 static const struct reg registers_505[] =
2335 {
2336 COMMON_UISA_REGS,
2337 PPC_UISA_SPRS,
2338 PPC_SEGMENT_REGS,
2339 PPC_OEA_SPRS,
2340 /* 119 */ R(eie), R(eid), R(nri)
2341 };
2342
2343 /* Motorola PowerPC 860 or 850. */
2344 static const struct reg registers_860[] =
2345 {
2346 COMMON_UISA_REGS,
2347 PPC_UISA_SPRS,
2348 PPC_SEGMENT_REGS,
2349 PPC_OEA_SPRS,
2350 /* 119 */ R(eie), R(eid), R(nri), R(cmpa),
2351 /* 123 */ R(cmpb), R(cmpc), R(cmpd), R(icr),
2352 /* 127 */ R(der), R(counta), R(countb), R(cmpe),
2353 /* 131 */ R(cmpf), R(cmpg), R(cmph), R(lctrl1),
2354 /* 135 */ R(lctrl2), R(ictrl), R(bar), R(ic_cst),
2355 /* 139 */ R(ic_adr), R(ic_dat), R(dc_cst), R(dc_adr),
2356 /* 143 */ R(dc_dat), R(dpdr), R(dpir), R(immr),
2357 /* 147 */ R(mi_ctr), R(mi_ap), R(mi_epn), R(mi_twc),
2358 /* 151 */ R(mi_rpn), R(md_ctr), R(m_casid), R(md_ap),
2359 /* 155 */ R(md_epn), R(md_twb), R(md_twc), R(md_rpn),
2360 /* 159 */ R(m_tw), R(mi_dbcam), R(mi_dbram0), R(mi_dbram1),
2361 /* 163 */ R(md_dbcam), R(md_dbram0), R(md_dbram1)
2362 };
2363
2364 /* Motorola PowerPC 601. Note that the 601 has different register numbers
2365 for reading and writing RTCU and RTCL. However, how one reads and writes a
2366 register is the stub's problem. */
2367 static const struct reg registers_601[] =
2368 {
2369 COMMON_UISA_REGS,
2370 PPC_UISA_SPRS,
2371 PPC_SEGMENT_REGS,
2372 PPC_OEA_SPRS,
2373 /* 119 */ R(hid0), R(hid1), R(iabr), R(dabr),
2374 /* 123 */ R(pir), R(mq), R(rtcu), R(rtcl)
2375 };
2376
2377 /* Motorola PowerPC 602. */
2378 static const struct reg registers_602[] =
2379 {
2380 COMMON_UISA_REGS,
2381 PPC_UISA_SPRS,
2382 PPC_SEGMENT_REGS,
2383 PPC_OEA_SPRS,
2384 /* 119 */ R(hid0), R(hid1), R(iabr), R0,
2385 /* 123 */ R0, R(tcr), R(ibr), R(esassr),
2386 /* 127 */ R(sebr), R(ser), R(sp), R(lt)
2387 };
2388
2389 /* Motorola/IBM PowerPC 603 or 603e. */
2390 static const struct reg registers_603[] =
2391 {
2392 COMMON_UISA_REGS,
2393 PPC_UISA_SPRS,
2394 PPC_SEGMENT_REGS,
2395 PPC_OEA_SPRS,
2396 /* 119 */ R(hid0), R(hid1), R(iabr), R0,
2397 /* 123 */ R0, R(dmiss), R(dcmp), R(hash1),
2398 /* 127 */ R(hash2), R(imiss), R(icmp), R(rpa)
2399 };
2400
2401 /* Motorola PowerPC 604 or 604e. */
2402 static const struct reg registers_604[] =
2403 {
2404 COMMON_UISA_REGS,
2405 PPC_UISA_SPRS,
2406 PPC_SEGMENT_REGS,
2407 PPC_OEA_SPRS,
2408 /* 119 */ R(hid0), R(hid1), R(iabr), R(dabr),
2409 /* 123 */ R(pir), R(mmcr0), R(pmc1), R(pmc2),
2410 /* 127 */ R(sia), R(sda)
2411 };
2412
2413 /* Motorola/IBM PowerPC 750 or 740. */
2414 static const struct reg registers_750[] =
2415 {
2416 COMMON_UISA_REGS,
2417 PPC_UISA_SPRS,
2418 PPC_SEGMENT_REGS,
2419 PPC_OEA_SPRS,
2420 /* 119 */ R(hid0), R(hid1), R(iabr), R(dabr),
2421 /* 123 */ R0, R(ummcr0), R(upmc1), R(upmc2),
2422 /* 127 */ R(usia), R(ummcr1), R(upmc3), R(upmc4),
2423 /* 131 */ R(mmcr0), R(pmc1), R(pmc2), R(sia),
2424 /* 135 */ R(mmcr1), R(pmc3), R(pmc4), R(l2cr),
2425 /* 139 */ R(ictc), R(thrm1), R(thrm2), R(thrm3)
2426 };
2427
2428
2429 /* Motorola PowerPC 7400. */
2430 static const struct reg registers_7400[] =
2431 {
2432 /* gpr0-gpr31, fpr0-fpr31 */
2433 COMMON_UISA_REGS,
2434 /* ctr, xre, lr, cr */
2435 PPC_UISA_SPRS,
2436 /* sr0-sr15 */
2437 PPC_SEGMENT_REGS,
2438 PPC_OEA_SPRS,
2439 /* vr0-vr31, vrsave, vscr */
2440 PPC_ALTIVEC_REGS
2441 /* FIXME? Add more registers? */
2442 };
2443
2444 /* Motorola e500. */
2445 static const struct reg registers_e500[] =
2446 {
2447 R(pc), R(ps),
2448 /* cr, lr, ctr, xer, "" */
2449 PPC_UISA_NOFP_SPRS,
2450 /* 7...38 */
2451 PPC_EV_REGS,
2452 /* 39...70 */
2453 PPC_GPRS_PSEUDO_REGS
2454 };
2455
2456 /* Information about a particular processor variant. */
2457
2458 struct variant
2459 {
2460 /* Name of this variant. */
2461 char *name;
2462
2463 /* English description of the variant. */
2464 char *description;
2465
2466 /* bfd_arch_info.arch corresponding to variant. */
2467 enum bfd_architecture arch;
2468
2469 /* bfd_arch_info.mach corresponding to variant. */
2470 unsigned long mach;
2471
2472 /* Number of real registers. */
2473 int nregs;
2474
2475 /* Number of pseudo registers. */
2476 int npregs;
2477
2478 /* Number of total registers (the sum of nregs and npregs). */
2479 int num_tot_regs;
2480
2481 /* Table of register names; registers[R] is the name of the register
2482 number R. */
2483 const struct reg *regs;
2484 };
2485
2486 #define tot_num_registers(list) (sizeof (list) / sizeof((list)[0]))
2487
2488 static int
2489 num_registers (const struct reg *reg_list, int num_tot_regs)
2490 {
2491 int i;
2492 int nregs = 0;
2493
2494 for (i = 0; i < num_tot_regs; i++)
2495 if (!reg_list[i].pseudo)
2496 nregs++;
2497
2498 return nregs;
2499 }
2500
2501 static int
2502 num_pseudo_registers (const struct reg *reg_list, int num_tot_regs)
2503 {
2504 int i;
2505 int npregs = 0;
2506
2507 for (i = 0; i < num_tot_regs; i++)
2508 if (reg_list[i].pseudo)
2509 npregs ++;
2510
2511 return npregs;
2512 }
2513
2514 /* Information in this table comes from the following web sites:
2515 IBM: http://www.chips.ibm.com:80/products/embedded/
2516 Motorola: http://www.mot.com/SPS/PowerPC/
2517
2518 I'm sure I've got some of the variant descriptions not quite right.
2519 Please report any inaccuracies you find to GDB's maintainer.
2520
2521 If you add entries to this table, please be sure to allow the new
2522 value as an argument to the --with-cpu flag, in configure.in. */
2523
2524 static struct variant variants[] =
2525 {
2526
2527 {"powerpc", "PowerPC user-level", bfd_arch_powerpc,
2528 bfd_mach_ppc, -1, -1, tot_num_registers (registers_powerpc),
2529 registers_powerpc},
2530 {"power", "POWER user-level", bfd_arch_rs6000,
2531 bfd_mach_rs6k, -1, -1, tot_num_registers (registers_power),
2532 registers_power},
2533 {"403", "IBM PowerPC 403", bfd_arch_powerpc,
2534 bfd_mach_ppc_403, -1, -1, tot_num_registers (registers_403),
2535 registers_403},
2536 {"601", "Motorola PowerPC 601", bfd_arch_powerpc,
2537 bfd_mach_ppc_601, -1, -1, tot_num_registers (registers_601),
2538 registers_601},
2539 {"602", "Motorola PowerPC 602", bfd_arch_powerpc,
2540 bfd_mach_ppc_602, -1, -1, tot_num_registers (registers_602),
2541 registers_602},
2542 {"603", "Motorola/IBM PowerPC 603 or 603e", bfd_arch_powerpc,
2543 bfd_mach_ppc_603, -1, -1, tot_num_registers (registers_603),
2544 registers_603},
2545 {"604", "Motorola PowerPC 604 or 604e", bfd_arch_powerpc,
2546 604, -1, -1, tot_num_registers (registers_604),
2547 registers_604},
2548 {"403GC", "IBM PowerPC 403GC", bfd_arch_powerpc,
2549 bfd_mach_ppc_403gc, -1, -1, tot_num_registers (registers_403GC),
2550 registers_403GC},
2551 {"505", "Motorola PowerPC 505", bfd_arch_powerpc,
2552 bfd_mach_ppc_505, -1, -1, tot_num_registers (registers_505),
2553 registers_505},
2554 {"860", "Motorola PowerPC 860 or 850", bfd_arch_powerpc,
2555 bfd_mach_ppc_860, -1, -1, tot_num_registers (registers_860),
2556 registers_860},
2557 {"750", "Motorola/IBM PowerPC 750 or 740", bfd_arch_powerpc,
2558 bfd_mach_ppc_750, -1, -1, tot_num_registers (registers_750),
2559 registers_750},
2560 {"7400", "Motorola/IBM PowerPC 7400 (G4)", bfd_arch_powerpc,
2561 bfd_mach_ppc_7400, -1, -1, tot_num_registers (registers_7400),
2562 registers_7400},
2563 {"e500", "Motorola PowerPC e500", bfd_arch_powerpc,
2564 bfd_mach_ppc_e500, -1, -1, tot_num_registers (registers_e500),
2565 registers_e500},
2566
2567 /* 64-bit */
2568 {"powerpc64", "PowerPC 64-bit user-level", bfd_arch_powerpc,
2569 bfd_mach_ppc64, -1, -1, tot_num_registers (registers_powerpc),
2570 registers_powerpc},
2571 {"620", "Motorola PowerPC 620", bfd_arch_powerpc,
2572 bfd_mach_ppc_620, -1, -1, tot_num_registers (registers_powerpc),
2573 registers_powerpc},
2574 {"630", "Motorola PowerPC 630", bfd_arch_powerpc,
2575 bfd_mach_ppc_630, -1, -1, tot_num_registers (registers_powerpc),
2576 registers_powerpc},
2577 {"a35", "PowerPC A35", bfd_arch_powerpc,
2578 bfd_mach_ppc_a35, -1, -1, tot_num_registers (registers_powerpc),
2579 registers_powerpc},
2580 {"rs64ii", "PowerPC rs64ii", bfd_arch_powerpc,
2581 bfd_mach_ppc_rs64ii, -1, -1, tot_num_registers (registers_powerpc),
2582 registers_powerpc},
2583 {"rs64iii", "PowerPC rs64iii", bfd_arch_powerpc,
2584 bfd_mach_ppc_rs64iii, -1, -1, tot_num_registers (registers_powerpc),
2585 registers_powerpc},
2586
2587 /* FIXME: I haven't checked the register sets of the following. */
2588 {"rs1", "IBM POWER RS1", bfd_arch_rs6000,
2589 bfd_mach_rs6k_rs1, -1, -1, tot_num_registers (registers_power),
2590 registers_power},
2591 {"rsc", "IBM POWER RSC", bfd_arch_rs6000,
2592 bfd_mach_rs6k_rsc, -1, -1, tot_num_registers (registers_power),
2593 registers_power},
2594 {"rs2", "IBM POWER RS2", bfd_arch_rs6000,
2595 bfd_mach_rs6k_rs2, -1, -1, tot_num_registers (registers_power),
2596 registers_power},
2597
2598 {0, 0, 0, 0, 0, 0, 0, 0}
2599 };
2600
2601 /* Initialize the number of registers and pseudo registers in each variant. */
2602
2603 static void
2604 init_variants (void)
2605 {
2606 struct variant *v;
2607
2608 for (v = variants; v->name; v++)
2609 {
2610 if (v->nregs == -1)
2611 v->nregs = num_registers (v->regs, v->num_tot_regs);
2612 if (v->npregs == -1)
2613 v->npregs = num_pseudo_registers (v->regs, v->num_tot_regs);
2614 }
2615 }
2616
2617 /* Return the variant corresponding to architecture ARCH and machine number
2618 MACH. If no such variant exists, return null. */
2619
2620 static const struct variant *
2621 find_variant_by_arch (enum bfd_architecture arch, unsigned long mach)
2622 {
2623 const struct variant *v;
2624
2625 for (v = variants; v->name; v++)
2626 if (arch == v->arch && mach == v->mach)
2627 return v;
2628
2629 return NULL;
2630 }
2631
2632 static int
2633 gdb_print_insn_powerpc (bfd_vma memaddr, disassemble_info *info)
2634 {
2635 if (TARGET_BYTE_ORDER == BFD_ENDIAN_BIG)
2636 return print_insn_big_powerpc (memaddr, info);
2637 else
2638 return print_insn_little_powerpc (memaddr, info);
2639 }
2640 \f
2641 /* Initialize the current architecture based on INFO. If possible, re-use an
2642 architecture from ARCHES, which is a list of architectures already created
2643 during this debugging session.
2644
2645 Called e.g. at program startup, when reading a core file, and when reading
2646 a binary file. */
2647
2648 static struct gdbarch *
2649 rs6000_gdbarch_init (struct gdbarch_info info, struct gdbarch_list *arches)
2650 {
2651 struct gdbarch *gdbarch;
2652 struct gdbarch_tdep *tdep;
2653 int wordsize, from_xcoff_exec, from_elf_exec, power, i, off;
2654 struct reg *regs;
2655 const struct variant *v;
2656 enum bfd_architecture arch;
2657 unsigned long mach;
2658 bfd abfd;
2659 int sysv_abi;
2660 enum gdb_osabi osabi = GDB_OSABI_UNKNOWN;
2661 asection *sect;
2662
2663 from_xcoff_exec = info.abfd && info.abfd->format == bfd_object &&
2664 bfd_get_flavour (info.abfd) == bfd_target_xcoff_flavour;
2665
2666 from_elf_exec = info.abfd && info.abfd->format == bfd_object &&
2667 bfd_get_flavour (info.abfd) == bfd_target_elf_flavour;
2668
2669 sysv_abi = info.abfd && bfd_get_flavour (info.abfd) == bfd_target_elf_flavour;
2670
2671 if (info.abfd)
2672 osabi = gdbarch_lookup_osabi (info.abfd);
2673
2674 /* Check word size. If INFO is from a binary file, infer it from
2675 that, else choose a likely default. */
2676 if (from_xcoff_exec)
2677 {
2678 if (bfd_xcoff_is_xcoff64 (info.abfd))
2679 wordsize = 8;
2680 else
2681 wordsize = 4;
2682 }
2683 else if (from_elf_exec)
2684 {
2685 if (elf_elfheader (info.abfd)->e_ident[EI_CLASS] == ELFCLASS64)
2686 wordsize = 8;
2687 else
2688 wordsize = 4;
2689 }
2690 else
2691 {
2692 if (info.bfd_arch_info != NULL && info.bfd_arch_info->bits_per_word != 0)
2693 wordsize = info.bfd_arch_info->bits_per_word /
2694 info.bfd_arch_info->bits_per_byte;
2695 else
2696 wordsize = 4;
2697 }
2698
2699 /* Find a candidate among extant architectures. */
2700 for (arches = gdbarch_list_lookup_by_info (arches, &info);
2701 arches != NULL;
2702 arches = gdbarch_list_lookup_by_info (arches->next, &info))
2703 {
2704 /* Word size in the various PowerPC bfd_arch_info structs isn't
2705 meaningful, because 64-bit CPUs can run in 32-bit mode. So, perform
2706 separate word size check. */
2707 tdep = gdbarch_tdep (arches->gdbarch);
2708 if (tdep && tdep->wordsize == wordsize && tdep->osabi == osabi)
2709 return arches->gdbarch;
2710 }
2711
2712 /* None found, create a new architecture from INFO, whose bfd_arch_info
2713 validity depends on the source:
2714 - executable useless
2715 - rs6000_host_arch() good
2716 - core file good
2717 - "set arch" trust blindly
2718 - GDB startup useless but harmless */
2719
2720 if (!from_xcoff_exec)
2721 {
2722 arch = info.bfd_arch_info->arch;
2723 mach = info.bfd_arch_info->mach;
2724 }
2725 else
2726 {
2727 arch = bfd_arch_powerpc;
2728 mach = 0;
2729 bfd_default_set_arch_mach (&abfd, arch, mach);
2730 info.bfd_arch_info = bfd_get_arch_info (&abfd);
2731 }
2732 tdep = xmalloc (sizeof (struct gdbarch_tdep));
2733 tdep->wordsize = wordsize;
2734 tdep->osabi = osabi;
2735
2736 /* For e500 executables, the apuinfo section is of help here. Such
2737 section contains the identifier and revision number of each
2738 Application-specific Processing Unit that is present on the
2739 chip. The content of the section is determined by the assembler
2740 which looks at each instruction and determines which unit (and
2741 which version of it) can execute it. In our case we just look for
2742 the existance of the section. */
2743
2744 if (info.abfd)
2745 {
2746 sect = bfd_get_section_by_name (info.abfd, ".PPC.EMB.apuinfo");
2747 if (sect)
2748 {
2749 arch = info.bfd_arch_info->arch;
2750 mach = bfd_mach_ppc_e500;
2751 bfd_default_set_arch_mach (&abfd, arch, mach);
2752 info.bfd_arch_info = bfd_get_arch_info (&abfd);
2753 }
2754 }
2755
2756 gdbarch = gdbarch_alloc (&info, tdep);
2757 power = arch == bfd_arch_rs6000;
2758
2759 /* Initialize the number of real and pseudo registers in each variant. */
2760 init_variants ();
2761
2762 /* Choose variant. */
2763 v = find_variant_by_arch (arch, mach);
2764 if (!v)
2765 return NULL;
2766
2767 tdep->regs = v->regs;
2768
2769 tdep->ppc_gp0_regnum = 0;
2770 tdep->ppc_gplast_regnum = 31;
2771 tdep->ppc_toc_regnum = 2;
2772 tdep->ppc_ps_regnum = 65;
2773 tdep->ppc_cr_regnum = 66;
2774 tdep->ppc_lr_regnum = 67;
2775 tdep->ppc_ctr_regnum = 68;
2776 tdep->ppc_xer_regnum = 69;
2777 if (v->mach == bfd_mach_ppc_601)
2778 tdep->ppc_mq_regnum = 124;
2779 else if (power)
2780 tdep->ppc_mq_regnum = 70;
2781 else
2782 tdep->ppc_mq_regnum = -1;
2783 tdep->ppc_fpscr_regnum = power ? 71 : 70;
2784
2785 set_gdbarch_pc_regnum (gdbarch, 64);
2786 set_gdbarch_sp_regnum (gdbarch, 1);
2787 set_gdbarch_fp_regnum (gdbarch, 1);
2788 set_gdbarch_deprecated_extract_return_value (gdbarch,
2789 rs6000_extract_return_value);
2790 set_gdbarch_deprecated_store_return_value (gdbarch, rs6000_store_return_value);
2791
2792 if (v->arch == bfd_arch_powerpc)
2793 switch (v->mach)
2794 {
2795 case bfd_mach_ppc:
2796 tdep->ppc_vr0_regnum = 71;
2797 tdep->ppc_vrsave_regnum = 104;
2798 tdep->ppc_ev0_regnum = -1;
2799 tdep->ppc_ev31_regnum = -1;
2800 break;
2801 case bfd_mach_ppc_7400:
2802 tdep->ppc_vr0_regnum = 119;
2803 tdep->ppc_vrsave_regnum = 152;
2804 tdep->ppc_ev0_regnum = -1;
2805 tdep->ppc_ev31_regnum = -1;
2806 break;
2807 case bfd_mach_ppc_e500:
2808 tdep->ppc_gp0_regnum = 39;
2809 tdep->ppc_gplast_regnum = 70;
2810 tdep->ppc_toc_regnum = -1;
2811 tdep->ppc_ps_regnum = 1;
2812 tdep->ppc_cr_regnum = 2;
2813 tdep->ppc_lr_regnum = 3;
2814 tdep->ppc_ctr_regnum = 4;
2815 tdep->ppc_xer_regnum = 5;
2816 tdep->ppc_ev0_regnum = 7;
2817 tdep->ppc_ev31_regnum = 38;
2818 set_gdbarch_pc_regnum (gdbarch, 0);
2819 set_gdbarch_sp_regnum (gdbarch, 40);
2820 set_gdbarch_fp_regnum (gdbarch, 40);
2821 set_gdbarch_dwarf2_reg_to_regnum (gdbarch, e500_dwarf2_reg_to_regnum);
2822 set_gdbarch_pseudo_register_read (gdbarch, e500_pseudo_register_read);
2823 set_gdbarch_pseudo_register_write (gdbarch, e500_pseudo_register_write);
2824 set_gdbarch_extract_return_value (gdbarch, e500_extract_return_value);
2825 set_gdbarch_deprecated_store_return_value (gdbarch, e500_store_return_value);
2826 break;
2827 default:
2828 tdep->ppc_vr0_regnum = -1;
2829 tdep->ppc_vrsave_regnum = -1;
2830 tdep->ppc_ev0_regnum = -1;
2831 tdep->ppc_ev31_regnum = -1;
2832 break;
2833 }
2834
2835 /* Set lr_frame_offset. */
2836 if (wordsize == 8)
2837 tdep->lr_frame_offset = 16;
2838 else if (sysv_abi)
2839 tdep->lr_frame_offset = 4;
2840 else
2841 tdep->lr_frame_offset = 8;
2842
2843 /* Calculate byte offsets in raw register array. */
2844 tdep->regoff = xmalloc (v->num_tot_regs * sizeof (int));
2845 for (i = off = 0; i < v->num_tot_regs; i++)
2846 {
2847 tdep->regoff[i] = off;
2848 off += regsize (v->regs + i, wordsize);
2849 }
2850
2851 /* Select instruction printer. */
2852 if (arch == power)
2853 set_gdbarch_print_insn (gdbarch, print_insn_rs6000);
2854 else
2855 set_gdbarch_print_insn (gdbarch, gdb_print_insn_powerpc);
2856
2857 set_gdbarch_read_pc (gdbarch, generic_target_read_pc);
2858 set_gdbarch_write_pc (gdbarch, generic_target_write_pc);
2859 set_gdbarch_read_fp (gdbarch, generic_target_read_fp);
2860 set_gdbarch_read_sp (gdbarch, generic_target_read_sp);
2861 set_gdbarch_write_sp (gdbarch, generic_target_write_sp);
2862
2863 set_gdbarch_num_regs (gdbarch, v->nregs);
2864 set_gdbarch_num_pseudo_regs (gdbarch, v->npregs);
2865 set_gdbarch_register_name (gdbarch, rs6000_register_name);
2866 set_gdbarch_register_size (gdbarch, wordsize);
2867 set_gdbarch_register_bytes (gdbarch, off);
2868 set_gdbarch_register_byte (gdbarch, rs6000_register_byte);
2869 set_gdbarch_register_raw_size (gdbarch, rs6000_register_raw_size);
2870 set_gdbarch_max_register_raw_size (gdbarch, 16);
2871 set_gdbarch_register_virtual_size (gdbarch, generic_register_size);
2872 set_gdbarch_max_register_virtual_size (gdbarch, 16);
2873 set_gdbarch_register_virtual_type (gdbarch, rs6000_register_virtual_type);
2874
2875 set_gdbarch_ptr_bit (gdbarch, wordsize * TARGET_CHAR_BIT);
2876 set_gdbarch_short_bit (gdbarch, 2 * TARGET_CHAR_BIT);
2877 set_gdbarch_int_bit (gdbarch, 4 * TARGET_CHAR_BIT);
2878 set_gdbarch_long_bit (gdbarch, wordsize * TARGET_CHAR_BIT);
2879 set_gdbarch_long_long_bit (gdbarch, 8 * TARGET_CHAR_BIT);
2880 set_gdbarch_float_bit (gdbarch, 4 * TARGET_CHAR_BIT);
2881 set_gdbarch_double_bit (gdbarch, 8 * TARGET_CHAR_BIT);
2882 set_gdbarch_long_double_bit (gdbarch, 8 * TARGET_CHAR_BIT);
2883 set_gdbarch_char_signed (gdbarch, 0);
2884
2885 set_gdbarch_call_dummy_length (gdbarch, 0);
2886 set_gdbarch_call_dummy_address (gdbarch, entry_point_address);
2887 set_gdbarch_call_dummy_breakpoint_offset_p (gdbarch, 1);
2888 set_gdbarch_call_dummy_breakpoint_offset (gdbarch, 0);
2889 set_gdbarch_call_dummy_start_offset (gdbarch, 0);
2890 set_gdbarch_call_dummy_p (gdbarch, 1);
2891 set_gdbarch_call_dummy_stack_adjust_p (gdbarch, 0);
2892 set_gdbarch_fix_call_dummy (gdbarch, rs6000_fix_call_dummy);
2893 set_gdbarch_frame_align (gdbarch, rs6000_frame_align);
2894 set_gdbarch_push_dummy_frame (gdbarch, generic_push_dummy_frame);
2895 set_gdbarch_save_dummy_frame_tos (gdbarch, generic_save_dummy_frame_tos);
2896 set_gdbarch_push_return_address (gdbarch, ppc_push_return_address);
2897 set_gdbarch_believe_pcc_promotion (gdbarch, 1);
2898
2899 set_gdbarch_register_convertible (gdbarch, rs6000_register_convertible);
2900 set_gdbarch_register_convert_to_virtual (gdbarch, rs6000_register_convert_to_virtual);
2901 set_gdbarch_register_convert_to_raw (gdbarch, rs6000_register_convert_to_raw);
2902 set_gdbarch_stab_reg_to_regnum (gdbarch, rs6000_stab_reg_to_regnum);
2903 /* Note: kevinb/2002-04-12: I'm not convinced that rs6000_push_arguments()
2904 is correct for the SysV ABI when the wordsize is 8, but I'm also
2905 fairly certain that ppc_sysv_abi_push_arguments() will give even
2906 worse results since it only works for 32-bit code. So, for the moment,
2907 we're better off calling rs6000_push_arguments() since it works for
2908 64-bit code. At some point in the future, this matter needs to be
2909 revisited. */
2910 if (sysv_abi && wordsize == 4)
2911 set_gdbarch_push_arguments (gdbarch, ppc_sysv_abi_push_arguments);
2912 else
2913 set_gdbarch_push_arguments (gdbarch, rs6000_push_arguments);
2914
2915 set_gdbarch_store_struct_return (gdbarch, rs6000_store_struct_return);
2916 set_gdbarch_extract_struct_value_address (gdbarch, rs6000_extract_struct_value_address);
2917 set_gdbarch_pop_frame (gdbarch, rs6000_pop_frame);
2918
2919 set_gdbarch_skip_prologue (gdbarch, rs6000_skip_prologue);
2920 set_gdbarch_inner_than (gdbarch, core_addr_lessthan);
2921 set_gdbarch_decr_pc_after_break (gdbarch, 0);
2922 set_gdbarch_function_start_offset (gdbarch, 0);
2923 set_gdbarch_breakpoint_from_pc (gdbarch, rs6000_breakpoint_from_pc);
2924
2925 /* Not sure on this. FIXMEmgo */
2926 set_gdbarch_frame_args_skip (gdbarch, 8);
2927
2928 if (sysv_abi)
2929 set_gdbarch_use_struct_convention (gdbarch,
2930 ppc_sysv_abi_use_struct_convention);
2931 else
2932 set_gdbarch_use_struct_convention (gdbarch,
2933 generic_use_struct_convention);
2934
2935 set_gdbarch_frame_chain_valid (gdbarch, file_frame_chain_valid);
2936
2937 set_gdbarch_frameless_function_invocation (gdbarch,
2938 rs6000_frameless_function_invocation);
2939 set_gdbarch_frame_chain (gdbarch, rs6000_frame_chain);
2940 set_gdbarch_frame_saved_pc (gdbarch, rs6000_frame_saved_pc);
2941
2942 set_gdbarch_frame_init_saved_regs (gdbarch, rs6000_frame_init_saved_regs);
2943 set_gdbarch_init_extra_frame_info (gdbarch, rs6000_init_extra_frame_info);
2944
2945 if (!sysv_abi)
2946 {
2947 /* Handle RS/6000 function pointers (which are really function
2948 descriptors). */
2949 set_gdbarch_convert_from_func_ptr_addr (gdbarch,
2950 rs6000_convert_from_func_ptr_addr);
2951 }
2952 set_gdbarch_frame_args_address (gdbarch, rs6000_frame_args_address);
2953 set_gdbarch_frame_locals_address (gdbarch, rs6000_frame_args_address);
2954 set_gdbarch_saved_pc_after_call (gdbarch, rs6000_saved_pc_after_call);
2955
2956 /* We can't tell how many args there are
2957 now that the C compiler delays popping them. */
2958 set_gdbarch_frame_num_args (gdbarch, frame_num_args_unknown);
2959
2960 /* Hook in ABI-specific overrides, if they have been registered. */
2961 gdbarch_init_osabi (info, gdbarch, osabi);
2962
2963 return gdbarch;
2964 }
2965
2966 static void
2967 rs6000_dump_tdep (struct gdbarch *current_gdbarch, struct ui_file *file)
2968 {
2969 struct gdbarch_tdep *tdep = gdbarch_tdep (current_gdbarch);
2970
2971 if (tdep == NULL)
2972 return;
2973
2974 fprintf_unfiltered (file, "rs6000_dump_tdep: OS ABI = %s\n",
2975 gdbarch_osabi_name (tdep->osabi));
2976 }
2977
2978 static struct cmd_list_element *info_powerpc_cmdlist = NULL;
2979
2980 static void
2981 rs6000_info_powerpc_command (char *args, int from_tty)
2982 {
2983 help_list (info_powerpc_cmdlist, "info powerpc ", class_info, gdb_stdout);
2984 }
2985
2986 /* Initialization code. */
2987
2988 void
2989 _initialize_rs6000_tdep (void)
2990 {
2991 gdbarch_register (bfd_arch_rs6000, rs6000_gdbarch_init, rs6000_dump_tdep);
2992 gdbarch_register (bfd_arch_powerpc, rs6000_gdbarch_init, rs6000_dump_tdep);
2993
2994 /* Add root prefix command for "info powerpc" commands */
2995 add_prefix_cmd ("powerpc", class_info, rs6000_info_powerpc_command,
2996 "Various POWERPC info specific commands.",
2997 &info_powerpc_cmdlist, "info powerpc ", 0, &infolist);
2998 }