x86: Add elf_x86_backend_data
[binutils-gdb.git] / gdb / rs6000-tdep.c
1 /* Target-dependent code for GDB, the GNU debugger.
2
3 Copyright (C) 1986-2017 Free Software Foundation, Inc.
4
5 This file is part of GDB.
6
7 This program is free software; you can redistribute it and/or modify
8 it under the terms of the GNU General Public License as published by
9 the Free Software Foundation; either version 3 of the License, or
10 (at your option) any later version.
11
12 This program is distributed in the hope that it will be useful,
13 but WITHOUT ANY WARRANTY; without even the implied warranty of
14 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
15 GNU General Public License for more details.
16
17 You should have received a copy of the GNU General Public License
18 along with this program. If not, see <http://www.gnu.org/licenses/>. */
19
20 #include "defs.h"
21 #include "frame.h"
22 #include "inferior.h"
23 #include "infrun.h"
24 #include "symtab.h"
25 #include "target.h"
26 #include "gdbcore.h"
27 #include "gdbcmd.h"
28 #include "objfiles.h"
29 #include "arch-utils.h"
30 #include "regcache.h"
31 #include "regset.h"
32 #include "doublest.h"
33 #include "value.h"
34 #include "parser-defs.h"
35 #include "osabi.h"
36 #include "infcall.h"
37 #include "sim-regno.h"
38 #include "gdb/sim-ppc.h"
39 #include "reggroups.h"
40 #include "dwarf2-frame.h"
41 #include "target-descriptions.h"
42 #include "user-regs.h"
43 #include "record-full.h"
44 #include "auxv.h"
45
46 #include "coff/internal.h" /* for libcoff.h */
47 #include "libcoff.h" /* for xcoff_data */
48 #include "coff/xcoff.h"
49 #include "libxcoff.h"
50
51 #include "elf-bfd.h"
52 #include "elf/ppc.h"
53 #include "elf/ppc64.h"
54
55 #include "solib-svr4.h"
56 #include "ppc-tdep.h"
57 #include "ppc-ravenscar-thread.h"
58
59 #include "dis-asm.h"
60
61 #include "trad-frame.h"
62 #include "frame-unwind.h"
63 #include "frame-base.h"
64
65 #include "ax.h"
66 #include "ax-gdb.h"
67 #include <algorithm>
68
69 #include "features/rs6000/powerpc-32.c"
70 #include "features/rs6000/powerpc-altivec32.c"
71 #include "features/rs6000/powerpc-vsx32.c"
72 #include "features/rs6000/powerpc-403.c"
73 #include "features/rs6000/powerpc-403gc.c"
74 #include "features/rs6000/powerpc-405.c"
75 #include "features/rs6000/powerpc-505.c"
76 #include "features/rs6000/powerpc-601.c"
77 #include "features/rs6000/powerpc-602.c"
78 #include "features/rs6000/powerpc-603.c"
79 #include "features/rs6000/powerpc-604.c"
80 #include "features/rs6000/powerpc-64.c"
81 #include "features/rs6000/powerpc-altivec64.c"
82 #include "features/rs6000/powerpc-vsx64.c"
83 #include "features/rs6000/powerpc-7400.c"
84 #include "features/rs6000/powerpc-750.c"
85 #include "features/rs6000/powerpc-860.c"
86 #include "features/rs6000/powerpc-e500.c"
87 #include "features/rs6000/rs6000.c"
88
89 /* Determine if regnum is an SPE pseudo-register. */
90 #define IS_SPE_PSEUDOREG(tdep, regnum) ((tdep)->ppc_ev0_regnum >= 0 \
91 && (regnum) >= (tdep)->ppc_ev0_regnum \
92 && (regnum) < (tdep)->ppc_ev0_regnum + 32)
93
94 /* Determine if regnum is a decimal float pseudo-register. */
95 #define IS_DFP_PSEUDOREG(tdep, regnum) ((tdep)->ppc_dl0_regnum >= 0 \
96 && (regnum) >= (tdep)->ppc_dl0_regnum \
97 && (regnum) < (tdep)->ppc_dl0_regnum + 16)
98
99 /* Determine if regnum is a POWER7 VSX register. */
100 #define IS_VSX_PSEUDOREG(tdep, regnum) ((tdep)->ppc_vsr0_regnum >= 0 \
101 && (regnum) >= (tdep)->ppc_vsr0_regnum \
102 && (regnum) < (tdep)->ppc_vsr0_regnum + ppc_num_vsrs)
103
104 /* Determine if regnum is a POWER7 Extended FP register. */
105 #define IS_EFP_PSEUDOREG(tdep, regnum) ((tdep)->ppc_efpr0_regnum >= 0 \
106 && (regnum) >= (tdep)->ppc_efpr0_regnum \
107 && (regnum) < (tdep)->ppc_efpr0_regnum + ppc_num_efprs)
108
109 /* Holds the current set of options to be passed to the disassembler. */
110 static char *powerpc_disassembler_options;
111
112 /* The list of available "set powerpc ..." and "show powerpc ..."
113 commands. */
114 static struct cmd_list_element *setpowerpccmdlist = NULL;
115 static struct cmd_list_element *showpowerpccmdlist = NULL;
116
117 static enum auto_boolean powerpc_soft_float_global = AUTO_BOOLEAN_AUTO;
118
119 /* The vector ABI to use. Keep this in sync with powerpc_vector_abi. */
120 static const char *const powerpc_vector_strings[] =
121 {
122 "auto",
123 "generic",
124 "altivec",
125 "spe",
126 NULL
127 };
128
129 /* A variable that can be configured by the user. */
130 static enum powerpc_vector_abi powerpc_vector_abi_global = POWERPC_VEC_AUTO;
131 static const char *powerpc_vector_abi_string = "auto";
132
133 /* To be used by skip_prologue. */
134
135 struct rs6000_framedata
136 {
137 int offset; /* total size of frame --- the distance
138 by which we decrement sp to allocate
139 the frame */
140 int saved_gpr; /* smallest # of saved gpr */
141 unsigned int gpr_mask; /* Each bit is an individual saved GPR. */
142 int saved_fpr; /* smallest # of saved fpr */
143 int saved_vr; /* smallest # of saved vr */
144 int saved_ev; /* smallest # of saved ev */
145 int alloca_reg; /* alloca register number (frame ptr) */
146 char frameless; /* true if frameless functions. */
147 char nosavedpc; /* true if pc not saved. */
148 char used_bl; /* true if link register clobbered */
149 int gpr_offset; /* offset of saved gprs from prev sp */
150 int fpr_offset; /* offset of saved fprs from prev sp */
151 int vr_offset; /* offset of saved vrs from prev sp */
152 int ev_offset; /* offset of saved evs from prev sp */
153 int lr_offset; /* offset of saved lr */
154 int lr_register; /* register of saved lr, if trustworthy */
155 int cr_offset; /* offset of saved cr */
156 int vrsave_offset; /* offset of saved vrsave register */
157 };
158
159
160 /* Is REGNO a VSX register? Return 1 if so, 0 otherwise. */
161 int
162 vsx_register_p (struct gdbarch *gdbarch, int regno)
163 {
164 struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch);
165 if (tdep->ppc_vsr0_regnum < 0)
166 return 0;
167 else
168 return (regno >= tdep->ppc_vsr0_upper_regnum && regno
169 <= tdep->ppc_vsr0_upper_regnum + 31);
170 }
171
172 /* Is REGNO an AltiVec register? Return 1 if so, 0 otherwise. */
173 int
174 altivec_register_p (struct gdbarch *gdbarch, int regno)
175 {
176 struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch);
177 if (tdep->ppc_vr0_regnum < 0 || tdep->ppc_vrsave_regnum < 0)
178 return 0;
179 else
180 return (regno >= tdep->ppc_vr0_regnum && regno <= tdep->ppc_vrsave_regnum);
181 }
182
183
184 /* Return true if REGNO is an SPE register, false otherwise. */
185 int
186 spe_register_p (struct gdbarch *gdbarch, int regno)
187 {
188 struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch);
189
190 /* Is it a reference to EV0 -- EV31, and do we have those? */
191 if (IS_SPE_PSEUDOREG (tdep, regno))
192 return 1;
193
194 /* Is it a reference to one of the raw upper GPR halves? */
195 if (tdep->ppc_ev0_upper_regnum >= 0
196 && tdep->ppc_ev0_upper_regnum <= regno
197 && regno < tdep->ppc_ev0_upper_regnum + ppc_num_gprs)
198 return 1;
199
200 /* Is it a reference to the 64-bit accumulator, and do we have that? */
201 if (tdep->ppc_acc_regnum >= 0
202 && tdep->ppc_acc_regnum == regno)
203 return 1;
204
205 /* Is it a reference to the SPE floating-point status and control register,
206 and do we have that? */
207 if (tdep->ppc_spefscr_regnum >= 0
208 && tdep->ppc_spefscr_regnum == regno)
209 return 1;
210
211 return 0;
212 }
213
214
215 /* Return non-zero if the architecture described by GDBARCH has
216 floating-point registers (f0 --- f31 and fpscr). */
217 int
218 ppc_floating_point_unit_p (struct gdbarch *gdbarch)
219 {
220 struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch);
221
222 return (tdep->ppc_fp0_regnum >= 0
223 && tdep->ppc_fpscr_regnum >= 0);
224 }
225
226 /* Return non-zero if the architecture described by GDBARCH has
227 VSX registers (vsr0 --- vsr63). */
228 static int
229 ppc_vsx_support_p (struct gdbarch *gdbarch)
230 {
231 struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch);
232
233 return tdep->ppc_vsr0_regnum >= 0;
234 }
235
236 /* Return non-zero if the architecture described by GDBARCH has
237 Altivec registers (vr0 --- vr31, vrsave and vscr). */
238 int
239 ppc_altivec_support_p (struct gdbarch *gdbarch)
240 {
241 struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch);
242
243 return (tdep->ppc_vr0_regnum >= 0
244 && tdep->ppc_vrsave_regnum >= 0);
245 }
246
247 /* Check that TABLE[GDB_REGNO] is not already initialized, and then
248 set it to SIM_REGNO.
249
250 This is a helper function for init_sim_regno_table, constructing
251 the table mapping GDB register numbers to sim register numbers; we
252 initialize every element in that table to -1 before we start
253 filling it in. */
254 static void
255 set_sim_regno (int *table, int gdb_regno, int sim_regno)
256 {
257 /* Make sure we don't try to assign any given GDB register a sim
258 register number more than once. */
259 gdb_assert (table[gdb_regno] == -1);
260 table[gdb_regno] = sim_regno;
261 }
262
263
264 /* Initialize ARCH->tdep->sim_regno, the table mapping GDB register
265 numbers to simulator register numbers, based on the values placed
266 in the ARCH->tdep->ppc_foo_regnum members. */
267 static void
268 init_sim_regno_table (struct gdbarch *arch)
269 {
270 struct gdbarch_tdep *tdep = gdbarch_tdep (arch);
271 int total_regs = gdbarch_num_regs (arch);
272 int *sim_regno = GDBARCH_OBSTACK_CALLOC (arch, total_regs, int);
273 int i;
274 static const char *const segment_regs[] = {
275 "sr0", "sr1", "sr2", "sr3", "sr4", "sr5", "sr6", "sr7",
276 "sr8", "sr9", "sr10", "sr11", "sr12", "sr13", "sr14", "sr15"
277 };
278
279 /* Presume that all registers not explicitly mentioned below are
280 unavailable from the sim. */
281 for (i = 0; i < total_regs; i++)
282 sim_regno[i] = -1;
283
284 /* General-purpose registers. */
285 for (i = 0; i < ppc_num_gprs; i++)
286 set_sim_regno (sim_regno, tdep->ppc_gp0_regnum + i, sim_ppc_r0_regnum + i);
287
288 /* Floating-point registers. */
289 if (tdep->ppc_fp0_regnum >= 0)
290 for (i = 0; i < ppc_num_fprs; i++)
291 set_sim_regno (sim_regno,
292 tdep->ppc_fp0_regnum + i,
293 sim_ppc_f0_regnum + i);
294 if (tdep->ppc_fpscr_regnum >= 0)
295 set_sim_regno (sim_regno, tdep->ppc_fpscr_regnum, sim_ppc_fpscr_regnum);
296
297 set_sim_regno (sim_regno, gdbarch_pc_regnum (arch), sim_ppc_pc_regnum);
298 set_sim_regno (sim_regno, tdep->ppc_ps_regnum, sim_ppc_ps_regnum);
299 set_sim_regno (sim_regno, tdep->ppc_cr_regnum, sim_ppc_cr_regnum);
300
301 /* Segment registers. */
302 for (i = 0; i < ppc_num_srs; i++)
303 {
304 int gdb_regno;
305
306 gdb_regno = user_reg_map_name_to_regnum (arch, segment_regs[i], -1);
307 if (gdb_regno >= 0)
308 set_sim_regno (sim_regno, gdb_regno, sim_ppc_sr0_regnum + i);
309 }
310
311 /* Altivec registers. */
312 if (tdep->ppc_vr0_regnum >= 0)
313 {
314 for (i = 0; i < ppc_num_vrs; i++)
315 set_sim_regno (sim_regno,
316 tdep->ppc_vr0_regnum + i,
317 sim_ppc_vr0_regnum + i);
318
319 /* FIXME: jimb/2004-07-15: when we have tdep->ppc_vscr_regnum,
320 we can treat this more like the other cases. */
321 set_sim_regno (sim_regno,
322 tdep->ppc_vr0_regnum + ppc_num_vrs,
323 sim_ppc_vscr_regnum);
324 }
325 /* vsave is a special-purpose register, so the code below handles it. */
326
327 /* SPE APU (E500) registers. */
328 if (tdep->ppc_ev0_upper_regnum >= 0)
329 for (i = 0; i < ppc_num_gprs; i++)
330 set_sim_regno (sim_regno,
331 tdep->ppc_ev0_upper_regnum + i,
332 sim_ppc_rh0_regnum + i);
333 if (tdep->ppc_acc_regnum >= 0)
334 set_sim_regno (sim_regno, tdep->ppc_acc_regnum, sim_ppc_acc_regnum);
335 /* spefscr is a special-purpose register, so the code below handles it. */
336
337 #ifdef WITH_PPC_SIM
338 /* Now handle all special-purpose registers. Verify that they
339 haven't mistakenly been assigned numbers by any of the above
340 code. */
341 for (i = 0; i < sim_ppc_num_sprs; i++)
342 {
343 const char *spr_name = sim_spr_register_name (i);
344 int gdb_regno = -1;
345
346 if (spr_name != NULL)
347 gdb_regno = user_reg_map_name_to_regnum (arch, spr_name, -1);
348
349 if (gdb_regno != -1)
350 set_sim_regno (sim_regno, gdb_regno, sim_ppc_spr0_regnum + i);
351 }
352 #endif
353
354 /* Drop the initialized array into place. */
355 tdep->sim_regno = sim_regno;
356 }
357
358
359 /* Given a GDB register number REG, return the corresponding SIM
360 register number. */
361 static int
362 rs6000_register_sim_regno (struct gdbarch *gdbarch, int reg)
363 {
364 struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch);
365 int sim_regno;
366
367 if (tdep->sim_regno == NULL)
368 init_sim_regno_table (gdbarch);
369
370 gdb_assert (0 <= reg
371 && reg <= gdbarch_num_regs (gdbarch)
372 + gdbarch_num_pseudo_regs (gdbarch));
373 sim_regno = tdep->sim_regno[reg];
374
375 if (sim_regno >= 0)
376 return sim_regno;
377 else
378 return LEGACY_SIM_REGNO_IGNORE;
379 }
380
381 \f
382
383 /* Register set support functions. */
384
385 /* REGS + OFFSET contains register REGNUM in a field REGSIZE wide.
386 Write the register to REGCACHE. */
387
388 void
389 ppc_supply_reg (struct regcache *regcache, int regnum,
390 const gdb_byte *regs, size_t offset, int regsize)
391 {
392 if (regnum != -1 && offset != -1)
393 {
394 if (regsize > 4)
395 {
396 struct gdbarch *gdbarch = get_regcache_arch (regcache);
397 int gdb_regsize = register_size (gdbarch, regnum);
398 if (gdb_regsize < regsize
399 && gdbarch_byte_order (gdbarch) == BFD_ENDIAN_BIG)
400 offset += regsize - gdb_regsize;
401 }
402 regcache_raw_supply (regcache, regnum, regs + offset);
403 }
404 }
405
406 /* Read register REGNUM from REGCACHE and store to REGS + OFFSET
407 in a field REGSIZE wide. Zero pad as necessary. */
408
409 void
410 ppc_collect_reg (const struct regcache *regcache, int regnum,
411 gdb_byte *regs, size_t offset, int regsize)
412 {
413 if (regnum != -1 && offset != -1)
414 {
415 if (regsize > 4)
416 {
417 struct gdbarch *gdbarch = get_regcache_arch (regcache);
418 int gdb_regsize = register_size (gdbarch, regnum);
419 if (gdb_regsize < regsize)
420 {
421 if (gdbarch_byte_order (gdbarch) == BFD_ENDIAN_BIG)
422 {
423 memset (regs + offset, 0, regsize - gdb_regsize);
424 offset += regsize - gdb_regsize;
425 }
426 else
427 memset (regs + offset + regsize - gdb_regsize, 0,
428 regsize - gdb_regsize);
429 }
430 }
431 regcache_raw_collect (regcache, regnum, regs + offset);
432 }
433 }
434
435 static int
436 ppc_greg_offset (struct gdbarch *gdbarch,
437 struct gdbarch_tdep *tdep,
438 const struct ppc_reg_offsets *offsets,
439 int regnum,
440 int *regsize)
441 {
442 *regsize = offsets->gpr_size;
443 if (regnum >= tdep->ppc_gp0_regnum
444 && regnum < tdep->ppc_gp0_regnum + ppc_num_gprs)
445 return (offsets->r0_offset
446 + (regnum - tdep->ppc_gp0_regnum) * offsets->gpr_size);
447
448 if (regnum == gdbarch_pc_regnum (gdbarch))
449 return offsets->pc_offset;
450
451 if (regnum == tdep->ppc_ps_regnum)
452 return offsets->ps_offset;
453
454 if (regnum == tdep->ppc_lr_regnum)
455 return offsets->lr_offset;
456
457 if (regnum == tdep->ppc_ctr_regnum)
458 return offsets->ctr_offset;
459
460 *regsize = offsets->xr_size;
461 if (regnum == tdep->ppc_cr_regnum)
462 return offsets->cr_offset;
463
464 if (regnum == tdep->ppc_xer_regnum)
465 return offsets->xer_offset;
466
467 if (regnum == tdep->ppc_mq_regnum)
468 return offsets->mq_offset;
469
470 return -1;
471 }
472
473 static int
474 ppc_fpreg_offset (struct gdbarch_tdep *tdep,
475 const struct ppc_reg_offsets *offsets,
476 int regnum)
477 {
478 if (regnum >= tdep->ppc_fp0_regnum
479 && regnum < tdep->ppc_fp0_regnum + ppc_num_fprs)
480 return offsets->f0_offset + (regnum - tdep->ppc_fp0_regnum) * 8;
481
482 if (regnum == tdep->ppc_fpscr_regnum)
483 return offsets->fpscr_offset;
484
485 return -1;
486 }
487
488 static int
489 ppc_vrreg_offset (struct gdbarch_tdep *tdep,
490 const struct ppc_reg_offsets *offsets,
491 int regnum)
492 {
493 if (regnum >= tdep->ppc_vr0_regnum
494 && regnum < tdep->ppc_vr0_regnum + ppc_num_vrs)
495 return offsets->vr0_offset + (regnum - tdep->ppc_vr0_regnum) * 16;
496
497 if (regnum == tdep->ppc_vrsave_regnum - 1)
498 return offsets->vscr_offset;
499
500 if (regnum == tdep->ppc_vrsave_regnum)
501 return offsets->vrsave_offset;
502
503 return -1;
504 }
505
506 /* Supply register REGNUM in the general-purpose register set REGSET
507 from the buffer specified by GREGS and LEN to register cache
508 REGCACHE. If REGNUM is -1, do this for all registers in REGSET. */
509
510 void
511 ppc_supply_gregset (const struct regset *regset, struct regcache *regcache,
512 int regnum, const void *gregs, size_t len)
513 {
514 struct gdbarch *gdbarch = get_regcache_arch (regcache);
515 struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch);
516 const struct ppc_reg_offsets *offsets
517 = (const struct ppc_reg_offsets *) regset->regmap;
518 size_t offset;
519 int regsize;
520
521 if (regnum == -1)
522 {
523 int i;
524 int gpr_size = offsets->gpr_size;
525
526 for (i = tdep->ppc_gp0_regnum, offset = offsets->r0_offset;
527 i < tdep->ppc_gp0_regnum + ppc_num_gprs;
528 i++, offset += gpr_size)
529 ppc_supply_reg (regcache, i, (const gdb_byte *) gregs, offset,
530 gpr_size);
531
532 ppc_supply_reg (regcache, gdbarch_pc_regnum (gdbarch),
533 (const gdb_byte *) gregs, offsets->pc_offset, gpr_size);
534 ppc_supply_reg (regcache, tdep->ppc_ps_regnum,
535 (const gdb_byte *) gregs, offsets->ps_offset, gpr_size);
536 ppc_supply_reg (regcache, tdep->ppc_lr_regnum,
537 (const gdb_byte *) gregs, offsets->lr_offset, gpr_size);
538 ppc_supply_reg (regcache, tdep->ppc_ctr_regnum,
539 (const gdb_byte *) gregs, offsets->ctr_offset, gpr_size);
540 ppc_supply_reg (regcache, tdep->ppc_cr_regnum,
541 (const gdb_byte *) gregs, offsets->cr_offset,
542 offsets->xr_size);
543 ppc_supply_reg (regcache, tdep->ppc_xer_regnum,
544 (const gdb_byte *) gregs, offsets->xer_offset,
545 offsets->xr_size);
546 ppc_supply_reg (regcache, tdep->ppc_mq_regnum,
547 (const gdb_byte *) gregs, offsets->mq_offset,
548 offsets->xr_size);
549 return;
550 }
551
552 offset = ppc_greg_offset (gdbarch, tdep, offsets, regnum, &regsize);
553 ppc_supply_reg (regcache, regnum, (const gdb_byte *) gregs, offset, regsize);
554 }
555
556 /* Supply register REGNUM in the floating-point register set REGSET
557 from the buffer specified by FPREGS and LEN to register cache
558 REGCACHE. If REGNUM is -1, do this for all registers in REGSET. */
559
560 void
561 ppc_supply_fpregset (const struct regset *regset, struct regcache *regcache,
562 int regnum, const void *fpregs, size_t len)
563 {
564 struct gdbarch *gdbarch = get_regcache_arch (regcache);
565 struct gdbarch_tdep *tdep;
566 const struct ppc_reg_offsets *offsets;
567 size_t offset;
568
569 if (!ppc_floating_point_unit_p (gdbarch))
570 return;
571
572 tdep = gdbarch_tdep (gdbarch);
573 offsets = (const struct ppc_reg_offsets *) regset->regmap;
574 if (regnum == -1)
575 {
576 int i;
577
578 for (i = tdep->ppc_fp0_regnum, offset = offsets->f0_offset;
579 i < tdep->ppc_fp0_regnum + ppc_num_fprs;
580 i++, offset += 8)
581 ppc_supply_reg (regcache, i, (const gdb_byte *) fpregs, offset, 8);
582
583 ppc_supply_reg (regcache, tdep->ppc_fpscr_regnum,
584 (const gdb_byte *) fpregs, offsets->fpscr_offset,
585 offsets->fpscr_size);
586 return;
587 }
588
589 offset = ppc_fpreg_offset (tdep, offsets, regnum);
590 ppc_supply_reg (regcache, regnum, (const gdb_byte *) fpregs, offset,
591 regnum == tdep->ppc_fpscr_regnum ? offsets->fpscr_size : 8);
592 }
593
594 /* Supply register REGNUM in the VSX register set REGSET
595 from the buffer specified by VSXREGS and LEN to register cache
596 REGCACHE. If REGNUM is -1, do this for all registers in REGSET. */
597
598 void
599 ppc_supply_vsxregset (const struct regset *regset, struct regcache *regcache,
600 int regnum, const void *vsxregs, size_t len)
601 {
602 struct gdbarch *gdbarch = get_regcache_arch (regcache);
603 struct gdbarch_tdep *tdep;
604
605 if (!ppc_vsx_support_p (gdbarch))
606 return;
607
608 tdep = gdbarch_tdep (gdbarch);
609
610 if (regnum == -1)
611 {
612 int i;
613
614 for (i = tdep->ppc_vsr0_upper_regnum;
615 i < tdep->ppc_vsr0_upper_regnum + 32;
616 i++)
617 ppc_supply_reg (regcache, i, (const gdb_byte *) vsxregs, 0, 8);
618
619 return;
620 }
621 else
622 ppc_supply_reg (regcache, regnum, (const gdb_byte *) vsxregs, 0, 8);
623 }
624
625 /* Supply register REGNUM in the Altivec register set REGSET
626 from the buffer specified by VRREGS and LEN to register cache
627 REGCACHE. If REGNUM is -1, do this for all registers in REGSET. */
628
629 void
630 ppc_supply_vrregset (const struct regset *regset, struct regcache *regcache,
631 int regnum, const void *vrregs, size_t len)
632 {
633 struct gdbarch *gdbarch = get_regcache_arch (regcache);
634 struct gdbarch_tdep *tdep;
635 const struct ppc_reg_offsets *offsets;
636 size_t offset;
637
638 if (!ppc_altivec_support_p (gdbarch))
639 return;
640
641 tdep = gdbarch_tdep (gdbarch);
642 offsets = (const struct ppc_reg_offsets *) regset->regmap;
643 if (regnum == -1)
644 {
645 int i;
646
647 for (i = tdep->ppc_vr0_regnum, offset = offsets->vr0_offset;
648 i < tdep->ppc_vr0_regnum + ppc_num_vrs;
649 i++, offset += 16)
650 ppc_supply_reg (regcache, i, (const gdb_byte *) vrregs, offset, 16);
651
652 ppc_supply_reg (regcache, (tdep->ppc_vrsave_regnum - 1),
653 (const gdb_byte *) vrregs, offsets->vscr_offset, 4);
654
655 ppc_supply_reg (regcache, tdep->ppc_vrsave_regnum,
656 (const gdb_byte *) vrregs, offsets->vrsave_offset, 4);
657 return;
658 }
659
660 offset = ppc_vrreg_offset (tdep, offsets, regnum);
661 if (regnum != tdep->ppc_vrsave_regnum
662 && regnum != tdep->ppc_vrsave_regnum - 1)
663 ppc_supply_reg (regcache, regnum, (const gdb_byte *) vrregs, offset, 16);
664 else
665 ppc_supply_reg (regcache, regnum,
666 (const gdb_byte *) vrregs, offset, 4);
667 }
668
669 /* Collect register REGNUM in the general-purpose register set
670 REGSET from register cache REGCACHE into the buffer specified by
671 GREGS and LEN. If REGNUM is -1, do this for all registers in
672 REGSET. */
673
674 void
675 ppc_collect_gregset (const struct regset *regset,
676 const struct regcache *regcache,
677 int regnum, void *gregs, size_t len)
678 {
679 struct gdbarch *gdbarch = get_regcache_arch (regcache);
680 struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch);
681 const struct ppc_reg_offsets *offsets
682 = (const struct ppc_reg_offsets *) regset->regmap;
683 size_t offset;
684 int regsize;
685
686 if (regnum == -1)
687 {
688 int i;
689 int gpr_size = offsets->gpr_size;
690
691 for (i = tdep->ppc_gp0_regnum, offset = offsets->r0_offset;
692 i < tdep->ppc_gp0_regnum + ppc_num_gprs;
693 i++, offset += gpr_size)
694 ppc_collect_reg (regcache, i, (gdb_byte *) gregs, offset, gpr_size);
695
696 ppc_collect_reg (regcache, gdbarch_pc_regnum (gdbarch),
697 (gdb_byte *) gregs, offsets->pc_offset, gpr_size);
698 ppc_collect_reg (regcache, tdep->ppc_ps_regnum,
699 (gdb_byte *) gregs, offsets->ps_offset, gpr_size);
700 ppc_collect_reg (regcache, tdep->ppc_lr_regnum,
701 (gdb_byte *) gregs, offsets->lr_offset, gpr_size);
702 ppc_collect_reg (regcache, tdep->ppc_ctr_regnum,
703 (gdb_byte *) gregs, offsets->ctr_offset, gpr_size);
704 ppc_collect_reg (regcache, tdep->ppc_cr_regnum,
705 (gdb_byte *) gregs, offsets->cr_offset,
706 offsets->xr_size);
707 ppc_collect_reg (regcache, tdep->ppc_xer_regnum,
708 (gdb_byte *) gregs, offsets->xer_offset,
709 offsets->xr_size);
710 ppc_collect_reg (regcache, tdep->ppc_mq_regnum,
711 (gdb_byte *) gregs, offsets->mq_offset,
712 offsets->xr_size);
713 return;
714 }
715
716 offset = ppc_greg_offset (gdbarch, tdep, offsets, regnum, &regsize);
717 ppc_collect_reg (regcache, regnum, (gdb_byte *) gregs, offset, regsize);
718 }
719
720 /* Collect register REGNUM in the floating-point register set
721 REGSET from register cache REGCACHE into the buffer specified by
722 FPREGS and LEN. If REGNUM is -1, do this for all registers in
723 REGSET. */
724
725 void
726 ppc_collect_fpregset (const struct regset *regset,
727 const struct regcache *regcache,
728 int regnum, void *fpregs, size_t len)
729 {
730 struct gdbarch *gdbarch = get_regcache_arch (regcache);
731 struct gdbarch_tdep *tdep;
732 const struct ppc_reg_offsets *offsets;
733 size_t offset;
734
735 if (!ppc_floating_point_unit_p (gdbarch))
736 return;
737
738 tdep = gdbarch_tdep (gdbarch);
739 offsets = (const struct ppc_reg_offsets *) regset->regmap;
740 if (regnum == -1)
741 {
742 int i;
743
744 for (i = tdep->ppc_fp0_regnum, offset = offsets->f0_offset;
745 i < tdep->ppc_fp0_regnum + ppc_num_fprs;
746 i++, offset += 8)
747 ppc_collect_reg (regcache, i, (gdb_byte *) fpregs, offset, 8);
748
749 ppc_collect_reg (regcache, tdep->ppc_fpscr_regnum,
750 (gdb_byte *) fpregs, offsets->fpscr_offset,
751 offsets->fpscr_size);
752 return;
753 }
754
755 offset = ppc_fpreg_offset (tdep, offsets, regnum);
756 ppc_collect_reg (regcache, regnum, (gdb_byte *) fpregs, offset,
757 regnum == tdep->ppc_fpscr_regnum ? offsets->fpscr_size : 8);
758 }
759
760 /* Collect register REGNUM in the VSX register set
761 REGSET from register cache REGCACHE into the buffer specified by
762 VSXREGS and LEN. If REGNUM is -1, do this for all registers in
763 REGSET. */
764
765 void
766 ppc_collect_vsxregset (const struct regset *regset,
767 const struct regcache *regcache,
768 int regnum, void *vsxregs, size_t len)
769 {
770 struct gdbarch *gdbarch = get_regcache_arch (regcache);
771 struct gdbarch_tdep *tdep;
772
773 if (!ppc_vsx_support_p (gdbarch))
774 return;
775
776 tdep = gdbarch_tdep (gdbarch);
777
778 if (regnum == -1)
779 {
780 int i;
781
782 for (i = tdep->ppc_vsr0_upper_regnum;
783 i < tdep->ppc_vsr0_upper_regnum + 32;
784 i++)
785 ppc_collect_reg (regcache, i, (gdb_byte *) vsxregs, 0, 8);
786
787 return;
788 }
789 else
790 ppc_collect_reg (regcache, regnum, (gdb_byte *) vsxregs, 0, 8);
791 }
792
793
794 /* Collect register REGNUM in the Altivec register set
795 REGSET from register cache REGCACHE into the buffer specified by
796 VRREGS and LEN. If REGNUM is -1, do this for all registers in
797 REGSET. */
798
799 void
800 ppc_collect_vrregset (const struct regset *regset,
801 const struct regcache *regcache,
802 int regnum, void *vrregs, size_t len)
803 {
804 struct gdbarch *gdbarch = get_regcache_arch (regcache);
805 struct gdbarch_tdep *tdep;
806 const struct ppc_reg_offsets *offsets;
807 size_t offset;
808
809 if (!ppc_altivec_support_p (gdbarch))
810 return;
811
812 tdep = gdbarch_tdep (gdbarch);
813 offsets = (const struct ppc_reg_offsets *) regset->regmap;
814 if (regnum == -1)
815 {
816 int i;
817
818 for (i = tdep->ppc_vr0_regnum, offset = offsets->vr0_offset;
819 i < tdep->ppc_vr0_regnum + ppc_num_vrs;
820 i++, offset += 16)
821 ppc_collect_reg (regcache, i, (gdb_byte *) vrregs, offset, 16);
822
823 ppc_collect_reg (regcache, (tdep->ppc_vrsave_regnum - 1),
824 (gdb_byte *) vrregs, offsets->vscr_offset, 4);
825
826 ppc_collect_reg (regcache, tdep->ppc_vrsave_regnum,
827 (gdb_byte *) vrregs, offsets->vrsave_offset, 4);
828 return;
829 }
830
831 offset = ppc_vrreg_offset (tdep, offsets, regnum);
832 if (regnum != tdep->ppc_vrsave_regnum
833 && regnum != tdep->ppc_vrsave_regnum - 1)
834 ppc_collect_reg (regcache, regnum, (gdb_byte *) vrregs, offset, 16);
835 else
836 ppc_collect_reg (regcache, regnum,
837 (gdb_byte *) vrregs, offset, 4);
838 }
839 \f
840
841 static int
842 insn_changes_sp_or_jumps (unsigned long insn)
843 {
844 int opcode = (insn >> 26) & 0x03f;
845 int sd = (insn >> 21) & 0x01f;
846 int a = (insn >> 16) & 0x01f;
847 int subcode = (insn >> 1) & 0x3ff;
848
849 /* Changes the stack pointer. */
850
851 /* NOTE: There are many ways to change the value of a given register.
852 The ways below are those used when the register is R1, the SP,
853 in a funtion's epilogue. */
854
855 if (opcode == 31 && subcode == 444 && a == 1)
856 return 1; /* mr R1,Rn */
857 if (opcode == 14 && sd == 1)
858 return 1; /* addi R1,Rn,simm */
859 if (opcode == 58 && sd == 1)
860 return 1; /* ld R1,ds(Rn) */
861
862 /* Transfers control. */
863
864 if (opcode == 18)
865 return 1; /* b */
866 if (opcode == 16)
867 return 1; /* bc */
868 if (opcode == 19 && subcode == 16)
869 return 1; /* bclr */
870 if (opcode == 19 && subcode == 528)
871 return 1; /* bcctr */
872
873 return 0;
874 }
875
876 /* Return true if we are in the function's epilogue, i.e. after the
877 instruction that destroyed the function's stack frame.
878
879 1) scan forward from the point of execution:
880 a) If you find an instruction that modifies the stack pointer
881 or transfers control (except a return), execution is not in
882 an epilogue, return.
883 b) Stop scanning if you find a return instruction or reach the
884 end of the function or reach the hard limit for the size of
885 an epilogue.
886 2) scan backward from the point of execution:
887 a) If you find an instruction that modifies the stack pointer,
888 execution *is* in an epilogue, return.
889 b) Stop scanning if you reach an instruction that transfers
890 control or the beginning of the function or reach the hard
891 limit for the size of an epilogue. */
892
893 static int
894 rs6000_in_function_epilogue_frame_p (struct frame_info *curfrm,
895 struct gdbarch *gdbarch, CORE_ADDR pc)
896 {
897 struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch);
898 enum bfd_endian byte_order = gdbarch_byte_order (gdbarch);
899 bfd_byte insn_buf[PPC_INSN_SIZE];
900 CORE_ADDR scan_pc, func_start, func_end, epilogue_start, epilogue_end;
901 unsigned long insn;
902
903 /* Find the search limits based on function boundaries and hard limit. */
904
905 if (!find_pc_partial_function (pc, NULL, &func_start, &func_end))
906 return 0;
907
908 epilogue_start = pc - PPC_MAX_EPILOGUE_INSTRUCTIONS * PPC_INSN_SIZE;
909 if (epilogue_start < func_start) epilogue_start = func_start;
910
911 epilogue_end = pc + PPC_MAX_EPILOGUE_INSTRUCTIONS * PPC_INSN_SIZE;
912 if (epilogue_end > func_end) epilogue_end = func_end;
913
914 /* Scan forward until next 'blr'. */
915
916 for (scan_pc = pc; scan_pc < epilogue_end; scan_pc += PPC_INSN_SIZE)
917 {
918 if (!safe_frame_unwind_memory (curfrm, scan_pc, insn_buf, PPC_INSN_SIZE))
919 return 0;
920 insn = extract_unsigned_integer (insn_buf, PPC_INSN_SIZE, byte_order);
921 if (insn == 0x4e800020)
922 break;
923 /* Assume a bctr is a tail call unless it points strictly within
924 this function. */
925 if (insn == 0x4e800420)
926 {
927 CORE_ADDR ctr = get_frame_register_unsigned (curfrm,
928 tdep->ppc_ctr_regnum);
929 if (ctr > func_start && ctr < func_end)
930 return 0;
931 else
932 break;
933 }
934 if (insn_changes_sp_or_jumps (insn))
935 return 0;
936 }
937
938 /* Scan backward until adjustment to stack pointer (R1). */
939
940 for (scan_pc = pc - PPC_INSN_SIZE;
941 scan_pc >= epilogue_start;
942 scan_pc -= PPC_INSN_SIZE)
943 {
944 if (!safe_frame_unwind_memory (curfrm, scan_pc, insn_buf, PPC_INSN_SIZE))
945 return 0;
946 insn = extract_unsigned_integer (insn_buf, PPC_INSN_SIZE, byte_order);
947 if (insn_changes_sp_or_jumps (insn))
948 return 1;
949 }
950
951 return 0;
952 }
953
954 /* Implement the stack_frame_destroyed_p gdbarch method. */
955
956 static int
957 rs6000_stack_frame_destroyed_p (struct gdbarch *gdbarch, CORE_ADDR pc)
958 {
959 return rs6000_in_function_epilogue_frame_p (get_current_frame (),
960 gdbarch, pc);
961 }
962
963 /* Get the ith function argument for the current function. */
964 static CORE_ADDR
965 rs6000_fetch_pointer_argument (struct frame_info *frame, int argi,
966 struct type *type)
967 {
968 return get_frame_register_unsigned (frame, 3 + argi);
969 }
970
971 /* Sequence of bytes for breakpoint instruction. */
972
973 constexpr gdb_byte big_breakpoint[] = { 0x7d, 0x82, 0x10, 0x08 };
974 constexpr gdb_byte little_breakpoint[] = { 0x08, 0x10, 0x82, 0x7d };
975
976 typedef BP_MANIPULATION_ENDIAN (little_breakpoint, big_breakpoint)
977 rs6000_breakpoint;
978
979 /* Instruction masks for displaced stepping. */
980 #define BRANCH_MASK 0xfc000000
981 #define BP_MASK 0xFC0007FE
982 #define B_INSN 0x48000000
983 #define BC_INSN 0x40000000
984 #define BXL_INSN 0x4c000000
985 #define BP_INSN 0x7C000008
986
987 /* Instruction masks used during single-stepping of atomic
988 sequences. */
989 #define LOAD_AND_RESERVE_MASK 0xfc0007fe
990 #define LWARX_INSTRUCTION 0x7c000028
991 #define LDARX_INSTRUCTION 0x7c0000A8
992 #define LBARX_INSTRUCTION 0x7c000068
993 #define LHARX_INSTRUCTION 0x7c0000e8
994 #define LQARX_INSTRUCTION 0x7c000228
995 #define STORE_CONDITIONAL_MASK 0xfc0007ff
996 #define STWCX_INSTRUCTION 0x7c00012d
997 #define STDCX_INSTRUCTION 0x7c0001ad
998 #define STBCX_INSTRUCTION 0x7c00056d
999 #define STHCX_INSTRUCTION 0x7c0005ad
1000 #define STQCX_INSTRUCTION 0x7c00016d
1001
1002 /* Check if insn is one of the Load And Reserve instructions used for atomic
1003 sequences. */
1004 #define IS_LOAD_AND_RESERVE_INSN(insn) ((insn & LOAD_AND_RESERVE_MASK) == LWARX_INSTRUCTION \
1005 || (insn & LOAD_AND_RESERVE_MASK) == LDARX_INSTRUCTION \
1006 || (insn & LOAD_AND_RESERVE_MASK) == LBARX_INSTRUCTION \
1007 || (insn & LOAD_AND_RESERVE_MASK) == LHARX_INSTRUCTION \
1008 || (insn & LOAD_AND_RESERVE_MASK) == LQARX_INSTRUCTION)
1009 /* Check if insn is one of the Store Conditional instructions used for atomic
1010 sequences. */
1011 #define IS_STORE_CONDITIONAL_INSN(insn) ((insn & STORE_CONDITIONAL_MASK) == STWCX_INSTRUCTION \
1012 || (insn & STORE_CONDITIONAL_MASK) == STDCX_INSTRUCTION \
1013 || (insn & STORE_CONDITIONAL_MASK) == STBCX_INSTRUCTION \
1014 || (insn & STORE_CONDITIONAL_MASK) == STHCX_INSTRUCTION \
1015 || (insn & STORE_CONDITIONAL_MASK) == STQCX_INSTRUCTION)
1016
1017 /* We can't displaced step atomic sequences. */
1018
1019 static struct displaced_step_closure *
1020 ppc_displaced_step_copy_insn (struct gdbarch *gdbarch,
1021 CORE_ADDR from, CORE_ADDR to,
1022 struct regcache *regs)
1023 {
1024 size_t len = gdbarch_max_insn_length (gdbarch);
1025 gdb_byte *buf = (gdb_byte *) xmalloc (len);
1026 struct cleanup *old_chain = make_cleanup (xfree, buf);
1027 enum bfd_endian byte_order = gdbarch_byte_order (gdbarch);
1028 int insn;
1029
1030 read_memory (from, buf, len);
1031
1032 insn = extract_signed_integer (buf, PPC_INSN_SIZE, byte_order);
1033
1034 /* Assume all atomic sequences start with a Load and Reserve instruction. */
1035 if (IS_LOAD_AND_RESERVE_INSN (insn))
1036 {
1037 if (debug_displaced)
1038 {
1039 fprintf_unfiltered (gdb_stdlog,
1040 "displaced: can't displaced step "
1041 "atomic sequence at %s\n",
1042 paddress (gdbarch, from));
1043 }
1044 do_cleanups (old_chain);
1045 return NULL;
1046 }
1047
1048 write_memory (to, buf, len);
1049
1050 if (debug_displaced)
1051 {
1052 fprintf_unfiltered (gdb_stdlog, "displaced: copy %s->%s: ",
1053 paddress (gdbarch, from), paddress (gdbarch, to));
1054 displaced_step_dump_bytes (gdb_stdlog, buf, len);
1055 }
1056
1057 discard_cleanups (old_chain);
1058 return (struct displaced_step_closure *) buf;
1059 }
1060
1061 /* Fix up the state of registers and memory after having single-stepped
1062 a displaced instruction. */
1063 static void
1064 ppc_displaced_step_fixup (struct gdbarch *gdbarch,
1065 struct displaced_step_closure *closure,
1066 CORE_ADDR from, CORE_ADDR to,
1067 struct regcache *regs)
1068 {
1069 enum bfd_endian byte_order = gdbarch_byte_order (gdbarch);
1070 /* Our closure is a copy of the instruction. */
1071 ULONGEST insn = extract_unsigned_integer ((gdb_byte *) closure,
1072 PPC_INSN_SIZE, byte_order);
1073 ULONGEST opcode = 0;
1074 /* Offset for non PC-relative instructions. */
1075 LONGEST offset = PPC_INSN_SIZE;
1076
1077 opcode = insn & BRANCH_MASK;
1078
1079 if (debug_displaced)
1080 fprintf_unfiltered (gdb_stdlog,
1081 "displaced: (ppc) fixup (%s, %s)\n",
1082 paddress (gdbarch, from), paddress (gdbarch, to));
1083
1084
1085 /* Handle PC-relative branch instructions. */
1086 if (opcode == B_INSN || opcode == BC_INSN || opcode == BXL_INSN)
1087 {
1088 ULONGEST current_pc;
1089
1090 /* Read the current PC value after the instruction has been executed
1091 in a displaced location. Calculate the offset to be applied to the
1092 original PC value before the displaced stepping. */
1093 regcache_cooked_read_unsigned (regs, gdbarch_pc_regnum (gdbarch),
1094 &current_pc);
1095 offset = current_pc - to;
1096
1097 if (opcode != BXL_INSN)
1098 {
1099 /* Check for AA bit indicating whether this is an absolute
1100 addressing or PC-relative (1: absolute, 0: relative). */
1101 if (!(insn & 0x2))
1102 {
1103 /* PC-relative addressing is being used in the branch. */
1104 if (debug_displaced)
1105 fprintf_unfiltered
1106 (gdb_stdlog,
1107 "displaced: (ppc) branch instruction: %s\n"
1108 "displaced: (ppc) adjusted PC from %s to %s\n",
1109 paddress (gdbarch, insn), paddress (gdbarch, current_pc),
1110 paddress (gdbarch, from + offset));
1111
1112 regcache_cooked_write_unsigned (regs,
1113 gdbarch_pc_regnum (gdbarch),
1114 from + offset);
1115 }
1116 }
1117 else
1118 {
1119 /* If we're here, it means we have a branch to LR or CTR. If the
1120 branch was taken, the offset is probably greater than 4 (the next
1121 instruction), so it's safe to assume that an offset of 4 means we
1122 did not take the branch. */
1123 if (offset == PPC_INSN_SIZE)
1124 regcache_cooked_write_unsigned (regs, gdbarch_pc_regnum (gdbarch),
1125 from + PPC_INSN_SIZE);
1126 }
1127
1128 /* Check for LK bit indicating whether we should set the link
1129 register to point to the next instruction
1130 (1: Set, 0: Don't set). */
1131 if (insn & 0x1)
1132 {
1133 /* Link register needs to be set to the next instruction's PC. */
1134 regcache_cooked_write_unsigned (regs,
1135 gdbarch_tdep (gdbarch)->ppc_lr_regnum,
1136 from + PPC_INSN_SIZE);
1137 if (debug_displaced)
1138 fprintf_unfiltered (gdb_stdlog,
1139 "displaced: (ppc) adjusted LR to %s\n",
1140 paddress (gdbarch, from + PPC_INSN_SIZE));
1141
1142 }
1143 }
1144 /* Check for breakpoints in the inferior. If we've found one, place the PC
1145 right at the breakpoint instruction. */
1146 else if ((insn & BP_MASK) == BP_INSN)
1147 regcache_cooked_write_unsigned (regs, gdbarch_pc_regnum (gdbarch), from);
1148 else
1149 /* Handle any other instructions that do not fit in the categories above. */
1150 regcache_cooked_write_unsigned (regs, gdbarch_pc_regnum (gdbarch),
1151 from + offset);
1152 }
1153
1154 /* Always use hardware single-stepping to execute the
1155 displaced instruction. */
1156 static int
1157 ppc_displaced_step_hw_singlestep (struct gdbarch *gdbarch,
1158 struct displaced_step_closure *closure)
1159 {
1160 return 1;
1161 }
1162
1163 /* Checks for an atomic sequence of instructions beginning with a
1164 Load And Reserve instruction and ending with a Store Conditional
1165 instruction. If such a sequence is found, attempt to step through it.
1166 A breakpoint is placed at the end of the sequence. */
1167 std::vector<CORE_ADDR>
1168 ppc_deal_with_atomic_sequence (struct regcache *regcache)
1169 {
1170 struct gdbarch *gdbarch = get_regcache_arch (regcache);
1171 enum bfd_endian byte_order = gdbarch_byte_order (gdbarch);
1172 CORE_ADDR pc = regcache_read_pc (regcache);
1173 CORE_ADDR breaks[2] = {-1, -1};
1174 CORE_ADDR loc = pc;
1175 CORE_ADDR closing_insn; /* Instruction that closes the atomic sequence. */
1176 int insn = read_memory_integer (loc, PPC_INSN_SIZE, byte_order);
1177 int insn_count;
1178 int index;
1179 int last_breakpoint = 0; /* Defaults to 0 (no breakpoints placed). */
1180 const int atomic_sequence_length = 16; /* Instruction sequence length. */
1181 int bc_insn_count = 0; /* Conditional branch instruction count. */
1182
1183 /* Assume all atomic sequences start with a Load And Reserve instruction. */
1184 if (!IS_LOAD_AND_RESERVE_INSN (insn))
1185 return {};
1186
1187 /* Assume that no atomic sequence is longer than "atomic_sequence_length"
1188 instructions. */
1189 for (insn_count = 0; insn_count < atomic_sequence_length; ++insn_count)
1190 {
1191 loc += PPC_INSN_SIZE;
1192 insn = read_memory_integer (loc, PPC_INSN_SIZE, byte_order);
1193
1194 /* Assume that there is at most one conditional branch in the atomic
1195 sequence. If a conditional branch is found, put a breakpoint in
1196 its destination address. */
1197 if ((insn & BRANCH_MASK) == BC_INSN)
1198 {
1199 int immediate = ((insn & 0xfffc) ^ 0x8000) - 0x8000;
1200 int absolute = insn & 2;
1201
1202 if (bc_insn_count >= 1)
1203 return {}; /* More than one conditional branch found, fallback
1204 to the standard single-step code. */
1205
1206 if (absolute)
1207 breaks[1] = immediate;
1208 else
1209 breaks[1] = loc + immediate;
1210
1211 bc_insn_count++;
1212 last_breakpoint++;
1213 }
1214
1215 if (IS_STORE_CONDITIONAL_INSN (insn))
1216 break;
1217 }
1218
1219 /* Assume that the atomic sequence ends with a Store Conditional
1220 instruction. */
1221 if (!IS_STORE_CONDITIONAL_INSN (insn))
1222 return {};
1223
1224 closing_insn = loc;
1225 loc += PPC_INSN_SIZE;
1226 insn = read_memory_integer (loc, PPC_INSN_SIZE, byte_order);
1227
1228 /* Insert a breakpoint right after the end of the atomic sequence. */
1229 breaks[0] = loc;
1230
1231 /* Check for duplicated breakpoints. Check also for a breakpoint
1232 placed (branch instruction's destination) anywhere in sequence. */
1233 if (last_breakpoint
1234 && (breaks[1] == breaks[0]
1235 || (breaks[1] >= pc && breaks[1] <= closing_insn)))
1236 last_breakpoint = 0;
1237
1238 std::vector<CORE_ADDR> next_pcs;
1239
1240 for (index = 0; index <= last_breakpoint; index++)
1241 next_pcs.push_back (breaks[index]);
1242
1243 return next_pcs;
1244 }
1245
1246
1247 #define SIGNED_SHORT(x) \
1248 ((sizeof (short) == 2) \
1249 ? ((int)(short)(x)) \
1250 : ((int)((((x) & 0xffff) ^ 0x8000) - 0x8000)))
1251
1252 #define GET_SRC_REG(x) (((x) >> 21) & 0x1f)
1253
1254 /* Limit the number of skipped non-prologue instructions, as the examining
1255 of the prologue is expensive. */
1256 static int max_skip_non_prologue_insns = 10;
1257
1258 /* Return nonzero if the given instruction OP can be part of the prologue
1259 of a function and saves a parameter on the stack. FRAMEP should be
1260 set if one of the previous instructions in the function has set the
1261 Frame Pointer. */
1262
1263 static int
1264 store_param_on_stack_p (unsigned long op, int framep, int *r0_contains_arg)
1265 {
1266 /* Move parameters from argument registers to temporary register. */
1267 if ((op & 0xfc0007fe) == 0x7c000378) /* mr(.) Rx,Ry */
1268 {
1269 /* Rx must be scratch register r0. */
1270 const int rx_regno = (op >> 16) & 31;
1271 /* Ry: Only r3 - r10 are used for parameter passing. */
1272 const int ry_regno = GET_SRC_REG (op);
1273
1274 if (rx_regno == 0 && ry_regno >= 3 && ry_regno <= 10)
1275 {
1276 *r0_contains_arg = 1;
1277 return 1;
1278 }
1279 else
1280 return 0;
1281 }
1282
1283 /* Save a General Purpose Register on stack. */
1284
1285 if ((op & 0xfc1f0003) == 0xf8010000 || /* std Rx,NUM(r1) */
1286 (op & 0xfc1f0000) == 0xd8010000) /* stfd Rx,NUM(r1) */
1287 {
1288 /* Rx: Only r3 - r10 are used for parameter passing. */
1289 const int rx_regno = GET_SRC_REG (op);
1290
1291 return (rx_regno >= 3 && rx_regno <= 10);
1292 }
1293
1294 /* Save a General Purpose Register on stack via the Frame Pointer. */
1295
1296 if (framep &&
1297 ((op & 0xfc1f0000) == 0x901f0000 || /* st rx,NUM(r31) */
1298 (op & 0xfc1f0000) == 0x981f0000 || /* stb Rx,NUM(r31) */
1299 (op & 0xfc1f0000) == 0xd81f0000)) /* stfd Rx,NUM(r31) */
1300 {
1301 /* Rx: Usually, only r3 - r10 are used for parameter passing.
1302 However, the compiler sometimes uses r0 to hold an argument. */
1303 const int rx_regno = GET_SRC_REG (op);
1304
1305 return ((rx_regno >= 3 && rx_regno <= 10)
1306 || (rx_regno == 0 && *r0_contains_arg));
1307 }
1308
1309 if ((op & 0xfc1f0000) == 0xfc010000) /* frsp, fp?,NUM(r1) */
1310 {
1311 /* Only f2 - f8 are used for parameter passing. */
1312 const int src_regno = GET_SRC_REG (op);
1313
1314 return (src_regno >= 2 && src_regno <= 8);
1315 }
1316
1317 if (framep && ((op & 0xfc1f0000) == 0xfc1f0000)) /* frsp, fp?,NUM(r31) */
1318 {
1319 /* Only f2 - f8 are used for parameter passing. */
1320 const int src_regno = GET_SRC_REG (op);
1321
1322 return (src_regno >= 2 && src_regno <= 8);
1323 }
1324
1325 /* Not an insn that saves a parameter on stack. */
1326 return 0;
1327 }
1328
1329 /* Assuming that INSN is a "bl" instruction located at PC, return
1330 nonzero if the destination of the branch is a "blrl" instruction.
1331
1332 This sequence is sometimes found in certain function prologues.
1333 It allows the function to load the LR register with a value that
1334 they can use to access PIC data using PC-relative offsets. */
1335
1336 static int
1337 bl_to_blrl_insn_p (CORE_ADDR pc, int insn, enum bfd_endian byte_order)
1338 {
1339 CORE_ADDR dest;
1340 int immediate;
1341 int absolute;
1342 int dest_insn;
1343
1344 absolute = (int) ((insn >> 1) & 1);
1345 immediate = ((insn & ~3) << 6) >> 6;
1346 if (absolute)
1347 dest = immediate;
1348 else
1349 dest = pc + immediate;
1350
1351 dest_insn = read_memory_integer (dest, 4, byte_order);
1352 if ((dest_insn & 0xfc00ffff) == 0x4c000021) /* blrl */
1353 return 1;
1354
1355 return 0;
1356 }
1357
1358 /* Masks for decoding a branch-and-link (bl) instruction.
1359
1360 BL_MASK and BL_INSTRUCTION are used in combination with each other.
1361 The former is anded with the opcode in question; if the result of
1362 this masking operation is equal to BL_INSTRUCTION, then the opcode in
1363 question is a ``bl'' instruction.
1364
1365 BL_DISPLACMENT_MASK is anded with the opcode in order to extract
1366 the branch displacement. */
1367
1368 #define BL_MASK 0xfc000001
1369 #define BL_INSTRUCTION 0x48000001
1370 #define BL_DISPLACEMENT_MASK 0x03fffffc
1371
1372 static unsigned long
1373 rs6000_fetch_instruction (struct gdbarch *gdbarch, const CORE_ADDR pc)
1374 {
1375 enum bfd_endian byte_order = gdbarch_byte_order (gdbarch);
1376 gdb_byte buf[4];
1377 unsigned long op;
1378
1379 /* Fetch the instruction and convert it to an integer. */
1380 if (target_read_memory (pc, buf, 4))
1381 return 0;
1382 op = extract_unsigned_integer (buf, 4, byte_order);
1383
1384 return op;
1385 }
1386
1387 /* GCC generates several well-known sequences of instructions at the begining
1388 of each function prologue when compiling with -fstack-check. If one of
1389 such sequences starts at START_PC, then return the address of the
1390 instruction immediately past this sequence. Otherwise, return START_PC. */
1391
1392 static CORE_ADDR
1393 rs6000_skip_stack_check (struct gdbarch *gdbarch, const CORE_ADDR start_pc)
1394 {
1395 CORE_ADDR pc = start_pc;
1396 unsigned long op = rs6000_fetch_instruction (gdbarch, pc);
1397
1398 /* First possible sequence: A small number of probes.
1399 stw 0, -<some immediate>(1)
1400 [repeat this instruction any (small) number of times]. */
1401
1402 if ((op & 0xffff0000) == 0x90010000)
1403 {
1404 while ((op & 0xffff0000) == 0x90010000)
1405 {
1406 pc = pc + 4;
1407 op = rs6000_fetch_instruction (gdbarch, pc);
1408 }
1409 return pc;
1410 }
1411
1412 /* Second sequence: A probing loop.
1413 addi 12,1,-<some immediate>
1414 lis 0,-<some immediate>
1415 [possibly ori 0,0,<some immediate>]
1416 add 0,12,0
1417 cmpw 0,12,0
1418 beq 0,<disp>
1419 addi 12,12,-<some immediate>
1420 stw 0,0(12)
1421 b <disp>
1422 [possibly one last probe: stw 0,<some immediate>(12)]. */
1423
1424 while (1)
1425 {
1426 /* addi 12,1,-<some immediate> */
1427 if ((op & 0xffff0000) != 0x39810000)
1428 break;
1429
1430 /* lis 0,-<some immediate> */
1431 pc = pc + 4;
1432 op = rs6000_fetch_instruction (gdbarch, pc);
1433 if ((op & 0xffff0000) != 0x3c000000)
1434 break;
1435
1436 pc = pc + 4;
1437 op = rs6000_fetch_instruction (gdbarch, pc);
1438 /* [possibly ori 0,0,<some immediate>] */
1439 if ((op & 0xffff0000) == 0x60000000)
1440 {
1441 pc = pc + 4;
1442 op = rs6000_fetch_instruction (gdbarch, pc);
1443 }
1444 /* add 0,12,0 */
1445 if (op != 0x7c0c0214)
1446 break;
1447
1448 /* cmpw 0,12,0 */
1449 pc = pc + 4;
1450 op = rs6000_fetch_instruction (gdbarch, pc);
1451 if (op != 0x7c0c0000)
1452 break;
1453
1454 /* beq 0,<disp> */
1455 pc = pc + 4;
1456 op = rs6000_fetch_instruction (gdbarch, pc);
1457 if ((op & 0xff9f0001) != 0x41820000)
1458 break;
1459
1460 /* addi 12,12,-<some immediate> */
1461 pc = pc + 4;
1462 op = rs6000_fetch_instruction (gdbarch, pc);
1463 if ((op & 0xffff0000) != 0x398c0000)
1464 break;
1465
1466 /* stw 0,0(12) */
1467 pc = pc + 4;
1468 op = rs6000_fetch_instruction (gdbarch, pc);
1469 if (op != 0x900c0000)
1470 break;
1471
1472 /* b <disp> */
1473 pc = pc + 4;
1474 op = rs6000_fetch_instruction (gdbarch, pc);
1475 if ((op & 0xfc000001) != 0x48000000)
1476 break;
1477
1478 /* [possibly one last probe: stw 0,<some immediate>(12)]. */
1479 pc = pc + 4;
1480 op = rs6000_fetch_instruction (gdbarch, pc);
1481 if ((op & 0xffff0000) == 0x900c0000)
1482 {
1483 pc = pc + 4;
1484 op = rs6000_fetch_instruction (gdbarch, pc);
1485 }
1486
1487 /* We found a valid stack-check sequence, return the new PC. */
1488 return pc;
1489 }
1490
1491 /* Third sequence: No probe; instead, a comparizon between the stack size
1492 limit (saved in a run-time global variable) and the current stack
1493 pointer:
1494
1495 addi 0,1,-<some immediate>
1496 lis 12,__gnat_stack_limit@ha
1497 lwz 12,__gnat_stack_limit@l(12)
1498 twllt 0,12
1499
1500 or, with a small variant in the case of a bigger stack frame:
1501 addis 0,1,<some immediate>
1502 addic 0,0,-<some immediate>
1503 lis 12,__gnat_stack_limit@ha
1504 lwz 12,__gnat_stack_limit@l(12)
1505 twllt 0,12
1506 */
1507 while (1)
1508 {
1509 /* addi 0,1,-<some immediate> */
1510 if ((op & 0xffff0000) != 0x38010000)
1511 {
1512 /* small stack frame variant not recognized; try the
1513 big stack frame variant: */
1514
1515 /* addis 0,1,<some immediate> */
1516 if ((op & 0xffff0000) != 0x3c010000)
1517 break;
1518
1519 /* addic 0,0,-<some immediate> */
1520 pc = pc + 4;
1521 op = rs6000_fetch_instruction (gdbarch, pc);
1522 if ((op & 0xffff0000) != 0x30000000)
1523 break;
1524 }
1525
1526 /* lis 12,<some immediate> */
1527 pc = pc + 4;
1528 op = rs6000_fetch_instruction (gdbarch, pc);
1529 if ((op & 0xffff0000) != 0x3d800000)
1530 break;
1531
1532 /* lwz 12,<some immediate>(12) */
1533 pc = pc + 4;
1534 op = rs6000_fetch_instruction (gdbarch, pc);
1535 if ((op & 0xffff0000) != 0x818c0000)
1536 break;
1537
1538 /* twllt 0,12 */
1539 pc = pc + 4;
1540 op = rs6000_fetch_instruction (gdbarch, pc);
1541 if ((op & 0xfffffffe) != 0x7c406008)
1542 break;
1543
1544 /* We found a valid stack-check sequence, return the new PC. */
1545 return pc;
1546 }
1547
1548 /* No stack check code in our prologue, return the start_pc. */
1549 return start_pc;
1550 }
1551
1552 /* return pc value after skipping a function prologue and also return
1553 information about a function frame.
1554
1555 in struct rs6000_framedata fdata:
1556 - frameless is TRUE, if function does not have a frame.
1557 - nosavedpc is TRUE, if function does not save %pc value in its frame.
1558 - offset is the initial size of this stack frame --- the amount by
1559 which we decrement the sp to allocate the frame.
1560 - saved_gpr is the number of the first saved gpr.
1561 - saved_fpr is the number of the first saved fpr.
1562 - saved_vr is the number of the first saved vr.
1563 - saved_ev is the number of the first saved ev.
1564 - alloca_reg is the number of the register used for alloca() handling.
1565 Otherwise -1.
1566 - gpr_offset is the offset of the first saved gpr from the previous frame.
1567 - fpr_offset is the offset of the first saved fpr from the previous frame.
1568 - vr_offset is the offset of the first saved vr from the previous frame.
1569 - ev_offset is the offset of the first saved ev from the previous frame.
1570 - lr_offset is the offset of the saved lr
1571 - cr_offset is the offset of the saved cr
1572 - vrsave_offset is the offset of the saved vrsave register. */
1573
1574 static CORE_ADDR
1575 skip_prologue (struct gdbarch *gdbarch, CORE_ADDR pc, CORE_ADDR lim_pc,
1576 struct rs6000_framedata *fdata)
1577 {
1578 CORE_ADDR orig_pc = pc;
1579 CORE_ADDR last_prologue_pc = pc;
1580 CORE_ADDR li_found_pc = 0;
1581 gdb_byte buf[4];
1582 unsigned long op;
1583 long offset = 0;
1584 long vr_saved_offset = 0;
1585 int lr_reg = -1;
1586 int cr_reg = -1;
1587 int vr_reg = -1;
1588 int ev_reg = -1;
1589 long ev_offset = 0;
1590 int vrsave_reg = -1;
1591 int reg;
1592 int framep = 0;
1593 int minimal_toc_loaded = 0;
1594 int prev_insn_was_prologue_insn = 1;
1595 int num_skip_non_prologue_insns = 0;
1596 int r0_contains_arg = 0;
1597 const struct bfd_arch_info *arch_info = gdbarch_bfd_arch_info (gdbarch);
1598 struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch);
1599 enum bfd_endian byte_order = gdbarch_byte_order (gdbarch);
1600
1601 memset (fdata, 0, sizeof (struct rs6000_framedata));
1602 fdata->saved_gpr = -1;
1603 fdata->saved_fpr = -1;
1604 fdata->saved_vr = -1;
1605 fdata->saved_ev = -1;
1606 fdata->alloca_reg = -1;
1607 fdata->frameless = 1;
1608 fdata->nosavedpc = 1;
1609 fdata->lr_register = -1;
1610
1611 pc = rs6000_skip_stack_check (gdbarch, pc);
1612 if (pc >= lim_pc)
1613 pc = lim_pc;
1614
1615 for (;; pc += 4)
1616 {
1617 /* Sometimes it isn't clear if an instruction is a prologue
1618 instruction or not. When we encounter one of these ambiguous
1619 cases, we'll set prev_insn_was_prologue_insn to 0 (false).
1620 Otherwise, we'll assume that it really is a prologue instruction. */
1621 if (prev_insn_was_prologue_insn)
1622 last_prologue_pc = pc;
1623
1624 /* Stop scanning if we've hit the limit. */
1625 if (pc >= lim_pc)
1626 break;
1627
1628 prev_insn_was_prologue_insn = 1;
1629
1630 /* Fetch the instruction and convert it to an integer. */
1631 if (target_read_memory (pc, buf, 4))
1632 break;
1633 op = extract_unsigned_integer (buf, 4, byte_order);
1634
1635 if ((op & 0xfc1fffff) == 0x7c0802a6)
1636 { /* mflr Rx */
1637 /* Since shared library / PIC code, which needs to get its
1638 address at runtime, can appear to save more than one link
1639 register vis:
1640
1641 *INDENT-OFF*
1642 stwu r1,-304(r1)
1643 mflr r3
1644 bl 0xff570d0 (blrl)
1645 stw r30,296(r1)
1646 mflr r30
1647 stw r31,300(r1)
1648 stw r3,308(r1);
1649 ...
1650 *INDENT-ON*
1651
1652 remember just the first one, but skip over additional
1653 ones. */
1654 if (lr_reg == -1)
1655 lr_reg = (op & 0x03e00000) >> 21;
1656 if (lr_reg == 0)
1657 r0_contains_arg = 0;
1658 continue;
1659 }
1660 else if ((op & 0xfc1fffff) == 0x7c000026)
1661 { /* mfcr Rx */
1662 cr_reg = (op & 0x03e00000);
1663 if (cr_reg == 0)
1664 r0_contains_arg = 0;
1665 continue;
1666
1667 }
1668 else if ((op & 0xfc1f0000) == 0xd8010000)
1669 { /* stfd Rx,NUM(r1) */
1670 reg = GET_SRC_REG (op);
1671 if (fdata->saved_fpr == -1 || fdata->saved_fpr > reg)
1672 {
1673 fdata->saved_fpr = reg;
1674 fdata->fpr_offset = SIGNED_SHORT (op) + offset;
1675 }
1676 continue;
1677
1678 }
1679 else if (((op & 0xfc1f0000) == 0xbc010000) || /* stm Rx, NUM(r1) */
1680 (((op & 0xfc1f0000) == 0x90010000 || /* st rx,NUM(r1) */
1681 (op & 0xfc1f0003) == 0xf8010000) && /* std rx,NUM(r1) */
1682 (op & 0x03e00000) >= 0x01a00000)) /* rx >= r13 */
1683 {
1684
1685 reg = GET_SRC_REG (op);
1686 if ((op & 0xfc1f0000) == 0xbc010000)
1687 fdata->gpr_mask |= ~((1U << reg) - 1);
1688 else
1689 fdata->gpr_mask |= 1U << reg;
1690 if (fdata->saved_gpr == -1 || fdata->saved_gpr > reg)
1691 {
1692 fdata->saved_gpr = reg;
1693 if ((op & 0xfc1f0003) == 0xf8010000)
1694 op &= ~3UL;
1695 fdata->gpr_offset = SIGNED_SHORT (op) + offset;
1696 }
1697 continue;
1698
1699 }
1700 else if ((op & 0xffff0000) == 0x3c4c0000
1701 || (op & 0xffff0000) == 0x3c400000
1702 || (op & 0xffff0000) == 0x38420000)
1703 {
1704 /* . 0: addis 2,12,.TOC.-0b@ha
1705 . addi 2,2,.TOC.-0b@l
1706 or
1707 . lis 2,.TOC.@ha
1708 . addi 2,2,.TOC.@l
1709 used by ELFv2 global entry points to set up r2. */
1710 continue;
1711 }
1712 else if (op == 0x60000000)
1713 {
1714 /* nop */
1715 /* Allow nops in the prologue, but do not consider them to
1716 be part of the prologue unless followed by other prologue
1717 instructions. */
1718 prev_insn_was_prologue_insn = 0;
1719 continue;
1720
1721 }
1722 else if ((op & 0xffff0000) == 0x3c000000)
1723 { /* addis 0,0,NUM, used for >= 32k frames */
1724 fdata->offset = (op & 0x0000ffff) << 16;
1725 fdata->frameless = 0;
1726 r0_contains_arg = 0;
1727 continue;
1728
1729 }
1730 else if ((op & 0xffff0000) == 0x60000000)
1731 { /* ori 0,0,NUM, 2nd half of >= 32k frames */
1732 fdata->offset |= (op & 0x0000ffff);
1733 fdata->frameless = 0;
1734 r0_contains_arg = 0;
1735 continue;
1736
1737 }
1738 else if (lr_reg >= 0 &&
1739 /* std Rx, NUM(r1) || stdu Rx, NUM(r1) */
1740 (((op & 0xffff0000) == (lr_reg | 0xf8010000)) ||
1741 /* stw Rx, NUM(r1) */
1742 ((op & 0xffff0000) == (lr_reg | 0x90010000)) ||
1743 /* stwu Rx, NUM(r1) */
1744 ((op & 0xffff0000) == (lr_reg | 0x94010000))))
1745 { /* where Rx == lr */
1746 fdata->lr_offset = offset;
1747 fdata->nosavedpc = 0;
1748 /* Invalidate lr_reg, but don't set it to -1.
1749 That would mean that it had never been set. */
1750 lr_reg = -2;
1751 if ((op & 0xfc000003) == 0xf8000000 || /* std */
1752 (op & 0xfc000000) == 0x90000000) /* stw */
1753 {
1754 /* Does not update r1, so add displacement to lr_offset. */
1755 fdata->lr_offset += SIGNED_SHORT (op);
1756 }
1757 continue;
1758
1759 }
1760 else if (cr_reg >= 0 &&
1761 /* std Rx, NUM(r1) || stdu Rx, NUM(r1) */
1762 (((op & 0xffff0000) == (cr_reg | 0xf8010000)) ||
1763 /* stw Rx, NUM(r1) */
1764 ((op & 0xffff0000) == (cr_reg | 0x90010000)) ||
1765 /* stwu Rx, NUM(r1) */
1766 ((op & 0xffff0000) == (cr_reg | 0x94010000))))
1767 { /* where Rx == cr */
1768 fdata->cr_offset = offset;
1769 /* Invalidate cr_reg, but don't set it to -1.
1770 That would mean that it had never been set. */
1771 cr_reg = -2;
1772 if ((op & 0xfc000003) == 0xf8000000 ||
1773 (op & 0xfc000000) == 0x90000000)
1774 {
1775 /* Does not update r1, so add displacement to cr_offset. */
1776 fdata->cr_offset += SIGNED_SHORT (op);
1777 }
1778 continue;
1779
1780 }
1781 else if ((op & 0xfe80ffff) == 0x42800005 && lr_reg != -1)
1782 {
1783 /* bcl 20,xx,.+4 is used to get the current PC, with or without
1784 prediction bits. If the LR has already been saved, we can
1785 skip it. */
1786 continue;
1787 }
1788 else if (op == 0x48000005)
1789 { /* bl .+4 used in
1790 -mrelocatable */
1791 fdata->used_bl = 1;
1792 continue;
1793
1794 }
1795 else if (op == 0x48000004)
1796 { /* b .+4 (xlc) */
1797 break;
1798
1799 }
1800 else if ((op & 0xffff0000) == 0x3fc00000 || /* addis 30,0,foo@ha, used
1801 in V.4 -mminimal-toc */
1802 (op & 0xffff0000) == 0x3bde0000)
1803 { /* addi 30,30,foo@l */
1804 continue;
1805
1806 }
1807 else if ((op & 0xfc000001) == 0x48000001)
1808 { /* bl foo,
1809 to save fprs??? */
1810
1811 fdata->frameless = 0;
1812
1813 /* If the return address has already been saved, we can skip
1814 calls to blrl (for PIC). */
1815 if (lr_reg != -1 && bl_to_blrl_insn_p (pc, op, byte_order))
1816 {
1817 fdata->used_bl = 1;
1818 continue;
1819 }
1820
1821 /* Don't skip over the subroutine call if it is not within
1822 the first three instructions of the prologue and either
1823 we have no line table information or the line info tells
1824 us that the subroutine call is not part of the line
1825 associated with the prologue. */
1826 if ((pc - orig_pc) > 8)
1827 {
1828 struct symtab_and_line prologue_sal = find_pc_line (orig_pc, 0);
1829 struct symtab_and_line this_sal = find_pc_line (pc, 0);
1830
1831 if ((prologue_sal.line == 0)
1832 || (prologue_sal.line != this_sal.line))
1833 break;
1834 }
1835
1836 op = read_memory_integer (pc + 4, 4, byte_order);
1837
1838 /* At this point, make sure this is not a trampoline
1839 function (a function that simply calls another functions,
1840 and nothing else). If the next is not a nop, this branch
1841 was part of the function prologue. */
1842
1843 if (op == 0x4def7b82 || op == 0) /* crorc 15, 15, 15 */
1844 break; /* Don't skip over
1845 this branch. */
1846
1847 fdata->used_bl = 1;
1848 continue;
1849 }
1850 /* update stack pointer */
1851 else if ((op & 0xfc1f0000) == 0x94010000)
1852 { /* stu rX,NUM(r1) || stwu rX,NUM(r1) */
1853 fdata->frameless = 0;
1854 fdata->offset = SIGNED_SHORT (op);
1855 offset = fdata->offset;
1856 continue;
1857 }
1858 else if ((op & 0xfc1f016a) == 0x7c01016e)
1859 { /* stwux rX,r1,rY */
1860 /* No way to figure out what r1 is going to be. */
1861 fdata->frameless = 0;
1862 offset = fdata->offset;
1863 continue;
1864 }
1865 else if ((op & 0xfc1f0003) == 0xf8010001)
1866 { /* stdu rX,NUM(r1) */
1867 fdata->frameless = 0;
1868 fdata->offset = SIGNED_SHORT (op & ~3UL);
1869 offset = fdata->offset;
1870 continue;
1871 }
1872 else if ((op & 0xfc1f016a) == 0x7c01016a)
1873 { /* stdux rX,r1,rY */
1874 /* No way to figure out what r1 is going to be. */
1875 fdata->frameless = 0;
1876 offset = fdata->offset;
1877 continue;
1878 }
1879 else if ((op & 0xffff0000) == 0x38210000)
1880 { /* addi r1,r1,SIMM */
1881 fdata->frameless = 0;
1882 fdata->offset += SIGNED_SHORT (op);
1883 offset = fdata->offset;
1884 continue;
1885 }
1886 /* Load up minimal toc pointer. Do not treat an epilogue restore
1887 of r31 as a minimal TOC load. */
1888 else if (((op >> 22) == 0x20f || /* l r31,... or l r30,... */
1889 (op >> 22) == 0x3af) /* ld r31,... or ld r30,... */
1890 && !framep
1891 && !minimal_toc_loaded)
1892 {
1893 minimal_toc_loaded = 1;
1894 continue;
1895
1896 /* move parameters from argument registers to local variable
1897 registers */
1898 }
1899 else if ((op & 0xfc0007fe) == 0x7c000378 && /* mr(.) Rx,Ry */
1900 (((op >> 21) & 31) >= 3) && /* R3 >= Ry >= R10 */
1901 (((op >> 21) & 31) <= 10) &&
1902 ((long) ((op >> 16) & 31)
1903 >= fdata->saved_gpr)) /* Rx: local var reg */
1904 {
1905 continue;
1906
1907 /* store parameters in stack */
1908 }
1909 /* Move parameters from argument registers to temporary register. */
1910 else if (store_param_on_stack_p (op, framep, &r0_contains_arg))
1911 {
1912 continue;
1913
1914 /* Set up frame pointer */
1915 }
1916 else if (op == 0x603d0000) /* oril r29, r1, 0x0 */
1917 {
1918 fdata->frameless = 0;
1919 framep = 1;
1920 fdata->alloca_reg = (tdep->ppc_gp0_regnum + 29);
1921 continue;
1922
1923 /* Another way to set up the frame pointer. */
1924 }
1925 else if (op == 0x603f0000 /* oril r31, r1, 0x0 */
1926 || op == 0x7c3f0b78)
1927 { /* mr r31, r1 */
1928 fdata->frameless = 0;
1929 framep = 1;
1930 fdata->alloca_reg = (tdep->ppc_gp0_regnum + 31);
1931 continue;
1932
1933 /* Another way to set up the frame pointer. */
1934 }
1935 else if ((op & 0xfc1fffff) == 0x38010000)
1936 { /* addi rX, r1, 0x0 */
1937 fdata->frameless = 0;
1938 framep = 1;
1939 fdata->alloca_reg = (tdep->ppc_gp0_regnum
1940 + ((op & ~0x38010000) >> 21));
1941 continue;
1942 }
1943 /* AltiVec related instructions. */
1944 /* Store the vrsave register (spr 256) in another register for
1945 later manipulation, or load a register into the vrsave
1946 register. 2 instructions are used: mfvrsave and
1947 mtvrsave. They are shorthand notation for mfspr Rn, SPR256
1948 and mtspr SPR256, Rn. */
1949 /* mfspr Rn SPR256 == 011111 nnnnn 0000001000 01010100110
1950 mtspr SPR256 Rn == 011111 nnnnn 0000001000 01110100110 */
1951 else if ((op & 0xfc1fffff) == 0x7c0042a6) /* mfvrsave Rn */
1952 {
1953 vrsave_reg = GET_SRC_REG (op);
1954 continue;
1955 }
1956 else if ((op & 0xfc1fffff) == 0x7c0043a6) /* mtvrsave Rn */
1957 {
1958 continue;
1959 }
1960 /* Store the register where vrsave was saved to onto the stack:
1961 rS is the register where vrsave was stored in a previous
1962 instruction. */
1963 /* 100100 sssss 00001 dddddddd dddddddd */
1964 else if ((op & 0xfc1f0000) == 0x90010000) /* stw rS, d(r1) */
1965 {
1966 if (vrsave_reg == GET_SRC_REG (op))
1967 {
1968 fdata->vrsave_offset = SIGNED_SHORT (op) + offset;
1969 vrsave_reg = -1;
1970 }
1971 continue;
1972 }
1973 /* Compute the new value of vrsave, by modifying the register
1974 where vrsave was saved to. */
1975 else if (((op & 0xfc000000) == 0x64000000) /* oris Ra, Rs, UIMM */
1976 || ((op & 0xfc000000) == 0x60000000))/* ori Ra, Rs, UIMM */
1977 {
1978 continue;
1979 }
1980 /* li r0, SIMM (short for addi r0, 0, SIMM). This is the first
1981 in a pair of insns to save the vector registers on the
1982 stack. */
1983 /* 001110 00000 00000 iiii iiii iiii iiii */
1984 /* 001110 01110 00000 iiii iiii iiii iiii */
1985 else if ((op & 0xffff0000) == 0x38000000 /* li r0, SIMM */
1986 || (op & 0xffff0000) == 0x39c00000) /* li r14, SIMM */
1987 {
1988 if ((op & 0xffff0000) == 0x38000000)
1989 r0_contains_arg = 0;
1990 li_found_pc = pc;
1991 vr_saved_offset = SIGNED_SHORT (op);
1992
1993 /* This insn by itself is not part of the prologue, unless
1994 if part of the pair of insns mentioned above. So do not
1995 record this insn as part of the prologue yet. */
1996 prev_insn_was_prologue_insn = 0;
1997 }
1998 /* Store vector register S at (r31+r0) aligned to 16 bytes. */
1999 /* 011111 sssss 11111 00000 00111001110 */
2000 else if ((op & 0xfc1fffff) == 0x7c1f01ce) /* stvx Vs, R31, R0 */
2001 {
2002 if (pc == (li_found_pc + 4))
2003 {
2004 vr_reg = GET_SRC_REG (op);
2005 /* If this is the first vector reg to be saved, or if
2006 it has a lower number than others previously seen,
2007 reupdate the frame info. */
2008 if (fdata->saved_vr == -1 || fdata->saved_vr > vr_reg)
2009 {
2010 fdata->saved_vr = vr_reg;
2011 fdata->vr_offset = vr_saved_offset + offset;
2012 }
2013 vr_saved_offset = -1;
2014 vr_reg = -1;
2015 li_found_pc = 0;
2016 }
2017 }
2018 /* End AltiVec related instructions. */
2019
2020 /* Start BookE related instructions. */
2021 /* Store gen register S at (r31+uimm).
2022 Any register less than r13 is volatile, so we don't care. */
2023 /* 000100 sssss 11111 iiiii 01100100001 */
2024 else if (arch_info->mach == bfd_mach_ppc_e500
2025 && (op & 0xfc1f07ff) == 0x101f0321) /* evstdd Rs,uimm(R31) */
2026 {
2027 if ((op & 0x03e00000) >= 0x01a00000) /* Rs >= r13 */
2028 {
2029 unsigned int imm;
2030 ev_reg = GET_SRC_REG (op);
2031 imm = (op >> 11) & 0x1f;
2032 ev_offset = imm * 8;
2033 /* If this is the first vector reg to be saved, or if
2034 it has a lower number than others previously seen,
2035 reupdate the frame info. */
2036 if (fdata->saved_ev == -1 || fdata->saved_ev > ev_reg)
2037 {
2038 fdata->saved_ev = ev_reg;
2039 fdata->ev_offset = ev_offset + offset;
2040 }
2041 }
2042 continue;
2043 }
2044 /* Store gen register rS at (r1+rB). */
2045 /* 000100 sssss 00001 bbbbb 01100100000 */
2046 else if (arch_info->mach == bfd_mach_ppc_e500
2047 && (op & 0xffe007ff) == 0x13e00320) /* evstddx RS,R1,Rb */
2048 {
2049 if (pc == (li_found_pc + 4))
2050 {
2051 ev_reg = GET_SRC_REG (op);
2052 /* If this is the first vector reg to be saved, or if
2053 it has a lower number than others previously seen,
2054 reupdate the frame info. */
2055 /* We know the contents of rB from the previous instruction. */
2056 if (fdata->saved_ev == -1 || fdata->saved_ev > ev_reg)
2057 {
2058 fdata->saved_ev = ev_reg;
2059 fdata->ev_offset = vr_saved_offset + offset;
2060 }
2061 vr_saved_offset = -1;
2062 ev_reg = -1;
2063 li_found_pc = 0;
2064 }
2065 continue;
2066 }
2067 /* Store gen register r31 at (rA+uimm). */
2068 /* 000100 11111 aaaaa iiiii 01100100001 */
2069 else if (arch_info->mach == bfd_mach_ppc_e500
2070 && (op & 0xffe007ff) == 0x13e00321) /* evstdd R31,Ra,UIMM */
2071 {
2072 /* Wwe know that the source register is 31 already, but
2073 it can't hurt to compute it. */
2074 ev_reg = GET_SRC_REG (op);
2075 ev_offset = ((op >> 11) & 0x1f) * 8;
2076 /* If this is the first vector reg to be saved, or if
2077 it has a lower number than others previously seen,
2078 reupdate the frame info. */
2079 if (fdata->saved_ev == -1 || fdata->saved_ev > ev_reg)
2080 {
2081 fdata->saved_ev = ev_reg;
2082 fdata->ev_offset = ev_offset + offset;
2083 }
2084
2085 continue;
2086 }
2087 /* Store gen register S at (r31+r0).
2088 Store param on stack when offset from SP bigger than 4 bytes. */
2089 /* 000100 sssss 11111 00000 01100100000 */
2090 else if (arch_info->mach == bfd_mach_ppc_e500
2091 && (op & 0xfc1fffff) == 0x101f0320) /* evstddx Rs,R31,R0 */
2092 {
2093 if (pc == (li_found_pc + 4))
2094 {
2095 if ((op & 0x03e00000) >= 0x01a00000)
2096 {
2097 ev_reg = GET_SRC_REG (op);
2098 /* If this is the first vector reg to be saved, or if
2099 it has a lower number than others previously seen,
2100 reupdate the frame info. */
2101 /* We know the contents of r0 from the previous
2102 instruction. */
2103 if (fdata->saved_ev == -1 || fdata->saved_ev > ev_reg)
2104 {
2105 fdata->saved_ev = ev_reg;
2106 fdata->ev_offset = vr_saved_offset + offset;
2107 }
2108 ev_reg = -1;
2109 }
2110 vr_saved_offset = -1;
2111 li_found_pc = 0;
2112 continue;
2113 }
2114 }
2115 /* End BookE related instructions. */
2116
2117 else
2118 {
2119 unsigned int all_mask = ~((1U << fdata->saved_gpr) - 1);
2120
2121 /* Not a recognized prologue instruction.
2122 Handle optimizer code motions into the prologue by continuing
2123 the search if we have no valid frame yet or if the return
2124 address is not yet saved in the frame. Also skip instructions
2125 if some of the GPRs expected to be saved are not yet saved. */
2126 if (fdata->frameless == 0 && fdata->nosavedpc == 0
2127 && (fdata->gpr_mask & all_mask) == all_mask)
2128 break;
2129
2130 if (op == 0x4e800020 /* blr */
2131 || op == 0x4e800420) /* bctr */
2132 /* Do not scan past epilogue in frameless functions or
2133 trampolines. */
2134 break;
2135 if ((op & 0xf4000000) == 0x40000000) /* bxx */
2136 /* Never skip branches. */
2137 break;
2138
2139 if (num_skip_non_prologue_insns++ > max_skip_non_prologue_insns)
2140 /* Do not scan too many insns, scanning insns is expensive with
2141 remote targets. */
2142 break;
2143
2144 /* Continue scanning. */
2145 prev_insn_was_prologue_insn = 0;
2146 continue;
2147 }
2148 }
2149
2150 #if 0
2151 /* I have problems with skipping over __main() that I need to address
2152 * sometime. Previously, I used to use misc_function_vector which
2153 * didn't work as well as I wanted to be. -MGO */
2154
2155 /* If the first thing after skipping a prolog is a branch to a function,
2156 this might be a call to an initializer in main(), introduced by gcc2.
2157 We'd like to skip over it as well. Fortunately, xlc does some extra
2158 work before calling a function right after a prologue, thus we can
2159 single out such gcc2 behaviour. */
2160
2161
2162 if ((op & 0xfc000001) == 0x48000001)
2163 { /* bl foo, an initializer function? */
2164 op = read_memory_integer (pc + 4, 4, byte_order);
2165
2166 if (op == 0x4def7b82)
2167 { /* cror 0xf, 0xf, 0xf (nop) */
2168
2169 /* Check and see if we are in main. If so, skip over this
2170 initializer function as well. */
2171
2172 tmp = find_pc_misc_function (pc);
2173 if (tmp >= 0
2174 && strcmp (misc_function_vector[tmp].name, main_name ()) == 0)
2175 return pc + 8;
2176 }
2177 }
2178 #endif /* 0 */
2179
2180 if (pc == lim_pc && lr_reg >= 0)
2181 fdata->lr_register = lr_reg;
2182
2183 fdata->offset = -fdata->offset;
2184 return last_prologue_pc;
2185 }
2186
2187 static CORE_ADDR
2188 rs6000_skip_prologue (struct gdbarch *gdbarch, CORE_ADDR pc)
2189 {
2190 struct rs6000_framedata frame;
2191 CORE_ADDR limit_pc, func_addr, func_end_addr = 0;
2192
2193 /* See if we can determine the end of the prologue via the symbol table.
2194 If so, then return either PC, or the PC after the prologue, whichever
2195 is greater. */
2196 if (find_pc_partial_function (pc, NULL, &func_addr, &func_end_addr))
2197 {
2198 CORE_ADDR post_prologue_pc
2199 = skip_prologue_using_sal (gdbarch, func_addr);
2200 if (post_prologue_pc != 0)
2201 return std::max (pc, post_prologue_pc);
2202 }
2203
2204 /* Can't determine prologue from the symbol table, need to examine
2205 instructions. */
2206
2207 /* Find an upper limit on the function prologue using the debug
2208 information. If the debug information could not be used to provide
2209 that bound, then use an arbitrary large number as the upper bound. */
2210 limit_pc = skip_prologue_using_sal (gdbarch, pc);
2211 if (limit_pc == 0)
2212 limit_pc = pc + 100; /* Magic. */
2213
2214 /* Do not allow limit_pc to be past the function end, if we know
2215 where that end is... */
2216 if (func_end_addr && limit_pc > func_end_addr)
2217 limit_pc = func_end_addr;
2218
2219 pc = skip_prologue (gdbarch, pc, limit_pc, &frame);
2220 return pc;
2221 }
2222
2223 /* When compiling for EABI, some versions of GCC emit a call to __eabi
2224 in the prologue of main().
2225
2226 The function below examines the code pointed at by PC and checks to
2227 see if it corresponds to a call to __eabi. If so, it returns the
2228 address of the instruction following that call. Otherwise, it simply
2229 returns PC. */
2230
2231 static CORE_ADDR
2232 rs6000_skip_main_prologue (struct gdbarch *gdbarch, CORE_ADDR pc)
2233 {
2234 enum bfd_endian byte_order = gdbarch_byte_order (gdbarch);
2235 gdb_byte buf[4];
2236 unsigned long op;
2237
2238 if (target_read_memory (pc, buf, 4))
2239 return pc;
2240 op = extract_unsigned_integer (buf, 4, byte_order);
2241
2242 if ((op & BL_MASK) == BL_INSTRUCTION)
2243 {
2244 CORE_ADDR displ = op & BL_DISPLACEMENT_MASK;
2245 CORE_ADDR call_dest = pc + 4 + displ;
2246 struct bound_minimal_symbol s = lookup_minimal_symbol_by_pc (call_dest);
2247
2248 /* We check for ___eabi (three leading underscores) in addition
2249 to __eabi in case the GCC option "-fleading-underscore" was
2250 used to compile the program. */
2251 if (s.minsym != NULL
2252 && MSYMBOL_LINKAGE_NAME (s.minsym) != NULL
2253 && (strcmp (MSYMBOL_LINKAGE_NAME (s.minsym), "__eabi") == 0
2254 || strcmp (MSYMBOL_LINKAGE_NAME (s.minsym), "___eabi") == 0))
2255 pc += 4;
2256 }
2257 return pc;
2258 }
2259
2260 /* All the ABI's require 16 byte alignment. */
2261 static CORE_ADDR
2262 rs6000_frame_align (struct gdbarch *gdbarch, CORE_ADDR addr)
2263 {
2264 return (addr & -16);
2265 }
2266
2267 /* Return whether handle_inferior_event() should proceed through code
2268 starting at PC in function NAME when stepping.
2269
2270 The AIX -bbigtoc linker option generates functions @FIX0, @FIX1, etc. to
2271 handle memory references that are too distant to fit in instructions
2272 generated by the compiler. For example, if 'foo' in the following
2273 instruction:
2274
2275 lwz r9,foo(r2)
2276
2277 is greater than 32767, the linker might replace the lwz with a branch to
2278 somewhere in @FIX1 that does the load in 2 instructions and then branches
2279 back to where execution should continue.
2280
2281 GDB should silently step over @FIX code, just like AIX dbx does.
2282 Unfortunately, the linker uses the "b" instruction for the
2283 branches, meaning that the link register doesn't get set.
2284 Therefore, GDB's usual step_over_function () mechanism won't work.
2285
2286 Instead, use the gdbarch_skip_trampoline_code and
2287 gdbarch_skip_trampoline_code hooks in handle_inferior_event() to skip past
2288 @FIX code. */
2289
2290 static int
2291 rs6000_in_solib_return_trampoline (struct gdbarch *gdbarch,
2292 CORE_ADDR pc, const char *name)
2293 {
2294 return name && startswith (name, "@FIX");
2295 }
2296
2297 /* Skip code that the user doesn't want to see when stepping:
2298
2299 1. Indirect function calls use a piece of trampoline code to do context
2300 switching, i.e. to set the new TOC table. Skip such code if we are on
2301 its first instruction (as when we have single-stepped to here).
2302
2303 2. Skip shared library trampoline code (which is different from
2304 indirect function call trampolines).
2305
2306 3. Skip bigtoc fixup code.
2307
2308 Result is desired PC to step until, or NULL if we are not in
2309 code that should be skipped. */
2310
2311 static CORE_ADDR
2312 rs6000_skip_trampoline_code (struct frame_info *frame, CORE_ADDR pc)
2313 {
2314 struct gdbarch *gdbarch = get_frame_arch (frame);
2315 struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch);
2316 enum bfd_endian byte_order = gdbarch_byte_order (gdbarch);
2317 unsigned int ii, op;
2318 int rel;
2319 CORE_ADDR solib_target_pc;
2320 struct bound_minimal_symbol msymbol;
2321
2322 static unsigned trampoline_code[] =
2323 {
2324 0x800b0000, /* l r0,0x0(r11) */
2325 0x90410014, /* st r2,0x14(r1) */
2326 0x7c0903a6, /* mtctr r0 */
2327 0x804b0004, /* l r2,0x4(r11) */
2328 0x816b0008, /* l r11,0x8(r11) */
2329 0x4e800420, /* bctr */
2330 0x4e800020, /* br */
2331 0
2332 };
2333
2334 /* Check for bigtoc fixup code. */
2335 msymbol = lookup_minimal_symbol_by_pc (pc);
2336 if (msymbol.minsym
2337 && rs6000_in_solib_return_trampoline (gdbarch, pc,
2338 MSYMBOL_LINKAGE_NAME (msymbol.minsym)))
2339 {
2340 /* Double-check that the third instruction from PC is relative "b". */
2341 op = read_memory_integer (pc + 8, 4, byte_order);
2342 if ((op & 0xfc000003) == 0x48000000)
2343 {
2344 /* Extract bits 6-29 as a signed 24-bit relative word address and
2345 add it to the containing PC. */
2346 rel = ((int)(op << 6) >> 6);
2347 return pc + 8 + rel;
2348 }
2349 }
2350
2351 /* If pc is in a shared library trampoline, return its target. */
2352 solib_target_pc = find_solib_trampoline_target (frame, pc);
2353 if (solib_target_pc)
2354 return solib_target_pc;
2355
2356 for (ii = 0; trampoline_code[ii]; ++ii)
2357 {
2358 op = read_memory_integer (pc + (ii * 4), 4, byte_order);
2359 if (op != trampoline_code[ii])
2360 return 0;
2361 }
2362 ii = get_frame_register_unsigned (frame, 11); /* r11 holds destination
2363 addr. */
2364 pc = read_memory_unsigned_integer (ii, tdep->wordsize, byte_order);
2365 return pc;
2366 }
2367
2368 /* ISA-specific vector types. */
2369
2370 static struct type *
2371 rs6000_builtin_type_vec64 (struct gdbarch *gdbarch)
2372 {
2373 struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch);
2374
2375 if (!tdep->ppc_builtin_type_vec64)
2376 {
2377 const struct builtin_type *bt = builtin_type (gdbarch);
2378
2379 /* The type we're building is this: */
2380 #if 0
2381 union __gdb_builtin_type_vec64
2382 {
2383 int64_t uint64;
2384 float v2_float[2];
2385 int32_t v2_int32[2];
2386 int16_t v4_int16[4];
2387 int8_t v8_int8[8];
2388 };
2389 #endif
2390
2391 struct type *t;
2392
2393 t = arch_composite_type (gdbarch,
2394 "__ppc_builtin_type_vec64", TYPE_CODE_UNION);
2395 append_composite_type_field (t, "uint64", bt->builtin_int64);
2396 append_composite_type_field (t, "v2_float",
2397 init_vector_type (bt->builtin_float, 2));
2398 append_composite_type_field (t, "v2_int32",
2399 init_vector_type (bt->builtin_int32, 2));
2400 append_composite_type_field (t, "v4_int16",
2401 init_vector_type (bt->builtin_int16, 4));
2402 append_composite_type_field (t, "v8_int8",
2403 init_vector_type (bt->builtin_int8, 8));
2404
2405 TYPE_VECTOR (t) = 1;
2406 TYPE_NAME (t) = "ppc_builtin_type_vec64";
2407 tdep->ppc_builtin_type_vec64 = t;
2408 }
2409
2410 return tdep->ppc_builtin_type_vec64;
2411 }
2412
2413 /* Vector 128 type. */
2414
2415 static struct type *
2416 rs6000_builtin_type_vec128 (struct gdbarch *gdbarch)
2417 {
2418 struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch);
2419
2420 if (!tdep->ppc_builtin_type_vec128)
2421 {
2422 const struct builtin_type *bt = builtin_type (gdbarch);
2423
2424 /* The type we're building is this
2425
2426 type = union __ppc_builtin_type_vec128 {
2427 uint128_t uint128;
2428 double v2_double[2];
2429 float v4_float[4];
2430 int32_t v4_int32[4];
2431 int16_t v8_int16[8];
2432 int8_t v16_int8[16];
2433 }
2434 */
2435
2436 struct type *t;
2437
2438 t = arch_composite_type (gdbarch,
2439 "__ppc_builtin_type_vec128", TYPE_CODE_UNION);
2440 append_composite_type_field (t, "uint128", bt->builtin_uint128);
2441 append_composite_type_field (t, "v2_double",
2442 init_vector_type (bt->builtin_double, 2));
2443 append_composite_type_field (t, "v4_float",
2444 init_vector_type (bt->builtin_float, 4));
2445 append_composite_type_field (t, "v4_int32",
2446 init_vector_type (bt->builtin_int32, 4));
2447 append_composite_type_field (t, "v8_int16",
2448 init_vector_type (bt->builtin_int16, 8));
2449 append_composite_type_field (t, "v16_int8",
2450 init_vector_type (bt->builtin_int8, 16));
2451
2452 TYPE_VECTOR (t) = 1;
2453 TYPE_NAME (t) = "ppc_builtin_type_vec128";
2454 tdep->ppc_builtin_type_vec128 = t;
2455 }
2456
2457 return tdep->ppc_builtin_type_vec128;
2458 }
2459
2460 /* Return the name of register number REGNO, or the empty string if it
2461 is an anonymous register. */
2462
2463 static const char *
2464 rs6000_register_name (struct gdbarch *gdbarch, int regno)
2465 {
2466 struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch);
2467
2468 /* The upper half "registers" have names in the XML description,
2469 but we present only the low GPRs and the full 64-bit registers
2470 to the user. */
2471 if (tdep->ppc_ev0_upper_regnum >= 0
2472 && tdep->ppc_ev0_upper_regnum <= regno
2473 && regno < tdep->ppc_ev0_upper_regnum + ppc_num_gprs)
2474 return "";
2475
2476 /* Hide the upper halves of the vs0~vs31 registers. */
2477 if (tdep->ppc_vsr0_regnum >= 0
2478 && tdep->ppc_vsr0_upper_regnum <= regno
2479 && regno < tdep->ppc_vsr0_upper_regnum + ppc_num_gprs)
2480 return "";
2481
2482 /* Check if the SPE pseudo registers are available. */
2483 if (IS_SPE_PSEUDOREG (tdep, regno))
2484 {
2485 static const char *const spe_regnames[] = {
2486 "ev0", "ev1", "ev2", "ev3", "ev4", "ev5", "ev6", "ev7",
2487 "ev8", "ev9", "ev10", "ev11", "ev12", "ev13", "ev14", "ev15",
2488 "ev16", "ev17", "ev18", "ev19", "ev20", "ev21", "ev22", "ev23",
2489 "ev24", "ev25", "ev26", "ev27", "ev28", "ev29", "ev30", "ev31",
2490 };
2491 return spe_regnames[regno - tdep->ppc_ev0_regnum];
2492 }
2493
2494 /* Check if the decimal128 pseudo-registers are available. */
2495 if (IS_DFP_PSEUDOREG (tdep, regno))
2496 {
2497 static const char *const dfp128_regnames[] = {
2498 "dl0", "dl1", "dl2", "dl3",
2499 "dl4", "dl5", "dl6", "dl7",
2500 "dl8", "dl9", "dl10", "dl11",
2501 "dl12", "dl13", "dl14", "dl15"
2502 };
2503 return dfp128_regnames[regno - tdep->ppc_dl0_regnum];
2504 }
2505
2506 /* Check if this is a VSX pseudo-register. */
2507 if (IS_VSX_PSEUDOREG (tdep, regno))
2508 {
2509 static const char *const vsx_regnames[] = {
2510 "vs0", "vs1", "vs2", "vs3", "vs4", "vs5", "vs6", "vs7",
2511 "vs8", "vs9", "vs10", "vs11", "vs12", "vs13", "vs14",
2512 "vs15", "vs16", "vs17", "vs18", "vs19", "vs20", "vs21",
2513 "vs22", "vs23", "vs24", "vs25", "vs26", "vs27", "vs28",
2514 "vs29", "vs30", "vs31", "vs32", "vs33", "vs34", "vs35",
2515 "vs36", "vs37", "vs38", "vs39", "vs40", "vs41", "vs42",
2516 "vs43", "vs44", "vs45", "vs46", "vs47", "vs48", "vs49",
2517 "vs50", "vs51", "vs52", "vs53", "vs54", "vs55", "vs56",
2518 "vs57", "vs58", "vs59", "vs60", "vs61", "vs62", "vs63"
2519 };
2520 return vsx_regnames[regno - tdep->ppc_vsr0_regnum];
2521 }
2522
2523 /* Check if the this is a Extended FP pseudo-register. */
2524 if (IS_EFP_PSEUDOREG (tdep, regno))
2525 {
2526 static const char *const efpr_regnames[] = {
2527 "f32", "f33", "f34", "f35", "f36", "f37", "f38",
2528 "f39", "f40", "f41", "f42", "f43", "f44", "f45",
2529 "f46", "f47", "f48", "f49", "f50", "f51",
2530 "f52", "f53", "f54", "f55", "f56", "f57",
2531 "f58", "f59", "f60", "f61", "f62", "f63"
2532 };
2533 return efpr_regnames[regno - tdep->ppc_efpr0_regnum];
2534 }
2535
2536 return tdesc_register_name (gdbarch, regno);
2537 }
2538
2539 /* Return the GDB type object for the "standard" data type of data in
2540 register N. */
2541
2542 static struct type *
2543 rs6000_pseudo_register_type (struct gdbarch *gdbarch, int regnum)
2544 {
2545 struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch);
2546
2547 /* These are the only pseudo-registers we support. */
2548 gdb_assert (IS_SPE_PSEUDOREG (tdep, regnum)
2549 || IS_DFP_PSEUDOREG (tdep, regnum)
2550 || IS_VSX_PSEUDOREG (tdep, regnum)
2551 || IS_EFP_PSEUDOREG (tdep, regnum));
2552
2553 /* These are the e500 pseudo-registers. */
2554 if (IS_SPE_PSEUDOREG (tdep, regnum))
2555 return rs6000_builtin_type_vec64 (gdbarch);
2556 else if (IS_DFP_PSEUDOREG (tdep, regnum))
2557 /* PPC decimal128 pseudo-registers. */
2558 return builtin_type (gdbarch)->builtin_declong;
2559 else if (IS_VSX_PSEUDOREG (tdep, regnum))
2560 /* POWER7 VSX pseudo-registers. */
2561 return rs6000_builtin_type_vec128 (gdbarch);
2562 else
2563 /* POWER7 Extended FP pseudo-registers. */
2564 return builtin_type (gdbarch)->builtin_double;
2565 }
2566
2567 /* Is REGNUM a member of REGGROUP? */
2568 static int
2569 rs6000_pseudo_register_reggroup_p (struct gdbarch *gdbarch, int regnum,
2570 struct reggroup *group)
2571 {
2572 struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch);
2573
2574 /* These are the only pseudo-registers we support. */
2575 gdb_assert (IS_SPE_PSEUDOREG (tdep, regnum)
2576 || IS_DFP_PSEUDOREG (tdep, regnum)
2577 || IS_VSX_PSEUDOREG (tdep, regnum)
2578 || IS_EFP_PSEUDOREG (tdep, regnum));
2579
2580 /* These are the e500 pseudo-registers or the POWER7 VSX registers. */
2581 if (IS_SPE_PSEUDOREG (tdep, regnum) || IS_VSX_PSEUDOREG (tdep, regnum))
2582 return group == all_reggroup || group == vector_reggroup;
2583 else
2584 /* PPC decimal128 or Extended FP pseudo-registers. */
2585 return group == all_reggroup || group == float_reggroup;
2586 }
2587
2588 /* The register format for RS/6000 floating point registers is always
2589 double, we need a conversion if the memory format is float. */
2590
2591 static int
2592 rs6000_convert_register_p (struct gdbarch *gdbarch, int regnum,
2593 struct type *type)
2594 {
2595 struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch);
2596
2597 return (tdep->ppc_fp0_regnum >= 0
2598 && regnum >= tdep->ppc_fp0_regnum
2599 && regnum < tdep->ppc_fp0_regnum + ppc_num_fprs
2600 && TYPE_CODE (type) == TYPE_CODE_FLT
2601 && TYPE_LENGTH (type)
2602 != TYPE_LENGTH (builtin_type (gdbarch)->builtin_double));
2603 }
2604
2605 static int
2606 rs6000_register_to_value (struct frame_info *frame,
2607 int regnum,
2608 struct type *type,
2609 gdb_byte *to,
2610 int *optimizedp, int *unavailablep)
2611 {
2612 struct gdbarch *gdbarch = get_frame_arch (frame);
2613 gdb_byte from[PPC_MAX_REGISTER_SIZE];
2614
2615 gdb_assert (TYPE_CODE (type) == TYPE_CODE_FLT);
2616
2617 if (!get_frame_register_bytes (frame, regnum, 0,
2618 register_size (gdbarch, regnum),
2619 from, optimizedp, unavailablep))
2620 return 0;
2621
2622 convert_typed_floating (from, builtin_type (gdbarch)->builtin_double,
2623 to, type);
2624 *optimizedp = *unavailablep = 0;
2625 return 1;
2626 }
2627
2628 static void
2629 rs6000_value_to_register (struct frame_info *frame,
2630 int regnum,
2631 struct type *type,
2632 const gdb_byte *from)
2633 {
2634 struct gdbarch *gdbarch = get_frame_arch (frame);
2635 gdb_byte to[PPC_MAX_REGISTER_SIZE];
2636
2637 gdb_assert (TYPE_CODE (type) == TYPE_CODE_FLT);
2638
2639 convert_typed_floating (from, type,
2640 to, builtin_type (gdbarch)->builtin_double);
2641 put_frame_register (frame, regnum, to);
2642 }
2643
2644 /* The type of a function that moves the value of REG between CACHE
2645 or BUF --- in either direction. */
2646 typedef enum register_status (*move_ev_register_func) (struct regcache *,
2647 int, void *);
2648
2649 /* Move SPE vector register values between a 64-bit buffer and the two
2650 32-bit raw register halves in a regcache. This function handles
2651 both splitting a 64-bit value into two 32-bit halves, and joining
2652 two halves into a whole 64-bit value, depending on the function
2653 passed as the MOVE argument.
2654
2655 EV_REG must be the number of an SPE evN vector register --- a
2656 pseudoregister. REGCACHE must be a regcache, and BUFFER must be a
2657 64-bit buffer.
2658
2659 Call MOVE once for each 32-bit half of that register, passing
2660 REGCACHE, the number of the raw register corresponding to that
2661 half, and the address of the appropriate half of BUFFER.
2662
2663 For example, passing 'regcache_raw_read' as the MOVE function will
2664 fill BUFFER with the full 64-bit contents of EV_REG. Or, passing
2665 'regcache_raw_supply' will supply the contents of BUFFER to the
2666 appropriate pair of raw registers in REGCACHE.
2667
2668 You may need to cast away some 'const' qualifiers when passing
2669 MOVE, since this function can't tell at compile-time which of
2670 REGCACHE or BUFFER is acting as the source of the data. If C had
2671 co-variant type qualifiers, ... */
2672
2673 static enum register_status
2674 e500_move_ev_register (move_ev_register_func move,
2675 struct regcache *regcache, int ev_reg, void *buffer)
2676 {
2677 struct gdbarch *arch = get_regcache_arch (regcache);
2678 struct gdbarch_tdep *tdep = gdbarch_tdep (arch);
2679 int reg_index;
2680 gdb_byte *byte_buffer = (gdb_byte *) buffer;
2681 enum register_status status;
2682
2683 gdb_assert (IS_SPE_PSEUDOREG (tdep, ev_reg));
2684
2685 reg_index = ev_reg - tdep->ppc_ev0_regnum;
2686
2687 if (gdbarch_byte_order (arch) == BFD_ENDIAN_BIG)
2688 {
2689 status = move (regcache, tdep->ppc_ev0_upper_regnum + reg_index,
2690 byte_buffer);
2691 if (status == REG_VALID)
2692 status = move (regcache, tdep->ppc_gp0_regnum + reg_index,
2693 byte_buffer + 4);
2694 }
2695 else
2696 {
2697 status = move (regcache, tdep->ppc_gp0_regnum + reg_index, byte_buffer);
2698 if (status == REG_VALID)
2699 status = move (regcache, tdep->ppc_ev0_upper_regnum + reg_index,
2700 byte_buffer + 4);
2701 }
2702
2703 return status;
2704 }
2705
2706 static enum register_status
2707 do_regcache_raw_read (struct regcache *regcache, int regnum, void *buffer)
2708 {
2709 return regcache_raw_read (regcache, regnum, (gdb_byte *) buffer);
2710 }
2711
2712 static enum register_status
2713 do_regcache_raw_write (struct regcache *regcache, int regnum, void *buffer)
2714 {
2715 regcache_raw_write (regcache, regnum, (const gdb_byte *) buffer);
2716
2717 return REG_VALID;
2718 }
2719
2720 static enum register_status
2721 e500_pseudo_register_read (struct gdbarch *gdbarch, struct regcache *regcache,
2722 int reg_nr, gdb_byte *buffer)
2723 {
2724 return e500_move_ev_register (do_regcache_raw_read, regcache, reg_nr, buffer);
2725 }
2726
2727 static void
2728 e500_pseudo_register_write (struct gdbarch *gdbarch, struct regcache *regcache,
2729 int reg_nr, const gdb_byte *buffer)
2730 {
2731 e500_move_ev_register (do_regcache_raw_write, regcache,
2732 reg_nr, (void *) buffer);
2733 }
2734
2735 /* Read method for DFP pseudo-registers. */
2736 static enum register_status
2737 dfp_pseudo_register_read (struct gdbarch *gdbarch, struct regcache *regcache,
2738 int reg_nr, gdb_byte *buffer)
2739 {
2740 struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch);
2741 int reg_index = reg_nr - tdep->ppc_dl0_regnum;
2742 enum register_status status;
2743
2744 if (gdbarch_byte_order (gdbarch) == BFD_ENDIAN_BIG)
2745 {
2746 /* Read two FP registers to form a whole dl register. */
2747 status = regcache_raw_read (regcache, tdep->ppc_fp0_regnum +
2748 2 * reg_index, buffer);
2749 if (status == REG_VALID)
2750 status = regcache_raw_read (regcache, tdep->ppc_fp0_regnum +
2751 2 * reg_index + 1, buffer + 8);
2752 }
2753 else
2754 {
2755 status = regcache_raw_read (regcache, tdep->ppc_fp0_regnum +
2756 2 * reg_index + 1, buffer);
2757 if (status == REG_VALID)
2758 status = regcache_raw_read (regcache, tdep->ppc_fp0_regnum +
2759 2 * reg_index, buffer + 8);
2760 }
2761
2762 return status;
2763 }
2764
2765 /* Write method for DFP pseudo-registers. */
2766 static void
2767 dfp_pseudo_register_write (struct gdbarch *gdbarch, struct regcache *regcache,
2768 int reg_nr, const gdb_byte *buffer)
2769 {
2770 struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch);
2771 int reg_index = reg_nr - tdep->ppc_dl0_regnum;
2772
2773 if (gdbarch_byte_order (gdbarch) == BFD_ENDIAN_BIG)
2774 {
2775 /* Write each half of the dl register into a separate
2776 FP register. */
2777 regcache_raw_write (regcache, tdep->ppc_fp0_regnum +
2778 2 * reg_index, buffer);
2779 regcache_raw_write (regcache, tdep->ppc_fp0_regnum +
2780 2 * reg_index + 1, buffer + 8);
2781 }
2782 else
2783 {
2784 regcache_raw_write (regcache, tdep->ppc_fp0_regnum +
2785 2 * reg_index + 1, buffer);
2786 regcache_raw_write (regcache, tdep->ppc_fp0_regnum +
2787 2 * reg_index, buffer + 8);
2788 }
2789 }
2790
2791 /* Read method for POWER7 VSX pseudo-registers. */
2792 static enum register_status
2793 vsx_pseudo_register_read (struct gdbarch *gdbarch, struct regcache *regcache,
2794 int reg_nr, gdb_byte *buffer)
2795 {
2796 struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch);
2797 int reg_index = reg_nr - tdep->ppc_vsr0_regnum;
2798 enum register_status status;
2799
2800 /* Read the portion that overlaps the VMX registers. */
2801 if (reg_index > 31)
2802 status = regcache_raw_read (regcache, tdep->ppc_vr0_regnum +
2803 reg_index - 32, buffer);
2804 else
2805 /* Read the portion that overlaps the FPR registers. */
2806 if (gdbarch_byte_order (gdbarch) == BFD_ENDIAN_BIG)
2807 {
2808 status = regcache_raw_read (regcache, tdep->ppc_fp0_regnum +
2809 reg_index, buffer);
2810 if (status == REG_VALID)
2811 status = regcache_raw_read (regcache, tdep->ppc_vsr0_upper_regnum +
2812 reg_index, buffer + 8);
2813 }
2814 else
2815 {
2816 status = regcache_raw_read (regcache, tdep->ppc_fp0_regnum +
2817 reg_index, buffer + 8);
2818 if (status == REG_VALID)
2819 status = regcache_raw_read (regcache, tdep->ppc_vsr0_upper_regnum +
2820 reg_index, buffer);
2821 }
2822
2823 return status;
2824 }
2825
2826 /* Write method for POWER7 VSX pseudo-registers. */
2827 static void
2828 vsx_pseudo_register_write (struct gdbarch *gdbarch, struct regcache *regcache,
2829 int reg_nr, const gdb_byte *buffer)
2830 {
2831 struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch);
2832 int reg_index = reg_nr - tdep->ppc_vsr0_regnum;
2833
2834 /* Write the portion that overlaps the VMX registers. */
2835 if (reg_index > 31)
2836 regcache_raw_write (regcache, tdep->ppc_vr0_regnum +
2837 reg_index - 32, buffer);
2838 else
2839 /* Write the portion that overlaps the FPR registers. */
2840 if (gdbarch_byte_order (gdbarch) == BFD_ENDIAN_BIG)
2841 {
2842 regcache_raw_write (regcache, tdep->ppc_fp0_regnum +
2843 reg_index, buffer);
2844 regcache_raw_write (regcache, tdep->ppc_vsr0_upper_regnum +
2845 reg_index, buffer + 8);
2846 }
2847 else
2848 {
2849 regcache_raw_write (regcache, tdep->ppc_fp0_regnum +
2850 reg_index, buffer + 8);
2851 regcache_raw_write (regcache, tdep->ppc_vsr0_upper_regnum +
2852 reg_index, buffer);
2853 }
2854 }
2855
2856 /* Read method for POWER7 Extended FP pseudo-registers. */
2857 static enum register_status
2858 efpr_pseudo_register_read (struct gdbarch *gdbarch, struct regcache *regcache,
2859 int reg_nr, gdb_byte *buffer)
2860 {
2861 struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch);
2862 int reg_index = reg_nr - tdep->ppc_efpr0_regnum;
2863 int offset = gdbarch_byte_order (gdbarch) == BFD_ENDIAN_BIG ? 0 : 8;
2864
2865 /* Read the portion that overlaps the VMX register. */
2866 return regcache_raw_read_part (regcache, tdep->ppc_vr0_regnum + reg_index,
2867 offset, register_size (gdbarch, reg_nr),
2868 buffer);
2869 }
2870
2871 /* Write method for POWER7 Extended FP pseudo-registers. */
2872 static void
2873 efpr_pseudo_register_write (struct gdbarch *gdbarch, struct regcache *regcache,
2874 int reg_nr, const gdb_byte *buffer)
2875 {
2876 struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch);
2877 int reg_index = reg_nr - tdep->ppc_efpr0_regnum;
2878 int offset = gdbarch_byte_order (gdbarch) == BFD_ENDIAN_BIG ? 0 : 8;
2879
2880 /* Write the portion that overlaps the VMX register. */
2881 regcache_raw_write_part (regcache, tdep->ppc_vr0_regnum + reg_index,
2882 offset, register_size (gdbarch, reg_nr),
2883 buffer);
2884 }
2885
2886 static enum register_status
2887 rs6000_pseudo_register_read (struct gdbarch *gdbarch,
2888 struct regcache *regcache,
2889 int reg_nr, gdb_byte *buffer)
2890 {
2891 struct gdbarch *regcache_arch = get_regcache_arch (regcache);
2892 struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch);
2893
2894 gdb_assert (regcache_arch == gdbarch);
2895
2896 if (IS_SPE_PSEUDOREG (tdep, reg_nr))
2897 return e500_pseudo_register_read (gdbarch, regcache, reg_nr, buffer);
2898 else if (IS_DFP_PSEUDOREG (tdep, reg_nr))
2899 return dfp_pseudo_register_read (gdbarch, regcache, reg_nr, buffer);
2900 else if (IS_VSX_PSEUDOREG (tdep, reg_nr))
2901 return vsx_pseudo_register_read (gdbarch, regcache, reg_nr, buffer);
2902 else if (IS_EFP_PSEUDOREG (tdep, reg_nr))
2903 return efpr_pseudo_register_read (gdbarch, regcache, reg_nr, buffer);
2904 else
2905 internal_error (__FILE__, __LINE__,
2906 _("rs6000_pseudo_register_read: "
2907 "called on unexpected register '%s' (%d)"),
2908 gdbarch_register_name (gdbarch, reg_nr), reg_nr);
2909 }
2910
2911 static void
2912 rs6000_pseudo_register_write (struct gdbarch *gdbarch,
2913 struct regcache *regcache,
2914 int reg_nr, const gdb_byte *buffer)
2915 {
2916 struct gdbarch *regcache_arch = get_regcache_arch (regcache);
2917 struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch);
2918
2919 gdb_assert (regcache_arch == gdbarch);
2920
2921 if (IS_SPE_PSEUDOREG (tdep, reg_nr))
2922 e500_pseudo_register_write (gdbarch, regcache, reg_nr, buffer);
2923 else if (IS_DFP_PSEUDOREG (tdep, reg_nr))
2924 dfp_pseudo_register_write (gdbarch, regcache, reg_nr, buffer);
2925 else if (IS_VSX_PSEUDOREG (tdep, reg_nr))
2926 vsx_pseudo_register_write (gdbarch, regcache, reg_nr, buffer);
2927 else if (IS_EFP_PSEUDOREG (tdep, reg_nr))
2928 efpr_pseudo_register_write (gdbarch, regcache, reg_nr, buffer);
2929 else
2930 internal_error (__FILE__, __LINE__,
2931 _("rs6000_pseudo_register_write: "
2932 "called on unexpected register '%s' (%d)"),
2933 gdbarch_register_name (gdbarch, reg_nr), reg_nr);
2934 }
2935
2936 static int
2937 rs6000_ax_pseudo_register_collect (struct gdbarch *gdbarch,
2938 struct agent_expr *ax, int reg_nr)
2939 {
2940 struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch);
2941 if (IS_SPE_PSEUDOREG (tdep, reg_nr))
2942 {
2943 int reg_index = reg_nr - tdep->ppc_ev0_regnum;
2944 ax_reg_mask (ax, tdep->ppc_gp0_regnum + reg_index);
2945 ax_reg_mask (ax, tdep->ppc_ev0_upper_regnum + reg_index);
2946 }
2947 else if (IS_DFP_PSEUDOREG (tdep, reg_nr))
2948 {
2949 int reg_index = reg_nr - tdep->ppc_dl0_regnum;
2950 ax_reg_mask (ax, tdep->ppc_fp0_regnum + 2 * reg_index);
2951 ax_reg_mask (ax, tdep->ppc_fp0_regnum + 2 * reg_index + 1);
2952 }
2953 else if (IS_VSX_PSEUDOREG (tdep, reg_nr))
2954 {
2955 int reg_index = reg_nr - tdep->ppc_vsr0_regnum;
2956 if (reg_index > 31)
2957 {
2958 ax_reg_mask (ax, tdep->ppc_vr0_regnum + reg_index - 32);
2959 }
2960 else
2961 {
2962 ax_reg_mask (ax, tdep->ppc_fp0_regnum + reg_index);
2963 ax_reg_mask (ax, tdep->ppc_vsr0_upper_regnum + reg_index);
2964 }
2965 }
2966 else if (IS_EFP_PSEUDOREG (tdep, reg_nr))
2967 {
2968 int reg_index = reg_nr - tdep->ppc_efpr0_regnum;
2969 ax_reg_mask (ax, tdep->ppc_vr0_regnum + reg_index);
2970 }
2971 else
2972 internal_error (__FILE__, __LINE__,
2973 _("rs6000_pseudo_register_collect: "
2974 "called on unexpected register '%s' (%d)"),
2975 gdbarch_register_name (gdbarch, reg_nr), reg_nr);
2976 return 0;
2977 }
2978
2979
2980 static void
2981 rs6000_gen_return_address (struct gdbarch *gdbarch,
2982 struct agent_expr *ax, struct axs_value *value,
2983 CORE_ADDR scope)
2984 {
2985 struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch);
2986 value->type = register_type (gdbarch, tdep->ppc_lr_regnum);
2987 value->kind = axs_lvalue_register;
2988 value->u.reg = tdep->ppc_lr_regnum;
2989 }
2990
2991
2992 /* Convert a DBX STABS register number to a GDB register number. */
2993 static int
2994 rs6000_stab_reg_to_regnum (struct gdbarch *gdbarch, int num)
2995 {
2996 struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch);
2997
2998 if (0 <= num && num <= 31)
2999 return tdep->ppc_gp0_regnum + num;
3000 else if (32 <= num && num <= 63)
3001 /* FIXME: jimb/2004-05-05: What should we do when the debug info
3002 specifies registers the architecture doesn't have? Our
3003 callers don't check the value we return. */
3004 return tdep->ppc_fp0_regnum + (num - 32);
3005 else if (77 <= num && num <= 108)
3006 return tdep->ppc_vr0_regnum + (num - 77);
3007 else if (1200 <= num && num < 1200 + 32)
3008 return tdep->ppc_ev0_upper_regnum + (num - 1200);
3009 else
3010 switch (num)
3011 {
3012 case 64:
3013 return tdep->ppc_mq_regnum;
3014 case 65:
3015 return tdep->ppc_lr_regnum;
3016 case 66:
3017 return tdep->ppc_ctr_regnum;
3018 case 76:
3019 return tdep->ppc_xer_regnum;
3020 case 109:
3021 return tdep->ppc_vrsave_regnum;
3022 case 110:
3023 return tdep->ppc_vrsave_regnum - 1; /* vscr */
3024 case 111:
3025 return tdep->ppc_acc_regnum;
3026 case 112:
3027 return tdep->ppc_spefscr_regnum;
3028 default:
3029 return num;
3030 }
3031 }
3032
3033
3034 /* Convert a Dwarf 2 register number to a GDB register number. */
3035 static int
3036 rs6000_dwarf2_reg_to_regnum (struct gdbarch *gdbarch, int num)
3037 {
3038 struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch);
3039
3040 if (0 <= num && num <= 31)
3041 return tdep->ppc_gp0_regnum + num;
3042 else if (32 <= num && num <= 63)
3043 /* FIXME: jimb/2004-05-05: What should we do when the debug info
3044 specifies registers the architecture doesn't have? Our
3045 callers don't check the value we return. */
3046 return tdep->ppc_fp0_regnum + (num - 32);
3047 else if (1124 <= num && num < 1124 + 32)
3048 return tdep->ppc_vr0_regnum + (num - 1124);
3049 else if (1200 <= num && num < 1200 + 32)
3050 return tdep->ppc_ev0_upper_regnum + (num - 1200);
3051 else
3052 switch (num)
3053 {
3054 case 64:
3055 return tdep->ppc_cr_regnum;
3056 case 67:
3057 return tdep->ppc_vrsave_regnum - 1; /* vscr */
3058 case 99:
3059 return tdep->ppc_acc_regnum;
3060 case 100:
3061 return tdep->ppc_mq_regnum;
3062 case 101:
3063 return tdep->ppc_xer_regnum;
3064 case 108:
3065 return tdep->ppc_lr_regnum;
3066 case 109:
3067 return tdep->ppc_ctr_regnum;
3068 case 356:
3069 return tdep->ppc_vrsave_regnum;
3070 case 612:
3071 return tdep->ppc_spefscr_regnum;
3072 default:
3073 return num;
3074 }
3075 }
3076
3077 /* Translate a .eh_frame register to DWARF register, or adjust a
3078 .debug_frame register. */
3079
3080 static int
3081 rs6000_adjust_frame_regnum (struct gdbarch *gdbarch, int num, int eh_frame_p)
3082 {
3083 /* GCC releases before 3.4 use GCC internal register numbering in
3084 .debug_frame (and .debug_info, et cetera). The numbering is
3085 different from the standard SysV numbering for everything except
3086 for GPRs and FPRs. We can not detect this problem in most cases
3087 - to get accurate debug info for variables living in lr, ctr, v0,
3088 et cetera, use a newer version of GCC. But we must detect
3089 one important case - lr is in column 65 in .debug_frame output,
3090 instead of 108.
3091
3092 GCC 3.4, and the "hammer" branch, have a related problem. They
3093 record lr register saves in .debug_frame as 108, but still record
3094 the return column as 65. We fix that up too.
3095
3096 We can do this because 65 is assigned to fpsr, and GCC never
3097 generates debug info referring to it. To add support for
3098 handwritten debug info that restores fpsr, we would need to add a
3099 producer version check to this. */
3100 if (!eh_frame_p)
3101 {
3102 if (num == 65)
3103 return 108;
3104 else
3105 return num;
3106 }
3107
3108 /* .eh_frame is GCC specific. For binary compatibility, it uses GCC
3109 internal register numbering; translate that to the standard DWARF2
3110 register numbering. */
3111 if (0 <= num && num <= 63) /* r0-r31,fp0-fp31 */
3112 return num;
3113 else if (68 <= num && num <= 75) /* cr0-cr8 */
3114 return num - 68 + 86;
3115 else if (77 <= num && num <= 108) /* vr0-vr31 */
3116 return num - 77 + 1124;
3117 else
3118 switch (num)
3119 {
3120 case 64: /* mq */
3121 return 100;
3122 case 65: /* lr */
3123 return 108;
3124 case 66: /* ctr */
3125 return 109;
3126 case 76: /* xer */
3127 return 101;
3128 case 109: /* vrsave */
3129 return 356;
3130 case 110: /* vscr */
3131 return 67;
3132 case 111: /* spe_acc */
3133 return 99;
3134 case 112: /* spefscr */
3135 return 612;
3136 default:
3137 return num;
3138 }
3139 }
3140 \f
3141
3142 /* Handling the various POWER/PowerPC variants. */
3143
3144 /* Information about a particular processor variant. */
3145
3146 struct variant
3147 {
3148 /* Name of this variant. */
3149 const char *name;
3150
3151 /* English description of the variant. */
3152 const char *description;
3153
3154 /* bfd_arch_info.arch corresponding to variant. */
3155 enum bfd_architecture arch;
3156
3157 /* bfd_arch_info.mach corresponding to variant. */
3158 unsigned long mach;
3159
3160 /* Target description for this variant. */
3161 struct target_desc **tdesc;
3162 };
3163
3164 static struct variant variants[] =
3165 {
3166 {"powerpc", "PowerPC user-level", bfd_arch_powerpc,
3167 bfd_mach_ppc, &tdesc_powerpc_altivec32},
3168 {"power", "POWER user-level", bfd_arch_rs6000,
3169 bfd_mach_rs6k, &tdesc_rs6000},
3170 {"403", "IBM PowerPC 403", bfd_arch_powerpc,
3171 bfd_mach_ppc_403, &tdesc_powerpc_403},
3172 {"405", "IBM PowerPC 405", bfd_arch_powerpc,
3173 bfd_mach_ppc_405, &tdesc_powerpc_405},
3174 {"601", "Motorola PowerPC 601", bfd_arch_powerpc,
3175 bfd_mach_ppc_601, &tdesc_powerpc_601},
3176 {"602", "Motorola PowerPC 602", bfd_arch_powerpc,
3177 bfd_mach_ppc_602, &tdesc_powerpc_602},
3178 {"603", "Motorola/IBM PowerPC 603 or 603e", bfd_arch_powerpc,
3179 bfd_mach_ppc_603, &tdesc_powerpc_603},
3180 {"604", "Motorola PowerPC 604 or 604e", bfd_arch_powerpc,
3181 604, &tdesc_powerpc_604},
3182 {"403GC", "IBM PowerPC 403GC", bfd_arch_powerpc,
3183 bfd_mach_ppc_403gc, &tdesc_powerpc_403gc},
3184 {"505", "Motorola PowerPC 505", bfd_arch_powerpc,
3185 bfd_mach_ppc_505, &tdesc_powerpc_505},
3186 {"860", "Motorola PowerPC 860 or 850", bfd_arch_powerpc,
3187 bfd_mach_ppc_860, &tdesc_powerpc_860},
3188 {"750", "Motorola/IBM PowerPC 750 or 740", bfd_arch_powerpc,
3189 bfd_mach_ppc_750, &tdesc_powerpc_750},
3190 {"7400", "Motorola/IBM PowerPC 7400 (G4)", bfd_arch_powerpc,
3191 bfd_mach_ppc_7400, &tdesc_powerpc_7400},
3192 {"e500", "Motorola PowerPC e500", bfd_arch_powerpc,
3193 bfd_mach_ppc_e500, &tdesc_powerpc_e500},
3194
3195 /* 64-bit */
3196 {"powerpc64", "PowerPC 64-bit user-level", bfd_arch_powerpc,
3197 bfd_mach_ppc64, &tdesc_powerpc_altivec64},
3198 {"620", "Motorola PowerPC 620", bfd_arch_powerpc,
3199 bfd_mach_ppc_620, &tdesc_powerpc_64},
3200 {"630", "Motorola PowerPC 630", bfd_arch_powerpc,
3201 bfd_mach_ppc_630, &tdesc_powerpc_64},
3202 {"a35", "PowerPC A35", bfd_arch_powerpc,
3203 bfd_mach_ppc_a35, &tdesc_powerpc_64},
3204 {"rs64ii", "PowerPC rs64ii", bfd_arch_powerpc,
3205 bfd_mach_ppc_rs64ii, &tdesc_powerpc_64},
3206 {"rs64iii", "PowerPC rs64iii", bfd_arch_powerpc,
3207 bfd_mach_ppc_rs64iii, &tdesc_powerpc_64},
3208
3209 /* FIXME: I haven't checked the register sets of the following. */
3210 {"rs1", "IBM POWER RS1", bfd_arch_rs6000,
3211 bfd_mach_rs6k_rs1, &tdesc_rs6000},
3212 {"rsc", "IBM POWER RSC", bfd_arch_rs6000,
3213 bfd_mach_rs6k_rsc, &tdesc_rs6000},
3214 {"rs2", "IBM POWER RS2", bfd_arch_rs6000,
3215 bfd_mach_rs6k_rs2, &tdesc_rs6000},
3216
3217 {0, 0, (enum bfd_architecture) 0, 0, 0}
3218 };
3219
3220 /* Return the variant corresponding to architecture ARCH and machine number
3221 MACH. If no such variant exists, return null. */
3222
3223 static const struct variant *
3224 find_variant_by_arch (enum bfd_architecture arch, unsigned long mach)
3225 {
3226 const struct variant *v;
3227
3228 for (v = variants; v->name; v++)
3229 if (arch == v->arch && mach == v->mach)
3230 return v;
3231
3232 return NULL;
3233 }
3234
3235 \f
3236 static CORE_ADDR
3237 rs6000_unwind_pc (struct gdbarch *gdbarch, struct frame_info *next_frame)
3238 {
3239 return frame_unwind_register_unsigned (next_frame,
3240 gdbarch_pc_regnum (gdbarch));
3241 }
3242
3243 static struct frame_id
3244 rs6000_dummy_id (struct gdbarch *gdbarch, struct frame_info *this_frame)
3245 {
3246 return frame_id_build (get_frame_register_unsigned
3247 (this_frame, gdbarch_sp_regnum (gdbarch)),
3248 get_frame_pc (this_frame));
3249 }
3250
3251 struct rs6000_frame_cache
3252 {
3253 CORE_ADDR base;
3254 CORE_ADDR initial_sp;
3255 struct trad_frame_saved_reg *saved_regs;
3256
3257 /* Set BASE_P to true if this frame cache is properly initialized.
3258 Otherwise set to false because some registers or memory cannot
3259 collected. */
3260 int base_p;
3261 /* Cache PC for building unavailable frame. */
3262 CORE_ADDR pc;
3263 };
3264
3265 static struct rs6000_frame_cache *
3266 rs6000_frame_cache (struct frame_info *this_frame, void **this_cache)
3267 {
3268 struct rs6000_frame_cache *cache;
3269 struct gdbarch *gdbarch = get_frame_arch (this_frame);
3270 struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch);
3271 enum bfd_endian byte_order = gdbarch_byte_order (gdbarch);
3272 struct rs6000_framedata fdata;
3273 int wordsize = tdep->wordsize;
3274 CORE_ADDR func = 0, pc = 0;
3275
3276 if ((*this_cache) != NULL)
3277 return (struct rs6000_frame_cache *) (*this_cache);
3278 cache = FRAME_OBSTACK_ZALLOC (struct rs6000_frame_cache);
3279 (*this_cache) = cache;
3280 cache->pc = 0;
3281 cache->saved_regs = trad_frame_alloc_saved_regs (this_frame);
3282
3283 TRY
3284 {
3285 func = get_frame_func (this_frame);
3286 cache->pc = func;
3287 pc = get_frame_pc (this_frame);
3288 skip_prologue (gdbarch, func, pc, &fdata);
3289
3290 /* Figure out the parent's stack pointer. */
3291
3292 /* NOTE: cagney/2002-04-14: The ->frame points to the inner-most
3293 address of the current frame. Things might be easier if the
3294 ->frame pointed to the outer-most address of the frame. In
3295 the mean time, the address of the prev frame is used as the
3296 base address of this frame. */
3297 cache->base = get_frame_register_unsigned
3298 (this_frame, gdbarch_sp_regnum (gdbarch));
3299 }
3300 CATCH (ex, RETURN_MASK_ERROR)
3301 {
3302 if (ex.error != NOT_AVAILABLE_ERROR)
3303 throw_exception (ex);
3304 return (struct rs6000_frame_cache *) (*this_cache);
3305 }
3306 END_CATCH
3307
3308 /* If the function appears to be frameless, check a couple of likely
3309 indicators that we have simply failed to find the frame setup.
3310 Two common cases of this are missing symbols (i.e.
3311 get_frame_func returns the wrong address or 0), and assembly
3312 stubs which have a fast exit path but set up a frame on the slow
3313 path.
3314
3315 If the LR appears to return to this function, then presume that
3316 we have an ABI compliant frame that we failed to find. */
3317 if (fdata.frameless && fdata.lr_offset == 0)
3318 {
3319 CORE_ADDR saved_lr;
3320 int make_frame = 0;
3321
3322 saved_lr = get_frame_register_unsigned (this_frame, tdep->ppc_lr_regnum);
3323 if (func == 0 && saved_lr == pc)
3324 make_frame = 1;
3325 else if (func != 0)
3326 {
3327 CORE_ADDR saved_func = get_pc_function_start (saved_lr);
3328 if (func == saved_func)
3329 make_frame = 1;
3330 }
3331
3332 if (make_frame)
3333 {
3334 fdata.frameless = 0;
3335 fdata.lr_offset = tdep->lr_frame_offset;
3336 }
3337 }
3338
3339 if (!fdata.frameless)
3340 {
3341 /* Frameless really means stackless. */
3342 ULONGEST backchain;
3343
3344 if (safe_read_memory_unsigned_integer (cache->base, wordsize,
3345 byte_order, &backchain))
3346 cache->base = (CORE_ADDR) backchain;
3347 }
3348
3349 trad_frame_set_value (cache->saved_regs,
3350 gdbarch_sp_regnum (gdbarch), cache->base);
3351
3352 /* if != -1, fdata.saved_fpr is the smallest number of saved_fpr.
3353 All fpr's from saved_fpr to fp31 are saved. */
3354
3355 if (fdata.saved_fpr >= 0)
3356 {
3357 int i;
3358 CORE_ADDR fpr_addr = cache->base + fdata.fpr_offset;
3359
3360 /* If skip_prologue says floating-point registers were saved,
3361 but the current architecture has no floating-point registers,
3362 then that's strange. But we have no indices to even record
3363 the addresses under, so we just ignore it. */
3364 if (ppc_floating_point_unit_p (gdbarch))
3365 for (i = fdata.saved_fpr; i < ppc_num_fprs; i++)
3366 {
3367 cache->saved_regs[tdep->ppc_fp0_regnum + i].addr = fpr_addr;
3368 fpr_addr += 8;
3369 }
3370 }
3371
3372 /* if != -1, fdata.saved_gpr is the smallest number of saved_gpr.
3373 All gpr's from saved_gpr to gpr31 are saved (except during the
3374 prologue). */
3375
3376 if (fdata.saved_gpr >= 0)
3377 {
3378 int i;
3379 CORE_ADDR gpr_addr = cache->base + fdata.gpr_offset;
3380 for (i = fdata.saved_gpr; i < ppc_num_gprs; i++)
3381 {
3382 if (fdata.gpr_mask & (1U << i))
3383 cache->saved_regs[tdep->ppc_gp0_regnum + i].addr = gpr_addr;
3384 gpr_addr += wordsize;
3385 }
3386 }
3387
3388 /* if != -1, fdata.saved_vr is the smallest number of saved_vr.
3389 All vr's from saved_vr to vr31 are saved. */
3390 if (tdep->ppc_vr0_regnum != -1 && tdep->ppc_vrsave_regnum != -1)
3391 {
3392 if (fdata.saved_vr >= 0)
3393 {
3394 int i;
3395 CORE_ADDR vr_addr = cache->base + fdata.vr_offset;
3396 for (i = fdata.saved_vr; i < 32; i++)
3397 {
3398 cache->saved_regs[tdep->ppc_vr0_regnum + i].addr = vr_addr;
3399 vr_addr += register_size (gdbarch, tdep->ppc_vr0_regnum);
3400 }
3401 }
3402 }
3403
3404 /* if != -1, fdata.saved_ev is the smallest number of saved_ev.
3405 All vr's from saved_ev to ev31 are saved. ????? */
3406 if (tdep->ppc_ev0_regnum != -1)
3407 {
3408 if (fdata.saved_ev >= 0)
3409 {
3410 int i;
3411 CORE_ADDR ev_addr = cache->base + fdata.ev_offset;
3412 CORE_ADDR off = (byte_order == BFD_ENDIAN_BIG ? 4 : 0);
3413
3414 for (i = fdata.saved_ev; i < ppc_num_gprs; i++)
3415 {
3416 cache->saved_regs[tdep->ppc_ev0_regnum + i].addr = ev_addr;
3417 cache->saved_regs[tdep->ppc_gp0_regnum + i].addr = ev_addr + off;
3418 ev_addr += register_size (gdbarch, tdep->ppc_ev0_regnum);
3419 }
3420 }
3421 }
3422
3423 /* If != 0, fdata.cr_offset is the offset from the frame that
3424 holds the CR. */
3425 if (fdata.cr_offset != 0)
3426 cache->saved_regs[tdep->ppc_cr_regnum].addr
3427 = cache->base + fdata.cr_offset;
3428
3429 /* If != 0, fdata.lr_offset is the offset from the frame that
3430 holds the LR. */
3431 if (fdata.lr_offset != 0)
3432 cache->saved_regs[tdep->ppc_lr_regnum].addr
3433 = cache->base + fdata.lr_offset;
3434 else if (fdata.lr_register != -1)
3435 cache->saved_regs[tdep->ppc_lr_regnum].realreg = fdata.lr_register;
3436 /* The PC is found in the link register. */
3437 cache->saved_regs[gdbarch_pc_regnum (gdbarch)] =
3438 cache->saved_regs[tdep->ppc_lr_regnum];
3439
3440 /* If != 0, fdata.vrsave_offset is the offset from the frame that
3441 holds the VRSAVE. */
3442 if (fdata.vrsave_offset != 0)
3443 cache->saved_regs[tdep->ppc_vrsave_regnum].addr
3444 = cache->base + fdata.vrsave_offset;
3445
3446 if (fdata.alloca_reg < 0)
3447 /* If no alloca register used, then fi->frame is the value of the
3448 %sp for this frame, and it is good enough. */
3449 cache->initial_sp
3450 = get_frame_register_unsigned (this_frame, gdbarch_sp_regnum (gdbarch));
3451 else
3452 cache->initial_sp
3453 = get_frame_register_unsigned (this_frame, fdata.alloca_reg);
3454
3455 cache->base_p = 1;
3456 return cache;
3457 }
3458
3459 static void
3460 rs6000_frame_this_id (struct frame_info *this_frame, void **this_cache,
3461 struct frame_id *this_id)
3462 {
3463 struct rs6000_frame_cache *info = rs6000_frame_cache (this_frame,
3464 this_cache);
3465
3466 if (!info->base_p)
3467 {
3468 (*this_id) = frame_id_build_unavailable_stack (info->pc);
3469 return;
3470 }
3471
3472 /* This marks the outermost frame. */
3473 if (info->base == 0)
3474 return;
3475
3476 (*this_id) = frame_id_build (info->base, get_frame_func (this_frame));
3477 }
3478
3479 static struct value *
3480 rs6000_frame_prev_register (struct frame_info *this_frame,
3481 void **this_cache, int regnum)
3482 {
3483 struct rs6000_frame_cache *info = rs6000_frame_cache (this_frame,
3484 this_cache);
3485 return trad_frame_get_prev_register (this_frame, info->saved_regs, regnum);
3486 }
3487
3488 static const struct frame_unwind rs6000_frame_unwind =
3489 {
3490 NORMAL_FRAME,
3491 default_frame_unwind_stop_reason,
3492 rs6000_frame_this_id,
3493 rs6000_frame_prev_register,
3494 NULL,
3495 default_frame_sniffer
3496 };
3497
3498 /* Allocate and initialize a frame cache for an epilogue frame.
3499 SP is restored and prev-PC is stored in LR. */
3500
3501 static struct rs6000_frame_cache *
3502 rs6000_epilogue_frame_cache (struct frame_info *this_frame, void **this_cache)
3503 {
3504 struct rs6000_frame_cache *cache;
3505 struct gdbarch *gdbarch = get_frame_arch (this_frame);
3506 struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch);
3507
3508 if (*this_cache)
3509 return (struct rs6000_frame_cache *) *this_cache;
3510
3511 cache = FRAME_OBSTACK_ZALLOC (struct rs6000_frame_cache);
3512 (*this_cache) = cache;
3513 cache->saved_regs = trad_frame_alloc_saved_regs (this_frame);
3514
3515 TRY
3516 {
3517 /* At this point the stack looks as if we just entered the
3518 function, and the return address is stored in LR. */
3519 CORE_ADDR sp, lr;
3520
3521 sp = get_frame_register_unsigned (this_frame, gdbarch_sp_regnum (gdbarch));
3522 lr = get_frame_register_unsigned (this_frame, tdep->ppc_lr_regnum);
3523
3524 cache->base = sp;
3525 cache->initial_sp = sp;
3526
3527 trad_frame_set_value (cache->saved_regs,
3528 gdbarch_pc_regnum (gdbarch), lr);
3529 }
3530 CATCH (ex, RETURN_MASK_ERROR)
3531 {
3532 if (ex.error != NOT_AVAILABLE_ERROR)
3533 throw_exception (ex);
3534 }
3535 END_CATCH
3536
3537 return cache;
3538 }
3539
3540 /* Implementation of frame_unwind.this_id, as defined in frame_unwind.h.
3541 Return the frame ID of an epilogue frame. */
3542
3543 static void
3544 rs6000_epilogue_frame_this_id (struct frame_info *this_frame,
3545 void **this_cache, struct frame_id *this_id)
3546 {
3547 CORE_ADDR pc;
3548 struct rs6000_frame_cache *info =
3549 rs6000_epilogue_frame_cache (this_frame, this_cache);
3550
3551 pc = get_frame_func (this_frame);
3552 if (info->base == 0)
3553 (*this_id) = frame_id_build_unavailable_stack (pc);
3554 else
3555 (*this_id) = frame_id_build (info->base, pc);
3556 }
3557
3558 /* Implementation of frame_unwind.prev_register, as defined in frame_unwind.h.
3559 Return the register value of REGNUM in previous frame. */
3560
3561 static struct value *
3562 rs6000_epilogue_frame_prev_register (struct frame_info *this_frame,
3563 void **this_cache, int regnum)
3564 {
3565 struct rs6000_frame_cache *info =
3566 rs6000_epilogue_frame_cache (this_frame, this_cache);
3567 return trad_frame_get_prev_register (this_frame, info->saved_regs, regnum);
3568 }
3569
3570 /* Implementation of frame_unwind.sniffer, as defined in frame_unwind.h.
3571 Check whether this an epilogue frame. */
3572
3573 static int
3574 rs6000_epilogue_frame_sniffer (const struct frame_unwind *self,
3575 struct frame_info *this_frame,
3576 void **this_prologue_cache)
3577 {
3578 if (frame_relative_level (this_frame) == 0)
3579 return rs6000_in_function_epilogue_frame_p (this_frame,
3580 get_frame_arch (this_frame),
3581 get_frame_pc (this_frame));
3582 else
3583 return 0;
3584 }
3585
3586 /* Frame unwinder for epilogue frame. This is required for reverse step-over
3587 a function without debug information. */
3588
3589 static const struct frame_unwind rs6000_epilogue_frame_unwind =
3590 {
3591 NORMAL_FRAME,
3592 default_frame_unwind_stop_reason,
3593 rs6000_epilogue_frame_this_id, rs6000_epilogue_frame_prev_register,
3594 NULL,
3595 rs6000_epilogue_frame_sniffer
3596 };
3597 \f
3598
3599 static CORE_ADDR
3600 rs6000_frame_base_address (struct frame_info *this_frame, void **this_cache)
3601 {
3602 struct rs6000_frame_cache *info = rs6000_frame_cache (this_frame,
3603 this_cache);
3604 return info->initial_sp;
3605 }
3606
3607 static const struct frame_base rs6000_frame_base = {
3608 &rs6000_frame_unwind,
3609 rs6000_frame_base_address,
3610 rs6000_frame_base_address,
3611 rs6000_frame_base_address
3612 };
3613
3614 static const struct frame_base *
3615 rs6000_frame_base_sniffer (struct frame_info *this_frame)
3616 {
3617 return &rs6000_frame_base;
3618 }
3619
3620 /* DWARF-2 frame support. Used to handle the detection of
3621 clobbered registers during function calls. */
3622
3623 static void
3624 ppc_dwarf2_frame_init_reg (struct gdbarch *gdbarch, int regnum,
3625 struct dwarf2_frame_state_reg *reg,
3626 struct frame_info *this_frame)
3627 {
3628 struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch);
3629
3630 /* PPC32 and PPC64 ABI's are the same regarding volatile and
3631 non-volatile registers. We will use the same code for both. */
3632
3633 /* Call-saved GP registers. */
3634 if ((regnum >= tdep->ppc_gp0_regnum + 14
3635 && regnum <= tdep->ppc_gp0_regnum + 31)
3636 || (regnum == tdep->ppc_gp0_regnum + 1))
3637 reg->how = DWARF2_FRAME_REG_SAME_VALUE;
3638
3639 /* Call-clobbered GP registers. */
3640 if ((regnum >= tdep->ppc_gp0_regnum + 3
3641 && regnum <= tdep->ppc_gp0_regnum + 12)
3642 || (regnum == tdep->ppc_gp0_regnum))
3643 reg->how = DWARF2_FRAME_REG_UNDEFINED;
3644
3645 /* Deal with FP registers, if supported. */
3646 if (tdep->ppc_fp0_regnum >= 0)
3647 {
3648 /* Call-saved FP registers. */
3649 if ((regnum >= tdep->ppc_fp0_regnum + 14
3650 && regnum <= tdep->ppc_fp0_regnum + 31))
3651 reg->how = DWARF2_FRAME_REG_SAME_VALUE;
3652
3653 /* Call-clobbered FP registers. */
3654 if ((regnum >= tdep->ppc_fp0_regnum
3655 && regnum <= tdep->ppc_fp0_regnum + 13))
3656 reg->how = DWARF2_FRAME_REG_UNDEFINED;
3657 }
3658
3659 /* Deal with ALTIVEC registers, if supported. */
3660 if (tdep->ppc_vr0_regnum > 0 && tdep->ppc_vrsave_regnum > 0)
3661 {
3662 /* Call-saved Altivec registers. */
3663 if ((regnum >= tdep->ppc_vr0_regnum + 20
3664 && regnum <= tdep->ppc_vr0_regnum + 31)
3665 || regnum == tdep->ppc_vrsave_regnum)
3666 reg->how = DWARF2_FRAME_REG_SAME_VALUE;
3667
3668 /* Call-clobbered Altivec registers. */
3669 if ((regnum >= tdep->ppc_vr0_regnum
3670 && regnum <= tdep->ppc_vr0_regnum + 19))
3671 reg->how = DWARF2_FRAME_REG_UNDEFINED;
3672 }
3673
3674 /* Handle PC register and Stack Pointer correctly. */
3675 if (regnum == gdbarch_pc_regnum (gdbarch))
3676 reg->how = DWARF2_FRAME_REG_RA;
3677 else if (regnum == gdbarch_sp_regnum (gdbarch))
3678 reg->how = DWARF2_FRAME_REG_CFA;
3679 }
3680
3681
3682 /* Return true if a .gnu_attributes section exists in BFD and it
3683 indicates we are using SPE extensions OR if a .PPC.EMB.apuinfo
3684 section exists in BFD and it indicates that SPE extensions are in
3685 use. Check the .gnu.attributes section first, as the binary might be
3686 compiled for SPE, but not actually using SPE instructions. */
3687
3688 static int
3689 bfd_uses_spe_extensions (bfd *abfd)
3690 {
3691 asection *sect;
3692 gdb_byte *contents = NULL;
3693 bfd_size_type size;
3694 gdb_byte *ptr;
3695 int success = 0;
3696 int vector_abi;
3697
3698 if (!abfd)
3699 return 0;
3700
3701 #ifdef HAVE_ELF
3702 /* Using Tag_GNU_Power_ABI_Vector here is a bit of a hack, as the user
3703 could be using the SPE vector abi without actually using any spe
3704 bits whatsoever. But it's close enough for now. */
3705 vector_abi = bfd_elf_get_obj_attr_int (abfd, OBJ_ATTR_GNU,
3706 Tag_GNU_Power_ABI_Vector);
3707 if (vector_abi == 3)
3708 return 1;
3709 #endif
3710
3711 sect = bfd_get_section_by_name (abfd, ".PPC.EMB.apuinfo");
3712 if (!sect)
3713 return 0;
3714
3715 size = bfd_get_section_size (sect);
3716 contents = (gdb_byte *) xmalloc (size);
3717 if (!bfd_get_section_contents (abfd, sect, contents, 0, size))
3718 {
3719 xfree (contents);
3720 return 0;
3721 }
3722
3723 /* Parse the .PPC.EMB.apuinfo section. The layout is as follows:
3724
3725 struct {
3726 uint32 name_len;
3727 uint32 data_len;
3728 uint32 type;
3729 char name[name_len rounded up to 4-byte alignment];
3730 char data[data_len];
3731 };
3732
3733 Technically, there's only supposed to be one such structure in a
3734 given apuinfo section, but the linker is not always vigilant about
3735 merging apuinfo sections from input files. Just go ahead and parse
3736 them all, exiting early when we discover the binary uses SPE
3737 insns.
3738
3739 It's not specified in what endianness the information in this
3740 section is stored. Assume that it's the endianness of the BFD. */
3741 ptr = contents;
3742 while (1)
3743 {
3744 unsigned int name_len;
3745 unsigned int data_len;
3746 unsigned int type;
3747
3748 /* If we can't read the first three fields, we're done. */
3749 if (size < 12)
3750 break;
3751
3752 name_len = bfd_get_32 (abfd, ptr);
3753 name_len = (name_len + 3) & ~3U; /* Round to 4 bytes. */
3754 data_len = bfd_get_32 (abfd, ptr + 4);
3755 type = bfd_get_32 (abfd, ptr + 8);
3756 ptr += 12;
3757
3758 /* The name must be "APUinfo\0". */
3759 if (name_len != 8
3760 && strcmp ((const char *) ptr, "APUinfo") != 0)
3761 break;
3762 ptr += name_len;
3763
3764 /* The type must be 2. */
3765 if (type != 2)
3766 break;
3767
3768 /* The data is stored as a series of uint32. The upper half of
3769 each uint32 indicates the particular APU used and the lower
3770 half indicates the revision of that APU. We just care about
3771 the upper half. */
3772
3773 /* Not 4-byte quantities. */
3774 if (data_len & 3U)
3775 break;
3776
3777 while (data_len)
3778 {
3779 unsigned int apuinfo = bfd_get_32 (abfd, ptr);
3780 unsigned int apu = apuinfo >> 16;
3781 ptr += 4;
3782 data_len -= 4;
3783
3784 /* The SPE APU is 0x100; the SPEFP APU is 0x101. Accept
3785 either. */
3786 if (apu == 0x100 || apu == 0x101)
3787 {
3788 success = 1;
3789 data_len = 0;
3790 }
3791 }
3792
3793 if (success)
3794 break;
3795 }
3796
3797 xfree (contents);
3798 return success;
3799 }
3800
3801 /* These are macros for parsing instruction fields (I.1.6.28) */
3802
3803 #define PPC_FIELD(value, from, len) \
3804 (((value) >> (32 - (from) - (len))) & ((1 << (len)) - 1))
3805 #define PPC_SEXT(v, bs) \
3806 ((((CORE_ADDR) (v) & (((CORE_ADDR) 1 << (bs)) - 1)) \
3807 ^ ((CORE_ADDR) 1 << ((bs) - 1))) \
3808 - ((CORE_ADDR) 1 << ((bs) - 1)))
3809 #define PPC_OP6(insn) PPC_FIELD (insn, 0, 6)
3810 #define PPC_EXTOP(insn) PPC_FIELD (insn, 21, 10)
3811 #define PPC_RT(insn) PPC_FIELD (insn, 6, 5)
3812 #define PPC_RS(insn) PPC_FIELD (insn, 6, 5)
3813 #define PPC_RA(insn) PPC_FIELD (insn, 11, 5)
3814 #define PPC_RB(insn) PPC_FIELD (insn, 16, 5)
3815 #define PPC_NB(insn) PPC_FIELD (insn, 16, 5)
3816 #define PPC_VRT(insn) PPC_FIELD (insn, 6, 5)
3817 #define PPC_FRT(insn) PPC_FIELD (insn, 6, 5)
3818 #define PPC_SPR(insn) (PPC_FIELD (insn, 11, 5) \
3819 | (PPC_FIELD (insn, 16, 5) << 5))
3820 #define PPC_BO(insn) PPC_FIELD (insn, 6, 5)
3821 #define PPC_T(insn) PPC_FIELD (insn, 6, 5)
3822 #define PPC_D(insn) PPC_SEXT (PPC_FIELD (insn, 16, 16), 16)
3823 #define PPC_DS(insn) PPC_SEXT (PPC_FIELD (insn, 16, 14), 14)
3824 #define PPC_DQ(insn) PPC_SEXT (PPC_FIELD (insn, 16, 12), 12)
3825 #define PPC_BIT(insn,n) ((insn & (1 << (31 - (n)))) ? 1 : 0)
3826 #define PPC_OE(insn) PPC_BIT (insn, 21)
3827 #define PPC_RC(insn) PPC_BIT (insn, 31)
3828 #define PPC_Rc(insn) PPC_BIT (insn, 21)
3829 #define PPC_LK(insn) PPC_BIT (insn, 31)
3830 #define PPC_TX(insn) PPC_BIT (insn, 31)
3831 #define PPC_LEV(insn) PPC_FIELD (insn, 20, 7)
3832
3833 #define PPC_XT(insn) ((PPC_TX (insn) << 5) | PPC_T (insn))
3834 #define PPC_XER_NB(xer) (xer & 0x7f)
3835
3836 /* Record Vector-Scalar Registers.
3837 For VSR less than 32, it's represented by an FPR and an VSR-upper register.
3838 Otherwise, it's just a VR register. Record them accordingly. */
3839
3840 static int
3841 ppc_record_vsr (struct regcache *regcache, struct gdbarch_tdep *tdep, int vsr)
3842 {
3843 if (vsr < 0 || vsr >= 64)
3844 return -1;
3845
3846 if (vsr >= 32)
3847 {
3848 if (tdep->ppc_vr0_regnum >= 0)
3849 record_full_arch_list_add_reg (regcache, tdep->ppc_vr0_regnum + vsr - 32);
3850 }
3851 else
3852 {
3853 if (tdep->ppc_fp0_regnum >= 0)
3854 record_full_arch_list_add_reg (regcache, tdep->ppc_fp0_regnum + vsr);
3855 if (tdep->ppc_vsr0_upper_regnum >= 0)
3856 record_full_arch_list_add_reg (regcache,
3857 tdep->ppc_vsr0_upper_regnum + vsr);
3858 }
3859
3860 return 0;
3861 }
3862
3863 /* Parse and record instructions primary opcode-4 at ADDR.
3864 Return 0 if successful. */
3865
3866 static int
3867 ppc_process_record_op4 (struct gdbarch *gdbarch, struct regcache *regcache,
3868 CORE_ADDR addr, uint32_t insn)
3869 {
3870 struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch);
3871 int ext = PPC_FIELD (insn, 21, 11);
3872 int vra = PPC_FIELD (insn, 11, 5);
3873
3874 switch (ext & 0x3f)
3875 {
3876 case 32: /* Vector Multiply-High-Add Signed Halfword Saturate */
3877 case 33: /* Vector Multiply-High-Round-Add Signed Halfword Saturate */
3878 case 39: /* Vector Multiply-Sum Unsigned Halfword Saturate */
3879 case 41: /* Vector Multiply-Sum Signed Halfword Saturate */
3880 record_full_arch_list_add_reg (regcache, PPC_VSCR_REGNUM);
3881 /* FALL-THROUGH */
3882 case 42: /* Vector Select */
3883 case 43: /* Vector Permute */
3884 case 59: /* Vector Permute Right-indexed */
3885 case 44: /* Vector Shift Left Double by Octet Immediate */
3886 case 45: /* Vector Permute and Exclusive-OR */
3887 case 60: /* Vector Add Extended Unsigned Quadword Modulo */
3888 case 61: /* Vector Add Extended & write Carry Unsigned Quadword */
3889 case 62: /* Vector Subtract Extended Unsigned Quadword Modulo */
3890 case 63: /* Vector Subtract Extended & write Carry Unsigned Quadword */
3891 case 34: /* Vector Multiply-Low-Add Unsigned Halfword Modulo */
3892 case 35: /* Vector Multiply-Sum Unsigned Doubleword Modulo */
3893 case 36: /* Vector Multiply-Sum Unsigned Byte Modulo */
3894 case 37: /* Vector Multiply-Sum Mixed Byte Modulo */
3895 case 38: /* Vector Multiply-Sum Unsigned Halfword Modulo */
3896 case 40: /* Vector Multiply-Sum Signed Halfword Modulo */
3897 case 46: /* Vector Multiply-Add Single-Precision */
3898 case 47: /* Vector Negative Multiply-Subtract Single-Precision */
3899 record_full_arch_list_add_reg (regcache,
3900 tdep->ppc_vr0_regnum + PPC_VRT (insn));
3901 return 0;
3902
3903 case 48: /* Multiply-Add High Doubleword */
3904 case 49: /* Multiply-Add High Doubleword Unsigned */
3905 case 51: /* Multiply-Add Low Doubleword */
3906 record_full_arch_list_add_reg (regcache,
3907 tdep->ppc_gp0_regnum + PPC_RT (insn));
3908 return 0;
3909 }
3910
3911 switch ((ext & 0x1ff))
3912 {
3913 case 385:
3914 if (vra != 0 /* Decimal Convert To Signed Quadword */
3915 && vra != 2 /* Decimal Convert From Signed Quadword */
3916 && vra != 4 /* Decimal Convert To Zoned */
3917 && vra != 5 /* Decimal Convert To National */
3918 && vra != 6 /* Decimal Convert From Zoned */
3919 && vra != 7 /* Decimal Convert From National */
3920 && vra != 31) /* Decimal Set Sign */
3921 break;
3922 /* 5.16 Decimal Integer Arithmetic Instructions */
3923 case 1: /* Decimal Add Modulo */
3924 case 65: /* Decimal Subtract Modulo */
3925
3926 case 193: /* Decimal Shift */
3927 case 129: /* Decimal Unsigned Shift */
3928 case 449: /* Decimal Shift and Round */
3929
3930 case 257: /* Decimal Truncate */
3931 case 321: /* Decimal Unsigned Truncate */
3932
3933 /* Bit-21 should be set. */
3934 if (!PPC_BIT (insn, 21))
3935 break;
3936
3937 record_full_arch_list_add_reg (regcache,
3938 tdep->ppc_vr0_regnum + PPC_VRT (insn));
3939 record_full_arch_list_add_reg (regcache, tdep->ppc_cr_regnum);
3940 return 0;
3941 }
3942
3943 /* Bit-21 is used for RC */
3944 switch (ext & 0x3ff)
3945 {
3946 case 6: /* Vector Compare Equal To Unsigned Byte */
3947 case 70: /* Vector Compare Equal To Unsigned Halfword */
3948 case 134: /* Vector Compare Equal To Unsigned Word */
3949 case 199: /* Vector Compare Equal To Unsigned Doubleword */
3950 case 774: /* Vector Compare Greater Than Signed Byte */
3951 case 838: /* Vector Compare Greater Than Signed Halfword */
3952 case 902: /* Vector Compare Greater Than Signed Word */
3953 case 967: /* Vector Compare Greater Than Signed Doubleword */
3954 case 518: /* Vector Compare Greater Than Unsigned Byte */
3955 case 646: /* Vector Compare Greater Than Unsigned Word */
3956 case 582: /* Vector Compare Greater Than Unsigned Halfword */
3957 case 711: /* Vector Compare Greater Than Unsigned Doubleword */
3958 case 966: /* Vector Compare Bounds Single-Precision */
3959 case 198: /* Vector Compare Equal To Single-Precision */
3960 case 454: /* Vector Compare Greater Than or Equal To Single-Precision */
3961 case 710: /* Vector Compare Greater Than Single-Precision */
3962 case 7: /* Vector Compare Not Equal Byte */
3963 case 71: /* Vector Compare Not Equal Halfword */
3964 case 135: /* Vector Compare Not Equal Word */
3965 case 263: /* Vector Compare Not Equal or Zero Byte */
3966 case 327: /* Vector Compare Not Equal or Zero Halfword */
3967 case 391: /* Vector Compare Not Equal or Zero Word */
3968 if (PPC_Rc (insn))
3969 record_full_arch_list_add_reg (regcache, tdep->ppc_cr_regnum);
3970 record_full_arch_list_add_reg (regcache,
3971 tdep->ppc_vr0_regnum + PPC_VRT (insn));
3972 return 0;
3973 }
3974
3975 if (ext == 1538)
3976 {
3977 switch (vra)
3978 {
3979 case 0: /* Vector Count Leading Zero Least-Significant Bits
3980 Byte */
3981 case 1: /* Vector Count Trailing Zero Least-Significant Bits
3982 Byte */
3983 record_full_arch_list_add_reg (regcache,
3984 tdep->ppc_gp0_regnum + PPC_RT (insn));
3985 return 0;
3986
3987 case 6: /* Vector Negate Word */
3988 case 7: /* Vector Negate Doubleword */
3989 case 8: /* Vector Parity Byte Word */
3990 case 9: /* Vector Parity Byte Doubleword */
3991 case 10: /* Vector Parity Byte Quadword */
3992 case 16: /* Vector Extend Sign Byte To Word */
3993 case 17: /* Vector Extend Sign Halfword To Word */
3994 case 24: /* Vector Extend Sign Byte To Doubleword */
3995 case 25: /* Vector Extend Sign Halfword To Doubleword */
3996 case 26: /* Vector Extend Sign Word To Doubleword */
3997 case 28: /* Vector Count Trailing Zeros Byte */
3998 case 29: /* Vector Count Trailing Zeros Halfword */
3999 case 30: /* Vector Count Trailing Zeros Word */
4000 case 31: /* Vector Count Trailing Zeros Doubleword */
4001 record_full_arch_list_add_reg (regcache,
4002 tdep->ppc_vr0_regnum + PPC_VRT (insn));
4003 return 0;
4004 }
4005 }
4006
4007 switch (ext)
4008 {
4009 case 142: /* Vector Pack Unsigned Halfword Unsigned Saturate */
4010 case 206: /* Vector Pack Unsigned Word Unsigned Saturate */
4011 case 270: /* Vector Pack Signed Halfword Unsigned Saturate */
4012 case 334: /* Vector Pack Signed Word Unsigned Saturate */
4013 case 398: /* Vector Pack Signed Halfword Signed Saturate */
4014 case 462: /* Vector Pack Signed Word Signed Saturate */
4015 case 1230: /* Vector Pack Unsigned Doubleword Unsigned Saturate */
4016 case 1358: /* Vector Pack Signed Doubleword Unsigned Saturate */
4017 case 1486: /* Vector Pack Signed Doubleword Signed Saturate */
4018 case 512: /* Vector Add Unsigned Byte Saturate */
4019 case 576: /* Vector Add Unsigned Halfword Saturate */
4020 case 640: /* Vector Add Unsigned Word Saturate */
4021 case 768: /* Vector Add Signed Byte Saturate */
4022 case 832: /* Vector Add Signed Halfword Saturate */
4023 case 896: /* Vector Add Signed Word Saturate */
4024 case 1536: /* Vector Subtract Unsigned Byte Saturate */
4025 case 1600: /* Vector Subtract Unsigned Halfword Saturate */
4026 case 1664: /* Vector Subtract Unsigned Word Saturate */
4027 case 1792: /* Vector Subtract Signed Byte Saturate */
4028 case 1856: /* Vector Subtract Signed Halfword Saturate */
4029 case 1920: /* Vector Subtract Signed Word Saturate */
4030
4031 case 1544: /* Vector Sum across Quarter Unsigned Byte Saturate */
4032 case 1800: /* Vector Sum across Quarter Signed Byte Saturate */
4033 case 1608: /* Vector Sum across Quarter Signed Halfword Saturate */
4034 case 1672: /* Vector Sum across Half Signed Word Saturate */
4035 case 1928: /* Vector Sum across Signed Word Saturate */
4036 case 970: /* Vector Convert To Signed Fixed-Point Word Saturate */
4037 case 906: /* Vector Convert To Unsigned Fixed-Point Word Saturate */
4038 record_full_arch_list_add_reg (regcache, PPC_VSCR_REGNUM);
4039 /* FALL-THROUGH */
4040 case 12: /* Vector Merge High Byte */
4041 case 14: /* Vector Pack Unsigned Halfword Unsigned Modulo */
4042 case 76: /* Vector Merge High Halfword */
4043 case 78: /* Vector Pack Unsigned Word Unsigned Modulo */
4044 case 140: /* Vector Merge High Word */
4045 case 268: /* Vector Merge Low Byte */
4046 case 332: /* Vector Merge Low Halfword */
4047 case 396: /* Vector Merge Low Word */
4048 case 526: /* Vector Unpack High Signed Byte */
4049 case 590: /* Vector Unpack High Signed Halfword */
4050 case 654: /* Vector Unpack Low Signed Byte */
4051 case 718: /* Vector Unpack Low Signed Halfword */
4052 case 782: /* Vector Pack Pixel */
4053 case 846: /* Vector Unpack High Pixel */
4054 case 974: /* Vector Unpack Low Pixel */
4055 case 1102: /* Vector Pack Unsigned Doubleword Unsigned Modulo */
4056 case 1614: /* Vector Unpack High Signed Word */
4057 case 1676: /* Vector Merge Odd Word */
4058 case 1742: /* Vector Unpack Low Signed Word */
4059 case 1932: /* Vector Merge Even Word */
4060 case 524: /* Vector Splat Byte */
4061 case 588: /* Vector Splat Halfword */
4062 case 652: /* Vector Splat Word */
4063 case 780: /* Vector Splat Immediate Signed Byte */
4064 case 844: /* Vector Splat Immediate Signed Halfword */
4065 case 908: /* Vector Splat Immediate Signed Word */
4066 case 452: /* Vector Shift Left */
4067 case 708: /* Vector Shift Right */
4068 case 1036: /* Vector Shift Left by Octet */
4069 case 1100: /* Vector Shift Right by Octet */
4070 case 0: /* Vector Add Unsigned Byte Modulo */
4071 case 64: /* Vector Add Unsigned Halfword Modulo */
4072 case 128: /* Vector Add Unsigned Word Modulo */
4073 case 192: /* Vector Add Unsigned Doubleword Modulo */
4074 case 256: /* Vector Add Unsigned Quadword Modulo */
4075 case 320: /* Vector Add & write Carry Unsigned Quadword */
4076 case 384: /* Vector Add and Write Carry-Out Unsigned Word */
4077 case 8: /* Vector Multiply Odd Unsigned Byte */
4078 case 72: /* Vector Multiply Odd Unsigned Halfword */
4079 case 136: /* Vector Multiply Odd Unsigned Word */
4080 case 264: /* Vector Multiply Odd Signed Byte */
4081 case 328: /* Vector Multiply Odd Signed Halfword */
4082 case 392: /* Vector Multiply Odd Signed Word */
4083 case 520: /* Vector Multiply Even Unsigned Byte */
4084 case 584: /* Vector Multiply Even Unsigned Halfword */
4085 case 648: /* Vector Multiply Even Unsigned Word */
4086 case 776: /* Vector Multiply Even Signed Byte */
4087 case 840: /* Vector Multiply Even Signed Halfword */
4088 case 904: /* Vector Multiply Even Signed Word */
4089 case 137: /* Vector Multiply Unsigned Word Modulo */
4090 case 1024: /* Vector Subtract Unsigned Byte Modulo */
4091 case 1088: /* Vector Subtract Unsigned Halfword Modulo */
4092 case 1152: /* Vector Subtract Unsigned Word Modulo */
4093 case 1216: /* Vector Subtract Unsigned Doubleword Modulo */
4094 case 1280: /* Vector Subtract Unsigned Quadword Modulo */
4095 case 1344: /* Vector Subtract & write Carry Unsigned Quadword */
4096 case 1408: /* Vector Subtract and Write Carry-Out Unsigned Word */
4097 case 1282: /* Vector Average Signed Byte */
4098 case 1346: /* Vector Average Signed Halfword */
4099 case 1410: /* Vector Average Signed Word */
4100 case 1026: /* Vector Average Unsigned Byte */
4101 case 1090: /* Vector Average Unsigned Halfword */
4102 case 1154: /* Vector Average Unsigned Word */
4103 case 258: /* Vector Maximum Signed Byte */
4104 case 322: /* Vector Maximum Signed Halfword */
4105 case 386: /* Vector Maximum Signed Word */
4106 case 450: /* Vector Maximum Signed Doubleword */
4107 case 2: /* Vector Maximum Unsigned Byte */
4108 case 66: /* Vector Maximum Unsigned Halfword */
4109 case 130: /* Vector Maximum Unsigned Word */
4110 case 194: /* Vector Maximum Unsigned Doubleword */
4111 case 770: /* Vector Minimum Signed Byte */
4112 case 834: /* Vector Minimum Signed Halfword */
4113 case 898: /* Vector Minimum Signed Word */
4114 case 962: /* Vector Minimum Signed Doubleword */
4115 case 514: /* Vector Minimum Unsigned Byte */
4116 case 578: /* Vector Minimum Unsigned Halfword */
4117 case 642: /* Vector Minimum Unsigned Word */
4118 case 706: /* Vector Minimum Unsigned Doubleword */
4119 case 1028: /* Vector Logical AND */
4120 case 1668: /* Vector Logical Equivalent */
4121 case 1092: /* Vector Logical AND with Complement */
4122 case 1412: /* Vector Logical NAND */
4123 case 1348: /* Vector Logical OR with Complement */
4124 case 1156: /* Vector Logical OR */
4125 case 1284: /* Vector Logical NOR */
4126 case 1220: /* Vector Logical XOR */
4127 case 4: /* Vector Rotate Left Byte */
4128 case 132: /* Vector Rotate Left Word VX-form */
4129 case 68: /* Vector Rotate Left Halfword */
4130 case 196: /* Vector Rotate Left Doubleword */
4131 case 260: /* Vector Shift Left Byte */
4132 case 388: /* Vector Shift Left Word */
4133 case 324: /* Vector Shift Left Halfword */
4134 case 1476: /* Vector Shift Left Doubleword */
4135 case 516: /* Vector Shift Right Byte */
4136 case 644: /* Vector Shift Right Word */
4137 case 580: /* Vector Shift Right Halfword */
4138 case 1732: /* Vector Shift Right Doubleword */
4139 case 772: /* Vector Shift Right Algebraic Byte */
4140 case 900: /* Vector Shift Right Algebraic Word */
4141 case 836: /* Vector Shift Right Algebraic Halfword */
4142 case 964: /* Vector Shift Right Algebraic Doubleword */
4143 case 10: /* Vector Add Single-Precision */
4144 case 74: /* Vector Subtract Single-Precision */
4145 case 1034: /* Vector Maximum Single-Precision */
4146 case 1098: /* Vector Minimum Single-Precision */
4147 case 842: /* Vector Convert From Signed Fixed-Point Word */
4148 case 778: /* Vector Convert From Unsigned Fixed-Point Word */
4149 case 714: /* Vector Round to Single-Precision Integer toward -Infinity */
4150 case 522: /* Vector Round to Single-Precision Integer Nearest */
4151 case 650: /* Vector Round to Single-Precision Integer toward +Infinity */
4152 case 586: /* Vector Round to Single-Precision Integer toward Zero */
4153 case 394: /* Vector 2 Raised to the Exponent Estimate Floating-Point */
4154 case 458: /* Vector Log Base 2 Estimate Floating-Point */
4155 case 266: /* Vector Reciprocal Estimate Single-Precision */
4156 case 330: /* Vector Reciprocal Square Root Estimate Single-Precision */
4157 case 1288: /* Vector AES Cipher */
4158 case 1289: /* Vector AES Cipher Last */
4159 case 1352: /* Vector AES Inverse Cipher */
4160 case 1353: /* Vector AES Inverse Cipher Last */
4161 case 1480: /* Vector AES SubBytes */
4162 case 1730: /* Vector SHA-512 Sigma Doubleword */
4163 case 1666: /* Vector SHA-256 Sigma Word */
4164 case 1032: /* Vector Polynomial Multiply-Sum Byte */
4165 case 1160: /* Vector Polynomial Multiply-Sum Word */
4166 case 1096: /* Vector Polynomial Multiply-Sum Halfword */
4167 case 1224: /* Vector Polynomial Multiply-Sum Doubleword */
4168 case 1292: /* Vector Gather Bits by Bytes by Doubleword */
4169 case 1794: /* Vector Count Leading Zeros Byte */
4170 case 1858: /* Vector Count Leading Zeros Halfword */
4171 case 1922: /* Vector Count Leading Zeros Word */
4172 case 1986: /* Vector Count Leading Zeros Doubleword */
4173 case 1795: /* Vector Population Count Byte */
4174 case 1859: /* Vector Population Count Halfword */
4175 case 1923: /* Vector Population Count Word */
4176 case 1987: /* Vector Population Count Doubleword */
4177 case 1356: /* Vector Bit Permute Quadword */
4178 case 1484: /* Vector Bit Permute Doubleword */
4179 case 513: /* Vector Multiply-by-10 Unsigned Quadword */
4180 case 1: /* Vector Multiply-by-10 & write Carry Unsigned
4181 Quadword */
4182 case 577: /* Vector Multiply-by-10 Extended Unsigned Quadword */
4183 case 65: /* Vector Multiply-by-10 Extended & write Carry
4184 Unsigned Quadword */
4185 case 1027: /* Vector Absolute Difference Unsigned Byte */
4186 case 1091: /* Vector Absolute Difference Unsigned Halfword */
4187 case 1155: /* Vector Absolute Difference Unsigned Word */
4188 case 1796: /* Vector Shift Right Variable */
4189 case 1860: /* Vector Shift Left Variable */
4190 case 133: /* Vector Rotate Left Word then Mask Insert */
4191 case 197: /* Vector Rotate Left Doubleword then Mask Insert */
4192 case 389: /* Vector Rotate Left Word then AND with Mask */
4193 case 453: /* Vector Rotate Left Doubleword then AND with Mask */
4194 case 525: /* Vector Extract Unsigned Byte */
4195 case 589: /* Vector Extract Unsigned Halfword */
4196 case 653: /* Vector Extract Unsigned Word */
4197 case 717: /* Vector Extract Doubleword */
4198 case 781: /* Vector Insert Byte */
4199 case 845: /* Vector Insert Halfword */
4200 case 909: /* Vector Insert Word */
4201 case 973: /* Vector Insert Doubleword */
4202 record_full_arch_list_add_reg (regcache,
4203 tdep->ppc_vr0_regnum + PPC_VRT (insn));
4204 return 0;
4205
4206 case 1549: /* Vector Extract Unsigned Byte Left-Indexed */
4207 case 1613: /* Vector Extract Unsigned Halfword Left-Indexed */
4208 case 1677: /* Vector Extract Unsigned Word Left-Indexed */
4209 case 1805: /* Vector Extract Unsigned Byte Right-Indexed */
4210 case 1869: /* Vector Extract Unsigned Halfword Right-Indexed */
4211 case 1933: /* Vector Extract Unsigned Word Right-Indexed */
4212 record_full_arch_list_add_reg (regcache,
4213 tdep->ppc_gp0_regnum + PPC_RT (insn));
4214 return 0;
4215
4216 case 1604: /* Move To Vector Status and Control Register */
4217 record_full_arch_list_add_reg (regcache, PPC_VSCR_REGNUM);
4218 return 0;
4219 case 1540: /* Move From Vector Status and Control Register */
4220 record_full_arch_list_add_reg (regcache,
4221 tdep->ppc_vr0_regnum + PPC_VRT (insn));
4222 return 0;
4223 case 833: /* Decimal Copy Sign */
4224 record_full_arch_list_add_reg (regcache,
4225 tdep->ppc_vr0_regnum + PPC_VRT (insn));
4226 record_full_arch_list_add_reg (regcache, tdep->ppc_cr_regnum);
4227 return 0;
4228 }
4229
4230 fprintf_unfiltered (gdb_stdlog, "Warning: Don't know how to record %08x "
4231 "at %s, 4-%d.\n", insn, paddress (gdbarch, addr), ext);
4232 return -1;
4233 }
4234
4235 /* Parse and record instructions of primary opcode-19 at ADDR.
4236 Return 0 if successful. */
4237
4238 static int
4239 ppc_process_record_op19 (struct gdbarch *gdbarch, struct regcache *regcache,
4240 CORE_ADDR addr, uint32_t insn)
4241 {
4242 struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch);
4243 int ext = PPC_EXTOP (insn);
4244
4245 switch (ext & 0x01f)
4246 {
4247 case 2: /* Add PC Immediate Shifted */
4248 record_full_arch_list_add_reg (regcache,
4249 tdep->ppc_gp0_regnum + PPC_RT (insn));
4250 return 0;
4251 }
4252
4253 switch (ext)
4254 {
4255 case 0: /* Move Condition Register Field */
4256 case 33: /* Condition Register NOR */
4257 case 129: /* Condition Register AND with Complement */
4258 case 193: /* Condition Register XOR */
4259 case 225: /* Condition Register NAND */
4260 case 257: /* Condition Register AND */
4261 case 289: /* Condition Register Equivalent */
4262 case 417: /* Condition Register OR with Complement */
4263 case 449: /* Condition Register OR */
4264 record_full_arch_list_add_reg (regcache, tdep->ppc_cr_regnum);
4265 return 0;
4266
4267 case 16: /* Branch Conditional */
4268 case 560: /* Branch Conditional to Branch Target Address Register */
4269 if ((PPC_BO (insn) & 0x4) == 0)
4270 record_full_arch_list_add_reg (regcache, tdep->ppc_ctr_regnum);
4271 /* FALL-THROUGH */
4272 case 528: /* Branch Conditional to Count Register */
4273 if (PPC_LK (insn))
4274 record_full_arch_list_add_reg (regcache, tdep->ppc_lr_regnum);
4275 return 0;
4276
4277 case 150: /* Instruction Synchronize */
4278 /* Do nothing. */
4279 return 0;
4280 }
4281
4282 fprintf_unfiltered (gdb_stdlog, "Warning: Don't know how to record %08x "
4283 "at %s, 19-%d.\n", insn, paddress (gdbarch, addr), ext);
4284 return -1;
4285 }
4286
4287 /* Parse and record instructions of primary opcode-31 at ADDR.
4288 Return 0 if successful. */
4289
4290 static int
4291 ppc_process_record_op31 (struct gdbarch *gdbarch, struct regcache *regcache,
4292 CORE_ADDR addr, uint32_t insn)
4293 {
4294 struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch);
4295 int ext = PPC_EXTOP (insn);
4296 int tmp, nr, nb, i;
4297 CORE_ADDR at_dcsz, ea = 0;
4298 ULONGEST rb, ra, xer;
4299 int size = 0;
4300
4301 /* These instructions have OE bit. */
4302 switch (ext & 0x1ff)
4303 {
4304 /* These write RT and XER. Update CR if RC is set. */
4305 case 8: /* Subtract from carrying */
4306 case 10: /* Add carrying */
4307 case 136: /* Subtract from extended */
4308 case 138: /* Add extended */
4309 case 200: /* Subtract from zero extended */
4310 case 202: /* Add to zero extended */
4311 case 232: /* Subtract from minus one extended */
4312 case 234: /* Add to minus one extended */
4313 /* CA is always altered, but SO/OV are only altered when OE=1.
4314 In any case, XER is always altered. */
4315 record_full_arch_list_add_reg (regcache, tdep->ppc_xer_regnum);
4316 if (PPC_RC (insn))
4317 record_full_arch_list_add_reg (regcache, tdep->ppc_cr_regnum);
4318 record_full_arch_list_add_reg (regcache,
4319 tdep->ppc_gp0_regnum + PPC_RT (insn));
4320 return 0;
4321
4322 /* These write RT. Update CR if RC is set and update XER if OE is set. */
4323 case 40: /* Subtract from */
4324 case 104: /* Negate */
4325 case 233: /* Multiply low doubleword */
4326 case 235: /* Multiply low word */
4327 case 266: /* Add */
4328 case 393: /* Divide Doubleword Extended Unsigned */
4329 case 395: /* Divide Word Extended Unsigned */
4330 case 425: /* Divide Doubleword Extended */
4331 case 427: /* Divide Word Extended */
4332 case 457: /* Divide Doubleword Unsigned */
4333 case 459: /* Divide Word Unsigned */
4334 case 489: /* Divide Doubleword */
4335 case 491: /* Divide Word */
4336 if (PPC_OE (insn))
4337 record_full_arch_list_add_reg (regcache, tdep->ppc_xer_regnum);
4338 /* FALL-THROUGH */
4339 case 9: /* Multiply High Doubleword Unsigned */
4340 case 11: /* Multiply High Word Unsigned */
4341 case 73: /* Multiply High Doubleword */
4342 case 75: /* Multiply High Word */
4343 if (PPC_RC (insn))
4344 record_full_arch_list_add_reg (regcache, tdep->ppc_cr_regnum);
4345 record_full_arch_list_add_reg (regcache,
4346 tdep->ppc_gp0_regnum + PPC_RT (insn));
4347 return 0;
4348 }
4349
4350 if ((ext & 0x1f) == 15)
4351 {
4352 /* Integer Select. bit[16:20] is used for BC. */
4353 record_full_arch_list_add_reg (regcache,
4354 tdep->ppc_gp0_regnum + PPC_RT (insn));
4355 return 0;
4356 }
4357
4358 if ((ext & 0xff) == 170)
4359 {
4360 /* Add Extended using alternate carry bits */
4361 record_full_arch_list_add_reg (regcache, tdep->ppc_xer_regnum);
4362 record_full_arch_list_add_reg (regcache,
4363 tdep->ppc_gp0_regnum + PPC_RT (insn));
4364 return 0;
4365 }
4366
4367 switch (ext)
4368 {
4369 case 78: /* Determine Leftmost Zero Byte */
4370 if (PPC_RC (insn))
4371 record_full_arch_list_add_reg (regcache, tdep->ppc_cr_regnum);
4372 record_full_arch_list_add_reg (regcache, tdep->ppc_xer_regnum);
4373 record_full_arch_list_add_reg (regcache,
4374 tdep->ppc_gp0_regnum + PPC_RT (insn));
4375 return 0;
4376
4377 /* These only write RT. */
4378 case 19: /* Move from condition register */
4379 /* Move From One Condition Register Field */
4380 case 74: /* Add and Generate Sixes */
4381 case 74 | 0x200: /* Add and Generate Sixes (bit-21 dont-care) */
4382 case 302: /* Move From Branch History Rolling Buffer */
4383 case 339: /* Move From Special Purpose Register */
4384 case 371: /* Move From Time Base [Phased-Out] */
4385 case 309: /* Load Doubleword Monitored Indexed */
4386 case 128: /* Set Boolean */
4387 case 755: /* Deliver A Random Number */
4388 record_full_arch_list_add_reg (regcache,
4389 tdep->ppc_gp0_regnum + PPC_RT (insn));
4390 return 0;
4391
4392 /* These only write to RA. */
4393 case 51: /* Move From VSR Doubleword */
4394 case 115: /* Move From VSR Word and Zero */
4395 case 122: /* Population count bytes */
4396 case 378: /* Population count words */
4397 case 506: /* Population count doublewords */
4398 case 154: /* Parity Word */
4399 case 186: /* Parity Doubleword */
4400 case 252: /* Bit Permute Doubleword */
4401 case 282: /* Convert Declets To Binary Coded Decimal */
4402 case 314: /* Convert Binary Coded Decimal To Declets */
4403 case 508: /* Compare bytes */
4404 case 307: /* Move From VSR Lower Doubleword */
4405 record_full_arch_list_add_reg (regcache,
4406 tdep->ppc_gp0_regnum + PPC_RA (insn));
4407 return 0;
4408
4409 /* These write CR and optional RA. */
4410 case 792: /* Shift Right Algebraic Word */
4411 case 794: /* Shift Right Algebraic Doubleword */
4412 case 824: /* Shift Right Algebraic Word Immediate */
4413 case 826: /* Shift Right Algebraic Doubleword Immediate (413) */
4414 case 826 | 1: /* Shift Right Algebraic Doubleword Immediate (413) */
4415 record_full_arch_list_add_reg (regcache, tdep->ppc_xer_regnum);
4416 record_full_arch_list_add_reg (regcache,
4417 tdep->ppc_gp0_regnum + PPC_RA (insn));
4418 /* FALL-THROUGH */
4419 case 0: /* Compare */
4420 case 32: /* Compare logical */
4421 case 144: /* Move To Condition Register Fields */
4422 /* Move To One Condition Register Field */
4423 case 192: /* Compare Ranged Byte */
4424 case 224: /* Compare Equal Byte */
4425 case 576: /* Move XER to CR Extended */
4426 case 902: /* Paste (should always fail due to single-stepping and
4427 the memory location might not be accessible, so
4428 record only CR) */
4429 record_full_arch_list_add_reg (regcache, tdep->ppc_cr_regnum);
4430 return 0;
4431
4432 /* These write to RT. Update RA if 'update indexed.' */
4433 case 53: /* Load Doubleword with Update Indexed */
4434 case 119: /* Load Byte and Zero with Update Indexed */
4435 case 311: /* Load Halfword and Zero with Update Indexed */
4436 case 55: /* Load Word and Zero with Update Indexed */
4437 case 375: /* Load Halfword Algebraic with Update Indexed */
4438 case 373: /* Load Word Algebraic with Update Indexed */
4439 record_full_arch_list_add_reg (regcache,
4440 tdep->ppc_gp0_regnum + PPC_RA (insn));
4441 /* FALL-THROUGH */
4442 case 21: /* Load Doubleword Indexed */
4443 case 52: /* Load Byte And Reserve Indexed */
4444 case 116: /* Load Halfword And Reserve Indexed */
4445 case 20: /* Load Word And Reserve Indexed */
4446 case 84: /* Load Doubleword And Reserve Indexed */
4447 case 87: /* Load Byte and Zero Indexed */
4448 case 279: /* Load Halfword and Zero Indexed */
4449 case 23: /* Load Word and Zero Indexed */
4450 case 343: /* Load Halfword Algebraic Indexed */
4451 case 341: /* Load Word Algebraic Indexed */
4452 case 790: /* Load Halfword Byte-Reverse Indexed */
4453 case 534: /* Load Word Byte-Reverse Indexed */
4454 case 532: /* Load Doubleword Byte-Reverse Indexed */
4455 case 582: /* Load Word Atomic */
4456 case 614: /* Load Doubleword Atomic */
4457 case 265: /* Modulo Unsigned Doubleword */
4458 case 777: /* Modulo Signed Doubleword */
4459 case 267: /* Modulo Unsigned Word */
4460 case 779: /* Modulo Signed Word */
4461 record_full_arch_list_add_reg (regcache,
4462 tdep->ppc_gp0_regnum + PPC_RT (insn));
4463 return 0;
4464
4465 case 597: /* Load String Word Immediate */
4466 case 533: /* Load String Word Indexed */
4467 if (ext == 597)
4468 {
4469 nr = PPC_NB (insn);
4470 if (nr == 0)
4471 nr = 32;
4472 }
4473 else
4474 {
4475 regcache_raw_read_unsigned (regcache, tdep->ppc_xer_regnum, &xer);
4476 nr = PPC_XER_NB (xer);
4477 }
4478
4479 nr = (nr + 3) >> 2;
4480
4481 /* If n=0, the contents of register RT are undefined. */
4482 if (nr == 0)
4483 nr = 1;
4484
4485 for (i = 0; i < nr; i++)
4486 record_full_arch_list_add_reg (regcache,
4487 tdep->ppc_gp0_regnum
4488 + ((PPC_RT (insn) + i) & 0x1f));
4489 return 0;
4490
4491 case 276: /* Load Quadword And Reserve Indexed */
4492 tmp = tdep->ppc_gp0_regnum + (PPC_RT (insn) & ~1);
4493 record_full_arch_list_add_reg (regcache, tmp);
4494 record_full_arch_list_add_reg (regcache, tmp + 1);
4495 return 0;
4496
4497 /* These write VRT. */
4498 case 6: /* Load Vector for Shift Left Indexed */
4499 case 38: /* Load Vector for Shift Right Indexed */
4500 case 7: /* Load Vector Element Byte Indexed */
4501 case 39: /* Load Vector Element Halfword Indexed */
4502 case 71: /* Load Vector Element Word Indexed */
4503 case 103: /* Load Vector Indexed */
4504 case 359: /* Load Vector Indexed LRU */
4505 record_full_arch_list_add_reg (regcache,
4506 tdep->ppc_vr0_regnum + PPC_VRT (insn));
4507 return 0;
4508
4509 /* These write FRT. Update RA if 'update indexed.' */
4510 case 567: /* Load Floating-Point Single with Update Indexed */
4511 case 631: /* Load Floating-Point Double with Update Indexed */
4512 record_full_arch_list_add_reg (regcache,
4513 tdep->ppc_gp0_regnum + PPC_RA (insn));
4514 /* FALL-THROUGH */
4515 case 535: /* Load Floating-Point Single Indexed */
4516 case 599: /* Load Floating-Point Double Indexed */
4517 case 855: /* Load Floating-Point as Integer Word Algebraic Indexed */
4518 case 887: /* Load Floating-Point as Integer Word and Zero Indexed */
4519 record_full_arch_list_add_reg (regcache,
4520 tdep->ppc_fp0_regnum + PPC_FRT (insn));
4521 return 0;
4522
4523 case 791: /* Load Floating-Point Double Pair Indexed */
4524 tmp = tdep->ppc_fp0_regnum + (PPC_FRT (insn) & ~1);
4525 record_full_arch_list_add_reg (regcache, tmp);
4526 record_full_arch_list_add_reg (regcache, tmp + 1);
4527 return 0;
4528
4529 case 179: /* Move To VSR Doubleword */
4530 case 211: /* Move To VSR Word Algebraic */
4531 case 243: /* Move To VSR Word and Zero */
4532 case 588: /* Load VSX Scalar Doubleword Indexed */
4533 case 524: /* Load VSX Scalar Single-Precision Indexed */
4534 case 76: /* Load VSX Scalar as Integer Word Algebraic Indexed */
4535 case 12: /* Load VSX Scalar as Integer Word and Zero Indexed */
4536 case 844: /* Load VSX Vector Doubleword*2 Indexed */
4537 case 332: /* Load VSX Vector Doubleword & Splat Indexed */
4538 case 780: /* Load VSX Vector Word*4 Indexed */
4539 case 268: /* Load VSX Vector Indexed */
4540 case 364: /* Load VSX Vector Word & Splat Indexed */
4541 case 812: /* Load VSX Vector Halfword*8 Indexed */
4542 case 876: /* Load VSX Vector Byte*16 Indexed */
4543 case 269: /* Load VSX Vector with Length */
4544 case 301: /* Load VSX Vector Left-justified with Length */
4545 case 781: /* Load VSX Scalar as Integer Byte & Zero Indexed */
4546 case 813: /* Load VSX Scalar as Integer Halfword & Zero Indexed */
4547 case 403: /* Move To VSR Word & Splat */
4548 case 435: /* Move To VSR Double Doubleword */
4549 ppc_record_vsr (regcache, tdep, PPC_XT (insn));
4550 return 0;
4551
4552 /* These write RA. Update CR if RC is set. */
4553 case 24: /* Shift Left Word */
4554 case 26: /* Count Leading Zeros Word */
4555 case 27: /* Shift Left Doubleword */
4556 case 28: /* AND */
4557 case 58: /* Count Leading Zeros Doubleword */
4558 case 60: /* AND with Complement */
4559 case 124: /* NOR */
4560 case 284: /* Equivalent */
4561 case 316: /* XOR */
4562 case 476: /* NAND */
4563 case 412: /* OR with Complement */
4564 case 444: /* OR */
4565 case 536: /* Shift Right Word */
4566 case 539: /* Shift Right Doubleword */
4567 case 922: /* Extend Sign Halfword */
4568 case 954: /* Extend Sign Byte */
4569 case 986: /* Extend Sign Word */
4570 case 538: /* Count Trailing Zeros Word */
4571 case 570: /* Count Trailing Zeros Doubleword */
4572 case 890: /* Extend-Sign Word and Shift Left Immediate (445) */
4573 case 890 | 1: /* Extend-Sign Word and Shift Left Immediate (445) */
4574 if (PPC_RC (insn))
4575 record_full_arch_list_add_reg (regcache, tdep->ppc_cr_regnum);
4576 record_full_arch_list_add_reg (regcache,
4577 tdep->ppc_gp0_regnum + PPC_RA (insn));
4578 return 0;
4579
4580 /* Store memory. */
4581 case 181: /* Store Doubleword with Update Indexed */
4582 case 183: /* Store Word with Update Indexed */
4583 case 247: /* Store Byte with Update Indexed */
4584 case 439: /* Store Half Word with Update Indexed */
4585 case 695: /* Store Floating-Point Single with Update Indexed */
4586 case 759: /* Store Floating-Point Double with Update Indexed */
4587 record_full_arch_list_add_reg (regcache,
4588 tdep->ppc_gp0_regnum + PPC_RA (insn));
4589 /* FALL-THROUGH */
4590 case 135: /* Store Vector Element Byte Indexed */
4591 case 167: /* Store Vector Element Halfword Indexed */
4592 case 199: /* Store Vector Element Word Indexed */
4593 case 231: /* Store Vector Indexed */
4594 case 487: /* Store Vector Indexed LRU */
4595 case 716: /* Store VSX Scalar Doubleword Indexed */
4596 case 140: /* Store VSX Scalar as Integer Word Indexed */
4597 case 652: /* Store VSX Scalar Single-Precision Indexed */
4598 case 972: /* Store VSX Vector Doubleword*2 Indexed */
4599 case 908: /* Store VSX Vector Word*4 Indexed */
4600 case 149: /* Store Doubleword Indexed */
4601 case 151: /* Store Word Indexed */
4602 case 215: /* Store Byte Indexed */
4603 case 407: /* Store Half Word Indexed */
4604 case 694: /* Store Byte Conditional Indexed */
4605 case 726: /* Store Halfword Conditional Indexed */
4606 case 150: /* Store Word Conditional Indexed */
4607 case 214: /* Store Doubleword Conditional Indexed */
4608 case 182: /* Store Quadword Conditional Indexed */
4609 case 662: /* Store Word Byte-Reverse Indexed */
4610 case 918: /* Store Halfword Byte-Reverse Indexed */
4611 case 660: /* Store Doubleword Byte-Reverse Indexed */
4612 case 663: /* Store Floating-Point Single Indexed */
4613 case 727: /* Store Floating-Point Double Indexed */
4614 case 919: /* Store Floating-Point Double Pair Indexed */
4615 case 983: /* Store Floating-Point as Integer Word Indexed */
4616 case 396: /* Store VSX Vector Indexed */
4617 case 940: /* Store VSX Vector Halfword*8 Indexed */
4618 case 1004: /* Store VSX Vector Byte*16 Indexed */
4619 case 909: /* Store VSX Scalar as Integer Byte Indexed */
4620 case 941: /* Store VSX Scalar as Integer Halfword Indexed */
4621 if (ext == 694 || ext == 726 || ext == 150 || ext == 214 || ext == 182)
4622 record_full_arch_list_add_reg (regcache, tdep->ppc_cr_regnum);
4623
4624 ra = 0;
4625 if (PPC_RA (insn) != 0)
4626 regcache_raw_read_unsigned (regcache,
4627 tdep->ppc_gp0_regnum + PPC_RA (insn), &ra);
4628 regcache_raw_read_unsigned (regcache,
4629 tdep->ppc_gp0_regnum + PPC_RB (insn), &rb);
4630 ea = ra + rb;
4631
4632 switch (ext)
4633 {
4634 case 183: /* Store Word with Update Indexed */
4635 case 199: /* Store Vector Element Word Indexed */
4636 case 140: /* Store VSX Scalar as Integer Word Indexed */
4637 case 652: /* Store VSX Scalar Single-Precision Indexed */
4638 case 151: /* Store Word Indexed */
4639 case 150: /* Store Word Conditional Indexed */
4640 case 662: /* Store Word Byte-Reverse Indexed */
4641 case 663: /* Store Floating-Point Single Indexed */
4642 case 695: /* Store Floating-Point Single with Update Indexed */
4643 case 983: /* Store Floating-Point as Integer Word Indexed */
4644 size = 4;
4645 break;
4646 case 247: /* Store Byte with Update Indexed */
4647 case 135: /* Store Vector Element Byte Indexed */
4648 case 215: /* Store Byte Indexed */
4649 case 694: /* Store Byte Conditional Indexed */
4650 case 909: /* Store VSX Scalar as Integer Byte Indexed */
4651 size = 1;
4652 break;
4653 case 439: /* Store Halfword with Update Indexed */
4654 case 167: /* Store Vector Element Halfword Indexed */
4655 case 407: /* Store Halfword Indexed */
4656 case 726: /* Store Halfword Conditional Indexed */
4657 case 918: /* Store Halfword Byte-Reverse Indexed */
4658 case 941: /* Store VSX Scalar as Integer Halfword Indexed */
4659 size = 2;
4660 break;
4661 case 181: /* Store Doubleword with Update Indexed */
4662 case 716: /* Store VSX Scalar Doubleword Indexed */
4663 case 149: /* Store Doubleword Indexed */
4664 case 214: /* Store Doubleword Conditional Indexed */
4665 case 660: /* Store Doubleword Byte-Reverse Indexed */
4666 case 727: /* Store Floating-Point Double Indexed */
4667 case 759: /* Store Floating-Point Double with Update Indexed */
4668 size = 8;
4669 break;
4670 case 972: /* Store VSX Vector Doubleword*2 Indexed */
4671 case 908: /* Store VSX Vector Word*4 Indexed */
4672 case 182: /* Store Quadword Conditional Indexed */
4673 case 231: /* Store Vector Indexed */
4674 case 487: /* Store Vector Indexed LRU */
4675 case 919: /* Store Floating-Point Double Pair Indexed */
4676 case 396: /* Store VSX Vector Indexed */
4677 case 940: /* Store VSX Vector Halfword*8 Indexed */
4678 case 1004: /* Store VSX Vector Byte*16 Indexed */
4679 size = 16;
4680 break;
4681 default:
4682 gdb_assert (0);
4683 }
4684
4685 /* Align address for Store Vector instructions. */
4686 switch (ext)
4687 {
4688 case 167: /* Store Vector Element Halfword Indexed */
4689 addr = addr & ~0x1ULL;
4690 break;
4691
4692 case 199: /* Store Vector Element Word Indexed */
4693 addr = addr & ~0x3ULL;
4694 break;
4695
4696 case 231: /* Store Vector Indexed */
4697 case 487: /* Store Vector Indexed LRU */
4698 addr = addr & ~0xfULL;
4699 break;
4700 }
4701
4702 record_full_arch_list_add_mem (addr, size);
4703 return 0;
4704
4705 case 397: /* Store VSX Vector with Length */
4706 case 429: /* Store VSX Vector Left-justified with Length */
4707 ra = 0;
4708 if (PPC_RA (insn) != 0)
4709 regcache_raw_read_unsigned (regcache,
4710 tdep->ppc_gp0_regnum + PPC_RA (insn), &ra);
4711 ea = ra;
4712 regcache_raw_read_unsigned (regcache,
4713 tdep->ppc_gp0_regnum + PPC_RB (insn), &rb);
4714 /* Store up to 16 bytes. */
4715 nb = (rb & 0xff) > 16 ? 16 : (rb & 0xff);
4716 if (nb > 0)
4717 record_full_arch_list_add_mem (ea, nb);
4718 return 0;
4719
4720 case 710: /* Store Word Atomic */
4721 case 742: /* Store Doubleword Atomic */
4722 ra = 0;
4723 if (PPC_RA (insn) != 0)
4724 regcache_raw_read_unsigned (regcache,
4725 tdep->ppc_gp0_regnum + PPC_RA (insn), &ra);
4726 ea = ra;
4727 switch (ext)
4728 {
4729 case 710: /* Store Word Atomic */
4730 size = 8;
4731 break;
4732 case 742: /* Store Doubleword Atomic */
4733 size = 16;
4734 break;
4735 default:
4736 gdb_assert (0);
4737 }
4738 record_full_arch_list_add_mem (ea, size);
4739 return 0;
4740
4741 case 725: /* Store String Word Immediate */
4742 ra = 0;
4743 if (PPC_RA (insn) != 0)
4744 regcache_raw_read_unsigned (regcache,
4745 tdep->ppc_gp0_regnum + PPC_RA (insn), &ra);
4746 ea += ra;
4747
4748 nb = PPC_NB (insn);
4749 if (nb == 0)
4750 nb = 32;
4751
4752 record_full_arch_list_add_mem (ea, nb);
4753
4754 return 0;
4755
4756 case 661: /* Store String Word Indexed */
4757 ra = 0;
4758 if (PPC_RA (insn) != 0)
4759 regcache_raw_read_unsigned (regcache,
4760 tdep->ppc_gp0_regnum + PPC_RA (insn), &ra);
4761 ea += ra;
4762
4763 regcache_raw_read_unsigned (regcache, tdep->ppc_xer_regnum, &xer);
4764 nb = PPC_XER_NB (xer);
4765
4766 if (nb != 0)
4767 {
4768 regcache_raw_read_unsigned (regcache,
4769 tdep->ppc_gp0_regnum + PPC_RB (insn),
4770 &rb);
4771 ea += rb;
4772 record_full_arch_list_add_mem (ea, nb);
4773 }
4774
4775 return 0;
4776
4777 case 467: /* Move To Special Purpose Register */
4778 switch (PPC_SPR (insn))
4779 {
4780 case 1: /* XER */
4781 record_full_arch_list_add_reg (regcache, tdep->ppc_xer_regnum);
4782 return 0;
4783 case 8: /* LR */
4784 record_full_arch_list_add_reg (regcache, tdep->ppc_lr_regnum);
4785 return 0;
4786 case 9: /* CTR */
4787 record_full_arch_list_add_reg (regcache, tdep->ppc_ctr_regnum);
4788 return 0;
4789 case 256: /* VRSAVE */
4790 record_full_arch_list_add_reg (regcache, tdep->ppc_vrsave_regnum);
4791 return 0;
4792 }
4793
4794 goto UNKNOWN_OP;
4795
4796 case 147: /* Move To Split Little Endian */
4797 record_full_arch_list_add_reg (regcache, tdep->ppc_ps_regnum);
4798 return 0;
4799
4800 case 512: /* Move to Condition Register from XER */
4801 record_full_arch_list_add_reg (regcache, tdep->ppc_cr_regnum);
4802 record_full_arch_list_add_reg (regcache, tdep->ppc_xer_regnum);
4803 return 0;
4804
4805 case 4: /* Trap Word */
4806 case 68: /* Trap Doubleword */
4807 case 430: /* Clear BHRB */
4808 case 598: /* Synchronize */
4809 case 62: /* Wait for Interrupt */
4810 case 30: /* Wait */
4811 case 22: /* Instruction Cache Block Touch */
4812 case 854: /* Enforce In-order Execution of I/O */
4813 case 246: /* Data Cache Block Touch for Store */
4814 case 54: /* Data Cache Block Store */
4815 case 86: /* Data Cache Block Flush */
4816 case 278: /* Data Cache Block Touch */
4817 case 758: /* Data Cache Block Allocate */
4818 case 982: /* Instruction Cache Block Invalidate */
4819 case 774: /* Copy */
4820 case 838: /* CP_Abort */
4821 return 0;
4822
4823 case 654: /* Transaction Begin */
4824 case 686: /* Transaction End */
4825 case 750: /* Transaction Suspend or Resume */
4826 case 782: /* Transaction Abort Word Conditional */
4827 case 814: /* Transaction Abort Doubleword Conditional */
4828 case 846: /* Transaction Abort Word Conditional Immediate */
4829 case 878: /* Transaction Abort Doubleword Conditional Immediate */
4830 case 910: /* Transaction Abort */
4831 record_full_arch_list_add_reg (regcache, tdep->ppc_ps_regnum);
4832 /* FALL-THROUGH */
4833 case 718: /* Transaction Check */
4834 record_full_arch_list_add_reg (regcache, tdep->ppc_cr_regnum);
4835 return 0;
4836
4837 case 1014: /* Data Cache Block set to Zero */
4838 if (target_auxv_search (&current_target, AT_DCACHEBSIZE, &at_dcsz) <= 0
4839 || at_dcsz == 0)
4840 at_dcsz = 128; /* Assume 128-byte cache line size (POWER8) */
4841
4842 ra = 0;
4843 if (PPC_RA (insn) != 0)
4844 regcache_raw_read_unsigned (regcache,
4845 tdep->ppc_gp0_regnum + PPC_RA (insn), &ra);
4846 regcache_raw_read_unsigned (regcache,
4847 tdep->ppc_gp0_regnum + PPC_RB (insn), &rb);
4848 ea = (ra + rb) & ~((ULONGEST) (at_dcsz - 1));
4849 record_full_arch_list_add_mem (ea, at_dcsz);
4850 return 0;
4851 }
4852
4853 UNKNOWN_OP:
4854 fprintf_unfiltered (gdb_stdlog, "Warning: Don't know how to record %08x "
4855 "at %s, 31-%d.\n", insn, paddress (gdbarch, addr), ext);
4856 return -1;
4857 }
4858
4859 /* Parse and record instructions of primary opcode-59 at ADDR.
4860 Return 0 if successful. */
4861
4862 static int
4863 ppc_process_record_op59 (struct gdbarch *gdbarch, struct regcache *regcache,
4864 CORE_ADDR addr, uint32_t insn)
4865 {
4866 struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch);
4867 int ext = PPC_EXTOP (insn);
4868
4869 switch (ext & 0x1f)
4870 {
4871 case 18: /* Floating Divide */
4872 case 20: /* Floating Subtract */
4873 case 21: /* Floating Add */
4874 case 22: /* Floating Square Root */
4875 case 24: /* Floating Reciprocal Estimate */
4876 case 25: /* Floating Multiply */
4877 case 26: /* Floating Reciprocal Square Root Estimate */
4878 case 28: /* Floating Multiply-Subtract */
4879 case 29: /* Floating Multiply-Add */
4880 case 30: /* Floating Negative Multiply-Subtract */
4881 case 31: /* Floating Negative Multiply-Add */
4882 record_full_arch_list_add_reg (regcache,
4883 tdep->ppc_fp0_regnum + PPC_FRT (insn));
4884 if (PPC_RC (insn))
4885 record_full_arch_list_add_reg (regcache, tdep->ppc_cr_regnum);
4886 record_full_arch_list_add_reg (regcache, tdep->ppc_fpscr_regnum);
4887
4888 return 0;
4889 }
4890
4891 switch (ext)
4892 {
4893 case 2: /* DFP Add */
4894 case 3: /* DFP Quantize */
4895 case 34: /* DFP Multiply */
4896 case 35: /* DFP Reround */
4897 case 67: /* DFP Quantize Immediate */
4898 case 99: /* DFP Round To FP Integer With Inexact */
4899 case 227: /* DFP Round To FP Integer Without Inexact */
4900 case 258: /* DFP Convert To DFP Long! */
4901 case 290: /* DFP Convert To Fixed */
4902 case 514: /* DFP Subtract */
4903 case 546: /* DFP Divide */
4904 case 770: /* DFP Round To DFP Short! */
4905 case 802: /* DFP Convert From Fixed */
4906 case 834: /* DFP Encode BCD To DPD */
4907 if (PPC_RC (insn))
4908 record_full_arch_list_add_reg (regcache, tdep->ppc_cr_regnum);
4909 record_full_arch_list_add_reg (regcache,
4910 tdep->ppc_fp0_regnum + PPC_FRT (insn));
4911 record_full_arch_list_add_reg (regcache, tdep->ppc_fpscr_regnum);
4912 return 0;
4913
4914 case 130: /* DFP Compare Ordered */
4915 case 162: /* DFP Test Exponent */
4916 case 194: /* DFP Test Data Class */
4917 case 226: /* DFP Test Data Group */
4918 case 642: /* DFP Compare Unordered */
4919 case 674: /* DFP Test Significance */
4920 case 675: /* DFP Test Significance Immediate */
4921 record_full_arch_list_add_reg (regcache, tdep->ppc_cr_regnum);
4922 record_full_arch_list_add_reg (regcache, tdep->ppc_fpscr_regnum);
4923 return 0;
4924
4925 case 66: /* DFP Shift Significand Left Immediate */
4926 case 98: /* DFP Shift Significand Right Immediate */
4927 case 322: /* DFP Decode DPD To BCD */
4928 case 354: /* DFP Extract Biased Exponent */
4929 case 866: /* DFP Insert Biased Exponent */
4930 record_full_arch_list_add_reg (regcache,
4931 tdep->ppc_fp0_regnum + PPC_FRT (insn));
4932 if (PPC_RC (insn))
4933 record_full_arch_list_add_reg (regcache, tdep->ppc_cr_regnum);
4934 return 0;
4935
4936 case 846: /* Floating Convert From Integer Doubleword Single */
4937 case 974: /* Floating Convert From Integer Doubleword Unsigned
4938 Single */
4939 record_full_arch_list_add_reg (regcache,
4940 tdep->ppc_fp0_regnum + PPC_FRT (insn));
4941 if (PPC_RC (insn))
4942 record_full_arch_list_add_reg (regcache, tdep->ppc_cr_regnum);
4943 record_full_arch_list_add_reg (regcache, tdep->ppc_fpscr_regnum);
4944
4945 return 0;
4946 }
4947
4948 fprintf_unfiltered (gdb_stdlog, "Warning: Don't know how to record %08x "
4949 "at %s, 59-%d.\n", insn, paddress (gdbarch, addr), ext);
4950 return -1;
4951 }
4952
4953 /* Parse and record instructions of primary opcode-60 at ADDR.
4954 Return 0 if successful. */
4955
4956 static int
4957 ppc_process_record_op60 (struct gdbarch *gdbarch, struct regcache *regcache,
4958 CORE_ADDR addr, uint32_t insn)
4959 {
4960 struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch);
4961 int ext = PPC_EXTOP (insn);
4962
4963 switch (ext >> 2)
4964 {
4965 case 0: /* VSX Scalar Add Single-Precision */
4966 case 32: /* VSX Scalar Add Double-Precision */
4967 case 24: /* VSX Scalar Divide Single-Precision */
4968 case 56: /* VSX Scalar Divide Double-Precision */
4969 case 176: /* VSX Scalar Copy Sign Double-Precision */
4970 case 33: /* VSX Scalar Multiply-Add Double-Precision */
4971 case 41: /* ditto */
4972 case 1: /* VSX Scalar Multiply-Add Single-Precision */
4973 case 9: /* ditto */
4974 case 160: /* VSX Scalar Maximum Double-Precision */
4975 case 168: /* VSX Scalar Minimum Double-Precision */
4976 case 49: /* VSX Scalar Multiply-Subtract Double-Precision */
4977 case 57: /* ditto */
4978 case 17: /* VSX Scalar Multiply-Subtract Single-Precision */
4979 case 25: /* ditto */
4980 case 48: /* VSX Scalar Multiply Double-Precision */
4981 case 16: /* VSX Scalar Multiply Single-Precision */
4982 case 161: /* VSX Scalar Negative Multiply-Add Double-Precision */
4983 case 169: /* ditto */
4984 case 129: /* VSX Scalar Negative Multiply-Add Single-Precision */
4985 case 137: /* ditto */
4986 case 177: /* VSX Scalar Negative Multiply-Subtract Double-Precision */
4987 case 185: /* ditto */
4988 case 145: /* VSX Scalar Negative Multiply-Subtract Single-Precision */
4989 case 153: /* ditto */
4990 case 40: /* VSX Scalar Subtract Double-Precision */
4991 case 8: /* VSX Scalar Subtract Single-Precision */
4992 case 96: /* VSX Vector Add Double-Precision */
4993 case 64: /* VSX Vector Add Single-Precision */
4994 case 120: /* VSX Vector Divide Double-Precision */
4995 case 88: /* VSX Vector Divide Single-Precision */
4996 case 97: /* VSX Vector Multiply-Add Double-Precision */
4997 case 105: /* ditto */
4998 case 65: /* VSX Vector Multiply-Add Single-Precision */
4999 case 73: /* ditto */
5000 case 224: /* VSX Vector Maximum Double-Precision */
5001 case 192: /* VSX Vector Maximum Single-Precision */
5002 case 232: /* VSX Vector Minimum Double-Precision */
5003 case 200: /* VSX Vector Minimum Single-Precision */
5004 case 113: /* VSX Vector Multiply-Subtract Double-Precision */
5005 case 121: /* ditto */
5006 case 81: /* VSX Vector Multiply-Subtract Single-Precision */
5007 case 89: /* ditto */
5008 case 112: /* VSX Vector Multiply Double-Precision */
5009 case 80: /* VSX Vector Multiply Single-Precision */
5010 case 225: /* VSX Vector Negative Multiply-Add Double-Precision */
5011 case 233: /* ditto */
5012 case 193: /* VSX Vector Negative Multiply-Add Single-Precision */
5013 case 201: /* ditto */
5014 case 241: /* VSX Vector Negative Multiply-Subtract Double-Precision */
5015 case 249: /* ditto */
5016 case 209: /* VSX Vector Negative Multiply-Subtract Single-Precision */
5017 case 217: /* ditto */
5018 case 104: /* VSX Vector Subtract Double-Precision */
5019 case 72: /* VSX Vector Subtract Single-Precision */
5020 case 128: /* VSX Scalar Maximum Type-C Double-Precision */
5021 case 136: /* VSX Scalar Minimum Type-C Double-Precision */
5022 case 144: /* VSX Scalar Maximum Type-J Double-Precision */
5023 case 152: /* VSX Scalar Minimum Type-J Double-Precision */
5024 case 3: /* VSX Scalar Compare Equal Double-Precision */
5025 case 11: /* VSX Scalar Compare Greater Than Double-Precision */
5026 case 19: /* VSX Scalar Compare Greater Than or Equal
5027 Double-Precision */
5028 record_full_arch_list_add_reg (regcache, tdep->ppc_fpscr_regnum);
5029 /* FALL-THROUGH */
5030 case 240: /* VSX Vector Copy Sign Double-Precision */
5031 case 208: /* VSX Vector Copy Sign Single-Precision */
5032 case 130: /* VSX Logical AND */
5033 case 138: /* VSX Logical AND with Complement */
5034 case 186: /* VSX Logical Equivalence */
5035 case 178: /* VSX Logical NAND */
5036 case 170: /* VSX Logical OR with Complement */
5037 case 162: /* VSX Logical NOR */
5038 case 146: /* VSX Logical OR */
5039 case 154: /* VSX Logical XOR */
5040 case 18: /* VSX Merge High Word */
5041 case 50: /* VSX Merge Low Word */
5042 case 10: /* VSX Permute Doubleword Immediate (DM=0) */
5043 case 10 | 0x20: /* VSX Permute Doubleword Immediate (DM=1) */
5044 case 10 | 0x40: /* VSX Permute Doubleword Immediate (DM=2) */
5045 case 10 | 0x60: /* VSX Permute Doubleword Immediate (DM=3) */
5046 case 2: /* VSX Shift Left Double by Word Immediate (SHW=0) */
5047 case 2 | 0x20: /* VSX Shift Left Double by Word Immediate (SHW=1) */
5048 case 2 | 0x40: /* VSX Shift Left Double by Word Immediate (SHW=2) */
5049 case 2 | 0x60: /* VSX Shift Left Double by Word Immediate (SHW=3) */
5050 case 216: /* VSX Vector Insert Exponent Single-Precision */
5051 case 248: /* VSX Vector Insert Exponent Double-Precision */
5052 case 26: /* VSX Vector Permute */
5053 case 58: /* VSX Vector Permute Right-indexed */
5054 case 213: /* VSX Vector Test Data Class Single-Precision (DC=0) */
5055 case 213 | 0x8: /* VSX Vector Test Data Class Single-Precision (DC=1) */
5056 case 245: /* VSX Vector Test Data Class Double-Precision (DC=0) */
5057 case 245 | 0x8: /* VSX Vector Test Data Class Double-Precision (DC=1) */
5058 ppc_record_vsr (regcache, tdep, PPC_XT (insn));
5059 return 0;
5060
5061 case 61: /* VSX Scalar Test for software Divide Double-Precision */
5062 case 125: /* VSX Vector Test for software Divide Double-Precision */
5063 case 93: /* VSX Vector Test for software Divide Single-Precision */
5064 record_full_arch_list_add_reg (regcache, tdep->ppc_cr_regnum);
5065 return 0;
5066
5067 case 35: /* VSX Scalar Compare Unordered Double-Precision */
5068 case 43: /* VSX Scalar Compare Ordered Double-Precision */
5069 case 59: /* VSX Scalar Compare Exponents Double-Precision */
5070 record_full_arch_list_add_reg (regcache, tdep->ppc_cr_regnum);
5071 record_full_arch_list_add_reg (regcache, tdep->ppc_fpscr_regnum);
5072 return 0;
5073 }
5074
5075 switch ((ext >> 2) & 0x7f) /* Mask out Rc-bit. */
5076 {
5077 case 99: /* VSX Vector Compare Equal To Double-Precision */
5078 case 67: /* VSX Vector Compare Equal To Single-Precision */
5079 case 115: /* VSX Vector Compare Greater Than or
5080 Equal To Double-Precision */
5081 case 83: /* VSX Vector Compare Greater Than or
5082 Equal To Single-Precision */
5083 case 107: /* VSX Vector Compare Greater Than Double-Precision */
5084 case 75: /* VSX Vector Compare Greater Than Single-Precision */
5085 if (PPC_Rc (insn))
5086 record_full_arch_list_add_reg (regcache, tdep->ppc_cr_regnum);
5087 record_full_arch_list_add_reg (regcache, tdep->ppc_fpscr_regnum);
5088 ppc_record_vsr (regcache, tdep, PPC_XT (insn));
5089 return 0;
5090 }
5091
5092 switch (ext >> 1)
5093 {
5094 case 265: /* VSX Scalar round Double-Precision to
5095 Single-Precision and Convert to
5096 Single-Precision format */
5097 case 344: /* VSX Scalar truncate Double-Precision to
5098 Integer and Convert to Signed Integer
5099 Doubleword format with Saturate */
5100 case 88: /* VSX Scalar truncate Double-Precision to
5101 Integer and Convert to Signed Integer Word
5102 Format with Saturate */
5103 case 328: /* VSX Scalar truncate Double-Precision integer
5104 and Convert to Unsigned Integer Doubleword
5105 Format with Saturate */
5106 case 72: /* VSX Scalar truncate Double-Precision to
5107 Integer and Convert to Unsigned Integer Word
5108 Format with Saturate */
5109 case 329: /* VSX Scalar Convert Single-Precision to
5110 Double-Precision format */
5111 case 376: /* VSX Scalar Convert Signed Integer
5112 Doubleword to floating-point format and
5113 Round to Double-Precision format */
5114 case 312: /* VSX Scalar Convert Signed Integer
5115 Doubleword to floating-point format and
5116 round to Single-Precision */
5117 case 360: /* VSX Scalar Convert Unsigned Integer
5118 Doubleword to floating-point format and
5119 Round to Double-Precision format */
5120 case 296: /* VSX Scalar Convert Unsigned Integer
5121 Doubleword to floating-point format and
5122 Round to Single-Precision */
5123 case 73: /* VSX Scalar Round to Double-Precision Integer
5124 Using Round to Nearest Away */
5125 case 107: /* VSX Scalar Round to Double-Precision Integer
5126 Exact using Current rounding mode */
5127 case 121: /* VSX Scalar Round to Double-Precision Integer
5128 Using Round toward -Infinity */
5129 case 105: /* VSX Scalar Round to Double-Precision Integer
5130 Using Round toward +Infinity */
5131 case 89: /* VSX Scalar Round to Double-Precision Integer
5132 Using Round toward Zero */
5133 case 90: /* VSX Scalar Reciprocal Estimate Double-Precision */
5134 case 26: /* VSX Scalar Reciprocal Estimate Single-Precision */
5135 case 281: /* VSX Scalar Round to Single-Precision */
5136 case 74: /* VSX Scalar Reciprocal Square Root Estimate
5137 Double-Precision */
5138 case 10: /* VSX Scalar Reciprocal Square Root Estimate
5139 Single-Precision */
5140 case 75: /* VSX Scalar Square Root Double-Precision */
5141 case 11: /* VSX Scalar Square Root Single-Precision */
5142 case 393: /* VSX Vector round Double-Precision to
5143 Single-Precision and Convert to
5144 Single-Precision format */
5145 case 472: /* VSX Vector truncate Double-Precision to
5146 Integer and Convert to Signed Integer
5147 Doubleword format with Saturate */
5148 case 216: /* VSX Vector truncate Double-Precision to
5149 Integer and Convert to Signed Integer Word
5150 Format with Saturate */
5151 case 456: /* VSX Vector truncate Double-Precision to
5152 Integer and Convert to Unsigned Integer
5153 Doubleword format with Saturate */
5154 case 200: /* VSX Vector truncate Double-Precision to
5155 Integer and Convert to Unsigned Integer Word
5156 Format with Saturate */
5157 case 457: /* VSX Vector Convert Single-Precision to
5158 Double-Precision format */
5159 case 408: /* VSX Vector truncate Single-Precision to
5160 Integer and Convert to Signed Integer
5161 Doubleword format with Saturate */
5162 case 152: /* VSX Vector truncate Single-Precision to
5163 Integer and Convert to Signed Integer Word
5164 Format with Saturate */
5165 case 392: /* VSX Vector truncate Single-Precision to
5166 Integer and Convert to Unsigned Integer
5167 Doubleword format with Saturate */
5168 case 136: /* VSX Vector truncate Single-Precision to
5169 Integer and Convert to Unsigned Integer Word
5170 Format with Saturate */
5171 case 504: /* VSX Vector Convert and round Signed Integer
5172 Doubleword to Double-Precision format */
5173 case 440: /* VSX Vector Convert and round Signed Integer
5174 Doubleword to Single-Precision format */
5175 case 248: /* VSX Vector Convert Signed Integer Word to
5176 Double-Precision format */
5177 case 184: /* VSX Vector Convert and round Signed Integer
5178 Word to Single-Precision format */
5179 case 488: /* VSX Vector Convert and round Unsigned
5180 Integer Doubleword to Double-Precision format */
5181 case 424: /* VSX Vector Convert and round Unsigned
5182 Integer Doubleword to Single-Precision format */
5183 case 232: /* VSX Vector Convert and round Unsigned
5184 Integer Word to Double-Precision format */
5185 case 168: /* VSX Vector Convert and round Unsigned
5186 Integer Word to Single-Precision format */
5187 case 201: /* VSX Vector Round to Double-Precision
5188 Integer using round to Nearest Away */
5189 case 235: /* VSX Vector Round to Double-Precision
5190 Integer Exact using Current rounding mode */
5191 case 249: /* VSX Vector Round to Double-Precision
5192 Integer using round toward -Infinity */
5193 case 233: /* VSX Vector Round to Double-Precision
5194 Integer using round toward +Infinity */
5195 case 217: /* VSX Vector Round to Double-Precision
5196 Integer using round toward Zero */
5197 case 218: /* VSX Vector Reciprocal Estimate Double-Precision */
5198 case 154: /* VSX Vector Reciprocal Estimate Single-Precision */
5199 case 137: /* VSX Vector Round to Single-Precision Integer
5200 Using Round to Nearest Away */
5201 case 171: /* VSX Vector Round to Single-Precision Integer
5202 Exact Using Current rounding mode */
5203 case 185: /* VSX Vector Round to Single-Precision Integer
5204 Using Round toward -Infinity */
5205 case 169: /* VSX Vector Round to Single-Precision Integer
5206 Using Round toward +Infinity */
5207 case 153: /* VSX Vector Round to Single-Precision Integer
5208 Using round toward Zero */
5209 case 202: /* VSX Vector Reciprocal Square Root Estimate
5210 Double-Precision */
5211 case 138: /* VSX Vector Reciprocal Square Root Estimate
5212 Single-Precision */
5213 case 203: /* VSX Vector Square Root Double-Precision */
5214 case 139: /* VSX Vector Square Root Single-Precision */
5215 record_full_arch_list_add_reg (regcache, tdep->ppc_fpscr_regnum);
5216 /* FALL-THROUGH */
5217 case 345: /* VSX Scalar Absolute Value Double-Precision */
5218 case 267: /* VSX Scalar Convert Scalar Single-Precision to
5219 Vector Single-Precision format Non-signalling */
5220 case 331: /* VSX Scalar Convert Single-Precision to
5221 Double-Precision format Non-signalling */
5222 case 361: /* VSX Scalar Negative Absolute Value Double-Precision */
5223 case 377: /* VSX Scalar Negate Double-Precision */
5224 case 473: /* VSX Vector Absolute Value Double-Precision */
5225 case 409: /* VSX Vector Absolute Value Single-Precision */
5226 case 489: /* VSX Vector Negative Absolute Value Double-Precision */
5227 case 425: /* VSX Vector Negative Absolute Value Single-Precision */
5228 case 505: /* VSX Vector Negate Double-Precision */
5229 case 441: /* VSX Vector Negate Single-Precision */
5230 case 164: /* VSX Splat Word */
5231 case 165: /* VSX Vector Extract Unsigned Word */
5232 case 181: /* VSX Vector Insert Word */
5233 ppc_record_vsr (regcache, tdep, PPC_XT (insn));
5234 return 0;
5235
5236 case 298: /* VSX Scalar Test Data Class Single-Precision */
5237 case 362: /* VSX Scalar Test Data Class Double-Precision */
5238 record_full_arch_list_add_reg (regcache, tdep->ppc_fpscr_regnum);
5239 /* FALL-THROUGH */
5240 case 106: /* VSX Scalar Test for software Square Root
5241 Double-Precision */
5242 case 234: /* VSX Vector Test for software Square Root
5243 Double-Precision */
5244 case 170: /* VSX Vector Test for software Square Root
5245 Single-Precision */
5246 record_full_arch_list_add_reg (regcache, tdep->ppc_cr_regnum);
5247 return 0;
5248
5249 case 347:
5250 switch (PPC_FIELD (insn, 11, 5))
5251 {
5252 case 0: /* VSX Scalar Extract Exponent Double-Precision */
5253 case 1: /* VSX Scalar Extract Significand Double-Precision */
5254 record_full_arch_list_add_reg (regcache,
5255 tdep->ppc_gp0_regnum + PPC_RT (insn));
5256 return 0;
5257 case 16: /* VSX Scalar Convert Half-Precision format to
5258 Double-Precision format */
5259 case 17: /* VSX Scalar round & Convert Double-Precision format
5260 to Half-Precision format */
5261 record_full_arch_list_add_reg (regcache, tdep->ppc_fpscr_regnum);
5262 ppc_record_vsr (regcache, tdep, PPC_XT (insn));
5263 return 0;
5264 }
5265 break;
5266
5267 case 475:
5268 switch (PPC_FIELD (insn, 11, 5))
5269 {
5270 case 24: /* VSX Vector Convert Half-Precision format to
5271 Single-Precision format */
5272 case 25: /* VSX Vector round and Convert Single-Precision format
5273 to Half-Precision format */
5274 record_full_arch_list_add_reg (regcache, tdep->ppc_fpscr_regnum);
5275 /* FALL-THROUGH */
5276 case 0: /* VSX Vector Extract Exponent Double-Precision */
5277 case 1: /* VSX Vector Extract Significand Double-Precision */
5278 case 7: /* VSX Vector Byte-Reverse Halfword */
5279 case 8: /* VSX Vector Extract Exponent Single-Precision */
5280 case 9: /* VSX Vector Extract Significand Single-Precision */
5281 case 15: /* VSX Vector Byte-Reverse Word */
5282 case 23: /* VSX Vector Byte-Reverse Doubleword */
5283 case 31: /* VSX Vector Byte-Reverse Quadword */
5284 ppc_record_vsr (regcache, tdep, PPC_XT (insn));
5285 return 0;
5286 }
5287 break;
5288 }
5289
5290 switch (ext)
5291 {
5292 case 360: /* VSX Vector Splat Immediate Byte */
5293 if (PPC_FIELD (insn, 11, 2) == 0)
5294 {
5295 ppc_record_vsr (regcache, tdep, PPC_XT (insn));
5296 return 0;
5297 }
5298 break;
5299 case 918: /* VSX Scalar Insert Exponent Double-Precision */
5300 ppc_record_vsr (regcache, tdep, PPC_XT (insn));
5301 return 0;
5302 }
5303
5304 if (((ext >> 3) & 0x3) == 3) /* VSX Select */
5305 {
5306 ppc_record_vsr (regcache, tdep, PPC_XT (insn));
5307 return 0;
5308 }
5309
5310 fprintf_unfiltered (gdb_stdlog, "Warning: Don't know how to record %08x "
5311 "at %s, 60-%d.\n", insn, paddress (gdbarch, addr), ext);
5312 return -1;
5313 }
5314
5315 /* Parse and record instructions of primary opcode-61 at ADDR.
5316 Return 0 if successful. */
5317
5318 static int
5319 ppc_process_record_op61 (struct gdbarch *gdbarch, struct regcache *regcache,
5320 CORE_ADDR addr, uint32_t insn)
5321 {
5322 struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch);
5323 ULONGEST ea = 0;
5324 int size;
5325
5326 switch (insn & 0x3)
5327 {
5328 case 0: /* Store Floating-Point Double Pair */
5329 case 2: /* Store VSX Scalar Doubleword */
5330 case 3: /* Store VSX Scalar Single */
5331 if (PPC_RA (insn) != 0)
5332 regcache_raw_read_unsigned (regcache,
5333 tdep->ppc_gp0_regnum + PPC_RA (insn),
5334 &ea);
5335 ea += PPC_DS (insn) << 2;
5336 switch (insn & 0x3)
5337 {
5338 case 0: /* Store Floating-Point Double Pair */
5339 size = 16;
5340 break;
5341 case 2: /* Store VSX Scalar Doubleword */
5342 size = 8;
5343 break;
5344 case 3: /* Store VSX Scalar Single */
5345 size = 4;
5346 break;
5347 default:
5348 gdb_assert (0);
5349 }
5350 record_full_arch_list_add_mem (ea, size);
5351 return 0;
5352 }
5353
5354 switch (insn & 0x7)
5355 {
5356 case 1: /* Load VSX Vector */
5357 ppc_record_vsr (regcache, tdep, PPC_XT (insn));
5358 return 0;
5359 case 5: /* Store VSX Vector */
5360 if (PPC_RA (insn) != 0)
5361 regcache_raw_read_unsigned (regcache,
5362 tdep->ppc_gp0_regnum + PPC_RA (insn),
5363 &ea);
5364 ea += PPC_DQ (insn) << 4;
5365 record_full_arch_list_add_mem (ea, 16);
5366 return 0;
5367 }
5368
5369 fprintf_unfiltered (gdb_stdlog, "Warning: Don't know how to record %08x "
5370 "at %s.\n", insn, paddress (gdbarch, addr));
5371 return -1;
5372 }
5373
5374 /* Parse and record instructions of primary opcode-63 at ADDR.
5375 Return 0 if successful. */
5376
5377 static int
5378 ppc_process_record_op63 (struct gdbarch *gdbarch, struct regcache *regcache,
5379 CORE_ADDR addr, uint32_t insn)
5380 {
5381 struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch);
5382 int ext = PPC_EXTOP (insn);
5383 int tmp;
5384
5385 switch (ext & 0x1f)
5386 {
5387 case 18: /* Floating Divide */
5388 case 20: /* Floating Subtract */
5389 case 21: /* Floating Add */
5390 case 22: /* Floating Square Root */
5391 case 24: /* Floating Reciprocal Estimate */
5392 case 25: /* Floating Multiply */
5393 case 26: /* Floating Reciprocal Square Root Estimate */
5394 case 28: /* Floating Multiply-Subtract */
5395 case 29: /* Floating Multiply-Add */
5396 case 30: /* Floating Negative Multiply-Subtract */
5397 case 31: /* Floating Negative Multiply-Add */
5398 record_full_arch_list_add_reg (regcache,
5399 tdep->ppc_fp0_regnum + PPC_FRT (insn));
5400 if (PPC_RC (insn))
5401 record_full_arch_list_add_reg (regcache, tdep->ppc_cr_regnum);
5402 record_full_arch_list_add_reg (regcache, tdep->ppc_fpscr_regnum);
5403 return 0;
5404
5405 case 23: /* Floating Select */
5406 record_full_arch_list_add_reg (regcache,
5407 tdep->ppc_fp0_regnum + PPC_FRT (insn));
5408 if (PPC_RC (insn))
5409 record_full_arch_list_add_reg (regcache, tdep->ppc_cr_regnum);
5410 return 0;
5411 }
5412
5413 switch (ext & 0xff)
5414 {
5415 case 5: /* VSX Scalar Round to Quad-Precision Integer */
5416 case 37: /* VSX Scalar Round Quad-Precision to Double-Extended
5417 Precision */
5418 record_full_arch_list_add_reg (regcache, tdep->ppc_fpscr_regnum);
5419 ppc_record_vsr (regcache, tdep, PPC_VRT (insn) + 32);
5420 return 0;
5421 }
5422
5423 switch (ext)
5424 {
5425 case 2: /* DFP Add Quad */
5426 case 3: /* DFP Quantize Quad */
5427 case 34: /* DFP Multiply Quad */
5428 case 35: /* DFP Reround Quad */
5429 case 67: /* DFP Quantize Immediate Quad */
5430 case 99: /* DFP Round To FP Integer With Inexact Quad */
5431 case 227: /* DFP Round To FP Integer Without Inexact Quad */
5432 case 258: /* DFP Convert To DFP Extended Quad */
5433 case 514: /* DFP Subtract Quad */
5434 case 546: /* DFP Divide Quad */
5435 case 770: /* DFP Round To DFP Long Quad */
5436 case 802: /* DFP Convert From Fixed Quad */
5437 case 834: /* DFP Encode BCD To DPD Quad */
5438 if (PPC_RC (insn))
5439 record_full_arch_list_add_reg (regcache, tdep->ppc_cr_regnum);
5440 tmp = tdep->ppc_fp0_regnum + (PPC_FRT (insn) & ~1);
5441 record_full_arch_list_add_reg (regcache, tmp);
5442 record_full_arch_list_add_reg (regcache, tmp + 1);
5443 record_full_arch_list_add_reg (regcache, tdep->ppc_fpscr_regnum);
5444 return 0;
5445
5446 case 130: /* DFP Compare Ordered Quad */
5447 case 162: /* DFP Test Exponent Quad */
5448 case 194: /* DFP Test Data Class Quad */
5449 case 226: /* DFP Test Data Group Quad */
5450 case 642: /* DFP Compare Unordered Quad */
5451 case 674: /* DFP Test Significance Quad */
5452 case 675: /* DFP Test Significance Immediate Quad */
5453 record_full_arch_list_add_reg (regcache, tdep->ppc_cr_regnum);
5454 record_full_arch_list_add_reg (regcache, tdep->ppc_fpscr_regnum);
5455 return 0;
5456
5457 case 66: /* DFP Shift Significand Left Immediate Quad */
5458 case 98: /* DFP Shift Significand Right Immediate Quad */
5459 case 322: /* DFP Decode DPD To BCD Quad */
5460 case 866: /* DFP Insert Biased Exponent Quad */
5461 tmp = tdep->ppc_fp0_regnum + (PPC_FRT (insn) & ~1);
5462 record_full_arch_list_add_reg (regcache, tmp);
5463 record_full_arch_list_add_reg (regcache, tmp + 1);
5464 if (PPC_RC (insn))
5465 record_full_arch_list_add_reg (regcache, tdep->ppc_cr_regnum);
5466 return 0;
5467
5468 case 290: /* DFP Convert To Fixed Quad */
5469 record_full_arch_list_add_reg (regcache,
5470 tdep->ppc_fp0_regnum + PPC_FRT (insn));
5471 if (PPC_RC (insn))
5472 record_full_arch_list_add_reg (regcache, tdep->ppc_cr_regnum);
5473 record_full_arch_list_add_reg (regcache, tdep->ppc_fpscr_regnum);
5474 return 0;
5475
5476 case 354: /* DFP Extract Biased Exponent Quad */
5477 record_full_arch_list_add_reg (regcache,
5478 tdep->ppc_fp0_regnum + PPC_FRT (insn));
5479 if (PPC_RC (insn))
5480 record_full_arch_list_add_reg (regcache, tdep->ppc_cr_regnum);
5481 return 0;
5482
5483 case 12: /* Floating Round to Single-Precision */
5484 case 14: /* Floating Convert To Integer Word */
5485 case 15: /* Floating Convert To Integer Word
5486 with round toward Zero */
5487 case 142: /* Floating Convert To Integer Word Unsigned */
5488 case 143: /* Floating Convert To Integer Word Unsigned
5489 with round toward Zero */
5490 case 392: /* Floating Round to Integer Nearest */
5491 case 424: /* Floating Round to Integer Toward Zero */
5492 case 456: /* Floating Round to Integer Plus */
5493 case 488: /* Floating Round to Integer Minus */
5494 case 814: /* Floating Convert To Integer Doubleword */
5495 case 815: /* Floating Convert To Integer Doubleword
5496 with round toward Zero */
5497 case 846: /* Floating Convert From Integer Doubleword */
5498 case 942: /* Floating Convert To Integer Doubleword Unsigned */
5499 case 943: /* Floating Convert To Integer Doubleword Unsigned
5500 with round toward Zero */
5501 case 974: /* Floating Convert From Integer Doubleword Unsigned */
5502 record_full_arch_list_add_reg (regcache,
5503 tdep->ppc_fp0_regnum + PPC_FRT (insn));
5504 if (PPC_RC (insn))
5505 record_full_arch_list_add_reg (regcache, tdep->ppc_cr_regnum);
5506 record_full_arch_list_add_reg (regcache, tdep->ppc_fpscr_regnum);
5507 return 0;
5508
5509 case 583:
5510 switch (PPC_FIELD (insn, 11, 5))
5511 {
5512 case 1: /* Move From FPSCR & Clear Enables */
5513 case 20: /* Move From FPSCR Control & set DRN */
5514 case 21: /* Move From FPSCR Control & set DRN Immediate */
5515 case 22: /* Move From FPSCR Control & set RN */
5516 case 23: /* Move From FPSCR Control & set RN Immediate */
5517 record_full_arch_list_add_reg (regcache, tdep->ppc_fpscr_regnum);
5518 case 0: /* Move From FPSCR */
5519 case 24: /* Move From FPSCR Lightweight */
5520 if (PPC_FIELD (insn, 11, 5) == 0 && PPC_RC (insn))
5521 record_full_arch_list_add_reg (regcache, tdep->ppc_cr_regnum);
5522 record_full_arch_list_add_reg (regcache,
5523 tdep->ppc_fp0_regnum
5524 + PPC_FRT (insn));
5525 return 0;
5526 }
5527 break;
5528
5529 case 8: /* Floating Copy Sign */
5530 case 40: /* Floating Negate */
5531 case 72: /* Floating Move Register */
5532 case 136: /* Floating Negative Absolute Value */
5533 case 264: /* Floating Absolute Value */
5534 record_full_arch_list_add_reg (regcache,
5535 tdep->ppc_fp0_regnum + PPC_FRT (insn));
5536 if (PPC_RC (insn))
5537 record_full_arch_list_add_reg (regcache, tdep->ppc_cr_regnum);
5538 return 0;
5539
5540 case 838: /* Floating Merge Odd Word */
5541 case 966: /* Floating Merge Even Word */
5542 record_full_arch_list_add_reg (regcache,
5543 tdep->ppc_fp0_regnum + PPC_FRT (insn));
5544 return 0;
5545
5546 case 38: /* Move To FPSCR Bit 1 */
5547 case 70: /* Move To FPSCR Bit 0 */
5548 case 134: /* Move To FPSCR Field Immediate */
5549 case 711: /* Move To FPSCR Fields */
5550 if (PPC_RC (insn))
5551 record_full_arch_list_add_reg (regcache, tdep->ppc_cr_regnum);
5552 record_full_arch_list_add_reg (regcache, tdep->ppc_fpscr_regnum);
5553 return 0;
5554
5555 case 0: /* Floating Compare Unordered */
5556 case 32: /* Floating Compare Ordered */
5557 case 64: /* Move to Condition Register from FPSCR */
5558 case 132: /* VSX Scalar Compare Ordered Quad-Precision */
5559 case 164: /* VSX Scalar Compare Exponents Quad-Precision */
5560 case 644: /* VSX Scalar Compare Unordered Quad-Precision */
5561 case 708: /* VSX Scalar Test Data Class Quad-Precision */
5562 record_full_arch_list_add_reg (regcache, tdep->ppc_fpscr_regnum);
5563 /* FALL-THROUGH */
5564 case 128: /* Floating Test for software Divide */
5565 case 160: /* Floating Test for software Square Root */
5566 record_full_arch_list_add_reg (regcache, tdep->ppc_cr_regnum);
5567 return 0;
5568
5569 case 4: /* VSX Scalar Add Quad-Precision */
5570 case 36: /* VSX Scalar Multiply Quad-Precision */
5571 case 388: /* VSX Scalar Multiply-Add Quad-Precision */
5572 case 420: /* VSX Scalar Multiply-Subtract Quad-Precision */
5573 case 452: /* VSX Scalar Negative Multiply-Add Quad-Precision */
5574 case 484: /* VSX Scalar Negative Multiply-Subtract
5575 Quad-Precision */
5576 case 516: /* VSX Scalar Subtract Quad-Precision */
5577 case 548: /* VSX Scalar Divide Quad-Precision */
5578 record_full_arch_list_add_reg (regcache, tdep->ppc_fpscr_regnum);
5579 /* FALL-THROUGH */
5580 case 100: /* VSX Scalar Copy Sign Quad-Precision */
5581 case 868: /* VSX Scalar Insert Exponent Quad-Precision */
5582 ppc_record_vsr (regcache, tdep, PPC_VRT (insn) + 32);
5583 return 0;
5584
5585 case 804:
5586 switch (PPC_FIELD (insn, 11, 5))
5587 {
5588 case 27: /* VSX Scalar Square Root Quad-Precision */
5589 record_full_arch_list_add_reg (regcache, tdep->ppc_fpscr_regnum);
5590 /* FALL-THROUGH */
5591 case 0: /* VSX Scalar Absolute Quad-Precision */
5592 case 2: /* VSX Scalar Extract Exponent Quad-Precision */
5593 case 8: /* VSX Scalar Negative Absolute Quad-Precision */
5594 case 16: /* VSX Scalar Negate Quad-Precision */
5595 case 18: /* VSX Scalar Extract Significand Quad-Precision */
5596 ppc_record_vsr (regcache, tdep, PPC_VRT (insn) + 32);
5597 return 0;
5598 }
5599 break;
5600
5601 case 836:
5602 switch (PPC_FIELD (insn, 11, 5))
5603 {
5604 case 1: /* VSX Scalar truncate & Convert Quad-Precision format
5605 to Unsigned Word format */
5606 case 2: /* VSX Scalar Convert Unsigned Doubleword format to
5607 Quad-Precision format */
5608 case 9: /* VSX Scalar truncate & Convert Quad-Precision format
5609 to Signed Word format */
5610 case 10: /* VSX Scalar Convert Signed Doubleword format to
5611 Quad-Precision format */
5612 case 17: /* VSX Scalar truncate & Convert Quad-Precision format
5613 to Unsigned Doubleword format */
5614 case 20: /* VSX Scalar round & Convert Quad-Precision format to
5615 Double-Precision format */
5616 case 22: /* VSX Scalar Convert Double-Precision format to
5617 Quad-Precision format */
5618 case 25: /* VSX Scalar truncate & Convert Quad-Precision format
5619 to Signed Doubleword format */
5620 record_full_arch_list_add_reg (regcache, tdep->ppc_fpscr_regnum);
5621 ppc_record_vsr (regcache, tdep, PPC_VRT (insn) + 32);
5622 return 0;
5623 }
5624 }
5625
5626 fprintf_unfiltered (gdb_stdlog, "Warning: Don't know how to record %08x "
5627 "at %s, 63-%d.\n", insn, paddress (gdbarch, addr), ext);
5628 return -1;
5629 }
5630
5631 /* Parse the current instruction and record the values of the registers and
5632 memory that will be changed in current instruction to "record_arch_list".
5633 Return -1 if something wrong. */
5634
5635 int
5636 ppc_process_record (struct gdbarch *gdbarch, struct regcache *regcache,
5637 CORE_ADDR addr)
5638 {
5639 struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch);
5640 enum bfd_endian byte_order = gdbarch_byte_order (gdbarch);
5641 uint32_t insn;
5642 int op6, tmp, i;
5643
5644 insn = read_memory_unsigned_integer (addr, 4, byte_order);
5645 op6 = PPC_OP6 (insn);
5646
5647 switch (op6)
5648 {
5649 case 2: /* Trap Doubleword Immediate */
5650 case 3: /* Trap Word Immediate */
5651 /* Do nothing. */
5652 break;
5653
5654 case 4:
5655 if (ppc_process_record_op4 (gdbarch, regcache, addr, insn) != 0)
5656 return -1;
5657 break;
5658
5659 case 17: /* System call */
5660 if (PPC_LEV (insn) != 0)
5661 goto UNKNOWN_OP;
5662
5663 if (tdep->ppc_syscall_record != NULL)
5664 {
5665 if (tdep->ppc_syscall_record (regcache) != 0)
5666 return -1;
5667 }
5668 else
5669 {
5670 printf_unfiltered (_("no syscall record support\n"));
5671 return -1;
5672 }
5673 break;
5674
5675 case 7: /* Multiply Low Immediate */
5676 record_full_arch_list_add_reg (regcache,
5677 tdep->ppc_gp0_regnum + PPC_RT (insn));
5678 break;
5679
5680 case 8: /* Subtract From Immediate Carrying */
5681 record_full_arch_list_add_reg (regcache, tdep->ppc_xer_regnum);
5682 record_full_arch_list_add_reg (regcache,
5683 tdep->ppc_gp0_regnum + PPC_RT (insn));
5684 break;
5685
5686 case 10: /* Compare Logical Immediate */
5687 case 11: /* Compare Immediate */
5688 record_full_arch_list_add_reg (regcache, tdep->ppc_cr_regnum);
5689 break;
5690
5691 case 13: /* Add Immediate Carrying and Record */
5692 record_full_arch_list_add_reg (regcache, tdep->ppc_cr_regnum);
5693 /* FALL-THROUGH */
5694 case 12: /* Add Immediate Carrying */
5695 record_full_arch_list_add_reg (regcache, tdep->ppc_xer_regnum);
5696 /* FALL-THROUGH */
5697 case 14: /* Add Immediate */
5698 case 15: /* Add Immediate Shifted */
5699 record_full_arch_list_add_reg (regcache,
5700 tdep->ppc_gp0_regnum + PPC_RT (insn));
5701 break;
5702
5703 case 16: /* Branch Conditional */
5704 if ((PPC_BO (insn) & 0x4) == 0)
5705 record_full_arch_list_add_reg (regcache, tdep->ppc_ctr_regnum);
5706 /* FALL-THROUGH */
5707 case 18: /* Branch */
5708 if (PPC_LK (insn))
5709 record_full_arch_list_add_reg (regcache, tdep->ppc_lr_regnum);
5710 break;
5711
5712 case 19:
5713 if (ppc_process_record_op19 (gdbarch, regcache, addr, insn) != 0)
5714 return -1;
5715 break;
5716
5717 case 20: /* Rotate Left Word Immediate then Mask Insert */
5718 case 21: /* Rotate Left Word Immediate then AND with Mask */
5719 case 23: /* Rotate Left Word then AND with Mask */
5720 case 30: /* Rotate Left Doubleword Immediate then Clear Left */
5721 /* Rotate Left Doubleword Immediate then Clear Right */
5722 /* Rotate Left Doubleword Immediate then Clear */
5723 /* Rotate Left Doubleword then Clear Left */
5724 /* Rotate Left Doubleword then Clear Right */
5725 /* Rotate Left Doubleword Immediate then Mask Insert */
5726 if (PPC_RC (insn))
5727 record_full_arch_list_add_reg (regcache, tdep->ppc_cr_regnum);
5728 record_full_arch_list_add_reg (regcache,
5729 tdep->ppc_gp0_regnum + PPC_RA (insn));
5730 break;
5731
5732 case 28: /* AND Immediate */
5733 case 29: /* AND Immediate Shifted */
5734 record_full_arch_list_add_reg (regcache, tdep->ppc_cr_regnum);
5735 /* FALL-THROUGH */
5736 case 24: /* OR Immediate */
5737 case 25: /* OR Immediate Shifted */
5738 case 26: /* XOR Immediate */
5739 case 27: /* XOR Immediate Shifted */
5740 record_full_arch_list_add_reg (regcache,
5741 tdep->ppc_gp0_regnum + PPC_RA (insn));
5742 break;
5743
5744 case 31:
5745 if (ppc_process_record_op31 (gdbarch, regcache, addr, insn) != 0)
5746 return -1;
5747 break;
5748
5749 case 33: /* Load Word and Zero with Update */
5750 case 35: /* Load Byte and Zero with Update */
5751 case 41: /* Load Halfword and Zero with Update */
5752 case 43: /* Load Halfword Algebraic with Update */
5753 record_full_arch_list_add_reg (regcache,
5754 tdep->ppc_gp0_regnum + PPC_RA (insn));
5755 /* FALL-THROUGH */
5756 case 32: /* Load Word and Zero */
5757 case 34: /* Load Byte and Zero */
5758 case 40: /* Load Halfword and Zero */
5759 case 42: /* Load Halfword Algebraic */
5760 record_full_arch_list_add_reg (regcache,
5761 tdep->ppc_gp0_regnum + PPC_RT (insn));
5762 break;
5763
5764 case 46: /* Load Multiple Word */
5765 for (i = PPC_RT (insn); i < 32; i++)
5766 record_full_arch_list_add_reg (regcache, tdep->ppc_gp0_regnum + i);
5767 break;
5768
5769 case 56: /* Load Quadword */
5770 tmp = tdep->ppc_gp0_regnum + (PPC_RT (insn) & ~1);
5771 record_full_arch_list_add_reg (regcache, tmp);
5772 record_full_arch_list_add_reg (regcache, tmp + 1);
5773 break;
5774
5775 case 49: /* Load Floating-Point Single with Update */
5776 case 51: /* Load Floating-Point Double with Update */
5777 record_full_arch_list_add_reg (regcache,
5778 tdep->ppc_gp0_regnum + PPC_RA (insn));
5779 /* FALL-THROUGH */
5780 case 48: /* Load Floating-Point Single */
5781 case 50: /* Load Floating-Point Double */
5782 record_full_arch_list_add_reg (regcache,
5783 tdep->ppc_fp0_regnum + PPC_FRT (insn));
5784 break;
5785
5786 case 47: /* Store Multiple Word */
5787 {
5788 ULONGEST addr = 0;
5789
5790 if (PPC_RA (insn) != 0)
5791 regcache_raw_read_unsigned (regcache,
5792 tdep->ppc_gp0_regnum + PPC_RA (insn),
5793 &addr);
5794
5795 addr += PPC_D (insn);
5796 record_full_arch_list_add_mem (addr, 4 * (32 - PPC_RS (insn)));
5797 }
5798 break;
5799
5800 case 37: /* Store Word with Update */
5801 case 39: /* Store Byte with Update */
5802 case 45: /* Store Halfword with Update */
5803 case 53: /* Store Floating-Point Single with Update */
5804 case 55: /* Store Floating-Point Double with Update */
5805 record_full_arch_list_add_reg (regcache,
5806 tdep->ppc_gp0_regnum + PPC_RA (insn));
5807 /* FALL-THROUGH */
5808 case 36: /* Store Word */
5809 case 38: /* Store Byte */
5810 case 44: /* Store Halfword */
5811 case 52: /* Store Floating-Point Single */
5812 case 54: /* Store Floating-Point Double */
5813 {
5814 ULONGEST addr = 0;
5815 int size = -1;
5816
5817 if (PPC_RA (insn) != 0)
5818 regcache_raw_read_unsigned (regcache,
5819 tdep->ppc_gp0_regnum + PPC_RA (insn),
5820 &addr);
5821 addr += PPC_D (insn);
5822
5823 if (op6 == 36 || op6 == 37 || op6 == 52 || op6 == 53)
5824 size = 4;
5825 else if (op6 == 54 || op6 == 55)
5826 size = 8;
5827 else if (op6 == 44 || op6 == 45)
5828 size = 2;
5829 else if (op6 == 38 || op6 == 39)
5830 size = 1;
5831 else
5832 gdb_assert (0);
5833
5834 record_full_arch_list_add_mem (addr, size);
5835 }
5836 break;
5837
5838 case 57:
5839 switch (insn & 0x3)
5840 {
5841 case 0: /* Load Floating-Point Double Pair */
5842 tmp = tdep->ppc_fp0_regnum + (PPC_RT (insn) & ~1);
5843 record_full_arch_list_add_reg (regcache, tmp);
5844 record_full_arch_list_add_reg (regcache, tmp + 1);
5845 break;
5846 case 2: /* Load VSX Scalar Doubleword */
5847 case 3: /* Load VSX Scalar Single */
5848 ppc_record_vsr (regcache, tdep, PPC_VRT (insn) + 32);
5849 break;
5850 default:
5851 goto UNKNOWN_OP;
5852 }
5853 break;
5854
5855 case 58: /* Load Doubleword */
5856 /* Load Doubleword with Update */
5857 /* Load Word Algebraic */
5858 if (PPC_FIELD (insn, 30, 2) > 2)
5859 goto UNKNOWN_OP;
5860
5861 record_full_arch_list_add_reg (regcache,
5862 tdep->ppc_gp0_regnum + PPC_RT (insn));
5863 if (PPC_BIT (insn, 31))
5864 record_full_arch_list_add_reg (regcache,
5865 tdep->ppc_gp0_regnum + PPC_RA (insn));
5866 break;
5867
5868 case 59:
5869 if (ppc_process_record_op59 (gdbarch, regcache, addr, insn) != 0)
5870 return -1;
5871 break;
5872
5873 case 60:
5874 if (ppc_process_record_op60 (gdbarch, regcache, addr, insn) != 0)
5875 return -1;
5876 break;
5877
5878 case 61:
5879 if (ppc_process_record_op61 (gdbarch, regcache, addr, insn) != 0)
5880 return -1;
5881 break;
5882
5883 case 62: /* Store Doubleword */
5884 /* Store Doubleword with Update */
5885 /* Store Quadword with Update */
5886 {
5887 ULONGEST addr = 0;
5888 int size;
5889 int sub2 = PPC_FIELD (insn, 30, 2);
5890
5891 if (sub2 > 2)
5892 goto UNKNOWN_OP;
5893
5894 if (PPC_RA (insn) != 0)
5895 regcache_raw_read_unsigned (regcache,
5896 tdep->ppc_gp0_regnum + PPC_RA (insn),
5897 &addr);
5898
5899 size = (sub2 == 2) ? 16 : 8;
5900
5901 addr += PPC_DS (insn) << 2;
5902 record_full_arch_list_add_mem (addr, size);
5903
5904 if (op6 == 62 && sub2 == 1)
5905 record_full_arch_list_add_reg (regcache,
5906 tdep->ppc_gp0_regnum +
5907 PPC_RA (insn));
5908
5909 break;
5910 }
5911
5912 case 63:
5913 if (ppc_process_record_op63 (gdbarch, regcache, addr, insn) != 0)
5914 return -1;
5915 break;
5916
5917 default:
5918 UNKNOWN_OP:
5919 fprintf_unfiltered (gdb_stdlog, "Warning: Don't know how to record %08x "
5920 "at %s, %d.\n", insn, paddress (gdbarch, addr), op6);
5921 return -1;
5922 }
5923
5924 if (record_full_arch_list_add_reg (regcache, PPC_PC_REGNUM))
5925 return -1;
5926 if (record_full_arch_list_add_end ())
5927 return -1;
5928 return 0;
5929 }
5930
5931 /* Initialize the current architecture based on INFO. If possible, re-use an
5932 architecture from ARCHES, which is a list of architectures already created
5933 during this debugging session.
5934
5935 Called e.g. at program startup, when reading a core file, and when reading
5936 a binary file. */
5937
5938 static struct gdbarch *
5939 rs6000_gdbarch_init (struct gdbarch_info info, struct gdbarch_list *arches)
5940 {
5941 struct gdbarch *gdbarch;
5942 struct gdbarch_tdep *tdep;
5943 int wordsize, from_xcoff_exec, from_elf_exec;
5944 enum bfd_architecture arch;
5945 unsigned long mach;
5946 bfd abfd;
5947 enum auto_boolean soft_float_flag = powerpc_soft_float_global;
5948 int soft_float;
5949 enum powerpc_vector_abi vector_abi = powerpc_vector_abi_global;
5950 enum powerpc_elf_abi elf_abi = POWERPC_ELF_AUTO;
5951 int have_fpu = 1, have_spe = 0, have_mq = 0, have_altivec = 0, have_dfp = 0,
5952 have_vsx = 0;
5953 int tdesc_wordsize = -1;
5954 const struct target_desc *tdesc = info.target_desc;
5955 struct tdesc_arch_data *tdesc_data = NULL;
5956 int num_pseudoregs = 0;
5957 int cur_reg;
5958
5959 /* INFO may refer to a binary that is not of the PowerPC architecture,
5960 e.g. when debugging a stand-alone SPE executable on a Cell/B.E. system.
5961 In this case, we must not attempt to infer properties of the (PowerPC
5962 side) of the target system from properties of that executable. Trust
5963 the target description instead. */
5964 if (info.abfd
5965 && bfd_get_arch (info.abfd) != bfd_arch_powerpc
5966 && bfd_get_arch (info.abfd) != bfd_arch_rs6000)
5967 info.abfd = NULL;
5968
5969 from_xcoff_exec = info.abfd && info.abfd->format == bfd_object &&
5970 bfd_get_flavour (info.abfd) == bfd_target_xcoff_flavour;
5971
5972 from_elf_exec = info.abfd && info.abfd->format == bfd_object &&
5973 bfd_get_flavour (info.abfd) == bfd_target_elf_flavour;
5974
5975 /* Check word size. If INFO is from a binary file, infer it from
5976 that, else choose a likely default. */
5977 if (from_xcoff_exec)
5978 {
5979 if (bfd_xcoff_is_xcoff64 (info.abfd))
5980 wordsize = 8;
5981 else
5982 wordsize = 4;
5983 }
5984 else if (from_elf_exec)
5985 {
5986 if (elf_elfheader (info.abfd)->e_ident[EI_CLASS] == ELFCLASS64)
5987 wordsize = 8;
5988 else
5989 wordsize = 4;
5990 }
5991 else if (tdesc_has_registers (tdesc))
5992 wordsize = -1;
5993 else
5994 {
5995 if (info.bfd_arch_info != NULL && info.bfd_arch_info->bits_per_word != 0)
5996 wordsize = (info.bfd_arch_info->bits_per_word
5997 / info.bfd_arch_info->bits_per_byte);
5998 else
5999 wordsize = 4;
6000 }
6001
6002 /* Get the architecture and machine from the BFD. */
6003 arch = info.bfd_arch_info->arch;
6004 mach = info.bfd_arch_info->mach;
6005
6006 /* For e500 executables, the apuinfo section is of help here. Such
6007 section contains the identifier and revision number of each
6008 Application-specific Processing Unit that is present on the
6009 chip. The content of the section is determined by the assembler
6010 which looks at each instruction and determines which unit (and
6011 which version of it) can execute it. Grovel through the section
6012 looking for relevant e500 APUs. */
6013
6014 if (bfd_uses_spe_extensions (info.abfd))
6015 {
6016 arch = info.bfd_arch_info->arch;
6017 mach = bfd_mach_ppc_e500;
6018 bfd_default_set_arch_mach (&abfd, arch, mach);
6019 info.bfd_arch_info = bfd_get_arch_info (&abfd);
6020 }
6021
6022 /* Find a default target description which describes our register
6023 layout, if we do not already have one. */
6024 if (! tdesc_has_registers (tdesc))
6025 {
6026 const struct variant *v;
6027
6028 /* Choose variant. */
6029 v = find_variant_by_arch (arch, mach);
6030 if (!v)
6031 return NULL;
6032
6033 tdesc = *v->tdesc;
6034 }
6035
6036 gdb_assert (tdesc_has_registers (tdesc));
6037
6038 /* Check any target description for validity. */
6039 if (tdesc_has_registers (tdesc))
6040 {
6041 static const char *const gprs[] = {
6042 "r0", "r1", "r2", "r3", "r4", "r5", "r6", "r7",
6043 "r8", "r9", "r10", "r11", "r12", "r13", "r14", "r15",
6044 "r16", "r17", "r18", "r19", "r20", "r21", "r22", "r23",
6045 "r24", "r25", "r26", "r27", "r28", "r29", "r30", "r31"
6046 };
6047 const struct tdesc_feature *feature;
6048 int i, valid_p;
6049 static const char *const msr_names[] = { "msr", "ps" };
6050 static const char *const cr_names[] = { "cr", "cnd" };
6051 static const char *const ctr_names[] = { "ctr", "cnt" };
6052
6053 feature = tdesc_find_feature (tdesc,
6054 "org.gnu.gdb.power.core");
6055 if (feature == NULL)
6056 return NULL;
6057
6058 tdesc_data = tdesc_data_alloc ();
6059
6060 valid_p = 1;
6061 for (i = 0; i < ppc_num_gprs; i++)
6062 valid_p &= tdesc_numbered_register (feature, tdesc_data, i, gprs[i]);
6063 valid_p &= tdesc_numbered_register (feature, tdesc_data, PPC_PC_REGNUM,
6064 "pc");
6065 valid_p &= tdesc_numbered_register (feature, tdesc_data, PPC_LR_REGNUM,
6066 "lr");
6067 valid_p &= tdesc_numbered_register (feature, tdesc_data, PPC_XER_REGNUM,
6068 "xer");
6069
6070 /* Allow alternate names for these registers, to accomodate GDB's
6071 historic naming. */
6072 valid_p &= tdesc_numbered_register_choices (feature, tdesc_data,
6073 PPC_MSR_REGNUM, msr_names);
6074 valid_p &= tdesc_numbered_register_choices (feature, tdesc_data,
6075 PPC_CR_REGNUM, cr_names);
6076 valid_p &= tdesc_numbered_register_choices (feature, tdesc_data,
6077 PPC_CTR_REGNUM, ctr_names);
6078
6079 if (!valid_p)
6080 {
6081 tdesc_data_cleanup (tdesc_data);
6082 return NULL;
6083 }
6084
6085 have_mq = tdesc_numbered_register (feature, tdesc_data, PPC_MQ_REGNUM,
6086 "mq");
6087
6088 tdesc_wordsize = tdesc_register_size (feature, "pc") / 8;
6089 if (wordsize == -1)
6090 wordsize = tdesc_wordsize;
6091
6092 feature = tdesc_find_feature (tdesc,
6093 "org.gnu.gdb.power.fpu");
6094 if (feature != NULL)
6095 {
6096 static const char *const fprs[] = {
6097 "f0", "f1", "f2", "f3", "f4", "f5", "f6", "f7",
6098 "f8", "f9", "f10", "f11", "f12", "f13", "f14", "f15",
6099 "f16", "f17", "f18", "f19", "f20", "f21", "f22", "f23",
6100 "f24", "f25", "f26", "f27", "f28", "f29", "f30", "f31"
6101 };
6102 valid_p = 1;
6103 for (i = 0; i < ppc_num_fprs; i++)
6104 valid_p &= tdesc_numbered_register (feature, tdesc_data,
6105 PPC_F0_REGNUM + i, fprs[i]);
6106 valid_p &= tdesc_numbered_register (feature, tdesc_data,
6107 PPC_FPSCR_REGNUM, "fpscr");
6108
6109 if (!valid_p)
6110 {
6111 tdesc_data_cleanup (tdesc_data);
6112 return NULL;
6113 }
6114 have_fpu = 1;
6115 }
6116 else
6117 have_fpu = 0;
6118
6119 /* The DFP pseudo-registers will be available when there are floating
6120 point registers. */
6121 have_dfp = have_fpu;
6122
6123 feature = tdesc_find_feature (tdesc,
6124 "org.gnu.gdb.power.altivec");
6125 if (feature != NULL)
6126 {
6127 static const char *const vector_regs[] = {
6128 "vr0", "vr1", "vr2", "vr3", "vr4", "vr5", "vr6", "vr7",
6129 "vr8", "vr9", "vr10", "vr11", "vr12", "vr13", "vr14", "vr15",
6130 "vr16", "vr17", "vr18", "vr19", "vr20", "vr21", "vr22", "vr23",
6131 "vr24", "vr25", "vr26", "vr27", "vr28", "vr29", "vr30", "vr31"
6132 };
6133
6134 valid_p = 1;
6135 for (i = 0; i < ppc_num_gprs; i++)
6136 valid_p &= tdesc_numbered_register (feature, tdesc_data,
6137 PPC_VR0_REGNUM + i,
6138 vector_regs[i]);
6139 valid_p &= tdesc_numbered_register (feature, tdesc_data,
6140 PPC_VSCR_REGNUM, "vscr");
6141 valid_p &= tdesc_numbered_register (feature, tdesc_data,
6142 PPC_VRSAVE_REGNUM, "vrsave");
6143
6144 if (have_spe || !valid_p)
6145 {
6146 tdesc_data_cleanup (tdesc_data);
6147 return NULL;
6148 }
6149 have_altivec = 1;
6150 }
6151 else
6152 have_altivec = 0;
6153
6154 /* Check for POWER7 VSX registers support. */
6155 feature = tdesc_find_feature (tdesc,
6156 "org.gnu.gdb.power.vsx");
6157
6158 if (feature != NULL)
6159 {
6160 static const char *const vsx_regs[] = {
6161 "vs0h", "vs1h", "vs2h", "vs3h", "vs4h", "vs5h",
6162 "vs6h", "vs7h", "vs8h", "vs9h", "vs10h", "vs11h",
6163 "vs12h", "vs13h", "vs14h", "vs15h", "vs16h", "vs17h",
6164 "vs18h", "vs19h", "vs20h", "vs21h", "vs22h", "vs23h",
6165 "vs24h", "vs25h", "vs26h", "vs27h", "vs28h", "vs29h",
6166 "vs30h", "vs31h"
6167 };
6168
6169 valid_p = 1;
6170
6171 for (i = 0; i < ppc_num_vshrs; i++)
6172 valid_p &= tdesc_numbered_register (feature, tdesc_data,
6173 PPC_VSR0_UPPER_REGNUM + i,
6174 vsx_regs[i]);
6175 if (!valid_p)
6176 {
6177 tdesc_data_cleanup (tdesc_data);
6178 return NULL;
6179 }
6180
6181 have_vsx = 1;
6182 }
6183 else
6184 have_vsx = 0;
6185
6186 /* On machines supporting the SPE APU, the general-purpose registers
6187 are 64 bits long. There are SIMD vector instructions to treat them
6188 as pairs of floats, but the rest of the instruction set treats them
6189 as 32-bit registers, and only operates on their lower halves.
6190
6191 In the GDB regcache, we treat their high and low halves as separate
6192 registers. The low halves we present as the general-purpose
6193 registers, and then we have pseudo-registers that stitch together
6194 the upper and lower halves and present them as pseudo-registers.
6195
6196 Thus, the target description is expected to supply the upper
6197 halves separately. */
6198
6199 feature = tdesc_find_feature (tdesc,
6200 "org.gnu.gdb.power.spe");
6201 if (feature != NULL)
6202 {
6203 static const char *const upper_spe[] = {
6204 "ev0h", "ev1h", "ev2h", "ev3h",
6205 "ev4h", "ev5h", "ev6h", "ev7h",
6206 "ev8h", "ev9h", "ev10h", "ev11h",
6207 "ev12h", "ev13h", "ev14h", "ev15h",
6208 "ev16h", "ev17h", "ev18h", "ev19h",
6209 "ev20h", "ev21h", "ev22h", "ev23h",
6210 "ev24h", "ev25h", "ev26h", "ev27h",
6211 "ev28h", "ev29h", "ev30h", "ev31h"
6212 };
6213
6214 valid_p = 1;
6215 for (i = 0; i < ppc_num_gprs; i++)
6216 valid_p &= tdesc_numbered_register (feature, tdesc_data,
6217 PPC_SPE_UPPER_GP0_REGNUM + i,
6218 upper_spe[i]);
6219 valid_p &= tdesc_numbered_register (feature, tdesc_data,
6220 PPC_SPE_ACC_REGNUM, "acc");
6221 valid_p &= tdesc_numbered_register (feature, tdesc_data,
6222 PPC_SPE_FSCR_REGNUM, "spefscr");
6223
6224 if (have_mq || have_fpu || !valid_p)
6225 {
6226 tdesc_data_cleanup (tdesc_data);
6227 return NULL;
6228 }
6229 have_spe = 1;
6230 }
6231 else
6232 have_spe = 0;
6233 }
6234
6235 /* If we have a 64-bit binary on a 32-bit target, complain. Also
6236 complain for a 32-bit binary on a 64-bit target; we do not yet
6237 support that. For instance, the 32-bit ABI routines expect
6238 32-bit GPRs.
6239
6240 As long as there isn't an explicit target description, we'll
6241 choose one based on the BFD architecture and get a word size
6242 matching the binary (probably powerpc:common or
6243 powerpc:common64). So there is only trouble if a 64-bit target
6244 supplies a 64-bit description while debugging a 32-bit
6245 binary. */
6246 if (tdesc_wordsize != -1 && tdesc_wordsize != wordsize)
6247 {
6248 tdesc_data_cleanup (tdesc_data);
6249 return NULL;
6250 }
6251
6252 #ifdef HAVE_ELF
6253 if (from_elf_exec)
6254 {
6255 switch (elf_elfheader (info.abfd)->e_flags & EF_PPC64_ABI)
6256 {
6257 case 1:
6258 elf_abi = POWERPC_ELF_V1;
6259 break;
6260 case 2:
6261 elf_abi = POWERPC_ELF_V2;
6262 break;
6263 default:
6264 break;
6265 }
6266 }
6267
6268 if (soft_float_flag == AUTO_BOOLEAN_AUTO && from_elf_exec)
6269 {
6270 switch (bfd_elf_get_obj_attr_int (info.abfd, OBJ_ATTR_GNU,
6271 Tag_GNU_Power_ABI_FP))
6272 {
6273 case 1:
6274 soft_float_flag = AUTO_BOOLEAN_FALSE;
6275 break;
6276 case 2:
6277 soft_float_flag = AUTO_BOOLEAN_TRUE;
6278 break;
6279 default:
6280 break;
6281 }
6282 }
6283
6284 if (vector_abi == POWERPC_VEC_AUTO && from_elf_exec)
6285 {
6286 switch (bfd_elf_get_obj_attr_int (info.abfd, OBJ_ATTR_GNU,
6287 Tag_GNU_Power_ABI_Vector))
6288 {
6289 case 1:
6290 vector_abi = POWERPC_VEC_GENERIC;
6291 break;
6292 case 2:
6293 vector_abi = POWERPC_VEC_ALTIVEC;
6294 break;
6295 case 3:
6296 vector_abi = POWERPC_VEC_SPE;
6297 break;
6298 default:
6299 break;
6300 }
6301 }
6302 #endif
6303
6304 /* At this point, the only supported ELF-based 64-bit little-endian
6305 operating system is GNU/Linux, and this uses the ELFv2 ABI by
6306 default. All other supported ELF-based operating systems use the
6307 ELFv1 ABI by default. Therefore, if the ABI marker is missing,
6308 e.g. because we run a legacy binary, or have attached to a process
6309 and have not found any associated binary file, set the default
6310 according to this heuristic. */
6311 if (elf_abi == POWERPC_ELF_AUTO)
6312 {
6313 if (wordsize == 8 && info.byte_order == BFD_ENDIAN_LITTLE)
6314 elf_abi = POWERPC_ELF_V2;
6315 else
6316 elf_abi = POWERPC_ELF_V1;
6317 }
6318
6319 if (soft_float_flag == AUTO_BOOLEAN_TRUE)
6320 soft_float = 1;
6321 else if (soft_float_flag == AUTO_BOOLEAN_FALSE)
6322 soft_float = 0;
6323 else
6324 soft_float = !have_fpu;
6325
6326 /* If we have a hard float binary or setting but no floating point
6327 registers, downgrade to soft float anyway. We're still somewhat
6328 useful in this scenario. */
6329 if (!soft_float && !have_fpu)
6330 soft_float = 1;
6331
6332 /* Similarly for vector registers. */
6333 if (vector_abi == POWERPC_VEC_ALTIVEC && !have_altivec)
6334 vector_abi = POWERPC_VEC_GENERIC;
6335
6336 if (vector_abi == POWERPC_VEC_SPE && !have_spe)
6337 vector_abi = POWERPC_VEC_GENERIC;
6338
6339 if (vector_abi == POWERPC_VEC_AUTO)
6340 {
6341 if (have_altivec)
6342 vector_abi = POWERPC_VEC_ALTIVEC;
6343 else if (have_spe)
6344 vector_abi = POWERPC_VEC_SPE;
6345 else
6346 vector_abi = POWERPC_VEC_GENERIC;
6347 }
6348
6349 /* Do not limit the vector ABI based on available hardware, since we
6350 do not yet know what hardware we'll decide we have. Yuck! FIXME! */
6351
6352 /* Find a candidate among extant architectures. */
6353 for (arches = gdbarch_list_lookup_by_info (arches, &info);
6354 arches != NULL;
6355 arches = gdbarch_list_lookup_by_info (arches->next, &info))
6356 {
6357 /* Word size in the various PowerPC bfd_arch_info structs isn't
6358 meaningful, because 64-bit CPUs can run in 32-bit mode. So, perform
6359 separate word size check. */
6360 tdep = gdbarch_tdep (arches->gdbarch);
6361 if (tdep && tdep->elf_abi != elf_abi)
6362 continue;
6363 if (tdep && tdep->soft_float != soft_float)
6364 continue;
6365 if (tdep && tdep->vector_abi != vector_abi)
6366 continue;
6367 if (tdep && tdep->wordsize == wordsize)
6368 {
6369 if (tdesc_data != NULL)
6370 tdesc_data_cleanup (tdesc_data);
6371 return arches->gdbarch;
6372 }
6373 }
6374
6375 /* None found, create a new architecture from INFO, whose bfd_arch_info
6376 validity depends on the source:
6377 - executable useless
6378 - rs6000_host_arch() good
6379 - core file good
6380 - "set arch" trust blindly
6381 - GDB startup useless but harmless */
6382
6383 tdep = XCNEW (struct gdbarch_tdep);
6384 tdep->wordsize = wordsize;
6385 tdep->elf_abi = elf_abi;
6386 tdep->soft_float = soft_float;
6387 tdep->vector_abi = vector_abi;
6388
6389 gdbarch = gdbarch_alloc (&info, tdep);
6390
6391 tdep->ppc_gp0_regnum = PPC_R0_REGNUM;
6392 tdep->ppc_toc_regnum = PPC_R0_REGNUM + 2;
6393 tdep->ppc_ps_regnum = PPC_MSR_REGNUM;
6394 tdep->ppc_cr_regnum = PPC_CR_REGNUM;
6395 tdep->ppc_lr_regnum = PPC_LR_REGNUM;
6396 tdep->ppc_ctr_regnum = PPC_CTR_REGNUM;
6397 tdep->ppc_xer_regnum = PPC_XER_REGNUM;
6398 tdep->ppc_mq_regnum = have_mq ? PPC_MQ_REGNUM : -1;
6399
6400 tdep->ppc_fp0_regnum = have_fpu ? PPC_F0_REGNUM : -1;
6401 tdep->ppc_fpscr_regnum = have_fpu ? PPC_FPSCR_REGNUM : -1;
6402 tdep->ppc_vsr0_upper_regnum = have_vsx ? PPC_VSR0_UPPER_REGNUM : -1;
6403 tdep->ppc_vr0_regnum = have_altivec ? PPC_VR0_REGNUM : -1;
6404 tdep->ppc_vrsave_regnum = have_altivec ? PPC_VRSAVE_REGNUM : -1;
6405 tdep->ppc_ev0_upper_regnum = have_spe ? PPC_SPE_UPPER_GP0_REGNUM : -1;
6406 tdep->ppc_acc_regnum = have_spe ? PPC_SPE_ACC_REGNUM : -1;
6407 tdep->ppc_spefscr_regnum = have_spe ? PPC_SPE_FSCR_REGNUM : -1;
6408
6409 set_gdbarch_pc_regnum (gdbarch, PPC_PC_REGNUM);
6410 set_gdbarch_sp_regnum (gdbarch, PPC_R0_REGNUM + 1);
6411 set_gdbarch_fp0_regnum (gdbarch, tdep->ppc_fp0_regnum);
6412 set_gdbarch_register_sim_regno (gdbarch, rs6000_register_sim_regno);
6413
6414 /* The XML specification for PowerPC sensibly calls the MSR "msr".
6415 GDB traditionally called it "ps", though, so let GDB add an
6416 alias. */
6417 set_gdbarch_ps_regnum (gdbarch, tdep->ppc_ps_regnum);
6418
6419 if (wordsize == 8)
6420 set_gdbarch_return_value (gdbarch, ppc64_sysv_abi_return_value);
6421 else
6422 set_gdbarch_return_value (gdbarch, ppc_sysv_abi_return_value);
6423
6424 /* Set lr_frame_offset. */
6425 if (wordsize == 8)
6426 tdep->lr_frame_offset = 16;
6427 else
6428 tdep->lr_frame_offset = 4;
6429
6430 if (have_spe || have_dfp || have_vsx)
6431 {
6432 set_gdbarch_pseudo_register_read (gdbarch, rs6000_pseudo_register_read);
6433 set_gdbarch_pseudo_register_write (gdbarch,
6434 rs6000_pseudo_register_write);
6435 set_gdbarch_ax_pseudo_register_collect (gdbarch,
6436 rs6000_ax_pseudo_register_collect);
6437 }
6438
6439 set_gdbarch_gen_return_address (gdbarch, rs6000_gen_return_address);
6440
6441 set_gdbarch_have_nonsteppable_watchpoint (gdbarch, 1);
6442
6443 set_gdbarch_num_regs (gdbarch, PPC_NUM_REGS);
6444
6445 if (have_spe)
6446 num_pseudoregs += 32;
6447 if (have_dfp)
6448 num_pseudoregs += 16;
6449 if (have_vsx)
6450 /* Include both VSX and Extended FP registers. */
6451 num_pseudoregs += 96;
6452
6453 set_gdbarch_num_pseudo_regs (gdbarch, num_pseudoregs);
6454
6455 set_gdbarch_ptr_bit (gdbarch, wordsize * TARGET_CHAR_BIT);
6456 set_gdbarch_short_bit (gdbarch, 2 * TARGET_CHAR_BIT);
6457 set_gdbarch_int_bit (gdbarch, 4 * TARGET_CHAR_BIT);
6458 set_gdbarch_long_bit (gdbarch, wordsize * TARGET_CHAR_BIT);
6459 set_gdbarch_long_long_bit (gdbarch, 8 * TARGET_CHAR_BIT);
6460 set_gdbarch_float_bit (gdbarch, 4 * TARGET_CHAR_BIT);
6461 set_gdbarch_double_bit (gdbarch, 8 * TARGET_CHAR_BIT);
6462 set_gdbarch_long_double_bit (gdbarch, 16 * TARGET_CHAR_BIT);
6463 set_gdbarch_char_signed (gdbarch, 0);
6464
6465 set_gdbarch_frame_align (gdbarch, rs6000_frame_align);
6466 if (wordsize == 8)
6467 /* PPC64 SYSV. */
6468 set_gdbarch_frame_red_zone_size (gdbarch, 288);
6469
6470 set_gdbarch_convert_register_p (gdbarch, rs6000_convert_register_p);
6471 set_gdbarch_register_to_value (gdbarch, rs6000_register_to_value);
6472 set_gdbarch_value_to_register (gdbarch, rs6000_value_to_register);
6473
6474 set_gdbarch_stab_reg_to_regnum (gdbarch, rs6000_stab_reg_to_regnum);
6475 set_gdbarch_dwarf2_reg_to_regnum (gdbarch, rs6000_dwarf2_reg_to_regnum);
6476
6477 if (wordsize == 4)
6478 set_gdbarch_push_dummy_call (gdbarch, ppc_sysv_abi_push_dummy_call);
6479 else if (wordsize == 8)
6480 set_gdbarch_push_dummy_call (gdbarch, ppc64_sysv_abi_push_dummy_call);
6481
6482 set_gdbarch_skip_prologue (gdbarch, rs6000_skip_prologue);
6483 set_gdbarch_stack_frame_destroyed_p (gdbarch, rs6000_stack_frame_destroyed_p);
6484 set_gdbarch_skip_main_prologue (gdbarch, rs6000_skip_main_prologue);
6485
6486 set_gdbarch_inner_than (gdbarch, core_addr_lessthan);
6487
6488 set_gdbarch_breakpoint_kind_from_pc (gdbarch,
6489 rs6000_breakpoint::kind_from_pc);
6490 set_gdbarch_sw_breakpoint_from_kind (gdbarch,
6491 rs6000_breakpoint::bp_from_kind);
6492
6493 /* The value of symbols of type N_SO and N_FUN maybe null when
6494 it shouldn't be. */
6495 set_gdbarch_sofun_address_maybe_missing (gdbarch, 1);
6496
6497 /* Handles single stepping of atomic sequences. */
6498 set_gdbarch_software_single_step (gdbarch, ppc_deal_with_atomic_sequence);
6499
6500 /* Not sure on this. FIXMEmgo */
6501 set_gdbarch_frame_args_skip (gdbarch, 8);
6502
6503 /* Helpers for function argument information. */
6504 set_gdbarch_fetch_pointer_argument (gdbarch, rs6000_fetch_pointer_argument);
6505
6506 /* Trampoline. */
6507 set_gdbarch_in_solib_return_trampoline
6508 (gdbarch, rs6000_in_solib_return_trampoline);
6509 set_gdbarch_skip_trampoline_code (gdbarch, rs6000_skip_trampoline_code);
6510
6511 /* Hook in the DWARF CFI frame unwinder. */
6512 dwarf2_append_unwinders (gdbarch);
6513 dwarf2_frame_set_adjust_regnum (gdbarch, rs6000_adjust_frame_regnum);
6514
6515 /* Frame handling. */
6516 dwarf2_frame_set_init_reg (gdbarch, ppc_dwarf2_frame_init_reg);
6517
6518 /* Setup displaced stepping. */
6519 set_gdbarch_displaced_step_copy_insn (gdbarch,
6520 ppc_displaced_step_copy_insn);
6521 set_gdbarch_displaced_step_hw_singlestep (gdbarch,
6522 ppc_displaced_step_hw_singlestep);
6523 set_gdbarch_displaced_step_fixup (gdbarch, ppc_displaced_step_fixup);
6524 set_gdbarch_displaced_step_location (gdbarch,
6525 displaced_step_at_entry_point);
6526
6527 set_gdbarch_max_insn_length (gdbarch, PPC_INSN_SIZE);
6528
6529 /* Hook in ABI-specific overrides, if they have been registered. */
6530 info.target_desc = tdesc;
6531 info.tdesc_data = tdesc_data;
6532 gdbarch_init_osabi (info, gdbarch);
6533
6534 switch (info.osabi)
6535 {
6536 case GDB_OSABI_LINUX:
6537 case GDB_OSABI_NETBSD:
6538 case GDB_OSABI_UNKNOWN:
6539 set_gdbarch_unwind_pc (gdbarch, rs6000_unwind_pc);
6540 frame_unwind_append_unwinder (gdbarch, &rs6000_epilogue_frame_unwind);
6541 frame_unwind_append_unwinder (gdbarch, &rs6000_frame_unwind);
6542 set_gdbarch_dummy_id (gdbarch, rs6000_dummy_id);
6543 frame_base_append_sniffer (gdbarch, rs6000_frame_base_sniffer);
6544 break;
6545 default:
6546 set_gdbarch_believe_pcc_promotion (gdbarch, 1);
6547
6548 set_gdbarch_unwind_pc (gdbarch, rs6000_unwind_pc);
6549 frame_unwind_append_unwinder (gdbarch, &rs6000_epilogue_frame_unwind);
6550 frame_unwind_append_unwinder (gdbarch, &rs6000_frame_unwind);
6551 set_gdbarch_dummy_id (gdbarch, rs6000_dummy_id);
6552 frame_base_append_sniffer (gdbarch, rs6000_frame_base_sniffer);
6553 }
6554
6555 set_tdesc_pseudo_register_type (gdbarch, rs6000_pseudo_register_type);
6556 set_tdesc_pseudo_register_reggroup_p (gdbarch,
6557 rs6000_pseudo_register_reggroup_p);
6558 tdesc_use_registers (gdbarch, tdesc, tdesc_data);
6559
6560 /* Override the normal target description method to make the SPE upper
6561 halves anonymous. */
6562 set_gdbarch_register_name (gdbarch, rs6000_register_name);
6563
6564 /* Choose register numbers for all supported pseudo-registers. */
6565 tdep->ppc_ev0_regnum = -1;
6566 tdep->ppc_dl0_regnum = -1;
6567 tdep->ppc_vsr0_regnum = -1;
6568 tdep->ppc_efpr0_regnum = -1;
6569
6570 cur_reg = gdbarch_num_regs (gdbarch);
6571
6572 if (have_spe)
6573 {
6574 tdep->ppc_ev0_regnum = cur_reg;
6575 cur_reg += 32;
6576 }
6577 if (have_dfp)
6578 {
6579 tdep->ppc_dl0_regnum = cur_reg;
6580 cur_reg += 16;
6581 }
6582 if (have_vsx)
6583 {
6584 tdep->ppc_vsr0_regnum = cur_reg;
6585 cur_reg += 64;
6586 tdep->ppc_efpr0_regnum = cur_reg;
6587 cur_reg += 32;
6588 }
6589
6590 gdb_assert (gdbarch_num_regs (gdbarch)
6591 + gdbarch_num_pseudo_regs (gdbarch) == cur_reg);
6592
6593 /* Register the ravenscar_arch_ops. */
6594 if (mach == bfd_mach_ppc_e500)
6595 register_e500_ravenscar_ops (gdbarch);
6596 else
6597 register_ppc_ravenscar_ops (gdbarch);
6598
6599 set_gdbarch_disassembler_options (gdbarch, &powerpc_disassembler_options);
6600 set_gdbarch_valid_disassembler_options (gdbarch,
6601 disassembler_options_powerpc ());
6602
6603 return gdbarch;
6604 }
6605
6606 static void
6607 rs6000_dump_tdep (struct gdbarch *gdbarch, struct ui_file *file)
6608 {
6609 struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch);
6610
6611 if (tdep == NULL)
6612 return;
6613
6614 /* FIXME: Dump gdbarch_tdep. */
6615 }
6616
6617 /* PowerPC-specific commands. */
6618
6619 static void
6620 set_powerpc_command (const char *args, int from_tty)
6621 {
6622 printf_unfiltered (_("\
6623 \"set powerpc\" must be followed by an appropriate subcommand.\n"));
6624 help_list (setpowerpccmdlist, "set powerpc ", all_commands, gdb_stdout);
6625 }
6626
6627 static void
6628 show_powerpc_command (const char *args, int from_tty)
6629 {
6630 cmd_show_list (showpowerpccmdlist, from_tty, "");
6631 }
6632
6633 static void
6634 powerpc_set_soft_float (char *args, int from_tty,
6635 struct cmd_list_element *c)
6636 {
6637 struct gdbarch_info info;
6638
6639 /* Update the architecture. */
6640 gdbarch_info_init (&info);
6641 if (!gdbarch_update_p (info))
6642 internal_error (__FILE__, __LINE__, _("could not update architecture"));
6643 }
6644
6645 static void
6646 powerpc_set_vector_abi (char *args, int from_tty,
6647 struct cmd_list_element *c)
6648 {
6649 struct gdbarch_info info;
6650 int vector_abi;
6651
6652 for (vector_abi = POWERPC_VEC_AUTO;
6653 vector_abi != POWERPC_VEC_LAST;
6654 vector_abi++)
6655 if (strcmp (powerpc_vector_abi_string,
6656 powerpc_vector_strings[vector_abi]) == 0)
6657 {
6658 powerpc_vector_abi_global = (enum powerpc_vector_abi) vector_abi;
6659 break;
6660 }
6661
6662 if (vector_abi == POWERPC_VEC_LAST)
6663 internal_error (__FILE__, __LINE__, _("Invalid vector ABI accepted: %s."),
6664 powerpc_vector_abi_string);
6665
6666 /* Update the architecture. */
6667 gdbarch_info_init (&info);
6668 if (!gdbarch_update_p (info))
6669 internal_error (__FILE__, __LINE__, _("could not update architecture"));
6670 }
6671
6672 /* Show the current setting of the exact watchpoints flag. */
6673
6674 static void
6675 show_powerpc_exact_watchpoints (struct ui_file *file, int from_tty,
6676 struct cmd_list_element *c,
6677 const char *value)
6678 {
6679 fprintf_filtered (file, _("Use of exact watchpoints is %s.\n"), value);
6680 }
6681
6682 /* Read a PPC instruction from memory. */
6683
6684 static unsigned int
6685 read_insn (struct frame_info *frame, CORE_ADDR pc)
6686 {
6687 struct gdbarch *gdbarch = get_frame_arch (frame);
6688 enum bfd_endian byte_order = gdbarch_byte_order (gdbarch);
6689
6690 return read_memory_unsigned_integer (pc, 4, byte_order);
6691 }
6692
6693 /* Return non-zero if the instructions at PC match the series
6694 described in PATTERN, or zero otherwise. PATTERN is an array of
6695 'struct ppc_insn_pattern' objects, terminated by an entry whose
6696 mask is zero.
6697
6698 When the match is successful, fill INSN[i] with what PATTERN[i]
6699 matched. If PATTERN[i] is optional, and the instruction wasn't
6700 present, set INSN[i] to 0 (which is not a valid PPC instruction).
6701 INSN should have as many elements as PATTERN. Note that, if
6702 PATTERN contains optional instructions which aren't present in
6703 memory, then INSN will have holes, so INSN[i] isn't necessarily the
6704 i'th instruction in memory. */
6705
6706 int
6707 ppc_insns_match_pattern (struct frame_info *frame, CORE_ADDR pc,
6708 struct ppc_insn_pattern *pattern,
6709 unsigned int *insns)
6710 {
6711 int i;
6712 unsigned int insn;
6713
6714 for (i = 0, insn = 0; pattern[i].mask; i++)
6715 {
6716 if (insn == 0)
6717 insn = read_insn (frame, pc);
6718 insns[i] = 0;
6719 if ((insn & pattern[i].mask) == pattern[i].data)
6720 {
6721 insns[i] = insn;
6722 pc += 4;
6723 insn = 0;
6724 }
6725 else if (!pattern[i].optional)
6726 return 0;
6727 }
6728
6729 return 1;
6730 }
6731
6732 /* Return the 'd' field of the d-form instruction INSN, properly
6733 sign-extended. */
6734
6735 CORE_ADDR
6736 ppc_insn_d_field (unsigned int insn)
6737 {
6738 return ((((CORE_ADDR) insn & 0xffff) ^ 0x8000) - 0x8000);
6739 }
6740
6741 /* Return the 'ds' field of the ds-form instruction INSN, with the two
6742 zero bits concatenated at the right, and properly
6743 sign-extended. */
6744
6745 CORE_ADDR
6746 ppc_insn_ds_field (unsigned int insn)
6747 {
6748 return ((((CORE_ADDR) insn & 0xfffc) ^ 0x8000) - 0x8000);
6749 }
6750
6751 /* Initialization code. */
6752
6753 void
6754 _initialize_rs6000_tdep (void)
6755 {
6756 gdbarch_register (bfd_arch_rs6000, rs6000_gdbarch_init, rs6000_dump_tdep);
6757 gdbarch_register (bfd_arch_powerpc, rs6000_gdbarch_init, rs6000_dump_tdep);
6758
6759 /* Initialize the standard target descriptions. */
6760 initialize_tdesc_powerpc_32 ();
6761 initialize_tdesc_powerpc_altivec32 ();
6762 initialize_tdesc_powerpc_vsx32 ();
6763 initialize_tdesc_powerpc_403 ();
6764 initialize_tdesc_powerpc_403gc ();
6765 initialize_tdesc_powerpc_405 ();
6766 initialize_tdesc_powerpc_505 ();
6767 initialize_tdesc_powerpc_601 ();
6768 initialize_tdesc_powerpc_602 ();
6769 initialize_tdesc_powerpc_603 ();
6770 initialize_tdesc_powerpc_604 ();
6771 initialize_tdesc_powerpc_64 ();
6772 initialize_tdesc_powerpc_altivec64 ();
6773 initialize_tdesc_powerpc_vsx64 ();
6774 initialize_tdesc_powerpc_7400 ();
6775 initialize_tdesc_powerpc_750 ();
6776 initialize_tdesc_powerpc_860 ();
6777 initialize_tdesc_powerpc_e500 ();
6778 initialize_tdesc_rs6000 ();
6779
6780 /* Add root prefix command for all "set powerpc"/"show powerpc"
6781 commands. */
6782 add_prefix_cmd ("powerpc", no_class, set_powerpc_command,
6783 _("Various PowerPC-specific commands."),
6784 &setpowerpccmdlist, "set powerpc ", 0, &setlist);
6785
6786 add_prefix_cmd ("powerpc", no_class, show_powerpc_command,
6787 _("Various PowerPC-specific commands."),
6788 &showpowerpccmdlist, "show powerpc ", 0, &showlist);
6789
6790 /* Add a command to allow the user to force the ABI. */
6791 add_setshow_auto_boolean_cmd ("soft-float", class_support,
6792 &powerpc_soft_float_global,
6793 _("Set whether to use a soft-float ABI."),
6794 _("Show whether to use a soft-float ABI."),
6795 NULL,
6796 powerpc_set_soft_float, NULL,
6797 &setpowerpccmdlist, &showpowerpccmdlist);
6798
6799 add_setshow_enum_cmd ("vector-abi", class_support, powerpc_vector_strings,
6800 &powerpc_vector_abi_string,
6801 _("Set the vector ABI."),
6802 _("Show the vector ABI."),
6803 NULL, powerpc_set_vector_abi, NULL,
6804 &setpowerpccmdlist, &showpowerpccmdlist);
6805
6806 add_setshow_boolean_cmd ("exact-watchpoints", class_support,
6807 &target_exact_watchpoints,
6808 _("\
6809 Set whether to use just one debug register for watchpoints on scalars."),
6810 _("\
6811 Show whether to use just one debug register for watchpoints on scalars."),
6812 _("\
6813 If true, GDB will use only one debug register when watching a variable of\n\
6814 scalar type, thus assuming that the variable is accessed through the address\n\
6815 of its first byte."),
6816 NULL, show_powerpc_exact_watchpoints,
6817 &setpowerpccmdlist, &showpowerpccmdlist);
6818 }