* eval.c (evaluate_subexp): Make fnptr a LONGEST instead
[binutils-gdb.git] / gdb / rs6000-tdep.c
1 /* Target-dependent code for GDB, the GNU debugger.
2 Copyright 1986, 1987, 1989, 1991, 1992, 1993, 1994
3 Free Software Foundation, Inc.
4
5 This file is part of GDB.
6
7 This program is free software; you can redistribute it and/or modify
8 it under the terms of the GNU General Public License as published by
9 the Free Software Foundation; either version 2 of the License, or
10 (at your option) any later version.
11
12 This program is distributed in the hope that it will be useful,
13 but WITHOUT ANY WARRANTY; without even the implied warranty of
14 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
15 GNU General Public License for more details.
16
17 You should have received a copy of the GNU General Public License
18 along with this program; if not, write to the Free Software
19 Foundation, Inc., 675 Mass Ave, Cambridge, MA 02139, USA. */
20
21 #include "defs.h"
22 #include "frame.h"
23 #include "inferior.h"
24 #include "symtab.h"
25 #include "target.h"
26 #include "gdbcore.h"
27
28 #include "xcoffsolib.h"
29
30 #include <a.out.h>
31
32 extern struct obstack frame_cache_obstack;
33
34 extern int errno;
35
36 /* Nonzero if we just simulated a single step break. */
37 int one_stepped;
38
39 /* Breakpoint shadows for the single step instructions will be kept here. */
40
41 static struct sstep_breaks {
42 /* Address, or 0 if this is not in use. */
43 CORE_ADDR address;
44 /* Shadow contents. */
45 char data[4];
46 } stepBreaks[2];
47
48 /* Static function prototypes */
49
50 static CORE_ADDR
51 find_toc_address PARAMS ((CORE_ADDR pc));
52
53 static CORE_ADDR
54 branch_dest PARAMS ((int opcode, int instr, CORE_ADDR pc, CORE_ADDR safety));
55
56 static void
57 frame_get_cache_fsr PARAMS ((struct frame_info *fi,
58 struct aix_framedata *fdatap));
59
60 /*
61 * Calculate the destination of a branch/jump. Return -1 if not a branch.
62 */
63 static CORE_ADDR
64 branch_dest (opcode, instr, pc, safety)
65 int opcode;
66 int instr;
67 CORE_ADDR pc;
68 CORE_ADDR safety;
69 {
70 register long offset;
71 CORE_ADDR dest;
72 int immediate;
73 int absolute;
74 int ext_op;
75
76 absolute = (int) ((instr >> 1) & 1);
77
78 switch (opcode) {
79 case 18 :
80 immediate = ((instr & ~3) << 6) >> 6; /* br unconditional */
81
82 case 16 :
83 if (opcode != 18) /* br conditional */
84 immediate = ((instr & ~3) << 16) >> 16;
85 if (absolute)
86 dest = immediate;
87 else
88 dest = pc + immediate;
89 break;
90
91 case 19 :
92 ext_op = (instr>>1) & 0x3ff;
93
94 if (ext_op == 16) /* br conditional register */
95 dest = read_register (LR_REGNUM) & ~3;
96
97 else if (ext_op == 528) /* br cond to count reg */
98 {
99 dest = read_register (CTR_REGNUM) & ~3;
100
101 /* If we are about to execute a system call, dest is something
102 like 0x22fc or 0x3b00. Upon completion the system call
103 will return to the address in the link register. */
104 if (dest < TEXT_SEGMENT_BASE)
105 dest = read_register (LR_REGNUM) & ~3;
106 }
107 else return -1;
108 break;
109
110 default: return -1;
111 }
112 return (dest < TEXT_SEGMENT_BASE) ? safety : dest;
113 }
114
115
116
117 /* AIX does not support PT_STEP. Simulate it. */
118
119 void
120 single_step (signal)
121 int signal;
122 {
123 #define INSNLEN(OPCODE) 4
124
125 static char breakp[] = BREAKPOINT;
126 int ii, insn;
127 CORE_ADDR loc;
128 CORE_ADDR breaks[2];
129 int opcode;
130
131 if (!one_stepped) {
132 loc = read_pc ();
133
134 read_memory (loc, (char *) &insn, 4);
135
136 breaks[0] = loc + INSNLEN(insn);
137 opcode = insn >> 26;
138 breaks[1] = branch_dest (opcode, insn, loc, breaks[0]);
139
140 /* Don't put two breakpoints on the same address. */
141 if (breaks[1] == breaks[0])
142 breaks[1] = -1;
143
144 stepBreaks[1].address = 0;
145
146 for (ii=0; ii < 2; ++ii) {
147
148 /* ignore invalid breakpoint. */
149 if ( breaks[ii] == -1)
150 continue;
151
152 read_memory (breaks[ii], stepBreaks[ii].data, 4);
153
154 write_memory (breaks[ii], breakp, 4);
155 stepBreaks[ii].address = breaks[ii];
156 }
157
158 one_stepped = 1;
159 } else {
160
161 /* remove step breakpoints. */
162 for (ii=0; ii < 2; ++ii)
163 if (stepBreaks[ii].address != 0)
164 write_memory
165 (stepBreaks[ii].address, stepBreaks[ii].data, 4);
166
167 one_stepped = 0;
168 }
169 errno = 0; /* FIXME, don't ignore errors! */
170 /* What errors? {read,write}_memory call error(). */
171 }
172
173
174 /* return pc value after skipping a function prologue. */
175
176 skip_prologue (pc)
177 CORE_ADDR pc;
178 {
179 char buf[4];
180 unsigned int tmp;
181 unsigned long op;
182
183 if (target_read_memory (pc, buf, 4))
184 return pc; /* Can't access it -- assume no prologue. */
185 op = extract_unsigned_integer (buf, 4);
186
187 /* Assume that subsequent fetches can fail with low probability. */
188
189 if (op == 0x7c0802a6) { /* mflr r0 */
190 pc += 4;
191 op = read_memory_integer (pc, 4);
192 }
193
194 if ((op & 0xfc00003e) == 0x7c000026) { /* mfcr Rx */
195 pc += 4;
196 op = read_memory_integer (pc, 4);
197 }
198
199 if ((op & 0xfc000000) == 0x48000000) { /* bl foo, to save fprs??? */
200 pc += 4;
201 op = read_memory_integer (pc, 4);
202
203 /* At this point, make sure this is not a trampoline function
204 (a function that simply calls another functions, and nothing else).
205 If the next is not a nop, this branch was part of the function
206 prologue. */
207
208 if (op == 0x4def7b82 || /* crorc 15, 15, 15 */
209 op == 0x0)
210 return pc - 4; /* don't skip over this branch */
211 }
212
213 if ((op & 0xfc1f0000) == 0xd8010000) { /* stfd Rx,NUM(r1) */
214 pc += 4; /* store floating register double */
215 op = read_memory_integer (pc, 4);
216 }
217
218 if ((op & 0xfc1f0000) == 0xbc010000) { /* stm Rx, NUM(r1) */
219 pc += 4;
220 op = read_memory_integer (pc, 4);
221 }
222
223 while (((tmp = op >> 16) == 0x9001) || /* st r0, NUM(r1) */
224 (tmp == 0x9421) || /* stu r1, NUM(r1) */
225 (tmp == 0x93e1)) /* st r31,NUM(r1) */
226 {
227 pc += 4;
228 op = read_memory_integer (pc, 4);
229 }
230
231 while ((tmp = (op >> 22)) == 0x20f) { /* l r31, ... or */
232 pc += 4; /* l r30, ... */
233 op = read_memory_integer (pc, 4);
234 }
235
236 /* store parameters into stack */
237 while(
238 (op & 0xfc1f0000) == 0xd8010000 || /* stfd Rx,NUM(r1) */
239 (op & 0xfc1f0000) == 0x90010000 || /* st r?, NUM(r1) */
240 (op & 0xfc000000) == 0xfc000000 || /* frsp, fp?, .. */
241 (op & 0xd0000000) == 0xd0000000) /* stfs, fp?, .. */
242 {
243 pc += 4; /* store fpr double */
244 op = read_memory_integer (pc, 4);
245 }
246
247 if (op == 0x603f0000) { /* oril r31, r1, 0x0 */
248 pc += 4; /* this happens if r31 is used as */
249 op = read_memory_integer (pc, 4); /* frame ptr. (gcc does that) */
250
251 tmp = 0;
252 while ((op >> 16) == (0x907f + tmp)) { /* st r3, NUM(r31) */
253 pc += 4; /* st r4, NUM(r31), ... */
254 op = read_memory_integer (pc, 4);
255 tmp += 0x20;
256 }
257 }
258 #if 0
259 /* I have problems with skipping over __main() that I need to address
260 * sometime. Previously, I used to use misc_function_vector which
261 * didn't work as well as I wanted to be. -MGO */
262
263 /* If the first thing after skipping a prolog is a branch to a function,
264 this might be a call to an initializer in main(), introduced by gcc2.
265 We'd like to skip over it as well. Fortunately, xlc does some extra
266 work before calling a function right after a prologue, thus we can
267 single out such gcc2 behaviour. */
268
269
270 if ((op & 0xfc000001) == 0x48000001) { /* bl foo, an initializer function? */
271 op = read_memory_integer (pc+4, 4);
272
273 if (op == 0x4def7b82) { /* cror 0xf, 0xf, 0xf (nop) */
274
275 /* check and see if we are in main. If so, skip over this initializer
276 function as well. */
277
278 tmp = find_pc_misc_function (pc);
279 if (tmp >= 0 && STREQ (misc_function_vector [tmp].name, "main"))
280 return pc + 8;
281 }
282 }
283 #endif /* 0 */
284
285 return pc;
286 }
287
288
289 /*************************************************************************
290 Support for creating pushind a dummy frame into the stack, and popping
291 frames, etc.
292 *************************************************************************/
293
294 /* The total size of dummy frame is 436, which is;
295
296 32 gpr's - 128 bytes
297 32 fpr's - 256 "
298 7 the rest - 28 "
299 and 24 extra bytes for the callee's link area. The last 24 bytes
300 for the link area might not be necessary, since it will be taken
301 care of by push_arguments(). */
302
303 #define DUMMY_FRAME_SIZE 436
304
305 #define DUMMY_FRAME_ADDR_SIZE 10
306
307 /* Make sure you initialize these in somewhere, in case gdb gives up what it
308 was debugging and starts debugging something else. FIXMEibm */
309
310 static int dummy_frame_count = 0;
311 static int dummy_frame_size = 0;
312 static CORE_ADDR *dummy_frame_addr = 0;
313
314 extern int stop_stack_dummy;
315
316 /* push a dummy frame into stack, save all register. Currently we are saving
317 only gpr's and fpr's, which is not good enough! FIXMEmgo */
318
319 void
320 push_dummy_frame ()
321 {
322 /* stack pointer. */
323 CORE_ADDR sp;
324
325 /* link register. */
326 CORE_ADDR pc;
327 /* Same thing, target byte order. */
328 char pc_targ[4];
329
330 int ii;
331
332 target_fetch_registers (-1);
333
334 if (dummy_frame_count >= dummy_frame_size) {
335 dummy_frame_size += DUMMY_FRAME_ADDR_SIZE;
336 if (dummy_frame_addr)
337 dummy_frame_addr = (CORE_ADDR*) xrealloc
338 (dummy_frame_addr, sizeof(CORE_ADDR) * (dummy_frame_size));
339 else
340 dummy_frame_addr = (CORE_ADDR*)
341 xmalloc (sizeof(CORE_ADDR) * (dummy_frame_size));
342 }
343
344 sp = read_register(SP_REGNUM);
345 pc = read_register(PC_REGNUM);
346 memcpy (pc_targ, (char *) &pc, 4);
347
348 dummy_frame_addr [dummy_frame_count++] = sp;
349
350 /* Be careful! If the stack pointer is not decremented first, then kernel
351 thinks he is free to use the space underneath it. And kernel actually
352 uses that area for IPC purposes when executing ptrace(2) calls. So
353 before writing register values into the new frame, decrement and update
354 %sp first in order to secure your frame. */
355
356 write_register (SP_REGNUM, sp-DUMMY_FRAME_SIZE);
357
358 /* gdb relies on the state of current_frame. We'd better update it,
359 otherwise things like do_registers_info() wouldn't work properly! */
360
361 flush_cached_frames ();
362
363 /* save program counter in link register's space. */
364 write_memory (sp+8, pc_targ, 4);
365
366 /* save all floating point and general purpose registers here. */
367
368 /* fpr's, f0..f31 */
369 for (ii = 0; ii < 32; ++ii)
370 write_memory (sp-8-(ii*8), &registers[REGISTER_BYTE (31-ii+FP0_REGNUM)], 8);
371
372 /* gpr's r0..r31 */
373 for (ii=1; ii <=32; ++ii)
374 write_memory (sp-256-(ii*4), &registers[REGISTER_BYTE (32-ii)], 4);
375
376 /* so far, 32*2 + 32 words = 384 bytes have been written.
377 7 extra registers in our register set: pc, ps, cnd, lr, cnt, xer, mq */
378
379 for (ii=1; ii <= (LAST_SP_REGNUM-FIRST_SP_REGNUM+1); ++ii) {
380 write_memory (sp-384-(ii*4),
381 &registers[REGISTER_BYTE (FPLAST_REGNUM + ii)], 4);
382 }
383
384 /* Save sp or so called back chain right here. */
385 write_memory (sp-DUMMY_FRAME_SIZE, &sp, 4);
386 sp -= DUMMY_FRAME_SIZE;
387
388 /* And finally, this is the back chain. */
389 write_memory (sp+8, pc_targ, 4);
390 }
391
392
393 /* Pop a dummy frame.
394
395 In rs6000 when we push a dummy frame, we save all of the registers. This
396 is usually done before user calls a function explicitly.
397
398 After a dummy frame is pushed, some instructions are copied into stack,
399 and stack pointer is decremented even more. Since we don't have a frame
400 pointer to get back to the parent frame of the dummy, we start having
401 trouble poping it. Therefore, we keep a dummy frame stack, keeping
402 addresses of dummy frames as such. When poping happens and when we
403 detect that was a dummy frame, we pop it back to its parent by using
404 dummy frame stack (`dummy_frame_addr' array).
405
406 FIXME: This whole concept is broken. You should be able to detect
407 a dummy stack frame *on the user's stack itself*. When you do,
408 then you know the format of that stack frame -- including its
409 saved SP register! There should *not* be a separate stack in the
410 GDB process that keeps track of these dummy frames! -- gnu@cygnus.com Aug92
411 */
412
413 pop_dummy_frame ()
414 {
415 CORE_ADDR sp, pc;
416 int ii;
417 sp = dummy_frame_addr [--dummy_frame_count];
418
419 /* restore all fpr's. */
420 for (ii = 1; ii <= 32; ++ii)
421 read_memory (sp-(ii*8), &registers[REGISTER_BYTE (32-ii+FP0_REGNUM)], 8);
422
423 /* restore all gpr's */
424 for (ii=1; ii <= 32; ++ii) {
425 read_memory (sp-256-(ii*4), &registers[REGISTER_BYTE (32-ii)], 4);
426 }
427
428 /* restore the rest of the registers. */
429 for (ii=1; ii <=(LAST_SP_REGNUM-FIRST_SP_REGNUM+1); ++ii)
430 read_memory (sp-384-(ii*4),
431 &registers[REGISTER_BYTE (FPLAST_REGNUM + ii)], 4);
432
433 read_memory (sp-(DUMMY_FRAME_SIZE-8),
434 &registers [REGISTER_BYTE(PC_REGNUM)], 4);
435
436 /* when a dummy frame was being pushed, we had to decrement %sp first, in
437 order to secure astack space. Thus, saved %sp (or %r1) value, is not the
438 one we should restore. Change it with the one we need. */
439
440 *(int*)&registers [REGISTER_BYTE(FP_REGNUM)] = sp;
441
442 /* Now we can restore all registers. */
443
444 target_store_registers (-1);
445 pc = read_pc ();
446 flush_cached_frames ();
447 }
448
449
450 /* pop the innermost frame, go back to the caller. */
451
452 void
453 pop_frame ()
454 {
455 CORE_ADDR pc, lr, sp, prev_sp; /* %pc, %lr, %sp */
456 struct aix_framedata fdata;
457 FRAME fr = get_current_frame ();
458 int addr, ii;
459
460 pc = read_pc ();
461 sp = FRAME_FP (fr);
462
463 if (stop_stack_dummy && dummy_frame_count) {
464 pop_dummy_frame ();
465 return;
466 }
467
468 /* Make sure that all registers are valid. */
469 read_register_bytes (0, NULL, REGISTER_BYTES);
470
471 /* figure out previous %pc value. If the function is frameless, it is
472 still in the link register, otherwise walk the frames and retrieve the
473 saved %pc value in the previous frame. */
474
475 addr = get_pc_function_start (fr->pc) + FUNCTION_START_OFFSET;
476 function_frame_info (addr, &fdata);
477
478 if (fdata.frameless)
479 prev_sp = sp;
480 else
481 prev_sp = read_memory_integer (sp, 4);
482 if (fdata.nosavedpc)
483 lr = read_register (LR_REGNUM);
484 else
485 lr = read_memory_integer (prev_sp+8, 4);
486
487 /* reset %pc value. */
488 write_register (PC_REGNUM, lr);
489
490 /* reset register values if any was saved earlier. */
491 addr = prev_sp - fdata.offset;
492
493 if (fdata.saved_gpr != -1)
494 for (ii=fdata.saved_gpr; ii <= 31; ++ii) {
495 read_memory (addr, &registers [REGISTER_BYTE (ii)], 4);
496 addr += 4;
497 }
498
499 if (fdata.saved_fpr != -1)
500 for (ii=fdata.saved_fpr; ii <= 31; ++ii) {
501 read_memory (addr, &registers [REGISTER_BYTE (ii+FP0_REGNUM)], 8);
502 addr += 8;
503 }
504
505 write_register (SP_REGNUM, prev_sp);
506 target_store_registers (-1);
507 flush_cached_frames ();
508 }
509
510 /* fixup the call sequence of a dummy function, with the real function address.
511 its argumets will be passed by gdb. */
512
513 void
514 fix_call_dummy(dummyname, pc, fun, nargs, type)
515 char *dummyname;
516 CORE_ADDR pc;
517 CORE_ADDR fun;
518 int nargs; /* not used */
519 int type; /* not used */
520 {
521 #define TOC_ADDR_OFFSET 20
522 #define TARGET_ADDR_OFFSET 28
523
524 int ii;
525 CORE_ADDR target_addr;
526 CORE_ADDR tocvalue;
527
528 target_addr = fun;
529 tocvalue = find_toc_address (target_addr);
530
531 ii = *(int*)((char*)dummyname + TOC_ADDR_OFFSET);
532 ii = (ii & 0xffff0000) | (tocvalue >> 16);
533 *(int*)((char*)dummyname + TOC_ADDR_OFFSET) = ii;
534
535 ii = *(int*)((char*)dummyname + TOC_ADDR_OFFSET+4);
536 ii = (ii & 0xffff0000) | (tocvalue & 0x0000ffff);
537 *(int*)((char*)dummyname + TOC_ADDR_OFFSET+4) = ii;
538
539 ii = *(int*)((char*)dummyname + TARGET_ADDR_OFFSET);
540 ii = (ii & 0xffff0000) | (target_addr >> 16);
541 *(int*)((char*)dummyname + TARGET_ADDR_OFFSET) = ii;
542
543 ii = *(int*)((char*)dummyname + TARGET_ADDR_OFFSET+4);
544 ii = (ii & 0xffff0000) | (target_addr & 0x0000ffff);
545 *(int*)((char*)dummyname + TARGET_ADDR_OFFSET+4) = ii;
546 }
547
548
549 /* return information about a function frame.
550 in struct aix_frameinfo fdata:
551 - frameless is TRUE, if function does not have a frame.
552 - nosavedpc is TRUE, if function does not save %pc value in its frame.
553 - offset is the number of bytes used in the frame to save registers.
554 - saved_gpr is the number of the first saved gpr.
555 - saved_fpr is the number of the first saved fpr.
556 - alloca_reg is the number of the register used for alloca() handling.
557 Otherwise -1.
558 */
559 void
560 function_frame_info (pc, fdata)
561 CORE_ADDR pc;
562 struct aix_framedata *fdata;
563 {
564 unsigned int tmp;
565 register unsigned int op;
566
567 fdata->offset = 0;
568 fdata->saved_gpr = fdata->saved_fpr = fdata->alloca_reg = -1;
569 fdata->frameless = 1;
570
571 op = read_memory_integer (pc, 4);
572 if (op == 0x7c0802a6) { /* mflr r0 */
573 pc += 4;
574 op = read_memory_integer (pc, 4);
575 fdata->nosavedpc = 0;
576 fdata->frameless = 0;
577 }
578 else /* else, pc is not saved */
579 fdata->nosavedpc = 1;
580
581 if ((op & 0xfc00003e) == 0x7c000026) { /* mfcr Rx */
582 pc += 4;
583 op = read_memory_integer (pc, 4);
584 fdata->frameless = 0;
585 }
586
587 if ((op & 0xfc000000) == 0x48000000) { /* bl foo, to save fprs??? */
588 pc += 4;
589 op = read_memory_integer (pc, 4);
590 /* At this point, make sure this is not a trampoline function
591 (a function that simply calls another functions, and nothing else).
592 If the next is not a nop, this branch was part of the function
593 prologue. */
594
595 if (op == 0x4def7b82 || /* crorc 15, 15, 15 */
596 op == 0x0)
597 return; /* prologue is over */
598 fdata->frameless = 0;
599 }
600
601 if ((op & 0xfc1f0000) == 0xd8010000) { /* stfd Rx,NUM(r1) */
602 pc += 4; /* store floating register double */
603 op = read_memory_integer (pc, 4);
604 fdata->frameless = 0;
605 }
606
607 if ((op & 0xfc1f0000) == 0xbc010000) { /* stm Rx, NUM(r1) */
608 int tmp2;
609 fdata->saved_gpr = (op >> 21) & 0x1f;
610 tmp2 = op & 0xffff;
611 if (tmp2 > 0x7fff)
612 tmp2 = (~0 &~ 0xffff) | tmp2;
613
614 if (tmp2 < 0) {
615 tmp2 = tmp2 * -1;
616 fdata->saved_fpr = (tmp2 - ((32 - fdata->saved_gpr) * 4)) / 8;
617 if ( fdata->saved_fpr > 0)
618 fdata->saved_fpr = 32 - fdata->saved_fpr;
619 else
620 fdata->saved_fpr = -1;
621 }
622 fdata->offset = tmp2;
623 pc += 4;
624 op = read_memory_integer (pc, 4);
625 fdata->frameless = 0;
626 }
627
628 while (((tmp = op >> 16) == 0x9001) || /* st r0, NUM(r1) */
629 (tmp == 0x9421) || /* stu r1, NUM(r1) */
630 (tmp == 0x93e1)) /* st r31, NUM(r1) */
631 {
632 int tmp2;
633
634 /* gcc takes a short cut and uses this instruction to save r31 only. */
635
636 if (tmp == 0x93e1) {
637 if (fdata->offset)
638 /* fatal ("Unrecognized prolog."); */
639 printf_unfiltered ("Unrecognized prolog!\n");
640
641 fdata->saved_gpr = 31;
642 tmp2 = op & 0xffff;
643 if (tmp2 > 0x7fff) {
644 tmp2 = - ((~0 &~ 0xffff) | tmp2);
645 fdata->saved_fpr = (tmp2 - ((32 - 31) * 4)) / 8;
646 if ( fdata->saved_fpr > 0)
647 fdata->saved_fpr = 32 - fdata->saved_fpr;
648 else
649 fdata->saved_fpr = -1;
650 }
651 fdata->offset = tmp2;
652 }
653 pc += 4;
654 op = read_memory_integer (pc, 4);
655 fdata->frameless = 0;
656 }
657
658 while ((tmp = (op >> 22)) == 0x20f) { /* l r31, ... or */
659 pc += 4; /* l r30, ... */
660 op = read_memory_integer (pc, 4);
661 fdata->frameless = 0;
662 }
663
664 /* store parameters into stack */
665 while(
666 (op & 0xfc1f0000) == 0xd8010000 || /* stfd Rx,NUM(r1) */
667 (op & 0xfc1f0000) == 0x90010000 || /* st r?, NUM(r1) */
668 (op & 0xfc000000) == 0xfc000000 || /* frsp, fp?, .. */
669 (op & 0xd0000000) == 0xd0000000) /* stfs, fp?, .. */
670 {
671 pc += 4; /* store fpr double */
672 op = read_memory_integer (pc, 4);
673 fdata->frameless = 0;
674 }
675
676 if (op == 0x603f0000 /* oril r31, r1, 0x0 */
677 || op == 0x7c3f0b78) /* mr r31, r1 */
678 {
679 fdata->alloca_reg = 31;
680 fdata->frameless = 0;
681 }
682 }
683
684
685 /* Pass the arguments in either registers, or in the stack. In RS6000, the first
686 eight words of the argument list (that might be less than eight parameters if
687 some parameters occupy more than one word) are passed in r3..r11 registers.
688 float and double parameters are passed in fpr's, in addition to that. Rest of
689 the parameters if any are passed in user stack. There might be cases in which
690 half of the parameter is copied into registers, the other half is pushed into
691 stack.
692
693 If the function is returning a structure, then the return address is passed
694 in r3, then the first 7 words of the parametes can be passed in registers,
695 starting from r4. */
696
697 CORE_ADDR
698 push_arguments (nargs, args, sp, struct_return, struct_addr)
699 int nargs;
700 value_ptr *args;
701 CORE_ADDR sp;
702 int struct_return;
703 CORE_ADDR struct_addr;
704 {
705 int ii, len;
706 int argno; /* current argument number */
707 int argbytes; /* current argument byte */
708 char tmp_buffer [50];
709 value_ptr arg;
710 int f_argno = 0; /* current floating point argno */
711
712 CORE_ADDR saved_sp, pc;
713
714 if ( dummy_frame_count <= 0)
715 printf_unfiltered ("FATAL ERROR -push_arguments()! frame not found!!\n");
716
717 /* The first eight words of ther arguments are passed in registers. Copy
718 them appropriately.
719
720 If the function is returning a `struct', then the first word (which
721 will be passed in r3) is used for struct return address. In that
722 case we should advance one word and start from r4 register to copy
723 parameters. */
724
725 ii = struct_return ? 1 : 0;
726
727 for (argno=0, argbytes=0; argno < nargs && ii<8; ++ii) {
728
729 arg = value_arg_coerce (args[argno]);
730 len = TYPE_LENGTH (VALUE_TYPE (arg));
731
732 if (TYPE_CODE (VALUE_TYPE (arg)) == TYPE_CODE_FLT) {
733
734 /* floating point arguments are passed in fpr's, as well as gpr's.
735 There are 13 fpr's reserved for passing parameters. At this point
736 there is no way we would run out of them. */
737
738 if (len > 8)
739 printf_unfiltered (
740 "Fatal Error: a floating point parameter #%d with a size > 8 is found!\n", argno);
741
742 memcpy (&registers[REGISTER_BYTE(FP0_REGNUM + 1 + f_argno)], VALUE_CONTENTS (arg),
743 len);
744 ++f_argno;
745 }
746
747 if (len > 4) {
748
749 /* Argument takes more than one register. */
750 while (argbytes < len) {
751
752 *(int*)&registers[REGISTER_BYTE(ii+3)] = 0;
753 memcpy (&registers[REGISTER_BYTE(ii+3)],
754 ((char*)VALUE_CONTENTS (arg))+argbytes,
755 (len - argbytes) > 4 ? 4 : len - argbytes);
756 ++ii, argbytes += 4;
757
758 if (ii >= 8)
759 goto ran_out_of_registers_for_arguments;
760 }
761 argbytes = 0;
762 --ii;
763 }
764 else { /* Argument can fit in one register. No problem. */
765 *(int*)&registers[REGISTER_BYTE(ii+3)] = 0;
766 memcpy (&registers[REGISTER_BYTE(ii+3)], VALUE_CONTENTS (arg), len);
767 }
768 ++argno;
769 }
770
771 ran_out_of_registers_for_arguments:
772
773 /* location for 8 parameters are always reserved. */
774 sp -= 4 * 8;
775
776 /* another six words for back chain, TOC register, link register, etc. */
777 sp -= 24;
778
779 /* if there are more arguments, allocate space for them in
780 the stack, then push them starting from the ninth one. */
781
782 if ((argno < nargs) || argbytes) {
783 int space = 0, jj;
784 value_ptr val;
785
786 if (argbytes) {
787 space += ((len - argbytes + 3) & -4);
788 jj = argno + 1;
789 }
790 else
791 jj = argno;
792
793 for (; jj < nargs; ++jj) {
794 val = value_arg_coerce (args[jj]);
795 space += ((TYPE_LENGTH (VALUE_TYPE (val))) + 3) & -4;
796 }
797
798 /* add location required for the rest of the parameters */
799 space = (space + 7) & -8;
800 sp -= space;
801
802 /* This is another instance we need to be concerned about securing our
803 stack space. If we write anything underneath %sp (r1), we might conflict
804 with the kernel who thinks he is free to use this area. So, update %sp
805 first before doing anything else. */
806
807 write_register (SP_REGNUM, sp);
808
809 /* if the last argument copied into the registers didn't fit there
810 completely, push the rest of it into stack. */
811
812 if (argbytes) {
813 write_memory (
814 sp+24+(ii*4), ((char*)VALUE_CONTENTS (arg))+argbytes, len - argbytes);
815 ++argno;
816 ii += ((len - argbytes + 3) & -4) / 4;
817 }
818
819 /* push the rest of the arguments into stack. */
820 for (; argno < nargs; ++argno) {
821
822 arg = value_arg_coerce (args[argno]);
823 len = TYPE_LENGTH (VALUE_TYPE (arg));
824
825
826 /* float types should be passed in fpr's, as well as in the stack. */
827 if (TYPE_CODE (VALUE_TYPE (arg)) == TYPE_CODE_FLT && f_argno < 13) {
828
829 if (len > 8)
830 printf_unfiltered (
831 "Fatal Error: a floating point parameter #%d with a size > 8 is found!\n", argno);
832
833 memcpy (&registers[REGISTER_BYTE(FP0_REGNUM + 1 + f_argno)], VALUE_CONTENTS (arg),
834 len);
835 ++f_argno;
836 }
837
838 write_memory (sp+24+(ii*4), (char *) VALUE_CONTENTS (arg), len);
839 ii += ((len + 3) & -4) / 4;
840 }
841 }
842 else
843 /* Secure stack areas first, before doing anything else. */
844 write_register (SP_REGNUM, sp);
845
846 saved_sp = dummy_frame_addr [dummy_frame_count - 1];
847 read_memory (saved_sp, tmp_buffer, 24);
848 write_memory (sp, tmp_buffer, 24);
849
850 write_memory (sp, &saved_sp, 4); /* set back chain properly */
851
852 target_store_registers (-1);
853 return sp;
854 }
855
856 /* a given return value in `regbuf' with a type `valtype', extract and copy its
857 value into `valbuf' */
858
859 void
860 extract_return_value (valtype, regbuf, valbuf)
861 struct type *valtype;
862 char regbuf[REGISTER_BYTES];
863 char *valbuf;
864 {
865
866 if (TYPE_CODE (valtype) == TYPE_CODE_FLT) {
867
868 double dd; float ff;
869 /* floats and doubles are returned in fpr1. fpr's have a size of 8 bytes.
870 We need to truncate the return value into float size (4 byte) if
871 necessary. */
872
873 if (TYPE_LENGTH (valtype) > 4) /* this is a double */
874 memcpy (valbuf, &regbuf[REGISTER_BYTE (FP0_REGNUM + 1)],
875 TYPE_LENGTH (valtype));
876 else { /* float */
877 memcpy (&dd, &regbuf[REGISTER_BYTE (FP0_REGNUM + 1)], 8);
878 ff = (float)dd;
879 memcpy (valbuf, &ff, sizeof(float));
880 }
881 }
882 else
883 /* return value is copied starting from r3. */
884 memcpy (valbuf, &regbuf[REGISTER_BYTE (3)], TYPE_LENGTH (valtype));
885 }
886
887
888 /* keep structure return address in this variable.
889 FIXME: This is a horrid kludge which should not be allowed to continue
890 living. This only allows a single nested call to a structure-returning
891 function. Come on, guys! -- gnu@cygnus.com, Aug 92 */
892
893 CORE_ADDR rs6000_struct_return_address;
894
895
896 /* Indirect function calls use a piece of trampoline code to do context
897 switching, i.e. to set the new TOC table. Skip such code if we are on
898 its first instruction (as when we have single-stepped to here).
899 Also skip shared library trampoline code (which is different from
900 indirect function call trampolines).
901 Result is desired PC to step until, or NULL if we are not in
902 trampoline code. */
903
904 CORE_ADDR
905 skip_trampoline_code (pc)
906 CORE_ADDR pc;
907 {
908 register unsigned int ii, op;
909 CORE_ADDR solib_target_pc;
910
911 static unsigned trampoline_code[] = {
912 0x800b0000, /* l r0,0x0(r11) */
913 0x90410014, /* st r2,0x14(r1) */
914 0x7c0903a6, /* mtctr r0 */
915 0x804b0004, /* l r2,0x4(r11) */
916 0x816b0008, /* l r11,0x8(r11) */
917 0x4e800420, /* bctr */
918 0x4e800020, /* br */
919 0
920 };
921
922 /* If pc is in a shared library trampoline, return its target. */
923 solib_target_pc = find_solib_trampoline_target (pc);
924 if (solib_target_pc)
925 return solib_target_pc;
926
927 for (ii=0; trampoline_code[ii]; ++ii) {
928 op = read_memory_integer (pc + (ii*4), 4);
929 if (op != trampoline_code [ii])
930 return 0;
931 }
932 ii = read_register (11); /* r11 holds destination addr */
933 pc = read_memory_integer (ii, 4); /* (r11) value */
934 return pc;
935 }
936
937
938 /* Determines whether the function FI has a frame on the stack or not.
939 Called from the FRAMELESS_FUNCTION_INVOCATION macro in tm.h with a
940 second argument of 0, and from the FRAME_SAVED_PC macro with a
941 second argument of 1. */
942
943 int
944 frameless_function_invocation (fi, pcsaved)
945 struct frame_info *fi;
946 int pcsaved;
947 {
948 CORE_ADDR func_start;
949 struct aix_framedata fdata;
950
951 if (fi->next != NULL)
952 /* Don't even think about framelessness except on the innermost frame. */
953 /* FIXME: Can also be frameless if fi->next->signal_handler_caller (if
954 a signal happens while executing in a frameless function). */
955 return 0;
956
957 func_start = get_pc_function_start (fi->pc) + FUNCTION_START_OFFSET;
958
959 /* If we failed to find the start of the function, it is a mistake
960 to inspect the instructions. */
961
962 if (!func_start)
963 return 0;
964
965 function_frame_info (func_start, &fdata);
966 return pcsaved ? fdata.nosavedpc : fdata.frameless;
967 }
968
969
970 /* If saved registers of frame FI are not known yet, read and cache them.
971 &FDATAP contains aix_framedata; TDATAP can be NULL,
972 in which case the framedata are read. */
973
974 static void
975 frame_get_cache_fsr (fi, fdatap)
976 struct frame_info *fi;
977 struct aix_framedata *fdatap;
978 {
979 int ii;
980 CORE_ADDR frame_addr;
981 struct aix_framedata work_fdata;
982
983 if (fi->cache_fsr)
984 return;
985
986 if (fdatap == NULL) {
987 fdatap = &work_fdata;
988 function_frame_info (get_pc_function_start (fi->pc), fdatap);
989 }
990
991 fi->cache_fsr = (struct frame_saved_regs *)
992 obstack_alloc (&frame_cache_obstack, sizeof (struct frame_saved_regs));
993 memset (fi->cache_fsr, '\0', sizeof (struct frame_saved_regs));
994
995 if (fi->prev && fi->prev->frame)
996 frame_addr = fi->prev->frame;
997 else
998 frame_addr = read_memory_integer (fi->frame, 4);
999
1000 /* if != -1, fdatap->saved_fpr is the smallest number of saved_fpr.
1001 All fpr's from saved_fpr to fp31 are saved right underneath caller
1002 stack pointer, starting from fp31 first. */
1003
1004 if (fdatap->saved_fpr >= 0) {
1005 for (ii=31; ii >= fdatap->saved_fpr; --ii)
1006 fi->cache_fsr->regs [FP0_REGNUM + ii] = frame_addr - ((32 - ii) * 8);
1007 frame_addr -= (32 - fdatap->saved_fpr) * 8;
1008 }
1009
1010 /* if != -1, fdatap->saved_gpr is the smallest number of saved_gpr.
1011 All gpr's from saved_gpr to gpr31 are saved right under saved fprs,
1012 starting from r31 first. */
1013
1014 if (fdatap->saved_gpr >= 0)
1015 for (ii=31; ii >= fdatap->saved_gpr; --ii)
1016 fi->cache_fsr->regs [ii] = frame_addr - ((32 - ii) * 4);
1017 }
1018
1019 /* Return the address of a frame. This is the inital %sp value when the frame
1020 was first allocated. For functions calling alloca(), it might be saved in
1021 an alloca register. */
1022
1023 CORE_ADDR
1024 frame_initial_stack_address (fi)
1025 struct frame_info *fi;
1026 {
1027 CORE_ADDR tmpaddr;
1028 struct aix_framedata fdata;
1029 struct frame_info *callee_fi;
1030
1031 /* if the initial stack pointer (frame address) of this frame is known,
1032 just return it. */
1033
1034 if (fi->initial_sp)
1035 return fi->initial_sp;
1036
1037 /* find out if this function is using an alloca register.. */
1038
1039 function_frame_info (get_pc_function_start (fi->pc), &fdata);
1040
1041 /* if saved registers of this frame are not known yet, read and cache them. */
1042
1043 if (!fi->cache_fsr)
1044 frame_get_cache_fsr (fi, &fdata);
1045
1046 /* If no alloca register used, then fi->frame is the value of the %sp for
1047 this frame, and it is good enough. */
1048
1049 if (fdata.alloca_reg < 0) {
1050 fi->initial_sp = fi->frame;
1051 return fi->initial_sp;
1052 }
1053
1054 /* This function has an alloca register. If this is the top-most frame
1055 (with the lowest address), the value in alloca register is good. */
1056
1057 if (!fi->next)
1058 return fi->initial_sp = read_register (fdata.alloca_reg);
1059
1060 /* Otherwise, this is a caller frame. Callee has usually already saved
1061 registers, but there are exceptions (such as when the callee
1062 has no parameters). Find the address in which caller's alloca
1063 register is saved. */
1064
1065 for (callee_fi = fi->next; callee_fi; callee_fi = callee_fi->next) {
1066
1067 if (!callee_fi->cache_fsr)
1068 frame_get_cache_fsr (callee_fi, NULL);
1069
1070 /* this is the address in which alloca register is saved. */
1071
1072 tmpaddr = callee_fi->cache_fsr->regs [fdata.alloca_reg];
1073 if (tmpaddr) {
1074 fi->initial_sp = read_memory_integer (tmpaddr, 4);
1075 return fi->initial_sp;
1076 }
1077
1078 /* Go look into deeper levels of the frame chain to see if any one of
1079 the callees has saved alloca register. */
1080 }
1081
1082 /* If alloca register was not saved, by the callee (or any of its callees)
1083 then the value in the register is still good. */
1084
1085 return fi->initial_sp = read_register (fdata.alloca_reg);
1086 }
1087
1088 FRAME_ADDR
1089 rs6000_frame_chain (thisframe)
1090 struct frame_info *thisframe;
1091 {
1092 FRAME_ADDR fp;
1093 if (inside_entry_file ((thisframe)->pc))
1094 return 0;
1095 if (thisframe->signal_handler_caller)
1096 {
1097 /* This was determined by experimentation on AIX 3.2. Perhaps
1098 it corresponds to some offset in /usr/include/sys/user.h or
1099 something like that. Using some system include file would
1100 have the advantage of probably being more robust in the face
1101 of OS upgrades, but the disadvantage of being wrong for
1102 cross-debugging. */
1103
1104 #define SIG_FRAME_FP_OFFSET 284
1105 fp = read_memory_integer (thisframe->frame + SIG_FRAME_FP_OFFSET, 4);
1106 }
1107 else
1108 fp = read_memory_integer ((thisframe)->frame, 4);
1109
1110 return fp;
1111 }
1112 \f
1113 /* Keep an array of load segment information and their TOC table addresses.
1114 This info will be useful when calling a shared library function by hand. */
1115
1116 struct loadinfo {
1117 CORE_ADDR textorg, dataorg;
1118 unsigned long toc_offset;
1119 };
1120
1121 #define LOADINFOLEN 10
1122
1123 static struct loadinfo *loadinfo = NULL;
1124 static int loadinfolen = 0;
1125 static int loadinfotocindex = 0;
1126 static int loadinfotextindex = 0;
1127
1128
1129 void
1130 xcoff_init_loadinfo ()
1131 {
1132 loadinfotocindex = 0;
1133 loadinfotextindex = 0;
1134
1135 if (loadinfolen == 0) {
1136 loadinfo = (struct loadinfo *)
1137 xmalloc (sizeof (struct loadinfo) * LOADINFOLEN);
1138 loadinfolen = LOADINFOLEN;
1139 }
1140 }
1141
1142
1143 /* FIXME -- this is never called! */
1144 void
1145 free_loadinfo ()
1146 {
1147 if (loadinfo)
1148 free (loadinfo);
1149 loadinfo = NULL;
1150 loadinfolen = 0;
1151 loadinfotocindex = 0;
1152 loadinfotextindex = 0;
1153 }
1154
1155 /* this is called from xcoffread.c */
1156
1157 void
1158 xcoff_add_toc_to_loadinfo (unsigned long tocoff)
1159 {
1160 while (loadinfotocindex >= loadinfolen) {
1161 loadinfolen += LOADINFOLEN;
1162 loadinfo = (struct loadinfo *)
1163 xrealloc (loadinfo, sizeof(struct loadinfo) * loadinfolen);
1164 }
1165 loadinfo [loadinfotocindex++].toc_offset = tocoff;
1166 }
1167
1168 void
1169 add_text_to_loadinfo (textaddr, dataaddr)
1170 CORE_ADDR textaddr;
1171 CORE_ADDR dataaddr;
1172 {
1173 while (loadinfotextindex >= loadinfolen) {
1174 loadinfolen += LOADINFOLEN;
1175 loadinfo = (struct loadinfo *)
1176 xrealloc (loadinfo, sizeof(struct loadinfo) * loadinfolen);
1177 }
1178 loadinfo [loadinfotextindex].textorg = textaddr;
1179 loadinfo [loadinfotextindex].dataorg = dataaddr;
1180 ++loadinfotextindex;
1181 }
1182
1183
1184 /* FIXME: This assumes that the "textorg" and "dataorg" elements
1185 of a member of this array are correlated with the "toc_offset"
1186 element of the same member. But they are sequentially assigned in wildly
1187 different places, and probably there is no correlation. FIXME! */
1188
1189 static CORE_ADDR
1190 find_toc_address (pc)
1191 CORE_ADDR pc;
1192 {
1193 int ii, toc_entry, tocbase = 0;
1194
1195 for (ii=0; ii < loadinfotextindex; ++ii)
1196 if (pc > loadinfo[ii].textorg && loadinfo[ii].textorg > tocbase) {
1197 toc_entry = ii;
1198 tocbase = loadinfo[ii].textorg;
1199 }
1200
1201 return loadinfo[toc_entry].dataorg + loadinfo[toc_entry].toc_offset;
1202 }