2002-08-20 Elena Zannoni <ezannoni@redhat.com>
[binutils-gdb.git] / gdb / rs6000-tdep.c
1 /* Target-dependent code for GDB, the GNU debugger.
2 Copyright 1986, 1987, 1989, 1991, 1992, 1993, 1994, 1995, 1996, 1997,
3 1998, 1999, 2000, 2001, 2002
4 Free Software Foundation, Inc.
5
6 This file is part of GDB.
7
8 This program is free software; you can redistribute it and/or modify
9 it under the terms of the GNU General Public License as published by
10 the Free Software Foundation; either version 2 of the License, or
11 (at your option) any later version.
12
13 This program is distributed in the hope that it will be useful,
14 but WITHOUT ANY WARRANTY; without even the implied warranty of
15 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
16 GNU General Public License for more details.
17
18 You should have received a copy of the GNU General Public License
19 along with this program; if not, write to the Free Software
20 Foundation, Inc., 59 Temple Place - Suite 330,
21 Boston, MA 02111-1307, USA. */
22
23 #include "defs.h"
24 #include "frame.h"
25 #include "inferior.h"
26 #include "symtab.h"
27 #include "target.h"
28 #include "gdbcore.h"
29 #include "gdbcmd.h"
30 #include "symfile.h"
31 #include "objfiles.h"
32 #include "arch-utils.h"
33 #include "regcache.h"
34 #include "doublest.h"
35 #include "value.h"
36 #include "parser-defs.h"
37
38 #include "libbfd.h" /* for bfd_default_set_arch_mach */
39 #include "coff/internal.h" /* for libcoff.h */
40 #include "libcoff.h" /* for xcoff_data */
41 #include "coff/xcoff.h"
42 #include "libxcoff.h"
43
44 #include "elf-bfd.h"
45
46 #include "solib-svr4.h"
47 #include "ppc-tdep.h"
48
49 /* If the kernel has to deliver a signal, it pushes a sigcontext
50 structure on the stack and then calls the signal handler, passing
51 the address of the sigcontext in an argument register. Usually
52 the signal handler doesn't save this register, so we have to
53 access the sigcontext structure via an offset from the signal handler
54 frame.
55 The following constants were determined by experimentation on AIX 3.2. */
56 #define SIG_FRAME_PC_OFFSET 96
57 #define SIG_FRAME_LR_OFFSET 108
58 #define SIG_FRAME_FP_OFFSET 284
59
60 /* To be used by skip_prologue. */
61
62 struct rs6000_framedata
63 {
64 int offset; /* total size of frame --- the distance
65 by which we decrement sp to allocate
66 the frame */
67 int saved_gpr; /* smallest # of saved gpr */
68 int saved_fpr; /* smallest # of saved fpr */
69 int saved_vr; /* smallest # of saved vr */
70 int alloca_reg; /* alloca register number (frame ptr) */
71 char frameless; /* true if frameless functions. */
72 char nosavedpc; /* true if pc not saved. */
73 int gpr_offset; /* offset of saved gprs from prev sp */
74 int fpr_offset; /* offset of saved fprs from prev sp */
75 int vr_offset; /* offset of saved vrs from prev sp */
76 int lr_offset; /* offset of saved lr */
77 int cr_offset; /* offset of saved cr */
78 int vrsave_offset; /* offset of saved vrsave register */
79 };
80
81 /* Description of a single register. */
82
83 struct reg
84 {
85 char *name; /* name of register */
86 unsigned char sz32; /* size on 32-bit arch, 0 if nonextant */
87 unsigned char sz64; /* size on 64-bit arch, 0 if nonextant */
88 unsigned char fpr; /* whether register is floating-point */
89 unsigned char pseudo; /* whether register is pseudo */
90 };
91
92 /* Breakpoint shadows for the single step instructions will be kept here. */
93
94 static struct sstep_breaks
95 {
96 /* Address, or 0 if this is not in use. */
97 CORE_ADDR address;
98 /* Shadow contents. */
99 char data[4];
100 }
101 stepBreaks[2];
102
103 /* Hook for determining the TOC address when calling functions in the
104 inferior under AIX. The initialization code in rs6000-nat.c sets
105 this hook to point to find_toc_address. */
106
107 CORE_ADDR (*rs6000_find_toc_address_hook) (CORE_ADDR) = NULL;
108
109 /* Hook to set the current architecture when starting a child process.
110 rs6000-nat.c sets this. */
111
112 void (*rs6000_set_host_arch_hook) (int) = NULL;
113
114 /* Static function prototypes */
115
116 static CORE_ADDR branch_dest (int opcode, int instr, CORE_ADDR pc,
117 CORE_ADDR safety);
118 static CORE_ADDR skip_prologue (CORE_ADDR, CORE_ADDR,
119 struct rs6000_framedata *);
120 static void frame_get_saved_regs (struct frame_info * fi,
121 struct rs6000_framedata * fdatap);
122 static CORE_ADDR frame_initial_stack_address (struct frame_info *);
123
124 /* Read a LEN-byte address from debugged memory address MEMADDR. */
125
126 static CORE_ADDR
127 read_memory_addr (CORE_ADDR memaddr, int len)
128 {
129 return read_memory_unsigned_integer (memaddr, len);
130 }
131
132 static CORE_ADDR
133 rs6000_skip_prologue (CORE_ADDR pc)
134 {
135 struct rs6000_framedata frame;
136 pc = skip_prologue (pc, 0, &frame);
137 return pc;
138 }
139
140
141 /* Fill in fi->saved_regs */
142
143 struct frame_extra_info
144 {
145 /* Functions calling alloca() change the value of the stack
146 pointer. We need to use initial stack pointer (which is saved in
147 r31 by gcc) in such cases. If a compiler emits traceback table,
148 then we should use the alloca register specified in traceback
149 table. FIXME. */
150 CORE_ADDR initial_sp; /* initial stack pointer. */
151 };
152
153 void
154 rs6000_init_extra_frame_info (int fromleaf, struct frame_info *fi)
155 {
156 fi->extra_info = (struct frame_extra_info *)
157 frame_obstack_alloc (sizeof (struct frame_extra_info));
158 fi->extra_info->initial_sp = 0;
159 if (fi->next != (CORE_ADDR) 0
160 && fi->pc < TEXT_SEGMENT_BASE)
161 /* We're in get_prev_frame */
162 /* and this is a special signal frame. */
163 /* (fi->pc will be some low address in the kernel, */
164 /* to which the signal handler returns). */
165 fi->signal_handler_caller = 1;
166 }
167
168 /* Put here the code to store, into a struct frame_saved_regs,
169 the addresses of the saved registers of frame described by FRAME_INFO.
170 This includes special registers such as pc and fp saved in special
171 ways in the stack frame. sp is even more special:
172 the address we return for it IS the sp for the next frame. */
173
174 /* In this implementation for RS/6000, we do *not* save sp. I am
175 not sure if it will be needed. The following function takes care of gpr's
176 and fpr's only. */
177
178 void
179 rs6000_frame_init_saved_regs (struct frame_info *fi)
180 {
181 frame_get_saved_regs (fi, NULL);
182 }
183
184 static CORE_ADDR
185 rs6000_frame_args_address (struct frame_info *fi)
186 {
187 if (fi->extra_info->initial_sp != 0)
188 return fi->extra_info->initial_sp;
189 else
190 return frame_initial_stack_address (fi);
191 }
192
193 /* Immediately after a function call, return the saved pc.
194 Can't go through the frames for this because on some machines
195 the new frame is not set up until the new function executes
196 some instructions. */
197
198 static CORE_ADDR
199 rs6000_saved_pc_after_call (struct frame_info *fi)
200 {
201 return read_register (gdbarch_tdep (current_gdbarch)->ppc_lr_regnum);
202 }
203
204 /* Calculate the destination of a branch/jump. Return -1 if not a branch. */
205
206 static CORE_ADDR
207 branch_dest (int opcode, int instr, CORE_ADDR pc, CORE_ADDR safety)
208 {
209 CORE_ADDR dest;
210 int immediate;
211 int absolute;
212 int ext_op;
213
214 absolute = (int) ((instr >> 1) & 1);
215
216 switch (opcode)
217 {
218 case 18:
219 immediate = ((instr & ~3) << 6) >> 6; /* br unconditional */
220 if (absolute)
221 dest = immediate;
222 else
223 dest = pc + immediate;
224 break;
225
226 case 16:
227 immediate = ((instr & ~3) << 16) >> 16; /* br conditional */
228 if (absolute)
229 dest = immediate;
230 else
231 dest = pc + immediate;
232 break;
233
234 case 19:
235 ext_op = (instr >> 1) & 0x3ff;
236
237 if (ext_op == 16) /* br conditional register */
238 {
239 dest = read_register (gdbarch_tdep (current_gdbarch)->ppc_lr_regnum) & ~3;
240
241 /* If we are about to return from a signal handler, dest is
242 something like 0x3c90. The current frame is a signal handler
243 caller frame, upon completion of the sigreturn system call
244 execution will return to the saved PC in the frame. */
245 if (dest < TEXT_SEGMENT_BASE)
246 {
247 struct frame_info *fi;
248
249 fi = get_current_frame ();
250 if (fi != NULL)
251 dest = read_memory_addr (fi->frame + SIG_FRAME_PC_OFFSET,
252 gdbarch_tdep (current_gdbarch)->wordsize);
253 }
254 }
255
256 else if (ext_op == 528) /* br cond to count reg */
257 {
258 dest = read_register (gdbarch_tdep (current_gdbarch)->ppc_ctr_regnum) & ~3;
259
260 /* If we are about to execute a system call, dest is something
261 like 0x22fc or 0x3b00. Upon completion the system call
262 will return to the address in the link register. */
263 if (dest < TEXT_SEGMENT_BASE)
264 dest = read_register (gdbarch_tdep (current_gdbarch)->ppc_lr_regnum) & ~3;
265 }
266 else
267 return -1;
268 break;
269
270 default:
271 return -1;
272 }
273 return (dest < TEXT_SEGMENT_BASE) ? safety : dest;
274 }
275
276
277 /* Sequence of bytes for breakpoint instruction. */
278
279 #define BIG_BREAKPOINT { 0x7d, 0x82, 0x10, 0x08 }
280 #define LITTLE_BREAKPOINT { 0x08, 0x10, 0x82, 0x7d }
281
282 const static unsigned char *
283 rs6000_breakpoint_from_pc (CORE_ADDR *bp_addr, int *bp_size)
284 {
285 static unsigned char big_breakpoint[] = BIG_BREAKPOINT;
286 static unsigned char little_breakpoint[] = LITTLE_BREAKPOINT;
287 *bp_size = 4;
288 if (TARGET_BYTE_ORDER == BFD_ENDIAN_BIG)
289 return big_breakpoint;
290 else
291 return little_breakpoint;
292 }
293
294
295 /* AIX does not support PT_STEP. Simulate it. */
296
297 void
298 rs6000_software_single_step (enum target_signal signal,
299 int insert_breakpoints_p)
300 {
301 CORE_ADDR dummy;
302 int breakp_sz;
303 const char *breakp = rs6000_breakpoint_from_pc (&dummy, &breakp_sz);
304 int ii, insn;
305 CORE_ADDR loc;
306 CORE_ADDR breaks[2];
307 int opcode;
308
309 if (insert_breakpoints_p)
310 {
311
312 loc = read_pc ();
313
314 insn = read_memory_integer (loc, 4);
315
316 breaks[0] = loc + breakp_sz;
317 opcode = insn >> 26;
318 breaks[1] = branch_dest (opcode, insn, loc, breaks[0]);
319
320 /* Don't put two breakpoints on the same address. */
321 if (breaks[1] == breaks[0])
322 breaks[1] = -1;
323
324 stepBreaks[1].address = 0;
325
326 for (ii = 0; ii < 2; ++ii)
327 {
328
329 /* ignore invalid breakpoint. */
330 if (breaks[ii] == -1)
331 continue;
332 target_insert_breakpoint (breaks[ii], stepBreaks[ii].data);
333 stepBreaks[ii].address = breaks[ii];
334 }
335
336 }
337 else
338 {
339
340 /* remove step breakpoints. */
341 for (ii = 0; ii < 2; ++ii)
342 if (stepBreaks[ii].address != 0)
343 target_remove_breakpoint (stepBreaks[ii].address,
344 stepBreaks[ii].data);
345 }
346 errno = 0; /* FIXME, don't ignore errors! */
347 /* What errors? {read,write}_memory call error(). */
348 }
349
350
351 /* return pc value after skipping a function prologue and also return
352 information about a function frame.
353
354 in struct rs6000_framedata fdata:
355 - frameless is TRUE, if function does not have a frame.
356 - nosavedpc is TRUE, if function does not save %pc value in its frame.
357 - offset is the initial size of this stack frame --- the amount by
358 which we decrement the sp to allocate the frame.
359 - saved_gpr is the number of the first saved gpr.
360 - saved_fpr is the number of the first saved fpr.
361 - saved_vr is the number of the first saved vr.
362 - alloca_reg is the number of the register used for alloca() handling.
363 Otherwise -1.
364 - gpr_offset is the offset of the first saved gpr from the previous frame.
365 - fpr_offset is the offset of the first saved fpr from the previous frame.
366 - vr_offset is the offset of the first saved vr from the previous frame.
367 - lr_offset is the offset of the saved lr
368 - cr_offset is the offset of the saved cr
369 - vrsave_offset is the offset of the saved vrsave register
370 */
371
372 #define SIGNED_SHORT(x) \
373 ((sizeof (short) == 2) \
374 ? ((int)(short)(x)) \
375 : ((int)((((x) & 0xffff) ^ 0x8000) - 0x8000)))
376
377 #define GET_SRC_REG(x) (((x) >> 21) & 0x1f)
378
379 /* Limit the number of skipped non-prologue instructions, as the examining
380 of the prologue is expensive. */
381 static int max_skip_non_prologue_insns = 10;
382
383 /* Given PC representing the starting address of a function, and
384 LIM_PC which is the (sloppy) limit to which to scan when looking
385 for a prologue, attempt to further refine this limit by using
386 the line data in the symbol table. If successful, a better guess
387 on where the prologue ends is returned, otherwise the previous
388 value of lim_pc is returned. */
389 static CORE_ADDR
390 refine_prologue_limit (CORE_ADDR pc, CORE_ADDR lim_pc)
391 {
392 struct symtab_and_line prologue_sal;
393
394 prologue_sal = find_pc_line (pc, 0);
395 if (prologue_sal.line != 0)
396 {
397 int i;
398 CORE_ADDR addr = prologue_sal.end;
399
400 /* Handle the case in which compiler's optimizer/scheduler
401 has moved instructions into the prologue. We scan ahead
402 in the function looking for address ranges whose corresponding
403 line number is less than or equal to the first one that we
404 found for the function. (It can be less than when the
405 scheduler puts a body instruction before the first prologue
406 instruction.) */
407 for (i = 2 * max_skip_non_prologue_insns;
408 i > 0 && (lim_pc == 0 || addr < lim_pc);
409 i--)
410 {
411 struct symtab_and_line sal;
412
413 sal = find_pc_line (addr, 0);
414 if (sal.line == 0)
415 break;
416 if (sal.line <= prologue_sal.line
417 && sal.symtab == prologue_sal.symtab)
418 {
419 prologue_sal = sal;
420 }
421 addr = sal.end;
422 }
423
424 if (lim_pc == 0 || prologue_sal.end < lim_pc)
425 lim_pc = prologue_sal.end;
426 }
427 return lim_pc;
428 }
429
430
431 static CORE_ADDR
432 skip_prologue (CORE_ADDR pc, CORE_ADDR lim_pc, struct rs6000_framedata *fdata)
433 {
434 CORE_ADDR orig_pc = pc;
435 CORE_ADDR last_prologue_pc = pc;
436 CORE_ADDR li_found_pc = 0;
437 char buf[4];
438 unsigned long op;
439 long offset = 0;
440 long vr_saved_offset = 0;
441 int lr_reg = -1;
442 int cr_reg = -1;
443 int vr_reg = -1;
444 int vrsave_reg = -1;
445 int reg;
446 int framep = 0;
447 int minimal_toc_loaded = 0;
448 int prev_insn_was_prologue_insn = 1;
449 int num_skip_non_prologue_insns = 0;
450
451 /* Attempt to find the end of the prologue when no limit is specified.
452 Note that refine_prologue_limit() has been written so that it may
453 be used to "refine" the limits of non-zero PC values too, but this
454 is only safe if we 1) trust the line information provided by the
455 compiler and 2) iterate enough to actually find the end of the
456 prologue.
457
458 It may become a good idea at some point (for both performance and
459 accuracy) to unconditionally call refine_prologue_limit(). But,
460 until we can make a clear determination that this is beneficial,
461 we'll play it safe and only use it to obtain a limit when none
462 has been specified. */
463 if (lim_pc == 0)
464 lim_pc = refine_prologue_limit (pc, lim_pc);
465
466 memset (fdata, 0, sizeof (struct rs6000_framedata));
467 fdata->saved_gpr = -1;
468 fdata->saved_fpr = -1;
469 fdata->saved_vr = -1;
470 fdata->alloca_reg = -1;
471 fdata->frameless = 1;
472 fdata->nosavedpc = 1;
473
474 for (;; pc += 4)
475 {
476 /* Sometimes it isn't clear if an instruction is a prologue
477 instruction or not. When we encounter one of these ambiguous
478 cases, we'll set prev_insn_was_prologue_insn to 0 (false).
479 Otherwise, we'll assume that it really is a prologue instruction. */
480 if (prev_insn_was_prologue_insn)
481 last_prologue_pc = pc;
482
483 /* Stop scanning if we've hit the limit. */
484 if (lim_pc != 0 && pc >= lim_pc)
485 break;
486
487 prev_insn_was_prologue_insn = 1;
488
489 /* Fetch the instruction and convert it to an integer. */
490 if (target_read_memory (pc, buf, 4))
491 break;
492 op = extract_signed_integer (buf, 4);
493
494 if ((op & 0xfc1fffff) == 0x7c0802a6)
495 { /* mflr Rx */
496 lr_reg = (op & 0x03e00000) | 0x90010000;
497 continue;
498
499 }
500 else if ((op & 0xfc1fffff) == 0x7c000026)
501 { /* mfcr Rx */
502 cr_reg = (op & 0x03e00000) | 0x90010000;
503 continue;
504
505 }
506 else if ((op & 0xfc1f0000) == 0xd8010000)
507 { /* stfd Rx,NUM(r1) */
508 reg = GET_SRC_REG (op);
509 if (fdata->saved_fpr == -1 || fdata->saved_fpr > reg)
510 {
511 fdata->saved_fpr = reg;
512 fdata->fpr_offset = SIGNED_SHORT (op) + offset;
513 }
514 continue;
515
516 }
517 else if (((op & 0xfc1f0000) == 0xbc010000) || /* stm Rx, NUM(r1) */
518 (((op & 0xfc1f0000) == 0x90010000 || /* st rx,NUM(r1) */
519 (op & 0xfc1f0003) == 0xf8010000) && /* std rx,NUM(r1) */
520 (op & 0x03e00000) >= 0x01a00000)) /* rx >= r13 */
521 {
522
523 reg = GET_SRC_REG (op);
524 if (fdata->saved_gpr == -1 || fdata->saved_gpr > reg)
525 {
526 fdata->saved_gpr = reg;
527 if ((op & 0xfc1f0003) == 0xf8010000)
528 op = (op >> 1) << 1;
529 fdata->gpr_offset = SIGNED_SHORT (op) + offset;
530 }
531 continue;
532
533 }
534 else if ((op & 0xffff0000) == 0x60000000)
535 {
536 /* nop */
537 /* Allow nops in the prologue, but do not consider them to
538 be part of the prologue unless followed by other prologue
539 instructions. */
540 prev_insn_was_prologue_insn = 0;
541 continue;
542
543 }
544 else if ((op & 0xffff0000) == 0x3c000000)
545 { /* addis 0,0,NUM, used
546 for >= 32k frames */
547 fdata->offset = (op & 0x0000ffff) << 16;
548 fdata->frameless = 0;
549 continue;
550
551 }
552 else if ((op & 0xffff0000) == 0x60000000)
553 { /* ori 0,0,NUM, 2nd ha
554 lf of >= 32k frames */
555 fdata->offset |= (op & 0x0000ffff);
556 fdata->frameless = 0;
557 continue;
558
559 }
560 else if (lr_reg != -1 && (op & 0xffff0000) == lr_reg)
561 { /* st Rx,NUM(r1)
562 where Rx == lr */
563 fdata->lr_offset = SIGNED_SHORT (op) + offset;
564 fdata->nosavedpc = 0;
565 lr_reg = 0;
566 continue;
567
568 }
569 else if (cr_reg != -1 && (op & 0xffff0000) == cr_reg)
570 { /* st Rx,NUM(r1)
571 where Rx == cr */
572 fdata->cr_offset = SIGNED_SHORT (op) + offset;
573 cr_reg = 0;
574 continue;
575
576 }
577 else if (op == 0x48000005)
578 { /* bl .+4 used in
579 -mrelocatable */
580 continue;
581
582 }
583 else if (op == 0x48000004)
584 { /* b .+4 (xlc) */
585 break;
586
587 }
588 else if ((op & 0xffff0000) == 0x3fc00000 || /* addis 30,0,foo@ha, used
589 in V.4 -mminimal-toc */
590 (op & 0xffff0000) == 0x3bde0000)
591 { /* addi 30,30,foo@l */
592 continue;
593
594 }
595 else if ((op & 0xfc000001) == 0x48000001)
596 { /* bl foo,
597 to save fprs??? */
598
599 fdata->frameless = 0;
600 /* Don't skip over the subroutine call if it is not within
601 the first three instructions of the prologue. */
602 if ((pc - orig_pc) > 8)
603 break;
604
605 op = read_memory_integer (pc + 4, 4);
606
607 /* At this point, make sure this is not a trampoline
608 function (a function that simply calls another functions,
609 and nothing else). If the next is not a nop, this branch
610 was part of the function prologue. */
611
612 if (op == 0x4def7b82 || op == 0) /* crorc 15, 15, 15 */
613 break; /* don't skip over
614 this branch */
615 continue;
616
617 /* update stack pointer */
618 }
619 else if ((op & 0xffff0000) == 0x94210000 || /* stu r1,NUM(r1) */
620 (op & 0xffff0003) == 0xf8210001) /* stdu r1,NUM(r1) */
621 {
622 fdata->frameless = 0;
623 if ((op & 0xffff0003) == 0xf8210001)
624 op = (op >> 1) << 1;
625 fdata->offset = SIGNED_SHORT (op);
626 offset = fdata->offset;
627 continue;
628
629 }
630 else if (op == 0x7c21016e)
631 { /* stwux 1,1,0 */
632 fdata->frameless = 0;
633 offset = fdata->offset;
634 continue;
635
636 /* Load up minimal toc pointer */
637 }
638 else if ((op >> 22) == 0x20f
639 && !minimal_toc_loaded)
640 { /* l r31,... or l r30,... */
641 minimal_toc_loaded = 1;
642 continue;
643
644 /* move parameters from argument registers to local variable
645 registers */
646 }
647 else if ((op & 0xfc0007fe) == 0x7c000378 && /* mr(.) Rx,Ry */
648 (((op >> 21) & 31) >= 3) && /* R3 >= Ry >= R10 */
649 (((op >> 21) & 31) <= 10) &&
650 (((op >> 16) & 31) >= fdata->saved_gpr)) /* Rx: local var reg */
651 {
652 continue;
653
654 /* store parameters in stack */
655 }
656 else if ((op & 0xfc1f0003) == 0xf8010000 || /* std rx,NUM(r1) */
657 (op & 0xfc1f0000) == 0xd8010000 || /* stfd Rx,NUM(r1) */
658 (op & 0xfc1f0000) == 0xfc010000) /* frsp, fp?,NUM(r1) */
659 {
660 continue;
661
662 /* store parameters in stack via frame pointer */
663 }
664 else if (framep &&
665 ((op & 0xfc1f0000) == 0x901f0000 || /* st rx,NUM(r1) */
666 (op & 0xfc1f0000) == 0xd81f0000 || /* stfd Rx,NUM(r1) */
667 (op & 0xfc1f0000) == 0xfc1f0000))
668 { /* frsp, fp?,NUM(r1) */
669 continue;
670
671 /* Set up frame pointer */
672 }
673 else if (op == 0x603f0000 /* oril r31, r1, 0x0 */
674 || op == 0x7c3f0b78)
675 { /* mr r31, r1 */
676 fdata->frameless = 0;
677 framep = 1;
678 fdata->alloca_reg = 31;
679 continue;
680
681 /* Another way to set up the frame pointer. */
682 }
683 else if ((op & 0xfc1fffff) == 0x38010000)
684 { /* addi rX, r1, 0x0 */
685 fdata->frameless = 0;
686 framep = 1;
687 fdata->alloca_reg = (op & ~0x38010000) >> 21;
688 continue;
689 }
690 /* AltiVec related instructions. */
691 /* Store the vrsave register (spr 256) in another register for
692 later manipulation, or load a register into the vrsave
693 register. 2 instructions are used: mfvrsave and
694 mtvrsave. They are shorthand notation for mfspr Rn, SPR256
695 and mtspr SPR256, Rn. */
696 /* mfspr Rn SPR256 == 011111 nnnnn 0000001000 01010100110
697 mtspr SPR256 Rn == 011111 nnnnn 0000001000 01110100110 */
698 else if ((op & 0xfc1fffff) == 0x7c0042a6) /* mfvrsave Rn */
699 {
700 vrsave_reg = GET_SRC_REG (op);
701 continue;
702 }
703 else if ((op & 0xfc1fffff) == 0x7c0043a6) /* mtvrsave Rn */
704 {
705 continue;
706 }
707 /* Store the register where vrsave was saved to onto the stack:
708 rS is the register where vrsave was stored in a previous
709 instruction. */
710 /* 100100 sssss 00001 dddddddd dddddddd */
711 else if ((op & 0xfc1f0000) == 0x90010000) /* stw rS, d(r1) */
712 {
713 if (vrsave_reg == GET_SRC_REG (op))
714 {
715 fdata->vrsave_offset = SIGNED_SHORT (op) + offset;
716 vrsave_reg = -1;
717 }
718 continue;
719 }
720 /* Compute the new value of vrsave, by modifying the register
721 where vrsave was saved to. */
722 else if (((op & 0xfc000000) == 0x64000000) /* oris Ra, Rs, UIMM */
723 || ((op & 0xfc000000) == 0x60000000))/* ori Ra, Rs, UIMM */
724 {
725 continue;
726 }
727 /* li r0, SIMM (short for addi r0, 0, SIMM). This is the first
728 in a pair of insns to save the vector registers on the
729 stack. */
730 /* 001110 00000 00000 iiii iiii iiii iiii */
731 else if ((op & 0xffff0000) == 0x38000000) /* li r0, SIMM */
732 {
733 li_found_pc = pc;
734 vr_saved_offset = SIGNED_SHORT (op);
735 }
736 /* Store vector register S at (r31+r0) aligned to 16 bytes. */
737 /* 011111 sssss 11111 00000 00111001110 */
738 else if ((op & 0xfc1fffff) == 0x7c1f01ce) /* stvx Vs, R31, R0 */
739 {
740 if (pc == (li_found_pc + 4))
741 {
742 vr_reg = GET_SRC_REG (op);
743 /* If this is the first vector reg to be saved, or if
744 it has a lower number than others previously seen,
745 reupdate the frame info. */
746 if (fdata->saved_vr == -1 || fdata->saved_vr > vr_reg)
747 {
748 fdata->saved_vr = vr_reg;
749 fdata->vr_offset = vr_saved_offset + offset;
750 }
751 vr_saved_offset = -1;
752 vr_reg = -1;
753 li_found_pc = 0;
754 }
755 }
756 /* End AltiVec related instructions. */
757 else
758 {
759 /* Not a recognized prologue instruction.
760 Handle optimizer code motions into the prologue by continuing
761 the search if we have no valid frame yet or if the return
762 address is not yet saved in the frame. */
763 if (fdata->frameless == 0
764 && (lr_reg == -1 || fdata->nosavedpc == 0))
765 break;
766
767 if (op == 0x4e800020 /* blr */
768 || op == 0x4e800420) /* bctr */
769 /* Do not scan past epilogue in frameless functions or
770 trampolines. */
771 break;
772 if ((op & 0xf4000000) == 0x40000000) /* bxx */
773 /* Never skip branches. */
774 break;
775
776 if (num_skip_non_prologue_insns++ > max_skip_non_prologue_insns)
777 /* Do not scan too many insns, scanning insns is expensive with
778 remote targets. */
779 break;
780
781 /* Continue scanning. */
782 prev_insn_was_prologue_insn = 0;
783 continue;
784 }
785 }
786
787 #if 0
788 /* I have problems with skipping over __main() that I need to address
789 * sometime. Previously, I used to use misc_function_vector which
790 * didn't work as well as I wanted to be. -MGO */
791
792 /* If the first thing after skipping a prolog is a branch to a function,
793 this might be a call to an initializer in main(), introduced by gcc2.
794 We'd like to skip over it as well. Fortunately, xlc does some extra
795 work before calling a function right after a prologue, thus we can
796 single out such gcc2 behaviour. */
797
798
799 if ((op & 0xfc000001) == 0x48000001)
800 { /* bl foo, an initializer function? */
801 op = read_memory_integer (pc + 4, 4);
802
803 if (op == 0x4def7b82)
804 { /* cror 0xf, 0xf, 0xf (nop) */
805
806 /* check and see if we are in main. If so, skip over this initializer
807 function as well. */
808
809 tmp = find_pc_misc_function (pc);
810 if (tmp >= 0 && STREQ (misc_function_vector[tmp].name, main_name ()))
811 return pc + 8;
812 }
813 }
814 #endif /* 0 */
815
816 fdata->offset = -fdata->offset;
817 return last_prologue_pc;
818 }
819
820
821 /*************************************************************************
822 Support for creating pushing a dummy frame into the stack, and popping
823 frames, etc.
824 *************************************************************************/
825
826
827 /* Pop the innermost frame, go back to the caller. */
828
829 static void
830 rs6000_pop_frame (void)
831 {
832 CORE_ADDR pc, lr, sp, prev_sp, addr; /* %pc, %lr, %sp */
833 struct rs6000_framedata fdata;
834 struct frame_info *frame = get_current_frame ();
835 int ii, wordsize;
836
837 pc = read_pc ();
838 sp = FRAME_FP (frame);
839
840 if (PC_IN_CALL_DUMMY (frame->pc, frame->frame, frame->frame))
841 {
842 generic_pop_dummy_frame ();
843 flush_cached_frames ();
844 return;
845 }
846
847 /* Make sure that all registers are valid. */
848 read_register_bytes (0, NULL, REGISTER_BYTES);
849
850 /* figure out previous %pc value. If the function is frameless, it is
851 still in the link register, otherwise walk the frames and retrieve the
852 saved %pc value in the previous frame. */
853
854 addr = get_pc_function_start (frame->pc);
855 (void) skip_prologue (addr, frame->pc, &fdata);
856
857 wordsize = gdbarch_tdep (current_gdbarch)->wordsize;
858 if (fdata.frameless)
859 prev_sp = sp;
860 else
861 prev_sp = read_memory_addr (sp, wordsize);
862 if (fdata.lr_offset == 0)
863 lr = read_register (gdbarch_tdep (current_gdbarch)->ppc_lr_regnum);
864 else
865 lr = read_memory_addr (prev_sp + fdata.lr_offset, wordsize);
866
867 /* reset %pc value. */
868 write_register (PC_REGNUM, lr);
869
870 /* reset register values if any was saved earlier. */
871
872 if (fdata.saved_gpr != -1)
873 {
874 addr = prev_sp + fdata.gpr_offset;
875 for (ii = fdata.saved_gpr; ii <= 31; ++ii)
876 {
877 read_memory (addr, &registers[REGISTER_BYTE (ii)], wordsize);
878 addr += wordsize;
879 }
880 }
881
882 if (fdata.saved_fpr != -1)
883 {
884 addr = prev_sp + fdata.fpr_offset;
885 for (ii = fdata.saved_fpr; ii <= 31; ++ii)
886 {
887 read_memory (addr, &registers[REGISTER_BYTE (ii + FP0_REGNUM)], 8);
888 addr += 8;
889 }
890 }
891
892 write_register (SP_REGNUM, prev_sp);
893 target_store_registers (-1);
894 flush_cached_frames ();
895 }
896
897 /* Fixup the call sequence of a dummy function, with the real function
898 address. Its arguments will be passed by gdb. */
899
900 static void
901 rs6000_fix_call_dummy (char *dummyname, CORE_ADDR pc, CORE_ADDR fun,
902 int nargs, struct value **args, struct type *type,
903 int gcc_p)
904 {
905 int ii;
906 CORE_ADDR target_addr;
907
908 if (rs6000_find_toc_address_hook != NULL)
909 {
910 CORE_ADDR tocvalue = (*rs6000_find_toc_address_hook) (fun);
911 write_register (gdbarch_tdep (current_gdbarch)->ppc_toc_regnum,
912 tocvalue);
913 }
914 }
915
916 /* Pass the arguments in either registers, or in the stack. In RS/6000,
917 the first eight words of the argument list (that might be less than
918 eight parameters if some parameters occupy more than one word) are
919 passed in r3..r10 registers. float and double parameters are
920 passed in fpr's, in addition to that. Rest of the parameters if any
921 are passed in user stack. There might be cases in which half of the
922 parameter is copied into registers, the other half is pushed into
923 stack.
924
925 Stack must be aligned on 64-bit boundaries when synthesizing
926 function calls.
927
928 If the function is returning a structure, then the return address is passed
929 in r3, then the first 7 words of the parameters can be passed in registers,
930 starting from r4. */
931
932 static CORE_ADDR
933 rs6000_push_arguments (int nargs, struct value **args, CORE_ADDR sp,
934 int struct_return, CORE_ADDR struct_addr)
935 {
936 int ii;
937 int len = 0;
938 int argno; /* current argument number */
939 int argbytes; /* current argument byte */
940 char tmp_buffer[50];
941 int f_argno = 0; /* current floating point argno */
942 int wordsize = gdbarch_tdep (current_gdbarch)->wordsize;
943
944 struct value *arg = 0;
945 struct type *type;
946
947 CORE_ADDR saved_sp;
948
949 /* The first eight words of ther arguments are passed in registers. Copy
950 them appropriately.
951
952 If the function is returning a `struct', then the first word (which
953 will be passed in r3) is used for struct return address. In that
954 case we should advance one word and start from r4 register to copy
955 parameters. */
956
957 ii = struct_return ? 1 : 0;
958
959 /*
960 effectively indirect call... gcc does...
961
962 return_val example( float, int);
963
964 eabi:
965 float in fp0, int in r3
966 offset of stack on overflow 8/16
967 for varargs, must go by type.
968 power open:
969 float in r3&r4, int in r5
970 offset of stack on overflow different
971 both:
972 return in r3 or f0. If no float, must study how gcc emulates floats;
973 pay attention to arg promotion.
974 User may have to cast\args to handle promotion correctly
975 since gdb won't know if prototype supplied or not.
976 */
977
978 for (argno = 0, argbytes = 0; argno < nargs && ii < 8; ++ii)
979 {
980 int reg_size = REGISTER_RAW_SIZE (ii + 3);
981
982 arg = args[argno];
983 type = check_typedef (VALUE_TYPE (arg));
984 len = TYPE_LENGTH (type);
985
986 if (TYPE_CODE (type) == TYPE_CODE_FLT)
987 {
988
989 /* floating point arguments are passed in fpr's, as well as gpr's.
990 There are 13 fpr's reserved for passing parameters. At this point
991 there is no way we would run out of them. */
992
993 if (len > 8)
994 printf_unfiltered (
995 "Fatal Error: a floating point parameter #%d with a size > 8 is found!\n", argno);
996
997 memcpy (&registers[REGISTER_BYTE (FP0_REGNUM + 1 + f_argno)],
998 VALUE_CONTENTS (arg),
999 len);
1000 ++f_argno;
1001 }
1002
1003 if (len > reg_size)
1004 {
1005
1006 /* Argument takes more than one register. */
1007 while (argbytes < len)
1008 {
1009 memset (&registers[REGISTER_BYTE (ii + 3)], 0, reg_size);
1010 memcpy (&registers[REGISTER_BYTE (ii + 3)],
1011 ((char *) VALUE_CONTENTS (arg)) + argbytes,
1012 (len - argbytes) > reg_size
1013 ? reg_size : len - argbytes);
1014 ++ii, argbytes += reg_size;
1015
1016 if (ii >= 8)
1017 goto ran_out_of_registers_for_arguments;
1018 }
1019 argbytes = 0;
1020 --ii;
1021 }
1022 else
1023 { /* Argument can fit in one register. No problem. */
1024 int adj = TARGET_BYTE_ORDER == BFD_ENDIAN_BIG ? reg_size - len : 0;
1025 memset (&registers[REGISTER_BYTE (ii + 3)], 0, reg_size);
1026 memcpy ((char *)&registers[REGISTER_BYTE (ii + 3)] + adj,
1027 VALUE_CONTENTS (arg), len);
1028 }
1029 ++argno;
1030 }
1031
1032 ran_out_of_registers_for_arguments:
1033
1034 saved_sp = read_sp ();
1035
1036 /* location for 8 parameters are always reserved. */
1037 sp -= wordsize * 8;
1038
1039 /* another six words for back chain, TOC register, link register, etc. */
1040 sp -= wordsize * 6;
1041
1042 /* stack pointer must be quadword aligned */
1043 sp &= -16;
1044
1045 /* if there are more arguments, allocate space for them in
1046 the stack, then push them starting from the ninth one. */
1047
1048 if ((argno < nargs) || argbytes)
1049 {
1050 int space = 0, jj;
1051
1052 if (argbytes)
1053 {
1054 space += ((len - argbytes + 3) & -4);
1055 jj = argno + 1;
1056 }
1057 else
1058 jj = argno;
1059
1060 for (; jj < nargs; ++jj)
1061 {
1062 struct value *val = args[jj];
1063 space += ((TYPE_LENGTH (VALUE_TYPE (val))) + 3) & -4;
1064 }
1065
1066 /* add location required for the rest of the parameters */
1067 space = (space + 15) & -16;
1068 sp -= space;
1069
1070 /* This is another instance we need to be concerned about securing our
1071 stack space. If we write anything underneath %sp (r1), we might conflict
1072 with the kernel who thinks he is free to use this area. So, update %sp
1073 first before doing anything else. */
1074
1075 write_register (SP_REGNUM, sp);
1076
1077 /* if the last argument copied into the registers didn't fit there
1078 completely, push the rest of it into stack. */
1079
1080 if (argbytes)
1081 {
1082 write_memory (sp + 24 + (ii * 4),
1083 ((char *) VALUE_CONTENTS (arg)) + argbytes,
1084 len - argbytes);
1085 ++argno;
1086 ii += ((len - argbytes + 3) & -4) / 4;
1087 }
1088
1089 /* push the rest of the arguments into stack. */
1090 for (; argno < nargs; ++argno)
1091 {
1092
1093 arg = args[argno];
1094 type = check_typedef (VALUE_TYPE (arg));
1095 len = TYPE_LENGTH (type);
1096
1097
1098 /* float types should be passed in fpr's, as well as in the stack. */
1099 if (TYPE_CODE (type) == TYPE_CODE_FLT && f_argno < 13)
1100 {
1101
1102 if (len > 8)
1103 printf_unfiltered (
1104 "Fatal Error: a floating point parameter #%d with a size > 8 is found!\n", argno);
1105
1106 memcpy (&registers[REGISTER_BYTE (FP0_REGNUM + 1 + f_argno)],
1107 VALUE_CONTENTS (arg),
1108 len);
1109 ++f_argno;
1110 }
1111
1112 write_memory (sp + 24 + (ii * 4), (char *) VALUE_CONTENTS (arg), len);
1113 ii += ((len + 3) & -4) / 4;
1114 }
1115 }
1116 else
1117 /* Secure stack areas first, before doing anything else. */
1118 write_register (SP_REGNUM, sp);
1119
1120 /* set back chain properly */
1121 store_address (tmp_buffer, 4, saved_sp);
1122 write_memory (sp, tmp_buffer, 4);
1123
1124 target_store_registers (-1);
1125 return sp;
1126 }
1127
1128 /* Function: ppc_push_return_address (pc, sp)
1129 Set up the return address for the inferior function call. */
1130
1131 static CORE_ADDR
1132 ppc_push_return_address (CORE_ADDR pc, CORE_ADDR sp)
1133 {
1134 write_register (gdbarch_tdep (current_gdbarch)->ppc_lr_regnum,
1135 CALL_DUMMY_ADDRESS ());
1136 return sp;
1137 }
1138
1139 /* Extract a function return value of type TYPE from raw register array
1140 REGBUF, and copy that return value into VALBUF in virtual format. */
1141
1142 static void
1143 rs6000_extract_return_value (struct type *valtype, char *regbuf, char *valbuf)
1144 {
1145 int offset = 0;
1146 struct gdbarch_tdep *tdep = gdbarch_tdep (current_gdbarch);
1147
1148 if (TYPE_CODE (valtype) == TYPE_CODE_FLT)
1149 {
1150
1151 double dd;
1152 float ff;
1153 /* floats and doubles are returned in fpr1. fpr's have a size of 8 bytes.
1154 We need to truncate the return value into float size (4 byte) if
1155 necessary. */
1156
1157 if (TYPE_LENGTH (valtype) > 4) /* this is a double */
1158 memcpy (valbuf,
1159 &regbuf[REGISTER_BYTE (FP0_REGNUM + 1)],
1160 TYPE_LENGTH (valtype));
1161 else
1162 { /* float */
1163 memcpy (&dd, &regbuf[REGISTER_BYTE (FP0_REGNUM + 1)], 8);
1164 ff = (float) dd;
1165 memcpy (valbuf, &ff, sizeof (float));
1166 }
1167 }
1168 else if (TYPE_CODE (valtype) == TYPE_CODE_ARRAY
1169 && TYPE_LENGTH (valtype) == 16
1170 && TYPE_VECTOR (valtype))
1171 {
1172 memcpy (valbuf, regbuf + REGISTER_BYTE (tdep->ppc_vr0_regnum + 2),
1173 TYPE_LENGTH (valtype));
1174 }
1175 else
1176 {
1177 /* return value is copied starting from r3. */
1178 if (TARGET_BYTE_ORDER == BFD_ENDIAN_BIG
1179 && TYPE_LENGTH (valtype) < REGISTER_RAW_SIZE (3))
1180 offset = REGISTER_RAW_SIZE (3) - TYPE_LENGTH (valtype);
1181
1182 memcpy (valbuf,
1183 regbuf + REGISTER_BYTE (3) + offset,
1184 TYPE_LENGTH (valtype));
1185 }
1186 }
1187
1188 /* Keep structure return address in this variable.
1189 FIXME: This is a horrid kludge which should not be allowed to continue
1190 living. This only allows a single nested call to a structure-returning
1191 function. Come on, guys! -- gnu@cygnus.com, Aug 92 */
1192
1193 static CORE_ADDR rs6000_struct_return_address;
1194
1195 /* Return whether handle_inferior_event() should proceed through code
1196 starting at PC in function NAME when stepping.
1197
1198 The AIX -bbigtoc linker option generates functions @FIX0, @FIX1, etc. to
1199 handle memory references that are too distant to fit in instructions
1200 generated by the compiler. For example, if 'foo' in the following
1201 instruction:
1202
1203 lwz r9,foo(r2)
1204
1205 is greater than 32767, the linker might replace the lwz with a branch to
1206 somewhere in @FIX1 that does the load in 2 instructions and then branches
1207 back to where execution should continue.
1208
1209 GDB should silently step over @FIX code, just like AIX dbx does.
1210 Unfortunately, the linker uses the "b" instruction for the branches,
1211 meaning that the link register doesn't get set. Therefore, GDB's usual
1212 step_over_function() mechanism won't work.
1213
1214 Instead, use the IN_SOLIB_RETURN_TRAMPOLINE and SKIP_TRAMPOLINE_CODE hooks
1215 in handle_inferior_event() to skip past @FIX code. */
1216
1217 int
1218 rs6000_in_solib_return_trampoline (CORE_ADDR pc, char *name)
1219 {
1220 return name && !strncmp (name, "@FIX", 4);
1221 }
1222
1223 /* Skip code that the user doesn't want to see when stepping:
1224
1225 1. Indirect function calls use a piece of trampoline code to do context
1226 switching, i.e. to set the new TOC table. Skip such code if we are on
1227 its first instruction (as when we have single-stepped to here).
1228
1229 2. Skip shared library trampoline code (which is different from
1230 indirect function call trampolines).
1231
1232 3. Skip bigtoc fixup code.
1233
1234 Result is desired PC to step until, or NULL if we are not in
1235 code that should be skipped. */
1236
1237 CORE_ADDR
1238 rs6000_skip_trampoline_code (CORE_ADDR pc)
1239 {
1240 register unsigned int ii, op;
1241 int rel;
1242 CORE_ADDR solib_target_pc;
1243 struct minimal_symbol *msymbol;
1244
1245 static unsigned trampoline_code[] =
1246 {
1247 0x800b0000, /* l r0,0x0(r11) */
1248 0x90410014, /* st r2,0x14(r1) */
1249 0x7c0903a6, /* mtctr r0 */
1250 0x804b0004, /* l r2,0x4(r11) */
1251 0x816b0008, /* l r11,0x8(r11) */
1252 0x4e800420, /* bctr */
1253 0x4e800020, /* br */
1254 0
1255 };
1256
1257 /* Check for bigtoc fixup code. */
1258 msymbol = lookup_minimal_symbol_by_pc (pc);
1259 if (msymbol && rs6000_in_solib_return_trampoline (pc, SYMBOL_NAME (msymbol)))
1260 {
1261 /* Double-check that the third instruction from PC is relative "b". */
1262 op = read_memory_integer (pc + 8, 4);
1263 if ((op & 0xfc000003) == 0x48000000)
1264 {
1265 /* Extract bits 6-29 as a signed 24-bit relative word address and
1266 add it to the containing PC. */
1267 rel = ((int)(op << 6) >> 6);
1268 return pc + 8 + rel;
1269 }
1270 }
1271
1272 /* If pc is in a shared library trampoline, return its target. */
1273 solib_target_pc = find_solib_trampoline_target (pc);
1274 if (solib_target_pc)
1275 return solib_target_pc;
1276
1277 for (ii = 0; trampoline_code[ii]; ++ii)
1278 {
1279 op = read_memory_integer (pc + (ii * 4), 4);
1280 if (op != trampoline_code[ii])
1281 return 0;
1282 }
1283 ii = read_register (11); /* r11 holds destination addr */
1284 pc = read_memory_addr (ii, gdbarch_tdep (current_gdbarch)->wordsize); /* (r11) value */
1285 return pc;
1286 }
1287
1288 /* Determines whether the function FI has a frame on the stack or not. */
1289
1290 int
1291 rs6000_frameless_function_invocation (struct frame_info *fi)
1292 {
1293 CORE_ADDR func_start;
1294 struct rs6000_framedata fdata;
1295
1296 /* Don't even think about framelessness except on the innermost frame
1297 or if the function was interrupted by a signal. */
1298 if (fi->next != NULL && !fi->next->signal_handler_caller)
1299 return 0;
1300
1301 func_start = get_pc_function_start (fi->pc);
1302
1303 /* If we failed to find the start of the function, it is a mistake
1304 to inspect the instructions. */
1305
1306 if (!func_start)
1307 {
1308 /* A frame with a zero PC is usually created by dereferencing a NULL
1309 function pointer, normally causing an immediate core dump of the
1310 inferior. Mark function as frameless, as the inferior has no chance
1311 of setting up a stack frame. */
1312 if (fi->pc == 0)
1313 return 1;
1314 else
1315 return 0;
1316 }
1317
1318 (void) skip_prologue (func_start, fi->pc, &fdata);
1319 return fdata.frameless;
1320 }
1321
1322 /* Return the PC saved in a frame */
1323
1324 CORE_ADDR
1325 rs6000_frame_saved_pc (struct frame_info *fi)
1326 {
1327 CORE_ADDR func_start;
1328 struct rs6000_framedata fdata;
1329 struct gdbarch_tdep *tdep = gdbarch_tdep (current_gdbarch);
1330 int wordsize = tdep->wordsize;
1331
1332 if (fi->signal_handler_caller)
1333 return read_memory_addr (fi->frame + SIG_FRAME_PC_OFFSET, wordsize);
1334
1335 if (PC_IN_CALL_DUMMY (fi->pc, fi->frame, fi->frame))
1336 return generic_read_register_dummy (fi->pc, fi->frame, PC_REGNUM);
1337
1338 func_start = get_pc_function_start (fi->pc);
1339
1340 /* If we failed to find the start of the function, it is a mistake
1341 to inspect the instructions. */
1342 if (!func_start)
1343 return 0;
1344
1345 (void) skip_prologue (func_start, fi->pc, &fdata);
1346
1347 if (fdata.lr_offset == 0 && fi->next != NULL)
1348 {
1349 if (fi->next->signal_handler_caller)
1350 return read_memory_addr (fi->next->frame + SIG_FRAME_LR_OFFSET,
1351 wordsize);
1352 else
1353 return read_memory_addr (FRAME_CHAIN (fi) + tdep->lr_frame_offset,
1354 wordsize);
1355 }
1356
1357 if (fdata.lr_offset == 0)
1358 return read_register (gdbarch_tdep (current_gdbarch)->ppc_lr_regnum);
1359
1360 return read_memory_addr (FRAME_CHAIN (fi) + fdata.lr_offset, wordsize);
1361 }
1362
1363 /* If saved registers of frame FI are not known yet, read and cache them.
1364 &FDATAP contains rs6000_framedata; TDATAP can be NULL,
1365 in which case the framedata are read. */
1366
1367 static void
1368 frame_get_saved_regs (struct frame_info *fi, struct rs6000_framedata *fdatap)
1369 {
1370 CORE_ADDR frame_addr;
1371 struct rs6000_framedata work_fdata;
1372 struct gdbarch_tdep * tdep = gdbarch_tdep (current_gdbarch);
1373 int wordsize = tdep->wordsize;
1374
1375 if (fi->saved_regs)
1376 return;
1377
1378 if (fdatap == NULL)
1379 {
1380 fdatap = &work_fdata;
1381 (void) skip_prologue (get_pc_function_start (fi->pc), fi->pc, fdatap);
1382 }
1383
1384 frame_saved_regs_zalloc (fi);
1385
1386 /* If there were any saved registers, figure out parent's stack
1387 pointer. */
1388 /* The following is true only if the frame doesn't have a call to
1389 alloca(), FIXME. */
1390
1391 if (fdatap->saved_fpr == 0
1392 && fdatap->saved_gpr == 0
1393 && fdatap->saved_vr == 0
1394 && fdatap->lr_offset == 0
1395 && fdatap->cr_offset == 0
1396 && fdatap->vr_offset == 0)
1397 frame_addr = 0;
1398 else
1399 /* NOTE: cagney/2002-04-14: The ->frame points to the inner-most
1400 address of the current frame. Things might be easier if the
1401 ->frame pointed to the outer-most address of the frame. In the
1402 mean time, the address of the prev frame is used as the base
1403 address of this frame. */
1404 frame_addr = FRAME_CHAIN (fi);
1405
1406 /* if != -1, fdatap->saved_fpr is the smallest number of saved_fpr.
1407 All fpr's from saved_fpr to fp31 are saved. */
1408
1409 if (fdatap->saved_fpr >= 0)
1410 {
1411 int i;
1412 CORE_ADDR fpr_addr = frame_addr + fdatap->fpr_offset;
1413 for (i = fdatap->saved_fpr; i < 32; i++)
1414 {
1415 fi->saved_regs[FP0_REGNUM + i] = fpr_addr;
1416 fpr_addr += 8;
1417 }
1418 }
1419
1420 /* if != -1, fdatap->saved_gpr is the smallest number of saved_gpr.
1421 All gpr's from saved_gpr to gpr31 are saved. */
1422
1423 if (fdatap->saved_gpr >= 0)
1424 {
1425 int i;
1426 CORE_ADDR gpr_addr = frame_addr + fdatap->gpr_offset;
1427 for (i = fdatap->saved_gpr; i < 32; i++)
1428 {
1429 fi->saved_regs[i] = gpr_addr;
1430 gpr_addr += wordsize;
1431 }
1432 }
1433
1434 /* if != -1, fdatap->saved_vr is the smallest number of saved_vr.
1435 All vr's from saved_vr to vr31 are saved. */
1436 if (tdep->ppc_vr0_regnum != -1 && tdep->ppc_vrsave_regnum != -1)
1437 {
1438 if (fdatap->saved_vr >= 0)
1439 {
1440 int i;
1441 CORE_ADDR vr_addr = frame_addr + fdatap->vr_offset;
1442 for (i = fdatap->saved_vr; i < 32; i++)
1443 {
1444 fi->saved_regs[tdep->ppc_vr0_regnum + i] = vr_addr;
1445 vr_addr += REGISTER_RAW_SIZE (tdep->ppc_vr0_regnum);
1446 }
1447 }
1448 }
1449
1450 /* If != 0, fdatap->cr_offset is the offset from the frame that holds
1451 the CR. */
1452 if (fdatap->cr_offset != 0)
1453 fi->saved_regs[tdep->ppc_cr_regnum] = frame_addr + fdatap->cr_offset;
1454
1455 /* If != 0, fdatap->lr_offset is the offset from the frame that holds
1456 the LR. */
1457 if (fdatap->lr_offset != 0)
1458 fi->saved_regs[tdep->ppc_lr_regnum] = frame_addr + fdatap->lr_offset;
1459
1460 /* If != 0, fdatap->vrsave_offset is the offset from the frame that holds
1461 the VRSAVE. */
1462 if (fdatap->vrsave_offset != 0)
1463 fi->saved_regs[tdep->ppc_vrsave_regnum] = frame_addr + fdatap->vrsave_offset;
1464 }
1465
1466 /* Return the address of a frame. This is the inital %sp value when the frame
1467 was first allocated. For functions calling alloca(), it might be saved in
1468 an alloca register. */
1469
1470 static CORE_ADDR
1471 frame_initial_stack_address (struct frame_info *fi)
1472 {
1473 CORE_ADDR tmpaddr;
1474 struct rs6000_framedata fdata;
1475 struct frame_info *callee_fi;
1476
1477 /* if the initial stack pointer (frame address) of this frame is known,
1478 just return it. */
1479
1480 if (fi->extra_info->initial_sp)
1481 return fi->extra_info->initial_sp;
1482
1483 /* find out if this function is using an alloca register.. */
1484
1485 (void) skip_prologue (get_pc_function_start (fi->pc), fi->pc, &fdata);
1486
1487 /* if saved registers of this frame are not known yet, read and cache them. */
1488
1489 if (!fi->saved_regs)
1490 frame_get_saved_regs (fi, &fdata);
1491
1492 /* If no alloca register used, then fi->frame is the value of the %sp for
1493 this frame, and it is good enough. */
1494
1495 if (fdata.alloca_reg < 0)
1496 {
1497 fi->extra_info->initial_sp = fi->frame;
1498 return fi->extra_info->initial_sp;
1499 }
1500
1501 /* There is an alloca register, use its value, in the current frame,
1502 as the initial stack pointer. */
1503 {
1504 char *tmpbuf = alloca (MAX_REGISTER_RAW_SIZE);
1505 if (frame_register_read (fi, fdata.alloca_reg, tmpbuf))
1506 {
1507 fi->extra_info->initial_sp
1508 = extract_unsigned_integer (tmpbuf,
1509 REGISTER_RAW_SIZE (fdata.alloca_reg));
1510 }
1511 else
1512 /* NOTE: cagney/2002-04-17: At present the only time
1513 frame_register_read will fail is when the register isn't
1514 available. If that does happen, use the frame. */
1515 fi->extra_info->initial_sp = fi->frame;
1516 }
1517 return fi->extra_info->initial_sp;
1518 }
1519
1520 /* Describe the pointer in each stack frame to the previous stack frame
1521 (its caller). */
1522
1523 /* FRAME_CHAIN takes a frame's nominal address
1524 and produces the frame's chain-pointer. */
1525
1526 /* In the case of the RS/6000, the frame's nominal address
1527 is the address of a 4-byte word containing the calling frame's address. */
1528
1529 CORE_ADDR
1530 rs6000_frame_chain (struct frame_info *thisframe)
1531 {
1532 CORE_ADDR fp, fpp, lr;
1533 int wordsize = gdbarch_tdep (current_gdbarch)->wordsize;
1534
1535 if (PC_IN_CALL_DUMMY (thisframe->pc, thisframe->frame, thisframe->frame))
1536 return thisframe->frame; /* dummy frame same as caller's frame */
1537
1538 if (inside_entry_file (thisframe->pc) ||
1539 thisframe->pc == entry_point_address ())
1540 return 0;
1541
1542 if (thisframe->signal_handler_caller)
1543 fp = read_memory_addr (thisframe->frame + SIG_FRAME_FP_OFFSET,
1544 wordsize);
1545 else if (thisframe->next != NULL
1546 && thisframe->next->signal_handler_caller
1547 && FRAMELESS_FUNCTION_INVOCATION (thisframe))
1548 /* A frameless function interrupted by a signal did not change the
1549 frame pointer. */
1550 fp = FRAME_FP (thisframe);
1551 else
1552 fp = read_memory_addr ((thisframe)->frame, wordsize);
1553
1554 lr = read_register (gdbarch_tdep (current_gdbarch)->ppc_lr_regnum);
1555 if (lr == entry_point_address ())
1556 if (fp != 0 && (fpp = read_memory_addr (fp, wordsize)) != 0)
1557 if (PC_IN_CALL_DUMMY (lr, fpp, fpp))
1558 return fpp;
1559
1560 return fp;
1561 }
1562
1563 /* Return the size of register REG when words are WORDSIZE bytes long. If REG
1564 isn't available with that word size, return 0. */
1565
1566 static int
1567 regsize (const struct reg *reg, int wordsize)
1568 {
1569 return wordsize == 8 ? reg->sz64 : reg->sz32;
1570 }
1571
1572 /* Return the name of register number N, or null if no such register exists
1573 in the current architecture. */
1574
1575 static const char *
1576 rs6000_register_name (int n)
1577 {
1578 struct gdbarch_tdep *tdep = gdbarch_tdep (current_gdbarch);
1579 const struct reg *reg = tdep->regs + n;
1580
1581 if (!regsize (reg, tdep->wordsize))
1582 return NULL;
1583 return reg->name;
1584 }
1585
1586 /* Index within `registers' of the first byte of the space for
1587 register N. */
1588
1589 static int
1590 rs6000_register_byte (int n)
1591 {
1592 return gdbarch_tdep (current_gdbarch)->regoff[n];
1593 }
1594
1595 /* Return the number of bytes of storage in the actual machine representation
1596 for register N if that register is available, else return 0. */
1597
1598 static int
1599 rs6000_register_raw_size (int n)
1600 {
1601 struct gdbarch_tdep *tdep = gdbarch_tdep (current_gdbarch);
1602 const struct reg *reg = tdep->regs + n;
1603 return regsize (reg, tdep->wordsize);
1604 }
1605
1606 /* Return the GDB type object for the "standard" data type
1607 of data in register N. */
1608
1609 static struct type *
1610 rs6000_register_virtual_type (int n)
1611 {
1612 struct gdbarch_tdep *tdep = gdbarch_tdep (current_gdbarch);
1613 const struct reg *reg = tdep->regs + n;
1614
1615 if (reg->fpr)
1616 return builtin_type_double;
1617 else
1618 {
1619 int size = regsize (reg, tdep->wordsize);
1620 switch (size)
1621 {
1622 case 8:
1623 return builtin_type_int64;
1624 break;
1625 case 16:
1626 return builtin_type_vec128;
1627 break;
1628 default:
1629 return builtin_type_int32;
1630 break;
1631 }
1632 }
1633 }
1634
1635 /* For the PowerPC, it appears that the debug info marks float parameters as
1636 floats regardless of whether the function is prototyped, but the actual
1637 values are always passed in as doubles. Tell gdb to always assume that
1638 floats are passed as doubles and then converted in the callee. */
1639
1640 static int
1641 rs6000_coerce_float_to_double (struct type *formal, struct type *actual)
1642 {
1643 return 1;
1644 }
1645
1646 /* Return whether register N requires conversion when moving from raw format
1647 to virtual format.
1648
1649 The register format for RS/6000 floating point registers is always
1650 double, we need a conversion if the memory format is float. */
1651
1652 static int
1653 rs6000_register_convertible (int n)
1654 {
1655 const struct reg *reg = gdbarch_tdep (current_gdbarch)->regs + n;
1656 return reg->fpr;
1657 }
1658
1659 /* Convert data from raw format for register N in buffer FROM
1660 to virtual format with type TYPE in buffer TO. */
1661
1662 static void
1663 rs6000_register_convert_to_virtual (int n, struct type *type,
1664 char *from, char *to)
1665 {
1666 if (TYPE_LENGTH (type) != REGISTER_RAW_SIZE (n))
1667 {
1668 double val = extract_floating (from, REGISTER_RAW_SIZE (n));
1669 store_floating (to, TYPE_LENGTH (type), val);
1670 }
1671 else
1672 memcpy (to, from, REGISTER_RAW_SIZE (n));
1673 }
1674
1675 /* Convert data from virtual format with type TYPE in buffer FROM
1676 to raw format for register N in buffer TO. */
1677
1678 static void
1679 rs6000_register_convert_to_raw (struct type *type, int n,
1680 char *from, char *to)
1681 {
1682 if (TYPE_LENGTH (type) != REGISTER_RAW_SIZE (n))
1683 {
1684 double val = extract_floating (from, TYPE_LENGTH (type));
1685 store_floating (to, REGISTER_RAW_SIZE (n), val);
1686 }
1687 else
1688 memcpy (to, from, REGISTER_RAW_SIZE (n));
1689 }
1690
1691 /* Convert a dbx stab register number (from `r' declaration) to a gdb
1692 REGNUM. */
1693 static int
1694 rs6000_stab_reg_to_regnum (int num)
1695 {
1696 int regnum;
1697 switch (num)
1698 {
1699 case 64:
1700 regnum = gdbarch_tdep (current_gdbarch)->ppc_mq_regnum;
1701 break;
1702 case 65:
1703 regnum = gdbarch_tdep (current_gdbarch)->ppc_lr_regnum;
1704 break;
1705 case 66:
1706 regnum = gdbarch_tdep (current_gdbarch)->ppc_ctr_regnum;
1707 break;
1708 case 76:
1709 regnum = gdbarch_tdep (current_gdbarch)->ppc_xer_regnum;
1710 break;
1711 default:
1712 regnum = num;
1713 break;
1714 }
1715 return regnum;
1716 }
1717
1718 /* Store the address of the place in which to copy the structure the
1719 subroutine will return. This is called from call_function.
1720
1721 In RS/6000, struct return addresses are passed as an extra parameter in r3.
1722 In function return, callee is not responsible of returning this address
1723 back. Since gdb needs to find it, we will store in a designated variable
1724 `rs6000_struct_return_address'. */
1725
1726 static void
1727 rs6000_store_struct_return (CORE_ADDR addr, CORE_ADDR sp)
1728 {
1729 write_register (3, addr);
1730 rs6000_struct_return_address = addr;
1731 }
1732
1733 /* Write into appropriate registers a function return value
1734 of type TYPE, given in virtual format. */
1735
1736 static void
1737 rs6000_store_return_value (struct type *type, char *valbuf)
1738 {
1739 struct gdbarch_tdep *tdep = gdbarch_tdep (current_gdbarch);
1740
1741 if (TYPE_CODE (type) == TYPE_CODE_FLT)
1742
1743 /* Floating point values are returned starting from FPR1 and up.
1744 Say a double_double_double type could be returned in
1745 FPR1/FPR2/FPR3 triple. */
1746
1747 write_register_bytes (REGISTER_BYTE (FP0_REGNUM + 1), valbuf,
1748 TYPE_LENGTH (type));
1749 else if (TYPE_CODE (type) == TYPE_CODE_ARRAY)
1750 {
1751 if (TYPE_LENGTH (type) == 16
1752 && TYPE_VECTOR (type))
1753 write_register_bytes (REGISTER_BYTE (tdep->ppc_vr0_regnum + 2),
1754 valbuf, TYPE_LENGTH (type));
1755 }
1756 else
1757 /* Everything else is returned in GPR3 and up. */
1758 write_register_bytes (REGISTER_BYTE (gdbarch_tdep (current_gdbarch)->ppc_gp0_regnum + 3),
1759 valbuf, TYPE_LENGTH (type));
1760 }
1761
1762 /* Extract from an array REGBUF containing the (raw) register state
1763 the address in which a function should return its structure value,
1764 as a CORE_ADDR (or an expression that can be used as one). */
1765
1766 static CORE_ADDR
1767 rs6000_extract_struct_value_address (char *regbuf)
1768 {
1769 return rs6000_struct_return_address;
1770 }
1771
1772 /* Return whether PC is in a dummy function call.
1773
1774 FIXME: This just checks for the end of the stack, which is broken
1775 for things like stepping through gcc nested function stubs. */
1776
1777 static int
1778 rs6000_pc_in_call_dummy (CORE_ADDR pc, CORE_ADDR sp, CORE_ADDR fp)
1779 {
1780 return sp < pc && pc < fp;
1781 }
1782
1783 /* Hook called when a new child process is started. */
1784
1785 void
1786 rs6000_create_inferior (int pid)
1787 {
1788 if (rs6000_set_host_arch_hook)
1789 rs6000_set_host_arch_hook (pid);
1790 }
1791 \f
1792 /* Support for CONVERT_FROM_FUNC_PTR_ADDR(ADDR).
1793
1794 Usually a function pointer's representation is simply the address
1795 of the function. On the RS/6000 however, a function pointer is
1796 represented by a pointer to a TOC entry. This TOC entry contains
1797 three words, the first word is the address of the function, the
1798 second word is the TOC pointer (r2), and the third word is the
1799 static chain value. Throughout GDB it is currently assumed that a
1800 function pointer contains the address of the function, which is not
1801 easy to fix. In addition, the conversion of a function address to
1802 a function pointer would require allocation of a TOC entry in the
1803 inferior's memory space, with all its drawbacks. To be able to
1804 call C++ virtual methods in the inferior (which are called via
1805 function pointers), find_function_addr uses this function to get the
1806 function address from a function pointer. */
1807
1808 /* Return real function address if ADDR (a function pointer) is in the data
1809 space and is therefore a special function pointer. */
1810
1811 CORE_ADDR
1812 rs6000_convert_from_func_ptr_addr (CORE_ADDR addr)
1813 {
1814 struct obj_section *s;
1815
1816 s = find_pc_section (addr);
1817 if (s && s->the_bfd_section->flags & SEC_CODE)
1818 return addr;
1819
1820 /* ADDR is in the data space, so it's a special function pointer. */
1821 return read_memory_addr (addr, gdbarch_tdep (current_gdbarch)->wordsize);
1822 }
1823 \f
1824
1825 /* Handling the various POWER/PowerPC variants. */
1826
1827
1828 /* The arrays here called registers_MUMBLE hold information about available
1829 registers.
1830
1831 For each family of PPC variants, I've tried to isolate out the
1832 common registers and put them up front, so that as long as you get
1833 the general family right, GDB will correctly identify the registers
1834 common to that family. The common register sets are:
1835
1836 For the 60x family: hid0 hid1 iabr dabr pir
1837
1838 For the 505 and 860 family: eie eid nri
1839
1840 For the 403 and 403GC: icdbdr esr dear evpr cdbcr tsr tcr pit tbhi
1841 tblo srr2 srr3 dbsr dbcr iac1 iac2 dac1 dac2 dccr iccr pbl1
1842 pbu1 pbl2 pbu2
1843
1844 Most of these register groups aren't anything formal. I arrived at
1845 them by looking at the registers that occurred in more than one
1846 processor.
1847
1848 Note: kevinb/2002-04-30: Support for the fpscr register was added
1849 during April, 2002. Slot 70 is being used for PowerPC and slot 71
1850 for Power. For PowerPC, slot 70 was unused and was already in the
1851 PPC_UISA_SPRS which is ideally where fpscr should go. For Power,
1852 slot 70 was being used for "mq", so the next available slot (71)
1853 was chosen. It would have been nice to be able to make the
1854 register numbers the same across processor cores, but this wasn't
1855 possible without either 1) renumbering some registers for some
1856 processors or 2) assigning fpscr to a really high slot that's
1857 larger than any current register number. Doing (1) is bad because
1858 existing stubs would break. Doing (2) is undesirable because it
1859 would introduce a really large gap between fpscr and the rest of
1860 the registers for most processors. */
1861
1862 /* Convenience macros for populating register arrays. */
1863
1864 /* Within another macro, convert S to a string. */
1865
1866 #define STR(s) #s
1867
1868 /* Return a struct reg defining register NAME that's 32 bits on 32-bit systems
1869 and 64 bits on 64-bit systems. */
1870 #define R(name) { STR(name), 4, 8, 0, 0 }
1871
1872 /* Return a struct reg defining register NAME that's 32 bits on all
1873 systems. */
1874 #define R4(name) { STR(name), 4, 4, 0, 0 }
1875
1876 /* Return a struct reg defining register NAME that's 64 bits on all
1877 systems. */
1878 #define R8(name) { STR(name), 8, 8, 0, 0 }
1879
1880 /* Return a struct reg defining register NAME that's 128 bits on all
1881 systems. */
1882 #define R16(name) { STR(name), 16, 16, 0, 0 }
1883
1884 /* Return a struct reg defining floating-point register NAME. */
1885 #define F(name) { STR(name), 8, 8, 1, 0 }
1886
1887 /* Return a struct reg defining a pseudo register NAME. */
1888 #define P(name) { STR(name), 4, 8, 0, 1}
1889
1890 /* Return a struct reg defining register NAME that's 32 bits on 32-bit
1891 systems and that doesn't exist on 64-bit systems. */
1892 #define R32(name) { STR(name), 4, 0, 0, 0 }
1893
1894 /* Return a struct reg defining register NAME that's 64 bits on 64-bit
1895 systems and that doesn't exist on 32-bit systems. */
1896 #define R64(name) { STR(name), 0, 8, 0, 0 }
1897
1898 /* Return a struct reg placeholder for a register that doesn't exist. */
1899 #define R0 { 0, 0, 0, 0, 0 }
1900
1901 /* UISA registers common across all architectures, including POWER. */
1902
1903 #define COMMON_UISA_REGS \
1904 /* 0 */ R(r0), R(r1), R(r2), R(r3), R(r4), R(r5), R(r6), R(r7), \
1905 /* 8 */ R(r8), R(r9), R(r10),R(r11),R(r12),R(r13),R(r14),R(r15), \
1906 /* 16 */ R(r16),R(r17),R(r18),R(r19),R(r20),R(r21),R(r22),R(r23), \
1907 /* 24 */ R(r24),R(r25),R(r26),R(r27),R(r28),R(r29),R(r30),R(r31), \
1908 /* 32 */ F(f0), F(f1), F(f2), F(f3), F(f4), F(f5), F(f6), F(f7), \
1909 /* 40 */ F(f8), F(f9), F(f10),F(f11),F(f12),F(f13),F(f14),F(f15), \
1910 /* 48 */ F(f16),F(f17),F(f18),F(f19),F(f20),F(f21),F(f22),F(f23), \
1911 /* 56 */ F(f24),F(f25),F(f26),F(f27),F(f28),F(f29),F(f30),F(f31), \
1912 /* 64 */ R(pc), R(ps)
1913
1914 #define COMMON_UISA_NOFP_REGS \
1915 /* 0 */ R(r0), R(r1), R(r2), R(r3), R(r4), R(r5), R(r6), R(r7), \
1916 /* 8 */ R(r8), R(r9), R(r10),R(r11),R(r12),R(r13),R(r14),R(r15), \
1917 /* 16 */ R(r16),R(r17),R(r18),R(r19),R(r20),R(r21),R(r22),R(r23), \
1918 /* 24 */ R(r24),R(r25),R(r26),R(r27),R(r28),R(r29),R(r30),R(r31), \
1919 /* 32 */ R0, R0, R0, R0, R0, R0, R0, R0, \
1920 /* 40 */ R0, R0, R0, R0, R0, R0, R0, R0, \
1921 /* 48 */ R0, R0, R0, R0, R0, R0, R0, R0, \
1922 /* 56 */ R0, R0, R0, R0, R0, R0, R0, R0, \
1923 /* 64 */ R(pc), R(ps)
1924
1925 /* UISA-level SPRs for PowerPC. */
1926 #define PPC_UISA_SPRS \
1927 /* 66 */ R4(cr), R(lr), R(ctr), R4(xer), R4(fpscr)
1928
1929 /* Segment registers, for PowerPC. */
1930 #define PPC_SEGMENT_REGS \
1931 /* 71 */ R32(sr0), R32(sr1), R32(sr2), R32(sr3), \
1932 /* 75 */ R32(sr4), R32(sr5), R32(sr6), R32(sr7), \
1933 /* 79 */ R32(sr8), R32(sr9), R32(sr10), R32(sr11), \
1934 /* 83 */ R32(sr12), R32(sr13), R32(sr14), R32(sr15)
1935
1936 /* OEA SPRs for PowerPC. */
1937 #define PPC_OEA_SPRS \
1938 /* 87 */ R4(pvr), \
1939 /* 88 */ R(ibat0u), R(ibat0l), R(ibat1u), R(ibat1l), \
1940 /* 92 */ R(ibat2u), R(ibat2l), R(ibat3u), R(ibat3l), \
1941 /* 96 */ R(dbat0u), R(dbat0l), R(dbat1u), R(dbat1l), \
1942 /* 100 */ R(dbat2u), R(dbat2l), R(dbat3u), R(dbat3l), \
1943 /* 104 */ R(sdr1), R64(asr), R(dar), R4(dsisr), \
1944 /* 108 */ R(sprg0), R(sprg1), R(sprg2), R(sprg3), \
1945 /* 112 */ R(srr0), R(srr1), R(tbl), R(tbu), \
1946 /* 116 */ R4(dec), R(dabr), R4(ear)
1947
1948 /* AltiVec registers */
1949 #define PPC_ALTIVEC_REGS \
1950 /*119*/R16(vr0), R16(vr1), R16(vr2), R16(vr3), R16(vr4), R16(vr5), R16(vr6), R16(vr7), \
1951 /*127*/R16(vr8), R16(vr9), R16(vr10),R16(vr11),R16(vr12),R16(vr13),R16(vr14),R16(vr15), \
1952 /*135*/R16(vr16),R16(vr17),R16(vr18),R16(vr19),R16(vr20),R16(vr21),R16(vr22),R16(vr23), \
1953 /*143*/R16(vr24),R16(vr25),R16(vr26),R16(vr27),R16(vr28),R16(vr29),R16(vr30),R16(vr31), \
1954 /*151*/R4(vscr), R4(vrsave)
1955
1956 /* IBM POWER (pre-PowerPC) architecture, user-level view. We only cover
1957 user-level SPR's. */
1958 static const struct reg registers_power[] =
1959 {
1960 COMMON_UISA_REGS,
1961 /* 66 */ R4(cnd), R(lr), R(cnt), R4(xer), R4(mq),
1962 /* 71 */ R4(fpscr)
1963 };
1964
1965 /* PowerPC UISA - a PPC processor as viewed by user-level code. A UISA-only
1966 view of the PowerPC. */
1967 static const struct reg registers_powerpc[] =
1968 {
1969 COMMON_UISA_REGS,
1970 PPC_UISA_SPRS,
1971 PPC_ALTIVEC_REGS
1972 };
1973
1974 /* PowerPC UISA - a PPC processor as viewed by user-level
1975 code, but without floating point registers. */
1976 static const struct reg registers_powerpc_nofp[] =
1977 {
1978 COMMON_UISA_NOFP_REGS,
1979 PPC_UISA_SPRS
1980 };
1981
1982 /* IBM PowerPC 403. */
1983 static const struct reg registers_403[] =
1984 {
1985 COMMON_UISA_REGS,
1986 PPC_UISA_SPRS,
1987 PPC_SEGMENT_REGS,
1988 PPC_OEA_SPRS,
1989 /* 119 */ R(icdbdr), R(esr), R(dear), R(evpr),
1990 /* 123 */ R(cdbcr), R(tsr), R(tcr), R(pit),
1991 /* 127 */ R(tbhi), R(tblo), R(srr2), R(srr3),
1992 /* 131 */ R(dbsr), R(dbcr), R(iac1), R(iac2),
1993 /* 135 */ R(dac1), R(dac2), R(dccr), R(iccr),
1994 /* 139 */ R(pbl1), R(pbu1), R(pbl2), R(pbu2)
1995 };
1996
1997 /* IBM PowerPC 403GC. */
1998 static const struct reg registers_403GC[] =
1999 {
2000 COMMON_UISA_REGS,
2001 PPC_UISA_SPRS,
2002 PPC_SEGMENT_REGS,
2003 PPC_OEA_SPRS,
2004 /* 119 */ R(icdbdr), R(esr), R(dear), R(evpr),
2005 /* 123 */ R(cdbcr), R(tsr), R(tcr), R(pit),
2006 /* 127 */ R(tbhi), R(tblo), R(srr2), R(srr3),
2007 /* 131 */ R(dbsr), R(dbcr), R(iac1), R(iac2),
2008 /* 135 */ R(dac1), R(dac2), R(dccr), R(iccr),
2009 /* 139 */ R(pbl1), R(pbu1), R(pbl2), R(pbu2),
2010 /* 143 */ R(zpr), R(pid), R(sgr), R(dcwr),
2011 /* 147 */ R(tbhu), R(tblu)
2012 };
2013
2014 /* Motorola PowerPC 505. */
2015 static const struct reg registers_505[] =
2016 {
2017 COMMON_UISA_REGS,
2018 PPC_UISA_SPRS,
2019 PPC_SEGMENT_REGS,
2020 PPC_OEA_SPRS,
2021 /* 119 */ R(eie), R(eid), R(nri)
2022 };
2023
2024 /* Motorola PowerPC 860 or 850. */
2025 static const struct reg registers_860[] =
2026 {
2027 COMMON_UISA_REGS,
2028 PPC_UISA_SPRS,
2029 PPC_SEGMENT_REGS,
2030 PPC_OEA_SPRS,
2031 /* 119 */ R(eie), R(eid), R(nri), R(cmpa),
2032 /* 123 */ R(cmpb), R(cmpc), R(cmpd), R(icr),
2033 /* 127 */ R(der), R(counta), R(countb), R(cmpe),
2034 /* 131 */ R(cmpf), R(cmpg), R(cmph), R(lctrl1),
2035 /* 135 */ R(lctrl2), R(ictrl), R(bar), R(ic_cst),
2036 /* 139 */ R(ic_adr), R(ic_dat), R(dc_cst), R(dc_adr),
2037 /* 143 */ R(dc_dat), R(dpdr), R(dpir), R(immr),
2038 /* 147 */ R(mi_ctr), R(mi_ap), R(mi_epn), R(mi_twc),
2039 /* 151 */ R(mi_rpn), R(md_ctr), R(m_casid), R(md_ap),
2040 /* 155 */ R(md_epn), R(md_twb), R(md_twc), R(md_rpn),
2041 /* 159 */ R(m_tw), R(mi_dbcam), R(mi_dbram0), R(mi_dbram1),
2042 /* 163 */ R(md_dbcam), R(md_dbram0), R(md_dbram1)
2043 };
2044
2045 /* Motorola PowerPC 601. Note that the 601 has different register numbers
2046 for reading and writing RTCU and RTCL. However, how one reads and writes a
2047 register is the stub's problem. */
2048 static const struct reg registers_601[] =
2049 {
2050 COMMON_UISA_REGS,
2051 PPC_UISA_SPRS,
2052 PPC_SEGMENT_REGS,
2053 PPC_OEA_SPRS,
2054 /* 119 */ R(hid0), R(hid1), R(iabr), R(dabr),
2055 /* 123 */ R(pir), R(mq), R(rtcu), R(rtcl)
2056 };
2057
2058 /* Motorola PowerPC 602. */
2059 static const struct reg registers_602[] =
2060 {
2061 COMMON_UISA_REGS,
2062 PPC_UISA_SPRS,
2063 PPC_SEGMENT_REGS,
2064 PPC_OEA_SPRS,
2065 /* 119 */ R(hid0), R(hid1), R(iabr), R0,
2066 /* 123 */ R0, R(tcr), R(ibr), R(esassr),
2067 /* 127 */ R(sebr), R(ser), R(sp), R(lt)
2068 };
2069
2070 /* Motorola/IBM PowerPC 603 or 603e. */
2071 static const struct reg registers_603[] =
2072 {
2073 COMMON_UISA_REGS,
2074 PPC_UISA_SPRS,
2075 PPC_SEGMENT_REGS,
2076 PPC_OEA_SPRS,
2077 /* 119 */ R(hid0), R(hid1), R(iabr), R0,
2078 /* 123 */ R0, R(dmiss), R(dcmp), R(hash1),
2079 /* 127 */ R(hash2), R(imiss), R(icmp), R(rpa)
2080 };
2081
2082 /* Motorola PowerPC 604 or 604e. */
2083 static const struct reg registers_604[] =
2084 {
2085 COMMON_UISA_REGS,
2086 PPC_UISA_SPRS,
2087 PPC_SEGMENT_REGS,
2088 PPC_OEA_SPRS,
2089 /* 119 */ R(hid0), R(hid1), R(iabr), R(dabr),
2090 /* 123 */ R(pir), R(mmcr0), R(pmc1), R(pmc2),
2091 /* 127 */ R(sia), R(sda)
2092 };
2093
2094 /* Motorola/IBM PowerPC 750 or 740. */
2095 static const struct reg registers_750[] =
2096 {
2097 COMMON_UISA_REGS,
2098 PPC_UISA_SPRS,
2099 PPC_SEGMENT_REGS,
2100 PPC_OEA_SPRS,
2101 /* 119 */ R(hid0), R(hid1), R(iabr), R(dabr),
2102 /* 123 */ R0, R(ummcr0), R(upmc1), R(upmc2),
2103 /* 127 */ R(usia), R(ummcr1), R(upmc3), R(upmc4),
2104 /* 131 */ R(mmcr0), R(pmc1), R(pmc2), R(sia),
2105 /* 135 */ R(mmcr1), R(pmc3), R(pmc4), R(l2cr),
2106 /* 139 */ R(ictc), R(thrm1), R(thrm2), R(thrm3)
2107 };
2108
2109
2110 /* Motorola PowerPC 7400. */
2111 static const struct reg registers_7400[] =
2112 {
2113 /* gpr0-gpr31, fpr0-fpr31 */
2114 COMMON_UISA_REGS,
2115 /* ctr, xre, lr, cr */
2116 PPC_UISA_SPRS,
2117 /* sr0-sr15 */
2118 PPC_SEGMENT_REGS,
2119 PPC_OEA_SPRS,
2120 /* vr0-vr31, vrsave, vscr */
2121 PPC_ALTIVEC_REGS
2122 /* FIXME? Add more registers? */
2123 };
2124
2125 /* Information about a particular processor variant. */
2126
2127 struct variant
2128 {
2129 /* Name of this variant. */
2130 char *name;
2131
2132 /* English description of the variant. */
2133 char *description;
2134
2135 /* bfd_arch_info.arch corresponding to variant. */
2136 enum bfd_architecture arch;
2137
2138 /* bfd_arch_info.mach corresponding to variant. */
2139 unsigned long mach;
2140
2141 /* Number of real registers. */
2142 int nregs;
2143
2144 /* Number of pseudo registers. */
2145 int npregs;
2146
2147 /* Number of total registers (the sum of nregs and npregs). */
2148 int num_tot_regs;
2149
2150 /* Table of register names; registers[R] is the name of the register
2151 number R. */
2152 const struct reg *regs;
2153 };
2154
2155 #define tot_num_registers(list) (sizeof (list) / sizeof((list)[0]))
2156
2157 static int
2158 num_registers (const struct reg *reg_list, int num_tot_regs)
2159 {
2160 int i;
2161 int nregs = 0;
2162
2163 for (i = 0; i < num_tot_regs; i++)
2164 if (!reg_list[i].pseudo)
2165 nregs++;
2166
2167 return nregs;
2168 }
2169
2170 static int
2171 num_pseudo_registers (const struct reg *reg_list, int num_tot_regs)
2172 {
2173 int i;
2174 int npregs = 0;
2175
2176 for (i = 0; i < num_tot_regs; i++)
2177 if (reg_list[i].pseudo)
2178 npregs ++;
2179
2180 return npregs;
2181 }
2182
2183 /* Information in this table comes from the following web sites:
2184 IBM: http://www.chips.ibm.com:80/products/embedded/
2185 Motorola: http://www.mot.com/SPS/PowerPC/
2186
2187 I'm sure I've got some of the variant descriptions not quite right.
2188 Please report any inaccuracies you find to GDB's maintainer.
2189
2190 If you add entries to this table, please be sure to allow the new
2191 value as an argument to the --with-cpu flag, in configure.in. */
2192
2193 static struct variant variants[] =
2194 {
2195
2196 {"powerpc", "PowerPC user-level", bfd_arch_powerpc,
2197 bfd_mach_ppc, -1, -1, tot_num_registers (registers_powerpc),
2198 registers_powerpc},
2199 {"power", "POWER user-level", bfd_arch_rs6000,
2200 bfd_mach_rs6k, -1, -1, tot_num_registers (registers_power),
2201 registers_power},
2202 {"403", "IBM PowerPC 403", bfd_arch_powerpc,
2203 bfd_mach_ppc_403, -1, -1, tot_num_registers (registers_403),
2204 registers_403},
2205 {"601", "Motorola PowerPC 601", bfd_arch_powerpc,
2206 bfd_mach_ppc_601, -1, -1, tot_num_registers (registers_601),
2207 registers_601},
2208 {"602", "Motorola PowerPC 602", bfd_arch_powerpc,
2209 bfd_mach_ppc_602, -1, -1, tot_num_registers (registers_602),
2210 registers_602},
2211 {"603", "Motorola/IBM PowerPC 603 or 603e", bfd_arch_powerpc,
2212 bfd_mach_ppc_603, -1, -1, tot_num_registers (registers_603),
2213 registers_603},
2214 {"604", "Motorola PowerPC 604 or 604e", bfd_arch_powerpc,
2215 604, -1, -1, tot_num_registers (registers_604),
2216 registers_604},
2217 {"403GC", "IBM PowerPC 403GC", bfd_arch_powerpc,
2218 bfd_mach_ppc_403gc, -1, -1, tot_num_registers (registers_403GC),
2219 registers_403GC},
2220 {"505", "Motorola PowerPC 505", bfd_arch_powerpc,
2221 bfd_mach_ppc_505, -1, -1, tot_num_registers (registers_505),
2222 registers_505},
2223 {"860", "Motorola PowerPC 860 or 850", bfd_arch_powerpc,
2224 bfd_mach_ppc_860, -1, -1, tot_num_registers (registers_860),
2225 registers_860},
2226 {"750", "Motorola/IBM PowerPC 750 or 740", bfd_arch_powerpc,
2227 bfd_mach_ppc_750, -1, -1, tot_num_registers (registers_750),
2228 registers_750},
2229 {"7400", "Motorola/IBM PowerPC 7400 (G4)", bfd_arch_powerpc,
2230 bfd_mach_ppc_7400, -1, -1, tot_num_registers (registers_7400),
2231 registers_7400},
2232
2233 /* 64-bit */
2234 {"powerpc64", "PowerPC 64-bit user-level", bfd_arch_powerpc,
2235 bfd_mach_ppc64, -1, -1, tot_num_registers (registers_powerpc),
2236 registers_powerpc},
2237 {"620", "Motorola PowerPC 620", bfd_arch_powerpc,
2238 bfd_mach_ppc_620, -1, -1, tot_num_registers (registers_powerpc),
2239 registers_powerpc},
2240 {"630", "Motorola PowerPC 630", bfd_arch_powerpc,
2241 bfd_mach_ppc_630, -1, -1, tot_num_registers (registers_powerpc),
2242 registers_powerpc},
2243 {"a35", "PowerPC A35", bfd_arch_powerpc,
2244 bfd_mach_ppc_a35, -1, -1, tot_num_registers (registers_powerpc),
2245 registers_powerpc},
2246 {"rs64ii", "PowerPC rs64ii", bfd_arch_powerpc,
2247 bfd_mach_ppc_rs64ii, -1, -1, tot_num_registers (registers_powerpc),
2248 registers_powerpc},
2249 {"rs64iii", "PowerPC rs64iii", bfd_arch_powerpc,
2250 bfd_mach_ppc_rs64iii, -1, -1, tot_num_registers (registers_powerpc),
2251 registers_powerpc},
2252
2253 /* FIXME: I haven't checked the register sets of the following. */
2254 {"rs1", "IBM POWER RS1", bfd_arch_rs6000,
2255 bfd_mach_rs6k_rs1, -1, -1, tot_num_registers (registers_power),
2256 registers_power},
2257 {"rsc", "IBM POWER RSC", bfd_arch_rs6000,
2258 bfd_mach_rs6k_rsc, -1, -1, tot_num_registers (registers_power),
2259 registers_power},
2260 {"rs2", "IBM POWER RS2", bfd_arch_rs6000,
2261 bfd_mach_rs6k_rs2, -1, -1, tot_num_registers (registers_power),
2262 registers_power},
2263
2264 {0, 0, 0, 0, 0, 0, 0, 0}
2265 };
2266
2267 /* Initialize the number of registers and pseudo registers in each variant. */
2268
2269 static void
2270 init_variants (void)
2271 {
2272 struct variant *v;
2273
2274 for (v = variants; v->name; v++)
2275 {
2276 if (v->nregs == -1)
2277 v->nregs = num_registers (v->regs, v->num_tot_regs);
2278 if (v->npregs == -1)
2279 v->npregs = num_pseudo_registers (v->regs, v->num_tot_regs);
2280 }
2281 }
2282
2283 /* Return the variant corresponding to architecture ARCH and machine number
2284 MACH. If no such variant exists, return null. */
2285
2286 static const struct variant *
2287 find_variant_by_arch (enum bfd_architecture arch, unsigned long mach)
2288 {
2289 const struct variant *v;
2290
2291 for (v = variants; v->name; v++)
2292 if (arch == v->arch && mach == v->mach)
2293 return v;
2294
2295 return NULL;
2296 }
2297
2298 static int
2299 gdb_print_insn_powerpc (bfd_vma memaddr, disassemble_info *info)
2300 {
2301 if (TARGET_BYTE_ORDER == BFD_ENDIAN_BIG)
2302 return print_insn_big_powerpc (memaddr, info);
2303 else
2304 return print_insn_little_powerpc (memaddr, info);
2305 }
2306 \f
2307 /* Initialize the current architecture based on INFO. If possible, re-use an
2308 architecture from ARCHES, which is a list of architectures already created
2309 during this debugging session.
2310
2311 Called e.g. at program startup, when reading a core file, and when reading
2312 a binary file. */
2313
2314 static struct gdbarch *
2315 rs6000_gdbarch_init (struct gdbarch_info info, struct gdbarch_list *arches)
2316 {
2317 struct gdbarch *gdbarch;
2318 struct gdbarch_tdep *tdep;
2319 int wordsize, from_xcoff_exec, from_elf_exec, power, i, off;
2320 struct reg *regs;
2321 const struct variant *v;
2322 enum bfd_architecture arch;
2323 unsigned long mach;
2324 bfd abfd;
2325 int sysv_abi;
2326 enum gdb_osabi osabi = GDB_OSABI_UNKNOWN;
2327
2328 from_xcoff_exec = info.abfd && info.abfd->format == bfd_object &&
2329 bfd_get_flavour (info.abfd) == bfd_target_xcoff_flavour;
2330
2331 from_elf_exec = info.abfd && info.abfd->format == bfd_object &&
2332 bfd_get_flavour (info.abfd) == bfd_target_elf_flavour;
2333
2334 sysv_abi = info.abfd && bfd_get_flavour (info.abfd) == bfd_target_elf_flavour;
2335
2336 if (info.abfd)
2337 osabi = gdbarch_lookup_osabi (info.abfd);
2338
2339 /* Check word size. If INFO is from a binary file, infer it from
2340 that, else choose a likely default. */
2341 if (from_xcoff_exec)
2342 {
2343 if (bfd_xcoff_is_xcoff64 (info.abfd))
2344 wordsize = 8;
2345 else
2346 wordsize = 4;
2347 }
2348 else if (from_elf_exec)
2349 {
2350 if (elf_elfheader (info.abfd)->e_ident[EI_CLASS] == ELFCLASS64)
2351 wordsize = 8;
2352 else
2353 wordsize = 4;
2354 }
2355 else
2356 {
2357 if (info.bfd_arch_info != NULL && info.bfd_arch_info->bits_per_word != 0)
2358 wordsize = info.bfd_arch_info->bits_per_word /
2359 info.bfd_arch_info->bits_per_byte;
2360 else
2361 wordsize = 4;
2362 }
2363
2364 /* Find a candidate among extant architectures. */
2365 for (arches = gdbarch_list_lookup_by_info (arches, &info);
2366 arches != NULL;
2367 arches = gdbarch_list_lookup_by_info (arches->next, &info))
2368 {
2369 /* Word size in the various PowerPC bfd_arch_info structs isn't
2370 meaningful, because 64-bit CPUs can run in 32-bit mode. So, perform
2371 separate word size check. */
2372 tdep = gdbarch_tdep (arches->gdbarch);
2373 if (tdep && tdep->wordsize == wordsize && tdep->osabi == osabi)
2374 return arches->gdbarch;
2375 }
2376
2377 /* None found, create a new architecture from INFO, whose bfd_arch_info
2378 validity depends on the source:
2379 - executable useless
2380 - rs6000_host_arch() good
2381 - core file good
2382 - "set arch" trust blindly
2383 - GDB startup useless but harmless */
2384
2385 if (!from_xcoff_exec)
2386 {
2387 arch = info.bfd_arch_info->arch;
2388 mach = info.bfd_arch_info->mach;
2389 }
2390 else
2391 {
2392 arch = bfd_arch_powerpc;
2393 mach = 0;
2394 bfd_default_set_arch_mach (&abfd, arch, mach);
2395 info.bfd_arch_info = bfd_get_arch_info (&abfd);
2396 }
2397 tdep = xmalloc (sizeof (struct gdbarch_tdep));
2398 tdep->wordsize = wordsize;
2399 tdep->osabi = osabi;
2400 gdbarch = gdbarch_alloc (&info, tdep);
2401 power = arch == bfd_arch_rs6000;
2402
2403 /* Initialize the number of real and pseudo registers in each variant. */
2404 init_variants ();
2405
2406 /* Choose variant. */
2407 v = find_variant_by_arch (arch, mach);
2408 if (!v)
2409 return NULL;
2410
2411 tdep->regs = v->regs;
2412
2413 tdep->ppc_gp0_regnum = 0;
2414 tdep->ppc_gplast_regnum = 31;
2415 tdep->ppc_toc_regnum = 2;
2416 tdep->ppc_ps_regnum = 65;
2417 tdep->ppc_cr_regnum = 66;
2418 tdep->ppc_lr_regnum = 67;
2419 tdep->ppc_ctr_regnum = 68;
2420 tdep->ppc_xer_regnum = 69;
2421 if (v->mach == bfd_mach_ppc_601)
2422 tdep->ppc_mq_regnum = 124;
2423 else if (power)
2424 tdep->ppc_mq_regnum = 70;
2425 else
2426 tdep->ppc_mq_regnum = -1;
2427 tdep->ppc_fpscr_regnum = power ? 71 : 70;
2428
2429 if (v->arch == bfd_arch_powerpc)
2430 switch (v->mach)
2431 {
2432 case bfd_mach_ppc:
2433 tdep->ppc_vr0_regnum = 71;
2434 tdep->ppc_vrsave_regnum = 104;
2435 break;
2436 case bfd_mach_ppc_7400:
2437 tdep->ppc_vr0_regnum = 119;
2438 tdep->ppc_vrsave_regnum = 153;
2439 break;
2440 default:
2441 tdep->ppc_vr0_regnum = -1;
2442 tdep->ppc_vrsave_regnum = -1;
2443 break;
2444 }
2445
2446 /* Set lr_frame_offset. */
2447 if (wordsize == 8)
2448 tdep->lr_frame_offset = 16;
2449 else if (sysv_abi)
2450 tdep->lr_frame_offset = 4;
2451 else
2452 tdep->lr_frame_offset = 8;
2453
2454 /* Calculate byte offsets in raw register array. */
2455 tdep->regoff = xmalloc (v->num_tot_regs * sizeof (int));
2456 for (i = off = 0; i < v->num_tot_regs; i++)
2457 {
2458 tdep->regoff[i] = off;
2459 off += regsize (v->regs + i, wordsize);
2460 }
2461
2462 /* Select instruction printer. */
2463 if (arch == power)
2464 set_gdbarch_print_insn (gdbarch, print_insn_rs6000);
2465 else
2466 set_gdbarch_print_insn (gdbarch, gdb_print_insn_powerpc);
2467
2468 set_gdbarch_read_pc (gdbarch, generic_target_read_pc);
2469 set_gdbarch_write_pc (gdbarch, generic_target_write_pc);
2470 set_gdbarch_read_fp (gdbarch, generic_target_read_fp);
2471 set_gdbarch_read_sp (gdbarch, generic_target_read_sp);
2472 set_gdbarch_write_sp (gdbarch, generic_target_write_sp);
2473
2474 set_gdbarch_num_regs (gdbarch, v->nregs);
2475 set_gdbarch_sp_regnum (gdbarch, 1);
2476 set_gdbarch_fp_regnum (gdbarch, 1);
2477 set_gdbarch_pc_regnum (gdbarch, 64);
2478 set_gdbarch_register_name (gdbarch, rs6000_register_name);
2479 set_gdbarch_register_size (gdbarch, wordsize);
2480 set_gdbarch_register_bytes (gdbarch, off);
2481 set_gdbarch_register_byte (gdbarch, rs6000_register_byte);
2482 set_gdbarch_register_raw_size (gdbarch, rs6000_register_raw_size);
2483 set_gdbarch_max_register_raw_size (gdbarch, 16);
2484 set_gdbarch_register_virtual_size (gdbarch, generic_register_size);
2485 set_gdbarch_max_register_virtual_size (gdbarch, 16);
2486 set_gdbarch_register_virtual_type (gdbarch, rs6000_register_virtual_type);
2487
2488 set_gdbarch_ptr_bit (gdbarch, wordsize * TARGET_CHAR_BIT);
2489 set_gdbarch_short_bit (gdbarch, 2 * TARGET_CHAR_BIT);
2490 set_gdbarch_int_bit (gdbarch, 4 * TARGET_CHAR_BIT);
2491 set_gdbarch_long_bit (gdbarch, wordsize * TARGET_CHAR_BIT);
2492 set_gdbarch_long_long_bit (gdbarch, 8 * TARGET_CHAR_BIT);
2493 set_gdbarch_float_bit (gdbarch, 4 * TARGET_CHAR_BIT);
2494 set_gdbarch_double_bit (gdbarch, 8 * TARGET_CHAR_BIT);
2495 set_gdbarch_long_double_bit (gdbarch, 8 * TARGET_CHAR_BIT);
2496 set_gdbarch_char_signed (gdbarch, 0);
2497
2498 set_gdbarch_use_generic_dummy_frames (gdbarch, 1);
2499 set_gdbarch_call_dummy_length (gdbarch, 0);
2500 set_gdbarch_call_dummy_location (gdbarch, AT_ENTRY_POINT);
2501 set_gdbarch_call_dummy_address (gdbarch, entry_point_address);
2502 set_gdbarch_call_dummy_breakpoint_offset_p (gdbarch, 1);
2503 set_gdbarch_call_dummy_breakpoint_offset (gdbarch, 0);
2504 set_gdbarch_call_dummy_start_offset (gdbarch, 0);
2505 set_gdbarch_pc_in_call_dummy (gdbarch, generic_pc_in_call_dummy);
2506 set_gdbarch_call_dummy_p (gdbarch, 1);
2507 set_gdbarch_call_dummy_stack_adjust_p (gdbarch, 0);
2508 set_gdbarch_get_saved_register (gdbarch, generic_unwind_get_saved_register);
2509 set_gdbarch_fix_call_dummy (gdbarch, rs6000_fix_call_dummy);
2510 set_gdbarch_push_dummy_frame (gdbarch, generic_push_dummy_frame);
2511 set_gdbarch_save_dummy_frame_tos (gdbarch, generic_save_dummy_frame_tos);
2512 set_gdbarch_push_return_address (gdbarch, ppc_push_return_address);
2513 set_gdbarch_believe_pcc_promotion (gdbarch, 1);
2514 set_gdbarch_coerce_float_to_double (gdbarch, rs6000_coerce_float_to_double);
2515
2516 set_gdbarch_register_convertible (gdbarch, rs6000_register_convertible);
2517 set_gdbarch_register_convert_to_virtual (gdbarch, rs6000_register_convert_to_virtual);
2518 set_gdbarch_register_convert_to_raw (gdbarch, rs6000_register_convert_to_raw);
2519 set_gdbarch_stab_reg_to_regnum (gdbarch, rs6000_stab_reg_to_regnum);
2520
2521 set_gdbarch_deprecated_extract_return_value (gdbarch, rs6000_extract_return_value);
2522
2523 /* Note: kevinb/2002-04-12: I'm not convinced that rs6000_push_arguments()
2524 is correct for the SysV ABI when the wordsize is 8, but I'm also
2525 fairly certain that ppc_sysv_abi_push_arguments() will give even
2526 worse results since it only works for 32-bit code. So, for the moment,
2527 we're better off calling rs6000_push_arguments() since it works for
2528 64-bit code. At some point in the future, this matter needs to be
2529 revisited. */
2530 if (sysv_abi && wordsize == 4)
2531 set_gdbarch_push_arguments (gdbarch, ppc_sysv_abi_push_arguments);
2532 else
2533 set_gdbarch_push_arguments (gdbarch, rs6000_push_arguments);
2534
2535 set_gdbarch_store_struct_return (gdbarch, rs6000_store_struct_return);
2536 set_gdbarch_store_return_value (gdbarch, rs6000_store_return_value);
2537 set_gdbarch_deprecated_extract_struct_value_address (gdbarch, rs6000_extract_struct_value_address);
2538 set_gdbarch_pop_frame (gdbarch, rs6000_pop_frame);
2539
2540 set_gdbarch_skip_prologue (gdbarch, rs6000_skip_prologue);
2541 set_gdbarch_inner_than (gdbarch, core_addr_lessthan);
2542 set_gdbarch_decr_pc_after_break (gdbarch, 0);
2543 set_gdbarch_function_start_offset (gdbarch, 0);
2544 set_gdbarch_breakpoint_from_pc (gdbarch, rs6000_breakpoint_from_pc);
2545
2546 /* Not sure on this. FIXMEmgo */
2547 set_gdbarch_frame_args_skip (gdbarch, 8);
2548
2549 if (sysv_abi)
2550 set_gdbarch_use_struct_convention (gdbarch,
2551 ppc_sysv_abi_use_struct_convention);
2552 else
2553 set_gdbarch_use_struct_convention (gdbarch,
2554 generic_use_struct_convention);
2555
2556 set_gdbarch_frame_chain_valid (gdbarch, file_frame_chain_valid);
2557
2558 set_gdbarch_frameless_function_invocation (gdbarch,
2559 rs6000_frameless_function_invocation);
2560 set_gdbarch_frame_chain (gdbarch, rs6000_frame_chain);
2561 set_gdbarch_frame_saved_pc (gdbarch, rs6000_frame_saved_pc);
2562
2563 set_gdbarch_frame_init_saved_regs (gdbarch, rs6000_frame_init_saved_regs);
2564 set_gdbarch_init_extra_frame_info (gdbarch, rs6000_init_extra_frame_info);
2565
2566 if (!sysv_abi)
2567 {
2568 /* Handle RS/6000 function pointers (which are really function
2569 descriptors). */
2570 set_gdbarch_convert_from_func_ptr_addr (gdbarch,
2571 rs6000_convert_from_func_ptr_addr);
2572 }
2573 set_gdbarch_frame_args_address (gdbarch, rs6000_frame_args_address);
2574 set_gdbarch_frame_locals_address (gdbarch, rs6000_frame_args_address);
2575 set_gdbarch_saved_pc_after_call (gdbarch, rs6000_saved_pc_after_call);
2576
2577 /* We can't tell how many args there are
2578 now that the C compiler delays popping them. */
2579 set_gdbarch_frame_num_args (gdbarch, frame_num_args_unknown);
2580
2581 /* Hook in ABI-specific overrides, if they have been registered. */
2582 gdbarch_init_osabi (info, gdbarch, osabi);
2583
2584 return gdbarch;
2585 }
2586
2587 static void
2588 rs6000_dump_tdep (struct gdbarch *current_gdbarch, struct ui_file *file)
2589 {
2590 struct gdbarch_tdep *tdep = gdbarch_tdep (current_gdbarch);
2591
2592 if (tdep == NULL)
2593 return;
2594
2595 fprintf_unfiltered (file, "rs6000_dump_tdep: OS ABI = %s\n",
2596 gdbarch_osabi_name (tdep->osabi));
2597 }
2598
2599 static struct cmd_list_element *info_powerpc_cmdlist = NULL;
2600
2601 static void
2602 rs6000_info_powerpc_command (char *args, int from_tty)
2603 {
2604 help_list (info_powerpc_cmdlist, "info powerpc ", class_info, gdb_stdout);
2605 }
2606
2607 /* Initialization code. */
2608
2609 void
2610 _initialize_rs6000_tdep (void)
2611 {
2612 gdbarch_register (bfd_arch_rs6000, rs6000_gdbarch_init, rs6000_dump_tdep);
2613 gdbarch_register (bfd_arch_powerpc, rs6000_gdbarch_init, rs6000_dump_tdep);
2614
2615 /* Add root prefix command for "info powerpc" commands */
2616 add_prefix_cmd ("powerpc", class_info, rs6000_info_powerpc_command,
2617 "Various POWERPC info specific commands.",
2618 &info_powerpc_cmdlist, "info powerpc ", 0, &infolist);
2619 }