* rs6000-tdep.c (pop_frame): Correctly find the registers saved in
[binutils-gdb.git] / gdb / rs6000-tdep.c
1 /* Target-dependent code for GDB, the GNU debugger.
2 Copyright 1986, 1987, 1989, 1991, 1992, 1993, 1994, 1995, 1996, 1997
3 Free Software Foundation, Inc.
4
5 This file is part of GDB.
6
7 This program is free software; you can redistribute it and/or modify
8 it under the terms of the GNU General Public License as published by
9 the Free Software Foundation; either version 2 of the License, or
10 (at your option) any later version.
11
12 This program is distributed in the hope that it will be useful,
13 but WITHOUT ANY WARRANTY; without even the implied warranty of
14 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
15 GNU General Public License for more details.
16
17 You should have received a copy of the GNU General Public License
18 along with this program; if not, write to the Free Software
19 Foundation, Inc., 59 Temple Place - Suite 330, Boston, MA 02111-1307, USA. */
20
21 #include "defs.h"
22 #include "frame.h"
23 #include "inferior.h"
24 #include "symtab.h"
25 #include "target.h"
26 #include "gdbcore.h"
27 #include "symfile.h"
28 #include "objfiles.h"
29 #include "xcoffsolib.h"
30
31 extern struct obstack frame_cache_obstack;
32
33 extern int errno;
34
35 /* Breakpoint shadows for the single step instructions will be kept here. */
36
37 static struct sstep_breaks {
38 /* Address, or 0 if this is not in use. */
39 CORE_ADDR address;
40 /* Shadow contents. */
41 char data[4];
42 } stepBreaks[2];
43
44 /* Hook for determining the TOC address when calling functions in the
45 inferior under AIX. The initialization code in rs6000-nat.c sets
46 this hook to point to find_toc_address. */
47
48 CORE_ADDR (*find_toc_address_hook) PARAMS ((CORE_ADDR)) = NULL;
49
50 /* Static function prototypes */
51
52 static CORE_ADDR branch_dest PARAMS ((int opcode, int instr, CORE_ADDR pc,
53 CORE_ADDR safety));
54
55 static void frame_get_cache_fsr PARAMS ((struct frame_info *fi,
56 struct rs6000_framedata *fdatap));
57
58 static void pop_dummy_frame PARAMS ((void));
59
60 /* Calculate the destination of a branch/jump. Return -1 if not a branch. */
61
62 static CORE_ADDR
63 branch_dest (opcode, instr, pc, safety)
64 int opcode;
65 int instr;
66 CORE_ADDR pc;
67 CORE_ADDR safety;
68 {
69 CORE_ADDR dest;
70 int immediate;
71 int absolute;
72 int ext_op;
73
74 absolute = (int) ((instr >> 1) & 1);
75
76 switch (opcode) {
77 case 18 :
78 immediate = ((instr & ~3) << 6) >> 6; /* br unconditional */
79 if (absolute)
80 dest = immediate;
81 else
82 dest = pc + immediate;
83 break;
84
85 case 16 :
86 immediate = ((instr & ~3) << 16) >> 16; /* br conditional */
87 if (absolute)
88 dest = immediate;
89 else
90 dest = pc + immediate;
91 break;
92
93 case 19 :
94 ext_op = (instr>>1) & 0x3ff;
95
96 if (ext_op == 16) /* br conditional register */
97 {
98 dest = read_register (LR_REGNUM) & ~3;
99
100 /* If we are about to return from a signal handler, dest is
101 something like 0x3c90. The current frame is a signal handler
102 caller frame, upon completion of the sigreturn system call
103 execution will return to the saved PC in the frame. */
104 if (dest < TEXT_SEGMENT_BASE)
105 {
106 struct frame_info *fi;
107
108 fi = get_current_frame ();
109 if (fi != NULL)
110 dest = read_memory_integer (fi->frame + SIG_FRAME_PC_OFFSET,
111 4);
112 }
113 }
114
115 else if (ext_op == 528) /* br cond to count reg */
116 {
117 dest = read_register (CTR_REGNUM) & ~3;
118
119 /* If we are about to execute a system call, dest is something
120 like 0x22fc or 0x3b00. Upon completion the system call
121 will return to the address in the link register. */
122 if (dest < TEXT_SEGMENT_BASE)
123 dest = read_register (LR_REGNUM) & ~3;
124 }
125 else return -1;
126 break;
127
128 default: return -1;
129 }
130 return (dest < TEXT_SEGMENT_BASE) ? safety : dest;
131 }
132
133
134 /* Sequence of bytes for breakpoint instruction. */
135
136 #define BIG_BREAKPOINT { 0x7d, 0x82, 0x10, 0x08 }
137 #define LITTLE_BREAKPOINT { 0x08, 0x10, 0x82, 0x7d }
138
139 unsigned char *
140 rs6000_breakpoint_from_pc (bp_addr, bp_size)
141 CORE_ADDR *bp_addr;
142 int *bp_size;
143 {
144 static unsigned char big_breakpoint[] = BIG_BREAKPOINT;
145 static unsigned char little_breakpoint[] = LITTLE_BREAKPOINT;
146 *bp_size = 4;
147 if (TARGET_BYTE_ORDER == BIG_ENDIAN)
148 return big_breakpoint;
149 else
150 return little_breakpoint;
151 }
152
153
154 /* AIX does not support PT_STEP. Simulate it. */
155
156 void
157 rs6000_software_single_step (signal, insert_breakpoints_p)
158 enum target_signal signal;
159 int insert_breakpoints_p;
160 {
161 #define INSNLEN(OPCODE) 4
162
163 static char le_breakp[] = LITTLE_BREAKPOINT;
164 static char be_breakp[] = BIG_BREAKPOINT;
165 char *breakp = TARGET_BYTE_ORDER == BIG_ENDIAN ? be_breakp : le_breakp;
166 int ii, insn;
167 CORE_ADDR loc;
168 CORE_ADDR breaks[2];
169 int opcode;
170
171 if (insert_breakpoints_p) {
172
173 loc = read_pc ();
174
175 insn = read_memory_integer (loc, 4);
176
177 breaks[0] = loc + INSNLEN(insn);
178 opcode = insn >> 26;
179 breaks[1] = branch_dest (opcode, insn, loc, breaks[0]);
180
181 /* Don't put two breakpoints on the same address. */
182 if (breaks[1] == breaks[0])
183 breaks[1] = -1;
184
185 stepBreaks[1].address = 0;
186
187 for (ii=0; ii < 2; ++ii) {
188
189 /* ignore invalid breakpoint. */
190 if ( breaks[ii] == -1)
191 continue;
192
193 read_memory (breaks[ii], stepBreaks[ii].data, 4);
194
195 write_memory (breaks[ii], breakp, 4);
196 stepBreaks[ii].address = breaks[ii];
197 }
198
199 } else {
200
201 /* remove step breakpoints. */
202 for (ii=0; ii < 2; ++ii)
203 if (stepBreaks[ii].address != 0)
204 write_memory
205 (stepBreaks[ii].address, stepBreaks[ii].data, 4);
206
207 }
208 errno = 0; /* FIXME, don't ignore errors! */
209 /* What errors? {read,write}_memory call error(). */
210 }
211
212
213 /* return pc value after skipping a function prologue and also return
214 information about a function frame.
215
216 in struct rs6000_framedata fdata:
217 - frameless is TRUE, if function does not have a frame.
218 - nosavedpc is TRUE, if function does not save %pc value in its frame.
219 - offset is the initial size of this stack frame --- the amount by
220 which we decrement the sp to allocate the frame.
221 - saved_gpr is the number of the first saved gpr.
222 - saved_fpr is the number of the first saved fpr.
223 - alloca_reg is the number of the register used for alloca() handling.
224 Otherwise -1.
225 - gpr_offset is the offset of the first saved gpr from the previous frame.
226 - fpr_offset is the offset of the first saved fpr from the previous frame.
227 - lr_offset is the offset of the saved lr
228 - cr_offset is the offset of the saved cr
229 */
230
231 #define SIGNED_SHORT(x) \
232 ((sizeof (short) == 2) \
233 ? ((int)(short)(x)) \
234 : ((int)((((x) & 0xffff) ^ 0x8000) - 0x8000)))
235
236 #define GET_SRC_REG(x) (((x) >> 21) & 0x1f)
237
238 CORE_ADDR
239 skip_prologue (pc, fdata)
240 CORE_ADDR pc;
241 struct rs6000_framedata *fdata;
242 {
243 CORE_ADDR orig_pc = pc;
244 char buf[4];
245 unsigned long op;
246 long offset = 0;
247 int lr_reg = 0;
248 int cr_reg = 0;
249 int reg;
250 int framep = 0;
251 int minimal_toc_loaded = 0;
252 static struct rs6000_framedata zero_frame;
253
254 *fdata = zero_frame;
255 fdata->saved_gpr = -1;
256 fdata->saved_fpr = -1;
257 fdata->alloca_reg = -1;
258 fdata->frameless = 1;
259 fdata->nosavedpc = 1;
260
261 if (target_read_memory (pc, buf, 4))
262 return pc; /* Can't access it -- assume no prologue. */
263
264 /* Assume that subsequent fetches can fail with low probability. */
265 pc -= 4;
266 for (;;)
267 {
268 pc += 4;
269 op = read_memory_integer (pc, 4);
270
271 if ((op & 0xfc1fffff) == 0x7c0802a6) { /* mflr Rx */
272 lr_reg = (op & 0x03e00000) | 0x90010000;
273 continue;
274
275 } else if ((op & 0xfc1fffff) == 0x7c000026) { /* mfcr Rx */
276 cr_reg = (op & 0x03e00000) | 0x90010000;
277 continue;
278
279 } else if ((op & 0xfc1f0000) == 0xd8010000) { /* stfd Rx,NUM(r1) */
280 reg = GET_SRC_REG (op);
281 if (fdata->saved_fpr == -1 || fdata->saved_fpr > reg) {
282 fdata->saved_fpr = reg;
283 fdata->fpr_offset = SIGNED_SHORT (op) + offset;
284 }
285 continue;
286
287 } else if (((op & 0xfc1f0000) == 0xbc010000) || /* stm Rx, NUM(r1) */
288 ((op & 0xfc1f0000) == 0x90010000 && /* st rx,NUM(r1),
289 rx >= r13 */
290 (op & 0x03e00000) >= 0x01a00000)) {
291
292 reg = GET_SRC_REG (op);
293 if (fdata->saved_gpr == -1 || fdata->saved_gpr > reg) {
294 fdata->saved_gpr = reg;
295 fdata->gpr_offset = SIGNED_SHORT (op) + offset;
296 }
297 continue;
298
299 } else if ((op & 0xffff0000) == 0x3c000000) { /* addis 0,0,NUM, used
300 for >= 32k frames */
301 fdata->offset = (op & 0x0000ffff) << 16;
302 fdata->frameless = 0;
303 continue;
304
305 } else if ((op & 0xffff0000) == 0x60000000) { /* ori 0,0,NUM, 2nd ha
306 lf of >= 32k frames */
307 fdata->offset |= (op & 0x0000ffff);
308 fdata->frameless = 0;
309 continue;
310
311 } else if ((op & 0xffff0000) == lr_reg) { /* st Rx,NUM(r1)
312 where Rx == lr */
313 fdata->lr_offset = SIGNED_SHORT (op) + offset;
314 fdata->nosavedpc = 0;
315 lr_reg = 0;
316 continue;
317
318 } else if ((op & 0xffff0000) == cr_reg) { /* st Rx,NUM(r1)
319 where Rx == cr */
320 fdata->cr_offset = SIGNED_SHORT (op) + offset;
321 cr_reg = 0;
322 continue;
323
324 } else if (op == 0x48000005) { /* bl .+4 used in
325 -mrelocatable */
326 continue;
327
328 } else if (op == 0x48000004) { /* b .+4 (xlc) */
329 break;
330
331 } else if (((op & 0xffff0000) == 0x801e0000 || /* lwz 0,NUM(r30), used
332 in V.4 -mrelocatable */
333 op == 0x7fc0f214) && /* add r30,r0,r30, used
334 in V.4 -mrelocatable */
335 lr_reg == 0x901e0000) {
336 continue;
337
338 } else if ((op & 0xffff0000) == 0x3fc00000 || /* addis 30,0,foo@ha, used
339 in V.4 -mminimal-toc */
340 (op & 0xffff0000) == 0x3bde0000) { /* addi 30,30,foo@l */
341 continue;
342
343 } else if ((op & 0xfc000000) == 0x48000000) { /* bl foo,
344 to save fprs??? */
345
346 fdata->frameless = 0;
347 /* Don't skip over the subroutine call if it is not within the first
348 three instructions of the prologue. */
349 if ((pc - orig_pc) > 8)
350 break;
351
352 op = read_memory_integer (pc+4, 4);
353
354 /* At this point, make sure this is not a trampoline function
355 (a function that simply calls another functions, and nothing else).
356 If the next is not a nop, this branch was part of the function
357 prologue. */
358
359 if (op == 0x4def7b82 || op == 0) /* crorc 15, 15, 15 */
360 break; /* don't skip over
361 this branch */
362 continue;
363
364 /* update stack pointer */
365 } else if ((op & 0xffff0000) == 0x94210000) { /* stu r1,NUM(r1) */
366 fdata->frameless = 0;
367 fdata->offset = SIGNED_SHORT (op);
368 offset = fdata->offset;
369 continue;
370
371 } else if (op == 0x7c21016e) { /* stwux 1,1,0 */
372 fdata->frameless = 0;
373 offset = fdata->offset;
374 continue;
375
376 /* Load up minimal toc pointer */
377 } else if ((op >> 22) == 0x20f
378 && ! minimal_toc_loaded) { /* l r31,... or l r30,... */
379 minimal_toc_loaded = 1;
380 continue;
381
382 /* store parameters in stack */
383 } else if ((op & 0xfc1f0000) == 0x90010000 || /* st rx,NUM(r1) */
384 (op & 0xfc1f0000) == 0xd8010000 || /* stfd Rx,NUM(r1) */
385 (op & 0xfc1f0000) == 0xfc010000) { /* frsp, fp?,NUM(r1) */
386 continue;
387
388 /* store parameters in stack via frame pointer */
389 } else if (framep &&
390 ((op & 0xfc1f0000) == 0x901f0000 || /* st rx,NUM(r1) */
391 (op & 0xfc1f0000) == 0xd81f0000 || /* stfd Rx,NUM(r1) */
392 (op & 0xfc1f0000) == 0xfc1f0000)) { /* frsp, fp?,NUM(r1) */
393 continue;
394
395 /* Set up frame pointer */
396 } else if (op == 0x603f0000 /* oril r31, r1, 0x0 */
397 || op == 0x7c3f0b78) { /* mr r31, r1 */
398 fdata->frameless = 0;
399 framep = 1;
400 fdata->alloca_reg = 31;
401 continue;
402
403 /* Another way to set up the frame pointer. */
404 } else if ((op & 0xfc1fffff) == 0x38010000) { /* addi rX, r1, 0x0 */
405 fdata->frameless = 0;
406 framep = 1;
407 fdata->alloca_reg = (op & ~0x38010000) >> 21;
408 continue;
409
410 } else {
411 break;
412 }
413 }
414
415 #if 0
416 /* I have problems with skipping over __main() that I need to address
417 * sometime. Previously, I used to use misc_function_vector which
418 * didn't work as well as I wanted to be. -MGO */
419
420 /* If the first thing after skipping a prolog is a branch to a function,
421 this might be a call to an initializer in main(), introduced by gcc2.
422 We'd like to skip over it as well. Fortunately, xlc does some extra
423 work before calling a function right after a prologue, thus we can
424 single out such gcc2 behaviour. */
425
426
427 if ((op & 0xfc000001) == 0x48000001) { /* bl foo, an initializer function? */
428 op = read_memory_integer (pc+4, 4);
429
430 if (op == 0x4def7b82) { /* cror 0xf, 0xf, 0xf (nop) */
431
432 /* check and see if we are in main. If so, skip over this initializer
433 function as well. */
434
435 tmp = find_pc_misc_function (pc);
436 if (tmp >= 0 && STREQ (misc_function_vector [tmp].name, "main"))
437 return pc + 8;
438 }
439 }
440 #endif /* 0 */
441
442 fdata->offset = - fdata->offset;
443 return pc;
444 }
445
446
447 /*************************************************************************
448 Support for creating pushind a dummy frame into the stack, and popping
449 frames, etc.
450 *************************************************************************/
451
452 /* The total size of dummy frame is 436, which is;
453
454 32 gpr's - 128 bytes
455 32 fpr's - 256 "
456 7 the rest - 28 "
457 and 24 extra bytes for the callee's link area. The last 24 bytes
458 for the link area might not be necessary, since it will be taken
459 care of by push_arguments(). */
460
461 #define DUMMY_FRAME_SIZE 436
462
463 #define DUMMY_FRAME_ADDR_SIZE 10
464
465 /* Make sure you initialize these in somewhere, in case gdb gives up what it
466 was debugging and starts debugging something else. FIXMEibm */
467
468 static int dummy_frame_count = 0;
469 static int dummy_frame_size = 0;
470 static CORE_ADDR *dummy_frame_addr = 0;
471
472 extern int stop_stack_dummy;
473
474 /* push a dummy frame into stack, save all register. Currently we are saving
475 only gpr's and fpr's, which is not good enough! FIXMEmgo */
476
477 void
478 push_dummy_frame ()
479 {
480 /* stack pointer. */
481 CORE_ADDR sp;
482 /* Same thing, target byte order. */
483 char sp_targ[4];
484
485 /* link register. */
486 CORE_ADDR pc;
487 /* Same thing, target byte order. */
488 char pc_targ[4];
489
490 /* Needed to figure out where to save the dummy link area.
491 FIXME: There should be an easier way to do this, no? tiemann 9/9/95. */
492 struct rs6000_framedata fdata;
493
494 int ii;
495
496 target_fetch_registers (-1);
497
498 if (dummy_frame_count >= dummy_frame_size) {
499 dummy_frame_size += DUMMY_FRAME_ADDR_SIZE;
500 if (dummy_frame_addr)
501 dummy_frame_addr = (CORE_ADDR*) xrealloc
502 (dummy_frame_addr, sizeof(CORE_ADDR) * (dummy_frame_size));
503 else
504 dummy_frame_addr = (CORE_ADDR*)
505 xmalloc (sizeof(CORE_ADDR) * (dummy_frame_size));
506 }
507
508 sp = read_register(SP_REGNUM);
509 pc = read_register(PC_REGNUM);
510 store_address (pc_targ, 4, pc);
511
512 skip_prologue (get_pc_function_start (pc) + FUNCTION_START_OFFSET, &fdata);
513
514 dummy_frame_addr [dummy_frame_count++] = sp;
515
516 /* Be careful! If the stack pointer is not decremented first, then kernel
517 thinks he is free to use the space underneath it. And kernel actually
518 uses that area for IPC purposes when executing ptrace(2) calls. So
519 before writing register values into the new frame, decrement and update
520 %sp first in order to secure your frame. */
521
522 /* FIXME: We don't check if the stack really has this much space.
523 This is a problem on the ppc simulator (which only grants one page
524 (4096 bytes) by default. */
525
526 write_register (SP_REGNUM, sp-DUMMY_FRAME_SIZE);
527
528 /* gdb relies on the state of current_frame. We'd better update it,
529 otherwise things like do_registers_info() wouldn't work properly! */
530
531 flush_cached_frames ();
532
533 /* save program counter in link register's space. */
534 write_memory (sp + (fdata.lr_offset ? fdata.lr_offset : DEFAULT_LR_SAVE),
535 pc_targ, 4);
536
537 /* save all floating point and general purpose registers here. */
538
539 /* fpr's, f0..f31 */
540 for (ii = 0; ii < 32; ++ii)
541 write_memory (sp-8-(ii*8), &registers[REGISTER_BYTE (31-ii+FP0_REGNUM)], 8);
542
543 /* gpr's r0..r31 */
544 for (ii=1; ii <=32; ++ii)
545 write_memory (sp-256-(ii*4), &registers[REGISTER_BYTE (32-ii)], 4);
546
547 /* so far, 32*2 + 32 words = 384 bytes have been written.
548 7 extra registers in our register set: pc, ps, cnd, lr, cnt, xer, mq */
549
550 for (ii=1; ii <= (LAST_SP_REGNUM-FIRST_SP_REGNUM+1); ++ii) {
551 write_memory (sp-384-(ii*4),
552 &registers[REGISTER_BYTE (FPLAST_REGNUM + ii)], 4);
553 }
554
555 /* Save sp or so called back chain right here. */
556 store_address (sp_targ, 4, sp);
557 write_memory (sp-DUMMY_FRAME_SIZE, sp_targ, 4);
558 sp -= DUMMY_FRAME_SIZE;
559
560 /* And finally, this is the back chain. */
561 write_memory (sp+8, pc_targ, 4);
562 }
563
564
565 /* Pop a dummy frame.
566
567 In rs6000 when we push a dummy frame, we save all of the registers. This
568 is usually done before user calls a function explicitly.
569
570 After a dummy frame is pushed, some instructions are copied into stack,
571 and stack pointer is decremented even more. Since we don't have a frame
572 pointer to get back to the parent frame of the dummy, we start having
573 trouble poping it. Therefore, we keep a dummy frame stack, keeping
574 addresses of dummy frames as such. When poping happens and when we
575 detect that was a dummy frame, we pop it back to its parent by using
576 dummy frame stack (`dummy_frame_addr' array).
577
578 FIXME: This whole concept is broken. You should be able to detect
579 a dummy stack frame *on the user's stack itself*. When you do,
580 then you know the format of that stack frame -- including its
581 saved SP register! There should *not* be a separate stack in the
582 GDB process that keeps track of these dummy frames! -- gnu@cygnus.com Aug92
583 */
584
585 static void
586 pop_dummy_frame ()
587 {
588 CORE_ADDR sp, pc;
589 int ii;
590 sp = dummy_frame_addr [--dummy_frame_count];
591
592 /* restore all fpr's. */
593 for (ii = 1; ii <= 32; ++ii)
594 read_memory (sp-(ii*8), &registers[REGISTER_BYTE (32-ii+FP0_REGNUM)], 8);
595
596 /* restore all gpr's */
597 for (ii=1; ii <= 32; ++ii) {
598 read_memory (sp-256-(ii*4), &registers[REGISTER_BYTE (32-ii)], 4);
599 }
600
601 /* restore the rest of the registers. */
602 for (ii=1; ii <=(LAST_SP_REGNUM-FIRST_SP_REGNUM+1); ++ii)
603 read_memory (sp-384-(ii*4),
604 &registers[REGISTER_BYTE (FPLAST_REGNUM + ii)], 4);
605
606 read_memory (sp-(DUMMY_FRAME_SIZE-8),
607 &registers [REGISTER_BYTE(PC_REGNUM)], 4);
608
609 /* when a dummy frame was being pushed, we had to decrement %sp first, in
610 order to secure astack space. Thus, saved %sp (or %r1) value, is not the
611 one we should restore. Change it with the one we need. */
612
613 memcpy (&registers [REGISTER_BYTE(FP_REGNUM)], (char *) &sp, sizeof (int));
614
615 /* Now we can restore all registers. */
616
617 target_store_registers (-1);
618 pc = read_pc ();
619 flush_cached_frames ();
620 }
621
622
623 /* pop the innermost frame, go back to the caller. */
624
625 void
626 pop_frame ()
627 {
628 CORE_ADDR pc, lr, sp, prev_sp; /* %pc, %lr, %sp */
629 struct rs6000_framedata fdata;
630 struct frame_info *frame = get_current_frame ();
631 int addr, ii;
632
633 pc = read_pc ();
634 sp = FRAME_FP (frame);
635
636 if (stop_stack_dummy)
637 {
638 #ifdef USE_GENERIC_DUMMY_FRAMES
639 generic_pop_dummy_frame ();
640 flush_cached_frames ();
641 return;
642 #else
643 if (dummy_frame_count)
644 pop_dummy_frame ();
645 return;
646 #endif
647 }
648
649 /* Make sure that all registers are valid. */
650 read_register_bytes (0, NULL, REGISTER_BYTES);
651
652 /* figure out previous %pc value. If the function is frameless, it is
653 still in the link register, otherwise walk the frames and retrieve the
654 saved %pc value in the previous frame. */
655
656 addr = get_pc_function_start (frame->pc) + FUNCTION_START_OFFSET;
657 (void) skip_prologue (addr, &fdata);
658
659 if (fdata.frameless)
660 prev_sp = sp;
661 else
662 prev_sp = read_memory_integer (sp, 4);
663 if (fdata.lr_offset == 0)
664 lr = read_register (LR_REGNUM);
665 else
666 lr = read_memory_integer (prev_sp + fdata.lr_offset, 4);
667
668 /* reset %pc value. */
669 write_register (PC_REGNUM, lr);
670
671 /* reset register values if any was saved earlier. */
672
673 if (fdata.saved_gpr != -1)
674 {
675 addr = prev_sp + fdata.gpr_offset;
676 for (ii = fdata.saved_gpr; ii <= 31; ++ii) {
677 read_memory (addr, &registers [REGISTER_BYTE (ii)], 4);
678 addr += 4;
679 }
680 }
681
682 if (fdata.saved_fpr != -1)
683 {
684 addr = prev_sp + fdata.fpr_offset;
685 for (ii = fdata.saved_fpr; ii <= 31; ++ii) {
686 read_memory (addr, &registers [REGISTER_BYTE (ii+FP0_REGNUM)], 8);
687 addr += 8;
688 }
689 }
690
691 write_register (SP_REGNUM, prev_sp);
692 target_store_registers (-1);
693 flush_cached_frames ();
694 }
695
696 /* fixup the call sequence of a dummy function, with the real function address.
697 its argumets will be passed by gdb. */
698
699 void
700 rs6000_fix_call_dummy (dummyname, pc, fun, nargs, args, type, gcc_p)
701 char *dummyname;
702 CORE_ADDR pc;
703 CORE_ADDR fun;
704 int nargs;
705 value_ptr *args;
706 struct type *type;
707 int gcc_p;
708 {
709 #define TOC_ADDR_OFFSET 20
710 #define TARGET_ADDR_OFFSET 28
711
712 int ii;
713 CORE_ADDR target_addr;
714
715 if (find_toc_address_hook != NULL)
716 {
717 CORE_ADDR tocvalue;
718
719 tocvalue = (*find_toc_address_hook) (fun);
720 ii = *(int*)((char*)dummyname + TOC_ADDR_OFFSET);
721 ii = (ii & 0xffff0000) | (tocvalue >> 16);
722 *(int*)((char*)dummyname + TOC_ADDR_OFFSET) = ii;
723
724 ii = *(int*)((char*)dummyname + TOC_ADDR_OFFSET+4);
725 ii = (ii & 0xffff0000) | (tocvalue & 0x0000ffff);
726 *(int*)((char*)dummyname + TOC_ADDR_OFFSET+4) = ii;
727 }
728
729 target_addr = fun;
730 ii = *(int*)((char*)dummyname + TARGET_ADDR_OFFSET);
731 ii = (ii & 0xffff0000) | (target_addr >> 16);
732 *(int*)((char*)dummyname + TARGET_ADDR_OFFSET) = ii;
733
734 ii = *(int*)((char*)dummyname + TARGET_ADDR_OFFSET+4);
735 ii = (ii & 0xffff0000) | (target_addr & 0x0000ffff);
736 *(int*)((char*)dummyname + TARGET_ADDR_OFFSET+4) = ii;
737 }
738
739 /* Pass the arguments in either registers, or in the stack. In RS6000,
740 the first eight words of the argument list (that might be less than
741 eight parameters if some parameters occupy more than one word) are
742 passed in r3..r11 registers. float and double parameters are
743 passed in fpr's, in addition to that. Rest of the parameters if any
744 are passed in user stack. There might be cases in which half of the
745 parameter is copied into registers, the other half is pushed into
746 stack.
747
748 If the function is returning a structure, then the return address is passed
749 in r3, then the first 7 words of the parameters can be passed in registers,
750 starting from r4. */
751
752 CORE_ADDR
753 push_arguments (nargs, args, sp, struct_return, struct_addr)
754 int nargs;
755 value_ptr *args;
756 CORE_ADDR sp;
757 int struct_return;
758 CORE_ADDR struct_addr;
759 {
760 int ii;
761 int len = 0;
762 int argno; /* current argument number */
763 int argbytes; /* current argument byte */
764 char tmp_buffer [50];
765 int f_argno = 0; /* current floating point argno */
766
767 value_ptr arg = 0;
768 struct type *type;
769
770 CORE_ADDR saved_sp;
771
772 #ifndef USE_GENERIC_DUMMY_FRAMES
773 if ( dummy_frame_count <= 0)
774 printf_unfiltered ("FATAL ERROR -push_arguments()! frame not found!!\n");
775 #endif /* GENERIC_DUMMY_FRAMES */
776
777 /* The first eight words of ther arguments are passed in registers. Copy
778 them appropriately.
779
780 If the function is returning a `struct', then the first word (which
781 will be passed in r3) is used for struct return address. In that
782 case we should advance one word and start from r4 register to copy
783 parameters. */
784
785 ii = struct_return ? 1 : 0;
786
787 /*
788 effectively indirect call... gcc does...
789
790 return_val example( float, int);
791
792 eabi:
793 float in fp0, int in r3
794 offset of stack on overflow 8/16
795 for varargs, must go by type.
796 power open:
797 float in r3&r4, int in r5
798 offset of stack on overflow different
799 both:
800 return in r3 or f0. If no float, must study how gcc emulates floats;
801 pay attention to arg promotion.
802 User may have to cast\args to handle promotion correctly
803 since gdb won't know if prototype supplied or not.
804 */
805
806 for (argno=0, argbytes=0; argno < nargs && ii<8; ++ii) {
807
808 arg = args[argno];
809 type = check_typedef (VALUE_TYPE (arg));
810 len = TYPE_LENGTH (type);
811
812 if (TYPE_CODE (type) == TYPE_CODE_FLT) {
813
814 /* floating point arguments are passed in fpr's, as well as gpr's.
815 There are 13 fpr's reserved for passing parameters. At this point
816 there is no way we would run out of them. */
817
818 if (len > 8)
819 printf_unfiltered (
820 "Fatal Error: a floating point parameter #%d with a size > 8 is found!\n", argno);
821
822 memcpy (&registers[REGISTER_BYTE(FP0_REGNUM + 1 + f_argno)],
823 VALUE_CONTENTS (arg),
824 len);
825 ++f_argno;
826 }
827
828 if (len > 4) {
829
830 /* Argument takes more than one register. */
831 while (argbytes < len) {
832 memset (&registers[REGISTER_BYTE(ii+3)], 0, sizeof(int));
833 memcpy (&registers[REGISTER_BYTE(ii+3)],
834 ((char*)VALUE_CONTENTS (arg))+argbytes,
835 (len - argbytes) > 4 ? 4 : len - argbytes);
836 ++ii, argbytes += 4;
837
838 if (ii >= 8)
839 goto ran_out_of_registers_for_arguments;
840 }
841 argbytes = 0;
842 --ii;
843 }
844 else { /* Argument can fit in one register. No problem. */
845 memset (&registers[REGISTER_BYTE(ii+3)], 0, sizeof(int));
846 memcpy (&registers[REGISTER_BYTE(ii+3)], VALUE_CONTENTS (arg), len);
847 }
848 ++argno;
849 }
850
851 ran_out_of_registers_for_arguments:
852
853 #ifdef USE_GENERIC_DUMMY_FRAMES
854 saved_sp = read_sp ();
855 #else
856 /* location for 8 parameters are always reserved. */
857 sp -= 4 * 8;
858
859 /* another six words for back chain, TOC register, link register, etc. */
860 sp -= 24;
861 #endif /* GENERIC_DUMMY_FRAMES */
862 /* if there are more arguments, allocate space for them in
863 the stack, then push them starting from the ninth one. */
864
865 if ((argno < nargs) || argbytes) {
866 int space = 0, jj;
867
868 if (argbytes) {
869 space += ((len - argbytes + 3) & -4);
870 jj = argno + 1;
871 }
872 else
873 jj = argno;
874
875 for (; jj < nargs; ++jj) {
876 value_ptr val = args[jj];
877 space += ((TYPE_LENGTH (VALUE_TYPE (val))) + 3) & -4;
878 }
879
880 /* add location required for the rest of the parameters */
881 space = (space + 7) & -8;
882 sp -= space;
883
884 /* This is another instance we need to be concerned about securing our
885 stack space. If we write anything underneath %sp (r1), we might conflict
886 with the kernel who thinks he is free to use this area. So, update %sp
887 first before doing anything else. */
888
889 write_register (SP_REGNUM, sp);
890
891 /* if the last argument copied into the registers didn't fit there
892 completely, push the rest of it into stack. */
893
894 if (argbytes) {
895 write_memory (sp+24+(ii*4),
896 ((char*)VALUE_CONTENTS (arg))+argbytes,
897 len - argbytes);
898 ++argno;
899 ii += ((len - argbytes + 3) & -4) / 4;
900 }
901
902 /* push the rest of the arguments into stack. */
903 for (; argno < nargs; ++argno) {
904
905 arg = args[argno];
906 type = check_typedef (VALUE_TYPE (arg));
907 len = TYPE_LENGTH (type);
908
909
910 /* float types should be passed in fpr's, as well as in the stack. */
911 if (TYPE_CODE (type) == TYPE_CODE_FLT && f_argno < 13) {
912
913 if (len > 8)
914 printf_unfiltered (
915 "Fatal Error: a floating point parameter #%d with a size > 8 is found!\n", argno);
916
917 memcpy (&registers[REGISTER_BYTE(FP0_REGNUM + 1 + f_argno)],
918 VALUE_CONTENTS (arg),
919 len);
920 ++f_argno;
921 }
922
923 write_memory (sp+24+(ii*4), (char *) VALUE_CONTENTS (arg), len);
924 ii += ((len + 3) & -4) / 4;
925 }
926 }
927 else
928 /* Secure stack areas first, before doing anything else. */
929 write_register (SP_REGNUM, sp);
930
931 #ifndef USE_GENERIC_DUMMY_FRAMES
932 /* we want to copy 24 bytes of target's frame to dummy's frame,
933 then set back chain to point to new frame. */
934
935 saved_sp = dummy_frame_addr [dummy_frame_count - 1];
936 read_memory (saved_sp, tmp_buffer, 24);
937 write_memory (sp, tmp_buffer, 24);
938 #endif /* GENERIC_DUMMY_FRAMES */
939
940 /* set back chain properly */
941 store_address (tmp_buffer, 4, saved_sp);
942 write_memory (sp, tmp_buffer, 4);
943
944 target_store_registers (-1);
945 return sp;
946 }
947 #ifdef ELF_OBJECT_FORMAT
948
949 /* Function: ppc_push_return_address (pc, sp)
950 Set up the return address for the inferior function call. */
951
952 CORE_ADDR
953 ppc_push_return_address (pc, sp)
954 CORE_ADDR pc;
955 CORE_ADDR sp;
956 {
957 write_register (LR_REGNUM, CALL_DUMMY_ADDRESS ());
958 return sp;
959 }
960
961 #endif
962
963 /* a given return value in `regbuf' with a type `valtype', extract and copy its
964 value into `valbuf' */
965
966 void
967 extract_return_value (valtype, regbuf, valbuf)
968 struct type *valtype;
969 char regbuf[REGISTER_BYTES];
970 char *valbuf;
971 {
972 int offset = 0;
973
974 if (TYPE_CODE (valtype) == TYPE_CODE_FLT) {
975
976 double dd; float ff;
977 /* floats and doubles are returned in fpr1. fpr's have a size of 8 bytes.
978 We need to truncate the return value into float size (4 byte) if
979 necessary. */
980
981 if (TYPE_LENGTH (valtype) > 4) /* this is a double */
982 memcpy (valbuf,
983 &regbuf[REGISTER_BYTE (FP0_REGNUM + 1)],
984 TYPE_LENGTH (valtype));
985 else { /* float */
986 memcpy (&dd, &regbuf[REGISTER_BYTE (FP0_REGNUM + 1)], 8);
987 ff = (float)dd;
988 memcpy (valbuf, &ff, sizeof(float));
989 }
990 }
991 else {
992 /* return value is copied starting from r3. */
993 if (TARGET_BYTE_ORDER == BIG_ENDIAN
994 && TYPE_LENGTH (valtype) < REGISTER_RAW_SIZE (3))
995 offset = REGISTER_RAW_SIZE (3) - TYPE_LENGTH (valtype);
996
997 memcpy (valbuf,
998 regbuf + REGISTER_BYTE (3) + offset,
999 TYPE_LENGTH (valtype));
1000 }
1001 }
1002
1003
1004 /* keep structure return address in this variable.
1005 FIXME: This is a horrid kludge which should not be allowed to continue
1006 living. This only allows a single nested call to a structure-returning
1007 function. Come on, guys! -- gnu@cygnus.com, Aug 92 */
1008
1009 CORE_ADDR rs6000_struct_return_address;
1010
1011
1012 /* Indirect function calls use a piece of trampoline code to do context
1013 switching, i.e. to set the new TOC table. Skip such code if we are on
1014 its first instruction (as when we have single-stepped to here).
1015 Also skip shared library trampoline code (which is different from
1016 indirect function call trampolines).
1017 Result is desired PC to step until, or NULL if we are not in
1018 trampoline code. */
1019
1020 CORE_ADDR
1021 skip_trampoline_code (pc)
1022 CORE_ADDR pc;
1023 {
1024 register unsigned int ii, op;
1025 CORE_ADDR solib_target_pc;
1026
1027 static unsigned trampoline_code[] = {
1028 0x800b0000, /* l r0,0x0(r11) */
1029 0x90410014, /* st r2,0x14(r1) */
1030 0x7c0903a6, /* mtctr r0 */
1031 0x804b0004, /* l r2,0x4(r11) */
1032 0x816b0008, /* l r11,0x8(r11) */
1033 0x4e800420, /* bctr */
1034 0x4e800020, /* br */
1035 0
1036 };
1037
1038 /* If pc is in a shared library trampoline, return its target. */
1039 solib_target_pc = find_solib_trampoline_target (pc);
1040 if (solib_target_pc)
1041 return solib_target_pc;
1042
1043 for (ii=0; trampoline_code[ii]; ++ii) {
1044 op = read_memory_integer (pc + (ii*4), 4);
1045 if (op != trampoline_code [ii])
1046 return 0;
1047 }
1048 ii = read_register (11); /* r11 holds destination addr */
1049 pc = read_memory_integer (ii, 4); /* (r11) value */
1050 return pc;
1051 }
1052
1053 /* Determines whether the function FI has a frame on the stack or not. */
1054
1055 int
1056 frameless_function_invocation (fi)
1057 struct frame_info *fi;
1058 {
1059 CORE_ADDR func_start;
1060 struct rs6000_framedata fdata;
1061
1062 /* Don't even think about framelessness except on the innermost frame
1063 or if the function was interrupted by a signal. */
1064 if (fi->next != NULL && !fi->next->signal_handler_caller)
1065 return 0;
1066
1067 func_start = get_pc_function_start (fi->pc);
1068
1069 /* If we failed to find the start of the function, it is a mistake
1070 to inspect the instructions. */
1071
1072 if (!func_start)
1073 {
1074 /* A frame with a zero PC is usually created by dereferencing a NULL
1075 function pointer, normally causing an immediate core dump of the
1076 inferior. Mark function as frameless, as the inferior has no chance
1077 of setting up a stack frame. */
1078 if (fi->pc == 0)
1079 return 1;
1080 else
1081 return 0;
1082 }
1083
1084 func_start += FUNCTION_START_OFFSET;
1085 (void) skip_prologue (func_start, &fdata);
1086 return fdata.frameless;
1087 }
1088
1089 /* Return the PC saved in a frame */
1090
1091 unsigned long
1092 frame_saved_pc (fi)
1093 struct frame_info *fi;
1094 {
1095 CORE_ADDR func_start;
1096 struct rs6000_framedata fdata;
1097
1098 if (fi->signal_handler_caller)
1099 return read_memory_integer (fi->frame + SIG_FRAME_PC_OFFSET, 4);
1100
1101 #ifdef USE_GENERIC_DUMMY_FRAMES
1102 if (PC_IN_CALL_DUMMY (fi->pc, fi->frame, fi->frame))
1103 return generic_read_register_dummy(fi->pc, fi->frame, PC_REGNUM);
1104 #endif /* GENERIC_DUMMY_FRAMES */
1105
1106 func_start = get_pc_function_start (fi->pc) + FUNCTION_START_OFFSET;
1107
1108 /* If we failed to find the start of the function, it is a mistake
1109 to inspect the instructions. */
1110 if (!func_start)
1111 return 0;
1112
1113 (void) skip_prologue (func_start, &fdata);
1114
1115 if (fdata.lr_offset == 0 && fi->next != NULL)
1116 {
1117 if (fi->next->signal_handler_caller)
1118 return read_memory_integer (fi->next->frame + SIG_FRAME_LR_OFFSET, 4);
1119 else
1120 return read_memory_integer (rs6000_frame_chain (fi) + DEFAULT_LR_SAVE,
1121 4);
1122 }
1123
1124 if (fdata.lr_offset == 0)
1125 return read_register (LR_REGNUM);
1126
1127 return read_memory_integer (rs6000_frame_chain (fi) + fdata.lr_offset, 4);
1128 }
1129
1130 /* If saved registers of frame FI are not known yet, read and cache them.
1131 &FDATAP contains rs6000_framedata; TDATAP can be NULL,
1132 in which case the framedata are read. */
1133
1134 static void
1135 frame_get_cache_fsr (fi, fdatap)
1136 struct frame_info *fi;
1137 struct rs6000_framedata *fdatap;
1138 {
1139 int ii;
1140 CORE_ADDR frame_addr;
1141 struct rs6000_framedata work_fdata;
1142
1143 if (fi->cache_fsr)
1144 return;
1145
1146 if (fdatap == NULL) {
1147 fdatap = &work_fdata;
1148 (void) skip_prologue (get_pc_function_start (fi->pc), fdatap);
1149 }
1150
1151 fi->cache_fsr = (struct frame_saved_regs *)
1152 obstack_alloc (&frame_cache_obstack, sizeof (struct frame_saved_regs));
1153 memset (fi->cache_fsr, '\0', sizeof (struct frame_saved_regs));
1154
1155 if (fi->prev && fi->prev->frame)
1156 frame_addr = fi->prev->frame;
1157 else
1158 frame_addr = read_memory_integer (fi->frame, 4);
1159
1160 /* if != -1, fdatap->saved_fpr is the smallest number of saved_fpr.
1161 All fpr's from saved_fpr to fp31 are saved. */
1162
1163 if (fdatap->saved_fpr >= 0) {
1164 int fpr_offset = frame_addr + fdatap->fpr_offset;
1165 for (ii = fdatap->saved_fpr; ii < 32; ii++) {
1166 fi->cache_fsr->regs [FP0_REGNUM + ii] = fpr_offset;
1167 fpr_offset += 8;
1168 }
1169 }
1170
1171 /* if != -1, fdatap->saved_gpr is the smallest number of saved_gpr.
1172 All gpr's from saved_gpr to gpr31 are saved. */
1173
1174 if (fdatap->saved_gpr >= 0) {
1175 int gpr_offset = frame_addr + fdatap->gpr_offset;
1176 for (ii = fdatap->saved_gpr; ii < 32; ii++) {
1177 fi->cache_fsr->regs [ii] = gpr_offset;
1178 gpr_offset += 4;
1179 }
1180 }
1181
1182 /* If != 0, fdatap->cr_offset is the offset from the frame that holds
1183 the CR. */
1184 if (fdatap->cr_offset != 0)
1185 fi->cache_fsr->regs [CR_REGNUM] = frame_addr + fdatap->cr_offset;
1186
1187 /* If != 0, fdatap->lr_offset is the offset from the frame that holds
1188 the LR. */
1189 if (fdatap->lr_offset != 0)
1190 fi->cache_fsr->regs [LR_REGNUM] = frame_addr + fdatap->lr_offset;
1191 }
1192
1193 /* Return the address of a frame. This is the inital %sp value when the frame
1194 was first allocated. For functions calling alloca(), it might be saved in
1195 an alloca register. */
1196
1197 CORE_ADDR
1198 frame_initial_stack_address (fi)
1199 struct frame_info *fi;
1200 {
1201 CORE_ADDR tmpaddr;
1202 struct rs6000_framedata fdata;
1203 struct frame_info *callee_fi;
1204
1205 /* if the initial stack pointer (frame address) of this frame is known,
1206 just return it. */
1207
1208 if (fi->initial_sp)
1209 return fi->initial_sp;
1210
1211 /* find out if this function is using an alloca register.. */
1212
1213 (void) skip_prologue (get_pc_function_start (fi->pc), &fdata);
1214
1215 /* if saved registers of this frame are not known yet, read and cache them. */
1216
1217 if (!fi->cache_fsr)
1218 frame_get_cache_fsr (fi, &fdata);
1219
1220 /* If no alloca register used, then fi->frame is the value of the %sp for
1221 this frame, and it is good enough. */
1222
1223 if (fdata.alloca_reg < 0) {
1224 fi->initial_sp = fi->frame;
1225 return fi->initial_sp;
1226 }
1227
1228 /* This function has an alloca register. If this is the top-most frame
1229 (with the lowest address), the value in alloca register is good. */
1230
1231 if (!fi->next)
1232 return fi->initial_sp = read_register (fdata.alloca_reg);
1233
1234 /* Otherwise, this is a caller frame. Callee has usually already saved
1235 registers, but there are exceptions (such as when the callee
1236 has no parameters). Find the address in which caller's alloca
1237 register is saved. */
1238
1239 for (callee_fi = fi->next; callee_fi; callee_fi = callee_fi->next) {
1240
1241 if (!callee_fi->cache_fsr)
1242 frame_get_cache_fsr (callee_fi, NULL);
1243
1244 /* this is the address in which alloca register is saved. */
1245
1246 tmpaddr = callee_fi->cache_fsr->regs [fdata.alloca_reg];
1247 if (tmpaddr) {
1248 fi->initial_sp = read_memory_integer (tmpaddr, 4);
1249 return fi->initial_sp;
1250 }
1251
1252 /* Go look into deeper levels of the frame chain to see if any one of
1253 the callees has saved alloca register. */
1254 }
1255
1256 /* If alloca register was not saved, by the callee (or any of its callees)
1257 then the value in the register is still good. */
1258
1259 return fi->initial_sp = read_register (fdata.alloca_reg);
1260 }
1261
1262 CORE_ADDR
1263 rs6000_frame_chain (thisframe)
1264 struct frame_info *thisframe;
1265 {
1266 CORE_ADDR fp;
1267
1268 #ifdef USE_GENERIC_DUMMY_FRAMES
1269 if (PC_IN_CALL_DUMMY (thisframe->pc, thisframe->frame, thisframe->frame))
1270 return thisframe->frame; /* dummy frame same as caller's frame */
1271 #endif /* GENERIC_DUMMY_FRAMES */
1272
1273 if (inside_entry_file (thisframe->pc) ||
1274 thisframe->pc == entry_point_address ())
1275 return 0;
1276
1277 if (thisframe->signal_handler_caller)
1278 fp = read_memory_integer (thisframe->frame + SIG_FRAME_FP_OFFSET, 4);
1279 else if (thisframe->next != NULL
1280 && thisframe->next->signal_handler_caller
1281 && frameless_function_invocation (thisframe))
1282 /* A frameless function interrupted by a signal did not change the
1283 frame pointer. */
1284 fp = FRAME_FP (thisframe);
1285 else
1286 fp = read_memory_integer ((thisframe)->frame, 4);
1287
1288 #ifdef USE_GENERIC_DUMMY_FRAMES
1289 {
1290 CORE_ADDR fpp, lr;
1291
1292 lr = read_register (LR_REGNUM);
1293 if (lr == entry_point_address ())
1294 if (fp != 0 && (fpp = read_memory_integer (fp, 4)) != 0)
1295 if (PC_IN_CALL_DUMMY (lr, fpp, fpp))
1296 return fpp;
1297 }
1298 #endif /* GENERIC_DUMMY_FRAMES */
1299 return fp;
1300 }
1301 \f
1302 /* Return nonzero if ADDR (a function pointer) is in the data space and
1303 is therefore a special function pointer. */
1304
1305 int
1306 is_magic_function_pointer (addr)
1307 CORE_ADDR addr;
1308 {
1309 struct obj_section *s;
1310
1311 s = find_pc_section (addr);
1312 if (s && s->the_bfd_section->flags & SEC_CODE)
1313 return 0;
1314 else
1315 return 1;
1316 }
1317
1318 #ifdef GDB_TARGET_POWERPC
1319 int
1320 gdb_print_insn_powerpc (memaddr, info)
1321 bfd_vma memaddr;
1322 disassemble_info *info;
1323 {
1324 if (TARGET_BYTE_ORDER == BIG_ENDIAN)
1325 return print_insn_big_powerpc (memaddr, info);
1326 else
1327 return print_insn_little_powerpc (memaddr, info);
1328 }
1329 #endif
1330
1331 /* Function: get_saved_register
1332 Just call the generic_get_saved_register function. */
1333
1334 #ifdef USE_GENERIC_DUMMY_FRAMES
1335 void
1336 get_saved_register (raw_buffer, optimized, addrp, frame, regnum, lval)
1337 char *raw_buffer;
1338 int *optimized;
1339 CORE_ADDR *addrp;
1340 struct frame_info *frame;
1341 int regnum;
1342 enum lval_type *lval;
1343 {
1344 generic_get_saved_register (raw_buffer, optimized, addrp,
1345 frame, regnum, lval);
1346 }
1347 #endif
1348
1349
1350 void
1351 _initialize_rs6000_tdep ()
1352 {
1353 /* FIXME, this should not be decided via ifdef. */
1354 #ifdef GDB_TARGET_POWERPC
1355 tm_print_insn = gdb_print_insn_powerpc;
1356 #else
1357 tm_print_insn = print_insn_rs6000;
1358 #endif
1359 }