2002-08-20 Elena Zannoni <ezannoni@redhat.com>
[binutils-gdb.git] / gdb / rs6000-tdep.c
1 /* Target-dependent code for GDB, the GNU debugger.
2 Copyright 1986, 1987, 1989, 1991, 1992, 1993, 1994, 1995, 1996, 1997,
3 1998, 1999, 2000, 2001, 2002
4 Free Software Foundation, Inc.
5
6 This file is part of GDB.
7
8 This program is free software; you can redistribute it and/or modify
9 it under the terms of the GNU General Public License as published by
10 the Free Software Foundation; either version 2 of the License, or
11 (at your option) any later version.
12
13 This program is distributed in the hope that it will be useful,
14 but WITHOUT ANY WARRANTY; without even the implied warranty of
15 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
16 GNU General Public License for more details.
17
18 You should have received a copy of the GNU General Public License
19 along with this program; if not, write to the Free Software
20 Foundation, Inc., 59 Temple Place - Suite 330,
21 Boston, MA 02111-1307, USA. */
22
23 #include "defs.h"
24 #include "frame.h"
25 #include "inferior.h"
26 #include "symtab.h"
27 #include "target.h"
28 #include "gdbcore.h"
29 #include "gdbcmd.h"
30 #include "symfile.h"
31 #include "objfiles.h"
32 #include "arch-utils.h"
33 #include "regcache.h"
34 #include "doublest.h"
35 #include "value.h"
36 #include "parser-defs.h"
37
38 #include "libbfd.h" /* for bfd_default_set_arch_mach */
39 #include "coff/internal.h" /* for libcoff.h */
40 #include "libcoff.h" /* for xcoff_data */
41 #include "coff/xcoff.h"
42 #include "libxcoff.h"
43
44 #include "elf-bfd.h"
45
46 #include "solib-svr4.h"
47 #include "ppc-tdep.h"
48
49 /* If the kernel has to deliver a signal, it pushes a sigcontext
50 structure on the stack and then calls the signal handler, passing
51 the address of the sigcontext in an argument register. Usually
52 the signal handler doesn't save this register, so we have to
53 access the sigcontext structure via an offset from the signal handler
54 frame.
55 The following constants were determined by experimentation on AIX 3.2. */
56 #define SIG_FRAME_PC_OFFSET 96
57 #define SIG_FRAME_LR_OFFSET 108
58 #define SIG_FRAME_FP_OFFSET 284
59
60 /* To be used by skip_prologue. */
61
62 struct rs6000_framedata
63 {
64 int offset; /* total size of frame --- the distance
65 by which we decrement sp to allocate
66 the frame */
67 int saved_gpr; /* smallest # of saved gpr */
68 int saved_fpr; /* smallest # of saved fpr */
69 int saved_vr; /* smallest # of saved vr */
70 int alloca_reg; /* alloca register number (frame ptr) */
71 char frameless; /* true if frameless functions. */
72 char nosavedpc; /* true if pc not saved. */
73 int gpr_offset; /* offset of saved gprs from prev sp */
74 int fpr_offset; /* offset of saved fprs from prev sp */
75 int vr_offset; /* offset of saved vrs from prev sp */
76 int lr_offset; /* offset of saved lr */
77 int cr_offset; /* offset of saved cr */
78 int vrsave_offset; /* offset of saved vrsave register */
79 };
80
81 /* Description of a single register. */
82
83 struct reg
84 {
85 char *name; /* name of register */
86 unsigned char sz32; /* size on 32-bit arch, 0 if nonextant */
87 unsigned char sz64; /* size on 64-bit arch, 0 if nonextant */
88 unsigned char fpr; /* whether register is floating-point */
89 unsigned char pseudo; /* whether register is pseudo */
90 };
91
92 /* Breakpoint shadows for the single step instructions will be kept here. */
93
94 static struct sstep_breaks
95 {
96 /* Address, or 0 if this is not in use. */
97 CORE_ADDR address;
98 /* Shadow contents. */
99 char data[4];
100 }
101 stepBreaks[2];
102
103 /* Hook for determining the TOC address when calling functions in the
104 inferior under AIX. The initialization code in rs6000-nat.c sets
105 this hook to point to find_toc_address. */
106
107 CORE_ADDR (*rs6000_find_toc_address_hook) (CORE_ADDR) = NULL;
108
109 /* Hook to set the current architecture when starting a child process.
110 rs6000-nat.c sets this. */
111
112 void (*rs6000_set_host_arch_hook) (int) = NULL;
113
114 /* Static function prototypes */
115
116 static CORE_ADDR branch_dest (int opcode, int instr, CORE_ADDR pc,
117 CORE_ADDR safety);
118 static CORE_ADDR skip_prologue (CORE_ADDR, CORE_ADDR,
119 struct rs6000_framedata *);
120 static void frame_get_saved_regs (struct frame_info * fi,
121 struct rs6000_framedata * fdatap);
122 static CORE_ADDR frame_initial_stack_address (struct frame_info *);
123
124 /* Read a LEN-byte address from debugged memory address MEMADDR. */
125
126 static CORE_ADDR
127 read_memory_addr (CORE_ADDR memaddr, int len)
128 {
129 return read_memory_unsigned_integer (memaddr, len);
130 }
131
132 static CORE_ADDR
133 rs6000_skip_prologue (CORE_ADDR pc)
134 {
135 struct rs6000_framedata frame;
136 pc = skip_prologue (pc, 0, &frame);
137 return pc;
138 }
139
140
141 /* Fill in fi->saved_regs */
142
143 struct frame_extra_info
144 {
145 /* Functions calling alloca() change the value of the stack
146 pointer. We need to use initial stack pointer (which is saved in
147 r31 by gcc) in such cases. If a compiler emits traceback table,
148 then we should use the alloca register specified in traceback
149 table. FIXME. */
150 CORE_ADDR initial_sp; /* initial stack pointer. */
151 };
152
153 void
154 rs6000_init_extra_frame_info (int fromleaf, struct frame_info *fi)
155 {
156 fi->extra_info = (struct frame_extra_info *)
157 frame_obstack_alloc (sizeof (struct frame_extra_info));
158 fi->extra_info->initial_sp = 0;
159 if (fi->next != (CORE_ADDR) 0
160 && fi->pc < TEXT_SEGMENT_BASE)
161 /* We're in get_prev_frame */
162 /* and this is a special signal frame. */
163 /* (fi->pc will be some low address in the kernel, */
164 /* to which the signal handler returns). */
165 fi->signal_handler_caller = 1;
166 }
167
168 /* Put here the code to store, into a struct frame_saved_regs,
169 the addresses of the saved registers of frame described by FRAME_INFO.
170 This includes special registers such as pc and fp saved in special
171 ways in the stack frame. sp is even more special:
172 the address we return for it IS the sp for the next frame. */
173
174 /* In this implementation for RS/6000, we do *not* save sp. I am
175 not sure if it will be needed. The following function takes care of gpr's
176 and fpr's only. */
177
178 void
179 rs6000_frame_init_saved_regs (struct frame_info *fi)
180 {
181 frame_get_saved_regs (fi, NULL);
182 }
183
184 static CORE_ADDR
185 rs6000_frame_args_address (struct frame_info *fi)
186 {
187 if (fi->extra_info->initial_sp != 0)
188 return fi->extra_info->initial_sp;
189 else
190 return frame_initial_stack_address (fi);
191 }
192
193 /* Immediately after a function call, return the saved pc.
194 Can't go through the frames for this because on some machines
195 the new frame is not set up until the new function executes
196 some instructions. */
197
198 static CORE_ADDR
199 rs6000_saved_pc_after_call (struct frame_info *fi)
200 {
201 return read_register (gdbarch_tdep (current_gdbarch)->ppc_lr_regnum);
202 }
203
204 /* Calculate the destination of a branch/jump. Return -1 if not a branch. */
205
206 static CORE_ADDR
207 branch_dest (int opcode, int instr, CORE_ADDR pc, CORE_ADDR safety)
208 {
209 CORE_ADDR dest;
210 int immediate;
211 int absolute;
212 int ext_op;
213
214 absolute = (int) ((instr >> 1) & 1);
215
216 switch (opcode)
217 {
218 case 18:
219 immediate = ((instr & ~3) << 6) >> 6; /* br unconditional */
220 if (absolute)
221 dest = immediate;
222 else
223 dest = pc + immediate;
224 break;
225
226 case 16:
227 immediate = ((instr & ~3) << 16) >> 16; /* br conditional */
228 if (absolute)
229 dest = immediate;
230 else
231 dest = pc + immediate;
232 break;
233
234 case 19:
235 ext_op = (instr >> 1) & 0x3ff;
236
237 if (ext_op == 16) /* br conditional register */
238 {
239 dest = read_register (gdbarch_tdep (current_gdbarch)->ppc_lr_regnum) & ~3;
240
241 /* If we are about to return from a signal handler, dest is
242 something like 0x3c90. The current frame is a signal handler
243 caller frame, upon completion of the sigreturn system call
244 execution will return to the saved PC in the frame. */
245 if (dest < TEXT_SEGMENT_BASE)
246 {
247 struct frame_info *fi;
248
249 fi = get_current_frame ();
250 if (fi != NULL)
251 dest = read_memory_addr (fi->frame + SIG_FRAME_PC_OFFSET,
252 gdbarch_tdep (current_gdbarch)->wordsize);
253 }
254 }
255
256 else if (ext_op == 528) /* br cond to count reg */
257 {
258 dest = read_register (gdbarch_tdep (current_gdbarch)->ppc_ctr_regnum) & ~3;
259
260 /* If we are about to execute a system call, dest is something
261 like 0x22fc or 0x3b00. Upon completion the system call
262 will return to the address in the link register. */
263 if (dest < TEXT_SEGMENT_BASE)
264 dest = read_register (gdbarch_tdep (current_gdbarch)->ppc_lr_regnum) & ~3;
265 }
266 else
267 return -1;
268 break;
269
270 default:
271 return -1;
272 }
273 return (dest < TEXT_SEGMENT_BASE) ? safety : dest;
274 }
275
276
277 /* Sequence of bytes for breakpoint instruction. */
278
279 #define BIG_BREAKPOINT { 0x7d, 0x82, 0x10, 0x08 }
280 #define LITTLE_BREAKPOINT { 0x08, 0x10, 0x82, 0x7d }
281
282 const static unsigned char *
283 rs6000_breakpoint_from_pc (CORE_ADDR *bp_addr, int *bp_size)
284 {
285 static unsigned char big_breakpoint[] = BIG_BREAKPOINT;
286 static unsigned char little_breakpoint[] = LITTLE_BREAKPOINT;
287 *bp_size = 4;
288 if (TARGET_BYTE_ORDER == BFD_ENDIAN_BIG)
289 return big_breakpoint;
290 else
291 return little_breakpoint;
292 }
293
294
295 /* AIX does not support PT_STEP. Simulate it. */
296
297 void
298 rs6000_software_single_step (enum target_signal signal,
299 int insert_breakpoints_p)
300 {
301 CORE_ADDR dummy;
302 int breakp_sz;
303 const char *breakp = rs6000_breakpoint_from_pc (&dummy, &breakp_sz);
304 int ii, insn;
305 CORE_ADDR loc;
306 CORE_ADDR breaks[2];
307 int opcode;
308
309 if (insert_breakpoints_p)
310 {
311
312 loc = read_pc ();
313
314 insn = read_memory_integer (loc, 4);
315
316 breaks[0] = loc + breakp_sz;
317 opcode = insn >> 26;
318 breaks[1] = branch_dest (opcode, insn, loc, breaks[0]);
319
320 /* Don't put two breakpoints on the same address. */
321 if (breaks[1] == breaks[0])
322 breaks[1] = -1;
323
324 stepBreaks[1].address = 0;
325
326 for (ii = 0; ii < 2; ++ii)
327 {
328
329 /* ignore invalid breakpoint. */
330 if (breaks[ii] == -1)
331 continue;
332 target_insert_breakpoint (breaks[ii], stepBreaks[ii].data);
333 stepBreaks[ii].address = breaks[ii];
334 }
335
336 }
337 else
338 {
339
340 /* remove step breakpoints. */
341 for (ii = 0; ii < 2; ++ii)
342 if (stepBreaks[ii].address != 0)
343 target_remove_breakpoint (stepBreaks[ii].address,
344 stepBreaks[ii].data);
345 }
346 errno = 0; /* FIXME, don't ignore errors! */
347 /* What errors? {read,write}_memory call error(). */
348 }
349
350
351 /* return pc value after skipping a function prologue and also return
352 information about a function frame.
353
354 in struct rs6000_framedata fdata:
355 - frameless is TRUE, if function does not have a frame.
356 - nosavedpc is TRUE, if function does not save %pc value in its frame.
357 - offset is the initial size of this stack frame --- the amount by
358 which we decrement the sp to allocate the frame.
359 - saved_gpr is the number of the first saved gpr.
360 - saved_fpr is the number of the first saved fpr.
361 - saved_vr is the number of the first saved vr.
362 - alloca_reg is the number of the register used for alloca() handling.
363 Otherwise -1.
364 - gpr_offset is the offset of the first saved gpr from the previous frame.
365 - fpr_offset is the offset of the first saved fpr from the previous frame.
366 - vr_offset is the offset of the first saved vr from the previous frame.
367 - lr_offset is the offset of the saved lr
368 - cr_offset is the offset of the saved cr
369 - vrsave_offset is the offset of the saved vrsave register
370 */
371
372 #define SIGNED_SHORT(x) \
373 ((sizeof (short) == 2) \
374 ? ((int)(short)(x)) \
375 : ((int)((((x) & 0xffff) ^ 0x8000) - 0x8000)))
376
377 #define GET_SRC_REG(x) (((x) >> 21) & 0x1f)
378
379 /* Limit the number of skipped non-prologue instructions, as the examining
380 of the prologue is expensive. */
381 static int max_skip_non_prologue_insns = 10;
382
383 /* Given PC representing the starting address of a function, and
384 LIM_PC which is the (sloppy) limit to which to scan when looking
385 for a prologue, attempt to further refine this limit by using
386 the line data in the symbol table. If successful, a better guess
387 on where the prologue ends is returned, otherwise the previous
388 value of lim_pc is returned. */
389 static CORE_ADDR
390 refine_prologue_limit (CORE_ADDR pc, CORE_ADDR lim_pc)
391 {
392 struct symtab_and_line prologue_sal;
393
394 prologue_sal = find_pc_line (pc, 0);
395 if (prologue_sal.line != 0)
396 {
397 int i;
398 CORE_ADDR addr = prologue_sal.end;
399
400 /* Handle the case in which compiler's optimizer/scheduler
401 has moved instructions into the prologue. We scan ahead
402 in the function looking for address ranges whose corresponding
403 line number is less than or equal to the first one that we
404 found for the function. (It can be less than when the
405 scheduler puts a body instruction before the first prologue
406 instruction.) */
407 for (i = 2 * max_skip_non_prologue_insns;
408 i > 0 && (lim_pc == 0 || addr < lim_pc);
409 i--)
410 {
411 struct symtab_and_line sal;
412
413 sal = find_pc_line (addr, 0);
414 if (sal.line == 0)
415 break;
416 if (sal.line <= prologue_sal.line
417 && sal.symtab == prologue_sal.symtab)
418 {
419 prologue_sal = sal;
420 }
421 addr = sal.end;
422 }
423
424 if (lim_pc == 0 || prologue_sal.end < lim_pc)
425 lim_pc = prologue_sal.end;
426 }
427 return lim_pc;
428 }
429
430
431 static CORE_ADDR
432 skip_prologue (CORE_ADDR pc, CORE_ADDR lim_pc, struct rs6000_framedata *fdata)
433 {
434 CORE_ADDR orig_pc = pc;
435 CORE_ADDR last_prologue_pc = pc;
436 CORE_ADDR li_found_pc = 0;
437 char buf[4];
438 unsigned long op;
439 long offset = 0;
440 long vr_saved_offset = 0;
441 int lr_reg = -1;
442 int cr_reg = -1;
443 int vr_reg = -1;
444 int vrsave_reg = -1;
445 int reg;
446 int framep = 0;
447 int minimal_toc_loaded = 0;
448 int prev_insn_was_prologue_insn = 1;
449 int num_skip_non_prologue_insns = 0;
450
451 /* Attempt to find the end of the prologue when no limit is specified.
452 Note that refine_prologue_limit() has been written so that it may
453 be used to "refine" the limits of non-zero PC values too, but this
454 is only safe if we 1) trust the line information provided by the
455 compiler and 2) iterate enough to actually find the end of the
456 prologue.
457
458 It may become a good idea at some point (for both performance and
459 accuracy) to unconditionally call refine_prologue_limit(). But,
460 until we can make a clear determination that this is beneficial,
461 we'll play it safe and only use it to obtain a limit when none
462 has been specified. */
463 if (lim_pc == 0)
464 lim_pc = refine_prologue_limit (pc, lim_pc);
465
466 memset (fdata, 0, sizeof (struct rs6000_framedata));
467 fdata->saved_gpr = -1;
468 fdata->saved_fpr = -1;
469 fdata->saved_vr = -1;
470 fdata->alloca_reg = -1;
471 fdata->frameless = 1;
472 fdata->nosavedpc = 1;
473
474 for (;; pc += 4)
475 {
476 /* Sometimes it isn't clear if an instruction is a prologue
477 instruction or not. When we encounter one of these ambiguous
478 cases, we'll set prev_insn_was_prologue_insn to 0 (false).
479 Otherwise, we'll assume that it really is a prologue instruction. */
480 if (prev_insn_was_prologue_insn)
481 last_prologue_pc = pc;
482
483 /* Stop scanning if we've hit the limit. */
484 if (lim_pc != 0 && pc >= lim_pc)
485 break;
486
487 prev_insn_was_prologue_insn = 1;
488
489 /* Fetch the instruction and convert it to an integer. */
490 if (target_read_memory (pc, buf, 4))
491 break;
492 op = extract_signed_integer (buf, 4);
493
494 if ((op & 0xfc1fffff) == 0x7c0802a6)
495 { /* mflr Rx */
496 lr_reg = (op & 0x03e00000) | 0x90010000;
497 continue;
498
499 }
500 else if ((op & 0xfc1fffff) == 0x7c000026)
501 { /* mfcr Rx */
502 cr_reg = (op & 0x03e00000) | 0x90010000;
503 continue;
504
505 }
506 else if ((op & 0xfc1f0000) == 0xd8010000)
507 { /* stfd Rx,NUM(r1) */
508 reg = GET_SRC_REG (op);
509 if (fdata->saved_fpr == -1 || fdata->saved_fpr > reg)
510 {
511 fdata->saved_fpr = reg;
512 fdata->fpr_offset = SIGNED_SHORT (op) + offset;
513 }
514 continue;
515
516 }
517 else if (((op & 0xfc1f0000) == 0xbc010000) || /* stm Rx, NUM(r1) */
518 (((op & 0xfc1f0000) == 0x90010000 || /* st rx,NUM(r1) */
519 (op & 0xfc1f0003) == 0xf8010000) && /* std rx,NUM(r1) */
520 (op & 0x03e00000) >= 0x01a00000)) /* rx >= r13 */
521 {
522
523 reg = GET_SRC_REG (op);
524 if (fdata->saved_gpr == -1 || fdata->saved_gpr > reg)
525 {
526 fdata->saved_gpr = reg;
527 if ((op & 0xfc1f0003) == 0xf8010000)
528 op = (op >> 1) << 1;
529 fdata->gpr_offset = SIGNED_SHORT (op) + offset;
530 }
531 continue;
532
533 }
534 else if ((op & 0xffff0000) == 0x60000000)
535 {
536 /* nop */
537 /* Allow nops in the prologue, but do not consider them to
538 be part of the prologue unless followed by other prologue
539 instructions. */
540 prev_insn_was_prologue_insn = 0;
541 continue;
542
543 }
544 else if ((op & 0xffff0000) == 0x3c000000)
545 { /* addis 0,0,NUM, used
546 for >= 32k frames */
547 fdata->offset = (op & 0x0000ffff) << 16;
548 fdata->frameless = 0;
549 continue;
550
551 }
552 else if ((op & 0xffff0000) == 0x60000000)
553 { /* ori 0,0,NUM, 2nd ha
554 lf of >= 32k frames */
555 fdata->offset |= (op & 0x0000ffff);
556 fdata->frameless = 0;
557 continue;
558
559 }
560 else if (lr_reg != -1 && (op & 0xffff0000) == lr_reg)
561 { /* st Rx,NUM(r1)
562 where Rx == lr */
563 fdata->lr_offset = SIGNED_SHORT (op) + offset;
564 fdata->nosavedpc = 0;
565 lr_reg = 0;
566 continue;
567
568 }
569 else if (cr_reg != -1 && (op & 0xffff0000) == cr_reg)
570 { /* st Rx,NUM(r1)
571 where Rx == cr */
572 fdata->cr_offset = SIGNED_SHORT (op) + offset;
573 cr_reg = 0;
574 continue;
575
576 }
577 else if (op == 0x48000005)
578 { /* bl .+4 used in
579 -mrelocatable */
580 continue;
581
582 }
583 else if (op == 0x48000004)
584 { /* b .+4 (xlc) */
585 break;
586
587 }
588 else if ((op & 0xffff0000) == 0x3fc00000 || /* addis 30,0,foo@ha, used
589 in V.4 -mminimal-toc */
590 (op & 0xffff0000) == 0x3bde0000)
591 { /* addi 30,30,foo@l */
592 continue;
593
594 }
595 else if ((op & 0xfc000001) == 0x48000001)
596 { /* bl foo,
597 to save fprs??? */
598
599 fdata->frameless = 0;
600 /* Don't skip over the subroutine call if it is not within
601 the first three instructions of the prologue. */
602 if ((pc - orig_pc) > 8)
603 break;
604
605 op = read_memory_integer (pc + 4, 4);
606
607 /* At this point, make sure this is not a trampoline
608 function (a function that simply calls another functions,
609 and nothing else). If the next is not a nop, this branch
610 was part of the function prologue. */
611
612 if (op == 0x4def7b82 || op == 0) /* crorc 15, 15, 15 */
613 break; /* don't skip over
614 this branch */
615 continue;
616
617 /* update stack pointer */
618 }
619 else if ((op & 0xffff0000) == 0x94210000 || /* stu r1,NUM(r1) */
620 (op & 0xffff0003) == 0xf8210001) /* stdu r1,NUM(r1) */
621 {
622 fdata->frameless = 0;
623 if ((op & 0xffff0003) == 0xf8210001)
624 op = (op >> 1) << 1;
625 fdata->offset = SIGNED_SHORT (op);
626 offset = fdata->offset;
627 continue;
628
629 }
630 else if (op == 0x7c21016e)
631 { /* stwux 1,1,0 */
632 fdata->frameless = 0;
633 offset = fdata->offset;
634 continue;
635
636 /* Load up minimal toc pointer */
637 }
638 else if ((op >> 22) == 0x20f
639 && !minimal_toc_loaded)
640 { /* l r31,... or l r30,... */
641 minimal_toc_loaded = 1;
642 continue;
643
644 /* move parameters from argument registers to local variable
645 registers */
646 }
647 else if ((op & 0xfc0007fe) == 0x7c000378 && /* mr(.) Rx,Ry */
648 (((op >> 21) & 31) >= 3) && /* R3 >= Ry >= R10 */
649 (((op >> 21) & 31) <= 10) &&
650 (((op >> 16) & 31) >= fdata->saved_gpr)) /* Rx: local var reg */
651 {
652 continue;
653
654 /* store parameters in stack */
655 }
656 else if ((op & 0xfc1f0003) == 0xf8010000 || /* std rx,NUM(r1) */
657 (op & 0xfc1f0000) == 0xd8010000 || /* stfd Rx,NUM(r1) */
658 (op & 0xfc1f0000) == 0xfc010000) /* frsp, fp?,NUM(r1) */
659 {
660 continue;
661
662 /* store parameters in stack via frame pointer */
663 }
664 else if (framep &&
665 ((op & 0xfc1f0000) == 0x901f0000 || /* st rx,NUM(r1) */
666 (op & 0xfc1f0000) == 0xd81f0000 || /* stfd Rx,NUM(r1) */
667 (op & 0xfc1f0000) == 0xfc1f0000))
668 { /* frsp, fp?,NUM(r1) */
669 continue;
670
671 /* Set up frame pointer */
672 }
673 else if (op == 0x603f0000 /* oril r31, r1, 0x0 */
674 || op == 0x7c3f0b78)
675 { /* mr r31, r1 */
676 fdata->frameless = 0;
677 framep = 1;
678 fdata->alloca_reg = 31;
679 continue;
680
681 /* Another way to set up the frame pointer. */
682 }
683 else if ((op & 0xfc1fffff) == 0x38010000)
684 { /* addi rX, r1, 0x0 */
685 fdata->frameless = 0;
686 framep = 1;
687 fdata->alloca_reg = (op & ~0x38010000) >> 21;
688 continue;
689 }
690 /* AltiVec related instructions. */
691 /* Store the vrsave register (spr 256) in another register for
692 later manipulation, or load a register into the vrsave
693 register. 2 instructions are used: mfvrsave and
694 mtvrsave. They are shorthand notation for mfspr Rn, SPR256
695 and mtspr SPR256, Rn. */
696 /* mfspr Rn SPR256 == 011111 nnnnn 0000001000 01010100110
697 mtspr SPR256 Rn == 011111 nnnnn 0000001000 01110100110 */
698 else if ((op & 0xfc1fffff) == 0x7c0042a6) /* mfvrsave Rn */
699 {
700 vrsave_reg = GET_SRC_REG (op);
701 continue;
702 }
703 else if ((op & 0xfc1fffff) == 0x7c0043a6) /* mtvrsave Rn */
704 {
705 continue;
706 }
707 /* Store the register where vrsave was saved to onto the stack:
708 rS is the register where vrsave was stored in a previous
709 instruction. */
710 /* 100100 sssss 00001 dddddddd dddddddd */
711 else if ((op & 0xfc1f0000) == 0x90010000) /* stw rS, d(r1) */
712 {
713 if (vrsave_reg == GET_SRC_REG (op))
714 {
715 fdata->vrsave_offset = SIGNED_SHORT (op) + offset;
716 vrsave_reg = -1;
717 }
718 continue;
719 }
720 /* Compute the new value of vrsave, by modifying the register
721 where vrsave was saved to. */
722 else if (((op & 0xfc000000) == 0x64000000) /* oris Ra, Rs, UIMM */
723 || ((op & 0xfc000000) == 0x60000000))/* ori Ra, Rs, UIMM */
724 {
725 continue;
726 }
727 /* li r0, SIMM (short for addi r0, 0, SIMM). This is the first
728 in a pair of insns to save the vector registers on the
729 stack. */
730 /* 001110 00000 00000 iiii iiii iiii iiii */
731 else if ((op & 0xffff0000) == 0x38000000) /* li r0, SIMM */
732 {
733 li_found_pc = pc;
734 vr_saved_offset = SIGNED_SHORT (op);
735 }
736 /* Store vector register S at (r31+r0) aligned to 16 bytes. */
737 /* 011111 sssss 11111 00000 00111001110 */
738 else if ((op & 0xfc1fffff) == 0x7c1f01ce) /* stvx Vs, R31, R0 */
739 {
740 if (pc == (li_found_pc + 4))
741 {
742 vr_reg = GET_SRC_REG (op);
743 /* If this is the first vector reg to be saved, or if
744 it has a lower number than others previously seen,
745 reupdate the frame info. */
746 if (fdata->saved_vr == -1 || fdata->saved_vr > vr_reg)
747 {
748 fdata->saved_vr = vr_reg;
749 fdata->vr_offset = vr_saved_offset + offset;
750 }
751 vr_saved_offset = -1;
752 vr_reg = -1;
753 li_found_pc = 0;
754 }
755 }
756 /* End AltiVec related instructions. */
757 else
758 {
759 /* Not a recognized prologue instruction.
760 Handle optimizer code motions into the prologue by continuing
761 the search if we have no valid frame yet or if the return
762 address is not yet saved in the frame. */
763 if (fdata->frameless == 0
764 && (lr_reg == -1 || fdata->nosavedpc == 0))
765 break;
766
767 if (op == 0x4e800020 /* blr */
768 || op == 0x4e800420) /* bctr */
769 /* Do not scan past epilogue in frameless functions or
770 trampolines. */
771 break;
772 if ((op & 0xf4000000) == 0x40000000) /* bxx */
773 /* Never skip branches. */
774 break;
775
776 if (num_skip_non_prologue_insns++ > max_skip_non_prologue_insns)
777 /* Do not scan too many insns, scanning insns is expensive with
778 remote targets. */
779 break;
780
781 /* Continue scanning. */
782 prev_insn_was_prologue_insn = 0;
783 continue;
784 }
785 }
786
787 #if 0
788 /* I have problems with skipping over __main() that I need to address
789 * sometime. Previously, I used to use misc_function_vector which
790 * didn't work as well as I wanted to be. -MGO */
791
792 /* If the first thing after skipping a prolog is a branch to a function,
793 this might be a call to an initializer in main(), introduced by gcc2.
794 We'd like to skip over it as well. Fortunately, xlc does some extra
795 work before calling a function right after a prologue, thus we can
796 single out such gcc2 behaviour. */
797
798
799 if ((op & 0xfc000001) == 0x48000001)
800 { /* bl foo, an initializer function? */
801 op = read_memory_integer (pc + 4, 4);
802
803 if (op == 0x4def7b82)
804 { /* cror 0xf, 0xf, 0xf (nop) */
805
806 /* Check and see if we are in main. If so, skip over this
807 initializer function as well. */
808
809 tmp = find_pc_misc_function (pc);
810 if (tmp >= 0 && STREQ (misc_function_vector[tmp].name, main_name ()))
811 return pc + 8;
812 }
813 }
814 #endif /* 0 */
815
816 fdata->offset = -fdata->offset;
817 return last_prologue_pc;
818 }
819
820
821 /*************************************************************************
822 Support for creating pushing a dummy frame into the stack, and popping
823 frames, etc.
824 *************************************************************************/
825
826
827 /* Pop the innermost frame, go back to the caller. */
828
829 static void
830 rs6000_pop_frame (void)
831 {
832 CORE_ADDR pc, lr, sp, prev_sp, addr; /* %pc, %lr, %sp */
833 struct rs6000_framedata fdata;
834 struct frame_info *frame = get_current_frame ();
835 int ii, wordsize;
836
837 pc = read_pc ();
838 sp = FRAME_FP (frame);
839
840 if (PC_IN_CALL_DUMMY (frame->pc, frame->frame, frame->frame))
841 {
842 generic_pop_dummy_frame ();
843 flush_cached_frames ();
844 return;
845 }
846
847 /* Make sure that all registers are valid. */
848 read_register_bytes (0, NULL, REGISTER_BYTES);
849
850 /* Figure out previous %pc value. If the function is frameless, it is
851 still in the link register, otherwise walk the frames and retrieve the
852 saved %pc value in the previous frame. */
853
854 addr = get_pc_function_start (frame->pc);
855 (void) skip_prologue (addr, frame->pc, &fdata);
856
857 wordsize = gdbarch_tdep (current_gdbarch)->wordsize;
858 if (fdata.frameless)
859 prev_sp = sp;
860 else
861 prev_sp = read_memory_addr (sp, wordsize);
862 if (fdata.lr_offset == 0)
863 lr = read_register (gdbarch_tdep (current_gdbarch)->ppc_lr_regnum);
864 else
865 lr = read_memory_addr (prev_sp + fdata.lr_offset, wordsize);
866
867 /* reset %pc value. */
868 write_register (PC_REGNUM, lr);
869
870 /* reset register values if any was saved earlier. */
871
872 if (fdata.saved_gpr != -1)
873 {
874 addr = prev_sp + fdata.gpr_offset;
875 for (ii = fdata.saved_gpr; ii <= 31; ++ii)
876 {
877 read_memory (addr, &registers[REGISTER_BYTE (ii)], wordsize);
878 addr += wordsize;
879 }
880 }
881
882 if (fdata.saved_fpr != -1)
883 {
884 addr = prev_sp + fdata.fpr_offset;
885 for (ii = fdata.saved_fpr; ii <= 31; ++ii)
886 {
887 read_memory (addr, &registers[REGISTER_BYTE (ii + FP0_REGNUM)], 8);
888 addr += 8;
889 }
890 }
891
892 write_register (SP_REGNUM, prev_sp);
893 target_store_registers (-1);
894 flush_cached_frames ();
895 }
896
897 /* Fixup the call sequence of a dummy function, with the real function
898 address. Its arguments will be passed by gdb. */
899
900 static void
901 rs6000_fix_call_dummy (char *dummyname, CORE_ADDR pc, CORE_ADDR fun,
902 int nargs, struct value **args, struct type *type,
903 int gcc_p)
904 {
905 int ii;
906 CORE_ADDR target_addr;
907
908 if (rs6000_find_toc_address_hook != NULL)
909 {
910 CORE_ADDR tocvalue = (*rs6000_find_toc_address_hook) (fun);
911 write_register (gdbarch_tdep (current_gdbarch)->ppc_toc_regnum,
912 tocvalue);
913 }
914 }
915
916 /* Pass the arguments in either registers, or in the stack. In RS/6000,
917 the first eight words of the argument list (that might be less than
918 eight parameters if some parameters occupy more than one word) are
919 passed in r3..r10 registers. float and double parameters are
920 passed in fpr's, in addition to that. Rest of the parameters if any
921 are passed in user stack. There might be cases in which half of the
922 parameter is copied into registers, the other half is pushed into
923 stack.
924
925 Stack must be aligned on 64-bit boundaries when synthesizing
926 function calls.
927
928 If the function is returning a structure, then the return address is passed
929 in r3, then the first 7 words of the parameters can be passed in registers,
930 starting from r4. */
931
932 static CORE_ADDR
933 rs6000_push_arguments (int nargs, struct value **args, CORE_ADDR sp,
934 int struct_return, CORE_ADDR struct_addr)
935 {
936 int ii;
937 int len = 0;
938 int argno; /* current argument number */
939 int argbytes; /* current argument byte */
940 char tmp_buffer[50];
941 int f_argno = 0; /* current floating point argno */
942 int wordsize = gdbarch_tdep (current_gdbarch)->wordsize;
943
944 struct value *arg = 0;
945 struct type *type;
946
947 CORE_ADDR saved_sp;
948
949 /* The first eight words of ther arguments are passed in registers.
950 Copy them appropriately.
951
952 If the function is returning a `struct', then the first word (which
953 will be passed in r3) is used for struct return address. In that
954 case we should advance one word and start from r4 register to copy
955 parameters. */
956
957 ii = struct_return ? 1 : 0;
958
959 /*
960 effectively indirect call... gcc does...
961
962 return_val example( float, int);
963
964 eabi:
965 float in fp0, int in r3
966 offset of stack on overflow 8/16
967 for varargs, must go by type.
968 power open:
969 float in r3&r4, int in r5
970 offset of stack on overflow different
971 both:
972 return in r3 or f0. If no float, must study how gcc emulates floats;
973 pay attention to arg promotion.
974 User may have to cast\args to handle promotion correctly
975 since gdb won't know if prototype supplied or not.
976 */
977
978 for (argno = 0, argbytes = 0; argno < nargs && ii < 8; ++ii)
979 {
980 int reg_size = REGISTER_RAW_SIZE (ii + 3);
981
982 arg = args[argno];
983 type = check_typedef (VALUE_TYPE (arg));
984 len = TYPE_LENGTH (type);
985
986 if (TYPE_CODE (type) == TYPE_CODE_FLT)
987 {
988
989 /* Floating point arguments are passed in fpr's, as well as gpr's.
990 There are 13 fpr's reserved for passing parameters. At this point
991 there is no way we would run out of them. */
992
993 if (len > 8)
994 printf_unfiltered (
995 "Fatal Error: a floating point parameter #%d with a size > 8 is found!\n", argno);
996
997 memcpy (&registers[REGISTER_BYTE (FP0_REGNUM + 1 + f_argno)],
998 VALUE_CONTENTS (arg),
999 len);
1000 ++f_argno;
1001 }
1002
1003 if (len > reg_size)
1004 {
1005
1006 /* Argument takes more than one register. */
1007 while (argbytes < len)
1008 {
1009 memset (&registers[REGISTER_BYTE (ii + 3)], 0, reg_size);
1010 memcpy (&registers[REGISTER_BYTE (ii + 3)],
1011 ((char *) VALUE_CONTENTS (arg)) + argbytes,
1012 (len - argbytes) > reg_size
1013 ? reg_size : len - argbytes);
1014 ++ii, argbytes += reg_size;
1015
1016 if (ii >= 8)
1017 goto ran_out_of_registers_for_arguments;
1018 }
1019 argbytes = 0;
1020 --ii;
1021 }
1022 else
1023 {
1024 /* Argument can fit in one register. No problem. */
1025 int adj = TARGET_BYTE_ORDER == BFD_ENDIAN_BIG ? reg_size - len : 0;
1026 memset (&registers[REGISTER_BYTE (ii + 3)], 0, reg_size);
1027 memcpy ((char *)&registers[REGISTER_BYTE (ii + 3)] + adj,
1028 VALUE_CONTENTS (arg), len);
1029 }
1030 ++argno;
1031 }
1032
1033 ran_out_of_registers_for_arguments:
1034
1035 saved_sp = read_sp ();
1036
1037 /* Location for 8 parameters are always reserved. */
1038 sp -= wordsize * 8;
1039
1040 /* Another six words for back chain, TOC register, link register, etc. */
1041 sp -= wordsize * 6;
1042
1043 /* Stack pointer must be quadword aligned. */
1044 sp &= -16;
1045
1046 /* If there are more arguments, allocate space for them in
1047 the stack, then push them starting from the ninth one. */
1048
1049 if ((argno < nargs) || argbytes)
1050 {
1051 int space = 0, jj;
1052
1053 if (argbytes)
1054 {
1055 space += ((len - argbytes + 3) & -4);
1056 jj = argno + 1;
1057 }
1058 else
1059 jj = argno;
1060
1061 for (; jj < nargs; ++jj)
1062 {
1063 struct value *val = args[jj];
1064 space += ((TYPE_LENGTH (VALUE_TYPE (val))) + 3) & -4;
1065 }
1066
1067 /* Add location required for the rest of the parameters. */
1068 space = (space + 15) & -16;
1069 sp -= space;
1070
1071 /* This is another instance we need to be concerned about
1072 securing our stack space. If we write anything underneath %sp
1073 (r1), we might conflict with the kernel who thinks he is free
1074 to use this area. So, update %sp first before doing anything
1075 else. */
1076
1077 write_register (SP_REGNUM, sp);
1078
1079 /* If the last argument copied into the registers didn't fit there
1080 completely, push the rest of it into stack. */
1081
1082 if (argbytes)
1083 {
1084 write_memory (sp + 24 + (ii * 4),
1085 ((char *) VALUE_CONTENTS (arg)) + argbytes,
1086 len - argbytes);
1087 ++argno;
1088 ii += ((len - argbytes + 3) & -4) / 4;
1089 }
1090
1091 /* Push the rest of the arguments into stack. */
1092 for (; argno < nargs; ++argno)
1093 {
1094
1095 arg = args[argno];
1096 type = check_typedef (VALUE_TYPE (arg));
1097 len = TYPE_LENGTH (type);
1098
1099
1100 /* Float types should be passed in fpr's, as well as in the
1101 stack. */
1102 if (TYPE_CODE (type) == TYPE_CODE_FLT && f_argno < 13)
1103 {
1104
1105 if (len > 8)
1106 printf_unfiltered (
1107 "Fatal Error: a floating point parameter #%d with a size > 8 is found!\n", argno);
1108
1109 memcpy (&registers[REGISTER_BYTE (FP0_REGNUM + 1 + f_argno)],
1110 VALUE_CONTENTS (arg),
1111 len);
1112 ++f_argno;
1113 }
1114
1115 write_memory (sp + 24 + (ii * 4), (char *) VALUE_CONTENTS (arg), len);
1116 ii += ((len + 3) & -4) / 4;
1117 }
1118 }
1119 else
1120 /* Secure stack areas first, before doing anything else. */
1121 write_register (SP_REGNUM, sp);
1122
1123 /* set back chain properly */
1124 store_address (tmp_buffer, 4, saved_sp);
1125 write_memory (sp, tmp_buffer, 4);
1126
1127 target_store_registers (-1);
1128 return sp;
1129 }
1130
1131 /* Function: ppc_push_return_address (pc, sp)
1132 Set up the return address for the inferior function call. */
1133
1134 static CORE_ADDR
1135 ppc_push_return_address (CORE_ADDR pc, CORE_ADDR sp)
1136 {
1137 write_register (gdbarch_tdep (current_gdbarch)->ppc_lr_regnum,
1138 CALL_DUMMY_ADDRESS ());
1139 return sp;
1140 }
1141
1142 /* Extract a function return value of type TYPE from raw register array
1143 REGBUF, and copy that return value into VALBUF in virtual format. */
1144
1145 static void
1146 rs6000_extract_return_value (struct type *valtype, char *regbuf, char *valbuf)
1147 {
1148 int offset = 0;
1149 struct gdbarch_tdep *tdep = gdbarch_tdep (current_gdbarch);
1150
1151 if (TYPE_CODE (valtype) == TYPE_CODE_FLT)
1152 {
1153
1154 double dd;
1155 float ff;
1156 /* floats and doubles are returned in fpr1. fpr's have a size of 8 bytes.
1157 We need to truncate the return value into float size (4 byte) if
1158 necessary. */
1159
1160 if (TYPE_LENGTH (valtype) > 4) /* this is a double */
1161 memcpy (valbuf,
1162 &regbuf[REGISTER_BYTE (FP0_REGNUM + 1)],
1163 TYPE_LENGTH (valtype));
1164 else
1165 { /* float */
1166 memcpy (&dd, &regbuf[REGISTER_BYTE (FP0_REGNUM + 1)], 8);
1167 ff = (float) dd;
1168 memcpy (valbuf, &ff, sizeof (float));
1169 }
1170 }
1171 else if (TYPE_CODE (valtype) == TYPE_CODE_ARRAY
1172 && TYPE_LENGTH (valtype) == 16
1173 && TYPE_VECTOR (valtype))
1174 {
1175 memcpy (valbuf, regbuf + REGISTER_BYTE (tdep->ppc_vr0_regnum + 2),
1176 TYPE_LENGTH (valtype));
1177 }
1178 else
1179 {
1180 /* return value is copied starting from r3. */
1181 if (TARGET_BYTE_ORDER == BFD_ENDIAN_BIG
1182 && TYPE_LENGTH (valtype) < REGISTER_RAW_SIZE (3))
1183 offset = REGISTER_RAW_SIZE (3) - TYPE_LENGTH (valtype);
1184
1185 memcpy (valbuf,
1186 regbuf + REGISTER_BYTE (3) + offset,
1187 TYPE_LENGTH (valtype));
1188 }
1189 }
1190
1191 /* Keep structure return address in this variable.
1192 FIXME: This is a horrid kludge which should not be allowed to continue
1193 living. This only allows a single nested call to a structure-returning
1194 function. Come on, guys! -- gnu@cygnus.com, Aug 92 */
1195
1196 static CORE_ADDR rs6000_struct_return_address;
1197
1198 /* Return whether handle_inferior_event() should proceed through code
1199 starting at PC in function NAME when stepping.
1200
1201 The AIX -bbigtoc linker option generates functions @FIX0, @FIX1, etc. to
1202 handle memory references that are too distant to fit in instructions
1203 generated by the compiler. For example, if 'foo' in the following
1204 instruction:
1205
1206 lwz r9,foo(r2)
1207
1208 is greater than 32767, the linker might replace the lwz with a branch to
1209 somewhere in @FIX1 that does the load in 2 instructions and then branches
1210 back to where execution should continue.
1211
1212 GDB should silently step over @FIX code, just like AIX dbx does.
1213 Unfortunately, the linker uses the "b" instruction for the branches,
1214 meaning that the link register doesn't get set. Therefore, GDB's usual
1215 step_over_function() mechanism won't work.
1216
1217 Instead, use the IN_SOLIB_RETURN_TRAMPOLINE and SKIP_TRAMPOLINE_CODE hooks
1218 in handle_inferior_event() to skip past @FIX code. */
1219
1220 int
1221 rs6000_in_solib_return_trampoline (CORE_ADDR pc, char *name)
1222 {
1223 return name && !strncmp (name, "@FIX", 4);
1224 }
1225
1226 /* Skip code that the user doesn't want to see when stepping:
1227
1228 1. Indirect function calls use a piece of trampoline code to do context
1229 switching, i.e. to set the new TOC table. Skip such code if we are on
1230 its first instruction (as when we have single-stepped to here).
1231
1232 2. Skip shared library trampoline code (which is different from
1233 indirect function call trampolines).
1234
1235 3. Skip bigtoc fixup code.
1236
1237 Result is desired PC to step until, or NULL if we are not in
1238 code that should be skipped. */
1239
1240 CORE_ADDR
1241 rs6000_skip_trampoline_code (CORE_ADDR pc)
1242 {
1243 register unsigned int ii, op;
1244 int rel;
1245 CORE_ADDR solib_target_pc;
1246 struct minimal_symbol *msymbol;
1247
1248 static unsigned trampoline_code[] =
1249 {
1250 0x800b0000, /* l r0,0x0(r11) */
1251 0x90410014, /* st r2,0x14(r1) */
1252 0x7c0903a6, /* mtctr r0 */
1253 0x804b0004, /* l r2,0x4(r11) */
1254 0x816b0008, /* l r11,0x8(r11) */
1255 0x4e800420, /* bctr */
1256 0x4e800020, /* br */
1257 0
1258 };
1259
1260 /* Check for bigtoc fixup code. */
1261 msymbol = lookup_minimal_symbol_by_pc (pc);
1262 if (msymbol && rs6000_in_solib_return_trampoline (pc, SYMBOL_NAME (msymbol)))
1263 {
1264 /* Double-check that the third instruction from PC is relative "b". */
1265 op = read_memory_integer (pc + 8, 4);
1266 if ((op & 0xfc000003) == 0x48000000)
1267 {
1268 /* Extract bits 6-29 as a signed 24-bit relative word address and
1269 add it to the containing PC. */
1270 rel = ((int)(op << 6) >> 6);
1271 return pc + 8 + rel;
1272 }
1273 }
1274
1275 /* If pc is in a shared library trampoline, return its target. */
1276 solib_target_pc = find_solib_trampoline_target (pc);
1277 if (solib_target_pc)
1278 return solib_target_pc;
1279
1280 for (ii = 0; trampoline_code[ii]; ++ii)
1281 {
1282 op = read_memory_integer (pc + (ii * 4), 4);
1283 if (op != trampoline_code[ii])
1284 return 0;
1285 }
1286 ii = read_register (11); /* r11 holds destination addr */
1287 pc = read_memory_addr (ii, gdbarch_tdep (current_gdbarch)->wordsize); /* (r11) value */
1288 return pc;
1289 }
1290
1291 /* Determines whether the function FI has a frame on the stack or not. */
1292
1293 int
1294 rs6000_frameless_function_invocation (struct frame_info *fi)
1295 {
1296 CORE_ADDR func_start;
1297 struct rs6000_framedata fdata;
1298
1299 /* Don't even think about framelessness except on the innermost frame
1300 or if the function was interrupted by a signal. */
1301 if (fi->next != NULL && !fi->next->signal_handler_caller)
1302 return 0;
1303
1304 func_start = get_pc_function_start (fi->pc);
1305
1306 /* If we failed to find the start of the function, it is a mistake
1307 to inspect the instructions. */
1308
1309 if (!func_start)
1310 {
1311 /* A frame with a zero PC is usually created by dereferencing a NULL
1312 function pointer, normally causing an immediate core dump of the
1313 inferior. Mark function as frameless, as the inferior has no chance
1314 of setting up a stack frame. */
1315 if (fi->pc == 0)
1316 return 1;
1317 else
1318 return 0;
1319 }
1320
1321 (void) skip_prologue (func_start, fi->pc, &fdata);
1322 return fdata.frameless;
1323 }
1324
1325 /* Return the PC saved in a frame. */
1326
1327 CORE_ADDR
1328 rs6000_frame_saved_pc (struct frame_info *fi)
1329 {
1330 CORE_ADDR func_start;
1331 struct rs6000_framedata fdata;
1332 struct gdbarch_tdep *tdep = gdbarch_tdep (current_gdbarch);
1333 int wordsize = tdep->wordsize;
1334
1335 if (fi->signal_handler_caller)
1336 return read_memory_addr (fi->frame + SIG_FRAME_PC_OFFSET, wordsize);
1337
1338 if (PC_IN_CALL_DUMMY (fi->pc, fi->frame, fi->frame))
1339 return generic_read_register_dummy (fi->pc, fi->frame, PC_REGNUM);
1340
1341 func_start = get_pc_function_start (fi->pc);
1342
1343 /* If we failed to find the start of the function, it is a mistake
1344 to inspect the instructions. */
1345 if (!func_start)
1346 return 0;
1347
1348 (void) skip_prologue (func_start, fi->pc, &fdata);
1349
1350 if (fdata.lr_offset == 0 && fi->next != NULL)
1351 {
1352 if (fi->next->signal_handler_caller)
1353 return read_memory_addr (fi->next->frame + SIG_FRAME_LR_OFFSET,
1354 wordsize);
1355 else
1356 return read_memory_addr (FRAME_CHAIN (fi) + tdep->lr_frame_offset,
1357 wordsize);
1358 }
1359
1360 if (fdata.lr_offset == 0)
1361 return read_register (gdbarch_tdep (current_gdbarch)->ppc_lr_regnum);
1362
1363 return read_memory_addr (FRAME_CHAIN (fi) + fdata.lr_offset, wordsize);
1364 }
1365
1366 /* If saved registers of frame FI are not known yet, read and cache them.
1367 &FDATAP contains rs6000_framedata; TDATAP can be NULL,
1368 in which case the framedata are read. */
1369
1370 static void
1371 frame_get_saved_regs (struct frame_info *fi, struct rs6000_framedata *fdatap)
1372 {
1373 CORE_ADDR frame_addr;
1374 struct rs6000_framedata work_fdata;
1375 struct gdbarch_tdep * tdep = gdbarch_tdep (current_gdbarch);
1376 int wordsize = tdep->wordsize;
1377
1378 if (fi->saved_regs)
1379 return;
1380
1381 if (fdatap == NULL)
1382 {
1383 fdatap = &work_fdata;
1384 (void) skip_prologue (get_pc_function_start (fi->pc), fi->pc, fdatap);
1385 }
1386
1387 frame_saved_regs_zalloc (fi);
1388
1389 /* If there were any saved registers, figure out parent's stack
1390 pointer. */
1391 /* The following is true only if the frame doesn't have a call to
1392 alloca(), FIXME. */
1393
1394 if (fdatap->saved_fpr == 0
1395 && fdatap->saved_gpr == 0
1396 && fdatap->saved_vr == 0
1397 && fdatap->lr_offset == 0
1398 && fdatap->cr_offset == 0
1399 && fdatap->vr_offset == 0)
1400 frame_addr = 0;
1401 else
1402 /* NOTE: cagney/2002-04-14: The ->frame points to the inner-most
1403 address of the current frame. Things might be easier if the
1404 ->frame pointed to the outer-most address of the frame. In the
1405 mean time, the address of the prev frame is used as the base
1406 address of this frame. */
1407 frame_addr = FRAME_CHAIN (fi);
1408
1409 /* if != -1, fdatap->saved_fpr is the smallest number of saved_fpr.
1410 All fpr's from saved_fpr to fp31 are saved. */
1411
1412 if (fdatap->saved_fpr >= 0)
1413 {
1414 int i;
1415 CORE_ADDR fpr_addr = frame_addr + fdatap->fpr_offset;
1416 for (i = fdatap->saved_fpr; i < 32; i++)
1417 {
1418 fi->saved_regs[FP0_REGNUM + i] = fpr_addr;
1419 fpr_addr += 8;
1420 }
1421 }
1422
1423 /* if != -1, fdatap->saved_gpr is the smallest number of saved_gpr.
1424 All gpr's from saved_gpr to gpr31 are saved. */
1425
1426 if (fdatap->saved_gpr >= 0)
1427 {
1428 int i;
1429 CORE_ADDR gpr_addr = frame_addr + fdatap->gpr_offset;
1430 for (i = fdatap->saved_gpr; i < 32; i++)
1431 {
1432 fi->saved_regs[i] = gpr_addr;
1433 gpr_addr += wordsize;
1434 }
1435 }
1436
1437 /* if != -1, fdatap->saved_vr is the smallest number of saved_vr.
1438 All vr's from saved_vr to vr31 are saved. */
1439 if (tdep->ppc_vr0_regnum != -1 && tdep->ppc_vrsave_regnum != -1)
1440 {
1441 if (fdatap->saved_vr >= 0)
1442 {
1443 int i;
1444 CORE_ADDR vr_addr = frame_addr + fdatap->vr_offset;
1445 for (i = fdatap->saved_vr; i < 32; i++)
1446 {
1447 fi->saved_regs[tdep->ppc_vr0_regnum + i] = vr_addr;
1448 vr_addr += REGISTER_RAW_SIZE (tdep->ppc_vr0_regnum);
1449 }
1450 }
1451 }
1452
1453 /* If != 0, fdatap->cr_offset is the offset from the frame that holds
1454 the CR. */
1455 if (fdatap->cr_offset != 0)
1456 fi->saved_regs[tdep->ppc_cr_regnum] = frame_addr + fdatap->cr_offset;
1457
1458 /* If != 0, fdatap->lr_offset is the offset from the frame that holds
1459 the LR. */
1460 if (fdatap->lr_offset != 0)
1461 fi->saved_regs[tdep->ppc_lr_regnum] = frame_addr + fdatap->lr_offset;
1462
1463 /* If != 0, fdatap->vrsave_offset is the offset from the frame that holds
1464 the VRSAVE. */
1465 if (fdatap->vrsave_offset != 0)
1466 fi->saved_regs[tdep->ppc_vrsave_regnum] = frame_addr + fdatap->vrsave_offset;
1467 }
1468
1469 /* Return the address of a frame. This is the inital %sp value when the frame
1470 was first allocated. For functions calling alloca(), it might be saved in
1471 an alloca register. */
1472
1473 static CORE_ADDR
1474 frame_initial_stack_address (struct frame_info *fi)
1475 {
1476 CORE_ADDR tmpaddr;
1477 struct rs6000_framedata fdata;
1478 struct frame_info *callee_fi;
1479
1480 /* If the initial stack pointer (frame address) of this frame is known,
1481 just return it. */
1482
1483 if (fi->extra_info->initial_sp)
1484 return fi->extra_info->initial_sp;
1485
1486 /* Find out if this function is using an alloca register. */
1487
1488 (void) skip_prologue (get_pc_function_start (fi->pc), fi->pc, &fdata);
1489
1490 /* If saved registers of this frame are not known yet, read and
1491 cache them. */
1492
1493 if (!fi->saved_regs)
1494 frame_get_saved_regs (fi, &fdata);
1495
1496 /* If no alloca register used, then fi->frame is the value of the %sp for
1497 this frame, and it is good enough. */
1498
1499 if (fdata.alloca_reg < 0)
1500 {
1501 fi->extra_info->initial_sp = fi->frame;
1502 return fi->extra_info->initial_sp;
1503 }
1504
1505 /* There is an alloca register, use its value, in the current frame,
1506 as the initial stack pointer. */
1507 {
1508 char *tmpbuf = alloca (MAX_REGISTER_RAW_SIZE);
1509 if (frame_register_read (fi, fdata.alloca_reg, tmpbuf))
1510 {
1511 fi->extra_info->initial_sp
1512 = extract_unsigned_integer (tmpbuf,
1513 REGISTER_RAW_SIZE (fdata.alloca_reg));
1514 }
1515 else
1516 /* NOTE: cagney/2002-04-17: At present the only time
1517 frame_register_read will fail is when the register isn't
1518 available. If that does happen, use the frame. */
1519 fi->extra_info->initial_sp = fi->frame;
1520 }
1521 return fi->extra_info->initial_sp;
1522 }
1523
1524 /* Describe the pointer in each stack frame to the previous stack frame
1525 (its caller). */
1526
1527 /* FRAME_CHAIN takes a frame's nominal address
1528 and produces the frame's chain-pointer. */
1529
1530 /* In the case of the RS/6000, the frame's nominal address
1531 is the address of a 4-byte word containing the calling frame's address. */
1532
1533 CORE_ADDR
1534 rs6000_frame_chain (struct frame_info *thisframe)
1535 {
1536 CORE_ADDR fp, fpp, lr;
1537 int wordsize = gdbarch_tdep (current_gdbarch)->wordsize;
1538
1539 if (PC_IN_CALL_DUMMY (thisframe->pc, thisframe->frame, thisframe->frame))
1540 return thisframe->frame; /* dummy frame same as caller's frame */
1541
1542 if (inside_entry_file (thisframe->pc) ||
1543 thisframe->pc == entry_point_address ())
1544 return 0;
1545
1546 if (thisframe->signal_handler_caller)
1547 fp = read_memory_addr (thisframe->frame + SIG_FRAME_FP_OFFSET,
1548 wordsize);
1549 else if (thisframe->next != NULL
1550 && thisframe->next->signal_handler_caller
1551 && FRAMELESS_FUNCTION_INVOCATION (thisframe))
1552 /* A frameless function interrupted by a signal did not change the
1553 frame pointer. */
1554 fp = FRAME_FP (thisframe);
1555 else
1556 fp = read_memory_addr ((thisframe)->frame, wordsize);
1557
1558 lr = read_register (gdbarch_tdep (current_gdbarch)->ppc_lr_regnum);
1559 if (lr == entry_point_address ())
1560 if (fp != 0 && (fpp = read_memory_addr (fp, wordsize)) != 0)
1561 if (PC_IN_CALL_DUMMY (lr, fpp, fpp))
1562 return fpp;
1563
1564 return fp;
1565 }
1566
1567 /* Return the size of register REG when words are WORDSIZE bytes long. If REG
1568 isn't available with that word size, return 0. */
1569
1570 static int
1571 regsize (const struct reg *reg, int wordsize)
1572 {
1573 return wordsize == 8 ? reg->sz64 : reg->sz32;
1574 }
1575
1576 /* Return the name of register number N, or null if no such register exists
1577 in the current architecture. */
1578
1579 static const char *
1580 rs6000_register_name (int n)
1581 {
1582 struct gdbarch_tdep *tdep = gdbarch_tdep (current_gdbarch);
1583 const struct reg *reg = tdep->regs + n;
1584
1585 if (!regsize (reg, tdep->wordsize))
1586 return NULL;
1587 return reg->name;
1588 }
1589
1590 /* Index within `registers' of the first byte of the space for
1591 register N. */
1592
1593 static int
1594 rs6000_register_byte (int n)
1595 {
1596 return gdbarch_tdep (current_gdbarch)->regoff[n];
1597 }
1598
1599 /* Return the number of bytes of storage in the actual machine representation
1600 for register N if that register is available, else return 0. */
1601
1602 static int
1603 rs6000_register_raw_size (int n)
1604 {
1605 struct gdbarch_tdep *tdep = gdbarch_tdep (current_gdbarch);
1606 const struct reg *reg = tdep->regs + n;
1607 return regsize (reg, tdep->wordsize);
1608 }
1609
1610 /* Return the GDB type object for the "standard" data type
1611 of data in register N. */
1612
1613 static struct type *
1614 rs6000_register_virtual_type (int n)
1615 {
1616 struct gdbarch_tdep *tdep = gdbarch_tdep (current_gdbarch);
1617 const struct reg *reg = tdep->regs + n;
1618
1619 if (reg->fpr)
1620 return builtin_type_double;
1621 else
1622 {
1623 int size = regsize (reg, tdep->wordsize);
1624 switch (size)
1625 {
1626 case 8:
1627 return builtin_type_int64;
1628 break;
1629 case 16:
1630 return builtin_type_vec128;
1631 break;
1632 default:
1633 return builtin_type_int32;
1634 break;
1635 }
1636 }
1637 }
1638
1639 /* For the PowerPC, it appears that the debug info marks float parameters as
1640 floats regardless of whether the function is prototyped, but the actual
1641 values are always passed in as doubles. Tell gdb to always assume that
1642 floats are passed as doubles and then converted in the callee. */
1643
1644 static int
1645 rs6000_coerce_float_to_double (struct type *formal, struct type *actual)
1646 {
1647 return 1;
1648 }
1649
1650 /* Return whether register N requires conversion when moving from raw format
1651 to virtual format.
1652
1653 The register format for RS/6000 floating point registers is always
1654 double, we need a conversion if the memory format is float. */
1655
1656 static int
1657 rs6000_register_convertible (int n)
1658 {
1659 const struct reg *reg = gdbarch_tdep (current_gdbarch)->regs + n;
1660 return reg->fpr;
1661 }
1662
1663 /* Convert data from raw format for register N in buffer FROM
1664 to virtual format with type TYPE in buffer TO. */
1665
1666 static void
1667 rs6000_register_convert_to_virtual (int n, struct type *type,
1668 char *from, char *to)
1669 {
1670 if (TYPE_LENGTH (type) != REGISTER_RAW_SIZE (n))
1671 {
1672 double val = extract_floating (from, REGISTER_RAW_SIZE (n));
1673 store_floating (to, TYPE_LENGTH (type), val);
1674 }
1675 else
1676 memcpy (to, from, REGISTER_RAW_SIZE (n));
1677 }
1678
1679 /* Convert data from virtual format with type TYPE in buffer FROM
1680 to raw format for register N in buffer TO. */
1681
1682 static void
1683 rs6000_register_convert_to_raw (struct type *type, int n,
1684 char *from, char *to)
1685 {
1686 if (TYPE_LENGTH (type) != REGISTER_RAW_SIZE (n))
1687 {
1688 double val = extract_floating (from, TYPE_LENGTH (type));
1689 store_floating (to, REGISTER_RAW_SIZE (n), val);
1690 }
1691 else
1692 memcpy (to, from, REGISTER_RAW_SIZE (n));
1693 }
1694
1695 /* Convert a dbx stab register number (from `r' declaration) to a gdb
1696 REGNUM. */
1697 static int
1698 rs6000_stab_reg_to_regnum (int num)
1699 {
1700 int regnum;
1701 switch (num)
1702 {
1703 case 64:
1704 regnum = gdbarch_tdep (current_gdbarch)->ppc_mq_regnum;
1705 break;
1706 case 65:
1707 regnum = gdbarch_tdep (current_gdbarch)->ppc_lr_regnum;
1708 break;
1709 case 66:
1710 regnum = gdbarch_tdep (current_gdbarch)->ppc_ctr_regnum;
1711 break;
1712 case 76:
1713 regnum = gdbarch_tdep (current_gdbarch)->ppc_xer_regnum;
1714 break;
1715 default:
1716 regnum = num;
1717 break;
1718 }
1719 return regnum;
1720 }
1721
1722 /* Store the address of the place in which to copy the structure the
1723 subroutine will return. This is called from call_function.
1724
1725 In RS/6000, struct return addresses are passed as an extra parameter in r3.
1726 In function return, callee is not responsible of returning this address
1727 back. Since gdb needs to find it, we will store in a designated variable
1728 `rs6000_struct_return_address'. */
1729
1730 static void
1731 rs6000_store_struct_return (CORE_ADDR addr, CORE_ADDR sp)
1732 {
1733 write_register (3, addr);
1734 rs6000_struct_return_address = addr;
1735 }
1736
1737 /* Write into appropriate registers a function return value
1738 of type TYPE, given in virtual format. */
1739
1740 static void
1741 rs6000_store_return_value (struct type *type, char *valbuf)
1742 {
1743 struct gdbarch_tdep *tdep = gdbarch_tdep (current_gdbarch);
1744
1745 if (TYPE_CODE (type) == TYPE_CODE_FLT)
1746
1747 /* Floating point values are returned starting from FPR1 and up.
1748 Say a double_double_double type could be returned in
1749 FPR1/FPR2/FPR3 triple. */
1750
1751 write_register_bytes (REGISTER_BYTE (FP0_REGNUM + 1), valbuf,
1752 TYPE_LENGTH (type));
1753 else if (TYPE_CODE (type) == TYPE_CODE_ARRAY)
1754 {
1755 if (TYPE_LENGTH (type) == 16
1756 && TYPE_VECTOR (type))
1757 write_register_bytes (REGISTER_BYTE (tdep->ppc_vr0_regnum + 2),
1758 valbuf, TYPE_LENGTH (type));
1759 }
1760 else
1761 /* Everything else is returned in GPR3 and up. */
1762 write_register_bytes (REGISTER_BYTE (gdbarch_tdep (current_gdbarch)->ppc_gp0_regnum + 3),
1763 valbuf, TYPE_LENGTH (type));
1764 }
1765
1766 /* Extract from an array REGBUF containing the (raw) register state
1767 the address in which a function should return its structure value,
1768 as a CORE_ADDR (or an expression that can be used as one). */
1769
1770 static CORE_ADDR
1771 rs6000_extract_struct_value_address (char *regbuf)
1772 {
1773 return rs6000_struct_return_address;
1774 }
1775
1776 /* Return whether PC is in a dummy function call.
1777
1778 FIXME: This just checks for the end of the stack, which is broken
1779 for things like stepping through gcc nested function stubs. */
1780
1781 static int
1782 rs6000_pc_in_call_dummy (CORE_ADDR pc, CORE_ADDR sp, CORE_ADDR fp)
1783 {
1784 return sp < pc && pc < fp;
1785 }
1786
1787 /* Hook called when a new child process is started. */
1788
1789 void
1790 rs6000_create_inferior (int pid)
1791 {
1792 if (rs6000_set_host_arch_hook)
1793 rs6000_set_host_arch_hook (pid);
1794 }
1795 \f
1796 /* Support for CONVERT_FROM_FUNC_PTR_ADDR(ADDR).
1797
1798 Usually a function pointer's representation is simply the address
1799 of the function. On the RS/6000 however, a function pointer is
1800 represented by a pointer to a TOC entry. This TOC entry contains
1801 three words, the first word is the address of the function, the
1802 second word is the TOC pointer (r2), and the third word is the
1803 static chain value. Throughout GDB it is currently assumed that a
1804 function pointer contains the address of the function, which is not
1805 easy to fix. In addition, the conversion of a function address to
1806 a function pointer would require allocation of a TOC entry in the
1807 inferior's memory space, with all its drawbacks. To be able to
1808 call C++ virtual methods in the inferior (which are called via
1809 function pointers), find_function_addr uses this function to get the
1810 function address from a function pointer. */
1811
1812 /* Return real function address if ADDR (a function pointer) is in the data
1813 space and is therefore a special function pointer. */
1814
1815 CORE_ADDR
1816 rs6000_convert_from_func_ptr_addr (CORE_ADDR addr)
1817 {
1818 struct obj_section *s;
1819
1820 s = find_pc_section (addr);
1821 if (s && s->the_bfd_section->flags & SEC_CODE)
1822 return addr;
1823
1824 /* ADDR is in the data space, so it's a special function pointer. */
1825 return read_memory_addr (addr, gdbarch_tdep (current_gdbarch)->wordsize);
1826 }
1827 \f
1828
1829 /* Handling the various POWER/PowerPC variants. */
1830
1831
1832 /* The arrays here called registers_MUMBLE hold information about available
1833 registers.
1834
1835 For each family of PPC variants, I've tried to isolate out the
1836 common registers and put them up front, so that as long as you get
1837 the general family right, GDB will correctly identify the registers
1838 common to that family. The common register sets are:
1839
1840 For the 60x family: hid0 hid1 iabr dabr pir
1841
1842 For the 505 and 860 family: eie eid nri
1843
1844 For the 403 and 403GC: icdbdr esr dear evpr cdbcr tsr tcr pit tbhi
1845 tblo srr2 srr3 dbsr dbcr iac1 iac2 dac1 dac2 dccr iccr pbl1
1846 pbu1 pbl2 pbu2
1847
1848 Most of these register groups aren't anything formal. I arrived at
1849 them by looking at the registers that occurred in more than one
1850 processor.
1851
1852 Note: kevinb/2002-04-30: Support for the fpscr register was added
1853 during April, 2002. Slot 70 is being used for PowerPC and slot 71
1854 for Power. For PowerPC, slot 70 was unused and was already in the
1855 PPC_UISA_SPRS which is ideally where fpscr should go. For Power,
1856 slot 70 was being used for "mq", so the next available slot (71)
1857 was chosen. It would have been nice to be able to make the
1858 register numbers the same across processor cores, but this wasn't
1859 possible without either 1) renumbering some registers for some
1860 processors or 2) assigning fpscr to a really high slot that's
1861 larger than any current register number. Doing (1) is bad because
1862 existing stubs would break. Doing (2) is undesirable because it
1863 would introduce a really large gap between fpscr and the rest of
1864 the registers for most processors. */
1865
1866 /* Convenience macros for populating register arrays. */
1867
1868 /* Within another macro, convert S to a string. */
1869
1870 #define STR(s) #s
1871
1872 /* Return a struct reg defining register NAME that's 32 bits on 32-bit systems
1873 and 64 bits on 64-bit systems. */
1874 #define R(name) { STR(name), 4, 8, 0, 0 }
1875
1876 /* Return a struct reg defining register NAME that's 32 bits on all
1877 systems. */
1878 #define R4(name) { STR(name), 4, 4, 0, 0 }
1879
1880 /* Return a struct reg defining register NAME that's 64 bits on all
1881 systems. */
1882 #define R8(name) { STR(name), 8, 8, 0, 0 }
1883
1884 /* Return a struct reg defining register NAME that's 128 bits on all
1885 systems. */
1886 #define R16(name) { STR(name), 16, 16, 0, 0 }
1887
1888 /* Return a struct reg defining floating-point register NAME. */
1889 #define F(name) { STR(name), 8, 8, 1, 0 }
1890
1891 /* Return a struct reg defining a pseudo register NAME. */
1892 #define P(name) { STR(name), 4, 8, 0, 1}
1893
1894 /* Return a struct reg defining register NAME that's 32 bits on 32-bit
1895 systems and that doesn't exist on 64-bit systems. */
1896 #define R32(name) { STR(name), 4, 0, 0, 0 }
1897
1898 /* Return a struct reg defining register NAME that's 64 bits on 64-bit
1899 systems and that doesn't exist on 32-bit systems. */
1900 #define R64(name) { STR(name), 0, 8, 0, 0 }
1901
1902 /* Return a struct reg placeholder for a register that doesn't exist. */
1903 #define R0 { 0, 0, 0, 0, 0 }
1904
1905 /* UISA registers common across all architectures, including POWER. */
1906
1907 #define COMMON_UISA_REGS \
1908 /* 0 */ R(r0), R(r1), R(r2), R(r3), R(r4), R(r5), R(r6), R(r7), \
1909 /* 8 */ R(r8), R(r9), R(r10),R(r11),R(r12),R(r13),R(r14),R(r15), \
1910 /* 16 */ R(r16),R(r17),R(r18),R(r19),R(r20),R(r21),R(r22),R(r23), \
1911 /* 24 */ R(r24),R(r25),R(r26),R(r27),R(r28),R(r29),R(r30),R(r31), \
1912 /* 32 */ F(f0), F(f1), F(f2), F(f3), F(f4), F(f5), F(f6), F(f7), \
1913 /* 40 */ F(f8), F(f9), F(f10),F(f11),F(f12),F(f13),F(f14),F(f15), \
1914 /* 48 */ F(f16),F(f17),F(f18),F(f19),F(f20),F(f21),F(f22),F(f23), \
1915 /* 56 */ F(f24),F(f25),F(f26),F(f27),F(f28),F(f29),F(f30),F(f31), \
1916 /* 64 */ R(pc), R(ps)
1917
1918 #define COMMON_UISA_NOFP_REGS \
1919 /* 0 */ R(r0), R(r1), R(r2), R(r3), R(r4), R(r5), R(r6), R(r7), \
1920 /* 8 */ R(r8), R(r9), R(r10),R(r11),R(r12),R(r13),R(r14),R(r15), \
1921 /* 16 */ R(r16),R(r17),R(r18),R(r19),R(r20),R(r21),R(r22),R(r23), \
1922 /* 24 */ R(r24),R(r25),R(r26),R(r27),R(r28),R(r29),R(r30),R(r31), \
1923 /* 32 */ R0, R0, R0, R0, R0, R0, R0, R0, \
1924 /* 40 */ R0, R0, R0, R0, R0, R0, R0, R0, \
1925 /* 48 */ R0, R0, R0, R0, R0, R0, R0, R0, \
1926 /* 56 */ R0, R0, R0, R0, R0, R0, R0, R0, \
1927 /* 64 */ R(pc), R(ps)
1928
1929 /* UISA-level SPRs for PowerPC. */
1930 #define PPC_UISA_SPRS \
1931 /* 66 */ R4(cr), R(lr), R(ctr), R4(xer), R4(fpscr)
1932
1933 /* Segment registers, for PowerPC. */
1934 #define PPC_SEGMENT_REGS \
1935 /* 71 */ R32(sr0), R32(sr1), R32(sr2), R32(sr3), \
1936 /* 75 */ R32(sr4), R32(sr5), R32(sr6), R32(sr7), \
1937 /* 79 */ R32(sr8), R32(sr9), R32(sr10), R32(sr11), \
1938 /* 83 */ R32(sr12), R32(sr13), R32(sr14), R32(sr15)
1939
1940 /* OEA SPRs for PowerPC. */
1941 #define PPC_OEA_SPRS \
1942 /* 87 */ R4(pvr), \
1943 /* 88 */ R(ibat0u), R(ibat0l), R(ibat1u), R(ibat1l), \
1944 /* 92 */ R(ibat2u), R(ibat2l), R(ibat3u), R(ibat3l), \
1945 /* 96 */ R(dbat0u), R(dbat0l), R(dbat1u), R(dbat1l), \
1946 /* 100 */ R(dbat2u), R(dbat2l), R(dbat3u), R(dbat3l), \
1947 /* 104 */ R(sdr1), R64(asr), R(dar), R4(dsisr), \
1948 /* 108 */ R(sprg0), R(sprg1), R(sprg2), R(sprg3), \
1949 /* 112 */ R(srr0), R(srr1), R(tbl), R(tbu), \
1950 /* 116 */ R4(dec), R(dabr), R4(ear)
1951
1952 /* AltiVec registers. */
1953 #define PPC_ALTIVEC_REGS \
1954 /*119*/R16(vr0), R16(vr1), R16(vr2), R16(vr3), R16(vr4), R16(vr5), R16(vr6), R16(vr7), \
1955 /*127*/R16(vr8), R16(vr9), R16(vr10),R16(vr11),R16(vr12),R16(vr13),R16(vr14),R16(vr15), \
1956 /*135*/R16(vr16),R16(vr17),R16(vr18),R16(vr19),R16(vr20),R16(vr21),R16(vr22),R16(vr23), \
1957 /*143*/R16(vr24),R16(vr25),R16(vr26),R16(vr27),R16(vr28),R16(vr29),R16(vr30),R16(vr31), \
1958 /*151*/R4(vscr), R4(vrsave)
1959
1960 /* IBM POWER (pre-PowerPC) architecture, user-level view. We only cover
1961 user-level SPR's. */
1962 static const struct reg registers_power[] =
1963 {
1964 COMMON_UISA_REGS,
1965 /* 66 */ R4(cnd), R(lr), R(cnt), R4(xer), R4(mq),
1966 /* 71 */ R4(fpscr)
1967 };
1968
1969 /* PowerPC UISA - a PPC processor as viewed by user-level code. A UISA-only
1970 view of the PowerPC. */
1971 static const struct reg registers_powerpc[] =
1972 {
1973 COMMON_UISA_REGS,
1974 PPC_UISA_SPRS,
1975 PPC_ALTIVEC_REGS
1976 };
1977
1978 /* PowerPC UISA - a PPC processor as viewed by user-level
1979 code, but without floating point registers. */
1980 static const struct reg registers_powerpc_nofp[] =
1981 {
1982 COMMON_UISA_NOFP_REGS,
1983 PPC_UISA_SPRS
1984 };
1985
1986 /* IBM PowerPC 403. */
1987 static const struct reg registers_403[] =
1988 {
1989 COMMON_UISA_REGS,
1990 PPC_UISA_SPRS,
1991 PPC_SEGMENT_REGS,
1992 PPC_OEA_SPRS,
1993 /* 119 */ R(icdbdr), R(esr), R(dear), R(evpr),
1994 /* 123 */ R(cdbcr), R(tsr), R(tcr), R(pit),
1995 /* 127 */ R(tbhi), R(tblo), R(srr2), R(srr3),
1996 /* 131 */ R(dbsr), R(dbcr), R(iac1), R(iac2),
1997 /* 135 */ R(dac1), R(dac2), R(dccr), R(iccr),
1998 /* 139 */ R(pbl1), R(pbu1), R(pbl2), R(pbu2)
1999 };
2000
2001 /* IBM PowerPC 403GC. */
2002 static const struct reg registers_403GC[] =
2003 {
2004 COMMON_UISA_REGS,
2005 PPC_UISA_SPRS,
2006 PPC_SEGMENT_REGS,
2007 PPC_OEA_SPRS,
2008 /* 119 */ R(icdbdr), R(esr), R(dear), R(evpr),
2009 /* 123 */ R(cdbcr), R(tsr), R(tcr), R(pit),
2010 /* 127 */ R(tbhi), R(tblo), R(srr2), R(srr3),
2011 /* 131 */ R(dbsr), R(dbcr), R(iac1), R(iac2),
2012 /* 135 */ R(dac1), R(dac2), R(dccr), R(iccr),
2013 /* 139 */ R(pbl1), R(pbu1), R(pbl2), R(pbu2),
2014 /* 143 */ R(zpr), R(pid), R(sgr), R(dcwr),
2015 /* 147 */ R(tbhu), R(tblu)
2016 };
2017
2018 /* Motorola PowerPC 505. */
2019 static const struct reg registers_505[] =
2020 {
2021 COMMON_UISA_REGS,
2022 PPC_UISA_SPRS,
2023 PPC_SEGMENT_REGS,
2024 PPC_OEA_SPRS,
2025 /* 119 */ R(eie), R(eid), R(nri)
2026 };
2027
2028 /* Motorola PowerPC 860 or 850. */
2029 static const struct reg registers_860[] =
2030 {
2031 COMMON_UISA_REGS,
2032 PPC_UISA_SPRS,
2033 PPC_SEGMENT_REGS,
2034 PPC_OEA_SPRS,
2035 /* 119 */ R(eie), R(eid), R(nri), R(cmpa),
2036 /* 123 */ R(cmpb), R(cmpc), R(cmpd), R(icr),
2037 /* 127 */ R(der), R(counta), R(countb), R(cmpe),
2038 /* 131 */ R(cmpf), R(cmpg), R(cmph), R(lctrl1),
2039 /* 135 */ R(lctrl2), R(ictrl), R(bar), R(ic_cst),
2040 /* 139 */ R(ic_adr), R(ic_dat), R(dc_cst), R(dc_adr),
2041 /* 143 */ R(dc_dat), R(dpdr), R(dpir), R(immr),
2042 /* 147 */ R(mi_ctr), R(mi_ap), R(mi_epn), R(mi_twc),
2043 /* 151 */ R(mi_rpn), R(md_ctr), R(m_casid), R(md_ap),
2044 /* 155 */ R(md_epn), R(md_twb), R(md_twc), R(md_rpn),
2045 /* 159 */ R(m_tw), R(mi_dbcam), R(mi_dbram0), R(mi_dbram1),
2046 /* 163 */ R(md_dbcam), R(md_dbram0), R(md_dbram1)
2047 };
2048
2049 /* Motorola PowerPC 601. Note that the 601 has different register numbers
2050 for reading and writing RTCU and RTCL. However, how one reads and writes a
2051 register is the stub's problem. */
2052 static const struct reg registers_601[] =
2053 {
2054 COMMON_UISA_REGS,
2055 PPC_UISA_SPRS,
2056 PPC_SEGMENT_REGS,
2057 PPC_OEA_SPRS,
2058 /* 119 */ R(hid0), R(hid1), R(iabr), R(dabr),
2059 /* 123 */ R(pir), R(mq), R(rtcu), R(rtcl)
2060 };
2061
2062 /* Motorola PowerPC 602. */
2063 static const struct reg registers_602[] =
2064 {
2065 COMMON_UISA_REGS,
2066 PPC_UISA_SPRS,
2067 PPC_SEGMENT_REGS,
2068 PPC_OEA_SPRS,
2069 /* 119 */ R(hid0), R(hid1), R(iabr), R0,
2070 /* 123 */ R0, R(tcr), R(ibr), R(esassr),
2071 /* 127 */ R(sebr), R(ser), R(sp), R(lt)
2072 };
2073
2074 /* Motorola/IBM PowerPC 603 or 603e. */
2075 static const struct reg registers_603[] =
2076 {
2077 COMMON_UISA_REGS,
2078 PPC_UISA_SPRS,
2079 PPC_SEGMENT_REGS,
2080 PPC_OEA_SPRS,
2081 /* 119 */ R(hid0), R(hid1), R(iabr), R0,
2082 /* 123 */ R0, R(dmiss), R(dcmp), R(hash1),
2083 /* 127 */ R(hash2), R(imiss), R(icmp), R(rpa)
2084 };
2085
2086 /* Motorola PowerPC 604 or 604e. */
2087 static const struct reg registers_604[] =
2088 {
2089 COMMON_UISA_REGS,
2090 PPC_UISA_SPRS,
2091 PPC_SEGMENT_REGS,
2092 PPC_OEA_SPRS,
2093 /* 119 */ R(hid0), R(hid1), R(iabr), R(dabr),
2094 /* 123 */ R(pir), R(mmcr0), R(pmc1), R(pmc2),
2095 /* 127 */ R(sia), R(sda)
2096 };
2097
2098 /* Motorola/IBM PowerPC 750 or 740. */
2099 static const struct reg registers_750[] =
2100 {
2101 COMMON_UISA_REGS,
2102 PPC_UISA_SPRS,
2103 PPC_SEGMENT_REGS,
2104 PPC_OEA_SPRS,
2105 /* 119 */ R(hid0), R(hid1), R(iabr), R(dabr),
2106 /* 123 */ R0, R(ummcr0), R(upmc1), R(upmc2),
2107 /* 127 */ R(usia), R(ummcr1), R(upmc3), R(upmc4),
2108 /* 131 */ R(mmcr0), R(pmc1), R(pmc2), R(sia),
2109 /* 135 */ R(mmcr1), R(pmc3), R(pmc4), R(l2cr),
2110 /* 139 */ R(ictc), R(thrm1), R(thrm2), R(thrm3)
2111 };
2112
2113
2114 /* Motorola PowerPC 7400. */
2115 static const struct reg registers_7400[] =
2116 {
2117 /* gpr0-gpr31, fpr0-fpr31 */
2118 COMMON_UISA_REGS,
2119 /* ctr, xre, lr, cr */
2120 PPC_UISA_SPRS,
2121 /* sr0-sr15 */
2122 PPC_SEGMENT_REGS,
2123 PPC_OEA_SPRS,
2124 /* vr0-vr31, vrsave, vscr */
2125 PPC_ALTIVEC_REGS
2126 /* FIXME? Add more registers? */
2127 };
2128
2129 /* Information about a particular processor variant. */
2130
2131 struct variant
2132 {
2133 /* Name of this variant. */
2134 char *name;
2135
2136 /* English description of the variant. */
2137 char *description;
2138
2139 /* bfd_arch_info.arch corresponding to variant. */
2140 enum bfd_architecture arch;
2141
2142 /* bfd_arch_info.mach corresponding to variant. */
2143 unsigned long mach;
2144
2145 /* Number of real registers. */
2146 int nregs;
2147
2148 /* Number of pseudo registers. */
2149 int npregs;
2150
2151 /* Number of total registers (the sum of nregs and npregs). */
2152 int num_tot_regs;
2153
2154 /* Table of register names; registers[R] is the name of the register
2155 number R. */
2156 const struct reg *regs;
2157 };
2158
2159 #define tot_num_registers(list) (sizeof (list) / sizeof((list)[0]))
2160
2161 static int
2162 num_registers (const struct reg *reg_list, int num_tot_regs)
2163 {
2164 int i;
2165 int nregs = 0;
2166
2167 for (i = 0; i < num_tot_regs; i++)
2168 if (!reg_list[i].pseudo)
2169 nregs++;
2170
2171 return nregs;
2172 }
2173
2174 static int
2175 num_pseudo_registers (const struct reg *reg_list, int num_tot_regs)
2176 {
2177 int i;
2178 int npregs = 0;
2179
2180 for (i = 0; i < num_tot_regs; i++)
2181 if (reg_list[i].pseudo)
2182 npregs ++;
2183
2184 return npregs;
2185 }
2186
2187 /* Information in this table comes from the following web sites:
2188 IBM: http://www.chips.ibm.com:80/products/embedded/
2189 Motorola: http://www.mot.com/SPS/PowerPC/
2190
2191 I'm sure I've got some of the variant descriptions not quite right.
2192 Please report any inaccuracies you find to GDB's maintainer.
2193
2194 If you add entries to this table, please be sure to allow the new
2195 value as an argument to the --with-cpu flag, in configure.in. */
2196
2197 static struct variant variants[] =
2198 {
2199
2200 {"powerpc", "PowerPC user-level", bfd_arch_powerpc,
2201 bfd_mach_ppc, -1, -1, tot_num_registers (registers_powerpc),
2202 registers_powerpc},
2203 {"power", "POWER user-level", bfd_arch_rs6000,
2204 bfd_mach_rs6k, -1, -1, tot_num_registers (registers_power),
2205 registers_power},
2206 {"403", "IBM PowerPC 403", bfd_arch_powerpc,
2207 bfd_mach_ppc_403, -1, -1, tot_num_registers (registers_403),
2208 registers_403},
2209 {"601", "Motorola PowerPC 601", bfd_arch_powerpc,
2210 bfd_mach_ppc_601, -1, -1, tot_num_registers (registers_601),
2211 registers_601},
2212 {"602", "Motorola PowerPC 602", bfd_arch_powerpc,
2213 bfd_mach_ppc_602, -1, -1, tot_num_registers (registers_602),
2214 registers_602},
2215 {"603", "Motorola/IBM PowerPC 603 or 603e", bfd_arch_powerpc,
2216 bfd_mach_ppc_603, -1, -1, tot_num_registers (registers_603),
2217 registers_603},
2218 {"604", "Motorola PowerPC 604 or 604e", bfd_arch_powerpc,
2219 604, -1, -1, tot_num_registers (registers_604),
2220 registers_604},
2221 {"403GC", "IBM PowerPC 403GC", bfd_arch_powerpc,
2222 bfd_mach_ppc_403gc, -1, -1, tot_num_registers (registers_403GC),
2223 registers_403GC},
2224 {"505", "Motorola PowerPC 505", bfd_arch_powerpc,
2225 bfd_mach_ppc_505, -1, -1, tot_num_registers (registers_505),
2226 registers_505},
2227 {"860", "Motorola PowerPC 860 or 850", bfd_arch_powerpc,
2228 bfd_mach_ppc_860, -1, -1, tot_num_registers (registers_860),
2229 registers_860},
2230 {"750", "Motorola/IBM PowerPC 750 or 740", bfd_arch_powerpc,
2231 bfd_mach_ppc_750, -1, -1, tot_num_registers (registers_750),
2232 registers_750},
2233 {"7400", "Motorola/IBM PowerPC 7400 (G4)", bfd_arch_powerpc,
2234 bfd_mach_ppc_7400, -1, -1, tot_num_registers (registers_7400),
2235 registers_7400},
2236
2237 /* 64-bit */
2238 {"powerpc64", "PowerPC 64-bit user-level", bfd_arch_powerpc,
2239 bfd_mach_ppc64, -1, -1, tot_num_registers (registers_powerpc),
2240 registers_powerpc},
2241 {"620", "Motorola PowerPC 620", bfd_arch_powerpc,
2242 bfd_mach_ppc_620, -1, -1, tot_num_registers (registers_powerpc),
2243 registers_powerpc},
2244 {"630", "Motorola PowerPC 630", bfd_arch_powerpc,
2245 bfd_mach_ppc_630, -1, -1, tot_num_registers (registers_powerpc),
2246 registers_powerpc},
2247 {"a35", "PowerPC A35", bfd_arch_powerpc,
2248 bfd_mach_ppc_a35, -1, -1, tot_num_registers (registers_powerpc),
2249 registers_powerpc},
2250 {"rs64ii", "PowerPC rs64ii", bfd_arch_powerpc,
2251 bfd_mach_ppc_rs64ii, -1, -1, tot_num_registers (registers_powerpc),
2252 registers_powerpc},
2253 {"rs64iii", "PowerPC rs64iii", bfd_arch_powerpc,
2254 bfd_mach_ppc_rs64iii, -1, -1, tot_num_registers (registers_powerpc),
2255 registers_powerpc},
2256
2257 /* FIXME: I haven't checked the register sets of the following. */
2258 {"rs1", "IBM POWER RS1", bfd_arch_rs6000,
2259 bfd_mach_rs6k_rs1, -1, -1, tot_num_registers (registers_power),
2260 registers_power},
2261 {"rsc", "IBM POWER RSC", bfd_arch_rs6000,
2262 bfd_mach_rs6k_rsc, -1, -1, tot_num_registers (registers_power),
2263 registers_power},
2264 {"rs2", "IBM POWER RS2", bfd_arch_rs6000,
2265 bfd_mach_rs6k_rs2, -1, -1, tot_num_registers (registers_power),
2266 registers_power},
2267
2268 {0, 0, 0, 0, 0, 0, 0, 0}
2269 };
2270
2271 /* Initialize the number of registers and pseudo registers in each variant. */
2272
2273 static void
2274 init_variants (void)
2275 {
2276 struct variant *v;
2277
2278 for (v = variants; v->name; v++)
2279 {
2280 if (v->nregs == -1)
2281 v->nregs = num_registers (v->regs, v->num_tot_regs);
2282 if (v->npregs == -1)
2283 v->npregs = num_pseudo_registers (v->regs, v->num_tot_regs);
2284 }
2285 }
2286
2287 /* Return the variant corresponding to architecture ARCH and machine number
2288 MACH. If no such variant exists, return null. */
2289
2290 static const struct variant *
2291 find_variant_by_arch (enum bfd_architecture arch, unsigned long mach)
2292 {
2293 const struct variant *v;
2294
2295 for (v = variants; v->name; v++)
2296 if (arch == v->arch && mach == v->mach)
2297 return v;
2298
2299 return NULL;
2300 }
2301
2302 static int
2303 gdb_print_insn_powerpc (bfd_vma memaddr, disassemble_info *info)
2304 {
2305 if (TARGET_BYTE_ORDER == BFD_ENDIAN_BIG)
2306 return print_insn_big_powerpc (memaddr, info);
2307 else
2308 return print_insn_little_powerpc (memaddr, info);
2309 }
2310 \f
2311 /* Initialize the current architecture based on INFO. If possible, re-use an
2312 architecture from ARCHES, which is a list of architectures already created
2313 during this debugging session.
2314
2315 Called e.g. at program startup, when reading a core file, and when reading
2316 a binary file. */
2317
2318 static struct gdbarch *
2319 rs6000_gdbarch_init (struct gdbarch_info info, struct gdbarch_list *arches)
2320 {
2321 struct gdbarch *gdbarch;
2322 struct gdbarch_tdep *tdep;
2323 int wordsize, from_xcoff_exec, from_elf_exec, power, i, off;
2324 struct reg *regs;
2325 const struct variant *v;
2326 enum bfd_architecture arch;
2327 unsigned long mach;
2328 bfd abfd;
2329 int sysv_abi;
2330 enum gdb_osabi osabi = GDB_OSABI_UNKNOWN;
2331
2332 from_xcoff_exec = info.abfd && info.abfd->format == bfd_object &&
2333 bfd_get_flavour (info.abfd) == bfd_target_xcoff_flavour;
2334
2335 from_elf_exec = info.abfd && info.abfd->format == bfd_object &&
2336 bfd_get_flavour (info.abfd) == bfd_target_elf_flavour;
2337
2338 sysv_abi = info.abfd && bfd_get_flavour (info.abfd) == bfd_target_elf_flavour;
2339
2340 if (info.abfd)
2341 osabi = gdbarch_lookup_osabi (info.abfd);
2342
2343 /* Check word size. If INFO is from a binary file, infer it from
2344 that, else choose a likely default. */
2345 if (from_xcoff_exec)
2346 {
2347 if (bfd_xcoff_is_xcoff64 (info.abfd))
2348 wordsize = 8;
2349 else
2350 wordsize = 4;
2351 }
2352 else if (from_elf_exec)
2353 {
2354 if (elf_elfheader (info.abfd)->e_ident[EI_CLASS] == ELFCLASS64)
2355 wordsize = 8;
2356 else
2357 wordsize = 4;
2358 }
2359 else
2360 {
2361 if (info.bfd_arch_info != NULL && info.bfd_arch_info->bits_per_word != 0)
2362 wordsize = info.bfd_arch_info->bits_per_word /
2363 info.bfd_arch_info->bits_per_byte;
2364 else
2365 wordsize = 4;
2366 }
2367
2368 /* Find a candidate among extant architectures. */
2369 for (arches = gdbarch_list_lookup_by_info (arches, &info);
2370 arches != NULL;
2371 arches = gdbarch_list_lookup_by_info (arches->next, &info))
2372 {
2373 /* Word size in the various PowerPC bfd_arch_info structs isn't
2374 meaningful, because 64-bit CPUs can run in 32-bit mode. So, perform
2375 separate word size check. */
2376 tdep = gdbarch_tdep (arches->gdbarch);
2377 if (tdep && tdep->wordsize == wordsize && tdep->osabi == osabi)
2378 return arches->gdbarch;
2379 }
2380
2381 /* None found, create a new architecture from INFO, whose bfd_arch_info
2382 validity depends on the source:
2383 - executable useless
2384 - rs6000_host_arch() good
2385 - core file good
2386 - "set arch" trust blindly
2387 - GDB startup useless but harmless */
2388
2389 if (!from_xcoff_exec)
2390 {
2391 arch = info.bfd_arch_info->arch;
2392 mach = info.bfd_arch_info->mach;
2393 }
2394 else
2395 {
2396 arch = bfd_arch_powerpc;
2397 mach = 0;
2398 bfd_default_set_arch_mach (&abfd, arch, mach);
2399 info.bfd_arch_info = bfd_get_arch_info (&abfd);
2400 }
2401 tdep = xmalloc (sizeof (struct gdbarch_tdep));
2402 tdep->wordsize = wordsize;
2403 tdep->osabi = osabi;
2404 gdbarch = gdbarch_alloc (&info, tdep);
2405 power = arch == bfd_arch_rs6000;
2406
2407 /* Initialize the number of real and pseudo registers in each variant. */
2408 init_variants ();
2409
2410 /* Choose variant. */
2411 v = find_variant_by_arch (arch, mach);
2412 if (!v)
2413 return NULL;
2414
2415 tdep->regs = v->regs;
2416
2417 tdep->ppc_gp0_regnum = 0;
2418 tdep->ppc_gplast_regnum = 31;
2419 tdep->ppc_toc_regnum = 2;
2420 tdep->ppc_ps_regnum = 65;
2421 tdep->ppc_cr_regnum = 66;
2422 tdep->ppc_lr_regnum = 67;
2423 tdep->ppc_ctr_regnum = 68;
2424 tdep->ppc_xer_regnum = 69;
2425 if (v->mach == bfd_mach_ppc_601)
2426 tdep->ppc_mq_regnum = 124;
2427 else if (power)
2428 tdep->ppc_mq_regnum = 70;
2429 else
2430 tdep->ppc_mq_regnum = -1;
2431 tdep->ppc_fpscr_regnum = power ? 71 : 70;
2432
2433 if (v->arch == bfd_arch_powerpc)
2434 switch (v->mach)
2435 {
2436 case bfd_mach_ppc:
2437 tdep->ppc_vr0_regnum = 71;
2438 tdep->ppc_vrsave_regnum = 104;
2439 break;
2440 case bfd_mach_ppc_7400:
2441 tdep->ppc_vr0_regnum = 119;
2442 tdep->ppc_vrsave_regnum = 153;
2443 break;
2444 default:
2445 tdep->ppc_vr0_regnum = -1;
2446 tdep->ppc_vrsave_regnum = -1;
2447 break;
2448 }
2449
2450 /* Set lr_frame_offset. */
2451 if (wordsize == 8)
2452 tdep->lr_frame_offset = 16;
2453 else if (sysv_abi)
2454 tdep->lr_frame_offset = 4;
2455 else
2456 tdep->lr_frame_offset = 8;
2457
2458 /* Calculate byte offsets in raw register array. */
2459 tdep->regoff = xmalloc (v->num_tot_regs * sizeof (int));
2460 for (i = off = 0; i < v->num_tot_regs; i++)
2461 {
2462 tdep->regoff[i] = off;
2463 off += regsize (v->regs + i, wordsize);
2464 }
2465
2466 /* Select instruction printer. */
2467 if (arch == power)
2468 set_gdbarch_print_insn (gdbarch, print_insn_rs6000);
2469 else
2470 set_gdbarch_print_insn (gdbarch, gdb_print_insn_powerpc);
2471
2472 set_gdbarch_read_pc (gdbarch, generic_target_read_pc);
2473 set_gdbarch_write_pc (gdbarch, generic_target_write_pc);
2474 set_gdbarch_read_fp (gdbarch, generic_target_read_fp);
2475 set_gdbarch_read_sp (gdbarch, generic_target_read_sp);
2476 set_gdbarch_write_sp (gdbarch, generic_target_write_sp);
2477
2478 set_gdbarch_num_regs (gdbarch, v->nregs);
2479 set_gdbarch_sp_regnum (gdbarch, 1);
2480 set_gdbarch_fp_regnum (gdbarch, 1);
2481 set_gdbarch_pc_regnum (gdbarch, 64);
2482 set_gdbarch_register_name (gdbarch, rs6000_register_name);
2483 set_gdbarch_register_size (gdbarch, wordsize);
2484 set_gdbarch_register_bytes (gdbarch, off);
2485 set_gdbarch_register_byte (gdbarch, rs6000_register_byte);
2486 set_gdbarch_register_raw_size (gdbarch, rs6000_register_raw_size);
2487 set_gdbarch_max_register_raw_size (gdbarch, 16);
2488 set_gdbarch_register_virtual_size (gdbarch, generic_register_size);
2489 set_gdbarch_max_register_virtual_size (gdbarch, 16);
2490 set_gdbarch_register_virtual_type (gdbarch, rs6000_register_virtual_type);
2491
2492 set_gdbarch_ptr_bit (gdbarch, wordsize * TARGET_CHAR_BIT);
2493 set_gdbarch_short_bit (gdbarch, 2 * TARGET_CHAR_BIT);
2494 set_gdbarch_int_bit (gdbarch, 4 * TARGET_CHAR_BIT);
2495 set_gdbarch_long_bit (gdbarch, wordsize * TARGET_CHAR_BIT);
2496 set_gdbarch_long_long_bit (gdbarch, 8 * TARGET_CHAR_BIT);
2497 set_gdbarch_float_bit (gdbarch, 4 * TARGET_CHAR_BIT);
2498 set_gdbarch_double_bit (gdbarch, 8 * TARGET_CHAR_BIT);
2499 set_gdbarch_long_double_bit (gdbarch, 8 * TARGET_CHAR_BIT);
2500 set_gdbarch_char_signed (gdbarch, 0);
2501
2502 set_gdbarch_use_generic_dummy_frames (gdbarch, 1);
2503 set_gdbarch_call_dummy_length (gdbarch, 0);
2504 set_gdbarch_call_dummy_location (gdbarch, AT_ENTRY_POINT);
2505 set_gdbarch_call_dummy_address (gdbarch, entry_point_address);
2506 set_gdbarch_call_dummy_breakpoint_offset_p (gdbarch, 1);
2507 set_gdbarch_call_dummy_breakpoint_offset (gdbarch, 0);
2508 set_gdbarch_call_dummy_start_offset (gdbarch, 0);
2509 set_gdbarch_pc_in_call_dummy (gdbarch, generic_pc_in_call_dummy);
2510 set_gdbarch_call_dummy_p (gdbarch, 1);
2511 set_gdbarch_call_dummy_stack_adjust_p (gdbarch, 0);
2512 set_gdbarch_get_saved_register (gdbarch, generic_unwind_get_saved_register);
2513 set_gdbarch_fix_call_dummy (gdbarch, rs6000_fix_call_dummy);
2514 set_gdbarch_push_dummy_frame (gdbarch, generic_push_dummy_frame);
2515 set_gdbarch_save_dummy_frame_tos (gdbarch, generic_save_dummy_frame_tos);
2516 set_gdbarch_push_return_address (gdbarch, ppc_push_return_address);
2517 set_gdbarch_believe_pcc_promotion (gdbarch, 1);
2518 set_gdbarch_coerce_float_to_double (gdbarch, rs6000_coerce_float_to_double);
2519
2520 set_gdbarch_register_convertible (gdbarch, rs6000_register_convertible);
2521 set_gdbarch_register_convert_to_virtual (gdbarch, rs6000_register_convert_to_virtual);
2522 set_gdbarch_register_convert_to_raw (gdbarch, rs6000_register_convert_to_raw);
2523 set_gdbarch_stab_reg_to_regnum (gdbarch, rs6000_stab_reg_to_regnum);
2524
2525 set_gdbarch_deprecated_extract_return_value (gdbarch, rs6000_extract_return_value);
2526
2527 /* Note: kevinb/2002-04-12: I'm not convinced that rs6000_push_arguments()
2528 is correct for the SysV ABI when the wordsize is 8, but I'm also
2529 fairly certain that ppc_sysv_abi_push_arguments() will give even
2530 worse results since it only works for 32-bit code. So, for the moment,
2531 we're better off calling rs6000_push_arguments() since it works for
2532 64-bit code. At some point in the future, this matter needs to be
2533 revisited. */
2534 if (sysv_abi && wordsize == 4)
2535 set_gdbarch_push_arguments (gdbarch, ppc_sysv_abi_push_arguments);
2536 else
2537 set_gdbarch_push_arguments (gdbarch, rs6000_push_arguments);
2538
2539 set_gdbarch_store_struct_return (gdbarch, rs6000_store_struct_return);
2540 set_gdbarch_store_return_value (gdbarch, rs6000_store_return_value);
2541 set_gdbarch_deprecated_extract_struct_value_address (gdbarch, rs6000_extract_struct_value_address);
2542 set_gdbarch_pop_frame (gdbarch, rs6000_pop_frame);
2543
2544 set_gdbarch_skip_prologue (gdbarch, rs6000_skip_prologue);
2545 set_gdbarch_inner_than (gdbarch, core_addr_lessthan);
2546 set_gdbarch_decr_pc_after_break (gdbarch, 0);
2547 set_gdbarch_function_start_offset (gdbarch, 0);
2548 set_gdbarch_breakpoint_from_pc (gdbarch, rs6000_breakpoint_from_pc);
2549
2550 /* Not sure on this. FIXMEmgo */
2551 set_gdbarch_frame_args_skip (gdbarch, 8);
2552
2553 if (sysv_abi)
2554 set_gdbarch_use_struct_convention (gdbarch,
2555 ppc_sysv_abi_use_struct_convention);
2556 else
2557 set_gdbarch_use_struct_convention (gdbarch,
2558 generic_use_struct_convention);
2559
2560 set_gdbarch_frame_chain_valid (gdbarch, file_frame_chain_valid);
2561
2562 set_gdbarch_frameless_function_invocation (gdbarch,
2563 rs6000_frameless_function_invocation);
2564 set_gdbarch_frame_chain (gdbarch, rs6000_frame_chain);
2565 set_gdbarch_frame_saved_pc (gdbarch, rs6000_frame_saved_pc);
2566
2567 set_gdbarch_frame_init_saved_regs (gdbarch, rs6000_frame_init_saved_regs);
2568 set_gdbarch_init_extra_frame_info (gdbarch, rs6000_init_extra_frame_info);
2569
2570 if (!sysv_abi)
2571 {
2572 /* Handle RS/6000 function pointers (which are really function
2573 descriptors). */
2574 set_gdbarch_convert_from_func_ptr_addr (gdbarch,
2575 rs6000_convert_from_func_ptr_addr);
2576 }
2577 set_gdbarch_frame_args_address (gdbarch, rs6000_frame_args_address);
2578 set_gdbarch_frame_locals_address (gdbarch, rs6000_frame_args_address);
2579 set_gdbarch_saved_pc_after_call (gdbarch, rs6000_saved_pc_after_call);
2580
2581 /* We can't tell how many args there are
2582 now that the C compiler delays popping them. */
2583 set_gdbarch_frame_num_args (gdbarch, frame_num_args_unknown);
2584
2585 /* Hook in ABI-specific overrides, if they have been registered. */
2586 gdbarch_init_osabi (info, gdbarch, osabi);
2587
2588 return gdbarch;
2589 }
2590
2591 static void
2592 rs6000_dump_tdep (struct gdbarch *current_gdbarch, struct ui_file *file)
2593 {
2594 struct gdbarch_tdep *tdep = gdbarch_tdep (current_gdbarch);
2595
2596 if (tdep == NULL)
2597 return;
2598
2599 fprintf_unfiltered (file, "rs6000_dump_tdep: OS ABI = %s\n",
2600 gdbarch_osabi_name (tdep->osabi));
2601 }
2602
2603 static struct cmd_list_element *info_powerpc_cmdlist = NULL;
2604
2605 static void
2606 rs6000_info_powerpc_command (char *args, int from_tty)
2607 {
2608 help_list (info_powerpc_cmdlist, "info powerpc ", class_info, gdb_stdout);
2609 }
2610
2611 /* Initialization code. */
2612
2613 void
2614 _initialize_rs6000_tdep (void)
2615 {
2616 gdbarch_register (bfd_arch_rs6000, rs6000_gdbarch_init, rs6000_dump_tdep);
2617 gdbarch_register (bfd_arch_powerpc, rs6000_gdbarch_init, rs6000_dump_tdep);
2618
2619 /* Add root prefix command for "info powerpc" commands */
2620 add_prefix_cmd ("powerpc", class_info, rs6000_info_powerpc_command,
2621 "Various POWERPC info specific commands.",
2622 &info_powerpc_cmdlist, "info powerpc ", 0, &infolist);
2623 }