Change the layout of the PowerPC E500 raw register cache to allow
[binutils-gdb.git] / gdb / rs6000-tdep.c
1 /* Target-dependent code for GDB, the GNU debugger.
2
3 Copyright 1986, 1987, 1989, 1991, 1992, 1993, 1994, 1995, 1996,
4 1997, 1998, 1999, 2000, 2001, 2002, 2003, 2004 Free Software
5 Foundation, Inc.
6
7 This file is part of GDB.
8
9 This program is free software; you can redistribute it and/or modify
10 it under the terms of the GNU General Public License as published by
11 the Free Software Foundation; either version 2 of the License, or
12 (at your option) any later version.
13
14 This program is distributed in the hope that it will be useful,
15 but WITHOUT ANY WARRANTY; without even the implied warranty of
16 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
17 GNU General Public License for more details.
18
19 You should have received a copy of the GNU General Public License
20 along with this program; if not, write to the Free Software
21 Foundation, Inc., 59 Temple Place - Suite 330,
22 Boston, MA 02111-1307, USA. */
23
24 #include "defs.h"
25 #include "frame.h"
26 #include "inferior.h"
27 #include "symtab.h"
28 #include "target.h"
29 #include "gdbcore.h"
30 #include "gdbcmd.h"
31 #include "objfiles.h"
32 #include "arch-utils.h"
33 #include "regcache.h"
34 #include "regset.h"
35 #include "doublest.h"
36 #include "value.h"
37 #include "parser-defs.h"
38 #include "osabi.h"
39 #include "infcall.h"
40 #include "sim-regno.h"
41 #include "gdb/sim-ppc.h"
42 #include "reggroups.h"
43
44 #include "libbfd.h" /* for bfd_default_set_arch_mach */
45 #include "coff/internal.h" /* for libcoff.h */
46 #include "libcoff.h" /* for xcoff_data */
47 #include "coff/xcoff.h"
48 #include "libxcoff.h"
49
50 #include "elf-bfd.h"
51
52 #include "solib-svr4.h"
53 #include "ppc-tdep.h"
54
55 #include "gdb_assert.h"
56 #include "dis-asm.h"
57
58 #include "trad-frame.h"
59 #include "frame-unwind.h"
60 #include "frame-base.h"
61
62 /* If the kernel has to deliver a signal, it pushes a sigcontext
63 structure on the stack and then calls the signal handler, passing
64 the address of the sigcontext in an argument register. Usually
65 the signal handler doesn't save this register, so we have to
66 access the sigcontext structure via an offset from the signal handler
67 frame.
68 The following constants were determined by experimentation on AIX 3.2. */
69 #define SIG_FRAME_PC_OFFSET 96
70 #define SIG_FRAME_LR_OFFSET 108
71 #define SIG_FRAME_FP_OFFSET 284
72
73 /* To be used by skip_prologue. */
74
75 struct rs6000_framedata
76 {
77 int offset; /* total size of frame --- the distance
78 by which we decrement sp to allocate
79 the frame */
80 int saved_gpr; /* smallest # of saved gpr */
81 int saved_fpr; /* smallest # of saved fpr */
82 int saved_vr; /* smallest # of saved vr */
83 int saved_ev; /* smallest # of saved ev */
84 int alloca_reg; /* alloca register number (frame ptr) */
85 char frameless; /* true if frameless functions. */
86 char nosavedpc; /* true if pc not saved. */
87 int gpr_offset; /* offset of saved gprs from prev sp */
88 int fpr_offset; /* offset of saved fprs from prev sp */
89 int vr_offset; /* offset of saved vrs from prev sp */
90 int ev_offset; /* offset of saved evs from prev sp */
91 int lr_offset; /* offset of saved lr */
92 int cr_offset; /* offset of saved cr */
93 int vrsave_offset; /* offset of saved vrsave register */
94 };
95
96 /* Description of a single register. */
97
98 struct reg
99 {
100 char *name; /* name of register */
101 unsigned char sz32; /* size on 32-bit arch, 0 if nonextant */
102 unsigned char sz64; /* size on 64-bit arch, 0 if nonextant */
103 unsigned char fpr; /* whether register is floating-point */
104 unsigned char pseudo; /* whether register is pseudo */
105 int spr_num; /* PowerPC SPR number, or -1 if not an SPR.
106 This is an ISA SPR number, not a GDB
107 register number. */
108 };
109
110 /* Breakpoint shadows for the single step instructions will be kept here. */
111
112 static struct sstep_breaks
113 {
114 /* Address, or 0 if this is not in use. */
115 CORE_ADDR address;
116 /* Shadow contents. */
117 char data[4];
118 }
119 stepBreaks[2];
120
121 /* Hook for determining the TOC address when calling functions in the
122 inferior under AIX. The initialization code in rs6000-nat.c sets
123 this hook to point to find_toc_address. */
124
125 CORE_ADDR (*rs6000_find_toc_address_hook) (CORE_ADDR) = NULL;
126
127 /* Hook to set the current architecture when starting a child process.
128 rs6000-nat.c sets this. */
129
130 void (*rs6000_set_host_arch_hook) (int) = NULL;
131
132 /* Static function prototypes */
133
134 static CORE_ADDR branch_dest (int opcode, int instr, CORE_ADDR pc,
135 CORE_ADDR safety);
136 static CORE_ADDR skip_prologue (CORE_ADDR, CORE_ADDR,
137 struct rs6000_framedata *);
138
139 /* Is REGNO an AltiVec register? Return 1 if so, 0 otherwise. */
140 int
141 altivec_register_p (int regno)
142 {
143 struct gdbarch_tdep *tdep = gdbarch_tdep (current_gdbarch);
144 if (tdep->ppc_vr0_regnum < 0 || tdep->ppc_vrsave_regnum < 0)
145 return 0;
146 else
147 return (regno >= tdep->ppc_vr0_regnum && regno <= tdep->ppc_vrsave_regnum);
148 }
149
150
151 /* Return true if REGNO is an SPE register, false otherwise. */
152 int
153 spe_register_p (int regno)
154 {
155 struct gdbarch_tdep *tdep = gdbarch_tdep (current_gdbarch);
156
157 /* Is it a reference to EV0 -- EV31, and do we have those? */
158 if (tdep->ppc_ev0_regnum >= 0
159 && tdep->ppc_ev31_regnum >= 0
160 && tdep->ppc_ev0_regnum <= regno && regno <= tdep->ppc_ev31_regnum)
161 return 1;
162
163 /* Is it a reference to one of the raw upper GPR halves? */
164 if (tdep->ppc_ev0_upper_regnum >= 0
165 && tdep->ppc_ev0_upper_regnum <= regno
166 && regno < tdep->ppc_ev0_upper_regnum + ppc_num_gprs)
167 return 1;
168
169 /* Is it a reference to the 64-bit accumulator, and do we have that? */
170 if (tdep->ppc_acc_regnum >= 0
171 && tdep->ppc_acc_regnum == regno)
172 return 1;
173
174 /* Is it a reference to the SPE floating-point status and control register,
175 and do we have that? */
176 if (tdep->ppc_spefscr_regnum >= 0
177 && tdep->ppc_spefscr_regnum == regno)
178 return 1;
179
180 return 0;
181 }
182
183
184 /* Return non-zero if the architecture described by GDBARCH has
185 floating-point registers (f0 --- f31 and fpscr). */
186 int
187 ppc_floating_point_unit_p (struct gdbarch *gdbarch)
188 {
189 struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch);
190
191 return (tdep->ppc_fp0_regnum >= 0
192 && tdep->ppc_fpscr_regnum >= 0);
193 }
194
195 static void
196 set_sim_regno (int *table, int gdb_regno, int sim_regno)
197 {
198 /* Make sure we don't try to assign any given GDB register a sim
199 register number more than once. */
200 gdb_assert (table[gdb_regno] == -1);
201 table[gdb_regno] = sim_regno;
202 }
203
204 static void
205 init_sim_regno_table (struct gdbarch *arch)
206 {
207 struct gdbarch_tdep *tdep = gdbarch_tdep (arch);
208 int total_regs = gdbarch_num_regs (arch) + gdbarch_num_pseudo_regs (arch);
209 const struct reg *regs = tdep->regs;
210 int *sim_regno = GDBARCH_OBSTACK_CALLOC (arch, total_regs, int);
211 int i;
212
213 /* Presume that all registers not explicitly mentioned below are
214 unavailable from the sim. */
215 for (i = 0; i < total_regs; i++)
216 sim_regno[i] = -1;
217
218 /* General-purpose registers. */
219 for (i = 0; i < ppc_num_gprs; i++)
220 set_sim_regno (sim_regno, tdep->ppc_gp0_regnum + i, sim_ppc_r0_regnum + i);
221
222 /* Floating-point registers. */
223 if (tdep->ppc_fp0_regnum >= 0)
224 for (i = 0; i < ppc_num_fprs; i++)
225 set_sim_regno (sim_regno,
226 tdep->ppc_fp0_regnum + i,
227 sim_ppc_f0_regnum + i);
228 if (tdep->ppc_fpscr_regnum >= 0)
229 set_sim_regno (sim_regno, tdep->ppc_fpscr_regnum, sim_ppc_fpscr_regnum);
230
231 set_sim_regno (sim_regno, gdbarch_pc_regnum (arch), sim_ppc_pc_regnum);
232 set_sim_regno (sim_regno, tdep->ppc_ps_regnum, sim_ppc_ps_regnum);
233 set_sim_regno (sim_regno, tdep->ppc_cr_regnum, sim_ppc_cr_regnum);
234
235 /* Segment registers. */
236 if (tdep->ppc_sr0_regnum >= 0)
237 for (i = 0; i < ppc_num_srs; i++)
238 set_sim_regno (sim_regno,
239 tdep->ppc_sr0_regnum + i,
240 sim_ppc_sr0_regnum + i);
241
242 /* Altivec registers. */
243 if (tdep->ppc_vr0_regnum >= 0)
244 {
245 for (i = 0; i < ppc_num_vrs; i++)
246 set_sim_regno (sim_regno,
247 tdep->ppc_vr0_regnum + i,
248 sim_ppc_vr0_regnum + i);
249
250 /* FIXME: jimb/2004-07-15: when we have tdep->ppc_vscr_regnum,
251 we can treat this more like the other cases. */
252 set_sim_regno (sim_regno,
253 tdep->ppc_vr0_regnum + ppc_num_vrs,
254 sim_ppc_vscr_regnum);
255 }
256 /* vsave is a special-purpose register, so the code below handles it. */
257
258 /* SPE APU (E500) registers. */
259 if (tdep->ppc_ev0_regnum >= 0)
260 for (i = 0; i < ppc_num_gprs; i++)
261 set_sim_regno (sim_regno,
262 tdep->ppc_ev0_regnum + i,
263 sim_ppc_ev0_regnum + i);
264 if (tdep->ppc_ev0_upper_regnum >= 0)
265 for (i = 0; i < ppc_num_gprs; i++)
266 set_sim_regno (sim_regno,
267 tdep->ppc_ev0_upper_regnum + i,
268 sim_ppc_rh0_regnum + i);
269 if (tdep->ppc_acc_regnum >= 0)
270 set_sim_regno (sim_regno, tdep->ppc_acc_regnum, sim_ppc_acc_regnum);
271 /* spefscr is a special-purpose register, so the code below handles it. */
272
273 /* Now handle all special-purpose registers. Verify that they
274 haven't mistakenly been assigned numbers by any of the above
275 code). */
276 for (i = 0; i < total_regs; i++)
277 if (regs[i].spr_num >= 0)
278 set_sim_regno (sim_regno, i, regs[i].spr_num + sim_ppc_spr0_regnum);
279
280 /* Drop the initialized array into place. */
281 tdep->sim_regno = sim_regno;
282 }
283
284 static int
285 rs6000_register_sim_regno (int reg)
286 {
287 struct gdbarch_tdep *tdep = gdbarch_tdep (current_gdbarch);
288 int sim_regno;
289
290 gdb_assert (0 <= reg && reg <= NUM_REGS + NUM_PSEUDO_REGS);
291 sim_regno = tdep->sim_regno[reg];
292
293 if (sim_regno >= 0)
294 return sim_regno;
295 else
296 return LEGACY_SIM_REGNO_IGNORE;
297 }
298
299 \f
300
301 /* Register set support functions. */
302
303 static void
304 ppc_supply_reg (struct regcache *regcache, int regnum,
305 const char *regs, size_t offset)
306 {
307 if (regnum != -1 && offset != -1)
308 regcache_raw_supply (regcache, regnum, regs + offset);
309 }
310
311 static void
312 ppc_collect_reg (const struct regcache *regcache, int regnum,
313 char *regs, size_t offset)
314 {
315 if (regnum != -1 && offset != -1)
316 regcache_raw_collect (regcache, regnum, regs + offset);
317 }
318
319 /* Supply register REGNUM in the general-purpose register set REGSET
320 from the buffer specified by GREGS and LEN to register cache
321 REGCACHE. If REGNUM is -1, do this for all registers in REGSET. */
322
323 void
324 ppc_supply_gregset (const struct regset *regset, struct regcache *regcache,
325 int regnum, const void *gregs, size_t len)
326 {
327 struct gdbarch *gdbarch = get_regcache_arch (regcache);
328 struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch);
329 const struct ppc_reg_offsets *offsets = regset->descr;
330 size_t offset;
331 int i;
332
333 for (i = tdep->ppc_gp0_regnum, offset = offsets->r0_offset;
334 i < tdep->ppc_gp0_regnum + ppc_num_gprs;
335 i++, offset += 4)
336 {
337 if (regnum == -1 || regnum == i)
338 ppc_supply_reg (regcache, i, gregs, offset);
339 }
340
341 if (regnum == -1 || regnum == PC_REGNUM)
342 ppc_supply_reg (regcache, PC_REGNUM, gregs, offsets->pc_offset);
343 if (regnum == -1 || regnum == tdep->ppc_ps_regnum)
344 ppc_supply_reg (regcache, tdep->ppc_ps_regnum,
345 gregs, offsets->ps_offset);
346 if (regnum == -1 || regnum == tdep->ppc_cr_regnum)
347 ppc_supply_reg (regcache, tdep->ppc_cr_regnum,
348 gregs, offsets->cr_offset);
349 if (regnum == -1 || regnum == tdep->ppc_lr_regnum)
350 ppc_supply_reg (regcache, tdep->ppc_lr_regnum,
351 gregs, offsets->lr_offset);
352 if (regnum == -1 || regnum == tdep->ppc_ctr_regnum)
353 ppc_supply_reg (regcache, tdep->ppc_ctr_regnum,
354 gregs, offsets->ctr_offset);
355 if (regnum == -1 || regnum == tdep->ppc_xer_regnum)
356 ppc_supply_reg (regcache, tdep->ppc_xer_regnum,
357 gregs, offsets->cr_offset);
358 if (regnum == -1 || regnum == tdep->ppc_mq_regnum)
359 ppc_supply_reg (regcache, tdep->ppc_mq_regnum, gregs, offsets->mq_offset);
360 }
361
362 /* Supply register REGNUM in the floating-point register set REGSET
363 from the buffer specified by FPREGS and LEN to register cache
364 REGCACHE. If REGNUM is -1, do this for all registers in REGSET. */
365
366 void
367 ppc_supply_fpregset (const struct regset *regset, struct regcache *regcache,
368 int regnum, const void *fpregs, size_t len)
369 {
370 struct gdbarch *gdbarch = get_regcache_arch (regcache);
371 struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch);
372 const struct ppc_reg_offsets *offsets = regset->descr;
373 size_t offset;
374 int i;
375
376 gdb_assert (ppc_floating_point_unit_p (gdbarch));
377
378 offset = offsets->f0_offset;
379 for (i = tdep->ppc_fp0_regnum;
380 i < tdep->ppc_fp0_regnum + ppc_num_fprs;
381 i++, offset += 4)
382 {
383 if (regnum == -1 || regnum == i)
384 ppc_supply_reg (regcache, i, fpregs, offset);
385 }
386
387 if (regnum == -1 || regnum == tdep->ppc_fpscr_regnum)
388 ppc_supply_reg (regcache, tdep->ppc_fpscr_regnum,
389 fpregs, offsets->fpscr_offset);
390 }
391
392 /* Collect register REGNUM in the general-purpose register set
393 REGSET. from register cache REGCACHE into the buffer specified by
394 GREGS and LEN. If REGNUM is -1, do this for all registers in
395 REGSET. */
396
397 void
398 ppc_collect_gregset (const struct regset *regset,
399 const struct regcache *regcache,
400 int regnum, void *gregs, size_t len)
401 {
402 struct gdbarch *gdbarch = get_regcache_arch (regcache);
403 struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch);
404 const struct ppc_reg_offsets *offsets = regset->descr;
405 size_t offset;
406 int i;
407
408 offset = offsets->r0_offset;
409 for (i = tdep->ppc_gp0_regnum;
410 i < tdep->ppc_gp0_regnum + ppc_num_gprs;
411 i++, offset += 4)
412 {
413 if (regnum == -1 || regnum == i)
414 ppc_collect_reg (regcache, i, gregs, offset);
415 }
416
417 if (regnum == -1 || regnum == PC_REGNUM)
418 ppc_collect_reg (regcache, PC_REGNUM, gregs, offsets->pc_offset);
419 if (regnum == -1 || regnum == tdep->ppc_ps_regnum)
420 ppc_collect_reg (regcache, tdep->ppc_ps_regnum,
421 gregs, offsets->ps_offset);
422 if (regnum == -1 || regnum == tdep->ppc_cr_regnum)
423 ppc_collect_reg (regcache, tdep->ppc_cr_regnum,
424 gregs, offsets->cr_offset);
425 if (regnum == -1 || regnum == tdep->ppc_lr_regnum)
426 ppc_collect_reg (regcache, tdep->ppc_lr_regnum,
427 gregs, offsets->lr_offset);
428 if (regnum == -1 || regnum == tdep->ppc_ctr_regnum)
429 ppc_collect_reg (regcache, tdep->ppc_ctr_regnum,
430 gregs, offsets->ctr_offset);
431 if (regnum == -1 || regnum == tdep->ppc_xer_regnum)
432 ppc_collect_reg (regcache, tdep->ppc_xer_regnum,
433 gregs, offsets->xer_offset);
434 if (regnum == -1 || regnum == tdep->ppc_mq_regnum)
435 ppc_collect_reg (regcache, tdep->ppc_mq_regnum,
436 gregs, offsets->mq_offset);
437 }
438
439 /* Collect register REGNUM in the floating-point register set
440 REGSET. from register cache REGCACHE into the buffer specified by
441 FPREGS and LEN. If REGNUM is -1, do this for all registers in
442 REGSET. */
443
444 void
445 ppc_collect_fpregset (const struct regset *regset,
446 const struct regcache *regcache,
447 int regnum, void *fpregs, size_t len)
448 {
449 struct gdbarch *gdbarch = get_regcache_arch (regcache);
450 struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch);
451 const struct ppc_reg_offsets *offsets = regset->descr;
452 size_t offset;
453 int i;
454
455 gdb_assert (ppc_floating_point_unit_p (gdbarch));
456
457 offset = offsets->f0_offset;
458 for (i = tdep->ppc_fp0_regnum;
459 i <= tdep->ppc_fp0_regnum + ppc_num_fprs;
460 i++, offset += 4)
461 {
462 if (regnum == -1 || regnum == i)
463 ppc_collect_reg (regcache, regnum, fpregs, offset);
464 }
465
466 if (regnum == -1 || regnum == tdep->ppc_fpscr_regnum)
467 ppc_collect_reg (regcache, tdep->ppc_fpscr_regnum,
468 fpregs, offsets->fpscr_offset);
469 }
470 \f
471
472 /* Read a LEN-byte address from debugged memory address MEMADDR. */
473
474 static CORE_ADDR
475 read_memory_addr (CORE_ADDR memaddr, int len)
476 {
477 return read_memory_unsigned_integer (memaddr, len);
478 }
479
480 static CORE_ADDR
481 rs6000_skip_prologue (CORE_ADDR pc)
482 {
483 struct rs6000_framedata frame;
484 pc = skip_prologue (pc, 0, &frame);
485 return pc;
486 }
487
488
489 /* Fill in fi->saved_regs */
490
491 struct frame_extra_info
492 {
493 /* Functions calling alloca() change the value of the stack
494 pointer. We need to use initial stack pointer (which is saved in
495 r31 by gcc) in such cases. If a compiler emits traceback table,
496 then we should use the alloca register specified in traceback
497 table. FIXME. */
498 CORE_ADDR initial_sp; /* initial stack pointer. */
499 };
500
501 /* Get the ith function argument for the current function. */
502 static CORE_ADDR
503 rs6000_fetch_pointer_argument (struct frame_info *frame, int argi,
504 struct type *type)
505 {
506 CORE_ADDR addr;
507 get_frame_register (frame, 3 + argi, &addr);
508 return addr;
509 }
510
511 /* Calculate the destination of a branch/jump. Return -1 if not a branch. */
512
513 static CORE_ADDR
514 branch_dest (int opcode, int instr, CORE_ADDR pc, CORE_ADDR safety)
515 {
516 CORE_ADDR dest;
517 int immediate;
518 int absolute;
519 int ext_op;
520
521 absolute = (int) ((instr >> 1) & 1);
522
523 switch (opcode)
524 {
525 case 18:
526 immediate = ((instr & ~3) << 6) >> 6; /* br unconditional */
527 if (absolute)
528 dest = immediate;
529 else
530 dest = pc + immediate;
531 break;
532
533 case 16:
534 immediate = ((instr & ~3) << 16) >> 16; /* br conditional */
535 if (absolute)
536 dest = immediate;
537 else
538 dest = pc + immediate;
539 break;
540
541 case 19:
542 ext_op = (instr >> 1) & 0x3ff;
543
544 if (ext_op == 16) /* br conditional register */
545 {
546 dest = read_register (gdbarch_tdep (current_gdbarch)->ppc_lr_regnum) & ~3;
547
548 /* If we are about to return from a signal handler, dest is
549 something like 0x3c90. The current frame is a signal handler
550 caller frame, upon completion of the sigreturn system call
551 execution will return to the saved PC in the frame. */
552 if (dest < TEXT_SEGMENT_BASE)
553 {
554 struct frame_info *fi;
555
556 fi = get_current_frame ();
557 if (fi != NULL)
558 dest = read_memory_addr (get_frame_base (fi) + SIG_FRAME_PC_OFFSET,
559 gdbarch_tdep (current_gdbarch)->wordsize);
560 }
561 }
562
563 else if (ext_op == 528) /* br cond to count reg */
564 {
565 dest = read_register (gdbarch_tdep (current_gdbarch)->ppc_ctr_regnum) & ~3;
566
567 /* If we are about to execute a system call, dest is something
568 like 0x22fc or 0x3b00. Upon completion the system call
569 will return to the address in the link register. */
570 if (dest < TEXT_SEGMENT_BASE)
571 dest = read_register (gdbarch_tdep (current_gdbarch)->ppc_lr_regnum) & ~3;
572 }
573 else
574 return -1;
575 break;
576
577 default:
578 return -1;
579 }
580 return (dest < TEXT_SEGMENT_BASE) ? safety : dest;
581 }
582
583
584 /* Sequence of bytes for breakpoint instruction. */
585
586 const static unsigned char *
587 rs6000_breakpoint_from_pc (CORE_ADDR *bp_addr, int *bp_size)
588 {
589 static unsigned char big_breakpoint[] = { 0x7d, 0x82, 0x10, 0x08 };
590 static unsigned char little_breakpoint[] = { 0x08, 0x10, 0x82, 0x7d };
591 *bp_size = 4;
592 if (TARGET_BYTE_ORDER == BFD_ENDIAN_BIG)
593 return big_breakpoint;
594 else
595 return little_breakpoint;
596 }
597
598
599 /* AIX does not support PT_STEP. Simulate it. */
600
601 void
602 rs6000_software_single_step (enum target_signal signal,
603 int insert_breakpoints_p)
604 {
605 CORE_ADDR dummy;
606 int breakp_sz;
607 const char *breakp = rs6000_breakpoint_from_pc (&dummy, &breakp_sz);
608 int ii, insn;
609 CORE_ADDR loc;
610 CORE_ADDR breaks[2];
611 int opcode;
612
613 if (insert_breakpoints_p)
614 {
615
616 loc = read_pc ();
617
618 insn = read_memory_integer (loc, 4);
619
620 breaks[0] = loc + breakp_sz;
621 opcode = insn >> 26;
622 breaks[1] = branch_dest (opcode, insn, loc, breaks[0]);
623
624 /* Don't put two breakpoints on the same address. */
625 if (breaks[1] == breaks[0])
626 breaks[1] = -1;
627
628 stepBreaks[1].address = 0;
629
630 for (ii = 0; ii < 2; ++ii)
631 {
632
633 /* ignore invalid breakpoint. */
634 if (breaks[ii] == -1)
635 continue;
636 target_insert_breakpoint (breaks[ii], stepBreaks[ii].data);
637 stepBreaks[ii].address = breaks[ii];
638 }
639
640 }
641 else
642 {
643
644 /* remove step breakpoints. */
645 for (ii = 0; ii < 2; ++ii)
646 if (stepBreaks[ii].address != 0)
647 target_remove_breakpoint (stepBreaks[ii].address,
648 stepBreaks[ii].data);
649 }
650 errno = 0; /* FIXME, don't ignore errors! */
651 /* What errors? {read,write}_memory call error(). */
652 }
653
654
655 /* return pc value after skipping a function prologue and also return
656 information about a function frame.
657
658 in struct rs6000_framedata fdata:
659 - frameless is TRUE, if function does not have a frame.
660 - nosavedpc is TRUE, if function does not save %pc value in its frame.
661 - offset is the initial size of this stack frame --- the amount by
662 which we decrement the sp to allocate the frame.
663 - saved_gpr is the number of the first saved gpr.
664 - saved_fpr is the number of the first saved fpr.
665 - saved_vr is the number of the first saved vr.
666 - saved_ev is the number of the first saved ev.
667 - alloca_reg is the number of the register used for alloca() handling.
668 Otherwise -1.
669 - gpr_offset is the offset of the first saved gpr from the previous frame.
670 - fpr_offset is the offset of the first saved fpr from the previous frame.
671 - vr_offset is the offset of the first saved vr from the previous frame.
672 - ev_offset is the offset of the first saved ev from the previous frame.
673 - lr_offset is the offset of the saved lr
674 - cr_offset is the offset of the saved cr
675 - vrsave_offset is the offset of the saved vrsave register
676 */
677
678 #define SIGNED_SHORT(x) \
679 ((sizeof (short) == 2) \
680 ? ((int)(short)(x)) \
681 : ((int)((((x) & 0xffff) ^ 0x8000) - 0x8000)))
682
683 #define GET_SRC_REG(x) (((x) >> 21) & 0x1f)
684
685 /* Limit the number of skipped non-prologue instructions, as the examining
686 of the prologue is expensive. */
687 static int max_skip_non_prologue_insns = 10;
688
689 /* Given PC representing the starting address of a function, and
690 LIM_PC which is the (sloppy) limit to which to scan when looking
691 for a prologue, attempt to further refine this limit by using
692 the line data in the symbol table. If successful, a better guess
693 on where the prologue ends is returned, otherwise the previous
694 value of lim_pc is returned. */
695
696 /* FIXME: cagney/2004-02-14: This function and logic have largely been
697 superseded by skip_prologue_using_sal. */
698
699 static CORE_ADDR
700 refine_prologue_limit (CORE_ADDR pc, CORE_ADDR lim_pc)
701 {
702 struct symtab_and_line prologue_sal;
703
704 prologue_sal = find_pc_line (pc, 0);
705 if (prologue_sal.line != 0)
706 {
707 int i;
708 CORE_ADDR addr = prologue_sal.end;
709
710 /* Handle the case in which compiler's optimizer/scheduler
711 has moved instructions into the prologue. We scan ahead
712 in the function looking for address ranges whose corresponding
713 line number is less than or equal to the first one that we
714 found for the function. (It can be less than when the
715 scheduler puts a body instruction before the first prologue
716 instruction.) */
717 for (i = 2 * max_skip_non_prologue_insns;
718 i > 0 && (lim_pc == 0 || addr < lim_pc);
719 i--)
720 {
721 struct symtab_and_line sal;
722
723 sal = find_pc_line (addr, 0);
724 if (sal.line == 0)
725 break;
726 if (sal.line <= prologue_sal.line
727 && sal.symtab == prologue_sal.symtab)
728 {
729 prologue_sal = sal;
730 }
731 addr = sal.end;
732 }
733
734 if (lim_pc == 0 || prologue_sal.end < lim_pc)
735 lim_pc = prologue_sal.end;
736 }
737 return lim_pc;
738 }
739
740 /* Return nonzero if the given instruction OP can be part of the prologue
741 of a function and saves a parameter on the stack. FRAMEP should be
742 set if one of the previous instructions in the function has set the
743 Frame Pointer. */
744
745 static int
746 store_param_on_stack_p (unsigned long op, int framep, int *r0_contains_arg)
747 {
748 /* Move parameters from argument registers to temporary register. */
749 if ((op & 0xfc0007fe) == 0x7c000378) /* mr(.) Rx,Ry */
750 {
751 /* Rx must be scratch register r0. */
752 const int rx_regno = (op >> 16) & 31;
753 /* Ry: Only r3 - r10 are used for parameter passing. */
754 const int ry_regno = GET_SRC_REG (op);
755
756 if (rx_regno == 0 && ry_regno >= 3 && ry_regno <= 10)
757 {
758 *r0_contains_arg = 1;
759 return 1;
760 }
761 else
762 return 0;
763 }
764
765 /* Save a General Purpose Register on stack. */
766
767 if ((op & 0xfc1f0003) == 0xf8010000 || /* std Rx,NUM(r1) */
768 (op & 0xfc1f0000) == 0xd8010000) /* stfd Rx,NUM(r1) */
769 {
770 /* Rx: Only r3 - r10 are used for parameter passing. */
771 const int rx_regno = GET_SRC_REG (op);
772
773 return (rx_regno >= 3 && rx_regno <= 10);
774 }
775
776 /* Save a General Purpose Register on stack via the Frame Pointer. */
777
778 if (framep &&
779 ((op & 0xfc1f0000) == 0x901f0000 || /* st rx,NUM(r31) */
780 (op & 0xfc1f0000) == 0x981f0000 || /* stb Rx,NUM(r31) */
781 (op & 0xfc1f0000) == 0xd81f0000)) /* stfd Rx,NUM(r31) */
782 {
783 /* Rx: Usually, only r3 - r10 are used for parameter passing.
784 However, the compiler sometimes uses r0 to hold an argument. */
785 const int rx_regno = GET_SRC_REG (op);
786
787 return ((rx_regno >= 3 && rx_regno <= 10)
788 || (rx_regno == 0 && *r0_contains_arg));
789 }
790
791 if ((op & 0xfc1f0000) == 0xfc010000) /* frsp, fp?,NUM(r1) */
792 {
793 /* Only f2 - f8 are used for parameter passing. */
794 const int src_regno = GET_SRC_REG (op);
795
796 return (src_regno >= 2 && src_regno <= 8);
797 }
798
799 if (framep && ((op & 0xfc1f0000) == 0xfc1f0000)) /* frsp, fp?,NUM(r31) */
800 {
801 /* Only f2 - f8 are used for parameter passing. */
802 const int src_regno = GET_SRC_REG (op);
803
804 return (src_regno >= 2 && src_regno <= 8);
805 }
806
807 /* Not an insn that saves a parameter on stack. */
808 return 0;
809 }
810
811 static CORE_ADDR
812 skip_prologue (CORE_ADDR pc, CORE_ADDR lim_pc, struct rs6000_framedata *fdata)
813 {
814 CORE_ADDR orig_pc = pc;
815 CORE_ADDR last_prologue_pc = pc;
816 CORE_ADDR li_found_pc = 0;
817 char buf[4];
818 unsigned long op;
819 long offset = 0;
820 long vr_saved_offset = 0;
821 int lr_reg = -1;
822 int cr_reg = -1;
823 int vr_reg = -1;
824 int ev_reg = -1;
825 long ev_offset = 0;
826 int vrsave_reg = -1;
827 int reg;
828 int framep = 0;
829 int minimal_toc_loaded = 0;
830 int prev_insn_was_prologue_insn = 1;
831 int num_skip_non_prologue_insns = 0;
832 int r0_contains_arg = 0;
833 const struct bfd_arch_info *arch_info = gdbarch_bfd_arch_info (current_gdbarch);
834 struct gdbarch_tdep *tdep = gdbarch_tdep (current_gdbarch);
835
836 /* Attempt to find the end of the prologue when no limit is specified.
837 Note that refine_prologue_limit() has been written so that it may
838 be used to "refine" the limits of non-zero PC values too, but this
839 is only safe if we 1) trust the line information provided by the
840 compiler and 2) iterate enough to actually find the end of the
841 prologue.
842
843 It may become a good idea at some point (for both performance and
844 accuracy) to unconditionally call refine_prologue_limit(). But,
845 until we can make a clear determination that this is beneficial,
846 we'll play it safe and only use it to obtain a limit when none
847 has been specified. */
848 if (lim_pc == 0)
849 lim_pc = refine_prologue_limit (pc, lim_pc);
850
851 memset (fdata, 0, sizeof (struct rs6000_framedata));
852 fdata->saved_gpr = -1;
853 fdata->saved_fpr = -1;
854 fdata->saved_vr = -1;
855 fdata->saved_ev = -1;
856 fdata->alloca_reg = -1;
857 fdata->frameless = 1;
858 fdata->nosavedpc = 1;
859
860 for (;; pc += 4)
861 {
862 /* Sometimes it isn't clear if an instruction is a prologue
863 instruction or not. When we encounter one of these ambiguous
864 cases, we'll set prev_insn_was_prologue_insn to 0 (false).
865 Otherwise, we'll assume that it really is a prologue instruction. */
866 if (prev_insn_was_prologue_insn)
867 last_prologue_pc = pc;
868
869 /* Stop scanning if we've hit the limit. */
870 if (lim_pc != 0 && pc >= lim_pc)
871 break;
872
873 prev_insn_was_prologue_insn = 1;
874
875 /* Fetch the instruction and convert it to an integer. */
876 if (target_read_memory (pc, buf, 4))
877 break;
878 op = extract_signed_integer (buf, 4);
879
880 if ((op & 0xfc1fffff) == 0x7c0802a6)
881 { /* mflr Rx */
882 /* Since shared library / PIC code, which needs to get its
883 address at runtime, can appear to save more than one link
884 register vis:
885
886 *INDENT-OFF*
887 stwu r1,-304(r1)
888 mflr r3
889 bl 0xff570d0 (blrl)
890 stw r30,296(r1)
891 mflr r30
892 stw r31,300(r1)
893 stw r3,308(r1);
894 ...
895 *INDENT-ON*
896
897 remember just the first one, but skip over additional
898 ones. */
899 if (lr_reg < 0)
900 lr_reg = (op & 0x03e00000);
901 if (lr_reg == 0)
902 r0_contains_arg = 0;
903 continue;
904 }
905 else if ((op & 0xfc1fffff) == 0x7c000026)
906 { /* mfcr Rx */
907 cr_reg = (op & 0x03e00000);
908 if (cr_reg == 0)
909 r0_contains_arg = 0;
910 continue;
911
912 }
913 else if ((op & 0xfc1f0000) == 0xd8010000)
914 { /* stfd Rx,NUM(r1) */
915 reg = GET_SRC_REG (op);
916 if (fdata->saved_fpr == -1 || fdata->saved_fpr > reg)
917 {
918 fdata->saved_fpr = reg;
919 fdata->fpr_offset = SIGNED_SHORT (op) + offset;
920 }
921 continue;
922
923 }
924 else if (((op & 0xfc1f0000) == 0xbc010000) || /* stm Rx, NUM(r1) */
925 (((op & 0xfc1f0000) == 0x90010000 || /* st rx,NUM(r1) */
926 (op & 0xfc1f0003) == 0xf8010000) && /* std rx,NUM(r1) */
927 (op & 0x03e00000) >= 0x01a00000)) /* rx >= r13 */
928 {
929
930 reg = GET_SRC_REG (op);
931 if (fdata->saved_gpr == -1 || fdata->saved_gpr > reg)
932 {
933 fdata->saved_gpr = reg;
934 if ((op & 0xfc1f0003) == 0xf8010000)
935 op &= ~3UL;
936 fdata->gpr_offset = SIGNED_SHORT (op) + offset;
937 }
938 continue;
939
940 }
941 else if ((op & 0xffff0000) == 0x60000000)
942 {
943 /* nop */
944 /* Allow nops in the prologue, but do not consider them to
945 be part of the prologue unless followed by other prologue
946 instructions. */
947 prev_insn_was_prologue_insn = 0;
948 continue;
949
950 }
951 else if ((op & 0xffff0000) == 0x3c000000)
952 { /* addis 0,0,NUM, used
953 for >= 32k frames */
954 fdata->offset = (op & 0x0000ffff) << 16;
955 fdata->frameless = 0;
956 r0_contains_arg = 0;
957 continue;
958
959 }
960 else if ((op & 0xffff0000) == 0x60000000)
961 { /* ori 0,0,NUM, 2nd ha
962 lf of >= 32k frames */
963 fdata->offset |= (op & 0x0000ffff);
964 fdata->frameless = 0;
965 r0_contains_arg = 0;
966 continue;
967
968 }
969 else if (lr_reg != -1 &&
970 /* std Rx, NUM(r1) || stdu Rx, NUM(r1) */
971 (((op & 0xffff0000) == (lr_reg | 0xf8010000)) ||
972 /* stw Rx, NUM(r1) */
973 ((op & 0xffff0000) == (lr_reg | 0x90010000)) ||
974 /* stwu Rx, NUM(r1) */
975 ((op & 0xffff0000) == (lr_reg | 0x94010000))))
976 { /* where Rx == lr */
977 fdata->lr_offset = offset;
978 fdata->nosavedpc = 0;
979 lr_reg = 0;
980 if ((op & 0xfc000003) == 0xf8000000 || /* std */
981 (op & 0xfc000000) == 0x90000000) /* stw */
982 {
983 /* Does not update r1, so add displacement to lr_offset. */
984 fdata->lr_offset += SIGNED_SHORT (op);
985 }
986 continue;
987
988 }
989 else if (cr_reg != -1 &&
990 /* std Rx, NUM(r1) || stdu Rx, NUM(r1) */
991 (((op & 0xffff0000) == (cr_reg | 0xf8010000)) ||
992 /* stw Rx, NUM(r1) */
993 ((op & 0xffff0000) == (cr_reg | 0x90010000)) ||
994 /* stwu Rx, NUM(r1) */
995 ((op & 0xffff0000) == (cr_reg | 0x94010000))))
996 { /* where Rx == cr */
997 fdata->cr_offset = offset;
998 cr_reg = 0;
999 if ((op & 0xfc000003) == 0xf8000000 ||
1000 (op & 0xfc000000) == 0x90000000)
1001 {
1002 /* Does not update r1, so add displacement to cr_offset. */
1003 fdata->cr_offset += SIGNED_SHORT (op);
1004 }
1005 continue;
1006
1007 }
1008 else if (op == 0x48000005)
1009 { /* bl .+4 used in
1010 -mrelocatable */
1011 continue;
1012
1013 }
1014 else if (op == 0x48000004)
1015 { /* b .+4 (xlc) */
1016 break;
1017
1018 }
1019 else if ((op & 0xffff0000) == 0x3fc00000 || /* addis 30,0,foo@ha, used
1020 in V.4 -mminimal-toc */
1021 (op & 0xffff0000) == 0x3bde0000)
1022 { /* addi 30,30,foo@l */
1023 continue;
1024
1025 }
1026 else if ((op & 0xfc000001) == 0x48000001)
1027 { /* bl foo,
1028 to save fprs??? */
1029
1030 fdata->frameless = 0;
1031 /* Don't skip over the subroutine call if it is not within
1032 the first three instructions of the prologue. */
1033 if ((pc - orig_pc) > 8)
1034 break;
1035
1036 op = read_memory_integer (pc + 4, 4);
1037
1038 /* At this point, make sure this is not a trampoline
1039 function (a function that simply calls another functions,
1040 and nothing else). If the next is not a nop, this branch
1041 was part of the function prologue. */
1042
1043 if (op == 0x4def7b82 || op == 0) /* crorc 15, 15, 15 */
1044 break; /* don't skip over
1045 this branch */
1046 continue;
1047
1048 }
1049 /* update stack pointer */
1050 else if ((op & 0xfc1f0000) == 0x94010000)
1051 { /* stu rX,NUM(r1) || stwu rX,NUM(r1) */
1052 fdata->frameless = 0;
1053 fdata->offset = SIGNED_SHORT (op);
1054 offset = fdata->offset;
1055 continue;
1056 }
1057 else if ((op & 0xfc1f016a) == 0x7c01016e)
1058 { /* stwux rX,r1,rY */
1059 /* no way to figure out what r1 is going to be */
1060 fdata->frameless = 0;
1061 offset = fdata->offset;
1062 continue;
1063 }
1064 else if ((op & 0xfc1f0003) == 0xf8010001)
1065 { /* stdu rX,NUM(r1) */
1066 fdata->frameless = 0;
1067 fdata->offset = SIGNED_SHORT (op & ~3UL);
1068 offset = fdata->offset;
1069 continue;
1070 }
1071 else if ((op & 0xfc1f016a) == 0x7c01016a)
1072 { /* stdux rX,r1,rY */
1073 /* no way to figure out what r1 is going to be */
1074 fdata->frameless = 0;
1075 offset = fdata->offset;
1076 continue;
1077 }
1078 /* Load up minimal toc pointer */
1079 else if (((op >> 22) == 0x20f || /* l r31,... or l r30,... */
1080 (op >> 22) == 0x3af) /* ld r31,... or ld r30,... */
1081 && !minimal_toc_loaded)
1082 {
1083 minimal_toc_loaded = 1;
1084 continue;
1085
1086 /* move parameters from argument registers to local variable
1087 registers */
1088 }
1089 else if ((op & 0xfc0007fe) == 0x7c000378 && /* mr(.) Rx,Ry */
1090 (((op >> 21) & 31) >= 3) && /* R3 >= Ry >= R10 */
1091 (((op >> 21) & 31) <= 10) &&
1092 ((long) ((op >> 16) & 31) >= fdata->saved_gpr)) /* Rx: local var reg */
1093 {
1094 continue;
1095
1096 /* store parameters in stack */
1097 }
1098 /* Move parameters from argument registers to temporary register. */
1099 else if (store_param_on_stack_p (op, framep, &r0_contains_arg))
1100 {
1101 continue;
1102
1103 /* Set up frame pointer */
1104 }
1105 else if (op == 0x603f0000 /* oril r31, r1, 0x0 */
1106 || op == 0x7c3f0b78)
1107 { /* mr r31, r1 */
1108 fdata->frameless = 0;
1109 framep = 1;
1110 fdata->alloca_reg = (tdep->ppc_gp0_regnum + 31);
1111 continue;
1112
1113 /* Another way to set up the frame pointer. */
1114 }
1115 else if ((op & 0xfc1fffff) == 0x38010000)
1116 { /* addi rX, r1, 0x0 */
1117 fdata->frameless = 0;
1118 framep = 1;
1119 fdata->alloca_reg = (tdep->ppc_gp0_regnum
1120 + ((op & ~0x38010000) >> 21));
1121 continue;
1122 }
1123 /* AltiVec related instructions. */
1124 /* Store the vrsave register (spr 256) in another register for
1125 later manipulation, or load a register into the vrsave
1126 register. 2 instructions are used: mfvrsave and
1127 mtvrsave. They are shorthand notation for mfspr Rn, SPR256
1128 and mtspr SPR256, Rn. */
1129 /* mfspr Rn SPR256 == 011111 nnnnn 0000001000 01010100110
1130 mtspr SPR256 Rn == 011111 nnnnn 0000001000 01110100110 */
1131 else if ((op & 0xfc1fffff) == 0x7c0042a6) /* mfvrsave Rn */
1132 {
1133 vrsave_reg = GET_SRC_REG (op);
1134 continue;
1135 }
1136 else if ((op & 0xfc1fffff) == 0x7c0043a6) /* mtvrsave Rn */
1137 {
1138 continue;
1139 }
1140 /* Store the register where vrsave was saved to onto the stack:
1141 rS is the register where vrsave was stored in a previous
1142 instruction. */
1143 /* 100100 sssss 00001 dddddddd dddddddd */
1144 else if ((op & 0xfc1f0000) == 0x90010000) /* stw rS, d(r1) */
1145 {
1146 if (vrsave_reg == GET_SRC_REG (op))
1147 {
1148 fdata->vrsave_offset = SIGNED_SHORT (op) + offset;
1149 vrsave_reg = -1;
1150 }
1151 continue;
1152 }
1153 /* Compute the new value of vrsave, by modifying the register
1154 where vrsave was saved to. */
1155 else if (((op & 0xfc000000) == 0x64000000) /* oris Ra, Rs, UIMM */
1156 || ((op & 0xfc000000) == 0x60000000))/* ori Ra, Rs, UIMM */
1157 {
1158 continue;
1159 }
1160 /* li r0, SIMM (short for addi r0, 0, SIMM). This is the first
1161 in a pair of insns to save the vector registers on the
1162 stack. */
1163 /* 001110 00000 00000 iiii iiii iiii iiii */
1164 /* 001110 01110 00000 iiii iiii iiii iiii */
1165 else if ((op & 0xffff0000) == 0x38000000 /* li r0, SIMM */
1166 || (op & 0xffff0000) == 0x39c00000) /* li r14, SIMM */
1167 {
1168 if ((op & 0xffff0000) == 0x38000000)
1169 r0_contains_arg = 0;
1170 li_found_pc = pc;
1171 vr_saved_offset = SIGNED_SHORT (op);
1172
1173 /* This insn by itself is not part of the prologue, unless
1174 if part of the pair of insns mentioned above. So do not
1175 record this insn as part of the prologue yet. */
1176 prev_insn_was_prologue_insn = 0;
1177 }
1178 /* Store vector register S at (r31+r0) aligned to 16 bytes. */
1179 /* 011111 sssss 11111 00000 00111001110 */
1180 else if ((op & 0xfc1fffff) == 0x7c1f01ce) /* stvx Vs, R31, R0 */
1181 {
1182 if (pc == (li_found_pc + 4))
1183 {
1184 vr_reg = GET_SRC_REG (op);
1185 /* If this is the first vector reg to be saved, or if
1186 it has a lower number than others previously seen,
1187 reupdate the frame info. */
1188 if (fdata->saved_vr == -1 || fdata->saved_vr > vr_reg)
1189 {
1190 fdata->saved_vr = vr_reg;
1191 fdata->vr_offset = vr_saved_offset + offset;
1192 }
1193 vr_saved_offset = -1;
1194 vr_reg = -1;
1195 li_found_pc = 0;
1196 }
1197 }
1198 /* End AltiVec related instructions. */
1199
1200 /* Start BookE related instructions. */
1201 /* Store gen register S at (r31+uimm).
1202 Any register less than r13 is volatile, so we don't care. */
1203 /* 000100 sssss 11111 iiiii 01100100001 */
1204 else if (arch_info->mach == bfd_mach_ppc_e500
1205 && (op & 0xfc1f07ff) == 0x101f0321) /* evstdd Rs,uimm(R31) */
1206 {
1207 if ((op & 0x03e00000) >= 0x01a00000) /* Rs >= r13 */
1208 {
1209 unsigned int imm;
1210 ev_reg = GET_SRC_REG (op);
1211 imm = (op >> 11) & 0x1f;
1212 ev_offset = imm * 8;
1213 /* If this is the first vector reg to be saved, or if
1214 it has a lower number than others previously seen,
1215 reupdate the frame info. */
1216 if (fdata->saved_ev == -1 || fdata->saved_ev > ev_reg)
1217 {
1218 fdata->saved_ev = ev_reg;
1219 fdata->ev_offset = ev_offset + offset;
1220 }
1221 }
1222 continue;
1223 }
1224 /* Store gen register rS at (r1+rB). */
1225 /* 000100 sssss 00001 bbbbb 01100100000 */
1226 else if (arch_info->mach == bfd_mach_ppc_e500
1227 && (op & 0xffe007ff) == 0x13e00320) /* evstddx RS,R1,Rb */
1228 {
1229 if (pc == (li_found_pc + 4))
1230 {
1231 ev_reg = GET_SRC_REG (op);
1232 /* If this is the first vector reg to be saved, or if
1233 it has a lower number than others previously seen,
1234 reupdate the frame info. */
1235 /* We know the contents of rB from the previous instruction. */
1236 if (fdata->saved_ev == -1 || fdata->saved_ev > ev_reg)
1237 {
1238 fdata->saved_ev = ev_reg;
1239 fdata->ev_offset = vr_saved_offset + offset;
1240 }
1241 vr_saved_offset = -1;
1242 ev_reg = -1;
1243 li_found_pc = 0;
1244 }
1245 continue;
1246 }
1247 /* Store gen register r31 at (rA+uimm). */
1248 /* 000100 11111 aaaaa iiiii 01100100001 */
1249 else if (arch_info->mach == bfd_mach_ppc_e500
1250 && (op & 0xffe007ff) == 0x13e00321) /* evstdd R31,Ra,UIMM */
1251 {
1252 /* Wwe know that the source register is 31 already, but
1253 it can't hurt to compute it. */
1254 ev_reg = GET_SRC_REG (op);
1255 ev_offset = ((op >> 11) & 0x1f) * 8;
1256 /* If this is the first vector reg to be saved, or if
1257 it has a lower number than others previously seen,
1258 reupdate the frame info. */
1259 if (fdata->saved_ev == -1 || fdata->saved_ev > ev_reg)
1260 {
1261 fdata->saved_ev = ev_reg;
1262 fdata->ev_offset = ev_offset + offset;
1263 }
1264
1265 continue;
1266 }
1267 /* Store gen register S at (r31+r0).
1268 Store param on stack when offset from SP bigger than 4 bytes. */
1269 /* 000100 sssss 11111 00000 01100100000 */
1270 else if (arch_info->mach == bfd_mach_ppc_e500
1271 && (op & 0xfc1fffff) == 0x101f0320) /* evstddx Rs,R31,R0 */
1272 {
1273 if (pc == (li_found_pc + 4))
1274 {
1275 if ((op & 0x03e00000) >= 0x01a00000)
1276 {
1277 ev_reg = GET_SRC_REG (op);
1278 /* If this is the first vector reg to be saved, or if
1279 it has a lower number than others previously seen,
1280 reupdate the frame info. */
1281 /* We know the contents of r0 from the previous
1282 instruction. */
1283 if (fdata->saved_ev == -1 || fdata->saved_ev > ev_reg)
1284 {
1285 fdata->saved_ev = ev_reg;
1286 fdata->ev_offset = vr_saved_offset + offset;
1287 }
1288 ev_reg = -1;
1289 }
1290 vr_saved_offset = -1;
1291 li_found_pc = 0;
1292 continue;
1293 }
1294 }
1295 /* End BookE related instructions. */
1296
1297 else
1298 {
1299 /* Not a recognized prologue instruction.
1300 Handle optimizer code motions into the prologue by continuing
1301 the search if we have no valid frame yet or if the return
1302 address is not yet saved in the frame. */
1303 if (fdata->frameless == 0
1304 && (lr_reg == -1 || fdata->nosavedpc == 0))
1305 break;
1306
1307 if (op == 0x4e800020 /* blr */
1308 || op == 0x4e800420) /* bctr */
1309 /* Do not scan past epilogue in frameless functions or
1310 trampolines. */
1311 break;
1312 if ((op & 0xf4000000) == 0x40000000) /* bxx */
1313 /* Never skip branches. */
1314 break;
1315
1316 if (num_skip_non_prologue_insns++ > max_skip_non_prologue_insns)
1317 /* Do not scan too many insns, scanning insns is expensive with
1318 remote targets. */
1319 break;
1320
1321 /* Continue scanning. */
1322 prev_insn_was_prologue_insn = 0;
1323 continue;
1324 }
1325 }
1326
1327 #if 0
1328 /* I have problems with skipping over __main() that I need to address
1329 * sometime. Previously, I used to use misc_function_vector which
1330 * didn't work as well as I wanted to be. -MGO */
1331
1332 /* If the first thing after skipping a prolog is a branch to a function,
1333 this might be a call to an initializer in main(), introduced by gcc2.
1334 We'd like to skip over it as well. Fortunately, xlc does some extra
1335 work before calling a function right after a prologue, thus we can
1336 single out such gcc2 behaviour. */
1337
1338
1339 if ((op & 0xfc000001) == 0x48000001)
1340 { /* bl foo, an initializer function? */
1341 op = read_memory_integer (pc + 4, 4);
1342
1343 if (op == 0x4def7b82)
1344 { /* cror 0xf, 0xf, 0xf (nop) */
1345
1346 /* Check and see if we are in main. If so, skip over this
1347 initializer function as well. */
1348
1349 tmp = find_pc_misc_function (pc);
1350 if (tmp >= 0
1351 && strcmp (misc_function_vector[tmp].name, main_name ()) == 0)
1352 return pc + 8;
1353 }
1354 }
1355 #endif /* 0 */
1356
1357 fdata->offset = -fdata->offset;
1358 return last_prologue_pc;
1359 }
1360
1361
1362 /*************************************************************************
1363 Support for creating pushing a dummy frame into the stack, and popping
1364 frames, etc.
1365 *************************************************************************/
1366
1367
1368 /* All the ABI's require 16 byte alignment. */
1369 static CORE_ADDR
1370 rs6000_frame_align (struct gdbarch *gdbarch, CORE_ADDR addr)
1371 {
1372 return (addr & -16);
1373 }
1374
1375 /* Pass the arguments in either registers, or in the stack. In RS/6000,
1376 the first eight words of the argument list (that might be less than
1377 eight parameters if some parameters occupy more than one word) are
1378 passed in r3..r10 registers. float and double parameters are
1379 passed in fpr's, in addition to that. Rest of the parameters if any
1380 are passed in user stack. There might be cases in which half of the
1381 parameter is copied into registers, the other half is pushed into
1382 stack.
1383
1384 Stack must be aligned on 64-bit boundaries when synthesizing
1385 function calls.
1386
1387 If the function is returning a structure, then the return address is passed
1388 in r3, then the first 7 words of the parameters can be passed in registers,
1389 starting from r4. */
1390
1391 static CORE_ADDR
1392 rs6000_push_dummy_call (struct gdbarch *gdbarch, struct value *function,
1393 struct regcache *regcache, CORE_ADDR bp_addr,
1394 int nargs, struct value **args, CORE_ADDR sp,
1395 int struct_return, CORE_ADDR struct_addr)
1396 {
1397 struct gdbarch_tdep *tdep = gdbarch_tdep (current_gdbarch);
1398 int ii;
1399 int len = 0;
1400 int argno; /* current argument number */
1401 int argbytes; /* current argument byte */
1402 char tmp_buffer[50];
1403 int f_argno = 0; /* current floating point argno */
1404 int wordsize = gdbarch_tdep (current_gdbarch)->wordsize;
1405 CORE_ADDR func_addr = find_function_addr (function, NULL);
1406
1407 struct value *arg = 0;
1408 struct type *type;
1409
1410 CORE_ADDR saved_sp;
1411
1412 /* The calling convention this function implements assumes the
1413 processor has floating-point registers. We shouldn't be using it
1414 on PPC variants that lack them. */
1415 gdb_assert (ppc_floating_point_unit_p (current_gdbarch));
1416
1417 /* The first eight words of ther arguments are passed in registers.
1418 Copy them appropriately. */
1419 ii = 0;
1420
1421 /* If the function is returning a `struct', then the first word
1422 (which will be passed in r3) is used for struct return address.
1423 In that case we should advance one word and start from r4
1424 register to copy parameters. */
1425 if (struct_return)
1426 {
1427 regcache_raw_write_unsigned (regcache, tdep->ppc_gp0_regnum + 3,
1428 struct_addr);
1429 ii++;
1430 }
1431
1432 /*
1433 effectively indirect call... gcc does...
1434
1435 return_val example( float, int);
1436
1437 eabi:
1438 float in fp0, int in r3
1439 offset of stack on overflow 8/16
1440 for varargs, must go by type.
1441 power open:
1442 float in r3&r4, int in r5
1443 offset of stack on overflow different
1444 both:
1445 return in r3 or f0. If no float, must study how gcc emulates floats;
1446 pay attention to arg promotion.
1447 User may have to cast\args to handle promotion correctly
1448 since gdb won't know if prototype supplied or not.
1449 */
1450
1451 for (argno = 0, argbytes = 0; argno < nargs && ii < 8; ++ii)
1452 {
1453 int reg_size = register_size (current_gdbarch, ii + 3);
1454
1455 arg = args[argno];
1456 type = check_typedef (VALUE_TYPE (arg));
1457 len = TYPE_LENGTH (type);
1458
1459 if (TYPE_CODE (type) == TYPE_CODE_FLT)
1460 {
1461
1462 /* Floating point arguments are passed in fpr's, as well as gpr's.
1463 There are 13 fpr's reserved for passing parameters. At this point
1464 there is no way we would run out of them. */
1465
1466 if (len > 8)
1467 printf_unfiltered ("Fatal Error: a floating point parameter "
1468 "#%d with a size > 8 is found!\n", argno);
1469
1470 memcpy (&deprecated_registers[DEPRECATED_REGISTER_BYTE
1471 (tdep->ppc_fp0_regnum + 1 + f_argno)],
1472 VALUE_CONTENTS (arg),
1473 len);
1474 ++f_argno;
1475 }
1476
1477 if (len > reg_size)
1478 {
1479
1480 /* Argument takes more than one register. */
1481 while (argbytes < len)
1482 {
1483 memset (&deprecated_registers[DEPRECATED_REGISTER_BYTE (ii + 3)], 0,
1484 reg_size);
1485 memcpy (&deprecated_registers[DEPRECATED_REGISTER_BYTE (ii + 3)],
1486 ((char *) VALUE_CONTENTS (arg)) + argbytes,
1487 (len - argbytes) > reg_size
1488 ? reg_size : len - argbytes);
1489 ++ii, argbytes += reg_size;
1490
1491 if (ii >= 8)
1492 goto ran_out_of_registers_for_arguments;
1493 }
1494 argbytes = 0;
1495 --ii;
1496 }
1497 else
1498 {
1499 /* Argument can fit in one register. No problem. */
1500 int adj = TARGET_BYTE_ORDER == BFD_ENDIAN_BIG ? reg_size - len : 0;
1501 memset (&deprecated_registers[DEPRECATED_REGISTER_BYTE (ii + 3)], 0, reg_size);
1502 memcpy ((char *)&deprecated_registers[DEPRECATED_REGISTER_BYTE (ii + 3)] + adj,
1503 VALUE_CONTENTS (arg), len);
1504 }
1505 ++argno;
1506 }
1507
1508 ran_out_of_registers_for_arguments:
1509
1510 saved_sp = read_sp ();
1511
1512 /* Location for 8 parameters are always reserved. */
1513 sp -= wordsize * 8;
1514
1515 /* Another six words for back chain, TOC register, link register, etc. */
1516 sp -= wordsize * 6;
1517
1518 /* Stack pointer must be quadword aligned. */
1519 sp &= -16;
1520
1521 /* If there are more arguments, allocate space for them in
1522 the stack, then push them starting from the ninth one. */
1523
1524 if ((argno < nargs) || argbytes)
1525 {
1526 int space = 0, jj;
1527
1528 if (argbytes)
1529 {
1530 space += ((len - argbytes + 3) & -4);
1531 jj = argno + 1;
1532 }
1533 else
1534 jj = argno;
1535
1536 for (; jj < nargs; ++jj)
1537 {
1538 struct value *val = args[jj];
1539 space += ((TYPE_LENGTH (VALUE_TYPE (val))) + 3) & -4;
1540 }
1541
1542 /* Add location required for the rest of the parameters. */
1543 space = (space + 15) & -16;
1544 sp -= space;
1545
1546 /* This is another instance we need to be concerned about
1547 securing our stack space. If we write anything underneath %sp
1548 (r1), we might conflict with the kernel who thinks he is free
1549 to use this area. So, update %sp first before doing anything
1550 else. */
1551
1552 regcache_raw_write_signed (regcache, SP_REGNUM, sp);
1553
1554 /* If the last argument copied into the registers didn't fit there
1555 completely, push the rest of it into stack. */
1556
1557 if (argbytes)
1558 {
1559 write_memory (sp + 24 + (ii * 4),
1560 ((char *) VALUE_CONTENTS (arg)) + argbytes,
1561 len - argbytes);
1562 ++argno;
1563 ii += ((len - argbytes + 3) & -4) / 4;
1564 }
1565
1566 /* Push the rest of the arguments into stack. */
1567 for (; argno < nargs; ++argno)
1568 {
1569
1570 arg = args[argno];
1571 type = check_typedef (VALUE_TYPE (arg));
1572 len = TYPE_LENGTH (type);
1573
1574
1575 /* Float types should be passed in fpr's, as well as in the
1576 stack. */
1577 if (TYPE_CODE (type) == TYPE_CODE_FLT && f_argno < 13)
1578 {
1579
1580 if (len > 8)
1581 printf_unfiltered ("Fatal Error: a floating point parameter"
1582 " #%d with a size > 8 is found!\n", argno);
1583
1584 memcpy (&(deprecated_registers
1585 [DEPRECATED_REGISTER_BYTE
1586 (tdep->ppc_fp0_regnum + 1 + f_argno)]),
1587 VALUE_CONTENTS (arg),
1588 len);
1589 ++f_argno;
1590 }
1591
1592 write_memory (sp + 24 + (ii * 4),
1593 (char *) VALUE_CONTENTS (arg),
1594 len);
1595 ii += ((len + 3) & -4) / 4;
1596 }
1597 }
1598
1599 /* Set the stack pointer. According to the ABI, the SP is meant to
1600 be set _before_ the corresponding stack space is used. On AIX,
1601 this even applies when the target has been completely stopped!
1602 Not doing this can lead to conflicts with the kernel which thinks
1603 that it still has control over this not-yet-allocated stack
1604 region. */
1605 regcache_raw_write_signed (regcache, SP_REGNUM, sp);
1606
1607 /* Set back chain properly. */
1608 store_unsigned_integer (tmp_buffer, 4, saved_sp);
1609 write_memory (sp, tmp_buffer, 4);
1610
1611 /* Point the inferior function call's return address at the dummy's
1612 breakpoint. */
1613 regcache_raw_write_signed (regcache, tdep->ppc_lr_regnum, bp_addr);
1614
1615 /* Set the TOC register, get the value from the objfile reader
1616 which, in turn, gets it from the VMAP table. */
1617 if (rs6000_find_toc_address_hook != NULL)
1618 {
1619 CORE_ADDR tocvalue = (*rs6000_find_toc_address_hook) (func_addr);
1620 regcache_raw_write_signed (regcache, tdep->ppc_toc_regnum, tocvalue);
1621 }
1622
1623 target_store_registers (-1);
1624 return sp;
1625 }
1626
1627 /* PowerOpen always puts structures in memory. Vectors, which were
1628 added later, do get returned in a register though. */
1629
1630 static int
1631 rs6000_use_struct_convention (int gcc_p, struct type *value_type)
1632 {
1633 if ((TYPE_LENGTH (value_type) == 16 || TYPE_LENGTH (value_type) == 8)
1634 && TYPE_VECTOR (value_type))
1635 return 0;
1636 return 1;
1637 }
1638
1639 static void
1640 rs6000_extract_return_value (struct type *valtype, char *regbuf, char *valbuf)
1641 {
1642 int offset = 0;
1643 struct gdbarch_tdep *tdep = gdbarch_tdep (current_gdbarch);
1644
1645 /* The calling convention this function implements assumes the
1646 processor has floating-point registers. We shouldn't be using it
1647 on PPC variants that lack them. */
1648 gdb_assert (ppc_floating_point_unit_p (current_gdbarch));
1649
1650 if (TYPE_CODE (valtype) == TYPE_CODE_FLT)
1651 {
1652
1653 /* floats and doubles are returned in fpr1. fpr's have a size of 8 bytes.
1654 We need to truncate the return value into float size (4 byte) if
1655 necessary. */
1656
1657 convert_typed_floating (&regbuf[DEPRECATED_REGISTER_BYTE
1658 (tdep->ppc_fp0_regnum + 1)],
1659 builtin_type_double,
1660 valbuf,
1661 valtype);
1662 }
1663 else if (TYPE_CODE (valtype) == TYPE_CODE_ARRAY
1664 && TYPE_LENGTH (valtype) == 16
1665 && TYPE_VECTOR (valtype))
1666 {
1667 memcpy (valbuf, regbuf + DEPRECATED_REGISTER_BYTE (tdep->ppc_vr0_regnum + 2),
1668 TYPE_LENGTH (valtype));
1669 }
1670 else
1671 {
1672 /* return value is copied starting from r3. */
1673 if (TARGET_BYTE_ORDER == BFD_ENDIAN_BIG
1674 && TYPE_LENGTH (valtype) < register_size (current_gdbarch, 3))
1675 offset = register_size (current_gdbarch, 3) - TYPE_LENGTH (valtype);
1676
1677 memcpy (valbuf,
1678 regbuf + DEPRECATED_REGISTER_BYTE (3) + offset,
1679 TYPE_LENGTH (valtype));
1680 }
1681 }
1682
1683 /* Return whether handle_inferior_event() should proceed through code
1684 starting at PC in function NAME when stepping.
1685
1686 The AIX -bbigtoc linker option generates functions @FIX0, @FIX1, etc. to
1687 handle memory references that are too distant to fit in instructions
1688 generated by the compiler. For example, if 'foo' in the following
1689 instruction:
1690
1691 lwz r9,foo(r2)
1692
1693 is greater than 32767, the linker might replace the lwz with a branch to
1694 somewhere in @FIX1 that does the load in 2 instructions and then branches
1695 back to where execution should continue.
1696
1697 GDB should silently step over @FIX code, just like AIX dbx does.
1698 Unfortunately, the linker uses the "b" instruction for the branches,
1699 meaning that the link register doesn't get set. Therefore, GDB's usual
1700 step_over_function() mechanism won't work.
1701
1702 Instead, use the IN_SOLIB_RETURN_TRAMPOLINE and SKIP_TRAMPOLINE_CODE hooks
1703 in handle_inferior_event() to skip past @FIX code. */
1704
1705 int
1706 rs6000_in_solib_return_trampoline (CORE_ADDR pc, char *name)
1707 {
1708 return name && !strncmp (name, "@FIX", 4);
1709 }
1710
1711 /* Skip code that the user doesn't want to see when stepping:
1712
1713 1. Indirect function calls use a piece of trampoline code to do context
1714 switching, i.e. to set the new TOC table. Skip such code if we are on
1715 its first instruction (as when we have single-stepped to here).
1716
1717 2. Skip shared library trampoline code (which is different from
1718 indirect function call trampolines).
1719
1720 3. Skip bigtoc fixup code.
1721
1722 Result is desired PC to step until, or NULL if we are not in
1723 code that should be skipped. */
1724
1725 CORE_ADDR
1726 rs6000_skip_trampoline_code (CORE_ADDR pc)
1727 {
1728 unsigned int ii, op;
1729 int rel;
1730 CORE_ADDR solib_target_pc;
1731 struct minimal_symbol *msymbol;
1732
1733 static unsigned trampoline_code[] =
1734 {
1735 0x800b0000, /* l r0,0x0(r11) */
1736 0x90410014, /* st r2,0x14(r1) */
1737 0x7c0903a6, /* mtctr r0 */
1738 0x804b0004, /* l r2,0x4(r11) */
1739 0x816b0008, /* l r11,0x8(r11) */
1740 0x4e800420, /* bctr */
1741 0x4e800020, /* br */
1742 0
1743 };
1744
1745 /* Check for bigtoc fixup code. */
1746 msymbol = lookup_minimal_symbol_by_pc (pc);
1747 if (msymbol && rs6000_in_solib_return_trampoline (pc, DEPRECATED_SYMBOL_NAME (msymbol)))
1748 {
1749 /* Double-check that the third instruction from PC is relative "b". */
1750 op = read_memory_integer (pc + 8, 4);
1751 if ((op & 0xfc000003) == 0x48000000)
1752 {
1753 /* Extract bits 6-29 as a signed 24-bit relative word address and
1754 add it to the containing PC. */
1755 rel = ((int)(op << 6) >> 6);
1756 return pc + 8 + rel;
1757 }
1758 }
1759
1760 /* If pc is in a shared library trampoline, return its target. */
1761 solib_target_pc = find_solib_trampoline_target (pc);
1762 if (solib_target_pc)
1763 return solib_target_pc;
1764
1765 for (ii = 0; trampoline_code[ii]; ++ii)
1766 {
1767 op = read_memory_integer (pc + (ii * 4), 4);
1768 if (op != trampoline_code[ii])
1769 return 0;
1770 }
1771 ii = read_register (11); /* r11 holds destination addr */
1772 pc = read_memory_addr (ii, gdbarch_tdep (current_gdbarch)->wordsize); /* (r11) value */
1773 return pc;
1774 }
1775
1776 /* Return the size of register REG when words are WORDSIZE bytes long. If REG
1777 isn't available with that word size, return 0. */
1778
1779 static int
1780 regsize (const struct reg *reg, int wordsize)
1781 {
1782 return wordsize == 8 ? reg->sz64 : reg->sz32;
1783 }
1784
1785 /* Return the name of register number N, or null if no such register exists
1786 in the current architecture. */
1787
1788 static const char *
1789 rs6000_register_name (int n)
1790 {
1791 struct gdbarch_tdep *tdep = gdbarch_tdep (current_gdbarch);
1792 const struct reg *reg = tdep->regs + n;
1793
1794 if (!regsize (reg, tdep->wordsize))
1795 return NULL;
1796 return reg->name;
1797 }
1798
1799 /* Return the GDB type object for the "standard" data type
1800 of data in register N. */
1801
1802 static struct type *
1803 rs6000_register_type (struct gdbarch *gdbarch, int n)
1804 {
1805 struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch);
1806 const struct reg *reg = tdep->regs + n;
1807
1808 if (reg->fpr)
1809 return builtin_type_double;
1810 else
1811 {
1812 int size = regsize (reg, tdep->wordsize);
1813 switch (size)
1814 {
1815 case 0:
1816 return builtin_type_int0;
1817 case 4:
1818 return builtin_type_uint32;
1819 case 8:
1820 if (tdep->ppc_ev0_regnum <= n && n <= tdep->ppc_ev31_regnum)
1821 return builtin_type_vec64;
1822 else
1823 return builtin_type_uint64;
1824 break;
1825 case 16:
1826 return builtin_type_vec128;
1827 break;
1828 default:
1829 internal_error (__FILE__, __LINE__, "Register %d size %d unknown",
1830 n, size);
1831 }
1832 }
1833 }
1834
1835 /* The register format for RS/6000 floating point registers is always
1836 double, we need a conversion if the memory format is float. */
1837
1838 static int
1839 rs6000_convert_register_p (int regnum, struct type *type)
1840 {
1841 const struct reg *reg = gdbarch_tdep (current_gdbarch)->regs + regnum;
1842
1843 return (reg->fpr
1844 && TYPE_CODE (type) == TYPE_CODE_FLT
1845 && TYPE_LENGTH (type) != TYPE_LENGTH (builtin_type_double));
1846 }
1847
1848 static void
1849 rs6000_register_to_value (struct frame_info *frame,
1850 int regnum,
1851 struct type *type,
1852 void *to)
1853 {
1854 const struct reg *reg = gdbarch_tdep (current_gdbarch)->regs + regnum;
1855 char from[MAX_REGISTER_SIZE];
1856
1857 gdb_assert (reg->fpr);
1858 gdb_assert (TYPE_CODE (type) == TYPE_CODE_FLT);
1859
1860 get_frame_register (frame, regnum, from);
1861 convert_typed_floating (from, builtin_type_double, to, type);
1862 }
1863
1864 static void
1865 rs6000_value_to_register (struct frame_info *frame,
1866 int regnum,
1867 struct type *type,
1868 const void *from)
1869 {
1870 const struct reg *reg = gdbarch_tdep (current_gdbarch)->regs + regnum;
1871 char to[MAX_REGISTER_SIZE];
1872
1873 gdb_assert (reg->fpr);
1874 gdb_assert (TYPE_CODE (type) == TYPE_CODE_FLT);
1875
1876 convert_typed_floating (from, type, to, builtin_type_double);
1877 put_frame_register (frame, regnum, to);
1878 }
1879
1880 /* Move SPE vector register values between a 64-bit buffer and the two
1881 32-bit raw register halves in a regcache. This function handles
1882 both splitting a 64-bit value into two 32-bit halves, and joining
1883 two halves into a whole 64-bit value, depending on the function
1884 passed as the MOVE argument.
1885
1886 EV_REG must be the number of an SPE evN vector register --- a
1887 pseudoregister. REGCACHE must be a regcache, and BUFFER must be a
1888 64-bit buffer.
1889
1890 Call MOVE once for each 32-bit half of that register, passing
1891 REGCACHE, the number of the raw register corresponding to that
1892 half, and the address of the appropriate half of BUFFER.
1893
1894 For example, passing 'regcache_raw_read' as the MOVE function will
1895 fill BUFFER with the full 64-bit contents of EV_REG. Or, passing
1896 'regcache_raw_supply' will supply the contents of BUFFER to the
1897 appropriate pair of raw registers in REGCACHE.
1898
1899 You may need to cast away some 'const' qualifiers when passing
1900 MOVE, since this function can't tell at compile-time which of
1901 REGCACHE or BUFFER is acting as the source of the data. If C had
1902 co-variant type qualifiers, ... */
1903 static void
1904 e500_move_ev_register (void (*move) (struct regcache *regcache,
1905 int regnum, void *buf),
1906 struct regcache *regcache, int ev_reg,
1907 void *buffer)
1908 {
1909 struct gdbarch *arch = get_regcache_arch (regcache);
1910 struct gdbarch_tdep *tdep = gdbarch_tdep (arch);
1911 int reg_index;
1912 char *byte_buffer = buffer;
1913
1914 gdb_assert (tdep->ppc_ev0_regnum <= ev_reg
1915 && ev_reg < tdep->ppc_ev0_regnum + ppc_num_gprs);
1916
1917 reg_index = ev_reg - tdep->ppc_ev0_regnum;
1918
1919 if (TARGET_BYTE_ORDER == BFD_ENDIAN_BIG)
1920 {
1921 move (regcache, tdep->ppc_ev0_upper_regnum + reg_index, byte_buffer);
1922 move (regcache, tdep->ppc_gp0_regnum + reg_index, byte_buffer + 4);
1923 }
1924 else
1925 {
1926 move (regcache, tdep->ppc_gp0_regnum + reg_index, byte_buffer);
1927 move (regcache, tdep->ppc_ev0_upper_regnum + reg_index, byte_buffer + 4);
1928 }
1929 }
1930
1931 static void
1932 e500_pseudo_register_read (struct gdbarch *gdbarch, struct regcache *regcache,
1933 int reg_nr, void *buffer)
1934 {
1935 struct gdbarch *regcache_arch = get_regcache_arch (regcache);
1936 struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch);
1937
1938 gdb_assert (regcache_arch == gdbarch);
1939
1940 if (tdep->ppc_ev0_regnum <= reg_nr
1941 && reg_nr < tdep->ppc_ev0_regnum + ppc_num_gprs)
1942 e500_move_ev_register (regcache_raw_read, regcache, reg_nr, buffer);
1943 else
1944 /* We should only be called on pseudo-registers. */
1945 gdb_assert (0);
1946 }
1947
1948 static void
1949 e500_pseudo_register_write (struct gdbarch *gdbarch, struct regcache *regcache,
1950 int reg_nr, const void *buffer)
1951 {
1952 struct gdbarch *regcache_arch = get_regcache_arch (regcache);
1953 struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch);
1954
1955 gdb_assert (regcache_arch == gdbarch);
1956
1957 if (tdep->ppc_ev0_regnum <= reg_nr
1958 && reg_nr < tdep->ppc_ev0_regnum + ppc_num_gprs)
1959 e500_move_ev_register ((void (*) (struct regcache *, int, void *))
1960 regcache_raw_write,
1961 regcache, reg_nr, (void *) buffer);
1962 else
1963 /* We should only be called on pseudo-registers. */
1964 gdb_assert (0);
1965 }
1966
1967 /* The E500 needs a custom reggroup function: it has anonymous raw
1968 registers, and default_register_reggroup_p assumes that anonymous
1969 registers are not members of any reggroup. */
1970 static int
1971 e500_register_reggroup_p (struct gdbarch *gdbarch,
1972 int regnum,
1973 struct reggroup *group)
1974 {
1975 struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch);
1976
1977 /* The save and restore register groups need to include the
1978 upper-half registers, even though they're anonymous. */
1979 if ((group == save_reggroup
1980 || group == restore_reggroup)
1981 && (tdep->ppc_ev0_upper_regnum <= regnum
1982 && regnum < tdep->ppc_ev0_upper_regnum + ppc_num_gprs))
1983 return 1;
1984
1985 /* In all other regards, the default reggroup definition is fine. */
1986 return default_register_reggroup_p (gdbarch, regnum, group);
1987 }
1988
1989 /* Convert a DBX STABS register number to a GDB register number. */
1990 static int
1991 rs6000_stab_reg_to_regnum (int num)
1992 {
1993 struct gdbarch_tdep *tdep = gdbarch_tdep (current_gdbarch);
1994
1995 if (0 <= num && num <= 31)
1996 return tdep->ppc_gp0_regnum + num;
1997 else if (32 <= num && num <= 63)
1998 /* FIXME: jimb/2004-05-05: What should we do when the debug info
1999 specifies registers the architecture doesn't have? Our
2000 callers don't check the value we return. */
2001 return tdep->ppc_fp0_regnum + (num - 32);
2002 else if (77 <= num && num <= 108)
2003 return tdep->ppc_vr0_regnum + (num - 77);
2004 else if (1200 <= num && num < 1200 + 32)
2005 return tdep->ppc_ev0_regnum + (num - 1200);
2006 else
2007 switch (num)
2008 {
2009 case 64:
2010 return tdep->ppc_mq_regnum;
2011 case 65:
2012 return tdep->ppc_lr_regnum;
2013 case 66:
2014 return tdep->ppc_ctr_regnum;
2015 case 76:
2016 return tdep->ppc_xer_regnum;
2017 case 109:
2018 return tdep->ppc_vrsave_regnum;
2019 case 110:
2020 return tdep->ppc_vrsave_regnum - 1; /* vscr */
2021 case 111:
2022 return tdep->ppc_acc_regnum;
2023 case 112:
2024 return tdep->ppc_spefscr_regnum;
2025 default:
2026 return num;
2027 }
2028 }
2029
2030
2031 /* Convert a Dwarf 2 register number to a GDB register number. */
2032 static int
2033 rs6000_dwarf2_reg_to_regnum (int num)
2034 {
2035 struct gdbarch_tdep *tdep = gdbarch_tdep (current_gdbarch);
2036
2037 if (0 <= num && num <= 31)
2038 return tdep->ppc_gp0_regnum + num;
2039 else if (32 <= num && num <= 63)
2040 /* FIXME: jimb/2004-05-05: What should we do when the debug info
2041 specifies registers the architecture doesn't have? Our
2042 callers don't check the value we return. */
2043 return tdep->ppc_fp0_regnum + (num - 32);
2044 else if (1124 <= num && num < 1124 + 32)
2045 return tdep->ppc_vr0_regnum + (num - 1124);
2046 else if (1200 <= num && num < 1200 + 32)
2047 return tdep->ppc_ev0_regnum + (num - 1200);
2048 else
2049 switch (num)
2050 {
2051 case 67:
2052 return tdep->ppc_vrsave_regnum - 1; /* vscr */
2053 case 99:
2054 return tdep->ppc_acc_regnum;
2055 case 100:
2056 return tdep->ppc_mq_regnum;
2057 case 101:
2058 return tdep->ppc_xer_regnum;
2059 case 108:
2060 return tdep->ppc_lr_regnum;
2061 case 109:
2062 return tdep->ppc_ctr_regnum;
2063 case 356:
2064 return tdep->ppc_vrsave_regnum;
2065 case 612:
2066 return tdep->ppc_spefscr_regnum;
2067 default:
2068 return num;
2069 }
2070 }
2071
2072
2073 static void
2074 rs6000_store_return_value (struct type *type,
2075 struct regcache *regcache,
2076 const void *valbuf)
2077 {
2078 struct gdbarch *gdbarch = get_regcache_arch (regcache);
2079 struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch);
2080 int regnum = -1;
2081
2082 /* The calling convention this function implements assumes the
2083 processor has floating-point registers. We shouldn't be using it
2084 on PPC variants that lack them. */
2085 gdb_assert (ppc_floating_point_unit_p (gdbarch));
2086
2087 if (TYPE_CODE (type) == TYPE_CODE_FLT)
2088 /* Floating point values are returned starting from FPR1 and up.
2089 Say a double_double_double type could be returned in
2090 FPR1/FPR2/FPR3 triple. */
2091 regnum = tdep->ppc_fp0_regnum + 1;
2092 else if (TYPE_CODE (type) == TYPE_CODE_ARRAY)
2093 {
2094 if (TYPE_LENGTH (type) == 16
2095 && TYPE_VECTOR (type))
2096 regnum = tdep->ppc_vr0_regnum + 2;
2097 else
2098 gdb_assert (0);
2099 }
2100 else
2101 /* Everything else is returned in GPR3 and up. */
2102 regnum = tdep->ppc_gp0_regnum + 3;
2103
2104 {
2105 size_t bytes_written = 0;
2106
2107 while (bytes_written < TYPE_LENGTH (type))
2108 {
2109 /* How much of this value can we write to this register? */
2110 size_t bytes_to_write = min (TYPE_LENGTH (type) - bytes_written,
2111 register_size (gdbarch, regnum));
2112 regcache_cooked_write_part (regcache, regnum,
2113 0, bytes_to_write,
2114 (char *) valbuf + bytes_written);
2115 regnum++;
2116 bytes_written += bytes_to_write;
2117 }
2118 }
2119 }
2120
2121
2122 /* Extract from an array REGBUF containing the (raw) register state
2123 the address in which a function should return its structure value,
2124 as a CORE_ADDR (or an expression that can be used as one). */
2125
2126 static CORE_ADDR
2127 rs6000_extract_struct_value_address (struct regcache *regcache)
2128 {
2129 /* FIXME: cagney/2002-09-26: PR gdb/724: When making an inferior
2130 function call GDB knows the address of the struct return value
2131 and hence, should not need to call this function. Unfortunately,
2132 the current call_function_by_hand() code only saves the most
2133 recent struct address leading to occasional calls. The code
2134 should instead maintain a stack of such addresses (in the dummy
2135 frame object). */
2136 /* NOTE: cagney/2002-09-26: Return 0 which indicates that we've
2137 really got no idea where the return value is being stored. While
2138 r3, on function entry, contained the address it will have since
2139 been reused (scratch) and hence wouldn't be valid */
2140 return 0;
2141 }
2142
2143 /* Hook called when a new child process is started. */
2144
2145 void
2146 rs6000_create_inferior (int pid)
2147 {
2148 if (rs6000_set_host_arch_hook)
2149 rs6000_set_host_arch_hook (pid);
2150 }
2151 \f
2152 /* Support for CONVERT_FROM_FUNC_PTR_ADDR (ARCH, ADDR, TARG).
2153
2154 Usually a function pointer's representation is simply the address
2155 of the function. On the RS/6000 however, a function pointer is
2156 represented by a pointer to a TOC entry. This TOC entry contains
2157 three words, the first word is the address of the function, the
2158 second word is the TOC pointer (r2), and the third word is the
2159 static chain value. Throughout GDB it is currently assumed that a
2160 function pointer contains the address of the function, which is not
2161 easy to fix. In addition, the conversion of a function address to
2162 a function pointer would require allocation of a TOC entry in the
2163 inferior's memory space, with all its drawbacks. To be able to
2164 call C++ virtual methods in the inferior (which are called via
2165 function pointers), find_function_addr uses this function to get the
2166 function address from a function pointer. */
2167
2168 /* Return real function address if ADDR (a function pointer) is in the data
2169 space and is therefore a special function pointer. */
2170
2171 static CORE_ADDR
2172 rs6000_convert_from_func_ptr_addr (struct gdbarch *gdbarch,
2173 CORE_ADDR addr,
2174 struct target_ops *targ)
2175 {
2176 struct obj_section *s;
2177
2178 s = find_pc_section (addr);
2179 if (s && s->the_bfd_section->flags & SEC_CODE)
2180 return addr;
2181
2182 /* ADDR is in the data space, so it's a special function pointer. */
2183 return read_memory_addr (addr, gdbarch_tdep (current_gdbarch)->wordsize);
2184 }
2185 \f
2186
2187 /* Handling the various POWER/PowerPC variants. */
2188
2189
2190 /* The arrays here called registers_MUMBLE hold information about available
2191 registers.
2192
2193 For each family of PPC variants, I've tried to isolate out the
2194 common registers and put them up front, so that as long as you get
2195 the general family right, GDB will correctly identify the registers
2196 common to that family. The common register sets are:
2197
2198 For the 60x family: hid0 hid1 iabr dabr pir
2199
2200 For the 505 and 860 family: eie eid nri
2201
2202 For the 403 and 403GC: icdbdr esr dear evpr cdbcr tsr tcr pit tbhi
2203 tblo srr2 srr3 dbsr dbcr iac1 iac2 dac1 dac2 dccr iccr pbl1
2204 pbu1 pbl2 pbu2
2205
2206 Most of these register groups aren't anything formal. I arrived at
2207 them by looking at the registers that occurred in more than one
2208 processor.
2209
2210 Note: kevinb/2002-04-30: Support for the fpscr register was added
2211 during April, 2002. Slot 70 is being used for PowerPC and slot 71
2212 for Power. For PowerPC, slot 70 was unused and was already in the
2213 PPC_UISA_SPRS which is ideally where fpscr should go. For Power,
2214 slot 70 was being used for "mq", so the next available slot (71)
2215 was chosen. It would have been nice to be able to make the
2216 register numbers the same across processor cores, but this wasn't
2217 possible without either 1) renumbering some registers for some
2218 processors or 2) assigning fpscr to a really high slot that's
2219 larger than any current register number. Doing (1) is bad because
2220 existing stubs would break. Doing (2) is undesirable because it
2221 would introduce a really large gap between fpscr and the rest of
2222 the registers for most processors. */
2223
2224 /* Convenience macros for populating register arrays. */
2225
2226 /* Within another macro, convert S to a string. */
2227
2228 #define STR(s) #s
2229
2230 /* Return a struct reg defining register NAME that's 32 bits on 32-bit systems
2231 and 64 bits on 64-bit systems. */
2232 #define R(name) { STR(name), 4, 8, 0, 0, -1 }
2233
2234 /* Return a struct reg defining register NAME that's 32 bits on all
2235 systems. */
2236 #define R4(name) { STR(name), 4, 4, 0, 0, -1 }
2237
2238 /* Return a struct reg defining register NAME that's 64 bits on all
2239 systems. */
2240 #define R8(name) { STR(name), 8, 8, 0, 0, -1 }
2241
2242 /* Return a struct reg defining register NAME that's 128 bits on all
2243 systems. */
2244 #define R16(name) { STR(name), 16, 16, 0, 0, -1 }
2245
2246 /* Return a struct reg defining floating-point register NAME. */
2247 #define F(name) { STR(name), 8, 8, 1, 0, -1 }
2248
2249 /* Return a struct reg defining a pseudo register NAME that is 64 bits
2250 long on all systems. */
2251 #define P8(name) { STR(name), 8, 8, 0, 1, -1 }
2252
2253 /* Return a struct reg defining register NAME that's 32 bits on 32-bit
2254 systems and that doesn't exist on 64-bit systems. */
2255 #define R32(name) { STR(name), 4, 0, 0, 0, -1 }
2256
2257 /* Return a struct reg defining register NAME that's 64 bits on 64-bit
2258 systems and that doesn't exist on 32-bit systems. */
2259 #define R64(name) { STR(name), 0, 8, 0, 0, -1 }
2260
2261 /* Return a struct reg placeholder for a register that doesn't exist. */
2262 #define R0 { 0, 0, 0, 0, 0, -1 }
2263
2264 /* Return a struct reg defining an anonymous raw register that's 32
2265 bits on all systems. */
2266 #define A4 { 0, 4, 4, 0, 0, -1 }
2267
2268 /* Return a struct reg defining an SPR named NAME that is 32 bits on
2269 32-bit systems and 64 bits on 64-bit systems. */
2270 #define S(name) { STR(name), 4, 8, 0, 0, ppc_spr_ ## name }
2271
2272 /* Return a struct reg defining an SPR named NAME that is 32 bits on
2273 all systems. */
2274 #define S4(name) { STR(name), 4, 4, 0, 0, ppc_spr_ ## name }
2275
2276 /* Return a struct reg defining an SPR named NAME that is 32 bits on
2277 all systems, and whose SPR number is NUMBER. */
2278 #define SN4(name, number) { STR(name), 4, 4, 0, 0, (number) }
2279
2280 /* Return a struct reg defining an SPR named NAME that's 64 bits on
2281 64-bit systems and that doesn't exist on 32-bit systems. */
2282 #define S64(name) { STR(name), 0, 8, 0, 0, ppc_spr_ ## name }
2283
2284 /* UISA registers common across all architectures, including POWER. */
2285
2286 #define COMMON_UISA_REGS \
2287 /* 0 */ R(r0), R(r1), R(r2), R(r3), R(r4), R(r5), R(r6), R(r7), \
2288 /* 8 */ R(r8), R(r9), R(r10),R(r11),R(r12),R(r13),R(r14),R(r15), \
2289 /* 16 */ R(r16),R(r17),R(r18),R(r19),R(r20),R(r21),R(r22),R(r23), \
2290 /* 24 */ R(r24),R(r25),R(r26),R(r27),R(r28),R(r29),R(r30),R(r31), \
2291 /* 32 */ F(f0), F(f1), F(f2), F(f3), F(f4), F(f5), F(f6), F(f7), \
2292 /* 40 */ F(f8), F(f9), F(f10),F(f11),F(f12),F(f13),F(f14),F(f15), \
2293 /* 48 */ F(f16),F(f17),F(f18),F(f19),F(f20),F(f21),F(f22),F(f23), \
2294 /* 56 */ F(f24),F(f25),F(f26),F(f27),F(f28),F(f29),F(f30),F(f31), \
2295 /* 64 */ R(pc), R(ps)
2296
2297 /* UISA-level SPRs for PowerPC. */
2298 #define PPC_UISA_SPRS \
2299 /* 66 */ R4(cr), S(lr), S(ctr), S4(xer), R4(fpscr)
2300
2301 /* UISA-level SPRs for PowerPC without floating point support. */
2302 #define PPC_UISA_NOFP_SPRS \
2303 /* 66 */ R4(cr), S(lr), S(ctr), S4(xer), R0
2304
2305 /* Segment registers, for PowerPC. */
2306 #define PPC_SEGMENT_REGS \
2307 /* 71 */ R32(sr0), R32(sr1), R32(sr2), R32(sr3), \
2308 /* 75 */ R32(sr4), R32(sr5), R32(sr6), R32(sr7), \
2309 /* 79 */ R32(sr8), R32(sr9), R32(sr10), R32(sr11), \
2310 /* 83 */ R32(sr12), R32(sr13), R32(sr14), R32(sr15)
2311
2312 /* OEA SPRs for PowerPC. */
2313 #define PPC_OEA_SPRS \
2314 /* 87 */ S4(pvr), \
2315 /* 88 */ S(ibat0u), S(ibat0l), S(ibat1u), S(ibat1l), \
2316 /* 92 */ S(ibat2u), S(ibat2l), S(ibat3u), S(ibat3l), \
2317 /* 96 */ S(dbat0u), S(dbat0l), S(dbat1u), S(dbat1l), \
2318 /* 100 */ S(dbat2u), S(dbat2l), S(dbat3u), S(dbat3l), \
2319 /* 104 */ S(sdr1), S64(asr), S(dar), S4(dsisr), \
2320 /* 108 */ S(sprg0), S(sprg1), S(sprg2), S(sprg3), \
2321 /* 112 */ S(srr0), S(srr1), S(tbl), S(tbu), \
2322 /* 116 */ S4(dec), S(dabr), S4(ear)
2323
2324 /* AltiVec registers. */
2325 #define PPC_ALTIVEC_REGS \
2326 /*119*/R16(vr0), R16(vr1), R16(vr2), R16(vr3), R16(vr4), R16(vr5), R16(vr6), R16(vr7), \
2327 /*127*/R16(vr8), R16(vr9), R16(vr10),R16(vr11),R16(vr12),R16(vr13),R16(vr14),R16(vr15), \
2328 /*135*/R16(vr16),R16(vr17),R16(vr18),R16(vr19),R16(vr20),R16(vr21),R16(vr22),R16(vr23), \
2329 /*143*/R16(vr24),R16(vr25),R16(vr26),R16(vr27),R16(vr28),R16(vr29),R16(vr30),R16(vr31), \
2330 /*151*/R4(vscr), R4(vrsave)
2331
2332
2333 /* On machines supporting the SPE APU, the general-purpose registers
2334 are 64 bits long. There are SIMD vector instructions to treat them
2335 as pairs of floats, but the rest of the instruction set treats them
2336 as 32-bit registers, and only operates on their lower halves.
2337
2338 In the GDB regcache, we treat their high and low halves as separate
2339 registers. The low halves we present as the general-purpose
2340 registers, and then we have pseudo-registers that stitch together
2341 the upper and lower halves and present them as pseudo-registers. */
2342
2343 /* SPE GPR lower halves --- raw registers. */
2344 #define PPC_SPE_GP_REGS \
2345 /* 0 */ R4(r0), R4(r1), R4(r2), R4(r3), R4(r4), R4(r5), R4(r6), R4(r7), \
2346 /* 8 */ R4(r8), R4(r9), R4(r10),R4(r11),R4(r12),R4(r13),R4(r14),R4(r15), \
2347 /* 16 */ R4(r16),R4(r17),R4(r18),R4(r19),R4(r20),R4(r21),R4(r22),R4(r23), \
2348 /* 24 */ R4(r24),R4(r25),R4(r26),R4(r27),R4(r28),R4(r29),R4(r30),R4(r31)
2349
2350 /* SPE GPR upper halves --- anonymous raw registers. */
2351 #define PPC_SPE_UPPER_GP_REGS \
2352 /* 0 */ A4, A4, A4, A4, A4, A4, A4, A4, \
2353 /* 8 */ A4, A4, A4, A4, A4, A4, A4, A4, \
2354 /* 16 */ A4, A4, A4, A4, A4, A4, A4, A4, \
2355 /* 24 */ A4, A4, A4, A4, A4, A4, A4, A4
2356
2357 /* SPE GPR vector registers --- pseudo registers based on underlying
2358 gprs and the anonymous upper half raw registers. */
2359 #define PPC_EV_PSEUDO_REGS \
2360 /* 0*/P8(ev0), P8(ev1), P8(ev2), P8(ev3), P8(ev4), P8(ev5), P8(ev6), P8(ev7), \
2361 /* 8*/P8(ev8), P8(ev9), P8(ev10),P8(ev11),P8(ev12),P8(ev13),P8(ev14),P8(ev15),\
2362 /*16*/P8(ev16),P8(ev17),P8(ev18),P8(ev19),P8(ev20),P8(ev21),P8(ev22),P8(ev23),\
2363 /*24*/P8(ev24),P8(ev25),P8(ev26),P8(ev27),P8(ev28),P8(ev29),P8(ev30),P8(ev31)
2364
2365 /* IBM POWER (pre-PowerPC) architecture, user-level view. We only cover
2366 user-level SPR's. */
2367 static const struct reg registers_power[] =
2368 {
2369 COMMON_UISA_REGS,
2370 /* 66 */ R4(cnd), S(lr), S(cnt), S4(xer), S4(mq),
2371 /* 71 */ R4(fpscr)
2372 };
2373
2374 /* PowerPC UISA - a PPC processor as viewed by user-level code. A UISA-only
2375 view of the PowerPC. */
2376 static const struct reg registers_powerpc[] =
2377 {
2378 COMMON_UISA_REGS,
2379 PPC_UISA_SPRS,
2380 PPC_ALTIVEC_REGS
2381 };
2382
2383 /* IBM PowerPC 403.
2384
2385 Some notes about the "tcr" special-purpose register:
2386 - On the 403 and 403GC, SPR 986 is named "tcr", and it controls the
2387 403's programmable interval timer, fixed interval timer, and
2388 watchdog timer.
2389 - On the 602, SPR 984 is named "tcr", and it controls the 602's
2390 watchdog timer, and nothing else.
2391
2392 Some of the fields are similar between the two, but they're not
2393 compatible with each other. Since the two variants have different
2394 registers, with different numbers, but the same name, we can't
2395 splice the register name to get the SPR number. */
2396 static const struct reg registers_403[] =
2397 {
2398 COMMON_UISA_REGS,
2399 PPC_UISA_SPRS,
2400 PPC_SEGMENT_REGS,
2401 PPC_OEA_SPRS,
2402 /* 119 */ S(icdbdr), S(esr), S(dear), S(evpr),
2403 /* 123 */ S(cdbcr), S(tsr), SN4(tcr, ppc_spr_403_tcr), S(pit),
2404 /* 127 */ S(tbhi), S(tblo), S(srr2), S(srr3),
2405 /* 131 */ S(dbsr), S(dbcr), S(iac1), S(iac2),
2406 /* 135 */ S(dac1), S(dac2), S(dccr), S(iccr),
2407 /* 139 */ S(pbl1), S(pbu1), S(pbl2), S(pbu2)
2408 };
2409
2410 /* IBM PowerPC 403GC.
2411 See the comments about 'tcr' for the 403, above. */
2412 static const struct reg registers_403GC[] =
2413 {
2414 COMMON_UISA_REGS,
2415 PPC_UISA_SPRS,
2416 PPC_SEGMENT_REGS,
2417 PPC_OEA_SPRS,
2418 /* 119 */ S(icdbdr), S(esr), S(dear), S(evpr),
2419 /* 123 */ S(cdbcr), S(tsr), SN4(tcr, ppc_spr_403_tcr), S(pit),
2420 /* 127 */ S(tbhi), S(tblo), S(srr2), S(srr3),
2421 /* 131 */ S(dbsr), S(dbcr), S(iac1), S(iac2),
2422 /* 135 */ S(dac1), S(dac2), S(dccr), S(iccr),
2423 /* 139 */ S(pbl1), S(pbu1), S(pbl2), S(pbu2),
2424 /* 143 */ S(zpr), S(pid), S(sgr), S(dcwr),
2425 /* 147 */ S(tbhu), S(tblu)
2426 };
2427
2428 /* Motorola PowerPC 505. */
2429 static const struct reg registers_505[] =
2430 {
2431 COMMON_UISA_REGS,
2432 PPC_UISA_SPRS,
2433 PPC_SEGMENT_REGS,
2434 PPC_OEA_SPRS,
2435 /* 119 */ S(eie), S(eid), S(nri)
2436 };
2437
2438 /* Motorola PowerPC 860 or 850. */
2439 static const struct reg registers_860[] =
2440 {
2441 COMMON_UISA_REGS,
2442 PPC_UISA_SPRS,
2443 PPC_SEGMENT_REGS,
2444 PPC_OEA_SPRS,
2445 /* 119 */ S(eie), S(eid), S(nri), S(cmpa),
2446 /* 123 */ S(cmpb), S(cmpc), S(cmpd), S(icr),
2447 /* 127 */ S(der), S(counta), S(countb), S(cmpe),
2448 /* 131 */ S(cmpf), S(cmpg), S(cmph), S(lctrl1),
2449 /* 135 */ S(lctrl2), S(ictrl), S(bar), S(ic_cst),
2450 /* 139 */ S(ic_adr), S(ic_dat), S(dc_cst), S(dc_adr),
2451 /* 143 */ S(dc_dat), S(dpdr), S(dpir), S(immr),
2452 /* 147 */ S(mi_ctr), S(mi_ap), S(mi_epn), S(mi_twc),
2453 /* 151 */ S(mi_rpn), S(md_ctr), S(m_casid), S(md_ap),
2454 /* 155 */ S(md_epn), S(m_twb), S(md_twc), S(md_rpn),
2455 /* 159 */ S(m_tw), S(mi_dbcam), S(mi_dbram0), S(mi_dbram1),
2456 /* 163 */ S(md_dbcam), S(md_dbram0), S(md_dbram1)
2457 };
2458
2459 /* Motorola PowerPC 601. Note that the 601 has different register numbers
2460 for reading and writing RTCU and RTCL. However, how one reads and writes a
2461 register is the stub's problem. */
2462 static const struct reg registers_601[] =
2463 {
2464 COMMON_UISA_REGS,
2465 PPC_UISA_SPRS,
2466 PPC_SEGMENT_REGS,
2467 PPC_OEA_SPRS,
2468 /* 119 */ S(hid0), S(hid1), S(iabr), S(dabr),
2469 /* 123 */ S(pir), S(mq), S(rtcu), S(rtcl)
2470 };
2471
2472 /* Motorola PowerPC 602.
2473 See the notes under the 403 about 'tcr'. */
2474 static const struct reg registers_602[] =
2475 {
2476 COMMON_UISA_REGS,
2477 PPC_UISA_SPRS,
2478 PPC_SEGMENT_REGS,
2479 PPC_OEA_SPRS,
2480 /* 119 */ S(hid0), S(hid1), S(iabr), R0,
2481 /* 123 */ R0, SN4(tcr, ppc_spr_602_tcr), S(ibr), S(esasrr),
2482 /* 127 */ S(sebr), S(ser), S(sp), S(lt)
2483 };
2484
2485 /* Motorola/IBM PowerPC 603 or 603e. */
2486 static const struct reg registers_603[] =
2487 {
2488 COMMON_UISA_REGS,
2489 PPC_UISA_SPRS,
2490 PPC_SEGMENT_REGS,
2491 PPC_OEA_SPRS,
2492 /* 119 */ S(hid0), S(hid1), S(iabr), R0,
2493 /* 123 */ R0, S(dmiss), S(dcmp), S(hash1),
2494 /* 127 */ S(hash2), S(imiss), S(icmp), S(rpa)
2495 };
2496
2497 /* Motorola PowerPC 604 or 604e. */
2498 static const struct reg registers_604[] =
2499 {
2500 COMMON_UISA_REGS,
2501 PPC_UISA_SPRS,
2502 PPC_SEGMENT_REGS,
2503 PPC_OEA_SPRS,
2504 /* 119 */ S(hid0), S(hid1), S(iabr), S(dabr),
2505 /* 123 */ S(pir), S(mmcr0), S(pmc1), S(pmc2),
2506 /* 127 */ S(sia), S(sda)
2507 };
2508
2509 /* Motorola/IBM PowerPC 750 or 740. */
2510 static const struct reg registers_750[] =
2511 {
2512 COMMON_UISA_REGS,
2513 PPC_UISA_SPRS,
2514 PPC_SEGMENT_REGS,
2515 PPC_OEA_SPRS,
2516 /* 119 */ S(hid0), S(hid1), S(iabr), S(dabr),
2517 /* 123 */ R0, S(ummcr0), S(upmc1), S(upmc2),
2518 /* 127 */ S(usia), S(ummcr1), S(upmc3), S(upmc4),
2519 /* 131 */ S(mmcr0), S(pmc1), S(pmc2), S(sia),
2520 /* 135 */ S(mmcr1), S(pmc3), S(pmc4), S(l2cr),
2521 /* 139 */ S(ictc), S(thrm1), S(thrm2), S(thrm3)
2522 };
2523
2524
2525 /* Motorola PowerPC 7400. */
2526 static const struct reg registers_7400[] =
2527 {
2528 /* gpr0-gpr31, fpr0-fpr31 */
2529 COMMON_UISA_REGS,
2530 /* cr, lr, ctr, xer, fpscr */
2531 PPC_UISA_SPRS,
2532 /* sr0-sr15 */
2533 PPC_SEGMENT_REGS,
2534 PPC_OEA_SPRS,
2535 /* vr0-vr31, vrsave, vscr */
2536 PPC_ALTIVEC_REGS
2537 /* FIXME? Add more registers? */
2538 };
2539
2540 /* Motorola e500. */
2541 static const struct reg registers_e500[] =
2542 {
2543 /* 0 .. 31 */ PPC_SPE_GP_REGS,
2544 /* 32 .. 63 */ PPC_SPE_UPPER_GP_REGS,
2545 /* 64 .. 65 */ R(pc), R(ps),
2546 /* 66 .. 70 */ PPC_UISA_NOFP_SPRS,
2547 /* 71 .. 72 */ R8(acc), S4(spefscr),
2548 /* NOTE: Add new registers here the end of the raw register
2549 list and just before the first pseudo register. */
2550 /* 73 .. 104 */ PPC_EV_PSEUDO_REGS
2551 };
2552
2553 /* Information about a particular processor variant. */
2554
2555 struct variant
2556 {
2557 /* Name of this variant. */
2558 char *name;
2559
2560 /* English description of the variant. */
2561 char *description;
2562
2563 /* bfd_arch_info.arch corresponding to variant. */
2564 enum bfd_architecture arch;
2565
2566 /* bfd_arch_info.mach corresponding to variant. */
2567 unsigned long mach;
2568
2569 /* Number of real registers. */
2570 int nregs;
2571
2572 /* Number of pseudo registers. */
2573 int npregs;
2574
2575 /* Number of total registers (the sum of nregs and npregs). */
2576 int num_tot_regs;
2577
2578 /* Table of register names; registers[R] is the name of the register
2579 number R. */
2580 const struct reg *regs;
2581 };
2582
2583 #define tot_num_registers(list) (sizeof (list) / sizeof((list)[0]))
2584
2585 static int
2586 num_registers (const struct reg *reg_list, int num_tot_regs)
2587 {
2588 int i;
2589 int nregs = 0;
2590
2591 for (i = 0; i < num_tot_regs; i++)
2592 if (!reg_list[i].pseudo)
2593 nregs++;
2594
2595 return nregs;
2596 }
2597
2598 static int
2599 num_pseudo_registers (const struct reg *reg_list, int num_tot_regs)
2600 {
2601 int i;
2602 int npregs = 0;
2603
2604 for (i = 0; i < num_tot_regs; i++)
2605 if (reg_list[i].pseudo)
2606 npregs ++;
2607
2608 return npregs;
2609 }
2610
2611 /* Information in this table comes from the following web sites:
2612 IBM: http://www.chips.ibm.com:80/products/embedded/
2613 Motorola: http://www.mot.com/SPS/PowerPC/
2614
2615 I'm sure I've got some of the variant descriptions not quite right.
2616 Please report any inaccuracies you find to GDB's maintainer.
2617
2618 If you add entries to this table, please be sure to allow the new
2619 value as an argument to the --with-cpu flag, in configure.in. */
2620
2621 static struct variant variants[] =
2622 {
2623
2624 {"powerpc", "PowerPC user-level", bfd_arch_powerpc,
2625 bfd_mach_ppc, -1, -1, tot_num_registers (registers_powerpc),
2626 registers_powerpc},
2627 {"power", "POWER user-level", bfd_arch_rs6000,
2628 bfd_mach_rs6k, -1, -1, tot_num_registers (registers_power),
2629 registers_power},
2630 {"403", "IBM PowerPC 403", bfd_arch_powerpc,
2631 bfd_mach_ppc_403, -1, -1, tot_num_registers (registers_403),
2632 registers_403},
2633 {"601", "Motorola PowerPC 601", bfd_arch_powerpc,
2634 bfd_mach_ppc_601, -1, -1, tot_num_registers (registers_601),
2635 registers_601},
2636 {"602", "Motorola PowerPC 602", bfd_arch_powerpc,
2637 bfd_mach_ppc_602, -1, -1, tot_num_registers (registers_602),
2638 registers_602},
2639 {"603", "Motorola/IBM PowerPC 603 or 603e", bfd_arch_powerpc,
2640 bfd_mach_ppc_603, -1, -1, tot_num_registers (registers_603),
2641 registers_603},
2642 {"604", "Motorola PowerPC 604 or 604e", bfd_arch_powerpc,
2643 604, -1, -1, tot_num_registers (registers_604),
2644 registers_604},
2645 {"403GC", "IBM PowerPC 403GC", bfd_arch_powerpc,
2646 bfd_mach_ppc_403gc, -1, -1, tot_num_registers (registers_403GC),
2647 registers_403GC},
2648 {"505", "Motorola PowerPC 505", bfd_arch_powerpc,
2649 bfd_mach_ppc_505, -1, -1, tot_num_registers (registers_505),
2650 registers_505},
2651 {"860", "Motorola PowerPC 860 or 850", bfd_arch_powerpc,
2652 bfd_mach_ppc_860, -1, -1, tot_num_registers (registers_860),
2653 registers_860},
2654 {"750", "Motorola/IBM PowerPC 750 or 740", bfd_arch_powerpc,
2655 bfd_mach_ppc_750, -1, -1, tot_num_registers (registers_750),
2656 registers_750},
2657 {"7400", "Motorola/IBM PowerPC 7400 (G4)", bfd_arch_powerpc,
2658 bfd_mach_ppc_7400, -1, -1, tot_num_registers (registers_7400),
2659 registers_7400},
2660 {"e500", "Motorola PowerPC e500", bfd_arch_powerpc,
2661 bfd_mach_ppc_e500, -1, -1, tot_num_registers (registers_e500),
2662 registers_e500},
2663
2664 /* 64-bit */
2665 {"powerpc64", "PowerPC 64-bit user-level", bfd_arch_powerpc,
2666 bfd_mach_ppc64, -1, -1, tot_num_registers (registers_powerpc),
2667 registers_powerpc},
2668 {"620", "Motorola PowerPC 620", bfd_arch_powerpc,
2669 bfd_mach_ppc_620, -1, -1, tot_num_registers (registers_powerpc),
2670 registers_powerpc},
2671 {"630", "Motorola PowerPC 630", bfd_arch_powerpc,
2672 bfd_mach_ppc_630, -1, -1, tot_num_registers (registers_powerpc),
2673 registers_powerpc},
2674 {"a35", "PowerPC A35", bfd_arch_powerpc,
2675 bfd_mach_ppc_a35, -1, -1, tot_num_registers (registers_powerpc),
2676 registers_powerpc},
2677 {"rs64ii", "PowerPC rs64ii", bfd_arch_powerpc,
2678 bfd_mach_ppc_rs64ii, -1, -1, tot_num_registers (registers_powerpc),
2679 registers_powerpc},
2680 {"rs64iii", "PowerPC rs64iii", bfd_arch_powerpc,
2681 bfd_mach_ppc_rs64iii, -1, -1, tot_num_registers (registers_powerpc),
2682 registers_powerpc},
2683
2684 /* FIXME: I haven't checked the register sets of the following. */
2685 {"rs1", "IBM POWER RS1", bfd_arch_rs6000,
2686 bfd_mach_rs6k_rs1, -1, -1, tot_num_registers (registers_power),
2687 registers_power},
2688 {"rsc", "IBM POWER RSC", bfd_arch_rs6000,
2689 bfd_mach_rs6k_rsc, -1, -1, tot_num_registers (registers_power),
2690 registers_power},
2691 {"rs2", "IBM POWER RS2", bfd_arch_rs6000,
2692 bfd_mach_rs6k_rs2, -1, -1, tot_num_registers (registers_power),
2693 registers_power},
2694
2695 {0, 0, 0, 0, 0, 0, 0, 0}
2696 };
2697
2698 /* Initialize the number of registers and pseudo registers in each variant. */
2699
2700 static void
2701 init_variants (void)
2702 {
2703 struct variant *v;
2704
2705 for (v = variants; v->name; v++)
2706 {
2707 if (v->nregs == -1)
2708 v->nregs = num_registers (v->regs, v->num_tot_regs);
2709 if (v->npregs == -1)
2710 v->npregs = num_pseudo_registers (v->regs, v->num_tot_regs);
2711 }
2712 }
2713
2714 /* Return the variant corresponding to architecture ARCH and machine number
2715 MACH. If no such variant exists, return null. */
2716
2717 static const struct variant *
2718 find_variant_by_arch (enum bfd_architecture arch, unsigned long mach)
2719 {
2720 const struct variant *v;
2721
2722 for (v = variants; v->name; v++)
2723 if (arch == v->arch && mach == v->mach)
2724 return v;
2725
2726 return NULL;
2727 }
2728
2729 static int
2730 gdb_print_insn_powerpc (bfd_vma memaddr, disassemble_info *info)
2731 {
2732 if (TARGET_BYTE_ORDER == BFD_ENDIAN_BIG)
2733 return print_insn_big_powerpc (memaddr, info);
2734 else
2735 return print_insn_little_powerpc (memaddr, info);
2736 }
2737 \f
2738 static CORE_ADDR
2739 rs6000_unwind_pc (struct gdbarch *gdbarch, struct frame_info *next_frame)
2740 {
2741 return frame_unwind_register_unsigned (next_frame, PC_REGNUM);
2742 }
2743
2744 static struct frame_id
2745 rs6000_unwind_dummy_id (struct gdbarch *gdbarch, struct frame_info *next_frame)
2746 {
2747 return frame_id_build (frame_unwind_register_unsigned (next_frame,
2748 SP_REGNUM),
2749 frame_pc_unwind (next_frame));
2750 }
2751
2752 struct rs6000_frame_cache
2753 {
2754 CORE_ADDR base;
2755 CORE_ADDR initial_sp;
2756 struct trad_frame_saved_reg *saved_regs;
2757 };
2758
2759 static struct rs6000_frame_cache *
2760 rs6000_frame_cache (struct frame_info *next_frame, void **this_cache)
2761 {
2762 struct rs6000_frame_cache *cache;
2763 struct gdbarch *gdbarch = get_frame_arch (next_frame);
2764 struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch);
2765 struct rs6000_framedata fdata;
2766 int wordsize = tdep->wordsize;
2767
2768 if ((*this_cache) != NULL)
2769 return (*this_cache);
2770 cache = FRAME_OBSTACK_ZALLOC (struct rs6000_frame_cache);
2771 (*this_cache) = cache;
2772 cache->saved_regs = trad_frame_alloc_saved_regs (next_frame);
2773
2774 skip_prologue (frame_func_unwind (next_frame), frame_pc_unwind (next_frame),
2775 &fdata);
2776
2777 /* If there were any saved registers, figure out parent's stack
2778 pointer. */
2779 /* The following is true only if the frame doesn't have a call to
2780 alloca(), FIXME. */
2781
2782 if (fdata.saved_fpr == 0
2783 && fdata.saved_gpr == 0
2784 && fdata.saved_vr == 0
2785 && fdata.saved_ev == 0
2786 && fdata.lr_offset == 0
2787 && fdata.cr_offset == 0
2788 && fdata.vr_offset == 0
2789 && fdata.ev_offset == 0)
2790 cache->base = frame_unwind_register_unsigned (next_frame, SP_REGNUM);
2791 else
2792 {
2793 /* NOTE: cagney/2002-04-14: The ->frame points to the inner-most
2794 address of the current frame. Things might be easier if the
2795 ->frame pointed to the outer-most address of the frame. In
2796 the mean time, the address of the prev frame is used as the
2797 base address of this frame. */
2798 cache->base = frame_unwind_register_unsigned (next_frame, SP_REGNUM);
2799 if (!fdata.frameless)
2800 /* Frameless really means stackless. */
2801 cache->base = read_memory_addr (cache->base, wordsize);
2802 }
2803 trad_frame_set_value (cache->saved_regs, SP_REGNUM, cache->base);
2804
2805 /* if != -1, fdata.saved_fpr is the smallest number of saved_fpr.
2806 All fpr's from saved_fpr to fp31 are saved. */
2807
2808 if (fdata.saved_fpr >= 0)
2809 {
2810 int i;
2811 CORE_ADDR fpr_addr = cache->base + fdata.fpr_offset;
2812
2813 /* If skip_prologue says floating-point registers were saved,
2814 but the current architecture has no floating-point registers,
2815 then that's strange. But we have no indices to even record
2816 the addresses under, so we just ignore it. */
2817 if (ppc_floating_point_unit_p (gdbarch))
2818 for (i = fdata.saved_fpr; i < ppc_num_fprs; i++)
2819 {
2820 cache->saved_regs[tdep->ppc_fp0_regnum + i].addr = fpr_addr;
2821 fpr_addr += 8;
2822 }
2823 }
2824
2825 /* if != -1, fdata.saved_gpr is the smallest number of saved_gpr.
2826 All gpr's from saved_gpr to gpr31 are saved. */
2827
2828 if (fdata.saved_gpr >= 0)
2829 {
2830 int i;
2831 CORE_ADDR gpr_addr = cache->base + fdata.gpr_offset;
2832 for (i = fdata.saved_gpr; i < ppc_num_gprs; i++)
2833 {
2834 cache->saved_regs[tdep->ppc_gp0_regnum + i].addr = gpr_addr;
2835 gpr_addr += wordsize;
2836 }
2837 }
2838
2839 /* if != -1, fdata.saved_vr is the smallest number of saved_vr.
2840 All vr's from saved_vr to vr31 are saved. */
2841 if (tdep->ppc_vr0_regnum != -1 && tdep->ppc_vrsave_regnum != -1)
2842 {
2843 if (fdata.saved_vr >= 0)
2844 {
2845 int i;
2846 CORE_ADDR vr_addr = cache->base + fdata.vr_offset;
2847 for (i = fdata.saved_vr; i < 32; i++)
2848 {
2849 cache->saved_regs[tdep->ppc_vr0_regnum + i].addr = vr_addr;
2850 vr_addr += register_size (gdbarch, tdep->ppc_vr0_regnum);
2851 }
2852 }
2853 }
2854
2855 /* if != -1, fdata.saved_ev is the smallest number of saved_ev.
2856 All vr's from saved_ev to ev31 are saved. ????? */
2857 if (tdep->ppc_ev0_regnum != -1 && tdep->ppc_ev31_regnum != -1)
2858 {
2859 if (fdata.saved_ev >= 0)
2860 {
2861 int i;
2862 CORE_ADDR ev_addr = cache->base + fdata.ev_offset;
2863 for (i = fdata.saved_ev; i < ppc_num_gprs; i++)
2864 {
2865 cache->saved_regs[tdep->ppc_ev0_regnum + i].addr = ev_addr;
2866 cache->saved_regs[tdep->ppc_gp0_regnum + i].addr = ev_addr + 4;
2867 ev_addr += register_size (gdbarch, tdep->ppc_ev0_regnum);
2868 }
2869 }
2870 }
2871
2872 /* If != 0, fdata.cr_offset is the offset from the frame that
2873 holds the CR. */
2874 if (fdata.cr_offset != 0)
2875 cache->saved_regs[tdep->ppc_cr_regnum].addr = cache->base + fdata.cr_offset;
2876
2877 /* If != 0, fdata.lr_offset is the offset from the frame that
2878 holds the LR. */
2879 if (fdata.lr_offset != 0)
2880 cache->saved_regs[tdep->ppc_lr_regnum].addr = cache->base + fdata.lr_offset;
2881 /* The PC is found in the link register. */
2882 cache->saved_regs[PC_REGNUM] = cache->saved_regs[tdep->ppc_lr_regnum];
2883
2884 /* If != 0, fdata.vrsave_offset is the offset from the frame that
2885 holds the VRSAVE. */
2886 if (fdata.vrsave_offset != 0)
2887 cache->saved_regs[tdep->ppc_vrsave_regnum].addr = cache->base + fdata.vrsave_offset;
2888
2889 if (fdata.alloca_reg < 0)
2890 /* If no alloca register used, then fi->frame is the value of the
2891 %sp for this frame, and it is good enough. */
2892 cache->initial_sp = frame_unwind_register_unsigned (next_frame, SP_REGNUM);
2893 else
2894 cache->initial_sp = frame_unwind_register_unsigned (next_frame,
2895 fdata.alloca_reg);
2896
2897 return cache;
2898 }
2899
2900 static void
2901 rs6000_frame_this_id (struct frame_info *next_frame, void **this_cache,
2902 struct frame_id *this_id)
2903 {
2904 struct rs6000_frame_cache *info = rs6000_frame_cache (next_frame,
2905 this_cache);
2906 (*this_id) = frame_id_build (info->base, frame_func_unwind (next_frame));
2907 }
2908
2909 static void
2910 rs6000_frame_prev_register (struct frame_info *next_frame,
2911 void **this_cache,
2912 int regnum, int *optimizedp,
2913 enum lval_type *lvalp, CORE_ADDR *addrp,
2914 int *realnump, void *valuep)
2915 {
2916 struct rs6000_frame_cache *info = rs6000_frame_cache (next_frame,
2917 this_cache);
2918 trad_frame_get_prev_register (next_frame, info->saved_regs, regnum,
2919 optimizedp, lvalp, addrp, realnump, valuep);
2920 }
2921
2922 static const struct frame_unwind rs6000_frame_unwind =
2923 {
2924 NORMAL_FRAME,
2925 rs6000_frame_this_id,
2926 rs6000_frame_prev_register
2927 };
2928
2929 static const struct frame_unwind *
2930 rs6000_frame_sniffer (struct frame_info *next_frame)
2931 {
2932 return &rs6000_frame_unwind;
2933 }
2934
2935 \f
2936
2937 static CORE_ADDR
2938 rs6000_frame_base_address (struct frame_info *next_frame,
2939 void **this_cache)
2940 {
2941 struct rs6000_frame_cache *info = rs6000_frame_cache (next_frame,
2942 this_cache);
2943 return info->initial_sp;
2944 }
2945
2946 static const struct frame_base rs6000_frame_base = {
2947 &rs6000_frame_unwind,
2948 rs6000_frame_base_address,
2949 rs6000_frame_base_address,
2950 rs6000_frame_base_address
2951 };
2952
2953 static const struct frame_base *
2954 rs6000_frame_base_sniffer (struct frame_info *next_frame)
2955 {
2956 return &rs6000_frame_base;
2957 }
2958
2959 /* Initialize the current architecture based on INFO. If possible, re-use an
2960 architecture from ARCHES, which is a list of architectures already created
2961 during this debugging session.
2962
2963 Called e.g. at program startup, when reading a core file, and when reading
2964 a binary file. */
2965
2966 static struct gdbarch *
2967 rs6000_gdbarch_init (struct gdbarch_info info, struct gdbarch_list *arches)
2968 {
2969 struct gdbarch *gdbarch;
2970 struct gdbarch_tdep *tdep;
2971 int wordsize, from_xcoff_exec, from_elf_exec, i, off;
2972 struct reg *regs;
2973 const struct variant *v;
2974 enum bfd_architecture arch;
2975 unsigned long mach;
2976 bfd abfd;
2977 int sysv_abi;
2978 asection *sect;
2979
2980 from_xcoff_exec = info.abfd && info.abfd->format == bfd_object &&
2981 bfd_get_flavour (info.abfd) == bfd_target_xcoff_flavour;
2982
2983 from_elf_exec = info.abfd && info.abfd->format == bfd_object &&
2984 bfd_get_flavour (info.abfd) == bfd_target_elf_flavour;
2985
2986 sysv_abi = info.abfd && bfd_get_flavour (info.abfd) == bfd_target_elf_flavour;
2987
2988 /* Check word size. If INFO is from a binary file, infer it from
2989 that, else choose a likely default. */
2990 if (from_xcoff_exec)
2991 {
2992 if (bfd_xcoff_is_xcoff64 (info.abfd))
2993 wordsize = 8;
2994 else
2995 wordsize = 4;
2996 }
2997 else if (from_elf_exec)
2998 {
2999 if (elf_elfheader (info.abfd)->e_ident[EI_CLASS] == ELFCLASS64)
3000 wordsize = 8;
3001 else
3002 wordsize = 4;
3003 }
3004 else
3005 {
3006 if (info.bfd_arch_info != NULL && info.bfd_arch_info->bits_per_word != 0)
3007 wordsize = info.bfd_arch_info->bits_per_word /
3008 info.bfd_arch_info->bits_per_byte;
3009 else
3010 wordsize = 4;
3011 }
3012
3013 /* Find a candidate among extant architectures. */
3014 for (arches = gdbarch_list_lookup_by_info (arches, &info);
3015 arches != NULL;
3016 arches = gdbarch_list_lookup_by_info (arches->next, &info))
3017 {
3018 /* Word size in the various PowerPC bfd_arch_info structs isn't
3019 meaningful, because 64-bit CPUs can run in 32-bit mode. So, perform
3020 separate word size check. */
3021 tdep = gdbarch_tdep (arches->gdbarch);
3022 if (tdep && tdep->wordsize == wordsize)
3023 return arches->gdbarch;
3024 }
3025
3026 /* None found, create a new architecture from INFO, whose bfd_arch_info
3027 validity depends on the source:
3028 - executable useless
3029 - rs6000_host_arch() good
3030 - core file good
3031 - "set arch" trust blindly
3032 - GDB startup useless but harmless */
3033
3034 if (!from_xcoff_exec)
3035 {
3036 arch = info.bfd_arch_info->arch;
3037 mach = info.bfd_arch_info->mach;
3038 }
3039 else
3040 {
3041 arch = bfd_arch_powerpc;
3042 bfd_default_set_arch_mach (&abfd, arch, 0);
3043 info.bfd_arch_info = bfd_get_arch_info (&abfd);
3044 mach = info.bfd_arch_info->mach;
3045 }
3046 tdep = xmalloc (sizeof (struct gdbarch_tdep));
3047 tdep->wordsize = wordsize;
3048
3049 /* For e500 executables, the apuinfo section is of help here. Such
3050 section contains the identifier and revision number of each
3051 Application-specific Processing Unit that is present on the
3052 chip. The content of the section is determined by the assembler
3053 which looks at each instruction and determines which unit (and
3054 which version of it) can execute it. In our case we just look for
3055 the existance of the section. */
3056
3057 if (info.abfd)
3058 {
3059 sect = bfd_get_section_by_name (info.abfd, ".PPC.EMB.apuinfo");
3060 if (sect)
3061 {
3062 arch = info.bfd_arch_info->arch;
3063 mach = bfd_mach_ppc_e500;
3064 bfd_default_set_arch_mach (&abfd, arch, mach);
3065 info.bfd_arch_info = bfd_get_arch_info (&abfd);
3066 }
3067 }
3068
3069 gdbarch = gdbarch_alloc (&info, tdep);
3070
3071 /* Initialize the number of real and pseudo registers in each variant. */
3072 init_variants ();
3073
3074 /* Choose variant. */
3075 v = find_variant_by_arch (arch, mach);
3076 if (!v)
3077 return NULL;
3078
3079 tdep->regs = v->regs;
3080
3081 tdep->ppc_gp0_regnum = 0;
3082 tdep->ppc_toc_regnum = 2;
3083 tdep->ppc_ps_regnum = 65;
3084 tdep->ppc_cr_regnum = 66;
3085 tdep->ppc_lr_regnum = 67;
3086 tdep->ppc_ctr_regnum = 68;
3087 tdep->ppc_xer_regnum = 69;
3088 if (v->mach == bfd_mach_ppc_601)
3089 tdep->ppc_mq_regnum = 124;
3090 else if (arch == bfd_arch_rs6000)
3091 tdep->ppc_mq_regnum = 70;
3092 else
3093 tdep->ppc_mq_regnum = -1;
3094 tdep->ppc_fp0_regnum = 32;
3095 tdep->ppc_fpscr_regnum = (arch == bfd_arch_rs6000) ? 71 : 70;
3096 tdep->ppc_sr0_regnum = 71;
3097 tdep->ppc_vr0_regnum = -1;
3098 tdep->ppc_vrsave_regnum = -1;
3099 tdep->ppc_ev0_upper_regnum = -1;
3100 tdep->ppc_ev0_regnum = -1;
3101 tdep->ppc_ev31_regnum = -1;
3102 tdep->ppc_acc_regnum = -1;
3103 tdep->ppc_spefscr_regnum = -1;
3104
3105 set_gdbarch_pc_regnum (gdbarch, 64);
3106 set_gdbarch_sp_regnum (gdbarch, 1);
3107 set_gdbarch_deprecated_fp_regnum (gdbarch, 1);
3108 set_gdbarch_register_sim_regno (gdbarch, rs6000_register_sim_regno);
3109 if (sysv_abi && wordsize == 8)
3110 set_gdbarch_return_value (gdbarch, ppc64_sysv_abi_return_value);
3111 else if (sysv_abi && wordsize == 4)
3112 set_gdbarch_return_value (gdbarch, ppc_sysv_abi_return_value);
3113 else
3114 {
3115 set_gdbarch_deprecated_extract_return_value (gdbarch, rs6000_extract_return_value);
3116 set_gdbarch_store_return_value (gdbarch, rs6000_store_return_value);
3117 }
3118
3119 /* Set lr_frame_offset. */
3120 if (wordsize == 8)
3121 tdep->lr_frame_offset = 16;
3122 else if (sysv_abi)
3123 tdep->lr_frame_offset = 4;
3124 else
3125 tdep->lr_frame_offset = 8;
3126
3127 if (v->arch == bfd_arch_rs6000)
3128 tdep->ppc_sr0_regnum = -1;
3129 else if (v->arch == bfd_arch_powerpc)
3130 switch (v->mach)
3131 {
3132 case bfd_mach_ppc:
3133 tdep->ppc_sr0_regnum = -1;
3134 tdep->ppc_vr0_regnum = 71;
3135 tdep->ppc_vrsave_regnum = 104;
3136 break;
3137 case bfd_mach_ppc_7400:
3138 tdep->ppc_vr0_regnum = 119;
3139 tdep->ppc_vrsave_regnum = 152;
3140 break;
3141 case bfd_mach_ppc_e500:
3142 tdep->ppc_toc_regnum = -1;
3143 tdep->ppc_ev0_upper_regnum = 32;
3144 tdep->ppc_ev0_regnum = 73;
3145 tdep->ppc_ev31_regnum = 104;
3146 tdep->ppc_acc_regnum = 71;
3147 tdep->ppc_spefscr_regnum = 72;
3148 tdep->ppc_fp0_regnum = -1;
3149 tdep->ppc_fpscr_regnum = -1;
3150 tdep->ppc_sr0_regnum = -1;
3151 set_gdbarch_pseudo_register_read (gdbarch, e500_pseudo_register_read);
3152 set_gdbarch_pseudo_register_write (gdbarch, e500_pseudo_register_write);
3153 set_gdbarch_register_reggroup_p (gdbarch, e500_register_reggroup_p);
3154 break;
3155
3156 case bfd_mach_ppc64:
3157 case bfd_mach_ppc_620:
3158 case bfd_mach_ppc_630:
3159 case bfd_mach_ppc_a35:
3160 case bfd_mach_ppc_rs64ii:
3161 case bfd_mach_ppc_rs64iii:
3162 /* These processor's register sets don't have segment registers. */
3163 tdep->ppc_sr0_regnum = -1;
3164 break;
3165 }
3166 else
3167 internal_error (__FILE__, __LINE__,
3168 "rs6000_gdbarch_init: "
3169 "received unexpected BFD 'arch' value");
3170
3171 /* Sanity check on registers. */
3172 gdb_assert (strcmp (tdep->regs[tdep->ppc_gp0_regnum].name, "r0") == 0);
3173
3174 /* Select instruction printer. */
3175 if (arch == bfd_arch_rs6000)
3176 set_gdbarch_print_insn (gdbarch, print_insn_rs6000);
3177 else
3178 set_gdbarch_print_insn (gdbarch, gdb_print_insn_powerpc);
3179
3180 set_gdbarch_write_pc (gdbarch, generic_target_write_pc);
3181
3182 set_gdbarch_num_regs (gdbarch, v->nregs);
3183 set_gdbarch_num_pseudo_regs (gdbarch, v->npregs);
3184 set_gdbarch_register_name (gdbarch, rs6000_register_name);
3185 set_gdbarch_register_type (gdbarch, rs6000_register_type);
3186
3187 set_gdbarch_ptr_bit (gdbarch, wordsize * TARGET_CHAR_BIT);
3188 set_gdbarch_short_bit (gdbarch, 2 * TARGET_CHAR_BIT);
3189 set_gdbarch_int_bit (gdbarch, 4 * TARGET_CHAR_BIT);
3190 set_gdbarch_long_bit (gdbarch, wordsize * TARGET_CHAR_BIT);
3191 set_gdbarch_long_long_bit (gdbarch, 8 * TARGET_CHAR_BIT);
3192 set_gdbarch_float_bit (gdbarch, 4 * TARGET_CHAR_BIT);
3193 set_gdbarch_double_bit (gdbarch, 8 * TARGET_CHAR_BIT);
3194 if (sysv_abi)
3195 set_gdbarch_long_double_bit (gdbarch, 16 * TARGET_CHAR_BIT);
3196 else
3197 set_gdbarch_long_double_bit (gdbarch, 8 * TARGET_CHAR_BIT);
3198 set_gdbarch_char_signed (gdbarch, 0);
3199
3200 set_gdbarch_frame_align (gdbarch, rs6000_frame_align);
3201 if (sysv_abi && wordsize == 8)
3202 /* PPC64 SYSV. */
3203 set_gdbarch_frame_red_zone_size (gdbarch, 288);
3204 else if (!sysv_abi && wordsize == 4)
3205 /* PowerOpen / AIX 32 bit. The saved area or red zone consists of
3206 19 4 byte GPRS + 18 8 byte FPRs giving a total of 220 bytes.
3207 Problem is, 220 isn't frame (16 byte) aligned. Round it up to
3208 224. */
3209 set_gdbarch_frame_red_zone_size (gdbarch, 224);
3210
3211 set_gdbarch_convert_register_p (gdbarch, rs6000_convert_register_p);
3212 set_gdbarch_register_to_value (gdbarch, rs6000_register_to_value);
3213 set_gdbarch_value_to_register (gdbarch, rs6000_value_to_register);
3214
3215 set_gdbarch_stab_reg_to_regnum (gdbarch, rs6000_stab_reg_to_regnum);
3216 set_gdbarch_dwarf2_reg_to_regnum (gdbarch, rs6000_dwarf2_reg_to_regnum);
3217 /* Note: kevinb/2002-04-12: I'm not convinced that rs6000_push_arguments()
3218 is correct for the SysV ABI when the wordsize is 8, but I'm also
3219 fairly certain that ppc_sysv_abi_push_arguments() will give even
3220 worse results since it only works for 32-bit code. So, for the moment,
3221 we're better off calling rs6000_push_arguments() since it works for
3222 64-bit code. At some point in the future, this matter needs to be
3223 revisited. */
3224 if (sysv_abi && wordsize == 4)
3225 set_gdbarch_push_dummy_call (gdbarch, ppc_sysv_abi_push_dummy_call);
3226 else if (sysv_abi && wordsize == 8)
3227 set_gdbarch_push_dummy_call (gdbarch, ppc64_sysv_abi_push_dummy_call);
3228 else
3229 set_gdbarch_push_dummy_call (gdbarch, rs6000_push_dummy_call);
3230
3231 set_gdbarch_deprecated_extract_struct_value_address (gdbarch, rs6000_extract_struct_value_address);
3232
3233 set_gdbarch_skip_prologue (gdbarch, rs6000_skip_prologue);
3234 set_gdbarch_inner_than (gdbarch, core_addr_lessthan);
3235 set_gdbarch_breakpoint_from_pc (gdbarch, rs6000_breakpoint_from_pc);
3236
3237 /* Handle the 64-bit SVR4 minimal-symbol convention of using "FN"
3238 for the descriptor and ".FN" for the entry-point -- a user
3239 specifying "break FN" will unexpectedly end up with a breakpoint
3240 on the descriptor and not the function. This architecture method
3241 transforms any breakpoints on descriptors into breakpoints on the
3242 corresponding entry point. */
3243 if (sysv_abi && wordsize == 8)
3244 set_gdbarch_adjust_breakpoint_address (gdbarch, ppc64_sysv_abi_adjust_breakpoint_address);
3245
3246 /* Not sure on this. FIXMEmgo */
3247 set_gdbarch_frame_args_skip (gdbarch, 8);
3248
3249 if (!sysv_abi)
3250 set_gdbarch_deprecated_use_struct_convention (gdbarch, rs6000_use_struct_convention);
3251
3252 if (!sysv_abi)
3253 {
3254 /* Handle RS/6000 function pointers (which are really function
3255 descriptors). */
3256 set_gdbarch_convert_from_func_ptr_addr (gdbarch,
3257 rs6000_convert_from_func_ptr_addr);
3258 }
3259
3260 /* Helpers for function argument information. */
3261 set_gdbarch_fetch_pointer_argument (gdbarch, rs6000_fetch_pointer_argument);
3262
3263 /* Hook in ABI-specific overrides, if they have been registered. */
3264 gdbarch_init_osabi (info, gdbarch);
3265
3266 switch (info.osabi)
3267 {
3268 case GDB_OSABI_NETBSD_AOUT:
3269 case GDB_OSABI_NETBSD_ELF:
3270 case GDB_OSABI_UNKNOWN:
3271 case GDB_OSABI_LINUX:
3272 set_gdbarch_unwind_pc (gdbarch, rs6000_unwind_pc);
3273 frame_unwind_append_sniffer (gdbarch, rs6000_frame_sniffer);
3274 set_gdbarch_unwind_dummy_id (gdbarch, rs6000_unwind_dummy_id);
3275 frame_base_append_sniffer (gdbarch, rs6000_frame_base_sniffer);
3276 break;
3277 default:
3278 set_gdbarch_believe_pcc_promotion (gdbarch, 1);
3279
3280 set_gdbarch_unwind_pc (gdbarch, rs6000_unwind_pc);
3281 frame_unwind_append_sniffer (gdbarch, rs6000_frame_sniffer);
3282 set_gdbarch_unwind_dummy_id (gdbarch, rs6000_unwind_dummy_id);
3283 frame_base_append_sniffer (gdbarch, rs6000_frame_base_sniffer);
3284 }
3285
3286 if (from_xcoff_exec)
3287 {
3288 /* NOTE: jimix/2003-06-09: This test should really check for
3289 GDB_OSABI_AIX when that is defined and becomes
3290 available. (Actually, once things are properly split apart,
3291 the test goes away.) */
3292 /* RS6000/AIX does not support PT_STEP. Has to be simulated. */
3293 set_gdbarch_software_single_step (gdbarch, rs6000_software_single_step);
3294 }
3295
3296 init_sim_regno_table (gdbarch);
3297
3298 return gdbarch;
3299 }
3300
3301 static void
3302 rs6000_dump_tdep (struct gdbarch *current_gdbarch, struct ui_file *file)
3303 {
3304 struct gdbarch_tdep *tdep = gdbarch_tdep (current_gdbarch);
3305
3306 if (tdep == NULL)
3307 return;
3308
3309 /* FIXME: Dump gdbarch_tdep. */
3310 }
3311
3312 static struct cmd_list_element *info_powerpc_cmdlist = NULL;
3313
3314 static void
3315 rs6000_info_powerpc_command (char *args, int from_tty)
3316 {
3317 help_list (info_powerpc_cmdlist, "info powerpc ", class_info, gdb_stdout);
3318 }
3319
3320 /* Initialization code. */
3321
3322 extern initialize_file_ftype _initialize_rs6000_tdep; /* -Wmissing-prototypes */
3323
3324 void
3325 _initialize_rs6000_tdep (void)
3326 {
3327 gdbarch_register (bfd_arch_rs6000, rs6000_gdbarch_init, rs6000_dump_tdep);
3328 gdbarch_register (bfd_arch_powerpc, rs6000_gdbarch_init, rs6000_dump_tdep);
3329
3330 /* Add root prefix command for "info powerpc" commands */
3331 add_prefix_cmd ("powerpc", class_info, rs6000_info_powerpc_command,
3332 "Various POWERPC info specific commands.",
3333 &info_powerpc_cmdlist, "info powerpc ", 0, &infolist);
3334 }