From Jimi X <jimix@watson.ibm.com>:
[binutils-gdb.git] / gdb / rs6000-tdep.c
1 /* Target-dependent code for GDB, the GNU debugger.
2 Copyright 1986, 1987, 1989, 1991, 1992, 1993, 1994, 1995, 1996, 1997,
3 1998, 1999, 2000, 2001, 2002
4 Free Software Foundation, Inc.
5
6 This file is part of GDB.
7
8 This program is free software; you can redistribute it and/or modify
9 it under the terms of the GNU General Public License as published by
10 the Free Software Foundation; either version 2 of the License, or
11 (at your option) any later version.
12
13 This program is distributed in the hope that it will be useful,
14 but WITHOUT ANY WARRANTY; without even the implied warranty of
15 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
16 GNU General Public License for more details.
17
18 You should have received a copy of the GNU General Public License
19 along with this program; if not, write to the Free Software
20 Foundation, Inc., 59 Temple Place - Suite 330,
21 Boston, MA 02111-1307, USA. */
22
23 #include "defs.h"
24 #include "frame.h"
25 #include "inferior.h"
26 #include "symtab.h"
27 #include "target.h"
28 #include "gdbcore.h"
29 #include "gdbcmd.h"
30 #include "symfile.h"
31 #include "objfiles.h"
32 #include "arch-utils.h"
33 #include "regcache.h"
34 #include "doublest.h"
35 #include "value.h"
36 #include "parser-defs.h"
37
38 #include "libbfd.h" /* for bfd_default_set_arch_mach */
39 #include "coff/internal.h" /* for libcoff.h */
40 #include "libcoff.h" /* for xcoff_data */
41
42 #include "elf-bfd.h"
43
44 #include "solib-svr4.h"
45 #include "ppc-tdep.h"
46
47 /* If the kernel has to deliver a signal, it pushes a sigcontext
48 structure on the stack and then calls the signal handler, passing
49 the address of the sigcontext in an argument register. Usually
50 the signal handler doesn't save this register, so we have to
51 access the sigcontext structure via an offset from the signal handler
52 frame.
53 The following constants were determined by experimentation on AIX 3.2. */
54 #define SIG_FRAME_PC_OFFSET 96
55 #define SIG_FRAME_LR_OFFSET 108
56 #define SIG_FRAME_FP_OFFSET 284
57
58 /* To be used by skip_prologue. */
59
60 struct rs6000_framedata
61 {
62 int offset; /* total size of frame --- the distance
63 by which we decrement sp to allocate
64 the frame */
65 int saved_gpr; /* smallest # of saved gpr */
66 int saved_fpr; /* smallest # of saved fpr */
67 int saved_vr; /* smallest # of saved vr */
68 int alloca_reg; /* alloca register number (frame ptr) */
69 char frameless; /* true if frameless functions. */
70 char nosavedpc; /* true if pc not saved. */
71 int gpr_offset; /* offset of saved gprs from prev sp */
72 int fpr_offset; /* offset of saved fprs from prev sp */
73 int vr_offset; /* offset of saved vrs from prev sp */
74 int lr_offset; /* offset of saved lr */
75 int cr_offset; /* offset of saved cr */
76 int vrsave_offset; /* offset of saved vrsave register */
77 };
78
79 /* Description of a single register. */
80
81 struct reg
82 {
83 char *name; /* name of register */
84 unsigned char sz32; /* size on 32-bit arch, 0 if nonextant */
85 unsigned char sz64; /* size on 64-bit arch, 0 if nonextant */
86 unsigned char fpr; /* whether register is floating-point */
87 };
88
89 /* Return the current architecture's gdbarch_tdep structure. */
90
91 #define TDEP gdbarch_tdep (current_gdbarch)
92
93 /* Breakpoint shadows for the single step instructions will be kept here. */
94
95 static struct sstep_breaks
96 {
97 /* Address, or 0 if this is not in use. */
98 CORE_ADDR address;
99 /* Shadow contents. */
100 char data[4];
101 }
102 stepBreaks[2];
103
104 /* Hook for determining the TOC address when calling functions in the
105 inferior under AIX. The initialization code in rs6000-nat.c sets
106 this hook to point to find_toc_address. */
107
108 CORE_ADDR (*rs6000_find_toc_address_hook) (CORE_ADDR) = NULL;
109
110 /* Hook to set the current architecture when starting a child process.
111 rs6000-nat.c sets this. */
112
113 void (*rs6000_set_host_arch_hook) (int) = NULL;
114
115 /* Static function prototypes */
116
117 static CORE_ADDR branch_dest (int opcode, int instr, CORE_ADDR pc,
118 CORE_ADDR safety);
119 static CORE_ADDR skip_prologue (CORE_ADDR, CORE_ADDR,
120 struct rs6000_framedata *);
121 static void frame_get_saved_regs (struct frame_info * fi,
122 struct rs6000_framedata * fdatap);
123 static CORE_ADDR frame_initial_stack_address (struct frame_info *);
124
125 /* Read a LEN-byte address from debugged memory address MEMADDR. */
126
127 static CORE_ADDR
128 read_memory_addr (CORE_ADDR memaddr, int len)
129 {
130 return read_memory_unsigned_integer (memaddr, len);
131 }
132
133 static CORE_ADDR
134 rs6000_skip_prologue (CORE_ADDR pc)
135 {
136 struct rs6000_framedata frame;
137 pc = skip_prologue (pc, 0, &frame);
138 return pc;
139 }
140
141
142 /* Fill in fi->saved_regs */
143
144 struct frame_extra_info
145 {
146 /* Functions calling alloca() change the value of the stack
147 pointer. We need to use initial stack pointer (which is saved in
148 r31 by gcc) in such cases. If a compiler emits traceback table,
149 then we should use the alloca register specified in traceback
150 table. FIXME. */
151 CORE_ADDR initial_sp; /* initial stack pointer. */
152 };
153
154 void
155 rs6000_init_extra_frame_info (int fromleaf, struct frame_info *fi)
156 {
157 fi->extra_info = (struct frame_extra_info *)
158 frame_obstack_alloc (sizeof (struct frame_extra_info));
159 fi->extra_info->initial_sp = 0;
160 if (fi->next != (CORE_ADDR) 0
161 && fi->pc < TEXT_SEGMENT_BASE)
162 /* We're in get_prev_frame */
163 /* and this is a special signal frame. */
164 /* (fi->pc will be some low address in the kernel, */
165 /* to which the signal handler returns). */
166 fi->signal_handler_caller = 1;
167 }
168
169 /* Put here the code to store, into a struct frame_saved_regs,
170 the addresses of the saved registers of frame described by FRAME_INFO.
171 This includes special registers such as pc and fp saved in special
172 ways in the stack frame. sp is even more special:
173 the address we return for it IS the sp for the next frame. */
174
175 /* In this implementation for RS/6000, we do *not* save sp. I am
176 not sure if it will be needed. The following function takes care of gpr's
177 and fpr's only. */
178
179 void
180 rs6000_frame_init_saved_regs (struct frame_info *fi)
181 {
182 frame_get_saved_regs (fi, NULL);
183 }
184
185 static CORE_ADDR
186 rs6000_frame_args_address (struct frame_info *fi)
187 {
188 if (fi->extra_info->initial_sp != 0)
189 return fi->extra_info->initial_sp;
190 else
191 return frame_initial_stack_address (fi);
192 }
193
194 /* Immediately after a function call, return the saved pc.
195 Can't go through the frames for this because on some machines
196 the new frame is not set up until the new function executes
197 some instructions. */
198
199 static CORE_ADDR
200 rs6000_saved_pc_after_call (struct frame_info *fi)
201 {
202 return read_register (gdbarch_tdep (current_gdbarch)->ppc_lr_regnum);
203 }
204
205 /* Calculate the destination of a branch/jump. Return -1 if not a branch. */
206
207 static CORE_ADDR
208 branch_dest (int opcode, int instr, CORE_ADDR pc, CORE_ADDR safety)
209 {
210 CORE_ADDR dest;
211 int immediate;
212 int absolute;
213 int ext_op;
214
215 absolute = (int) ((instr >> 1) & 1);
216
217 switch (opcode)
218 {
219 case 18:
220 immediate = ((instr & ~3) << 6) >> 6; /* br unconditional */
221 if (absolute)
222 dest = immediate;
223 else
224 dest = pc + immediate;
225 break;
226
227 case 16:
228 immediate = ((instr & ~3) << 16) >> 16; /* br conditional */
229 if (absolute)
230 dest = immediate;
231 else
232 dest = pc + immediate;
233 break;
234
235 case 19:
236 ext_op = (instr >> 1) & 0x3ff;
237
238 if (ext_op == 16) /* br conditional register */
239 {
240 dest = read_register (gdbarch_tdep (current_gdbarch)->ppc_lr_regnum) & ~3;
241
242 /* If we are about to return from a signal handler, dest is
243 something like 0x3c90. The current frame is a signal handler
244 caller frame, upon completion of the sigreturn system call
245 execution will return to the saved PC in the frame. */
246 if (dest < TEXT_SEGMENT_BASE)
247 {
248 struct frame_info *fi;
249
250 fi = get_current_frame ();
251 if (fi != NULL)
252 dest = read_memory_addr (fi->frame + SIG_FRAME_PC_OFFSET,
253 TDEP->wordsize);
254 }
255 }
256
257 else if (ext_op == 528) /* br cond to count reg */
258 {
259 dest = read_register (gdbarch_tdep (current_gdbarch)->ppc_ctr_regnum) & ~3;
260
261 /* If we are about to execute a system call, dest is something
262 like 0x22fc or 0x3b00. Upon completion the system call
263 will return to the address in the link register. */
264 if (dest < TEXT_SEGMENT_BASE)
265 dest = read_register (gdbarch_tdep (current_gdbarch)->ppc_lr_regnum) & ~3;
266 }
267 else
268 return -1;
269 break;
270
271 default:
272 return -1;
273 }
274 return (dest < TEXT_SEGMENT_BASE) ? safety : dest;
275 }
276
277
278 /* Sequence of bytes for breakpoint instruction. */
279
280 #define BIG_BREAKPOINT { 0x7d, 0x82, 0x10, 0x08 }
281 #define LITTLE_BREAKPOINT { 0x08, 0x10, 0x82, 0x7d }
282
283 static unsigned char *
284 rs6000_breakpoint_from_pc (CORE_ADDR *bp_addr, int *bp_size)
285 {
286 static unsigned char big_breakpoint[] = BIG_BREAKPOINT;
287 static unsigned char little_breakpoint[] = LITTLE_BREAKPOINT;
288 *bp_size = 4;
289 if (TARGET_BYTE_ORDER == BFD_ENDIAN_BIG)
290 return big_breakpoint;
291 else
292 return little_breakpoint;
293 }
294
295
296 /* AIX does not support PT_STEP. Simulate it. */
297
298 void
299 rs6000_software_single_step (enum target_signal signal,
300 int insert_breakpoints_p)
301 {
302 #define INSNLEN(OPCODE) 4
303
304 static char le_breakp[] = LITTLE_BREAKPOINT;
305 static char be_breakp[] = BIG_BREAKPOINT;
306 char *breakp = TARGET_BYTE_ORDER == BFD_ENDIAN_BIG ? be_breakp : le_breakp;
307 int ii, insn;
308 CORE_ADDR loc;
309 CORE_ADDR breaks[2];
310 int opcode;
311
312 if (insert_breakpoints_p)
313 {
314
315 loc = read_pc ();
316
317 insn = read_memory_integer (loc, 4);
318
319 breaks[0] = loc + INSNLEN (insn);
320 opcode = insn >> 26;
321 breaks[1] = branch_dest (opcode, insn, loc, breaks[0]);
322
323 /* Don't put two breakpoints on the same address. */
324 if (breaks[1] == breaks[0])
325 breaks[1] = -1;
326
327 stepBreaks[1].address = 0;
328
329 for (ii = 0; ii < 2; ++ii)
330 {
331
332 /* ignore invalid breakpoint. */
333 if (breaks[ii] == -1)
334 continue;
335
336 read_memory (breaks[ii], stepBreaks[ii].data, 4);
337
338 write_memory (breaks[ii], breakp, 4);
339 stepBreaks[ii].address = breaks[ii];
340 }
341
342 }
343 else
344 {
345
346 /* remove step breakpoints. */
347 for (ii = 0; ii < 2; ++ii)
348 if (stepBreaks[ii].address != 0)
349 write_memory
350 (stepBreaks[ii].address, stepBreaks[ii].data, 4);
351
352 }
353 errno = 0; /* FIXME, don't ignore errors! */
354 /* What errors? {read,write}_memory call error(). */
355 }
356
357
358 /* return pc value after skipping a function prologue and also return
359 information about a function frame.
360
361 in struct rs6000_framedata fdata:
362 - frameless is TRUE, if function does not have a frame.
363 - nosavedpc is TRUE, if function does not save %pc value in its frame.
364 - offset is the initial size of this stack frame --- the amount by
365 which we decrement the sp to allocate the frame.
366 - saved_gpr is the number of the first saved gpr.
367 - saved_fpr is the number of the first saved fpr.
368 - saved_vr is the number of the first saved vr.
369 - alloca_reg is the number of the register used for alloca() handling.
370 Otherwise -1.
371 - gpr_offset is the offset of the first saved gpr from the previous frame.
372 - fpr_offset is the offset of the first saved fpr from the previous frame.
373 - vr_offset is the offset of the first saved vr from the previous frame.
374 - lr_offset is the offset of the saved lr
375 - cr_offset is the offset of the saved cr
376 - vrsave_offset is the offset of the saved vrsave register
377 */
378
379 #define SIGNED_SHORT(x) \
380 ((sizeof (short) == 2) \
381 ? ((int)(short)(x)) \
382 : ((int)((((x) & 0xffff) ^ 0x8000) - 0x8000)))
383
384 #define GET_SRC_REG(x) (((x) >> 21) & 0x1f)
385
386 /* Limit the number of skipped non-prologue instructions, as the examining
387 of the prologue is expensive. */
388 static int max_skip_non_prologue_insns = 10;
389
390 /* Given PC representing the starting address of a function, and
391 LIM_PC which is the (sloppy) limit to which to scan when looking
392 for a prologue, attempt to further refine this limit by using
393 the line data in the symbol table. If successful, a better guess
394 on where the prologue ends is returned, otherwise the previous
395 value of lim_pc is returned. */
396 static CORE_ADDR
397 refine_prologue_limit (CORE_ADDR pc, CORE_ADDR lim_pc)
398 {
399 struct symtab_and_line prologue_sal;
400
401 prologue_sal = find_pc_line (pc, 0);
402 if (prologue_sal.line != 0)
403 {
404 int i;
405 CORE_ADDR addr = prologue_sal.end;
406
407 /* Handle the case in which compiler's optimizer/scheduler
408 has moved instructions into the prologue. We scan ahead
409 in the function looking for address ranges whose corresponding
410 line number is less than or equal to the first one that we
411 found for the function. (It can be less than when the
412 scheduler puts a body instruction before the first prologue
413 instruction.) */
414 for (i = 2 * max_skip_non_prologue_insns;
415 i > 0 && (lim_pc == 0 || addr < lim_pc);
416 i--)
417 {
418 struct symtab_and_line sal;
419
420 sal = find_pc_line (addr, 0);
421 if (sal.line == 0)
422 break;
423 if (sal.line <= prologue_sal.line
424 && sal.symtab == prologue_sal.symtab)
425 {
426 prologue_sal = sal;
427 }
428 addr = sal.end;
429 }
430
431 if (lim_pc == 0 || prologue_sal.end < lim_pc)
432 lim_pc = prologue_sal.end;
433 }
434 return lim_pc;
435 }
436
437
438 static CORE_ADDR
439 skip_prologue (CORE_ADDR pc, CORE_ADDR lim_pc, struct rs6000_framedata *fdata)
440 {
441 CORE_ADDR orig_pc = pc;
442 CORE_ADDR last_prologue_pc = pc;
443 CORE_ADDR li_found_pc = 0;
444 char buf[4];
445 unsigned long op;
446 long offset = 0;
447 long vr_saved_offset = 0;
448 int lr_reg = -1;
449 int cr_reg = -1;
450 int vr_reg = -1;
451 int vrsave_reg = -1;
452 int reg;
453 int framep = 0;
454 int minimal_toc_loaded = 0;
455 int prev_insn_was_prologue_insn = 1;
456 int num_skip_non_prologue_insns = 0;
457
458 /* Attempt to find the end of the prologue when no limit is specified.
459 Note that refine_prologue_limit() has been written so that it may
460 be used to "refine" the limits of non-zero PC values too, but this
461 is only safe if we 1) trust the line information provided by the
462 compiler and 2) iterate enough to actually find the end of the
463 prologue.
464
465 It may become a good idea at some point (for both performance and
466 accuracy) to unconditionally call refine_prologue_limit(). But,
467 until we can make a clear determination that this is beneficial,
468 we'll play it safe and only use it to obtain a limit when none
469 has been specified. */
470 if (lim_pc == 0)
471 lim_pc = refine_prologue_limit (pc, lim_pc);
472
473 memset (fdata, 0, sizeof (struct rs6000_framedata));
474 fdata->saved_gpr = -1;
475 fdata->saved_fpr = -1;
476 fdata->saved_vr = -1;
477 fdata->alloca_reg = -1;
478 fdata->frameless = 1;
479 fdata->nosavedpc = 1;
480
481 for (;; pc += 4)
482 {
483 /* Sometimes it isn't clear if an instruction is a prologue
484 instruction or not. When we encounter one of these ambiguous
485 cases, we'll set prev_insn_was_prologue_insn to 0 (false).
486 Otherwise, we'll assume that it really is a prologue instruction. */
487 if (prev_insn_was_prologue_insn)
488 last_prologue_pc = pc;
489
490 /* Stop scanning if we've hit the limit. */
491 if (lim_pc != 0 && pc >= lim_pc)
492 break;
493
494 prev_insn_was_prologue_insn = 1;
495
496 /* Fetch the instruction and convert it to an integer. */
497 if (target_read_memory (pc, buf, 4))
498 break;
499 op = extract_signed_integer (buf, 4);
500
501 if ((op & 0xfc1fffff) == 0x7c0802a6)
502 { /* mflr Rx */
503 lr_reg = (op & 0x03e00000) | 0x90010000;
504 continue;
505
506 }
507 else if ((op & 0xfc1fffff) == 0x7c000026)
508 { /* mfcr Rx */
509 cr_reg = (op & 0x03e00000) | 0x90010000;
510 continue;
511
512 }
513 else if ((op & 0xfc1f0000) == 0xd8010000)
514 { /* stfd Rx,NUM(r1) */
515 reg = GET_SRC_REG (op);
516 if (fdata->saved_fpr == -1 || fdata->saved_fpr > reg)
517 {
518 fdata->saved_fpr = reg;
519 fdata->fpr_offset = SIGNED_SHORT (op) + offset;
520 }
521 continue;
522
523 }
524 else if (((op & 0xfc1f0000) == 0xbc010000) || /* stm Rx, NUM(r1) */
525 (((op & 0xfc1f0000) == 0x90010000 || /* st rx,NUM(r1) */
526 (op & 0xfc1f0003) == 0xf8010000) && /* std rx,NUM(r1) */
527 (op & 0x03e00000) >= 0x01a00000)) /* rx >= r13 */
528 {
529
530 reg = GET_SRC_REG (op);
531 if (fdata->saved_gpr == -1 || fdata->saved_gpr > reg)
532 {
533 fdata->saved_gpr = reg;
534 if ((op & 0xfc1f0003) == 0xf8010000)
535 op = (op >> 1) << 1;
536 fdata->gpr_offset = SIGNED_SHORT (op) + offset;
537 }
538 continue;
539
540 }
541 else if ((op & 0xffff0000) == 0x60000000)
542 {
543 /* nop */
544 /* Allow nops in the prologue, but do not consider them to
545 be part of the prologue unless followed by other prologue
546 instructions. */
547 prev_insn_was_prologue_insn = 0;
548 continue;
549
550 }
551 else if ((op & 0xffff0000) == 0x3c000000)
552 { /* addis 0,0,NUM, used
553 for >= 32k frames */
554 fdata->offset = (op & 0x0000ffff) << 16;
555 fdata->frameless = 0;
556 continue;
557
558 }
559 else if ((op & 0xffff0000) == 0x60000000)
560 { /* ori 0,0,NUM, 2nd ha
561 lf of >= 32k frames */
562 fdata->offset |= (op & 0x0000ffff);
563 fdata->frameless = 0;
564 continue;
565
566 }
567 else if (lr_reg != -1 && (op & 0xffff0000) == lr_reg)
568 { /* st Rx,NUM(r1)
569 where Rx == lr */
570 fdata->lr_offset = SIGNED_SHORT (op) + offset;
571 fdata->nosavedpc = 0;
572 lr_reg = 0;
573 continue;
574
575 }
576 else if (cr_reg != -1 && (op & 0xffff0000) == cr_reg)
577 { /* st Rx,NUM(r1)
578 where Rx == cr */
579 fdata->cr_offset = SIGNED_SHORT (op) + offset;
580 cr_reg = 0;
581 continue;
582
583 }
584 else if (op == 0x48000005)
585 { /* bl .+4 used in
586 -mrelocatable */
587 continue;
588
589 }
590 else if (op == 0x48000004)
591 { /* b .+4 (xlc) */
592 break;
593
594 }
595 else if ((op & 0xffff0000) == 0x3fc00000 || /* addis 30,0,foo@ha, used
596 in V.4 -mminimal-toc */
597 (op & 0xffff0000) == 0x3bde0000)
598 { /* addi 30,30,foo@l */
599 continue;
600
601 }
602 else if ((op & 0xfc000001) == 0x48000001)
603 { /* bl foo,
604 to save fprs??? */
605
606 fdata->frameless = 0;
607 /* Don't skip over the subroutine call if it is not within
608 the first three instructions of the prologue. */
609 if ((pc - orig_pc) > 8)
610 break;
611
612 op = read_memory_integer (pc + 4, 4);
613
614 /* At this point, make sure this is not a trampoline
615 function (a function that simply calls another functions,
616 and nothing else). If the next is not a nop, this branch
617 was part of the function prologue. */
618
619 if (op == 0x4def7b82 || op == 0) /* crorc 15, 15, 15 */
620 break; /* don't skip over
621 this branch */
622 continue;
623
624 /* update stack pointer */
625 }
626 else if ((op & 0xffff0000) == 0x94210000 || /* stu r1,NUM(r1) */
627 (op & 0xffff0003) == 0xf8210001) /* stdu r1,NUM(r1) */
628 {
629 fdata->frameless = 0;
630 if ((op & 0xffff0003) == 0xf8210001)
631 op = (op >> 1) << 1;
632 fdata->offset = SIGNED_SHORT (op);
633 offset = fdata->offset;
634 continue;
635
636 }
637 else if (op == 0x7c21016e)
638 { /* stwux 1,1,0 */
639 fdata->frameless = 0;
640 offset = fdata->offset;
641 continue;
642
643 /* Load up minimal toc pointer */
644 }
645 else if ((op >> 22) == 0x20f
646 && !minimal_toc_loaded)
647 { /* l r31,... or l r30,... */
648 minimal_toc_loaded = 1;
649 continue;
650
651 /* move parameters from argument registers to local variable
652 registers */
653 }
654 else if ((op & 0xfc0007fe) == 0x7c000378 && /* mr(.) Rx,Ry */
655 (((op >> 21) & 31) >= 3) && /* R3 >= Ry >= R10 */
656 (((op >> 21) & 31) <= 10) &&
657 (((op >> 16) & 31) >= fdata->saved_gpr)) /* Rx: local var reg */
658 {
659 continue;
660
661 /* store parameters in stack */
662 }
663 else if ((op & 0xfc1f0003) == 0xf8010000 || /* std rx,NUM(r1) */
664 (op & 0xfc1f0000) == 0xd8010000 || /* stfd Rx,NUM(r1) */
665 (op & 0xfc1f0000) == 0xfc010000) /* frsp, fp?,NUM(r1) */
666 {
667 continue;
668
669 /* store parameters in stack via frame pointer */
670 }
671 else if (framep &&
672 ((op & 0xfc1f0000) == 0x901f0000 || /* st rx,NUM(r1) */
673 (op & 0xfc1f0000) == 0xd81f0000 || /* stfd Rx,NUM(r1) */
674 (op & 0xfc1f0000) == 0xfc1f0000))
675 { /* frsp, fp?,NUM(r1) */
676 continue;
677
678 /* Set up frame pointer */
679 }
680 else if (op == 0x603f0000 /* oril r31, r1, 0x0 */
681 || op == 0x7c3f0b78)
682 { /* mr r31, r1 */
683 fdata->frameless = 0;
684 framep = 1;
685 fdata->alloca_reg = 31;
686 continue;
687
688 /* Another way to set up the frame pointer. */
689 }
690 else if ((op & 0xfc1fffff) == 0x38010000)
691 { /* addi rX, r1, 0x0 */
692 fdata->frameless = 0;
693 framep = 1;
694 fdata->alloca_reg = (op & ~0x38010000) >> 21;
695 continue;
696 }
697 /* AltiVec related instructions. */
698 /* Store the vrsave register (spr 256) in another register for
699 later manipulation, or load a register into the vrsave
700 register. 2 instructions are used: mfvrsave and
701 mtvrsave. They are shorthand notation for mfspr Rn, SPR256
702 and mtspr SPR256, Rn. */
703 /* mfspr Rn SPR256 == 011111 nnnnn 0000001000 01010100110
704 mtspr SPR256 Rn == 011111 nnnnn 0000001000 01110100110 */
705 else if ((op & 0xfc1fffff) == 0x7c0042a6) /* mfvrsave Rn */
706 {
707 vrsave_reg = GET_SRC_REG (op);
708 continue;
709 }
710 else if ((op & 0xfc1fffff) == 0x7c0043a6) /* mtvrsave Rn */
711 {
712 continue;
713 }
714 /* Store the register where vrsave was saved to onto the stack:
715 rS is the register where vrsave was stored in a previous
716 instruction. */
717 /* 100100 sssss 00001 dddddddd dddddddd */
718 else if ((op & 0xfc1f0000) == 0x90010000) /* stw rS, d(r1) */
719 {
720 if (vrsave_reg == GET_SRC_REG (op))
721 {
722 fdata->vrsave_offset = SIGNED_SHORT (op) + offset;
723 vrsave_reg = -1;
724 }
725 continue;
726 }
727 /* Compute the new value of vrsave, by modifying the register
728 where vrsave was saved to. */
729 else if (((op & 0xfc000000) == 0x64000000) /* oris Ra, Rs, UIMM */
730 || ((op & 0xfc000000) == 0x60000000))/* ori Ra, Rs, UIMM */
731 {
732 continue;
733 }
734 /* li r0, SIMM (short for addi r0, 0, SIMM). This is the first
735 in a pair of insns to save the vector registers on the
736 stack. */
737 /* 001110 00000 00000 iiii iiii iiii iiii */
738 else if ((op & 0xffff0000) == 0x38000000) /* li r0, SIMM */
739 {
740 li_found_pc = pc;
741 vr_saved_offset = SIGNED_SHORT (op);
742 }
743 /* Store vector register S at (r31+r0) aligned to 16 bytes. */
744 /* 011111 sssss 11111 00000 00111001110 */
745 else if ((op & 0xfc1fffff) == 0x7c1f01ce) /* stvx Vs, R31, R0 */
746 {
747 if (pc == (li_found_pc + 4))
748 {
749 vr_reg = GET_SRC_REG (op);
750 /* If this is the first vector reg to be saved, or if
751 it has a lower number than others previously seen,
752 reupdate the frame info. */
753 if (fdata->saved_vr == -1 || fdata->saved_vr > vr_reg)
754 {
755 fdata->saved_vr = vr_reg;
756 fdata->vr_offset = vr_saved_offset + offset;
757 }
758 vr_saved_offset = -1;
759 vr_reg = -1;
760 li_found_pc = 0;
761 }
762 }
763 /* End AltiVec related instructions. */
764 else
765 {
766 /* Not a recognized prologue instruction.
767 Handle optimizer code motions into the prologue by continuing
768 the search if we have no valid frame yet or if the return
769 address is not yet saved in the frame. */
770 if (fdata->frameless == 0
771 && (lr_reg == -1 || fdata->nosavedpc == 0))
772 break;
773
774 if (op == 0x4e800020 /* blr */
775 || op == 0x4e800420) /* bctr */
776 /* Do not scan past epilogue in frameless functions or
777 trampolines. */
778 break;
779 if ((op & 0xf4000000) == 0x40000000) /* bxx */
780 /* Never skip branches. */
781 break;
782
783 if (num_skip_non_prologue_insns++ > max_skip_non_prologue_insns)
784 /* Do not scan too many insns, scanning insns is expensive with
785 remote targets. */
786 break;
787
788 /* Continue scanning. */
789 prev_insn_was_prologue_insn = 0;
790 continue;
791 }
792 }
793
794 #if 0
795 /* I have problems with skipping over __main() that I need to address
796 * sometime. Previously, I used to use misc_function_vector which
797 * didn't work as well as I wanted to be. -MGO */
798
799 /* If the first thing after skipping a prolog is a branch to a function,
800 this might be a call to an initializer in main(), introduced by gcc2.
801 We'd like to skip over it as well. Fortunately, xlc does some extra
802 work before calling a function right after a prologue, thus we can
803 single out such gcc2 behaviour. */
804
805
806 if ((op & 0xfc000001) == 0x48000001)
807 { /* bl foo, an initializer function? */
808 op = read_memory_integer (pc + 4, 4);
809
810 if (op == 0x4def7b82)
811 { /* cror 0xf, 0xf, 0xf (nop) */
812
813 /* check and see if we are in main. If so, skip over this initializer
814 function as well. */
815
816 tmp = find_pc_misc_function (pc);
817 if (tmp >= 0 && STREQ (misc_function_vector[tmp].name, main_name ()))
818 return pc + 8;
819 }
820 }
821 #endif /* 0 */
822
823 fdata->offset = -fdata->offset;
824 return last_prologue_pc;
825 }
826
827
828 /*************************************************************************
829 Support for creating pushing a dummy frame into the stack, and popping
830 frames, etc.
831 *************************************************************************/
832
833
834 /* Pop the innermost frame, go back to the caller. */
835
836 static void
837 rs6000_pop_frame (void)
838 {
839 CORE_ADDR pc, lr, sp, prev_sp, addr; /* %pc, %lr, %sp */
840 struct rs6000_framedata fdata;
841 struct frame_info *frame = get_current_frame ();
842 int ii, wordsize;
843
844 pc = read_pc ();
845 sp = FRAME_FP (frame);
846
847 if (PC_IN_CALL_DUMMY (frame->pc, frame->frame, frame->frame))
848 {
849 generic_pop_dummy_frame ();
850 flush_cached_frames ();
851 return;
852 }
853
854 /* Make sure that all registers are valid. */
855 read_register_bytes (0, NULL, REGISTER_BYTES);
856
857 /* figure out previous %pc value. If the function is frameless, it is
858 still in the link register, otherwise walk the frames and retrieve the
859 saved %pc value in the previous frame. */
860
861 addr = get_pc_function_start (frame->pc);
862 (void) skip_prologue (addr, frame->pc, &fdata);
863
864 wordsize = TDEP->wordsize;
865 if (fdata.frameless)
866 prev_sp = sp;
867 else
868 prev_sp = read_memory_addr (sp, wordsize);
869 if (fdata.lr_offset == 0)
870 lr = read_register (gdbarch_tdep (current_gdbarch)->ppc_lr_regnum);
871 else
872 lr = read_memory_addr (prev_sp + fdata.lr_offset, wordsize);
873
874 /* reset %pc value. */
875 write_register (PC_REGNUM, lr);
876
877 /* reset register values if any was saved earlier. */
878
879 if (fdata.saved_gpr != -1)
880 {
881 addr = prev_sp + fdata.gpr_offset;
882 for (ii = fdata.saved_gpr; ii <= 31; ++ii)
883 {
884 read_memory (addr, &registers[REGISTER_BYTE (ii)], wordsize);
885 addr += wordsize;
886 }
887 }
888
889 if (fdata.saved_fpr != -1)
890 {
891 addr = prev_sp + fdata.fpr_offset;
892 for (ii = fdata.saved_fpr; ii <= 31; ++ii)
893 {
894 read_memory (addr, &registers[REGISTER_BYTE (ii + FP0_REGNUM)], 8);
895 addr += 8;
896 }
897 }
898
899 write_register (SP_REGNUM, prev_sp);
900 target_store_registers (-1);
901 flush_cached_frames ();
902 }
903
904 /* Fixup the call sequence of a dummy function, with the real function
905 address. Its arguments will be passed by gdb. */
906
907 static void
908 rs6000_fix_call_dummy (char *dummyname, CORE_ADDR pc, CORE_ADDR fun,
909 int nargs, struct value **args, struct type *type,
910 int gcc_p)
911 {
912 int ii;
913 CORE_ADDR target_addr;
914
915 if (rs6000_find_toc_address_hook != NULL)
916 {
917 CORE_ADDR tocvalue = (*rs6000_find_toc_address_hook) (fun);
918 write_register (gdbarch_tdep (current_gdbarch)->ppc_toc_regnum,
919 tocvalue);
920 }
921 }
922
923 /* Pass the arguments in either registers, or in the stack. In RS/6000,
924 the first eight words of the argument list (that might be less than
925 eight parameters if some parameters occupy more than one word) are
926 passed in r3..r10 registers. float and double parameters are
927 passed in fpr's, in addition to that. Rest of the parameters if any
928 are passed in user stack. There might be cases in which half of the
929 parameter is copied into registers, the other half is pushed into
930 stack.
931
932 Stack must be aligned on 64-bit boundaries when synthesizing
933 function calls.
934
935 If the function is returning a structure, then the return address is passed
936 in r3, then the first 7 words of the parameters can be passed in registers,
937 starting from r4. */
938
939 static CORE_ADDR
940 rs6000_push_arguments (int nargs, struct value **args, CORE_ADDR sp,
941 int struct_return, CORE_ADDR struct_addr)
942 {
943 int ii;
944 int len = 0;
945 int argno; /* current argument number */
946 int argbytes; /* current argument byte */
947 char tmp_buffer[50];
948 int f_argno = 0; /* current floating point argno */
949 int wordsize = TDEP->wordsize;
950
951 struct value *arg = 0;
952 struct type *type;
953
954 CORE_ADDR saved_sp;
955
956 /* The first eight words of ther arguments are passed in registers. Copy
957 them appropriately.
958
959 If the function is returning a `struct', then the first word (which
960 will be passed in r3) is used for struct return address. In that
961 case we should advance one word and start from r4 register to copy
962 parameters. */
963
964 ii = struct_return ? 1 : 0;
965
966 /*
967 effectively indirect call... gcc does...
968
969 return_val example( float, int);
970
971 eabi:
972 float in fp0, int in r3
973 offset of stack on overflow 8/16
974 for varargs, must go by type.
975 power open:
976 float in r3&r4, int in r5
977 offset of stack on overflow different
978 both:
979 return in r3 or f0. If no float, must study how gcc emulates floats;
980 pay attention to arg promotion.
981 User may have to cast\args to handle promotion correctly
982 since gdb won't know if prototype supplied or not.
983 */
984
985 for (argno = 0, argbytes = 0; argno < nargs && ii < 8; ++ii)
986 {
987 int reg_size = REGISTER_RAW_SIZE (ii + 3);
988
989 arg = args[argno];
990 type = check_typedef (VALUE_TYPE (arg));
991 len = TYPE_LENGTH (type);
992
993 if (TYPE_CODE (type) == TYPE_CODE_FLT)
994 {
995
996 /* floating point arguments are passed in fpr's, as well as gpr's.
997 There are 13 fpr's reserved for passing parameters. At this point
998 there is no way we would run out of them. */
999
1000 if (len > 8)
1001 printf_unfiltered (
1002 "Fatal Error: a floating point parameter #%d with a size > 8 is found!\n", argno);
1003
1004 memcpy (&registers[REGISTER_BYTE (FP0_REGNUM + 1 + f_argno)],
1005 VALUE_CONTENTS (arg),
1006 len);
1007 ++f_argno;
1008 }
1009
1010 if (len > reg_size)
1011 {
1012
1013 /* Argument takes more than one register. */
1014 while (argbytes < len)
1015 {
1016 memset (&registers[REGISTER_BYTE (ii + 3)], 0, reg_size);
1017 memcpy (&registers[REGISTER_BYTE (ii + 3)],
1018 ((char *) VALUE_CONTENTS (arg)) + argbytes,
1019 (len - argbytes) > reg_size
1020 ? reg_size : len - argbytes);
1021 ++ii, argbytes += reg_size;
1022
1023 if (ii >= 8)
1024 goto ran_out_of_registers_for_arguments;
1025 }
1026 argbytes = 0;
1027 --ii;
1028 }
1029 else
1030 { /* Argument can fit in one register. No problem. */
1031 int adj = TARGET_BYTE_ORDER == BFD_ENDIAN_BIG ? reg_size - len : 0;
1032 memset (&registers[REGISTER_BYTE (ii + 3)], 0, reg_size);
1033 memcpy ((char *)&registers[REGISTER_BYTE (ii + 3)] + adj,
1034 VALUE_CONTENTS (arg), len);
1035 }
1036 ++argno;
1037 }
1038
1039 ran_out_of_registers_for_arguments:
1040
1041 saved_sp = read_sp ();
1042 #ifndef ELF_OBJECT_FORMAT
1043 /* location for 8 parameters are always reserved. */
1044 sp -= wordsize * 8;
1045
1046 /* another six words for back chain, TOC register, link register, etc. */
1047 sp -= wordsize * 6;
1048
1049 /* stack pointer must be quadword aligned */
1050 sp &= -16;
1051 #endif
1052
1053 /* if there are more arguments, allocate space for them in
1054 the stack, then push them starting from the ninth one. */
1055
1056 if ((argno < nargs) || argbytes)
1057 {
1058 int space = 0, jj;
1059
1060 if (argbytes)
1061 {
1062 space += ((len - argbytes + 3) & -4);
1063 jj = argno + 1;
1064 }
1065 else
1066 jj = argno;
1067
1068 for (; jj < nargs; ++jj)
1069 {
1070 struct value *val = args[jj];
1071 space += ((TYPE_LENGTH (VALUE_TYPE (val))) + 3) & -4;
1072 }
1073
1074 /* add location required for the rest of the parameters */
1075 space = (space + 15) & -16;
1076 sp -= space;
1077
1078 /* This is another instance we need to be concerned about securing our
1079 stack space. If we write anything underneath %sp (r1), we might conflict
1080 with the kernel who thinks he is free to use this area. So, update %sp
1081 first before doing anything else. */
1082
1083 write_register (SP_REGNUM, sp);
1084
1085 /* if the last argument copied into the registers didn't fit there
1086 completely, push the rest of it into stack. */
1087
1088 if (argbytes)
1089 {
1090 write_memory (sp + 24 + (ii * 4),
1091 ((char *) VALUE_CONTENTS (arg)) + argbytes,
1092 len - argbytes);
1093 ++argno;
1094 ii += ((len - argbytes + 3) & -4) / 4;
1095 }
1096
1097 /* push the rest of the arguments into stack. */
1098 for (; argno < nargs; ++argno)
1099 {
1100
1101 arg = args[argno];
1102 type = check_typedef (VALUE_TYPE (arg));
1103 len = TYPE_LENGTH (type);
1104
1105
1106 /* float types should be passed in fpr's, as well as in the stack. */
1107 if (TYPE_CODE (type) == TYPE_CODE_FLT && f_argno < 13)
1108 {
1109
1110 if (len > 8)
1111 printf_unfiltered (
1112 "Fatal Error: a floating point parameter #%d with a size > 8 is found!\n", argno);
1113
1114 memcpy (&registers[REGISTER_BYTE (FP0_REGNUM + 1 + f_argno)],
1115 VALUE_CONTENTS (arg),
1116 len);
1117 ++f_argno;
1118 }
1119
1120 write_memory (sp + 24 + (ii * 4), (char *) VALUE_CONTENTS (arg), len);
1121 ii += ((len + 3) & -4) / 4;
1122 }
1123 }
1124 else
1125 /* Secure stack areas first, before doing anything else. */
1126 write_register (SP_REGNUM, sp);
1127
1128 /* set back chain properly */
1129 store_address (tmp_buffer, 4, saved_sp);
1130 write_memory (sp, tmp_buffer, 4);
1131
1132 target_store_registers (-1);
1133 return sp;
1134 }
1135
1136 /* Function: ppc_push_return_address (pc, sp)
1137 Set up the return address for the inferior function call. */
1138
1139 static CORE_ADDR
1140 ppc_push_return_address (CORE_ADDR pc, CORE_ADDR sp)
1141 {
1142 write_register (gdbarch_tdep (current_gdbarch)->ppc_lr_regnum,
1143 CALL_DUMMY_ADDRESS ());
1144 return sp;
1145 }
1146
1147 /* Extract a function return value of type TYPE from raw register array
1148 REGBUF, and copy that return value into VALBUF in virtual format. */
1149
1150 static void
1151 rs6000_extract_return_value (struct type *valtype, char *regbuf, char *valbuf)
1152 {
1153 int offset = 0;
1154
1155 if (TYPE_CODE (valtype) == TYPE_CODE_FLT)
1156 {
1157
1158 double dd;
1159 float ff;
1160 /* floats and doubles are returned in fpr1. fpr's have a size of 8 bytes.
1161 We need to truncate the return value into float size (4 byte) if
1162 necessary. */
1163
1164 if (TYPE_LENGTH (valtype) > 4) /* this is a double */
1165 memcpy (valbuf,
1166 &regbuf[REGISTER_BYTE (FP0_REGNUM + 1)],
1167 TYPE_LENGTH (valtype));
1168 else
1169 { /* float */
1170 memcpy (&dd, &regbuf[REGISTER_BYTE (FP0_REGNUM + 1)], 8);
1171 ff = (float) dd;
1172 memcpy (valbuf, &ff, sizeof (float));
1173 }
1174 }
1175 else
1176 {
1177 /* return value is copied starting from r3. */
1178 if (TARGET_BYTE_ORDER == BFD_ENDIAN_BIG
1179 && TYPE_LENGTH (valtype) < REGISTER_RAW_SIZE (3))
1180 offset = REGISTER_RAW_SIZE (3) - TYPE_LENGTH (valtype);
1181
1182 memcpy (valbuf,
1183 regbuf + REGISTER_BYTE (3) + offset,
1184 TYPE_LENGTH (valtype));
1185 }
1186 }
1187
1188 /* Keep structure return address in this variable.
1189 FIXME: This is a horrid kludge which should not be allowed to continue
1190 living. This only allows a single nested call to a structure-returning
1191 function. Come on, guys! -- gnu@cygnus.com, Aug 92 */
1192
1193 static CORE_ADDR rs6000_struct_return_address;
1194
1195 /* Return whether handle_inferior_event() should proceed through code
1196 starting at PC in function NAME when stepping.
1197
1198 The AIX -bbigtoc linker option generates functions @FIX0, @FIX1, etc. to
1199 handle memory references that are too distant to fit in instructions
1200 generated by the compiler. For example, if 'foo' in the following
1201 instruction:
1202
1203 lwz r9,foo(r2)
1204
1205 is greater than 32767, the linker might replace the lwz with a branch to
1206 somewhere in @FIX1 that does the load in 2 instructions and then branches
1207 back to where execution should continue.
1208
1209 GDB should silently step over @FIX code, just like AIX dbx does.
1210 Unfortunately, the linker uses the "b" instruction for the branches,
1211 meaning that the link register doesn't get set. Therefore, GDB's usual
1212 step_over_function() mechanism won't work.
1213
1214 Instead, use the IN_SOLIB_RETURN_TRAMPOLINE and SKIP_TRAMPOLINE_CODE hooks
1215 in handle_inferior_event() to skip past @FIX code. */
1216
1217 int
1218 rs6000_in_solib_return_trampoline (CORE_ADDR pc, char *name)
1219 {
1220 return name && !strncmp (name, "@FIX", 4);
1221 }
1222
1223 /* Skip code that the user doesn't want to see when stepping:
1224
1225 1. Indirect function calls use a piece of trampoline code to do context
1226 switching, i.e. to set the new TOC table. Skip such code if we are on
1227 its first instruction (as when we have single-stepped to here).
1228
1229 2. Skip shared library trampoline code (which is different from
1230 indirect function call trampolines).
1231
1232 3. Skip bigtoc fixup code.
1233
1234 Result is desired PC to step until, or NULL if we are not in
1235 code that should be skipped. */
1236
1237 CORE_ADDR
1238 rs6000_skip_trampoline_code (CORE_ADDR pc)
1239 {
1240 register unsigned int ii, op;
1241 int rel;
1242 CORE_ADDR solib_target_pc;
1243 struct minimal_symbol *msymbol;
1244
1245 static unsigned trampoline_code[] =
1246 {
1247 0x800b0000, /* l r0,0x0(r11) */
1248 0x90410014, /* st r2,0x14(r1) */
1249 0x7c0903a6, /* mtctr r0 */
1250 0x804b0004, /* l r2,0x4(r11) */
1251 0x816b0008, /* l r11,0x8(r11) */
1252 0x4e800420, /* bctr */
1253 0x4e800020, /* br */
1254 0
1255 };
1256
1257 /* Check for bigtoc fixup code. */
1258 msymbol = lookup_minimal_symbol_by_pc (pc);
1259 if (msymbol && rs6000_in_solib_return_trampoline (pc, SYMBOL_NAME (msymbol)))
1260 {
1261 /* Double-check that the third instruction from PC is relative "b". */
1262 op = read_memory_integer (pc + 8, 4);
1263 if ((op & 0xfc000003) == 0x48000000)
1264 {
1265 /* Extract bits 6-29 as a signed 24-bit relative word address and
1266 add it to the containing PC. */
1267 rel = ((int)(op << 6) >> 6);
1268 return pc + 8 + rel;
1269 }
1270 }
1271
1272 /* If pc is in a shared library trampoline, return its target. */
1273 solib_target_pc = find_solib_trampoline_target (pc);
1274 if (solib_target_pc)
1275 return solib_target_pc;
1276
1277 for (ii = 0; trampoline_code[ii]; ++ii)
1278 {
1279 op = read_memory_integer (pc + (ii * 4), 4);
1280 if (op != trampoline_code[ii])
1281 return 0;
1282 }
1283 ii = read_register (11); /* r11 holds destination addr */
1284 pc = read_memory_addr (ii, TDEP->wordsize); /* (r11) value */
1285 return pc;
1286 }
1287
1288 /* Determines whether the function FI has a frame on the stack or not. */
1289
1290 int
1291 rs6000_frameless_function_invocation (struct frame_info *fi)
1292 {
1293 CORE_ADDR func_start;
1294 struct rs6000_framedata fdata;
1295
1296 /* Don't even think about framelessness except on the innermost frame
1297 or if the function was interrupted by a signal. */
1298 if (fi->next != NULL && !fi->next->signal_handler_caller)
1299 return 0;
1300
1301 func_start = get_pc_function_start (fi->pc);
1302
1303 /* If we failed to find the start of the function, it is a mistake
1304 to inspect the instructions. */
1305
1306 if (!func_start)
1307 {
1308 /* A frame with a zero PC is usually created by dereferencing a NULL
1309 function pointer, normally causing an immediate core dump of the
1310 inferior. Mark function as frameless, as the inferior has no chance
1311 of setting up a stack frame. */
1312 if (fi->pc == 0)
1313 return 1;
1314 else
1315 return 0;
1316 }
1317
1318 (void) skip_prologue (func_start, fi->pc, &fdata);
1319 return fdata.frameless;
1320 }
1321
1322 /* Return the PC saved in a frame */
1323
1324 CORE_ADDR
1325 rs6000_frame_saved_pc (struct frame_info *fi)
1326 {
1327 CORE_ADDR func_start;
1328 struct rs6000_framedata fdata;
1329 int wordsize = TDEP->wordsize;
1330
1331 if (fi->signal_handler_caller)
1332 return read_memory_addr (fi->frame + SIG_FRAME_PC_OFFSET, wordsize);
1333
1334 if (PC_IN_CALL_DUMMY (fi->pc, fi->frame, fi->frame))
1335 return generic_read_register_dummy (fi->pc, fi->frame, PC_REGNUM);
1336
1337 func_start = get_pc_function_start (fi->pc);
1338
1339 /* If we failed to find the start of the function, it is a mistake
1340 to inspect the instructions. */
1341 if (!func_start)
1342 return 0;
1343
1344 (void) skip_prologue (func_start, fi->pc, &fdata);
1345
1346 if (fdata.lr_offset == 0 && fi->next != NULL)
1347 {
1348 if (fi->next->signal_handler_caller)
1349 return read_memory_addr (fi->next->frame + SIG_FRAME_LR_OFFSET,
1350 wordsize);
1351 else
1352 return read_memory_addr (FRAME_CHAIN (fi) + DEFAULT_LR_SAVE,
1353 wordsize);
1354 }
1355
1356 if (fdata.lr_offset == 0)
1357 return read_register (gdbarch_tdep (current_gdbarch)->ppc_lr_regnum);
1358
1359 return read_memory_addr (FRAME_CHAIN (fi) + fdata.lr_offset, wordsize);
1360 }
1361
1362 /* If saved registers of frame FI are not known yet, read and cache them.
1363 &FDATAP contains rs6000_framedata; TDATAP can be NULL,
1364 in which case the framedata are read. */
1365
1366 static void
1367 frame_get_saved_regs (struct frame_info *fi, struct rs6000_framedata *fdatap)
1368 {
1369 CORE_ADDR frame_addr;
1370 struct rs6000_framedata work_fdata;
1371 struct gdbarch_tdep * tdep = gdbarch_tdep (current_gdbarch);
1372 int wordsize = tdep->wordsize;
1373
1374 if (fi->saved_regs)
1375 return;
1376
1377 if (fdatap == NULL)
1378 {
1379 fdatap = &work_fdata;
1380 (void) skip_prologue (get_pc_function_start (fi->pc), fi->pc, fdatap);
1381 }
1382
1383 frame_saved_regs_zalloc (fi);
1384
1385 /* If there were any saved registers, figure out parent's stack
1386 pointer. */
1387 /* The following is true only if the frame doesn't have a call to
1388 alloca(), FIXME. */
1389
1390 if (fdatap->saved_fpr == 0
1391 && fdatap->saved_gpr == 0
1392 && fdatap->saved_vr == 0
1393 && fdatap->lr_offset == 0
1394 && fdatap->cr_offset == 0
1395 && fdatap->vr_offset == 0)
1396 frame_addr = 0;
1397 else if (fi->prev && fi->prev->frame)
1398 frame_addr = fi->prev->frame;
1399 else
1400 frame_addr = read_memory_addr (fi->frame, wordsize);
1401
1402 /* if != -1, fdatap->saved_fpr is the smallest number of saved_fpr.
1403 All fpr's from saved_fpr to fp31 are saved. */
1404
1405 if (fdatap->saved_fpr >= 0)
1406 {
1407 int i;
1408 CORE_ADDR fpr_addr = frame_addr + fdatap->fpr_offset;
1409 for (i = fdatap->saved_fpr; i < 32; i++)
1410 {
1411 fi->saved_regs[FP0_REGNUM + i] = fpr_addr;
1412 fpr_addr += 8;
1413 }
1414 }
1415
1416 /* if != -1, fdatap->saved_gpr is the smallest number of saved_gpr.
1417 All gpr's from saved_gpr to gpr31 are saved. */
1418
1419 if (fdatap->saved_gpr >= 0)
1420 {
1421 int i;
1422 CORE_ADDR gpr_addr = frame_addr + fdatap->gpr_offset;
1423 for (i = fdatap->saved_gpr; i < 32; i++)
1424 {
1425 fi->saved_regs[i] = gpr_addr;
1426 gpr_addr += wordsize;
1427 }
1428 }
1429
1430 /* if != -1, fdatap->saved_vr is the smallest number of saved_vr.
1431 All vr's from saved_vr to vr31 are saved. */
1432 if (tdep->ppc_vr0_regnum != -1 && tdep->ppc_vrsave_regnum != -1)
1433 {
1434 if (fdatap->saved_vr >= 0)
1435 {
1436 int i;
1437 CORE_ADDR vr_addr = frame_addr + fdatap->vr_offset;
1438 for (i = fdatap->saved_vr; i < 32; i++)
1439 {
1440 fi->saved_regs[tdep->ppc_vr0_regnum + i] = vr_addr;
1441 vr_addr += REGISTER_RAW_SIZE (tdep->ppc_vr0_regnum);
1442 }
1443 }
1444 }
1445
1446 /* If != 0, fdatap->cr_offset is the offset from the frame that holds
1447 the CR. */
1448 if (fdatap->cr_offset != 0)
1449 fi->saved_regs[tdep->ppc_cr_regnum] = frame_addr + fdatap->cr_offset;
1450
1451 /* If != 0, fdatap->lr_offset is the offset from the frame that holds
1452 the LR. */
1453 if (fdatap->lr_offset != 0)
1454 fi->saved_regs[tdep->ppc_lr_regnum] = frame_addr + fdatap->lr_offset;
1455
1456 /* If != 0, fdatap->vrsave_offset is the offset from the frame that holds
1457 the VRSAVE. */
1458 if (fdatap->vrsave_offset != 0)
1459 fi->saved_regs[tdep->ppc_vrsave_regnum] = frame_addr + fdatap->vrsave_offset;
1460 }
1461
1462 /* Return the address of a frame. This is the inital %sp value when the frame
1463 was first allocated. For functions calling alloca(), it might be saved in
1464 an alloca register. */
1465
1466 static CORE_ADDR
1467 frame_initial_stack_address (struct frame_info *fi)
1468 {
1469 CORE_ADDR tmpaddr;
1470 struct rs6000_framedata fdata;
1471 struct frame_info *callee_fi;
1472
1473 /* if the initial stack pointer (frame address) of this frame is known,
1474 just return it. */
1475
1476 if (fi->extra_info->initial_sp)
1477 return fi->extra_info->initial_sp;
1478
1479 /* find out if this function is using an alloca register.. */
1480
1481 (void) skip_prologue (get_pc_function_start (fi->pc), fi->pc, &fdata);
1482
1483 /* if saved registers of this frame are not known yet, read and cache them. */
1484
1485 if (!fi->saved_regs)
1486 frame_get_saved_regs (fi, &fdata);
1487
1488 /* If no alloca register used, then fi->frame is the value of the %sp for
1489 this frame, and it is good enough. */
1490
1491 if (fdata.alloca_reg < 0)
1492 {
1493 fi->extra_info->initial_sp = fi->frame;
1494 return fi->extra_info->initial_sp;
1495 }
1496
1497 /* This function has an alloca register. If this is the top-most frame
1498 (with the lowest address), the value in alloca register is good. */
1499
1500 if (!fi->next)
1501 return fi->extra_info->initial_sp = read_register (fdata.alloca_reg);
1502
1503 /* Otherwise, this is a caller frame. Callee has usually already saved
1504 registers, but there are exceptions (such as when the callee
1505 has no parameters). Find the address in which caller's alloca
1506 register is saved. */
1507
1508 for (callee_fi = fi->next; callee_fi; callee_fi = callee_fi->next)
1509 {
1510
1511 if (!callee_fi->saved_regs)
1512 frame_get_saved_regs (callee_fi, NULL);
1513
1514 /* this is the address in which alloca register is saved. */
1515
1516 tmpaddr = callee_fi->saved_regs[fdata.alloca_reg];
1517 if (tmpaddr)
1518 {
1519 fi->extra_info->initial_sp =
1520 read_memory_addr (tmpaddr, TDEP->wordsize);
1521 return fi->extra_info->initial_sp;
1522 }
1523
1524 /* Go look into deeper levels of the frame chain to see if any one of
1525 the callees has saved alloca register. */
1526 }
1527
1528 /* If alloca register was not saved, by the callee (or any of its callees)
1529 then the value in the register is still good. */
1530
1531 fi->extra_info->initial_sp = read_register (fdata.alloca_reg);
1532 return fi->extra_info->initial_sp;
1533 }
1534
1535 /* Describe the pointer in each stack frame to the previous stack frame
1536 (its caller). */
1537
1538 /* FRAME_CHAIN takes a frame's nominal address
1539 and produces the frame's chain-pointer. */
1540
1541 /* In the case of the RS/6000, the frame's nominal address
1542 is the address of a 4-byte word containing the calling frame's address. */
1543
1544 CORE_ADDR
1545 rs6000_frame_chain (struct frame_info *thisframe)
1546 {
1547 CORE_ADDR fp, fpp, lr;
1548 int wordsize = TDEP->wordsize;
1549
1550 if (PC_IN_CALL_DUMMY (thisframe->pc, thisframe->frame, thisframe->frame))
1551 return thisframe->frame; /* dummy frame same as caller's frame */
1552
1553 if (inside_entry_file (thisframe->pc) ||
1554 thisframe->pc == entry_point_address ())
1555 return 0;
1556
1557 if (thisframe->signal_handler_caller)
1558 fp = read_memory_addr (thisframe->frame + SIG_FRAME_FP_OFFSET,
1559 wordsize);
1560 else if (thisframe->next != NULL
1561 && thisframe->next->signal_handler_caller
1562 && FRAMELESS_FUNCTION_INVOCATION (thisframe))
1563 /* A frameless function interrupted by a signal did not change the
1564 frame pointer. */
1565 fp = FRAME_FP (thisframe);
1566 else
1567 fp = read_memory_addr ((thisframe)->frame, wordsize);
1568
1569 lr = read_register (gdbarch_tdep (current_gdbarch)->ppc_lr_regnum);
1570 if (lr == entry_point_address ())
1571 if (fp != 0 && (fpp = read_memory_addr (fp, wordsize)) != 0)
1572 if (PC_IN_CALL_DUMMY (lr, fpp, fpp))
1573 return fpp;
1574
1575 return fp;
1576 }
1577
1578 /* Return the size of register REG when words are WORDSIZE bytes long. If REG
1579 isn't available with that word size, return 0. */
1580
1581 static int
1582 regsize (const struct reg *reg, int wordsize)
1583 {
1584 return wordsize == 8 ? reg->sz64 : reg->sz32;
1585 }
1586
1587 /* Return the name of register number N, or null if no such register exists
1588 in the current architecture. */
1589
1590 static char *
1591 rs6000_register_name (int n)
1592 {
1593 struct gdbarch_tdep *tdep = TDEP;
1594 const struct reg *reg = tdep->regs + n;
1595
1596 if (!regsize (reg, tdep->wordsize))
1597 return NULL;
1598 return reg->name;
1599 }
1600
1601 /* Index within `registers' of the first byte of the space for
1602 register N. */
1603
1604 static int
1605 rs6000_register_byte (int n)
1606 {
1607 return TDEP->regoff[n];
1608 }
1609
1610 /* Return the number of bytes of storage in the actual machine representation
1611 for register N if that register is available, else return 0. */
1612
1613 static int
1614 rs6000_register_raw_size (int n)
1615 {
1616 struct gdbarch_tdep *tdep = TDEP;
1617 const struct reg *reg = tdep->regs + n;
1618 return regsize (reg, tdep->wordsize);
1619 }
1620
1621 /* Return the GDB type object for the "standard" data type
1622 of data in register N. */
1623
1624 static struct type *
1625 rs6000_register_virtual_type (int n)
1626 {
1627 struct gdbarch_tdep *tdep = TDEP;
1628 const struct reg *reg = tdep->regs + n;
1629
1630 if (reg->fpr)
1631 return builtin_type_double;
1632 else
1633 {
1634 int size = regsize (reg, tdep->wordsize);
1635 switch (size)
1636 {
1637 case 8:
1638 return builtin_type_int64;
1639 break;
1640 case 16:
1641 return builtin_type_vec128;
1642 break;
1643 default:
1644 return builtin_type_int32;
1645 break;
1646 }
1647 }
1648 }
1649
1650 /* For the PowerPC, it appears that the debug info marks float parameters as
1651 floats regardless of whether the function is prototyped, but the actual
1652 values are always passed in as doubles. Tell gdb to always assume that
1653 floats are passed as doubles and then converted in the callee. */
1654
1655 static int
1656 rs6000_coerce_float_to_double (struct type *formal, struct type *actual)
1657 {
1658 return 1;
1659 }
1660
1661 /* Return whether register N requires conversion when moving from raw format
1662 to virtual format.
1663
1664 The register format for RS/6000 floating point registers is always
1665 double, we need a conversion if the memory format is float. */
1666
1667 static int
1668 rs6000_register_convertible (int n)
1669 {
1670 const struct reg *reg = TDEP->regs + n;
1671 return reg->fpr;
1672 }
1673
1674 /* Convert data from raw format for register N in buffer FROM
1675 to virtual format with type TYPE in buffer TO. */
1676
1677 static void
1678 rs6000_register_convert_to_virtual (int n, struct type *type,
1679 char *from, char *to)
1680 {
1681 if (TYPE_LENGTH (type) != REGISTER_RAW_SIZE (n))
1682 {
1683 double val = extract_floating (from, REGISTER_RAW_SIZE (n));
1684 store_floating (to, TYPE_LENGTH (type), val);
1685 }
1686 else
1687 memcpy (to, from, REGISTER_RAW_SIZE (n));
1688 }
1689
1690 /* Convert data from virtual format with type TYPE in buffer FROM
1691 to raw format for register N in buffer TO. */
1692
1693 static void
1694 rs6000_register_convert_to_raw (struct type *type, int n,
1695 char *from, char *to)
1696 {
1697 if (TYPE_LENGTH (type) != REGISTER_RAW_SIZE (n))
1698 {
1699 double val = extract_floating (from, TYPE_LENGTH (type));
1700 store_floating (to, REGISTER_RAW_SIZE (n), val);
1701 }
1702 else
1703 memcpy (to, from, REGISTER_RAW_SIZE (n));
1704 }
1705
1706 int
1707 altivec_register_p (int regno)
1708 {
1709 struct gdbarch_tdep *tdep = gdbarch_tdep (current_gdbarch);
1710 if (tdep->ppc_vr0_regnum < 0 || tdep->ppc_vrsave_regnum < 0)
1711 return 0;
1712 else
1713 return (regno >= tdep->ppc_vr0_regnum && regno <= tdep->ppc_vrsave_regnum);
1714 }
1715
1716 static void
1717 rs6000_do_altivec_registers (int regnum)
1718 {
1719 int i;
1720 char *raw_buffer = (char*) alloca (MAX_REGISTER_RAW_SIZE);
1721 char *virtual_buffer = (char*) alloca (MAX_REGISTER_VIRTUAL_SIZE);
1722 struct gdbarch_tdep *tdep = gdbarch_tdep (current_gdbarch);
1723
1724 for (i = tdep->ppc_vr0_regnum; i <= tdep->ppc_vrsave_regnum; i++)
1725 {
1726 /* If we want just one reg, check that this is the one we want. */
1727 if (regnum != -1 && i != regnum)
1728 continue;
1729
1730 /* If the register name is empty, it is undefined for this
1731 processor, so don't display anything. */
1732 if (REGISTER_NAME (i) == NULL || *(REGISTER_NAME (i)) == '\0')
1733 continue;
1734
1735 fputs_filtered (REGISTER_NAME (i), gdb_stdout);
1736 print_spaces_filtered (15 - strlen (REGISTER_NAME (i)), gdb_stdout);
1737
1738 /* Get the data in raw format. */
1739 if (read_relative_register_raw_bytes (i, raw_buffer))
1740 {
1741 printf_filtered ("*value not available*\n");
1742 continue;
1743 }
1744
1745 /* Convert raw data to virtual format if necessary. */
1746 if (REGISTER_CONVERTIBLE (i))
1747 REGISTER_CONVERT_TO_VIRTUAL (i, REGISTER_VIRTUAL_TYPE (i),
1748 raw_buffer, virtual_buffer);
1749 else
1750 memcpy (virtual_buffer, raw_buffer, REGISTER_VIRTUAL_SIZE (i));
1751
1752 /* Print as integer in hex only. */
1753 val_print (REGISTER_VIRTUAL_TYPE (i), virtual_buffer, 0, 0,
1754 gdb_stdout, 'x', 1, 0, Val_pretty_default);
1755 printf_filtered ("\n");
1756 }
1757 }
1758
1759 static void
1760 rs6000_altivec_registers_info (char *addr_exp, int from_tty)
1761 {
1762 int regnum, numregs;
1763 register char *end;
1764
1765 if (!target_has_registers)
1766 error ("The program has no registers now.");
1767 if (selected_frame == NULL)
1768 error ("No selected frame.");
1769
1770 if (!addr_exp)
1771 {
1772 rs6000_do_altivec_registers (-1);
1773 return;
1774 }
1775
1776 numregs = NUM_REGS + NUM_PSEUDO_REGS;
1777 do
1778 {
1779 if (addr_exp[0] == '$')
1780 addr_exp++;
1781 end = addr_exp;
1782 while (*end != '\0' && *end != ' ' && *end != '\t')
1783 ++end;
1784
1785 regnum = target_map_name_to_register (addr_exp, end - addr_exp);
1786 if (regnum < 0)
1787 {
1788 regnum = numregs;
1789 if (*addr_exp >= '0' && *addr_exp <= '9')
1790 regnum = atoi (addr_exp); /* Take a number */
1791 if (regnum >= numregs) /* Bad name, or bad number */
1792 error ("%.*s: invalid register", end - addr_exp, addr_exp);
1793 }
1794
1795 rs6000_do_altivec_registers (regnum);
1796
1797 addr_exp = end;
1798 while (*addr_exp == ' ' || *addr_exp == '\t')
1799 ++addr_exp;
1800 }
1801 while (*addr_exp != '\0');
1802 }
1803
1804 static void
1805 rs6000_do_registers_info (int regnum, int fpregs)
1806 {
1807 register int i;
1808 int numregs = NUM_REGS + NUM_PSEUDO_REGS;
1809 char *raw_buffer = (char*) alloca (MAX_REGISTER_RAW_SIZE);
1810 char *virtual_buffer = (char*) alloca (MAX_REGISTER_VIRTUAL_SIZE);
1811
1812 for (i = 0; i < numregs; i++)
1813 {
1814 /* Decide between printing all regs, nonfloat regs, or specific reg. */
1815 if (regnum == -1)
1816 {
1817 if ((TYPE_CODE (REGISTER_VIRTUAL_TYPE (i)) == TYPE_CODE_FLT && !fpregs)
1818 || (altivec_register_p (i) && !fpregs))
1819 continue;
1820 }
1821 else
1822 {
1823 if (i != regnum)
1824 continue;
1825 }
1826
1827 /* If the register name is empty, it is undefined for this
1828 processor, so don't display anything. */
1829 if (REGISTER_NAME (i) == NULL || *(REGISTER_NAME (i)) == '\0')
1830 continue;
1831
1832 fputs_filtered (REGISTER_NAME (i), gdb_stdout);
1833 print_spaces_filtered (15 - strlen (REGISTER_NAME (i)), gdb_stdout);
1834
1835 /* Get the data in raw format. */
1836 if (read_relative_register_raw_bytes (i, raw_buffer))
1837 {
1838 printf_filtered ("*value not available*\n");
1839 continue;
1840 }
1841
1842 /* Convert raw data to virtual format if necessary. */
1843 if (REGISTER_CONVERTIBLE (i))
1844 REGISTER_CONVERT_TO_VIRTUAL (i, REGISTER_VIRTUAL_TYPE (i),
1845 raw_buffer, virtual_buffer);
1846 else
1847 memcpy (virtual_buffer, raw_buffer, REGISTER_VIRTUAL_SIZE (i));
1848
1849 /* If virtual format is floating, print it that way, and in raw hex. */
1850 if (TYPE_CODE (REGISTER_VIRTUAL_TYPE (i)) == TYPE_CODE_FLT)
1851 {
1852 register int j;
1853
1854 val_print (REGISTER_VIRTUAL_TYPE (i), virtual_buffer, 0, 0,
1855 gdb_stdout, 0, 1, 0, Val_pretty_default);
1856
1857 printf_filtered ("\t(raw 0x");
1858 for (j = 0; j < REGISTER_RAW_SIZE (i); j++)
1859 {
1860 register int idx = TARGET_BYTE_ORDER == BFD_ENDIAN_BIG ? j
1861 : REGISTER_RAW_SIZE (i) - 1 - j;
1862 printf_filtered ("%02x", (unsigned char) raw_buffer[idx]);
1863 }
1864 printf_filtered (")");
1865 }
1866 else
1867 {
1868 /* Print as integer in hex and in decimal. */
1869 if (!altivec_register_p (i))
1870 {
1871 val_print (REGISTER_VIRTUAL_TYPE (i), virtual_buffer, 0, 0,
1872 gdb_stdout, 'x', 1, 0, Val_pretty_default);
1873 printf_filtered ("\t");
1874 val_print (REGISTER_VIRTUAL_TYPE (i), virtual_buffer, 0, 0,
1875 gdb_stdout, 0, 1, 0, Val_pretty_default);
1876 }
1877 else
1878 /* Print as integer in hex only. */
1879 val_print (REGISTER_VIRTUAL_TYPE (i), virtual_buffer, 0, 0,
1880 gdb_stdout, 'x', 1, 0, Val_pretty_default);
1881 }
1882 printf_filtered ("\n");
1883 }
1884 }
1885
1886 /* Convert a dbx stab register number (from `r' declaration) to a gdb
1887 REGNUM. */
1888 static int
1889 rs6000_stab_reg_to_regnum (int num)
1890 {
1891 int regnum;
1892 switch (num)
1893 {
1894 case 64:
1895 regnum = gdbarch_tdep (current_gdbarch)->ppc_mq_regnum;
1896 break;
1897 case 65:
1898 regnum = gdbarch_tdep (current_gdbarch)->ppc_lr_regnum;
1899 break;
1900 case 66:
1901 regnum = gdbarch_tdep (current_gdbarch)->ppc_ctr_regnum;
1902 break;
1903 case 76:
1904 regnum = gdbarch_tdep (current_gdbarch)->ppc_xer_regnum;
1905 break;
1906 default:
1907 regnum = num;
1908 break;
1909 }
1910 return regnum;
1911 }
1912
1913 /* Store the address of the place in which to copy the structure the
1914 subroutine will return. This is called from call_function.
1915
1916 In RS/6000, struct return addresses are passed as an extra parameter in r3.
1917 In function return, callee is not responsible of returning this address
1918 back. Since gdb needs to find it, we will store in a designated variable
1919 `rs6000_struct_return_address'. */
1920
1921 static void
1922 rs6000_store_struct_return (CORE_ADDR addr, CORE_ADDR sp)
1923 {
1924 write_register (3, addr);
1925 rs6000_struct_return_address = addr;
1926 }
1927
1928 /* Write into appropriate registers a function return value
1929 of type TYPE, given in virtual format. */
1930
1931 static void
1932 rs6000_store_return_value (struct type *type, char *valbuf)
1933 {
1934 if (TYPE_CODE (type) == TYPE_CODE_FLT)
1935
1936 /* Floating point values are returned starting from FPR1 and up.
1937 Say a double_double_double type could be returned in
1938 FPR1/FPR2/FPR3 triple. */
1939
1940 write_register_bytes (REGISTER_BYTE (FP0_REGNUM + 1), valbuf,
1941 TYPE_LENGTH (type));
1942 else
1943 /* Everything else is returned in GPR3 and up. */
1944 write_register_bytes (REGISTER_BYTE (gdbarch_tdep (current_gdbarch)->ppc_gp0_regnum + 3),
1945 valbuf, TYPE_LENGTH (type));
1946 }
1947
1948 /* Extract from an array REGBUF containing the (raw) register state
1949 the address in which a function should return its structure value,
1950 as a CORE_ADDR (or an expression that can be used as one). */
1951
1952 static CORE_ADDR
1953 rs6000_extract_struct_value_address (char *regbuf)
1954 {
1955 return rs6000_struct_return_address;
1956 }
1957
1958 /* Return whether PC is in a dummy function call.
1959
1960 FIXME: This just checks for the end of the stack, which is broken
1961 for things like stepping through gcc nested function stubs. */
1962
1963 static int
1964 rs6000_pc_in_call_dummy (CORE_ADDR pc, CORE_ADDR sp, CORE_ADDR fp)
1965 {
1966 return sp < pc && pc < fp;
1967 }
1968
1969 /* Hook called when a new child process is started. */
1970
1971 void
1972 rs6000_create_inferior (int pid)
1973 {
1974 if (rs6000_set_host_arch_hook)
1975 rs6000_set_host_arch_hook (pid);
1976 }
1977 \f
1978 /* Support for CONVERT_FROM_FUNC_PTR_ADDR(ADDR).
1979
1980 Usually a function pointer's representation is simply the address
1981 of the function. On the RS/6000 however, a function pointer is
1982 represented by a pointer to a TOC entry. This TOC entry contains
1983 three words, the first word is the address of the function, the
1984 second word is the TOC pointer (r2), and the third word is the
1985 static chain value. Throughout GDB it is currently assumed that a
1986 function pointer contains the address of the function, which is not
1987 easy to fix. In addition, the conversion of a function address to
1988 a function pointer would require allocation of a TOC entry in the
1989 inferior's memory space, with all its drawbacks. To be able to
1990 call C++ virtual methods in the inferior (which are called via
1991 function pointers), find_function_addr uses this function to get the
1992 function address from a function pointer. */
1993
1994 /* Return real function address if ADDR (a function pointer) is in the data
1995 space and is therefore a special function pointer. */
1996
1997 CORE_ADDR
1998 rs6000_convert_from_func_ptr_addr (CORE_ADDR addr)
1999 {
2000 struct obj_section *s;
2001
2002 s = find_pc_section (addr);
2003 if (s && s->the_bfd_section->flags & SEC_CODE)
2004 return addr;
2005
2006 /* ADDR is in the data space, so it's a special function pointer. */
2007 return read_memory_addr (addr, TDEP->wordsize);
2008 }
2009 \f
2010
2011 /* Handling the various POWER/PowerPC variants. */
2012
2013
2014 /* The arrays here called registers_MUMBLE hold information about available
2015 registers.
2016
2017 For each family of PPC variants, I've tried to isolate out the
2018 common registers and put them up front, so that as long as you get
2019 the general family right, GDB will correctly identify the registers
2020 common to that family. The common register sets are:
2021
2022 For the 60x family: hid0 hid1 iabr dabr pir
2023
2024 For the 505 and 860 family: eie eid nri
2025
2026 For the 403 and 403GC: icdbdr esr dear evpr cdbcr tsr tcr pit tbhi
2027 tblo srr2 srr3 dbsr dbcr iac1 iac2 dac1 dac2 dccr iccr pbl1
2028 pbu1 pbl2 pbu2
2029
2030 Most of these register groups aren't anything formal. I arrived at
2031 them by looking at the registers that occurred in more than one
2032 processor. */
2033
2034 /* Convenience macros for populating register arrays. */
2035
2036 /* Within another macro, convert S to a string. */
2037
2038 #define STR(s) #s
2039
2040 /* Return a struct reg defining register NAME that's 32 bits on 32-bit systems
2041 and 64 bits on 64-bit systems. */
2042 #define R(name) { STR(name), 4, 8, 0 }
2043
2044 /* Return a struct reg defining register NAME that's 32 bits on all
2045 systems. */
2046 #define R4(name) { STR(name), 4, 4, 0 }
2047
2048 /* Return a struct reg defining register NAME that's 64 bits on all
2049 systems. */
2050 #define R8(name) { STR(name), 8, 8, 0 }
2051
2052 /* Return a struct reg defining register NAME that's 128 bits on all
2053 systems. */
2054 #define R16(name) { STR(name), 16, 16, 0 }
2055
2056 /* Return a struct reg defining floating-point register NAME. */
2057 #define F(name) { STR(name), 8, 8, 1 }
2058
2059 /* Return a struct reg defining register NAME that's 32 bits on 32-bit
2060 systems and that doesn't exist on 64-bit systems. */
2061 #define R32(name) { STR(name), 4, 0, 0 }
2062
2063 /* Return a struct reg defining register NAME that's 64 bits on 64-bit
2064 systems and that doesn't exist on 32-bit systems. */
2065 #define R64(name) { STR(name), 0, 8, 0 }
2066
2067 /* Return a struct reg placeholder for a register that doesn't exist. */
2068 #define R0 { 0, 0, 0, 0 }
2069
2070 /* UISA registers common across all architectures, including POWER. */
2071
2072 #define COMMON_UISA_REGS \
2073 /* 0 */ R(r0), R(r1), R(r2), R(r3), R(r4), R(r5), R(r6), R(r7), \
2074 /* 8 */ R(r8), R(r9), R(r10),R(r11),R(r12),R(r13),R(r14),R(r15), \
2075 /* 16 */ R(r16),R(r17),R(r18),R(r19),R(r20),R(r21),R(r22),R(r23), \
2076 /* 24 */ R(r24),R(r25),R(r26),R(r27),R(r28),R(r29),R(r30),R(r31), \
2077 /* 32 */ F(f0), F(f1), F(f2), F(f3), F(f4), F(f5), F(f6), F(f7), \
2078 /* 40 */ F(f8), F(f9), F(f10),F(f11),F(f12),F(f13),F(f14),F(f15), \
2079 /* 48 */ F(f16),F(f17),F(f18),F(f19),F(f20),F(f21),F(f22),F(f23), \
2080 /* 56 */ F(f24),F(f25),F(f26),F(f27),F(f28),F(f29),F(f30),F(f31), \
2081 /* 64 */ R(pc), R(ps)
2082
2083 /* UISA-level SPRs for PowerPC. */
2084 #define PPC_UISA_SPRS \
2085 /* 66 */ R4(cr), R(lr), R(ctr), R4(xer), R0
2086
2087 /* Segment registers, for PowerPC. */
2088 #define PPC_SEGMENT_REGS \
2089 /* 71 */ R32(sr0), R32(sr1), R32(sr2), R32(sr3), \
2090 /* 75 */ R32(sr4), R32(sr5), R32(sr6), R32(sr7), \
2091 /* 79 */ R32(sr8), R32(sr9), R32(sr10), R32(sr11), \
2092 /* 83 */ R32(sr12), R32(sr13), R32(sr14), R32(sr15)
2093
2094 /* OEA SPRs for PowerPC. */
2095 #define PPC_OEA_SPRS \
2096 /* 87 */ R4(pvr), \
2097 /* 88 */ R(ibat0u), R(ibat0l), R(ibat1u), R(ibat1l), \
2098 /* 92 */ R(ibat2u), R(ibat2l), R(ibat3u), R(ibat3l), \
2099 /* 96 */ R(dbat0u), R(dbat0l), R(dbat1u), R(dbat1l), \
2100 /* 100 */ R(dbat2u), R(dbat2l), R(dbat3u), R(dbat3l), \
2101 /* 104 */ R(sdr1), R64(asr), R(dar), R4(dsisr), \
2102 /* 108 */ R(sprg0), R(sprg1), R(sprg2), R(sprg3), \
2103 /* 112 */ R(srr0), R(srr1), R(tbl), R(tbu), \
2104 /* 116 */ R4(dec), R(dabr), R4(ear)
2105
2106 /* AltiVec registers */
2107 #define PPC_ALTIVEC_REGS \
2108 /*119*/R16(vr0), R16(vr1), R16(vr2), R16(vr3), R16(vr4), R16(vr5), R16(vr6), R16(vr7), \
2109 /*127*/R16(vr8), R16(vr9), R16(vr10),R16(vr11),R16(vr12),R16(vr13),R16(vr14),R16(vr15), \
2110 /*135*/R16(vr16),R16(vr17),R16(vr18),R16(vr19),R16(vr20),R16(vr21),R16(vr22),R16(vr23), \
2111 /*143*/R16(vr24),R16(vr25),R16(vr26),R16(vr27),R16(vr28),R16(vr29),R16(vr30),R16(vr31), \
2112 /*151*/R4(vscr), R4(vrsave)
2113
2114 /* IBM POWER (pre-PowerPC) architecture, user-level view. We only cover
2115 user-level SPR's. */
2116 static const struct reg registers_power[] =
2117 {
2118 COMMON_UISA_REGS,
2119 /* 66 */ R4(cnd), R(lr), R(cnt), R4(xer), R4(mq)
2120 };
2121
2122 /* PowerPC UISA - a PPC processor as viewed by user-level code. A UISA-only
2123 view of the PowerPC. */
2124 static const struct reg registers_powerpc[] =
2125 {
2126 COMMON_UISA_REGS,
2127 PPC_UISA_SPRS,
2128 PPC_ALTIVEC_REGS
2129 };
2130
2131 /* IBM PowerPC 403. */
2132 static const struct reg registers_403[] =
2133 {
2134 COMMON_UISA_REGS,
2135 PPC_UISA_SPRS,
2136 PPC_SEGMENT_REGS,
2137 PPC_OEA_SPRS,
2138 /* 119 */ R(icdbdr), R(esr), R(dear), R(evpr),
2139 /* 123 */ R(cdbcr), R(tsr), R(tcr), R(pit),
2140 /* 127 */ R(tbhi), R(tblo), R(srr2), R(srr3),
2141 /* 131 */ R(dbsr), R(dbcr), R(iac1), R(iac2),
2142 /* 135 */ R(dac1), R(dac2), R(dccr), R(iccr),
2143 /* 139 */ R(pbl1), R(pbu1), R(pbl2), R(pbu2)
2144 };
2145
2146 /* IBM PowerPC 403GC. */
2147 static const struct reg registers_403GC[] =
2148 {
2149 COMMON_UISA_REGS,
2150 PPC_UISA_SPRS,
2151 PPC_SEGMENT_REGS,
2152 PPC_OEA_SPRS,
2153 /* 119 */ R(icdbdr), R(esr), R(dear), R(evpr),
2154 /* 123 */ R(cdbcr), R(tsr), R(tcr), R(pit),
2155 /* 127 */ R(tbhi), R(tblo), R(srr2), R(srr3),
2156 /* 131 */ R(dbsr), R(dbcr), R(iac1), R(iac2),
2157 /* 135 */ R(dac1), R(dac2), R(dccr), R(iccr),
2158 /* 139 */ R(pbl1), R(pbu1), R(pbl2), R(pbu2),
2159 /* 143 */ R(zpr), R(pid), R(sgr), R(dcwr),
2160 /* 147 */ R(tbhu), R(tblu)
2161 };
2162
2163 /* Motorola PowerPC 505. */
2164 static const struct reg registers_505[] =
2165 {
2166 COMMON_UISA_REGS,
2167 PPC_UISA_SPRS,
2168 PPC_SEGMENT_REGS,
2169 PPC_OEA_SPRS,
2170 /* 119 */ R(eie), R(eid), R(nri)
2171 };
2172
2173 /* Motorola PowerPC 860 or 850. */
2174 static const struct reg registers_860[] =
2175 {
2176 COMMON_UISA_REGS,
2177 PPC_UISA_SPRS,
2178 PPC_SEGMENT_REGS,
2179 PPC_OEA_SPRS,
2180 /* 119 */ R(eie), R(eid), R(nri), R(cmpa),
2181 /* 123 */ R(cmpb), R(cmpc), R(cmpd), R(icr),
2182 /* 127 */ R(der), R(counta), R(countb), R(cmpe),
2183 /* 131 */ R(cmpf), R(cmpg), R(cmph), R(lctrl1),
2184 /* 135 */ R(lctrl2), R(ictrl), R(bar), R(ic_cst),
2185 /* 139 */ R(ic_adr), R(ic_dat), R(dc_cst), R(dc_adr),
2186 /* 143 */ R(dc_dat), R(dpdr), R(dpir), R(immr),
2187 /* 147 */ R(mi_ctr), R(mi_ap), R(mi_epn), R(mi_twc),
2188 /* 151 */ R(mi_rpn), R(md_ctr), R(m_casid), R(md_ap),
2189 /* 155 */ R(md_epn), R(md_twb), R(md_twc), R(md_rpn),
2190 /* 159 */ R(m_tw), R(mi_dbcam), R(mi_dbram0), R(mi_dbram1),
2191 /* 163 */ R(md_dbcam), R(md_dbram0), R(md_dbram1)
2192 };
2193
2194 /* Motorola PowerPC 601. Note that the 601 has different register numbers
2195 for reading and writing RTCU and RTCL. However, how one reads and writes a
2196 register is the stub's problem. */
2197 static const struct reg registers_601[] =
2198 {
2199 COMMON_UISA_REGS,
2200 PPC_UISA_SPRS,
2201 PPC_SEGMENT_REGS,
2202 PPC_OEA_SPRS,
2203 /* 119 */ R(hid0), R(hid1), R(iabr), R(dabr),
2204 /* 123 */ R(pir), R(mq), R(rtcu), R(rtcl)
2205 };
2206
2207 /* Motorola PowerPC 602. */
2208 static const struct reg registers_602[] =
2209 {
2210 COMMON_UISA_REGS,
2211 PPC_UISA_SPRS,
2212 PPC_SEGMENT_REGS,
2213 PPC_OEA_SPRS,
2214 /* 119 */ R(hid0), R(hid1), R(iabr), R0,
2215 /* 123 */ R0, R(tcr), R(ibr), R(esassr),
2216 /* 127 */ R(sebr), R(ser), R(sp), R(lt)
2217 };
2218
2219 /* Motorola/IBM PowerPC 603 or 603e. */
2220 static const struct reg registers_603[] =
2221 {
2222 COMMON_UISA_REGS,
2223 PPC_UISA_SPRS,
2224 PPC_SEGMENT_REGS,
2225 PPC_OEA_SPRS,
2226 /* 119 */ R(hid0), R(hid1), R(iabr), R0,
2227 /* 123 */ R0, R(dmiss), R(dcmp), R(hash1),
2228 /* 127 */ R(hash2), R(imiss), R(icmp), R(rpa)
2229 };
2230
2231 /* Motorola PowerPC 604 or 604e. */
2232 static const struct reg registers_604[] =
2233 {
2234 COMMON_UISA_REGS,
2235 PPC_UISA_SPRS,
2236 PPC_SEGMENT_REGS,
2237 PPC_OEA_SPRS,
2238 /* 119 */ R(hid0), R(hid1), R(iabr), R(dabr),
2239 /* 123 */ R(pir), R(mmcr0), R(pmc1), R(pmc2),
2240 /* 127 */ R(sia), R(sda)
2241 };
2242
2243 /* Motorola/IBM PowerPC 750 or 740. */
2244 static const struct reg registers_750[] =
2245 {
2246 COMMON_UISA_REGS,
2247 PPC_UISA_SPRS,
2248 PPC_SEGMENT_REGS,
2249 PPC_OEA_SPRS,
2250 /* 119 */ R(hid0), R(hid1), R(iabr), R(dabr),
2251 /* 123 */ R0, R(ummcr0), R(upmc1), R(upmc2),
2252 /* 127 */ R(usia), R(ummcr1), R(upmc3), R(upmc4),
2253 /* 131 */ R(mmcr0), R(pmc1), R(pmc2), R(sia),
2254 /* 135 */ R(mmcr1), R(pmc3), R(pmc4), R(l2cr),
2255 /* 139 */ R(ictc), R(thrm1), R(thrm2), R(thrm3)
2256 };
2257
2258
2259 /* Motorola PowerPC 7400. */
2260 static const struct reg registers_7400[] =
2261 {
2262 /* gpr0-gpr31, fpr0-fpr31 */
2263 COMMON_UISA_REGS,
2264 /* ctr, xre, lr, cr */
2265 PPC_UISA_SPRS,
2266 /* sr0-sr15 */
2267 PPC_SEGMENT_REGS,
2268 PPC_OEA_SPRS,
2269 /* vr0-vr31, vrsave, vscr */
2270 PPC_ALTIVEC_REGS
2271 /* FIXME? Add more registers? */
2272 };
2273
2274 /* Information about a particular processor variant. */
2275
2276 struct variant
2277 {
2278 /* Name of this variant. */
2279 char *name;
2280
2281 /* English description of the variant. */
2282 char *description;
2283
2284 /* bfd_arch_info.arch corresponding to variant. */
2285 enum bfd_architecture arch;
2286
2287 /* bfd_arch_info.mach corresponding to variant. */
2288 unsigned long mach;
2289
2290 /* Table of register names; registers[R] is the name of the register
2291 number R. */
2292 int nregs;
2293 const struct reg *regs;
2294 };
2295
2296 #define num_registers(list) (sizeof (list) / sizeof((list)[0]))
2297
2298
2299 /* Information in this table comes from the following web sites:
2300 IBM: http://www.chips.ibm.com:80/products/embedded/
2301 Motorola: http://www.mot.com/SPS/PowerPC/
2302
2303 I'm sure I've got some of the variant descriptions not quite right.
2304 Please report any inaccuracies you find to GDB's maintainer.
2305
2306 If you add entries to this table, please be sure to allow the new
2307 value as an argument to the --with-cpu flag, in configure.in. */
2308
2309 static const struct variant variants[] =
2310 {
2311 {"powerpc", "PowerPC user-level", bfd_arch_powerpc,
2312 bfd_mach_ppc, num_registers (registers_powerpc), registers_powerpc},
2313 {"power", "POWER user-level", bfd_arch_rs6000,
2314 bfd_mach_rs6k, num_registers (registers_power), registers_power},
2315 {"403", "IBM PowerPC 403", bfd_arch_powerpc,
2316 bfd_mach_ppc_403, num_registers (registers_403), registers_403},
2317 {"601", "Motorola PowerPC 601", bfd_arch_powerpc,
2318 bfd_mach_ppc_601, num_registers (registers_601), registers_601},
2319 {"602", "Motorola PowerPC 602", bfd_arch_powerpc,
2320 bfd_mach_ppc_602, num_registers (registers_602), registers_602},
2321 {"603", "Motorola/IBM PowerPC 603 or 603e", bfd_arch_powerpc,
2322 bfd_mach_ppc_603, num_registers (registers_603), registers_603},
2323 {"604", "Motorola PowerPC 604 or 604e", bfd_arch_powerpc,
2324 604, num_registers (registers_604), registers_604},
2325 {"403GC", "IBM PowerPC 403GC", bfd_arch_powerpc,
2326 bfd_mach_ppc_403gc, num_registers (registers_403GC), registers_403GC},
2327 {"505", "Motorola PowerPC 505", bfd_arch_powerpc,
2328 bfd_mach_ppc_505, num_registers (registers_505), registers_505},
2329 {"860", "Motorola PowerPC 860 or 850", bfd_arch_powerpc,
2330 bfd_mach_ppc_860, num_registers (registers_860), registers_860},
2331 {"750", "Motorola/IBM PowerPC 750 or 740", bfd_arch_powerpc,
2332 bfd_mach_ppc_750, num_registers (registers_750), registers_750},
2333 {"7400", "Motorola/IBM PowerPC 7400 (G4)", bfd_arch_powerpc,
2334 bfd_mach_ppc_7400, num_registers (registers_7400), registers_7400},
2335
2336 /* FIXME: I haven't checked the register sets of the following. */
2337 {"620", "Motorola PowerPC 620", bfd_arch_powerpc,
2338 bfd_mach_ppc_620, num_registers (registers_powerpc), registers_powerpc},
2339 {"a35", "PowerPC A35", bfd_arch_powerpc,
2340 bfd_mach_ppc_a35, num_registers (registers_powerpc), registers_powerpc},
2341 {"rs1", "IBM POWER RS1", bfd_arch_rs6000,
2342 bfd_mach_rs6k_rs1, num_registers (registers_power), registers_power},
2343 {"rsc", "IBM POWER RSC", bfd_arch_rs6000,
2344 bfd_mach_rs6k_rsc, num_registers (registers_power), registers_power},
2345 {"rs2", "IBM POWER RS2", bfd_arch_rs6000,
2346 bfd_mach_rs6k_rs2, num_registers (registers_power), registers_power},
2347
2348 {0, 0, 0, 0}
2349 };
2350
2351 #undef num_registers
2352
2353 /* Return the variant corresponding to architecture ARCH and machine number
2354 MACH. If no such variant exists, return null. */
2355
2356 static const struct variant *
2357 find_variant_by_arch (enum bfd_architecture arch, unsigned long mach)
2358 {
2359 const struct variant *v;
2360
2361 for (v = variants; v->name; v++)
2362 if (arch == v->arch && mach == v->mach)
2363 return v;
2364
2365 return NULL;
2366 }
2367
2368
2369
2370 \f
2371 static void
2372 process_note_abi_tag_sections (bfd *abfd, asection *sect, void *obj)
2373 {
2374 int *os_ident_ptr = obj;
2375 const char *name;
2376 unsigned int sectsize;
2377
2378 name = bfd_get_section_name (abfd, sect);
2379 sectsize = bfd_section_size (abfd, sect);
2380 if (strcmp (name, ".note.ABI-tag") == 0 && sectsize > 0)
2381 {
2382 unsigned int name_length, data_length, note_type;
2383 char *note = alloca (sectsize);
2384
2385 bfd_get_section_contents (abfd, sect, note,
2386 (file_ptr) 0, (bfd_size_type) sectsize);
2387
2388 name_length = bfd_h_get_32 (abfd, note);
2389 data_length = bfd_h_get_32 (abfd, note + 4);
2390 note_type = bfd_h_get_32 (abfd, note + 8);
2391
2392 if (name_length == 4 && data_length == 16 && note_type == 1
2393 && strcmp (note + 12, "GNU") == 0)
2394 {
2395 int os_number = bfd_h_get_32 (abfd, note + 16);
2396
2397 /* The case numbers are from abi-tags in glibc */
2398 switch (os_number)
2399 {
2400 case 0 :
2401 *os_ident_ptr = ELFOSABI_LINUX;
2402 break;
2403 case 1 :
2404 *os_ident_ptr = ELFOSABI_HURD;
2405 break;
2406 case 2 :
2407 *os_ident_ptr = ELFOSABI_SOLARIS;
2408 break;
2409 default :
2410 internal_error (__FILE__, __LINE__,
2411 "process_note_abi_sections: unknown OS number %d",
2412 os_number);
2413 break;
2414 }
2415 }
2416 }
2417 }
2418
2419 /* Return one of the ELFOSABI_ constants for BFDs representing ELF
2420 executables. If it's not an ELF executable or if the OS/ABI couldn't
2421 be determined, simply return -1. */
2422
2423 static int
2424 get_elfosabi (bfd *abfd)
2425 {
2426 int elfosabi = -1;
2427
2428 if (abfd != NULL && bfd_get_flavour (abfd) == bfd_target_elf_flavour)
2429 {
2430 elfosabi = elf_elfheader (abfd)->e_ident[EI_OSABI];
2431
2432 /* When elfosabi is 0 (ELFOSABI_NONE), this is supposed to indicate
2433 that we're on a SYSV system. However, GNU/Linux uses a note section
2434 to record OS/ABI info, but leaves e_ident[EI_OSABI] zero. So we
2435 have to check the note sections too. */
2436 if (elfosabi == 0)
2437 {
2438 bfd_map_over_sections (abfd,
2439 process_note_abi_tag_sections,
2440 &elfosabi);
2441 }
2442 }
2443
2444 return elfosabi;
2445 }
2446
2447 \f
2448
2449 /* Initialize the current architecture based on INFO. If possible, re-use an
2450 architecture from ARCHES, which is a list of architectures already created
2451 during this debugging session.
2452
2453 Called e.g. at program startup, when reading a core file, and when reading
2454 a binary file. */
2455
2456 static struct gdbarch *
2457 rs6000_gdbarch_init (struct gdbarch_info info, struct gdbarch_list *arches)
2458 {
2459 struct gdbarch *gdbarch;
2460 struct gdbarch_tdep *tdep;
2461 int wordsize, from_xcoff_exec, from_elf_exec, power, i, off;
2462 struct reg *regs;
2463 const struct variant *v;
2464 enum bfd_architecture arch;
2465 unsigned long mach;
2466 bfd abfd;
2467 int osabi, sysv_abi;
2468
2469 from_xcoff_exec = info.abfd && info.abfd->format == bfd_object &&
2470 bfd_get_flavour (info.abfd) == bfd_target_xcoff_flavour;
2471
2472 from_elf_exec = info.abfd && info.abfd->format == bfd_object &&
2473 bfd_get_flavour (info.abfd) == bfd_target_elf_flavour;
2474
2475 sysv_abi = info.abfd && bfd_get_flavour (info.abfd) == bfd_target_elf_flavour;
2476
2477 osabi = get_elfosabi (info.abfd);
2478
2479 /* Check word size. If INFO is from a binary file, infer it from
2480 that, else choose a likely default. */
2481 if (from_xcoff_exec)
2482 {
2483 if (xcoff_data (info.abfd)->xcoff64)
2484 wordsize = 8;
2485 else
2486 wordsize = 4;
2487 }
2488 else if (from_elf_exec)
2489 {
2490 if (elf_elfheader (info.abfd)->e_ident[EI_CLASS] == ELFCLASS64)
2491 wordsize = 8;
2492 else
2493 wordsize = 4;
2494 }
2495 else
2496 {
2497 wordsize = 4;
2498 }
2499
2500 /* Find a candidate among extant architectures. */
2501 for (arches = gdbarch_list_lookup_by_info (arches, &info);
2502 arches != NULL;
2503 arches = gdbarch_list_lookup_by_info (arches->next, &info))
2504 {
2505 /* Word size in the various PowerPC bfd_arch_info structs isn't
2506 meaningful, because 64-bit CPUs can run in 32-bit mode. So, perform
2507 separate word size check. */
2508 tdep = gdbarch_tdep (arches->gdbarch);
2509 if (tdep && tdep->wordsize == wordsize && tdep->osabi == osabi)
2510 return arches->gdbarch;
2511 }
2512
2513 /* None found, create a new architecture from INFO, whose bfd_arch_info
2514 validity depends on the source:
2515 - executable useless
2516 - rs6000_host_arch() good
2517 - core file good
2518 - "set arch" trust blindly
2519 - GDB startup useless but harmless */
2520
2521 if (!from_xcoff_exec)
2522 {
2523 arch = info.bfd_arch_info->arch;
2524 mach = info.bfd_arch_info->mach;
2525 }
2526 else
2527 {
2528 arch = bfd_arch_powerpc;
2529 mach = 0;
2530 bfd_default_set_arch_mach (&abfd, arch, mach);
2531 info.bfd_arch_info = bfd_get_arch_info (&abfd);
2532 }
2533 tdep = xmalloc (sizeof (struct gdbarch_tdep));
2534 tdep->wordsize = wordsize;
2535 tdep->osabi = osabi;
2536 gdbarch = gdbarch_alloc (&info, tdep);
2537 power = arch == bfd_arch_rs6000;
2538
2539 /* Choose variant. */
2540 v = find_variant_by_arch (arch, mach);
2541 if (!v)
2542 return NULL;
2543
2544 tdep->regs = v->regs;
2545
2546 tdep->ppc_gp0_regnum = 0;
2547 tdep->ppc_gplast_regnum = 31;
2548 tdep->ppc_toc_regnum = 2;
2549 tdep->ppc_ps_regnum = 65;
2550 tdep->ppc_cr_regnum = 66;
2551 tdep->ppc_lr_regnum = 67;
2552 tdep->ppc_ctr_regnum = 68;
2553 tdep->ppc_xer_regnum = 69;
2554 if (v->mach == bfd_mach_ppc_601)
2555 tdep->ppc_mq_regnum = 124;
2556 else
2557 tdep->ppc_mq_regnum = 70;
2558
2559 if (v->arch == bfd_arch_powerpc)
2560 switch (v->mach)
2561 {
2562 case bfd_mach_ppc:
2563 tdep->ppc_vr0_regnum = 71;
2564 tdep->ppc_vrsave_regnum = 104;
2565 break;
2566 case bfd_mach_ppc_7400:
2567 tdep->ppc_vr0_regnum = 119;
2568 tdep->ppc_vrsave_regnum = 153;
2569 break;
2570 default:
2571 tdep->ppc_vr0_regnum = -1;
2572 tdep->ppc_vrsave_regnum = -1;
2573 break;
2574 }
2575
2576 /* Calculate byte offsets in raw register array. */
2577 tdep->regoff = xmalloc (v->nregs * sizeof (int));
2578 for (i = off = 0; i < v->nregs; i++)
2579 {
2580 tdep->regoff[i] = off;
2581 off += regsize (v->regs + i, wordsize);
2582 }
2583
2584 /* Select instruction printer. Note: tm_print_insn is still used by
2585 gdbtk (insight), so we set both tm_print_insn and the gdbarch
2586 method. */
2587 tm_print_insn = arch == power ? print_insn_rs6000 :
2588 info.byte_order == BFD_ENDIAN_BIG ? print_insn_big_powerpc :
2589 print_insn_little_powerpc;
2590 set_gdbarch_print_insn (gdbarch, tm_print_insn);
2591
2592 set_gdbarch_read_pc (gdbarch, generic_target_read_pc);
2593 set_gdbarch_write_pc (gdbarch, generic_target_write_pc);
2594 set_gdbarch_read_fp (gdbarch, generic_target_read_fp);
2595 set_gdbarch_read_sp (gdbarch, generic_target_read_sp);
2596 set_gdbarch_write_sp (gdbarch, generic_target_write_sp);
2597
2598 set_gdbarch_num_regs (gdbarch, v->nregs);
2599 set_gdbarch_sp_regnum (gdbarch, 1);
2600 set_gdbarch_fp_regnum (gdbarch, 1);
2601 set_gdbarch_pc_regnum (gdbarch, 64);
2602 set_gdbarch_register_name (gdbarch, rs6000_register_name);
2603 set_gdbarch_register_size (gdbarch, wordsize);
2604 set_gdbarch_register_bytes (gdbarch, off);
2605 set_gdbarch_register_byte (gdbarch, rs6000_register_byte);
2606 set_gdbarch_register_raw_size (gdbarch, rs6000_register_raw_size);
2607 set_gdbarch_max_register_raw_size (gdbarch, 16);
2608 set_gdbarch_register_virtual_size (gdbarch, generic_register_virtual_size);
2609 set_gdbarch_max_register_virtual_size (gdbarch, 16);
2610 set_gdbarch_register_virtual_type (gdbarch, rs6000_register_virtual_type);
2611 set_gdbarch_do_registers_info (gdbarch, rs6000_do_registers_info);
2612
2613 set_gdbarch_ptr_bit (gdbarch, wordsize * TARGET_CHAR_BIT);
2614 set_gdbarch_short_bit (gdbarch, 2 * TARGET_CHAR_BIT);
2615 set_gdbarch_int_bit (gdbarch, 4 * TARGET_CHAR_BIT);
2616 set_gdbarch_long_bit (gdbarch, wordsize * TARGET_CHAR_BIT);
2617 set_gdbarch_long_long_bit (gdbarch, 8 * TARGET_CHAR_BIT);
2618 set_gdbarch_float_bit (gdbarch, 4 * TARGET_CHAR_BIT);
2619 set_gdbarch_double_bit (gdbarch, 8 * TARGET_CHAR_BIT);
2620 set_gdbarch_long_double_bit (gdbarch, 8 * TARGET_CHAR_BIT);
2621 set_gdbarch_char_signed (gdbarch, 0);
2622
2623 set_gdbarch_use_generic_dummy_frames (gdbarch, 1);
2624 set_gdbarch_call_dummy_length (gdbarch, 0);
2625 set_gdbarch_call_dummy_location (gdbarch, AT_ENTRY_POINT);
2626 set_gdbarch_call_dummy_address (gdbarch, entry_point_address);
2627 set_gdbarch_call_dummy_breakpoint_offset_p (gdbarch, 1);
2628 set_gdbarch_call_dummy_breakpoint_offset (gdbarch, 0);
2629 set_gdbarch_call_dummy_start_offset (gdbarch, 0);
2630 set_gdbarch_pc_in_call_dummy (gdbarch, generic_pc_in_call_dummy);
2631 set_gdbarch_call_dummy_p (gdbarch, 1);
2632 set_gdbarch_call_dummy_stack_adjust_p (gdbarch, 0);
2633 set_gdbarch_get_saved_register (gdbarch, generic_get_saved_register);
2634 set_gdbarch_fix_call_dummy (gdbarch, rs6000_fix_call_dummy);
2635 set_gdbarch_push_dummy_frame (gdbarch, generic_push_dummy_frame);
2636 set_gdbarch_save_dummy_frame_tos (gdbarch, generic_save_dummy_frame_tos);
2637 set_gdbarch_push_return_address (gdbarch, ppc_push_return_address);
2638 set_gdbarch_believe_pcc_promotion (gdbarch, 1);
2639 set_gdbarch_coerce_float_to_double (gdbarch, rs6000_coerce_float_to_double);
2640
2641 set_gdbarch_register_convertible (gdbarch, rs6000_register_convertible);
2642 set_gdbarch_register_convert_to_virtual (gdbarch, rs6000_register_convert_to_virtual);
2643 set_gdbarch_register_convert_to_raw (gdbarch, rs6000_register_convert_to_raw);
2644 set_gdbarch_stab_reg_to_regnum (gdbarch, rs6000_stab_reg_to_regnum);
2645
2646 set_gdbarch_extract_return_value (gdbarch, rs6000_extract_return_value);
2647
2648 if (sysv_abi)
2649 set_gdbarch_push_arguments (gdbarch, ppc_sysv_abi_push_arguments);
2650 else
2651 set_gdbarch_push_arguments (gdbarch, rs6000_push_arguments);
2652
2653 set_gdbarch_store_struct_return (gdbarch, rs6000_store_struct_return);
2654 set_gdbarch_store_return_value (gdbarch, rs6000_store_return_value);
2655 set_gdbarch_extract_struct_value_address (gdbarch, rs6000_extract_struct_value_address);
2656 set_gdbarch_pop_frame (gdbarch, rs6000_pop_frame);
2657
2658 set_gdbarch_skip_prologue (gdbarch, rs6000_skip_prologue);
2659 set_gdbarch_inner_than (gdbarch, core_addr_lessthan);
2660 set_gdbarch_decr_pc_after_break (gdbarch, 0);
2661 set_gdbarch_function_start_offset (gdbarch, 0);
2662 set_gdbarch_breakpoint_from_pc (gdbarch, rs6000_breakpoint_from_pc);
2663
2664 /* Not sure on this. FIXMEmgo */
2665 set_gdbarch_frame_args_skip (gdbarch, 8);
2666
2667 /* Until November 2001, gcc was not complying to the SYSV ABI for
2668 returning structures less than or equal to 8 bytes in size. It was
2669 returning everything in memory. When this was corrected, it wasn't
2670 fixed for native platforms. */
2671 if (sysv_abi)
2672 {
2673 if (osabi == ELFOSABI_LINUX
2674 || osabi == ELFOSABI_NETBSD
2675 || osabi == ELFOSABI_FREEBSD)
2676 set_gdbarch_use_struct_convention (gdbarch,
2677 generic_use_struct_convention);
2678 else
2679 set_gdbarch_use_struct_convention (gdbarch,
2680 ppc_sysv_abi_use_struct_convention);
2681 }
2682 else
2683 {
2684 set_gdbarch_use_struct_convention (gdbarch,
2685 generic_use_struct_convention);
2686 }
2687
2688 set_gdbarch_frame_chain_valid (gdbarch, file_frame_chain_valid);
2689 if (osabi == ELFOSABI_LINUX)
2690 {
2691 set_gdbarch_frameless_function_invocation (gdbarch,
2692 ppc_linux_frameless_function_invocation);
2693 set_gdbarch_frame_chain (gdbarch, ppc_linux_frame_chain);
2694 set_gdbarch_frame_saved_pc (gdbarch, ppc_linux_frame_saved_pc);
2695
2696 set_gdbarch_frame_init_saved_regs (gdbarch,
2697 ppc_linux_frame_init_saved_regs);
2698 set_gdbarch_init_extra_frame_info (gdbarch,
2699 ppc_linux_init_extra_frame_info);
2700
2701 set_gdbarch_memory_remove_breakpoint (gdbarch,
2702 ppc_linux_memory_remove_breakpoint);
2703 set_solib_svr4_fetch_link_map_offsets
2704 (gdbarch, ppc_linux_svr4_fetch_link_map_offsets);
2705 }
2706 else
2707 {
2708 set_gdbarch_frameless_function_invocation (gdbarch,
2709 rs6000_frameless_function_invocation);
2710 set_gdbarch_frame_chain (gdbarch, rs6000_frame_chain);
2711 set_gdbarch_frame_saved_pc (gdbarch, rs6000_frame_saved_pc);
2712
2713 set_gdbarch_frame_init_saved_regs (gdbarch, rs6000_frame_init_saved_regs);
2714 set_gdbarch_init_extra_frame_info (gdbarch, rs6000_init_extra_frame_info);
2715
2716 /* Handle RS/6000 function pointers. */
2717 set_gdbarch_convert_from_func_ptr_addr (gdbarch,
2718 rs6000_convert_from_func_ptr_addr);
2719 }
2720 set_gdbarch_frame_args_address (gdbarch, rs6000_frame_args_address);
2721 set_gdbarch_frame_locals_address (gdbarch, rs6000_frame_args_address);
2722 set_gdbarch_saved_pc_after_call (gdbarch, rs6000_saved_pc_after_call);
2723
2724 /* We can't tell how many args there are
2725 now that the C compiler delays popping them. */
2726 set_gdbarch_frame_num_args (gdbarch, frame_num_args_unknown);
2727
2728 return gdbarch;
2729 }
2730
2731 static struct cmd_list_element *info_powerpc_cmdlist = NULL;
2732
2733 static void
2734 rs6000_info_powerpc_command (char *args, int from_tty)
2735 {
2736 help_list (info_powerpc_cmdlist, "info powerpc ", class_info, gdb_stdout);
2737 }
2738
2739 /* Initialization code. */
2740
2741 void
2742 _initialize_rs6000_tdep (void)
2743 {
2744 register_gdbarch_init (bfd_arch_rs6000, rs6000_gdbarch_init);
2745 register_gdbarch_init (bfd_arch_powerpc, rs6000_gdbarch_init);
2746
2747 /* Add root prefix command for "info powerpc" commands */
2748 add_prefix_cmd ("powerpc", class_info, rs6000_info_powerpc_command,
2749 "Various POWERPC info specific commands.",
2750 &info_powerpc_cmdlist, "info powerpc ", 0, &infolist);
2751
2752 add_cmd ("altivec", class_info, rs6000_altivec_registers_info,
2753 "Display the contents of the AltiVec registers.",
2754 &info_powerpc_cmdlist);
2755
2756 }