class readable_regcache and pass readable_regcache to gdbarch pseudo_register_read...
[binutils-gdb.git] / gdb / rs6000-tdep.c
1 /* Target-dependent code for GDB, the GNU debugger.
2
3 Copyright (C) 1986-2018 Free Software Foundation, Inc.
4
5 This file is part of GDB.
6
7 This program is free software; you can redistribute it and/or modify
8 it under the terms of the GNU General Public License as published by
9 the Free Software Foundation; either version 3 of the License, or
10 (at your option) any later version.
11
12 This program is distributed in the hope that it will be useful,
13 but WITHOUT ANY WARRANTY; without even the implied warranty of
14 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
15 GNU General Public License for more details.
16
17 You should have received a copy of the GNU General Public License
18 along with this program. If not, see <http://www.gnu.org/licenses/>. */
19
20 #include "defs.h"
21 #include "frame.h"
22 #include "inferior.h"
23 #include "infrun.h"
24 #include "symtab.h"
25 #include "target.h"
26 #include "gdbcore.h"
27 #include "gdbcmd.h"
28 #include "objfiles.h"
29 #include "arch-utils.h"
30 #include "regcache.h"
31 #include "regset.h"
32 #include "target-float.h"
33 #include "value.h"
34 #include "parser-defs.h"
35 #include "osabi.h"
36 #include "infcall.h"
37 #include "sim-regno.h"
38 #include "gdb/sim-ppc.h"
39 #include "reggroups.h"
40 #include "dwarf2-frame.h"
41 #include "target-descriptions.h"
42 #include "user-regs.h"
43 #include "record-full.h"
44 #include "auxv.h"
45
46 #include "coff/internal.h" /* for libcoff.h */
47 #include "libcoff.h" /* for xcoff_data */
48 #include "coff/xcoff.h"
49 #include "libxcoff.h"
50
51 #include "elf-bfd.h"
52 #include "elf/ppc.h"
53 #include "elf/ppc64.h"
54
55 #include "solib-svr4.h"
56 #include "ppc-tdep.h"
57 #include "ppc-ravenscar-thread.h"
58
59 #include "dis-asm.h"
60
61 #include "trad-frame.h"
62 #include "frame-unwind.h"
63 #include "frame-base.h"
64
65 #include "ax.h"
66 #include "ax-gdb.h"
67 #include <algorithm>
68
69 #include "features/rs6000/powerpc-32.c"
70 #include "features/rs6000/powerpc-altivec32.c"
71 #include "features/rs6000/powerpc-vsx32.c"
72 #include "features/rs6000/powerpc-403.c"
73 #include "features/rs6000/powerpc-403gc.c"
74 #include "features/rs6000/powerpc-405.c"
75 #include "features/rs6000/powerpc-505.c"
76 #include "features/rs6000/powerpc-601.c"
77 #include "features/rs6000/powerpc-602.c"
78 #include "features/rs6000/powerpc-603.c"
79 #include "features/rs6000/powerpc-604.c"
80 #include "features/rs6000/powerpc-64.c"
81 #include "features/rs6000/powerpc-altivec64.c"
82 #include "features/rs6000/powerpc-vsx64.c"
83 #include "features/rs6000/powerpc-7400.c"
84 #include "features/rs6000/powerpc-750.c"
85 #include "features/rs6000/powerpc-860.c"
86 #include "features/rs6000/powerpc-e500.c"
87 #include "features/rs6000/rs6000.c"
88
89 /* Determine if regnum is an SPE pseudo-register. */
90 #define IS_SPE_PSEUDOREG(tdep, regnum) ((tdep)->ppc_ev0_regnum >= 0 \
91 && (regnum) >= (tdep)->ppc_ev0_regnum \
92 && (regnum) < (tdep)->ppc_ev0_regnum + 32)
93
94 /* Determine if regnum is a decimal float pseudo-register. */
95 #define IS_DFP_PSEUDOREG(tdep, regnum) ((tdep)->ppc_dl0_regnum >= 0 \
96 && (regnum) >= (tdep)->ppc_dl0_regnum \
97 && (regnum) < (tdep)->ppc_dl0_regnum + 16)
98
99 /* Determine if regnum is a POWER7 VSX register. */
100 #define IS_VSX_PSEUDOREG(tdep, regnum) ((tdep)->ppc_vsr0_regnum >= 0 \
101 && (regnum) >= (tdep)->ppc_vsr0_regnum \
102 && (regnum) < (tdep)->ppc_vsr0_regnum + ppc_num_vsrs)
103
104 /* Determine if regnum is a POWER7 Extended FP register. */
105 #define IS_EFP_PSEUDOREG(tdep, regnum) ((tdep)->ppc_efpr0_regnum >= 0 \
106 && (regnum) >= (tdep)->ppc_efpr0_regnum \
107 && (regnum) < (tdep)->ppc_efpr0_regnum + ppc_num_efprs)
108
109 /* Holds the current set of options to be passed to the disassembler. */
110 static char *powerpc_disassembler_options;
111
112 /* The list of available "set powerpc ..." and "show powerpc ..."
113 commands. */
114 static struct cmd_list_element *setpowerpccmdlist = NULL;
115 static struct cmd_list_element *showpowerpccmdlist = NULL;
116
117 static enum auto_boolean powerpc_soft_float_global = AUTO_BOOLEAN_AUTO;
118
119 /* The vector ABI to use. Keep this in sync with powerpc_vector_abi. */
120 static const char *const powerpc_vector_strings[] =
121 {
122 "auto",
123 "generic",
124 "altivec",
125 "spe",
126 NULL
127 };
128
129 /* A variable that can be configured by the user. */
130 static enum powerpc_vector_abi powerpc_vector_abi_global = POWERPC_VEC_AUTO;
131 static const char *powerpc_vector_abi_string = "auto";
132
133 /* To be used by skip_prologue. */
134
135 struct rs6000_framedata
136 {
137 int offset; /* total size of frame --- the distance
138 by which we decrement sp to allocate
139 the frame */
140 int saved_gpr; /* smallest # of saved gpr */
141 unsigned int gpr_mask; /* Each bit is an individual saved GPR. */
142 int saved_fpr; /* smallest # of saved fpr */
143 int saved_vr; /* smallest # of saved vr */
144 int saved_ev; /* smallest # of saved ev */
145 int alloca_reg; /* alloca register number (frame ptr) */
146 char frameless; /* true if frameless functions. */
147 char nosavedpc; /* true if pc not saved. */
148 char used_bl; /* true if link register clobbered */
149 int gpr_offset; /* offset of saved gprs from prev sp */
150 int fpr_offset; /* offset of saved fprs from prev sp */
151 int vr_offset; /* offset of saved vrs from prev sp */
152 int ev_offset; /* offset of saved evs from prev sp */
153 int lr_offset; /* offset of saved lr */
154 int lr_register; /* register of saved lr, if trustworthy */
155 int cr_offset; /* offset of saved cr */
156 int vrsave_offset; /* offset of saved vrsave register */
157 };
158
159
160 /* Is REGNO a VSX register? Return 1 if so, 0 otherwise. */
161 int
162 vsx_register_p (struct gdbarch *gdbarch, int regno)
163 {
164 struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch);
165 if (tdep->ppc_vsr0_regnum < 0)
166 return 0;
167 else
168 return (regno >= tdep->ppc_vsr0_upper_regnum && regno
169 <= tdep->ppc_vsr0_upper_regnum + 31);
170 }
171
172 /* Is REGNO an AltiVec register? Return 1 if so, 0 otherwise. */
173 int
174 altivec_register_p (struct gdbarch *gdbarch, int regno)
175 {
176 struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch);
177 if (tdep->ppc_vr0_regnum < 0 || tdep->ppc_vrsave_regnum < 0)
178 return 0;
179 else
180 return (regno >= tdep->ppc_vr0_regnum && regno <= tdep->ppc_vrsave_regnum);
181 }
182
183
184 /* Return true if REGNO is an SPE register, false otherwise. */
185 int
186 spe_register_p (struct gdbarch *gdbarch, int regno)
187 {
188 struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch);
189
190 /* Is it a reference to EV0 -- EV31, and do we have those? */
191 if (IS_SPE_PSEUDOREG (tdep, regno))
192 return 1;
193
194 /* Is it a reference to one of the raw upper GPR halves? */
195 if (tdep->ppc_ev0_upper_regnum >= 0
196 && tdep->ppc_ev0_upper_regnum <= regno
197 && regno < tdep->ppc_ev0_upper_regnum + ppc_num_gprs)
198 return 1;
199
200 /* Is it a reference to the 64-bit accumulator, and do we have that? */
201 if (tdep->ppc_acc_regnum >= 0
202 && tdep->ppc_acc_regnum == regno)
203 return 1;
204
205 /* Is it a reference to the SPE floating-point status and control register,
206 and do we have that? */
207 if (tdep->ppc_spefscr_regnum >= 0
208 && tdep->ppc_spefscr_regnum == regno)
209 return 1;
210
211 return 0;
212 }
213
214
215 /* Return non-zero if the architecture described by GDBARCH has
216 floating-point registers (f0 --- f31 and fpscr). */
217 int
218 ppc_floating_point_unit_p (struct gdbarch *gdbarch)
219 {
220 struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch);
221
222 return (tdep->ppc_fp0_regnum >= 0
223 && tdep->ppc_fpscr_regnum >= 0);
224 }
225
226 /* Return non-zero if the architecture described by GDBARCH has
227 VSX registers (vsr0 --- vsr63). */
228 static int
229 ppc_vsx_support_p (struct gdbarch *gdbarch)
230 {
231 struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch);
232
233 return tdep->ppc_vsr0_regnum >= 0;
234 }
235
236 /* Return non-zero if the architecture described by GDBARCH has
237 Altivec registers (vr0 --- vr31, vrsave and vscr). */
238 int
239 ppc_altivec_support_p (struct gdbarch *gdbarch)
240 {
241 struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch);
242
243 return (tdep->ppc_vr0_regnum >= 0
244 && tdep->ppc_vrsave_regnum >= 0);
245 }
246
247 /* Check that TABLE[GDB_REGNO] is not already initialized, and then
248 set it to SIM_REGNO.
249
250 This is a helper function for init_sim_regno_table, constructing
251 the table mapping GDB register numbers to sim register numbers; we
252 initialize every element in that table to -1 before we start
253 filling it in. */
254 static void
255 set_sim_regno (int *table, int gdb_regno, int sim_regno)
256 {
257 /* Make sure we don't try to assign any given GDB register a sim
258 register number more than once. */
259 gdb_assert (table[gdb_regno] == -1);
260 table[gdb_regno] = sim_regno;
261 }
262
263
264 /* Initialize ARCH->tdep->sim_regno, the table mapping GDB register
265 numbers to simulator register numbers, based on the values placed
266 in the ARCH->tdep->ppc_foo_regnum members. */
267 static void
268 init_sim_regno_table (struct gdbarch *arch)
269 {
270 struct gdbarch_tdep *tdep = gdbarch_tdep (arch);
271 int total_regs = gdbarch_num_regs (arch);
272 int *sim_regno = GDBARCH_OBSTACK_CALLOC (arch, total_regs, int);
273 int i;
274 static const char *const segment_regs[] = {
275 "sr0", "sr1", "sr2", "sr3", "sr4", "sr5", "sr6", "sr7",
276 "sr8", "sr9", "sr10", "sr11", "sr12", "sr13", "sr14", "sr15"
277 };
278
279 /* Presume that all registers not explicitly mentioned below are
280 unavailable from the sim. */
281 for (i = 0; i < total_regs; i++)
282 sim_regno[i] = -1;
283
284 /* General-purpose registers. */
285 for (i = 0; i < ppc_num_gprs; i++)
286 set_sim_regno (sim_regno, tdep->ppc_gp0_regnum + i, sim_ppc_r0_regnum + i);
287
288 /* Floating-point registers. */
289 if (tdep->ppc_fp0_regnum >= 0)
290 for (i = 0; i < ppc_num_fprs; i++)
291 set_sim_regno (sim_regno,
292 tdep->ppc_fp0_regnum + i,
293 sim_ppc_f0_regnum + i);
294 if (tdep->ppc_fpscr_regnum >= 0)
295 set_sim_regno (sim_regno, tdep->ppc_fpscr_regnum, sim_ppc_fpscr_regnum);
296
297 set_sim_regno (sim_regno, gdbarch_pc_regnum (arch), sim_ppc_pc_regnum);
298 set_sim_regno (sim_regno, tdep->ppc_ps_regnum, sim_ppc_ps_regnum);
299 set_sim_regno (sim_regno, tdep->ppc_cr_regnum, sim_ppc_cr_regnum);
300
301 /* Segment registers. */
302 for (i = 0; i < ppc_num_srs; i++)
303 {
304 int gdb_regno;
305
306 gdb_regno = user_reg_map_name_to_regnum (arch, segment_regs[i], -1);
307 if (gdb_regno >= 0)
308 set_sim_regno (sim_regno, gdb_regno, sim_ppc_sr0_regnum + i);
309 }
310
311 /* Altivec registers. */
312 if (tdep->ppc_vr0_regnum >= 0)
313 {
314 for (i = 0; i < ppc_num_vrs; i++)
315 set_sim_regno (sim_regno,
316 tdep->ppc_vr0_regnum + i,
317 sim_ppc_vr0_regnum + i);
318
319 /* FIXME: jimb/2004-07-15: when we have tdep->ppc_vscr_regnum,
320 we can treat this more like the other cases. */
321 set_sim_regno (sim_regno,
322 tdep->ppc_vr0_regnum + ppc_num_vrs,
323 sim_ppc_vscr_regnum);
324 }
325 /* vsave is a special-purpose register, so the code below handles it. */
326
327 /* SPE APU (E500) registers. */
328 if (tdep->ppc_ev0_upper_regnum >= 0)
329 for (i = 0; i < ppc_num_gprs; i++)
330 set_sim_regno (sim_regno,
331 tdep->ppc_ev0_upper_regnum + i,
332 sim_ppc_rh0_regnum + i);
333 if (tdep->ppc_acc_regnum >= 0)
334 set_sim_regno (sim_regno, tdep->ppc_acc_regnum, sim_ppc_acc_regnum);
335 /* spefscr is a special-purpose register, so the code below handles it. */
336
337 #ifdef WITH_PPC_SIM
338 /* Now handle all special-purpose registers. Verify that they
339 haven't mistakenly been assigned numbers by any of the above
340 code. */
341 for (i = 0; i < sim_ppc_num_sprs; i++)
342 {
343 const char *spr_name = sim_spr_register_name (i);
344 int gdb_regno = -1;
345
346 if (spr_name != NULL)
347 gdb_regno = user_reg_map_name_to_regnum (arch, spr_name, -1);
348
349 if (gdb_regno != -1)
350 set_sim_regno (sim_regno, gdb_regno, sim_ppc_spr0_regnum + i);
351 }
352 #endif
353
354 /* Drop the initialized array into place. */
355 tdep->sim_regno = sim_regno;
356 }
357
358
359 /* Given a GDB register number REG, return the corresponding SIM
360 register number. */
361 static int
362 rs6000_register_sim_regno (struct gdbarch *gdbarch, int reg)
363 {
364 struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch);
365 int sim_regno;
366
367 if (tdep->sim_regno == NULL)
368 init_sim_regno_table (gdbarch);
369
370 gdb_assert (0 <= reg
371 && reg <= gdbarch_num_regs (gdbarch)
372 + gdbarch_num_pseudo_regs (gdbarch));
373 sim_regno = tdep->sim_regno[reg];
374
375 if (sim_regno >= 0)
376 return sim_regno;
377 else
378 return LEGACY_SIM_REGNO_IGNORE;
379 }
380
381 \f
382
383 /* Register set support functions. */
384
385 /* REGS + OFFSET contains register REGNUM in a field REGSIZE wide.
386 Write the register to REGCACHE. */
387
388 void
389 ppc_supply_reg (struct regcache *regcache, int regnum,
390 const gdb_byte *regs, size_t offset, int regsize)
391 {
392 if (regnum != -1 && offset != -1)
393 {
394 if (regsize > 4)
395 {
396 struct gdbarch *gdbarch = regcache->arch ();
397 int gdb_regsize = register_size (gdbarch, regnum);
398 if (gdb_regsize < regsize
399 && gdbarch_byte_order (gdbarch) == BFD_ENDIAN_BIG)
400 offset += regsize - gdb_regsize;
401 }
402 regcache_raw_supply (regcache, regnum, regs + offset);
403 }
404 }
405
406 /* Read register REGNUM from REGCACHE and store to REGS + OFFSET
407 in a field REGSIZE wide. Zero pad as necessary. */
408
409 void
410 ppc_collect_reg (const struct regcache *regcache, int regnum,
411 gdb_byte *regs, size_t offset, int regsize)
412 {
413 if (regnum != -1 && offset != -1)
414 {
415 if (regsize > 4)
416 {
417 struct gdbarch *gdbarch = regcache->arch ();
418 int gdb_regsize = register_size (gdbarch, regnum);
419 if (gdb_regsize < regsize)
420 {
421 if (gdbarch_byte_order (gdbarch) == BFD_ENDIAN_BIG)
422 {
423 memset (regs + offset, 0, regsize - gdb_regsize);
424 offset += regsize - gdb_regsize;
425 }
426 else
427 memset (regs + offset + regsize - gdb_regsize, 0,
428 regsize - gdb_regsize);
429 }
430 }
431 regcache_raw_collect (regcache, regnum, regs + offset);
432 }
433 }
434
435 static int
436 ppc_greg_offset (struct gdbarch *gdbarch,
437 struct gdbarch_tdep *tdep,
438 const struct ppc_reg_offsets *offsets,
439 int regnum,
440 int *regsize)
441 {
442 *regsize = offsets->gpr_size;
443 if (regnum >= tdep->ppc_gp0_regnum
444 && regnum < tdep->ppc_gp0_regnum + ppc_num_gprs)
445 return (offsets->r0_offset
446 + (regnum - tdep->ppc_gp0_regnum) * offsets->gpr_size);
447
448 if (regnum == gdbarch_pc_regnum (gdbarch))
449 return offsets->pc_offset;
450
451 if (regnum == tdep->ppc_ps_regnum)
452 return offsets->ps_offset;
453
454 if (regnum == tdep->ppc_lr_regnum)
455 return offsets->lr_offset;
456
457 if (regnum == tdep->ppc_ctr_regnum)
458 return offsets->ctr_offset;
459
460 *regsize = offsets->xr_size;
461 if (regnum == tdep->ppc_cr_regnum)
462 return offsets->cr_offset;
463
464 if (regnum == tdep->ppc_xer_regnum)
465 return offsets->xer_offset;
466
467 if (regnum == tdep->ppc_mq_regnum)
468 return offsets->mq_offset;
469
470 return -1;
471 }
472
473 static int
474 ppc_fpreg_offset (struct gdbarch_tdep *tdep,
475 const struct ppc_reg_offsets *offsets,
476 int regnum)
477 {
478 if (regnum >= tdep->ppc_fp0_regnum
479 && regnum < tdep->ppc_fp0_regnum + ppc_num_fprs)
480 return offsets->f0_offset + (regnum - tdep->ppc_fp0_regnum) * 8;
481
482 if (regnum == tdep->ppc_fpscr_regnum)
483 return offsets->fpscr_offset;
484
485 return -1;
486 }
487
488 static int
489 ppc_vrreg_offset (struct gdbarch_tdep *tdep,
490 const struct ppc_reg_offsets *offsets,
491 int regnum)
492 {
493 if (regnum >= tdep->ppc_vr0_regnum
494 && regnum < tdep->ppc_vr0_regnum + ppc_num_vrs)
495 return offsets->vr0_offset + (regnum - tdep->ppc_vr0_regnum) * 16;
496
497 if (regnum == tdep->ppc_vrsave_regnum - 1)
498 return offsets->vscr_offset;
499
500 if (regnum == tdep->ppc_vrsave_regnum)
501 return offsets->vrsave_offset;
502
503 return -1;
504 }
505
506 /* Supply register REGNUM in the general-purpose register set REGSET
507 from the buffer specified by GREGS and LEN to register cache
508 REGCACHE. If REGNUM is -1, do this for all registers in REGSET. */
509
510 void
511 ppc_supply_gregset (const struct regset *regset, struct regcache *regcache,
512 int regnum, const void *gregs, size_t len)
513 {
514 struct gdbarch *gdbarch = regcache->arch ();
515 struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch);
516 const struct ppc_reg_offsets *offsets
517 = (const struct ppc_reg_offsets *) regset->regmap;
518 size_t offset;
519 int regsize;
520
521 if (regnum == -1)
522 {
523 int i;
524 int gpr_size = offsets->gpr_size;
525
526 for (i = tdep->ppc_gp0_regnum, offset = offsets->r0_offset;
527 i < tdep->ppc_gp0_regnum + ppc_num_gprs;
528 i++, offset += gpr_size)
529 ppc_supply_reg (regcache, i, (const gdb_byte *) gregs, offset,
530 gpr_size);
531
532 ppc_supply_reg (regcache, gdbarch_pc_regnum (gdbarch),
533 (const gdb_byte *) gregs, offsets->pc_offset, gpr_size);
534 ppc_supply_reg (regcache, tdep->ppc_ps_regnum,
535 (const gdb_byte *) gregs, offsets->ps_offset, gpr_size);
536 ppc_supply_reg (regcache, tdep->ppc_lr_regnum,
537 (const gdb_byte *) gregs, offsets->lr_offset, gpr_size);
538 ppc_supply_reg (regcache, tdep->ppc_ctr_regnum,
539 (const gdb_byte *) gregs, offsets->ctr_offset, gpr_size);
540 ppc_supply_reg (regcache, tdep->ppc_cr_regnum,
541 (const gdb_byte *) gregs, offsets->cr_offset,
542 offsets->xr_size);
543 ppc_supply_reg (regcache, tdep->ppc_xer_regnum,
544 (const gdb_byte *) gregs, offsets->xer_offset,
545 offsets->xr_size);
546 ppc_supply_reg (regcache, tdep->ppc_mq_regnum,
547 (const gdb_byte *) gregs, offsets->mq_offset,
548 offsets->xr_size);
549 return;
550 }
551
552 offset = ppc_greg_offset (gdbarch, tdep, offsets, regnum, &regsize);
553 ppc_supply_reg (regcache, regnum, (const gdb_byte *) gregs, offset, regsize);
554 }
555
556 /* Supply register REGNUM in the floating-point register set REGSET
557 from the buffer specified by FPREGS and LEN to register cache
558 REGCACHE. If REGNUM is -1, do this for all registers in REGSET. */
559
560 void
561 ppc_supply_fpregset (const struct regset *regset, struct regcache *regcache,
562 int regnum, const void *fpregs, size_t len)
563 {
564 struct gdbarch *gdbarch = regcache->arch ();
565 struct gdbarch_tdep *tdep;
566 const struct ppc_reg_offsets *offsets;
567 size_t offset;
568
569 if (!ppc_floating_point_unit_p (gdbarch))
570 return;
571
572 tdep = gdbarch_tdep (gdbarch);
573 offsets = (const struct ppc_reg_offsets *) regset->regmap;
574 if (regnum == -1)
575 {
576 int i;
577
578 for (i = tdep->ppc_fp0_regnum, offset = offsets->f0_offset;
579 i < tdep->ppc_fp0_regnum + ppc_num_fprs;
580 i++, offset += 8)
581 ppc_supply_reg (regcache, i, (const gdb_byte *) fpregs, offset, 8);
582
583 ppc_supply_reg (regcache, tdep->ppc_fpscr_regnum,
584 (const gdb_byte *) fpregs, offsets->fpscr_offset,
585 offsets->fpscr_size);
586 return;
587 }
588
589 offset = ppc_fpreg_offset (tdep, offsets, regnum);
590 ppc_supply_reg (regcache, regnum, (const gdb_byte *) fpregs, offset,
591 regnum == tdep->ppc_fpscr_regnum ? offsets->fpscr_size : 8);
592 }
593
594 /* Supply register REGNUM in the VSX register set REGSET
595 from the buffer specified by VSXREGS and LEN to register cache
596 REGCACHE. If REGNUM is -1, do this for all registers in REGSET. */
597
598 void
599 ppc_supply_vsxregset (const struct regset *regset, struct regcache *regcache,
600 int regnum, const void *vsxregs, size_t len)
601 {
602 struct gdbarch *gdbarch = regcache->arch ();
603 struct gdbarch_tdep *tdep;
604
605 if (!ppc_vsx_support_p (gdbarch))
606 return;
607
608 tdep = gdbarch_tdep (gdbarch);
609
610 if (regnum == -1)
611 {
612 int i;
613
614 for (i = tdep->ppc_vsr0_upper_regnum;
615 i < tdep->ppc_vsr0_upper_regnum + 32;
616 i++)
617 ppc_supply_reg (regcache, i, (const gdb_byte *) vsxregs, 0, 8);
618
619 return;
620 }
621 else
622 ppc_supply_reg (regcache, regnum, (const gdb_byte *) vsxregs, 0, 8);
623 }
624
625 /* Supply register REGNUM in the Altivec register set REGSET
626 from the buffer specified by VRREGS and LEN to register cache
627 REGCACHE. If REGNUM is -1, do this for all registers in REGSET. */
628
629 void
630 ppc_supply_vrregset (const struct regset *regset, struct regcache *regcache,
631 int regnum, const void *vrregs, size_t len)
632 {
633 struct gdbarch *gdbarch = regcache->arch ();
634 struct gdbarch_tdep *tdep;
635 const struct ppc_reg_offsets *offsets;
636 size_t offset;
637
638 if (!ppc_altivec_support_p (gdbarch))
639 return;
640
641 tdep = gdbarch_tdep (gdbarch);
642 offsets = (const struct ppc_reg_offsets *) regset->regmap;
643 if (regnum == -1)
644 {
645 int i;
646
647 for (i = tdep->ppc_vr0_regnum, offset = offsets->vr0_offset;
648 i < tdep->ppc_vr0_regnum + ppc_num_vrs;
649 i++, offset += 16)
650 ppc_supply_reg (regcache, i, (const gdb_byte *) vrregs, offset, 16);
651
652 ppc_supply_reg (regcache, (tdep->ppc_vrsave_regnum - 1),
653 (const gdb_byte *) vrregs, offsets->vscr_offset, 4);
654
655 ppc_supply_reg (regcache, tdep->ppc_vrsave_regnum,
656 (const gdb_byte *) vrregs, offsets->vrsave_offset, 4);
657 return;
658 }
659
660 offset = ppc_vrreg_offset (tdep, offsets, regnum);
661 if (regnum != tdep->ppc_vrsave_regnum
662 && regnum != tdep->ppc_vrsave_regnum - 1)
663 ppc_supply_reg (regcache, regnum, (const gdb_byte *) vrregs, offset, 16);
664 else
665 ppc_supply_reg (regcache, regnum,
666 (const gdb_byte *) vrregs, offset, 4);
667 }
668
669 /* Collect register REGNUM in the general-purpose register set
670 REGSET from register cache REGCACHE into the buffer specified by
671 GREGS and LEN. If REGNUM is -1, do this for all registers in
672 REGSET. */
673
674 void
675 ppc_collect_gregset (const struct regset *regset,
676 const struct regcache *regcache,
677 int regnum, void *gregs, size_t len)
678 {
679 struct gdbarch *gdbarch = regcache->arch ();
680 struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch);
681 const struct ppc_reg_offsets *offsets
682 = (const struct ppc_reg_offsets *) regset->regmap;
683 size_t offset;
684 int regsize;
685
686 if (regnum == -1)
687 {
688 int i;
689 int gpr_size = offsets->gpr_size;
690
691 for (i = tdep->ppc_gp0_regnum, offset = offsets->r0_offset;
692 i < tdep->ppc_gp0_regnum + ppc_num_gprs;
693 i++, offset += gpr_size)
694 ppc_collect_reg (regcache, i, (gdb_byte *) gregs, offset, gpr_size);
695
696 ppc_collect_reg (regcache, gdbarch_pc_regnum (gdbarch),
697 (gdb_byte *) gregs, offsets->pc_offset, gpr_size);
698 ppc_collect_reg (regcache, tdep->ppc_ps_regnum,
699 (gdb_byte *) gregs, offsets->ps_offset, gpr_size);
700 ppc_collect_reg (regcache, tdep->ppc_lr_regnum,
701 (gdb_byte *) gregs, offsets->lr_offset, gpr_size);
702 ppc_collect_reg (regcache, tdep->ppc_ctr_regnum,
703 (gdb_byte *) gregs, offsets->ctr_offset, gpr_size);
704 ppc_collect_reg (regcache, tdep->ppc_cr_regnum,
705 (gdb_byte *) gregs, offsets->cr_offset,
706 offsets->xr_size);
707 ppc_collect_reg (regcache, tdep->ppc_xer_regnum,
708 (gdb_byte *) gregs, offsets->xer_offset,
709 offsets->xr_size);
710 ppc_collect_reg (regcache, tdep->ppc_mq_regnum,
711 (gdb_byte *) gregs, offsets->mq_offset,
712 offsets->xr_size);
713 return;
714 }
715
716 offset = ppc_greg_offset (gdbarch, tdep, offsets, regnum, &regsize);
717 ppc_collect_reg (regcache, regnum, (gdb_byte *) gregs, offset, regsize);
718 }
719
720 /* Collect register REGNUM in the floating-point register set
721 REGSET from register cache REGCACHE into the buffer specified by
722 FPREGS and LEN. If REGNUM is -1, do this for all registers in
723 REGSET. */
724
725 void
726 ppc_collect_fpregset (const struct regset *regset,
727 const struct regcache *regcache,
728 int regnum, void *fpregs, size_t len)
729 {
730 struct gdbarch *gdbarch = regcache->arch ();
731 struct gdbarch_tdep *tdep;
732 const struct ppc_reg_offsets *offsets;
733 size_t offset;
734
735 if (!ppc_floating_point_unit_p (gdbarch))
736 return;
737
738 tdep = gdbarch_tdep (gdbarch);
739 offsets = (const struct ppc_reg_offsets *) regset->regmap;
740 if (regnum == -1)
741 {
742 int i;
743
744 for (i = tdep->ppc_fp0_regnum, offset = offsets->f0_offset;
745 i < tdep->ppc_fp0_regnum + ppc_num_fprs;
746 i++, offset += 8)
747 ppc_collect_reg (regcache, i, (gdb_byte *) fpregs, offset, 8);
748
749 ppc_collect_reg (regcache, tdep->ppc_fpscr_regnum,
750 (gdb_byte *) fpregs, offsets->fpscr_offset,
751 offsets->fpscr_size);
752 return;
753 }
754
755 offset = ppc_fpreg_offset (tdep, offsets, regnum);
756 ppc_collect_reg (regcache, regnum, (gdb_byte *) fpregs, offset,
757 regnum == tdep->ppc_fpscr_regnum ? offsets->fpscr_size : 8);
758 }
759
760 /* Collect register REGNUM in the VSX register set
761 REGSET from register cache REGCACHE into the buffer specified by
762 VSXREGS and LEN. If REGNUM is -1, do this for all registers in
763 REGSET. */
764
765 void
766 ppc_collect_vsxregset (const struct regset *regset,
767 const struct regcache *regcache,
768 int regnum, void *vsxregs, size_t len)
769 {
770 struct gdbarch *gdbarch = regcache->arch ();
771 struct gdbarch_tdep *tdep;
772
773 if (!ppc_vsx_support_p (gdbarch))
774 return;
775
776 tdep = gdbarch_tdep (gdbarch);
777
778 if (regnum == -1)
779 {
780 int i;
781
782 for (i = tdep->ppc_vsr0_upper_regnum;
783 i < tdep->ppc_vsr0_upper_regnum + 32;
784 i++)
785 ppc_collect_reg (regcache, i, (gdb_byte *) vsxregs, 0, 8);
786
787 return;
788 }
789 else
790 ppc_collect_reg (regcache, regnum, (gdb_byte *) vsxregs, 0, 8);
791 }
792
793
794 /* Collect register REGNUM in the Altivec register set
795 REGSET from register cache REGCACHE into the buffer specified by
796 VRREGS and LEN. If REGNUM is -1, do this for all registers in
797 REGSET. */
798
799 void
800 ppc_collect_vrregset (const struct regset *regset,
801 const struct regcache *regcache,
802 int regnum, void *vrregs, size_t len)
803 {
804 struct gdbarch *gdbarch = regcache->arch ();
805 struct gdbarch_tdep *tdep;
806 const struct ppc_reg_offsets *offsets;
807 size_t offset;
808
809 if (!ppc_altivec_support_p (gdbarch))
810 return;
811
812 tdep = gdbarch_tdep (gdbarch);
813 offsets = (const struct ppc_reg_offsets *) regset->regmap;
814 if (regnum == -1)
815 {
816 int i;
817
818 for (i = tdep->ppc_vr0_regnum, offset = offsets->vr0_offset;
819 i < tdep->ppc_vr0_regnum + ppc_num_vrs;
820 i++, offset += 16)
821 ppc_collect_reg (regcache, i, (gdb_byte *) vrregs, offset, 16);
822
823 ppc_collect_reg (regcache, (tdep->ppc_vrsave_regnum - 1),
824 (gdb_byte *) vrregs, offsets->vscr_offset, 4);
825
826 ppc_collect_reg (regcache, tdep->ppc_vrsave_regnum,
827 (gdb_byte *) vrregs, offsets->vrsave_offset, 4);
828 return;
829 }
830
831 offset = ppc_vrreg_offset (tdep, offsets, regnum);
832 if (regnum != tdep->ppc_vrsave_regnum
833 && regnum != tdep->ppc_vrsave_regnum - 1)
834 ppc_collect_reg (regcache, regnum, (gdb_byte *) vrregs, offset, 16);
835 else
836 ppc_collect_reg (regcache, regnum,
837 (gdb_byte *) vrregs, offset, 4);
838 }
839 \f
840
841 static int
842 insn_changes_sp_or_jumps (unsigned long insn)
843 {
844 int opcode = (insn >> 26) & 0x03f;
845 int sd = (insn >> 21) & 0x01f;
846 int a = (insn >> 16) & 0x01f;
847 int subcode = (insn >> 1) & 0x3ff;
848
849 /* Changes the stack pointer. */
850
851 /* NOTE: There are many ways to change the value of a given register.
852 The ways below are those used when the register is R1, the SP,
853 in a funtion's epilogue. */
854
855 if (opcode == 31 && subcode == 444 && a == 1)
856 return 1; /* mr R1,Rn */
857 if (opcode == 14 && sd == 1)
858 return 1; /* addi R1,Rn,simm */
859 if (opcode == 58 && sd == 1)
860 return 1; /* ld R1,ds(Rn) */
861
862 /* Transfers control. */
863
864 if (opcode == 18)
865 return 1; /* b */
866 if (opcode == 16)
867 return 1; /* bc */
868 if (opcode == 19 && subcode == 16)
869 return 1; /* bclr */
870 if (opcode == 19 && subcode == 528)
871 return 1; /* bcctr */
872
873 return 0;
874 }
875
876 /* Return true if we are in the function's epilogue, i.e. after the
877 instruction that destroyed the function's stack frame.
878
879 1) scan forward from the point of execution:
880 a) If you find an instruction that modifies the stack pointer
881 or transfers control (except a return), execution is not in
882 an epilogue, return.
883 b) Stop scanning if you find a return instruction or reach the
884 end of the function or reach the hard limit for the size of
885 an epilogue.
886 2) scan backward from the point of execution:
887 a) If you find an instruction that modifies the stack pointer,
888 execution *is* in an epilogue, return.
889 b) Stop scanning if you reach an instruction that transfers
890 control or the beginning of the function or reach the hard
891 limit for the size of an epilogue. */
892
893 static int
894 rs6000_in_function_epilogue_frame_p (struct frame_info *curfrm,
895 struct gdbarch *gdbarch, CORE_ADDR pc)
896 {
897 struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch);
898 enum bfd_endian byte_order = gdbarch_byte_order (gdbarch);
899 bfd_byte insn_buf[PPC_INSN_SIZE];
900 CORE_ADDR scan_pc, func_start, func_end, epilogue_start, epilogue_end;
901 unsigned long insn;
902
903 /* Find the search limits based on function boundaries and hard limit. */
904
905 if (!find_pc_partial_function (pc, NULL, &func_start, &func_end))
906 return 0;
907
908 epilogue_start = pc - PPC_MAX_EPILOGUE_INSTRUCTIONS * PPC_INSN_SIZE;
909 if (epilogue_start < func_start) epilogue_start = func_start;
910
911 epilogue_end = pc + PPC_MAX_EPILOGUE_INSTRUCTIONS * PPC_INSN_SIZE;
912 if (epilogue_end > func_end) epilogue_end = func_end;
913
914 /* Scan forward until next 'blr'. */
915
916 for (scan_pc = pc; scan_pc < epilogue_end; scan_pc += PPC_INSN_SIZE)
917 {
918 if (!safe_frame_unwind_memory (curfrm, scan_pc, insn_buf, PPC_INSN_SIZE))
919 return 0;
920 insn = extract_unsigned_integer (insn_buf, PPC_INSN_SIZE, byte_order);
921 if (insn == 0x4e800020)
922 break;
923 /* Assume a bctr is a tail call unless it points strictly within
924 this function. */
925 if (insn == 0x4e800420)
926 {
927 CORE_ADDR ctr = get_frame_register_unsigned (curfrm,
928 tdep->ppc_ctr_regnum);
929 if (ctr > func_start && ctr < func_end)
930 return 0;
931 else
932 break;
933 }
934 if (insn_changes_sp_or_jumps (insn))
935 return 0;
936 }
937
938 /* Scan backward until adjustment to stack pointer (R1). */
939
940 for (scan_pc = pc - PPC_INSN_SIZE;
941 scan_pc >= epilogue_start;
942 scan_pc -= PPC_INSN_SIZE)
943 {
944 if (!safe_frame_unwind_memory (curfrm, scan_pc, insn_buf, PPC_INSN_SIZE))
945 return 0;
946 insn = extract_unsigned_integer (insn_buf, PPC_INSN_SIZE, byte_order);
947 if (insn_changes_sp_or_jumps (insn))
948 return 1;
949 }
950
951 return 0;
952 }
953
954 /* Implement the stack_frame_destroyed_p gdbarch method. */
955
956 static int
957 rs6000_stack_frame_destroyed_p (struct gdbarch *gdbarch, CORE_ADDR pc)
958 {
959 return rs6000_in_function_epilogue_frame_p (get_current_frame (),
960 gdbarch, pc);
961 }
962
963 /* Get the ith function argument for the current function. */
964 static CORE_ADDR
965 rs6000_fetch_pointer_argument (struct frame_info *frame, int argi,
966 struct type *type)
967 {
968 return get_frame_register_unsigned (frame, 3 + argi);
969 }
970
971 /* Sequence of bytes for breakpoint instruction. */
972
973 constexpr gdb_byte big_breakpoint[] = { 0x7d, 0x82, 0x10, 0x08 };
974 constexpr gdb_byte little_breakpoint[] = { 0x08, 0x10, 0x82, 0x7d };
975
976 typedef BP_MANIPULATION_ENDIAN (little_breakpoint, big_breakpoint)
977 rs6000_breakpoint;
978
979 /* Instruction masks for displaced stepping. */
980 #define BRANCH_MASK 0xfc000000
981 #define BP_MASK 0xFC0007FE
982 #define B_INSN 0x48000000
983 #define BC_INSN 0x40000000
984 #define BXL_INSN 0x4c000000
985 #define BP_INSN 0x7C000008
986
987 /* Instruction masks used during single-stepping of atomic
988 sequences. */
989 #define LOAD_AND_RESERVE_MASK 0xfc0007fe
990 #define LWARX_INSTRUCTION 0x7c000028
991 #define LDARX_INSTRUCTION 0x7c0000A8
992 #define LBARX_INSTRUCTION 0x7c000068
993 #define LHARX_INSTRUCTION 0x7c0000e8
994 #define LQARX_INSTRUCTION 0x7c000228
995 #define STORE_CONDITIONAL_MASK 0xfc0007ff
996 #define STWCX_INSTRUCTION 0x7c00012d
997 #define STDCX_INSTRUCTION 0x7c0001ad
998 #define STBCX_INSTRUCTION 0x7c00056d
999 #define STHCX_INSTRUCTION 0x7c0005ad
1000 #define STQCX_INSTRUCTION 0x7c00016d
1001
1002 /* Check if insn is one of the Load And Reserve instructions used for atomic
1003 sequences. */
1004 #define IS_LOAD_AND_RESERVE_INSN(insn) ((insn & LOAD_AND_RESERVE_MASK) == LWARX_INSTRUCTION \
1005 || (insn & LOAD_AND_RESERVE_MASK) == LDARX_INSTRUCTION \
1006 || (insn & LOAD_AND_RESERVE_MASK) == LBARX_INSTRUCTION \
1007 || (insn & LOAD_AND_RESERVE_MASK) == LHARX_INSTRUCTION \
1008 || (insn & LOAD_AND_RESERVE_MASK) == LQARX_INSTRUCTION)
1009 /* Check if insn is one of the Store Conditional instructions used for atomic
1010 sequences. */
1011 #define IS_STORE_CONDITIONAL_INSN(insn) ((insn & STORE_CONDITIONAL_MASK) == STWCX_INSTRUCTION \
1012 || (insn & STORE_CONDITIONAL_MASK) == STDCX_INSTRUCTION \
1013 || (insn & STORE_CONDITIONAL_MASK) == STBCX_INSTRUCTION \
1014 || (insn & STORE_CONDITIONAL_MASK) == STHCX_INSTRUCTION \
1015 || (insn & STORE_CONDITIONAL_MASK) == STQCX_INSTRUCTION)
1016
1017 typedef buf_displaced_step_closure ppc_displaced_step_closure;
1018
1019 /* We can't displaced step atomic sequences. */
1020
1021 static struct displaced_step_closure *
1022 ppc_displaced_step_copy_insn (struct gdbarch *gdbarch,
1023 CORE_ADDR from, CORE_ADDR to,
1024 struct regcache *regs)
1025 {
1026 size_t len = gdbarch_max_insn_length (gdbarch);
1027 std::unique_ptr<ppc_displaced_step_closure> closure
1028 (new ppc_displaced_step_closure (len));
1029 gdb_byte *buf = closure->buf.data ();
1030 enum bfd_endian byte_order = gdbarch_byte_order (gdbarch);
1031 int insn;
1032
1033 read_memory (from, buf, len);
1034
1035 insn = extract_signed_integer (buf, PPC_INSN_SIZE, byte_order);
1036
1037 /* Assume all atomic sequences start with a Load and Reserve instruction. */
1038 if (IS_LOAD_AND_RESERVE_INSN (insn))
1039 {
1040 if (debug_displaced)
1041 {
1042 fprintf_unfiltered (gdb_stdlog,
1043 "displaced: can't displaced step "
1044 "atomic sequence at %s\n",
1045 paddress (gdbarch, from));
1046 }
1047
1048 return NULL;
1049 }
1050
1051 write_memory (to, buf, len);
1052
1053 if (debug_displaced)
1054 {
1055 fprintf_unfiltered (gdb_stdlog, "displaced: copy %s->%s: ",
1056 paddress (gdbarch, from), paddress (gdbarch, to));
1057 displaced_step_dump_bytes (gdb_stdlog, buf, len);
1058 }
1059
1060 return closure.release ();
1061 }
1062
1063 /* Fix up the state of registers and memory after having single-stepped
1064 a displaced instruction. */
1065 static void
1066 ppc_displaced_step_fixup (struct gdbarch *gdbarch,
1067 struct displaced_step_closure *closure_,
1068 CORE_ADDR from, CORE_ADDR to,
1069 struct regcache *regs)
1070 {
1071 enum bfd_endian byte_order = gdbarch_byte_order (gdbarch);
1072 /* Our closure is a copy of the instruction. */
1073 ppc_displaced_step_closure *closure = (ppc_displaced_step_closure *) closure_;
1074 ULONGEST insn = extract_unsigned_integer (closure->buf.data (),
1075 PPC_INSN_SIZE, byte_order);
1076 ULONGEST opcode = 0;
1077 /* Offset for non PC-relative instructions. */
1078 LONGEST offset = PPC_INSN_SIZE;
1079
1080 opcode = insn & BRANCH_MASK;
1081
1082 if (debug_displaced)
1083 fprintf_unfiltered (gdb_stdlog,
1084 "displaced: (ppc) fixup (%s, %s)\n",
1085 paddress (gdbarch, from), paddress (gdbarch, to));
1086
1087
1088 /* Handle PC-relative branch instructions. */
1089 if (opcode == B_INSN || opcode == BC_INSN || opcode == BXL_INSN)
1090 {
1091 ULONGEST current_pc;
1092
1093 /* Read the current PC value after the instruction has been executed
1094 in a displaced location. Calculate the offset to be applied to the
1095 original PC value before the displaced stepping. */
1096 regcache_cooked_read_unsigned (regs, gdbarch_pc_regnum (gdbarch),
1097 &current_pc);
1098 offset = current_pc - to;
1099
1100 if (opcode != BXL_INSN)
1101 {
1102 /* Check for AA bit indicating whether this is an absolute
1103 addressing or PC-relative (1: absolute, 0: relative). */
1104 if (!(insn & 0x2))
1105 {
1106 /* PC-relative addressing is being used in the branch. */
1107 if (debug_displaced)
1108 fprintf_unfiltered
1109 (gdb_stdlog,
1110 "displaced: (ppc) branch instruction: %s\n"
1111 "displaced: (ppc) adjusted PC from %s to %s\n",
1112 paddress (gdbarch, insn), paddress (gdbarch, current_pc),
1113 paddress (gdbarch, from + offset));
1114
1115 regcache_cooked_write_unsigned (regs,
1116 gdbarch_pc_regnum (gdbarch),
1117 from + offset);
1118 }
1119 }
1120 else
1121 {
1122 /* If we're here, it means we have a branch to LR or CTR. If the
1123 branch was taken, the offset is probably greater than 4 (the next
1124 instruction), so it's safe to assume that an offset of 4 means we
1125 did not take the branch. */
1126 if (offset == PPC_INSN_SIZE)
1127 regcache_cooked_write_unsigned (regs, gdbarch_pc_regnum (gdbarch),
1128 from + PPC_INSN_SIZE);
1129 }
1130
1131 /* Check for LK bit indicating whether we should set the link
1132 register to point to the next instruction
1133 (1: Set, 0: Don't set). */
1134 if (insn & 0x1)
1135 {
1136 /* Link register needs to be set to the next instruction's PC. */
1137 regcache_cooked_write_unsigned (regs,
1138 gdbarch_tdep (gdbarch)->ppc_lr_regnum,
1139 from + PPC_INSN_SIZE);
1140 if (debug_displaced)
1141 fprintf_unfiltered (gdb_stdlog,
1142 "displaced: (ppc) adjusted LR to %s\n",
1143 paddress (gdbarch, from + PPC_INSN_SIZE));
1144
1145 }
1146 }
1147 /* Check for breakpoints in the inferior. If we've found one, place the PC
1148 right at the breakpoint instruction. */
1149 else if ((insn & BP_MASK) == BP_INSN)
1150 regcache_cooked_write_unsigned (regs, gdbarch_pc_regnum (gdbarch), from);
1151 else
1152 /* Handle any other instructions that do not fit in the categories above. */
1153 regcache_cooked_write_unsigned (regs, gdbarch_pc_regnum (gdbarch),
1154 from + offset);
1155 }
1156
1157 /* Always use hardware single-stepping to execute the
1158 displaced instruction. */
1159 static int
1160 ppc_displaced_step_hw_singlestep (struct gdbarch *gdbarch,
1161 struct displaced_step_closure *closure)
1162 {
1163 return 1;
1164 }
1165
1166 /* Checks for an atomic sequence of instructions beginning with a
1167 Load And Reserve instruction and ending with a Store Conditional
1168 instruction. If such a sequence is found, attempt to step through it.
1169 A breakpoint is placed at the end of the sequence. */
1170 std::vector<CORE_ADDR>
1171 ppc_deal_with_atomic_sequence (struct regcache *regcache)
1172 {
1173 struct gdbarch *gdbarch = regcache->arch ();
1174 enum bfd_endian byte_order = gdbarch_byte_order (gdbarch);
1175 CORE_ADDR pc = regcache_read_pc (regcache);
1176 CORE_ADDR breaks[2] = {-1, -1};
1177 CORE_ADDR loc = pc;
1178 CORE_ADDR closing_insn; /* Instruction that closes the atomic sequence. */
1179 int insn = read_memory_integer (loc, PPC_INSN_SIZE, byte_order);
1180 int insn_count;
1181 int index;
1182 int last_breakpoint = 0; /* Defaults to 0 (no breakpoints placed). */
1183 const int atomic_sequence_length = 16; /* Instruction sequence length. */
1184 int bc_insn_count = 0; /* Conditional branch instruction count. */
1185
1186 /* Assume all atomic sequences start with a Load And Reserve instruction. */
1187 if (!IS_LOAD_AND_RESERVE_INSN (insn))
1188 return {};
1189
1190 /* Assume that no atomic sequence is longer than "atomic_sequence_length"
1191 instructions. */
1192 for (insn_count = 0; insn_count < atomic_sequence_length; ++insn_count)
1193 {
1194 loc += PPC_INSN_SIZE;
1195 insn = read_memory_integer (loc, PPC_INSN_SIZE, byte_order);
1196
1197 /* Assume that there is at most one conditional branch in the atomic
1198 sequence. If a conditional branch is found, put a breakpoint in
1199 its destination address. */
1200 if ((insn & BRANCH_MASK) == BC_INSN)
1201 {
1202 int immediate = ((insn & 0xfffc) ^ 0x8000) - 0x8000;
1203 int absolute = insn & 2;
1204
1205 if (bc_insn_count >= 1)
1206 return {}; /* More than one conditional branch found, fallback
1207 to the standard single-step code. */
1208
1209 if (absolute)
1210 breaks[1] = immediate;
1211 else
1212 breaks[1] = loc + immediate;
1213
1214 bc_insn_count++;
1215 last_breakpoint++;
1216 }
1217
1218 if (IS_STORE_CONDITIONAL_INSN (insn))
1219 break;
1220 }
1221
1222 /* Assume that the atomic sequence ends with a Store Conditional
1223 instruction. */
1224 if (!IS_STORE_CONDITIONAL_INSN (insn))
1225 return {};
1226
1227 closing_insn = loc;
1228 loc += PPC_INSN_SIZE;
1229
1230 /* Insert a breakpoint right after the end of the atomic sequence. */
1231 breaks[0] = loc;
1232
1233 /* Check for duplicated breakpoints. Check also for a breakpoint
1234 placed (branch instruction's destination) anywhere in sequence. */
1235 if (last_breakpoint
1236 && (breaks[1] == breaks[0]
1237 || (breaks[1] >= pc && breaks[1] <= closing_insn)))
1238 last_breakpoint = 0;
1239
1240 std::vector<CORE_ADDR> next_pcs;
1241
1242 for (index = 0; index <= last_breakpoint; index++)
1243 next_pcs.push_back (breaks[index]);
1244
1245 return next_pcs;
1246 }
1247
1248
1249 #define SIGNED_SHORT(x) \
1250 ((sizeof (short) == 2) \
1251 ? ((int)(short)(x)) \
1252 : ((int)((((x) & 0xffff) ^ 0x8000) - 0x8000)))
1253
1254 #define GET_SRC_REG(x) (((x) >> 21) & 0x1f)
1255
1256 /* Limit the number of skipped non-prologue instructions, as the examining
1257 of the prologue is expensive. */
1258 static int max_skip_non_prologue_insns = 10;
1259
1260 /* Return nonzero if the given instruction OP can be part of the prologue
1261 of a function and saves a parameter on the stack. FRAMEP should be
1262 set if one of the previous instructions in the function has set the
1263 Frame Pointer. */
1264
1265 static int
1266 store_param_on_stack_p (unsigned long op, int framep, int *r0_contains_arg)
1267 {
1268 /* Move parameters from argument registers to temporary register. */
1269 if ((op & 0xfc0007fe) == 0x7c000378) /* mr(.) Rx,Ry */
1270 {
1271 /* Rx must be scratch register r0. */
1272 const int rx_regno = (op >> 16) & 31;
1273 /* Ry: Only r3 - r10 are used for parameter passing. */
1274 const int ry_regno = GET_SRC_REG (op);
1275
1276 if (rx_regno == 0 && ry_regno >= 3 && ry_regno <= 10)
1277 {
1278 *r0_contains_arg = 1;
1279 return 1;
1280 }
1281 else
1282 return 0;
1283 }
1284
1285 /* Save a General Purpose Register on stack. */
1286
1287 if ((op & 0xfc1f0003) == 0xf8010000 || /* std Rx,NUM(r1) */
1288 (op & 0xfc1f0000) == 0xd8010000) /* stfd Rx,NUM(r1) */
1289 {
1290 /* Rx: Only r3 - r10 are used for parameter passing. */
1291 const int rx_regno = GET_SRC_REG (op);
1292
1293 return (rx_regno >= 3 && rx_regno <= 10);
1294 }
1295
1296 /* Save a General Purpose Register on stack via the Frame Pointer. */
1297
1298 if (framep &&
1299 ((op & 0xfc1f0000) == 0x901f0000 || /* st rx,NUM(r31) */
1300 (op & 0xfc1f0000) == 0x981f0000 || /* stb Rx,NUM(r31) */
1301 (op & 0xfc1f0000) == 0xd81f0000)) /* stfd Rx,NUM(r31) */
1302 {
1303 /* Rx: Usually, only r3 - r10 are used for parameter passing.
1304 However, the compiler sometimes uses r0 to hold an argument. */
1305 const int rx_regno = GET_SRC_REG (op);
1306
1307 return ((rx_regno >= 3 && rx_regno <= 10)
1308 || (rx_regno == 0 && *r0_contains_arg));
1309 }
1310
1311 if ((op & 0xfc1f0000) == 0xfc010000) /* frsp, fp?,NUM(r1) */
1312 {
1313 /* Only f2 - f8 are used for parameter passing. */
1314 const int src_regno = GET_SRC_REG (op);
1315
1316 return (src_regno >= 2 && src_regno <= 8);
1317 }
1318
1319 if (framep && ((op & 0xfc1f0000) == 0xfc1f0000)) /* frsp, fp?,NUM(r31) */
1320 {
1321 /* Only f2 - f8 are used for parameter passing. */
1322 const int src_regno = GET_SRC_REG (op);
1323
1324 return (src_regno >= 2 && src_regno <= 8);
1325 }
1326
1327 /* Not an insn that saves a parameter on stack. */
1328 return 0;
1329 }
1330
1331 /* Assuming that INSN is a "bl" instruction located at PC, return
1332 nonzero if the destination of the branch is a "blrl" instruction.
1333
1334 This sequence is sometimes found in certain function prologues.
1335 It allows the function to load the LR register with a value that
1336 they can use to access PIC data using PC-relative offsets. */
1337
1338 static int
1339 bl_to_blrl_insn_p (CORE_ADDR pc, int insn, enum bfd_endian byte_order)
1340 {
1341 CORE_ADDR dest;
1342 int immediate;
1343 int absolute;
1344 int dest_insn;
1345
1346 absolute = (int) ((insn >> 1) & 1);
1347 immediate = ((insn & ~3) << 6) >> 6;
1348 if (absolute)
1349 dest = immediate;
1350 else
1351 dest = pc + immediate;
1352
1353 dest_insn = read_memory_integer (dest, 4, byte_order);
1354 if ((dest_insn & 0xfc00ffff) == 0x4c000021) /* blrl */
1355 return 1;
1356
1357 return 0;
1358 }
1359
1360 /* Masks for decoding a branch-and-link (bl) instruction.
1361
1362 BL_MASK and BL_INSTRUCTION are used in combination with each other.
1363 The former is anded with the opcode in question; if the result of
1364 this masking operation is equal to BL_INSTRUCTION, then the opcode in
1365 question is a ``bl'' instruction.
1366
1367 BL_DISPLACMENT_MASK is anded with the opcode in order to extract
1368 the branch displacement. */
1369
1370 #define BL_MASK 0xfc000001
1371 #define BL_INSTRUCTION 0x48000001
1372 #define BL_DISPLACEMENT_MASK 0x03fffffc
1373
1374 static unsigned long
1375 rs6000_fetch_instruction (struct gdbarch *gdbarch, const CORE_ADDR pc)
1376 {
1377 enum bfd_endian byte_order = gdbarch_byte_order (gdbarch);
1378 gdb_byte buf[4];
1379 unsigned long op;
1380
1381 /* Fetch the instruction and convert it to an integer. */
1382 if (target_read_memory (pc, buf, 4))
1383 return 0;
1384 op = extract_unsigned_integer (buf, 4, byte_order);
1385
1386 return op;
1387 }
1388
1389 /* GCC generates several well-known sequences of instructions at the begining
1390 of each function prologue when compiling with -fstack-check. If one of
1391 such sequences starts at START_PC, then return the address of the
1392 instruction immediately past this sequence. Otherwise, return START_PC. */
1393
1394 static CORE_ADDR
1395 rs6000_skip_stack_check (struct gdbarch *gdbarch, const CORE_ADDR start_pc)
1396 {
1397 CORE_ADDR pc = start_pc;
1398 unsigned long op = rs6000_fetch_instruction (gdbarch, pc);
1399
1400 /* First possible sequence: A small number of probes.
1401 stw 0, -<some immediate>(1)
1402 [repeat this instruction any (small) number of times]. */
1403
1404 if ((op & 0xffff0000) == 0x90010000)
1405 {
1406 while ((op & 0xffff0000) == 0x90010000)
1407 {
1408 pc = pc + 4;
1409 op = rs6000_fetch_instruction (gdbarch, pc);
1410 }
1411 return pc;
1412 }
1413
1414 /* Second sequence: A probing loop.
1415 addi 12,1,-<some immediate>
1416 lis 0,-<some immediate>
1417 [possibly ori 0,0,<some immediate>]
1418 add 0,12,0
1419 cmpw 0,12,0
1420 beq 0,<disp>
1421 addi 12,12,-<some immediate>
1422 stw 0,0(12)
1423 b <disp>
1424 [possibly one last probe: stw 0,<some immediate>(12)]. */
1425
1426 while (1)
1427 {
1428 /* addi 12,1,-<some immediate> */
1429 if ((op & 0xffff0000) != 0x39810000)
1430 break;
1431
1432 /* lis 0,-<some immediate> */
1433 pc = pc + 4;
1434 op = rs6000_fetch_instruction (gdbarch, pc);
1435 if ((op & 0xffff0000) != 0x3c000000)
1436 break;
1437
1438 pc = pc + 4;
1439 op = rs6000_fetch_instruction (gdbarch, pc);
1440 /* [possibly ori 0,0,<some immediate>] */
1441 if ((op & 0xffff0000) == 0x60000000)
1442 {
1443 pc = pc + 4;
1444 op = rs6000_fetch_instruction (gdbarch, pc);
1445 }
1446 /* add 0,12,0 */
1447 if (op != 0x7c0c0214)
1448 break;
1449
1450 /* cmpw 0,12,0 */
1451 pc = pc + 4;
1452 op = rs6000_fetch_instruction (gdbarch, pc);
1453 if (op != 0x7c0c0000)
1454 break;
1455
1456 /* beq 0,<disp> */
1457 pc = pc + 4;
1458 op = rs6000_fetch_instruction (gdbarch, pc);
1459 if ((op & 0xff9f0001) != 0x41820000)
1460 break;
1461
1462 /* addi 12,12,-<some immediate> */
1463 pc = pc + 4;
1464 op = rs6000_fetch_instruction (gdbarch, pc);
1465 if ((op & 0xffff0000) != 0x398c0000)
1466 break;
1467
1468 /* stw 0,0(12) */
1469 pc = pc + 4;
1470 op = rs6000_fetch_instruction (gdbarch, pc);
1471 if (op != 0x900c0000)
1472 break;
1473
1474 /* b <disp> */
1475 pc = pc + 4;
1476 op = rs6000_fetch_instruction (gdbarch, pc);
1477 if ((op & 0xfc000001) != 0x48000000)
1478 break;
1479
1480 /* [possibly one last probe: stw 0,<some immediate>(12)]. */
1481 pc = pc + 4;
1482 op = rs6000_fetch_instruction (gdbarch, pc);
1483 if ((op & 0xffff0000) == 0x900c0000)
1484 {
1485 pc = pc + 4;
1486 op = rs6000_fetch_instruction (gdbarch, pc);
1487 }
1488
1489 /* We found a valid stack-check sequence, return the new PC. */
1490 return pc;
1491 }
1492
1493 /* Third sequence: No probe; instead, a comparizon between the stack size
1494 limit (saved in a run-time global variable) and the current stack
1495 pointer:
1496
1497 addi 0,1,-<some immediate>
1498 lis 12,__gnat_stack_limit@ha
1499 lwz 12,__gnat_stack_limit@l(12)
1500 twllt 0,12
1501
1502 or, with a small variant in the case of a bigger stack frame:
1503 addis 0,1,<some immediate>
1504 addic 0,0,-<some immediate>
1505 lis 12,__gnat_stack_limit@ha
1506 lwz 12,__gnat_stack_limit@l(12)
1507 twllt 0,12
1508 */
1509 while (1)
1510 {
1511 /* addi 0,1,-<some immediate> */
1512 if ((op & 0xffff0000) != 0x38010000)
1513 {
1514 /* small stack frame variant not recognized; try the
1515 big stack frame variant: */
1516
1517 /* addis 0,1,<some immediate> */
1518 if ((op & 0xffff0000) != 0x3c010000)
1519 break;
1520
1521 /* addic 0,0,-<some immediate> */
1522 pc = pc + 4;
1523 op = rs6000_fetch_instruction (gdbarch, pc);
1524 if ((op & 0xffff0000) != 0x30000000)
1525 break;
1526 }
1527
1528 /* lis 12,<some immediate> */
1529 pc = pc + 4;
1530 op = rs6000_fetch_instruction (gdbarch, pc);
1531 if ((op & 0xffff0000) != 0x3d800000)
1532 break;
1533
1534 /* lwz 12,<some immediate>(12) */
1535 pc = pc + 4;
1536 op = rs6000_fetch_instruction (gdbarch, pc);
1537 if ((op & 0xffff0000) != 0x818c0000)
1538 break;
1539
1540 /* twllt 0,12 */
1541 pc = pc + 4;
1542 op = rs6000_fetch_instruction (gdbarch, pc);
1543 if ((op & 0xfffffffe) != 0x7c406008)
1544 break;
1545
1546 /* We found a valid stack-check sequence, return the new PC. */
1547 return pc;
1548 }
1549
1550 /* No stack check code in our prologue, return the start_pc. */
1551 return start_pc;
1552 }
1553
1554 /* return pc value after skipping a function prologue and also return
1555 information about a function frame.
1556
1557 in struct rs6000_framedata fdata:
1558 - frameless is TRUE, if function does not have a frame.
1559 - nosavedpc is TRUE, if function does not save %pc value in its frame.
1560 - offset is the initial size of this stack frame --- the amount by
1561 which we decrement the sp to allocate the frame.
1562 - saved_gpr is the number of the first saved gpr.
1563 - saved_fpr is the number of the first saved fpr.
1564 - saved_vr is the number of the first saved vr.
1565 - saved_ev is the number of the first saved ev.
1566 - alloca_reg is the number of the register used for alloca() handling.
1567 Otherwise -1.
1568 - gpr_offset is the offset of the first saved gpr from the previous frame.
1569 - fpr_offset is the offset of the first saved fpr from the previous frame.
1570 - vr_offset is the offset of the first saved vr from the previous frame.
1571 - ev_offset is the offset of the first saved ev from the previous frame.
1572 - lr_offset is the offset of the saved lr
1573 - cr_offset is the offset of the saved cr
1574 - vrsave_offset is the offset of the saved vrsave register. */
1575
1576 static CORE_ADDR
1577 skip_prologue (struct gdbarch *gdbarch, CORE_ADDR pc, CORE_ADDR lim_pc,
1578 struct rs6000_framedata *fdata)
1579 {
1580 CORE_ADDR orig_pc = pc;
1581 CORE_ADDR last_prologue_pc = pc;
1582 CORE_ADDR li_found_pc = 0;
1583 gdb_byte buf[4];
1584 unsigned long op;
1585 long offset = 0;
1586 long vr_saved_offset = 0;
1587 int lr_reg = -1;
1588 int cr_reg = -1;
1589 int vr_reg = -1;
1590 int ev_reg = -1;
1591 long ev_offset = 0;
1592 int vrsave_reg = -1;
1593 int reg;
1594 int framep = 0;
1595 int minimal_toc_loaded = 0;
1596 int prev_insn_was_prologue_insn = 1;
1597 int num_skip_non_prologue_insns = 0;
1598 int r0_contains_arg = 0;
1599 const struct bfd_arch_info *arch_info = gdbarch_bfd_arch_info (gdbarch);
1600 struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch);
1601 enum bfd_endian byte_order = gdbarch_byte_order (gdbarch);
1602
1603 memset (fdata, 0, sizeof (struct rs6000_framedata));
1604 fdata->saved_gpr = -1;
1605 fdata->saved_fpr = -1;
1606 fdata->saved_vr = -1;
1607 fdata->saved_ev = -1;
1608 fdata->alloca_reg = -1;
1609 fdata->frameless = 1;
1610 fdata->nosavedpc = 1;
1611 fdata->lr_register = -1;
1612
1613 pc = rs6000_skip_stack_check (gdbarch, pc);
1614 if (pc >= lim_pc)
1615 pc = lim_pc;
1616
1617 for (;; pc += 4)
1618 {
1619 /* Sometimes it isn't clear if an instruction is a prologue
1620 instruction or not. When we encounter one of these ambiguous
1621 cases, we'll set prev_insn_was_prologue_insn to 0 (false).
1622 Otherwise, we'll assume that it really is a prologue instruction. */
1623 if (prev_insn_was_prologue_insn)
1624 last_prologue_pc = pc;
1625
1626 /* Stop scanning if we've hit the limit. */
1627 if (pc >= lim_pc)
1628 break;
1629
1630 prev_insn_was_prologue_insn = 1;
1631
1632 /* Fetch the instruction and convert it to an integer. */
1633 if (target_read_memory (pc, buf, 4))
1634 break;
1635 op = extract_unsigned_integer (buf, 4, byte_order);
1636
1637 if ((op & 0xfc1fffff) == 0x7c0802a6)
1638 { /* mflr Rx */
1639 /* Since shared library / PIC code, which needs to get its
1640 address at runtime, can appear to save more than one link
1641 register vis:
1642
1643 *INDENT-OFF*
1644 stwu r1,-304(r1)
1645 mflr r3
1646 bl 0xff570d0 (blrl)
1647 stw r30,296(r1)
1648 mflr r30
1649 stw r31,300(r1)
1650 stw r3,308(r1);
1651 ...
1652 *INDENT-ON*
1653
1654 remember just the first one, but skip over additional
1655 ones. */
1656 if (lr_reg == -1)
1657 lr_reg = (op & 0x03e00000);
1658 if (lr_reg == 0)
1659 r0_contains_arg = 0;
1660 continue;
1661 }
1662 else if ((op & 0xfc1fffff) == 0x7c000026)
1663 { /* mfcr Rx */
1664 cr_reg = (op & 0x03e00000);
1665 if (cr_reg == 0)
1666 r0_contains_arg = 0;
1667 continue;
1668
1669 }
1670 else if ((op & 0xfc1f0000) == 0xd8010000)
1671 { /* stfd Rx,NUM(r1) */
1672 reg = GET_SRC_REG (op);
1673 if (fdata->saved_fpr == -1 || fdata->saved_fpr > reg)
1674 {
1675 fdata->saved_fpr = reg;
1676 fdata->fpr_offset = SIGNED_SHORT (op) + offset;
1677 }
1678 continue;
1679
1680 }
1681 else if (((op & 0xfc1f0000) == 0xbc010000) || /* stm Rx, NUM(r1) */
1682 (((op & 0xfc1f0000) == 0x90010000 || /* st rx,NUM(r1) */
1683 (op & 0xfc1f0003) == 0xf8010000) && /* std rx,NUM(r1) */
1684 (op & 0x03e00000) >= 0x01a00000)) /* rx >= r13 */
1685 {
1686
1687 reg = GET_SRC_REG (op);
1688 if ((op & 0xfc1f0000) == 0xbc010000)
1689 fdata->gpr_mask |= ~((1U << reg) - 1);
1690 else
1691 fdata->gpr_mask |= 1U << reg;
1692 if (fdata->saved_gpr == -1 || fdata->saved_gpr > reg)
1693 {
1694 fdata->saved_gpr = reg;
1695 if ((op & 0xfc1f0003) == 0xf8010000)
1696 op &= ~3UL;
1697 fdata->gpr_offset = SIGNED_SHORT (op) + offset;
1698 }
1699 continue;
1700
1701 }
1702 else if ((op & 0xffff0000) == 0x3c4c0000
1703 || (op & 0xffff0000) == 0x3c400000
1704 || (op & 0xffff0000) == 0x38420000)
1705 {
1706 /* . 0: addis 2,12,.TOC.-0b@ha
1707 . addi 2,2,.TOC.-0b@l
1708 or
1709 . lis 2,.TOC.@ha
1710 . addi 2,2,.TOC.@l
1711 used by ELFv2 global entry points to set up r2. */
1712 continue;
1713 }
1714 else if (op == 0x60000000)
1715 {
1716 /* nop */
1717 /* Allow nops in the prologue, but do not consider them to
1718 be part of the prologue unless followed by other prologue
1719 instructions. */
1720 prev_insn_was_prologue_insn = 0;
1721 continue;
1722
1723 }
1724 else if ((op & 0xffff0000) == 0x3c000000)
1725 { /* addis 0,0,NUM, used for >= 32k frames */
1726 fdata->offset = (op & 0x0000ffff) << 16;
1727 fdata->frameless = 0;
1728 r0_contains_arg = 0;
1729 continue;
1730
1731 }
1732 else if ((op & 0xffff0000) == 0x60000000)
1733 { /* ori 0,0,NUM, 2nd half of >= 32k frames */
1734 fdata->offset |= (op & 0x0000ffff);
1735 fdata->frameless = 0;
1736 r0_contains_arg = 0;
1737 continue;
1738
1739 }
1740 else if (lr_reg >= 0 &&
1741 /* std Rx, NUM(r1) || stdu Rx, NUM(r1) */
1742 (((op & 0xffff0000) == (lr_reg | 0xf8010000)) ||
1743 /* stw Rx, NUM(r1) */
1744 ((op & 0xffff0000) == (lr_reg | 0x90010000)) ||
1745 /* stwu Rx, NUM(r1) */
1746 ((op & 0xffff0000) == (lr_reg | 0x94010000))))
1747 { /* where Rx == lr */
1748 fdata->lr_offset = offset;
1749 fdata->nosavedpc = 0;
1750 /* Invalidate lr_reg, but don't set it to -1.
1751 That would mean that it had never been set. */
1752 lr_reg = -2;
1753 if ((op & 0xfc000003) == 0xf8000000 || /* std */
1754 (op & 0xfc000000) == 0x90000000) /* stw */
1755 {
1756 /* Does not update r1, so add displacement to lr_offset. */
1757 fdata->lr_offset += SIGNED_SHORT (op);
1758 }
1759 continue;
1760
1761 }
1762 else if (cr_reg >= 0 &&
1763 /* std Rx, NUM(r1) || stdu Rx, NUM(r1) */
1764 (((op & 0xffff0000) == (cr_reg | 0xf8010000)) ||
1765 /* stw Rx, NUM(r1) */
1766 ((op & 0xffff0000) == (cr_reg | 0x90010000)) ||
1767 /* stwu Rx, NUM(r1) */
1768 ((op & 0xffff0000) == (cr_reg | 0x94010000))))
1769 { /* where Rx == cr */
1770 fdata->cr_offset = offset;
1771 /* Invalidate cr_reg, but don't set it to -1.
1772 That would mean that it had never been set. */
1773 cr_reg = -2;
1774 if ((op & 0xfc000003) == 0xf8000000 ||
1775 (op & 0xfc000000) == 0x90000000)
1776 {
1777 /* Does not update r1, so add displacement to cr_offset. */
1778 fdata->cr_offset += SIGNED_SHORT (op);
1779 }
1780 continue;
1781
1782 }
1783 else if ((op & 0xfe80ffff) == 0x42800005 && lr_reg != -1)
1784 {
1785 /* bcl 20,xx,.+4 is used to get the current PC, with or without
1786 prediction bits. If the LR has already been saved, we can
1787 skip it. */
1788 continue;
1789 }
1790 else if (op == 0x48000005)
1791 { /* bl .+4 used in
1792 -mrelocatable */
1793 fdata->used_bl = 1;
1794 continue;
1795
1796 }
1797 else if (op == 0x48000004)
1798 { /* b .+4 (xlc) */
1799 break;
1800
1801 }
1802 else if ((op & 0xffff0000) == 0x3fc00000 || /* addis 30,0,foo@ha, used
1803 in V.4 -mminimal-toc */
1804 (op & 0xffff0000) == 0x3bde0000)
1805 { /* addi 30,30,foo@l */
1806 continue;
1807
1808 }
1809 else if ((op & 0xfc000001) == 0x48000001)
1810 { /* bl foo,
1811 to save fprs??? */
1812
1813 fdata->frameless = 0;
1814
1815 /* If the return address has already been saved, we can skip
1816 calls to blrl (for PIC). */
1817 if (lr_reg != -1 && bl_to_blrl_insn_p (pc, op, byte_order))
1818 {
1819 fdata->used_bl = 1;
1820 continue;
1821 }
1822
1823 /* Don't skip over the subroutine call if it is not within
1824 the first three instructions of the prologue and either
1825 we have no line table information or the line info tells
1826 us that the subroutine call is not part of the line
1827 associated with the prologue. */
1828 if ((pc - orig_pc) > 8)
1829 {
1830 struct symtab_and_line prologue_sal = find_pc_line (orig_pc, 0);
1831 struct symtab_and_line this_sal = find_pc_line (pc, 0);
1832
1833 if ((prologue_sal.line == 0)
1834 || (prologue_sal.line != this_sal.line))
1835 break;
1836 }
1837
1838 op = read_memory_integer (pc + 4, 4, byte_order);
1839
1840 /* At this point, make sure this is not a trampoline
1841 function (a function that simply calls another functions,
1842 and nothing else). If the next is not a nop, this branch
1843 was part of the function prologue. */
1844
1845 if (op == 0x4def7b82 || op == 0) /* crorc 15, 15, 15 */
1846 break; /* Don't skip over
1847 this branch. */
1848
1849 fdata->used_bl = 1;
1850 continue;
1851 }
1852 /* update stack pointer */
1853 else if ((op & 0xfc1f0000) == 0x94010000)
1854 { /* stu rX,NUM(r1) || stwu rX,NUM(r1) */
1855 fdata->frameless = 0;
1856 fdata->offset = SIGNED_SHORT (op);
1857 offset = fdata->offset;
1858 continue;
1859 }
1860 else if ((op & 0xfc1f016e) == 0x7c01016e)
1861 { /* stwux rX,r1,rY */
1862 /* No way to figure out what r1 is going to be. */
1863 fdata->frameless = 0;
1864 offset = fdata->offset;
1865 continue;
1866 }
1867 else if ((op & 0xfc1f0003) == 0xf8010001)
1868 { /* stdu rX,NUM(r1) */
1869 fdata->frameless = 0;
1870 fdata->offset = SIGNED_SHORT (op & ~3UL);
1871 offset = fdata->offset;
1872 continue;
1873 }
1874 else if ((op & 0xfc1f016a) == 0x7c01016a)
1875 { /* stdux rX,r1,rY */
1876 /* No way to figure out what r1 is going to be. */
1877 fdata->frameless = 0;
1878 offset = fdata->offset;
1879 continue;
1880 }
1881 else if ((op & 0xffff0000) == 0x38210000)
1882 { /* addi r1,r1,SIMM */
1883 fdata->frameless = 0;
1884 fdata->offset += SIGNED_SHORT (op);
1885 offset = fdata->offset;
1886 continue;
1887 }
1888 /* Load up minimal toc pointer. Do not treat an epilogue restore
1889 of r31 as a minimal TOC load. */
1890 else if (((op >> 22) == 0x20f || /* l r31,... or l r30,... */
1891 (op >> 22) == 0x3af) /* ld r31,... or ld r30,... */
1892 && !framep
1893 && !minimal_toc_loaded)
1894 {
1895 minimal_toc_loaded = 1;
1896 continue;
1897
1898 /* move parameters from argument registers to local variable
1899 registers */
1900 }
1901 else if ((op & 0xfc0007fe) == 0x7c000378 && /* mr(.) Rx,Ry */
1902 (((op >> 21) & 31) >= 3) && /* R3 >= Ry >= R10 */
1903 (((op >> 21) & 31) <= 10) &&
1904 ((long) ((op >> 16) & 31)
1905 >= fdata->saved_gpr)) /* Rx: local var reg */
1906 {
1907 continue;
1908
1909 /* store parameters in stack */
1910 }
1911 /* Move parameters from argument registers to temporary register. */
1912 else if (store_param_on_stack_p (op, framep, &r0_contains_arg))
1913 {
1914 continue;
1915
1916 /* Set up frame pointer */
1917 }
1918 else if (op == 0x603d0000) /* oril r29, r1, 0x0 */
1919 {
1920 fdata->frameless = 0;
1921 framep = 1;
1922 fdata->alloca_reg = (tdep->ppc_gp0_regnum + 29);
1923 continue;
1924
1925 /* Another way to set up the frame pointer. */
1926 }
1927 else if (op == 0x603f0000 /* oril r31, r1, 0x0 */
1928 || op == 0x7c3f0b78)
1929 { /* mr r31, r1 */
1930 fdata->frameless = 0;
1931 framep = 1;
1932 fdata->alloca_reg = (tdep->ppc_gp0_regnum + 31);
1933 continue;
1934
1935 /* Another way to set up the frame pointer. */
1936 }
1937 else if ((op & 0xfc1fffff) == 0x38010000)
1938 { /* addi rX, r1, 0x0 */
1939 fdata->frameless = 0;
1940 framep = 1;
1941 fdata->alloca_reg = (tdep->ppc_gp0_regnum
1942 + ((op & ~0x38010000) >> 21));
1943 continue;
1944 }
1945 /* AltiVec related instructions. */
1946 /* Store the vrsave register (spr 256) in another register for
1947 later manipulation, or load a register into the vrsave
1948 register. 2 instructions are used: mfvrsave and
1949 mtvrsave. They are shorthand notation for mfspr Rn, SPR256
1950 and mtspr SPR256, Rn. */
1951 /* mfspr Rn SPR256 == 011111 nnnnn 0000001000 01010100110
1952 mtspr SPR256 Rn == 011111 nnnnn 0000001000 01110100110 */
1953 else if ((op & 0xfc1fffff) == 0x7c0042a6) /* mfvrsave Rn */
1954 {
1955 vrsave_reg = GET_SRC_REG (op);
1956 continue;
1957 }
1958 else if ((op & 0xfc1fffff) == 0x7c0043a6) /* mtvrsave Rn */
1959 {
1960 continue;
1961 }
1962 /* Store the register where vrsave was saved to onto the stack:
1963 rS is the register where vrsave was stored in a previous
1964 instruction. */
1965 /* 100100 sssss 00001 dddddddd dddddddd */
1966 else if ((op & 0xfc1f0000) == 0x90010000) /* stw rS, d(r1) */
1967 {
1968 if (vrsave_reg == GET_SRC_REG (op))
1969 {
1970 fdata->vrsave_offset = SIGNED_SHORT (op) + offset;
1971 vrsave_reg = -1;
1972 }
1973 continue;
1974 }
1975 /* Compute the new value of vrsave, by modifying the register
1976 where vrsave was saved to. */
1977 else if (((op & 0xfc000000) == 0x64000000) /* oris Ra, Rs, UIMM */
1978 || ((op & 0xfc000000) == 0x60000000))/* ori Ra, Rs, UIMM */
1979 {
1980 continue;
1981 }
1982 /* li r0, SIMM (short for addi r0, 0, SIMM). This is the first
1983 in a pair of insns to save the vector registers on the
1984 stack. */
1985 /* 001110 00000 00000 iiii iiii iiii iiii */
1986 /* 001110 01110 00000 iiii iiii iiii iiii */
1987 else if ((op & 0xffff0000) == 0x38000000 /* li r0, SIMM */
1988 || (op & 0xffff0000) == 0x39c00000) /* li r14, SIMM */
1989 {
1990 if ((op & 0xffff0000) == 0x38000000)
1991 r0_contains_arg = 0;
1992 li_found_pc = pc;
1993 vr_saved_offset = SIGNED_SHORT (op);
1994
1995 /* This insn by itself is not part of the prologue, unless
1996 if part of the pair of insns mentioned above. So do not
1997 record this insn as part of the prologue yet. */
1998 prev_insn_was_prologue_insn = 0;
1999 }
2000 /* Store vector register S at (r31+r0) aligned to 16 bytes. */
2001 /* 011111 sssss 11111 00000 00111001110 */
2002 else if ((op & 0xfc1fffff) == 0x7c1f01ce) /* stvx Vs, R31, R0 */
2003 {
2004 if (pc == (li_found_pc + 4))
2005 {
2006 vr_reg = GET_SRC_REG (op);
2007 /* If this is the first vector reg to be saved, or if
2008 it has a lower number than others previously seen,
2009 reupdate the frame info. */
2010 if (fdata->saved_vr == -1 || fdata->saved_vr > vr_reg)
2011 {
2012 fdata->saved_vr = vr_reg;
2013 fdata->vr_offset = vr_saved_offset + offset;
2014 }
2015 vr_saved_offset = -1;
2016 vr_reg = -1;
2017 li_found_pc = 0;
2018 }
2019 }
2020 /* End AltiVec related instructions. */
2021
2022 /* Start BookE related instructions. */
2023 /* Store gen register S at (r31+uimm).
2024 Any register less than r13 is volatile, so we don't care. */
2025 /* 000100 sssss 11111 iiiii 01100100001 */
2026 else if (arch_info->mach == bfd_mach_ppc_e500
2027 && (op & 0xfc1f07ff) == 0x101f0321) /* evstdd Rs,uimm(R31) */
2028 {
2029 if ((op & 0x03e00000) >= 0x01a00000) /* Rs >= r13 */
2030 {
2031 unsigned int imm;
2032 ev_reg = GET_SRC_REG (op);
2033 imm = (op >> 11) & 0x1f;
2034 ev_offset = imm * 8;
2035 /* If this is the first vector reg to be saved, or if
2036 it has a lower number than others previously seen,
2037 reupdate the frame info. */
2038 if (fdata->saved_ev == -1 || fdata->saved_ev > ev_reg)
2039 {
2040 fdata->saved_ev = ev_reg;
2041 fdata->ev_offset = ev_offset + offset;
2042 }
2043 }
2044 continue;
2045 }
2046 /* Store gen register rS at (r1+rB). */
2047 /* 000100 sssss 00001 bbbbb 01100100000 */
2048 else if (arch_info->mach == bfd_mach_ppc_e500
2049 && (op & 0xffe007ff) == 0x13e00320) /* evstddx RS,R1,Rb */
2050 {
2051 if (pc == (li_found_pc + 4))
2052 {
2053 ev_reg = GET_SRC_REG (op);
2054 /* If this is the first vector reg to be saved, or if
2055 it has a lower number than others previously seen,
2056 reupdate the frame info. */
2057 /* We know the contents of rB from the previous instruction. */
2058 if (fdata->saved_ev == -1 || fdata->saved_ev > ev_reg)
2059 {
2060 fdata->saved_ev = ev_reg;
2061 fdata->ev_offset = vr_saved_offset + offset;
2062 }
2063 vr_saved_offset = -1;
2064 ev_reg = -1;
2065 li_found_pc = 0;
2066 }
2067 continue;
2068 }
2069 /* Store gen register r31 at (rA+uimm). */
2070 /* 000100 11111 aaaaa iiiii 01100100001 */
2071 else if (arch_info->mach == bfd_mach_ppc_e500
2072 && (op & 0xffe007ff) == 0x13e00321) /* evstdd R31,Ra,UIMM */
2073 {
2074 /* Wwe know that the source register is 31 already, but
2075 it can't hurt to compute it. */
2076 ev_reg = GET_SRC_REG (op);
2077 ev_offset = ((op >> 11) & 0x1f) * 8;
2078 /* If this is the first vector reg to be saved, or if
2079 it has a lower number than others previously seen,
2080 reupdate the frame info. */
2081 if (fdata->saved_ev == -1 || fdata->saved_ev > ev_reg)
2082 {
2083 fdata->saved_ev = ev_reg;
2084 fdata->ev_offset = ev_offset + offset;
2085 }
2086
2087 continue;
2088 }
2089 /* Store gen register S at (r31+r0).
2090 Store param on stack when offset from SP bigger than 4 bytes. */
2091 /* 000100 sssss 11111 00000 01100100000 */
2092 else if (arch_info->mach == bfd_mach_ppc_e500
2093 && (op & 0xfc1fffff) == 0x101f0320) /* evstddx Rs,R31,R0 */
2094 {
2095 if (pc == (li_found_pc + 4))
2096 {
2097 if ((op & 0x03e00000) >= 0x01a00000)
2098 {
2099 ev_reg = GET_SRC_REG (op);
2100 /* If this is the first vector reg to be saved, or if
2101 it has a lower number than others previously seen,
2102 reupdate the frame info. */
2103 /* We know the contents of r0 from the previous
2104 instruction. */
2105 if (fdata->saved_ev == -1 || fdata->saved_ev > ev_reg)
2106 {
2107 fdata->saved_ev = ev_reg;
2108 fdata->ev_offset = vr_saved_offset + offset;
2109 }
2110 ev_reg = -1;
2111 }
2112 vr_saved_offset = -1;
2113 li_found_pc = 0;
2114 continue;
2115 }
2116 }
2117 /* End BookE related instructions. */
2118
2119 else
2120 {
2121 unsigned int all_mask = ~((1U << fdata->saved_gpr) - 1);
2122
2123 /* Not a recognized prologue instruction.
2124 Handle optimizer code motions into the prologue by continuing
2125 the search if we have no valid frame yet or if the return
2126 address is not yet saved in the frame. Also skip instructions
2127 if some of the GPRs expected to be saved are not yet saved. */
2128 if (fdata->frameless == 0 && fdata->nosavedpc == 0
2129 && (fdata->gpr_mask & all_mask) == all_mask)
2130 break;
2131
2132 if (op == 0x4e800020 /* blr */
2133 || op == 0x4e800420) /* bctr */
2134 /* Do not scan past epilogue in frameless functions or
2135 trampolines. */
2136 break;
2137 if ((op & 0xf4000000) == 0x40000000) /* bxx */
2138 /* Never skip branches. */
2139 break;
2140
2141 if (num_skip_non_prologue_insns++ > max_skip_non_prologue_insns)
2142 /* Do not scan too many insns, scanning insns is expensive with
2143 remote targets. */
2144 break;
2145
2146 /* Continue scanning. */
2147 prev_insn_was_prologue_insn = 0;
2148 continue;
2149 }
2150 }
2151
2152 #if 0
2153 /* I have problems with skipping over __main() that I need to address
2154 * sometime. Previously, I used to use misc_function_vector which
2155 * didn't work as well as I wanted to be. -MGO */
2156
2157 /* If the first thing after skipping a prolog is a branch to a function,
2158 this might be a call to an initializer in main(), introduced by gcc2.
2159 We'd like to skip over it as well. Fortunately, xlc does some extra
2160 work before calling a function right after a prologue, thus we can
2161 single out such gcc2 behaviour. */
2162
2163
2164 if ((op & 0xfc000001) == 0x48000001)
2165 { /* bl foo, an initializer function? */
2166 op = read_memory_integer (pc + 4, 4, byte_order);
2167
2168 if (op == 0x4def7b82)
2169 { /* cror 0xf, 0xf, 0xf (nop) */
2170
2171 /* Check and see if we are in main. If so, skip over this
2172 initializer function as well. */
2173
2174 tmp = find_pc_misc_function (pc);
2175 if (tmp >= 0
2176 && strcmp (misc_function_vector[tmp].name, main_name ()) == 0)
2177 return pc + 8;
2178 }
2179 }
2180 #endif /* 0 */
2181
2182 if (pc == lim_pc && lr_reg >= 0)
2183 fdata->lr_register = lr_reg >> 21;
2184
2185 fdata->offset = -fdata->offset;
2186 return last_prologue_pc;
2187 }
2188
2189 static CORE_ADDR
2190 rs6000_skip_prologue (struct gdbarch *gdbarch, CORE_ADDR pc)
2191 {
2192 struct rs6000_framedata frame;
2193 CORE_ADDR limit_pc, func_addr, func_end_addr = 0;
2194
2195 /* See if we can determine the end of the prologue via the symbol table.
2196 If so, then return either PC, or the PC after the prologue, whichever
2197 is greater. */
2198 if (find_pc_partial_function (pc, NULL, &func_addr, &func_end_addr))
2199 {
2200 CORE_ADDR post_prologue_pc
2201 = skip_prologue_using_sal (gdbarch, func_addr);
2202 if (post_prologue_pc != 0)
2203 return std::max (pc, post_prologue_pc);
2204 }
2205
2206 /* Can't determine prologue from the symbol table, need to examine
2207 instructions. */
2208
2209 /* Find an upper limit on the function prologue using the debug
2210 information. If the debug information could not be used to provide
2211 that bound, then use an arbitrary large number as the upper bound. */
2212 limit_pc = skip_prologue_using_sal (gdbarch, pc);
2213 if (limit_pc == 0)
2214 limit_pc = pc + 100; /* Magic. */
2215
2216 /* Do not allow limit_pc to be past the function end, if we know
2217 where that end is... */
2218 if (func_end_addr && limit_pc > func_end_addr)
2219 limit_pc = func_end_addr;
2220
2221 pc = skip_prologue (gdbarch, pc, limit_pc, &frame);
2222 return pc;
2223 }
2224
2225 /* When compiling for EABI, some versions of GCC emit a call to __eabi
2226 in the prologue of main().
2227
2228 The function below examines the code pointed at by PC and checks to
2229 see if it corresponds to a call to __eabi. If so, it returns the
2230 address of the instruction following that call. Otherwise, it simply
2231 returns PC. */
2232
2233 static CORE_ADDR
2234 rs6000_skip_main_prologue (struct gdbarch *gdbarch, CORE_ADDR pc)
2235 {
2236 enum bfd_endian byte_order = gdbarch_byte_order (gdbarch);
2237 gdb_byte buf[4];
2238 unsigned long op;
2239
2240 if (target_read_memory (pc, buf, 4))
2241 return pc;
2242 op = extract_unsigned_integer (buf, 4, byte_order);
2243
2244 if ((op & BL_MASK) == BL_INSTRUCTION)
2245 {
2246 CORE_ADDR displ = op & BL_DISPLACEMENT_MASK;
2247 CORE_ADDR call_dest = pc + 4 + displ;
2248 struct bound_minimal_symbol s = lookup_minimal_symbol_by_pc (call_dest);
2249
2250 /* We check for ___eabi (three leading underscores) in addition
2251 to __eabi in case the GCC option "-fleading-underscore" was
2252 used to compile the program. */
2253 if (s.minsym != NULL
2254 && MSYMBOL_LINKAGE_NAME (s.minsym) != NULL
2255 && (strcmp (MSYMBOL_LINKAGE_NAME (s.minsym), "__eabi") == 0
2256 || strcmp (MSYMBOL_LINKAGE_NAME (s.minsym), "___eabi") == 0))
2257 pc += 4;
2258 }
2259 return pc;
2260 }
2261
2262 /* All the ABI's require 16 byte alignment. */
2263 static CORE_ADDR
2264 rs6000_frame_align (struct gdbarch *gdbarch, CORE_ADDR addr)
2265 {
2266 return (addr & -16);
2267 }
2268
2269 /* Return whether handle_inferior_event() should proceed through code
2270 starting at PC in function NAME when stepping.
2271
2272 The AIX -bbigtoc linker option generates functions @FIX0, @FIX1, etc. to
2273 handle memory references that are too distant to fit in instructions
2274 generated by the compiler. For example, if 'foo' in the following
2275 instruction:
2276
2277 lwz r9,foo(r2)
2278
2279 is greater than 32767, the linker might replace the lwz with a branch to
2280 somewhere in @FIX1 that does the load in 2 instructions and then branches
2281 back to where execution should continue.
2282
2283 GDB should silently step over @FIX code, just like AIX dbx does.
2284 Unfortunately, the linker uses the "b" instruction for the
2285 branches, meaning that the link register doesn't get set.
2286 Therefore, GDB's usual step_over_function () mechanism won't work.
2287
2288 Instead, use the gdbarch_skip_trampoline_code and
2289 gdbarch_skip_trampoline_code hooks in handle_inferior_event() to skip past
2290 @FIX code. */
2291
2292 static int
2293 rs6000_in_solib_return_trampoline (struct gdbarch *gdbarch,
2294 CORE_ADDR pc, const char *name)
2295 {
2296 return name && startswith (name, "@FIX");
2297 }
2298
2299 /* Skip code that the user doesn't want to see when stepping:
2300
2301 1. Indirect function calls use a piece of trampoline code to do context
2302 switching, i.e. to set the new TOC table. Skip such code if we are on
2303 its first instruction (as when we have single-stepped to here).
2304
2305 2. Skip shared library trampoline code (which is different from
2306 indirect function call trampolines).
2307
2308 3. Skip bigtoc fixup code.
2309
2310 Result is desired PC to step until, or NULL if we are not in
2311 code that should be skipped. */
2312
2313 static CORE_ADDR
2314 rs6000_skip_trampoline_code (struct frame_info *frame, CORE_ADDR pc)
2315 {
2316 struct gdbarch *gdbarch = get_frame_arch (frame);
2317 struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch);
2318 enum bfd_endian byte_order = gdbarch_byte_order (gdbarch);
2319 unsigned int ii, op;
2320 int rel;
2321 CORE_ADDR solib_target_pc;
2322 struct bound_minimal_symbol msymbol;
2323
2324 static unsigned trampoline_code[] =
2325 {
2326 0x800b0000, /* l r0,0x0(r11) */
2327 0x90410014, /* st r2,0x14(r1) */
2328 0x7c0903a6, /* mtctr r0 */
2329 0x804b0004, /* l r2,0x4(r11) */
2330 0x816b0008, /* l r11,0x8(r11) */
2331 0x4e800420, /* bctr */
2332 0x4e800020, /* br */
2333 0
2334 };
2335
2336 /* Check for bigtoc fixup code. */
2337 msymbol = lookup_minimal_symbol_by_pc (pc);
2338 if (msymbol.minsym
2339 && rs6000_in_solib_return_trampoline (gdbarch, pc,
2340 MSYMBOL_LINKAGE_NAME (msymbol.minsym)))
2341 {
2342 /* Double-check that the third instruction from PC is relative "b". */
2343 op = read_memory_integer (pc + 8, 4, byte_order);
2344 if ((op & 0xfc000003) == 0x48000000)
2345 {
2346 /* Extract bits 6-29 as a signed 24-bit relative word address and
2347 add it to the containing PC. */
2348 rel = ((int)(op << 6) >> 6);
2349 return pc + 8 + rel;
2350 }
2351 }
2352
2353 /* If pc is in a shared library trampoline, return its target. */
2354 solib_target_pc = find_solib_trampoline_target (frame, pc);
2355 if (solib_target_pc)
2356 return solib_target_pc;
2357
2358 for (ii = 0; trampoline_code[ii]; ++ii)
2359 {
2360 op = read_memory_integer (pc + (ii * 4), 4, byte_order);
2361 if (op != trampoline_code[ii])
2362 return 0;
2363 }
2364 ii = get_frame_register_unsigned (frame, 11); /* r11 holds destination
2365 addr. */
2366 pc = read_memory_unsigned_integer (ii, tdep->wordsize, byte_order);
2367 return pc;
2368 }
2369
2370 /* ISA-specific vector types. */
2371
2372 static struct type *
2373 rs6000_builtin_type_vec64 (struct gdbarch *gdbarch)
2374 {
2375 struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch);
2376
2377 if (!tdep->ppc_builtin_type_vec64)
2378 {
2379 const struct builtin_type *bt = builtin_type (gdbarch);
2380
2381 /* The type we're building is this: */
2382 #if 0
2383 union __gdb_builtin_type_vec64
2384 {
2385 int64_t uint64;
2386 float v2_float[2];
2387 int32_t v2_int32[2];
2388 int16_t v4_int16[4];
2389 int8_t v8_int8[8];
2390 };
2391 #endif
2392
2393 struct type *t;
2394
2395 t = arch_composite_type (gdbarch,
2396 "__ppc_builtin_type_vec64", TYPE_CODE_UNION);
2397 append_composite_type_field (t, "uint64", bt->builtin_int64);
2398 append_composite_type_field (t, "v2_float",
2399 init_vector_type (bt->builtin_float, 2));
2400 append_composite_type_field (t, "v2_int32",
2401 init_vector_type (bt->builtin_int32, 2));
2402 append_composite_type_field (t, "v4_int16",
2403 init_vector_type (bt->builtin_int16, 4));
2404 append_composite_type_field (t, "v8_int8",
2405 init_vector_type (bt->builtin_int8, 8));
2406
2407 TYPE_VECTOR (t) = 1;
2408 TYPE_NAME (t) = "ppc_builtin_type_vec64";
2409 tdep->ppc_builtin_type_vec64 = t;
2410 }
2411
2412 return tdep->ppc_builtin_type_vec64;
2413 }
2414
2415 /* Vector 128 type. */
2416
2417 static struct type *
2418 rs6000_builtin_type_vec128 (struct gdbarch *gdbarch)
2419 {
2420 struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch);
2421
2422 if (!tdep->ppc_builtin_type_vec128)
2423 {
2424 const struct builtin_type *bt = builtin_type (gdbarch);
2425
2426 /* The type we're building is this
2427
2428 type = union __ppc_builtin_type_vec128 {
2429 uint128_t uint128;
2430 double v2_double[2];
2431 float v4_float[4];
2432 int32_t v4_int32[4];
2433 int16_t v8_int16[8];
2434 int8_t v16_int8[16];
2435 }
2436 */
2437
2438 struct type *t;
2439
2440 t = arch_composite_type (gdbarch,
2441 "__ppc_builtin_type_vec128", TYPE_CODE_UNION);
2442 append_composite_type_field (t, "uint128", bt->builtin_uint128);
2443 append_composite_type_field (t, "v2_double",
2444 init_vector_type (bt->builtin_double, 2));
2445 append_composite_type_field (t, "v4_float",
2446 init_vector_type (bt->builtin_float, 4));
2447 append_composite_type_field (t, "v4_int32",
2448 init_vector_type (bt->builtin_int32, 4));
2449 append_composite_type_field (t, "v8_int16",
2450 init_vector_type (bt->builtin_int16, 8));
2451 append_composite_type_field (t, "v16_int8",
2452 init_vector_type (bt->builtin_int8, 16));
2453
2454 TYPE_VECTOR (t) = 1;
2455 TYPE_NAME (t) = "ppc_builtin_type_vec128";
2456 tdep->ppc_builtin_type_vec128 = t;
2457 }
2458
2459 return tdep->ppc_builtin_type_vec128;
2460 }
2461
2462 /* Return the name of register number REGNO, or the empty string if it
2463 is an anonymous register. */
2464
2465 static const char *
2466 rs6000_register_name (struct gdbarch *gdbarch, int regno)
2467 {
2468 struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch);
2469
2470 /* The upper half "registers" have names in the XML description,
2471 but we present only the low GPRs and the full 64-bit registers
2472 to the user. */
2473 if (tdep->ppc_ev0_upper_regnum >= 0
2474 && tdep->ppc_ev0_upper_regnum <= regno
2475 && regno < tdep->ppc_ev0_upper_regnum + ppc_num_gprs)
2476 return "";
2477
2478 /* Hide the upper halves of the vs0~vs31 registers. */
2479 if (tdep->ppc_vsr0_regnum >= 0
2480 && tdep->ppc_vsr0_upper_regnum <= regno
2481 && regno < tdep->ppc_vsr0_upper_regnum + ppc_num_gprs)
2482 return "";
2483
2484 /* Check if the SPE pseudo registers are available. */
2485 if (IS_SPE_PSEUDOREG (tdep, regno))
2486 {
2487 static const char *const spe_regnames[] = {
2488 "ev0", "ev1", "ev2", "ev3", "ev4", "ev5", "ev6", "ev7",
2489 "ev8", "ev9", "ev10", "ev11", "ev12", "ev13", "ev14", "ev15",
2490 "ev16", "ev17", "ev18", "ev19", "ev20", "ev21", "ev22", "ev23",
2491 "ev24", "ev25", "ev26", "ev27", "ev28", "ev29", "ev30", "ev31",
2492 };
2493 return spe_regnames[regno - tdep->ppc_ev0_regnum];
2494 }
2495
2496 /* Check if the decimal128 pseudo-registers are available. */
2497 if (IS_DFP_PSEUDOREG (tdep, regno))
2498 {
2499 static const char *const dfp128_regnames[] = {
2500 "dl0", "dl1", "dl2", "dl3",
2501 "dl4", "dl5", "dl6", "dl7",
2502 "dl8", "dl9", "dl10", "dl11",
2503 "dl12", "dl13", "dl14", "dl15"
2504 };
2505 return dfp128_regnames[regno - tdep->ppc_dl0_regnum];
2506 }
2507
2508 /* Check if this is a VSX pseudo-register. */
2509 if (IS_VSX_PSEUDOREG (tdep, regno))
2510 {
2511 static const char *const vsx_regnames[] = {
2512 "vs0", "vs1", "vs2", "vs3", "vs4", "vs5", "vs6", "vs7",
2513 "vs8", "vs9", "vs10", "vs11", "vs12", "vs13", "vs14",
2514 "vs15", "vs16", "vs17", "vs18", "vs19", "vs20", "vs21",
2515 "vs22", "vs23", "vs24", "vs25", "vs26", "vs27", "vs28",
2516 "vs29", "vs30", "vs31", "vs32", "vs33", "vs34", "vs35",
2517 "vs36", "vs37", "vs38", "vs39", "vs40", "vs41", "vs42",
2518 "vs43", "vs44", "vs45", "vs46", "vs47", "vs48", "vs49",
2519 "vs50", "vs51", "vs52", "vs53", "vs54", "vs55", "vs56",
2520 "vs57", "vs58", "vs59", "vs60", "vs61", "vs62", "vs63"
2521 };
2522 return vsx_regnames[regno - tdep->ppc_vsr0_regnum];
2523 }
2524
2525 /* Check if the this is a Extended FP pseudo-register. */
2526 if (IS_EFP_PSEUDOREG (tdep, regno))
2527 {
2528 static const char *const efpr_regnames[] = {
2529 "f32", "f33", "f34", "f35", "f36", "f37", "f38",
2530 "f39", "f40", "f41", "f42", "f43", "f44", "f45",
2531 "f46", "f47", "f48", "f49", "f50", "f51",
2532 "f52", "f53", "f54", "f55", "f56", "f57",
2533 "f58", "f59", "f60", "f61", "f62", "f63"
2534 };
2535 return efpr_regnames[regno - tdep->ppc_efpr0_regnum];
2536 }
2537
2538 return tdesc_register_name (gdbarch, regno);
2539 }
2540
2541 /* Return the GDB type object for the "standard" data type of data in
2542 register N. */
2543
2544 static struct type *
2545 rs6000_pseudo_register_type (struct gdbarch *gdbarch, int regnum)
2546 {
2547 struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch);
2548
2549 /* These are the only pseudo-registers we support. */
2550 gdb_assert (IS_SPE_PSEUDOREG (tdep, regnum)
2551 || IS_DFP_PSEUDOREG (tdep, regnum)
2552 || IS_VSX_PSEUDOREG (tdep, regnum)
2553 || IS_EFP_PSEUDOREG (tdep, regnum));
2554
2555 /* These are the e500 pseudo-registers. */
2556 if (IS_SPE_PSEUDOREG (tdep, regnum))
2557 return rs6000_builtin_type_vec64 (gdbarch);
2558 else if (IS_DFP_PSEUDOREG (tdep, regnum))
2559 /* PPC decimal128 pseudo-registers. */
2560 return builtin_type (gdbarch)->builtin_declong;
2561 else if (IS_VSX_PSEUDOREG (tdep, regnum))
2562 /* POWER7 VSX pseudo-registers. */
2563 return rs6000_builtin_type_vec128 (gdbarch);
2564 else
2565 /* POWER7 Extended FP pseudo-registers. */
2566 return builtin_type (gdbarch)->builtin_double;
2567 }
2568
2569 /* Is REGNUM a member of REGGROUP? */
2570 static int
2571 rs6000_pseudo_register_reggroup_p (struct gdbarch *gdbarch, int regnum,
2572 struct reggroup *group)
2573 {
2574 struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch);
2575
2576 /* These are the only pseudo-registers we support. */
2577 gdb_assert (IS_SPE_PSEUDOREG (tdep, regnum)
2578 || IS_DFP_PSEUDOREG (tdep, regnum)
2579 || IS_VSX_PSEUDOREG (tdep, regnum)
2580 || IS_EFP_PSEUDOREG (tdep, regnum));
2581
2582 /* These are the e500 pseudo-registers or the POWER7 VSX registers. */
2583 if (IS_SPE_PSEUDOREG (tdep, regnum) || IS_VSX_PSEUDOREG (tdep, regnum))
2584 return group == all_reggroup || group == vector_reggroup;
2585 else
2586 /* PPC decimal128 or Extended FP pseudo-registers. */
2587 return group == all_reggroup || group == float_reggroup;
2588 }
2589
2590 /* The register format for RS/6000 floating point registers is always
2591 double, we need a conversion if the memory format is float. */
2592
2593 static int
2594 rs6000_convert_register_p (struct gdbarch *gdbarch, int regnum,
2595 struct type *type)
2596 {
2597 struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch);
2598
2599 return (tdep->ppc_fp0_regnum >= 0
2600 && regnum >= tdep->ppc_fp0_regnum
2601 && regnum < tdep->ppc_fp0_regnum + ppc_num_fprs
2602 && TYPE_CODE (type) == TYPE_CODE_FLT
2603 && TYPE_LENGTH (type)
2604 != TYPE_LENGTH (builtin_type (gdbarch)->builtin_double));
2605 }
2606
2607 static int
2608 rs6000_register_to_value (struct frame_info *frame,
2609 int regnum,
2610 struct type *type,
2611 gdb_byte *to,
2612 int *optimizedp, int *unavailablep)
2613 {
2614 struct gdbarch *gdbarch = get_frame_arch (frame);
2615 gdb_byte from[PPC_MAX_REGISTER_SIZE];
2616
2617 gdb_assert (TYPE_CODE (type) == TYPE_CODE_FLT);
2618
2619 if (!get_frame_register_bytes (frame, regnum, 0,
2620 register_size (gdbarch, regnum),
2621 from, optimizedp, unavailablep))
2622 return 0;
2623
2624 target_float_convert (from, builtin_type (gdbarch)->builtin_double,
2625 to, type);
2626 *optimizedp = *unavailablep = 0;
2627 return 1;
2628 }
2629
2630 static void
2631 rs6000_value_to_register (struct frame_info *frame,
2632 int regnum,
2633 struct type *type,
2634 const gdb_byte *from)
2635 {
2636 struct gdbarch *gdbarch = get_frame_arch (frame);
2637 gdb_byte to[PPC_MAX_REGISTER_SIZE];
2638
2639 gdb_assert (TYPE_CODE (type) == TYPE_CODE_FLT);
2640
2641 target_float_convert (from, type,
2642 to, builtin_type (gdbarch)->builtin_double);
2643 put_frame_register (frame, regnum, to);
2644 }
2645
2646 /* The type of a function that moves the value of REG between CACHE
2647 or BUF --- in either direction. */
2648 typedef enum register_status (*move_ev_register_func) (struct regcache *,
2649 int, void *);
2650
2651 /* Move SPE vector register values between a 64-bit buffer and the two
2652 32-bit raw register halves in a regcache. This function handles
2653 both splitting a 64-bit value into two 32-bit halves, and joining
2654 two halves into a whole 64-bit value, depending on the function
2655 passed as the MOVE argument.
2656
2657 EV_REG must be the number of an SPE evN vector register --- a
2658 pseudoregister. REGCACHE must be a regcache, and BUFFER must be a
2659 64-bit buffer.
2660
2661 Call MOVE once for each 32-bit half of that register, passing
2662 REGCACHE, the number of the raw register corresponding to that
2663 half, and the address of the appropriate half of BUFFER.
2664
2665 For example, passing 'regcache_raw_read' as the MOVE function will
2666 fill BUFFER with the full 64-bit contents of EV_REG. Or, passing
2667 'regcache_raw_supply' will supply the contents of BUFFER to the
2668 appropriate pair of raw registers in REGCACHE.
2669
2670 You may need to cast away some 'const' qualifiers when passing
2671 MOVE, since this function can't tell at compile-time which of
2672 REGCACHE or BUFFER is acting as the source of the data. If C had
2673 co-variant type qualifiers, ... */
2674
2675 static enum register_status
2676 e500_move_ev_register (move_ev_register_func move,
2677 struct regcache *regcache, int ev_reg, void *buffer)
2678 {
2679 struct gdbarch *arch = regcache->arch ();
2680 struct gdbarch_tdep *tdep = gdbarch_tdep (arch);
2681 int reg_index;
2682 gdb_byte *byte_buffer = (gdb_byte *) buffer;
2683 enum register_status status;
2684
2685 gdb_assert (IS_SPE_PSEUDOREG (tdep, ev_reg));
2686
2687 reg_index = ev_reg - tdep->ppc_ev0_regnum;
2688
2689 if (gdbarch_byte_order (arch) == BFD_ENDIAN_BIG)
2690 {
2691 status = move (regcache, tdep->ppc_ev0_upper_regnum + reg_index,
2692 byte_buffer);
2693 if (status == REG_VALID)
2694 status = move (regcache, tdep->ppc_gp0_regnum + reg_index,
2695 byte_buffer + 4);
2696 }
2697 else
2698 {
2699 status = move (regcache, tdep->ppc_gp0_regnum + reg_index, byte_buffer);
2700 if (status == REG_VALID)
2701 status = move (regcache, tdep->ppc_ev0_upper_regnum + reg_index,
2702 byte_buffer + 4);
2703 }
2704
2705 return status;
2706 }
2707
2708 static enum register_status
2709 do_regcache_raw_write (struct regcache *regcache, int regnum, void *buffer)
2710 {
2711 regcache_raw_write (regcache, regnum, (const gdb_byte *) buffer);
2712
2713 return REG_VALID;
2714 }
2715
2716 static enum register_status
2717 e500_pseudo_register_read (struct gdbarch *gdbarch, readable_regcache *regcache,
2718 int ev_reg, gdb_byte *buffer)
2719 {
2720 struct gdbarch *arch = regcache->arch ();
2721 struct gdbarch_tdep *tdep = gdbarch_tdep (arch);
2722 int reg_index;
2723 enum register_status status;
2724
2725 gdb_assert (IS_SPE_PSEUDOREG (tdep, ev_reg));
2726
2727 reg_index = ev_reg - tdep->ppc_ev0_regnum;
2728
2729 if (gdbarch_byte_order (arch) == BFD_ENDIAN_BIG)
2730 {
2731 status = regcache->raw_read (tdep->ppc_ev0_upper_regnum + reg_index,
2732 buffer);
2733 if (status == REG_VALID)
2734 status = regcache->raw_read (tdep->ppc_gp0_regnum + reg_index,
2735 buffer + 4);
2736 }
2737 else
2738 {
2739 status = regcache->raw_read (tdep->ppc_gp0_regnum + reg_index, buffer);
2740 if (status == REG_VALID)
2741 status = regcache->raw_read (tdep->ppc_ev0_upper_regnum + reg_index,
2742 buffer + 4);
2743 }
2744
2745 return status;
2746
2747 }
2748
2749 static void
2750 e500_pseudo_register_write (struct gdbarch *gdbarch, struct regcache *regcache,
2751 int reg_nr, const gdb_byte *buffer)
2752 {
2753 e500_move_ev_register (do_regcache_raw_write, regcache,
2754 reg_nr, (void *) buffer);
2755 }
2756
2757 /* Read method for DFP pseudo-registers. */
2758 static enum register_status
2759 dfp_pseudo_register_read (struct gdbarch *gdbarch, readable_regcache *regcache,
2760 int reg_nr, gdb_byte *buffer)
2761 {
2762 struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch);
2763 int reg_index = reg_nr - tdep->ppc_dl0_regnum;
2764 enum register_status status;
2765
2766 if (gdbarch_byte_order (gdbarch) == BFD_ENDIAN_BIG)
2767 {
2768 /* Read two FP registers to form a whole dl register. */
2769 status = regcache->raw_read (tdep->ppc_fp0_regnum +
2770 2 * reg_index, buffer);
2771 if (status == REG_VALID)
2772 status = regcache->raw_read (tdep->ppc_fp0_regnum +
2773 2 * reg_index + 1, buffer + 8);
2774 }
2775 else
2776 {
2777 status = regcache->raw_read (tdep->ppc_fp0_regnum +
2778 2 * reg_index + 1, buffer);
2779 if (status == REG_VALID)
2780 status = regcache->raw_read (tdep->ppc_fp0_regnum +
2781 2 * reg_index, buffer + 8);
2782 }
2783
2784 return status;
2785 }
2786
2787 /* Write method for DFP pseudo-registers. */
2788 static void
2789 dfp_pseudo_register_write (struct gdbarch *gdbarch, struct regcache *regcache,
2790 int reg_nr, const gdb_byte *buffer)
2791 {
2792 struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch);
2793 int reg_index = reg_nr - tdep->ppc_dl0_regnum;
2794
2795 if (gdbarch_byte_order (gdbarch) == BFD_ENDIAN_BIG)
2796 {
2797 /* Write each half of the dl register into a separate
2798 FP register. */
2799 regcache_raw_write (regcache, tdep->ppc_fp0_regnum +
2800 2 * reg_index, buffer);
2801 regcache_raw_write (regcache, tdep->ppc_fp0_regnum +
2802 2 * reg_index + 1, buffer + 8);
2803 }
2804 else
2805 {
2806 regcache_raw_write (regcache, tdep->ppc_fp0_regnum +
2807 2 * reg_index + 1, buffer);
2808 regcache_raw_write (regcache, tdep->ppc_fp0_regnum +
2809 2 * reg_index, buffer + 8);
2810 }
2811 }
2812
2813 /* Read method for POWER7 VSX pseudo-registers. */
2814 static enum register_status
2815 vsx_pseudo_register_read (struct gdbarch *gdbarch, readable_regcache *regcache,
2816 int reg_nr, gdb_byte *buffer)
2817 {
2818 struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch);
2819 int reg_index = reg_nr - tdep->ppc_vsr0_regnum;
2820 enum register_status status;
2821
2822 /* Read the portion that overlaps the VMX registers. */
2823 if (reg_index > 31)
2824 status = regcache->raw_read (tdep->ppc_vr0_regnum +
2825 reg_index - 32, buffer);
2826 else
2827 /* Read the portion that overlaps the FPR registers. */
2828 if (gdbarch_byte_order (gdbarch) == BFD_ENDIAN_BIG)
2829 {
2830 status = regcache->raw_read (tdep->ppc_fp0_regnum +
2831 reg_index, buffer);
2832 if (status == REG_VALID)
2833 status = regcache->raw_read (tdep->ppc_vsr0_upper_regnum +
2834 reg_index, buffer + 8);
2835 }
2836 else
2837 {
2838 status = regcache->raw_read (tdep->ppc_fp0_regnum +
2839 reg_index, buffer + 8);
2840 if (status == REG_VALID)
2841 status = regcache->raw_read (tdep->ppc_vsr0_upper_regnum +
2842 reg_index, buffer);
2843 }
2844
2845 return status;
2846 }
2847
2848 /* Write method for POWER7 VSX pseudo-registers. */
2849 static void
2850 vsx_pseudo_register_write (struct gdbarch *gdbarch, struct regcache *regcache,
2851 int reg_nr, const gdb_byte *buffer)
2852 {
2853 struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch);
2854 int reg_index = reg_nr - tdep->ppc_vsr0_regnum;
2855
2856 /* Write the portion that overlaps the VMX registers. */
2857 if (reg_index > 31)
2858 regcache_raw_write (regcache, tdep->ppc_vr0_regnum +
2859 reg_index - 32, buffer);
2860 else
2861 /* Write the portion that overlaps the FPR registers. */
2862 if (gdbarch_byte_order (gdbarch) == BFD_ENDIAN_BIG)
2863 {
2864 regcache_raw_write (regcache, tdep->ppc_fp0_regnum +
2865 reg_index, buffer);
2866 regcache_raw_write (regcache, tdep->ppc_vsr0_upper_regnum +
2867 reg_index, buffer + 8);
2868 }
2869 else
2870 {
2871 regcache_raw_write (regcache, tdep->ppc_fp0_regnum +
2872 reg_index, buffer + 8);
2873 regcache_raw_write (regcache, tdep->ppc_vsr0_upper_regnum +
2874 reg_index, buffer);
2875 }
2876 }
2877
2878 /* Read method for POWER7 Extended FP pseudo-registers. */
2879 static enum register_status
2880 efpr_pseudo_register_read (struct gdbarch *gdbarch, readable_regcache *regcache,
2881 int reg_nr, gdb_byte *buffer)
2882 {
2883 struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch);
2884 int reg_index = reg_nr - tdep->ppc_efpr0_regnum;
2885 int offset = gdbarch_byte_order (gdbarch) == BFD_ENDIAN_BIG ? 0 : 8;
2886
2887 /* Read the portion that overlaps the VMX register. */
2888 return regcache->raw_read_part (tdep->ppc_vr0_regnum + reg_index,
2889 offset, register_size (gdbarch, reg_nr),
2890 buffer);
2891 }
2892
2893 /* Write method for POWER7 Extended FP pseudo-registers. */
2894 static void
2895 efpr_pseudo_register_write (struct gdbarch *gdbarch, struct regcache *regcache,
2896 int reg_nr, const gdb_byte *buffer)
2897 {
2898 struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch);
2899 int reg_index = reg_nr - tdep->ppc_efpr0_regnum;
2900 int offset = gdbarch_byte_order (gdbarch) == BFD_ENDIAN_BIG ? 0 : 8;
2901
2902 /* Write the portion that overlaps the VMX register. */
2903 regcache_raw_write_part (regcache, tdep->ppc_vr0_regnum + reg_index,
2904 offset, register_size (gdbarch, reg_nr),
2905 buffer);
2906 }
2907
2908 static enum register_status
2909 rs6000_pseudo_register_read (struct gdbarch *gdbarch,
2910 readable_regcache *regcache,
2911 int reg_nr, gdb_byte *buffer)
2912 {
2913 struct gdbarch *regcache_arch = regcache->arch ();
2914 struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch);
2915
2916 gdb_assert (regcache_arch == gdbarch);
2917
2918 if (IS_SPE_PSEUDOREG (tdep, reg_nr))
2919 return e500_pseudo_register_read (gdbarch, regcache, reg_nr, buffer);
2920 else if (IS_DFP_PSEUDOREG (tdep, reg_nr))
2921 return dfp_pseudo_register_read (gdbarch, regcache, reg_nr, buffer);
2922 else if (IS_VSX_PSEUDOREG (tdep, reg_nr))
2923 return vsx_pseudo_register_read (gdbarch, regcache, reg_nr, buffer);
2924 else if (IS_EFP_PSEUDOREG (tdep, reg_nr))
2925 return efpr_pseudo_register_read (gdbarch, regcache, reg_nr, buffer);
2926 else
2927 internal_error (__FILE__, __LINE__,
2928 _("rs6000_pseudo_register_read: "
2929 "called on unexpected register '%s' (%d)"),
2930 gdbarch_register_name (gdbarch, reg_nr), reg_nr);
2931 }
2932
2933 static void
2934 rs6000_pseudo_register_write (struct gdbarch *gdbarch,
2935 struct regcache *regcache,
2936 int reg_nr, const gdb_byte *buffer)
2937 {
2938 struct gdbarch *regcache_arch = regcache->arch ();
2939 struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch);
2940
2941 gdb_assert (regcache_arch == gdbarch);
2942
2943 if (IS_SPE_PSEUDOREG (tdep, reg_nr))
2944 e500_pseudo_register_write (gdbarch, regcache, reg_nr, buffer);
2945 else if (IS_DFP_PSEUDOREG (tdep, reg_nr))
2946 dfp_pseudo_register_write (gdbarch, regcache, reg_nr, buffer);
2947 else if (IS_VSX_PSEUDOREG (tdep, reg_nr))
2948 vsx_pseudo_register_write (gdbarch, regcache, reg_nr, buffer);
2949 else if (IS_EFP_PSEUDOREG (tdep, reg_nr))
2950 efpr_pseudo_register_write (gdbarch, regcache, reg_nr, buffer);
2951 else
2952 internal_error (__FILE__, __LINE__,
2953 _("rs6000_pseudo_register_write: "
2954 "called on unexpected register '%s' (%d)"),
2955 gdbarch_register_name (gdbarch, reg_nr), reg_nr);
2956 }
2957
2958 static int
2959 rs6000_ax_pseudo_register_collect (struct gdbarch *gdbarch,
2960 struct agent_expr *ax, int reg_nr)
2961 {
2962 struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch);
2963 if (IS_SPE_PSEUDOREG (tdep, reg_nr))
2964 {
2965 int reg_index = reg_nr - tdep->ppc_ev0_regnum;
2966 ax_reg_mask (ax, tdep->ppc_gp0_regnum + reg_index);
2967 ax_reg_mask (ax, tdep->ppc_ev0_upper_regnum + reg_index);
2968 }
2969 else if (IS_DFP_PSEUDOREG (tdep, reg_nr))
2970 {
2971 int reg_index = reg_nr - tdep->ppc_dl0_regnum;
2972 ax_reg_mask (ax, tdep->ppc_fp0_regnum + 2 * reg_index);
2973 ax_reg_mask (ax, tdep->ppc_fp0_regnum + 2 * reg_index + 1);
2974 }
2975 else if (IS_VSX_PSEUDOREG (tdep, reg_nr))
2976 {
2977 int reg_index = reg_nr - tdep->ppc_vsr0_regnum;
2978 if (reg_index > 31)
2979 {
2980 ax_reg_mask (ax, tdep->ppc_vr0_regnum + reg_index - 32);
2981 }
2982 else
2983 {
2984 ax_reg_mask (ax, tdep->ppc_fp0_regnum + reg_index);
2985 ax_reg_mask (ax, tdep->ppc_vsr0_upper_regnum + reg_index);
2986 }
2987 }
2988 else if (IS_EFP_PSEUDOREG (tdep, reg_nr))
2989 {
2990 int reg_index = reg_nr - tdep->ppc_efpr0_regnum;
2991 ax_reg_mask (ax, tdep->ppc_vr0_regnum + reg_index);
2992 }
2993 else
2994 internal_error (__FILE__, __LINE__,
2995 _("rs6000_pseudo_register_collect: "
2996 "called on unexpected register '%s' (%d)"),
2997 gdbarch_register_name (gdbarch, reg_nr), reg_nr);
2998 return 0;
2999 }
3000
3001
3002 static void
3003 rs6000_gen_return_address (struct gdbarch *gdbarch,
3004 struct agent_expr *ax, struct axs_value *value,
3005 CORE_ADDR scope)
3006 {
3007 struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch);
3008 value->type = register_type (gdbarch, tdep->ppc_lr_regnum);
3009 value->kind = axs_lvalue_register;
3010 value->u.reg = tdep->ppc_lr_regnum;
3011 }
3012
3013
3014 /* Convert a DBX STABS register number to a GDB register number. */
3015 static int
3016 rs6000_stab_reg_to_regnum (struct gdbarch *gdbarch, int num)
3017 {
3018 struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch);
3019
3020 if (0 <= num && num <= 31)
3021 return tdep->ppc_gp0_regnum + num;
3022 else if (32 <= num && num <= 63)
3023 /* FIXME: jimb/2004-05-05: What should we do when the debug info
3024 specifies registers the architecture doesn't have? Our
3025 callers don't check the value we return. */
3026 return tdep->ppc_fp0_regnum + (num - 32);
3027 else if (77 <= num && num <= 108)
3028 return tdep->ppc_vr0_regnum + (num - 77);
3029 else if (1200 <= num && num < 1200 + 32)
3030 return tdep->ppc_ev0_upper_regnum + (num - 1200);
3031 else
3032 switch (num)
3033 {
3034 case 64:
3035 return tdep->ppc_mq_regnum;
3036 case 65:
3037 return tdep->ppc_lr_regnum;
3038 case 66:
3039 return tdep->ppc_ctr_regnum;
3040 case 76:
3041 return tdep->ppc_xer_regnum;
3042 case 109:
3043 return tdep->ppc_vrsave_regnum;
3044 case 110:
3045 return tdep->ppc_vrsave_regnum - 1; /* vscr */
3046 case 111:
3047 return tdep->ppc_acc_regnum;
3048 case 112:
3049 return tdep->ppc_spefscr_regnum;
3050 default:
3051 return num;
3052 }
3053 }
3054
3055
3056 /* Convert a Dwarf 2 register number to a GDB register number. */
3057 static int
3058 rs6000_dwarf2_reg_to_regnum (struct gdbarch *gdbarch, int num)
3059 {
3060 struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch);
3061
3062 if (0 <= num && num <= 31)
3063 return tdep->ppc_gp0_regnum + num;
3064 else if (32 <= num && num <= 63)
3065 /* FIXME: jimb/2004-05-05: What should we do when the debug info
3066 specifies registers the architecture doesn't have? Our
3067 callers don't check the value we return. */
3068 return tdep->ppc_fp0_regnum + (num - 32);
3069 else if (1124 <= num && num < 1124 + 32)
3070 return tdep->ppc_vr0_regnum + (num - 1124);
3071 else if (1200 <= num && num < 1200 + 32)
3072 return tdep->ppc_ev0_upper_regnum + (num - 1200);
3073 else
3074 switch (num)
3075 {
3076 case 64:
3077 return tdep->ppc_cr_regnum;
3078 case 67:
3079 return tdep->ppc_vrsave_regnum - 1; /* vscr */
3080 case 99:
3081 return tdep->ppc_acc_regnum;
3082 case 100:
3083 return tdep->ppc_mq_regnum;
3084 case 101:
3085 return tdep->ppc_xer_regnum;
3086 case 108:
3087 return tdep->ppc_lr_regnum;
3088 case 109:
3089 return tdep->ppc_ctr_regnum;
3090 case 356:
3091 return tdep->ppc_vrsave_regnum;
3092 case 612:
3093 return tdep->ppc_spefscr_regnum;
3094 default:
3095 return num;
3096 }
3097 }
3098
3099 /* Translate a .eh_frame register to DWARF register, or adjust a
3100 .debug_frame register. */
3101
3102 static int
3103 rs6000_adjust_frame_regnum (struct gdbarch *gdbarch, int num, int eh_frame_p)
3104 {
3105 /* GCC releases before 3.4 use GCC internal register numbering in
3106 .debug_frame (and .debug_info, et cetera). The numbering is
3107 different from the standard SysV numbering for everything except
3108 for GPRs and FPRs. We can not detect this problem in most cases
3109 - to get accurate debug info for variables living in lr, ctr, v0,
3110 et cetera, use a newer version of GCC. But we must detect
3111 one important case - lr is in column 65 in .debug_frame output,
3112 instead of 108.
3113
3114 GCC 3.4, and the "hammer" branch, have a related problem. They
3115 record lr register saves in .debug_frame as 108, but still record
3116 the return column as 65. We fix that up too.
3117
3118 We can do this because 65 is assigned to fpsr, and GCC never
3119 generates debug info referring to it. To add support for
3120 handwritten debug info that restores fpsr, we would need to add a
3121 producer version check to this. */
3122 if (!eh_frame_p)
3123 {
3124 if (num == 65)
3125 return 108;
3126 else
3127 return num;
3128 }
3129
3130 /* .eh_frame is GCC specific. For binary compatibility, it uses GCC
3131 internal register numbering; translate that to the standard DWARF2
3132 register numbering. */
3133 if (0 <= num && num <= 63) /* r0-r31,fp0-fp31 */
3134 return num;
3135 else if (68 <= num && num <= 75) /* cr0-cr8 */
3136 return num - 68 + 86;
3137 else if (77 <= num && num <= 108) /* vr0-vr31 */
3138 return num - 77 + 1124;
3139 else
3140 switch (num)
3141 {
3142 case 64: /* mq */
3143 return 100;
3144 case 65: /* lr */
3145 return 108;
3146 case 66: /* ctr */
3147 return 109;
3148 case 76: /* xer */
3149 return 101;
3150 case 109: /* vrsave */
3151 return 356;
3152 case 110: /* vscr */
3153 return 67;
3154 case 111: /* spe_acc */
3155 return 99;
3156 case 112: /* spefscr */
3157 return 612;
3158 default:
3159 return num;
3160 }
3161 }
3162 \f
3163
3164 /* Handling the various POWER/PowerPC variants. */
3165
3166 /* Information about a particular processor variant. */
3167
3168 struct variant
3169 {
3170 /* Name of this variant. */
3171 const char *name;
3172
3173 /* English description of the variant. */
3174 const char *description;
3175
3176 /* bfd_arch_info.arch corresponding to variant. */
3177 enum bfd_architecture arch;
3178
3179 /* bfd_arch_info.mach corresponding to variant. */
3180 unsigned long mach;
3181
3182 /* Target description for this variant. */
3183 struct target_desc **tdesc;
3184 };
3185
3186 static struct variant variants[] =
3187 {
3188 {"powerpc", "PowerPC user-level", bfd_arch_powerpc,
3189 bfd_mach_ppc, &tdesc_powerpc_altivec32},
3190 {"power", "POWER user-level", bfd_arch_rs6000,
3191 bfd_mach_rs6k, &tdesc_rs6000},
3192 {"403", "IBM PowerPC 403", bfd_arch_powerpc,
3193 bfd_mach_ppc_403, &tdesc_powerpc_403},
3194 {"405", "IBM PowerPC 405", bfd_arch_powerpc,
3195 bfd_mach_ppc_405, &tdesc_powerpc_405},
3196 {"601", "Motorola PowerPC 601", bfd_arch_powerpc,
3197 bfd_mach_ppc_601, &tdesc_powerpc_601},
3198 {"602", "Motorola PowerPC 602", bfd_arch_powerpc,
3199 bfd_mach_ppc_602, &tdesc_powerpc_602},
3200 {"603", "Motorola/IBM PowerPC 603 or 603e", bfd_arch_powerpc,
3201 bfd_mach_ppc_603, &tdesc_powerpc_603},
3202 {"604", "Motorola PowerPC 604 or 604e", bfd_arch_powerpc,
3203 604, &tdesc_powerpc_604},
3204 {"403GC", "IBM PowerPC 403GC", bfd_arch_powerpc,
3205 bfd_mach_ppc_403gc, &tdesc_powerpc_403gc},
3206 {"505", "Motorola PowerPC 505", bfd_arch_powerpc,
3207 bfd_mach_ppc_505, &tdesc_powerpc_505},
3208 {"860", "Motorola PowerPC 860 or 850", bfd_arch_powerpc,
3209 bfd_mach_ppc_860, &tdesc_powerpc_860},
3210 {"750", "Motorola/IBM PowerPC 750 or 740", bfd_arch_powerpc,
3211 bfd_mach_ppc_750, &tdesc_powerpc_750},
3212 {"7400", "Motorola/IBM PowerPC 7400 (G4)", bfd_arch_powerpc,
3213 bfd_mach_ppc_7400, &tdesc_powerpc_7400},
3214 {"e500", "Motorola PowerPC e500", bfd_arch_powerpc,
3215 bfd_mach_ppc_e500, &tdesc_powerpc_e500},
3216
3217 /* 64-bit */
3218 {"powerpc64", "PowerPC 64-bit user-level", bfd_arch_powerpc,
3219 bfd_mach_ppc64, &tdesc_powerpc_altivec64},
3220 {"620", "Motorola PowerPC 620", bfd_arch_powerpc,
3221 bfd_mach_ppc_620, &tdesc_powerpc_64},
3222 {"630", "Motorola PowerPC 630", bfd_arch_powerpc,
3223 bfd_mach_ppc_630, &tdesc_powerpc_64},
3224 {"a35", "PowerPC A35", bfd_arch_powerpc,
3225 bfd_mach_ppc_a35, &tdesc_powerpc_64},
3226 {"rs64ii", "PowerPC rs64ii", bfd_arch_powerpc,
3227 bfd_mach_ppc_rs64ii, &tdesc_powerpc_64},
3228 {"rs64iii", "PowerPC rs64iii", bfd_arch_powerpc,
3229 bfd_mach_ppc_rs64iii, &tdesc_powerpc_64},
3230
3231 /* FIXME: I haven't checked the register sets of the following. */
3232 {"rs1", "IBM POWER RS1", bfd_arch_rs6000,
3233 bfd_mach_rs6k_rs1, &tdesc_rs6000},
3234 {"rsc", "IBM POWER RSC", bfd_arch_rs6000,
3235 bfd_mach_rs6k_rsc, &tdesc_rs6000},
3236 {"rs2", "IBM POWER RS2", bfd_arch_rs6000,
3237 bfd_mach_rs6k_rs2, &tdesc_rs6000},
3238
3239 {0, 0, (enum bfd_architecture) 0, 0, 0}
3240 };
3241
3242 /* Return the variant corresponding to architecture ARCH and machine number
3243 MACH. If no such variant exists, return null. */
3244
3245 static const struct variant *
3246 find_variant_by_arch (enum bfd_architecture arch, unsigned long mach)
3247 {
3248 const struct variant *v;
3249
3250 for (v = variants; v->name; v++)
3251 if (arch == v->arch && mach == v->mach)
3252 return v;
3253
3254 return NULL;
3255 }
3256
3257 \f
3258 static CORE_ADDR
3259 rs6000_unwind_pc (struct gdbarch *gdbarch, struct frame_info *next_frame)
3260 {
3261 return frame_unwind_register_unsigned (next_frame,
3262 gdbarch_pc_regnum (gdbarch));
3263 }
3264
3265 static struct frame_id
3266 rs6000_dummy_id (struct gdbarch *gdbarch, struct frame_info *this_frame)
3267 {
3268 return frame_id_build (get_frame_register_unsigned
3269 (this_frame, gdbarch_sp_regnum (gdbarch)),
3270 get_frame_pc (this_frame));
3271 }
3272
3273 struct rs6000_frame_cache
3274 {
3275 CORE_ADDR base;
3276 CORE_ADDR initial_sp;
3277 struct trad_frame_saved_reg *saved_regs;
3278
3279 /* Set BASE_P to true if this frame cache is properly initialized.
3280 Otherwise set to false because some registers or memory cannot
3281 collected. */
3282 int base_p;
3283 /* Cache PC for building unavailable frame. */
3284 CORE_ADDR pc;
3285 };
3286
3287 static struct rs6000_frame_cache *
3288 rs6000_frame_cache (struct frame_info *this_frame, void **this_cache)
3289 {
3290 struct rs6000_frame_cache *cache;
3291 struct gdbarch *gdbarch = get_frame_arch (this_frame);
3292 struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch);
3293 enum bfd_endian byte_order = gdbarch_byte_order (gdbarch);
3294 struct rs6000_framedata fdata;
3295 int wordsize = tdep->wordsize;
3296 CORE_ADDR func = 0, pc = 0;
3297
3298 if ((*this_cache) != NULL)
3299 return (struct rs6000_frame_cache *) (*this_cache);
3300 cache = FRAME_OBSTACK_ZALLOC (struct rs6000_frame_cache);
3301 (*this_cache) = cache;
3302 cache->pc = 0;
3303 cache->saved_regs = trad_frame_alloc_saved_regs (this_frame);
3304
3305 TRY
3306 {
3307 func = get_frame_func (this_frame);
3308 cache->pc = func;
3309 pc = get_frame_pc (this_frame);
3310 skip_prologue (gdbarch, func, pc, &fdata);
3311
3312 /* Figure out the parent's stack pointer. */
3313
3314 /* NOTE: cagney/2002-04-14: The ->frame points to the inner-most
3315 address of the current frame. Things might be easier if the
3316 ->frame pointed to the outer-most address of the frame. In
3317 the mean time, the address of the prev frame is used as the
3318 base address of this frame. */
3319 cache->base = get_frame_register_unsigned
3320 (this_frame, gdbarch_sp_regnum (gdbarch));
3321 }
3322 CATCH (ex, RETURN_MASK_ERROR)
3323 {
3324 if (ex.error != NOT_AVAILABLE_ERROR)
3325 throw_exception (ex);
3326 return (struct rs6000_frame_cache *) (*this_cache);
3327 }
3328 END_CATCH
3329
3330 /* If the function appears to be frameless, check a couple of likely
3331 indicators that we have simply failed to find the frame setup.
3332 Two common cases of this are missing symbols (i.e.
3333 get_frame_func returns the wrong address or 0), and assembly
3334 stubs which have a fast exit path but set up a frame on the slow
3335 path.
3336
3337 If the LR appears to return to this function, then presume that
3338 we have an ABI compliant frame that we failed to find. */
3339 if (fdata.frameless && fdata.lr_offset == 0)
3340 {
3341 CORE_ADDR saved_lr;
3342 int make_frame = 0;
3343
3344 saved_lr = get_frame_register_unsigned (this_frame, tdep->ppc_lr_regnum);
3345 if (func == 0 && saved_lr == pc)
3346 make_frame = 1;
3347 else if (func != 0)
3348 {
3349 CORE_ADDR saved_func = get_pc_function_start (saved_lr);
3350 if (func == saved_func)
3351 make_frame = 1;
3352 }
3353
3354 if (make_frame)
3355 {
3356 fdata.frameless = 0;
3357 fdata.lr_offset = tdep->lr_frame_offset;
3358 }
3359 }
3360
3361 if (!fdata.frameless)
3362 {
3363 /* Frameless really means stackless. */
3364 ULONGEST backchain;
3365
3366 if (safe_read_memory_unsigned_integer (cache->base, wordsize,
3367 byte_order, &backchain))
3368 cache->base = (CORE_ADDR) backchain;
3369 }
3370
3371 trad_frame_set_value (cache->saved_regs,
3372 gdbarch_sp_regnum (gdbarch), cache->base);
3373
3374 /* if != -1, fdata.saved_fpr is the smallest number of saved_fpr.
3375 All fpr's from saved_fpr to fp31 are saved. */
3376
3377 if (fdata.saved_fpr >= 0)
3378 {
3379 int i;
3380 CORE_ADDR fpr_addr = cache->base + fdata.fpr_offset;
3381
3382 /* If skip_prologue says floating-point registers were saved,
3383 but the current architecture has no floating-point registers,
3384 then that's strange. But we have no indices to even record
3385 the addresses under, so we just ignore it. */
3386 if (ppc_floating_point_unit_p (gdbarch))
3387 for (i = fdata.saved_fpr; i < ppc_num_fprs; i++)
3388 {
3389 cache->saved_regs[tdep->ppc_fp0_regnum + i].addr = fpr_addr;
3390 fpr_addr += 8;
3391 }
3392 }
3393
3394 /* if != -1, fdata.saved_gpr is the smallest number of saved_gpr.
3395 All gpr's from saved_gpr to gpr31 are saved (except during the
3396 prologue). */
3397
3398 if (fdata.saved_gpr >= 0)
3399 {
3400 int i;
3401 CORE_ADDR gpr_addr = cache->base + fdata.gpr_offset;
3402 for (i = fdata.saved_gpr; i < ppc_num_gprs; i++)
3403 {
3404 if (fdata.gpr_mask & (1U << i))
3405 cache->saved_regs[tdep->ppc_gp0_regnum + i].addr = gpr_addr;
3406 gpr_addr += wordsize;
3407 }
3408 }
3409
3410 /* if != -1, fdata.saved_vr is the smallest number of saved_vr.
3411 All vr's from saved_vr to vr31 are saved. */
3412 if (tdep->ppc_vr0_regnum != -1 && tdep->ppc_vrsave_regnum != -1)
3413 {
3414 if (fdata.saved_vr >= 0)
3415 {
3416 int i;
3417 CORE_ADDR vr_addr = cache->base + fdata.vr_offset;
3418 for (i = fdata.saved_vr; i < 32; i++)
3419 {
3420 cache->saved_regs[tdep->ppc_vr0_regnum + i].addr = vr_addr;
3421 vr_addr += register_size (gdbarch, tdep->ppc_vr0_regnum);
3422 }
3423 }
3424 }
3425
3426 /* if != -1, fdata.saved_ev is the smallest number of saved_ev.
3427 All vr's from saved_ev to ev31 are saved. ????? */
3428 if (tdep->ppc_ev0_regnum != -1)
3429 {
3430 if (fdata.saved_ev >= 0)
3431 {
3432 int i;
3433 CORE_ADDR ev_addr = cache->base + fdata.ev_offset;
3434 CORE_ADDR off = (byte_order == BFD_ENDIAN_BIG ? 4 : 0);
3435
3436 for (i = fdata.saved_ev; i < ppc_num_gprs; i++)
3437 {
3438 cache->saved_regs[tdep->ppc_ev0_regnum + i].addr = ev_addr;
3439 cache->saved_regs[tdep->ppc_gp0_regnum + i].addr = ev_addr + off;
3440 ev_addr += register_size (gdbarch, tdep->ppc_ev0_regnum);
3441 }
3442 }
3443 }
3444
3445 /* If != 0, fdata.cr_offset is the offset from the frame that
3446 holds the CR. */
3447 if (fdata.cr_offset != 0)
3448 cache->saved_regs[tdep->ppc_cr_regnum].addr
3449 = cache->base + fdata.cr_offset;
3450
3451 /* If != 0, fdata.lr_offset is the offset from the frame that
3452 holds the LR. */
3453 if (fdata.lr_offset != 0)
3454 cache->saved_regs[tdep->ppc_lr_regnum].addr
3455 = cache->base + fdata.lr_offset;
3456 else if (fdata.lr_register != -1)
3457 cache->saved_regs[tdep->ppc_lr_regnum].realreg = fdata.lr_register;
3458 /* The PC is found in the link register. */
3459 cache->saved_regs[gdbarch_pc_regnum (gdbarch)] =
3460 cache->saved_regs[tdep->ppc_lr_regnum];
3461
3462 /* If != 0, fdata.vrsave_offset is the offset from the frame that
3463 holds the VRSAVE. */
3464 if (fdata.vrsave_offset != 0)
3465 cache->saved_regs[tdep->ppc_vrsave_regnum].addr
3466 = cache->base + fdata.vrsave_offset;
3467
3468 if (fdata.alloca_reg < 0)
3469 /* If no alloca register used, then fi->frame is the value of the
3470 %sp for this frame, and it is good enough. */
3471 cache->initial_sp
3472 = get_frame_register_unsigned (this_frame, gdbarch_sp_regnum (gdbarch));
3473 else
3474 cache->initial_sp
3475 = get_frame_register_unsigned (this_frame, fdata.alloca_reg);
3476
3477 cache->base_p = 1;
3478 return cache;
3479 }
3480
3481 static void
3482 rs6000_frame_this_id (struct frame_info *this_frame, void **this_cache,
3483 struct frame_id *this_id)
3484 {
3485 struct rs6000_frame_cache *info = rs6000_frame_cache (this_frame,
3486 this_cache);
3487
3488 if (!info->base_p)
3489 {
3490 (*this_id) = frame_id_build_unavailable_stack (info->pc);
3491 return;
3492 }
3493
3494 /* This marks the outermost frame. */
3495 if (info->base == 0)
3496 return;
3497
3498 (*this_id) = frame_id_build (info->base, get_frame_func (this_frame));
3499 }
3500
3501 static struct value *
3502 rs6000_frame_prev_register (struct frame_info *this_frame,
3503 void **this_cache, int regnum)
3504 {
3505 struct rs6000_frame_cache *info = rs6000_frame_cache (this_frame,
3506 this_cache);
3507 return trad_frame_get_prev_register (this_frame, info->saved_regs, regnum);
3508 }
3509
3510 static const struct frame_unwind rs6000_frame_unwind =
3511 {
3512 NORMAL_FRAME,
3513 default_frame_unwind_stop_reason,
3514 rs6000_frame_this_id,
3515 rs6000_frame_prev_register,
3516 NULL,
3517 default_frame_sniffer
3518 };
3519
3520 /* Allocate and initialize a frame cache for an epilogue frame.
3521 SP is restored and prev-PC is stored in LR. */
3522
3523 static struct rs6000_frame_cache *
3524 rs6000_epilogue_frame_cache (struct frame_info *this_frame, void **this_cache)
3525 {
3526 struct rs6000_frame_cache *cache;
3527 struct gdbarch *gdbarch = get_frame_arch (this_frame);
3528 struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch);
3529
3530 if (*this_cache)
3531 return (struct rs6000_frame_cache *) *this_cache;
3532
3533 cache = FRAME_OBSTACK_ZALLOC (struct rs6000_frame_cache);
3534 (*this_cache) = cache;
3535 cache->saved_regs = trad_frame_alloc_saved_regs (this_frame);
3536
3537 TRY
3538 {
3539 /* At this point the stack looks as if we just entered the
3540 function, and the return address is stored in LR. */
3541 CORE_ADDR sp, lr;
3542
3543 sp = get_frame_register_unsigned (this_frame, gdbarch_sp_regnum (gdbarch));
3544 lr = get_frame_register_unsigned (this_frame, tdep->ppc_lr_regnum);
3545
3546 cache->base = sp;
3547 cache->initial_sp = sp;
3548
3549 trad_frame_set_value (cache->saved_regs,
3550 gdbarch_pc_regnum (gdbarch), lr);
3551 }
3552 CATCH (ex, RETURN_MASK_ERROR)
3553 {
3554 if (ex.error != NOT_AVAILABLE_ERROR)
3555 throw_exception (ex);
3556 }
3557 END_CATCH
3558
3559 return cache;
3560 }
3561
3562 /* Implementation of frame_unwind.this_id, as defined in frame_unwind.h.
3563 Return the frame ID of an epilogue frame. */
3564
3565 static void
3566 rs6000_epilogue_frame_this_id (struct frame_info *this_frame,
3567 void **this_cache, struct frame_id *this_id)
3568 {
3569 CORE_ADDR pc;
3570 struct rs6000_frame_cache *info =
3571 rs6000_epilogue_frame_cache (this_frame, this_cache);
3572
3573 pc = get_frame_func (this_frame);
3574 if (info->base == 0)
3575 (*this_id) = frame_id_build_unavailable_stack (pc);
3576 else
3577 (*this_id) = frame_id_build (info->base, pc);
3578 }
3579
3580 /* Implementation of frame_unwind.prev_register, as defined in frame_unwind.h.
3581 Return the register value of REGNUM in previous frame. */
3582
3583 static struct value *
3584 rs6000_epilogue_frame_prev_register (struct frame_info *this_frame,
3585 void **this_cache, int regnum)
3586 {
3587 struct rs6000_frame_cache *info =
3588 rs6000_epilogue_frame_cache (this_frame, this_cache);
3589 return trad_frame_get_prev_register (this_frame, info->saved_regs, regnum);
3590 }
3591
3592 /* Implementation of frame_unwind.sniffer, as defined in frame_unwind.h.
3593 Check whether this an epilogue frame. */
3594
3595 static int
3596 rs6000_epilogue_frame_sniffer (const struct frame_unwind *self,
3597 struct frame_info *this_frame,
3598 void **this_prologue_cache)
3599 {
3600 if (frame_relative_level (this_frame) == 0)
3601 return rs6000_in_function_epilogue_frame_p (this_frame,
3602 get_frame_arch (this_frame),
3603 get_frame_pc (this_frame));
3604 else
3605 return 0;
3606 }
3607
3608 /* Frame unwinder for epilogue frame. This is required for reverse step-over
3609 a function without debug information. */
3610
3611 static const struct frame_unwind rs6000_epilogue_frame_unwind =
3612 {
3613 NORMAL_FRAME,
3614 default_frame_unwind_stop_reason,
3615 rs6000_epilogue_frame_this_id, rs6000_epilogue_frame_prev_register,
3616 NULL,
3617 rs6000_epilogue_frame_sniffer
3618 };
3619 \f
3620
3621 static CORE_ADDR
3622 rs6000_frame_base_address (struct frame_info *this_frame, void **this_cache)
3623 {
3624 struct rs6000_frame_cache *info = rs6000_frame_cache (this_frame,
3625 this_cache);
3626 return info->initial_sp;
3627 }
3628
3629 static const struct frame_base rs6000_frame_base = {
3630 &rs6000_frame_unwind,
3631 rs6000_frame_base_address,
3632 rs6000_frame_base_address,
3633 rs6000_frame_base_address
3634 };
3635
3636 static const struct frame_base *
3637 rs6000_frame_base_sniffer (struct frame_info *this_frame)
3638 {
3639 return &rs6000_frame_base;
3640 }
3641
3642 /* DWARF-2 frame support. Used to handle the detection of
3643 clobbered registers during function calls. */
3644
3645 static void
3646 ppc_dwarf2_frame_init_reg (struct gdbarch *gdbarch, int regnum,
3647 struct dwarf2_frame_state_reg *reg,
3648 struct frame_info *this_frame)
3649 {
3650 struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch);
3651
3652 /* PPC32 and PPC64 ABI's are the same regarding volatile and
3653 non-volatile registers. We will use the same code for both. */
3654
3655 /* Call-saved GP registers. */
3656 if ((regnum >= tdep->ppc_gp0_regnum + 14
3657 && regnum <= tdep->ppc_gp0_regnum + 31)
3658 || (regnum == tdep->ppc_gp0_regnum + 1))
3659 reg->how = DWARF2_FRAME_REG_SAME_VALUE;
3660
3661 /* Call-clobbered GP registers. */
3662 if ((regnum >= tdep->ppc_gp0_regnum + 3
3663 && regnum <= tdep->ppc_gp0_regnum + 12)
3664 || (regnum == tdep->ppc_gp0_regnum))
3665 reg->how = DWARF2_FRAME_REG_UNDEFINED;
3666
3667 /* Deal with FP registers, if supported. */
3668 if (tdep->ppc_fp0_regnum >= 0)
3669 {
3670 /* Call-saved FP registers. */
3671 if ((regnum >= tdep->ppc_fp0_regnum + 14
3672 && regnum <= tdep->ppc_fp0_regnum + 31))
3673 reg->how = DWARF2_FRAME_REG_SAME_VALUE;
3674
3675 /* Call-clobbered FP registers. */
3676 if ((regnum >= tdep->ppc_fp0_regnum
3677 && regnum <= tdep->ppc_fp0_regnum + 13))
3678 reg->how = DWARF2_FRAME_REG_UNDEFINED;
3679 }
3680
3681 /* Deal with ALTIVEC registers, if supported. */
3682 if (tdep->ppc_vr0_regnum > 0 && tdep->ppc_vrsave_regnum > 0)
3683 {
3684 /* Call-saved Altivec registers. */
3685 if ((regnum >= tdep->ppc_vr0_regnum + 20
3686 && regnum <= tdep->ppc_vr0_regnum + 31)
3687 || regnum == tdep->ppc_vrsave_regnum)
3688 reg->how = DWARF2_FRAME_REG_SAME_VALUE;
3689
3690 /* Call-clobbered Altivec registers. */
3691 if ((regnum >= tdep->ppc_vr0_regnum
3692 && regnum <= tdep->ppc_vr0_regnum + 19))
3693 reg->how = DWARF2_FRAME_REG_UNDEFINED;
3694 }
3695
3696 /* Handle PC register and Stack Pointer correctly. */
3697 if (regnum == gdbarch_pc_regnum (gdbarch))
3698 reg->how = DWARF2_FRAME_REG_RA;
3699 else if (regnum == gdbarch_sp_regnum (gdbarch))
3700 reg->how = DWARF2_FRAME_REG_CFA;
3701 }
3702
3703
3704 /* Return true if a .gnu_attributes section exists in BFD and it
3705 indicates we are using SPE extensions OR if a .PPC.EMB.apuinfo
3706 section exists in BFD and it indicates that SPE extensions are in
3707 use. Check the .gnu.attributes section first, as the binary might be
3708 compiled for SPE, but not actually using SPE instructions. */
3709
3710 static int
3711 bfd_uses_spe_extensions (bfd *abfd)
3712 {
3713 asection *sect;
3714 gdb_byte *contents = NULL;
3715 bfd_size_type size;
3716 gdb_byte *ptr;
3717 int success = 0;
3718 int vector_abi;
3719
3720 if (!abfd)
3721 return 0;
3722
3723 #ifdef HAVE_ELF
3724 /* Using Tag_GNU_Power_ABI_Vector here is a bit of a hack, as the user
3725 could be using the SPE vector abi without actually using any spe
3726 bits whatsoever. But it's close enough for now. */
3727 vector_abi = bfd_elf_get_obj_attr_int (abfd, OBJ_ATTR_GNU,
3728 Tag_GNU_Power_ABI_Vector);
3729 if (vector_abi == 3)
3730 return 1;
3731 #endif
3732
3733 sect = bfd_get_section_by_name (abfd, ".PPC.EMB.apuinfo");
3734 if (!sect)
3735 return 0;
3736
3737 size = bfd_get_section_size (sect);
3738 contents = (gdb_byte *) xmalloc (size);
3739 if (!bfd_get_section_contents (abfd, sect, contents, 0, size))
3740 {
3741 xfree (contents);
3742 return 0;
3743 }
3744
3745 /* Parse the .PPC.EMB.apuinfo section. The layout is as follows:
3746
3747 struct {
3748 uint32 name_len;
3749 uint32 data_len;
3750 uint32 type;
3751 char name[name_len rounded up to 4-byte alignment];
3752 char data[data_len];
3753 };
3754
3755 Technically, there's only supposed to be one such structure in a
3756 given apuinfo section, but the linker is not always vigilant about
3757 merging apuinfo sections from input files. Just go ahead and parse
3758 them all, exiting early when we discover the binary uses SPE
3759 insns.
3760
3761 It's not specified in what endianness the information in this
3762 section is stored. Assume that it's the endianness of the BFD. */
3763 ptr = contents;
3764 while (1)
3765 {
3766 unsigned int name_len;
3767 unsigned int data_len;
3768 unsigned int type;
3769
3770 /* If we can't read the first three fields, we're done. */
3771 if (size < 12)
3772 break;
3773
3774 name_len = bfd_get_32 (abfd, ptr);
3775 name_len = (name_len + 3) & ~3U; /* Round to 4 bytes. */
3776 data_len = bfd_get_32 (abfd, ptr + 4);
3777 type = bfd_get_32 (abfd, ptr + 8);
3778 ptr += 12;
3779
3780 /* The name must be "APUinfo\0". */
3781 if (name_len != 8
3782 && strcmp ((const char *) ptr, "APUinfo") != 0)
3783 break;
3784 ptr += name_len;
3785
3786 /* The type must be 2. */
3787 if (type != 2)
3788 break;
3789
3790 /* The data is stored as a series of uint32. The upper half of
3791 each uint32 indicates the particular APU used and the lower
3792 half indicates the revision of that APU. We just care about
3793 the upper half. */
3794
3795 /* Not 4-byte quantities. */
3796 if (data_len & 3U)
3797 break;
3798
3799 while (data_len)
3800 {
3801 unsigned int apuinfo = bfd_get_32 (abfd, ptr);
3802 unsigned int apu = apuinfo >> 16;
3803 ptr += 4;
3804 data_len -= 4;
3805
3806 /* The SPE APU is 0x100; the SPEFP APU is 0x101. Accept
3807 either. */
3808 if (apu == 0x100 || apu == 0x101)
3809 {
3810 success = 1;
3811 data_len = 0;
3812 }
3813 }
3814
3815 if (success)
3816 break;
3817 }
3818
3819 xfree (contents);
3820 return success;
3821 }
3822
3823 /* These are macros for parsing instruction fields (I.1.6.28) */
3824
3825 #define PPC_FIELD(value, from, len) \
3826 (((value) >> (32 - (from) - (len))) & ((1 << (len)) - 1))
3827 #define PPC_SEXT(v, bs) \
3828 ((((CORE_ADDR) (v) & (((CORE_ADDR) 1 << (bs)) - 1)) \
3829 ^ ((CORE_ADDR) 1 << ((bs) - 1))) \
3830 - ((CORE_ADDR) 1 << ((bs) - 1)))
3831 #define PPC_OP6(insn) PPC_FIELD (insn, 0, 6)
3832 #define PPC_EXTOP(insn) PPC_FIELD (insn, 21, 10)
3833 #define PPC_RT(insn) PPC_FIELD (insn, 6, 5)
3834 #define PPC_RS(insn) PPC_FIELD (insn, 6, 5)
3835 #define PPC_RA(insn) PPC_FIELD (insn, 11, 5)
3836 #define PPC_RB(insn) PPC_FIELD (insn, 16, 5)
3837 #define PPC_NB(insn) PPC_FIELD (insn, 16, 5)
3838 #define PPC_VRT(insn) PPC_FIELD (insn, 6, 5)
3839 #define PPC_FRT(insn) PPC_FIELD (insn, 6, 5)
3840 #define PPC_SPR(insn) (PPC_FIELD (insn, 11, 5) \
3841 | (PPC_FIELD (insn, 16, 5) << 5))
3842 #define PPC_BO(insn) PPC_FIELD (insn, 6, 5)
3843 #define PPC_T(insn) PPC_FIELD (insn, 6, 5)
3844 #define PPC_D(insn) PPC_SEXT (PPC_FIELD (insn, 16, 16), 16)
3845 #define PPC_DS(insn) PPC_SEXT (PPC_FIELD (insn, 16, 14), 14)
3846 #define PPC_DQ(insn) PPC_SEXT (PPC_FIELD (insn, 16, 12), 12)
3847 #define PPC_BIT(insn,n) ((insn & (1 << (31 - (n)))) ? 1 : 0)
3848 #define PPC_OE(insn) PPC_BIT (insn, 21)
3849 #define PPC_RC(insn) PPC_BIT (insn, 31)
3850 #define PPC_Rc(insn) PPC_BIT (insn, 21)
3851 #define PPC_LK(insn) PPC_BIT (insn, 31)
3852 #define PPC_TX(insn) PPC_BIT (insn, 31)
3853 #define PPC_LEV(insn) PPC_FIELD (insn, 20, 7)
3854
3855 #define PPC_XT(insn) ((PPC_TX (insn) << 5) | PPC_T (insn))
3856 #define PPC_XER_NB(xer) (xer & 0x7f)
3857
3858 /* Record Vector-Scalar Registers.
3859 For VSR less than 32, it's represented by an FPR and an VSR-upper register.
3860 Otherwise, it's just a VR register. Record them accordingly. */
3861
3862 static int
3863 ppc_record_vsr (struct regcache *regcache, struct gdbarch_tdep *tdep, int vsr)
3864 {
3865 if (vsr < 0 || vsr >= 64)
3866 return -1;
3867
3868 if (vsr >= 32)
3869 {
3870 if (tdep->ppc_vr0_regnum >= 0)
3871 record_full_arch_list_add_reg (regcache, tdep->ppc_vr0_regnum + vsr - 32);
3872 }
3873 else
3874 {
3875 if (tdep->ppc_fp0_regnum >= 0)
3876 record_full_arch_list_add_reg (regcache, tdep->ppc_fp0_regnum + vsr);
3877 if (tdep->ppc_vsr0_upper_regnum >= 0)
3878 record_full_arch_list_add_reg (regcache,
3879 tdep->ppc_vsr0_upper_regnum + vsr);
3880 }
3881
3882 return 0;
3883 }
3884
3885 /* Parse and record instructions primary opcode-4 at ADDR.
3886 Return 0 if successful. */
3887
3888 static int
3889 ppc_process_record_op4 (struct gdbarch *gdbarch, struct regcache *regcache,
3890 CORE_ADDR addr, uint32_t insn)
3891 {
3892 struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch);
3893 int ext = PPC_FIELD (insn, 21, 11);
3894 int vra = PPC_FIELD (insn, 11, 5);
3895
3896 switch (ext & 0x3f)
3897 {
3898 case 32: /* Vector Multiply-High-Add Signed Halfword Saturate */
3899 case 33: /* Vector Multiply-High-Round-Add Signed Halfword Saturate */
3900 case 39: /* Vector Multiply-Sum Unsigned Halfword Saturate */
3901 case 41: /* Vector Multiply-Sum Signed Halfword Saturate */
3902 record_full_arch_list_add_reg (regcache, PPC_VSCR_REGNUM);
3903 /* FALL-THROUGH */
3904 case 42: /* Vector Select */
3905 case 43: /* Vector Permute */
3906 case 59: /* Vector Permute Right-indexed */
3907 case 44: /* Vector Shift Left Double by Octet Immediate */
3908 case 45: /* Vector Permute and Exclusive-OR */
3909 case 60: /* Vector Add Extended Unsigned Quadword Modulo */
3910 case 61: /* Vector Add Extended & write Carry Unsigned Quadword */
3911 case 62: /* Vector Subtract Extended Unsigned Quadword Modulo */
3912 case 63: /* Vector Subtract Extended & write Carry Unsigned Quadword */
3913 case 34: /* Vector Multiply-Low-Add Unsigned Halfword Modulo */
3914 case 35: /* Vector Multiply-Sum Unsigned Doubleword Modulo */
3915 case 36: /* Vector Multiply-Sum Unsigned Byte Modulo */
3916 case 37: /* Vector Multiply-Sum Mixed Byte Modulo */
3917 case 38: /* Vector Multiply-Sum Unsigned Halfword Modulo */
3918 case 40: /* Vector Multiply-Sum Signed Halfword Modulo */
3919 case 46: /* Vector Multiply-Add Single-Precision */
3920 case 47: /* Vector Negative Multiply-Subtract Single-Precision */
3921 record_full_arch_list_add_reg (regcache,
3922 tdep->ppc_vr0_regnum + PPC_VRT (insn));
3923 return 0;
3924
3925 case 48: /* Multiply-Add High Doubleword */
3926 case 49: /* Multiply-Add High Doubleword Unsigned */
3927 case 51: /* Multiply-Add Low Doubleword */
3928 record_full_arch_list_add_reg (regcache,
3929 tdep->ppc_gp0_regnum + PPC_RT (insn));
3930 return 0;
3931 }
3932
3933 switch ((ext & 0x1ff))
3934 {
3935 case 385:
3936 if (vra != 0 /* Decimal Convert To Signed Quadword */
3937 && vra != 2 /* Decimal Convert From Signed Quadword */
3938 && vra != 4 /* Decimal Convert To Zoned */
3939 && vra != 5 /* Decimal Convert To National */
3940 && vra != 6 /* Decimal Convert From Zoned */
3941 && vra != 7 /* Decimal Convert From National */
3942 && vra != 31) /* Decimal Set Sign */
3943 break;
3944 /* 5.16 Decimal Integer Arithmetic Instructions */
3945 case 1: /* Decimal Add Modulo */
3946 case 65: /* Decimal Subtract Modulo */
3947
3948 case 193: /* Decimal Shift */
3949 case 129: /* Decimal Unsigned Shift */
3950 case 449: /* Decimal Shift and Round */
3951
3952 case 257: /* Decimal Truncate */
3953 case 321: /* Decimal Unsigned Truncate */
3954
3955 /* Bit-21 should be set. */
3956 if (!PPC_BIT (insn, 21))
3957 break;
3958
3959 record_full_arch_list_add_reg (regcache,
3960 tdep->ppc_vr0_regnum + PPC_VRT (insn));
3961 record_full_arch_list_add_reg (regcache, tdep->ppc_cr_regnum);
3962 return 0;
3963 }
3964
3965 /* Bit-21 is used for RC */
3966 switch (ext & 0x3ff)
3967 {
3968 case 6: /* Vector Compare Equal To Unsigned Byte */
3969 case 70: /* Vector Compare Equal To Unsigned Halfword */
3970 case 134: /* Vector Compare Equal To Unsigned Word */
3971 case 199: /* Vector Compare Equal To Unsigned Doubleword */
3972 case 774: /* Vector Compare Greater Than Signed Byte */
3973 case 838: /* Vector Compare Greater Than Signed Halfword */
3974 case 902: /* Vector Compare Greater Than Signed Word */
3975 case 967: /* Vector Compare Greater Than Signed Doubleword */
3976 case 518: /* Vector Compare Greater Than Unsigned Byte */
3977 case 646: /* Vector Compare Greater Than Unsigned Word */
3978 case 582: /* Vector Compare Greater Than Unsigned Halfword */
3979 case 711: /* Vector Compare Greater Than Unsigned Doubleword */
3980 case 966: /* Vector Compare Bounds Single-Precision */
3981 case 198: /* Vector Compare Equal To Single-Precision */
3982 case 454: /* Vector Compare Greater Than or Equal To Single-Precision */
3983 case 710: /* Vector Compare Greater Than Single-Precision */
3984 case 7: /* Vector Compare Not Equal Byte */
3985 case 71: /* Vector Compare Not Equal Halfword */
3986 case 135: /* Vector Compare Not Equal Word */
3987 case 263: /* Vector Compare Not Equal or Zero Byte */
3988 case 327: /* Vector Compare Not Equal or Zero Halfword */
3989 case 391: /* Vector Compare Not Equal or Zero Word */
3990 if (PPC_Rc (insn))
3991 record_full_arch_list_add_reg (regcache, tdep->ppc_cr_regnum);
3992 record_full_arch_list_add_reg (regcache,
3993 tdep->ppc_vr0_regnum + PPC_VRT (insn));
3994 return 0;
3995 }
3996
3997 if (ext == 1538)
3998 {
3999 switch (vra)
4000 {
4001 case 0: /* Vector Count Leading Zero Least-Significant Bits
4002 Byte */
4003 case 1: /* Vector Count Trailing Zero Least-Significant Bits
4004 Byte */
4005 record_full_arch_list_add_reg (regcache,
4006 tdep->ppc_gp0_regnum + PPC_RT (insn));
4007 return 0;
4008
4009 case 6: /* Vector Negate Word */
4010 case 7: /* Vector Negate Doubleword */
4011 case 8: /* Vector Parity Byte Word */
4012 case 9: /* Vector Parity Byte Doubleword */
4013 case 10: /* Vector Parity Byte Quadword */
4014 case 16: /* Vector Extend Sign Byte To Word */
4015 case 17: /* Vector Extend Sign Halfword To Word */
4016 case 24: /* Vector Extend Sign Byte To Doubleword */
4017 case 25: /* Vector Extend Sign Halfword To Doubleword */
4018 case 26: /* Vector Extend Sign Word To Doubleword */
4019 case 28: /* Vector Count Trailing Zeros Byte */
4020 case 29: /* Vector Count Trailing Zeros Halfword */
4021 case 30: /* Vector Count Trailing Zeros Word */
4022 case 31: /* Vector Count Trailing Zeros Doubleword */
4023 record_full_arch_list_add_reg (regcache,
4024 tdep->ppc_vr0_regnum + PPC_VRT (insn));
4025 return 0;
4026 }
4027 }
4028
4029 switch (ext)
4030 {
4031 case 142: /* Vector Pack Unsigned Halfword Unsigned Saturate */
4032 case 206: /* Vector Pack Unsigned Word Unsigned Saturate */
4033 case 270: /* Vector Pack Signed Halfword Unsigned Saturate */
4034 case 334: /* Vector Pack Signed Word Unsigned Saturate */
4035 case 398: /* Vector Pack Signed Halfword Signed Saturate */
4036 case 462: /* Vector Pack Signed Word Signed Saturate */
4037 case 1230: /* Vector Pack Unsigned Doubleword Unsigned Saturate */
4038 case 1358: /* Vector Pack Signed Doubleword Unsigned Saturate */
4039 case 1486: /* Vector Pack Signed Doubleword Signed Saturate */
4040 case 512: /* Vector Add Unsigned Byte Saturate */
4041 case 576: /* Vector Add Unsigned Halfword Saturate */
4042 case 640: /* Vector Add Unsigned Word Saturate */
4043 case 768: /* Vector Add Signed Byte Saturate */
4044 case 832: /* Vector Add Signed Halfword Saturate */
4045 case 896: /* Vector Add Signed Word Saturate */
4046 case 1536: /* Vector Subtract Unsigned Byte Saturate */
4047 case 1600: /* Vector Subtract Unsigned Halfword Saturate */
4048 case 1664: /* Vector Subtract Unsigned Word Saturate */
4049 case 1792: /* Vector Subtract Signed Byte Saturate */
4050 case 1856: /* Vector Subtract Signed Halfword Saturate */
4051 case 1920: /* Vector Subtract Signed Word Saturate */
4052
4053 case 1544: /* Vector Sum across Quarter Unsigned Byte Saturate */
4054 case 1800: /* Vector Sum across Quarter Signed Byte Saturate */
4055 case 1608: /* Vector Sum across Quarter Signed Halfword Saturate */
4056 case 1672: /* Vector Sum across Half Signed Word Saturate */
4057 case 1928: /* Vector Sum across Signed Word Saturate */
4058 case 970: /* Vector Convert To Signed Fixed-Point Word Saturate */
4059 case 906: /* Vector Convert To Unsigned Fixed-Point Word Saturate */
4060 record_full_arch_list_add_reg (regcache, PPC_VSCR_REGNUM);
4061 /* FALL-THROUGH */
4062 case 12: /* Vector Merge High Byte */
4063 case 14: /* Vector Pack Unsigned Halfword Unsigned Modulo */
4064 case 76: /* Vector Merge High Halfword */
4065 case 78: /* Vector Pack Unsigned Word Unsigned Modulo */
4066 case 140: /* Vector Merge High Word */
4067 case 268: /* Vector Merge Low Byte */
4068 case 332: /* Vector Merge Low Halfword */
4069 case 396: /* Vector Merge Low Word */
4070 case 526: /* Vector Unpack High Signed Byte */
4071 case 590: /* Vector Unpack High Signed Halfword */
4072 case 654: /* Vector Unpack Low Signed Byte */
4073 case 718: /* Vector Unpack Low Signed Halfword */
4074 case 782: /* Vector Pack Pixel */
4075 case 846: /* Vector Unpack High Pixel */
4076 case 974: /* Vector Unpack Low Pixel */
4077 case 1102: /* Vector Pack Unsigned Doubleword Unsigned Modulo */
4078 case 1614: /* Vector Unpack High Signed Word */
4079 case 1676: /* Vector Merge Odd Word */
4080 case 1742: /* Vector Unpack Low Signed Word */
4081 case 1932: /* Vector Merge Even Word */
4082 case 524: /* Vector Splat Byte */
4083 case 588: /* Vector Splat Halfword */
4084 case 652: /* Vector Splat Word */
4085 case 780: /* Vector Splat Immediate Signed Byte */
4086 case 844: /* Vector Splat Immediate Signed Halfword */
4087 case 908: /* Vector Splat Immediate Signed Word */
4088 case 452: /* Vector Shift Left */
4089 case 708: /* Vector Shift Right */
4090 case 1036: /* Vector Shift Left by Octet */
4091 case 1100: /* Vector Shift Right by Octet */
4092 case 0: /* Vector Add Unsigned Byte Modulo */
4093 case 64: /* Vector Add Unsigned Halfword Modulo */
4094 case 128: /* Vector Add Unsigned Word Modulo */
4095 case 192: /* Vector Add Unsigned Doubleword Modulo */
4096 case 256: /* Vector Add Unsigned Quadword Modulo */
4097 case 320: /* Vector Add & write Carry Unsigned Quadword */
4098 case 384: /* Vector Add and Write Carry-Out Unsigned Word */
4099 case 8: /* Vector Multiply Odd Unsigned Byte */
4100 case 72: /* Vector Multiply Odd Unsigned Halfword */
4101 case 136: /* Vector Multiply Odd Unsigned Word */
4102 case 264: /* Vector Multiply Odd Signed Byte */
4103 case 328: /* Vector Multiply Odd Signed Halfword */
4104 case 392: /* Vector Multiply Odd Signed Word */
4105 case 520: /* Vector Multiply Even Unsigned Byte */
4106 case 584: /* Vector Multiply Even Unsigned Halfword */
4107 case 648: /* Vector Multiply Even Unsigned Word */
4108 case 776: /* Vector Multiply Even Signed Byte */
4109 case 840: /* Vector Multiply Even Signed Halfword */
4110 case 904: /* Vector Multiply Even Signed Word */
4111 case 137: /* Vector Multiply Unsigned Word Modulo */
4112 case 1024: /* Vector Subtract Unsigned Byte Modulo */
4113 case 1088: /* Vector Subtract Unsigned Halfword Modulo */
4114 case 1152: /* Vector Subtract Unsigned Word Modulo */
4115 case 1216: /* Vector Subtract Unsigned Doubleword Modulo */
4116 case 1280: /* Vector Subtract Unsigned Quadword Modulo */
4117 case 1344: /* Vector Subtract & write Carry Unsigned Quadword */
4118 case 1408: /* Vector Subtract and Write Carry-Out Unsigned Word */
4119 case 1282: /* Vector Average Signed Byte */
4120 case 1346: /* Vector Average Signed Halfword */
4121 case 1410: /* Vector Average Signed Word */
4122 case 1026: /* Vector Average Unsigned Byte */
4123 case 1090: /* Vector Average Unsigned Halfword */
4124 case 1154: /* Vector Average Unsigned Word */
4125 case 258: /* Vector Maximum Signed Byte */
4126 case 322: /* Vector Maximum Signed Halfword */
4127 case 386: /* Vector Maximum Signed Word */
4128 case 450: /* Vector Maximum Signed Doubleword */
4129 case 2: /* Vector Maximum Unsigned Byte */
4130 case 66: /* Vector Maximum Unsigned Halfword */
4131 case 130: /* Vector Maximum Unsigned Word */
4132 case 194: /* Vector Maximum Unsigned Doubleword */
4133 case 770: /* Vector Minimum Signed Byte */
4134 case 834: /* Vector Minimum Signed Halfword */
4135 case 898: /* Vector Minimum Signed Word */
4136 case 962: /* Vector Minimum Signed Doubleword */
4137 case 514: /* Vector Minimum Unsigned Byte */
4138 case 578: /* Vector Minimum Unsigned Halfword */
4139 case 642: /* Vector Minimum Unsigned Word */
4140 case 706: /* Vector Minimum Unsigned Doubleword */
4141 case 1028: /* Vector Logical AND */
4142 case 1668: /* Vector Logical Equivalent */
4143 case 1092: /* Vector Logical AND with Complement */
4144 case 1412: /* Vector Logical NAND */
4145 case 1348: /* Vector Logical OR with Complement */
4146 case 1156: /* Vector Logical OR */
4147 case 1284: /* Vector Logical NOR */
4148 case 1220: /* Vector Logical XOR */
4149 case 4: /* Vector Rotate Left Byte */
4150 case 132: /* Vector Rotate Left Word VX-form */
4151 case 68: /* Vector Rotate Left Halfword */
4152 case 196: /* Vector Rotate Left Doubleword */
4153 case 260: /* Vector Shift Left Byte */
4154 case 388: /* Vector Shift Left Word */
4155 case 324: /* Vector Shift Left Halfword */
4156 case 1476: /* Vector Shift Left Doubleword */
4157 case 516: /* Vector Shift Right Byte */
4158 case 644: /* Vector Shift Right Word */
4159 case 580: /* Vector Shift Right Halfword */
4160 case 1732: /* Vector Shift Right Doubleword */
4161 case 772: /* Vector Shift Right Algebraic Byte */
4162 case 900: /* Vector Shift Right Algebraic Word */
4163 case 836: /* Vector Shift Right Algebraic Halfword */
4164 case 964: /* Vector Shift Right Algebraic Doubleword */
4165 case 10: /* Vector Add Single-Precision */
4166 case 74: /* Vector Subtract Single-Precision */
4167 case 1034: /* Vector Maximum Single-Precision */
4168 case 1098: /* Vector Minimum Single-Precision */
4169 case 842: /* Vector Convert From Signed Fixed-Point Word */
4170 case 778: /* Vector Convert From Unsigned Fixed-Point Word */
4171 case 714: /* Vector Round to Single-Precision Integer toward -Infinity */
4172 case 522: /* Vector Round to Single-Precision Integer Nearest */
4173 case 650: /* Vector Round to Single-Precision Integer toward +Infinity */
4174 case 586: /* Vector Round to Single-Precision Integer toward Zero */
4175 case 394: /* Vector 2 Raised to the Exponent Estimate Floating-Point */
4176 case 458: /* Vector Log Base 2 Estimate Floating-Point */
4177 case 266: /* Vector Reciprocal Estimate Single-Precision */
4178 case 330: /* Vector Reciprocal Square Root Estimate Single-Precision */
4179 case 1288: /* Vector AES Cipher */
4180 case 1289: /* Vector AES Cipher Last */
4181 case 1352: /* Vector AES Inverse Cipher */
4182 case 1353: /* Vector AES Inverse Cipher Last */
4183 case 1480: /* Vector AES SubBytes */
4184 case 1730: /* Vector SHA-512 Sigma Doubleword */
4185 case 1666: /* Vector SHA-256 Sigma Word */
4186 case 1032: /* Vector Polynomial Multiply-Sum Byte */
4187 case 1160: /* Vector Polynomial Multiply-Sum Word */
4188 case 1096: /* Vector Polynomial Multiply-Sum Halfword */
4189 case 1224: /* Vector Polynomial Multiply-Sum Doubleword */
4190 case 1292: /* Vector Gather Bits by Bytes by Doubleword */
4191 case 1794: /* Vector Count Leading Zeros Byte */
4192 case 1858: /* Vector Count Leading Zeros Halfword */
4193 case 1922: /* Vector Count Leading Zeros Word */
4194 case 1986: /* Vector Count Leading Zeros Doubleword */
4195 case 1795: /* Vector Population Count Byte */
4196 case 1859: /* Vector Population Count Halfword */
4197 case 1923: /* Vector Population Count Word */
4198 case 1987: /* Vector Population Count Doubleword */
4199 case 1356: /* Vector Bit Permute Quadword */
4200 case 1484: /* Vector Bit Permute Doubleword */
4201 case 513: /* Vector Multiply-by-10 Unsigned Quadword */
4202 case 1: /* Vector Multiply-by-10 & write Carry Unsigned
4203 Quadword */
4204 case 577: /* Vector Multiply-by-10 Extended Unsigned Quadword */
4205 case 65: /* Vector Multiply-by-10 Extended & write Carry
4206 Unsigned Quadword */
4207 case 1027: /* Vector Absolute Difference Unsigned Byte */
4208 case 1091: /* Vector Absolute Difference Unsigned Halfword */
4209 case 1155: /* Vector Absolute Difference Unsigned Word */
4210 case 1796: /* Vector Shift Right Variable */
4211 case 1860: /* Vector Shift Left Variable */
4212 case 133: /* Vector Rotate Left Word then Mask Insert */
4213 case 197: /* Vector Rotate Left Doubleword then Mask Insert */
4214 case 389: /* Vector Rotate Left Word then AND with Mask */
4215 case 453: /* Vector Rotate Left Doubleword then AND with Mask */
4216 case 525: /* Vector Extract Unsigned Byte */
4217 case 589: /* Vector Extract Unsigned Halfword */
4218 case 653: /* Vector Extract Unsigned Word */
4219 case 717: /* Vector Extract Doubleword */
4220 case 781: /* Vector Insert Byte */
4221 case 845: /* Vector Insert Halfword */
4222 case 909: /* Vector Insert Word */
4223 case 973: /* Vector Insert Doubleword */
4224 record_full_arch_list_add_reg (regcache,
4225 tdep->ppc_vr0_regnum + PPC_VRT (insn));
4226 return 0;
4227
4228 case 1549: /* Vector Extract Unsigned Byte Left-Indexed */
4229 case 1613: /* Vector Extract Unsigned Halfword Left-Indexed */
4230 case 1677: /* Vector Extract Unsigned Word Left-Indexed */
4231 case 1805: /* Vector Extract Unsigned Byte Right-Indexed */
4232 case 1869: /* Vector Extract Unsigned Halfword Right-Indexed */
4233 case 1933: /* Vector Extract Unsigned Word Right-Indexed */
4234 record_full_arch_list_add_reg (regcache,
4235 tdep->ppc_gp0_regnum + PPC_RT (insn));
4236 return 0;
4237
4238 case 1604: /* Move To Vector Status and Control Register */
4239 record_full_arch_list_add_reg (regcache, PPC_VSCR_REGNUM);
4240 return 0;
4241 case 1540: /* Move From Vector Status and Control Register */
4242 record_full_arch_list_add_reg (regcache,
4243 tdep->ppc_vr0_regnum + PPC_VRT (insn));
4244 return 0;
4245 case 833: /* Decimal Copy Sign */
4246 record_full_arch_list_add_reg (regcache,
4247 tdep->ppc_vr0_regnum + PPC_VRT (insn));
4248 record_full_arch_list_add_reg (regcache, tdep->ppc_cr_regnum);
4249 return 0;
4250 }
4251
4252 fprintf_unfiltered (gdb_stdlog, "Warning: Don't know how to record %08x "
4253 "at %s, 4-%d.\n", insn, paddress (gdbarch, addr), ext);
4254 return -1;
4255 }
4256
4257 /* Parse and record instructions of primary opcode-19 at ADDR.
4258 Return 0 if successful. */
4259
4260 static int
4261 ppc_process_record_op19 (struct gdbarch *gdbarch, struct regcache *regcache,
4262 CORE_ADDR addr, uint32_t insn)
4263 {
4264 struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch);
4265 int ext = PPC_EXTOP (insn);
4266
4267 switch (ext & 0x01f)
4268 {
4269 case 2: /* Add PC Immediate Shifted */
4270 record_full_arch_list_add_reg (regcache,
4271 tdep->ppc_gp0_regnum + PPC_RT (insn));
4272 return 0;
4273 }
4274
4275 switch (ext)
4276 {
4277 case 0: /* Move Condition Register Field */
4278 case 33: /* Condition Register NOR */
4279 case 129: /* Condition Register AND with Complement */
4280 case 193: /* Condition Register XOR */
4281 case 225: /* Condition Register NAND */
4282 case 257: /* Condition Register AND */
4283 case 289: /* Condition Register Equivalent */
4284 case 417: /* Condition Register OR with Complement */
4285 case 449: /* Condition Register OR */
4286 record_full_arch_list_add_reg (regcache, tdep->ppc_cr_regnum);
4287 return 0;
4288
4289 case 16: /* Branch Conditional */
4290 case 560: /* Branch Conditional to Branch Target Address Register */
4291 if ((PPC_BO (insn) & 0x4) == 0)
4292 record_full_arch_list_add_reg (regcache, tdep->ppc_ctr_regnum);
4293 /* FALL-THROUGH */
4294 case 528: /* Branch Conditional to Count Register */
4295 if (PPC_LK (insn))
4296 record_full_arch_list_add_reg (regcache, tdep->ppc_lr_regnum);
4297 return 0;
4298
4299 case 150: /* Instruction Synchronize */
4300 /* Do nothing. */
4301 return 0;
4302 }
4303
4304 fprintf_unfiltered (gdb_stdlog, "Warning: Don't know how to record %08x "
4305 "at %s, 19-%d.\n", insn, paddress (gdbarch, addr), ext);
4306 return -1;
4307 }
4308
4309 /* Parse and record instructions of primary opcode-31 at ADDR.
4310 Return 0 if successful. */
4311
4312 static int
4313 ppc_process_record_op31 (struct gdbarch *gdbarch, struct regcache *regcache,
4314 CORE_ADDR addr, uint32_t insn)
4315 {
4316 struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch);
4317 int ext = PPC_EXTOP (insn);
4318 int tmp, nr, nb, i;
4319 CORE_ADDR at_dcsz, ea = 0;
4320 ULONGEST rb, ra, xer;
4321 int size = 0;
4322
4323 /* These instructions have OE bit. */
4324 switch (ext & 0x1ff)
4325 {
4326 /* These write RT and XER. Update CR if RC is set. */
4327 case 8: /* Subtract from carrying */
4328 case 10: /* Add carrying */
4329 case 136: /* Subtract from extended */
4330 case 138: /* Add extended */
4331 case 200: /* Subtract from zero extended */
4332 case 202: /* Add to zero extended */
4333 case 232: /* Subtract from minus one extended */
4334 case 234: /* Add to minus one extended */
4335 /* CA is always altered, but SO/OV are only altered when OE=1.
4336 In any case, XER is always altered. */
4337 record_full_arch_list_add_reg (regcache, tdep->ppc_xer_regnum);
4338 if (PPC_RC (insn))
4339 record_full_arch_list_add_reg (regcache, tdep->ppc_cr_regnum);
4340 record_full_arch_list_add_reg (regcache,
4341 tdep->ppc_gp0_regnum + PPC_RT (insn));
4342 return 0;
4343
4344 /* These write RT. Update CR if RC is set and update XER if OE is set. */
4345 case 40: /* Subtract from */
4346 case 104: /* Negate */
4347 case 233: /* Multiply low doubleword */
4348 case 235: /* Multiply low word */
4349 case 266: /* Add */
4350 case 393: /* Divide Doubleword Extended Unsigned */
4351 case 395: /* Divide Word Extended Unsigned */
4352 case 425: /* Divide Doubleword Extended */
4353 case 427: /* Divide Word Extended */
4354 case 457: /* Divide Doubleword Unsigned */
4355 case 459: /* Divide Word Unsigned */
4356 case 489: /* Divide Doubleword */
4357 case 491: /* Divide Word */
4358 if (PPC_OE (insn))
4359 record_full_arch_list_add_reg (regcache, tdep->ppc_xer_regnum);
4360 /* FALL-THROUGH */
4361 case 9: /* Multiply High Doubleword Unsigned */
4362 case 11: /* Multiply High Word Unsigned */
4363 case 73: /* Multiply High Doubleword */
4364 case 75: /* Multiply High Word */
4365 if (PPC_RC (insn))
4366 record_full_arch_list_add_reg (regcache, tdep->ppc_cr_regnum);
4367 record_full_arch_list_add_reg (regcache,
4368 tdep->ppc_gp0_regnum + PPC_RT (insn));
4369 return 0;
4370 }
4371
4372 if ((ext & 0x1f) == 15)
4373 {
4374 /* Integer Select. bit[16:20] is used for BC. */
4375 record_full_arch_list_add_reg (regcache,
4376 tdep->ppc_gp0_regnum + PPC_RT (insn));
4377 return 0;
4378 }
4379
4380 if ((ext & 0xff) == 170)
4381 {
4382 /* Add Extended using alternate carry bits */
4383 record_full_arch_list_add_reg (regcache, tdep->ppc_xer_regnum);
4384 record_full_arch_list_add_reg (regcache,
4385 tdep->ppc_gp0_regnum + PPC_RT (insn));
4386 return 0;
4387 }
4388
4389 switch (ext)
4390 {
4391 case 78: /* Determine Leftmost Zero Byte */
4392 if (PPC_RC (insn))
4393 record_full_arch_list_add_reg (regcache, tdep->ppc_cr_regnum);
4394 record_full_arch_list_add_reg (regcache, tdep->ppc_xer_regnum);
4395 record_full_arch_list_add_reg (regcache,
4396 tdep->ppc_gp0_regnum + PPC_RT (insn));
4397 return 0;
4398
4399 /* These only write RT. */
4400 case 19: /* Move from condition register */
4401 /* Move From One Condition Register Field */
4402 case 74: /* Add and Generate Sixes */
4403 case 74 | 0x200: /* Add and Generate Sixes (bit-21 dont-care) */
4404 case 302: /* Move From Branch History Rolling Buffer */
4405 case 339: /* Move From Special Purpose Register */
4406 case 371: /* Move From Time Base [Phased-Out] */
4407 case 309: /* Load Doubleword Monitored Indexed */
4408 case 128: /* Set Boolean */
4409 case 755: /* Deliver A Random Number */
4410 record_full_arch_list_add_reg (regcache,
4411 tdep->ppc_gp0_regnum + PPC_RT (insn));
4412 return 0;
4413
4414 /* These only write to RA. */
4415 case 51: /* Move From VSR Doubleword */
4416 case 115: /* Move From VSR Word and Zero */
4417 case 122: /* Population count bytes */
4418 case 378: /* Population count words */
4419 case 506: /* Population count doublewords */
4420 case 154: /* Parity Word */
4421 case 186: /* Parity Doubleword */
4422 case 252: /* Bit Permute Doubleword */
4423 case 282: /* Convert Declets To Binary Coded Decimal */
4424 case 314: /* Convert Binary Coded Decimal To Declets */
4425 case 508: /* Compare bytes */
4426 case 307: /* Move From VSR Lower Doubleword */
4427 record_full_arch_list_add_reg (regcache,
4428 tdep->ppc_gp0_regnum + PPC_RA (insn));
4429 return 0;
4430
4431 /* These write CR and optional RA. */
4432 case 792: /* Shift Right Algebraic Word */
4433 case 794: /* Shift Right Algebraic Doubleword */
4434 case 824: /* Shift Right Algebraic Word Immediate */
4435 case 826: /* Shift Right Algebraic Doubleword Immediate (413) */
4436 case 826 | 1: /* Shift Right Algebraic Doubleword Immediate (413) */
4437 record_full_arch_list_add_reg (regcache, tdep->ppc_xer_regnum);
4438 record_full_arch_list_add_reg (regcache,
4439 tdep->ppc_gp0_regnum + PPC_RA (insn));
4440 /* FALL-THROUGH */
4441 case 0: /* Compare */
4442 case 32: /* Compare logical */
4443 case 144: /* Move To Condition Register Fields */
4444 /* Move To One Condition Register Field */
4445 case 192: /* Compare Ranged Byte */
4446 case 224: /* Compare Equal Byte */
4447 case 576: /* Move XER to CR Extended */
4448 case 902: /* Paste (should always fail due to single-stepping and
4449 the memory location might not be accessible, so
4450 record only CR) */
4451 record_full_arch_list_add_reg (regcache, tdep->ppc_cr_regnum);
4452 return 0;
4453
4454 /* These write to RT. Update RA if 'update indexed.' */
4455 case 53: /* Load Doubleword with Update Indexed */
4456 case 119: /* Load Byte and Zero with Update Indexed */
4457 case 311: /* Load Halfword and Zero with Update Indexed */
4458 case 55: /* Load Word and Zero with Update Indexed */
4459 case 375: /* Load Halfword Algebraic with Update Indexed */
4460 case 373: /* Load Word Algebraic with Update Indexed */
4461 record_full_arch_list_add_reg (regcache,
4462 tdep->ppc_gp0_regnum + PPC_RA (insn));
4463 /* FALL-THROUGH */
4464 case 21: /* Load Doubleword Indexed */
4465 case 52: /* Load Byte And Reserve Indexed */
4466 case 116: /* Load Halfword And Reserve Indexed */
4467 case 20: /* Load Word And Reserve Indexed */
4468 case 84: /* Load Doubleword And Reserve Indexed */
4469 case 87: /* Load Byte and Zero Indexed */
4470 case 279: /* Load Halfword and Zero Indexed */
4471 case 23: /* Load Word and Zero Indexed */
4472 case 343: /* Load Halfword Algebraic Indexed */
4473 case 341: /* Load Word Algebraic Indexed */
4474 case 790: /* Load Halfword Byte-Reverse Indexed */
4475 case 534: /* Load Word Byte-Reverse Indexed */
4476 case 532: /* Load Doubleword Byte-Reverse Indexed */
4477 case 582: /* Load Word Atomic */
4478 case 614: /* Load Doubleword Atomic */
4479 case 265: /* Modulo Unsigned Doubleword */
4480 case 777: /* Modulo Signed Doubleword */
4481 case 267: /* Modulo Unsigned Word */
4482 case 779: /* Modulo Signed Word */
4483 record_full_arch_list_add_reg (regcache,
4484 tdep->ppc_gp0_regnum + PPC_RT (insn));
4485 return 0;
4486
4487 case 597: /* Load String Word Immediate */
4488 case 533: /* Load String Word Indexed */
4489 if (ext == 597)
4490 {
4491 nr = PPC_NB (insn);
4492 if (nr == 0)
4493 nr = 32;
4494 }
4495 else
4496 {
4497 regcache_raw_read_unsigned (regcache, tdep->ppc_xer_regnum, &xer);
4498 nr = PPC_XER_NB (xer);
4499 }
4500
4501 nr = (nr + 3) >> 2;
4502
4503 /* If n=0, the contents of register RT are undefined. */
4504 if (nr == 0)
4505 nr = 1;
4506
4507 for (i = 0; i < nr; i++)
4508 record_full_arch_list_add_reg (regcache,
4509 tdep->ppc_gp0_regnum
4510 + ((PPC_RT (insn) + i) & 0x1f));
4511 return 0;
4512
4513 case 276: /* Load Quadword And Reserve Indexed */
4514 tmp = tdep->ppc_gp0_regnum + (PPC_RT (insn) & ~1);
4515 record_full_arch_list_add_reg (regcache, tmp);
4516 record_full_arch_list_add_reg (regcache, tmp + 1);
4517 return 0;
4518
4519 /* These write VRT. */
4520 case 6: /* Load Vector for Shift Left Indexed */
4521 case 38: /* Load Vector for Shift Right Indexed */
4522 case 7: /* Load Vector Element Byte Indexed */
4523 case 39: /* Load Vector Element Halfword Indexed */
4524 case 71: /* Load Vector Element Word Indexed */
4525 case 103: /* Load Vector Indexed */
4526 case 359: /* Load Vector Indexed LRU */
4527 record_full_arch_list_add_reg (regcache,
4528 tdep->ppc_vr0_regnum + PPC_VRT (insn));
4529 return 0;
4530
4531 /* These write FRT. Update RA if 'update indexed.' */
4532 case 567: /* Load Floating-Point Single with Update Indexed */
4533 case 631: /* Load Floating-Point Double with Update Indexed */
4534 record_full_arch_list_add_reg (regcache,
4535 tdep->ppc_gp0_regnum + PPC_RA (insn));
4536 /* FALL-THROUGH */
4537 case 535: /* Load Floating-Point Single Indexed */
4538 case 599: /* Load Floating-Point Double Indexed */
4539 case 855: /* Load Floating-Point as Integer Word Algebraic Indexed */
4540 case 887: /* Load Floating-Point as Integer Word and Zero Indexed */
4541 record_full_arch_list_add_reg (regcache,
4542 tdep->ppc_fp0_regnum + PPC_FRT (insn));
4543 return 0;
4544
4545 case 791: /* Load Floating-Point Double Pair Indexed */
4546 tmp = tdep->ppc_fp0_regnum + (PPC_FRT (insn) & ~1);
4547 record_full_arch_list_add_reg (regcache, tmp);
4548 record_full_arch_list_add_reg (regcache, tmp + 1);
4549 return 0;
4550
4551 case 179: /* Move To VSR Doubleword */
4552 case 211: /* Move To VSR Word Algebraic */
4553 case 243: /* Move To VSR Word and Zero */
4554 case 588: /* Load VSX Scalar Doubleword Indexed */
4555 case 524: /* Load VSX Scalar Single-Precision Indexed */
4556 case 76: /* Load VSX Scalar as Integer Word Algebraic Indexed */
4557 case 12: /* Load VSX Scalar as Integer Word and Zero Indexed */
4558 case 844: /* Load VSX Vector Doubleword*2 Indexed */
4559 case 332: /* Load VSX Vector Doubleword & Splat Indexed */
4560 case 780: /* Load VSX Vector Word*4 Indexed */
4561 case 268: /* Load VSX Vector Indexed */
4562 case 364: /* Load VSX Vector Word & Splat Indexed */
4563 case 812: /* Load VSX Vector Halfword*8 Indexed */
4564 case 876: /* Load VSX Vector Byte*16 Indexed */
4565 case 269: /* Load VSX Vector with Length */
4566 case 301: /* Load VSX Vector Left-justified with Length */
4567 case 781: /* Load VSX Scalar as Integer Byte & Zero Indexed */
4568 case 813: /* Load VSX Scalar as Integer Halfword & Zero Indexed */
4569 case 403: /* Move To VSR Word & Splat */
4570 case 435: /* Move To VSR Double Doubleword */
4571 ppc_record_vsr (regcache, tdep, PPC_XT (insn));
4572 return 0;
4573
4574 /* These write RA. Update CR if RC is set. */
4575 case 24: /* Shift Left Word */
4576 case 26: /* Count Leading Zeros Word */
4577 case 27: /* Shift Left Doubleword */
4578 case 28: /* AND */
4579 case 58: /* Count Leading Zeros Doubleword */
4580 case 60: /* AND with Complement */
4581 case 124: /* NOR */
4582 case 284: /* Equivalent */
4583 case 316: /* XOR */
4584 case 476: /* NAND */
4585 case 412: /* OR with Complement */
4586 case 444: /* OR */
4587 case 536: /* Shift Right Word */
4588 case 539: /* Shift Right Doubleword */
4589 case 922: /* Extend Sign Halfword */
4590 case 954: /* Extend Sign Byte */
4591 case 986: /* Extend Sign Word */
4592 case 538: /* Count Trailing Zeros Word */
4593 case 570: /* Count Trailing Zeros Doubleword */
4594 case 890: /* Extend-Sign Word and Shift Left Immediate (445) */
4595 case 890 | 1: /* Extend-Sign Word and Shift Left Immediate (445) */
4596 if (PPC_RC (insn))
4597 record_full_arch_list_add_reg (regcache, tdep->ppc_cr_regnum);
4598 record_full_arch_list_add_reg (regcache,
4599 tdep->ppc_gp0_regnum + PPC_RA (insn));
4600 return 0;
4601
4602 /* Store memory. */
4603 case 181: /* Store Doubleword with Update Indexed */
4604 case 183: /* Store Word with Update Indexed */
4605 case 247: /* Store Byte with Update Indexed */
4606 case 439: /* Store Half Word with Update Indexed */
4607 case 695: /* Store Floating-Point Single with Update Indexed */
4608 case 759: /* Store Floating-Point Double with Update Indexed */
4609 record_full_arch_list_add_reg (regcache,
4610 tdep->ppc_gp0_regnum + PPC_RA (insn));
4611 /* FALL-THROUGH */
4612 case 135: /* Store Vector Element Byte Indexed */
4613 case 167: /* Store Vector Element Halfword Indexed */
4614 case 199: /* Store Vector Element Word Indexed */
4615 case 231: /* Store Vector Indexed */
4616 case 487: /* Store Vector Indexed LRU */
4617 case 716: /* Store VSX Scalar Doubleword Indexed */
4618 case 140: /* Store VSX Scalar as Integer Word Indexed */
4619 case 652: /* Store VSX Scalar Single-Precision Indexed */
4620 case 972: /* Store VSX Vector Doubleword*2 Indexed */
4621 case 908: /* Store VSX Vector Word*4 Indexed */
4622 case 149: /* Store Doubleword Indexed */
4623 case 151: /* Store Word Indexed */
4624 case 215: /* Store Byte Indexed */
4625 case 407: /* Store Half Word Indexed */
4626 case 694: /* Store Byte Conditional Indexed */
4627 case 726: /* Store Halfword Conditional Indexed */
4628 case 150: /* Store Word Conditional Indexed */
4629 case 214: /* Store Doubleword Conditional Indexed */
4630 case 182: /* Store Quadword Conditional Indexed */
4631 case 662: /* Store Word Byte-Reverse Indexed */
4632 case 918: /* Store Halfword Byte-Reverse Indexed */
4633 case 660: /* Store Doubleword Byte-Reverse Indexed */
4634 case 663: /* Store Floating-Point Single Indexed */
4635 case 727: /* Store Floating-Point Double Indexed */
4636 case 919: /* Store Floating-Point Double Pair Indexed */
4637 case 983: /* Store Floating-Point as Integer Word Indexed */
4638 case 396: /* Store VSX Vector Indexed */
4639 case 940: /* Store VSX Vector Halfword*8 Indexed */
4640 case 1004: /* Store VSX Vector Byte*16 Indexed */
4641 case 909: /* Store VSX Scalar as Integer Byte Indexed */
4642 case 941: /* Store VSX Scalar as Integer Halfword Indexed */
4643 if (ext == 694 || ext == 726 || ext == 150 || ext == 214 || ext == 182)
4644 record_full_arch_list_add_reg (regcache, tdep->ppc_cr_regnum);
4645
4646 ra = 0;
4647 if (PPC_RA (insn) != 0)
4648 regcache_raw_read_unsigned (regcache,
4649 tdep->ppc_gp0_regnum + PPC_RA (insn), &ra);
4650 regcache_raw_read_unsigned (regcache,
4651 tdep->ppc_gp0_regnum + PPC_RB (insn), &rb);
4652 ea = ra + rb;
4653
4654 switch (ext)
4655 {
4656 case 183: /* Store Word with Update Indexed */
4657 case 199: /* Store Vector Element Word Indexed */
4658 case 140: /* Store VSX Scalar as Integer Word Indexed */
4659 case 652: /* Store VSX Scalar Single-Precision Indexed */
4660 case 151: /* Store Word Indexed */
4661 case 150: /* Store Word Conditional Indexed */
4662 case 662: /* Store Word Byte-Reverse Indexed */
4663 case 663: /* Store Floating-Point Single Indexed */
4664 case 695: /* Store Floating-Point Single with Update Indexed */
4665 case 983: /* Store Floating-Point as Integer Word Indexed */
4666 size = 4;
4667 break;
4668 case 247: /* Store Byte with Update Indexed */
4669 case 135: /* Store Vector Element Byte Indexed */
4670 case 215: /* Store Byte Indexed */
4671 case 694: /* Store Byte Conditional Indexed */
4672 case 909: /* Store VSX Scalar as Integer Byte Indexed */
4673 size = 1;
4674 break;
4675 case 439: /* Store Halfword with Update Indexed */
4676 case 167: /* Store Vector Element Halfword Indexed */
4677 case 407: /* Store Halfword Indexed */
4678 case 726: /* Store Halfword Conditional Indexed */
4679 case 918: /* Store Halfword Byte-Reverse Indexed */
4680 case 941: /* Store VSX Scalar as Integer Halfword Indexed */
4681 size = 2;
4682 break;
4683 case 181: /* Store Doubleword with Update Indexed */
4684 case 716: /* Store VSX Scalar Doubleword Indexed */
4685 case 149: /* Store Doubleword Indexed */
4686 case 214: /* Store Doubleword Conditional Indexed */
4687 case 660: /* Store Doubleword Byte-Reverse Indexed */
4688 case 727: /* Store Floating-Point Double Indexed */
4689 case 759: /* Store Floating-Point Double with Update Indexed */
4690 size = 8;
4691 break;
4692 case 972: /* Store VSX Vector Doubleword*2 Indexed */
4693 case 908: /* Store VSX Vector Word*4 Indexed */
4694 case 182: /* Store Quadword Conditional Indexed */
4695 case 231: /* Store Vector Indexed */
4696 case 487: /* Store Vector Indexed LRU */
4697 case 919: /* Store Floating-Point Double Pair Indexed */
4698 case 396: /* Store VSX Vector Indexed */
4699 case 940: /* Store VSX Vector Halfword*8 Indexed */
4700 case 1004: /* Store VSX Vector Byte*16 Indexed */
4701 size = 16;
4702 break;
4703 default:
4704 gdb_assert (0);
4705 }
4706
4707 /* Align address for Store Vector instructions. */
4708 switch (ext)
4709 {
4710 case 167: /* Store Vector Element Halfword Indexed */
4711 addr = addr & ~0x1ULL;
4712 break;
4713
4714 case 199: /* Store Vector Element Word Indexed */
4715 addr = addr & ~0x3ULL;
4716 break;
4717
4718 case 231: /* Store Vector Indexed */
4719 case 487: /* Store Vector Indexed LRU */
4720 addr = addr & ~0xfULL;
4721 break;
4722 }
4723
4724 record_full_arch_list_add_mem (addr, size);
4725 return 0;
4726
4727 case 397: /* Store VSX Vector with Length */
4728 case 429: /* Store VSX Vector Left-justified with Length */
4729 ra = 0;
4730 if (PPC_RA (insn) != 0)
4731 regcache_raw_read_unsigned (regcache,
4732 tdep->ppc_gp0_regnum + PPC_RA (insn), &ra);
4733 ea = ra;
4734 regcache_raw_read_unsigned (regcache,
4735 tdep->ppc_gp0_regnum + PPC_RB (insn), &rb);
4736 /* Store up to 16 bytes. */
4737 nb = (rb & 0xff) > 16 ? 16 : (rb & 0xff);
4738 if (nb > 0)
4739 record_full_arch_list_add_mem (ea, nb);
4740 return 0;
4741
4742 case 710: /* Store Word Atomic */
4743 case 742: /* Store Doubleword Atomic */
4744 ra = 0;
4745 if (PPC_RA (insn) != 0)
4746 regcache_raw_read_unsigned (regcache,
4747 tdep->ppc_gp0_regnum + PPC_RA (insn), &ra);
4748 ea = ra;
4749 switch (ext)
4750 {
4751 case 710: /* Store Word Atomic */
4752 size = 8;
4753 break;
4754 case 742: /* Store Doubleword Atomic */
4755 size = 16;
4756 break;
4757 default:
4758 gdb_assert (0);
4759 }
4760 record_full_arch_list_add_mem (ea, size);
4761 return 0;
4762
4763 case 725: /* Store String Word Immediate */
4764 ra = 0;
4765 if (PPC_RA (insn) != 0)
4766 regcache_raw_read_unsigned (regcache,
4767 tdep->ppc_gp0_regnum + PPC_RA (insn), &ra);
4768 ea += ra;
4769
4770 nb = PPC_NB (insn);
4771 if (nb == 0)
4772 nb = 32;
4773
4774 record_full_arch_list_add_mem (ea, nb);
4775
4776 return 0;
4777
4778 case 661: /* Store String Word Indexed */
4779 ra = 0;
4780 if (PPC_RA (insn) != 0)
4781 regcache_raw_read_unsigned (regcache,
4782 tdep->ppc_gp0_regnum + PPC_RA (insn), &ra);
4783 ea += ra;
4784
4785 regcache_raw_read_unsigned (regcache, tdep->ppc_xer_regnum, &xer);
4786 nb = PPC_XER_NB (xer);
4787
4788 if (nb != 0)
4789 {
4790 regcache_raw_read_unsigned (regcache,
4791 tdep->ppc_gp0_regnum + PPC_RB (insn),
4792 &rb);
4793 ea += rb;
4794 record_full_arch_list_add_mem (ea, nb);
4795 }
4796
4797 return 0;
4798
4799 case 467: /* Move To Special Purpose Register */
4800 switch (PPC_SPR (insn))
4801 {
4802 case 1: /* XER */
4803 record_full_arch_list_add_reg (regcache, tdep->ppc_xer_regnum);
4804 return 0;
4805 case 8: /* LR */
4806 record_full_arch_list_add_reg (regcache, tdep->ppc_lr_regnum);
4807 return 0;
4808 case 9: /* CTR */
4809 record_full_arch_list_add_reg (regcache, tdep->ppc_ctr_regnum);
4810 return 0;
4811 case 256: /* VRSAVE */
4812 record_full_arch_list_add_reg (regcache, tdep->ppc_vrsave_regnum);
4813 return 0;
4814 }
4815
4816 goto UNKNOWN_OP;
4817
4818 case 147: /* Move To Split Little Endian */
4819 record_full_arch_list_add_reg (regcache, tdep->ppc_ps_regnum);
4820 return 0;
4821
4822 case 512: /* Move to Condition Register from XER */
4823 record_full_arch_list_add_reg (regcache, tdep->ppc_cr_regnum);
4824 record_full_arch_list_add_reg (regcache, tdep->ppc_xer_regnum);
4825 return 0;
4826
4827 case 4: /* Trap Word */
4828 case 68: /* Trap Doubleword */
4829 case 430: /* Clear BHRB */
4830 case 598: /* Synchronize */
4831 case 62: /* Wait for Interrupt */
4832 case 30: /* Wait */
4833 case 22: /* Instruction Cache Block Touch */
4834 case 854: /* Enforce In-order Execution of I/O */
4835 case 246: /* Data Cache Block Touch for Store */
4836 case 54: /* Data Cache Block Store */
4837 case 86: /* Data Cache Block Flush */
4838 case 278: /* Data Cache Block Touch */
4839 case 758: /* Data Cache Block Allocate */
4840 case 982: /* Instruction Cache Block Invalidate */
4841 case 774: /* Copy */
4842 case 838: /* CP_Abort */
4843 return 0;
4844
4845 case 654: /* Transaction Begin */
4846 case 686: /* Transaction End */
4847 case 750: /* Transaction Suspend or Resume */
4848 case 782: /* Transaction Abort Word Conditional */
4849 case 814: /* Transaction Abort Doubleword Conditional */
4850 case 846: /* Transaction Abort Word Conditional Immediate */
4851 case 878: /* Transaction Abort Doubleword Conditional Immediate */
4852 case 910: /* Transaction Abort */
4853 record_full_arch_list_add_reg (regcache, tdep->ppc_ps_regnum);
4854 /* FALL-THROUGH */
4855 case 718: /* Transaction Check */
4856 record_full_arch_list_add_reg (regcache, tdep->ppc_cr_regnum);
4857 return 0;
4858
4859 case 1014: /* Data Cache Block set to Zero */
4860 if (target_auxv_search (&current_target, AT_DCACHEBSIZE, &at_dcsz) <= 0
4861 || at_dcsz == 0)
4862 at_dcsz = 128; /* Assume 128-byte cache line size (POWER8) */
4863
4864 ra = 0;
4865 if (PPC_RA (insn) != 0)
4866 regcache_raw_read_unsigned (regcache,
4867 tdep->ppc_gp0_regnum + PPC_RA (insn), &ra);
4868 regcache_raw_read_unsigned (regcache,
4869 tdep->ppc_gp0_regnum + PPC_RB (insn), &rb);
4870 ea = (ra + rb) & ~((ULONGEST) (at_dcsz - 1));
4871 record_full_arch_list_add_mem (ea, at_dcsz);
4872 return 0;
4873 }
4874
4875 UNKNOWN_OP:
4876 fprintf_unfiltered (gdb_stdlog, "Warning: Don't know how to record %08x "
4877 "at %s, 31-%d.\n", insn, paddress (gdbarch, addr), ext);
4878 return -1;
4879 }
4880
4881 /* Parse and record instructions of primary opcode-59 at ADDR.
4882 Return 0 if successful. */
4883
4884 static int
4885 ppc_process_record_op59 (struct gdbarch *gdbarch, struct regcache *regcache,
4886 CORE_ADDR addr, uint32_t insn)
4887 {
4888 struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch);
4889 int ext = PPC_EXTOP (insn);
4890
4891 switch (ext & 0x1f)
4892 {
4893 case 18: /* Floating Divide */
4894 case 20: /* Floating Subtract */
4895 case 21: /* Floating Add */
4896 case 22: /* Floating Square Root */
4897 case 24: /* Floating Reciprocal Estimate */
4898 case 25: /* Floating Multiply */
4899 case 26: /* Floating Reciprocal Square Root Estimate */
4900 case 28: /* Floating Multiply-Subtract */
4901 case 29: /* Floating Multiply-Add */
4902 case 30: /* Floating Negative Multiply-Subtract */
4903 case 31: /* Floating Negative Multiply-Add */
4904 record_full_arch_list_add_reg (regcache,
4905 tdep->ppc_fp0_regnum + PPC_FRT (insn));
4906 if (PPC_RC (insn))
4907 record_full_arch_list_add_reg (regcache, tdep->ppc_cr_regnum);
4908 record_full_arch_list_add_reg (regcache, tdep->ppc_fpscr_regnum);
4909
4910 return 0;
4911 }
4912
4913 switch (ext)
4914 {
4915 case 2: /* DFP Add */
4916 case 3: /* DFP Quantize */
4917 case 34: /* DFP Multiply */
4918 case 35: /* DFP Reround */
4919 case 67: /* DFP Quantize Immediate */
4920 case 99: /* DFP Round To FP Integer With Inexact */
4921 case 227: /* DFP Round To FP Integer Without Inexact */
4922 case 258: /* DFP Convert To DFP Long! */
4923 case 290: /* DFP Convert To Fixed */
4924 case 514: /* DFP Subtract */
4925 case 546: /* DFP Divide */
4926 case 770: /* DFP Round To DFP Short! */
4927 case 802: /* DFP Convert From Fixed */
4928 case 834: /* DFP Encode BCD To DPD */
4929 if (PPC_RC (insn))
4930 record_full_arch_list_add_reg (regcache, tdep->ppc_cr_regnum);
4931 record_full_arch_list_add_reg (regcache,
4932 tdep->ppc_fp0_regnum + PPC_FRT (insn));
4933 record_full_arch_list_add_reg (regcache, tdep->ppc_fpscr_regnum);
4934 return 0;
4935
4936 case 130: /* DFP Compare Ordered */
4937 case 162: /* DFP Test Exponent */
4938 case 194: /* DFP Test Data Class */
4939 case 226: /* DFP Test Data Group */
4940 case 642: /* DFP Compare Unordered */
4941 case 674: /* DFP Test Significance */
4942 case 675: /* DFP Test Significance Immediate */
4943 record_full_arch_list_add_reg (regcache, tdep->ppc_cr_regnum);
4944 record_full_arch_list_add_reg (regcache, tdep->ppc_fpscr_regnum);
4945 return 0;
4946
4947 case 66: /* DFP Shift Significand Left Immediate */
4948 case 98: /* DFP Shift Significand Right Immediate */
4949 case 322: /* DFP Decode DPD To BCD */
4950 case 354: /* DFP Extract Biased Exponent */
4951 case 866: /* DFP Insert Biased Exponent */
4952 record_full_arch_list_add_reg (regcache,
4953 tdep->ppc_fp0_regnum + PPC_FRT (insn));
4954 if (PPC_RC (insn))
4955 record_full_arch_list_add_reg (regcache, tdep->ppc_cr_regnum);
4956 return 0;
4957
4958 case 846: /* Floating Convert From Integer Doubleword Single */
4959 case 974: /* Floating Convert From Integer Doubleword Unsigned
4960 Single */
4961 record_full_arch_list_add_reg (regcache,
4962 tdep->ppc_fp0_regnum + PPC_FRT (insn));
4963 if (PPC_RC (insn))
4964 record_full_arch_list_add_reg (regcache, tdep->ppc_cr_regnum);
4965 record_full_arch_list_add_reg (regcache, tdep->ppc_fpscr_regnum);
4966
4967 return 0;
4968 }
4969
4970 fprintf_unfiltered (gdb_stdlog, "Warning: Don't know how to record %08x "
4971 "at %s, 59-%d.\n", insn, paddress (gdbarch, addr), ext);
4972 return -1;
4973 }
4974
4975 /* Parse and record instructions of primary opcode-60 at ADDR.
4976 Return 0 if successful. */
4977
4978 static int
4979 ppc_process_record_op60 (struct gdbarch *gdbarch, struct regcache *regcache,
4980 CORE_ADDR addr, uint32_t insn)
4981 {
4982 struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch);
4983 int ext = PPC_EXTOP (insn);
4984
4985 switch (ext >> 2)
4986 {
4987 case 0: /* VSX Scalar Add Single-Precision */
4988 case 32: /* VSX Scalar Add Double-Precision */
4989 case 24: /* VSX Scalar Divide Single-Precision */
4990 case 56: /* VSX Scalar Divide Double-Precision */
4991 case 176: /* VSX Scalar Copy Sign Double-Precision */
4992 case 33: /* VSX Scalar Multiply-Add Double-Precision */
4993 case 41: /* ditto */
4994 case 1: /* VSX Scalar Multiply-Add Single-Precision */
4995 case 9: /* ditto */
4996 case 160: /* VSX Scalar Maximum Double-Precision */
4997 case 168: /* VSX Scalar Minimum Double-Precision */
4998 case 49: /* VSX Scalar Multiply-Subtract Double-Precision */
4999 case 57: /* ditto */
5000 case 17: /* VSX Scalar Multiply-Subtract Single-Precision */
5001 case 25: /* ditto */
5002 case 48: /* VSX Scalar Multiply Double-Precision */
5003 case 16: /* VSX Scalar Multiply Single-Precision */
5004 case 161: /* VSX Scalar Negative Multiply-Add Double-Precision */
5005 case 169: /* ditto */
5006 case 129: /* VSX Scalar Negative Multiply-Add Single-Precision */
5007 case 137: /* ditto */
5008 case 177: /* VSX Scalar Negative Multiply-Subtract Double-Precision */
5009 case 185: /* ditto */
5010 case 145: /* VSX Scalar Negative Multiply-Subtract Single-Precision */
5011 case 153: /* ditto */
5012 case 40: /* VSX Scalar Subtract Double-Precision */
5013 case 8: /* VSX Scalar Subtract Single-Precision */
5014 case 96: /* VSX Vector Add Double-Precision */
5015 case 64: /* VSX Vector Add Single-Precision */
5016 case 120: /* VSX Vector Divide Double-Precision */
5017 case 88: /* VSX Vector Divide Single-Precision */
5018 case 97: /* VSX Vector Multiply-Add Double-Precision */
5019 case 105: /* ditto */
5020 case 65: /* VSX Vector Multiply-Add Single-Precision */
5021 case 73: /* ditto */
5022 case 224: /* VSX Vector Maximum Double-Precision */
5023 case 192: /* VSX Vector Maximum Single-Precision */
5024 case 232: /* VSX Vector Minimum Double-Precision */
5025 case 200: /* VSX Vector Minimum Single-Precision */
5026 case 113: /* VSX Vector Multiply-Subtract Double-Precision */
5027 case 121: /* ditto */
5028 case 81: /* VSX Vector Multiply-Subtract Single-Precision */
5029 case 89: /* ditto */
5030 case 112: /* VSX Vector Multiply Double-Precision */
5031 case 80: /* VSX Vector Multiply Single-Precision */
5032 case 225: /* VSX Vector Negative Multiply-Add Double-Precision */
5033 case 233: /* ditto */
5034 case 193: /* VSX Vector Negative Multiply-Add Single-Precision */
5035 case 201: /* ditto */
5036 case 241: /* VSX Vector Negative Multiply-Subtract Double-Precision */
5037 case 249: /* ditto */
5038 case 209: /* VSX Vector Negative Multiply-Subtract Single-Precision */
5039 case 217: /* ditto */
5040 case 104: /* VSX Vector Subtract Double-Precision */
5041 case 72: /* VSX Vector Subtract Single-Precision */
5042 case 128: /* VSX Scalar Maximum Type-C Double-Precision */
5043 case 136: /* VSX Scalar Minimum Type-C Double-Precision */
5044 case 144: /* VSX Scalar Maximum Type-J Double-Precision */
5045 case 152: /* VSX Scalar Minimum Type-J Double-Precision */
5046 case 3: /* VSX Scalar Compare Equal Double-Precision */
5047 case 11: /* VSX Scalar Compare Greater Than Double-Precision */
5048 case 19: /* VSX Scalar Compare Greater Than or Equal
5049 Double-Precision */
5050 record_full_arch_list_add_reg (regcache, tdep->ppc_fpscr_regnum);
5051 /* FALL-THROUGH */
5052 case 240: /* VSX Vector Copy Sign Double-Precision */
5053 case 208: /* VSX Vector Copy Sign Single-Precision */
5054 case 130: /* VSX Logical AND */
5055 case 138: /* VSX Logical AND with Complement */
5056 case 186: /* VSX Logical Equivalence */
5057 case 178: /* VSX Logical NAND */
5058 case 170: /* VSX Logical OR with Complement */
5059 case 162: /* VSX Logical NOR */
5060 case 146: /* VSX Logical OR */
5061 case 154: /* VSX Logical XOR */
5062 case 18: /* VSX Merge High Word */
5063 case 50: /* VSX Merge Low Word */
5064 case 10: /* VSX Permute Doubleword Immediate (DM=0) */
5065 case 10 | 0x20: /* VSX Permute Doubleword Immediate (DM=1) */
5066 case 10 | 0x40: /* VSX Permute Doubleword Immediate (DM=2) */
5067 case 10 | 0x60: /* VSX Permute Doubleword Immediate (DM=3) */
5068 case 2: /* VSX Shift Left Double by Word Immediate (SHW=0) */
5069 case 2 | 0x20: /* VSX Shift Left Double by Word Immediate (SHW=1) */
5070 case 2 | 0x40: /* VSX Shift Left Double by Word Immediate (SHW=2) */
5071 case 2 | 0x60: /* VSX Shift Left Double by Word Immediate (SHW=3) */
5072 case 216: /* VSX Vector Insert Exponent Single-Precision */
5073 case 248: /* VSX Vector Insert Exponent Double-Precision */
5074 case 26: /* VSX Vector Permute */
5075 case 58: /* VSX Vector Permute Right-indexed */
5076 case 213: /* VSX Vector Test Data Class Single-Precision (DC=0) */
5077 case 213 | 0x8: /* VSX Vector Test Data Class Single-Precision (DC=1) */
5078 case 245: /* VSX Vector Test Data Class Double-Precision (DC=0) */
5079 case 245 | 0x8: /* VSX Vector Test Data Class Double-Precision (DC=1) */
5080 ppc_record_vsr (regcache, tdep, PPC_XT (insn));
5081 return 0;
5082
5083 case 61: /* VSX Scalar Test for software Divide Double-Precision */
5084 case 125: /* VSX Vector Test for software Divide Double-Precision */
5085 case 93: /* VSX Vector Test for software Divide Single-Precision */
5086 record_full_arch_list_add_reg (regcache, tdep->ppc_cr_regnum);
5087 return 0;
5088
5089 case 35: /* VSX Scalar Compare Unordered Double-Precision */
5090 case 43: /* VSX Scalar Compare Ordered Double-Precision */
5091 case 59: /* VSX Scalar Compare Exponents Double-Precision */
5092 record_full_arch_list_add_reg (regcache, tdep->ppc_cr_regnum);
5093 record_full_arch_list_add_reg (regcache, tdep->ppc_fpscr_regnum);
5094 return 0;
5095 }
5096
5097 switch ((ext >> 2) & 0x7f) /* Mask out Rc-bit. */
5098 {
5099 case 99: /* VSX Vector Compare Equal To Double-Precision */
5100 case 67: /* VSX Vector Compare Equal To Single-Precision */
5101 case 115: /* VSX Vector Compare Greater Than or
5102 Equal To Double-Precision */
5103 case 83: /* VSX Vector Compare Greater Than or
5104 Equal To Single-Precision */
5105 case 107: /* VSX Vector Compare Greater Than Double-Precision */
5106 case 75: /* VSX Vector Compare Greater Than Single-Precision */
5107 if (PPC_Rc (insn))
5108 record_full_arch_list_add_reg (regcache, tdep->ppc_cr_regnum);
5109 record_full_arch_list_add_reg (regcache, tdep->ppc_fpscr_regnum);
5110 ppc_record_vsr (regcache, tdep, PPC_XT (insn));
5111 return 0;
5112 }
5113
5114 switch (ext >> 1)
5115 {
5116 case 265: /* VSX Scalar round Double-Precision to
5117 Single-Precision and Convert to
5118 Single-Precision format */
5119 case 344: /* VSX Scalar truncate Double-Precision to
5120 Integer and Convert to Signed Integer
5121 Doubleword format with Saturate */
5122 case 88: /* VSX Scalar truncate Double-Precision to
5123 Integer and Convert to Signed Integer Word
5124 Format with Saturate */
5125 case 328: /* VSX Scalar truncate Double-Precision integer
5126 and Convert to Unsigned Integer Doubleword
5127 Format with Saturate */
5128 case 72: /* VSX Scalar truncate Double-Precision to
5129 Integer and Convert to Unsigned Integer Word
5130 Format with Saturate */
5131 case 329: /* VSX Scalar Convert Single-Precision to
5132 Double-Precision format */
5133 case 376: /* VSX Scalar Convert Signed Integer
5134 Doubleword to floating-point format and
5135 Round to Double-Precision format */
5136 case 312: /* VSX Scalar Convert Signed Integer
5137 Doubleword to floating-point format and
5138 round to Single-Precision */
5139 case 360: /* VSX Scalar Convert Unsigned Integer
5140 Doubleword to floating-point format and
5141 Round to Double-Precision format */
5142 case 296: /* VSX Scalar Convert Unsigned Integer
5143 Doubleword to floating-point format and
5144 Round to Single-Precision */
5145 case 73: /* VSX Scalar Round to Double-Precision Integer
5146 Using Round to Nearest Away */
5147 case 107: /* VSX Scalar Round to Double-Precision Integer
5148 Exact using Current rounding mode */
5149 case 121: /* VSX Scalar Round to Double-Precision Integer
5150 Using Round toward -Infinity */
5151 case 105: /* VSX Scalar Round to Double-Precision Integer
5152 Using Round toward +Infinity */
5153 case 89: /* VSX Scalar Round to Double-Precision Integer
5154 Using Round toward Zero */
5155 case 90: /* VSX Scalar Reciprocal Estimate Double-Precision */
5156 case 26: /* VSX Scalar Reciprocal Estimate Single-Precision */
5157 case 281: /* VSX Scalar Round to Single-Precision */
5158 case 74: /* VSX Scalar Reciprocal Square Root Estimate
5159 Double-Precision */
5160 case 10: /* VSX Scalar Reciprocal Square Root Estimate
5161 Single-Precision */
5162 case 75: /* VSX Scalar Square Root Double-Precision */
5163 case 11: /* VSX Scalar Square Root Single-Precision */
5164 case 393: /* VSX Vector round Double-Precision to
5165 Single-Precision and Convert to
5166 Single-Precision format */
5167 case 472: /* VSX Vector truncate Double-Precision to
5168 Integer and Convert to Signed Integer
5169 Doubleword format with Saturate */
5170 case 216: /* VSX Vector truncate Double-Precision to
5171 Integer and Convert to Signed Integer Word
5172 Format with Saturate */
5173 case 456: /* VSX Vector truncate Double-Precision to
5174 Integer and Convert to Unsigned Integer
5175 Doubleword format with Saturate */
5176 case 200: /* VSX Vector truncate Double-Precision to
5177 Integer and Convert to Unsigned Integer Word
5178 Format with Saturate */
5179 case 457: /* VSX Vector Convert Single-Precision to
5180 Double-Precision format */
5181 case 408: /* VSX Vector truncate Single-Precision to
5182 Integer and Convert to Signed Integer
5183 Doubleword format with Saturate */
5184 case 152: /* VSX Vector truncate Single-Precision to
5185 Integer and Convert to Signed Integer Word
5186 Format with Saturate */
5187 case 392: /* VSX Vector truncate Single-Precision to
5188 Integer and Convert to Unsigned Integer
5189 Doubleword format with Saturate */
5190 case 136: /* VSX Vector truncate Single-Precision to
5191 Integer and Convert to Unsigned Integer Word
5192 Format with Saturate */
5193 case 504: /* VSX Vector Convert and round Signed Integer
5194 Doubleword to Double-Precision format */
5195 case 440: /* VSX Vector Convert and round Signed Integer
5196 Doubleword to Single-Precision format */
5197 case 248: /* VSX Vector Convert Signed Integer Word to
5198 Double-Precision format */
5199 case 184: /* VSX Vector Convert and round Signed Integer
5200 Word to Single-Precision format */
5201 case 488: /* VSX Vector Convert and round Unsigned
5202 Integer Doubleword to Double-Precision format */
5203 case 424: /* VSX Vector Convert and round Unsigned
5204 Integer Doubleword to Single-Precision format */
5205 case 232: /* VSX Vector Convert and round Unsigned
5206 Integer Word to Double-Precision format */
5207 case 168: /* VSX Vector Convert and round Unsigned
5208 Integer Word to Single-Precision format */
5209 case 201: /* VSX Vector Round to Double-Precision
5210 Integer using round to Nearest Away */
5211 case 235: /* VSX Vector Round to Double-Precision
5212 Integer Exact using Current rounding mode */
5213 case 249: /* VSX Vector Round to Double-Precision
5214 Integer using round toward -Infinity */
5215 case 233: /* VSX Vector Round to Double-Precision
5216 Integer using round toward +Infinity */
5217 case 217: /* VSX Vector Round to Double-Precision
5218 Integer using round toward Zero */
5219 case 218: /* VSX Vector Reciprocal Estimate Double-Precision */
5220 case 154: /* VSX Vector Reciprocal Estimate Single-Precision */
5221 case 137: /* VSX Vector Round to Single-Precision Integer
5222 Using Round to Nearest Away */
5223 case 171: /* VSX Vector Round to Single-Precision Integer
5224 Exact Using Current rounding mode */
5225 case 185: /* VSX Vector Round to Single-Precision Integer
5226 Using Round toward -Infinity */
5227 case 169: /* VSX Vector Round to Single-Precision Integer
5228 Using Round toward +Infinity */
5229 case 153: /* VSX Vector Round to Single-Precision Integer
5230 Using round toward Zero */
5231 case 202: /* VSX Vector Reciprocal Square Root Estimate
5232 Double-Precision */
5233 case 138: /* VSX Vector Reciprocal Square Root Estimate
5234 Single-Precision */
5235 case 203: /* VSX Vector Square Root Double-Precision */
5236 case 139: /* VSX Vector Square Root Single-Precision */
5237 record_full_arch_list_add_reg (regcache, tdep->ppc_fpscr_regnum);
5238 /* FALL-THROUGH */
5239 case 345: /* VSX Scalar Absolute Value Double-Precision */
5240 case 267: /* VSX Scalar Convert Scalar Single-Precision to
5241 Vector Single-Precision format Non-signalling */
5242 case 331: /* VSX Scalar Convert Single-Precision to
5243 Double-Precision format Non-signalling */
5244 case 361: /* VSX Scalar Negative Absolute Value Double-Precision */
5245 case 377: /* VSX Scalar Negate Double-Precision */
5246 case 473: /* VSX Vector Absolute Value Double-Precision */
5247 case 409: /* VSX Vector Absolute Value Single-Precision */
5248 case 489: /* VSX Vector Negative Absolute Value Double-Precision */
5249 case 425: /* VSX Vector Negative Absolute Value Single-Precision */
5250 case 505: /* VSX Vector Negate Double-Precision */
5251 case 441: /* VSX Vector Negate Single-Precision */
5252 case 164: /* VSX Splat Word */
5253 case 165: /* VSX Vector Extract Unsigned Word */
5254 case 181: /* VSX Vector Insert Word */
5255 ppc_record_vsr (regcache, tdep, PPC_XT (insn));
5256 return 0;
5257
5258 case 298: /* VSX Scalar Test Data Class Single-Precision */
5259 case 362: /* VSX Scalar Test Data Class Double-Precision */
5260 record_full_arch_list_add_reg (regcache, tdep->ppc_fpscr_regnum);
5261 /* FALL-THROUGH */
5262 case 106: /* VSX Scalar Test for software Square Root
5263 Double-Precision */
5264 case 234: /* VSX Vector Test for software Square Root
5265 Double-Precision */
5266 case 170: /* VSX Vector Test for software Square Root
5267 Single-Precision */
5268 record_full_arch_list_add_reg (regcache, tdep->ppc_cr_regnum);
5269 return 0;
5270
5271 case 347:
5272 switch (PPC_FIELD (insn, 11, 5))
5273 {
5274 case 0: /* VSX Scalar Extract Exponent Double-Precision */
5275 case 1: /* VSX Scalar Extract Significand Double-Precision */
5276 record_full_arch_list_add_reg (regcache,
5277 tdep->ppc_gp0_regnum + PPC_RT (insn));
5278 return 0;
5279 case 16: /* VSX Scalar Convert Half-Precision format to
5280 Double-Precision format */
5281 case 17: /* VSX Scalar round & Convert Double-Precision format
5282 to Half-Precision format */
5283 record_full_arch_list_add_reg (regcache, tdep->ppc_fpscr_regnum);
5284 ppc_record_vsr (regcache, tdep, PPC_XT (insn));
5285 return 0;
5286 }
5287 break;
5288
5289 case 475:
5290 switch (PPC_FIELD (insn, 11, 5))
5291 {
5292 case 24: /* VSX Vector Convert Half-Precision format to
5293 Single-Precision format */
5294 case 25: /* VSX Vector round and Convert Single-Precision format
5295 to Half-Precision format */
5296 record_full_arch_list_add_reg (regcache, tdep->ppc_fpscr_regnum);
5297 /* FALL-THROUGH */
5298 case 0: /* VSX Vector Extract Exponent Double-Precision */
5299 case 1: /* VSX Vector Extract Significand Double-Precision */
5300 case 7: /* VSX Vector Byte-Reverse Halfword */
5301 case 8: /* VSX Vector Extract Exponent Single-Precision */
5302 case 9: /* VSX Vector Extract Significand Single-Precision */
5303 case 15: /* VSX Vector Byte-Reverse Word */
5304 case 23: /* VSX Vector Byte-Reverse Doubleword */
5305 case 31: /* VSX Vector Byte-Reverse Quadword */
5306 ppc_record_vsr (regcache, tdep, PPC_XT (insn));
5307 return 0;
5308 }
5309 break;
5310 }
5311
5312 switch (ext)
5313 {
5314 case 360: /* VSX Vector Splat Immediate Byte */
5315 if (PPC_FIELD (insn, 11, 2) == 0)
5316 {
5317 ppc_record_vsr (regcache, tdep, PPC_XT (insn));
5318 return 0;
5319 }
5320 break;
5321 case 918: /* VSX Scalar Insert Exponent Double-Precision */
5322 ppc_record_vsr (regcache, tdep, PPC_XT (insn));
5323 return 0;
5324 }
5325
5326 if (((ext >> 3) & 0x3) == 3) /* VSX Select */
5327 {
5328 ppc_record_vsr (regcache, tdep, PPC_XT (insn));
5329 return 0;
5330 }
5331
5332 fprintf_unfiltered (gdb_stdlog, "Warning: Don't know how to record %08x "
5333 "at %s, 60-%d.\n", insn, paddress (gdbarch, addr), ext);
5334 return -1;
5335 }
5336
5337 /* Parse and record instructions of primary opcode-61 at ADDR.
5338 Return 0 if successful. */
5339
5340 static int
5341 ppc_process_record_op61 (struct gdbarch *gdbarch, struct regcache *regcache,
5342 CORE_ADDR addr, uint32_t insn)
5343 {
5344 struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch);
5345 ULONGEST ea = 0;
5346 int size;
5347
5348 switch (insn & 0x3)
5349 {
5350 case 0: /* Store Floating-Point Double Pair */
5351 case 2: /* Store VSX Scalar Doubleword */
5352 case 3: /* Store VSX Scalar Single */
5353 if (PPC_RA (insn) != 0)
5354 regcache_raw_read_unsigned (regcache,
5355 tdep->ppc_gp0_regnum + PPC_RA (insn),
5356 &ea);
5357 ea += PPC_DS (insn) << 2;
5358 switch (insn & 0x3)
5359 {
5360 case 0: /* Store Floating-Point Double Pair */
5361 size = 16;
5362 break;
5363 case 2: /* Store VSX Scalar Doubleword */
5364 size = 8;
5365 break;
5366 case 3: /* Store VSX Scalar Single */
5367 size = 4;
5368 break;
5369 default:
5370 gdb_assert (0);
5371 }
5372 record_full_arch_list_add_mem (ea, size);
5373 return 0;
5374 }
5375
5376 switch (insn & 0x7)
5377 {
5378 case 1: /* Load VSX Vector */
5379 ppc_record_vsr (regcache, tdep, PPC_XT (insn));
5380 return 0;
5381 case 5: /* Store VSX Vector */
5382 if (PPC_RA (insn) != 0)
5383 regcache_raw_read_unsigned (regcache,
5384 tdep->ppc_gp0_regnum + PPC_RA (insn),
5385 &ea);
5386 ea += PPC_DQ (insn) << 4;
5387 record_full_arch_list_add_mem (ea, 16);
5388 return 0;
5389 }
5390
5391 fprintf_unfiltered (gdb_stdlog, "Warning: Don't know how to record %08x "
5392 "at %s.\n", insn, paddress (gdbarch, addr));
5393 return -1;
5394 }
5395
5396 /* Parse and record instructions of primary opcode-63 at ADDR.
5397 Return 0 if successful. */
5398
5399 static int
5400 ppc_process_record_op63 (struct gdbarch *gdbarch, struct regcache *regcache,
5401 CORE_ADDR addr, uint32_t insn)
5402 {
5403 struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch);
5404 int ext = PPC_EXTOP (insn);
5405 int tmp;
5406
5407 switch (ext & 0x1f)
5408 {
5409 case 18: /* Floating Divide */
5410 case 20: /* Floating Subtract */
5411 case 21: /* Floating Add */
5412 case 22: /* Floating Square Root */
5413 case 24: /* Floating Reciprocal Estimate */
5414 case 25: /* Floating Multiply */
5415 case 26: /* Floating Reciprocal Square Root Estimate */
5416 case 28: /* Floating Multiply-Subtract */
5417 case 29: /* Floating Multiply-Add */
5418 case 30: /* Floating Negative Multiply-Subtract */
5419 case 31: /* Floating Negative Multiply-Add */
5420 record_full_arch_list_add_reg (regcache,
5421 tdep->ppc_fp0_regnum + PPC_FRT (insn));
5422 if (PPC_RC (insn))
5423 record_full_arch_list_add_reg (regcache, tdep->ppc_cr_regnum);
5424 record_full_arch_list_add_reg (regcache, tdep->ppc_fpscr_regnum);
5425 return 0;
5426
5427 case 23: /* Floating Select */
5428 record_full_arch_list_add_reg (regcache,
5429 tdep->ppc_fp0_regnum + PPC_FRT (insn));
5430 if (PPC_RC (insn))
5431 record_full_arch_list_add_reg (regcache, tdep->ppc_cr_regnum);
5432 return 0;
5433 }
5434
5435 switch (ext & 0xff)
5436 {
5437 case 5: /* VSX Scalar Round to Quad-Precision Integer */
5438 case 37: /* VSX Scalar Round Quad-Precision to Double-Extended
5439 Precision */
5440 record_full_arch_list_add_reg (regcache, tdep->ppc_fpscr_regnum);
5441 ppc_record_vsr (regcache, tdep, PPC_VRT (insn) + 32);
5442 return 0;
5443 }
5444
5445 switch (ext)
5446 {
5447 case 2: /* DFP Add Quad */
5448 case 3: /* DFP Quantize Quad */
5449 case 34: /* DFP Multiply Quad */
5450 case 35: /* DFP Reround Quad */
5451 case 67: /* DFP Quantize Immediate Quad */
5452 case 99: /* DFP Round To FP Integer With Inexact Quad */
5453 case 227: /* DFP Round To FP Integer Without Inexact Quad */
5454 case 258: /* DFP Convert To DFP Extended Quad */
5455 case 514: /* DFP Subtract Quad */
5456 case 546: /* DFP Divide Quad */
5457 case 770: /* DFP Round To DFP Long Quad */
5458 case 802: /* DFP Convert From Fixed Quad */
5459 case 834: /* DFP Encode BCD To DPD Quad */
5460 if (PPC_RC (insn))
5461 record_full_arch_list_add_reg (regcache, tdep->ppc_cr_regnum);
5462 tmp = tdep->ppc_fp0_regnum + (PPC_FRT (insn) & ~1);
5463 record_full_arch_list_add_reg (regcache, tmp);
5464 record_full_arch_list_add_reg (regcache, tmp + 1);
5465 record_full_arch_list_add_reg (regcache, tdep->ppc_fpscr_regnum);
5466 return 0;
5467
5468 case 130: /* DFP Compare Ordered Quad */
5469 case 162: /* DFP Test Exponent Quad */
5470 case 194: /* DFP Test Data Class Quad */
5471 case 226: /* DFP Test Data Group Quad */
5472 case 642: /* DFP Compare Unordered Quad */
5473 case 674: /* DFP Test Significance Quad */
5474 case 675: /* DFP Test Significance Immediate Quad */
5475 record_full_arch_list_add_reg (regcache, tdep->ppc_cr_regnum);
5476 record_full_arch_list_add_reg (regcache, tdep->ppc_fpscr_regnum);
5477 return 0;
5478
5479 case 66: /* DFP Shift Significand Left Immediate Quad */
5480 case 98: /* DFP Shift Significand Right Immediate Quad */
5481 case 322: /* DFP Decode DPD To BCD Quad */
5482 case 866: /* DFP Insert Biased Exponent Quad */
5483 tmp = tdep->ppc_fp0_regnum + (PPC_FRT (insn) & ~1);
5484 record_full_arch_list_add_reg (regcache, tmp);
5485 record_full_arch_list_add_reg (regcache, tmp + 1);
5486 if (PPC_RC (insn))
5487 record_full_arch_list_add_reg (regcache, tdep->ppc_cr_regnum);
5488 return 0;
5489
5490 case 290: /* DFP Convert To Fixed Quad */
5491 record_full_arch_list_add_reg (regcache,
5492 tdep->ppc_fp0_regnum + PPC_FRT (insn));
5493 if (PPC_RC (insn))
5494 record_full_arch_list_add_reg (regcache, tdep->ppc_cr_regnum);
5495 record_full_arch_list_add_reg (regcache, tdep->ppc_fpscr_regnum);
5496 return 0;
5497
5498 case 354: /* DFP Extract Biased Exponent Quad */
5499 record_full_arch_list_add_reg (regcache,
5500 tdep->ppc_fp0_regnum + PPC_FRT (insn));
5501 if (PPC_RC (insn))
5502 record_full_arch_list_add_reg (regcache, tdep->ppc_cr_regnum);
5503 return 0;
5504
5505 case 12: /* Floating Round to Single-Precision */
5506 case 14: /* Floating Convert To Integer Word */
5507 case 15: /* Floating Convert To Integer Word
5508 with round toward Zero */
5509 case 142: /* Floating Convert To Integer Word Unsigned */
5510 case 143: /* Floating Convert To Integer Word Unsigned
5511 with round toward Zero */
5512 case 392: /* Floating Round to Integer Nearest */
5513 case 424: /* Floating Round to Integer Toward Zero */
5514 case 456: /* Floating Round to Integer Plus */
5515 case 488: /* Floating Round to Integer Minus */
5516 case 814: /* Floating Convert To Integer Doubleword */
5517 case 815: /* Floating Convert To Integer Doubleword
5518 with round toward Zero */
5519 case 846: /* Floating Convert From Integer Doubleword */
5520 case 942: /* Floating Convert To Integer Doubleword Unsigned */
5521 case 943: /* Floating Convert To Integer Doubleword Unsigned
5522 with round toward Zero */
5523 case 974: /* Floating Convert From Integer Doubleword Unsigned */
5524 record_full_arch_list_add_reg (regcache,
5525 tdep->ppc_fp0_regnum + PPC_FRT (insn));
5526 if (PPC_RC (insn))
5527 record_full_arch_list_add_reg (regcache, tdep->ppc_cr_regnum);
5528 record_full_arch_list_add_reg (regcache, tdep->ppc_fpscr_regnum);
5529 return 0;
5530
5531 case 583:
5532 switch (PPC_FIELD (insn, 11, 5))
5533 {
5534 case 1: /* Move From FPSCR & Clear Enables */
5535 case 20: /* Move From FPSCR Control & set DRN */
5536 case 21: /* Move From FPSCR Control & set DRN Immediate */
5537 case 22: /* Move From FPSCR Control & set RN */
5538 case 23: /* Move From FPSCR Control & set RN Immediate */
5539 record_full_arch_list_add_reg (regcache, tdep->ppc_fpscr_regnum);
5540 case 0: /* Move From FPSCR */
5541 case 24: /* Move From FPSCR Lightweight */
5542 if (PPC_FIELD (insn, 11, 5) == 0 && PPC_RC (insn))
5543 record_full_arch_list_add_reg (regcache, tdep->ppc_cr_regnum);
5544 record_full_arch_list_add_reg (regcache,
5545 tdep->ppc_fp0_regnum
5546 + PPC_FRT (insn));
5547 return 0;
5548 }
5549 break;
5550
5551 case 8: /* Floating Copy Sign */
5552 case 40: /* Floating Negate */
5553 case 72: /* Floating Move Register */
5554 case 136: /* Floating Negative Absolute Value */
5555 case 264: /* Floating Absolute Value */
5556 record_full_arch_list_add_reg (regcache,
5557 tdep->ppc_fp0_regnum + PPC_FRT (insn));
5558 if (PPC_RC (insn))
5559 record_full_arch_list_add_reg (regcache, tdep->ppc_cr_regnum);
5560 return 0;
5561
5562 case 838: /* Floating Merge Odd Word */
5563 case 966: /* Floating Merge Even Word */
5564 record_full_arch_list_add_reg (regcache,
5565 tdep->ppc_fp0_regnum + PPC_FRT (insn));
5566 return 0;
5567
5568 case 38: /* Move To FPSCR Bit 1 */
5569 case 70: /* Move To FPSCR Bit 0 */
5570 case 134: /* Move To FPSCR Field Immediate */
5571 case 711: /* Move To FPSCR Fields */
5572 if (PPC_RC (insn))
5573 record_full_arch_list_add_reg (regcache, tdep->ppc_cr_regnum);
5574 record_full_arch_list_add_reg (regcache, tdep->ppc_fpscr_regnum);
5575 return 0;
5576
5577 case 0: /* Floating Compare Unordered */
5578 case 32: /* Floating Compare Ordered */
5579 case 64: /* Move to Condition Register from FPSCR */
5580 case 132: /* VSX Scalar Compare Ordered Quad-Precision */
5581 case 164: /* VSX Scalar Compare Exponents Quad-Precision */
5582 case 644: /* VSX Scalar Compare Unordered Quad-Precision */
5583 case 708: /* VSX Scalar Test Data Class Quad-Precision */
5584 record_full_arch_list_add_reg (regcache, tdep->ppc_fpscr_regnum);
5585 /* FALL-THROUGH */
5586 case 128: /* Floating Test for software Divide */
5587 case 160: /* Floating Test for software Square Root */
5588 record_full_arch_list_add_reg (regcache, tdep->ppc_cr_regnum);
5589 return 0;
5590
5591 case 4: /* VSX Scalar Add Quad-Precision */
5592 case 36: /* VSX Scalar Multiply Quad-Precision */
5593 case 388: /* VSX Scalar Multiply-Add Quad-Precision */
5594 case 420: /* VSX Scalar Multiply-Subtract Quad-Precision */
5595 case 452: /* VSX Scalar Negative Multiply-Add Quad-Precision */
5596 case 484: /* VSX Scalar Negative Multiply-Subtract
5597 Quad-Precision */
5598 case 516: /* VSX Scalar Subtract Quad-Precision */
5599 case 548: /* VSX Scalar Divide Quad-Precision */
5600 record_full_arch_list_add_reg (regcache, tdep->ppc_fpscr_regnum);
5601 /* FALL-THROUGH */
5602 case 100: /* VSX Scalar Copy Sign Quad-Precision */
5603 case 868: /* VSX Scalar Insert Exponent Quad-Precision */
5604 ppc_record_vsr (regcache, tdep, PPC_VRT (insn) + 32);
5605 return 0;
5606
5607 case 804:
5608 switch (PPC_FIELD (insn, 11, 5))
5609 {
5610 case 27: /* VSX Scalar Square Root Quad-Precision */
5611 record_full_arch_list_add_reg (regcache, tdep->ppc_fpscr_regnum);
5612 /* FALL-THROUGH */
5613 case 0: /* VSX Scalar Absolute Quad-Precision */
5614 case 2: /* VSX Scalar Extract Exponent Quad-Precision */
5615 case 8: /* VSX Scalar Negative Absolute Quad-Precision */
5616 case 16: /* VSX Scalar Negate Quad-Precision */
5617 case 18: /* VSX Scalar Extract Significand Quad-Precision */
5618 ppc_record_vsr (regcache, tdep, PPC_VRT (insn) + 32);
5619 return 0;
5620 }
5621 break;
5622
5623 case 836:
5624 switch (PPC_FIELD (insn, 11, 5))
5625 {
5626 case 1: /* VSX Scalar truncate & Convert Quad-Precision format
5627 to Unsigned Word format */
5628 case 2: /* VSX Scalar Convert Unsigned Doubleword format to
5629 Quad-Precision format */
5630 case 9: /* VSX Scalar truncate & Convert Quad-Precision format
5631 to Signed Word format */
5632 case 10: /* VSX Scalar Convert Signed Doubleword format to
5633 Quad-Precision format */
5634 case 17: /* VSX Scalar truncate & Convert Quad-Precision format
5635 to Unsigned Doubleword format */
5636 case 20: /* VSX Scalar round & Convert Quad-Precision format to
5637 Double-Precision format */
5638 case 22: /* VSX Scalar Convert Double-Precision format to
5639 Quad-Precision format */
5640 case 25: /* VSX Scalar truncate & Convert Quad-Precision format
5641 to Signed Doubleword format */
5642 record_full_arch_list_add_reg (regcache, tdep->ppc_fpscr_regnum);
5643 ppc_record_vsr (regcache, tdep, PPC_VRT (insn) + 32);
5644 return 0;
5645 }
5646 }
5647
5648 fprintf_unfiltered (gdb_stdlog, "Warning: Don't know how to record %08x "
5649 "at %s, 63-%d.\n", insn, paddress (gdbarch, addr), ext);
5650 return -1;
5651 }
5652
5653 /* Parse the current instruction and record the values of the registers and
5654 memory that will be changed in current instruction to "record_arch_list".
5655 Return -1 if something wrong. */
5656
5657 int
5658 ppc_process_record (struct gdbarch *gdbarch, struct regcache *regcache,
5659 CORE_ADDR addr)
5660 {
5661 struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch);
5662 enum bfd_endian byte_order = gdbarch_byte_order (gdbarch);
5663 uint32_t insn;
5664 int op6, tmp, i;
5665
5666 insn = read_memory_unsigned_integer (addr, 4, byte_order);
5667 op6 = PPC_OP6 (insn);
5668
5669 switch (op6)
5670 {
5671 case 2: /* Trap Doubleword Immediate */
5672 case 3: /* Trap Word Immediate */
5673 /* Do nothing. */
5674 break;
5675
5676 case 4:
5677 if (ppc_process_record_op4 (gdbarch, regcache, addr, insn) != 0)
5678 return -1;
5679 break;
5680
5681 case 17: /* System call */
5682 if (PPC_LEV (insn) != 0)
5683 goto UNKNOWN_OP;
5684
5685 if (tdep->ppc_syscall_record != NULL)
5686 {
5687 if (tdep->ppc_syscall_record (regcache) != 0)
5688 return -1;
5689 }
5690 else
5691 {
5692 printf_unfiltered (_("no syscall record support\n"));
5693 return -1;
5694 }
5695 break;
5696
5697 case 7: /* Multiply Low Immediate */
5698 record_full_arch_list_add_reg (regcache,
5699 tdep->ppc_gp0_regnum + PPC_RT (insn));
5700 break;
5701
5702 case 8: /* Subtract From Immediate Carrying */
5703 record_full_arch_list_add_reg (regcache, tdep->ppc_xer_regnum);
5704 record_full_arch_list_add_reg (regcache,
5705 tdep->ppc_gp0_regnum + PPC_RT (insn));
5706 break;
5707
5708 case 10: /* Compare Logical Immediate */
5709 case 11: /* Compare Immediate */
5710 record_full_arch_list_add_reg (regcache, tdep->ppc_cr_regnum);
5711 break;
5712
5713 case 13: /* Add Immediate Carrying and Record */
5714 record_full_arch_list_add_reg (regcache, tdep->ppc_cr_regnum);
5715 /* FALL-THROUGH */
5716 case 12: /* Add Immediate Carrying */
5717 record_full_arch_list_add_reg (regcache, tdep->ppc_xer_regnum);
5718 /* FALL-THROUGH */
5719 case 14: /* Add Immediate */
5720 case 15: /* Add Immediate Shifted */
5721 record_full_arch_list_add_reg (regcache,
5722 tdep->ppc_gp0_regnum + PPC_RT (insn));
5723 break;
5724
5725 case 16: /* Branch Conditional */
5726 if ((PPC_BO (insn) & 0x4) == 0)
5727 record_full_arch_list_add_reg (regcache, tdep->ppc_ctr_regnum);
5728 /* FALL-THROUGH */
5729 case 18: /* Branch */
5730 if (PPC_LK (insn))
5731 record_full_arch_list_add_reg (regcache, tdep->ppc_lr_regnum);
5732 break;
5733
5734 case 19:
5735 if (ppc_process_record_op19 (gdbarch, regcache, addr, insn) != 0)
5736 return -1;
5737 break;
5738
5739 case 20: /* Rotate Left Word Immediate then Mask Insert */
5740 case 21: /* Rotate Left Word Immediate then AND with Mask */
5741 case 23: /* Rotate Left Word then AND with Mask */
5742 case 30: /* Rotate Left Doubleword Immediate then Clear Left */
5743 /* Rotate Left Doubleword Immediate then Clear Right */
5744 /* Rotate Left Doubleword Immediate then Clear */
5745 /* Rotate Left Doubleword then Clear Left */
5746 /* Rotate Left Doubleword then Clear Right */
5747 /* Rotate Left Doubleword Immediate then Mask Insert */
5748 if (PPC_RC (insn))
5749 record_full_arch_list_add_reg (regcache, tdep->ppc_cr_regnum);
5750 record_full_arch_list_add_reg (regcache,
5751 tdep->ppc_gp0_regnum + PPC_RA (insn));
5752 break;
5753
5754 case 28: /* AND Immediate */
5755 case 29: /* AND Immediate Shifted */
5756 record_full_arch_list_add_reg (regcache, tdep->ppc_cr_regnum);
5757 /* FALL-THROUGH */
5758 case 24: /* OR Immediate */
5759 case 25: /* OR Immediate Shifted */
5760 case 26: /* XOR Immediate */
5761 case 27: /* XOR Immediate Shifted */
5762 record_full_arch_list_add_reg (regcache,
5763 tdep->ppc_gp0_regnum + PPC_RA (insn));
5764 break;
5765
5766 case 31:
5767 if (ppc_process_record_op31 (gdbarch, regcache, addr, insn) != 0)
5768 return -1;
5769 break;
5770
5771 case 33: /* Load Word and Zero with Update */
5772 case 35: /* Load Byte and Zero with Update */
5773 case 41: /* Load Halfword and Zero with Update */
5774 case 43: /* Load Halfword Algebraic with Update */
5775 record_full_arch_list_add_reg (regcache,
5776 tdep->ppc_gp0_regnum + PPC_RA (insn));
5777 /* FALL-THROUGH */
5778 case 32: /* Load Word and Zero */
5779 case 34: /* Load Byte and Zero */
5780 case 40: /* Load Halfword and Zero */
5781 case 42: /* Load Halfword Algebraic */
5782 record_full_arch_list_add_reg (regcache,
5783 tdep->ppc_gp0_regnum + PPC_RT (insn));
5784 break;
5785
5786 case 46: /* Load Multiple Word */
5787 for (i = PPC_RT (insn); i < 32; i++)
5788 record_full_arch_list_add_reg (regcache, tdep->ppc_gp0_regnum + i);
5789 break;
5790
5791 case 56: /* Load Quadword */
5792 tmp = tdep->ppc_gp0_regnum + (PPC_RT (insn) & ~1);
5793 record_full_arch_list_add_reg (regcache, tmp);
5794 record_full_arch_list_add_reg (regcache, tmp + 1);
5795 break;
5796
5797 case 49: /* Load Floating-Point Single with Update */
5798 case 51: /* Load Floating-Point Double with Update */
5799 record_full_arch_list_add_reg (regcache,
5800 tdep->ppc_gp0_regnum + PPC_RA (insn));
5801 /* FALL-THROUGH */
5802 case 48: /* Load Floating-Point Single */
5803 case 50: /* Load Floating-Point Double */
5804 record_full_arch_list_add_reg (regcache,
5805 tdep->ppc_fp0_regnum + PPC_FRT (insn));
5806 break;
5807
5808 case 47: /* Store Multiple Word */
5809 {
5810 ULONGEST addr = 0;
5811
5812 if (PPC_RA (insn) != 0)
5813 regcache_raw_read_unsigned (regcache,
5814 tdep->ppc_gp0_regnum + PPC_RA (insn),
5815 &addr);
5816
5817 addr += PPC_D (insn);
5818 record_full_arch_list_add_mem (addr, 4 * (32 - PPC_RS (insn)));
5819 }
5820 break;
5821
5822 case 37: /* Store Word with Update */
5823 case 39: /* Store Byte with Update */
5824 case 45: /* Store Halfword with Update */
5825 case 53: /* Store Floating-Point Single with Update */
5826 case 55: /* Store Floating-Point Double with Update */
5827 record_full_arch_list_add_reg (regcache,
5828 tdep->ppc_gp0_regnum + PPC_RA (insn));
5829 /* FALL-THROUGH */
5830 case 36: /* Store Word */
5831 case 38: /* Store Byte */
5832 case 44: /* Store Halfword */
5833 case 52: /* Store Floating-Point Single */
5834 case 54: /* Store Floating-Point Double */
5835 {
5836 ULONGEST addr = 0;
5837 int size = -1;
5838
5839 if (PPC_RA (insn) != 0)
5840 regcache_raw_read_unsigned (regcache,
5841 tdep->ppc_gp0_regnum + PPC_RA (insn),
5842 &addr);
5843 addr += PPC_D (insn);
5844
5845 if (op6 == 36 || op6 == 37 || op6 == 52 || op6 == 53)
5846 size = 4;
5847 else if (op6 == 54 || op6 == 55)
5848 size = 8;
5849 else if (op6 == 44 || op6 == 45)
5850 size = 2;
5851 else if (op6 == 38 || op6 == 39)
5852 size = 1;
5853 else
5854 gdb_assert (0);
5855
5856 record_full_arch_list_add_mem (addr, size);
5857 }
5858 break;
5859
5860 case 57:
5861 switch (insn & 0x3)
5862 {
5863 case 0: /* Load Floating-Point Double Pair */
5864 tmp = tdep->ppc_fp0_regnum + (PPC_RT (insn) & ~1);
5865 record_full_arch_list_add_reg (regcache, tmp);
5866 record_full_arch_list_add_reg (regcache, tmp + 1);
5867 break;
5868 case 2: /* Load VSX Scalar Doubleword */
5869 case 3: /* Load VSX Scalar Single */
5870 ppc_record_vsr (regcache, tdep, PPC_VRT (insn) + 32);
5871 break;
5872 default:
5873 goto UNKNOWN_OP;
5874 }
5875 break;
5876
5877 case 58: /* Load Doubleword */
5878 /* Load Doubleword with Update */
5879 /* Load Word Algebraic */
5880 if (PPC_FIELD (insn, 30, 2) > 2)
5881 goto UNKNOWN_OP;
5882
5883 record_full_arch_list_add_reg (regcache,
5884 tdep->ppc_gp0_regnum + PPC_RT (insn));
5885 if (PPC_BIT (insn, 31))
5886 record_full_arch_list_add_reg (regcache,
5887 tdep->ppc_gp0_regnum + PPC_RA (insn));
5888 break;
5889
5890 case 59:
5891 if (ppc_process_record_op59 (gdbarch, regcache, addr, insn) != 0)
5892 return -1;
5893 break;
5894
5895 case 60:
5896 if (ppc_process_record_op60 (gdbarch, regcache, addr, insn) != 0)
5897 return -1;
5898 break;
5899
5900 case 61:
5901 if (ppc_process_record_op61 (gdbarch, regcache, addr, insn) != 0)
5902 return -1;
5903 break;
5904
5905 case 62: /* Store Doubleword */
5906 /* Store Doubleword with Update */
5907 /* Store Quadword with Update */
5908 {
5909 ULONGEST addr = 0;
5910 int size;
5911 int sub2 = PPC_FIELD (insn, 30, 2);
5912
5913 if (sub2 > 2)
5914 goto UNKNOWN_OP;
5915
5916 if (PPC_RA (insn) != 0)
5917 regcache_raw_read_unsigned (regcache,
5918 tdep->ppc_gp0_regnum + PPC_RA (insn),
5919 &addr);
5920
5921 size = (sub2 == 2) ? 16 : 8;
5922
5923 addr += PPC_DS (insn) << 2;
5924 record_full_arch_list_add_mem (addr, size);
5925
5926 if (op6 == 62 && sub2 == 1)
5927 record_full_arch_list_add_reg (regcache,
5928 tdep->ppc_gp0_regnum +
5929 PPC_RA (insn));
5930
5931 break;
5932 }
5933
5934 case 63:
5935 if (ppc_process_record_op63 (gdbarch, regcache, addr, insn) != 0)
5936 return -1;
5937 break;
5938
5939 default:
5940 UNKNOWN_OP:
5941 fprintf_unfiltered (gdb_stdlog, "Warning: Don't know how to record %08x "
5942 "at %s, %d.\n", insn, paddress (gdbarch, addr), op6);
5943 return -1;
5944 }
5945
5946 if (record_full_arch_list_add_reg (regcache, PPC_PC_REGNUM))
5947 return -1;
5948 if (record_full_arch_list_add_end ())
5949 return -1;
5950 return 0;
5951 }
5952
5953 /* Initialize the current architecture based on INFO. If possible, re-use an
5954 architecture from ARCHES, which is a list of architectures already created
5955 during this debugging session.
5956
5957 Called e.g. at program startup, when reading a core file, and when reading
5958 a binary file. */
5959
5960 static struct gdbarch *
5961 rs6000_gdbarch_init (struct gdbarch_info info, struct gdbarch_list *arches)
5962 {
5963 struct gdbarch *gdbarch;
5964 struct gdbarch_tdep *tdep;
5965 int wordsize, from_xcoff_exec, from_elf_exec;
5966 enum bfd_architecture arch;
5967 unsigned long mach;
5968 bfd abfd;
5969 enum auto_boolean soft_float_flag = powerpc_soft_float_global;
5970 int soft_float;
5971 enum powerpc_long_double_abi long_double_abi = POWERPC_LONG_DOUBLE_AUTO;
5972 enum powerpc_vector_abi vector_abi = powerpc_vector_abi_global;
5973 enum powerpc_elf_abi elf_abi = POWERPC_ELF_AUTO;
5974 int have_fpu = 1, have_spe = 0, have_mq = 0, have_altivec = 0, have_dfp = 0,
5975 have_vsx = 0;
5976 int tdesc_wordsize = -1;
5977 const struct target_desc *tdesc = info.target_desc;
5978 struct tdesc_arch_data *tdesc_data = NULL;
5979 int num_pseudoregs = 0;
5980 int cur_reg;
5981
5982 /* INFO may refer to a binary that is not of the PowerPC architecture,
5983 e.g. when debugging a stand-alone SPE executable on a Cell/B.E. system.
5984 In this case, we must not attempt to infer properties of the (PowerPC
5985 side) of the target system from properties of that executable. Trust
5986 the target description instead. */
5987 if (info.abfd
5988 && bfd_get_arch (info.abfd) != bfd_arch_powerpc
5989 && bfd_get_arch (info.abfd) != bfd_arch_rs6000)
5990 info.abfd = NULL;
5991
5992 from_xcoff_exec = info.abfd && info.abfd->format == bfd_object &&
5993 bfd_get_flavour (info.abfd) == bfd_target_xcoff_flavour;
5994
5995 from_elf_exec = info.abfd && info.abfd->format == bfd_object &&
5996 bfd_get_flavour (info.abfd) == bfd_target_elf_flavour;
5997
5998 /* Check word size. If INFO is from a binary file, infer it from
5999 that, else choose a likely default. */
6000 if (from_xcoff_exec)
6001 {
6002 if (bfd_xcoff_is_xcoff64 (info.abfd))
6003 wordsize = 8;
6004 else
6005 wordsize = 4;
6006 }
6007 else if (from_elf_exec)
6008 {
6009 if (elf_elfheader (info.abfd)->e_ident[EI_CLASS] == ELFCLASS64)
6010 wordsize = 8;
6011 else
6012 wordsize = 4;
6013 }
6014 else if (tdesc_has_registers (tdesc))
6015 wordsize = -1;
6016 else
6017 {
6018 if (info.bfd_arch_info != NULL && info.bfd_arch_info->bits_per_word != 0)
6019 wordsize = (info.bfd_arch_info->bits_per_word
6020 / info.bfd_arch_info->bits_per_byte);
6021 else
6022 wordsize = 4;
6023 }
6024
6025 /* Get the architecture and machine from the BFD. */
6026 arch = info.bfd_arch_info->arch;
6027 mach = info.bfd_arch_info->mach;
6028
6029 /* For e500 executables, the apuinfo section is of help here. Such
6030 section contains the identifier and revision number of each
6031 Application-specific Processing Unit that is present on the
6032 chip. The content of the section is determined by the assembler
6033 which looks at each instruction and determines which unit (and
6034 which version of it) can execute it. Grovel through the section
6035 looking for relevant e500 APUs. */
6036
6037 if (bfd_uses_spe_extensions (info.abfd))
6038 {
6039 arch = info.bfd_arch_info->arch;
6040 mach = bfd_mach_ppc_e500;
6041 bfd_default_set_arch_mach (&abfd, arch, mach);
6042 info.bfd_arch_info = bfd_get_arch_info (&abfd);
6043 }
6044
6045 /* Find a default target description which describes our register
6046 layout, if we do not already have one. */
6047 if (! tdesc_has_registers (tdesc))
6048 {
6049 const struct variant *v;
6050
6051 /* Choose variant. */
6052 v = find_variant_by_arch (arch, mach);
6053 if (!v)
6054 return NULL;
6055
6056 tdesc = *v->tdesc;
6057 }
6058
6059 gdb_assert (tdesc_has_registers (tdesc));
6060
6061 /* Check any target description for validity. */
6062 if (tdesc_has_registers (tdesc))
6063 {
6064 static const char *const gprs[] = {
6065 "r0", "r1", "r2", "r3", "r4", "r5", "r6", "r7",
6066 "r8", "r9", "r10", "r11", "r12", "r13", "r14", "r15",
6067 "r16", "r17", "r18", "r19", "r20", "r21", "r22", "r23",
6068 "r24", "r25", "r26", "r27", "r28", "r29", "r30", "r31"
6069 };
6070 const struct tdesc_feature *feature;
6071 int i, valid_p;
6072 static const char *const msr_names[] = { "msr", "ps" };
6073 static const char *const cr_names[] = { "cr", "cnd" };
6074 static const char *const ctr_names[] = { "ctr", "cnt" };
6075
6076 feature = tdesc_find_feature (tdesc,
6077 "org.gnu.gdb.power.core");
6078 if (feature == NULL)
6079 return NULL;
6080
6081 tdesc_data = tdesc_data_alloc ();
6082
6083 valid_p = 1;
6084 for (i = 0; i < ppc_num_gprs; i++)
6085 valid_p &= tdesc_numbered_register (feature, tdesc_data, i, gprs[i]);
6086 valid_p &= tdesc_numbered_register (feature, tdesc_data, PPC_PC_REGNUM,
6087 "pc");
6088 valid_p &= tdesc_numbered_register (feature, tdesc_data, PPC_LR_REGNUM,
6089 "lr");
6090 valid_p &= tdesc_numbered_register (feature, tdesc_data, PPC_XER_REGNUM,
6091 "xer");
6092
6093 /* Allow alternate names for these registers, to accomodate GDB's
6094 historic naming. */
6095 valid_p &= tdesc_numbered_register_choices (feature, tdesc_data,
6096 PPC_MSR_REGNUM, msr_names);
6097 valid_p &= tdesc_numbered_register_choices (feature, tdesc_data,
6098 PPC_CR_REGNUM, cr_names);
6099 valid_p &= tdesc_numbered_register_choices (feature, tdesc_data,
6100 PPC_CTR_REGNUM, ctr_names);
6101
6102 if (!valid_p)
6103 {
6104 tdesc_data_cleanup (tdesc_data);
6105 return NULL;
6106 }
6107
6108 have_mq = tdesc_numbered_register (feature, tdesc_data, PPC_MQ_REGNUM,
6109 "mq");
6110
6111 tdesc_wordsize = tdesc_register_size (feature, "pc") / 8;
6112 if (wordsize == -1)
6113 wordsize = tdesc_wordsize;
6114
6115 feature = tdesc_find_feature (tdesc,
6116 "org.gnu.gdb.power.fpu");
6117 if (feature != NULL)
6118 {
6119 static const char *const fprs[] = {
6120 "f0", "f1", "f2", "f3", "f4", "f5", "f6", "f7",
6121 "f8", "f9", "f10", "f11", "f12", "f13", "f14", "f15",
6122 "f16", "f17", "f18", "f19", "f20", "f21", "f22", "f23",
6123 "f24", "f25", "f26", "f27", "f28", "f29", "f30", "f31"
6124 };
6125 valid_p = 1;
6126 for (i = 0; i < ppc_num_fprs; i++)
6127 valid_p &= tdesc_numbered_register (feature, tdesc_data,
6128 PPC_F0_REGNUM + i, fprs[i]);
6129 valid_p &= tdesc_numbered_register (feature, tdesc_data,
6130 PPC_FPSCR_REGNUM, "fpscr");
6131
6132 if (!valid_p)
6133 {
6134 tdesc_data_cleanup (tdesc_data);
6135 return NULL;
6136 }
6137 have_fpu = 1;
6138 }
6139 else
6140 have_fpu = 0;
6141
6142 /* The DFP pseudo-registers will be available when there are floating
6143 point registers. */
6144 have_dfp = have_fpu;
6145
6146 feature = tdesc_find_feature (tdesc,
6147 "org.gnu.gdb.power.altivec");
6148 if (feature != NULL)
6149 {
6150 static const char *const vector_regs[] = {
6151 "vr0", "vr1", "vr2", "vr3", "vr4", "vr5", "vr6", "vr7",
6152 "vr8", "vr9", "vr10", "vr11", "vr12", "vr13", "vr14", "vr15",
6153 "vr16", "vr17", "vr18", "vr19", "vr20", "vr21", "vr22", "vr23",
6154 "vr24", "vr25", "vr26", "vr27", "vr28", "vr29", "vr30", "vr31"
6155 };
6156
6157 valid_p = 1;
6158 for (i = 0; i < ppc_num_gprs; i++)
6159 valid_p &= tdesc_numbered_register (feature, tdesc_data,
6160 PPC_VR0_REGNUM + i,
6161 vector_regs[i]);
6162 valid_p &= tdesc_numbered_register (feature, tdesc_data,
6163 PPC_VSCR_REGNUM, "vscr");
6164 valid_p &= tdesc_numbered_register (feature, tdesc_data,
6165 PPC_VRSAVE_REGNUM, "vrsave");
6166
6167 if (have_spe || !valid_p)
6168 {
6169 tdesc_data_cleanup (tdesc_data);
6170 return NULL;
6171 }
6172 have_altivec = 1;
6173 }
6174 else
6175 have_altivec = 0;
6176
6177 /* Check for POWER7 VSX registers support. */
6178 feature = tdesc_find_feature (tdesc,
6179 "org.gnu.gdb.power.vsx");
6180
6181 if (feature != NULL)
6182 {
6183 static const char *const vsx_regs[] = {
6184 "vs0h", "vs1h", "vs2h", "vs3h", "vs4h", "vs5h",
6185 "vs6h", "vs7h", "vs8h", "vs9h", "vs10h", "vs11h",
6186 "vs12h", "vs13h", "vs14h", "vs15h", "vs16h", "vs17h",
6187 "vs18h", "vs19h", "vs20h", "vs21h", "vs22h", "vs23h",
6188 "vs24h", "vs25h", "vs26h", "vs27h", "vs28h", "vs29h",
6189 "vs30h", "vs31h"
6190 };
6191
6192 valid_p = 1;
6193
6194 for (i = 0; i < ppc_num_vshrs; i++)
6195 valid_p &= tdesc_numbered_register (feature, tdesc_data,
6196 PPC_VSR0_UPPER_REGNUM + i,
6197 vsx_regs[i]);
6198 if (!valid_p)
6199 {
6200 tdesc_data_cleanup (tdesc_data);
6201 return NULL;
6202 }
6203
6204 have_vsx = 1;
6205 }
6206 else
6207 have_vsx = 0;
6208
6209 /* On machines supporting the SPE APU, the general-purpose registers
6210 are 64 bits long. There are SIMD vector instructions to treat them
6211 as pairs of floats, but the rest of the instruction set treats them
6212 as 32-bit registers, and only operates on their lower halves.
6213
6214 In the GDB regcache, we treat their high and low halves as separate
6215 registers. The low halves we present as the general-purpose
6216 registers, and then we have pseudo-registers that stitch together
6217 the upper and lower halves and present them as pseudo-registers.
6218
6219 Thus, the target description is expected to supply the upper
6220 halves separately. */
6221
6222 feature = tdesc_find_feature (tdesc,
6223 "org.gnu.gdb.power.spe");
6224 if (feature != NULL)
6225 {
6226 static const char *const upper_spe[] = {
6227 "ev0h", "ev1h", "ev2h", "ev3h",
6228 "ev4h", "ev5h", "ev6h", "ev7h",
6229 "ev8h", "ev9h", "ev10h", "ev11h",
6230 "ev12h", "ev13h", "ev14h", "ev15h",
6231 "ev16h", "ev17h", "ev18h", "ev19h",
6232 "ev20h", "ev21h", "ev22h", "ev23h",
6233 "ev24h", "ev25h", "ev26h", "ev27h",
6234 "ev28h", "ev29h", "ev30h", "ev31h"
6235 };
6236
6237 valid_p = 1;
6238 for (i = 0; i < ppc_num_gprs; i++)
6239 valid_p &= tdesc_numbered_register (feature, tdesc_data,
6240 PPC_SPE_UPPER_GP0_REGNUM + i,
6241 upper_spe[i]);
6242 valid_p &= tdesc_numbered_register (feature, tdesc_data,
6243 PPC_SPE_ACC_REGNUM, "acc");
6244 valid_p &= tdesc_numbered_register (feature, tdesc_data,
6245 PPC_SPE_FSCR_REGNUM, "spefscr");
6246
6247 if (have_mq || have_fpu || !valid_p)
6248 {
6249 tdesc_data_cleanup (tdesc_data);
6250 return NULL;
6251 }
6252 have_spe = 1;
6253 }
6254 else
6255 have_spe = 0;
6256 }
6257
6258 /* If we have a 64-bit binary on a 32-bit target, complain. Also
6259 complain for a 32-bit binary on a 64-bit target; we do not yet
6260 support that. For instance, the 32-bit ABI routines expect
6261 32-bit GPRs.
6262
6263 As long as there isn't an explicit target description, we'll
6264 choose one based on the BFD architecture and get a word size
6265 matching the binary (probably powerpc:common or
6266 powerpc:common64). So there is only trouble if a 64-bit target
6267 supplies a 64-bit description while debugging a 32-bit
6268 binary. */
6269 if (tdesc_wordsize != -1 && tdesc_wordsize != wordsize)
6270 {
6271 tdesc_data_cleanup (tdesc_data);
6272 return NULL;
6273 }
6274
6275 #ifdef HAVE_ELF
6276 if (from_elf_exec)
6277 {
6278 switch (elf_elfheader (info.abfd)->e_flags & EF_PPC64_ABI)
6279 {
6280 case 1:
6281 elf_abi = POWERPC_ELF_V1;
6282 break;
6283 case 2:
6284 elf_abi = POWERPC_ELF_V2;
6285 break;
6286 default:
6287 break;
6288 }
6289 }
6290
6291 if (soft_float_flag == AUTO_BOOLEAN_AUTO && from_elf_exec)
6292 {
6293 switch (bfd_elf_get_obj_attr_int (info.abfd, OBJ_ATTR_GNU,
6294 Tag_GNU_Power_ABI_FP) & 3)
6295 {
6296 case 1:
6297 soft_float_flag = AUTO_BOOLEAN_FALSE;
6298 break;
6299 case 2:
6300 soft_float_flag = AUTO_BOOLEAN_TRUE;
6301 break;
6302 default:
6303 break;
6304 }
6305 }
6306
6307 if (long_double_abi == POWERPC_LONG_DOUBLE_AUTO && from_elf_exec)
6308 {
6309 switch (bfd_elf_get_obj_attr_int (info.abfd, OBJ_ATTR_GNU,
6310 Tag_GNU_Power_ABI_FP) >> 2)
6311 {
6312 case 1:
6313 long_double_abi = POWERPC_LONG_DOUBLE_IBM128;
6314 break;
6315 case 3:
6316 long_double_abi = POWERPC_LONG_DOUBLE_IEEE128;
6317 break;
6318 default:
6319 break;
6320 }
6321 }
6322
6323 if (vector_abi == POWERPC_VEC_AUTO && from_elf_exec)
6324 {
6325 switch (bfd_elf_get_obj_attr_int (info.abfd, OBJ_ATTR_GNU,
6326 Tag_GNU_Power_ABI_Vector))
6327 {
6328 case 1:
6329 vector_abi = POWERPC_VEC_GENERIC;
6330 break;
6331 case 2:
6332 vector_abi = POWERPC_VEC_ALTIVEC;
6333 break;
6334 case 3:
6335 vector_abi = POWERPC_VEC_SPE;
6336 break;
6337 default:
6338 break;
6339 }
6340 }
6341 #endif
6342
6343 /* At this point, the only supported ELF-based 64-bit little-endian
6344 operating system is GNU/Linux, and this uses the ELFv2 ABI by
6345 default. All other supported ELF-based operating systems use the
6346 ELFv1 ABI by default. Therefore, if the ABI marker is missing,
6347 e.g. because we run a legacy binary, or have attached to a process
6348 and have not found any associated binary file, set the default
6349 according to this heuristic. */
6350 if (elf_abi == POWERPC_ELF_AUTO)
6351 {
6352 if (wordsize == 8 && info.byte_order == BFD_ENDIAN_LITTLE)
6353 elf_abi = POWERPC_ELF_V2;
6354 else
6355 elf_abi = POWERPC_ELF_V1;
6356 }
6357
6358 if (soft_float_flag == AUTO_BOOLEAN_TRUE)
6359 soft_float = 1;
6360 else if (soft_float_flag == AUTO_BOOLEAN_FALSE)
6361 soft_float = 0;
6362 else
6363 soft_float = !have_fpu;
6364
6365 /* If we have a hard float binary or setting but no floating point
6366 registers, downgrade to soft float anyway. We're still somewhat
6367 useful in this scenario. */
6368 if (!soft_float && !have_fpu)
6369 soft_float = 1;
6370
6371 /* Similarly for vector registers. */
6372 if (vector_abi == POWERPC_VEC_ALTIVEC && !have_altivec)
6373 vector_abi = POWERPC_VEC_GENERIC;
6374
6375 if (vector_abi == POWERPC_VEC_SPE && !have_spe)
6376 vector_abi = POWERPC_VEC_GENERIC;
6377
6378 if (vector_abi == POWERPC_VEC_AUTO)
6379 {
6380 if (have_altivec)
6381 vector_abi = POWERPC_VEC_ALTIVEC;
6382 else if (have_spe)
6383 vector_abi = POWERPC_VEC_SPE;
6384 else
6385 vector_abi = POWERPC_VEC_GENERIC;
6386 }
6387
6388 /* Do not limit the vector ABI based on available hardware, since we
6389 do not yet know what hardware we'll decide we have. Yuck! FIXME! */
6390
6391 /* Find a candidate among extant architectures. */
6392 for (arches = gdbarch_list_lookup_by_info (arches, &info);
6393 arches != NULL;
6394 arches = gdbarch_list_lookup_by_info (arches->next, &info))
6395 {
6396 /* Word size in the various PowerPC bfd_arch_info structs isn't
6397 meaningful, because 64-bit CPUs can run in 32-bit mode. So, perform
6398 separate word size check. */
6399 tdep = gdbarch_tdep (arches->gdbarch);
6400 if (tdep && tdep->elf_abi != elf_abi)
6401 continue;
6402 if (tdep && tdep->soft_float != soft_float)
6403 continue;
6404 if (tdep && tdep->long_double_abi != long_double_abi)
6405 continue;
6406 if (tdep && tdep->vector_abi != vector_abi)
6407 continue;
6408 if (tdep && tdep->wordsize == wordsize)
6409 {
6410 if (tdesc_data != NULL)
6411 tdesc_data_cleanup (tdesc_data);
6412 return arches->gdbarch;
6413 }
6414 }
6415
6416 /* None found, create a new architecture from INFO, whose bfd_arch_info
6417 validity depends on the source:
6418 - executable useless
6419 - rs6000_host_arch() good
6420 - core file good
6421 - "set arch" trust blindly
6422 - GDB startup useless but harmless */
6423
6424 tdep = XCNEW (struct gdbarch_tdep);
6425 tdep->wordsize = wordsize;
6426 tdep->elf_abi = elf_abi;
6427 tdep->soft_float = soft_float;
6428 tdep->long_double_abi = long_double_abi;
6429 tdep->vector_abi = vector_abi;
6430
6431 gdbarch = gdbarch_alloc (&info, tdep);
6432
6433 tdep->ppc_gp0_regnum = PPC_R0_REGNUM;
6434 tdep->ppc_toc_regnum = PPC_R0_REGNUM + 2;
6435 tdep->ppc_ps_regnum = PPC_MSR_REGNUM;
6436 tdep->ppc_cr_regnum = PPC_CR_REGNUM;
6437 tdep->ppc_lr_regnum = PPC_LR_REGNUM;
6438 tdep->ppc_ctr_regnum = PPC_CTR_REGNUM;
6439 tdep->ppc_xer_regnum = PPC_XER_REGNUM;
6440 tdep->ppc_mq_regnum = have_mq ? PPC_MQ_REGNUM : -1;
6441
6442 tdep->ppc_fp0_regnum = have_fpu ? PPC_F0_REGNUM : -1;
6443 tdep->ppc_fpscr_regnum = have_fpu ? PPC_FPSCR_REGNUM : -1;
6444 tdep->ppc_vsr0_upper_regnum = have_vsx ? PPC_VSR0_UPPER_REGNUM : -1;
6445 tdep->ppc_vr0_regnum = have_altivec ? PPC_VR0_REGNUM : -1;
6446 tdep->ppc_vrsave_regnum = have_altivec ? PPC_VRSAVE_REGNUM : -1;
6447 tdep->ppc_ev0_upper_regnum = have_spe ? PPC_SPE_UPPER_GP0_REGNUM : -1;
6448 tdep->ppc_acc_regnum = have_spe ? PPC_SPE_ACC_REGNUM : -1;
6449 tdep->ppc_spefscr_regnum = have_spe ? PPC_SPE_FSCR_REGNUM : -1;
6450
6451 set_gdbarch_pc_regnum (gdbarch, PPC_PC_REGNUM);
6452 set_gdbarch_sp_regnum (gdbarch, PPC_R0_REGNUM + 1);
6453 set_gdbarch_fp0_regnum (gdbarch, tdep->ppc_fp0_regnum);
6454 set_gdbarch_register_sim_regno (gdbarch, rs6000_register_sim_regno);
6455
6456 /* The XML specification for PowerPC sensibly calls the MSR "msr".
6457 GDB traditionally called it "ps", though, so let GDB add an
6458 alias. */
6459 set_gdbarch_ps_regnum (gdbarch, tdep->ppc_ps_regnum);
6460
6461 if (wordsize == 8)
6462 set_gdbarch_return_value (gdbarch, ppc64_sysv_abi_return_value);
6463 else
6464 set_gdbarch_return_value (gdbarch, ppc_sysv_abi_return_value);
6465
6466 /* Set lr_frame_offset. */
6467 if (wordsize == 8)
6468 tdep->lr_frame_offset = 16;
6469 else
6470 tdep->lr_frame_offset = 4;
6471
6472 if (have_spe || have_dfp || have_vsx)
6473 {
6474 set_gdbarch_pseudo_register_read (gdbarch, rs6000_pseudo_register_read);
6475 set_gdbarch_pseudo_register_write (gdbarch,
6476 rs6000_pseudo_register_write);
6477 set_gdbarch_ax_pseudo_register_collect (gdbarch,
6478 rs6000_ax_pseudo_register_collect);
6479 }
6480
6481 set_gdbarch_gen_return_address (gdbarch, rs6000_gen_return_address);
6482
6483 set_gdbarch_have_nonsteppable_watchpoint (gdbarch, 1);
6484
6485 set_gdbarch_num_regs (gdbarch, PPC_NUM_REGS);
6486
6487 if (have_spe)
6488 num_pseudoregs += 32;
6489 if (have_dfp)
6490 num_pseudoregs += 16;
6491 if (have_vsx)
6492 /* Include both VSX and Extended FP registers. */
6493 num_pseudoregs += 96;
6494
6495 set_gdbarch_num_pseudo_regs (gdbarch, num_pseudoregs);
6496
6497 set_gdbarch_ptr_bit (gdbarch, wordsize * TARGET_CHAR_BIT);
6498 set_gdbarch_short_bit (gdbarch, 2 * TARGET_CHAR_BIT);
6499 set_gdbarch_int_bit (gdbarch, 4 * TARGET_CHAR_BIT);
6500 set_gdbarch_long_bit (gdbarch, wordsize * TARGET_CHAR_BIT);
6501 set_gdbarch_long_long_bit (gdbarch, 8 * TARGET_CHAR_BIT);
6502 set_gdbarch_float_bit (gdbarch, 4 * TARGET_CHAR_BIT);
6503 set_gdbarch_double_bit (gdbarch, 8 * TARGET_CHAR_BIT);
6504 set_gdbarch_long_double_bit (gdbarch, 16 * TARGET_CHAR_BIT);
6505 set_gdbarch_char_signed (gdbarch, 0);
6506
6507 set_gdbarch_frame_align (gdbarch, rs6000_frame_align);
6508 if (wordsize == 8)
6509 /* PPC64 SYSV. */
6510 set_gdbarch_frame_red_zone_size (gdbarch, 288);
6511
6512 set_gdbarch_convert_register_p (gdbarch, rs6000_convert_register_p);
6513 set_gdbarch_register_to_value (gdbarch, rs6000_register_to_value);
6514 set_gdbarch_value_to_register (gdbarch, rs6000_value_to_register);
6515
6516 set_gdbarch_stab_reg_to_regnum (gdbarch, rs6000_stab_reg_to_regnum);
6517 set_gdbarch_dwarf2_reg_to_regnum (gdbarch, rs6000_dwarf2_reg_to_regnum);
6518
6519 if (wordsize == 4)
6520 set_gdbarch_push_dummy_call (gdbarch, ppc_sysv_abi_push_dummy_call);
6521 else if (wordsize == 8)
6522 set_gdbarch_push_dummy_call (gdbarch, ppc64_sysv_abi_push_dummy_call);
6523
6524 set_gdbarch_skip_prologue (gdbarch, rs6000_skip_prologue);
6525 set_gdbarch_stack_frame_destroyed_p (gdbarch, rs6000_stack_frame_destroyed_p);
6526 set_gdbarch_skip_main_prologue (gdbarch, rs6000_skip_main_prologue);
6527
6528 set_gdbarch_inner_than (gdbarch, core_addr_lessthan);
6529
6530 set_gdbarch_breakpoint_kind_from_pc (gdbarch,
6531 rs6000_breakpoint::kind_from_pc);
6532 set_gdbarch_sw_breakpoint_from_kind (gdbarch,
6533 rs6000_breakpoint::bp_from_kind);
6534
6535 /* The value of symbols of type N_SO and N_FUN maybe null when
6536 it shouldn't be. */
6537 set_gdbarch_sofun_address_maybe_missing (gdbarch, 1);
6538
6539 /* Handles single stepping of atomic sequences. */
6540 set_gdbarch_software_single_step (gdbarch, ppc_deal_with_atomic_sequence);
6541
6542 /* Not sure on this. FIXMEmgo */
6543 set_gdbarch_frame_args_skip (gdbarch, 8);
6544
6545 /* Helpers for function argument information. */
6546 set_gdbarch_fetch_pointer_argument (gdbarch, rs6000_fetch_pointer_argument);
6547
6548 /* Trampoline. */
6549 set_gdbarch_in_solib_return_trampoline
6550 (gdbarch, rs6000_in_solib_return_trampoline);
6551 set_gdbarch_skip_trampoline_code (gdbarch, rs6000_skip_trampoline_code);
6552
6553 /* Hook in the DWARF CFI frame unwinder. */
6554 dwarf2_append_unwinders (gdbarch);
6555 dwarf2_frame_set_adjust_regnum (gdbarch, rs6000_adjust_frame_regnum);
6556
6557 /* Frame handling. */
6558 dwarf2_frame_set_init_reg (gdbarch, ppc_dwarf2_frame_init_reg);
6559
6560 /* Setup displaced stepping. */
6561 set_gdbarch_displaced_step_copy_insn (gdbarch,
6562 ppc_displaced_step_copy_insn);
6563 set_gdbarch_displaced_step_hw_singlestep (gdbarch,
6564 ppc_displaced_step_hw_singlestep);
6565 set_gdbarch_displaced_step_fixup (gdbarch, ppc_displaced_step_fixup);
6566 set_gdbarch_displaced_step_location (gdbarch,
6567 displaced_step_at_entry_point);
6568
6569 set_gdbarch_max_insn_length (gdbarch, PPC_INSN_SIZE);
6570
6571 /* Hook in ABI-specific overrides, if they have been registered. */
6572 info.target_desc = tdesc;
6573 info.tdesc_data = tdesc_data;
6574 gdbarch_init_osabi (info, gdbarch);
6575
6576 switch (info.osabi)
6577 {
6578 case GDB_OSABI_LINUX:
6579 case GDB_OSABI_NETBSD:
6580 case GDB_OSABI_UNKNOWN:
6581 set_gdbarch_unwind_pc (gdbarch, rs6000_unwind_pc);
6582 frame_unwind_append_unwinder (gdbarch, &rs6000_epilogue_frame_unwind);
6583 frame_unwind_append_unwinder (gdbarch, &rs6000_frame_unwind);
6584 set_gdbarch_dummy_id (gdbarch, rs6000_dummy_id);
6585 frame_base_append_sniffer (gdbarch, rs6000_frame_base_sniffer);
6586 break;
6587 default:
6588 set_gdbarch_believe_pcc_promotion (gdbarch, 1);
6589
6590 set_gdbarch_unwind_pc (gdbarch, rs6000_unwind_pc);
6591 frame_unwind_append_unwinder (gdbarch, &rs6000_epilogue_frame_unwind);
6592 frame_unwind_append_unwinder (gdbarch, &rs6000_frame_unwind);
6593 set_gdbarch_dummy_id (gdbarch, rs6000_dummy_id);
6594 frame_base_append_sniffer (gdbarch, rs6000_frame_base_sniffer);
6595 }
6596
6597 set_tdesc_pseudo_register_type (gdbarch, rs6000_pseudo_register_type);
6598 set_tdesc_pseudo_register_reggroup_p (gdbarch,
6599 rs6000_pseudo_register_reggroup_p);
6600 tdesc_use_registers (gdbarch, tdesc, tdesc_data);
6601
6602 /* Override the normal target description method to make the SPE upper
6603 halves anonymous. */
6604 set_gdbarch_register_name (gdbarch, rs6000_register_name);
6605
6606 /* Choose register numbers for all supported pseudo-registers. */
6607 tdep->ppc_ev0_regnum = -1;
6608 tdep->ppc_dl0_regnum = -1;
6609 tdep->ppc_vsr0_regnum = -1;
6610 tdep->ppc_efpr0_regnum = -1;
6611
6612 cur_reg = gdbarch_num_regs (gdbarch);
6613
6614 if (have_spe)
6615 {
6616 tdep->ppc_ev0_regnum = cur_reg;
6617 cur_reg += 32;
6618 }
6619 if (have_dfp)
6620 {
6621 tdep->ppc_dl0_regnum = cur_reg;
6622 cur_reg += 16;
6623 }
6624 if (have_vsx)
6625 {
6626 tdep->ppc_vsr0_regnum = cur_reg;
6627 cur_reg += 64;
6628 tdep->ppc_efpr0_regnum = cur_reg;
6629 cur_reg += 32;
6630 }
6631
6632 gdb_assert (gdbarch_num_regs (gdbarch)
6633 + gdbarch_num_pseudo_regs (gdbarch) == cur_reg);
6634
6635 /* Register the ravenscar_arch_ops. */
6636 if (mach == bfd_mach_ppc_e500)
6637 register_e500_ravenscar_ops (gdbarch);
6638 else
6639 register_ppc_ravenscar_ops (gdbarch);
6640
6641 set_gdbarch_disassembler_options (gdbarch, &powerpc_disassembler_options);
6642 set_gdbarch_valid_disassembler_options (gdbarch,
6643 disassembler_options_powerpc ());
6644
6645 return gdbarch;
6646 }
6647
6648 static void
6649 rs6000_dump_tdep (struct gdbarch *gdbarch, struct ui_file *file)
6650 {
6651 struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch);
6652
6653 if (tdep == NULL)
6654 return;
6655
6656 /* FIXME: Dump gdbarch_tdep. */
6657 }
6658
6659 /* PowerPC-specific commands. */
6660
6661 static void
6662 set_powerpc_command (const char *args, int from_tty)
6663 {
6664 printf_unfiltered (_("\
6665 \"set powerpc\" must be followed by an appropriate subcommand.\n"));
6666 help_list (setpowerpccmdlist, "set powerpc ", all_commands, gdb_stdout);
6667 }
6668
6669 static void
6670 show_powerpc_command (const char *args, int from_tty)
6671 {
6672 cmd_show_list (showpowerpccmdlist, from_tty, "");
6673 }
6674
6675 static void
6676 powerpc_set_soft_float (const char *args, int from_tty,
6677 struct cmd_list_element *c)
6678 {
6679 struct gdbarch_info info;
6680
6681 /* Update the architecture. */
6682 gdbarch_info_init (&info);
6683 if (!gdbarch_update_p (info))
6684 internal_error (__FILE__, __LINE__, _("could not update architecture"));
6685 }
6686
6687 static void
6688 powerpc_set_vector_abi (const char *args, int from_tty,
6689 struct cmd_list_element *c)
6690 {
6691 struct gdbarch_info info;
6692 int vector_abi;
6693
6694 for (vector_abi = POWERPC_VEC_AUTO;
6695 vector_abi != POWERPC_VEC_LAST;
6696 vector_abi++)
6697 if (strcmp (powerpc_vector_abi_string,
6698 powerpc_vector_strings[vector_abi]) == 0)
6699 {
6700 powerpc_vector_abi_global = (enum powerpc_vector_abi) vector_abi;
6701 break;
6702 }
6703
6704 if (vector_abi == POWERPC_VEC_LAST)
6705 internal_error (__FILE__, __LINE__, _("Invalid vector ABI accepted: %s."),
6706 powerpc_vector_abi_string);
6707
6708 /* Update the architecture. */
6709 gdbarch_info_init (&info);
6710 if (!gdbarch_update_p (info))
6711 internal_error (__FILE__, __LINE__, _("could not update architecture"));
6712 }
6713
6714 /* Show the current setting of the exact watchpoints flag. */
6715
6716 static void
6717 show_powerpc_exact_watchpoints (struct ui_file *file, int from_tty,
6718 struct cmd_list_element *c,
6719 const char *value)
6720 {
6721 fprintf_filtered (file, _("Use of exact watchpoints is %s.\n"), value);
6722 }
6723
6724 /* Read a PPC instruction from memory. */
6725
6726 static unsigned int
6727 read_insn (struct frame_info *frame, CORE_ADDR pc)
6728 {
6729 struct gdbarch *gdbarch = get_frame_arch (frame);
6730 enum bfd_endian byte_order = gdbarch_byte_order (gdbarch);
6731
6732 return read_memory_unsigned_integer (pc, 4, byte_order);
6733 }
6734
6735 /* Return non-zero if the instructions at PC match the series
6736 described in PATTERN, or zero otherwise. PATTERN is an array of
6737 'struct ppc_insn_pattern' objects, terminated by an entry whose
6738 mask is zero.
6739
6740 When the match is successful, fill INSNS[i] with what PATTERN[i]
6741 matched. If PATTERN[i] is optional, and the instruction wasn't
6742 present, set INSNS[i] to 0 (which is not a valid PPC instruction).
6743 INSNS should have as many elements as PATTERN, minus the terminator.
6744 Note that, if PATTERN contains optional instructions which aren't
6745 present in memory, then INSNS will have holes, so INSNS[i] isn't
6746 necessarily the i'th instruction in memory. */
6747
6748 int
6749 ppc_insns_match_pattern (struct frame_info *frame, CORE_ADDR pc,
6750 const struct ppc_insn_pattern *pattern,
6751 unsigned int *insns)
6752 {
6753 int i;
6754 unsigned int insn;
6755
6756 for (i = 0, insn = 0; pattern[i].mask; i++)
6757 {
6758 if (insn == 0)
6759 insn = read_insn (frame, pc);
6760 insns[i] = 0;
6761 if ((insn & pattern[i].mask) == pattern[i].data)
6762 {
6763 insns[i] = insn;
6764 pc += 4;
6765 insn = 0;
6766 }
6767 else if (!pattern[i].optional)
6768 return 0;
6769 }
6770
6771 return 1;
6772 }
6773
6774 /* Return the 'd' field of the d-form instruction INSN, properly
6775 sign-extended. */
6776
6777 CORE_ADDR
6778 ppc_insn_d_field (unsigned int insn)
6779 {
6780 return ((((CORE_ADDR) insn & 0xffff) ^ 0x8000) - 0x8000);
6781 }
6782
6783 /* Return the 'ds' field of the ds-form instruction INSN, with the two
6784 zero bits concatenated at the right, and properly
6785 sign-extended. */
6786
6787 CORE_ADDR
6788 ppc_insn_ds_field (unsigned int insn)
6789 {
6790 return ((((CORE_ADDR) insn & 0xfffc) ^ 0x8000) - 0x8000);
6791 }
6792
6793 /* Initialization code. */
6794
6795 void
6796 _initialize_rs6000_tdep (void)
6797 {
6798 gdbarch_register (bfd_arch_rs6000, rs6000_gdbarch_init, rs6000_dump_tdep);
6799 gdbarch_register (bfd_arch_powerpc, rs6000_gdbarch_init, rs6000_dump_tdep);
6800
6801 /* Initialize the standard target descriptions. */
6802 initialize_tdesc_powerpc_32 ();
6803 initialize_tdesc_powerpc_altivec32 ();
6804 initialize_tdesc_powerpc_vsx32 ();
6805 initialize_tdesc_powerpc_403 ();
6806 initialize_tdesc_powerpc_403gc ();
6807 initialize_tdesc_powerpc_405 ();
6808 initialize_tdesc_powerpc_505 ();
6809 initialize_tdesc_powerpc_601 ();
6810 initialize_tdesc_powerpc_602 ();
6811 initialize_tdesc_powerpc_603 ();
6812 initialize_tdesc_powerpc_604 ();
6813 initialize_tdesc_powerpc_64 ();
6814 initialize_tdesc_powerpc_altivec64 ();
6815 initialize_tdesc_powerpc_vsx64 ();
6816 initialize_tdesc_powerpc_7400 ();
6817 initialize_tdesc_powerpc_750 ();
6818 initialize_tdesc_powerpc_860 ();
6819 initialize_tdesc_powerpc_e500 ();
6820 initialize_tdesc_rs6000 ();
6821
6822 /* Add root prefix command for all "set powerpc"/"show powerpc"
6823 commands. */
6824 add_prefix_cmd ("powerpc", no_class, set_powerpc_command,
6825 _("Various PowerPC-specific commands."),
6826 &setpowerpccmdlist, "set powerpc ", 0, &setlist);
6827
6828 add_prefix_cmd ("powerpc", no_class, show_powerpc_command,
6829 _("Various PowerPC-specific commands."),
6830 &showpowerpccmdlist, "show powerpc ", 0, &showlist);
6831
6832 /* Add a command to allow the user to force the ABI. */
6833 add_setshow_auto_boolean_cmd ("soft-float", class_support,
6834 &powerpc_soft_float_global,
6835 _("Set whether to use a soft-float ABI."),
6836 _("Show whether to use a soft-float ABI."),
6837 NULL,
6838 powerpc_set_soft_float, NULL,
6839 &setpowerpccmdlist, &showpowerpccmdlist);
6840
6841 add_setshow_enum_cmd ("vector-abi", class_support, powerpc_vector_strings,
6842 &powerpc_vector_abi_string,
6843 _("Set the vector ABI."),
6844 _("Show the vector ABI."),
6845 NULL, powerpc_set_vector_abi, NULL,
6846 &setpowerpccmdlist, &showpowerpccmdlist);
6847
6848 add_setshow_boolean_cmd ("exact-watchpoints", class_support,
6849 &target_exact_watchpoints,
6850 _("\
6851 Set whether to use just one debug register for watchpoints on scalars."),
6852 _("\
6853 Show whether to use just one debug register for watchpoints on scalars."),
6854 _("\
6855 If true, GDB will use only one debug register when watching a variable of\n\
6856 scalar type, thus assuming that the variable is accessed through the address\n\
6857 of its first byte."),
6858 NULL, show_powerpc_exact_watchpoints,
6859 &setpowerpccmdlist, &showpowerpccmdlist);
6860 }