2002-09-25 Andrew Cagney <ac131313@redhat.com>
[binutils-gdb.git] / gdb / rs6000-tdep.c
1 /* Target-dependent code for GDB, the GNU debugger.
2 Copyright 1986, 1987, 1989, 1991, 1992, 1993, 1994, 1995, 1996, 1997,
3 1998, 1999, 2000, 2001, 2002
4 Free Software Foundation, Inc.
5
6 This file is part of GDB.
7
8 This program is free software; you can redistribute it and/or modify
9 it under the terms of the GNU General Public License as published by
10 the Free Software Foundation; either version 2 of the License, or
11 (at your option) any later version.
12
13 This program is distributed in the hope that it will be useful,
14 but WITHOUT ANY WARRANTY; without even the implied warranty of
15 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
16 GNU General Public License for more details.
17
18 You should have received a copy of the GNU General Public License
19 along with this program; if not, write to the Free Software
20 Foundation, Inc., 59 Temple Place - Suite 330,
21 Boston, MA 02111-1307, USA. */
22
23 #include "defs.h"
24 #include "frame.h"
25 #include "inferior.h"
26 #include "symtab.h"
27 #include "target.h"
28 #include "gdbcore.h"
29 #include "gdbcmd.h"
30 #include "symfile.h"
31 #include "objfiles.h"
32 #include "arch-utils.h"
33 #include "regcache.h"
34 #include "doublest.h"
35 #include "value.h"
36 #include "parser-defs.h"
37
38 #include "libbfd.h" /* for bfd_default_set_arch_mach */
39 #include "coff/internal.h" /* for libcoff.h */
40 #include "libcoff.h" /* for xcoff_data */
41 #include "coff/xcoff.h"
42 #include "libxcoff.h"
43
44 #include "elf-bfd.h"
45
46 #include "solib-svr4.h"
47 #include "ppc-tdep.h"
48
49 /* If the kernel has to deliver a signal, it pushes a sigcontext
50 structure on the stack and then calls the signal handler, passing
51 the address of the sigcontext in an argument register. Usually
52 the signal handler doesn't save this register, so we have to
53 access the sigcontext structure via an offset from the signal handler
54 frame.
55 The following constants were determined by experimentation on AIX 3.2. */
56 #define SIG_FRAME_PC_OFFSET 96
57 #define SIG_FRAME_LR_OFFSET 108
58 #define SIG_FRAME_FP_OFFSET 284
59
60 /* To be used by skip_prologue. */
61
62 struct rs6000_framedata
63 {
64 int offset; /* total size of frame --- the distance
65 by which we decrement sp to allocate
66 the frame */
67 int saved_gpr; /* smallest # of saved gpr */
68 int saved_fpr; /* smallest # of saved fpr */
69 int saved_vr; /* smallest # of saved vr */
70 int saved_ev; /* smallest # of saved ev */
71 int alloca_reg; /* alloca register number (frame ptr) */
72 char frameless; /* true if frameless functions. */
73 char nosavedpc; /* true if pc not saved. */
74 int gpr_offset; /* offset of saved gprs from prev sp */
75 int fpr_offset; /* offset of saved fprs from prev sp */
76 int vr_offset; /* offset of saved vrs from prev sp */
77 int ev_offset; /* offset of saved evs from prev sp */
78 int lr_offset; /* offset of saved lr */
79 int cr_offset; /* offset of saved cr */
80 int vrsave_offset; /* offset of saved vrsave register */
81 };
82
83 /* Description of a single register. */
84
85 struct reg
86 {
87 char *name; /* name of register */
88 unsigned char sz32; /* size on 32-bit arch, 0 if nonextant */
89 unsigned char sz64; /* size on 64-bit arch, 0 if nonextant */
90 unsigned char fpr; /* whether register is floating-point */
91 unsigned char pseudo; /* whether register is pseudo */
92 };
93
94 /* Breakpoint shadows for the single step instructions will be kept here. */
95
96 static struct sstep_breaks
97 {
98 /* Address, or 0 if this is not in use. */
99 CORE_ADDR address;
100 /* Shadow contents. */
101 char data[4];
102 }
103 stepBreaks[2];
104
105 /* Hook for determining the TOC address when calling functions in the
106 inferior under AIX. The initialization code in rs6000-nat.c sets
107 this hook to point to find_toc_address. */
108
109 CORE_ADDR (*rs6000_find_toc_address_hook) (CORE_ADDR) = NULL;
110
111 /* Hook to set the current architecture when starting a child process.
112 rs6000-nat.c sets this. */
113
114 void (*rs6000_set_host_arch_hook) (int) = NULL;
115
116 /* Static function prototypes */
117
118 static CORE_ADDR branch_dest (int opcode, int instr, CORE_ADDR pc,
119 CORE_ADDR safety);
120 static CORE_ADDR skip_prologue (CORE_ADDR, CORE_ADDR,
121 struct rs6000_framedata *);
122 static void frame_get_saved_regs (struct frame_info * fi,
123 struct rs6000_framedata * fdatap);
124 static CORE_ADDR frame_initial_stack_address (struct frame_info *);
125
126 /* Is REGNO an AltiVec register? Return 1 if so, 0 otherwise. */
127 int
128 altivec_register_p (int regno)
129 {
130 struct gdbarch_tdep *tdep = gdbarch_tdep (current_gdbarch);
131 if (tdep->ppc_vr0_regnum < 0 || tdep->ppc_vrsave_regnum < 0)
132 return 0;
133 else
134 return (regno >= tdep->ppc_vr0_regnum && regno <= tdep->ppc_vrsave_regnum);
135 }
136
137 /* Read a LEN-byte address from debugged memory address MEMADDR. */
138
139 static CORE_ADDR
140 read_memory_addr (CORE_ADDR memaddr, int len)
141 {
142 return read_memory_unsigned_integer (memaddr, len);
143 }
144
145 static CORE_ADDR
146 rs6000_skip_prologue (CORE_ADDR pc)
147 {
148 struct rs6000_framedata frame;
149 pc = skip_prologue (pc, 0, &frame);
150 return pc;
151 }
152
153
154 /* Fill in fi->saved_regs */
155
156 struct frame_extra_info
157 {
158 /* Functions calling alloca() change the value of the stack
159 pointer. We need to use initial stack pointer (which is saved in
160 r31 by gcc) in such cases. If a compiler emits traceback table,
161 then we should use the alloca register specified in traceback
162 table. FIXME. */
163 CORE_ADDR initial_sp; /* initial stack pointer. */
164 };
165
166 void
167 rs6000_init_extra_frame_info (int fromleaf, struct frame_info *fi)
168 {
169 fi->extra_info = (struct frame_extra_info *)
170 frame_obstack_alloc (sizeof (struct frame_extra_info));
171 fi->extra_info->initial_sp = 0;
172 if (fi->next != (CORE_ADDR) 0
173 && fi->pc < TEXT_SEGMENT_BASE)
174 /* We're in get_prev_frame */
175 /* and this is a special signal frame. */
176 /* (fi->pc will be some low address in the kernel, */
177 /* to which the signal handler returns). */
178 fi->signal_handler_caller = 1;
179 }
180
181 /* Put here the code to store, into a struct frame_saved_regs,
182 the addresses of the saved registers of frame described by FRAME_INFO.
183 This includes special registers such as pc and fp saved in special
184 ways in the stack frame. sp is even more special:
185 the address we return for it IS the sp for the next frame. */
186
187 /* In this implementation for RS/6000, we do *not* save sp. I am
188 not sure if it will be needed. The following function takes care of gpr's
189 and fpr's only. */
190
191 void
192 rs6000_frame_init_saved_regs (struct frame_info *fi)
193 {
194 frame_get_saved_regs (fi, NULL);
195 }
196
197 static CORE_ADDR
198 rs6000_frame_args_address (struct frame_info *fi)
199 {
200 if (fi->extra_info->initial_sp != 0)
201 return fi->extra_info->initial_sp;
202 else
203 return frame_initial_stack_address (fi);
204 }
205
206 /* Immediately after a function call, return the saved pc.
207 Can't go through the frames for this because on some machines
208 the new frame is not set up until the new function executes
209 some instructions. */
210
211 static CORE_ADDR
212 rs6000_saved_pc_after_call (struct frame_info *fi)
213 {
214 return read_register (gdbarch_tdep (current_gdbarch)->ppc_lr_regnum);
215 }
216
217 /* Calculate the destination of a branch/jump. Return -1 if not a branch. */
218
219 static CORE_ADDR
220 branch_dest (int opcode, int instr, CORE_ADDR pc, CORE_ADDR safety)
221 {
222 CORE_ADDR dest;
223 int immediate;
224 int absolute;
225 int ext_op;
226
227 absolute = (int) ((instr >> 1) & 1);
228
229 switch (opcode)
230 {
231 case 18:
232 immediate = ((instr & ~3) << 6) >> 6; /* br unconditional */
233 if (absolute)
234 dest = immediate;
235 else
236 dest = pc + immediate;
237 break;
238
239 case 16:
240 immediate = ((instr & ~3) << 16) >> 16; /* br conditional */
241 if (absolute)
242 dest = immediate;
243 else
244 dest = pc + immediate;
245 break;
246
247 case 19:
248 ext_op = (instr >> 1) & 0x3ff;
249
250 if (ext_op == 16) /* br conditional register */
251 {
252 dest = read_register (gdbarch_tdep (current_gdbarch)->ppc_lr_regnum) & ~3;
253
254 /* If we are about to return from a signal handler, dest is
255 something like 0x3c90. The current frame is a signal handler
256 caller frame, upon completion of the sigreturn system call
257 execution will return to the saved PC in the frame. */
258 if (dest < TEXT_SEGMENT_BASE)
259 {
260 struct frame_info *fi;
261
262 fi = get_current_frame ();
263 if (fi != NULL)
264 dest = read_memory_addr (fi->frame + SIG_FRAME_PC_OFFSET,
265 gdbarch_tdep (current_gdbarch)->wordsize);
266 }
267 }
268
269 else if (ext_op == 528) /* br cond to count reg */
270 {
271 dest = read_register (gdbarch_tdep (current_gdbarch)->ppc_ctr_regnum) & ~3;
272
273 /* If we are about to execute a system call, dest is something
274 like 0x22fc or 0x3b00. Upon completion the system call
275 will return to the address in the link register. */
276 if (dest < TEXT_SEGMENT_BASE)
277 dest = read_register (gdbarch_tdep (current_gdbarch)->ppc_lr_regnum) & ~3;
278 }
279 else
280 return -1;
281 break;
282
283 default:
284 return -1;
285 }
286 return (dest < TEXT_SEGMENT_BASE) ? safety : dest;
287 }
288
289
290 /* Sequence of bytes for breakpoint instruction. */
291
292 #define BIG_BREAKPOINT { 0x7d, 0x82, 0x10, 0x08 }
293 #define LITTLE_BREAKPOINT { 0x08, 0x10, 0x82, 0x7d }
294
295 const static unsigned char *
296 rs6000_breakpoint_from_pc (CORE_ADDR *bp_addr, int *bp_size)
297 {
298 static unsigned char big_breakpoint[] = BIG_BREAKPOINT;
299 static unsigned char little_breakpoint[] = LITTLE_BREAKPOINT;
300 *bp_size = 4;
301 if (TARGET_BYTE_ORDER == BFD_ENDIAN_BIG)
302 return big_breakpoint;
303 else
304 return little_breakpoint;
305 }
306
307
308 /* AIX does not support PT_STEP. Simulate it. */
309
310 void
311 rs6000_software_single_step (enum target_signal signal,
312 int insert_breakpoints_p)
313 {
314 CORE_ADDR dummy;
315 int breakp_sz;
316 const char *breakp = rs6000_breakpoint_from_pc (&dummy, &breakp_sz);
317 int ii, insn;
318 CORE_ADDR loc;
319 CORE_ADDR breaks[2];
320 int opcode;
321
322 if (insert_breakpoints_p)
323 {
324
325 loc = read_pc ();
326
327 insn = read_memory_integer (loc, 4);
328
329 breaks[0] = loc + breakp_sz;
330 opcode = insn >> 26;
331 breaks[1] = branch_dest (opcode, insn, loc, breaks[0]);
332
333 /* Don't put two breakpoints on the same address. */
334 if (breaks[1] == breaks[0])
335 breaks[1] = -1;
336
337 stepBreaks[1].address = 0;
338
339 for (ii = 0; ii < 2; ++ii)
340 {
341
342 /* ignore invalid breakpoint. */
343 if (breaks[ii] == -1)
344 continue;
345 target_insert_breakpoint (breaks[ii], stepBreaks[ii].data);
346 stepBreaks[ii].address = breaks[ii];
347 }
348
349 }
350 else
351 {
352
353 /* remove step breakpoints. */
354 for (ii = 0; ii < 2; ++ii)
355 if (stepBreaks[ii].address != 0)
356 target_remove_breakpoint (stepBreaks[ii].address,
357 stepBreaks[ii].data);
358 }
359 errno = 0; /* FIXME, don't ignore errors! */
360 /* What errors? {read,write}_memory call error(). */
361 }
362
363
364 /* return pc value after skipping a function prologue and also return
365 information about a function frame.
366
367 in struct rs6000_framedata fdata:
368 - frameless is TRUE, if function does not have a frame.
369 - nosavedpc is TRUE, if function does not save %pc value in its frame.
370 - offset is the initial size of this stack frame --- the amount by
371 which we decrement the sp to allocate the frame.
372 - saved_gpr is the number of the first saved gpr.
373 - saved_fpr is the number of the first saved fpr.
374 - saved_vr is the number of the first saved vr.
375 - saved_ev is the number of the first saved ev.
376 - alloca_reg is the number of the register used for alloca() handling.
377 Otherwise -1.
378 - gpr_offset is the offset of the first saved gpr from the previous frame.
379 - fpr_offset is the offset of the first saved fpr from the previous frame.
380 - vr_offset is the offset of the first saved vr from the previous frame.
381 - ev_offset is the offset of the first saved ev from the previous frame.
382 - lr_offset is the offset of the saved lr
383 - cr_offset is the offset of the saved cr
384 - vrsave_offset is the offset of the saved vrsave register
385 */
386
387 #define SIGNED_SHORT(x) \
388 ((sizeof (short) == 2) \
389 ? ((int)(short)(x)) \
390 : ((int)((((x) & 0xffff) ^ 0x8000) - 0x8000)))
391
392 #define GET_SRC_REG(x) (((x) >> 21) & 0x1f)
393
394 /* Limit the number of skipped non-prologue instructions, as the examining
395 of the prologue is expensive. */
396 static int max_skip_non_prologue_insns = 10;
397
398 /* Given PC representing the starting address of a function, and
399 LIM_PC which is the (sloppy) limit to which to scan when looking
400 for a prologue, attempt to further refine this limit by using
401 the line data in the symbol table. If successful, a better guess
402 on where the prologue ends is returned, otherwise the previous
403 value of lim_pc is returned. */
404 static CORE_ADDR
405 refine_prologue_limit (CORE_ADDR pc, CORE_ADDR lim_pc)
406 {
407 struct symtab_and_line prologue_sal;
408
409 prologue_sal = find_pc_line (pc, 0);
410 if (prologue_sal.line != 0)
411 {
412 int i;
413 CORE_ADDR addr = prologue_sal.end;
414
415 /* Handle the case in which compiler's optimizer/scheduler
416 has moved instructions into the prologue. We scan ahead
417 in the function looking for address ranges whose corresponding
418 line number is less than or equal to the first one that we
419 found for the function. (It can be less than when the
420 scheduler puts a body instruction before the first prologue
421 instruction.) */
422 for (i = 2 * max_skip_non_prologue_insns;
423 i > 0 && (lim_pc == 0 || addr < lim_pc);
424 i--)
425 {
426 struct symtab_and_line sal;
427
428 sal = find_pc_line (addr, 0);
429 if (sal.line == 0)
430 break;
431 if (sal.line <= prologue_sal.line
432 && sal.symtab == prologue_sal.symtab)
433 {
434 prologue_sal = sal;
435 }
436 addr = sal.end;
437 }
438
439 if (lim_pc == 0 || prologue_sal.end < lim_pc)
440 lim_pc = prologue_sal.end;
441 }
442 return lim_pc;
443 }
444
445
446 static CORE_ADDR
447 skip_prologue (CORE_ADDR pc, CORE_ADDR lim_pc, struct rs6000_framedata *fdata)
448 {
449 CORE_ADDR orig_pc = pc;
450 CORE_ADDR last_prologue_pc = pc;
451 CORE_ADDR li_found_pc = 0;
452 char buf[4];
453 unsigned long op;
454 long offset = 0;
455 long vr_saved_offset = 0;
456 int lr_reg = -1;
457 int cr_reg = -1;
458 int vr_reg = -1;
459 int ev_reg = -1;
460 long ev_offset = 0;
461 int vrsave_reg = -1;
462 int reg;
463 int framep = 0;
464 int minimal_toc_loaded = 0;
465 int prev_insn_was_prologue_insn = 1;
466 int num_skip_non_prologue_insns = 0;
467 const struct bfd_arch_info *arch_info = gdbarch_bfd_arch_info (current_gdbarch);
468
469 /* Attempt to find the end of the prologue when no limit is specified.
470 Note that refine_prologue_limit() has been written so that it may
471 be used to "refine" the limits of non-zero PC values too, but this
472 is only safe if we 1) trust the line information provided by the
473 compiler and 2) iterate enough to actually find the end of the
474 prologue.
475
476 It may become a good idea at some point (for both performance and
477 accuracy) to unconditionally call refine_prologue_limit(). But,
478 until we can make a clear determination that this is beneficial,
479 we'll play it safe and only use it to obtain a limit when none
480 has been specified. */
481 if (lim_pc == 0)
482 lim_pc = refine_prologue_limit (pc, lim_pc);
483
484 memset (fdata, 0, sizeof (struct rs6000_framedata));
485 fdata->saved_gpr = -1;
486 fdata->saved_fpr = -1;
487 fdata->saved_vr = -1;
488 fdata->saved_ev = -1;
489 fdata->alloca_reg = -1;
490 fdata->frameless = 1;
491 fdata->nosavedpc = 1;
492
493 for (;; pc += 4)
494 {
495 /* Sometimes it isn't clear if an instruction is a prologue
496 instruction or not. When we encounter one of these ambiguous
497 cases, we'll set prev_insn_was_prologue_insn to 0 (false).
498 Otherwise, we'll assume that it really is a prologue instruction. */
499 if (prev_insn_was_prologue_insn)
500 last_prologue_pc = pc;
501
502 /* Stop scanning if we've hit the limit. */
503 if (lim_pc != 0 && pc >= lim_pc)
504 break;
505
506 prev_insn_was_prologue_insn = 1;
507
508 /* Fetch the instruction and convert it to an integer. */
509 if (target_read_memory (pc, buf, 4))
510 break;
511 op = extract_signed_integer (buf, 4);
512
513 if ((op & 0xfc1fffff) == 0x7c0802a6)
514 { /* mflr Rx */
515 lr_reg = (op & 0x03e00000) | 0x90010000;
516 continue;
517
518 }
519 else if ((op & 0xfc1fffff) == 0x7c000026)
520 { /* mfcr Rx */
521 cr_reg = (op & 0x03e00000) | 0x90010000;
522 continue;
523
524 }
525 else if ((op & 0xfc1f0000) == 0xd8010000)
526 { /* stfd Rx,NUM(r1) */
527 reg = GET_SRC_REG (op);
528 if (fdata->saved_fpr == -1 || fdata->saved_fpr > reg)
529 {
530 fdata->saved_fpr = reg;
531 fdata->fpr_offset = SIGNED_SHORT (op) + offset;
532 }
533 continue;
534
535 }
536 else if (((op & 0xfc1f0000) == 0xbc010000) || /* stm Rx, NUM(r1) */
537 (((op & 0xfc1f0000) == 0x90010000 || /* st rx,NUM(r1) */
538 (op & 0xfc1f0003) == 0xf8010000) && /* std rx,NUM(r1) */
539 (op & 0x03e00000) >= 0x01a00000)) /* rx >= r13 */
540 {
541
542 reg = GET_SRC_REG (op);
543 if (fdata->saved_gpr == -1 || fdata->saved_gpr > reg)
544 {
545 fdata->saved_gpr = reg;
546 if ((op & 0xfc1f0003) == 0xf8010000)
547 op = (op >> 1) << 1;
548 fdata->gpr_offset = SIGNED_SHORT (op) + offset;
549 }
550 continue;
551
552 }
553 else if ((op & 0xffff0000) == 0x60000000)
554 {
555 /* nop */
556 /* Allow nops in the prologue, but do not consider them to
557 be part of the prologue unless followed by other prologue
558 instructions. */
559 prev_insn_was_prologue_insn = 0;
560 continue;
561
562 }
563 else if ((op & 0xffff0000) == 0x3c000000)
564 { /* addis 0,0,NUM, used
565 for >= 32k frames */
566 fdata->offset = (op & 0x0000ffff) << 16;
567 fdata->frameless = 0;
568 continue;
569
570 }
571 else if ((op & 0xffff0000) == 0x60000000)
572 { /* ori 0,0,NUM, 2nd ha
573 lf of >= 32k frames */
574 fdata->offset |= (op & 0x0000ffff);
575 fdata->frameless = 0;
576 continue;
577
578 }
579 else if (lr_reg != -1 && (op & 0xffff0000) == lr_reg)
580 { /* st Rx,NUM(r1)
581 where Rx == lr */
582 fdata->lr_offset = SIGNED_SHORT (op) + offset;
583 fdata->nosavedpc = 0;
584 lr_reg = 0;
585 continue;
586
587 }
588 else if (cr_reg != -1 && (op & 0xffff0000) == cr_reg)
589 { /* st Rx,NUM(r1)
590 where Rx == cr */
591 fdata->cr_offset = SIGNED_SHORT (op) + offset;
592 cr_reg = 0;
593 continue;
594
595 }
596 else if (op == 0x48000005)
597 { /* bl .+4 used in
598 -mrelocatable */
599 continue;
600
601 }
602 else if (op == 0x48000004)
603 { /* b .+4 (xlc) */
604 break;
605
606 }
607 else if ((op & 0xffff0000) == 0x3fc00000 || /* addis 30,0,foo@ha, used
608 in V.4 -mminimal-toc */
609 (op & 0xffff0000) == 0x3bde0000)
610 { /* addi 30,30,foo@l */
611 continue;
612
613 }
614 else if ((op & 0xfc000001) == 0x48000001)
615 { /* bl foo,
616 to save fprs??? */
617
618 fdata->frameless = 0;
619 /* Don't skip over the subroutine call if it is not within
620 the first three instructions of the prologue. */
621 if ((pc - orig_pc) > 8)
622 break;
623
624 op = read_memory_integer (pc + 4, 4);
625
626 /* At this point, make sure this is not a trampoline
627 function (a function that simply calls another functions,
628 and nothing else). If the next is not a nop, this branch
629 was part of the function prologue. */
630
631 if (op == 0x4def7b82 || op == 0) /* crorc 15, 15, 15 */
632 break; /* don't skip over
633 this branch */
634 continue;
635
636 /* update stack pointer */
637 }
638 else if ((op & 0xffff0000) == 0x94210000 || /* stu r1,NUM(r1) */
639 (op & 0xffff0003) == 0xf8210001) /* stdu r1,NUM(r1) */
640 {
641 fdata->frameless = 0;
642 if ((op & 0xffff0003) == 0xf8210001)
643 op = (op >> 1) << 1;
644 fdata->offset = SIGNED_SHORT (op);
645 offset = fdata->offset;
646 continue;
647
648 }
649 else if (op == 0x7c21016e)
650 { /* stwux 1,1,0 */
651 fdata->frameless = 0;
652 offset = fdata->offset;
653 continue;
654
655 /* Load up minimal toc pointer */
656 }
657 else if ((op >> 22) == 0x20f
658 && !minimal_toc_loaded)
659 { /* l r31,... or l r30,... */
660 minimal_toc_loaded = 1;
661 continue;
662
663 /* move parameters from argument registers to local variable
664 registers */
665 }
666 else if ((op & 0xfc0007fe) == 0x7c000378 && /* mr(.) Rx,Ry */
667 (((op >> 21) & 31) >= 3) && /* R3 >= Ry >= R10 */
668 (((op >> 21) & 31) <= 10) &&
669 ((long) ((op >> 16) & 31) >= fdata->saved_gpr)) /* Rx: local var reg */
670 {
671 continue;
672
673 /* store parameters in stack */
674 }
675 else if ((op & 0xfc1f0003) == 0xf8010000 || /* std rx,NUM(r1) */
676 (op & 0xfc1f0000) == 0xd8010000 || /* stfd Rx,NUM(r1) */
677 (op & 0xfc1f0000) == 0xfc010000) /* frsp, fp?,NUM(r1) */
678 {
679 continue;
680
681 /* store parameters in stack via frame pointer */
682 }
683 else if (framep &&
684 ((op & 0xfc1f0000) == 0x901f0000 || /* st rx,NUM(r1) */
685 (op & 0xfc1f0000) == 0xd81f0000 || /* stfd Rx,NUM(r1) */
686 (op & 0xfc1f0000) == 0xfc1f0000))
687 { /* frsp, fp?,NUM(r1) */
688 continue;
689
690 /* Set up frame pointer */
691 }
692 else if (op == 0x603f0000 /* oril r31, r1, 0x0 */
693 || op == 0x7c3f0b78)
694 { /* mr r31, r1 */
695 fdata->frameless = 0;
696 framep = 1;
697 fdata->alloca_reg = 31;
698 continue;
699
700 /* Another way to set up the frame pointer. */
701 }
702 else if ((op & 0xfc1fffff) == 0x38010000)
703 { /* addi rX, r1, 0x0 */
704 fdata->frameless = 0;
705 framep = 1;
706 fdata->alloca_reg = (op & ~0x38010000) >> 21;
707 continue;
708 }
709 /* AltiVec related instructions. */
710 /* Store the vrsave register (spr 256) in another register for
711 later manipulation, or load a register into the vrsave
712 register. 2 instructions are used: mfvrsave and
713 mtvrsave. They are shorthand notation for mfspr Rn, SPR256
714 and mtspr SPR256, Rn. */
715 /* mfspr Rn SPR256 == 011111 nnnnn 0000001000 01010100110
716 mtspr SPR256 Rn == 011111 nnnnn 0000001000 01110100110 */
717 else if ((op & 0xfc1fffff) == 0x7c0042a6) /* mfvrsave Rn */
718 {
719 vrsave_reg = GET_SRC_REG (op);
720 continue;
721 }
722 else if ((op & 0xfc1fffff) == 0x7c0043a6) /* mtvrsave Rn */
723 {
724 continue;
725 }
726 /* Store the register where vrsave was saved to onto the stack:
727 rS is the register where vrsave was stored in a previous
728 instruction. */
729 /* 100100 sssss 00001 dddddddd dddddddd */
730 else if ((op & 0xfc1f0000) == 0x90010000) /* stw rS, d(r1) */
731 {
732 if (vrsave_reg == GET_SRC_REG (op))
733 {
734 fdata->vrsave_offset = SIGNED_SHORT (op) + offset;
735 vrsave_reg = -1;
736 }
737 continue;
738 }
739 /* Compute the new value of vrsave, by modifying the register
740 where vrsave was saved to. */
741 else if (((op & 0xfc000000) == 0x64000000) /* oris Ra, Rs, UIMM */
742 || ((op & 0xfc000000) == 0x60000000))/* ori Ra, Rs, UIMM */
743 {
744 continue;
745 }
746 /* li r0, SIMM (short for addi r0, 0, SIMM). This is the first
747 in a pair of insns to save the vector registers on the
748 stack. */
749 /* 001110 00000 00000 iiii iiii iiii iiii */
750 /* 001110 01110 00000 iiii iiii iiii iiii */
751 else if ((op & 0xffff0000) == 0x38000000 /* li r0, SIMM */
752 || (op & 0xffff0000) == 0x39c00000) /* li r14, SIMM */
753 {
754 li_found_pc = pc;
755 vr_saved_offset = SIGNED_SHORT (op);
756 }
757 /* Store vector register S at (r31+r0) aligned to 16 bytes. */
758 /* 011111 sssss 11111 00000 00111001110 */
759 else if ((op & 0xfc1fffff) == 0x7c1f01ce) /* stvx Vs, R31, R0 */
760 {
761 if (pc == (li_found_pc + 4))
762 {
763 vr_reg = GET_SRC_REG (op);
764 /* If this is the first vector reg to be saved, or if
765 it has a lower number than others previously seen,
766 reupdate the frame info. */
767 if (fdata->saved_vr == -1 || fdata->saved_vr > vr_reg)
768 {
769 fdata->saved_vr = vr_reg;
770 fdata->vr_offset = vr_saved_offset + offset;
771 }
772 vr_saved_offset = -1;
773 vr_reg = -1;
774 li_found_pc = 0;
775 }
776 }
777 /* End AltiVec related instructions. */
778
779 /* Start BookE related instructions. */
780 /* Store gen register S at (r31+uimm).
781 Any register less than r13 is volatile, so we don't care. */
782 /* 000100 sssss 11111 iiiii 01100100001 */
783 else if (arch_info->mach == bfd_mach_ppc_e500
784 && (op & 0xfc1f07ff) == 0x101f0321) /* evstdd Rs,uimm(R31) */
785 {
786 if ((op & 0x03e00000) >= 0x01a00000) /* Rs >= r13 */
787 {
788 unsigned int imm;
789 ev_reg = GET_SRC_REG (op);
790 imm = (op >> 11) & 0x1f;
791 ev_offset = imm * 8;
792 /* If this is the first vector reg to be saved, or if
793 it has a lower number than others previously seen,
794 reupdate the frame info. */
795 if (fdata->saved_ev == -1 || fdata->saved_ev > ev_reg)
796 {
797 fdata->saved_ev = ev_reg;
798 fdata->ev_offset = ev_offset + offset;
799 }
800 }
801 continue;
802 }
803 /* Store gen register rS at (r1+rB). */
804 /* 000100 sssss 00001 bbbbb 01100100000 */
805 else if (arch_info->mach == bfd_mach_ppc_e500
806 && (op & 0xffe007ff) == 0x13e00320) /* evstddx RS,R1,Rb */
807 {
808 if (pc == (li_found_pc + 4))
809 {
810 ev_reg = GET_SRC_REG (op);
811 /* If this is the first vector reg to be saved, or if
812 it has a lower number than others previously seen,
813 reupdate the frame info. */
814 /* We know the contents of rB from the previous instruction. */
815 if (fdata->saved_ev == -1 || fdata->saved_ev > ev_reg)
816 {
817 fdata->saved_ev = ev_reg;
818 fdata->ev_offset = vr_saved_offset + offset;
819 }
820 vr_saved_offset = -1;
821 ev_reg = -1;
822 li_found_pc = 0;
823 }
824 continue;
825 }
826 /* Store gen register r31 at (rA+uimm). */
827 /* 000100 11111 aaaaa iiiii 01100100001 */
828 else if (arch_info->mach == bfd_mach_ppc_e500
829 && (op & 0xffe007ff) == 0x13e00321) /* evstdd R31,Ra,UIMM */
830 {
831 /* Wwe know that the source register is 31 already, but
832 it can't hurt to compute it. */
833 ev_reg = GET_SRC_REG (op);
834 ev_offset = ((op >> 11) & 0x1f) * 8;
835 /* If this is the first vector reg to be saved, or if
836 it has a lower number than others previously seen,
837 reupdate the frame info. */
838 if (fdata->saved_ev == -1 || fdata->saved_ev > ev_reg)
839 {
840 fdata->saved_ev = ev_reg;
841 fdata->ev_offset = ev_offset + offset;
842 }
843
844 continue;
845 }
846 /* Store gen register S at (r31+r0).
847 Store param on stack when offset from SP bigger than 4 bytes. */
848 /* 000100 sssss 11111 00000 01100100000 */
849 else if (arch_info->mach == bfd_mach_ppc_e500
850 && (op & 0xfc1fffff) == 0x101f0320) /* evstddx Rs,R31,R0 */
851 {
852 if (pc == (li_found_pc + 4))
853 {
854 if ((op & 0x03e00000) >= 0x01a00000)
855 {
856 ev_reg = GET_SRC_REG (op);
857 /* If this is the first vector reg to be saved, or if
858 it has a lower number than others previously seen,
859 reupdate the frame info. */
860 /* We know the contents of r0 from the previous
861 instruction. */
862 if (fdata->saved_ev == -1 || fdata->saved_ev > ev_reg)
863 {
864 fdata->saved_ev = ev_reg;
865 fdata->ev_offset = vr_saved_offset + offset;
866 }
867 ev_reg = -1;
868 }
869 vr_saved_offset = -1;
870 li_found_pc = 0;
871 continue;
872 }
873 }
874 /* End BookE related instructions. */
875
876 else
877 {
878 /* Not a recognized prologue instruction.
879 Handle optimizer code motions into the prologue by continuing
880 the search if we have no valid frame yet or if the return
881 address is not yet saved in the frame. */
882 if (fdata->frameless == 0
883 && (lr_reg == -1 || fdata->nosavedpc == 0))
884 break;
885
886 if (op == 0x4e800020 /* blr */
887 || op == 0x4e800420) /* bctr */
888 /* Do not scan past epilogue in frameless functions or
889 trampolines. */
890 break;
891 if ((op & 0xf4000000) == 0x40000000) /* bxx */
892 /* Never skip branches. */
893 break;
894
895 if (num_skip_non_prologue_insns++ > max_skip_non_prologue_insns)
896 /* Do not scan too many insns, scanning insns is expensive with
897 remote targets. */
898 break;
899
900 /* Continue scanning. */
901 prev_insn_was_prologue_insn = 0;
902 continue;
903 }
904 }
905
906 #if 0
907 /* I have problems with skipping over __main() that I need to address
908 * sometime. Previously, I used to use misc_function_vector which
909 * didn't work as well as I wanted to be. -MGO */
910
911 /* If the first thing after skipping a prolog is a branch to a function,
912 this might be a call to an initializer in main(), introduced by gcc2.
913 We'd like to skip over it as well. Fortunately, xlc does some extra
914 work before calling a function right after a prologue, thus we can
915 single out such gcc2 behaviour. */
916
917
918 if ((op & 0xfc000001) == 0x48000001)
919 { /* bl foo, an initializer function? */
920 op = read_memory_integer (pc + 4, 4);
921
922 if (op == 0x4def7b82)
923 { /* cror 0xf, 0xf, 0xf (nop) */
924
925 /* Check and see if we are in main. If so, skip over this
926 initializer function as well. */
927
928 tmp = find_pc_misc_function (pc);
929 if (tmp >= 0 && STREQ (misc_function_vector[tmp].name, main_name ()))
930 return pc + 8;
931 }
932 }
933 #endif /* 0 */
934
935 fdata->offset = -fdata->offset;
936 return last_prologue_pc;
937 }
938
939
940 /*************************************************************************
941 Support for creating pushing a dummy frame into the stack, and popping
942 frames, etc.
943 *************************************************************************/
944
945
946 /* Pop the innermost frame, go back to the caller. */
947
948 static void
949 rs6000_pop_frame (void)
950 {
951 CORE_ADDR pc, lr, sp, prev_sp, addr; /* %pc, %lr, %sp */
952 struct rs6000_framedata fdata;
953 struct frame_info *frame = get_current_frame ();
954 int ii, wordsize;
955
956 pc = read_pc ();
957 sp = FRAME_FP (frame);
958
959 if (PC_IN_CALL_DUMMY (frame->pc, frame->frame, frame->frame))
960 {
961 generic_pop_dummy_frame ();
962 flush_cached_frames ();
963 return;
964 }
965
966 /* Make sure that all registers are valid. */
967 read_register_bytes (0, NULL, REGISTER_BYTES);
968
969 /* Figure out previous %pc value. If the function is frameless, it is
970 still in the link register, otherwise walk the frames and retrieve the
971 saved %pc value in the previous frame. */
972
973 addr = get_pc_function_start (frame->pc);
974 (void) skip_prologue (addr, frame->pc, &fdata);
975
976 wordsize = gdbarch_tdep (current_gdbarch)->wordsize;
977 if (fdata.frameless)
978 prev_sp = sp;
979 else
980 prev_sp = read_memory_addr (sp, wordsize);
981 if (fdata.lr_offset == 0)
982 lr = read_register (gdbarch_tdep (current_gdbarch)->ppc_lr_regnum);
983 else
984 lr = read_memory_addr (prev_sp + fdata.lr_offset, wordsize);
985
986 /* reset %pc value. */
987 write_register (PC_REGNUM, lr);
988
989 /* reset register values if any was saved earlier. */
990
991 if (fdata.saved_gpr != -1)
992 {
993 addr = prev_sp + fdata.gpr_offset;
994 for (ii = fdata.saved_gpr; ii <= 31; ++ii)
995 {
996 read_memory (addr, &registers[REGISTER_BYTE (ii)], wordsize);
997 addr += wordsize;
998 }
999 }
1000
1001 if (fdata.saved_fpr != -1)
1002 {
1003 addr = prev_sp + fdata.fpr_offset;
1004 for (ii = fdata.saved_fpr; ii <= 31; ++ii)
1005 {
1006 read_memory (addr, &registers[REGISTER_BYTE (ii + FP0_REGNUM)], 8);
1007 addr += 8;
1008 }
1009 }
1010
1011 write_register (SP_REGNUM, prev_sp);
1012 target_store_registers (-1);
1013 flush_cached_frames ();
1014 }
1015
1016 /* Fixup the call sequence of a dummy function, with the real function
1017 address. Its arguments will be passed by gdb. */
1018
1019 static void
1020 rs6000_fix_call_dummy (char *dummyname, CORE_ADDR pc, CORE_ADDR fun,
1021 int nargs, struct value **args, struct type *type,
1022 int gcc_p)
1023 {
1024 int ii;
1025 CORE_ADDR target_addr;
1026
1027 if (rs6000_find_toc_address_hook != NULL)
1028 {
1029 CORE_ADDR tocvalue = (*rs6000_find_toc_address_hook) (fun);
1030 write_register (gdbarch_tdep (current_gdbarch)->ppc_toc_regnum,
1031 tocvalue);
1032 }
1033 }
1034
1035 /* Pass the arguments in either registers, or in the stack. In RS/6000,
1036 the first eight words of the argument list (that might be less than
1037 eight parameters if some parameters occupy more than one word) are
1038 passed in r3..r10 registers. float and double parameters are
1039 passed in fpr's, in addition to that. Rest of the parameters if any
1040 are passed in user stack. There might be cases in which half of the
1041 parameter is copied into registers, the other half is pushed into
1042 stack.
1043
1044 Stack must be aligned on 64-bit boundaries when synthesizing
1045 function calls.
1046
1047 If the function is returning a structure, then the return address is passed
1048 in r3, then the first 7 words of the parameters can be passed in registers,
1049 starting from r4. */
1050
1051 static CORE_ADDR
1052 rs6000_push_arguments (int nargs, struct value **args, CORE_ADDR sp,
1053 int struct_return, CORE_ADDR struct_addr)
1054 {
1055 int ii;
1056 int len = 0;
1057 int argno; /* current argument number */
1058 int argbytes; /* current argument byte */
1059 char tmp_buffer[50];
1060 int f_argno = 0; /* current floating point argno */
1061 int wordsize = gdbarch_tdep (current_gdbarch)->wordsize;
1062
1063 struct value *arg = 0;
1064 struct type *type;
1065
1066 CORE_ADDR saved_sp;
1067
1068 /* The first eight words of ther arguments are passed in registers.
1069 Copy them appropriately.
1070
1071 If the function is returning a `struct', then the first word (which
1072 will be passed in r3) is used for struct return address. In that
1073 case we should advance one word and start from r4 register to copy
1074 parameters. */
1075
1076 ii = struct_return ? 1 : 0;
1077
1078 /*
1079 effectively indirect call... gcc does...
1080
1081 return_val example( float, int);
1082
1083 eabi:
1084 float in fp0, int in r3
1085 offset of stack on overflow 8/16
1086 for varargs, must go by type.
1087 power open:
1088 float in r3&r4, int in r5
1089 offset of stack on overflow different
1090 both:
1091 return in r3 or f0. If no float, must study how gcc emulates floats;
1092 pay attention to arg promotion.
1093 User may have to cast\args to handle promotion correctly
1094 since gdb won't know if prototype supplied or not.
1095 */
1096
1097 for (argno = 0, argbytes = 0; argno < nargs && ii < 8; ++ii)
1098 {
1099 int reg_size = REGISTER_RAW_SIZE (ii + 3);
1100
1101 arg = args[argno];
1102 type = check_typedef (VALUE_TYPE (arg));
1103 len = TYPE_LENGTH (type);
1104
1105 if (TYPE_CODE (type) == TYPE_CODE_FLT)
1106 {
1107
1108 /* Floating point arguments are passed in fpr's, as well as gpr's.
1109 There are 13 fpr's reserved for passing parameters. At this point
1110 there is no way we would run out of them. */
1111
1112 if (len > 8)
1113 printf_unfiltered (
1114 "Fatal Error: a floating point parameter #%d with a size > 8 is found!\n", argno);
1115
1116 memcpy (&registers[REGISTER_BYTE (FP0_REGNUM + 1 + f_argno)],
1117 VALUE_CONTENTS (arg),
1118 len);
1119 ++f_argno;
1120 }
1121
1122 if (len > reg_size)
1123 {
1124
1125 /* Argument takes more than one register. */
1126 while (argbytes < len)
1127 {
1128 memset (&registers[REGISTER_BYTE (ii + 3)], 0, reg_size);
1129 memcpy (&registers[REGISTER_BYTE (ii + 3)],
1130 ((char *) VALUE_CONTENTS (arg)) + argbytes,
1131 (len - argbytes) > reg_size
1132 ? reg_size : len - argbytes);
1133 ++ii, argbytes += reg_size;
1134
1135 if (ii >= 8)
1136 goto ran_out_of_registers_for_arguments;
1137 }
1138 argbytes = 0;
1139 --ii;
1140 }
1141 else
1142 {
1143 /* Argument can fit in one register. No problem. */
1144 int adj = TARGET_BYTE_ORDER == BFD_ENDIAN_BIG ? reg_size - len : 0;
1145 memset (&registers[REGISTER_BYTE (ii + 3)], 0, reg_size);
1146 memcpy ((char *)&registers[REGISTER_BYTE (ii + 3)] + adj,
1147 VALUE_CONTENTS (arg), len);
1148 }
1149 ++argno;
1150 }
1151
1152 ran_out_of_registers_for_arguments:
1153
1154 saved_sp = read_sp ();
1155
1156 /* Location for 8 parameters are always reserved. */
1157 sp -= wordsize * 8;
1158
1159 /* Another six words for back chain, TOC register, link register, etc. */
1160 sp -= wordsize * 6;
1161
1162 /* Stack pointer must be quadword aligned. */
1163 sp &= -16;
1164
1165 /* If there are more arguments, allocate space for them in
1166 the stack, then push them starting from the ninth one. */
1167
1168 if ((argno < nargs) || argbytes)
1169 {
1170 int space = 0, jj;
1171
1172 if (argbytes)
1173 {
1174 space += ((len - argbytes + 3) & -4);
1175 jj = argno + 1;
1176 }
1177 else
1178 jj = argno;
1179
1180 for (; jj < nargs; ++jj)
1181 {
1182 struct value *val = args[jj];
1183 space += ((TYPE_LENGTH (VALUE_TYPE (val))) + 3) & -4;
1184 }
1185
1186 /* Add location required for the rest of the parameters. */
1187 space = (space + 15) & -16;
1188 sp -= space;
1189
1190 /* This is another instance we need to be concerned about
1191 securing our stack space. If we write anything underneath %sp
1192 (r1), we might conflict with the kernel who thinks he is free
1193 to use this area. So, update %sp first before doing anything
1194 else. */
1195
1196 write_register (SP_REGNUM, sp);
1197
1198 /* If the last argument copied into the registers didn't fit there
1199 completely, push the rest of it into stack. */
1200
1201 if (argbytes)
1202 {
1203 write_memory (sp + 24 + (ii * 4),
1204 ((char *) VALUE_CONTENTS (arg)) + argbytes,
1205 len - argbytes);
1206 ++argno;
1207 ii += ((len - argbytes + 3) & -4) / 4;
1208 }
1209
1210 /* Push the rest of the arguments into stack. */
1211 for (; argno < nargs; ++argno)
1212 {
1213
1214 arg = args[argno];
1215 type = check_typedef (VALUE_TYPE (arg));
1216 len = TYPE_LENGTH (type);
1217
1218
1219 /* Float types should be passed in fpr's, as well as in the
1220 stack. */
1221 if (TYPE_CODE (type) == TYPE_CODE_FLT && f_argno < 13)
1222 {
1223
1224 if (len > 8)
1225 printf_unfiltered (
1226 "Fatal Error: a floating point parameter #%d with a size > 8 is found!\n", argno);
1227
1228 memcpy (&registers[REGISTER_BYTE (FP0_REGNUM + 1 + f_argno)],
1229 VALUE_CONTENTS (arg),
1230 len);
1231 ++f_argno;
1232 }
1233
1234 write_memory (sp + 24 + (ii * 4), (char *) VALUE_CONTENTS (arg), len);
1235 ii += ((len + 3) & -4) / 4;
1236 }
1237 }
1238 else
1239 /* Secure stack areas first, before doing anything else. */
1240 write_register (SP_REGNUM, sp);
1241
1242 /* set back chain properly */
1243 store_address (tmp_buffer, 4, saved_sp);
1244 write_memory (sp, tmp_buffer, 4);
1245
1246 target_store_registers (-1);
1247 return sp;
1248 }
1249
1250 /* Function: ppc_push_return_address (pc, sp)
1251 Set up the return address for the inferior function call. */
1252
1253 static CORE_ADDR
1254 ppc_push_return_address (CORE_ADDR pc, CORE_ADDR sp)
1255 {
1256 write_register (gdbarch_tdep (current_gdbarch)->ppc_lr_regnum,
1257 CALL_DUMMY_ADDRESS ());
1258 return sp;
1259 }
1260
1261 /* Extract a function return value of type TYPE from raw register array
1262 REGBUF, and copy that return value into VALBUF in virtual format. */
1263 static void
1264 e500_extract_return_value (struct type *valtype, struct regcache *regbuf, void *valbuf)
1265 {
1266 int offset = 0;
1267 int vallen = TYPE_LENGTH (valtype);
1268 struct gdbarch_tdep *tdep = gdbarch_tdep (current_gdbarch);
1269
1270 if (TYPE_CODE (valtype) == TYPE_CODE_ARRAY
1271 && vallen == 8
1272 && TYPE_VECTOR (valtype))
1273 {
1274 regcache_raw_read (regbuf, tdep->ppc_ev0_regnum + 3, valbuf);
1275 }
1276 else
1277 {
1278 /* Return value is copied starting from r3. Note that r3 for us
1279 is a pseudo register. */
1280 int offset = 0;
1281 int return_regnum = tdep->ppc_gp0_regnum + 3;
1282 int reg_size = REGISTER_RAW_SIZE (return_regnum);
1283 int reg_part_size;
1284 char *val_buffer;
1285 int copied = 0;
1286 int i = 0;
1287
1288 /* Compute where we will start storing the value from. */
1289 if (TARGET_BYTE_ORDER == BFD_ENDIAN_BIG)
1290 {
1291 if (vallen <= reg_size)
1292 offset = reg_size - vallen;
1293 else
1294 offset = reg_size + (reg_size - vallen);
1295 }
1296
1297 /* How big does the local buffer need to be? */
1298 if (vallen <= reg_size)
1299 val_buffer = alloca (reg_size);
1300 else
1301 val_buffer = alloca (vallen);
1302
1303 /* Read all we need into our private buffer. We copy it in
1304 chunks that are as long as one register, never shorter, even
1305 if the value is smaller than the register. */
1306 while (copied < vallen)
1307 {
1308 reg_part_size = REGISTER_RAW_SIZE (return_regnum + i);
1309 /* It is a pseudo/cooked register. */
1310 regcache_cooked_read (regbuf, return_regnum + i,
1311 val_buffer + copied);
1312 copied += reg_part_size;
1313 i++;
1314 }
1315 /* Put the stuff in the return buffer. */
1316 memcpy (valbuf, val_buffer + offset, vallen);
1317 }
1318 }
1319
1320 static void
1321 rs6000_extract_return_value (struct type *valtype, char *regbuf, char *valbuf)
1322 {
1323 int offset = 0;
1324 struct gdbarch_tdep *tdep = gdbarch_tdep (current_gdbarch);
1325
1326 if (TYPE_CODE (valtype) == TYPE_CODE_FLT)
1327 {
1328
1329 double dd;
1330 float ff;
1331 /* floats and doubles are returned in fpr1. fpr's have a size of 8 bytes.
1332 We need to truncate the return value into float size (4 byte) if
1333 necessary. */
1334
1335 if (TYPE_LENGTH (valtype) > 4) /* this is a double */
1336 memcpy (valbuf,
1337 &regbuf[REGISTER_BYTE (FP0_REGNUM + 1)],
1338 TYPE_LENGTH (valtype));
1339 else
1340 { /* float */
1341 memcpy (&dd, &regbuf[REGISTER_BYTE (FP0_REGNUM + 1)], 8);
1342 ff = (float) dd;
1343 memcpy (valbuf, &ff, sizeof (float));
1344 }
1345 }
1346 else if (TYPE_CODE (valtype) == TYPE_CODE_ARRAY
1347 && TYPE_LENGTH (valtype) == 16
1348 && TYPE_VECTOR (valtype))
1349 {
1350 memcpy (valbuf, regbuf + REGISTER_BYTE (tdep->ppc_vr0_regnum + 2),
1351 TYPE_LENGTH (valtype));
1352 }
1353 else
1354 {
1355 /* return value is copied starting from r3. */
1356 if (TARGET_BYTE_ORDER == BFD_ENDIAN_BIG
1357 && TYPE_LENGTH (valtype) < REGISTER_RAW_SIZE (3))
1358 offset = REGISTER_RAW_SIZE (3) - TYPE_LENGTH (valtype);
1359
1360 memcpy (valbuf,
1361 regbuf + REGISTER_BYTE (3) + offset,
1362 TYPE_LENGTH (valtype));
1363 }
1364 }
1365
1366 /* Keep structure return address in this variable.
1367 FIXME: This is a horrid kludge which should not be allowed to continue
1368 living. This only allows a single nested call to a structure-returning
1369 function. Come on, guys! -- gnu@cygnus.com, Aug 92 */
1370
1371 static CORE_ADDR rs6000_struct_return_address;
1372
1373 /* Return whether handle_inferior_event() should proceed through code
1374 starting at PC in function NAME when stepping.
1375
1376 The AIX -bbigtoc linker option generates functions @FIX0, @FIX1, etc. to
1377 handle memory references that are too distant to fit in instructions
1378 generated by the compiler. For example, if 'foo' in the following
1379 instruction:
1380
1381 lwz r9,foo(r2)
1382
1383 is greater than 32767, the linker might replace the lwz with a branch to
1384 somewhere in @FIX1 that does the load in 2 instructions and then branches
1385 back to where execution should continue.
1386
1387 GDB should silently step over @FIX code, just like AIX dbx does.
1388 Unfortunately, the linker uses the "b" instruction for the branches,
1389 meaning that the link register doesn't get set. Therefore, GDB's usual
1390 step_over_function() mechanism won't work.
1391
1392 Instead, use the IN_SOLIB_RETURN_TRAMPOLINE and SKIP_TRAMPOLINE_CODE hooks
1393 in handle_inferior_event() to skip past @FIX code. */
1394
1395 int
1396 rs6000_in_solib_return_trampoline (CORE_ADDR pc, char *name)
1397 {
1398 return name && !strncmp (name, "@FIX", 4);
1399 }
1400
1401 /* Skip code that the user doesn't want to see when stepping:
1402
1403 1. Indirect function calls use a piece of trampoline code to do context
1404 switching, i.e. to set the new TOC table. Skip such code if we are on
1405 its first instruction (as when we have single-stepped to here).
1406
1407 2. Skip shared library trampoline code (which is different from
1408 indirect function call trampolines).
1409
1410 3. Skip bigtoc fixup code.
1411
1412 Result is desired PC to step until, or NULL if we are not in
1413 code that should be skipped. */
1414
1415 CORE_ADDR
1416 rs6000_skip_trampoline_code (CORE_ADDR pc)
1417 {
1418 register unsigned int ii, op;
1419 int rel;
1420 CORE_ADDR solib_target_pc;
1421 struct minimal_symbol *msymbol;
1422
1423 static unsigned trampoline_code[] =
1424 {
1425 0x800b0000, /* l r0,0x0(r11) */
1426 0x90410014, /* st r2,0x14(r1) */
1427 0x7c0903a6, /* mtctr r0 */
1428 0x804b0004, /* l r2,0x4(r11) */
1429 0x816b0008, /* l r11,0x8(r11) */
1430 0x4e800420, /* bctr */
1431 0x4e800020, /* br */
1432 0
1433 };
1434
1435 /* Check for bigtoc fixup code. */
1436 msymbol = lookup_minimal_symbol_by_pc (pc);
1437 if (msymbol && rs6000_in_solib_return_trampoline (pc, SYMBOL_NAME (msymbol)))
1438 {
1439 /* Double-check that the third instruction from PC is relative "b". */
1440 op = read_memory_integer (pc + 8, 4);
1441 if ((op & 0xfc000003) == 0x48000000)
1442 {
1443 /* Extract bits 6-29 as a signed 24-bit relative word address and
1444 add it to the containing PC. */
1445 rel = ((int)(op << 6) >> 6);
1446 return pc + 8 + rel;
1447 }
1448 }
1449
1450 /* If pc is in a shared library trampoline, return its target. */
1451 solib_target_pc = find_solib_trampoline_target (pc);
1452 if (solib_target_pc)
1453 return solib_target_pc;
1454
1455 for (ii = 0; trampoline_code[ii]; ++ii)
1456 {
1457 op = read_memory_integer (pc + (ii * 4), 4);
1458 if (op != trampoline_code[ii])
1459 return 0;
1460 }
1461 ii = read_register (11); /* r11 holds destination addr */
1462 pc = read_memory_addr (ii, gdbarch_tdep (current_gdbarch)->wordsize); /* (r11) value */
1463 return pc;
1464 }
1465
1466 /* Determines whether the function FI has a frame on the stack or not. */
1467
1468 int
1469 rs6000_frameless_function_invocation (struct frame_info *fi)
1470 {
1471 CORE_ADDR func_start;
1472 struct rs6000_framedata fdata;
1473
1474 /* Don't even think about framelessness except on the innermost frame
1475 or if the function was interrupted by a signal. */
1476 if (fi->next != NULL && !fi->next->signal_handler_caller)
1477 return 0;
1478
1479 func_start = get_pc_function_start (fi->pc);
1480
1481 /* If we failed to find the start of the function, it is a mistake
1482 to inspect the instructions. */
1483
1484 if (!func_start)
1485 {
1486 /* A frame with a zero PC is usually created by dereferencing a NULL
1487 function pointer, normally causing an immediate core dump of the
1488 inferior. Mark function as frameless, as the inferior has no chance
1489 of setting up a stack frame. */
1490 if (fi->pc == 0)
1491 return 1;
1492 else
1493 return 0;
1494 }
1495
1496 (void) skip_prologue (func_start, fi->pc, &fdata);
1497 return fdata.frameless;
1498 }
1499
1500 /* Return the PC saved in a frame. */
1501
1502 CORE_ADDR
1503 rs6000_frame_saved_pc (struct frame_info *fi)
1504 {
1505 CORE_ADDR func_start;
1506 struct rs6000_framedata fdata;
1507 struct gdbarch_tdep *tdep = gdbarch_tdep (current_gdbarch);
1508 int wordsize = tdep->wordsize;
1509
1510 if (fi->signal_handler_caller)
1511 return read_memory_addr (fi->frame + SIG_FRAME_PC_OFFSET, wordsize);
1512
1513 if (PC_IN_CALL_DUMMY (fi->pc, fi->frame, fi->frame))
1514 return deprecated_read_register_dummy (fi->pc, fi->frame, PC_REGNUM);
1515
1516 func_start = get_pc_function_start (fi->pc);
1517
1518 /* If we failed to find the start of the function, it is a mistake
1519 to inspect the instructions. */
1520 if (!func_start)
1521 return 0;
1522
1523 (void) skip_prologue (func_start, fi->pc, &fdata);
1524
1525 if (fdata.lr_offset == 0 && fi->next != NULL)
1526 {
1527 if (fi->next->signal_handler_caller)
1528 return read_memory_addr (fi->next->frame + SIG_FRAME_LR_OFFSET,
1529 wordsize);
1530 else if (PC_IN_CALL_DUMMY (get_next_frame (fi)->pc, 0, 0))
1531 /* The link register wasn't saved by this frame and the next
1532 (inner, newer) frame is a dummy. Get the link register
1533 value by unwinding it from that [dummy] frame. */
1534 {
1535 ULONGEST lr;
1536 frame_unwind_unsigned_register (get_next_frame (fi),
1537 tdep->ppc_lr_regnum, &lr);
1538 return lr;
1539 }
1540 else
1541 return read_memory_addr (FRAME_CHAIN (fi) + tdep->lr_frame_offset,
1542 wordsize);
1543 }
1544
1545 if (fdata.lr_offset == 0)
1546 return read_register (gdbarch_tdep (current_gdbarch)->ppc_lr_regnum);
1547
1548 return read_memory_addr (FRAME_CHAIN (fi) + fdata.lr_offset, wordsize);
1549 }
1550
1551 /* If saved registers of frame FI are not known yet, read and cache them.
1552 &FDATAP contains rs6000_framedata; TDATAP can be NULL,
1553 in which case the framedata are read. */
1554
1555 static void
1556 frame_get_saved_regs (struct frame_info *fi, struct rs6000_framedata *fdatap)
1557 {
1558 CORE_ADDR frame_addr;
1559 struct rs6000_framedata work_fdata;
1560 struct gdbarch_tdep * tdep = gdbarch_tdep (current_gdbarch);
1561 int wordsize = tdep->wordsize;
1562
1563 if (fi->saved_regs)
1564 return;
1565
1566 if (fdatap == NULL)
1567 {
1568 fdatap = &work_fdata;
1569 (void) skip_prologue (get_pc_function_start (fi->pc), fi->pc, fdatap);
1570 }
1571
1572 frame_saved_regs_zalloc (fi);
1573
1574 /* If there were any saved registers, figure out parent's stack
1575 pointer. */
1576 /* The following is true only if the frame doesn't have a call to
1577 alloca(), FIXME. */
1578
1579 if (fdatap->saved_fpr == 0
1580 && fdatap->saved_gpr == 0
1581 && fdatap->saved_vr == 0
1582 && fdatap->saved_ev == 0
1583 && fdatap->lr_offset == 0
1584 && fdatap->cr_offset == 0
1585 && fdatap->vr_offset == 0
1586 && fdatap->ev_offset == 0)
1587 frame_addr = 0;
1588 else
1589 /* NOTE: cagney/2002-04-14: The ->frame points to the inner-most
1590 address of the current frame. Things might be easier if the
1591 ->frame pointed to the outer-most address of the frame. In the
1592 mean time, the address of the prev frame is used as the base
1593 address of this frame. */
1594 frame_addr = FRAME_CHAIN (fi);
1595
1596 /* if != -1, fdatap->saved_fpr is the smallest number of saved_fpr.
1597 All fpr's from saved_fpr to fp31 are saved. */
1598
1599 if (fdatap->saved_fpr >= 0)
1600 {
1601 int i;
1602 CORE_ADDR fpr_addr = frame_addr + fdatap->fpr_offset;
1603 for (i = fdatap->saved_fpr; i < 32; i++)
1604 {
1605 fi->saved_regs[FP0_REGNUM + i] = fpr_addr;
1606 fpr_addr += 8;
1607 }
1608 }
1609
1610 /* if != -1, fdatap->saved_gpr is the smallest number of saved_gpr.
1611 All gpr's from saved_gpr to gpr31 are saved. */
1612
1613 if (fdatap->saved_gpr >= 0)
1614 {
1615 int i;
1616 CORE_ADDR gpr_addr = frame_addr + fdatap->gpr_offset;
1617 for (i = fdatap->saved_gpr; i < 32; i++)
1618 {
1619 fi->saved_regs[i] = gpr_addr;
1620 gpr_addr += wordsize;
1621 }
1622 }
1623
1624 /* if != -1, fdatap->saved_vr is the smallest number of saved_vr.
1625 All vr's from saved_vr to vr31 are saved. */
1626 if (tdep->ppc_vr0_regnum != -1 && tdep->ppc_vrsave_regnum != -1)
1627 {
1628 if (fdatap->saved_vr >= 0)
1629 {
1630 int i;
1631 CORE_ADDR vr_addr = frame_addr + fdatap->vr_offset;
1632 for (i = fdatap->saved_vr; i < 32; i++)
1633 {
1634 fi->saved_regs[tdep->ppc_vr0_regnum + i] = vr_addr;
1635 vr_addr += REGISTER_RAW_SIZE (tdep->ppc_vr0_regnum);
1636 }
1637 }
1638 }
1639
1640 /* if != -1, fdatap->saved_ev is the smallest number of saved_ev.
1641 All vr's from saved_ev to ev31 are saved. ????? */
1642 if (tdep->ppc_ev0_regnum != -1 && tdep->ppc_ev31_regnum != -1)
1643 {
1644 if (fdatap->saved_ev >= 0)
1645 {
1646 int i;
1647 CORE_ADDR ev_addr = frame_addr + fdatap->ev_offset;
1648 for (i = fdatap->saved_ev; i < 32; i++)
1649 {
1650 fi->saved_regs[tdep->ppc_ev0_regnum + i] = ev_addr;
1651 fi->saved_regs[tdep->ppc_gp0_regnum + i] = ev_addr + 4;
1652 ev_addr += REGISTER_RAW_SIZE (tdep->ppc_ev0_regnum);
1653 }
1654 }
1655 }
1656
1657 /* If != 0, fdatap->cr_offset is the offset from the frame that holds
1658 the CR. */
1659 if (fdatap->cr_offset != 0)
1660 fi->saved_regs[tdep->ppc_cr_regnum] = frame_addr + fdatap->cr_offset;
1661
1662 /* If != 0, fdatap->lr_offset is the offset from the frame that holds
1663 the LR. */
1664 if (fdatap->lr_offset != 0)
1665 fi->saved_regs[tdep->ppc_lr_regnum] = frame_addr + fdatap->lr_offset;
1666
1667 /* If != 0, fdatap->vrsave_offset is the offset from the frame that holds
1668 the VRSAVE. */
1669 if (fdatap->vrsave_offset != 0)
1670 fi->saved_regs[tdep->ppc_vrsave_regnum] = frame_addr + fdatap->vrsave_offset;
1671 }
1672
1673 /* Return the address of a frame. This is the inital %sp value when the frame
1674 was first allocated. For functions calling alloca(), it might be saved in
1675 an alloca register. */
1676
1677 static CORE_ADDR
1678 frame_initial_stack_address (struct frame_info *fi)
1679 {
1680 CORE_ADDR tmpaddr;
1681 struct rs6000_framedata fdata;
1682 struct frame_info *callee_fi;
1683
1684 /* If the initial stack pointer (frame address) of this frame is known,
1685 just return it. */
1686
1687 if (fi->extra_info->initial_sp)
1688 return fi->extra_info->initial_sp;
1689
1690 /* Find out if this function is using an alloca register. */
1691
1692 (void) skip_prologue (get_pc_function_start (fi->pc), fi->pc, &fdata);
1693
1694 /* If saved registers of this frame are not known yet, read and
1695 cache them. */
1696
1697 if (!fi->saved_regs)
1698 frame_get_saved_regs (fi, &fdata);
1699
1700 /* If no alloca register used, then fi->frame is the value of the %sp for
1701 this frame, and it is good enough. */
1702
1703 if (fdata.alloca_reg < 0)
1704 {
1705 fi->extra_info->initial_sp = fi->frame;
1706 return fi->extra_info->initial_sp;
1707 }
1708
1709 /* There is an alloca register, use its value, in the current frame,
1710 as the initial stack pointer. */
1711 {
1712 char *tmpbuf = alloca (MAX_REGISTER_RAW_SIZE);
1713 if (frame_register_read (fi, fdata.alloca_reg, tmpbuf))
1714 {
1715 fi->extra_info->initial_sp
1716 = extract_unsigned_integer (tmpbuf,
1717 REGISTER_RAW_SIZE (fdata.alloca_reg));
1718 }
1719 else
1720 /* NOTE: cagney/2002-04-17: At present the only time
1721 frame_register_read will fail is when the register isn't
1722 available. If that does happen, use the frame. */
1723 fi->extra_info->initial_sp = fi->frame;
1724 }
1725 return fi->extra_info->initial_sp;
1726 }
1727
1728 /* Describe the pointer in each stack frame to the previous stack frame
1729 (its caller). */
1730
1731 /* FRAME_CHAIN takes a frame's nominal address
1732 and produces the frame's chain-pointer. */
1733
1734 /* In the case of the RS/6000, the frame's nominal address
1735 is the address of a 4-byte word containing the calling frame's address. */
1736
1737 CORE_ADDR
1738 rs6000_frame_chain (struct frame_info *thisframe)
1739 {
1740 CORE_ADDR fp, fpp, lr;
1741 int wordsize = gdbarch_tdep (current_gdbarch)->wordsize;
1742
1743 if (PC_IN_CALL_DUMMY (thisframe->pc, thisframe->frame, thisframe->frame))
1744 return thisframe->frame; /* dummy frame same as caller's frame */
1745
1746 if (inside_entry_file (thisframe->pc) ||
1747 thisframe->pc == entry_point_address ())
1748 return 0;
1749
1750 if (thisframe->signal_handler_caller)
1751 fp = read_memory_addr (thisframe->frame + SIG_FRAME_FP_OFFSET,
1752 wordsize);
1753 else if (thisframe->next != NULL
1754 && thisframe->next->signal_handler_caller
1755 && FRAMELESS_FUNCTION_INVOCATION (thisframe))
1756 /* A frameless function interrupted by a signal did not change the
1757 frame pointer. */
1758 fp = FRAME_FP (thisframe);
1759 else
1760 fp = read_memory_addr ((thisframe)->frame, wordsize);
1761
1762 lr = read_register (gdbarch_tdep (current_gdbarch)->ppc_lr_regnum);
1763 if (lr == entry_point_address ())
1764 if (fp != 0 && (fpp = read_memory_addr (fp, wordsize)) != 0)
1765 if (PC_IN_CALL_DUMMY (lr, fpp, fpp))
1766 return fpp;
1767
1768 return fp;
1769 }
1770
1771 /* Return the size of register REG when words are WORDSIZE bytes long. If REG
1772 isn't available with that word size, return 0. */
1773
1774 static int
1775 regsize (const struct reg *reg, int wordsize)
1776 {
1777 return wordsize == 8 ? reg->sz64 : reg->sz32;
1778 }
1779
1780 /* Return the name of register number N, or null if no such register exists
1781 in the current architecture. */
1782
1783 static const char *
1784 rs6000_register_name (int n)
1785 {
1786 struct gdbarch_tdep *tdep = gdbarch_tdep (current_gdbarch);
1787 const struct reg *reg = tdep->regs + n;
1788
1789 if (!regsize (reg, tdep->wordsize))
1790 return NULL;
1791 return reg->name;
1792 }
1793
1794 /* Index within `registers' of the first byte of the space for
1795 register N. */
1796
1797 static int
1798 rs6000_register_byte (int n)
1799 {
1800 return gdbarch_tdep (current_gdbarch)->regoff[n];
1801 }
1802
1803 /* Return the number of bytes of storage in the actual machine representation
1804 for register N if that register is available, else return 0. */
1805
1806 static int
1807 rs6000_register_raw_size (int n)
1808 {
1809 struct gdbarch_tdep *tdep = gdbarch_tdep (current_gdbarch);
1810 const struct reg *reg = tdep->regs + n;
1811 return regsize (reg, tdep->wordsize);
1812 }
1813
1814 /* Return the GDB type object for the "standard" data type
1815 of data in register N. */
1816
1817 static struct type *
1818 rs6000_register_virtual_type (int n)
1819 {
1820 struct gdbarch_tdep *tdep = gdbarch_tdep (current_gdbarch);
1821 const struct reg *reg = tdep->regs + n;
1822
1823 if (reg->fpr)
1824 return builtin_type_double;
1825 else
1826 {
1827 int size = regsize (reg, tdep->wordsize);
1828 switch (size)
1829 {
1830 case 8:
1831 if (tdep->ppc_ev0_regnum <= n && n <= tdep->ppc_ev31_regnum)
1832 return builtin_type_vec64;
1833 else
1834 return builtin_type_int64;
1835 break;
1836 case 16:
1837 return builtin_type_vec128;
1838 break;
1839 default:
1840 return builtin_type_int32;
1841 break;
1842 }
1843 }
1844 }
1845
1846 /* For the PowerPC, it appears that the debug info marks float parameters as
1847 floats regardless of whether the function is prototyped, but the actual
1848 values are always passed in as doubles. Tell gdb to always assume that
1849 floats are passed as doubles and then converted in the callee. */
1850
1851 static int
1852 rs6000_coerce_float_to_double (struct type *formal, struct type *actual)
1853 {
1854 return 1;
1855 }
1856
1857 /* Return whether register N requires conversion when moving from raw format
1858 to virtual format.
1859
1860 The register format for RS/6000 floating point registers is always
1861 double, we need a conversion if the memory format is float. */
1862
1863 static int
1864 rs6000_register_convertible (int n)
1865 {
1866 const struct reg *reg = gdbarch_tdep (current_gdbarch)->regs + n;
1867 return reg->fpr;
1868 }
1869
1870 /* Convert data from raw format for register N in buffer FROM
1871 to virtual format with type TYPE in buffer TO. */
1872
1873 static void
1874 rs6000_register_convert_to_virtual (int n, struct type *type,
1875 char *from, char *to)
1876 {
1877 if (TYPE_LENGTH (type) != REGISTER_RAW_SIZE (n))
1878 {
1879 double val = extract_floating (from, REGISTER_RAW_SIZE (n));
1880 store_floating (to, TYPE_LENGTH (type), val);
1881 }
1882 else
1883 memcpy (to, from, REGISTER_RAW_SIZE (n));
1884 }
1885
1886 /* Convert data from virtual format with type TYPE in buffer FROM
1887 to raw format for register N in buffer TO. */
1888
1889 static void
1890 rs6000_register_convert_to_raw (struct type *type, int n,
1891 char *from, char *to)
1892 {
1893 if (TYPE_LENGTH (type) != REGISTER_RAW_SIZE (n))
1894 {
1895 double val = extract_floating (from, TYPE_LENGTH (type));
1896 store_floating (to, REGISTER_RAW_SIZE (n), val);
1897 }
1898 else
1899 memcpy (to, from, REGISTER_RAW_SIZE (n));
1900 }
1901
1902 static void
1903 e500_pseudo_register_read (struct gdbarch *gdbarch, struct regcache *regcache,
1904 int reg_nr, void *buffer)
1905 {
1906 int base_regnum;
1907 int offset = 0;
1908 char *temp_buffer = (char*) alloca (MAX_REGISTER_RAW_SIZE);
1909 struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch);
1910
1911 if (reg_nr >= tdep->ppc_gp0_regnum
1912 && reg_nr <= tdep->ppc_gplast_regnum)
1913 {
1914 base_regnum = reg_nr - tdep->ppc_gp0_regnum + tdep->ppc_ev0_regnum;
1915
1916 /* Build the value in the provided buffer. */
1917 /* Read the raw register of which this one is the lower portion. */
1918 regcache_raw_read (regcache, base_regnum, temp_buffer);
1919 if (TARGET_BYTE_ORDER == BFD_ENDIAN_BIG)
1920 offset = 4;
1921 memcpy ((char *) buffer, temp_buffer + offset, 4);
1922 }
1923 }
1924
1925 static void
1926 e500_pseudo_register_write (struct gdbarch *gdbarch, struct regcache *regcache,
1927 int reg_nr, const void *buffer)
1928 {
1929 int base_regnum;
1930 int offset = 0;
1931 char *temp_buffer = (char*) alloca (MAX_REGISTER_RAW_SIZE);
1932 struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch);
1933
1934 if (reg_nr >= tdep->ppc_gp0_regnum
1935 && reg_nr <= tdep->ppc_gplast_regnum)
1936 {
1937 base_regnum = reg_nr - tdep->ppc_gp0_regnum + tdep->ppc_ev0_regnum;
1938 /* reg_nr is 32 bit here, and base_regnum is 64 bits. */
1939 if (TARGET_BYTE_ORDER == BFD_ENDIAN_BIG)
1940 offset = 4;
1941
1942 /* Let's read the value of the base register into a temporary
1943 buffer, so that overwriting the last four bytes with the new
1944 value of the pseudo will leave the upper 4 bytes unchanged. */
1945 regcache_raw_read (regcache, base_regnum, temp_buffer);
1946
1947 /* Write as an 8 byte quantity. */
1948 memcpy (temp_buffer + offset, (char *) buffer, 4);
1949 regcache_raw_write (regcache, base_regnum, temp_buffer);
1950 }
1951 }
1952
1953 /* Convert a dwarf2 register number to a gdb REGNUM. */
1954 static int
1955 e500_dwarf2_reg_to_regnum (int num)
1956 {
1957 int regnum;
1958 if (0 <= num && num <= 31)
1959 return num + gdbarch_tdep (current_gdbarch)->ppc_gp0_regnum;
1960 else
1961 return num;
1962 }
1963
1964 /* Convert a dbx stab register number (from `r' declaration) to a gdb
1965 REGNUM. */
1966 static int
1967 rs6000_stab_reg_to_regnum (int num)
1968 {
1969 int regnum;
1970 switch (num)
1971 {
1972 case 64:
1973 regnum = gdbarch_tdep (current_gdbarch)->ppc_mq_regnum;
1974 break;
1975 case 65:
1976 regnum = gdbarch_tdep (current_gdbarch)->ppc_lr_regnum;
1977 break;
1978 case 66:
1979 regnum = gdbarch_tdep (current_gdbarch)->ppc_ctr_regnum;
1980 break;
1981 case 76:
1982 regnum = gdbarch_tdep (current_gdbarch)->ppc_xer_regnum;
1983 break;
1984 default:
1985 regnum = num;
1986 break;
1987 }
1988 return regnum;
1989 }
1990
1991 /* Store the address of the place in which to copy the structure the
1992 subroutine will return. This is called from call_function.
1993
1994 In RS/6000, struct return addresses are passed as an extra parameter in r3.
1995 In function return, callee is not responsible of returning this address
1996 back. Since gdb needs to find it, we will store in a designated variable
1997 `rs6000_struct_return_address'. */
1998
1999 static void
2000 rs6000_store_struct_return (CORE_ADDR addr, CORE_ADDR sp)
2001 {
2002 write_register (3, addr);
2003 rs6000_struct_return_address = addr;
2004 }
2005
2006 /* Write into appropriate registers a function return value
2007 of type TYPE, given in virtual format. */
2008 static void
2009 e500_store_return_value (struct type *type, char *valbuf)
2010 {
2011 struct gdbarch_tdep *tdep = gdbarch_tdep (current_gdbarch);
2012
2013 /* Everything is returned in GPR3 and up. */
2014 int copied = 0;
2015 int i = 0;
2016 int len = TYPE_LENGTH (type);
2017 while (copied < len)
2018 {
2019 int regnum = gdbarch_tdep (current_gdbarch)->ppc_gp0_regnum + 3 + i;
2020 int reg_size = REGISTER_RAW_SIZE (regnum);
2021 char *reg_val_buf = alloca (reg_size);
2022
2023 memcpy (reg_val_buf, valbuf + copied, reg_size);
2024 copied += reg_size;
2025 write_register_gen (regnum, reg_val_buf);
2026 i++;
2027 }
2028 }
2029
2030 static void
2031 rs6000_store_return_value (struct type *type, char *valbuf)
2032 {
2033 struct gdbarch_tdep *tdep = gdbarch_tdep (current_gdbarch);
2034
2035 if (TYPE_CODE (type) == TYPE_CODE_FLT)
2036
2037 /* Floating point values are returned starting from FPR1 and up.
2038 Say a double_double_double type could be returned in
2039 FPR1/FPR2/FPR3 triple. */
2040
2041 write_register_bytes (REGISTER_BYTE (FP0_REGNUM + 1), valbuf,
2042 TYPE_LENGTH (type));
2043 else if (TYPE_CODE (type) == TYPE_CODE_ARRAY)
2044 {
2045 if (TYPE_LENGTH (type) == 16
2046 && TYPE_VECTOR (type))
2047 write_register_bytes (REGISTER_BYTE (tdep->ppc_vr0_regnum + 2),
2048 valbuf, TYPE_LENGTH (type));
2049 }
2050 else
2051 /* Everything else is returned in GPR3 and up. */
2052 write_register_bytes (REGISTER_BYTE (gdbarch_tdep (current_gdbarch)->ppc_gp0_regnum + 3),
2053 valbuf, TYPE_LENGTH (type));
2054 }
2055
2056 /* Extract from an array REGBUF containing the (raw) register state
2057 the address in which a function should return its structure value,
2058 as a CORE_ADDR (or an expression that can be used as one). */
2059
2060 static CORE_ADDR
2061 rs6000_extract_struct_value_address (char *regbuf)
2062 {
2063 return rs6000_struct_return_address;
2064 }
2065
2066 /* Return whether PC is in a dummy function call.
2067
2068 FIXME: This just checks for the end of the stack, which is broken
2069 for things like stepping through gcc nested function stubs. */
2070
2071 static int
2072 rs6000_pc_in_call_dummy (CORE_ADDR pc, CORE_ADDR sp, CORE_ADDR fp)
2073 {
2074 return sp < pc && pc < fp;
2075 }
2076
2077 /* Hook called when a new child process is started. */
2078
2079 void
2080 rs6000_create_inferior (int pid)
2081 {
2082 if (rs6000_set_host_arch_hook)
2083 rs6000_set_host_arch_hook (pid);
2084 }
2085 \f
2086 /* Support for CONVERT_FROM_FUNC_PTR_ADDR(ADDR).
2087
2088 Usually a function pointer's representation is simply the address
2089 of the function. On the RS/6000 however, a function pointer is
2090 represented by a pointer to a TOC entry. This TOC entry contains
2091 three words, the first word is the address of the function, the
2092 second word is the TOC pointer (r2), and the third word is the
2093 static chain value. Throughout GDB it is currently assumed that a
2094 function pointer contains the address of the function, which is not
2095 easy to fix. In addition, the conversion of a function address to
2096 a function pointer would require allocation of a TOC entry in the
2097 inferior's memory space, with all its drawbacks. To be able to
2098 call C++ virtual methods in the inferior (which are called via
2099 function pointers), find_function_addr uses this function to get the
2100 function address from a function pointer. */
2101
2102 /* Return real function address if ADDR (a function pointer) is in the data
2103 space and is therefore a special function pointer. */
2104
2105 CORE_ADDR
2106 rs6000_convert_from_func_ptr_addr (CORE_ADDR addr)
2107 {
2108 struct obj_section *s;
2109
2110 s = find_pc_section (addr);
2111 if (s && s->the_bfd_section->flags & SEC_CODE)
2112 return addr;
2113
2114 /* ADDR is in the data space, so it's a special function pointer. */
2115 return read_memory_addr (addr, gdbarch_tdep (current_gdbarch)->wordsize);
2116 }
2117 \f
2118
2119 /* Handling the various POWER/PowerPC variants. */
2120
2121
2122 /* The arrays here called registers_MUMBLE hold information about available
2123 registers.
2124
2125 For each family of PPC variants, I've tried to isolate out the
2126 common registers and put them up front, so that as long as you get
2127 the general family right, GDB will correctly identify the registers
2128 common to that family. The common register sets are:
2129
2130 For the 60x family: hid0 hid1 iabr dabr pir
2131
2132 For the 505 and 860 family: eie eid nri
2133
2134 For the 403 and 403GC: icdbdr esr dear evpr cdbcr tsr tcr pit tbhi
2135 tblo srr2 srr3 dbsr dbcr iac1 iac2 dac1 dac2 dccr iccr pbl1
2136 pbu1 pbl2 pbu2
2137
2138 Most of these register groups aren't anything formal. I arrived at
2139 them by looking at the registers that occurred in more than one
2140 processor.
2141
2142 Note: kevinb/2002-04-30: Support for the fpscr register was added
2143 during April, 2002. Slot 70 is being used for PowerPC and slot 71
2144 for Power. For PowerPC, slot 70 was unused and was already in the
2145 PPC_UISA_SPRS which is ideally where fpscr should go. For Power,
2146 slot 70 was being used for "mq", so the next available slot (71)
2147 was chosen. It would have been nice to be able to make the
2148 register numbers the same across processor cores, but this wasn't
2149 possible without either 1) renumbering some registers for some
2150 processors or 2) assigning fpscr to a really high slot that's
2151 larger than any current register number. Doing (1) is bad because
2152 existing stubs would break. Doing (2) is undesirable because it
2153 would introduce a really large gap between fpscr and the rest of
2154 the registers for most processors. */
2155
2156 /* Convenience macros for populating register arrays. */
2157
2158 /* Within another macro, convert S to a string. */
2159
2160 #define STR(s) #s
2161
2162 /* Return a struct reg defining register NAME that's 32 bits on 32-bit systems
2163 and 64 bits on 64-bit systems. */
2164 #define R(name) { STR(name), 4, 8, 0, 0 }
2165
2166 /* Return a struct reg defining register NAME that's 32 bits on all
2167 systems. */
2168 #define R4(name) { STR(name), 4, 4, 0, 0 }
2169
2170 /* Return a struct reg defining register NAME that's 64 bits on all
2171 systems. */
2172 #define R8(name) { STR(name), 8, 8, 0, 0 }
2173
2174 /* Return a struct reg defining register NAME that's 128 bits on all
2175 systems. */
2176 #define R16(name) { STR(name), 16, 16, 0, 0 }
2177
2178 /* Return a struct reg defining floating-point register NAME. */
2179 #define F(name) { STR(name), 8, 8, 1, 0 }
2180
2181 /* Return a struct reg defining a pseudo register NAME. */
2182 #define P(name) { STR(name), 4, 8, 0, 1}
2183
2184 /* Return a struct reg defining register NAME that's 32 bits on 32-bit
2185 systems and that doesn't exist on 64-bit systems. */
2186 #define R32(name) { STR(name), 4, 0, 0, 0 }
2187
2188 /* Return a struct reg defining register NAME that's 64 bits on 64-bit
2189 systems and that doesn't exist on 32-bit systems. */
2190 #define R64(name) { STR(name), 0, 8, 0, 0 }
2191
2192 /* Return a struct reg placeholder for a register that doesn't exist. */
2193 #define R0 { 0, 0, 0, 0, 0 }
2194
2195 /* UISA registers common across all architectures, including POWER. */
2196
2197 #define COMMON_UISA_REGS \
2198 /* 0 */ R(r0), R(r1), R(r2), R(r3), R(r4), R(r5), R(r6), R(r7), \
2199 /* 8 */ R(r8), R(r9), R(r10),R(r11),R(r12),R(r13),R(r14),R(r15), \
2200 /* 16 */ R(r16),R(r17),R(r18),R(r19),R(r20),R(r21),R(r22),R(r23), \
2201 /* 24 */ R(r24),R(r25),R(r26),R(r27),R(r28),R(r29),R(r30),R(r31), \
2202 /* 32 */ F(f0), F(f1), F(f2), F(f3), F(f4), F(f5), F(f6), F(f7), \
2203 /* 40 */ F(f8), F(f9), F(f10),F(f11),F(f12),F(f13),F(f14),F(f15), \
2204 /* 48 */ F(f16),F(f17),F(f18),F(f19),F(f20),F(f21),F(f22),F(f23), \
2205 /* 56 */ F(f24),F(f25),F(f26),F(f27),F(f28),F(f29),F(f30),F(f31), \
2206 /* 64 */ R(pc), R(ps)
2207
2208 #define COMMON_UISA_NOFP_REGS \
2209 /* 0 */ R(r0), R(r1), R(r2), R(r3), R(r4), R(r5), R(r6), R(r7), \
2210 /* 8 */ R(r8), R(r9), R(r10),R(r11),R(r12),R(r13),R(r14),R(r15), \
2211 /* 16 */ R(r16),R(r17),R(r18),R(r19),R(r20),R(r21),R(r22),R(r23), \
2212 /* 24 */ R(r24),R(r25),R(r26),R(r27),R(r28),R(r29),R(r30),R(r31), \
2213 /* 32 */ R0, R0, R0, R0, R0, R0, R0, R0, \
2214 /* 40 */ R0, R0, R0, R0, R0, R0, R0, R0, \
2215 /* 48 */ R0, R0, R0, R0, R0, R0, R0, R0, \
2216 /* 56 */ R0, R0, R0, R0, R0, R0, R0, R0, \
2217 /* 64 */ R(pc), R(ps)
2218
2219 /* UISA-level SPRs for PowerPC. */
2220 #define PPC_UISA_SPRS \
2221 /* 66 */ R4(cr), R(lr), R(ctr), R4(xer), R4(fpscr)
2222
2223 /* UISA-level SPRs for PowerPC without floating point support. */
2224 #define PPC_UISA_NOFP_SPRS \
2225 /* 66 */ R4(cr), R(lr), R(ctr), R4(xer), R0
2226
2227 /* Segment registers, for PowerPC. */
2228 #define PPC_SEGMENT_REGS \
2229 /* 71 */ R32(sr0), R32(sr1), R32(sr2), R32(sr3), \
2230 /* 75 */ R32(sr4), R32(sr5), R32(sr6), R32(sr7), \
2231 /* 79 */ R32(sr8), R32(sr9), R32(sr10), R32(sr11), \
2232 /* 83 */ R32(sr12), R32(sr13), R32(sr14), R32(sr15)
2233
2234 /* OEA SPRs for PowerPC. */
2235 #define PPC_OEA_SPRS \
2236 /* 87 */ R4(pvr), \
2237 /* 88 */ R(ibat0u), R(ibat0l), R(ibat1u), R(ibat1l), \
2238 /* 92 */ R(ibat2u), R(ibat2l), R(ibat3u), R(ibat3l), \
2239 /* 96 */ R(dbat0u), R(dbat0l), R(dbat1u), R(dbat1l), \
2240 /* 100 */ R(dbat2u), R(dbat2l), R(dbat3u), R(dbat3l), \
2241 /* 104 */ R(sdr1), R64(asr), R(dar), R4(dsisr), \
2242 /* 108 */ R(sprg0), R(sprg1), R(sprg2), R(sprg3), \
2243 /* 112 */ R(srr0), R(srr1), R(tbl), R(tbu), \
2244 /* 116 */ R4(dec), R(dabr), R4(ear)
2245
2246 /* AltiVec registers. */
2247 #define PPC_ALTIVEC_REGS \
2248 /*119*/R16(vr0), R16(vr1), R16(vr2), R16(vr3), R16(vr4), R16(vr5), R16(vr6), R16(vr7), \
2249 /*127*/R16(vr8), R16(vr9), R16(vr10),R16(vr11),R16(vr12),R16(vr13),R16(vr14),R16(vr15), \
2250 /*135*/R16(vr16),R16(vr17),R16(vr18),R16(vr19),R16(vr20),R16(vr21),R16(vr22),R16(vr23), \
2251 /*143*/R16(vr24),R16(vr25),R16(vr26),R16(vr27),R16(vr28),R16(vr29),R16(vr30),R16(vr31), \
2252 /*151*/R4(vscr), R4(vrsave)
2253
2254 /* Vectors of hi-lo general purpose registers. */
2255 #define PPC_EV_REGS \
2256 /* 0*/R8(ev0), R8(ev1), R8(ev2), R8(ev3), R8(ev4), R8(ev5), R8(ev6), R8(ev7), \
2257 /* 8*/R8(ev8), R8(ev9), R8(ev10),R8(ev11),R8(ev12),R8(ev13),R8(ev14),R8(ev15), \
2258 /*16*/R8(ev16),R8(ev17),R8(ev18),R8(ev19),R8(ev20),R8(ev21),R8(ev22),R8(ev23), \
2259 /*24*/R8(ev24),R8(ev25),R8(ev26),R8(ev27),R8(ev28),R8(ev29),R8(ev30),R8(ev31)
2260
2261 /* Lower half of the EV registers. */
2262 #define PPC_GPRS_PSEUDO_REGS \
2263 /* 0 */ P(r0), P(r1), P(r2), P(r3), P(r4), P(r5), P(r6), P(r7), \
2264 /* 8 */ P(r8), P(r9), P(r10),P(r11),P(r12),P(r13),P(r14),P(r15), \
2265 /* 16 */ P(r16),P(r17),P(r18),P(r19),P(r20),P(r21),P(r22),P(r23), \
2266 /* 24 */ P(r24),P(r25),P(r26),P(r27),P(r28),P(r29),P(r30),P(r31), \
2267
2268 /* IBM POWER (pre-PowerPC) architecture, user-level view. We only cover
2269 user-level SPR's. */
2270 static const struct reg registers_power[] =
2271 {
2272 COMMON_UISA_REGS,
2273 /* 66 */ R4(cnd), R(lr), R(cnt), R4(xer), R4(mq),
2274 /* 71 */ R4(fpscr)
2275 };
2276
2277 /* PowerPC UISA - a PPC processor as viewed by user-level code. A UISA-only
2278 view of the PowerPC. */
2279 static const struct reg registers_powerpc[] =
2280 {
2281 COMMON_UISA_REGS,
2282 PPC_UISA_SPRS,
2283 PPC_ALTIVEC_REGS
2284 };
2285
2286 /* PowerPC UISA - a PPC processor as viewed by user-level
2287 code, but without floating point registers. */
2288 static const struct reg registers_powerpc_nofp[] =
2289 {
2290 COMMON_UISA_NOFP_REGS,
2291 PPC_UISA_SPRS
2292 };
2293
2294 /* IBM PowerPC 403. */
2295 static const struct reg registers_403[] =
2296 {
2297 COMMON_UISA_REGS,
2298 PPC_UISA_SPRS,
2299 PPC_SEGMENT_REGS,
2300 PPC_OEA_SPRS,
2301 /* 119 */ R(icdbdr), R(esr), R(dear), R(evpr),
2302 /* 123 */ R(cdbcr), R(tsr), R(tcr), R(pit),
2303 /* 127 */ R(tbhi), R(tblo), R(srr2), R(srr3),
2304 /* 131 */ R(dbsr), R(dbcr), R(iac1), R(iac2),
2305 /* 135 */ R(dac1), R(dac2), R(dccr), R(iccr),
2306 /* 139 */ R(pbl1), R(pbu1), R(pbl2), R(pbu2)
2307 };
2308
2309 /* IBM PowerPC 403GC. */
2310 static const struct reg registers_403GC[] =
2311 {
2312 COMMON_UISA_REGS,
2313 PPC_UISA_SPRS,
2314 PPC_SEGMENT_REGS,
2315 PPC_OEA_SPRS,
2316 /* 119 */ R(icdbdr), R(esr), R(dear), R(evpr),
2317 /* 123 */ R(cdbcr), R(tsr), R(tcr), R(pit),
2318 /* 127 */ R(tbhi), R(tblo), R(srr2), R(srr3),
2319 /* 131 */ R(dbsr), R(dbcr), R(iac1), R(iac2),
2320 /* 135 */ R(dac1), R(dac2), R(dccr), R(iccr),
2321 /* 139 */ R(pbl1), R(pbu1), R(pbl2), R(pbu2),
2322 /* 143 */ R(zpr), R(pid), R(sgr), R(dcwr),
2323 /* 147 */ R(tbhu), R(tblu)
2324 };
2325
2326 /* Motorola PowerPC 505. */
2327 static const struct reg registers_505[] =
2328 {
2329 COMMON_UISA_REGS,
2330 PPC_UISA_SPRS,
2331 PPC_SEGMENT_REGS,
2332 PPC_OEA_SPRS,
2333 /* 119 */ R(eie), R(eid), R(nri)
2334 };
2335
2336 /* Motorola PowerPC 860 or 850. */
2337 static const struct reg registers_860[] =
2338 {
2339 COMMON_UISA_REGS,
2340 PPC_UISA_SPRS,
2341 PPC_SEGMENT_REGS,
2342 PPC_OEA_SPRS,
2343 /* 119 */ R(eie), R(eid), R(nri), R(cmpa),
2344 /* 123 */ R(cmpb), R(cmpc), R(cmpd), R(icr),
2345 /* 127 */ R(der), R(counta), R(countb), R(cmpe),
2346 /* 131 */ R(cmpf), R(cmpg), R(cmph), R(lctrl1),
2347 /* 135 */ R(lctrl2), R(ictrl), R(bar), R(ic_cst),
2348 /* 139 */ R(ic_adr), R(ic_dat), R(dc_cst), R(dc_adr),
2349 /* 143 */ R(dc_dat), R(dpdr), R(dpir), R(immr),
2350 /* 147 */ R(mi_ctr), R(mi_ap), R(mi_epn), R(mi_twc),
2351 /* 151 */ R(mi_rpn), R(md_ctr), R(m_casid), R(md_ap),
2352 /* 155 */ R(md_epn), R(md_twb), R(md_twc), R(md_rpn),
2353 /* 159 */ R(m_tw), R(mi_dbcam), R(mi_dbram0), R(mi_dbram1),
2354 /* 163 */ R(md_dbcam), R(md_dbram0), R(md_dbram1)
2355 };
2356
2357 /* Motorola PowerPC 601. Note that the 601 has different register numbers
2358 for reading and writing RTCU and RTCL. However, how one reads and writes a
2359 register is the stub's problem. */
2360 static const struct reg registers_601[] =
2361 {
2362 COMMON_UISA_REGS,
2363 PPC_UISA_SPRS,
2364 PPC_SEGMENT_REGS,
2365 PPC_OEA_SPRS,
2366 /* 119 */ R(hid0), R(hid1), R(iabr), R(dabr),
2367 /* 123 */ R(pir), R(mq), R(rtcu), R(rtcl)
2368 };
2369
2370 /* Motorola PowerPC 602. */
2371 static const struct reg registers_602[] =
2372 {
2373 COMMON_UISA_REGS,
2374 PPC_UISA_SPRS,
2375 PPC_SEGMENT_REGS,
2376 PPC_OEA_SPRS,
2377 /* 119 */ R(hid0), R(hid1), R(iabr), R0,
2378 /* 123 */ R0, R(tcr), R(ibr), R(esassr),
2379 /* 127 */ R(sebr), R(ser), R(sp), R(lt)
2380 };
2381
2382 /* Motorola/IBM PowerPC 603 or 603e. */
2383 static const struct reg registers_603[] =
2384 {
2385 COMMON_UISA_REGS,
2386 PPC_UISA_SPRS,
2387 PPC_SEGMENT_REGS,
2388 PPC_OEA_SPRS,
2389 /* 119 */ R(hid0), R(hid1), R(iabr), R0,
2390 /* 123 */ R0, R(dmiss), R(dcmp), R(hash1),
2391 /* 127 */ R(hash2), R(imiss), R(icmp), R(rpa)
2392 };
2393
2394 /* Motorola PowerPC 604 or 604e. */
2395 static const struct reg registers_604[] =
2396 {
2397 COMMON_UISA_REGS,
2398 PPC_UISA_SPRS,
2399 PPC_SEGMENT_REGS,
2400 PPC_OEA_SPRS,
2401 /* 119 */ R(hid0), R(hid1), R(iabr), R(dabr),
2402 /* 123 */ R(pir), R(mmcr0), R(pmc1), R(pmc2),
2403 /* 127 */ R(sia), R(sda)
2404 };
2405
2406 /* Motorola/IBM PowerPC 750 or 740. */
2407 static const struct reg registers_750[] =
2408 {
2409 COMMON_UISA_REGS,
2410 PPC_UISA_SPRS,
2411 PPC_SEGMENT_REGS,
2412 PPC_OEA_SPRS,
2413 /* 119 */ R(hid0), R(hid1), R(iabr), R(dabr),
2414 /* 123 */ R0, R(ummcr0), R(upmc1), R(upmc2),
2415 /* 127 */ R(usia), R(ummcr1), R(upmc3), R(upmc4),
2416 /* 131 */ R(mmcr0), R(pmc1), R(pmc2), R(sia),
2417 /* 135 */ R(mmcr1), R(pmc3), R(pmc4), R(l2cr),
2418 /* 139 */ R(ictc), R(thrm1), R(thrm2), R(thrm3)
2419 };
2420
2421
2422 /* Motorola PowerPC 7400. */
2423 static const struct reg registers_7400[] =
2424 {
2425 /* gpr0-gpr31, fpr0-fpr31 */
2426 COMMON_UISA_REGS,
2427 /* ctr, xre, lr, cr */
2428 PPC_UISA_SPRS,
2429 /* sr0-sr15 */
2430 PPC_SEGMENT_REGS,
2431 PPC_OEA_SPRS,
2432 /* vr0-vr31, vrsave, vscr */
2433 PPC_ALTIVEC_REGS
2434 /* FIXME? Add more registers? */
2435 };
2436
2437 /* Motorola e500. */
2438 static const struct reg registers_e500[] =
2439 {
2440 R(pc), R(ps),
2441 /* cr, lr, ctr, xer, "" */
2442 PPC_UISA_NOFP_SPRS,
2443 /* 7...38 */
2444 PPC_EV_REGS,
2445 /* 39...70 */
2446 PPC_GPRS_PSEUDO_REGS
2447 };
2448
2449 /* Information about a particular processor variant. */
2450
2451 struct variant
2452 {
2453 /* Name of this variant. */
2454 char *name;
2455
2456 /* English description of the variant. */
2457 char *description;
2458
2459 /* bfd_arch_info.arch corresponding to variant. */
2460 enum bfd_architecture arch;
2461
2462 /* bfd_arch_info.mach corresponding to variant. */
2463 unsigned long mach;
2464
2465 /* Number of real registers. */
2466 int nregs;
2467
2468 /* Number of pseudo registers. */
2469 int npregs;
2470
2471 /* Number of total registers (the sum of nregs and npregs). */
2472 int num_tot_regs;
2473
2474 /* Table of register names; registers[R] is the name of the register
2475 number R. */
2476 const struct reg *regs;
2477 };
2478
2479 #define tot_num_registers(list) (sizeof (list) / sizeof((list)[0]))
2480
2481 static int
2482 num_registers (const struct reg *reg_list, int num_tot_regs)
2483 {
2484 int i;
2485 int nregs = 0;
2486
2487 for (i = 0; i < num_tot_regs; i++)
2488 if (!reg_list[i].pseudo)
2489 nregs++;
2490
2491 return nregs;
2492 }
2493
2494 static int
2495 num_pseudo_registers (const struct reg *reg_list, int num_tot_regs)
2496 {
2497 int i;
2498 int npregs = 0;
2499
2500 for (i = 0; i < num_tot_regs; i++)
2501 if (reg_list[i].pseudo)
2502 npregs ++;
2503
2504 return npregs;
2505 }
2506
2507 /* Information in this table comes from the following web sites:
2508 IBM: http://www.chips.ibm.com:80/products/embedded/
2509 Motorola: http://www.mot.com/SPS/PowerPC/
2510
2511 I'm sure I've got some of the variant descriptions not quite right.
2512 Please report any inaccuracies you find to GDB's maintainer.
2513
2514 If you add entries to this table, please be sure to allow the new
2515 value as an argument to the --with-cpu flag, in configure.in. */
2516
2517 static struct variant variants[] =
2518 {
2519
2520 {"powerpc", "PowerPC user-level", bfd_arch_powerpc,
2521 bfd_mach_ppc, -1, -1, tot_num_registers (registers_powerpc),
2522 registers_powerpc},
2523 {"power", "POWER user-level", bfd_arch_rs6000,
2524 bfd_mach_rs6k, -1, -1, tot_num_registers (registers_power),
2525 registers_power},
2526 {"403", "IBM PowerPC 403", bfd_arch_powerpc,
2527 bfd_mach_ppc_403, -1, -1, tot_num_registers (registers_403),
2528 registers_403},
2529 {"601", "Motorola PowerPC 601", bfd_arch_powerpc,
2530 bfd_mach_ppc_601, -1, -1, tot_num_registers (registers_601),
2531 registers_601},
2532 {"602", "Motorola PowerPC 602", bfd_arch_powerpc,
2533 bfd_mach_ppc_602, -1, -1, tot_num_registers (registers_602),
2534 registers_602},
2535 {"603", "Motorola/IBM PowerPC 603 or 603e", bfd_arch_powerpc,
2536 bfd_mach_ppc_603, -1, -1, tot_num_registers (registers_603),
2537 registers_603},
2538 {"604", "Motorola PowerPC 604 or 604e", bfd_arch_powerpc,
2539 604, -1, -1, tot_num_registers (registers_604),
2540 registers_604},
2541 {"403GC", "IBM PowerPC 403GC", bfd_arch_powerpc,
2542 bfd_mach_ppc_403gc, -1, -1, tot_num_registers (registers_403GC),
2543 registers_403GC},
2544 {"505", "Motorola PowerPC 505", bfd_arch_powerpc,
2545 bfd_mach_ppc_505, -1, -1, tot_num_registers (registers_505),
2546 registers_505},
2547 {"860", "Motorola PowerPC 860 or 850", bfd_arch_powerpc,
2548 bfd_mach_ppc_860, -1, -1, tot_num_registers (registers_860),
2549 registers_860},
2550 {"750", "Motorola/IBM PowerPC 750 or 740", bfd_arch_powerpc,
2551 bfd_mach_ppc_750, -1, -1, tot_num_registers (registers_750),
2552 registers_750},
2553 {"7400", "Motorola/IBM PowerPC 7400 (G4)", bfd_arch_powerpc,
2554 bfd_mach_ppc_7400, -1, -1, tot_num_registers (registers_7400),
2555 registers_7400},
2556 {"e500", "Motorola PowerPC e500", bfd_arch_powerpc,
2557 bfd_mach_ppc_e500, -1, -1, tot_num_registers (registers_e500),
2558 registers_e500},
2559
2560 /* 64-bit */
2561 {"powerpc64", "PowerPC 64-bit user-level", bfd_arch_powerpc,
2562 bfd_mach_ppc64, -1, -1, tot_num_registers (registers_powerpc),
2563 registers_powerpc},
2564 {"620", "Motorola PowerPC 620", bfd_arch_powerpc,
2565 bfd_mach_ppc_620, -1, -1, tot_num_registers (registers_powerpc),
2566 registers_powerpc},
2567 {"630", "Motorola PowerPC 630", bfd_arch_powerpc,
2568 bfd_mach_ppc_630, -1, -1, tot_num_registers (registers_powerpc),
2569 registers_powerpc},
2570 {"a35", "PowerPC A35", bfd_arch_powerpc,
2571 bfd_mach_ppc_a35, -1, -1, tot_num_registers (registers_powerpc),
2572 registers_powerpc},
2573 {"rs64ii", "PowerPC rs64ii", bfd_arch_powerpc,
2574 bfd_mach_ppc_rs64ii, -1, -1, tot_num_registers (registers_powerpc),
2575 registers_powerpc},
2576 {"rs64iii", "PowerPC rs64iii", bfd_arch_powerpc,
2577 bfd_mach_ppc_rs64iii, -1, -1, tot_num_registers (registers_powerpc),
2578 registers_powerpc},
2579
2580 /* FIXME: I haven't checked the register sets of the following. */
2581 {"rs1", "IBM POWER RS1", bfd_arch_rs6000,
2582 bfd_mach_rs6k_rs1, -1, -1, tot_num_registers (registers_power),
2583 registers_power},
2584 {"rsc", "IBM POWER RSC", bfd_arch_rs6000,
2585 bfd_mach_rs6k_rsc, -1, -1, tot_num_registers (registers_power),
2586 registers_power},
2587 {"rs2", "IBM POWER RS2", bfd_arch_rs6000,
2588 bfd_mach_rs6k_rs2, -1, -1, tot_num_registers (registers_power),
2589 registers_power},
2590
2591 {0, 0, 0, 0, 0, 0, 0, 0}
2592 };
2593
2594 /* Initialize the number of registers and pseudo registers in each variant. */
2595
2596 static void
2597 init_variants (void)
2598 {
2599 struct variant *v;
2600
2601 for (v = variants; v->name; v++)
2602 {
2603 if (v->nregs == -1)
2604 v->nregs = num_registers (v->regs, v->num_tot_regs);
2605 if (v->npregs == -1)
2606 v->npregs = num_pseudo_registers (v->regs, v->num_tot_regs);
2607 }
2608 }
2609
2610 /* Return the variant corresponding to architecture ARCH and machine number
2611 MACH. If no such variant exists, return null. */
2612
2613 static const struct variant *
2614 find_variant_by_arch (enum bfd_architecture arch, unsigned long mach)
2615 {
2616 const struct variant *v;
2617
2618 for (v = variants; v->name; v++)
2619 if (arch == v->arch && mach == v->mach)
2620 return v;
2621
2622 return NULL;
2623 }
2624
2625 static int
2626 gdb_print_insn_powerpc (bfd_vma memaddr, disassemble_info *info)
2627 {
2628 if (TARGET_BYTE_ORDER == BFD_ENDIAN_BIG)
2629 return print_insn_big_powerpc (memaddr, info);
2630 else
2631 return print_insn_little_powerpc (memaddr, info);
2632 }
2633 \f
2634 /* Initialize the current architecture based on INFO. If possible, re-use an
2635 architecture from ARCHES, which is a list of architectures already created
2636 during this debugging session.
2637
2638 Called e.g. at program startup, when reading a core file, and when reading
2639 a binary file. */
2640
2641 static struct gdbarch *
2642 rs6000_gdbarch_init (struct gdbarch_info info, struct gdbarch_list *arches)
2643 {
2644 struct gdbarch *gdbarch;
2645 struct gdbarch_tdep *tdep;
2646 int wordsize, from_xcoff_exec, from_elf_exec, power, i, off;
2647 struct reg *regs;
2648 const struct variant *v;
2649 enum bfd_architecture arch;
2650 unsigned long mach;
2651 bfd abfd;
2652 int sysv_abi;
2653 enum gdb_osabi osabi = GDB_OSABI_UNKNOWN;
2654 asection *sect;
2655
2656 from_xcoff_exec = info.abfd && info.abfd->format == bfd_object &&
2657 bfd_get_flavour (info.abfd) == bfd_target_xcoff_flavour;
2658
2659 from_elf_exec = info.abfd && info.abfd->format == bfd_object &&
2660 bfd_get_flavour (info.abfd) == bfd_target_elf_flavour;
2661
2662 sysv_abi = info.abfd && bfd_get_flavour (info.abfd) == bfd_target_elf_flavour;
2663
2664 if (info.abfd)
2665 osabi = gdbarch_lookup_osabi (info.abfd);
2666
2667 /* Check word size. If INFO is from a binary file, infer it from
2668 that, else choose a likely default. */
2669 if (from_xcoff_exec)
2670 {
2671 if (bfd_xcoff_is_xcoff64 (info.abfd))
2672 wordsize = 8;
2673 else
2674 wordsize = 4;
2675 }
2676 else if (from_elf_exec)
2677 {
2678 if (elf_elfheader (info.abfd)->e_ident[EI_CLASS] == ELFCLASS64)
2679 wordsize = 8;
2680 else
2681 wordsize = 4;
2682 }
2683 else
2684 {
2685 if (info.bfd_arch_info != NULL && info.bfd_arch_info->bits_per_word != 0)
2686 wordsize = info.bfd_arch_info->bits_per_word /
2687 info.bfd_arch_info->bits_per_byte;
2688 else
2689 wordsize = 4;
2690 }
2691
2692 /* Find a candidate among extant architectures. */
2693 for (arches = gdbarch_list_lookup_by_info (arches, &info);
2694 arches != NULL;
2695 arches = gdbarch_list_lookup_by_info (arches->next, &info))
2696 {
2697 /* Word size in the various PowerPC bfd_arch_info structs isn't
2698 meaningful, because 64-bit CPUs can run in 32-bit mode. So, perform
2699 separate word size check. */
2700 tdep = gdbarch_tdep (arches->gdbarch);
2701 if (tdep && tdep->wordsize == wordsize && tdep->osabi == osabi)
2702 return arches->gdbarch;
2703 }
2704
2705 /* None found, create a new architecture from INFO, whose bfd_arch_info
2706 validity depends on the source:
2707 - executable useless
2708 - rs6000_host_arch() good
2709 - core file good
2710 - "set arch" trust blindly
2711 - GDB startup useless but harmless */
2712
2713 if (!from_xcoff_exec)
2714 {
2715 arch = info.bfd_arch_info->arch;
2716 mach = info.bfd_arch_info->mach;
2717 }
2718 else
2719 {
2720 arch = bfd_arch_powerpc;
2721 mach = 0;
2722 bfd_default_set_arch_mach (&abfd, arch, mach);
2723 info.bfd_arch_info = bfd_get_arch_info (&abfd);
2724 }
2725 tdep = xmalloc (sizeof (struct gdbarch_tdep));
2726 tdep->wordsize = wordsize;
2727 tdep->osabi = osabi;
2728
2729 /* For e500 executables, the apuinfo section is of help here. Such
2730 section contains the identifier and revision number of each
2731 Application-specific Processing Unit that is present on the
2732 chip. The content of the section is determined by the assembler
2733 which looks at each instruction and determines which unit (and
2734 which version of it) can execute it. In our case we just look for
2735 the existance of the section. */
2736
2737 if (info.abfd)
2738 {
2739 sect = bfd_get_section_by_name (info.abfd, ".PPC.EMB.apuinfo");
2740 if (sect)
2741 {
2742 arch = info.bfd_arch_info->arch;
2743 mach = bfd_mach_ppc_e500;
2744 bfd_default_set_arch_mach (&abfd, arch, mach);
2745 info.bfd_arch_info = bfd_get_arch_info (&abfd);
2746 }
2747 }
2748
2749 gdbarch = gdbarch_alloc (&info, tdep);
2750 power = arch == bfd_arch_rs6000;
2751
2752 /* Initialize the number of real and pseudo registers in each variant. */
2753 init_variants ();
2754
2755 /* Choose variant. */
2756 v = find_variant_by_arch (arch, mach);
2757 if (!v)
2758 return NULL;
2759
2760 tdep->regs = v->regs;
2761
2762 tdep->ppc_gp0_regnum = 0;
2763 tdep->ppc_gplast_regnum = 31;
2764 tdep->ppc_toc_regnum = 2;
2765 tdep->ppc_ps_regnum = 65;
2766 tdep->ppc_cr_regnum = 66;
2767 tdep->ppc_lr_regnum = 67;
2768 tdep->ppc_ctr_regnum = 68;
2769 tdep->ppc_xer_regnum = 69;
2770 if (v->mach == bfd_mach_ppc_601)
2771 tdep->ppc_mq_regnum = 124;
2772 else if (power)
2773 tdep->ppc_mq_regnum = 70;
2774 else
2775 tdep->ppc_mq_regnum = -1;
2776 tdep->ppc_fpscr_regnum = power ? 71 : 70;
2777
2778 set_gdbarch_pc_regnum (gdbarch, 64);
2779 set_gdbarch_sp_regnum (gdbarch, 1);
2780 set_gdbarch_fp_regnum (gdbarch, 1);
2781 set_gdbarch_deprecated_extract_return_value (gdbarch,
2782 rs6000_extract_return_value);
2783 set_gdbarch_deprecated_store_return_value (gdbarch, rs6000_store_return_value);
2784
2785 if (v->arch == bfd_arch_powerpc)
2786 switch (v->mach)
2787 {
2788 case bfd_mach_ppc:
2789 tdep->ppc_vr0_regnum = 71;
2790 tdep->ppc_vrsave_regnum = 104;
2791 tdep->ppc_ev0_regnum = -1;
2792 tdep->ppc_ev31_regnum = -1;
2793 break;
2794 case bfd_mach_ppc_7400:
2795 tdep->ppc_vr0_regnum = 119;
2796 tdep->ppc_vrsave_regnum = 153;
2797 tdep->ppc_ev0_regnum = -1;
2798 tdep->ppc_ev31_regnum = -1;
2799 break;
2800 case bfd_mach_ppc_e500:
2801 tdep->ppc_gp0_regnum = 39;
2802 tdep->ppc_gplast_regnum = 70;
2803 tdep->ppc_toc_regnum = -1;
2804 tdep->ppc_ps_regnum = 1;
2805 tdep->ppc_cr_regnum = 2;
2806 tdep->ppc_lr_regnum = 3;
2807 tdep->ppc_ctr_regnum = 4;
2808 tdep->ppc_xer_regnum = 5;
2809 tdep->ppc_ev0_regnum = 7;
2810 tdep->ppc_ev31_regnum = 38;
2811 set_gdbarch_pc_regnum (gdbarch, 0);
2812 set_gdbarch_sp_regnum (gdbarch, 40);
2813 set_gdbarch_fp_regnum (gdbarch, 40);
2814 set_gdbarch_dwarf2_reg_to_regnum (gdbarch, e500_dwarf2_reg_to_regnum);
2815 set_gdbarch_pseudo_register_read (gdbarch, e500_pseudo_register_read);
2816 set_gdbarch_pseudo_register_write (gdbarch, e500_pseudo_register_write);
2817 set_gdbarch_extract_return_value (gdbarch, e500_extract_return_value);
2818 set_gdbarch_deprecated_store_return_value (gdbarch, e500_store_return_value);
2819 break;
2820 default:
2821 tdep->ppc_vr0_regnum = -1;
2822 tdep->ppc_vrsave_regnum = -1;
2823 tdep->ppc_ev0_regnum = -1;
2824 tdep->ppc_ev31_regnum = -1;
2825 break;
2826 }
2827
2828 /* Set lr_frame_offset. */
2829 if (wordsize == 8)
2830 tdep->lr_frame_offset = 16;
2831 else if (sysv_abi)
2832 tdep->lr_frame_offset = 4;
2833 else
2834 tdep->lr_frame_offset = 8;
2835
2836 /* Calculate byte offsets in raw register array. */
2837 tdep->regoff = xmalloc (v->num_tot_regs * sizeof (int));
2838 for (i = off = 0; i < v->num_tot_regs; i++)
2839 {
2840 tdep->regoff[i] = off;
2841 off += regsize (v->regs + i, wordsize);
2842 }
2843
2844 /* Select instruction printer. */
2845 if (arch == power)
2846 set_gdbarch_print_insn (gdbarch, print_insn_rs6000);
2847 else
2848 set_gdbarch_print_insn (gdbarch, gdb_print_insn_powerpc);
2849
2850 set_gdbarch_read_pc (gdbarch, generic_target_read_pc);
2851 set_gdbarch_write_pc (gdbarch, generic_target_write_pc);
2852 set_gdbarch_read_fp (gdbarch, generic_target_read_fp);
2853 set_gdbarch_read_sp (gdbarch, generic_target_read_sp);
2854 set_gdbarch_write_sp (gdbarch, generic_target_write_sp);
2855
2856 set_gdbarch_num_regs (gdbarch, v->nregs);
2857 set_gdbarch_num_pseudo_regs (gdbarch, v->npregs);
2858 set_gdbarch_register_name (gdbarch, rs6000_register_name);
2859 set_gdbarch_register_size (gdbarch, wordsize);
2860 set_gdbarch_register_bytes (gdbarch, off);
2861 set_gdbarch_register_byte (gdbarch, rs6000_register_byte);
2862 set_gdbarch_register_raw_size (gdbarch, rs6000_register_raw_size);
2863 set_gdbarch_max_register_raw_size (gdbarch, 16);
2864 set_gdbarch_register_virtual_size (gdbarch, generic_register_size);
2865 set_gdbarch_max_register_virtual_size (gdbarch, 16);
2866 set_gdbarch_register_virtual_type (gdbarch, rs6000_register_virtual_type);
2867
2868 set_gdbarch_ptr_bit (gdbarch, wordsize * TARGET_CHAR_BIT);
2869 set_gdbarch_short_bit (gdbarch, 2 * TARGET_CHAR_BIT);
2870 set_gdbarch_int_bit (gdbarch, 4 * TARGET_CHAR_BIT);
2871 set_gdbarch_long_bit (gdbarch, wordsize * TARGET_CHAR_BIT);
2872 set_gdbarch_long_long_bit (gdbarch, 8 * TARGET_CHAR_BIT);
2873 set_gdbarch_float_bit (gdbarch, 4 * TARGET_CHAR_BIT);
2874 set_gdbarch_double_bit (gdbarch, 8 * TARGET_CHAR_BIT);
2875 set_gdbarch_long_double_bit (gdbarch, 8 * TARGET_CHAR_BIT);
2876 set_gdbarch_char_signed (gdbarch, 0);
2877
2878 set_gdbarch_use_generic_dummy_frames (gdbarch, 1);
2879 set_gdbarch_call_dummy_length (gdbarch, 0);
2880 set_gdbarch_call_dummy_location (gdbarch, AT_ENTRY_POINT);
2881 set_gdbarch_call_dummy_address (gdbarch, entry_point_address);
2882 set_gdbarch_call_dummy_breakpoint_offset_p (gdbarch, 1);
2883 set_gdbarch_call_dummy_breakpoint_offset (gdbarch, 0);
2884 set_gdbarch_call_dummy_start_offset (gdbarch, 0);
2885 set_gdbarch_pc_in_call_dummy (gdbarch, generic_pc_in_call_dummy);
2886 set_gdbarch_call_dummy_p (gdbarch, 1);
2887 set_gdbarch_call_dummy_stack_adjust_p (gdbarch, 0);
2888 set_gdbarch_get_saved_register (gdbarch, generic_unwind_get_saved_register);
2889 set_gdbarch_fix_call_dummy (gdbarch, rs6000_fix_call_dummy);
2890 set_gdbarch_push_dummy_frame (gdbarch, generic_push_dummy_frame);
2891 set_gdbarch_save_dummy_frame_tos (gdbarch, generic_save_dummy_frame_tos);
2892 set_gdbarch_push_return_address (gdbarch, ppc_push_return_address);
2893 set_gdbarch_believe_pcc_promotion (gdbarch, 1);
2894 set_gdbarch_coerce_float_to_double (gdbarch, rs6000_coerce_float_to_double);
2895
2896 set_gdbarch_register_convertible (gdbarch, rs6000_register_convertible);
2897 set_gdbarch_register_convert_to_virtual (gdbarch, rs6000_register_convert_to_virtual);
2898 set_gdbarch_register_convert_to_raw (gdbarch, rs6000_register_convert_to_raw);
2899 set_gdbarch_stab_reg_to_regnum (gdbarch, rs6000_stab_reg_to_regnum);
2900 /* Note: kevinb/2002-04-12: I'm not convinced that rs6000_push_arguments()
2901 is correct for the SysV ABI when the wordsize is 8, but I'm also
2902 fairly certain that ppc_sysv_abi_push_arguments() will give even
2903 worse results since it only works for 32-bit code. So, for the moment,
2904 we're better off calling rs6000_push_arguments() since it works for
2905 64-bit code. At some point in the future, this matter needs to be
2906 revisited. */
2907 if (sysv_abi && wordsize == 4)
2908 set_gdbarch_push_arguments (gdbarch, ppc_sysv_abi_push_arguments);
2909 else
2910 set_gdbarch_push_arguments (gdbarch, rs6000_push_arguments);
2911
2912 set_gdbarch_store_struct_return (gdbarch, rs6000_store_struct_return);
2913 set_gdbarch_deprecated_extract_struct_value_address (gdbarch, rs6000_extract_struct_value_address);
2914 set_gdbarch_pop_frame (gdbarch, rs6000_pop_frame);
2915
2916 set_gdbarch_skip_prologue (gdbarch, rs6000_skip_prologue);
2917 set_gdbarch_inner_than (gdbarch, core_addr_lessthan);
2918 set_gdbarch_decr_pc_after_break (gdbarch, 0);
2919 set_gdbarch_function_start_offset (gdbarch, 0);
2920 set_gdbarch_breakpoint_from_pc (gdbarch, rs6000_breakpoint_from_pc);
2921
2922 /* Not sure on this. FIXMEmgo */
2923 set_gdbarch_frame_args_skip (gdbarch, 8);
2924
2925 if (sysv_abi)
2926 set_gdbarch_use_struct_convention (gdbarch,
2927 ppc_sysv_abi_use_struct_convention);
2928 else
2929 set_gdbarch_use_struct_convention (gdbarch,
2930 generic_use_struct_convention);
2931
2932 set_gdbarch_frame_chain_valid (gdbarch, file_frame_chain_valid);
2933
2934 set_gdbarch_frameless_function_invocation (gdbarch,
2935 rs6000_frameless_function_invocation);
2936 set_gdbarch_frame_chain (gdbarch, rs6000_frame_chain);
2937 set_gdbarch_frame_saved_pc (gdbarch, rs6000_frame_saved_pc);
2938
2939 set_gdbarch_frame_init_saved_regs (gdbarch, rs6000_frame_init_saved_regs);
2940 set_gdbarch_init_extra_frame_info (gdbarch, rs6000_init_extra_frame_info);
2941
2942 if (!sysv_abi)
2943 {
2944 /* Handle RS/6000 function pointers (which are really function
2945 descriptors). */
2946 set_gdbarch_convert_from_func_ptr_addr (gdbarch,
2947 rs6000_convert_from_func_ptr_addr);
2948 }
2949 set_gdbarch_frame_args_address (gdbarch, rs6000_frame_args_address);
2950 set_gdbarch_frame_locals_address (gdbarch, rs6000_frame_args_address);
2951 set_gdbarch_saved_pc_after_call (gdbarch, rs6000_saved_pc_after_call);
2952
2953 /* We can't tell how many args there are
2954 now that the C compiler delays popping them. */
2955 set_gdbarch_frame_num_args (gdbarch, frame_num_args_unknown);
2956
2957 /* Hook in ABI-specific overrides, if they have been registered. */
2958 gdbarch_init_osabi (info, gdbarch, osabi);
2959
2960 return gdbarch;
2961 }
2962
2963 static void
2964 rs6000_dump_tdep (struct gdbarch *current_gdbarch, struct ui_file *file)
2965 {
2966 struct gdbarch_tdep *tdep = gdbarch_tdep (current_gdbarch);
2967
2968 if (tdep == NULL)
2969 return;
2970
2971 fprintf_unfiltered (file, "rs6000_dump_tdep: OS ABI = %s\n",
2972 gdbarch_osabi_name (tdep->osabi));
2973 }
2974
2975 static struct cmd_list_element *info_powerpc_cmdlist = NULL;
2976
2977 static void
2978 rs6000_info_powerpc_command (char *args, int from_tty)
2979 {
2980 help_list (info_powerpc_cmdlist, "info powerpc ", class_info, gdb_stdout);
2981 }
2982
2983 /* Initialization code. */
2984
2985 void
2986 _initialize_rs6000_tdep (void)
2987 {
2988 gdbarch_register (bfd_arch_rs6000, rs6000_gdbarch_init, rs6000_dump_tdep);
2989 gdbarch_register (bfd_arch_powerpc, rs6000_gdbarch_init, rs6000_dump_tdep);
2990
2991 /* Add root prefix command for "info powerpc" commands */
2992 add_prefix_cmd ("powerpc", class_info, rs6000_info_powerpc_command,
2993 "Various POWERPC info specific commands.",
2994 &info_powerpc_cmdlist, "info powerpc ", 0, &infolist);
2995 }