2004-11-12 Andrew Cagney <cagney@gnu.org>
[binutils-gdb.git] / gdb / rs6000-tdep.c
1 /* Target-dependent code for GDB, the GNU debugger.
2
3 Copyright 1986, 1987, 1989, 1991, 1992, 1993, 1994, 1995, 1996,
4 1997, 1998, 1999, 2000, 2001, 2002, 2003, 2004 Free Software
5 Foundation, Inc.
6
7 This file is part of GDB.
8
9 This program is free software; you can redistribute it and/or modify
10 it under the terms of the GNU General Public License as published by
11 the Free Software Foundation; either version 2 of the License, or
12 (at your option) any later version.
13
14 This program is distributed in the hope that it will be useful,
15 but WITHOUT ANY WARRANTY; without even the implied warranty of
16 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
17 GNU General Public License for more details.
18
19 You should have received a copy of the GNU General Public License
20 along with this program; if not, write to the Free Software
21 Foundation, Inc., 59 Temple Place - Suite 330,
22 Boston, MA 02111-1307, USA. */
23
24 #include "defs.h"
25 #include "frame.h"
26 #include "inferior.h"
27 #include "symtab.h"
28 #include "target.h"
29 #include "gdbcore.h"
30 #include "gdbcmd.h"
31 #include "objfiles.h"
32 #include "arch-utils.h"
33 #include "regcache.h"
34 #include "regset.h"
35 #include "doublest.h"
36 #include "value.h"
37 #include "parser-defs.h"
38 #include "osabi.h"
39 #include "infcall.h"
40 #include "sim-regno.h"
41 #include "gdb/sim-ppc.h"
42 #include "reggroups.h"
43
44 #include "libbfd.h" /* for bfd_default_set_arch_mach */
45 #include "coff/internal.h" /* for libcoff.h */
46 #include "libcoff.h" /* for xcoff_data */
47 #include "coff/xcoff.h"
48 #include "libxcoff.h"
49
50 #include "elf-bfd.h"
51
52 #include "solib-svr4.h"
53 #include "ppc-tdep.h"
54
55 #include "gdb_assert.h"
56 #include "dis-asm.h"
57
58 #include "trad-frame.h"
59 #include "frame-unwind.h"
60 #include "frame-base.h"
61
62 /* If the kernel has to deliver a signal, it pushes a sigcontext
63 structure on the stack and then calls the signal handler, passing
64 the address of the sigcontext in an argument register. Usually
65 the signal handler doesn't save this register, so we have to
66 access the sigcontext structure via an offset from the signal handler
67 frame.
68 The following constants were determined by experimentation on AIX 3.2. */
69 #define SIG_FRAME_PC_OFFSET 96
70 #define SIG_FRAME_LR_OFFSET 108
71 #define SIG_FRAME_FP_OFFSET 284
72
73 /* To be used by skip_prologue. */
74
75 struct rs6000_framedata
76 {
77 int offset; /* total size of frame --- the distance
78 by which we decrement sp to allocate
79 the frame */
80 int saved_gpr; /* smallest # of saved gpr */
81 int saved_fpr; /* smallest # of saved fpr */
82 int saved_vr; /* smallest # of saved vr */
83 int saved_ev; /* smallest # of saved ev */
84 int alloca_reg; /* alloca register number (frame ptr) */
85 char frameless; /* true if frameless functions. */
86 char nosavedpc; /* true if pc not saved. */
87 int gpr_offset; /* offset of saved gprs from prev sp */
88 int fpr_offset; /* offset of saved fprs from prev sp */
89 int vr_offset; /* offset of saved vrs from prev sp */
90 int ev_offset; /* offset of saved evs from prev sp */
91 int lr_offset; /* offset of saved lr */
92 int cr_offset; /* offset of saved cr */
93 int vrsave_offset; /* offset of saved vrsave register */
94 };
95
96 /* Description of a single register. */
97
98 struct reg
99 {
100 char *name; /* name of register */
101 unsigned char sz32; /* size on 32-bit arch, 0 if nonextant */
102 unsigned char sz64; /* size on 64-bit arch, 0 if nonextant */
103 unsigned char fpr; /* whether register is floating-point */
104 unsigned char pseudo; /* whether register is pseudo */
105 int spr_num; /* PowerPC SPR number, or -1 if not an SPR.
106 This is an ISA SPR number, not a GDB
107 register number. */
108 };
109
110 /* Breakpoint shadows for the single step instructions will be kept here. */
111
112 static struct sstep_breaks
113 {
114 /* Address, or 0 if this is not in use. */
115 CORE_ADDR address;
116 /* Shadow contents. */
117 char data[4];
118 }
119 stepBreaks[2];
120
121 /* Hook for determining the TOC address when calling functions in the
122 inferior under AIX. The initialization code in rs6000-nat.c sets
123 this hook to point to find_toc_address. */
124
125 CORE_ADDR (*rs6000_find_toc_address_hook) (CORE_ADDR) = NULL;
126
127 /* Hook to set the current architecture when starting a child process.
128 rs6000-nat.c sets this. */
129
130 void (*rs6000_set_host_arch_hook) (int) = NULL;
131
132 /* Static function prototypes */
133
134 static CORE_ADDR branch_dest (int opcode, int instr, CORE_ADDR pc,
135 CORE_ADDR safety);
136 static CORE_ADDR skip_prologue (CORE_ADDR, CORE_ADDR,
137 struct rs6000_framedata *);
138
139 /* Is REGNO an AltiVec register? Return 1 if so, 0 otherwise. */
140 int
141 altivec_register_p (int regno)
142 {
143 struct gdbarch_tdep *tdep = gdbarch_tdep (current_gdbarch);
144 if (tdep->ppc_vr0_regnum < 0 || tdep->ppc_vrsave_regnum < 0)
145 return 0;
146 else
147 return (regno >= tdep->ppc_vr0_regnum && regno <= tdep->ppc_vrsave_regnum);
148 }
149
150
151 /* Return true if REGNO is an SPE register, false otherwise. */
152 int
153 spe_register_p (int regno)
154 {
155 struct gdbarch_tdep *tdep = gdbarch_tdep (current_gdbarch);
156
157 /* Is it a reference to EV0 -- EV31, and do we have those? */
158 if (tdep->ppc_ev0_regnum >= 0
159 && tdep->ppc_ev31_regnum >= 0
160 && tdep->ppc_ev0_regnum <= regno && regno <= tdep->ppc_ev31_regnum)
161 return 1;
162
163 /* Is it a reference to one of the raw upper GPR halves? */
164 if (tdep->ppc_ev0_upper_regnum >= 0
165 && tdep->ppc_ev0_upper_regnum <= regno
166 && regno < tdep->ppc_ev0_upper_regnum + ppc_num_gprs)
167 return 1;
168
169 /* Is it a reference to the 64-bit accumulator, and do we have that? */
170 if (tdep->ppc_acc_regnum >= 0
171 && tdep->ppc_acc_regnum == regno)
172 return 1;
173
174 /* Is it a reference to the SPE floating-point status and control register,
175 and do we have that? */
176 if (tdep->ppc_spefscr_regnum >= 0
177 && tdep->ppc_spefscr_regnum == regno)
178 return 1;
179
180 return 0;
181 }
182
183
184 /* Return non-zero if the architecture described by GDBARCH has
185 floating-point registers (f0 --- f31 and fpscr). */
186 int
187 ppc_floating_point_unit_p (struct gdbarch *gdbarch)
188 {
189 struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch);
190
191 return (tdep->ppc_fp0_regnum >= 0
192 && tdep->ppc_fpscr_regnum >= 0);
193 }
194
195
196 /* Check that TABLE[GDB_REGNO] is not already initialized, and then
197 set it to SIM_REGNO.
198
199 This is a helper function for init_sim_regno_table, constructing
200 the table mapping GDB register numbers to sim register numbers; we
201 initialize every element in that table to -1 before we start
202 filling it in. */
203 static void
204 set_sim_regno (int *table, int gdb_regno, int sim_regno)
205 {
206 /* Make sure we don't try to assign any given GDB register a sim
207 register number more than once. */
208 gdb_assert (table[gdb_regno] == -1);
209 table[gdb_regno] = sim_regno;
210 }
211
212
213 /* Initialize ARCH->tdep->sim_regno, the table mapping GDB register
214 numbers to simulator register numbers, based on the values placed
215 in the ARCH->tdep->ppc_foo_regnum members. */
216 static void
217 init_sim_regno_table (struct gdbarch *arch)
218 {
219 struct gdbarch_tdep *tdep = gdbarch_tdep (arch);
220 int total_regs = gdbarch_num_regs (arch) + gdbarch_num_pseudo_regs (arch);
221 const struct reg *regs = tdep->regs;
222 int *sim_regno = GDBARCH_OBSTACK_CALLOC (arch, total_regs, int);
223 int i;
224
225 /* Presume that all registers not explicitly mentioned below are
226 unavailable from the sim. */
227 for (i = 0; i < total_regs; i++)
228 sim_regno[i] = -1;
229
230 /* General-purpose registers. */
231 for (i = 0; i < ppc_num_gprs; i++)
232 set_sim_regno (sim_regno, tdep->ppc_gp0_regnum + i, sim_ppc_r0_regnum + i);
233
234 /* Floating-point registers. */
235 if (tdep->ppc_fp0_regnum >= 0)
236 for (i = 0; i < ppc_num_fprs; i++)
237 set_sim_regno (sim_regno,
238 tdep->ppc_fp0_regnum + i,
239 sim_ppc_f0_regnum + i);
240 if (tdep->ppc_fpscr_regnum >= 0)
241 set_sim_regno (sim_regno, tdep->ppc_fpscr_regnum, sim_ppc_fpscr_regnum);
242
243 set_sim_regno (sim_regno, gdbarch_pc_regnum (arch), sim_ppc_pc_regnum);
244 set_sim_regno (sim_regno, tdep->ppc_ps_regnum, sim_ppc_ps_regnum);
245 set_sim_regno (sim_regno, tdep->ppc_cr_regnum, sim_ppc_cr_regnum);
246
247 /* Segment registers. */
248 if (tdep->ppc_sr0_regnum >= 0)
249 for (i = 0; i < ppc_num_srs; i++)
250 set_sim_regno (sim_regno,
251 tdep->ppc_sr0_regnum + i,
252 sim_ppc_sr0_regnum + i);
253
254 /* Altivec registers. */
255 if (tdep->ppc_vr0_regnum >= 0)
256 {
257 for (i = 0; i < ppc_num_vrs; i++)
258 set_sim_regno (sim_regno,
259 tdep->ppc_vr0_regnum + i,
260 sim_ppc_vr0_regnum + i);
261
262 /* FIXME: jimb/2004-07-15: when we have tdep->ppc_vscr_regnum,
263 we can treat this more like the other cases. */
264 set_sim_regno (sim_regno,
265 tdep->ppc_vr0_regnum + ppc_num_vrs,
266 sim_ppc_vscr_regnum);
267 }
268 /* vsave is a special-purpose register, so the code below handles it. */
269
270 /* SPE APU (E500) registers. */
271 if (tdep->ppc_ev0_regnum >= 0)
272 for (i = 0; i < ppc_num_gprs; i++)
273 set_sim_regno (sim_regno,
274 tdep->ppc_ev0_regnum + i,
275 sim_ppc_ev0_regnum + i);
276 if (tdep->ppc_ev0_upper_regnum >= 0)
277 for (i = 0; i < ppc_num_gprs; i++)
278 set_sim_regno (sim_regno,
279 tdep->ppc_ev0_upper_regnum + i,
280 sim_ppc_rh0_regnum + i);
281 if (tdep->ppc_acc_regnum >= 0)
282 set_sim_regno (sim_regno, tdep->ppc_acc_regnum, sim_ppc_acc_regnum);
283 /* spefscr is a special-purpose register, so the code below handles it. */
284
285 /* Now handle all special-purpose registers. Verify that they
286 haven't mistakenly been assigned numbers by any of the above
287 code). */
288 for (i = 0; i < total_regs; i++)
289 if (regs[i].spr_num >= 0)
290 set_sim_regno (sim_regno, i, regs[i].spr_num + sim_ppc_spr0_regnum);
291
292 /* Drop the initialized array into place. */
293 tdep->sim_regno = sim_regno;
294 }
295
296
297 /* Given a GDB register number REG, return the corresponding SIM
298 register number. */
299 static int
300 rs6000_register_sim_regno (int reg)
301 {
302 struct gdbarch_tdep *tdep = gdbarch_tdep (current_gdbarch);
303 int sim_regno;
304
305 gdb_assert (0 <= reg && reg <= NUM_REGS + NUM_PSEUDO_REGS);
306 sim_regno = tdep->sim_regno[reg];
307
308 if (sim_regno >= 0)
309 return sim_regno;
310 else
311 return LEGACY_SIM_REGNO_IGNORE;
312 }
313
314 \f
315
316 /* Register set support functions. */
317
318 static void
319 ppc_supply_reg (struct regcache *regcache, int regnum,
320 const char *regs, size_t offset)
321 {
322 if (regnum != -1 && offset != -1)
323 regcache_raw_supply (regcache, regnum, regs + offset);
324 }
325
326 static void
327 ppc_collect_reg (const struct regcache *regcache, int regnum,
328 char *regs, size_t offset)
329 {
330 if (regnum != -1 && offset != -1)
331 regcache_raw_collect (regcache, regnum, regs + offset);
332 }
333
334 /* Supply register REGNUM in the general-purpose register set REGSET
335 from the buffer specified by GREGS and LEN to register cache
336 REGCACHE. If REGNUM is -1, do this for all registers in REGSET. */
337
338 void
339 ppc_supply_gregset (const struct regset *regset, struct regcache *regcache,
340 int regnum, const void *gregs, size_t len)
341 {
342 struct gdbarch *gdbarch = get_regcache_arch (regcache);
343 struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch);
344 const struct ppc_reg_offsets *offsets = regset->descr;
345 size_t offset;
346 int i;
347
348 for (i = tdep->ppc_gp0_regnum, offset = offsets->r0_offset;
349 i < tdep->ppc_gp0_regnum + ppc_num_gprs;
350 i++, offset += 4)
351 {
352 if (regnum == -1 || regnum == i)
353 ppc_supply_reg (regcache, i, gregs, offset);
354 }
355
356 if (regnum == -1 || regnum == PC_REGNUM)
357 ppc_supply_reg (regcache, PC_REGNUM, gregs, offsets->pc_offset);
358 if (regnum == -1 || regnum == tdep->ppc_ps_regnum)
359 ppc_supply_reg (regcache, tdep->ppc_ps_regnum,
360 gregs, offsets->ps_offset);
361 if (regnum == -1 || regnum == tdep->ppc_cr_regnum)
362 ppc_supply_reg (regcache, tdep->ppc_cr_regnum,
363 gregs, offsets->cr_offset);
364 if (regnum == -1 || regnum == tdep->ppc_lr_regnum)
365 ppc_supply_reg (regcache, tdep->ppc_lr_regnum,
366 gregs, offsets->lr_offset);
367 if (regnum == -1 || regnum == tdep->ppc_ctr_regnum)
368 ppc_supply_reg (regcache, tdep->ppc_ctr_regnum,
369 gregs, offsets->ctr_offset);
370 if (regnum == -1 || regnum == tdep->ppc_xer_regnum)
371 ppc_supply_reg (regcache, tdep->ppc_xer_regnum,
372 gregs, offsets->cr_offset);
373 if (regnum == -1 || regnum == tdep->ppc_mq_regnum)
374 ppc_supply_reg (regcache, tdep->ppc_mq_regnum, gregs, offsets->mq_offset);
375 }
376
377 /* Supply register REGNUM in the floating-point register set REGSET
378 from the buffer specified by FPREGS and LEN to register cache
379 REGCACHE. If REGNUM is -1, do this for all registers in REGSET. */
380
381 void
382 ppc_supply_fpregset (const struct regset *regset, struct regcache *regcache,
383 int regnum, const void *fpregs, size_t len)
384 {
385 struct gdbarch *gdbarch = get_regcache_arch (regcache);
386 struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch);
387 const struct ppc_reg_offsets *offsets = regset->descr;
388 size_t offset;
389 int i;
390
391 gdb_assert (ppc_floating_point_unit_p (gdbarch));
392
393 offset = offsets->f0_offset;
394 for (i = tdep->ppc_fp0_regnum;
395 i < tdep->ppc_fp0_regnum + ppc_num_fprs;
396 i++, offset += 4)
397 {
398 if (regnum == -1 || regnum == i)
399 ppc_supply_reg (regcache, i, fpregs, offset);
400 }
401
402 if (regnum == -1 || regnum == tdep->ppc_fpscr_regnum)
403 ppc_supply_reg (regcache, tdep->ppc_fpscr_regnum,
404 fpregs, offsets->fpscr_offset);
405 }
406
407 /* Collect register REGNUM in the general-purpose register set
408 REGSET. from register cache REGCACHE into the buffer specified by
409 GREGS and LEN. If REGNUM is -1, do this for all registers in
410 REGSET. */
411
412 void
413 ppc_collect_gregset (const struct regset *regset,
414 const struct regcache *regcache,
415 int regnum, void *gregs, size_t len)
416 {
417 struct gdbarch *gdbarch = get_regcache_arch (regcache);
418 struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch);
419 const struct ppc_reg_offsets *offsets = regset->descr;
420 size_t offset;
421 int i;
422
423 offset = offsets->r0_offset;
424 for (i = tdep->ppc_gp0_regnum;
425 i < tdep->ppc_gp0_regnum + ppc_num_gprs;
426 i++, offset += 4)
427 {
428 if (regnum == -1 || regnum == i)
429 ppc_collect_reg (regcache, i, gregs, offset);
430 }
431
432 if (regnum == -1 || regnum == PC_REGNUM)
433 ppc_collect_reg (regcache, PC_REGNUM, gregs, offsets->pc_offset);
434 if (regnum == -1 || regnum == tdep->ppc_ps_regnum)
435 ppc_collect_reg (regcache, tdep->ppc_ps_regnum,
436 gregs, offsets->ps_offset);
437 if (regnum == -1 || regnum == tdep->ppc_cr_regnum)
438 ppc_collect_reg (regcache, tdep->ppc_cr_regnum,
439 gregs, offsets->cr_offset);
440 if (regnum == -1 || regnum == tdep->ppc_lr_regnum)
441 ppc_collect_reg (regcache, tdep->ppc_lr_regnum,
442 gregs, offsets->lr_offset);
443 if (regnum == -1 || regnum == tdep->ppc_ctr_regnum)
444 ppc_collect_reg (regcache, tdep->ppc_ctr_regnum,
445 gregs, offsets->ctr_offset);
446 if (regnum == -1 || regnum == tdep->ppc_xer_regnum)
447 ppc_collect_reg (regcache, tdep->ppc_xer_regnum,
448 gregs, offsets->xer_offset);
449 if (regnum == -1 || regnum == tdep->ppc_mq_regnum)
450 ppc_collect_reg (regcache, tdep->ppc_mq_regnum,
451 gregs, offsets->mq_offset);
452 }
453
454 /* Collect register REGNUM in the floating-point register set
455 REGSET. from register cache REGCACHE into the buffer specified by
456 FPREGS and LEN. If REGNUM is -1, do this for all registers in
457 REGSET. */
458
459 void
460 ppc_collect_fpregset (const struct regset *regset,
461 const struct regcache *regcache,
462 int regnum, void *fpregs, size_t len)
463 {
464 struct gdbarch *gdbarch = get_regcache_arch (regcache);
465 struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch);
466 const struct ppc_reg_offsets *offsets = regset->descr;
467 size_t offset;
468 int i;
469
470 gdb_assert (ppc_floating_point_unit_p (gdbarch));
471
472 offset = offsets->f0_offset;
473 for (i = tdep->ppc_fp0_regnum;
474 i <= tdep->ppc_fp0_regnum + ppc_num_fprs;
475 i++, offset += 4)
476 {
477 if (regnum == -1 || regnum == i)
478 ppc_collect_reg (regcache, regnum, fpregs, offset);
479 }
480
481 if (regnum == -1 || regnum == tdep->ppc_fpscr_regnum)
482 ppc_collect_reg (regcache, tdep->ppc_fpscr_regnum,
483 fpregs, offsets->fpscr_offset);
484 }
485 \f
486
487 /* Read a LEN-byte address from debugged memory address MEMADDR. */
488
489 static CORE_ADDR
490 read_memory_addr (CORE_ADDR memaddr, int len)
491 {
492 return read_memory_unsigned_integer (memaddr, len);
493 }
494
495 static CORE_ADDR
496 rs6000_skip_prologue (CORE_ADDR pc)
497 {
498 struct rs6000_framedata frame;
499 pc = skip_prologue (pc, 0, &frame);
500 return pc;
501 }
502
503
504 /* Fill in fi->saved_regs */
505
506 struct frame_extra_info
507 {
508 /* Functions calling alloca() change the value of the stack
509 pointer. We need to use initial stack pointer (which is saved in
510 r31 by gcc) in such cases. If a compiler emits traceback table,
511 then we should use the alloca register specified in traceback
512 table. FIXME. */
513 CORE_ADDR initial_sp; /* initial stack pointer. */
514 };
515
516 /* Get the ith function argument for the current function. */
517 static CORE_ADDR
518 rs6000_fetch_pointer_argument (struct frame_info *frame, int argi,
519 struct type *type)
520 {
521 CORE_ADDR addr;
522 get_frame_register (frame, 3 + argi, &addr);
523 return addr;
524 }
525
526 /* Calculate the destination of a branch/jump. Return -1 if not a branch. */
527
528 static CORE_ADDR
529 branch_dest (int opcode, int instr, CORE_ADDR pc, CORE_ADDR safety)
530 {
531 CORE_ADDR dest;
532 int immediate;
533 int absolute;
534 int ext_op;
535
536 absolute = (int) ((instr >> 1) & 1);
537
538 switch (opcode)
539 {
540 case 18:
541 immediate = ((instr & ~3) << 6) >> 6; /* br unconditional */
542 if (absolute)
543 dest = immediate;
544 else
545 dest = pc + immediate;
546 break;
547
548 case 16:
549 immediate = ((instr & ~3) << 16) >> 16; /* br conditional */
550 if (absolute)
551 dest = immediate;
552 else
553 dest = pc + immediate;
554 break;
555
556 case 19:
557 ext_op = (instr >> 1) & 0x3ff;
558
559 if (ext_op == 16) /* br conditional register */
560 {
561 dest = read_register (gdbarch_tdep (current_gdbarch)->ppc_lr_regnum) & ~3;
562
563 /* If we are about to return from a signal handler, dest is
564 something like 0x3c90. The current frame is a signal handler
565 caller frame, upon completion of the sigreturn system call
566 execution will return to the saved PC in the frame. */
567 if (dest < TEXT_SEGMENT_BASE)
568 {
569 struct frame_info *fi;
570
571 fi = get_current_frame ();
572 if (fi != NULL)
573 dest = read_memory_addr (get_frame_base (fi) + SIG_FRAME_PC_OFFSET,
574 gdbarch_tdep (current_gdbarch)->wordsize);
575 }
576 }
577
578 else if (ext_op == 528) /* br cond to count reg */
579 {
580 dest = read_register (gdbarch_tdep (current_gdbarch)->ppc_ctr_regnum) & ~3;
581
582 /* If we are about to execute a system call, dest is something
583 like 0x22fc or 0x3b00. Upon completion the system call
584 will return to the address in the link register. */
585 if (dest < TEXT_SEGMENT_BASE)
586 dest = read_register (gdbarch_tdep (current_gdbarch)->ppc_lr_regnum) & ~3;
587 }
588 else
589 return -1;
590 break;
591
592 default:
593 return -1;
594 }
595 return (dest < TEXT_SEGMENT_BASE) ? safety : dest;
596 }
597
598
599 /* Sequence of bytes for breakpoint instruction. */
600
601 const static unsigned char *
602 rs6000_breakpoint_from_pc (CORE_ADDR *bp_addr, int *bp_size)
603 {
604 static unsigned char big_breakpoint[] = { 0x7d, 0x82, 0x10, 0x08 };
605 static unsigned char little_breakpoint[] = { 0x08, 0x10, 0x82, 0x7d };
606 *bp_size = 4;
607 if (TARGET_BYTE_ORDER == BFD_ENDIAN_BIG)
608 return big_breakpoint;
609 else
610 return little_breakpoint;
611 }
612
613
614 /* AIX does not support PT_STEP. Simulate it. */
615
616 void
617 rs6000_software_single_step (enum target_signal signal,
618 int insert_breakpoints_p)
619 {
620 CORE_ADDR dummy;
621 int breakp_sz;
622 const char *breakp = rs6000_breakpoint_from_pc (&dummy, &breakp_sz);
623 int ii, insn;
624 CORE_ADDR loc;
625 CORE_ADDR breaks[2];
626 int opcode;
627
628 if (insert_breakpoints_p)
629 {
630
631 loc = read_pc ();
632
633 insn = read_memory_integer (loc, 4);
634
635 breaks[0] = loc + breakp_sz;
636 opcode = insn >> 26;
637 breaks[1] = branch_dest (opcode, insn, loc, breaks[0]);
638
639 /* Don't put two breakpoints on the same address. */
640 if (breaks[1] == breaks[0])
641 breaks[1] = -1;
642
643 stepBreaks[1].address = 0;
644
645 for (ii = 0; ii < 2; ++ii)
646 {
647
648 /* ignore invalid breakpoint. */
649 if (breaks[ii] == -1)
650 continue;
651 target_insert_breakpoint (breaks[ii], stepBreaks[ii].data);
652 stepBreaks[ii].address = breaks[ii];
653 }
654
655 }
656 else
657 {
658
659 /* remove step breakpoints. */
660 for (ii = 0; ii < 2; ++ii)
661 if (stepBreaks[ii].address != 0)
662 target_remove_breakpoint (stepBreaks[ii].address,
663 stepBreaks[ii].data);
664 }
665 errno = 0; /* FIXME, don't ignore errors! */
666 /* What errors? {read,write}_memory call error(). */
667 }
668
669
670 /* return pc value after skipping a function prologue and also return
671 information about a function frame.
672
673 in struct rs6000_framedata fdata:
674 - frameless is TRUE, if function does not have a frame.
675 - nosavedpc is TRUE, if function does not save %pc value in its frame.
676 - offset is the initial size of this stack frame --- the amount by
677 which we decrement the sp to allocate the frame.
678 - saved_gpr is the number of the first saved gpr.
679 - saved_fpr is the number of the first saved fpr.
680 - saved_vr is the number of the first saved vr.
681 - saved_ev is the number of the first saved ev.
682 - alloca_reg is the number of the register used for alloca() handling.
683 Otherwise -1.
684 - gpr_offset is the offset of the first saved gpr from the previous frame.
685 - fpr_offset is the offset of the first saved fpr from the previous frame.
686 - vr_offset is the offset of the first saved vr from the previous frame.
687 - ev_offset is the offset of the first saved ev from the previous frame.
688 - lr_offset is the offset of the saved lr
689 - cr_offset is the offset of the saved cr
690 - vrsave_offset is the offset of the saved vrsave register
691 */
692
693 #define SIGNED_SHORT(x) \
694 ((sizeof (short) == 2) \
695 ? ((int)(short)(x)) \
696 : ((int)((((x) & 0xffff) ^ 0x8000) - 0x8000)))
697
698 #define GET_SRC_REG(x) (((x) >> 21) & 0x1f)
699
700 /* Limit the number of skipped non-prologue instructions, as the examining
701 of the prologue is expensive. */
702 static int max_skip_non_prologue_insns = 10;
703
704 /* Given PC representing the starting address of a function, and
705 LIM_PC which is the (sloppy) limit to which to scan when looking
706 for a prologue, attempt to further refine this limit by using
707 the line data in the symbol table. If successful, a better guess
708 on where the prologue ends is returned, otherwise the previous
709 value of lim_pc is returned. */
710
711 /* FIXME: cagney/2004-02-14: This function and logic have largely been
712 superseded by skip_prologue_using_sal. */
713
714 static CORE_ADDR
715 refine_prologue_limit (CORE_ADDR pc, CORE_ADDR lim_pc)
716 {
717 struct symtab_and_line prologue_sal;
718
719 prologue_sal = find_pc_line (pc, 0);
720 if (prologue_sal.line != 0)
721 {
722 int i;
723 CORE_ADDR addr = prologue_sal.end;
724
725 /* Handle the case in which compiler's optimizer/scheduler
726 has moved instructions into the prologue. We scan ahead
727 in the function looking for address ranges whose corresponding
728 line number is less than or equal to the first one that we
729 found for the function. (It can be less than when the
730 scheduler puts a body instruction before the first prologue
731 instruction.) */
732 for (i = 2 * max_skip_non_prologue_insns;
733 i > 0 && (lim_pc == 0 || addr < lim_pc);
734 i--)
735 {
736 struct symtab_and_line sal;
737
738 sal = find_pc_line (addr, 0);
739 if (sal.line == 0)
740 break;
741 if (sal.line <= prologue_sal.line
742 && sal.symtab == prologue_sal.symtab)
743 {
744 prologue_sal = sal;
745 }
746 addr = sal.end;
747 }
748
749 if (lim_pc == 0 || prologue_sal.end < lim_pc)
750 lim_pc = prologue_sal.end;
751 }
752 return lim_pc;
753 }
754
755 /* Return nonzero if the given instruction OP can be part of the prologue
756 of a function and saves a parameter on the stack. FRAMEP should be
757 set if one of the previous instructions in the function has set the
758 Frame Pointer. */
759
760 static int
761 store_param_on_stack_p (unsigned long op, int framep, int *r0_contains_arg)
762 {
763 /* Move parameters from argument registers to temporary register. */
764 if ((op & 0xfc0007fe) == 0x7c000378) /* mr(.) Rx,Ry */
765 {
766 /* Rx must be scratch register r0. */
767 const int rx_regno = (op >> 16) & 31;
768 /* Ry: Only r3 - r10 are used for parameter passing. */
769 const int ry_regno = GET_SRC_REG (op);
770
771 if (rx_regno == 0 && ry_regno >= 3 && ry_regno <= 10)
772 {
773 *r0_contains_arg = 1;
774 return 1;
775 }
776 else
777 return 0;
778 }
779
780 /* Save a General Purpose Register on stack. */
781
782 if ((op & 0xfc1f0003) == 0xf8010000 || /* std Rx,NUM(r1) */
783 (op & 0xfc1f0000) == 0xd8010000) /* stfd Rx,NUM(r1) */
784 {
785 /* Rx: Only r3 - r10 are used for parameter passing. */
786 const int rx_regno = GET_SRC_REG (op);
787
788 return (rx_regno >= 3 && rx_regno <= 10);
789 }
790
791 /* Save a General Purpose Register on stack via the Frame Pointer. */
792
793 if (framep &&
794 ((op & 0xfc1f0000) == 0x901f0000 || /* st rx,NUM(r31) */
795 (op & 0xfc1f0000) == 0x981f0000 || /* stb Rx,NUM(r31) */
796 (op & 0xfc1f0000) == 0xd81f0000)) /* stfd Rx,NUM(r31) */
797 {
798 /* Rx: Usually, only r3 - r10 are used for parameter passing.
799 However, the compiler sometimes uses r0 to hold an argument. */
800 const int rx_regno = GET_SRC_REG (op);
801
802 return ((rx_regno >= 3 && rx_regno <= 10)
803 || (rx_regno == 0 && *r0_contains_arg));
804 }
805
806 if ((op & 0xfc1f0000) == 0xfc010000) /* frsp, fp?,NUM(r1) */
807 {
808 /* Only f2 - f8 are used for parameter passing. */
809 const int src_regno = GET_SRC_REG (op);
810
811 return (src_regno >= 2 && src_regno <= 8);
812 }
813
814 if (framep && ((op & 0xfc1f0000) == 0xfc1f0000)) /* frsp, fp?,NUM(r31) */
815 {
816 /* Only f2 - f8 are used for parameter passing. */
817 const int src_regno = GET_SRC_REG (op);
818
819 return (src_regno >= 2 && src_regno <= 8);
820 }
821
822 /* Not an insn that saves a parameter on stack. */
823 return 0;
824 }
825
826 static CORE_ADDR
827 skip_prologue (CORE_ADDR pc, CORE_ADDR lim_pc, struct rs6000_framedata *fdata)
828 {
829 CORE_ADDR orig_pc = pc;
830 CORE_ADDR last_prologue_pc = pc;
831 CORE_ADDR li_found_pc = 0;
832 char buf[4];
833 unsigned long op;
834 long offset = 0;
835 long vr_saved_offset = 0;
836 int lr_reg = -1;
837 int cr_reg = -1;
838 int vr_reg = -1;
839 int ev_reg = -1;
840 long ev_offset = 0;
841 int vrsave_reg = -1;
842 int reg;
843 int framep = 0;
844 int minimal_toc_loaded = 0;
845 int prev_insn_was_prologue_insn = 1;
846 int num_skip_non_prologue_insns = 0;
847 int r0_contains_arg = 0;
848 const struct bfd_arch_info *arch_info = gdbarch_bfd_arch_info (current_gdbarch);
849 struct gdbarch_tdep *tdep = gdbarch_tdep (current_gdbarch);
850
851 /* Attempt to find the end of the prologue when no limit is specified.
852 Note that refine_prologue_limit() has been written so that it may
853 be used to "refine" the limits of non-zero PC values too, but this
854 is only safe if we 1) trust the line information provided by the
855 compiler and 2) iterate enough to actually find the end of the
856 prologue.
857
858 It may become a good idea at some point (for both performance and
859 accuracy) to unconditionally call refine_prologue_limit(). But,
860 until we can make a clear determination that this is beneficial,
861 we'll play it safe and only use it to obtain a limit when none
862 has been specified. */
863 if (lim_pc == 0)
864 lim_pc = refine_prologue_limit (pc, lim_pc);
865
866 memset (fdata, 0, sizeof (struct rs6000_framedata));
867 fdata->saved_gpr = -1;
868 fdata->saved_fpr = -1;
869 fdata->saved_vr = -1;
870 fdata->saved_ev = -1;
871 fdata->alloca_reg = -1;
872 fdata->frameless = 1;
873 fdata->nosavedpc = 1;
874
875 for (;; pc += 4)
876 {
877 /* Sometimes it isn't clear if an instruction is a prologue
878 instruction or not. When we encounter one of these ambiguous
879 cases, we'll set prev_insn_was_prologue_insn to 0 (false).
880 Otherwise, we'll assume that it really is a prologue instruction. */
881 if (prev_insn_was_prologue_insn)
882 last_prologue_pc = pc;
883
884 /* Stop scanning if we've hit the limit. */
885 if (lim_pc != 0 && pc >= lim_pc)
886 break;
887
888 prev_insn_was_prologue_insn = 1;
889
890 /* Fetch the instruction and convert it to an integer. */
891 if (target_read_memory (pc, buf, 4))
892 break;
893 op = extract_signed_integer (buf, 4);
894
895 if ((op & 0xfc1fffff) == 0x7c0802a6)
896 { /* mflr Rx */
897 /* Since shared library / PIC code, which needs to get its
898 address at runtime, can appear to save more than one link
899 register vis:
900
901 *INDENT-OFF*
902 stwu r1,-304(r1)
903 mflr r3
904 bl 0xff570d0 (blrl)
905 stw r30,296(r1)
906 mflr r30
907 stw r31,300(r1)
908 stw r3,308(r1);
909 ...
910 *INDENT-ON*
911
912 remember just the first one, but skip over additional
913 ones. */
914 if (lr_reg < 0)
915 lr_reg = (op & 0x03e00000);
916 if (lr_reg == 0)
917 r0_contains_arg = 0;
918 continue;
919 }
920 else if ((op & 0xfc1fffff) == 0x7c000026)
921 { /* mfcr Rx */
922 cr_reg = (op & 0x03e00000);
923 if (cr_reg == 0)
924 r0_contains_arg = 0;
925 continue;
926
927 }
928 else if ((op & 0xfc1f0000) == 0xd8010000)
929 { /* stfd Rx,NUM(r1) */
930 reg = GET_SRC_REG (op);
931 if (fdata->saved_fpr == -1 || fdata->saved_fpr > reg)
932 {
933 fdata->saved_fpr = reg;
934 fdata->fpr_offset = SIGNED_SHORT (op) + offset;
935 }
936 continue;
937
938 }
939 else if (((op & 0xfc1f0000) == 0xbc010000) || /* stm Rx, NUM(r1) */
940 (((op & 0xfc1f0000) == 0x90010000 || /* st rx,NUM(r1) */
941 (op & 0xfc1f0003) == 0xf8010000) && /* std rx,NUM(r1) */
942 (op & 0x03e00000) >= 0x01a00000)) /* rx >= r13 */
943 {
944
945 reg = GET_SRC_REG (op);
946 if (fdata->saved_gpr == -1 || fdata->saved_gpr > reg)
947 {
948 fdata->saved_gpr = reg;
949 if ((op & 0xfc1f0003) == 0xf8010000)
950 op &= ~3UL;
951 fdata->gpr_offset = SIGNED_SHORT (op) + offset;
952 }
953 continue;
954
955 }
956 else if ((op & 0xffff0000) == 0x60000000)
957 {
958 /* nop */
959 /* Allow nops in the prologue, but do not consider them to
960 be part of the prologue unless followed by other prologue
961 instructions. */
962 prev_insn_was_prologue_insn = 0;
963 continue;
964
965 }
966 else if ((op & 0xffff0000) == 0x3c000000)
967 { /* addis 0,0,NUM, used
968 for >= 32k frames */
969 fdata->offset = (op & 0x0000ffff) << 16;
970 fdata->frameless = 0;
971 r0_contains_arg = 0;
972 continue;
973
974 }
975 else if ((op & 0xffff0000) == 0x60000000)
976 { /* ori 0,0,NUM, 2nd ha
977 lf of >= 32k frames */
978 fdata->offset |= (op & 0x0000ffff);
979 fdata->frameless = 0;
980 r0_contains_arg = 0;
981 continue;
982
983 }
984 else if (lr_reg >= 0 &&
985 /* std Rx, NUM(r1) || stdu Rx, NUM(r1) */
986 (((op & 0xffff0000) == (lr_reg | 0xf8010000)) ||
987 /* stw Rx, NUM(r1) */
988 ((op & 0xffff0000) == (lr_reg | 0x90010000)) ||
989 /* stwu Rx, NUM(r1) */
990 ((op & 0xffff0000) == (lr_reg | 0x94010000))))
991 { /* where Rx == lr */
992 fdata->lr_offset = offset;
993 fdata->nosavedpc = 0;
994 /* Invalidate lr_reg, but don't set it to -1.
995 That would mean that it had never been set. */
996 lr_reg = -2;
997 if ((op & 0xfc000003) == 0xf8000000 || /* std */
998 (op & 0xfc000000) == 0x90000000) /* stw */
999 {
1000 /* Does not update r1, so add displacement to lr_offset. */
1001 fdata->lr_offset += SIGNED_SHORT (op);
1002 }
1003 continue;
1004
1005 }
1006 else if (cr_reg >= 0 &&
1007 /* std Rx, NUM(r1) || stdu Rx, NUM(r1) */
1008 (((op & 0xffff0000) == (cr_reg | 0xf8010000)) ||
1009 /* stw Rx, NUM(r1) */
1010 ((op & 0xffff0000) == (cr_reg | 0x90010000)) ||
1011 /* stwu Rx, NUM(r1) */
1012 ((op & 0xffff0000) == (cr_reg | 0x94010000))))
1013 { /* where Rx == cr */
1014 fdata->cr_offset = offset;
1015 /* Invalidate cr_reg, but don't set it to -1.
1016 That would mean that it had never been set. */
1017 cr_reg = -2;
1018 if ((op & 0xfc000003) == 0xf8000000 ||
1019 (op & 0xfc000000) == 0x90000000)
1020 {
1021 /* Does not update r1, so add displacement to cr_offset. */
1022 fdata->cr_offset += SIGNED_SHORT (op);
1023 }
1024 continue;
1025
1026 }
1027 else if (op == 0x48000005)
1028 { /* bl .+4 used in
1029 -mrelocatable */
1030 continue;
1031
1032 }
1033 else if (op == 0x48000004)
1034 { /* b .+4 (xlc) */
1035 break;
1036
1037 }
1038 else if ((op & 0xffff0000) == 0x3fc00000 || /* addis 30,0,foo@ha, used
1039 in V.4 -mminimal-toc */
1040 (op & 0xffff0000) == 0x3bde0000)
1041 { /* addi 30,30,foo@l */
1042 continue;
1043
1044 }
1045 else if ((op & 0xfc000001) == 0x48000001)
1046 { /* bl foo,
1047 to save fprs??? */
1048
1049 fdata->frameless = 0;
1050 /* Don't skip over the subroutine call if it is not within
1051 the first three instructions of the prologue. */
1052 if ((pc - orig_pc) > 8)
1053 break;
1054
1055 op = read_memory_integer (pc + 4, 4);
1056
1057 /* At this point, make sure this is not a trampoline
1058 function (a function that simply calls another functions,
1059 and nothing else). If the next is not a nop, this branch
1060 was part of the function prologue. */
1061
1062 if (op == 0x4def7b82 || op == 0) /* crorc 15, 15, 15 */
1063 break; /* don't skip over
1064 this branch */
1065 continue;
1066
1067 }
1068 /* update stack pointer */
1069 else if ((op & 0xfc1f0000) == 0x94010000)
1070 { /* stu rX,NUM(r1) || stwu rX,NUM(r1) */
1071 fdata->frameless = 0;
1072 fdata->offset = SIGNED_SHORT (op);
1073 offset = fdata->offset;
1074 continue;
1075 }
1076 else if ((op & 0xfc1f016a) == 0x7c01016e)
1077 { /* stwux rX,r1,rY */
1078 /* no way to figure out what r1 is going to be */
1079 fdata->frameless = 0;
1080 offset = fdata->offset;
1081 continue;
1082 }
1083 else if ((op & 0xfc1f0003) == 0xf8010001)
1084 { /* stdu rX,NUM(r1) */
1085 fdata->frameless = 0;
1086 fdata->offset = SIGNED_SHORT (op & ~3UL);
1087 offset = fdata->offset;
1088 continue;
1089 }
1090 else if ((op & 0xfc1f016a) == 0x7c01016a)
1091 { /* stdux rX,r1,rY */
1092 /* no way to figure out what r1 is going to be */
1093 fdata->frameless = 0;
1094 offset = fdata->offset;
1095 continue;
1096 }
1097 /* Load up minimal toc pointer */
1098 else if (((op >> 22) == 0x20f || /* l r31,... or l r30,... */
1099 (op >> 22) == 0x3af) /* ld r31,... or ld r30,... */
1100 && !minimal_toc_loaded)
1101 {
1102 minimal_toc_loaded = 1;
1103 continue;
1104
1105 /* move parameters from argument registers to local variable
1106 registers */
1107 }
1108 else if ((op & 0xfc0007fe) == 0x7c000378 && /* mr(.) Rx,Ry */
1109 (((op >> 21) & 31) >= 3) && /* R3 >= Ry >= R10 */
1110 (((op >> 21) & 31) <= 10) &&
1111 ((long) ((op >> 16) & 31) >= fdata->saved_gpr)) /* Rx: local var reg */
1112 {
1113 continue;
1114
1115 /* store parameters in stack */
1116 }
1117 /* Move parameters from argument registers to temporary register. */
1118 else if (store_param_on_stack_p (op, framep, &r0_contains_arg))
1119 {
1120 continue;
1121
1122 /* Set up frame pointer */
1123 }
1124 else if (op == 0x603f0000 /* oril r31, r1, 0x0 */
1125 || op == 0x7c3f0b78)
1126 { /* mr r31, r1 */
1127 fdata->frameless = 0;
1128 framep = 1;
1129 fdata->alloca_reg = (tdep->ppc_gp0_regnum + 31);
1130 continue;
1131
1132 /* Another way to set up the frame pointer. */
1133 }
1134 else if ((op & 0xfc1fffff) == 0x38010000)
1135 { /* addi rX, r1, 0x0 */
1136 fdata->frameless = 0;
1137 framep = 1;
1138 fdata->alloca_reg = (tdep->ppc_gp0_regnum
1139 + ((op & ~0x38010000) >> 21));
1140 continue;
1141 }
1142 /* AltiVec related instructions. */
1143 /* Store the vrsave register (spr 256) in another register for
1144 later manipulation, or load a register into the vrsave
1145 register. 2 instructions are used: mfvrsave and
1146 mtvrsave. They are shorthand notation for mfspr Rn, SPR256
1147 and mtspr SPR256, Rn. */
1148 /* mfspr Rn SPR256 == 011111 nnnnn 0000001000 01010100110
1149 mtspr SPR256 Rn == 011111 nnnnn 0000001000 01110100110 */
1150 else if ((op & 0xfc1fffff) == 0x7c0042a6) /* mfvrsave Rn */
1151 {
1152 vrsave_reg = GET_SRC_REG (op);
1153 continue;
1154 }
1155 else if ((op & 0xfc1fffff) == 0x7c0043a6) /* mtvrsave Rn */
1156 {
1157 continue;
1158 }
1159 /* Store the register where vrsave was saved to onto the stack:
1160 rS is the register where vrsave was stored in a previous
1161 instruction. */
1162 /* 100100 sssss 00001 dddddddd dddddddd */
1163 else if ((op & 0xfc1f0000) == 0x90010000) /* stw rS, d(r1) */
1164 {
1165 if (vrsave_reg == GET_SRC_REG (op))
1166 {
1167 fdata->vrsave_offset = SIGNED_SHORT (op) + offset;
1168 vrsave_reg = -1;
1169 }
1170 continue;
1171 }
1172 /* Compute the new value of vrsave, by modifying the register
1173 where vrsave was saved to. */
1174 else if (((op & 0xfc000000) == 0x64000000) /* oris Ra, Rs, UIMM */
1175 || ((op & 0xfc000000) == 0x60000000))/* ori Ra, Rs, UIMM */
1176 {
1177 continue;
1178 }
1179 /* li r0, SIMM (short for addi r0, 0, SIMM). This is the first
1180 in a pair of insns to save the vector registers on the
1181 stack. */
1182 /* 001110 00000 00000 iiii iiii iiii iiii */
1183 /* 001110 01110 00000 iiii iiii iiii iiii */
1184 else if ((op & 0xffff0000) == 0x38000000 /* li r0, SIMM */
1185 || (op & 0xffff0000) == 0x39c00000) /* li r14, SIMM */
1186 {
1187 if ((op & 0xffff0000) == 0x38000000)
1188 r0_contains_arg = 0;
1189 li_found_pc = pc;
1190 vr_saved_offset = SIGNED_SHORT (op);
1191
1192 /* This insn by itself is not part of the prologue, unless
1193 if part of the pair of insns mentioned above. So do not
1194 record this insn as part of the prologue yet. */
1195 prev_insn_was_prologue_insn = 0;
1196 }
1197 /* Store vector register S at (r31+r0) aligned to 16 bytes. */
1198 /* 011111 sssss 11111 00000 00111001110 */
1199 else if ((op & 0xfc1fffff) == 0x7c1f01ce) /* stvx Vs, R31, R0 */
1200 {
1201 if (pc == (li_found_pc + 4))
1202 {
1203 vr_reg = GET_SRC_REG (op);
1204 /* If this is the first vector reg to be saved, or if
1205 it has a lower number than others previously seen,
1206 reupdate the frame info. */
1207 if (fdata->saved_vr == -1 || fdata->saved_vr > vr_reg)
1208 {
1209 fdata->saved_vr = vr_reg;
1210 fdata->vr_offset = vr_saved_offset + offset;
1211 }
1212 vr_saved_offset = -1;
1213 vr_reg = -1;
1214 li_found_pc = 0;
1215 }
1216 }
1217 /* End AltiVec related instructions. */
1218
1219 /* Start BookE related instructions. */
1220 /* Store gen register S at (r31+uimm).
1221 Any register less than r13 is volatile, so we don't care. */
1222 /* 000100 sssss 11111 iiiii 01100100001 */
1223 else if (arch_info->mach == bfd_mach_ppc_e500
1224 && (op & 0xfc1f07ff) == 0x101f0321) /* evstdd Rs,uimm(R31) */
1225 {
1226 if ((op & 0x03e00000) >= 0x01a00000) /* Rs >= r13 */
1227 {
1228 unsigned int imm;
1229 ev_reg = GET_SRC_REG (op);
1230 imm = (op >> 11) & 0x1f;
1231 ev_offset = imm * 8;
1232 /* If this is the first vector reg to be saved, or if
1233 it has a lower number than others previously seen,
1234 reupdate the frame info. */
1235 if (fdata->saved_ev == -1 || fdata->saved_ev > ev_reg)
1236 {
1237 fdata->saved_ev = ev_reg;
1238 fdata->ev_offset = ev_offset + offset;
1239 }
1240 }
1241 continue;
1242 }
1243 /* Store gen register rS at (r1+rB). */
1244 /* 000100 sssss 00001 bbbbb 01100100000 */
1245 else if (arch_info->mach == bfd_mach_ppc_e500
1246 && (op & 0xffe007ff) == 0x13e00320) /* evstddx RS,R1,Rb */
1247 {
1248 if (pc == (li_found_pc + 4))
1249 {
1250 ev_reg = GET_SRC_REG (op);
1251 /* If this is the first vector reg to be saved, or if
1252 it has a lower number than others previously seen,
1253 reupdate the frame info. */
1254 /* We know the contents of rB from the previous instruction. */
1255 if (fdata->saved_ev == -1 || fdata->saved_ev > ev_reg)
1256 {
1257 fdata->saved_ev = ev_reg;
1258 fdata->ev_offset = vr_saved_offset + offset;
1259 }
1260 vr_saved_offset = -1;
1261 ev_reg = -1;
1262 li_found_pc = 0;
1263 }
1264 continue;
1265 }
1266 /* Store gen register r31 at (rA+uimm). */
1267 /* 000100 11111 aaaaa iiiii 01100100001 */
1268 else if (arch_info->mach == bfd_mach_ppc_e500
1269 && (op & 0xffe007ff) == 0x13e00321) /* evstdd R31,Ra,UIMM */
1270 {
1271 /* Wwe know that the source register is 31 already, but
1272 it can't hurt to compute it. */
1273 ev_reg = GET_SRC_REG (op);
1274 ev_offset = ((op >> 11) & 0x1f) * 8;
1275 /* If this is the first vector reg to be saved, or if
1276 it has a lower number than others previously seen,
1277 reupdate the frame info. */
1278 if (fdata->saved_ev == -1 || fdata->saved_ev > ev_reg)
1279 {
1280 fdata->saved_ev = ev_reg;
1281 fdata->ev_offset = ev_offset + offset;
1282 }
1283
1284 continue;
1285 }
1286 /* Store gen register S at (r31+r0).
1287 Store param on stack when offset from SP bigger than 4 bytes. */
1288 /* 000100 sssss 11111 00000 01100100000 */
1289 else if (arch_info->mach == bfd_mach_ppc_e500
1290 && (op & 0xfc1fffff) == 0x101f0320) /* evstddx Rs,R31,R0 */
1291 {
1292 if (pc == (li_found_pc + 4))
1293 {
1294 if ((op & 0x03e00000) >= 0x01a00000)
1295 {
1296 ev_reg = GET_SRC_REG (op);
1297 /* If this is the first vector reg to be saved, or if
1298 it has a lower number than others previously seen,
1299 reupdate the frame info. */
1300 /* We know the contents of r0 from the previous
1301 instruction. */
1302 if (fdata->saved_ev == -1 || fdata->saved_ev > ev_reg)
1303 {
1304 fdata->saved_ev = ev_reg;
1305 fdata->ev_offset = vr_saved_offset + offset;
1306 }
1307 ev_reg = -1;
1308 }
1309 vr_saved_offset = -1;
1310 li_found_pc = 0;
1311 continue;
1312 }
1313 }
1314 /* End BookE related instructions. */
1315
1316 else
1317 {
1318 /* Not a recognized prologue instruction.
1319 Handle optimizer code motions into the prologue by continuing
1320 the search if we have no valid frame yet or if the return
1321 address is not yet saved in the frame. */
1322 if (fdata->frameless == 0
1323 && (lr_reg == -1 || fdata->nosavedpc == 0))
1324 break;
1325
1326 if (op == 0x4e800020 /* blr */
1327 || op == 0x4e800420) /* bctr */
1328 /* Do not scan past epilogue in frameless functions or
1329 trampolines. */
1330 break;
1331 if ((op & 0xf4000000) == 0x40000000) /* bxx */
1332 /* Never skip branches. */
1333 break;
1334
1335 if (num_skip_non_prologue_insns++ > max_skip_non_prologue_insns)
1336 /* Do not scan too many insns, scanning insns is expensive with
1337 remote targets. */
1338 break;
1339
1340 /* Continue scanning. */
1341 prev_insn_was_prologue_insn = 0;
1342 continue;
1343 }
1344 }
1345
1346 #if 0
1347 /* I have problems with skipping over __main() that I need to address
1348 * sometime. Previously, I used to use misc_function_vector which
1349 * didn't work as well as I wanted to be. -MGO */
1350
1351 /* If the first thing after skipping a prolog is a branch to a function,
1352 this might be a call to an initializer in main(), introduced by gcc2.
1353 We'd like to skip over it as well. Fortunately, xlc does some extra
1354 work before calling a function right after a prologue, thus we can
1355 single out such gcc2 behaviour. */
1356
1357
1358 if ((op & 0xfc000001) == 0x48000001)
1359 { /* bl foo, an initializer function? */
1360 op = read_memory_integer (pc + 4, 4);
1361
1362 if (op == 0x4def7b82)
1363 { /* cror 0xf, 0xf, 0xf (nop) */
1364
1365 /* Check and see if we are in main. If so, skip over this
1366 initializer function as well. */
1367
1368 tmp = find_pc_misc_function (pc);
1369 if (tmp >= 0
1370 && strcmp (misc_function_vector[tmp].name, main_name ()) == 0)
1371 return pc + 8;
1372 }
1373 }
1374 #endif /* 0 */
1375
1376 fdata->offset = -fdata->offset;
1377 return last_prologue_pc;
1378 }
1379
1380
1381 /*************************************************************************
1382 Support for creating pushing a dummy frame into the stack, and popping
1383 frames, etc.
1384 *************************************************************************/
1385
1386
1387 /* All the ABI's require 16 byte alignment. */
1388 static CORE_ADDR
1389 rs6000_frame_align (struct gdbarch *gdbarch, CORE_ADDR addr)
1390 {
1391 return (addr & -16);
1392 }
1393
1394 /* Pass the arguments in either registers, or in the stack. In RS/6000,
1395 the first eight words of the argument list (that might be less than
1396 eight parameters if some parameters occupy more than one word) are
1397 passed in r3..r10 registers. float and double parameters are
1398 passed in fpr's, in addition to that. Rest of the parameters if any
1399 are passed in user stack. There might be cases in which half of the
1400 parameter is copied into registers, the other half is pushed into
1401 stack.
1402
1403 Stack must be aligned on 64-bit boundaries when synthesizing
1404 function calls.
1405
1406 If the function is returning a structure, then the return address is passed
1407 in r3, then the first 7 words of the parameters can be passed in registers,
1408 starting from r4. */
1409
1410 static CORE_ADDR
1411 rs6000_push_dummy_call (struct gdbarch *gdbarch, struct value *function,
1412 struct regcache *regcache, CORE_ADDR bp_addr,
1413 int nargs, struct value **args, CORE_ADDR sp,
1414 int struct_return, CORE_ADDR struct_addr)
1415 {
1416 struct gdbarch_tdep *tdep = gdbarch_tdep (current_gdbarch);
1417 int ii;
1418 int len = 0;
1419 int argno; /* current argument number */
1420 int argbytes; /* current argument byte */
1421 char tmp_buffer[50];
1422 int f_argno = 0; /* current floating point argno */
1423 int wordsize = gdbarch_tdep (current_gdbarch)->wordsize;
1424 CORE_ADDR func_addr = find_function_addr (function, NULL);
1425
1426 struct value *arg = 0;
1427 struct type *type;
1428
1429 CORE_ADDR saved_sp;
1430
1431 /* The calling convention this function implements assumes the
1432 processor has floating-point registers. We shouldn't be using it
1433 on PPC variants that lack them. */
1434 gdb_assert (ppc_floating_point_unit_p (current_gdbarch));
1435
1436 /* The first eight words of ther arguments are passed in registers.
1437 Copy them appropriately. */
1438 ii = 0;
1439
1440 /* If the function is returning a `struct', then the first word
1441 (which will be passed in r3) is used for struct return address.
1442 In that case we should advance one word and start from r4
1443 register to copy parameters. */
1444 if (struct_return)
1445 {
1446 regcache_raw_write_unsigned (regcache, tdep->ppc_gp0_regnum + 3,
1447 struct_addr);
1448 ii++;
1449 }
1450
1451 /*
1452 effectively indirect call... gcc does...
1453
1454 return_val example( float, int);
1455
1456 eabi:
1457 float in fp0, int in r3
1458 offset of stack on overflow 8/16
1459 for varargs, must go by type.
1460 power open:
1461 float in r3&r4, int in r5
1462 offset of stack on overflow different
1463 both:
1464 return in r3 or f0. If no float, must study how gcc emulates floats;
1465 pay attention to arg promotion.
1466 User may have to cast\args to handle promotion correctly
1467 since gdb won't know if prototype supplied or not.
1468 */
1469
1470 for (argno = 0, argbytes = 0; argno < nargs && ii < 8; ++ii)
1471 {
1472 int reg_size = register_size (current_gdbarch, ii + 3);
1473
1474 arg = args[argno];
1475 type = check_typedef (value_type (arg));
1476 len = TYPE_LENGTH (type);
1477
1478 if (TYPE_CODE (type) == TYPE_CODE_FLT)
1479 {
1480
1481 /* Floating point arguments are passed in fpr's, as well as gpr's.
1482 There are 13 fpr's reserved for passing parameters. At this point
1483 there is no way we would run out of them. */
1484
1485 gdb_assert (len <= 8);
1486
1487 regcache_cooked_write (regcache,
1488 tdep->ppc_fp0_regnum + 1 + f_argno,
1489 VALUE_CONTENTS (arg));
1490 ++f_argno;
1491 }
1492
1493 if (len > reg_size)
1494 {
1495
1496 /* Argument takes more than one register. */
1497 while (argbytes < len)
1498 {
1499 char word[MAX_REGISTER_SIZE];
1500 memset (word, 0, reg_size);
1501 memcpy (word,
1502 ((char *) VALUE_CONTENTS (arg)) + argbytes,
1503 (len - argbytes) > reg_size
1504 ? reg_size : len - argbytes);
1505 regcache_cooked_write (regcache,
1506 tdep->ppc_gp0_regnum + 3 + ii,
1507 word);
1508 ++ii, argbytes += reg_size;
1509
1510 if (ii >= 8)
1511 goto ran_out_of_registers_for_arguments;
1512 }
1513 argbytes = 0;
1514 --ii;
1515 }
1516 else
1517 {
1518 /* Argument can fit in one register. No problem. */
1519 int adj = TARGET_BYTE_ORDER == BFD_ENDIAN_BIG ? reg_size - len : 0;
1520 char word[MAX_REGISTER_SIZE];
1521
1522 memset (word, 0, reg_size);
1523 memcpy (word, VALUE_CONTENTS (arg), len);
1524 regcache_cooked_write (regcache, tdep->ppc_gp0_regnum + 3 +ii, word);
1525 }
1526 ++argno;
1527 }
1528
1529 ran_out_of_registers_for_arguments:
1530
1531 saved_sp = read_sp ();
1532
1533 /* Location for 8 parameters are always reserved. */
1534 sp -= wordsize * 8;
1535
1536 /* Another six words for back chain, TOC register, link register, etc. */
1537 sp -= wordsize * 6;
1538
1539 /* Stack pointer must be quadword aligned. */
1540 sp &= -16;
1541
1542 /* If there are more arguments, allocate space for them in
1543 the stack, then push them starting from the ninth one. */
1544
1545 if ((argno < nargs) || argbytes)
1546 {
1547 int space = 0, jj;
1548
1549 if (argbytes)
1550 {
1551 space += ((len - argbytes + 3) & -4);
1552 jj = argno + 1;
1553 }
1554 else
1555 jj = argno;
1556
1557 for (; jj < nargs; ++jj)
1558 {
1559 struct value *val = args[jj];
1560 space += ((TYPE_LENGTH (value_type (val))) + 3) & -4;
1561 }
1562
1563 /* Add location required for the rest of the parameters. */
1564 space = (space + 15) & -16;
1565 sp -= space;
1566
1567 /* This is another instance we need to be concerned about
1568 securing our stack space. If we write anything underneath %sp
1569 (r1), we might conflict with the kernel who thinks he is free
1570 to use this area. So, update %sp first before doing anything
1571 else. */
1572
1573 regcache_raw_write_signed (regcache, SP_REGNUM, sp);
1574
1575 /* If the last argument copied into the registers didn't fit there
1576 completely, push the rest of it into stack. */
1577
1578 if (argbytes)
1579 {
1580 write_memory (sp + 24 + (ii * 4),
1581 ((char *) VALUE_CONTENTS (arg)) + argbytes,
1582 len - argbytes);
1583 ++argno;
1584 ii += ((len - argbytes + 3) & -4) / 4;
1585 }
1586
1587 /* Push the rest of the arguments into stack. */
1588 for (; argno < nargs; ++argno)
1589 {
1590
1591 arg = args[argno];
1592 type = check_typedef (value_type (arg));
1593 len = TYPE_LENGTH (type);
1594
1595
1596 /* Float types should be passed in fpr's, as well as in the
1597 stack. */
1598 if (TYPE_CODE (type) == TYPE_CODE_FLT && f_argno < 13)
1599 {
1600
1601 gdb_assert (len <= 8);
1602
1603 regcache_cooked_write (regcache,
1604 tdep->ppc_fp0_regnum + 1 + f_argno,
1605 VALUE_CONTENTS (arg));
1606 ++f_argno;
1607 }
1608
1609 write_memory (sp + 24 + (ii * 4),
1610 (char *) VALUE_CONTENTS (arg),
1611 len);
1612 ii += ((len + 3) & -4) / 4;
1613 }
1614 }
1615
1616 /* Set the stack pointer. According to the ABI, the SP is meant to
1617 be set _before_ the corresponding stack space is used. On AIX,
1618 this even applies when the target has been completely stopped!
1619 Not doing this can lead to conflicts with the kernel which thinks
1620 that it still has control over this not-yet-allocated stack
1621 region. */
1622 regcache_raw_write_signed (regcache, SP_REGNUM, sp);
1623
1624 /* Set back chain properly. */
1625 store_unsigned_integer (tmp_buffer, 4, saved_sp);
1626 write_memory (sp, tmp_buffer, 4);
1627
1628 /* Point the inferior function call's return address at the dummy's
1629 breakpoint. */
1630 regcache_raw_write_signed (regcache, tdep->ppc_lr_regnum, bp_addr);
1631
1632 /* Set the TOC register, get the value from the objfile reader
1633 which, in turn, gets it from the VMAP table. */
1634 if (rs6000_find_toc_address_hook != NULL)
1635 {
1636 CORE_ADDR tocvalue = (*rs6000_find_toc_address_hook) (func_addr);
1637 regcache_raw_write_signed (regcache, tdep->ppc_toc_regnum, tocvalue);
1638 }
1639
1640 target_store_registers (-1);
1641 return sp;
1642 }
1643
1644 /* PowerOpen always puts structures in memory. Vectors, which were
1645 added later, do get returned in a register though. */
1646
1647 static int
1648 rs6000_use_struct_convention (int gcc_p, struct type *value_type)
1649 {
1650 if ((TYPE_LENGTH (value_type) == 16 || TYPE_LENGTH (value_type) == 8)
1651 && TYPE_VECTOR (value_type))
1652 return 0;
1653 return 1;
1654 }
1655
1656 static void
1657 rs6000_extract_return_value (struct type *valtype, char *regbuf, char *valbuf)
1658 {
1659 int offset = 0;
1660 struct gdbarch_tdep *tdep = gdbarch_tdep (current_gdbarch);
1661
1662 /* The calling convention this function implements assumes the
1663 processor has floating-point registers. We shouldn't be using it
1664 on PPC variants that lack them. */
1665 gdb_assert (ppc_floating_point_unit_p (current_gdbarch));
1666
1667 if (TYPE_CODE (valtype) == TYPE_CODE_FLT)
1668 {
1669
1670 /* floats and doubles are returned in fpr1. fpr's have a size of 8 bytes.
1671 We need to truncate the return value into float size (4 byte) if
1672 necessary. */
1673
1674 convert_typed_floating (&regbuf[DEPRECATED_REGISTER_BYTE
1675 (tdep->ppc_fp0_regnum + 1)],
1676 builtin_type_double,
1677 valbuf,
1678 valtype);
1679 }
1680 else if (TYPE_CODE (valtype) == TYPE_CODE_ARRAY
1681 && TYPE_LENGTH (valtype) == 16
1682 && TYPE_VECTOR (valtype))
1683 {
1684 memcpy (valbuf, regbuf + DEPRECATED_REGISTER_BYTE (tdep->ppc_vr0_regnum + 2),
1685 TYPE_LENGTH (valtype));
1686 }
1687 else
1688 {
1689 /* return value is copied starting from r3. */
1690 if (TARGET_BYTE_ORDER == BFD_ENDIAN_BIG
1691 && TYPE_LENGTH (valtype) < register_size (current_gdbarch, 3))
1692 offset = register_size (current_gdbarch, 3) - TYPE_LENGTH (valtype);
1693
1694 memcpy (valbuf,
1695 regbuf + DEPRECATED_REGISTER_BYTE (3) + offset,
1696 TYPE_LENGTH (valtype));
1697 }
1698 }
1699
1700 /* Return whether handle_inferior_event() should proceed through code
1701 starting at PC in function NAME when stepping.
1702
1703 The AIX -bbigtoc linker option generates functions @FIX0, @FIX1, etc. to
1704 handle memory references that are too distant to fit in instructions
1705 generated by the compiler. For example, if 'foo' in the following
1706 instruction:
1707
1708 lwz r9,foo(r2)
1709
1710 is greater than 32767, the linker might replace the lwz with a branch to
1711 somewhere in @FIX1 that does the load in 2 instructions and then branches
1712 back to where execution should continue.
1713
1714 GDB should silently step over @FIX code, just like AIX dbx does.
1715 Unfortunately, the linker uses the "b" instruction for the branches,
1716 meaning that the link register doesn't get set. Therefore, GDB's usual
1717 step_over_function() mechanism won't work.
1718
1719 Instead, use the IN_SOLIB_RETURN_TRAMPOLINE and SKIP_TRAMPOLINE_CODE hooks
1720 in handle_inferior_event() to skip past @FIX code. */
1721
1722 int
1723 rs6000_in_solib_return_trampoline (CORE_ADDR pc, char *name)
1724 {
1725 return name && !strncmp (name, "@FIX", 4);
1726 }
1727
1728 /* Skip code that the user doesn't want to see when stepping:
1729
1730 1. Indirect function calls use a piece of trampoline code to do context
1731 switching, i.e. to set the new TOC table. Skip such code if we are on
1732 its first instruction (as when we have single-stepped to here).
1733
1734 2. Skip shared library trampoline code (which is different from
1735 indirect function call trampolines).
1736
1737 3. Skip bigtoc fixup code.
1738
1739 Result is desired PC to step until, or NULL if we are not in
1740 code that should be skipped. */
1741
1742 CORE_ADDR
1743 rs6000_skip_trampoline_code (CORE_ADDR pc)
1744 {
1745 unsigned int ii, op;
1746 int rel;
1747 CORE_ADDR solib_target_pc;
1748 struct minimal_symbol *msymbol;
1749
1750 static unsigned trampoline_code[] =
1751 {
1752 0x800b0000, /* l r0,0x0(r11) */
1753 0x90410014, /* st r2,0x14(r1) */
1754 0x7c0903a6, /* mtctr r0 */
1755 0x804b0004, /* l r2,0x4(r11) */
1756 0x816b0008, /* l r11,0x8(r11) */
1757 0x4e800420, /* bctr */
1758 0x4e800020, /* br */
1759 0
1760 };
1761
1762 /* Check for bigtoc fixup code. */
1763 msymbol = lookup_minimal_symbol_by_pc (pc);
1764 if (msymbol && rs6000_in_solib_return_trampoline (pc, DEPRECATED_SYMBOL_NAME (msymbol)))
1765 {
1766 /* Double-check that the third instruction from PC is relative "b". */
1767 op = read_memory_integer (pc + 8, 4);
1768 if ((op & 0xfc000003) == 0x48000000)
1769 {
1770 /* Extract bits 6-29 as a signed 24-bit relative word address and
1771 add it to the containing PC. */
1772 rel = ((int)(op << 6) >> 6);
1773 return pc + 8 + rel;
1774 }
1775 }
1776
1777 /* If pc is in a shared library trampoline, return its target. */
1778 solib_target_pc = find_solib_trampoline_target (pc);
1779 if (solib_target_pc)
1780 return solib_target_pc;
1781
1782 for (ii = 0; trampoline_code[ii]; ++ii)
1783 {
1784 op = read_memory_integer (pc + (ii * 4), 4);
1785 if (op != trampoline_code[ii])
1786 return 0;
1787 }
1788 ii = read_register (11); /* r11 holds destination addr */
1789 pc = read_memory_addr (ii, gdbarch_tdep (current_gdbarch)->wordsize); /* (r11) value */
1790 return pc;
1791 }
1792
1793 /* Return the size of register REG when words are WORDSIZE bytes long. If REG
1794 isn't available with that word size, return 0. */
1795
1796 static int
1797 regsize (const struct reg *reg, int wordsize)
1798 {
1799 return wordsize == 8 ? reg->sz64 : reg->sz32;
1800 }
1801
1802 /* Return the name of register number N, or null if no such register exists
1803 in the current architecture. */
1804
1805 static const char *
1806 rs6000_register_name (int n)
1807 {
1808 struct gdbarch_tdep *tdep = gdbarch_tdep (current_gdbarch);
1809 const struct reg *reg = tdep->regs + n;
1810
1811 if (!regsize (reg, tdep->wordsize))
1812 return NULL;
1813 return reg->name;
1814 }
1815
1816 /* Return the GDB type object for the "standard" data type
1817 of data in register N. */
1818
1819 static struct type *
1820 rs6000_register_type (struct gdbarch *gdbarch, int n)
1821 {
1822 struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch);
1823 const struct reg *reg = tdep->regs + n;
1824
1825 if (reg->fpr)
1826 return builtin_type_double;
1827 else
1828 {
1829 int size = regsize (reg, tdep->wordsize);
1830 switch (size)
1831 {
1832 case 0:
1833 return builtin_type_int0;
1834 case 4:
1835 return builtin_type_uint32;
1836 case 8:
1837 if (tdep->ppc_ev0_regnum <= n && n <= tdep->ppc_ev31_regnum)
1838 return builtin_type_vec64;
1839 else
1840 return builtin_type_uint64;
1841 break;
1842 case 16:
1843 return builtin_type_vec128;
1844 break;
1845 default:
1846 internal_error (__FILE__, __LINE__, "Register %d size %d unknown",
1847 n, size);
1848 }
1849 }
1850 }
1851
1852 /* The register format for RS/6000 floating point registers is always
1853 double, we need a conversion if the memory format is float. */
1854
1855 static int
1856 rs6000_convert_register_p (int regnum, struct type *type)
1857 {
1858 const struct reg *reg = gdbarch_tdep (current_gdbarch)->regs + regnum;
1859
1860 return (reg->fpr
1861 && TYPE_CODE (type) == TYPE_CODE_FLT
1862 && TYPE_LENGTH (type) != TYPE_LENGTH (builtin_type_double));
1863 }
1864
1865 static void
1866 rs6000_register_to_value (struct frame_info *frame,
1867 int regnum,
1868 struct type *type,
1869 void *to)
1870 {
1871 const struct reg *reg = gdbarch_tdep (current_gdbarch)->regs + regnum;
1872 char from[MAX_REGISTER_SIZE];
1873
1874 gdb_assert (reg->fpr);
1875 gdb_assert (TYPE_CODE (type) == TYPE_CODE_FLT);
1876
1877 get_frame_register (frame, regnum, from);
1878 convert_typed_floating (from, builtin_type_double, to, type);
1879 }
1880
1881 static void
1882 rs6000_value_to_register (struct frame_info *frame,
1883 int regnum,
1884 struct type *type,
1885 const void *from)
1886 {
1887 const struct reg *reg = gdbarch_tdep (current_gdbarch)->regs + regnum;
1888 char to[MAX_REGISTER_SIZE];
1889
1890 gdb_assert (reg->fpr);
1891 gdb_assert (TYPE_CODE (type) == TYPE_CODE_FLT);
1892
1893 convert_typed_floating (from, type, to, builtin_type_double);
1894 put_frame_register (frame, regnum, to);
1895 }
1896
1897 /* Move SPE vector register values between a 64-bit buffer and the two
1898 32-bit raw register halves in a regcache. This function handles
1899 both splitting a 64-bit value into two 32-bit halves, and joining
1900 two halves into a whole 64-bit value, depending on the function
1901 passed as the MOVE argument.
1902
1903 EV_REG must be the number of an SPE evN vector register --- a
1904 pseudoregister. REGCACHE must be a regcache, and BUFFER must be a
1905 64-bit buffer.
1906
1907 Call MOVE once for each 32-bit half of that register, passing
1908 REGCACHE, the number of the raw register corresponding to that
1909 half, and the address of the appropriate half of BUFFER.
1910
1911 For example, passing 'regcache_raw_read' as the MOVE function will
1912 fill BUFFER with the full 64-bit contents of EV_REG. Or, passing
1913 'regcache_raw_supply' will supply the contents of BUFFER to the
1914 appropriate pair of raw registers in REGCACHE.
1915
1916 You may need to cast away some 'const' qualifiers when passing
1917 MOVE, since this function can't tell at compile-time which of
1918 REGCACHE or BUFFER is acting as the source of the data. If C had
1919 co-variant type qualifiers, ... */
1920 static void
1921 e500_move_ev_register (void (*move) (struct regcache *regcache,
1922 int regnum, void *buf),
1923 struct regcache *regcache, int ev_reg,
1924 void *buffer)
1925 {
1926 struct gdbarch *arch = get_regcache_arch (regcache);
1927 struct gdbarch_tdep *tdep = gdbarch_tdep (arch);
1928 int reg_index;
1929 char *byte_buffer = buffer;
1930
1931 gdb_assert (tdep->ppc_ev0_regnum <= ev_reg
1932 && ev_reg < tdep->ppc_ev0_regnum + ppc_num_gprs);
1933
1934 reg_index = ev_reg - tdep->ppc_ev0_regnum;
1935
1936 if (TARGET_BYTE_ORDER == BFD_ENDIAN_BIG)
1937 {
1938 move (regcache, tdep->ppc_ev0_upper_regnum + reg_index, byte_buffer);
1939 move (regcache, tdep->ppc_gp0_regnum + reg_index, byte_buffer + 4);
1940 }
1941 else
1942 {
1943 move (regcache, tdep->ppc_gp0_regnum + reg_index, byte_buffer);
1944 move (regcache, tdep->ppc_ev0_upper_regnum + reg_index, byte_buffer + 4);
1945 }
1946 }
1947
1948 static void
1949 e500_pseudo_register_read (struct gdbarch *gdbarch, struct regcache *regcache,
1950 int reg_nr, void *buffer)
1951 {
1952 struct gdbarch *regcache_arch = get_regcache_arch (regcache);
1953 struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch);
1954
1955 gdb_assert (regcache_arch == gdbarch);
1956
1957 if (tdep->ppc_ev0_regnum <= reg_nr
1958 && reg_nr < tdep->ppc_ev0_regnum + ppc_num_gprs)
1959 e500_move_ev_register (regcache_raw_read, regcache, reg_nr, buffer);
1960 else
1961 internal_error (__FILE__, __LINE__,
1962 "e500_pseudo_register_read: "
1963 "called on unexpected register '%s' (%d)",
1964 gdbarch_register_name (gdbarch, reg_nr), reg_nr);
1965 }
1966
1967 static void
1968 e500_pseudo_register_write (struct gdbarch *gdbarch, struct regcache *regcache,
1969 int reg_nr, const void *buffer)
1970 {
1971 struct gdbarch *regcache_arch = get_regcache_arch (regcache);
1972 struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch);
1973
1974 gdb_assert (regcache_arch == gdbarch);
1975
1976 if (tdep->ppc_ev0_regnum <= reg_nr
1977 && reg_nr < tdep->ppc_ev0_regnum + ppc_num_gprs)
1978 e500_move_ev_register ((void (*) (struct regcache *, int, void *))
1979 regcache_raw_write,
1980 regcache, reg_nr, (void *) buffer);
1981 else
1982 internal_error (__FILE__, __LINE__,
1983 "e500_pseudo_register_read: "
1984 "called on unexpected register '%s' (%d)",
1985 gdbarch_register_name (gdbarch, reg_nr), reg_nr);
1986 }
1987
1988 /* The E500 needs a custom reggroup function: it has anonymous raw
1989 registers, and default_register_reggroup_p assumes that anonymous
1990 registers are not members of any reggroup. */
1991 static int
1992 e500_register_reggroup_p (struct gdbarch *gdbarch,
1993 int regnum,
1994 struct reggroup *group)
1995 {
1996 struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch);
1997
1998 /* The save and restore register groups need to include the
1999 upper-half registers, even though they're anonymous. */
2000 if ((group == save_reggroup
2001 || group == restore_reggroup)
2002 && (tdep->ppc_ev0_upper_regnum <= regnum
2003 && regnum < tdep->ppc_ev0_upper_regnum + ppc_num_gprs))
2004 return 1;
2005
2006 /* In all other regards, the default reggroup definition is fine. */
2007 return default_register_reggroup_p (gdbarch, regnum, group);
2008 }
2009
2010 /* Convert a DBX STABS register number to a GDB register number. */
2011 static int
2012 rs6000_stab_reg_to_regnum (int num)
2013 {
2014 struct gdbarch_tdep *tdep = gdbarch_tdep (current_gdbarch);
2015
2016 if (0 <= num && num <= 31)
2017 return tdep->ppc_gp0_regnum + num;
2018 else if (32 <= num && num <= 63)
2019 /* FIXME: jimb/2004-05-05: What should we do when the debug info
2020 specifies registers the architecture doesn't have? Our
2021 callers don't check the value we return. */
2022 return tdep->ppc_fp0_regnum + (num - 32);
2023 else if (77 <= num && num <= 108)
2024 return tdep->ppc_vr0_regnum + (num - 77);
2025 else if (1200 <= num && num < 1200 + 32)
2026 return tdep->ppc_ev0_regnum + (num - 1200);
2027 else
2028 switch (num)
2029 {
2030 case 64:
2031 return tdep->ppc_mq_regnum;
2032 case 65:
2033 return tdep->ppc_lr_regnum;
2034 case 66:
2035 return tdep->ppc_ctr_regnum;
2036 case 76:
2037 return tdep->ppc_xer_regnum;
2038 case 109:
2039 return tdep->ppc_vrsave_regnum;
2040 case 110:
2041 return tdep->ppc_vrsave_regnum - 1; /* vscr */
2042 case 111:
2043 return tdep->ppc_acc_regnum;
2044 case 112:
2045 return tdep->ppc_spefscr_regnum;
2046 default:
2047 return num;
2048 }
2049 }
2050
2051
2052 /* Convert a Dwarf 2 register number to a GDB register number. */
2053 static int
2054 rs6000_dwarf2_reg_to_regnum (int num)
2055 {
2056 struct gdbarch_tdep *tdep = gdbarch_tdep (current_gdbarch);
2057
2058 if (0 <= num && num <= 31)
2059 return tdep->ppc_gp0_regnum + num;
2060 else if (32 <= num && num <= 63)
2061 /* FIXME: jimb/2004-05-05: What should we do when the debug info
2062 specifies registers the architecture doesn't have? Our
2063 callers don't check the value we return. */
2064 return tdep->ppc_fp0_regnum + (num - 32);
2065 else if (1124 <= num && num < 1124 + 32)
2066 return tdep->ppc_vr0_regnum + (num - 1124);
2067 else if (1200 <= num && num < 1200 + 32)
2068 return tdep->ppc_ev0_regnum + (num - 1200);
2069 else
2070 switch (num)
2071 {
2072 case 67:
2073 return tdep->ppc_vrsave_regnum - 1; /* vscr */
2074 case 99:
2075 return tdep->ppc_acc_regnum;
2076 case 100:
2077 return tdep->ppc_mq_regnum;
2078 case 101:
2079 return tdep->ppc_xer_regnum;
2080 case 108:
2081 return tdep->ppc_lr_regnum;
2082 case 109:
2083 return tdep->ppc_ctr_regnum;
2084 case 356:
2085 return tdep->ppc_vrsave_regnum;
2086 case 612:
2087 return tdep->ppc_spefscr_regnum;
2088 default:
2089 return num;
2090 }
2091 }
2092
2093
2094 static void
2095 rs6000_store_return_value (struct type *type,
2096 struct regcache *regcache,
2097 const void *valbuf)
2098 {
2099 struct gdbarch *gdbarch = get_regcache_arch (regcache);
2100 struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch);
2101 int regnum = -1;
2102
2103 /* The calling convention this function implements assumes the
2104 processor has floating-point registers. We shouldn't be using it
2105 on PPC variants that lack them. */
2106 gdb_assert (ppc_floating_point_unit_p (gdbarch));
2107
2108 if (TYPE_CODE (type) == TYPE_CODE_FLT)
2109 /* Floating point values are returned starting from FPR1 and up.
2110 Say a double_double_double type could be returned in
2111 FPR1/FPR2/FPR3 triple. */
2112 regnum = tdep->ppc_fp0_regnum + 1;
2113 else if (TYPE_CODE (type) == TYPE_CODE_ARRAY)
2114 {
2115 if (TYPE_LENGTH (type) == 16
2116 && TYPE_VECTOR (type))
2117 regnum = tdep->ppc_vr0_regnum + 2;
2118 else
2119 internal_error (__FILE__, __LINE__,
2120 "rs6000_store_return_value: "
2121 "unexpected array return type");
2122 }
2123 else
2124 /* Everything else is returned in GPR3 and up. */
2125 regnum = tdep->ppc_gp0_regnum + 3;
2126
2127 {
2128 size_t bytes_written = 0;
2129
2130 while (bytes_written < TYPE_LENGTH (type))
2131 {
2132 /* How much of this value can we write to this register? */
2133 size_t bytes_to_write = min (TYPE_LENGTH (type) - bytes_written,
2134 register_size (gdbarch, regnum));
2135 regcache_cooked_write_part (regcache, regnum,
2136 0, bytes_to_write,
2137 (char *) valbuf + bytes_written);
2138 regnum++;
2139 bytes_written += bytes_to_write;
2140 }
2141 }
2142 }
2143
2144
2145 /* Extract from an array REGBUF containing the (raw) register state
2146 the address in which a function should return its structure value,
2147 as a CORE_ADDR (or an expression that can be used as one). */
2148
2149 static CORE_ADDR
2150 rs6000_extract_struct_value_address (struct regcache *regcache)
2151 {
2152 /* FIXME: cagney/2002-09-26: PR gdb/724: When making an inferior
2153 function call GDB knows the address of the struct return value
2154 and hence, should not need to call this function. Unfortunately,
2155 the current call_function_by_hand() code only saves the most
2156 recent struct address leading to occasional calls. The code
2157 should instead maintain a stack of such addresses (in the dummy
2158 frame object). */
2159 /* NOTE: cagney/2002-09-26: Return 0 which indicates that we've
2160 really got no idea where the return value is being stored. While
2161 r3, on function entry, contained the address it will have since
2162 been reused (scratch) and hence wouldn't be valid */
2163 return 0;
2164 }
2165
2166 /* Hook called when a new child process is started. */
2167
2168 void
2169 rs6000_create_inferior (int pid)
2170 {
2171 if (rs6000_set_host_arch_hook)
2172 rs6000_set_host_arch_hook (pid);
2173 }
2174 \f
2175 /* Support for CONVERT_FROM_FUNC_PTR_ADDR (ARCH, ADDR, TARG).
2176
2177 Usually a function pointer's representation is simply the address
2178 of the function. On the RS/6000 however, a function pointer is
2179 represented by a pointer to a TOC entry. This TOC entry contains
2180 three words, the first word is the address of the function, the
2181 second word is the TOC pointer (r2), and the third word is the
2182 static chain value. Throughout GDB it is currently assumed that a
2183 function pointer contains the address of the function, which is not
2184 easy to fix. In addition, the conversion of a function address to
2185 a function pointer would require allocation of a TOC entry in the
2186 inferior's memory space, with all its drawbacks. To be able to
2187 call C++ virtual methods in the inferior (which are called via
2188 function pointers), find_function_addr uses this function to get the
2189 function address from a function pointer. */
2190
2191 /* Return real function address if ADDR (a function pointer) is in the data
2192 space and is therefore a special function pointer. */
2193
2194 static CORE_ADDR
2195 rs6000_convert_from_func_ptr_addr (struct gdbarch *gdbarch,
2196 CORE_ADDR addr,
2197 struct target_ops *targ)
2198 {
2199 struct obj_section *s;
2200
2201 s = find_pc_section (addr);
2202 if (s && s->the_bfd_section->flags & SEC_CODE)
2203 return addr;
2204
2205 /* ADDR is in the data space, so it's a special function pointer. */
2206 return read_memory_addr (addr, gdbarch_tdep (current_gdbarch)->wordsize);
2207 }
2208 \f
2209
2210 /* Handling the various POWER/PowerPC variants. */
2211
2212
2213 /* The arrays here called registers_MUMBLE hold information about available
2214 registers.
2215
2216 For each family of PPC variants, I've tried to isolate out the
2217 common registers and put them up front, so that as long as you get
2218 the general family right, GDB will correctly identify the registers
2219 common to that family. The common register sets are:
2220
2221 For the 60x family: hid0 hid1 iabr dabr pir
2222
2223 For the 505 and 860 family: eie eid nri
2224
2225 For the 403 and 403GC: icdbdr esr dear evpr cdbcr tsr tcr pit tbhi
2226 tblo srr2 srr3 dbsr dbcr iac1 iac2 dac1 dac2 dccr iccr pbl1
2227 pbu1 pbl2 pbu2
2228
2229 Most of these register groups aren't anything formal. I arrived at
2230 them by looking at the registers that occurred in more than one
2231 processor.
2232
2233 Note: kevinb/2002-04-30: Support for the fpscr register was added
2234 during April, 2002. Slot 70 is being used for PowerPC and slot 71
2235 for Power. For PowerPC, slot 70 was unused and was already in the
2236 PPC_UISA_SPRS which is ideally where fpscr should go. For Power,
2237 slot 70 was being used for "mq", so the next available slot (71)
2238 was chosen. It would have been nice to be able to make the
2239 register numbers the same across processor cores, but this wasn't
2240 possible without either 1) renumbering some registers for some
2241 processors or 2) assigning fpscr to a really high slot that's
2242 larger than any current register number. Doing (1) is bad because
2243 existing stubs would break. Doing (2) is undesirable because it
2244 would introduce a really large gap between fpscr and the rest of
2245 the registers for most processors. */
2246
2247 /* Convenience macros for populating register arrays. */
2248
2249 /* Within another macro, convert S to a string. */
2250
2251 #define STR(s) #s
2252
2253 /* Return a struct reg defining register NAME that's 32 bits on 32-bit systems
2254 and 64 bits on 64-bit systems. */
2255 #define R(name) { STR(name), 4, 8, 0, 0, -1 }
2256
2257 /* Return a struct reg defining register NAME that's 32 bits on all
2258 systems. */
2259 #define R4(name) { STR(name), 4, 4, 0, 0, -1 }
2260
2261 /* Return a struct reg defining register NAME that's 64 bits on all
2262 systems. */
2263 #define R8(name) { STR(name), 8, 8, 0, 0, -1 }
2264
2265 /* Return a struct reg defining register NAME that's 128 bits on all
2266 systems. */
2267 #define R16(name) { STR(name), 16, 16, 0, 0, -1 }
2268
2269 /* Return a struct reg defining floating-point register NAME. */
2270 #define F(name) { STR(name), 8, 8, 1, 0, -1 }
2271
2272 /* Return a struct reg defining a pseudo register NAME that is 64 bits
2273 long on all systems. */
2274 #define P8(name) { STR(name), 8, 8, 0, 1, -1 }
2275
2276 /* Return a struct reg defining register NAME that's 32 bits on 32-bit
2277 systems and that doesn't exist on 64-bit systems. */
2278 #define R32(name) { STR(name), 4, 0, 0, 0, -1 }
2279
2280 /* Return a struct reg defining register NAME that's 64 bits on 64-bit
2281 systems and that doesn't exist on 32-bit systems. */
2282 #define R64(name) { STR(name), 0, 8, 0, 0, -1 }
2283
2284 /* Return a struct reg placeholder for a register that doesn't exist. */
2285 #define R0 { 0, 0, 0, 0, 0, -1 }
2286
2287 /* Return a struct reg defining an anonymous raw register that's 32
2288 bits on all systems. */
2289 #define A4 { 0, 4, 4, 0, 0, -1 }
2290
2291 /* Return a struct reg defining an SPR named NAME that is 32 bits on
2292 32-bit systems and 64 bits on 64-bit systems. */
2293 #define S(name) { STR(name), 4, 8, 0, 0, ppc_spr_ ## name }
2294
2295 /* Return a struct reg defining an SPR named NAME that is 32 bits on
2296 all systems. */
2297 #define S4(name) { STR(name), 4, 4, 0, 0, ppc_spr_ ## name }
2298
2299 /* Return a struct reg defining an SPR named NAME that is 32 bits on
2300 all systems, and whose SPR number is NUMBER. */
2301 #define SN4(name, number) { STR(name), 4, 4, 0, 0, (number) }
2302
2303 /* Return a struct reg defining an SPR named NAME that's 64 bits on
2304 64-bit systems and that doesn't exist on 32-bit systems. */
2305 #define S64(name) { STR(name), 0, 8, 0, 0, ppc_spr_ ## name }
2306
2307 /* UISA registers common across all architectures, including POWER. */
2308
2309 #define COMMON_UISA_REGS \
2310 /* 0 */ R(r0), R(r1), R(r2), R(r3), R(r4), R(r5), R(r6), R(r7), \
2311 /* 8 */ R(r8), R(r9), R(r10),R(r11),R(r12),R(r13),R(r14),R(r15), \
2312 /* 16 */ R(r16),R(r17),R(r18),R(r19),R(r20),R(r21),R(r22),R(r23), \
2313 /* 24 */ R(r24),R(r25),R(r26),R(r27),R(r28),R(r29),R(r30),R(r31), \
2314 /* 32 */ F(f0), F(f1), F(f2), F(f3), F(f4), F(f5), F(f6), F(f7), \
2315 /* 40 */ F(f8), F(f9), F(f10),F(f11),F(f12),F(f13),F(f14),F(f15), \
2316 /* 48 */ F(f16),F(f17),F(f18),F(f19),F(f20),F(f21),F(f22),F(f23), \
2317 /* 56 */ F(f24),F(f25),F(f26),F(f27),F(f28),F(f29),F(f30),F(f31), \
2318 /* 64 */ R(pc), R(ps)
2319
2320 /* UISA-level SPRs for PowerPC. */
2321 #define PPC_UISA_SPRS \
2322 /* 66 */ R4(cr), S(lr), S(ctr), S4(xer), R4(fpscr)
2323
2324 /* UISA-level SPRs for PowerPC without floating point support. */
2325 #define PPC_UISA_NOFP_SPRS \
2326 /* 66 */ R4(cr), S(lr), S(ctr), S4(xer), R0
2327
2328 /* Segment registers, for PowerPC. */
2329 #define PPC_SEGMENT_REGS \
2330 /* 71 */ R32(sr0), R32(sr1), R32(sr2), R32(sr3), \
2331 /* 75 */ R32(sr4), R32(sr5), R32(sr6), R32(sr7), \
2332 /* 79 */ R32(sr8), R32(sr9), R32(sr10), R32(sr11), \
2333 /* 83 */ R32(sr12), R32(sr13), R32(sr14), R32(sr15)
2334
2335 /* OEA SPRs for PowerPC. */
2336 #define PPC_OEA_SPRS \
2337 /* 87 */ S4(pvr), \
2338 /* 88 */ S(ibat0u), S(ibat0l), S(ibat1u), S(ibat1l), \
2339 /* 92 */ S(ibat2u), S(ibat2l), S(ibat3u), S(ibat3l), \
2340 /* 96 */ S(dbat0u), S(dbat0l), S(dbat1u), S(dbat1l), \
2341 /* 100 */ S(dbat2u), S(dbat2l), S(dbat3u), S(dbat3l), \
2342 /* 104 */ S(sdr1), S64(asr), S(dar), S4(dsisr), \
2343 /* 108 */ S(sprg0), S(sprg1), S(sprg2), S(sprg3), \
2344 /* 112 */ S(srr0), S(srr1), S(tbl), S(tbu), \
2345 /* 116 */ S4(dec), S(dabr), S4(ear)
2346
2347 /* AltiVec registers. */
2348 #define PPC_ALTIVEC_REGS \
2349 /*119*/R16(vr0), R16(vr1), R16(vr2), R16(vr3), R16(vr4), R16(vr5), R16(vr6), R16(vr7), \
2350 /*127*/R16(vr8), R16(vr9), R16(vr10),R16(vr11),R16(vr12),R16(vr13),R16(vr14),R16(vr15), \
2351 /*135*/R16(vr16),R16(vr17),R16(vr18),R16(vr19),R16(vr20),R16(vr21),R16(vr22),R16(vr23), \
2352 /*143*/R16(vr24),R16(vr25),R16(vr26),R16(vr27),R16(vr28),R16(vr29),R16(vr30),R16(vr31), \
2353 /*151*/R4(vscr), R4(vrsave)
2354
2355
2356 /* On machines supporting the SPE APU, the general-purpose registers
2357 are 64 bits long. There are SIMD vector instructions to treat them
2358 as pairs of floats, but the rest of the instruction set treats them
2359 as 32-bit registers, and only operates on their lower halves.
2360
2361 In the GDB regcache, we treat their high and low halves as separate
2362 registers. The low halves we present as the general-purpose
2363 registers, and then we have pseudo-registers that stitch together
2364 the upper and lower halves and present them as pseudo-registers. */
2365
2366 /* SPE GPR lower halves --- raw registers. */
2367 #define PPC_SPE_GP_REGS \
2368 /* 0 */ R4(r0), R4(r1), R4(r2), R4(r3), R4(r4), R4(r5), R4(r6), R4(r7), \
2369 /* 8 */ R4(r8), R4(r9), R4(r10),R4(r11),R4(r12),R4(r13),R4(r14),R4(r15), \
2370 /* 16 */ R4(r16),R4(r17),R4(r18),R4(r19),R4(r20),R4(r21),R4(r22),R4(r23), \
2371 /* 24 */ R4(r24),R4(r25),R4(r26),R4(r27),R4(r28),R4(r29),R4(r30),R4(r31)
2372
2373 /* SPE GPR upper halves --- anonymous raw registers. */
2374 #define PPC_SPE_UPPER_GP_REGS \
2375 /* 0 */ A4, A4, A4, A4, A4, A4, A4, A4, \
2376 /* 8 */ A4, A4, A4, A4, A4, A4, A4, A4, \
2377 /* 16 */ A4, A4, A4, A4, A4, A4, A4, A4, \
2378 /* 24 */ A4, A4, A4, A4, A4, A4, A4, A4
2379
2380 /* SPE GPR vector registers --- pseudo registers based on underlying
2381 gprs and the anonymous upper half raw registers. */
2382 #define PPC_EV_PSEUDO_REGS \
2383 /* 0*/P8(ev0), P8(ev1), P8(ev2), P8(ev3), P8(ev4), P8(ev5), P8(ev6), P8(ev7), \
2384 /* 8*/P8(ev8), P8(ev9), P8(ev10),P8(ev11),P8(ev12),P8(ev13),P8(ev14),P8(ev15),\
2385 /*16*/P8(ev16),P8(ev17),P8(ev18),P8(ev19),P8(ev20),P8(ev21),P8(ev22),P8(ev23),\
2386 /*24*/P8(ev24),P8(ev25),P8(ev26),P8(ev27),P8(ev28),P8(ev29),P8(ev30),P8(ev31)
2387
2388 /* IBM POWER (pre-PowerPC) architecture, user-level view. We only cover
2389 user-level SPR's. */
2390 static const struct reg registers_power[] =
2391 {
2392 COMMON_UISA_REGS,
2393 /* 66 */ R4(cnd), S(lr), S(cnt), S4(xer), S4(mq),
2394 /* 71 */ R4(fpscr)
2395 };
2396
2397 /* PowerPC UISA - a PPC processor as viewed by user-level code. A UISA-only
2398 view of the PowerPC. */
2399 static const struct reg registers_powerpc[] =
2400 {
2401 COMMON_UISA_REGS,
2402 PPC_UISA_SPRS,
2403 PPC_ALTIVEC_REGS
2404 };
2405
2406 /* IBM PowerPC 403.
2407
2408 Some notes about the "tcr" special-purpose register:
2409 - On the 403 and 403GC, SPR 986 is named "tcr", and it controls the
2410 403's programmable interval timer, fixed interval timer, and
2411 watchdog timer.
2412 - On the 602, SPR 984 is named "tcr", and it controls the 602's
2413 watchdog timer, and nothing else.
2414
2415 Some of the fields are similar between the two, but they're not
2416 compatible with each other. Since the two variants have different
2417 registers, with different numbers, but the same name, we can't
2418 splice the register name to get the SPR number. */
2419 static const struct reg registers_403[] =
2420 {
2421 COMMON_UISA_REGS,
2422 PPC_UISA_SPRS,
2423 PPC_SEGMENT_REGS,
2424 PPC_OEA_SPRS,
2425 /* 119 */ S(icdbdr), S(esr), S(dear), S(evpr),
2426 /* 123 */ S(cdbcr), S(tsr), SN4(tcr, ppc_spr_403_tcr), S(pit),
2427 /* 127 */ S(tbhi), S(tblo), S(srr2), S(srr3),
2428 /* 131 */ S(dbsr), S(dbcr), S(iac1), S(iac2),
2429 /* 135 */ S(dac1), S(dac2), S(dccr), S(iccr),
2430 /* 139 */ S(pbl1), S(pbu1), S(pbl2), S(pbu2)
2431 };
2432
2433 /* IBM PowerPC 403GC.
2434 See the comments about 'tcr' for the 403, above. */
2435 static const struct reg registers_403GC[] =
2436 {
2437 COMMON_UISA_REGS,
2438 PPC_UISA_SPRS,
2439 PPC_SEGMENT_REGS,
2440 PPC_OEA_SPRS,
2441 /* 119 */ S(icdbdr), S(esr), S(dear), S(evpr),
2442 /* 123 */ S(cdbcr), S(tsr), SN4(tcr, ppc_spr_403_tcr), S(pit),
2443 /* 127 */ S(tbhi), S(tblo), S(srr2), S(srr3),
2444 /* 131 */ S(dbsr), S(dbcr), S(iac1), S(iac2),
2445 /* 135 */ S(dac1), S(dac2), S(dccr), S(iccr),
2446 /* 139 */ S(pbl1), S(pbu1), S(pbl2), S(pbu2),
2447 /* 143 */ S(zpr), S(pid), S(sgr), S(dcwr),
2448 /* 147 */ S(tbhu), S(tblu)
2449 };
2450
2451 /* Motorola PowerPC 505. */
2452 static const struct reg registers_505[] =
2453 {
2454 COMMON_UISA_REGS,
2455 PPC_UISA_SPRS,
2456 PPC_SEGMENT_REGS,
2457 PPC_OEA_SPRS,
2458 /* 119 */ S(eie), S(eid), S(nri)
2459 };
2460
2461 /* Motorola PowerPC 860 or 850. */
2462 static const struct reg registers_860[] =
2463 {
2464 COMMON_UISA_REGS,
2465 PPC_UISA_SPRS,
2466 PPC_SEGMENT_REGS,
2467 PPC_OEA_SPRS,
2468 /* 119 */ S(eie), S(eid), S(nri), S(cmpa),
2469 /* 123 */ S(cmpb), S(cmpc), S(cmpd), S(icr),
2470 /* 127 */ S(der), S(counta), S(countb), S(cmpe),
2471 /* 131 */ S(cmpf), S(cmpg), S(cmph), S(lctrl1),
2472 /* 135 */ S(lctrl2), S(ictrl), S(bar), S(ic_cst),
2473 /* 139 */ S(ic_adr), S(ic_dat), S(dc_cst), S(dc_adr),
2474 /* 143 */ S(dc_dat), S(dpdr), S(dpir), S(immr),
2475 /* 147 */ S(mi_ctr), S(mi_ap), S(mi_epn), S(mi_twc),
2476 /* 151 */ S(mi_rpn), S(md_ctr), S(m_casid), S(md_ap),
2477 /* 155 */ S(md_epn), S(m_twb), S(md_twc), S(md_rpn),
2478 /* 159 */ S(m_tw), S(mi_dbcam), S(mi_dbram0), S(mi_dbram1),
2479 /* 163 */ S(md_dbcam), S(md_dbram0), S(md_dbram1)
2480 };
2481
2482 /* Motorola PowerPC 601. Note that the 601 has different register numbers
2483 for reading and writing RTCU and RTCL. However, how one reads and writes a
2484 register is the stub's problem. */
2485 static const struct reg registers_601[] =
2486 {
2487 COMMON_UISA_REGS,
2488 PPC_UISA_SPRS,
2489 PPC_SEGMENT_REGS,
2490 PPC_OEA_SPRS,
2491 /* 119 */ S(hid0), S(hid1), S(iabr), S(dabr),
2492 /* 123 */ S(pir), S(mq), S(rtcu), S(rtcl)
2493 };
2494
2495 /* Motorola PowerPC 602.
2496 See the notes under the 403 about 'tcr'. */
2497 static const struct reg registers_602[] =
2498 {
2499 COMMON_UISA_REGS,
2500 PPC_UISA_SPRS,
2501 PPC_SEGMENT_REGS,
2502 PPC_OEA_SPRS,
2503 /* 119 */ S(hid0), S(hid1), S(iabr), R0,
2504 /* 123 */ R0, SN4(tcr, ppc_spr_602_tcr), S(ibr), S(esasrr),
2505 /* 127 */ S(sebr), S(ser), S(sp), S(lt)
2506 };
2507
2508 /* Motorola/IBM PowerPC 603 or 603e. */
2509 static const struct reg registers_603[] =
2510 {
2511 COMMON_UISA_REGS,
2512 PPC_UISA_SPRS,
2513 PPC_SEGMENT_REGS,
2514 PPC_OEA_SPRS,
2515 /* 119 */ S(hid0), S(hid1), S(iabr), R0,
2516 /* 123 */ R0, S(dmiss), S(dcmp), S(hash1),
2517 /* 127 */ S(hash2), S(imiss), S(icmp), S(rpa)
2518 };
2519
2520 /* Motorola PowerPC 604 or 604e. */
2521 static const struct reg registers_604[] =
2522 {
2523 COMMON_UISA_REGS,
2524 PPC_UISA_SPRS,
2525 PPC_SEGMENT_REGS,
2526 PPC_OEA_SPRS,
2527 /* 119 */ S(hid0), S(hid1), S(iabr), S(dabr),
2528 /* 123 */ S(pir), S(mmcr0), S(pmc1), S(pmc2),
2529 /* 127 */ S(sia), S(sda)
2530 };
2531
2532 /* Motorola/IBM PowerPC 750 or 740. */
2533 static const struct reg registers_750[] =
2534 {
2535 COMMON_UISA_REGS,
2536 PPC_UISA_SPRS,
2537 PPC_SEGMENT_REGS,
2538 PPC_OEA_SPRS,
2539 /* 119 */ S(hid0), S(hid1), S(iabr), S(dabr),
2540 /* 123 */ R0, S(ummcr0), S(upmc1), S(upmc2),
2541 /* 127 */ S(usia), S(ummcr1), S(upmc3), S(upmc4),
2542 /* 131 */ S(mmcr0), S(pmc1), S(pmc2), S(sia),
2543 /* 135 */ S(mmcr1), S(pmc3), S(pmc4), S(l2cr),
2544 /* 139 */ S(ictc), S(thrm1), S(thrm2), S(thrm3)
2545 };
2546
2547
2548 /* Motorola PowerPC 7400. */
2549 static const struct reg registers_7400[] =
2550 {
2551 /* gpr0-gpr31, fpr0-fpr31 */
2552 COMMON_UISA_REGS,
2553 /* cr, lr, ctr, xer, fpscr */
2554 PPC_UISA_SPRS,
2555 /* sr0-sr15 */
2556 PPC_SEGMENT_REGS,
2557 PPC_OEA_SPRS,
2558 /* vr0-vr31, vrsave, vscr */
2559 PPC_ALTIVEC_REGS
2560 /* FIXME? Add more registers? */
2561 };
2562
2563 /* Motorola e500. */
2564 static const struct reg registers_e500[] =
2565 {
2566 /* 0 .. 31 */ PPC_SPE_GP_REGS,
2567 /* 32 .. 63 */ PPC_SPE_UPPER_GP_REGS,
2568 /* 64 .. 65 */ R(pc), R(ps),
2569 /* 66 .. 70 */ PPC_UISA_NOFP_SPRS,
2570 /* 71 .. 72 */ R8(acc), S4(spefscr),
2571 /* NOTE: Add new registers here the end of the raw register
2572 list and just before the first pseudo register. */
2573 /* 73 .. 104 */ PPC_EV_PSEUDO_REGS
2574 };
2575
2576 /* Information about a particular processor variant. */
2577
2578 struct variant
2579 {
2580 /* Name of this variant. */
2581 char *name;
2582
2583 /* English description of the variant. */
2584 char *description;
2585
2586 /* bfd_arch_info.arch corresponding to variant. */
2587 enum bfd_architecture arch;
2588
2589 /* bfd_arch_info.mach corresponding to variant. */
2590 unsigned long mach;
2591
2592 /* Number of real registers. */
2593 int nregs;
2594
2595 /* Number of pseudo registers. */
2596 int npregs;
2597
2598 /* Number of total registers (the sum of nregs and npregs). */
2599 int num_tot_regs;
2600
2601 /* Table of register names; registers[R] is the name of the register
2602 number R. */
2603 const struct reg *regs;
2604 };
2605
2606 #define tot_num_registers(list) (sizeof (list) / sizeof((list)[0]))
2607
2608 static int
2609 num_registers (const struct reg *reg_list, int num_tot_regs)
2610 {
2611 int i;
2612 int nregs = 0;
2613
2614 for (i = 0; i < num_tot_regs; i++)
2615 if (!reg_list[i].pseudo)
2616 nregs++;
2617
2618 return nregs;
2619 }
2620
2621 static int
2622 num_pseudo_registers (const struct reg *reg_list, int num_tot_regs)
2623 {
2624 int i;
2625 int npregs = 0;
2626
2627 for (i = 0; i < num_tot_regs; i++)
2628 if (reg_list[i].pseudo)
2629 npregs ++;
2630
2631 return npregs;
2632 }
2633
2634 /* Information in this table comes from the following web sites:
2635 IBM: http://www.chips.ibm.com:80/products/embedded/
2636 Motorola: http://www.mot.com/SPS/PowerPC/
2637
2638 I'm sure I've got some of the variant descriptions not quite right.
2639 Please report any inaccuracies you find to GDB's maintainer.
2640
2641 If you add entries to this table, please be sure to allow the new
2642 value as an argument to the --with-cpu flag, in configure.in. */
2643
2644 static struct variant variants[] =
2645 {
2646
2647 {"powerpc", "PowerPC user-level", bfd_arch_powerpc,
2648 bfd_mach_ppc, -1, -1, tot_num_registers (registers_powerpc),
2649 registers_powerpc},
2650 {"power", "POWER user-level", bfd_arch_rs6000,
2651 bfd_mach_rs6k, -1, -1, tot_num_registers (registers_power),
2652 registers_power},
2653 {"403", "IBM PowerPC 403", bfd_arch_powerpc,
2654 bfd_mach_ppc_403, -1, -1, tot_num_registers (registers_403),
2655 registers_403},
2656 {"601", "Motorola PowerPC 601", bfd_arch_powerpc,
2657 bfd_mach_ppc_601, -1, -1, tot_num_registers (registers_601),
2658 registers_601},
2659 {"602", "Motorola PowerPC 602", bfd_arch_powerpc,
2660 bfd_mach_ppc_602, -1, -1, tot_num_registers (registers_602),
2661 registers_602},
2662 {"603", "Motorola/IBM PowerPC 603 or 603e", bfd_arch_powerpc,
2663 bfd_mach_ppc_603, -1, -1, tot_num_registers (registers_603),
2664 registers_603},
2665 {"604", "Motorola PowerPC 604 or 604e", bfd_arch_powerpc,
2666 604, -1, -1, tot_num_registers (registers_604),
2667 registers_604},
2668 {"403GC", "IBM PowerPC 403GC", bfd_arch_powerpc,
2669 bfd_mach_ppc_403gc, -1, -1, tot_num_registers (registers_403GC),
2670 registers_403GC},
2671 {"505", "Motorola PowerPC 505", bfd_arch_powerpc,
2672 bfd_mach_ppc_505, -1, -1, tot_num_registers (registers_505),
2673 registers_505},
2674 {"860", "Motorola PowerPC 860 or 850", bfd_arch_powerpc,
2675 bfd_mach_ppc_860, -1, -1, tot_num_registers (registers_860),
2676 registers_860},
2677 {"750", "Motorola/IBM PowerPC 750 or 740", bfd_arch_powerpc,
2678 bfd_mach_ppc_750, -1, -1, tot_num_registers (registers_750),
2679 registers_750},
2680 {"7400", "Motorola/IBM PowerPC 7400 (G4)", bfd_arch_powerpc,
2681 bfd_mach_ppc_7400, -1, -1, tot_num_registers (registers_7400),
2682 registers_7400},
2683 {"e500", "Motorola PowerPC e500", bfd_arch_powerpc,
2684 bfd_mach_ppc_e500, -1, -1, tot_num_registers (registers_e500),
2685 registers_e500},
2686
2687 /* 64-bit */
2688 {"powerpc64", "PowerPC 64-bit user-level", bfd_arch_powerpc,
2689 bfd_mach_ppc64, -1, -1, tot_num_registers (registers_powerpc),
2690 registers_powerpc},
2691 {"620", "Motorola PowerPC 620", bfd_arch_powerpc,
2692 bfd_mach_ppc_620, -1, -1, tot_num_registers (registers_powerpc),
2693 registers_powerpc},
2694 {"630", "Motorola PowerPC 630", bfd_arch_powerpc,
2695 bfd_mach_ppc_630, -1, -1, tot_num_registers (registers_powerpc),
2696 registers_powerpc},
2697 {"a35", "PowerPC A35", bfd_arch_powerpc,
2698 bfd_mach_ppc_a35, -1, -1, tot_num_registers (registers_powerpc),
2699 registers_powerpc},
2700 {"rs64ii", "PowerPC rs64ii", bfd_arch_powerpc,
2701 bfd_mach_ppc_rs64ii, -1, -1, tot_num_registers (registers_powerpc),
2702 registers_powerpc},
2703 {"rs64iii", "PowerPC rs64iii", bfd_arch_powerpc,
2704 bfd_mach_ppc_rs64iii, -1, -1, tot_num_registers (registers_powerpc),
2705 registers_powerpc},
2706
2707 /* FIXME: I haven't checked the register sets of the following. */
2708 {"rs1", "IBM POWER RS1", bfd_arch_rs6000,
2709 bfd_mach_rs6k_rs1, -1, -1, tot_num_registers (registers_power),
2710 registers_power},
2711 {"rsc", "IBM POWER RSC", bfd_arch_rs6000,
2712 bfd_mach_rs6k_rsc, -1, -1, tot_num_registers (registers_power),
2713 registers_power},
2714 {"rs2", "IBM POWER RS2", bfd_arch_rs6000,
2715 bfd_mach_rs6k_rs2, -1, -1, tot_num_registers (registers_power),
2716 registers_power},
2717
2718 {0, 0, 0, 0, 0, 0, 0, 0}
2719 };
2720
2721 /* Initialize the number of registers and pseudo registers in each variant. */
2722
2723 static void
2724 init_variants (void)
2725 {
2726 struct variant *v;
2727
2728 for (v = variants; v->name; v++)
2729 {
2730 if (v->nregs == -1)
2731 v->nregs = num_registers (v->regs, v->num_tot_regs);
2732 if (v->npregs == -1)
2733 v->npregs = num_pseudo_registers (v->regs, v->num_tot_regs);
2734 }
2735 }
2736
2737 /* Return the variant corresponding to architecture ARCH and machine number
2738 MACH. If no such variant exists, return null. */
2739
2740 static const struct variant *
2741 find_variant_by_arch (enum bfd_architecture arch, unsigned long mach)
2742 {
2743 const struct variant *v;
2744
2745 for (v = variants; v->name; v++)
2746 if (arch == v->arch && mach == v->mach)
2747 return v;
2748
2749 return NULL;
2750 }
2751
2752 static int
2753 gdb_print_insn_powerpc (bfd_vma memaddr, disassemble_info *info)
2754 {
2755 if (TARGET_BYTE_ORDER == BFD_ENDIAN_BIG)
2756 return print_insn_big_powerpc (memaddr, info);
2757 else
2758 return print_insn_little_powerpc (memaddr, info);
2759 }
2760 \f
2761 static CORE_ADDR
2762 rs6000_unwind_pc (struct gdbarch *gdbarch, struct frame_info *next_frame)
2763 {
2764 return frame_unwind_register_unsigned (next_frame, PC_REGNUM);
2765 }
2766
2767 static struct frame_id
2768 rs6000_unwind_dummy_id (struct gdbarch *gdbarch, struct frame_info *next_frame)
2769 {
2770 return frame_id_build (frame_unwind_register_unsigned (next_frame,
2771 SP_REGNUM),
2772 frame_pc_unwind (next_frame));
2773 }
2774
2775 struct rs6000_frame_cache
2776 {
2777 CORE_ADDR base;
2778 CORE_ADDR initial_sp;
2779 struct trad_frame_saved_reg *saved_regs;
2780 };
2781
2782 static struct rs6000_frame_cache *
2783 rs6000_frame_cache (struct frame_info *next_frame, void **this_cache)
2784 {
2785 struct rs6000_frame_cache *cache;
2786 struct gdbarch *gdbarch = get_frame_arch (next_frame);
2787 struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch);
2788 struct rs6000_framedata fdata;
2789 int wordsize = tdep->wordsize;
2790
2791 if ((*this_cache) != NULL)
2792 return (*this_cache);
2793 cache = FRAME_OBSTACK_ZALLOC (struct rs6000_frame_cache);
2794 (*this_cache) = cache;
2795 cache->saved_regs = trad_frame_alloc_saved_regs (next_frame);
2796
2797 skip_prologue (frame_func_unwind (next_frame), frame_pc_unwind (next_frame),
2798 &fdata);
2799
2800 /* If there were any saved registers, figure out parent's stack
2801 pointer. */
2802 /* The following is true only if the frame doesn't have a call to
2803 alloca(), FIXME. */
2804
2805 if (fdata.saved_fpr == 0
2806 && fdata.saved_gpr == 0
2807 && fdata.saved_vr == 0
2808 && fdata.saved_ev == 0
2809 && fdata.lr_offset == 0
2810 && fdata.cr_offset == 0
2811 && fdata.vr_offset == 0
2812 && fdata.ev_offset == 0)
2813 cache->base = frame_unwind_register_unsigned (next_frame, SP_REGNUM);
2814 else
2815 {
2816 /* NOTE: cagney/2002-04-14: The ->frame points to the inner-most
2817 address of the current frame. Things might be easier if the
2818 ->frame pointed to the outer-most address of the frame. In
2819 the mean time, the address of the prev frame is used as the
2820 base address of this frame. */
2821 cache->base = frame_unwind_register_unsigned (next_frame, SP_REGNUM);
2822 if (!fdata.frameless)
2823 /* Frameless really means stackless. */
2824 cache->base = read_memory_addr (cache->base, wordsize);
2825 }
2826 trad_frame_set_value (cache->saved_regs, SP_REGNUM, cache->base);
2827
2828 /* if != -1, fdata.saved_fpr is the smallest number of saved_fpr.
2829 All fpr's from saved_fpr to fp31 are saved. */
2830
2831 if (fdata.saved_fpr >= 0)
2832 {
2833 int i;
2834 CORE_ADDR fpr_addr = cache->base + fdata.fpr_offset;
2835
2836 /* If skip_prologue says floating-point registers were saved,
2837 but the current architecture has no floating-point registers,
2838 then that's strange. But we have no indices to even record
2839 the addresses under, so we just ignore it. */
2840 if (ppc_floating_point_unit_p (gdbarch))
2841 for (i = fdata.saved_fpr; i < ppc_num_fprs; i++)
2842 {
2843 cache->saved_regs[tdep->ppc_fp0_regnum + i].addr = fpr_addr;
2844 fpr_addr += 8;
2845 }
2846 }
2847
2848 /* if != -1, fdata.saved_gpr is the smallest number of saved_gpr.
2849 All gpr's from saved_gpr to gpr31 are saved. */
2850
2851 if (fdata.saved_gpr >= 0)
2852 {
2853 int i;
2854 CORE_ADDR gpr_addr = cache->base + fdata.gpr_offset;
2855 for (i = fdata.saved_gpr; i < ppc_num_gprs; i++)
2856 {
2857 cache->saved_regs[tdep->ppc_gp0_regnum + i].addr = gpr_addr;
2858 gpr_addr += wordsize;
2859 }
2860 }
2861
2862 /* if != -1, fdata.saved_vr is the smallest number of saved_vr.
2863 All vr's from saved_vr to vr31 are saved. */
2864 if (tdep->ppc_vr0_regnum != -1 && tdep->ppc_vrsave_regnum != -1)
2865 {
2866 if (fdata.saved_vr >= 0)
2867 {
2868 int i;
2869 CORE_ADDR vr_addr = cache->base + fdata.vr_offset;
2870 for (i = fdata.saved_vr; i < 32; i++)
2871 {
2872 cache->saved_regs[tdep->ppc_vr0_regnum + i].addr = vr_addr;
2873 vr_addr += register_size (gdbarch, tdep->ppc_vr0_regnum);
2874 }
2875 }
2876 }
2877
2878 /* if != -1, fdata.saved_ev is the smallest number of saved_ev.
2879 All vr's from saved_ev to ev31 are saved. ????? */
2880 if (tdep->ppc_ev0_regnum != -1 && tdep->ppc_ev31_regnum != -1)
2881 {
2882 if (fdata.saved_ev >= 0)
2883 {
2884 int i;
2885 CORE_ADDR ev_addr = cache->base + fdata.ev_offset;
2886 for (i = fdata.saved_ev; i < ppc_num_gprs; i++)
2887 {
2888 cache->saved_regs[tdep->ppc_ev0_regnum + i].addr = ev_addr;
2889 cache->saved_regs[tdep->ppc_gp0_regnum + i].addr = ev_addr + 4;
2890 ev_addr += register_size (gdbarch, tdep->ppc_ev0_regnum);
2891 }
2892 }
2893 }
2894
2895 /* If != 0, fdata.cr_offset is the offset from the frame that
2896 holds the CR. */
2897 if (fdata.cr_offset != 0)
2898 cache->saved_regs[tdep->ppc_cr_regnum].addr = cache->base + fdata.cr_offset;
2899
2900 /* If != 0, fdata.lr_offset is the offset from the frame that
2901 holds the LR. */
2902 if (fdata.lr_offset != 0)
2903 cache->saved_regs[tdep->ppc_lr_regnum].addr = cache->base + fdata.lr_offset;
2904 /* The PC is found in the link register. */
2905 cache->saved_regs[PC_REGNUM] = cache->saved_regs[tdep->ppc_lr_regnum];
2906
2907 /* If != 0, fdata.vrsave_offset is the offset from the frame that
2908 holds the VRSAVE. */
2909 if (fdata.vrsave_offset != 0)
2910 cache->saved_regs[tdep->ppc_vrsave_regnum].addr = cache->base + fdata.vrsave_offset;
2911
2912 if (fdata.alloca_reg < 0)
2913 /* If no alloca register used, then fi->frame is the value of the
2914 %sp for this frame, and it is good enough. */
2915 cache->initial_sp = frame_unwind_register_unsigned (next_frame, SP_REGNUM);
2916 else
2917 cache->initial_sp = frame_unwind_register_unsigned (next_frame,
2918 fdata.alloca_reg);
2919
2920 return cache;
2921 }
2922
2923 static void
2924 rs6000_frame_this_id (struct frame_info *next_frame, void **this_cache,
2925 struct frame_id *this_id)
2926 {
2927 struct rs6000_frame_cache *info = rs6000_frame_cache (next_frame,
2928 this_cache);
2929 (*this_id) = frame_id_build (info->base, frame_func_unwind (next_frame));
2930 }
2931
2932 static void
2933 rs6000_frame_prev_register (struct frame_info *next_frame,
2934 void **this_cache,
2935 int regnum, int *optimizedp,
2936 enum lval_type *lvalp, CORE_ADDR *addrp,
2937 int *realnump, void *valuep)
2938 {
2939 struct rs6000_frame_cache *info = rs6000_frame_cache (next_frame,
2940 this_cache);
2941 trad_frame_get_prev_register (next_frame, info->saved_regs, regnum,
2942 optimizedp, lvalp, addrp, realnump, valuep);
2943 }
2944
2945 static const struct frame_unwind rs6000_frame_unwind =
2946 {
2947 NORMAL_FRAME,
2948 rs6000_frame_this_id,
2949 rs6000_frame_prev_register
2950 };
2951
2952 static const struct frame_unwind *
2953 rs6000_frame_sniffer (struct frame_info *next_frame)
2954 {
2955 return &rs6000_frame_unwind;
2956 }
2957
2958 \f
2959
2960 static CORE_ADDR
2961 rs6000_frame_base_address (struct frame_info *next_frame,
2962 void **this_cache)
2963 {
2964 struct rs6000_frame_cache *info = rs6000_frame_cache (next_frame,
2965 this_cache);
2966 return info->initial_sp;
2967 }
2968
2969 static const struct frame_base rs6000_frame_base = {
2970 &rs6000_frame_unwind,
2971 rs6000_frame_base_address,
2972 rs6000_frame_base_address,
2973 rs6000_frame_base_address
2974 };
2975
2976 static const struct frame_base *
2977 rs6000_frame_base_sniffer (struct frame_info *next_frame)
2978 {
2979 return &rs6000_frame_base;
2980 }
2981
2982 /* Initialize the current architecture based on INFO. If possible, re-use an
2983 architecture from ARCHES, which is a list of architectures already created
2984 during this debugging session.
2985
2986 Called e.g. at program startup, when reading a core file, and when reading
2987 a binary file. */
2988
2989 static struct gdbarch *
2990 rs6000_gdbarch_init (struct gdbarch_info info, struct gdbarch_list *arches)
2991 {
2992 struct gdbarch *gdbarch;
2993 struct gdbarch_tdep *tdep;
2994 int wordsize, from_xcoff_exec, from_elf_exec, i, off;
2995 struct reg *regs;
2996 const struct variant *v;
2997 enum bfd_architecture arch;
2998 unsigned long mach;
2999 bfd abfd;
3000 int sysv_abi;
3001 asection *sect;
3002
3003 from_xcoff_exec = info.abfd && info.abfd->format == bfd_object &&
3004 bfd_get_flavour (info.abfd) == bfd_target_xcoff_flavour;
3005
3006 from_elf_exec = info.abfd && info.abfd->format == bfd_object &&
3007 bfd_get_flavour (info.abfd) == bfd_target_elf_flavour;
3008
3009 sysv_abi = info.abfd && bfd_get_flavour (info.abfd) == bfd_target_elf_flavour;
3010
3011 /* Check word size. If INFO is from a binary file, infer it from
3012 that, else choose a likely default. */
3013 if (from_xcoff_exec)
3014 {
3015 if (bfd_xcoff_is_xcoff64 (info.abfd))
3016 wordsize = 8;
3017 else
3018 wordsize = 4;
3019 }
3020 else if (from_elf_exec)
3021 {
3022 if (elf_elfheader (info.abfd)->e_ident[EI_CLASS] == ELFCLASS64)
3023 wordsize = 8;
3024 else
3025 wordsize = 4;
3026 }
3027 else
3028 {
3029 if (info.bfd_arch_info != NULL && info.bfd_arch_info->bits_per_word != 0)
3030 wordsize = info.bfd_arch_info->bits_per_word /
3031 info.bfd_arch_info->bits_per_byte;
3032 else
3033 wordsize = 4;
3034 }
3035
3036 /* Find a candidate among extant architectures. */
3037 for (arches = gdbarch_list_lookup_by_info (arches, &info);
3038 arches != NULL;
3039 arches = gdbarch_list_lookup_by_info (arches->next, &info))
3040 {
3041 /* Word size in the various PowerPC bfd_arch_info structs isn't
3042 meaningful, because 64-bit CPUs can run in 32-bit mode. So, perform
3043 separate word size check. */
3044 tdep = gdbarch_tdep (arches->gdbarch);
3045 if (tdep && tdep->wordsize == wordsize)
3046 return arches->gdbarch;
3047 }
3048
3049 /* None found, create a new architecture from INFO, whose bfd_arch_info
3050 validity depends on the source:
3051 - executable useless
3052 - rs6000_host_arch() good
3053 - core file good
3054 - "set arch" trust blindly
3055 - GDB startup useless but harmless */
3056
3057 if (!from_xcoff_exec)
3058 {
3059 arch = info.bfd_arch_info->arch;
3060 mach = info.bfd_arch_info->mach;
3061 }
3062 else
3063 {
3064 arch = bfd_arch_powerpc;
3065 bfd_default_set_arch_mach (&abfd, arch, 0);
3066 info.bfd_arch_info = bfd_get_arch_info (&abfd);
3067 mach = info.bfd_arch_info->mach;
3068 }
3069 tdep = xmalloc (sizeof (struct gdbarch_tdep));
3070 tdep->wordsize = wordsize;
3071
3072 /* For e500 executables, the apuinfo section is of help here. Such
3073 section contains the identifier and revision number of each
3074 Application-specific Processing Unit that is present on the
3075 chip. The content of the section is determined by the assembler
3076 which looks at each instruction and determines which unit (and
3077 which version of it) can execute it. In our case we just look for
3078 the existance of the section. */
3079
3080 if (info.abfd)
3081 {
3082 sect = bfd_get_section_by_name (info.abfd, ".PPC.EMB.apuinfo");
3083 if (sect)
3084 {
3085 arch = info.bfd_arch_info->arch;
3086 mach = bfd_mach_ppc_e500;
3087 bfd_default_set_arch_mach (&abfd, arch, mach);
3088 info.bfd_arch_info = bfd_get_arch_info (&abfd);
3089 }
3090 }
3091
3092 gdbarch = gdbarch_alloc (&info, tdep);
3093
3094 /* Initialize the number of real and pseudo registers in each variant. */
3095 init_variants ();
3096
3097 /* Choose variant. */
3098 v = find_variant_by_arch (arch, mach);
3099 if (!v)
3100 return NULL;
3101
3102 tdep->regs = v->regs;
3103
3104 tdep->ppc_gp0_regnum = 0;
3105 tdep->ppc_toc_regnum = 2;
3106 tdep->ppc_ps_regnum = 65;
3107 tdep->ppc_cr_regnum = 66;
3108 tdep->ppc_lr_regnum = 67;
3109 tdep->ppc_ctr_regnum = 68;
3110 tdep->ppc_xer_regnum = 69;
3111 if (v->mach == bfd_mach_ppc_601)
3112 tdep->ppc_mq_regnum = 124;
3113 else if (arch == bfd_arch_rs6000)
3114 tdep->ppc_mq_regnum = 70;
3115 else
3116 tdep->ppc_mq_regnum = -1;
3117 tdep->ppc_fp0_regnum = 32;
3118 tdep->ppc_fpscr_regnum = (arch == bfd_arch_rs6000) ? 71 : 70;
3119 tdep->ppc_sr0_regnum = 71;
3120 tdep->ppc_vr0_regnum = -1;
3121 tdep->ppc_vrsave_regnum = -1;
3122 tdep->ppc_ev0_upper_regnum = -1;
3123 tdep->ppc_ev0_regnum = -1;
3124 tdep->ppc_ev31_regnum = -1;
3125 tdep->ppc_acc_regnum = -1;
3126 tdep->ppc_spefscr_regnum = -1;
3127
3128 set_gdbarch_pc_regnum (gdbarch, 64);
3129 set_gdbarch_sp_regnum (gdbarch, 1);
3130 set_gdbarch_deprecated_fp_regnum (gdbarch, 1);
3131 set_gdbarch_register_sim_regno (gdbarch, rs6000_register_sim_regno);
3132 if (sysv_abi && wordsize == 8)
3133 set_gdbarch_return_value (gdbarch, ppc64_sysv_abi_return_value);
3134 else if (sysv_abi && wordsize == 4)
3135 set_gdbarch_return_value (gdbarch, ppc_sysv_abi_return_value);
3136 else
3137 {
3138 set_gdbarch_deprecated_extract_return_value (gdbarch, rs6000_extract_return_value);
3139 set_gdbarch_store_return_value (gdbarch, rs6000_store_return_value);
3140 }
3141
3142 /* Set lr_frame_offset. */
3143 if (wordsize == 8)
3144 tdep->lr_frame_offset = 16;
3145 else if (sysv_abi)
3146 tdep->lr_frame_offset = 4;
3147 else
3148 tdep->lr_frame_offset = 8;
3149
3150 if (v->arch == bfd_arch_rs6000)
3151 tdep->ppc_sr0_regnum = -1;
3152 else if (v->arch == bfd_arch_powerpc)
3153 switch (v->mach)
3154 {
3155 case bfd_mach_ppc:
3156 tdep->ppc_sr0_regnum = -1;
3157 tdep->ppc_vr0_regnum = 71;
3158 tdep->ppc_vrsave_regnum = 104;
3159 break;
3160 case bfd_mach_ppc_7400:
3161 tdep->ppc_vr0_regnum = 119;
3162 tdep->ppc_vrsave_regnum = 152;
3163 break;
3164 case bfd_mach_ppc_e500:
3165 tdep->ppc_toc_regnum = -1;
3166 tdep->ppc_ev0_upper_regnum = 32;
3167 tdep->ppc_ev0_regnum = 73;
3168 tdep->ppc_ev31_regnum = 104;
3169 tdep->ppc_acc_regnum = 71;
3170 tdep->ppc_spefscr_regnum = 72;
3171 tdep->ppc_fp0_regnum = -1;
3172 tdep->ppc_fpscr_regnum = -1;
3173 tdep->ppc_sr0_regnum = -1;
3174 set_gdbarch_pseudo_register_read (gdbarch, e500_pseudo_register_read);
3175 set_gdbarch_pseudo_register_write (gdbarch, e500_pseudo_register_write);
3176 set_gdbarch_register_reggroup_p (gdbarch, e500_register_reggroup_p);
3177 break;
3178
3179 case bfd_mach_ppc64:
3180 case bfd_mach_ppc_620:
3181 case bfd_mach_ppc_630:
3182 case bfd_mach_ppc_a35:
3183 case bfd_mach_ppc_rs64ii:
3184 case bfd_mach_ppc_rs64iii:
3185 /* These processor's register sets don't have segment registers. */
3186 tdep->ppc_sr0_regnum = -1;
3187 break;
3188 }
3189 else
3190 internal_error (__FILE__, __LINE__,
3191 "rs6000_gdbarch_init: "
3192 "received unexpected BFD 'arch' value");
3193
3194 /* Sanity check on registers. */
3195 gdb_assert (strcmp (tdep->regs[tdep->ppc_gp0_regnum].name, "r0") == 0);
3196
3197 /* Select instruction printer. */
3198 if (arch == bfd_arch_rs6000)
3199 set_gdbarch_print_insn (gdbarch, print_insn_rs6000);
3200 else
3201 set_gdbarch_print_insn (gdbarch, gdb_print_insn_powerpc);
3202
3203 set_gdbarch_write_pc (gdbarch, generic_target_write_pc);
3204
3205 set_gdbarch_num_regs (gdbarch, v->nregs);
3206 set_gdbarch_num_pseudo_regs (gdbarch, v->npregs);
3207 set_gdbarch_register_name (gdbarch, rs6000_register_name);
3208 set_gdbarch_register_type (gdbarch, rs6000_register_type);
3209
3210 set_gdbarch_ptr_bit (gdbarch, wordsize * TARGET_CHAR_BIT);
3211 set_gdbarch_short_bit (gdbarch, 2 * TARGET_CHAR_BIT);
3212 set_gdbarch_int_bit (gdbarch, 4 * TARGET_CHAR_BIT);
3213 set_gdbarch_long_bit (gdbarch, wordsize * TARGET_CHAR_BIT);
3214 set_gdbarch_long_long_bit (gdbarch, 8 * TARGET_CHAR_BIT);
3215 set_gdbarch_float_bit (gdbarch, 4 * TARGET_CHAR_BIT);
3216 set_gdbarch_double_bit (gdbarch, 8 * TARGET_CHAR_BIT);
3217 if (sysv_abi)
3218 set_gdbarch_long_double_bit (gdbarch, 16 * TARGET_CHAR_BIT);
3219 else
3220 set_gdbarch_long_double_bit (gdbarch, 8 * TARGET_CHAR_BIT);
3221 set_gdbarch_char_signed (gdbarch, 0);
3222
3223 set_gdbarch_frame_align (gdbarch, rs6000_frame_align);
3224 if (sysv_abi && wordsize == 8)
3225 /* PPC64 SYSV. */
3226 set_gdbarch_frame_red_zone_size (gdbarch, 288);
3227 else if (!sysv_abi && wordsize == 4)
3228 /* PowerOpen / AIX 32 bit. The saved area or red zone consists of
3229 19 4 byte GPRS + 18 8 byte FPRs giving a total of 220 bytes.
3230 Problem is, 220 isn't frame (16 byte) aligned. Round it up to
3231 224. */
3232 set_gdbarch_frame_red_zone_size (gdbarch, 224);
3233
3234 set_gdbarch_convert_register_p (gdbarch, rs6000_convert_register_p);
3235 set_gdbarch_register_to_value (gdbarch, rs6000_register_to_value);
3236 set_gdbarch_value_to_register (gdbarch, rs6000_value_to_register);
3237
3238 set_gdbarch_stab_reg_to_regnum (gdbarch, rs6000_stab_reg_to_regnum);
3239 set_gdbarch_dwarf2_reg_to_regnum (gdbarch, rs6000_dwarf2_reg_to_regnum);
3240 /* Note: kevinb/2002-04-12: I'm not convinced that rs6000_push_arguments()
3241 is correct for the SysV ABI when the wordsize is 8, but I'm also
3242 fairly certain that ppc_sysv_abi_push_arguments() will give even
3243 worse results since it only works for 32-bit code. So, for the moment,
3244 we're better off calling rs6000_push_arguments() since it works for
3245 64-bit code. At some point in the future, this matter needs to be
3246 revisited. */
3247 if (sysv_abi && wordsize == 4)
3248 set_gdbarch_push_dummy_call (gdbarch, ppc_sysv_abi_push_dummy_call);
3249 else if (sysv_abi && wordsize == 8)
3250 set_gdbarch_push_dummy_call (gdbarch, ppc64_sysv_abi_push_dummy_call);
3251 else
3252 set_gdbarch_push_dummy_call (gdbarch, rs6000_push_dummy_call);
3253
3254 set_gdbarch_deprecated_extract_struct_value_address (gdbarch, rs6000_extract_struct_value_address);
3255
3256 set_gdbarch_skip_prologue (gdbarch, rs6000_skip_prologue);
3257 set_gdbarch_inner_than (gdbarch, core_addr_lessthan);
3258 set_gdbarch_breakpoint_from_pc (gdbarch, rs6000_breakpoint_from_pc);
3259
3260 /* Handle the 64-bit SVR4 minimal-symbol convention of using "FN"
3261 for the descriptor and ".FN" for the entry-point -- a user
3262 specifying "break FN" will unexpectedly end up with a breakpoint
3263 on the descriptor and not the function. This architecture method
3264 transforms any breakpoints on descriptors into breakpoints on the
3265 corresponding entry point. */
3266 if (sysv_abi && wordsize == 8)
3267 set_gdbarch_adjust_breakpoint_address (gdbarch, ppc64_sysv_abi_adjust_breakpoint_address);
3268
3269 /* Not sure on this. FIXMEmgo */
3270 set_gdbarch_frame_args_skip (gdbarch, 8);
3271
3272 if (!sysv_abi)
3273 set_gdbarch_deprecated_use_struct_convention (gdbarch, rs6000_use_struct_convention);
3274
3275 if (!sysv_abi)
3276 {
3277 /* Handle RS/6000 function pointers (which are really function
3278 descriptors). */
3279 set_gdbarch_convert_from_func_ptr_addr (gdbarch,
3280 rs6000_convert_from_func_ptr_addr);
3281 }
3282
3283 /* Helpers for function argument information. */
3284 set_gdbarch_fetch_pointer_argument (gdbarch, rs6000_fetch_pointer_argument);
3285
3286 /* Hook in ABI-specific overrides, if they have been registered. */
3287 gdbarch_init_osabi (info, gdbarch);
3288
3289 switch (info.osabi)
3290 {
3291 case GDB_OSABI_NETBSD_AOUT:
3292 case GDB_OSABI_NETBSD_ELF:
3293 case GDB_OSABI_UNKNOWN:
3294 case GDB_OSABI_LINUX:
3295 set_gdbarch_unwind_pc (gdbarch, rs6000_unwind_pc);
3296 frame_unwind_append_sniffer (gdbarch, rs6000_frame_sniffer);
3297 set_gdbarch_unwind_dummy_id (gdbarch, rs6000_unwind_dummy_id);
3298 frame_base_append_sniffer (gdbarch, rs6000_frame_base_sniffer);
3299 break;
3300 default:
3301 set_gdbarch_believe_pcc_promotion (gdbarch, 1);
3302
3303 set_gdbarch_unwind_pc (gdbarch, rs6000_unwind_pc);
3304 frame_unwind_append_sniffer (gdbarch, rs6000_frame_sniffer);
3305 set_gdbarch_unwind_dummy_id (gdbarch, rs6000_unwind_dummy_id);
3306 frame_base_append_sniffer (gdbarch, rs6000_frame_base_sniffer);
3307 }
3308
3309 if (from_xcoff_exec)
3310 {
3311 /* NOTE: jimix/2003-06-09: This test should really check for
3312 GDB_OSABI_AIX when that is defined and becomes
3313 available. (Actually, once things are properly split apart,
3314 the test goes away.) */
3315 /* RS6000/AIX does not support PT_STEP. Has to be simulated. */
3316 set_gdbarch_software_single_step (gdbarch, rs6000_software_single_step);
3317 }
3318
3319 init_sim_regno_table (gdbarch);
3320
3321 return gdbarch;
3322 }
3323
3324 static void
3325 rs6000_dump_tdep (struct gdbarch *current_gdbarch, struct ui_file *file)
3326 {
3327 struct gdbarch_tdep *tdep = gdbarch_tdep (current_gdbarch);
3328
3329 if (tdep == NULL)
3330 return;
3331
3332 /* FIXME: Dump gdbarch_tdep. */
3333 }
3334
3335 static struct cmd_list_element *info_powerpc_cmdlist = NULL;
3336
3337 static void
3338 rs6000_info_powerpc_command (char *args, int from_tty)
3339 {
3340 help_list (info_powerpc_cmdlist, "info powerpc ", class_info, gdb_stdout);
3341 }
3342
3343 /* Initialization code. */
3344
3345 extern initialize_file_ftype _initialize_rs6000_tdep; /* -Wmissing-prototypes */
3346
3347 void
3348 _initialize_rs6000_tdep (void)
3349 {
3350 gdbarch_register (bfd_arch_rs6000, rs6000_gdbarch_init, rs6000_dump_tdep);
3351 gdbarch_register (bfd_arch_powerpc, rs6000_gdbarch_init, rs6000_dump_tdep);
3352
3353 /* Add root prefix command for "info powerpc" commands */
3354 add_prefix_cmd ("powerpc", class_info, rs6000_info_powerpc_command,
3355 "Various POWERPC info specific commands.",
3356 &info_powerpc_cmdlist, "info powerpc ", 0, &infolist);
3357 }