RS/6000 portability changes (for hosting cross-debuggers).
[binutils-gdb.git] / gdb / rs6000-tdep.c
1 /* Target-dependent code for GDB, the GNU debugger.
2 Copyright 1986, 1987, 1989, 1991, 1992 Free Software Foundation, Inc.
3
4 This file is part of GDB.
5
6 This program is free software; you can redistribute it and/or modify
7 it under the terms of the GNU General Public License as published by
8 the Free Software Foundation; either version 2 of the License, or
9 (at your option) any later version.
10
11 This program is distributed in the hope that it will be useful,
12 but WITHOUT ANY WARRANTY; without even the implied warranty of
13 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
14 GNU General Public License for more details.
15
16 You should have received a copy of the GNU General Public License
17 along with this program; if not, write to the Free Software
18 Foundation, Inc., 675 Mass Ave, Cambridge, MA 02139, USA. */
19
20 #include "defs.h"
21 #include "frame.h"
22 #include "inferior.h"
23 #include "symtab.h"
24 #include "target.h"
25
26 #include <sys/param.h>
27 #include <sys/dir.h>
28 #include <sys/user.h>
29 #include <signal.h>
30 #include <sys/ioctl.h>
31 #include <fcntl.h>
32
33 #include <sys/ptrace.h>
34 #include <sys/reg.h>
35
36 #include <a.out.h>
37 #include <sys/file.h>
38 #include <sys/stat.h>
39 #include <sys/core.h>
40 #include <sys/ldr.h>
41
42 extern int errno;
43
44 /* Nonzero if we just simulated a single step break. */
45 int one_stepped;
46
47
48 /* Breakpoint shadows for the single step instructions will be kept here. */
49
50 static struct sstep_breaks {
51 int address;
52 int data;
53 } stepBreaks[2];
54
55 /* Static function prototypes */
56
57 static void
58 add_text_to_loadinfo PARAMS ((CORE_ADDR textaddr, CORE_ADDR dataaddr));
59
60 static CORE_ADDR
61 find_toc_address PARAMS ((CORE_ADDR pc));
62
63 static CORE_ADDR
64 branch_dest PARAMS ((int opcode, int instr, CORE_ADDR pc, CORE_ADDR safety));
65
66 static void
67 frame_get_cache_fsr PARAMS ((struct frame_info *fi,
68 struct aix_framedata *fdatap));
69
70 /*
71 * Calculate the destination of a branch/jump. Return -1 if not a branch.
72 */
73 static CORE_ADDR
74 branch_dest (opcode, instr, pc, safety)
75 int opcode;
76 int instr;
77 CORE_ADDR pc;
78 CORE_ADDR safety;
79 {
80 register long offset;
81 CORE_ADDR dest;
82 int immediate;
83 int absolute;
84 int ext_op;
85
86 absolute = (int) ((instr >> 1) & 1);
87
88 switch (opcode) {
89 case 18 :
90 immediate = ((instr & ~3) << 6) >> 6; /* br unconditional */
91
92 case 16 :
93 if (opcode != 18) /* br conditional */
94 immediate = ((instr & ~3) << 16) >> 16;
95 if (absolute)
96 dest = immediate;
97 else
98 dest = pc + immediate;
99 break;
100
101 case 19 :
102 ext_op = (instr>>1) & 0x3ff;
103
104 if (ext_op == 16) /* br conditional register */
105 dest = read_register (LR_REGNUM) & ~3;
106
107 else if (ext_op == 528) /* br cond to count reg */
108 dest = read_register (CTR_REGNUM) & ~3;
109
110 else return -1;
111 break;
112
113 default: return -1;
114 }
115 return (dest < TEXT_SEGMENT_BASE) ? safety : dest;
116 }
117
118
119
120 /* AIX does not support PT_STEP. Simulate it. */
121
122 int
123 single_step (signal)
124 int signal;
125 {
126 #define INSNLEN(OPCODE) 4
127
128 static char breakp[] = BREAKPOINT;
129 int ii, insn, ret, loc;
130 int breaks[2], opcode;
131
132 if (!one_stepped) {
133 loc = read_pc ();
134
135 ret = read_memory (loc, &insn, sizeof (int));
136 if (ret)
137 printf ("Error in single_step()!!\n");
138
139 breaks[0] = loc + INSNLEN(insn);
140 opcode = insn >> 26;
141 breaks[1] = branch_dest (opcode, insn, loc, breaks[0]);
142
143 /* Don't put two breakpoints on the same address. */
144 if (breaks[1] == breaks[0])
145 breaks[1] = -1;
146
147 stepBreaks[1].address = -1;
148
149 for (ii=0; ii < 2; ++ii) {
150
151 /* ignore invalid breakpoint. */
152 if ( breaks[ii] == -1)
153 continue;
154
155 read_memory (breaks[ii], &(stepBreaks[ii].data), sizeof(int));
156
157 ret = write_memory (breaks[ii], breakp, sizeof(int));
158 stepBreaks[ii].address = breaks[ii];
159 }
160
161 one_stepped = 1;
162 ptrace (PT_CONTINUE, inferior_pid, (PTRACE_ARG3_TYPE) 1, signal, 0);
163 }
164 else {
165
166 /* remove step breakpoints. */
167 for (ii=0; ii < 2; ++ii)
168 if (stepBreaks[ii].address != -1)
169 write_memory
170 (stepBreaks[ii].address, &(stepBreaks[ii].data), sizeof(int));
171
172 one_stepped = 0;
173 }
174 errno = 0;
175 return 1;
176 }
177
178
179 /* return pc value after skipping a function prologue. */
180
181 skip_prologue (pc)
182 CORE_ADDR pc;
183 {
184 unsigned int tmp;
185 unsigned int op; /* FIXME, assumes instruction size matches host int!!! */
186
187 if (target_read_memory (pc, (char *)&op, sizeof (op)))
188 return pc; /* Can't access it -- assume no prologue. */
189 SWAP_TARGET_AND_HOST (&op, sizeof (op));
190
191 /* Assume that subsequent fetches can fail with low probability. */
192
193 if (op == 0x7c0802a6) { /* mflr r0 */
194 pc += 4;
195 op = read_memory_integer (pc, 4);
196 }
197
198 if ((op & 0xfc00003e) == 0x7c000026) { /* mfcr Rx */
199 pc += 4;
200 op = read_memory_integer (pc, 4);
201 }
202
203 if ((op & 0xfc000000) == 0x48000000) { /* bl foo, to save fprs??? */
204 pc += 4;
205 op = read_memory_integer (pc, 4);
206
207 /* At this point, make sure this is not a trampoline function
208 (a function that simply calls another functions, and nothing else).
209 If the next is not a nop, this branch was part of the function
210 prologue. */
211
212 if (op == 0x4def7b82 || /* crorc 15, 15, 15 */
213 op == 0x0)
214 return pc - 4; /* don't skip over this branch */
215 }
216
217 if ((op & 0xfc1f0000) == 0xbc010000) { /* stm Rx, NUM(r1) */
218 pc += 4;
219 op = read_memory_integer (pc, 4);
220 }
221
222 while (((tmp = op >> 16) == 0x9001) || /* st r0, NUM(r1) */
223 (tmp == 0x9421) || /* stu r1, NUM(r1) */
224 (op == 0x93e1fffc)) /* st r31,-4(r1) */
225 {
226 pc += 4;
227 op = read_memory_integer (pc, 4);
228 }
229
230 while ((tmp = (op >> 22)) == 0x20f) { /* l r31, ... or */
231 pc += 4; /* l r30, ... */
232 op = read_memory_integer (pc, 4);
233 }
234
235 /* store parameters into stack */
236 while(
237 (op & 0xfc1f0000) == 0xd8010000 || /* stfd Rx,NUM(r1) */
238 (op & 0xfc1f0000) == 0x90010000 || /* st r?, NUM(r1) */
239 (op & 0xfc000000) == 0xfc000000 || /* frsp, fp?, .. */
240 (op & 0xd0000000) == 0xd0000000) /* stfs, fp?, .. */
241 {
242 pc += 4; /* store fpr double */
243 op = read_memory_integer (pc, 4);
244 }
245
246 if (op == 0x603f0000) { /* oril r31, r1, 0x0 */
247 pc += 4; /* this happens if r31 is used as */
248 op = read_memory_integer (pc, 4); /* frame ptr. (gcc does that) */
249
250 tmp = 0;
251 while ((op >> 16) == (0x907f + tmp)) { /* st r3, NUM(r31) */
252 pc += 4; /* st r4, NUM(r31), ... */
253 op = read_memory_integer (pc, 4);
254 tmp += 0x20;
255 }
256 }
257 #if 0
258 /* I have problems with skipping over __main() that I need to address
259 * sometime. Previously, I used to use misc_function_vector which
260 * didn't work as well as I wanted to be. -MGO */
261
262 /* If the first thing after skipping a prolog is a branch to a function,
263 this might be a call to an initializer in main(), introduced by gcc2.
264 We'd like to skip over it as well. Fortunately, xlc does some extra
265 work before calling a function right after a prologue, thus we can
266 single out such gcc2 behaviour. */
267
268
269 if ((op & 0xfc000001) == 0x48000001) { /* bl foo, an initializer function? */
270 op = read_memory_integer (pc+4, 4);
271
272 if (op == 0x4def7b82) { /* cror 0xf, 0xf, 0xf (nop) */
273
274 /* check and see if we are in main. If so, skip over this initializer
275 function as well. */
276
277 tmp = find_pc_misc_function (pc);
278 if (tmp >= 0 && !strcmp (misc_function_vector [tmp].name, "main"))
279 return pc + 8;
280 }
281 }
282 #endif /* 0 */
283
284 return pc;
285 }
286
287
288 /*************************************************************************
289 Support for creating pushind a dummy frame into the stack, and popping
290 frames, etc.
291 *************************************************************************/
292
293 /* The total size of dummy frame is 436, which is;
294
295 32 gpr's - 128 bytes
296 32 fpr's - 256 "
297 7 the rest - 28 "
298 and 24 extra bytes for the callee's link area. The last 24 bytes
299 for the link area might not be necessary, since it will be taken
300 care of by push_arguments(). */
301
302 #define DUMMY_FRAME_SIZE 436
303
304 #define DUMMY_FRAME_ADDR_SIZE 10
305
306 /* Make sure you initialize these in somewhere, in case gdb gives up what it
307 was debugging and starts debugging something else. FIXMEibm */
308
309 static int dummy_frame_count = 0;
310 static int dummy_frame_size = 0;
311 static CORE_ADDR *dummy_frame_addr = 0;
312
313 extern int stop_stack_dummy;
314
315 /* push a dummy frame into stack, save all register. Currently we are saving
316 only gpr's and fpr's, which is not good enough! FIXMEmgo */
317
318 void
319 push_dummy_frame ()
320 {
321 int sp, pc; /* stack pointer and link register */
322 int ii;
323
324 fetch_inferior_registers (-1);
325
326 if (dummy_frame_count >= dummy_frame_size) {
327 dummy_frame_size += DUMMY_FRAME_ADDR_SIZE;
328 if (dummy_frame_addr)
329 dummy_frame_addr = (CORE_ADDR*) xrealloc
330 (dummy_frame_addr, sizeof(CORE_ADDR) * (dummy_frame_size));
331 else
332 dummy_frame_addr = (CORE_ADDR*)
333 xmalloc (sizeof(CORE_ADDR) * (dummy_frame_size));
334 }
335
336 sp = read_register(SP_REGNUM);
337 pc = read_register(PC_REGNUM);
338
339 dummy_frame_addr [dummy_frame_count++] = sp;
340
341 /* Be careful! If the stack pointer is not decremented first, then kernel
342 thinks he is free to use the space underneath it. And kernel actually
343 uses that area for IPC purposes when executing ptrace(2) calls. So
344 before writing register values into the new frame, decrement and update
345 %sp first in order to secure your frame. */
346
347 write_register (SP_REGNUM, sp-DUMMY_FRAME_SIZE);
348
349 /* gdb relies on the state of current_frame. We'd better update it,
350 otherwise things like do_registers_info() wouldn't work properly! */
351
352 flush_cached_frames ();
353 set_current_frame (create_new_frame (sp-DUMMY_FRAME_SIZE, pc));
354
355 /* save program counter in link register's space. */
356 write_memory (sp+8, &pc, 4);
357
358 /* save all floating point and general purpose registers here. */
359
360 /* fpr's, f0..f31 */
361 for (ii = 0; ii < 32; ++ii)
362 write_memory (sp-8-(ii*8), &registers[REGISTER_BYTE (31-ii+FP0_REGNUM)], 8);
363
364 /* gpr's r0..r31 */
365 for (ii=1; ii <=32; ++ii)
366 write_memory (sp-256-(ii*4), &registers[REGISTER_BYTE (32-ii)], 4);
367
368 /* so far, 32*2 + 32 words = 384 bytes have been written.
369 7 extra registers in our register set: pc, ps, cnd, lr, cnt, xer, mq */
370
371 for (ii=1; ii <= (LAST_SP_REGNUM-FIRST_SP_REGNUM+1); ++ii) {
372 write_memory (sp-384-(ii*4),
373 &registers[REGISTER_BYTE (FPLAST_REGNUM + ii)], 4);
374 }
375
376 /* Save sp or so called back chain right here. */
377 write_memory (sp-DUMMY_FRAME_SIZE, &sp, 4);
378 sp -= DUMMY_FRAME_SIZE;
379
380 /* And finally, this is the back chain. */
381 write_memory (sp+8, &pc, 4);
382 }
383
384
385 /* Pop a dummy frame.
386
387 In rs6000 when we push a dummy frame, we save all of the registers. This
388 is usually done before user calls a function explicitly.
389
390 After a dummy frame is pushed, some instructions are copied into stack,
391 and stack pointer is decremented even more. Since we don't have a frame
392 pointer to get back to the parent frame of the dummy, we start having
393 trouble poping it. Therefore, we keep a dummy frame stack, keeping
394 addresses of dummy frames as such. When poping happens and when we
395 detect that was a dummy frame, we pop it back to its parent by using
396 dummy frame stack (`dummy_frame_addr' array).
397
398 FIXME: This whole concept is broken. You should be able to detect
399 a dummy stack frame *on the user's stack itself*. When you do,
400 then you know the format of that stack frame -- including its
401 saved SP register! There should *not* be a separate stack in the
402 GDB process that keeps track of these dummy frames! -- gnu@cygnus.com Aug92 */
403 */
404
405 pop_dummy_frame ()
406 {
407 CORE_ADDR sp, pc;
408 int ii;
409 sp = dummy_frame_addr [--dummy_frame_count];
410
411 /* restore all fpr's. */
412 for (ii = 1; ii <= 32; ++ii)
413 read_memory (sp-(ii*8), &registers[REGISTER_BYTE (32-ii+FP0_REGNUM)], 8);
414
415 /* restore all gpr's */
416 for (ii=1; ii <= 32; ++ii) {
417 read_memory (sp-256-(ii*4), &registers[REGISTER_BYTE (32-ii)], 4);
418 }
419
420 /* restore the rest of the registers. */
421 for (ii=1; ii <=(LAST_SP_REGNUM-FIRST_SP_REGNUM+1); ++ii)
422 read_memory (sp-384-(ii*4),
423 &registers[REGISTER_BYTE (FPLAST_REGNUM + ii)], 4);
424
425 read_memory (sp-(DUMMY_FRAME_SIZE-8),
426 &registers [REGISTER_BYTE(PC_REGNUM)], 4);
427
428 /* when a dummy frame was being pushed, we had to decrement %sp first, in
429 order to secure astack space. Thus, saved %sp (or %r1) value, is not the
430 one we should restore. Change it with the one we need. */
431
432 *(int*)&registers [REGISTER_BYTE(FP_REGNUM)] = sp;
433
434 /* Now we can restore all registers. */
435
436 store_inferior_registers (-1);
437 pc = read_pc ();
438 flush_cached_frames ();
439 set_current_frame (create_new_frame (sp, pc));
440 }
441
442
443 /* pop the innermost frame, go back to the caller. */
444
445 void
446 pop_frame ()
447 {
448 int pc, lr, sp, prev_sp; /* %pc, %lr, %sp */
449 struct aix_framedata fdata;
450 FRAME fr = get_current_frame ();
451 int addr, ii;
452
453 pc = read_pc ();
454 sp = FRAME_FP (fr);
455
456 if (stop_stack_dummy && dummy_frame_count) {
457 pop_dummy_frame ();
458 return;
459 }
460
461 /* figure out previous %pc value. If the function is frameless, it is
462 still in the link register, otherwise walk the frames and retrieve the
463 saved %pc value in the previous frame. */
464
465 addr = get_pc_function_start (fr->pc) + FUNCTION_START_OFFSET;
466 function_frame_info (addr, &fdata);
467
468 read_memory (sp, &prev_sp, 4);
469 if (fdata.frameless)
470 lr = read_register (LR_REGNUM);
471 else
472 read_memory (prev_sp+8, &lr, 4);
473
474 /* reset %pc value. */
475 write_register (PC_REGNUM, lr);
476
477 /* reset register values if any was saved earlier. */
478 addr = prev_sp - fdata.offset;
479
480 if (fdata.saved_gpr != -1)
481 for (ii=fdata.saved_gpr; ii <= 31; ++ii) {
482 read_memory (addr, &registers [REGISTER_BYTE (ii)], 4);
483 addr += sizeof (int);
484 }
485
486 if (fdata.saved_fpr != -1)
487 for (ii=fdata.saved_fpr; ii <= 31; ++ii) {
488 read_memory (addr, &registers [REGISTER_BYTE (ii+FP0_REGNUM)], 8);
489 addr += 8;
490 }
491
492 write_register (SP_REGNUM, prev_sp);
493 store_inferior_registers (-1);
494 flush_cached_frames ();
495 set_current_frame (create_new_frame (prev_sp, lr));
496 }
497
498
499 /* fixup the call sequence of a dummy function, with the real function address.
500 its argumets will be passed by gdb. */
501
502 void
503 fix_call_dummy(dummyname, pc, fun, nargs, type)
504 char *dummyname;
505 CORE_ADDR pc;
506 CORE_ADDR fun;
507 int nargs; /* not used */
508 int type; /* not used */
509 {
510 #define TOC_ADDR_OFFSET 20
511 #define TARGET_ADDR_OFFSET 28
512
513 int ii;
514 CORE_ADDR target_addr;
515 CORE_ADDR tocvalue;
516
517 target_addr = fun;
518 tocvalue = find_toc_address (target_addr);
519
520 ii = *(int*)((char*)dummyname + TOC_ADDR_OFFSET);
521 ii = (ii & 0xffff0000) | (tocvalue >> 16);
522 *(int*)((char*)dummyname + TOC_ADDR_OFFSET) = ii;
523
524 ii = *(int*)((char*)dummyname + TOC_ADDR_OFFSET+4);
525 ii = (ii & 0xffff0000) | (tocvalue & 0x0000ffff);
526 *(int*)((char*)dummyname + TOC_ADDR_OFFSET+4) = ii;
527
528 ii = *(int*)((char*)dummyname + TARGET_ADDR_OFFSET);
529 ii = (ii & 0xffff0000) | (target_addr >> 16);
530 *(int*)((char*)dummyname + TARGET_ADDR_OFFSET) = ii;
531
532 ii = *(int*)((char*)dummyname + TARGET_ADDR_OFFSET+4);
533 ii = (ii & 0xffff0000) | (target_addr & 0x0000ffff);
534 *(int*)((char*)dummyname + TARGET_ADDR_OFFSET+4) = ii;
535 }
536
537
538 /* return information about a function frame.
539 in struct aix_frameinfo fdata:
540 - frameless is TRUE, if function does not save %pc value in its frame.
541 - offset is the number of bytes used in the frame to save registers.
542 - saved_gpr is the number of the first saved gpr.
543 - saved_fpr is the number of the first saved fpr.
544 - alloca_reg is the number of the register used for alloca() handling.
545 Otherwise -1.
546 */
547 void
548 function_frame_info (pc, fdata)
549 int pc;
550 struct aix_framedata *fdata;
551 {
552 unsigned int tmp;
553 register unsigned int op;
554
555 fdata->offset = 0;
556 fdata->saved_gpr = fdata->saved_fpr = fdata->alloca_reg = -1;
557
558 op = read_memory_integer (pc, 4);
559 if (op == 0x7c0802a6) { /* mflr r0 */
560 pc += 4;
561 op = read_memory_integer (pc, 4);
562 fdata->frameless = 0;
563 }
564 else /* else, this is a frameless invocation */
565 fdata->frameless = 1;
566
567
568 if ((op & 0xfc00003e) == 0x7c000026) { /* mfcr Rx */
569 pc += 4;
570 op = read_memory_integer (pc, 4);
571 }
572
573 if ((op & 0xfc000000) == 0x48000000) { /* bl foo, to save fprs??? */
574 pc += 4;
575 op = read_memory_integer (pc, 4);
576 /* At this point, make sure this is not a trampoline function
577 (a function that simply calls another functions, and nothing else).
578 If the next is not a nop, this branch was part of the function
579 prologue. */
580
581 if (op == 0x4def7b82 || /* crorc 15, 15, 15 */
582 op == 0x0)
583 return; /* prologue is over */
584 }
585
586 if ((op & 0xfc1f0000) == 0xd8010000) { /* stfd Rx,NUM(r1) */
587 pc += 4; /* store floating register double */
588 op = read_memory_integer (pc, 4);
589 }
590
591 if ((op & 0xfc1f0000) == 0xbc010000) { /* stm Rx, NUM(r1) */
592 int tmp2;
593 fdata->saved_gpr = (op >> 21) & 0x1f;
594 tmp2 = op & 0xffff;
595 if (tmp2 > 0x7fff)
596 tmp2 = 0xffff0000 | tmp2;
597
598 if (tmp2 < 0) {
599 tmp2 = tmp2 * -1;
600 fdata->saved_fpr = (tmp2 - ((32 - fdata->saved_gpr) * 4)) / 8;
601 if ( fdata->saved_fpr > 0)
602 fdata->saved_fpr = 32 - fdata->saved_fpr;
603 else
604 fdata->saved_fpr = -1;
605 }
606 fdata->offset = tmp2;
607 pc += 4;
608 op = read_memory_integer (pc, 4);
609 }
610
611 while (((tmp = op >> 16) == 0x9001) || /* st r0, NUM(r1) */
612 (tmp == 0x9421) || /* stu r1, NUM(r1) */
613 (op == 0x93e1fffc)) /* st r31,-4(r1) */
614 {
615 /* gcc takes a short cut and uses this instruction to save r31 only. */
616
617 if (op == 0x93e1fffc) {
618 if (fdata->offset)
619 /* fatal ("Unrecognized prolog."); */
620 printf ("Unrecognized prolog!\n");
621
622 fdata->saved_gpr = 31;
623 fdata->offset = 4;
624 }
625 pc += 4;
626 op = read_memory_integer (pc, 4);
627 }
628
629 while ((tmp = (op >> 22)) == 0x20f) { /* l r31, ... or */
630 pc += 4; /* l r30, ... */
631 op = read_memory_integer (pc, 4);
632 }
633
634 /* store parameters into stack */
635 while(
636 (op & 0xfc1f0000) == 0xd8010000 || /* stfd Rx,NUM(r1) */
637 (op & 0xfc1f0000) == 0x90010000 || /* st r?, NUM(r1) */
638 (op & 0xfc000000) == 0xfc000000 || /* frsp, fp?, .. */
639 (op & 0xd0000000) == 0xd0000000) /* stfs, fp?, .. */
640 {
641 pc += 4; /* store fpr double */
642 op = read_memory_integer (pc, 4);
643 }
644
645 if (op == 0x603f0000) /* oril r31, r1, 0x0 */
646 fdata->alloca_reg = 31;
647 }
648
649
650 /* Pass the arguments in either registers, or in the stack. In RS6000, the first
651 eight words of the argument list (that might be less than eight parameters if
652 some parameters occupy more than one word) are passed in r3..r11 registers.
653 float and double parameters are passed in fpr's, in addition to that. Rest of
654 the parameters if any are passed in user stack. There might be cases in which
655 half of the parameter is copied into registers, the other half is pushed into
656 stack.
657
658 If the function is returning a structure, then the return address is passed
659 in r3, then the first 7 words of the parametes can be passed in registers,
660 starting from r4. */
661
662 CORE_ADDR
663 push_arguments (nargs, args, sp, struct_return, struct_addr)
664 int nargs;
665 value *args;
666 CORE_ADDR sp;
667 int struct_return;
668 CORE_ADDR struct_addr;
669 {
670 int ii, len;
671 int argno; /* current argument number */
672 int argbytes; /* current argument byte */
673 char tmp_buffer [50];
674 value arg;
675 int f_argno = 0; /* current floating point argno */
676
677 CORE_ADDR saved_sp, pc;
678
679 if ( dummy_frame_count <= 0)
680 printf ("FATAL ERROR -push_arguments()! frame not found!!\n");
681
682 /* The first eight words of ther arguments are passed in registers. Copy
683 them appropriately.
684
685 If the function is returning a `struct', then the first word (which
686 will be passed in r3) is used for struct return address. In that
687 case we should advance one word and start from r4 register to copy
688 parameters. */
689
690 ii = struct_return ? 1 : 0;
691
692 for (argno=0, argbytes=0; argno < nargs && ii<8; ++ii) {
693
694 arg = value_arg_coerce (args[argno]);
695 len = TYPE_LENGTH (VALUE_TYPE (arg));
696
697 if (TYPE_CODE (VALUE_TYPE (arg)) == TYPE_CODE_FLT) {
698
699 /* floating point arguments are passed in fpr's, as well as gpr's.
700 There are 13 fpr's reserved for passing parameters. At this point
701 there is no way we would run out of them. */
702
703 if (len > 8)
704 printf (
705 "Fatal Error: a floating point parameter #%d with a size > 8 is found!\n", argno);
706
707 bcopy (VALUE_CONTENTS (arg),
708 &registers[REGISTER_BYTE(FP0_REGNUM + 1 + f_argno)], len);
709 ++f_argno;
710 }
711
712 if (len > 4) {
713
714 /* Argument takes more than one register. */
715 while (argbytes < len) {
716
717 *(int*)&registers[REGISTER_BYTE(ii+3)] = 0;
718 bcopy ( ((char*)VALUE_CONTENTS (arg))+argbytes,
719 &registers[REGISTER_BYTE(ii+3)],
720 (len - argbytes) > 4 ? 4 : len - argbytes);
721 ++ii, argbytes += 4;
722
723 if (ii >= 8)
724 goto ran_out_of_registers_for_arguments;
725 }
726 argbytes = 0;
727 --ii;
728 }
729 else { /* Argument can fit in one register. No problem. */
730 *(int*)&registers[REGISTER_BYTE(ii+3)] = 0;
731 bcopy (VALUE_CONTENTS (arg), &registers[REGISTER_BYTE(ii+3)], len);
732 }
733 ++argno;
734 }
735
736 ran_out_of_registers_for_arguments:
737
738 /* location for 8 parameters are always reserved. */
739 sp -= 4 * 8;
740
741 /* another six words for back chain, TOC register, link register, etc. */
742 sp -= 24;
743
744 /* if there are more arguments, allocate space for them in
745 the stack, then push them starting from the ninth one. */
746
747 if ((argno < nargs) || argbytes) {
748 int space = 0, jj;
749 value val;
750
751 if (argbytes) {
752 space += ((len - argbytes + 3) & -4);
753 jj = argno + 1;
754 }
755 else
756 jj = argno;
757
758 for (; jj < nargs; ++jj) {
759 val = value_arg_coerce (args[jj]);
760 space += ((TYPE_LENGTH (VALUE_TYPE (val))) + 3) & -4;
761 }
762
763 /* add location required for the rest of the parameters */
764 space = (space + 7) & -8;
765 sp -= space;
766
767 /* This is another instance we need to be concerned about securing our
768 stack space. If we write anything underneath %sp (r1), we might conflict
769 with the kernel who thinks he is free to use this area. So, update %sp
770 first before doing anything else. */
771
772 write_register (SP_REGNUM, sp);
773
774 /* if the last argument copied into the registers didn't fit there
775 completely, push the rest of it into stack. */
776
777 if (argbytes) {
778 write_memory (
779 sp+24+(ii*4), ((char*)VALUE_CONTENTS (arg))+argbytes, len - argbytes);
780 ++argno;
781 ii += ((len - argbytes + 3) & -4) / 4;
782 }
783
784 /* push the rest of the arguments into stack. */
785 for (; argno < nargs; ++argno) {
786
787 arg = value_arg_coerce (args[argno]);
788 len = TYPE_LENGTH (VALUE_TYPE (arg));
789
790
791 /* float types should be passed in fpr's, as well as in the stack. */
792 if (TYPE_CODE (VALUE_TYPE (arg)) == TYPE_CODE_FLT && f_argno < 13) {
793
794 if (len > 8)
795 printf (
796 "Fatal Error: a floating point parameter #%d with a size > 8 is found!\n", argno);
797
798 bcopy (VALUE_CONTENTS (arg),
799 &registers[REGISTER_BYTE(FP0_REGNUM + 1 + f_argno)], len);
800 ++f_argno;
801 }
802
803 write_memory (sp+24+(ii*4), VALUE_CONTENTS (arg), len);
804 ii += ((len + 3) & -4) / 4;
805 }
806 }
807 else
808 /* Secure stack areas first, before doing anything else. */
809 write_register (SP_REGNUM, sp);
810
811 saved_sp = dummy_frame_addr [dummy_frame_count - 1];
812 read_memory (saved_sp, tmp_buffer, 24);
813 write_memory (sp, tmp_buffer, 24);
814
815 write_memory (sp, &saved_sp, 4); /* set back chain properly */
816
817 store_inferior_registers (-1);
818 return sp;
819 }
820
821 /* a given return value in `regbuf' with a type `valtype', extract and copy its
822 value into `valbuf' */
823
824 void
825 extract_return_value (valtype, regbuf, valbuf)
826 struct type *valtype;
827 char regbuf[REGISTER_BYTES];
828 char *valbuf;
829 {
830
831 if (TYPE_CODE (valtype) == TYPE_CODE_FLT) {
832
833 double dd; float ff;
834 /* floats and doubles are returned in fpr1. fpr's have a size of 8 bytes.
835 We need to truncate the return value into float size (4 byte) if
836 necessary. */
837
838 if (TYPE_LENGTH (valtype) > 4) /* this is a double */
839 bcopy (&regbuf[REGISTER_BYTE (FP0_REGNUM + 1)], valbuf,
840 TYPE_LENGTH (valtype));
841 else { /* float */
842 bcopy (&regbuf[REGISTER_BYTE (FP0_REGNUM + 1)], &dd, 8);
843 ff = (float)dd;
844 bcopy (&ff, valbuf, sizeof(float));
845 }
846 }
847 else
848 /* return value is copied starting from r3. */
849 bcopy (&regbuf[REGISTER_BYTE (3)], valbuf, TYPE_LENGTH (valtype));
850 }
851
852
853 /* keep structure return address in this variable.
854 FIXME: This is a horrid kludge which should not be allowed to continue
855 living. This only allows a single nested call to a structure-returning
856 function. Come on, guys! -- gnu@cygnus.com, Aug 92 */
857
858 CORE_ADDR rs6000_struct_return_address;
859
860
861 /* Throw away this debugging code. FIXMEmgo. */
862 void
863 print_frame(fram)
864 int fram;
865 {
866 int ii, val;
867 for (ii=0; ii<40; ++ii) {
868 if ((ii % 4) == 0)
869 printf ("\n");
870 val = read_memory_integer (fram + ii * 4, 4);
871 printf ("0x%08x\t", val);
872 }
873 printf ("\n");
874 }
875
876
877
878 /* Indirect function calls use a piece of trampoline code to do context
879 switching, i.e. to set the new TOC table. Skip such code if we are on
880 its first instruction (as when we have single-stepped to here).
881 Result is desired PC to step until, or NULL if we are not in
882 trampoline code. */
883
884 CORE_ADDR
885 skip_trampoline_code (pc)
886 CORE_ADDR pc;
887 {
888 register unsigned int ii, op;
889
890 static unsigned trampoline_code[] = {
891 0x800b0000, /* l r0,0x0(r11) */
892 0x90410014, /* st r2,0x14(r1) */
893 0x7c0903a6, /* mtctr r0 */
894 0x804b0004, /* l r2,0x4(r11) */
895 0x816b0008, /* l r11,0x8(r11) */
896 0x4e800420, /* bctr */
897 0x4e800020, /* br */
898 0
899 };
900
901 for (ii=0; trampoline_code[ii]; ++ii) {
902 op = read_memory_integer (pc + (ii*4), 4);
903 if (op != trampoline_code [ii])
904 return NULL;
905 }
906 ii = read_register (11); /* r11 holds destination addr */
907 pc = read_memory_integer (ii, 4); /* (r11) value */
908 return pc;
909 }
910
911
912 /* Determines whether the function FI has a frame on the stack or not.
913 Called from the FRAMELESS_FUNCTION_INVOCATION macro in tm.h. */
914
915 int
916 frameless_function_invocation (fi)
917 struct frame_info *fi;
918 {
919 CORE_ADDR func_start;
920 struct aix_framedata fdata;
921
922 func_start = get_pc_function_start (fi->pc) + FUNCTION_START_OFFSET;
923
924 /* If we failed to find the start of the function, it is a mistake
925 to inspect the instructions. */
926
927 if (!func_start)
928 return 0;
929
930 function_frame_info (func_start, &fdata);
931 return fdata.frameless;
932 }
933
934
935 /* If saved registers of frame FI are not known yet, read and cache them.
936 &FDATAP contains aix_framedata; TDATAP can be NULL,
937 in which case the framedata are read. */
938
939 static void
940 frame_get_cache_fsr (fi, fdatap)
941 struct frame_info *fi;
942 struct aix_framedata *fdatap;
943 {
944 int ii;
945 CORE_ADDR frame_addr;
946 struct aix_framedata work_fdata;
947
948 if (fi->cache_fsr)
949 return;
950
951 if (fdatap == NULL) {
952 fdatap = &work_fdata;
953 function_frame_info (get_pc_function_start (fi->pc), fdatap);
954 }
955
956 fi->cache_fsr = (struct frame_saved_regs *)
957 obstack_alloc (&frame_cache_obstack, sizeof (struct frame_saved_regs));
958 bzero (fi->cache_fsr, sizeof (struct frame_saved_regs));
959
960 if (fi->prev && fi->prev->frame)
961 frame_addr = fi->prev->frame;
962 else
963 frame_addr = read_memory_integer (fi->frame, 4);
964
965 /* if != -1, fdatap->saved_fpr is the smallest number of saved_fpr.
966 All fpr's from saved_fpr to fp31 are saved right underneath caller
967 stack pointer, starting from fp31 first. */
968
969 if (fdatap->saved_fpr >= 0) {
970 for (ii=31; ii >= fdatap->saved_fpr; --ii)
971 fi->cache_fsr->regs [FP0_REGNUM + ii] = frame_addr - ((32 - ii) * 8);
972 frame_addr -= (32 - fdatap->saved_fpr) * 8;
973 }
974
975 /* if != -1, fdatap->saved_gpr is the smallest number of saved_gpr.
976 All gpr's from saved_gpr to gpr31 are saved right under saved fprs,
977 starting from r31 first. */
978
979 if (fdatap->saved_gpr >= 0)
980 for (ii=31; ii >= fdatap->saved_gpr; --ii)
981 fi->cache_fsr->regs [ii] = frame_addr - ((32 - ii) * 4);
982 }
983
984 /* Return the address of a frame. This is the inital %sp value when the frame
985 was first allocated. For functions calling alloca(), it might be saved in
986 an alloca register. */
987
988 CORE_ADDR
989 frame_initial_stack_address (fi)
990 struct frame_info *fi;
991 {
992 CORE_ADDR tmpaddr;
993 struct aix_framedata fdata;
994 struct frame_info *callee_fi;
995
996 /* if the initial stack pointer (frame address) of this frame is known,
997 just return it. */
998
999 if (fi->initial_sp)
1000 return fi->initial_sp;
1001
1002 /* find out if this function is using an alloca register.. */
1003
1004 function_frame_info (get_pc_function_start (fi->pc), &fdata);
1005
1006 /* if saved registers of this frame are not known yet, read and cache them. */
1007
1008 if (!fi->cache_fsr)
1009 frame_get_cache_fsr (fi, &fdata);
1010
1011 /* If no alloca register used, then fi->frame is the value of the %sp for
1012 this frame, and it is good enough. */
1013
1014 if (fdata.alloca_reg < 0) {
1015 fi->initial_sp = fi->frame;
1016 return fi->initial_sp;
1017 }
1018
1019 /* This function has an alloca register. If this is the top-most frame
1020 (with the lowest address), the value in alloca register is good. */
1021
1022 if (!fi->next)
1023 return fi->initial_sp = read_register (fdata.alloca_reg);
1024
1025 /* Otherwise, this is a caller frame. Callee has usually already saved
1026 registers, but there are exceptions (such as when the callee
1027 has no parameters). Find the address in which caller's alloca
1028 register is saved. */
1029
1030 for (callee_fi = fi->next; callee_fi; callee_fi = callee_fi->next) {
1031
1032 if (!callee_fi->cache_fsr)
1033 frame_get_cache_fsr (fi, NULL);
1034
1035 /* this is the address in which alloca register is saved. */
1036
1037 tmpaddr = callee_fi->cache_fsr->regs [fdata.alloca_reg];
1038 if (tmpaddr) {
1039 fi->initial_sp = read_memory_integer (tmpaddr, 4);
1040 return fi->initial_sp;
1041 }
1042
1043 /* Go look into deeper levels of the frame chain to see if any one of
1044 the callees has saved alloca register. */
1045 }
1046
1047 /* If alloca register was not saved, by the callee (or any of its callees)
1048 then the value in the register is still good. */
1049
1050 return fi->initial_sp = read_register (fdata.alloca_reg);
1051 }
1052
1053 /* xcoff_relocate_symtab - hook for symbol table relocation.
1054 also reads shared libraries.. */
1055
1056 xcoff_relocate_symtab (pid)
1057 unsigned int pid;
1058 {
1059 #define MAX_LOAD_SEGS 64 /* maximum number of load segments */
1060
1061 struct ld_info *ldi;
1062 int temp;
1063
1064 ldi = (void *) alloca(MAX_LOAD_SEGS * sizeof (*ldi));
1065
1066 /* According to my humble theory, AIX has some timing problems and
1067 when the user stack grows, kernel doesn't update stack info in time
1068 and ptrace calls step on user stack. That is why we sleep here a little,
1069 and give kernel to update its internals. */
1070
1071 usleep (36000);
1072
1073 errno = 0;
1074 ptrace(PT_LDINFO, pid, (PTRACE_ARG3_TYPE) ldi,
1075 MAX_LOAD_SEGS * sizeof(*ldi), ldi);
1076 if (errno) {
1077 perror_with_name ("ptrace ldinfo");
1078 return 0;
1079 }
1080
1081 vmap_ldinfo(ldi);
1082
1083 do {
1084 add_text_to_loadinfo (ldi->ldinfo_textorg, ldi->ldinfo_dataorg);
1085 } while (ldi->ldinfo_next
1086 && (ldi = (void *) (ldi->ldinfo_next + (char *) ldi)));
1087
1088 #if 0
1089 /* Now that we've jumbled things around, re-sort them. */
1090 sort_minimal_symbols ();
1091 #endif
1092
1093 /* relocate the exec and core sections as well. */
1094 vmap_exec ();
1095 }
1096 \f
1097 /* Keep an array of load segment information and their TOC table addresses.
1098 This info will be useful when calling a shared library function by hand. */
1099
1100 struct loadinfo {
1101 CORE_ADDR textorg, dataorg;
1102 unsigned long toc_offset;
1103 };
1104
1105 #define LOADINFOLEN 10
1106
1107 /* FIXME Warning -- loadinfotextindex is used for a nefarious purpose by
1108 tm-rs6000.h. */
1109
1110 static struct loadinfo *loadinfo = NULL;
1111 static int loadinfolen = 0;
1112 static int loadinfotocindex = 0;
1113 int loadinfotextindex = 0;
1114
1115
1116 void
1117 xcoff_init_loadinfo ()
1118 {
1119 loadinfotocindex = 0;
1120 loadinfotextindex = 0;
1121
1122 if (loadinfolen == 0) {
1123 loadinfo = (struct loadinfo *)
1124 xmalloc (sizeof (struct loadinfo) * LOADINFOLEN);
1125 loadinfolen = LOADINFOLEN;
1126 }
1127 }
1128
1129
1130 /* FIXME -- this is never called! */
1131 void
1132 free_loadinfo ()
1133 {
1134 if (loadinfo)
1135 free (loadinfo);
1136 loadinfo = NULL;
1137 loadinfolen = 0;
1138 loadinfotocindex = 0;
1139 loadinfotextindex = 0;
1140 }
1141
1142 /* this is called from xcoffread.c */
1143
1144 void
1145 xcoff_add_toc_to_loadinfo (unsigned long tocoff)
1146 {
1147 while (loadinfotocindex >= loadinfolen) {
1148 loadinfolen += LOADINFOLEN;
1149 loadinfo = (struct loadinfo *)
1150 xrealloc (loadinfo, sizeof(struct loadinfo) * loadinfolen);
1151 }
1152 loadinfo [loadinfotocindex++].toc_offset = tocoff;
1153 }
1154
1155
1156 static void
1157 add_text_to_loadinfo (textaddr, dataaddr)
1158 CORE_ADDR textaddr;
1159 CORE_ADDR dataaddr;
1160 {
1161 while (loadinfotextindex >= loadinfolen) {
1162 loadinfolen += LOADINFOLEN;
1163 loadinfo = (struct loadinfo *)
1164 xrealloc (loadinfo, sizeof(struct loadinfo) * loadinfolen);
1165 }
1166 loadinfo [loadinfotextindex].textorg = textaddr;
1167 loadinfo [loadinfotextindex].dataorg = dataaddr;
1168 ++loadinfotextindex;
1169 }
1170
1171
1172 /* FIXME: This assumes that the "textorg" and "dataorg" elements
1173 of a member of this array are correlated with the "toc_offset"
1174 element of the same member. But they are sequentially assigned in wildly
1175 different places, and probably there is no correlation. FIXME! */
1176
1177 static CORE_ADDR
1178 find_toc_address (pc)
1179 CORE_ADDR pc;
1180 {
1181 int ii, toc_entry, tocbase = 0;
1182
1183 for (ii=0; ii < loadinfotextindex; ++ii)
1184 if (pc > loadinfo[ii].textorg && loadinfo[ii].textorg > tocbase) {
1185 toc_entry = ii;
1186 tocbase = loadinfo[ii].textorg;
1187 }
1188
1189 return loadinfo[toc_entry].dataorg + loadinfo[toc_entry].toc_offset;
1190 }