* s390-tdep.c (s390_frame_chain): Remember that the SP's element
[binutils-gdb.git] / gdb / s390-tdep.c
1 /* Target-dependent code for GDB, the GNU debugger.
2 Copyright 2001 Free Software Foundation, Inc.
3 Contributed by D.J. Barrow (djbarrow@de.ibm.com,barrow_dj@yahoo.com)
4 for IBM Deutschland Entwicklung GmbH, IBM Corporation.
5
6 This file is part of GDB.
7
8 This program is free software; you can redistribute it and/or modify
9 it under the terms of the GNU General Public License as published by
10 the Free Software Foundation; either version 2 of the License, or
11 (at your option) any later version.
12
13 This program is distributed in the hope that it will be useful,
14 but WITHOUT ANY WARRANTY; without even the implied warranty of
15 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
16 GNU General Public License for more details.
17
18 You should have received a copy of the GNU General Public License
19 along with this program; if not, write to the Free Software
20 Foundation, Inc., 59 Temple Place - Suite 330, Boston, MA
21 02111-1307, USA. */
22
23 #define S390_TDEP /* for special macros in tm-s390.h */
24 #include <defs.h>
25 #include "arch-utils.h"
26 #include "frame.h"
27 #include "inferior.h"
28 #include "symtab.h"
29 #include "target.h"
30 #include "gdbcore.h"
31 #include "gdbcmd.h"
32 #include "symfile.h"
33 #include "objfiles.h"
34 #include "tm.h"
35 #include "../bfd/bfd.h"
36 #include "floatformat.h"
37 #include "regcache.h"
38 #include "value.h"
39 #include "gdb_assert.h"
40
41
42
43
44 /* Number of bytes of storage in the actual machine representation
45 for register N.
46 Note that the unsigned cast here forces the result of the
47 subtraction to very high positive values if N < S390_FP0_REGNUM */
48 int
49 s390_register_raw_size (int reg_nr)
50 {
51 return ((unsigned) reg_nr - S390_FP0_REGNUM) <
52 S390_NUM_FPRS ? S390_FPR_SIZE : 4;
53 }
54
55 int
56 s390x_register_raw_size (int reg_nr)
57 {
58 return (reg_nr == S390_FPC_REGNUM)
59 || (reg_nr >= S390_FIRST_ACR && reg_nr <= S390_LAST_ACR) ? 4 : 8;
60 }
61
62 int
63 s390_cannot_fetch_register (int regno)
64 {
65 return (regno >= S390_FIRST_CR && regno < (S390_FIRST_CR + 9)) ||
66 (regno >= (S390_FIRST_CR + 12) && regno <= S390_LAST_CR);
67 }
68
69 int
70 s390_register_byte (int reg_nr)
71 {
72 if (reg_nr <= S390_GP_LAST_REGNUM)
73 return reg_nr * S390_GPR_SIZE;
74 if (reg_nr <= S390_LAST_ACR)
75 return S390_ACR0_OFFSET + (((reg_nr) - S390_FIRST_ACR) * S390_ACR_SIZE);
76 if (reg_nr <= S390_LAST_CR)
77 return S390_CR0_OFFSET + (((reg_nr) - S390_FIRST_CR) * S390_CR_SIZE);
78 if (reg_nr == S390_FPC_REGNUM)
79 return S390_FPC_OFFSET;
80 else
81 return S390_FP0_OFFSET + (((reg_nr) - S390_FP0_REGNUM) * S390_FPR_SIZE);
82 }
83
84 #ifndef GDBSERVER
85 #define S390_MAX_INSTR_SIZE (6)
86 #define S390_SYSCALL_OPCODE (0x0a)
87 #define S390_SYSCALL_SIZE (2)
88 #define S390_SIGCONTEXT_SREGS_OFFSET (8)
89 #define S390X_SIGCONTEXT_SREGS_OFFSET (8)
90 #define S390_SIGREGS_FP0_OFFSET (144)
91 #define S390X_SIGREGS_FP0_OFFSET (216)
92 #define S390_UC_MCONTEXT_OFFSET (256)
93 #define S390X_UC_MCONTEXT_OFFSET (344)
94 #define S390_STACK_FRAME_OVERHEAD (GDB_TARGET_IS_ESAME ? 160:96)
95 #define S390_SIGNAL_FRAMESIZE (GDB_TARGET_IS_ESAME ? 160:96)
96 #define s390_NR_sigreturn 119
97 #define s390_NR_rt_sigreturn 173
98
99
100
101 struct frame_extra_info
102 {
103 int initialised;
104 int good_prologue;
105 CORE_ADDR function_start;
106 CORE_ADDR skip_prologue_function_start;
107 CORE_ADDR saved_pc_valid;
108 CORE_ADDR saved_pc;
109 CORE_ADDR sig_fixed_saved_pc_valid;
110 CORE_ADDR sig_fixed_saved_pc;
111 CORE_ADDR frame_pointer_saved_pc; /* frame pointer needed for alloca */
112 CORE_ADDR stack_bought; /* amount we decrement the stack pointer by */
113 CORE_ADDR sigcontext;
114 };
115
116
117 static CORE_ADDR s390_frame_saved_pc_nofix (struct frame_info *fi);
118
119 int
120 s390_readinstruction (bfd_byte instr[], CORE_ADDR at,
121 struct disassemble_info *info)
122 {
123 int instrlen;
124
125 static int s390_instrlen[] = {
126 2,
127 4,
128 4,
129 6
130 };
131 if ((*info->read_memory_func) (at, &instr[0], 2, info))
132 return -1;
133 instrlen = s390_instrlen[instr[0] >> 6];
134 if ((*info->read_memory_func) (at + 2, &instr[2], instrlen - 2, info))
135 return -1;
136 return instrlen;
137 }
138
139 static void
140 s390_memset_extra_info (struct frame_extra_info *fextra_info)
141 {
142 memset (fextra_info, 0, sizeof (struct frame_extra_info));
143 }
144
145
146
147 char *
148 s390_register_name (int reg_nr)
149 {
150 static char *register_names[] = {
151 "pswm", "pswa",
152 "r0", "r1", "r2", "r3", "r4", "r5", "r6", "r7",
153 "r8", "r9", "r10", "r11", "r12", "r13", "r14", "r15",
154 "acr0", "acr1", "acr2", "acr3", "acr4", "acr5", "acr6", "acr7",
155 "acr8", "acr9", "acr10", "acr11", "acr12", "acr13", "acr14", "acr15",
156 "cr0", "cr1", "cr2", "cr3", "cr4", "cr5", "cr6", "cr7",
157 "cr8", "cr9", "cr10", "cr11", "cr12", "cr13", "cr14", "cr15",
158 "fpc",
159 "f0", "f1", "f2", "f3", "f4", "f5", "f6", "f7",
160 "f8", "f9", "f10", "f11", "f12", "f13", "f14", "f15"
161 };
162
163 if (reg_nr >= S390_LAST_REGNUM)
164 return NULL;
165 return register_names[reg_nr];
166 }
167
168
169
170
171 int
172 s390_stab_reg_to_regnum (int regno)
173 {
174 return regno >= 64 ? S390_PSWM_REGNUM - 64 :
175 regno >= 48 ? S390_FIRST_ACR - 48 :
176 regno >= 32 ? S390_FIRST_CR - 32 :
177 regno <= 15 ? (regno + 2) :
178 S390_FP0_REGNUM + ((regno - 16) & 8) + (((regno - 16) & 3) << 1) +
179 (((regno - 16) & 4) >> 2);
180 }
181
182
183
184 /* s390_get_frame_info based on Hartmuts
185 prologue definition in
186 gcc-2.8.1/config/l390/linux.c
187
188 It reads one instruction at a time & based on whether
189 it looks like prologue code or not it makes a decision on
190 whether the prologue is over, there are various state machines
191 in the code to determine if the prologue code is possilby valid.
192
193 This is done to hopefully allow the code survive minor revs of
194 calling conventions.
195
196 */
197
198 int
199 s390_get_frame_info (CORE_ADDR pc, struct frame_extra_info *fextra_info,
200 struct frame_info *fi, int init_extra_info)
201 {
202 #define CONST_POOL_REGIDX 13
203 #define GOT_REGIDX 12
204 bfd_byte instr[S390_MAX_INSTR_SIZE];
205 CORE_ADDR test_pc = pc, test_pc2;
206 CORE_ADDR orig_sp = 0, save_reg_addr = 0, *saved_regs = NULL;
207 int valid_prologue, good_prologue = 0;
208 int gprs_saved[S390_NUM_GPRS];
209 int fprs_saved[S390_NUM_FPRS];
210 int regidx, instrlen;
211 int save_link_regidx, subtract_sp_regidx;
212 int const_pool_state, save_link_state;
213 int frame_pointer_found, varargs_state;
214 int loop_cnt, gdb_gpr_store, gdb_fpr_store;
215 int frame_pointer_regidx = 0xf;
216 int offset, expected_offset;
217 int err = 0;
218 disassemble_info info;
219
220 /* What we've seen so far regarding r12 --- the GOT (Global Offset
221 Table) pointer. We expect to see `l %r12, N(%r13)', which loads
222 r12 with the offset from the constant pool to the GOT, and then
223 an `ar %r12, %r13', which adds the constant pool address,
224 yielding the GOT's address. Here's what got_state means:
225 0 -- seen nothing
226 1 -- seen `l %r12, N(%r13)', but no `ar'
227 2 -- seen load and add, so GOT pointer is totally initialized
228 When got_state is 1, then got_load_addr is the address of the
229 load instruction, and got_load_len is the length of that
230 instruction. */
231 int got_state;
232 CORE_ADDR got_load_addr = 0, got_load_len = 0;
233
234 const_pool_state = save_link_state = got_state = varargs_state = 0;
235 frame_pointer_found = 0;
236 memset (gprs_saved, 0, sizeof (gprs_saved));
237 memset (fprs_saved, 0, sizeof (fprs_saved));
238 info.read_memory_func = dis_asm_read_memory;
239
240 save_link_regidx = subtract_sp_regidx = 0;
241 if (fextra_info)
242 {
243 if (fi && fi->frame)
244 {
245 orig_sp = fi->frame + fextra_info->stack_bought;
246 saved_regs = fi->saved_regs;
247 }
248 if (init_extra_info || !fextra_info->initialised)
249 {
250 s390_memset_extra_info (fextra_info);
251 fextra_info->function_start = pc;
252 fextra_info->initialised = 1;
253 }
254 }
255 instrlen = 0;
256 do
257 {
258 valid_prologue = 0;
259 test_pc += instrlen;
260 /* add the previous instruction len */
261 instrlen = s390_readinstruction (instr, test_pc, &info);
262 if (instrlen < 0)
263 {
264 good_prologue = 0;
265 err = -1;
266 break;
267 }
268 /* We probably are in a glibc syscall */
269 if (instr[0] == S390_SYSCALL_OPCODE && test_pc == pc)
270 {
271 good_prologue = 1;
272 if (saved_regs && fextra_info && fi->next && fi->next->extra_info
273 && fi->next->extra_info->sigcontext)
274 {
275 /* We are backtracing from a signal handler */
276 save_reg_addr = fi->next->extra_info->sigcontext +
277 REGISTER_BYTE (S390_GP0_REGNUM);
278 for (regidx = 0; regidx < S390_NUM_GPRS; regidx++)
279 {
280 saved_regs[S390_GP0_REGNUM + regidx] = save_reg_addr;
281 save_reg_addr += S390_GPR_SIZE;
282 }
283 save_reg_addr = fi->next->extra_info->sigcontext +
284 (GDB_TARGET_IS_ESAME ? S390X_SIGREGS_FP0_OFFSET :
285 S390_SIGREGS_FP0_OFFSET);
286 for (regidx = 0; regidx < S390_NUM_FPRS; regidx++)
287 {
288 saved_regs[S390_FP0_REGNUM + regidx] = save_reg_addr;
289 save_reg_addr += S390_FPR_SIZE;
290 }
291 }
292 break;
293 }
294 if (save_link_state == 0)
295 {
296 /* check for a stack relative STMG or STM */
297 if (((GDB_TARGET_IS_ESAME &&
298 ((instr[0] == 0xeb) && (instr[5] == 0x24))) ||
299 (instr[0] == 0x90)) && ((instr[2] >> 4) == 0xf))
300 {
301 regidx = (instr[1] >> 4);
302 if (regidx < 6)
303 varargs_state = 1;
304 offset = ((instr[2] & 0xf) << 8) + instr[3];
305 expected_offset =
306 S390_GPR6_STACK_OFFSET + (S390_GPR_SIZE * (regidx - 6));
307 if (offset != expected_offset)
308 {
309 good_prologue = 0;
310 break;
311 }
312 if (saved_regs)
313 save_reg_addr = orig_sp + offset;
314 for (; regidx <= (instr[1] & 0xf); regidx++)
315 {
316 if (gprs_saved[regidx])
317 {
318 good_prologue = 0;
319 break;
320 }
321 good_prologue = 1;
322 gprs_saved[regidx] = 1;
323 if (saved_regs)
324 {
325 saved_regs[S390_GP0_REGNUM + regidx] = save_reg_addr;
326 save_reg_addr += S390_GPR_SIZE;
327 }
328 }
329 valid_prologue = 1;
330 continue;
331 }
332 }
333 /* check for a stack relative STG or ST */
334 if ((save_link_state == 0 || save_link_state == 3) &&
335 ((GDB_TARGET_IS_ESAME &&
336 ((instr[0] == 0xe3) && (instr[5] == 0x24))) ||
337 (instr[0] == 0x50)) && ((instr[2] >> 4) == 0xf))
338 {
339 regidx = instr[1] >> 4;
340 offset = ((instr[2] & 0xf) << 8) + instr[3];
341 if (offset == 0)
342 {
343 if (save_link_state == 3 && regidx == save_link_regidx)
344 {
345 save_link_state = 4;
346 valid_prologue = 1;
347 continue;
348 }
349 else
350 break;
351 }
352 if (regidx < 6)
353 varargs_state = 1;
354 expected_offset =
355 S390_GPR6_STACK_OFFSET + (S390_GPR_SIZE * (regidx - 6));
356 if (offset != expected_offset)
357 {
358 good_prologue = 0;
359 break;
360 }
361 if (gprs_saved[regidx])
362 {
363 good_prologue = 0;
364 break;
365 }
366 good_prologue = 1;
367 gprs_saved[regidx] = 1;
368 if (saved_regs)
369 {
370 save_reg_addr = orig_sp + offset;
371 saved_regs[S390_GP0_REGNUM + regidx] = save_reg_addr;
372 }
373 valid_prologue = 1;
374 continue;
375 }
376
377 /* check for STD */
378 if (instr[0] == 0x60 && (instr[2] >> 4) == 0xf)
379 {
380 regidx = instr[1] >> 4;
381 if (regidx == 0 || regidx == 2)
382 varargs_state = 1;
383 if (fprs_saved[regidx])
384 {
385 good_prologue = 0;
386 break;
387 }
388 fprs_saved[regidx] = 1;
389 if (saved_regs)
390 {
391 save_reg_addr = orig_sp + (((instr[2] & 0xf) << 8) + instr[3]);
392 saved_regs[S390_FP0_REGNUM + regidx] = save_reg_addr;
393 }
394 valid_prologue = 1;
395 continue;
396 }
397
398
399 if (const_pool_state == 0)
400 {
401
402 if (GDB_TARGET_IS_ESAME)
403 {
404 /* Check for larl CONST_POOL_REGIDX,offset on ESAME */
405 if ((instr[0] == 0xc0)
406 && (instr[1] == (CONST_POOL_REGIDX << 4)))
407 {
408 const_pool_state = 2;
409 valid_prologue = 1;
410 continue;
411 }
412 }
413 else
414 {
415 /* Check for BASR gpr13,gpr0 used to load constant pool pointer to r13 in old compiler */
416 if (instr[0] == 0xd && (instr[1] & 0xf) == 0
417 && ((instr[1] >> 4) == CONST_POOL_REGIDX))
418 {
419 const_pool_state = 1;
420 valid_prologue = 1;
421 continue;
422 }
423 }
424 /* Check for new fangled bras %r13,newpc to load new constant pool */
425 /* embedded in code, older pre abi compilers also emitted this stuff. */
426 if ((instr[0] == 0xa7) && ((instr[1] & 0xf) == 0x5) &&
427 ((instr[1] >> 4) == CONST_POOL_REGIDX)
428 && ((instr[2] & 0x80) == 0))
429 {
430 const_pool_state = 2;
431 test_pc +=
432 (((((instr[2] & 0xf) << 8) + instr[3]) << 1) - instrlen);
433 valid_prologue = 1;
434 continue;
435 }
436 }
437 /* Check for AGHI or AHI CONST_POOL_REGIDX,val */
438 if (const_pool_state == 1 && (instr[0] == 0xa7) &&
439 ((GDB_TARGET_IS_ESAME &&
440 (instr[1] == ((CONST_POOL_REGIDX << 4) | 0xb))) ||
441 (instr[1] == ((CONST_POOL_REGIDX << 4) | 0xa))))
442 {
443 const_pool_state = 2;
444 valid_prologue = 1;
445 continue;
446 }
447 /* Check for LGR or LR gprx,15 */
448 if ((GDB_TARGET_IS_ESAME &&
449 instr[0] == 0xb9 && instr[1] == 0x04 && (instr[3] & 0xf) == 0xf) ||
450 (instr[0] == 0x18 && (instr[1] & 0xf) == 0xf))
451 {
452 if (GDB_TARGET_IS_ESAME)
453 regidx = instr[3] >> 4;
454 else
455 regidx = instr[1] >> 4;
456 if (save_link_state == 0 && regidx != 0xb)
457 {
458 /* Almost defintely code for
459 decrementing the stack pointer
460 ( i.e. a non leaf function
461 or else leaf with locals ) */
462 save_link_regidx = regidx;
463 save_link_state = 1;
464 valid_prologue = 1;
465 continue;
466 }
467 /* We use this frame pointer for alloca
468 unfortunately we need to assume its gpr11
469 otherwise we would need a smarter prologue
470 walker. */
471 if (!frame_pointer_found && regidx == 0xb)
472 {
473 frame_pointer_regidx = 0xb;
474 frame_pointer_found = 1;
475 if (fextra_info)
476 fextra_info->frame_pointer_saved_pc = test_pc;
477 valid_prologue = 1;
478 continue;
479 }
480 }
481 /* Check for AHI or AGHI gpr15,val */
482 if (save_link_state == 1 && (instr[0] == 0xa7) &&
483 ((GDB_TARGET_IS_ESAME && (instr[1] == 0xfb)) || (instr[1] == 0xfa)))
484 {
485 if (fextra_info)
486 fextra_info->stack_bought =
487 -extract_signed_integer (&instr[2], 2);
488 save_link_state = 3;
489 valid_prologue = 1;
490 continue;
491 }
492 /* Alternatively check for the complex construction for
493 buying more than 32k of stack
494 BRAS gprx,.+8
495 long vals %r15,0(%gprx) gprx currently r1 */
496 if ((save_link_state == 1) && (instr[0] == 0xa7)
497 && ((instr[1] & 0xf) == 0x5) && (instr[2] == 0)
498 && (instr[3] == 0x4) && ((instr[1] >> 4) != CONST_POOL_REGIDX))
499 {
500 subtract_sp_regidx = instr[1] >> 4;
501 save_link_state = 2;
502 if (fextra_info)
503 target_read_memory (test_pc + instrlen,
504 (char *) &fextra_info->stack_bought,
505 sizeof (fextra_info->stack_bought));
506 test_pc += 4;
507 valid_prologue = 1;
508 continue;
509 }
510 if (save_link_state == 2 && instr[0] == 0x5b
511 && instr[1] == 0xf0 &&
512 instr[2] == (subtract_sp_regidx << 4) && instr[3] == 0)
513 {
514 save_link_state = 3;
515 valid_prologue = 1;
516 continue;
517 }
518 /* check for LA gprx,offset(15) used for varargs */
519 if ((instr[0] == 0x41) && ((instr[2] >> 4) == 0xf) &&
520 ((instr[1] & 0xf) == 0))
521 {
522 /* some code uses gpr7 to point to outgoing args */
523 if (((instr[1] >> 4) == 7) && (save_link_state == 0) &&
524 ((instr[2] & 0xf) == 0)
525 && (instr[3] == S390_STACK_FRAME_OVERHEAD))
526 {
527 valid_prologue = 1;
528 continue;
529 }
530 if (varargs_state == 1)
531 {
532 varargs_state = 2;
533 valid_prologue = 1;
534 continue;
535 }
536 }
537 /* Check for a GOT load */
538
539 if (GDB_TARGET_IS_ESAME)
540 {
541 /* Check for larl GOT_REGIDX, on ESAME */
542 if ((got_state == 0) && (instr[0] == 0xc0)
543 && (instr[1] == (GOT_REGIDX << 4)))
544 {
545 got_state = 2;
546 valid_prologue = 1;
547 continue;
548 }
549 }
550 else
551 {
552 /* check for l GOT_REGIDX,x(CONST_POOL_REGIDX) */
553 if (got_state == 0 && const_pool_state == 2 && instr[0] == 0x58
554 && (instr[2] == (CONST_POOL_REGIDX << 4))
555 && ((instr[1] >> 4) == GOT_REGIDX))
556 {
557 got_state = 1;
558 got_load_addr = test_pc;
559 got_load_len = instrlen;
560 valid_prologue = 1;
561 continue;
562 }
563 /* Check for subsequent ar got_regidx,basr_regidx */
564 if (got_state == 1 && instr[0] == 0x1a &&
565 instr[1] == ((GOT_REGIDX << 4) | CONST_POOL_REGIDX))
566 {
567 got_state = 2;
568 valid_prologue = 1;
569 continue;
570 }
571 }
572 }
573 while (valid_prologue && good_prologue);
574 if (good_prologue)
575 {
576 /* If this function doesn't reference the global offset table,
577 then the compiler may use r12 for other things. If the last
578 instruction we saw was a load of r12 from the constant pool,
579 with no subsequent add to make the address PC-relative, then
580 the load was probably a genuine body instruction; don't treat
581 it as part of the prologue. */
582 if (got_state == 1
583 && got_load_addr + got_load_len == test_pc)
584 {
585 test_pc = got_load_addr;
586 instrlen = got_load_len;
587 }
588
589 good_prologue = (((const_pool_state == 0) || (const_pool_state == 2)) &&
590 ((save_link_state == 0) || (save_link_state == 4)) &&
591 ((varargs_state == 0) || (varargs_state == 2)));
592 }
593 if (fextra_info)
594 {
595 fextra_info->good_prologue = good_prologue;
596 fextra_info->skip_prologue_function_start =
597 (good_prologue ? test_pc : pc);
598 }
599 if (saved_regs)
600 /* The SP's element of the saved_regs array holds the old SP,
601 not the address at which it is saved. */
602 saved_regs[S390_SP_REGNUM] = orig_sp;
603 return err;
604 }
605
606
607 int
608 s390_check_function_end (CORE_ADDR pc)
609 {
610 bfd_byte instr[S390_MAX_INSTR_SIZE];
611 disassemble_info info;
612 int regidx, instrlen;
613
614 info.read_memory_func = dis_asm_read_memory;
615 instrlen = s390_readinstruction (instr, pc, &info);
616 if (instrlen < 0)
617 return -1;
618 /* check for BR */
619 if (instrlen != 2 || instr[0] != 07 || (instr[1] >> 4) != 0xf)
620 return 0;
621 regidx = instr[1] & 0xf;
622 /* Check for LMG or LG */
623 instrlen =
624 s390_readinstruction (instr, pc - (GDB_TARGET_IS_ESAME ? 6 : 4), &info);
625 if (instrlen < 0)
626 return -1;
627 if (GDB_TARGET_IS_ESAME)
628 {
629
630 if (instrlen != 6 || instr[0] != 0xeb || instr[5] != 0x4)
631 return 0;
632 }
633 else if (instrlen != 4 || instr[0] != 0x98)
634 {
635 return 0;
636 }
637 if ((instr[2] >> 4) != 0xf)
638 return 0;
639 if (regidx == 14)
640 return 1;
641 instrlen = s390_readinstruction (instr, pc - (GDB_TARGET_IS_ESAME ? 12 : 8),
642 &info);
643 if (instrlen < 0)
644 return -1;
645 if (GDB_TARGET_IS_ESAME)
646 {
647 /* Check for LG */
648 if (instrlen != 6 || instr[0] != 0xe3 || instr[5] != 0x4)
649 return 0;
650 }
651 else
652 {
653 /* Check for L */
654 if (instrlen != 4 || instr[0] != 0x58)
655 return 0;
656 }
657 if (instr[2] >> 4 != 0xf)
658 return 0;
659 if (instr[1] >> 4 != regidx)
660 return 0;
661 return 1;
662 }
663
664 static CORE_ADDR
665 s390_sniff_pc_function_start (CORE_ADDR pc, struct frame_info *fi)
666 {
667 CORE_ADDR function_start, test_function_start;
668 int loop_cnt, err, function_end;
669 struct frame_extra_info fextra_info;
670 function_start = get_pc_function_start (pc);
671
672 if (function_start == 0)
673 {
674 test_function_start = pc;
675 if (test_function_start & 1)
676 return 0; /* This has to be bogus */
677 loop_cnt = 0;
678 do
679 {
680
681 err =
682 s390_get_frame_info (test_function_start, &fextra_info, fi, 1);
683 loop_cnt++;
684 test_function_start -= 2;
685 function_end = s390_check_function_end (test_function_start);
686 }
687 while (!(function_end == 1 || err || loop_cnt >= 4096 ||
688 (fextra_info.good_prologue)));
689 if (fextra_info.good_prologue)
690 function_start = fextra_info.function_start;
691 else if (function_end == 1)
692 function_start = test_function_start;
693 }
694 return function_start;
695 }
696
697
698
699 CORE_ADDR
700 s390_function_start (struct frame_info *fi)
701 {
702 CORE_ADDR function_start = 0;
703
704 if (fi->extra_info && fi->extra_info->initialised)
705 function_start = fi->extra_info->function_start;
706 else if (fi->pc)
707 function_start = get_pc_function_start (fi->pc);
708 return function_start;
709 }
710
711
712
713
714 int
715 s390_frameless_function_invocation (struct frame_info *fi)
716 {
717 struct frame_extra_info fextra_info, *fextra_info_ptr;
718 int frameless = 0;
719
720 if (fi->next == NULL) /* no may be frameless */
721 {
722 if (fi->extra_info)
723 fextra_info_ptr = fi->extra_info;
724 else
725 {
726 fextra_info_ptr = &fextra_info;
727 s390_get_frame_info (s390_sniff_pc_function_start (fi->pc, fi),
728 fextra_info_ptr, fi, 1);
729 }
730 frameless = ((fextra_info_ptr->stack_bought == 0));
731 }
732 return frameless;
733
734 }
735
736
737 static int
738 s390_is_sigreturn (CORE_ADDR pc, struct frame_info *sighandler_fi,
739 CORE_ADDR *sregs, CORE_ADDR *sigcaller_pc)
740 {
741 bfd_byte instr[S390_MAX_INSTR_SIZE];
742 disassemble_info info;
743 int instrlen;
744 CORE_ADDR scontext;
745 int retval = 0;
746 CORE_ADDR orig_sp;
747 CORE_ADDR temp_sregs;
748
749 scontext = temp_sregs = 0;
750
751 info.read_memory_func = dis_asm_read_memory;
752 instrlen = s390_readinstruction (instr, pc, &info);
753 if (sigcaller_pc)
754 *sigcaller_pc = 0;
755 if (((instrlen == S390_SYSCALL_SIZE) &&
756 (instr[0] == S390_SYSCALL_OPCODE)) &&
757 ((instr[1] == s390_NR_sigreturn) || (instr[1] == s390_NR_rt_sigreturn)))
758 {
759 if (sighandler_fi)
760 {
761 if (s390_frameless_function_invocation (sighandler_fi))
762 orig_sp = sighandler_fi->frame;
763 else
764 orig_sp = ADDR_BITS_REMOVE ((CORE_ADDR)
765 read_memory_integer (sighandler_fi->
766 frame,
767 S390_GPR_SIZE));
768 if (orig_sp && sigcaller_pc)
769 {
770 scontext = orig_sp + S390_SIGNAL_FRAMESIZE;
771 if (pc == scontext && instr[1] == s390_NR_rt_sigreturn)
772 {
773 /* We got a new style rt_signal */
774 /* get address of read ucontext->uc_mcontext */
775 temp_sregs = orig_sp + (GDB_TARGET_IS_ESAME ?
776 S390X_UC_MCONTEXT_OFFSET :
777 S390_UC_MCONTEXT_OFFSET);
778 }
779 else
780 {
781 /* read sigcontext->sregs */
782 temp_sregs = ADDR_BITS_REMOVE ((CORE_ADDR)
783 read_memory_integer (scontext
784 +
785 (GDB_TARGET_IS_ESAME
786 ?
787 S390X_SIGCONTEXT_SREGS_OFFSET
788 :
789 S390_SIGCONTEXT_SREGS_OFFSET),
790 S390_GPR_SIZE));
791
792 }
793 /* read sigregs->psw.addr */
794 *sigcaller_pc =
795 ADDR_BITS_REMOVE ((CORE_ADDR)
796 read_memory_integer (temp_sregs +
797 REGISTER_BYTE
798 (S390_PC_REGNUM),
799 S390_PSW_ADDR_SIZE));
800 }
801 }
802 retval = 1;
803 }
804 if (sregs)
805 *sregs = temp_sregs;
806 return retval;
807 }
808
809 /*
810 We need to do something better here but this will keep us out of trouble
811 for the moment.
812 For some reason the blockframe.c calls us with fi->next->fromleaf
813 so this seems of little use to us. */
814 void
815 s390_init_frame_pc_first (int next_fromleaf, struct frame_info *fi)
816 {
817 CORE_ADDR sigcaller_pc;
818
819 fi->pc = 0;
820 if (next_fromleaf)
821 {
822 fi->pc = ADDR_BITS_REMOVE (read_register (S390_RETADDR_REGNUM));
823 /* fix signal handlers */
824 }
825 else if (fi->next && fi->next->pc)
826 fi->pc = s390_frame_saved_pc_nofix (fi->next);
827 if (fi->pc && fi->next && fi->next->frame &&
828 s390_is_sigreturn (fi->pc, fi->next, NULL, &sigcaller_pc))
829 {
830 fi->pc = sigcaller_pc;
831 }
832
833 }
834
835 void
836 s390_init_extra_frame_info (int fromleaf, struct frame_info *fi)
837 {
838 fi->extra_info = frame_obstack_alloc (sizeof (struct frame_extra_info));
839 if (fi->pc)
840 s390_get_frame_info (s390_sniff_pc_function_start (fi->pc, fi),
841 fi->extra_info, fi, 1);
842 else
843 s390_memset_extra_info (fi->extra_info);
844 }
845
846 /* If saved registers of frame FI are not known yet, read and cache them.
847 &FEXTRA_INFOP contains struct frame_extra_info; TDATAP can be NULL,
848 in which case the framedata are read. */
849
850 void
851 s390_frame_init_saved_regs (struct frame_info *fi)
852 {
853
854 int quick;
855
856 if (fi->saved_regs == NULL)
857 {
858 /* zalloc memsets the saved regs */
859 frame_saved_regs_zalloc (fi);
860 if (fi->pc)
861 {
862 quick = (fi->extra_info && fi->extra_info->initialised
863 && fi->extra_info->good_prologue);
864 s390_get_frame_info (quick ? fi->extra_info->function_start :
865 s390_sniff_pc_function_start (fi->pc, fi),
866 fi->extra_info, fi, !quick);
867 }
868 }
869 }
870
871
872
873 CORE_ADDR
874 s390_frame_args_address (struct frame_info *fi)
875 {
876
877 /* Apparently gdb already knows gdb_args_offset itself */
878 return fi->frame;
879 }
880
881
882 static CORE_ADDR
883 s390_frame_saved_pc_nofix (struct frame_info *fi)
884 {
885 if (fi->extra_info && fi->extra_info->saved_pc_valid)
886 return fi->extra_info->saved_pc;
887 s390_frame_init_saved_regs (fi);
888 if (fi->extra_info)
889 {
890 fi->extra_info->saved_pc_valid = 1;
891 if (fi->extra_info->good_prologue)
892 {
893 if (fi->saved_regs[S390_RETADDR_REGNUM])
894 {
895 return (fi->extra_info->saved_pc =
896 ADDR_BITS_REMOVE (read_memory_integer
897 (fi->saved_regs[S390_RETADDR_REGNUM],
898 S390_GPR_SIZE)));
899 }
900 }
901 }
902 return 0;
903 }
904
905 CORE_ADDR
906 s390_frame_saved_pc (struct frame_info *fi)
907 {
908 CORE_ADDR saved_pc = 0, sig_pc;
909
910 if (fi->extra_info && fi->extra_info->sig_fixed_saved_pc_valid)
911 return fi->extra_info->sig_fixed_saved_pc;
912 saved_pc = s390_frame_saved_pc_nofix (fi);
913
914 if (fi->extra_info)
915 {
916 fi->extra_info->sig_fixed_saved_pc_valid = 1;
917 if (saved_pc)
918 {
919 if (s390_is_sigreturn (saved_pc, fi, NULL, &sig_pc))
920 saved_pc = sig_pc;
921 }
922 fi->extra_info->sig_fixed_saved_pc = saved_pc;
923 }
924 return saved_pc;
925 }
926
927
928
929
930 /* We want backtraces out of signal handlers so we don't
931 set thisframe->signal_handler_caller to 1 */
932
933 CORE_ADDR
934 s390_frame_chain (struct frame_info *thisframe)
935 {
936 CORE_ADDR prev_fp = 0;
937
938 if (thisframe->prev && thisframe->prev->frame)
939 prev_fp = thisframe->prev->frame;
940 else
941 {
942 int sigreturn = 0;
943 CORE_ADDR sregs = 0;
944 struct frame_extra_info prev_fextra_info;
945
946 memset (&prev_fextra_info, 0, sizeof (prev_fextra_info));
947 if (thisframe->pc)
948 {
949 CORE_ADDR saved_pc, sig_pc;
950
951 saved_pc = s390_frame_saved_pc_nofix (thisframe);
952 if (saved_pc)
953 {
954 if ((sigreturn =
955 s390_is_sigreturn (saved_pc, thisframe, &sregs, &sig_pc)))
956 saved_pc = sig_pc;
957 s390_get_frame_info (s390_sniff_pc_function_start
958 (saved_pc, NULL), &prev_fextra_info, NULL,
959 1);
960 }
961 }
962 if (sigreturn)
963 {
964 /* read sigregs,regs.gprs[11 or 15] */
965 prev_fp = read_memory_integer (sregs +
966 REGISTER_BYTE (S390_GP0_REGNUM +
967 (prev_fextra_info.
968 frame_pointer_saved_pc
969 ? 11 : 15)),
970 S390_GPR_SIZE);
971 thisframe->extra_info->sigcontext = sregs;
972 }
973 else
974 {
975 if (thisframe->saved_regs)
976 {
977 int regno;
978
979 if (prev_fextra_info.frame_pointer_saved_pc
980 && thisframe->saved_regs[S390_FRAME_REGNUM])
981 regno = S390_FRAME_REGNUM;
982 else
983 regno = S390_SP_REGNUM;
984
985 if (thisframe->saved_regs[regno])
986 {
987 /* The SP's entry of `saved_regs' is special. */
988 if (regno == S390_SP_REGNUM)
989 prev_fp = thisframe->saved_regs[regno];
990 else
991 prev_fp =
992 read_memory_integer (thisframe->saved_regs[regno],
993 S390_GPR_SIZE);
994 }
995 }
996 }
997 }
998 return ADDR_BITS_REMOVE (prev_fp);
999 }
1000
1001 /*
1002 Whether struct frame_extra_info is actually needed I'll have to figure
1003 out as our frames are similar to rs6000 there is a possibility
1004 i386 dosen't need it. */
1005
1006
1007
1008 /* a given return value in `regbuf' with a type `valtype', extract and copy its
1009 value into `valbuf' */
1010 void
1011 s390_extract_return_value (struct type *valtype, char *regbuf, char *valbuf)
1012 {
1013 /* floats and doubles are returned in fpr0. fpr's have a size of 8 bytes.
1014 We need to truncate the return value into float size (4 byte) if
1015 necessary. */
1016 int len = TYPE_LENGTH (valtype);
1017
1018 if (TYPE_CODE (valtype) == TYPE_CODE_FLT)
1019 memcpy (valbuf, &regbuf[REGISTER_BYTE (S390_FP0_REGNUM)], len);
1020 else
1021 {
1022 int offset = 0;
1023 /* return value is copied starting from r2. */
1024 if (TYPE_LENGTH (valtype) < S390_GPR_SIZE)
1025 offset = S390_GPR_SIZE - TYPE_LENGTH (valtype);
1026 memcpy (valbuf,
1027 regbuf + REGISTER_BYTE (S390_GP0_REGNUM + 2) + offset,
1028 TYPE_LENGTH (valtype));
1029 }
1030 }
1031
1032
1033 static char *
1034 s390_promote_integer_argument (struct type *valtype, char *valbuf,
1035 char *reg_buff, int *arglen)
1036 {
1037 char *value = valbuf;
1038 int len = TYPE_LENGTH (valtype);
1039
1040 if (len < S390_GPR_SIZE)
1041 {
1042 /* We need to upgrade this value to a register to pass it correctly */
1043 int idx, diff = S390_GPR_SIZE - len, negative =
1044 (!TYPE_UNSIGNED (valtype) && value[0] & 0x80);
1045 for (idx = 0; idx < S390_GPR_SIZE; idx++)
1046 {
1047 reg_buff[idx] = (idx < diff ? (negative ? 0xff : 0x0) :
1048 value[idx - diff]);
1049 }
1050 value = reg_buff;
1051 *arglen = S390_GPR_SIZE;
1052 }
1053 else
1054 {
1055 if (len & (S390_GPR_SIZE - 1))
1056 {
1057 fprintf_unfiltered (gdb_stderr,
1058 "s390_promote_integer_argument detected an argument not "
1059 "a multiple of S390_GPR_SIZE & greater than S390_GPR_SIZE "
1060 "we might not deal with this correctly.\n");
1061 }
1062 *arglen = len;
1063 }
1064
1065 return (value);
1066 }
1067
1068 void
1069 s390_store_return_value (struct type *valtype, char *valbuf)
1070 {
1071 int arglen;
1072 char *reg_buff = alloca (max (S390_FPR_SIZE, REGISTER_SIZE)), *value;
1073
1074 if (TYPE_CODE (valtype) == TYPE_CODE_FLT)
1075 {
1076 DOUBLEST tempfloat = extract_floating (valbuf, TYPE_LENGTH (valtype));
1077
1078 floatformat_from_doublest (&floatformat_ieee_double_big, &tempfloat,
1079 reg_buff);
1080 write_register_bytes (REGISTER_BYTE (S390_FP0_REGNUM), reg_buff,
1081 S390_FPR_SIZE);
1082 }
1083 else
1084 {
1085 value =
1086 s390_promote_integer_argument (valtype, valbuf, reg_buff, &arglen);
1087 /* Everything else is returned in GPR2 and up. */
1088 write_register_bytes (REGISTER_BYTE (S390_GP0_REGNUM + 2), value,
1089 arglen);
1090 }
1091 }
1092 static int
1093 gdb_print_insn_s390 (bfd_vma memaddr, disassemble_info * info)
1094 {
1095 bfd_byte instrbuff[S390_MAX_INSTR_SIZE];
1096 int instrlen, cnt;
1097
1098 instrlen = s390_readinstruction (instrbuff, (CORE_ADDR) memaddr, info);
1099 if (instrlen < 0)
1100 {
1101 (*info->memory_error_func) (instrlen, memaddr, info);
1102 return -1;
1103 }
1104 for (cnt = 0; cnt < instrlen; cnt++)
1105 info->fprintf_func (info->stream, "%02X ", instrbuff[cnt]);
1106 for (cnt = instrlen; cnt < S390_MAX_INSTR_SIZE; cnt++)
1107 info->fprintf_func (info->stream, " ");
1108 instrlen = print_insn_s390 (memaddr, info);
1109 return instrlen;
1110 }
1111
1112
1113
1114 /* Not the most efficent code in the world */
1115 int
1116 s390_fp_regnum ()
1117 {
1118 int regno = S390_SP_REGNUM;
1119 struct frame_extra_info fextra_info;
1120
1121 CORE_ADDR pc = ADDR_BITS_REMOVE (read_register (S390_PC_REGNUM));
1122
1123 s390_get_frame_info (s390_sniff_pc_function_start (pc, NULL), &fextra_info,
1124 NULL, 1);
1125 if (fextra_info.frame_pointer_saved_pc)
1126 regno = S390_FRAME_REGNUM;
1127 return regno;
1128 }
1129
1130 CORE_ADDR
1131 s390_read_fp ()
1132 {
1133 return read_register (s390_fp_regnum ());
1134 }
1135
1136
1137 void
1138 s390_write_fp (CORE_ADDR val)
1139 {
1140 write_register (s390_fp_regnum (), val);
1141 }
1142
1143
1144 static void
1145 s390_pop_frame_regular (struct frame_info *frame)
1146 {
1147 int regnum;
1148
1149 write_register (S390_PC_REGNUM, FRAME_SAVED_PC (frame));
1150
1151 /* Restore any saved registers. */
1152 for (regnum = 0; regnum < NUM_REGS; regnum++)
1153 if (frame->saved_regs[regnum] != 0)
1154 {
1155 ULONGEST value;
1156
1157 value = read_memory_unsigned_integer (frame->saved_regs[regnum],
1158 REGISTER_RAW_SIZE (regnum));
1159 write_register (regnum, value);
1160 }
1161
1162 /* Actually cut back the stack. Remember that the SP's element of
1163 saved_regs is the old SP itself, not the address at which it is
1164 saved. */
1165 write_register (S390_SP_REGNUM, frame->saved_regs[S390_SP_REGNUM]);
1166
1167 /* Throw away any cached frame information. */
1168 flush_cached_frames ();
1169 }
1170
1171
1172 /* Destroy the innermost (Top-Of-Stack) stack frame, restoring the
1173 machine state that was in effect before the frame was created.
1174 Used in the contexts of the "return" command, and of
1175 target function calls from the debugger. */
1176 void
1177 s390_pop_frame ()
1178 {
1179 /* This function checks for and handles generic dummy frames, and
1180 calls back to our function for ordinary frames. */
1181 generic_pop_current_frame (s390_pop_frame_regular);
1182 }
1183
1184
1185 /* Return non-zero if TYPE is an integer-like type, zero otherwise.
1186 "Integer-like" types are those that should be passed the way
1187 integers are: integers, enums, ranges, characters, and booleans. */
1188 static int
1189 is_integer_like (struct type *type)
1190 {
1191 enum type_code code = TYPE_CODE (type);
1192
1193 return (code == TYPE_CODE_INT
1194 || code == TYPE_CODE_ENUM
1195 || code == TYPE_CODE_RANGE
1196 || code == TYPE_CODE_CHAR
1197 || code == TYPE_CODE_BOOL);
1198 }
1199
1200
1201 /* Return non-zero if TYPE is a pointer-like type, zero otherwise.
1202 "Pointer-like" types are those that should be passed the way
1203 pointers are: pointers and references. */
1204 static int
1205 is_pointer_like (struct type *type)
1206 {
1207 enum type_code code = TYPE_CODE (type);
1208
1209 return (code == TYPE_CODE_PTR
1210 || code == TYPE_CODE_REF);
1211 }
1212
1213
1214 /* Return non-zero if TYPE is a `float singleton' or `double
1215 singleton', zero otherwise.
1216
1217 A `T singleton' is a struct type with one member, whose type is
1218 either T or a `T singleton'. So, the following are all float
1219 singletons:
1220
1221 struct { float x };
1222 struct { struct { float x; } x; };
1223 struct { struct { struct { float x; } x; } x; };
1224
1225 ... and so on.
1226
1227 WHY THE HECK DO WE CARE ABOUT THIS??? Well, it turns out that GCC
1228 passes all float singletons and double singletons as if they were
1229 simply floats or doubles. This is *not* what the ABI says it
1230 should do. */
1231 static int
1232 is_float_singleton (struct type *type)
1233 {
1234 return (TYPE_CODE (type) == TYPE_CODE_STRUCT
1235 && TYPE_NFIELDS (type) == 1
1236 && (TYPE_CODE (TYPE_FIELD_TYPE (type, 0)) == TYPE_CODE_FLT
1237 || is_float_singleton (TYPE_FIELD_TYPE (type, 0))));
1238 }
1239
1240
1241 /* Return non-zero if TYPE is a struct-like type, zero otherwise.
1242 "Struct-like" types are those that should be passed as structs are:
1243 structs and unions.
1244
1245 As an odd quirk, not mentioned in the ABI, GCC passes float and
1246 double singletons as if they were a plain float, double, etc. (The
1247 corresponding union types are handled normally.) So we exclude
1248 those types here. *shrug* */
1249 static int
1250 is_struct_like (struct type *type)
1251 {
1252 enum type_code code = TYPE_CODE (type);
1253
1254 return (code == TYPE_CODE_UNION
1255 || (code == TYPE_CODE_STRUCT && ! is_float_singleton (type)));
1256 }
1257
1258
1259 /* Return non-zero if TYPE is a float-like type, zero otherwise.
1260 "Float-like" types are those that should be passed as
1261 floating-point values are.
1262
1263 You'd think this would just be floats, doubles, long doubles, etc.
1264 But as an odd quirk, not mentioned in the ABI, GCC passes float and
1265 double singletons as if they were a plain float, double, etc. (The
1266 corresponding union types are handled normally.) So we exclude
1267 those types here. *shrug* */
1268 static int
1269 is_float_like (struct type *type)
1270 {
1271 return (TYPE_CODE (type) == TYPE_CODE_FLT
1272 || is_float_singleton (type));
1273 }
1274
1275
1276 /* Return non-zero if TYPE is considered a `DOUBLE_OR_FLOAT', as
1277 defined by the parameter passing conventions described in the
1278 "Linux for S/390 ELF Application Binary Interface Supplement".
1279 Otherwise, return zero. */
1280 static int
1281 is_double_or_float (struct type *type)
1282 {
1283 return (is_float_like (type)
1284 && (TYPE_LENGTH (type) == 4
1285 || TYPE_LENGTH (type) == 8));
1286 }
1287
1288
1289 /* Return non-zero if TYPE is considered a `SIMPLE_ARG', as defined by
1290 the parameter passing conventions described in the "Linux for S/390
1291 ELF Application Binary Interface Supplement". Return zero otherwise. */
1292 static int
1293 is_simple_arg (struct type *type)
1294 {
1295 unsigned length = TYPE_LENGTH (type);
1296
1297 /* This is almost a direct translation of the ABI's language, except
1298 that we have to exclude 8-byte structs; those are DOUBLE_ARGs. */
1299 return ((is_integer_like (type) && length <= 4)
1300 || is_pointer_like (type)
1301 || (is_struct_like (type) && length != 8)
1302 || (is_float_like (type) && length == 16));
1303 }
1304
1305
1306 /* Return non-zero if TYPE should be passed as a pointer to a copy,
1307 zero otherwise. TYPE must be a SIMPLE_ARG, as recognized by
1308 `is_simple_arg'. */
1309 static int
1310 pass_by_copy_ref (struct type *type)
1311 {
1312 unsigned length = TYPE_LENGTH (type);
1313
1314 return ((is_struct_like (type) && length != 1 && length != 2 && length != 4)
1315 || (is_float_like (type) && length == 16));
1316 }
1317
1318
1319 /* Return ARG, a `SIMPLE_ARG', sign-extended or zero-extended to a full
1320 word as required for the ABI. */
1321 static LONGEST
1322 extend_simple_arg (struct value *arg)
1323 {
1324 struct type *type = VALUE_TYPE (arg);
1325
1326 /* Even structs get passed in the least significant bits of the
1327 register / memory word. It's not really right to extract them as
1328 an integer, but it does take care of the extension. */
1329 if (TYPE_UNSIGNED (type))
1330 return extract_unsigned_integer (VALUE_CONTENTS (arg),
1331 TYPE_LENGTH (type));
1332 else
1333 return extract_signed_integer (VALUE_CONTENTS (arg),
1334 TYPE_LENGTH (type));
1335 }
1336
1337
1338 /* Return non-zero if TYPE is a `DOUBLE_ARG', as defined by the
1339 parameter passing conventions described in the "Linux for S/390 ELF
1340 Application Binary Interface Supplement". Return zero otherwise. */
1341 static int
1342 is_double_arg (struct type *type)
1343 {
1344 unsigned length = TYPE_LENGTH (type);
1345
1346 return ((is_integer_like (type)
1347 || is_struct_like (type))
1348 && length == 8);
1349 }
1350
1351
1352 /* Round ADDR up to the next N-byte boundary. N must be a power of
1353 two. */
1354 static CORE_ADDR
1355 round_up (CORE_ADDR addr, int n)
1356 {
1357 /* Check that N is really a power of two. */
1358 gdb_assert (n && (n & (n-1)) == 0);
1359 return ((addr + n - 1) & -n);
1360 }
1361
1362
1363 /* Round ADDR down to the next N-byte boundary. N must be a power of
1364 two. */
1365 static CORE_ADDR
1366 round_down (CORE_ADDR addr, int n)
1367 {
1368 /* Check that N is really a power of two. */
1369 gdb_assert (n && (n & (n-1)) == 0);
1370 return (addr & -n);
1371 }
1372
1373
1374 /* Return the alignment required by TYPE. */
1375 static int
1376 alignment_of (struct type *type)
1377 {
1378 int alignment;
1379
1380 if (is_integer_like (type)
1381 || is_pointer_like (type)
1382 || TYPE_CODE (type) == TYPE_CODE_FLT)
1383 alignment = TYPE_LENGTH (type);
1384 else if (TYPE_CODE (type) == TYPE_CODE_STRUCT
1385 || TYPE_CODE (type) == TYPE_CODE_UNION)
1386 {
1387 int i;
1388
1389 alignment = 1;
1390 for (i = 0; i < TYPE_NFIELDS (type); i++)
1391 {
1392 int field_alignment = alignment_of (TYPE_FIELD_TYPE (type, i));
1393
1394 if (field_alignment > alignment)
1395 alignment = field_alignment;
1396 }
1397 }
1398 else
1399 alignment = 1;
1400
1401 /* Check that everything we ever return is a power of two. Lots of
1402 code doesn't want to deal with aligning things to arbitrary
1403 boundaries. */
1404 gdb_assert ((alignment & (alignment - 1)) == 0);
1405
1406 return alignment;
1407 }
1408
1409
1410 /* Put the actual parameter values pointed to by ARGS[0..NARGS-1] in
1411 place to be passed to a function, as specified by the "Linux for
1412 S/390 ELF Application Binary Interface Supplement".
1413
1414 SP is the current stack pointer. We must put arguments, links,
1415 padding, etc. whereever they belong, and return the new stack
1416 pointer value.
1417
1418 If STRUCT_RETURN is non-zero, then the function we're calling is
1419 going to return a structure by value; STRUCT_ADDR is the address of
1420 a block we've allocated for it on the stack.
1421
1422 Our caller has taken care of any type promotions needed to satisfy
1423 prototypes or the old K&R argument-passing rules. */
1424 CORE_ADDR
1425 s390_push_arguments (int nargs, struct value **args, CORE_ADDR sp,
1426 int struct_return, CORE_ADDR struct_addr)
1427 {
1428 int i;
1429 int pointer_size = (TARGET_PTR_BIT / TARGET_CHAR_BIT);
1430
1431 /* The number of arguments passed by reference-to-copy. */
1432 int num_copies;
1433
1434 /* If the i'th argument is passed as a reference to a copy, then
1435 copy_addr[i] is the address of the copy we made. */
1436 CORE_ADDR *copy_addr = alloca (nargs * sizeof (CORE_ADDR));
1437
1438 /* Build the reference-to-copy area. */
1439 num_copies = 0;
1440 for (i = 0; i < nargs; i++)
1441 {
1442 struct value *arg = args[i];
1443 struct type *type = VALUE_TYPE (arg);
1444 unsigned length = TYPE_LENGTH (type);
1445
1446 if (is_simple_arg (type)
1447 && pass_by_copy_ref (type))
1448 {
1449 sp -= length;
1450 sp = round_down (sp, alignment_of (type));
1451 write_memory (sp, VALUE_CONTENTS (arg), length);
1452 copy_addr[i] = sp;
1453 num_copies++;
1454 }
1455 }
1456
1457 /* Reserve space for the parameter area. As a conservative
1458 simplification, we assume that everything will be passed on the
1459 stack. */
1460 {
1461 int i;
1462
1463 for (i = 0; i < nargs; i++)
1464 {
1465 struct value *arg = args[i];
1466 struct type *type = VALUE_TYPE (arg);
1467 int length = TYPE_LENGTH (type);
1468
1469 sp = round_down (sp, alignment_of (type));
1470
1471 /* SIMPLE_ARG values get extended to 32 bits. Assume every
1472 argument is. */
1473 if (length < 4) length = 4;
1474 sp -= length;
1475 }
1476 }
1477
1478 /* Include space for any reference-to-copy pointers. */
1479 sp = round_down (sp, pointer_size);
1480 sp -= num_copies * pointer_size;
1481
1482 /* After all that, make sure it's still aligned on an eight-byte
1483 boundary. */
1484 sp = round_down (sp, 8);
1485
1486 /* Finally, place the actual parameters, working from SP towards
1487 higher addresses. The code above is supposed to reserve enough
1488 space for this. */
1489 {
1490 int fr = 0;
1491 int gr = 2;
1492 CORE_ADDR starg = sp;
1493
1494 for (i = 0; i < nargs; i++)
1495 {
1496 struct value *arg = args[i];
1497 struct type *type = VALUE_TYPE (arg);
1498
1499 if (is_double_or_float (type)
1500 && fr <= 2)
1501 {
1502 /* When we store a single-precision value in an FP register,
1503 it occupies the leftmost bits. */
1504 write_register_bytes (REGISTER_BYTE (S390_FP0_REGNUM + fr),
1505 VALUE_CONTENTS (arg),
1506 TYPE_LENGTH (type));
1507 fr += 2;
1508 }
1509 else if (is_simple_arg (type)
1510 && gr <= 6)
1511 {
1512 /* Do we need to pass a pointer to our copy of this
1513 argument? */
1514 if (pass_by_copy_ref (type))
1515 write_register (S390_GP0_REGNUM + gr, copy_addr[i]);
1516 else
1517 write_register (S390_GP0_REGNUM + gr, extend_simple_arg (arg));
1518
1519 gr++;
1520 }
1521 else if (is_double_arg (type)
1522 && gr <= 5)
1523 {
1524 write_register_gen (S390_GP0_REGNUM + gr,
1525 VALUE_CONTENTS (arg));
1526 write_register_gen (S390_GP0_REGNUM + gr + 1,
1527 VALUE_CONTENTS (arg) + 4);
1528 gr += 2;
1529 }
1530 else
1531 {
1532 /* The `OTHER' case. */
1533 enum type_code code = TYPE_CODE (type);
1534 unsigned length = TYPE_LENGTH (type);
1535
1536 /* If we skipped r6 because we couldn't fit a DOUBLE_ARG
1537 in it, then don't go back and use it again later. */
1538 if (is_double_arg (type) && gr == 6)
1539 gr = 7;
1540
1541 if (is_simple_arg (type))
1542 {
1543 /* Simple args are always either extended to 32 bits,
1544 or pointers. */
1545 starg = round_up (starg, 4);
1546
1547 /* Do we need to pass a pointer to our copy of this
1548 argument? */
1549 if (pass_by_copy_ref (type))
1550 write_memory_signed_integer (starg, pointer_size,
1551 copy_addr[i]);
1552 else
1553 /* Simple args are always extended to 32 bits. */
1554 write_memory_signed_integer (starg, 4,
1555 extend_simple_arg (arg));
1556 starg += 4;
1557 }
1558 else
1559 {
1560 /* You'd think we should say:
1561 starg = round_up (starg, alignment_of (type));
1562 Unfortunately, GCC seems to simply align the stack on
1563 a four-byte boundary, even when passing doubles. */
1564 starg = round_up (starg, 4);
1565 write_memory (starg, VALUE_CONTENTS (arg), length);
1566 starg += length;
1567 }
1568 }
1569 }
1570 }
1571
1572 /* Allocate the standard frame areas: the register save area, the
1573 word reserved for the compiler (which seems kind of meaningless),
1574 and the back chain pointer. */
1575 sp -= 96;
1576
1577 /* Write the back chain pointer into the first word of the stack
1578 frame. This will help us get backtraces from within functions
1579 called from GDB. */
1580 write_memory_unsigned_integer (sp, (TARGET_PTR_BIT / TARGET_CHAR_BIT),
1581 read_fp ());
1582
1583 return sp;
1584 }
1585
1586 /* Return the GDB type object for the "standard" data type
1587 of data in register N. */
1588 struct type *
1589 s390_register_virtual_type (int regno)
1590 {
1591 return ((unsigned) regno - S390_FPC_REGNUM) <
1592 S390_NUM_FPRS ? builtin_type_double : builtin_type_int;
1593 }
1594
1595
1596 struct type *
1597 s390x_register_virtual_type (int regno)
1598 {
1599 return (regno == S390_FPC_REGNUM) ||
1600 (regno >= S390_FIRST_ACR && regno <= S390_LAST_ACR) ? builtin_type_int :
1601 (regno >= S390_FP0_REGNUM) ? builtin_type_double : builtin_type_long;
1602 }
1603
1604
1605
1606 void
1607 s390_store_struct_return (CORE_ADDR addr, CORE_ADDR sp)
1608 {
1609 write_register (S390_GP0_REGNUM + 2, addr);
1610 }
1611
1612
1613
1614 static unsigned char *
1615 s390_breakpoint_from_pc (CORE_ADDR *pcptr, int *lenptr)
1616 {
1617 static unsigned char breakpoint[] = { 0x0, 0x1 };
1618
1619 *lenptr = sizeof (breakpoint);
1620 return breakpoint;
1621 }
1622
1623 /* Advance PC across any function entry prologue instructions to reach some
1624 "real" code. */
1625 CORE_ADDR
1626 s390_skip_prologue (CORE_ADDR pc)
1627 {
1628 struct frame_extra_info fextra_info;
1629
1630 s390_get_frame_info (pc, &fextra_info, NULL, 1);
1631 return fextra_info.skip_prologue_function_start;
1632 }
1633
1634 /* Immediately after a function call, return the saved pc.
1635 Can't go through the frames for this because on some machines
1636 the new frame is not set up until the new function executes
1637 some instructions. */
1638 CORE_ADDR
1639 s390_saved_pc_after_call (struct frame_info *frame)
1640 {
1641 return ADDR_BITS_REMOVE (read_register (S390_RETADDR_REGNUM));
1642 }
1643
1644 static CORE_ADDR
1645 s390_addr_bits_remove (CORE_ADDR addr)
1646 {
1647 return (addr) & 0x7fffffff;
1648 }
1649
1650
1651 static CORE_ADDR
1652 s390_push_return_address (CORE_ADDR pc, CORE_ADDR sp)
1653 {
1654 write_register (S390_RETADDR_REGNUM, CALL_DUMMY_ADDRESS ());
1655 return sp;
1656 }
1657
1658 struct gdbarch *
1659 s390_gdbarch_init (struct gdbarch_info info, struct gdbarch_list *arches)
1660 {
1661 static LONGEST s390_call_dummy_words[] = { 0 };
1662 struct gdbarch *gdbarch;
1663 struct gdbarch_tdep *tdep;
1664 int elf_flags;
1665
1666 /* First see if there is already a gdbarch that can satisfy the request. */
1667 arches = gdbarch_list_lookup_by_info (arches, &info);
1668 if (arches != NULL)
1669 return arches->gdbarch;
1670
1671 /* None found: is the request for a s390 architecture? */
1672 if (info.bfd_arch_info->arch != bfd_arch_s390)
1673 return NULL; /* No; then it's not for us. */
1674
1675 /* Yes: create a new gdbarch for the specified machine type. */
1676 gdbarch = gdbarch_alloc (&info, NULL);
1677
1678 set_gdbarch_believe_pcc_promotion (gdbarch, 0);
1679
1680 set_gdbarch_frame_args_skip (gdbarch, 0);
1681 set_gdbarch_frame_args_address (gdbarch, s390_frame_args_address);
1682 set_gdbarch_frame_chain (gdbarch, s390_frame_chain);
1683 set_gdbarch_frame_init_saved_regs (gdbarch, s390_frame_init_saved_regs);
1684 set_gdbarch_frame_locals_address (gdbarch, s390_frame_args_address);
1685 /* We can't do this */
1686 set_gdbarch_frame_num_args (gdbarch, frame_num_args_unknown);
1687 set_gdbarch_store_struct_return (gdbarch, s390_store_struct_return);
1688 set_gdbarch_extract_return_value (gdbarch, s390_extract_return_value);
1689 set_gdbarch_store_return_value (gdbarch, s390_store_return_value);
1690 /* Amount PC must be decremented by after a breakpoint.
1691 This is often the number of bytes in BREAKPOINT
1692 but not always. */
1693 set_gdbarch_decr_pc_after_break (gdbarch, 2);
1694 set_gdbarch_pop_frame (gdbarch, s390_pop_frame);
1695 set_gdbarch_ieee_float (gdbarch, 1);
1696 /* Stack grows downward. */
1697 set_gdbarch_inner_than (gdbarch, core_addr_lessthan);
1698 /* Offset from address of function to start of its code.
1699 Zero on most machines. */
1700 set_gdbarch_function_start_offset (gdbarch, 0);
1701 set_gdbarch_max_register_raw_size (gdbarch, 8);
1702 set_gdbarch_max_register_virtual_size (gdbarch, 8);
1703 set_gdbarch_breakpoint_from_pc (gdbarch, s390_breakpoint_from_pc);
1704 set_gdbarch_skip_prologue (gdbarch, s390_skip_prologue);
1705 set_gdbarch_init_extra_frame_info (gdbarch, s390_init_extra_frame_info);
1706 set_gdbarch_init_frame_pc_first (gdbarch, s390_init_frame_pc_first);
1707 set_gdbarch_read_fp (gdbarch, s390_read_fp);
1708 set_gdbarch_write_fp (gdbarch, s390_write_fp);
1709 /* This function that tells us whether the function invocation represented
1710 by FI does not have a frame on the stack associated with it. If it
1711 does not, FRAMELESS is set to 1, else 0. */
1712 set_gdbarch_frameless_function_invocation (gdbarch,
1713 s390_frameless_function_invocation);
1714 /* Return saved PC from a frame */
1715 set_gdbarch_frame_saved_pc (gdbarch, s390_frame_saved_pc);
1716 /* FRAME_CHAIN takes a frame's nominal address
1717 and produces the frame's chain-pointer. */
1718 set_gdbarch_frame_chain (gdbarch, s390_frame_chain);
1719 set_gdbarch_saved_pc_after_call (gdbarch, s390_saved_pc_after_call);
1720 set_gdbarch_register_byte (gdbarch, s390_register_byte);
1721 set_gdbarch_pc_regnum (gdbarch, S390_PC_REGNUM);
1722 set_gdbarch_sp_regnum (gdbarch, S390_SP_REGNUM);
1723 set_gdbarch_fp_regnum (gdbarch, S390_FP_REGNUM);
1724 set_gdbarch_fp0_regnum (gdbarch, S390_FP0_REGNUM);
1725 set_gdbarch_num_regs (gdbarch, S390_NUM_REGS);
1726 set_gdbarch_cannot_fetch_register (gdbarch, s390_cannot_fetch_register);
1727 set_gdbarch_cannot_store_register (gdbarch, s390_cannot_fetch_register);
1728 set_gdbarch_get_saved_register (gdbarch, generic_get_saved_register);
1729 set_gdbarch_use_struct_convention (gdbarch, generic_use_struct_convention);
1730 set_gdbarch_frame_chain_valid (gdbarch, func_frame_chain_valid);
1731 set_gdbarch_register_name (gdbarch, s390_register_name);
1732 set_gdbarch_stab_reg_to_regnum (gdbarch, s390_stab_reg_to_regnum);
1733 set_gdbarch_dwarf_reg_to_regnum (gdbarch, s390_stab_reg_to_regnum);
1734 set_gdbarch_dwarf2_reg_to_regnum (gdbarch, s390_stab_reg_to_regnum);
1735
1736 /* Parameters for inferior function calls. */
1737 set_gdbarch_call_dummy_p (gdbarch, 1);
1738 set_gdbarch_use_generic_dummy_frames (gdbarch, 1);
1739 set_gdbarch_call_dummy_length (gdbarch, 0);
1740 set_gdbarch_call_dummy_location (gdbarch, AT_ENTRY_POINT);
1741 set_gdbarch_call_dummy_address (gdbarch, entry_point_address);
1742 set_gdbarch_call_dummy_start_offset (gdbarch, 0);
1743 set_gdbarch_pc_in_call_dummy (gdbarch, pc_in_call_dummy_at_entry_point);
1744 set_gdbarch_push_dummy_frame (gdbarch, generic_push_dummy_frame);
1745 set_gdbarch_push_arguments (gdbarch, s390_push_arguments);
1746 set_gdbarch_call_dummy_breakpoint_offset_p (gdbarch, 1);
1747 set_gdbarch_call_dummy_breakpoint_offset (gdbarch, 0);
1748 set_gdbarch_call_dummy_stack_adjust_p (gdbarch, 0);
1749 set_gdbarch_extract_struct_value_address (gdbarch, 0);
1750 set_gdbarch_fix_call_dummy (gdbarch, generic_fix_call_dummy);
1751 set_gdbarch_push_return_address (gdbarch, s390_push_return_address);
1752 set_gdbarch_sizeof_call_dummy_words (gdbarch,
1753 sizeof (s390_call_dummy_words));
1754 set_gdbarch_call_dummy_words (gdbarch, s390_call_dummy_words);
1755 set_gdbarch_coerce_float_to_double (gdbarch,
1756 standard_coerce_float_to_double);
1757
1758 switch (info.bfd_arch_info->mach)
1759 {
1760 case bfd_mach_s390_esa:
1761 set_gdbarch_register_size (gdbarch, 4);
1762 set_gdbarch_register_raw_size (gdbarch, s390_register_raw_size);
1763 set_gdbarch_register_virtual_size (gdbarch, s390_register_raw_size);
1764 set_gdbarch_register_virtual_type (gdbarch, s390_register_virtual_type);
1765
1766 set_gdbarch_addr_bits_remove (gdbarch, s390_addr_bits_remove);
1767 set_gdbarch_register_bytes (gdbarch, S390_REGISTER_BYTES);
1768 break;
1769 case bfd_mach_s390_esame:
1770 set_gdbarch_register_size (gdbarch, 8);
1771 set_gdbarch_register_raw_size (gdbarch, s390x_register_raw_size);
1772 set_gdbarch_register_virtual_size (gdbarch, s390x_register_raw_size);
1773 set_gdbarch_register_virtual_type (gdbarch,
1774 s390x_register_virtual_type);
1775
1776 set_gdbarch_long_bit (gdbarch, 64);
1777 set_gdbarch_long_long_bit (gdbarch, 64);
1778 set_gdbarch_ptr_bit (gdbarch, 64);
1779 set_gdbarch_register_bytes (gdbarch, S390X_REGISTER_BYTES);
1780 break;
1781 }
1782
1783 return gdbarch;
1784 }
1785
1786
1787
1788 void
1789 _initialize_s390_tdep ()
1790 {
1791
1792 /* Hook us into the gdbarch mechanism. */
1793 register_gdbarch_init (bfd_arch_s390, s390_gdbarch_init);
1794 if (!tm_print_insn) /* Someone may have already set it */
1795 tm_print_insn = gdb_print_insn_s390;
1796 }
1797
1798 #endif /* GDBSERVER */