* s390-tdep.c (s390_extract_return_value): Returned `float' values
[binutils-gdb.git] / gdb / s390-tdep.c
1 /* Target-dependent code for GDB, the GNU debugger.
2 Copyright 2001 Free Software Foundation, Inc.
3 Contributed by D.J. Barrow (djbarrow@de.ibm.com,barrow_dj@yahoo.com)
4 for IBM Deutschland Entwicklung GmbH, IBM Corporation.
5
6 This file is part of GDB.
7
8 This program is free software; you can redistribute it and/or modify
9 it under the terms of the GNU General Public License as published by
10 the Free Software Foundation; either version 2 of the License, or
11 (at your option) any later version.
12
13 This program is distributed in the hope that it will be useful,
14 but WITHOUT ANY WARRANTY; without even the implied warranty of
15 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
16 GNU General Public License for more details.
17
18 You should have received a copy of the GNU General Public License
19 along with this program; if not, write to the Free Software
20 Foundation, Inc., 59 Temple Place - Suite 330, Boston, MA
21 02111-1307, USA. */
22
23 #define S390_TDEP /* for special macros in tm-s390.h */
24 #include <defs.h>
25 #include "arch-utils.h"
26 #include "frame.h"
27 #include "inferior.h"
28 #include "symtab.h"
29 #include "target.h"
30 #include "gdbcore.h"
31 #include "gdbcmd.h"
32 #include "symfile.h"
33 #include "objfiles.h"
34 #include "tm.h"
35 #include "../bfd/bfd.h"
36 #include "floatformat.h"
37 #include "regcache.h"
38 #include "value.h"
39 #include "gdb_assert.h"
40
41
42
43
44 /* Number of bytes of storage in the actual machine representation
45 for register N.
46 Note that the unsigned cast here forces the result of the
47 subtraction to very high positive values if N < S390_FP0_REGNUM */
48 int
49 s390_register_raw_size (int reg_nr)
50 {
51 return ((unsigned) reg_nr - S390_FP0_REGNUM) <
52 S390_NUM_FPRS ? S390_FPR_SIZE : 4;
53 }
54
55 int
56 s390x_register_raw_size (int reg_nr)
57 {
58 return (reg_nr == S390_FPC_REGNUM)
59 || (reg_nr >= S390_FIRST_ACR && reg_nr <= S390_LAST_ACR) ? 4 : 8;
60 }
61
62 int
63 s390_cannot_fetch_register (int regno)
64 {
65 return (regno >= S390_FIRST_CR && regno < (S390_FIRST_CR + 9)) ||
66 (regno >= (S390_FIRST_CR + 12) && regno <= S390_LAST_CR);
67 }
68
69 int
70 s390_register_byte (int reg_nr)
71 {
72 if (reg_nr <= S390_GP_LAST_REGNUM)
73 return reg_nr * S390_GPR_SIZE;
74 if (reg_nr <= S390_LAST_ACR)
75 return S390_ACR0_OFFSET + (((reg_nr) - S390_FIRST_ACR) * S390_ACR_SIZE);
76 if (reg_nr <= S390_LAST_CR)
77 return S390_CR0_OFFSET + (((reg_nr) - S390_FIRST_CR) * S390_CR_SIZE);
78 if (reg_nr == S390_FPC_REGNUM)
79 return S390_FPC_OFFSET;
80 else
81 return S390_FP0_OFFSET + (((reg_nr) - S390_FP0_REGNUM) * S390_FPR_SIZE);
82 }
83
84 #ifndef GDBSERVER
85 #define S390_MAX_INSTR_SIZE (6)
86 #define S390_SYSCALL_OPCODE (0x0a)
87 #define S390_SYSCALL_SIZE (2)
88 #define S390_SIGCONTEXT_SREGS_OFFSET (8)
89 #define S390X_SIGCONTEXT_SREGS_OFFSET (8)
90 #define S390_SIGREGS_FP0_OFFSET (144)
91 #define S390X_SIGREGS_FP0_OFFSET (216)
92 #define S390_UC_MCONTEXT_OFFSET (256)
93 #define S390X_UC_MCONTEXT_OFFSET (344)
94 #define S390_STACK_FRAME_OVERHEAD (GDB_TARGET_IS_ESAME ? 160:96)
95 #define S390_SIGNAL_FRAMESIZE (GDB_TARGET_IS_ESAME ? 160:96)
96 #define s390_NR_sigreturn 119
97 #define s390_NR_rt_sigreturn 173
98
99
100
101 struct frame_extra_info
102 {
103 int initialised;
104 int good_prologue;
105 CORE_ADDR function_start;
106 CORE_ADDR skip_prologue_function_start;
107 CORE_ADDR saved_pc_valid;
108 CORE_ADDR saved_pc;
109 CORE_ADDR sig_fixed_saved_pc_valid;
110 CORE_ADDR sig_fixed_saved_pc;
111 CORE_ADDR frame_pointer_saved_pc; /* frame pointer needed for alloca */
112 CORE_ADDR stack_bought; /* amount we decrement the stack pointer by */
113 CORE_ADDR sigcontext;
114 };
115
116
117 static CORE_ADDR s390_frame_saved_pc_nofix (struct frame_info *fi);
118
119 int
120 s390_readinstruction (bfd_byte instr[], CORE_ADDR at,
121 struct disassemble_info *info)
122 {
123 int instrlen;
124
125 static int s390_instrlen[] = {
126 2,
127 4,
128 4,
129 6
130 };
131 if ((*info->read_memory_func) (at, &instr[0], 2, info))
132 return -1;
133 instrlen = s390_instrlen[instr[0] >> 6];
134 if ((*info->read_memory_func) (at + 2, &instr[2], instrlen - 2, info))
135 return -1;
136 return instrlen;
137 }
138
139 static void
140 s390_memset_extra_info (struct frame_extra_info *fextra_info)
141 {
142 memset (fextra_info, 0, sizeof (struct frame_extra_info));
143 }
144
145
146
147 char *
148 s390_register_name (int reg_nr)
149 {
150 static char *register_names[] = {
151 "pswm", "pswa",
152 "gpr0", "gpr1", "gpr2", "gpr3", "gpr4", "gpr5", "gpr6", "gpr7",
153 "gpr8", "gpr9", "gpr10", "gpr11", "gpr12", "gpr13", "gpr14", "gpr15",
154 "acr0", "acr1", "acr2", "acr3", "acr4", "acr5", "acr6", "acr7",
155 "acr8", "acr9", "acr10", "acr11", "acr12", "acr13", "acr14", "acr15",
156 "cr0", "cr1", "cr2", "cr3", "cr4", "cr5", "cr6", "cr7",
157 "cr8", "cr9", "cr10", "cr11", "cr12", "cr13", "cr14", "cr15",
158 "fpc",
159 "fpr0", "fpr1", "fpr2", "fpr3", "fpr4", "fpr5", "fpr6", "fpr7",
160 "fpr8", "fpr9", "fpr10", "fpr11", "fpr12", "fpr13", "fpr14", "fpr15"
161 };
162
163 if (reg_nr >= S390_LAST_REGNUM)
164 return NULL;
165 return register_names[reg_nr];
166 }
167
168
169
170
171 int
172 s390_stab_reg_to_regnum (int regno)
173 {
174 return regno >= 64 ? S390_PSWM_REGNUM - 64 :
175 regno >= 48 ? S390_FIRST_ACR - 48 :
176 regno >= 32 ? S390_FIRST_CR - 32 :
177 regno <= 15 ? (regno + 2) :
178 S390_FP0_REGNUM + ((regno - 16) & 8) + (((regno - 16) & 3) << 1) +
179 (((regno - 16) & 4) >> 2);
180 }
181
182
183
184 /* s390_get_frame_info based on Hartmuts
185 prologue definition in
186 gcc-2.8.1/config/l390/linux.c
187
188 It reads one instruction at a time & based on whether
189 it looks like prologue code or not it makes a decision on
190 whether the prologue is over, there are various state machines
191 in the code to determine if the prologue code is possilby valid.
192
193 This is done to hopefully allow the code survive minor revs of
194 calling conventions.
195
196 */
197
198 int
199 s390_get_frame_info (CORE_ADDR pc, struct frame_extra_info *fextra_info,
200 struct frame_info *fi, int init_extra_info)
201 {
202 #define CONST_POOL_REGIDX 13
203 #define GOT_REGIDX 12
204 bfd_byte instr[S390_MAX_INSTR_SIZE];
205 CORE_ADDR test_pc = pc, test_pc2;
206 CORE_ADDR orig_sp = 0, save_reg_addr = 0, *saved_regs = NULL;
207 int valid_prologue, good_prologue = 0;
208 int gprs_saved[S390_NUM_GPRS];
209 int fprs_saved[S390_NUM_FPRS];
210 int regidx, instrlen;
211 int save_link_regidx, subtract_sp_regidx;
212 int const_pool_state, save_link_state;
213 int frame_pointer_found, varargs_state;
214 int loop_cnt, gdb_gpr_store, gdb_fpr_store;
215 int frame_pointer_regidx = 0xf;
216 int offset, expected_offset;
217 int err = 0;
218 disassemble_info info;
219
220 /* What we've seen so far regarding r12 --- the GOT (Global Offset
221 Table) pointer. We expect to see `l %r12, N(%r13)', which loads
222 r12 with the offset from the constant pool to the GOT, and then
223 an `ar %r12, %r13', which adds the constant pool address,
224 yielding the GOT's address. Here's what got_state means:
225 0 -- seen nothing
226 1 -- seen `l %r12, N(%r13)', but no `ar'
227 2 -- seen load and add, so GOT pointer is totally initialized
228 When got_state is 1, then got_load_addr is the address of the
229 load instruction, and got_load_len is the length of that
230 instruction. */
231 int got_state;
232 CORE_ADDR got_load_addr = 0, got_load_len = 0;
233
234 const_pool_state = save_link_state = got_state = varargs_state = 0;
235 frame_pointer_found = 0;
236 memset (gprs_saved, 0, sizeof (gprs_saved));
237 memset (fprs_saved, 0, sizeof (fprs_saved));
238 info.read_memory_func = dis_asm_read_memory;
239
240 save_link_regidx = subtract_sp_regidx = 0;
241 if (fextra_info)
242 {
243 if (fi && fi->frame)
244 {
245 orig_sp = fi->frame + fextra_info->stack_bought;
246 saved_regs = fi->saved_regs;
247 }
248 if (init_extra_info || !fextra_info->initialised)
249 {
250 s390_memset_extra_info (fextra_info);
251 fextra_info->function_start = pc;
252 fextra_info->initialised = 1;
253 }
254 }
255 instrlen = 0;
256 do
257 {
258 valid_prologue = 0;
259 test_pc += instrlen;
260 /* add the previous instruction len */
261 instrlen = s390_readinstruction (instr, test_pc, &info);
262 if (instrlen < 0)
263 {
264 good_prologue = 0;
265 err = -1;
266 break;
267 }
268 /* We probably are in a glibc syscall */
269 if (instr[0] == S390_SYSCALL_OPCODE && test_pc == pc)
270 {
271 good_prologue = 1;
272 if (saved_regs && fextra_info && fi->next && fi->next->extra_info
273 && fi->next->extra_info->sigcontext)
274 {
275 /* We are backtracing from a signal handler */
276 save_reg_addr = fi->next->extra_info->sigcontext +
277 REGISTER_BYTE (S390_GP0_REGNUM);
278 for (regidx = 0; regidx < S390_NUM_GPRS; regidx++)
279 {
280 saved_regs[S390_GP0_REGNUM + regidx] = save_reg_addr;
281 save_reg_addr += S390_GPR_SIZE;
282 }
283 save_reg_addr = fi->next->extra_info->sigcontext +
284 (GDB_TARGET_IS_ESAME ? S390X_SIGREGS_FP0_OFFSET :
285 S390_SIGREGS_FP0_OFFSET);
286 for (regidx = 0; regidx < S390_NUM_FPRS; regidx++)
287 {
288 saved_regs[S390_FP0_REGNUM + regidx] = save_reg_addr;
289 save_reg_addr += S390_FPR_SIZE;
290 }
291 }
292 break;
293 }
294 if (save_link_state == 0)
295 {
296 /* check for a stack relative STMG or STM */
297 if (((GDB_TARGET_IS_ESAME &&
298 ((instr[0] == 0xeb) && (instr[5] == 0x24))) ||
299 (instr[0] == 0x90)) && ((instr[2] >> 4) == 0xf))
300 {
301 regidx = (instr[1] >> 4);
302 if (regidx < 6)
303 varargs_state = 1;
304 offset = ((instr[2] & 0xf) << 8) + instr[3];
305 expected_offset =
306 S390_GPR6_STACK_OFFSET + (S390_GPR_SIZE * (regidx - 6));
307 if (offset != expected_offset)
308 {
309 good_prologue = 0;
310 break;
311 }
312 if (saved_regs)
313 save_reg_addr = orig_sp + offset;
314 for (; regidx <= (instr[1] & 0xf); regidx++)
315 {
316 if (gprs_saved[regidx])
317 {
318 good_prologue = 0;
319 break;
320 }
321 good_prologue = 1;
322 gprs_saved[regidx] = 1;
323 if (saved_regs)
324 {
325 saved_regs[S390_GP0_REGNUM + regidx] = save_reg_addr;
326 save_reg_addr += S390_GPR_SIZE;
327 }
328 }
329 valid_prologue = 1;
330 continue;
331 }
332 }
333 /* check for a stack relative STG or ST */
334 if ((save_link_state == 0 || save_link_state == 3) &&
335 ((GDB_TARGET_IS_ESAME &&
336 ((instr[0] == 0xe3) && (instr[5] == 0x24))) ||
337 (instr[0] == 0x50)) && ((instr[2] >> 4) == 0xf))
338 {
339 regidx = instr[1] >> 4;
340 offset = ((instr[2] & 0xf) << 8) + instr[3];
341 if (offset == 0)
342 {
343 if (save_link_state == 3 && regidx == save_link_regidx)
344 {
345 save_link_state = 4;
346 valid_prologue = 1;
347 continue;
348 }
349 else
350 break;
351 }
352 if (regidx < 6)
353 varargs_state = 1;
354 expected_offset =
355 S390_GPR6_STACK_OFFSET + (S390_GPR_SIZE * (regidx - 6));
356 if (offset != expected_offset)
357 {
358 good_prologue = 0;
359 break;
360 }
361 if (gprs_saved[regidx])
362 {
363 good_prologue = 0;
364 break;
365 }
366 good_prologue = 1;
367 gprs_saved[regidx] = 1;
368 if (saved_regs)
369 {
370 save_reg_addr = orig_sp + offset;
371 saved_regs[S390_GP0_REGNUM + regidx] = save_reg_addr;
372 }
373 valid_prologue = 1;
374 continue;
375 }
376
377 /* check for STD */
378 if (instr[0] == 0x60 && (instr[2] >> 4) == 0xf)
379 {
380 regidx = instr[1] >> 4;
381 if (regidx == 0 || regidx == 2)
382 varargs_state = 1;
383 if (fprs_saved[regidx])
384 {
385 good_prologue = 0;
386 break;
387 }
388 fprs_saved[regidx] = 1;
389 if (saved_regs)
390 {
391 save_reg_addr = orig_sp + (((instr[2] & 0xf) << 8) + instr[3]);
392 saved_regs[S390_FP0_REGNUM + regidx] = save_reg_addr;
393 }
394 valid_prologue = 1;
395 continue;
396 }
397
398
399 if (const_pool_state == 0)
400 {
401
402 if (GDB_TARGET_IS_ESAME)
403 {
404 /* Check for larl CONST_POOL_REGIDX,offset on ESAME */
405 if ((instr[0] == 0xc0)
406 && (instr[1] == (CONST_POOL_REGIDX << 4)))
407 {
408 const_pool_state = 2;
409 valid_prologue = 1;
410 continue;
411 }
412 }
413 else
414 {
415 /* Check for BASR gpr13,gpr0 used to load constant pool pointer to r13 in old compiler */
416 if (instr[0] == 0xd && (instr[1] & 0xf) == 0
417 && ((instr[1] >> 4) == CONST_POOL_REGIDX))
418 {
419 const_pool_state = 1;
420 valid_prologue = 1;
421 continue;
422 }
423 }
424 /* Check for new fangled bras %r13,newpc to load new constant pool */
425 /* embedded in code, older pre abi compilers also emitted this stuff. */
426 if ((instr[0] == 0xa7) && ((instr[1] & 0xf) == 0x5) &&
427 ((instr[1] >> 4) == CONST_POOL_REGIDX)
428 && ((instr[2] & 0x80) == 0))
429 {
430 const_pool_state = 2;
431 test_pc +=
432 (((((instr[2] & 0xf) << 8) + instr[3]) << 1) - instrlen);
433 valid_prologue = 1;
434 continue;
435 }
436 }
437 /* Check for AGHI or AHI CONST_POOL_REGIDX,val */
438 if (const_pool_state == 1 && (instr[0] == 0xa7) &&
439 ((GDB_TARGET_IS_ESAME &&
440 (instr[1] == ((CONST_POOL_REGIDX << 4) | 0xb))) ||
441 (instr[1] == ((CONST_POOL_REGIDX << 4) | 0xa))))
442 {
443 const_pool_state = 2;
444 valid_prologue = 1;
445 continue;
446 }
447 /* Check for LGR or LR gprx,15 */
448 if ((GDB_TARGET_IS_ESAME &&
449 instr[0] == 0xb9 && instr[1] == 0x04 && (instr[3] & 0xf) == 0xf) ||
450 (instr[0] == 0x18 && (instr[1] & 0xf) == 0xf))
451 {
452 if (GDB_TARGET_IS_ESAME)
453 regidx = instr[3] >> 4;
454 else
455 regidx = instr[1] >> 4;
456 if (save_link_state == 0 && regidx != 0xb)
457 {
458 /* Almost defintely code for
459 decrementing the stack pointer
460 ( i.e. a non leaf function
461 or else leaf with locals ) */
462 save_link_regidx = regidx;
463 save_link_state = 1;
464 valid_prologue = 1;
465 continue;
466 }
467 /* We use this frame pointer for alloca
468 unfortunately we need to assume its gpr11
469 otherwise we would need a smarter prologue
470 walker. */
471 if (!frame_pointer_found && regidx == 0xb)
472 {
473 frame_pointer_regidx = 0xb;
474 frame_pointer_found = 1;
475 if (fextra_info)
476 fextra_info->frame_pointer_saved_pc = test_pc;
477 valid_prologue = 1;
478 continue;
479 }
480 }
481 /* Check for AHI or AGHI gpr15,val */
482 if (save_link_state == 1 && (instr[0] == 0xa7) &&
483 ((GDB_TARGET_IS_ESAME && (instr[1] == 0xfb)) || (instr[1] == 0xfa)))
484 {
485 if (fextra_info)
486 fextra_info->stack_bought =
487 -extract_signed_integer (&instr[2], 2);
488 save_link_state = 3;
489 valid_prologue = 1;
490 continue;
491 }
492 /* Alternatively check for the complex construction for
493 buying more than 32k of stack
494 BRAS gprx,.+8
495 long vals %r15,0(%gprx) gprx currently r1 */
496 if ((save_link_state == 1) && (instr[0] == 0xa7)
497 && ((instr[1] & 0xf) == 0x5) && (instr[2] == 0)
498 && (instr[3] == 0x4) && ((instr[1] >> 4) != CONST_POOL_REGIDX))
499 {
500 subtract_sp_regidx = instr[1] >> 4;
501 save_link_state = 2;
502 if (fextra_info)
503 target_read_memory (test_pc + instrlen,
504 (char *) &fextra_info->stack_bought,
505 sizeof (fextra_info->stack_bought));
506 test_pc += 4;
507 valid_prologue = 1;
508 continue;
509 }
510 if (save_link_state == 2 && instr[0] == 0x5b
511 && instr[1] == 0xf0 &&
512 instr[2] == (subtract_sp_regidx << 4) && instr[3] == 0)
513 {
514 save_link_state = 3;
515 valid_prologue = 1;
516 continue;
517 }
518 /* check for LA gprx,offset(15) used for varargs */
519 if ((instr[0] == 0x41) && ((instr[2] >> 4) == 0xf) &&
520 ((instr[1] & 0xf) == 0))
521 {
522 /* some code uses gpr7 to point to outgoing args */
523 if (((instr[1] >> 4) == 7) && (save_link_state == 0) &&
524 ((instr[2] & 0xf) == 0)
525 && (instr[3] == S390_STACK_FRAME_OVERHEAD))
526 {
527 valid_prologue = 1;
528 continue;
529 }
530 if (varargs_state == 1)
531 {
532 varargs_state = 2;
533 valid_prologue = 1;
534 continue;
535 }
536 }
537 /* Check for a GOT load */
538
539 if (GDB_TARGET_IS_ESAME)
540 {
541 /* Check for larl GOT_REGIDX, on ESAME */
542 if ((got_state == 0) && (instr[0] == 0xc0)
543 && (instr[1] == (GOT_REGIDX << 4)))
544 {
545 got_state = 2;
546 valid_prologue = 1;
547 continue;
548 }
549 }
550 else
551 {
552 /* check for l GOT_REGIDX,x(CONST_POOL_REGIDX) */
553 if (got_state == 0 && const_pool_state == 2 && instr[0] == 0x58
554 && (instr[2] == (CONST_POOL_REGIDX << 4))
555 && ((instr[1] >> 4) == GOT_REGIDX))
556 {
557 got_state = 1;
558 got_load_addr = test_pc;
559 got_load_len = instrlen;
560 valid_prologue = 1;
561 continue;
562 }
563 /* Check for subsequent ar got_regidx,basr_regidx */
564 if (got_state == 1 && instr[0] == 0x1a &&
565 instr[1] == ((GOT_REGIDX << 4) | CONST_POOL_REGIDX))
566 {
567 got_state = 2;
568 valid_prologue = 1;
569 continue;
570 }
571 }
572 }
573 while (valid_prologue && good_prologue);
574 if (good_prologue)
575 {
576 /* If this function doesn't reference the global offset table,
577 then the compiler may use r12 for other things. If the last
578 instruction we saw was a load of r12 from the constant pool,
579 with no subsequent add to make the address PC-relative, then
580 the load was probably a genuine body instruction; don't treat
581 it as part of the prologue. */
582 if (got_state == 1
583 && got_load_addr + got_load_len == test_pc)
584 {
585 test_pc = got_load_addr;
586 instrlen = got_load_len;
587 }
588
589 good_prologue = (((const_pool_state == 0) || (const_pool_state == 2)) &&
590 ((save_link_state == 0) || (save_link_state == 4)) &&
591 ((varargs_state == 0) || (varargs_state == 2)));
592 }
593 if (fextra_info)
594 {
595 fextra_info->good_prologue = good_prologue;
596 fextra_info->skip_prologue_function_start =
597 (good_prologue ? test_pc : pc);
598 }
599 if (saved_regs)
600 /* The SP's element of the saved_regs array holds the old SP,
601 not the address at which it is saved. */
602 saved_regs[S390_SP_REGNUM] = orig_sp;
603 return err;
604 }
605
606
607 int
608 s390_check_function_end (CORE_ADDR pc)
609 {
610 bfd_byte instr[S390_MAX_INSTR_SIZE];
611 disassemble_info info;
612 int regidx, instrlen;
613
614 info.read_memory_func = dis_asm_read_memory;
615 instrlen = s390_readinstruction (instr, pc, &info);
616 if (instrlen < 0)
617 return -1;
618 /* check for BR */
619 if (instrlen != 2 || instr[0] != 07 || (instr[1] >> 4) != 0xf)
620 return 0;
621 regidx = instr[1] & 0xf;
622 /* Check for LMG or LG */
623 instrlen =
624 s390_readinstruction (instr, pc - (GDB_TARGET_IS_ESAME ? 6 : 4), &info);
625 if (instrlen < 0)
626 return -1;
627 if (GDB_TARGET_IS_ESAME)
628 {
629
630 if (instrlen != 6 || instr[0] != 0xeb || instr[5] != 0x4)
631 return 0;
632 }
633 else if (instrlen != 4 || instr[0] != 0x98)
634 {
635 return 0;
636 }
637 if ((instr[2] >> 4) != 0xf)
638 return 0;
639 if (regidx == 14)
640 return 1;
641 instrlen = s390_readinstruction (instr, pc - (GDB_TARGET_IS_ESAME ? 12 : 8),
642 &info);
643 if (instrlen < 0)
644 return -1;
645 if (GDB_TARGET_IS_ESAME)
646 {
647 /* Check for LG */
648 if (instrlen != 6 || instr[0] != 0xe3 || instr[5] != 0x4)
649 return 0;
650 }
651 else
652 {
653 /* Check for L */
654 if (instrlen != 4 || instr[0] != 0x58)
655 return 0;
656 }
657 if (instr[2] >> 4 != 0xf)
658 return 0;
659 if (instr[1] >> 4 != regidx)
660 return 0;
661 return 1;
662 }
663
664 static CORE_ADDR
665 s390_sniff_pc_function_start (CORE_ADDR pc, struct frame_info *fi)
666 {
667 CORE_ADDR function_start, test_function_start;
668 int loop_cnt, err, function_end;
669 struct frame_extra_info fextra_info;
670 function_start = get_pc_function_start (pc);
671
672 if (function_start == 0)
673 {
674 test_function_start = pc;
675 if (test_function_start & 1)
676 return 0; /* This has to be bogus */
677 loop_cnt = 0;
678 do
679 {
680
681 err =
682 s390_get_frame_info (test_function_start, &fextra_info, fi, 1);
683 loop_cnt++;
684 test_function_start -= 2;
685 function_end = s390_check_function_end (test_function_start);
686 }
687 while (!(function_end == 1 || err || loop_cnt >= 4096 ||
688 (fextra_info.good_prologue)));
689 if (fextra_info.good_prologue)
690 function_start = fextra_info.function_start;
691 else if (function_end == 1)
692 function_start = test_function_start;
693 }
694 return function_start;
695 }
696
697
698
699 CORE_ADDR
700 s390_function_start (struct frame_info *fi)
701 {
702 CORE_ADDR function_start = 0;
703
704 if (fi->extra_info && fi->extra_info->initialised)
705 function_start = fi->extra_info->function_start;
706 else if (fi->pc)
707 function_start = get_pc_function_start (fi->pc);
708 return function_start;
709 }
710
711
712
713
714 int
715 s390_frameless_function_invocation (struct frame_info *fi)
716 {
717 struct frame_extra_info fextra_info, *fextra_info_ptr;
718 int frameless = 0;
719
720 if (fi->next == NULL) /* no may be frameless */
721 {
722 if (fi->extra_info)
723 fextra_info_ptr = fi->extra_info;
724 else
725 {
726 fextra_info_ptr = &fextra_info;
727 s390_get_frame_info (s390_sniff_pc_function_start (fi->pc, fi),
728 fextra_info_ptr, fi, 1);
729 }
730 frameless = ((fextra_info_ptr->stack_bought == 0));
731 }
732 return frameless;
733
734 }
735
736
737 static int
738 s390_is_sigreturn (CORE_ADDR pc, struct frame_info *sighandler_fi,
739 CORE_ADDR *sregs, CORE_ADDR *sigcaller_pc)
740 {
741 bfd_byte instr[S390_MAX_INSTR_SIZE];
742 disassemble_info info;
743 int instrlen;
744 CORE_ADDR scontext;
745 int retval = 0;
746 CORE_ADDR orig_sp;
747 CORE_ADDR temp_sregs;
748
749 scontext = temp_sregs = 0;
750
751 info.read_memory_func = dis_asm_read_memory;
752 instrlen = s390_readinstruction (instr, pc, &info);
753 if (sigcaller_pc)
754 *sigcaller_pc = 0;
755 if (((instrlen == S390_SYSCALL_SIZE) &&
756 (instr[0] == S390_SYSCALL_OPCODE)) &&
757 ((instr[1] == s390_NR_sigreturn) || (instr[1] == s390_NR_rt_sigreturn)))
758 {
759 if (sighandler_fi)
760 {
761 if (s390_frameless_function_invocation (sighandler_fi))
762 orig_sp = sighandler_fi->frame;
763 else
764 orig_sp = ADDR_BITS_REMOVE ((CORE_ADDR)
765 read_memory_integer (sighandler_fi->
766 frame,
767 S390_GPR_SIZE));
768 if (orig_sp && sigcaller_pc)
769 {
770 scontext = orig_sp + S390_SIGNAL_FRAMESIZE;
771 if (pc == scontext && instr[1] == s390_NR_rt_sigreturn)
772 {
773 /* We got a new style rt_signal */
774 /* get address of read ucontext->uc_mcontext */
775 temp_sregs = orig_sp + (GDB_TARGET_IS_ESAME ?
776 S390X_UC_MCONTEXT_OFFSET :
777 S390_UC_MCONTEXT_OFFSET);
778 }
779 else
780 {
781 /* read sigcontext->sregs */
782 temp_sregs = ADDR_BITS_REMOVE ((CORE_ADDR)
783 read_memory_integer (scontext
784 +
785 (GDB_TARGET_IS_ESAME
786 ?
787 S390X_SIGCONTEXT_SREGS_OFFSET
788 :
789 S390_SIGCONTEXT_SREGS_OFFSET),
790 S390_GPR_SIZE));
791
792 }
793 /* read sigregs->psw.addr */
794 *sigcaller_pc =
795 ADDR_BITS_REMOVE ((CORE_ADDR)
796 read_memory_integer (temp_sregs +
797 REGISTER_BYTE
798 (S390_PC_REGNUM),
799 S390_PSW_ADDR_SIZE));
800 }
801 }
802 retval = 1;
803 }
804 if (sregs)
805 *sregs = temp_sregs;
806 return retval;
807 }
808
809 /*
810 We need to do something better here but this will keep us out of trouble
811 for the moment.
812 For some reason the blockframe.c calls us with fi->next->fromleaf
813 so this seems of little use to us. */
814 void
815 s390_init_frame_pc_first (int next_fromleaf, struct frame_info *fi)
816 {
817 CORE_ADDR sigcaller_pc;
818
819 fi->pc = 0;
820 if (next_fromleaf)
821 {
822 fi->pc = ADDR_BITS_REMOVE (read_register (S390_RETADDR_REGNUM));
823 /* fix signal handlers */
824 }
825 else if (fi->next && fi->next->pc)
826 fi->pc = s390_frame_saved_pc_nofix (fi->next);
827 if (fi->pc && fi->next && fi->next->frame &&
828 s390_is_sigreturn (fi->pc, fi->next, NULL, &sigcaller_pc))
829 {
830 fi->pc = sigcaller_pc;
831 }
832
833 }
834
835 void
836 s390_init_extra_frame_info (int fromleaf, struct frame_info *fi)
837 {
838 fi->extra_info = frame_obstack_alloc (sizeof (struct frame_extra_info));
839 if (fi->pc)
840 s390_get_frame_info (s390_sniff_pc_function_start (fi->pc, fi),
841 fi->extra_info, fi, 1);
842 else
843 s390_memset_extra_info (fi->extra_info);
844 }
845
846 /* If saved registers of frame FI are not known yet, read and cache them.
847 &FEXTRA_INFOP contains struct frame_extra_info; TDATAP can be NULL,
848 in which case the framedata are read. */
849
850 void
851 s390_frame_init_saved_regs (struct frame_info *fi)
852 {
853
854 int quick;
855
856 if (fi->saved_regs == NULL)
857 {
858 /* zalloc memsets the saved regs */
859 frame_saved_regs_zalloc (fi);
860 if (fi->pc)
861 {
862 quick = (fi->extra_info && fi->extra_info->initialised
863 && fi->extra_info->good_prologue);
864 s390_get_frame_info (quick ? fi->extra_info->function_start :
865 s390_sniff_pc_function_start (fi->pc, fi),
866 fi->extra_info, fi, !quick);
867 }
868 }
869 }
870
871
872
873 CORE_ADDR
874 s390_frame_args_address (struct frame_info *fi)
875 {
876
877 /* Apparently gdb already knows gdb_args_offset itself */
878 return fi->frame;
879 }
880
881
882 static CORE_ADDR
883 s390_frame_saved_pc_nofix (struct frame_info *fi)
884 {
885 if (fi->extra_info && fi->extra_info->saved_pc_valid)
886 return fi->extra_info->saved_pc;
887 s390_frame_init_saved_regs (fi);
888 if (fi->extra_info)
889 {
890 fi->extra_info->saved_pc_valid = 1;
891 if (fi->extra_info->good_prologue)
892 {
893 if (fi->saved_regs[S390_RETADDR_REGNUM])
894 {
895 return (fi->extra_info->saved_pc =
896 ADDR_BITS_REMOVE (read_memory_integer
897 (fi->saved_regs[S390_RETADDR_REGNUM],
898 S390_GPR_SIZE)));
899 }
900 }
901 }
902 return 0;
903 }
904
905 CORE_ADDR
906 s390_frame_saved_pc (struct frame_info *fi)
907 {
908 CORE_ADDR saved_pc = 0, sig_pc;
909
910 if (fi->extra_info && fi->extra_info->sig_fixed_saved_pc_valid)
911 return fi->extra_info->sig_fixed_saved_pc;
912 saved_pc = s390_frame_saved_pc_nofix (fi);
913
914 if (fi->extra_info)
915 {
916 fi->extra_info->sig_fixed_saved_pc_valid = 1;
917 if (saved_pc)
918 {
919 if (s390_is_sigreturn (saved_pc, fi, NULL, &sig_pc))
920 saved_pc = sig_pc;
921 }
922 fi->extra_info->sig_fixed_saved_pc = saved_pc;
923 }
924 return saved_pc;
925 }
926
927
928
929
930 /* We want backtraces out of signal handlers so we don't
931 set thisframe->signal_handler_caller to 1 */
932
933 CORE_ADDR
934 s390_frame_chain (struct frame_info *thisframe)
935 {
936 CORE_ADDR prev_fp = 0;
937
938 if (thisframe->prev && thisframe->prev->frame)
939 prev_fp = thisframe->prev->frame;
940 else
941 {
942 int sigreturn = 0;
943 CORE_ADDR sregs = 0;
944 struct frame_extra_info prev_fextra_info;
945
946 memset (&prev_fextra_info, 0, sizeof (prev_fextra_info));
947 if (thisframe->pc)
948 {
949 CORE_ADDR saved_pc, sig_pc;
950
951 saved_pc = s390_frame_saved_pc_nofix (thisframe);
952 if (saved_pc)
953 {
954 if ((sigreturn =
955 s390_is_sigreturn (saved_pc, thisframe, &sregs, &sig_pc)))
956 saved_pc = sig_pc;
957 s390_get_frame_info (s390_sniff_pc_function_start
958 (saved_pc, NULL), &prev_fextra_info, NULL,
959 1);
960 }
961 }
962 if (sigreturn)
963 {
964 /* read sigregs,regs.gprs[11 or 15] */
965 prev_fp = read_memory_integer (sregs +
966 REGISTER_BYTE (S390_GP0_REGNUM +
967 (prev_fextra_info.
968 frame_pointer_saved_pc
969 ? 11 : 15)),
970 S390_GPR_SIZE);
971 thisframe->extra_info->sigcontext = sregs;
972 }
973 else
974 {
975 if (thisframe->saved_regs)
976 {
977
978 int regno;
979
980 regno =
981 ((prev_fextra_info.frame_pointer_saved_pc
982 && thisframe->
983 saved_regs[S390_FRAME_REGNUM]) ? S390_FRAME_REGNUM :
984 S390_SP_REGNUM);
985 if (thisframe->saved_regs[regno])
986 prev_fp =
987 read_memory_integer (thisframe->saved_regs[regno],
988 S390_GPR_SIZE);
989 }
990 }
991 }
992 return ADDR_BITS_REMOVE (prev_fp);
993 }
994
995 /*
996 Whether struct frame_extra_info is actually needed I'll have to figure
997 out as our frames are similar to rs6000 there is a possibility
998 i386 dosen't need it. */
999
1000
1001
1002 /* a given return value in `regbuf' with a type `valtype', extract and copy its
1003 value into `valbuf' */
1004 void
1005 s390_extract_return_value (struct type *valtype, char *regbuf, char *valbuf)
1006 {
1007 /* floats and doubles are returned in fpr0. fpr's have a size of 8 bytes.
1008 We need to truncate the return value into float size (4 byte) if
1009 necessary. */
1010 int len = TYPE_LENGTH (valtype);
1011
1012 if (TYPE_CODE (valtype) == TYPE_CODE_FLT)
1013 memcpy (valbuf, &regbuf[REGISTER_BYTE (S390_FP0_REGNUM)], len);
1014 else
1015 {
1016 int offset = 0;
1017 /* return value is copied starting from r2. */
1018 if (TYPE_LENGTH (valtype) < S390_GPR_SIZE)
1019 offset = S390_GPR_SIZE - TYPE_LENGTH (valtype);
1020 memcpy (valbuf,
1021 regbuf + REGISTER_BYTE (S390_GP0_REGNUM + 2) + offset,
1022 TYPE_LENGTH (valtype));
1023 }
1024 }
1025
1026
1027 static char *
1028 s390_promote_integer_argument (struct type *valtype, char *valbuf,
1029 char *reg_buff, int *arglen)
1030 {
1031 char *value = valbuf;
1032 int len = TYPE_LENGTH (valtype);
1033
1034 if (len < S390_GPR_SIZE)
1035 {
1036 /* We need to upgrade this value to a register to pass it correctly */
1037 int idx, diff = S390_GPR_SIZE - len, negative =
1038 (!TYPE_UNSIGNED (valtype) && value[0] & 0x80);
1039 for (idx = 0; idx < S390_GPR_SIZE; idx++)
1040 {
1041 reg_buff[idx] = (idx < diff ? (negative ? 0xff : 0x0) :
1042 value[idx - diff]);
1043 }
1044 value = reg_buff;
1045 *arglen = S390_GPR_SIZE;
1046 }
1047 else
1048 {
1049 if (len & (S390_GPR_SIZE - 1))
1050 {
1051 fprintf_unfiltered (gdb_stderr,
1052 "s390_promote_integer_argument detected an argument not "
1053 "a multiple of S390_GPR_SIZE & greater than S390_GPR_SIZE "
1054 "we might not deal with this correctly.\n");
1055 }
1056 *arglen = len;
1057 }
1058
1059 return (value);
1060 }
1061
1062 void
1063 s390_store_return_value (struct type *valtype, char *valbuf)
1064 {
1065 int arglen;
1066 char *reg_buff = alloca (max (S390_FPR_SIZE, REGISTER_SIZE)), *value;
1067
1068 if (TYPE_CODE (valtype) == TYPE_CODE_FLT)
1069 {
1070 DOUBLEST tempfloat = extract_floating (valbuf, TYPE_LENGTH (valtype));
1071
1072 floatformat_from_doublest (&floatformat_ieee_double_big, &tempfloat,
1073 reg_buff);
1074 write_register_bytes (REGISTER_BYTE (S390_FP0_REGNUM), reg_buff,
1075 S390_FPR_SIZE);
1076 }
1077 else
1078 {
1079 value =
1080 s390_promote_integer_argument (valtype, valbuf, reg_buff, &arglen);
1081 /* Everything else is returned in GPR2 and up. */
1082 write_register_bytes (REGISTER_BYTE (S390_GP0_REGNUM + 2), value,
1083 arglen);
1084 }
1085 }
1086 static int
1087 gdb_print_insn_s390 (bfd_vma memaddr, disassemble_info * info)
1088 {
1089 bfd_byte instrbuff[S390_MAX_INSTR_SIZE];
1090 int instrlen, cnt;
1091
1092 instrlen = s390_readinstruction (instrbuff, (CORE_ADDR) memaddr, info);
1093 if (instrlen < 0)
1094 {
1095 (*info->memory_error_func) (instrlen, memaddr, info);
1096 return -1;
1097 }
1098 for (cnt = 0; cnt < instrlen; cnt++)
1099 info->fprintf_func (info->stream, "%02X ", instrbuff[cnt]);
1100 for (cnt = instrlen; cnt < S390_MAX_INSTR_SIZE; cnt++)
1101 info->fprintf_func (info->stream, " ");
1102 instrlen = print_insn_s390 (memaddr, info);
1103 return instrlen;
1104 }
1105
1106
1107
1108 /* Not the most efficent code in the world */
1109 int
1110 s390_fp_regnum ()
1111 {
1112 int regno = S390_SP_REGNUM;
1113 struct frame_extra_info fextra_info;
1114
1115 CORE_ADDR pc = ADDR_BITS_REMOVE (read_register (S390_PC_REGNUM));
1116
1117 s390_get_frame_info (s390_sniff_pc_function_start (pc, NULL), &fextra_info,
1118 NULL, 1);
1119 if (fextra_info.frame_pointer_saved_pc)
1120 regno = S390_FRAME_REGNUM;
1121 return regno;
1122 }
1123
1124 CORE_ADDR
1125 s390_read_fp ()
1126 {
1127 return read_register (s390_fp_regnum ());
1128 }
1129
1130
1131 void
1132 s390_write_fp (CORE_ADDR val)
1133 {
1134 write_register (s390_fp_regnum (), val);
1135 }
1136
1137
1138 void
1139 s390_push_dummy_frame ()
1140 {
1141 CORE_ADDR orig_sp = read_register (S390_SP_REGNUM), new_sp;
1142 void *saved_regs = alloca (REGISTER_BYTES);
1143
1144 new_sp = (orig_sp - (REGISTER_BYTES + S390_GPR_SIZE));
1145 read_register_bytes (0, (char *) saved_regs, REGISTER_BYTES);
1146 /* Use saved copy instead of orig_sp as this will have the correct endianness */
1147 write_memory (new_sp, (char *) saved_regs + REGISTER_BYTE (S390_SP_REGNUM),
1148 S390_GPR_SIZE);
1149 write_memory (new_sp + S390_GPR_SIZE, (char *) &saved_regs, REGISTER_BYTES);
1150 write_register (S390_SP_REGNUM, new_sp);
1151 }
1152
1153
1154 static void
1155 s390_pop_frame_regular (struct frame_info *frame)
1156 {
1157 int regnum;
1158
1159 write_register (S390_PC_REGNUM, FRAME_SAVED_PC (frame));
1160
1161 /* Restore any saved registers. */
1162 for (regnum = 0; regnum < NUM_REGS; regnum++)
1163 if (frame->saved_regs[regnum] != 0)
1164 {
1165 ULONGEST value;
1166
1167 value = read_memory_unsigned_integer (frame->saved_regs[regnum],
1168 REGISTER_RAW_SIZE (regnum));
1169 write_register (regnum, value);
1170 }
1171
1172 /* Actually cut back the stack. */
1173 write_register (S390_SP_REGNUM, FRAME_FP (frame));
1174
1175 /* Throw away any cached frame information. */
1176 flush_cached_frames ();
1177 }
1178
1179
1180 /* Destroy the innermost (Top-Of-Stack) stack frame, restoring the
1181 machine state that was in effect before the frame was created.
1182 Used in the contexts of the "return" command, and of
1183 target function calls from the debugger. */
1184 void
1185 s390_pop_frame ()
1186 {
1187 /* This function checks for and handles generic dummy frames, and
1188 calls back to our function for ordinary frames. */
1189 generic_pop_current_frame (s390_pop_frame_regular);
1190 }
1191
1192
1193 /* Return non-zero if TYPE is an integer-like type, zero otherwise.
1194 "Integer-like" types are those that should be passed the way
1195 integers are: integers, enums, ranges, characters, and booleans. */
1196 static int
1197 is_integer_like (struct type *type)
1198 {
1199 enum type_code code = TYPE_CODE (type);
1200
1201 return (code == TYPE_CODE_INT
1202 || code == TYPE_CODE_ENUM
1203 || code == TYPE_CODE_RANGE
1204 || code == TYPE_CODE_CHAR
1205 || code == TYPE_CODE_BOOL);
1206 }
1207
1208
1209 /* Return non-zero if TYPE is a pointer-like type, zero otherwise.
1210 "Pointer-like" types are those that should be passed the way
1211 pointers are: pointers and references. */
1212 static int
1213 is_pointer_like (struct type *type)
1214 {
1215 enum type_code code = TYPE_CODE (type);
1216
1217 return (code == TYPE_CODE_PTR
1218 || code == TYPE_CODE_REF);
1219 }
1220
1221
1222 /* Return non-zero if TYPE is considered a `DOUBLE_OR_FLOAT', as
1223 defined by the parameter passing conventions described in the
1224 "Linux for S/390 ELF Application Binary Interface Supplement".
1225 Otherwise, return zero. */
1226 static int
1227 is_double_or_float (struct type *type)
1228 {
1229 return (TYPE_CODE (type) == TYPE_CODE_FLT
1230 && (TYPE_LENGTH (type) == 4
1231 || TYPE_LENGTH (type) == 8));
1232 }
1233
1234
1235 /* Return non-zero if TYPE is considered a `SIMPLE_ARG', as defined by
1236 the parameter passing conventions described in the "Linux for S/390
1237 ELF Application Binary Interface Supplement". Return zero otherwise. */
1238 static int
1239 is_simple_arg (struct type *type)
1240 {
1241 enum type_code code = TYPE_CODE (type);
1242 unsigned length = TYPE_LENGTH (type);
1243
1244 return ((is_integer_like (type) && length <= 4)
1245 || is_pointer_like (type)
1246 || code == TYPE_CODE_STRUCT
1247 || code == TYPE_CODE_UNION
1248 || (code == TYPE_CODE_FLT && length == 16));
1249 }
1250
1251
1252 /* Return non-zero if TYPE should be passed as a pointer to a copy,
1253 zero otherwise. TYPE must be a SIMPLE_ARG, as recognized by
1254 `is_simple_arg'. */
1255 static int
1256 pass_by_copy_ref (struct type *type)
1257 {
1258 enum type_code code = TYPE_CODE (type);
1259 unsigned length = TYPE_LENGTH (type);
1260
1261 return (((code == TYPE_CODE_STRUCT || code == TYPE_CODE_UNION)
1262 && length != 1 && length != 2 && length != 4)
1263 || (code == TYPE_CODE_FLT && length == 16));
1264 }
1265
1266
1267 /* Return ARG, a `SIMPLE_ARG', sign-extended or zero-extended to a full
1268 word as required for the ABI. */
1269 static LONGEST
1270 extend_simple_arg (struct value *arg)
1271 {
1272 struct type *type = VALUE_TYPE (arg);
1273
1274 /* Even structs get passed in the least significant bits of the
1275 register / memory word. It's not really right to extract them as
1276 an integer, but it does take care of the extension. */
1277 if (TYPE_UNSIGNED (type))
1278 return extract_unsigned_integer (VALUE_CONTENTS (arg),
1279 TYPE_LENGTH (type));
1280 else
1281 return extract_signed_integer (VALUE_CONTENTS (arg),
1282 TYPE_LENGTH (type));
1283 }
1284
1285
1286 /* Return non-zero if TYPE is a `DOUBLE_ARG', as defined by the
1287 parameter passing conventions described in the "Linux for S/390 ELF
1288 Application Binary Interface Supplement". Return zero otherwise. */
1289 static int
1290 is_double_arg (struct type *type)
1291 {
1292 enum type_code code = TYPE_CODE (type);
1293 unsigned length = TYPE_LENGTH (type);
1294
1295 return ((is_integer_like (type)
1296 || code == TYPE_CODE_STRUCT
1297 || code == TYPE_CODE_UNION)
1298 && length == 8);
1299 }
1300
1301
1302 /* Round ADDR up to the next N-byte boundary. N must be a power of
1303 two. */
1304 static CORE_ADDR
1305 round_up (CORE_ADDR addr, int n)
1306 {
1307 /* Check that N is really a power of two. */
1308 gdb_assert (n && (n & (n-1)) == 0);
1309 return ((addr + n - 1) & -n);
1310 }
1311
1312
1313 /* Round ADDR down to the next N-byte boundary. N must be a power of
1314 two. */
1315 static CORE_ADDR
1316 round_down (CORE_ADDR addr, int n)
1317 {
1318 /* Check that N is really a power of two. */
1319 gdb_assert (n && (n & (n-1)) == 0);
1320 return (addr & -n);
1321 }
1322
1323
1324 /* Return the alignment required by TYPE. */
1325 static int
1326 alignment_of (struct type *type)
1327 {
1328 int alignment;
1329
1330 if (is_integer_like (type)
1331 || is_pointer_like (type)
1332 || TYPE_CODE (type) == TYPE_CODE_FLT)
1333 alignment = TYPE_LENGTH (type);
1334 else if (TYPE_CODE (type) == TYPE_CODE_STRUCT
1335 || TYPE_CODE (type) == TYPE_CODE_UNION)
1336 {
1337 int i;
1338
1339 alignment = 1;
1340 for (i = 0; i < TYPE_NFIELDS (type); i++)
1341 {
1342 int field_alignment = alignment_of (TYPE_FIELD_TYPE (type, i));
1343
1344 if (field_alignment > alignment)
1345 alignment = field_alignment;
1346 }
1347 }
1348 else
1349 alignment = 1;
1350
1351 /* Check that everything we ever return is a power of two. Lots of
1352 code doesn't want to deal with aligning things to arbitrary
1353 boundaries. */
1354 gdb_assert ((alignment & (alignment - 1)) == 0);
1355
1356 return alignment;
1357 }
1358
1359
1360 /* Put the actual parameter values pointed to by ARGS[0..NARGS-1] in
1361 place to be passed to a function, as specified by the "Linux for
1362 S/390 ELF Application Binary Interface Supplement".
1363
1364 SP is the current stack pointer. We must put arguments, links,
1365 padding, etc. whereever they belong, and return the new stack
1366 pointer value.
1367
1368 If STRUCT_RETURN is non-zero, then the function we're calling is
1369 going to return a structure by value; STRUCT_ADDR is the address of
1370 a block we've allocated for it on the stack.
1371
1372 Our caller has taken care of any type promotions needed to satisfy
1373 prototypes or the old K&R argument-passing rules. */
1374 CORE_ADDR
1375 s390_push_arguments (int nargs, struct value **args, CORE_ADDR sp,
1376 int struct_return, CORE_ADDR struct_addr)
1377 {
1378 int i;
1379 int pointer_size = (TARGET_PTR_BIT / TARGET_CHAR_BIT);
1380
1381 /* The number of arguments passed by reference-to-copy. */
1382 int num_copies;
1383
1384 /* If the i'th argument is passed as a reference to a copy, then
1385 copy_addr[i] is the address of the copy we made. */
1386 CORE_ADDR *copy_addr = alloca (nargs * sizeof (CORE_ADDR));
1387
1388 /* Build the reference-to-copy area. */
1389 num_copies = 0;
1390 for (i = 0; i < nargs; i++)
1391 {
1392 struct value *arg = args[i];
1393 struct type *type = VALUE_TYPE (arg);
1394 unsigned length = TYPE_LENGTH (type);
1395
1396 if (is_simple_arg (type)
1397 && pass_by_copy_ref (type))
1398 {
1399 sp -= length;
1400 sp = round_down (sp, alignment_of (type));
1401 write_memory (sp, VALUE_CONTENTS (arg), length);
1402 copy_addr[i] = sp;
1403 num_copies++;
1404 }
1405 }
1406
1407 /* Reserve space for the parameter area. As a conservative
1408 simplification, we assume that everything will be passed on the
1409 stack. */
1410 {
1411 int i;
1412
1413 for (i = 0; i < nargs; i++)
1414 {
1415 struct value *arg = args[i];
1416 struct type *type = VALUE_TYPE (arg);
1417 int length = TYPE_LENGTH (type);
1418
1419 sp = round_down (sp, alignment_of (type));
1420
1421 /* SIMPLE_ARG values get extended to 32 bits. Assume every
1422 argument is. */
1423 if (length < 4) length = 4;
1424 sp -= length;
1425 }
1426 }
1427
1428 /* Include space for any reference-to-copy pointers. */
1429 sp = round_down (sp, pointer_size);
1430 sp -= num_copies * pointer_size;
1431
1432 /* After all that, make sure it's still aligned on an eight-byte
1433 boundary. */
1434 sp = round_down (sp, 8);
1435
1436 /* Finally, place the actual parameters, working from SP towards
1437 higher addresses. The code above is supposed to reserve enough
1438 space for this. */
1439 {
1440 int fr = 0;
1441 int gr = 2;
1442 CORE_ADDR starg = sp;
1443
1444 for (i = 0; i < nargs; i++)
1445 {
1446 struct value *arg = args[i];
1447 struct type *type = VALUE_TYPE (arg);
1448
1449 if (is_double_or_float (type)
1450 && fr <= 2)
1451 {
1452 /* When we store a single-precision value in an FP register,
1453 it occupies the leftmost bits. */
1454 write_register_bytes (REGISTER_BYTE (S390_FP0_REGNUM + fr),
1455 VALUE_CONTENTS (arg),
1456 TYPE_LENGTH (type));
1457 fr += 2;
1458 }
1459 else if (is_simple_arg (type)
1460 && gr <= 6)
1461 {
1462 /* Do we need to pass a pointer to our copy of this
1463 argument? */
1464 if (pass_by_copy_ref (type))
1465 write_register (S390_GP0_REGNUM + gr, copy_addr[i]);
1466 else
1467 write_register (S390_GP0_REGNUM + gr, extend_simple_arg (arg));
1468
1469 gr++;
1470 }
1471 else if (is_double_arg (type)
1472 && gr <= 5)
1473 {
1474 write_register_gen (S390_GP0_REGNUM + gr,
1475 VALUE_CONTENTS (arg));
1476 write_register_gen (S390_GP0_REGNUM + gr + 1,
1477 VALUE_CONTENTS (arg) + 4);
1478 gr += 2;
1479 }
1480 else
1481 {
1482 /* The `OTHER' case. */
1483 enum type_code code = TYPE_CODE (type);
1484 unsigned length = TYPE_LENGTH (type);
1485
1486 /* If we skipped r6 because we couldn't fit a DOUBLE_ARG
1487 in it, then don't go back and use it again later. */
1488 if (is_double_arg (type) && gr == 6)
1489 gr = 7;
1490
1491 if (is_simple_arg (type))
1492 {
1493 /* Simple args are always either extended to 32 bits,
1494 or pointers. */
1495 starg = round_up (starg, 4);
1496
1497 /* Do we need to pass a pointer to our copy of this
1498 argument? */
1499 if (pass_by_copy_ref (type))
1500 write_memory_signed_integer (starg, pointer_size,
1501 copy_addr[i]);
1502 else
1503 /* Simple args are always extended to 32 bits. */
1504 write_memory_signed_integer (starg, 4,
1505 extend_simple_arg (arg));
1506 starg += 4;
1507 }
1508 else
1509 {
1510 starg = round_up (starg, alignment_of (type));
1511 write_memory (starg, VALUE_CONTENTS (arg), length);
1512 starg += length;
1513 }
1514 }
1515 }
1516 }
1517
1518 /* Allocate the standard frame areas: the register save area, the
1519 word reserved for the compiler (which seems kind of meaningless),
1520 and the back chain pointer. */
1521 sp -= 96;
1522
1523 /* Write the back chain pointer into the first word of the stack
1524 frame. This will help us get backtraces from within functions
1525 called from GDB. */
1526 write_memory_unsigned_integer (sp, (TARGET_PTR_BIT / TARGET_CHAR_BIT),
1527 read_fp ());
1528
1529 return sp;
1530 }
1531
1532 /* Return the GDB type object for the "standard" data type
1533 of data in register N. */
1534 struct type *
1535 s390_register_virtual_type (int regno)
1536 {
1537 return ((unsigned) regno - S390_FPC_REGNUM) <
1538 S390_NUM_FPRS ? builtin_type_double : builtin_type_int;
1539 }
1540
1541
1542 struct type *
1543 s390x_register_virtual_type (int regno)
1544 {
1545 return (regno == S390_FPC_REGNUM) ||
1546 (regno >= S390_FIRST_ACR && regno <= S390_LAST_ACR) ? builtin_type_int :
1547 (regno >= S390_FP0_REGNUM) ? builtin_type_double : builtin_type_long;
1548 }
1549
1550
1551
1552 void
1553 s390_store_struct_return (CORE_ADDR addr, CORE_ADDR sp)
1554 {
1555 write_register (S390_GP0_REGNUM + 2, addr);
1556 }
1557
1558
1559
1560 static unsigned char *
1561 s390_breakpoint_from_pc (CORE_ADDR *pcptr, int *lenptr)
1562 {
1563 static unsigned char breakpoint[] = { 0x0, 0x1 };
1564
1565 *lenptr = sizeof (breakpoint);
1566 return breakpoint;
1567 }
1568
1569 /* Advance PC across any function entry prologue instructions to reach some
1570 "real" code. */
1571 CORE_ADDR
1572 s390_skip_prologue (CORE_ADDR pc)
1573 {
1574 struct frame_extra_info fextra_info;
1575
1576 s390_get_frame_info (pc, &fextra_info, NULL, 1);
1577 return fextra_info.skip_prologue_function_start;
1578 }
1579
1580 /* Immediately after a function call, return the saved pc.
1581 Can't go through the frames for this because on some machines
1582 the new frame is not set up until the new function executes
1583 some instructions. */
1584 CORE_ADDR
1585 s390_saved_pc_after_call (struct frame_info *frame)
1586 {
1587 return ADDR_BITS_REMOVE (read_register (S390_RETADDR_REGNUM));
1588 }
1589
1590 static CORE_ADDR
1591 s390_addr_bits_remove (CORE_ADDR addr)
1592 {
1593 return (addr) & 0x7fffffff;
1594 }
1595
1596
1597 static CORE_ADDR
1598 s390_push_return_address (CORE_ADDR pc, CORE_ADDR sp)
1599 {
1600 write_register (S390_RETADDR_REGNUM, CALL_DUMMY_ADDRESS ());
1601 return sp;
1602 }
1603
1604 struct gdbarch *
1605 s390_gdbarch_init (struct gdbarch_info info, struct gdbarch_list *arches)
1606 {
1607 static LONGEST s390_call_dummy_words[] = { 0 };
1608 struct gdbarch *gdbarch;
1609 struct gdbarch_tdep *tdep;
1610 int elf_flags;
1611
1612 /* First see if there is already a gdbarch that can satisfy the request. */
1613 arches = gdbarch_list_lookup_by_info (arches, &info);
1614 if (arches != NULL)
1615 return arches->gdbarch;
1616
1617 /* None found: is the request for a s390 architecture? */
1618 if (info.bfd_arch_info->arch != bfd_arch_s390)
1619 return NULL; /* No; then it's not for us. */
1620
1621 /* Yes: create a new gdbarch for the specified machine type. */
1622 gdbarch = gdbarch_alloc (&info, NULL);
1623
1624 set_gdbarch_believe_pcc_promotion (gdbarch, 0);
1625
1626 set_gdbarch_frame_args_skip (gdbarch, 0);
1627 set_gdbarch_frame_args_address (gdbarch, s390_frame_args_address);
1628 set_gdbarch_frame_chain (gdbarch, s390_frame_chain);
1629 set_gdbarch_frame_init_saved_regs (gdbarch, s390_frame_init_saved_regs);
1630 set_gdbarch_frame_locals_address (gdbarch, s390_frame_args_address);
1631 /* We can't do this */
1632 set_gdbarch_frame_num_args (gdbarch, frame_num_args_unknown);
1633 set_gdbarch_store_struct_return (gdbarch, s390_store_struct_return);
1634 set_gdbarch_extract_return_value (gdbarch, s390_extract_return_value);
1635 set_gdbarch_store_return_value (gdbarch, s390_store_return_value);
1636 /* Amount PC must be decremented by after a breakpoint.
1637 This is often the number of bytes in BREAKPOINT
1638 but not always. */
1639 set_gdbarch_decr_pc_after_break (gdbarch, 2);
1640 set_gdbarch_pop_frame (gdbarch, s390_pop_frame);
1641 set_gdbarch_ieee_float (gdbarch, 1);
1642 /* Stack grows downward. */
1643 set_gdbarch_inner_than (gdbarch, core_addr_lessthan);
1644 /* Offset from address of function to start of its code.
1645 Zero on most machines. */
1646 set_gdbarch_function_start_offset (gdbarch, 0);
1647 set_gdbarch_max_register_raw_size (gdbarch, 8);
1648 set_gdbarch_max_register_virtual_size (gdbarch, 8);
1649 set_gdbarch_breakpoint_from_pc (gdbarch, s390_breakpoint_from_pc);
1650 set_gdbarch_skip_prologue (gdbarch, s390_skip_prologue);
1651 set_gdbarch_init_extra_frame_info (gdbarch, s390_init_extra_frame_info);
1652 set_gdbarch_init_frame_pc_first (gdbarch, s390_init_frame_pc_first);
1653 set_gdbarch_read_fp (gdbarch, s390_read_fp);
1654 set_gdbarch_write_fp (gdbarch, s390_write_fp);
1655 /* This function that tells us whether the function invocation represented
1656 by FI does not have a frame on the stack associated with it. If it
1657 does not, FRAMELESS is set to 1, else 0. */
1658 set_gdbarch_frameless_function_invocation (gdbarch,
1659 s390_frameless_function_invocation);
1660 /* Return saved PC from a frame */
1661 set_gdbarch_frame_saved_pc (gdbarch, s390_frame_saved_pc);
1662 /* FRAME_CHAIN takes a frame's nominal address
1663 and produces the frame's chain-pointer. */
1664 set_gdbarch_frame_chain (gdbarch, s390_frame_chain);
1665 set_gdbarch_saved_pc_after_call (gdbarch, s390_saved_pc_after_call);
1666 set_gdbarch_register_byte (gdbarch, s390_register_byte);
1667 set_gdbarch_pc_regnum (gdbarch, S390_PC_REGNUM);
1668 set_gdbarch_sp_regnum (gdbarch, S390_SP_REGNUM);
1669 set_gdbarch_fp_regnum (gdbarch, S390_FP_REGNUM);
1670 set_gdbarch_fp0_regnum (gdbarch, S390_FP0_REGNUM);
1671 set_gdbarch_num_regs (gdbarch, S390_NUM_REGS);
1672 set_gdbarch_cannot_fetch_register (gdbarch, s390_cannot_fetch_register);
1673 set_gdbarch_cannot_store_register (gdbarch, s390_cannot_fetch_register);
1674 set_gdbarch_get_saved_register (gdbarch, generic_get_saved_register);
1675 set_gdbarch_use_struct_convention (gdbarch, generic_use_struct_convention);
1676 set_gdbarch_frame_chain_valid (gdbarch, func_frame_chain_valid);
1677 set_gdbarch_register_name (gdbarch, s390_register_name);
1678 set_gdbarch_stab_reg_to_regnum (gdbarch, s390_stab_reg_to_regnum);
1679 set_gdbarch_dwarf_reg_to_regnum (gdbarch, s390_stab_reg_to_regnum);
1680 set_gdbarch_dwarf2_reg_to_regnum (gdbarch, s390_stab_reg_to_regnum);
1681
1682 /* Parameters for inferior function calls. */
1683 set_gdbarch_call_dummy_p (gdbarch, 1);
1684 set_gdbarch_use_generic_dummy_frames (gdbarch, 1);
1685 set_gdbarch_call_dummy_length (gdbarch, 0);
1686 set_gdbarch_call_dummy_location (gdbarch, AT_ENTRY_POINT);
1687 set_gdbarch_call_dummy_address (gdbarch, entry_point_address);
1688 set_gdbarch_call_dummy_start_offset (gdbarch, 0);
1689 set_gdbarch_pc_in_call_dummy (gdbarch, pc_in_call_dummy_at_entry_point);
1690 set_gdbarch_push_dummy_frame (gdbarch, generic_push_dummy_frame);
1691 set_gdbarch_push_arguments (gdbarch, s390_push_arguments);
1692 set_gdbarch_call_dummy_breakpoint_offset_p (gdbarch, 1);
1693 set_gdbarch_call_dummy_breakpoint_offset (gdbarch, 0);
1694 set_gdbarch_call_dummy_stack_adjust_p (gdbarch, 0);
1695 set_gdbarch_extract_struct_value_address (gdbarch, 0);
1696 set_gdbarch_fix_call_dummy (gdbarch, generic_fix_call_dummy);
1697 set_gdbarch_push_return_address (gdbarch, s390_push_return_address);
1698 set_gdbarch_sizeof_call_dummy_words (gdbarch,
1699 sizeof (s390_call_dummy_words));
1700 set_gdbarch_call_dummy_words (gdbarch, s390_call_dummy_words);
1701 set_gdbarch_coerce_float_to_double (gdbarch,
1702 standard_coerce_float_to_double);
1703
1704 switch (info.bfd_arch_info->mach)
1705 {
1706 case bfd_mach_s390_esa:
1707 set_gdbarch_register_size (gdbarch, 4);
1708 set_gdbarch_register_raw_size (gdbarch, s390_register_raw_size);
1709 set_gdbarch_register_virtual_size (gdbarch, s390_register_raw_size);
1710 set_gdbarch_register_virtual_type (gdbarch, s390_register_virtual_type);
1711
1712 set_gdbarch_addr_bits_remove (gdbarch, s390_addr_bits_remove);
1713 set_gdbarch_register_bytes (gdbarch, S390_REGISTER_BYTES);
1714 break;
1715 case bfd_mach_s390_esame:
1716 set_gdbarch_register_size (gdbarch, 8);
1717 set_gdbarch_register_raw_size (gdbarch, s390x_register_raw_size);
1718 set_gdbarch_register_virtual_size (gdbarch, s390x_register_raw_size);
1719 set_gdbarch_register_virtual_type (gdbarch,
1720 s390x_register_virtual_type);
1721
1722 set_gdbarch_long_bit (gdbarch, 64);
1723 set_gdbarch_long_long_bit (gdbarch, 64);
1724 set_gdbarch_ptr_bit (gdbarch, 64);
1725 set_gdbarch_register_bytes (gdbarch, S390X_REGISTER_BYTES);
1726 break;
1727 }
1728
1729 return gdbarch;
1730 }
1731
1732
1733
1734 void
1735 _initialize_s390_tdep ()
1736 {
1737
1738 /* Hook us into the gdbarch mechanism. */
1739 register_gdbarch_init (bfd_arch_s390, s390_gdbarch_init);
1740 if (!tm_print_insn) /* Someone may have already set it */
1741 tm_print_insn = gdb_print_insn_s390;
1742 }
1743
1744 #endif /* GDBSERVER */