* sh-tdep.c (sh_skip_prologue): Provide an upper limit on the function
[binutils-gdb.git] / gdb / sh-tdep.c
1 /* Target-dependent code for Renesas Super-H, for GDB.
2
3 Copyright (C) 1993-2005, 2007-2012 Free Software Foundation, Inc.
4
5 This file is part of GDB.
6
7 This program is free software; you can redistribute it and/or modify
8 it under the terms of the GNU General Public License as published by
9 the Free Software Foundation; either version 3 of the License, or
10 (at your option) any later version.
11
12 This program is distributed in the hope that it will be useful,
13 but WITHOUT ANY WARRANTY; without even the implied warranty of
14 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
15 GNU General Public License for more details.
16
17 You should have received a copy of the GNU General Public License
18 along with this program. If not, see <http://www.gnu.org/licenses/>. */
19
20 /* Contributed by Steve Chamberlain
21 sac@cygnus.com. */
22
23 #include "defs.h"
24 #include "frame.h"
25 #include "frame-base.h"
26 #include "frame-unwind.h"
27 #include "dwarf2-frame.h"
28 #include "symtab.h"
29 #include "gdbtypes.h"
30 #include "gdbcmd.h"
31 #include "gdbcore.h"
32 #include "value.h"
33 #include "dis-asm.h"
34 #include "inferior.h"
35 #include "gdb_string.h"
36 #include "gdb_assert.h"
37 #include "arch-utils.h"
38 #include "floatformat.h"
39 #include "regcache.h"
40 #include "doublest.h"
41 #include "osabi.h"
42 #include "reggroups.h"
43 #include "regset.h"
44 #include "objfiles.h"
45
46 #include "sh-tdep.h"
47 #include "sh64-tdep.h"
48
49 #include "elf-bfd.h"
50 #include "solib-svr4.h"
51
52 /* sh flags */
53 #include "elf/sh.h"
54 #include "dwarf2.h"
55 /* registers numbers shared with the simulator. */
56 #include "gdb/sim-sh.h"
57
58 /* List of "set sh ..." and "show sh ..." commands. */
59 static struct cmd_list_element *setshcmdlist = NULL;
60 static struct cmd_list_element *showshcmdlist = NULL;
61
62 static const char sh_cc_gcc[] = "gcc";
63 static const char sh_cc_renesas[] = "renesas";
64 static const char *const sh_cc_enum[] = {
65 sh_cc_gcc,
66 sh_cc_renesas,
67 NULL
68 };
69
70 static const char *sh_active_calling_convention = sh_cc_gcc;
71
72 static void (*sh_show_regs) (struct frame_info *);
73
74 #define SH_NUM_REGS 67
75
76 struct sh_frame_cache
77 {
78 /* Base address. */
79 CORE_ADDR base;
80 LONGEST sp_offset;
81 CORE_ADDR pc;
82
83 /* Flag showing that a frame has been created in the prologue code. */
84 int uses_fp;
85
86 /* Saved registers. */
87 CORE_ADDR saved_regs[SH_NUM_REGS];
88 CORE_ADDR saved_sp;
89 };
90
91 static int
92 sh_is_renesas_calling_convention (struct type *func_type)
93 {
94 int val = 0;
95
96 if (func_type)
97 {
98 func_type = check_typedef (func_type);
99
100 if (TYPE_CODE (func_type) == TYPE_CODE_PTR)
101 func_type = check_typedef (TYPE_TARGET_TYPE (func_type));
102
103 if (TYPE_CODE (func_type) == TYPE_CODE_FUNC
104 && TYPE_CALLING_CONVENTION (func_type) == DW_CC_GNU_renesas_sh)
105 val = 1;
106 }
107
108 if (sh_active_calling_convention == sh_cc_renesas)
109 val = 1;
110
111 return val;
112 }
113
114 static const char *
115 sh_sh_register_name (struct gdbarch *gdbarch, int reg_nr)
116 {
117 static char *register_names[] = {
118 "r0", "r1", "r2", "r3", "r4", "r5", "r6", "r7",
119 "r8", "r9", "r10", "r11", "r12", "r13", "r14", "r15",
120 "pc", "pr", "gbr", "vbr", "mach", "macl", "sr",
121 "", "",
122 "", "", "", "", "", "", "", "",
123 "", "", "", "", "", "", "", "",
124 "", "",
125 "", "", "", "", "", "", "", "",
126 "", "", "", "", "", "", "", "",
127 "", "", "", "", "", "", "", "",
128 };
129 if (reg_nr < 0)
130 return NULL;
131 if (reg_nr >= (sizeof (register_names) / sizeof (*register_names)))
132 return NULL;
133 return register_names[reg_nr];
134 }
135
136 static const char *
137 sh_sh3_register_name (struct gdbarch *gdbarch, int reg_nr)
138 {
139 static char *register_names[] = {
140 "r0", "r1", "r2", "r3", "r4", "r5", "r6", "r7",
141 "r8", "r9", "r10", "r11", "r12", "r13", "r14", "r15",
142 "pc", "pr", "gbr", "vbr", "mach", "macl", "sr",
143 "", "",
144 "", "", "", "", "", "", "", "",
145 "", "", "", "", "", "", "", "",
146 "ssr", "spc",
147 "r0b0", "r1b0", "r2b0", "r3b0", "r4b0", "r5b0", "r6b0", "r7b0",
148 "r0b1", "r1b1", "r2b1", "r3b1", "r4b1", "r5b1", "r6b1", "r7b1"
149 "", "", "", "", "", "", "", "",
150 };
151 if (reg_nr < 0)
152 return NULL;
153 if (reg_nr >= (sizeof (register_names) / sizeof (*register_names)))
154 return NULL;
155 return register_names[reg_nr];
156 }
157
158 static const char *
159 sh_sh3e_register_name (struct gdbarch *gdbarch, int reg_nr)
160 {
161 static char *register_names[] = {
162 "r0", "r1", "r2", "r3", "r4", "r5", "r6", "r7",
163 "r8", "r9", "r10", "r11", "r12", "r13", "r14", "r15",
164 "pc", "pr", "gbr", "vbr", "mach", "macl", "sr",
165 "fpul", "fpscr",
166 "fr0", "fr1", "fr2", "fr3", "fr4", "fr5", "fr6", "fr7",
167 "fr8", "fr9", "fr10", "fr11", "fr12", "fr13", "fr14", "fr15",
168 "ssr", "spc",
169 "r0b0", "r1b0", "r2b0", "r3b0", "r4b0", "r5b0", "r6b0", "r7b0",
170 "r0b1", "r1b1", "r2b1", "r3b1", "r4b1", "r5b1", "r6b1", "r7b1",
171 "", "", "", "", "", "", "", "",
172 };
173 if (reg_nr < 0)
174 return NULL;
175 if (reg_nr >= (sizeof (register_names) / sizeof (*register_names)))
176 return NULL;
177 return register_names[reg_nr];
178 }
179
180 static const char *
181 sh_sh2e_register_name (struct gdbarch *gdbarch, int reg_nr)
182 {
183 static char *register_names[] = {
184 "r0", "r1", "r2", "r3", "r4", "r5", "r6", "r7",
185 "r8", "r9", "r10", "r11", "r12", "r13", "r14", "r15",
186 "pc", "pr", "gbr", "vbr", "mach", "macl", "sr",
187 "fpul", "fpscr",
188 "fr0", "fr1", "fr2", "fr3", "fr4", "fr5", "fr6", "fr7",
189 "fr8", "fr9", "fr10", "fr11", "fr12", "fr13", "fr14", "fr15",
190 "", "",
191 "", "", "", "", "", "", "", "",
192 "", "", "", "", "", "", "", "",
193 "", "", "", "", "", "", "", "",
194 };
195 if (reg_nr < 0)
196 return NULL;
197 if (reg_nr >= (sizeof (register_names) / sizeof (*register_names)))
198 return NULL;
199 return register_names[reg_nr];
200 }
201
202 static const char *
203 sh_sh2a_register_name (struct gdbarch *gdbarch, int reg_nr)
204 {
205 static char *register_names[] = {
206 /* general registers 0-15 */
207 "r0", "r1", "r2", "r3", "r4", "r5", "r6", "r7",
208 "r8", "r9", "r10", "r11", "r12", "r13", "r14", "r15",
209 /* 16 - 22 */
210 "pc", "pr", "gbr", "vbr", "mach", "macl", "sr",
211 /* 23, 24 */
212 "fpul", "fpscr",
213 /* floating point registers 25 - 40 */
214 "fr0", "fr1", "fr2", "fr3", "fr4", "fr5", "fr6", "fr7",
215 "fr8", "fr9", "fr10", "fr11", "fr12", "fr13", "fr14", "fr15",
216 /* 41, 42 */
217 "", "",
218 /* 43 - 62. Banked registers. The bank number used is determined by
219 the bank register (63). */
220 "r0b", "r1b", "r2b", "r3b", "r4b", "r5b", "r6b", "r7b",
221 "r8b", "r9b", "r10b", "r11b", "r12b", "r13b", "r14b",
222 "machb", "ivnb", "prb", "gbrb", "maclb",
223 /* 63: register bank number, not a real register but used to
224 communicate the register bank currently get/set. This register
225 is hidden to the user, who manipulates it using the pseudo
226 register called "bank" (67). See below. */
227 "",
228 /* 64 - 66 */
229 "ibcr", "ibnr", "tbr",
230 /* 67: register bank number, the user visible pseudo register. */
231 "bank",
232 /* double precision (pseudo) 68 - 75 */
233 "dr0", "dr2", "dr4", "dr6", "dr8", "dr10", "dr12", "dr14",
234 };
235 if (reg_nr < 0)
236 return NULL;
237 if (reg_nr >= (sizeof (register_names) / sizeof (*register_names)))
238 return NULL;
239 return register_names[reg_nr];
240 }
241
242 static const char *
243 sh_sh2a_nofpu_register_name (struct gdbarch *gdbarch, int reg_nr)
244 {
245 static char *register_names[] = {
246 /* general registers 0-15 */
247 "r0", "r1", "r2", "r3", "r4", "r5", "r6", "r7",
248 "r8", "r9", "r10", "r11", "r12", "r13", "r14", "r15",
249 /* 16 - 22 */
250 "pc", "pr", "gbr", "vbr", "mach", "macl", "sr",
251 /* 23, 24 */
252 "", "",
253 /* floating point registers 25 - 40 */
254 "", "", "", "", "", "", "", "",
255 "", "", "", "", "", "", "", "",
256 /* 41, 42 */
257 "", "",
258 /* 43 - 62. Banked registers. The bank number used is determined by
259 the bank register (63). */
260 "r0b", "r1b", "r2b", "r3b", "r4b", "r5b", "r6b", "r7b",
261 "r8b", "r9b", "r10b", "r11b", "r12b", "r13b", "r14b",
262 "machb", "ivnb", "prb", "gbrb", "maclb",
263 /* 63: register bank number, not a real register but used to
264 communicate the register bank currently get/set. This register
265 is hidden to the user, who manipulates it using the pseudo
266 register called "bank" (67). See below. */
267 "",
268 /* 64 - 66 */
269 "ibcr", "ibnr", "tbr",
270 /* 67: register bank number, the user visible pseudo register. */
271 "bank",
272 /* double precision (pseudo) 68 - 75 */
273 "", "", "", "", "", "", "", "",
274 };
275 if (reg_nr < 0)
276 return NULL;
277 if (reg_nr >= (sizeof (register_names) / sizeof (*register_names)))
278 return NULL;
279 return register_names[reg_nr];
280 }
281
282 static const char *
283 sh_sh_dsp_register_name (struct gdbarch *gdbarch, int reg_nr)
284 {
285 static char *register_names[] = {
286 "r0", "r1", "r2", "r3", "r4", "r5", "r6", "r7",
287 "r8", "r9", "r10", "r11", "r12", "r13", "r14", "r15",
288 "pc", "pr", "gbr", "vbr", "mach", "macl", "sr",
289 "", "dsr",
290 "a0g", "a0", "a1g", "a1", "m0", "m1", "x0", "x1",
291 "y0", "y1", "", "", "", "", "", "mod",
292 "", "",
293 "rs", "re", "", "", "", "", "", "",
294 "", "", "", "", "", "", "", "",
295 "", "", "", "", "", "", "", "",
296 };
297 if (reg_nr < 0)
298 return NULL;
299 if (reg_nr >= (sizeof (register_names) / sizeof (*register_names)))
300 return NULL;
301 return register_names[reg_nr];
302 }
303
304 static const char *
305 sh_sh3_dsp_register_name (struct gdbarch *gdbarch, int reg_nr)
306 {
307 static char *register_names[] = {
308 "r0", "r1", "r2", "r3", "r4", "r5", "r6", "r7",
309 "r8", "r9", "r10", "r11", "r12", "r13", "r14", "r15",
310 "pc", "pr", "gbr", "vbr", "mach", "macl", "sr",
311 "", "dsr",
312 "a0g", "a0", "a1g", "a1", "m0", "m1", "x0", "x1",
313 "y0", "y1", "", "", "", "", "", "mod",
314 "ssr", "spc",
315 "rs", "re", "", "", "", "", "", "",
316 "r0b", "r1b", "r2b", "r3b", "r4b", "r5b", "r6b", "r7b",
317 "", "", "", "", "", "", "", "",
318 "", "", "", "", "", "", "", "",
319 };
320 if (reg_nr < 0)
321 return NULL;
322 if (reg_nr >= (sizeof (register_names) / sizeof (*register_names)))
323 return NULL;
324 return register_names[reg_nr];
325 }
326
327 static const char *
328 sh_sh4_register_name (struct gdbarch *gdbarch, int reg_nr)
329 {
330 static char *register_names[] = {
331 /* general registers 0-15 */
332 "r0", "r1", "r2", "r3", "r4", "r5", "r6", "r7",
333 "r8", "r9", "r10", "r11", "r12", "r13", "r14", "r15",
334 /* 16 - 22 */
335 "pc", "pr", "gbr", "vbr", "mach", "macl", "sr",
336 /* 23, 24 */
337 "fpul", "fpscr",
338 /* floating point registers 25 - 40 */
339 "fr0", "fr1", "fr2", "fr3", "fr4", "fr5", "fr6", "fr7",
340 "fr8", "fr9", "fr10", "fr11", "fr12", "fr13", "fr14", "fr15",
341 /* 41, 42 */
342 "ssr", "spc",
343 /* bank 0 43 - 50 */
344 "r0b0", "r1b0", "r2b0", "r3b0", "r4b0", "r5b0", "r6b0", "r7b0",
345 /* bank 1 51 - 58 */
346 "r0b1", "r1b1", "r2b1", "r3b1", "r4b1", "r5b1", "r6b1", "r7b1",
347 "", "", "", "", "", "", "", "",
348 /* pseudo bank register. */
349 "",
350 /* double precision (pseudo) 59 - 66 */
351 "dr0", "dr2", "dr4", "dr6", "dr8", "dr10", "dr12", "dr14",
352 /* vectors (pseudo) 67 - 70 */
353 "fv0", "fv4", "fv8", "fv12",
354 /* FIXME: missing XF 71 - 86 */
355 /* FIXME: missing XD 87 - 94 */
356 };
357 if (reg_nr < 0)
358 return NULL;
359 if (reg_nr >= (sizeof (register_names) / sizeof (*register_names)))
360 return NULL;
361 return register_names[reg_nr];
362 }
363
364 static const char *
365 sh_sh4_nofpu_register_name (struct gdbarch *gdbarch, int reg_nr)
366 {
367 static char *register_names[] = {
368 /* general registers 0-15 */
369 "r0", "r1", "r2", "r3", "r4", "r5", "r6", "r7",
370 "r8", "r9", "r10", "r11", "r12", "r13", "r14", "r15",
371 /* 16 - 22 */
372 "pc", "pr", "gbr", "vbr", "mach", "macl", "sr",
373 /* 23, 24 */
374 "", "",
375 /* floating point registers 25 - 40 -- not for nofpu target */
376 "", "", "", "", "", "", "", "",
377 "", "", "", "", "", "", "", "",
378 /* 41, 42 */
379 "ssr", "spc",
380 /* bank 0 43 - 50 */
381 "r0b0", "r1b0", "r2b0", "r3b0", "r4b0", "r5b0", "r6b0", "r7b0",
382 /* bank 1 51 - 58 */
383 "r0b1", "r1b1", "r2b1", "r3b1", "r4b1", "r5b1", "r6b1", "r7b1",
384 "", "", "", "", "", "", "", "",
385 /* pseudo bank register. */
386 "",
387 /* double precision (pseudo) 59 - 66 -- not for nofpu target */
388 "", "", "", "", "", "", "", "",
389 /* vectors (pseudo) 67 - 70 -- not for nofpu target */
390 "", "", "", "",
391 };
392 if (reg_nr < 0)
393 return NULL;
394 if (reg_nr >= (sizeof (register_names) / sizeof (*register_names)))
395 return NULL;
396 return register_names[reg_nr];
397 }
398
399 static const char *
400 sh_sh4al_dsp_register_name (struct gdbarch *gdbarch, int reg_nr)
401 {
402 static char *register_names[] = {
403 "r0", "r1", "r2", "r3", "r4", "r5", "r6", "r7",
404 "r8", "r9", "r10", "r11", "r12", "r13", "r14", "r15",
405 "pc", "pr", "gbr", "vbr", "mach", "macl", "sr",
406 "", "dsr",
407 "a0g", "a0", "a1g", "a1", "m0", "m1", "x0", "x1",
408 "y0", "y1", "", "", "", "", "", "mod",
409 "ssr", "spc",
410 "rs", "re", "", "", "", "", "", "",
411 "r0b", "r1b", "r2b", "r3b", "r4b", "r5b", "r6b", "r7b",
412 "", "", "", "", "", "", "", "",
413 "", "", "", "", "", "", "", "",
414 };
415 if (reg_nr < 0)
416 return NULL;
417 if (reg_nr >= (sizeof (register_names) / sizeof (*register_names)))
418 return NULL;
419 return register_names[reg_nr];
420 }
421
422 static const unsigned char *
423 sh_breakpoint_from_pc (struct gdbarch *gdbarch, CORE_ADDR *pcptr, int *lenptr)
424 {
425 /* 0xc3c3 is trapa #c3, and it works in big and little endian modes. */
426 static unsigned char breakpoint[] = { 0xc3, 0xc3 };
427
428 /* For remote stub targets, trapa #20 is used. */
429 if (strcmp (target_shortname, "remote") == 0)
430 {
431 static unsigned char big_remote_breakpoint[] = { 0xc3, 0x20 };
432 static unsigned char little_remote_breakpoint[] = { 0x20, 0xc3 };
433
434 if (gdbarch_byte_order (gdbarch) == BFD_ENDIAN_BIG)
435 {
436 *lenptr = sizeof (big_remote_breakpoint);
437 return big_remote_breakpoint;
438 }
439 else
440 {
441 *lenptr = sizeof (little_remote_breakpoint);
442 return little_remote_breakpoint;
443 }
444 }
445
446 *lenptr = sizeof (breakpoint);
447 return breakpoint;
448 }
449
450 /* Prologue looks like
451 mov.l r14,@-r15
452 sts.l pr,@-r15
453 mov.l <regs>,@-r15
454 sub <room_for_loca_vars>,r15
455 mov r15,r14
456
457 Actually it can be more complicated than this but that's it, basically. */
458
459 #define GET_SOURCE_REG(x) (((x) >> 4) & 0xf)
460 #define GET_TARGET_REG(x) (((x) >> 8) & 0xf)
461
462 /* JSR @Rm 0100mmmm00001011 */
463 #define IS_JSR(x) (((x) & 0xf0ff) == 0x400b)
464
465 /* STS.L PR,@-r15 0100111100100010
466 r15-4-->r15, PR-->(r15) */
467 #define IS_STS(x) ((x) == 0x4f22)
468
469 /* STS.L MACL,@-r15 0100111100010010
470 r15-4-->r15, MACL-->(r15) */
471 #define IS_MACL_STS(x) ((x) == 0x4f12)
472
473 /* MOV.L Rm,@-r15 00101111mmmm0110
474 r15-4-->r15, Rm-->(R15) */
475 #define IS_PUSH(x) (((x) & 0xff0f) == 0x2f06)
476
477 /* MOV r15,r14 0110111011110011
478 r15-->r14 */
479 #define IS_MOV_SP_FP(x) ((x) == 0x6ef3)
480
481 /* ADD #imm,r15 01111111iiiiiiii
482 r15+imm-->r15 */
483 #define IS_ADD_IMM_SP(x) (((x) & 0xff00) == 0x7f00)
484
485 #define IS_MOV_R3(x) (((x) & 0xff00) == 0x1a00)
486 #define IS_SHLL_R3(x) ((x) == 0x4300)
487
488 /* ADD r3,r15 0011111100111100
489 r15+r3-->r15 */
490 #define IS_ADD_R3SP(x) ((x) == 0x3f3c)
491
492 /* FMOV.S FRm,@-Rn Rn-4-->Rn, FRm-->(Rn) 1111nnnnmmmm1011
493 FMOV DRm,@-Rn Rn-8-->Rn, DRm-->(Rn) 1111nnnnmmm01011
494 FMOV XDm,@-Rn Rn-8-->Rn, XDm-->(Rn) 1111nnnnmmm11011 */
495 /* CV, 2003-08-28: Only suitable with Rn == SP, therefore name changed to
496 make this entirely clear. */
497 /* #define IS_FMOV(x) (((x) & 0xf00f) == 0xf00b) */
498 #define IS_FPUSH(x) (((x) & 0xff0f) == 0xff0b)
499
500 /* MOV Rm,Rn Rm-->Rn 0110nnnnmmmm0011 4 <= m <= 7 */
501 #define IS_MOV_ARG_TO_REG(x) \
502 (((x) & 0xf00f) == 0x6003 && \
503 ((x) & 0x00f0) >= 0x0040 && \
504 ((x) & 0x00f0) <= 0x0070)
505 /* MOV.L Rm,@Rn 0010nnnnmmmm0010 n = 14, 4 <= m <= 7 */
506 #define IS_MOV_ARG_TO_IND_R14(x) \
507 (((x) & 0xff0f) == 0x2e02 && \
508 ((x) & 0x00f0) >= 0x0040 && \
509 ((x) & 0x00f0) <= 0x0070)
510 /* MOV.L Rm,@(disp*4,Rn) 00011110mmmmdddd n = 14, 4 <= m <= 7 */
511 #define IS_MOV_ARG_TO_IND_R14_WITH_DISP(x) \
512 (((x) & 0xff00) == 0x1e00 && \
513 ((x) & 0x00f0) >= 0x0040 && \
514 ((x) & 0x00f0) <= 0x0070)
515
516 /* MOV.W @(disp*2,PC),Rn 1001nnnndddddddd */
517 #define IS_MOVW_PCREL_TO_REG(x) (((x) & 0xf000) == 0x9000)
518 /* MOV.L @(disp*4,PC),Rn 1101nnnndddddddd */
519 #define IS_MOVL_PCREL_TO_REG(x) (((x) & 0xf000) == 0xd000)
520 /* MOVI20 #imm20,Rn 0000nnnniiii0000 */
521 #define IS_MOVI20(x) (((x) & 0xf00f) == 0x0000)
522 /* SUB Rn,R15 00111111nnnn1000 */
523 #define IS_SUB_REG_FROM_SP(x) (((x) & 0xff0f) == 0x3f08)
524
525 #define FPSCR_SZ (1 << 20)
526
527 /* The following instructions are used for epilogue testing. */
528 #define IS_RESTORE_FP(x) ((x) == 0x6ef6)
529 #define IS_RTS(x) ((x) == 0x000b)
530 #define IS_LDS(x) ((x) == 0x4f26)
531 #define IS_MACL_LDS(x) ((x) == 0x4f16)
532 #define IS_MOV_FP_SP(x) ((x) == 0x6fe3)
533 #define IS_ADD_REG_TO_FP(x) (((x) & 0xff0f) == 0x3e0c)
534 #define IS_ADD_IMM_FP(x) (((x) & 0xff00) == 0x7e00)
535
536 static CORE_ADDR
537 sh_analyze_prologue (struct gdbarch *gdbarch,
538 CORE_ADDR pc, CORE_ADDR limit_pc,
539 struct sh_frame_cache *cache, ULONGEST fpscr)
540 {
541 enum bfd_endian byte_order = gdbarch_byte_order (gdbarch);
542 ULONGEST inst;
543 int offset;
544 int sav_offset = 0;
545 int r3_val = 0;
546 int reg, sav_reg = -1;
547
548 cache->uses_fp = 0;
549 for (; pc < limit_pc; pc += 2)
550 {
551 inst = read_memory_unsigned_integer (pc, 2, byte_order);
552 /* See where the registers will be saved to. */
553 if (IS_PUSH (inst))
554 {
555 cache->saved_regs[GET_SOURCE_REG (inst)] = cache->sp_offset;
556 cache->sp_offset += 4;
557 }
558 else if (IS_STS (inst))
559 {
560 cache->saved_regs[PR_REGNUM] = cache->sp_offset;
561 cache->sp_offset += 4;
562 }
563 else if (IS_MACL_STS (inst))
564 {
565 cache->saved_regs[MACL_REGNUM] = cache->sp_offset;
566 cache->sp_offset += 4;
567 }
568 else if (IS_MOV_R3 (inst))
569 {
570 r3_val = ((inst & 0xff) ^ 0x80) - 0x80;
571 }
572 else if (IS_SHLL_R3 (inst))
573 {
574 r3_val <<= 1;
575 }
576 else if (IS_ADD_R3SP (inst))
577 {
578 cache->sp_offset += -r3_val;
579 }
580 else if (IS_ADD_IMM_SP (inst))
581 {
582 offset = ((inst & 0xff) ^ 0x80) - 0x80;
583 cache->sp_offset -= offset;
584 }
585 else if (IS_MOVW_PCREL_TO_REG (inst))
586 {
587 if (sav_reg < 0)
588 {
589 reg = GET_TARGET_REG (inst);
590 if (reg < 14)
591 {
592 sav_reg = reg;
593 offset = (inst & 0xff) << 1;
594 sav_offset =
595 read_memory_integer ((pc + 4) + offset, 2, byte_order);
596 }
597 }
598 }
599 else if (IS_MOVL_PCREL_TO_REG (inst))
600 {
601 if (sav_reg < 0)
602 {
603 reg = GET_TARGET_REG (inst);
604 if (reg < 14)
605 {
606 sav_reg = reg;
607 offset = (inst & 0xff) << 2;
608 sav_offset =
609 read_memory_integer (((pc & 0xfffffffc) + 4) + offset,
610 4, byte_order);
611 }
612 }
613 }
614 else if (IS_MOVI20 (inst)
615 && (pc + 2 < limit_pc))
616 {
617 if (sav_reg < 0)
618 {
619 reg = GET_TARGET_REG (inst);
620 if (reg < 14)
621 {
622 sav_reg = reg;
623 sav_offset = GET_SOURCE_REG (inst) << 16;
624 /* MOVI20 is a 32 bit instruction! */
625 pc += 2;
626 sav_offset
627 |= read_memory_unsigned_integer (pc, 2, byte_order);
628 /* Now sav_offset contains an unsigned 20 bit value.
629 It must still get sign extended. */
630 if (sav_offset & 0x00080000)
631 sav_offset |= 0xfff00000;
632 }
633 }
634 }
635 else if (IS_SUB_REG_FROM_SP (inst))
636 {
637 reg = GET_SOURCE_REG (inst);
638 if (sav_reg > 0 && reg == sav_reg)
639 {
640 sav_reg = -1;
641 }
642 cache->sp_offset += sav_offset;
643 }
644 else if (IS_FPUSH (inst))
645 {
646 if (fpscr & FPSCR_SZ)
647 {
648 cache->sp_offset += 8;
649 }
650 else
651 {
652 cache->sp_offset += 4;
653 }
654 }
655 else if (IS_MOV_SP_FP (inst))
656 {
657 pc += 2;
658 /* Don't go any further than six more instructions. */
659 limit_pc = min (limit_pc, pc + (2 * 6));
660
661 cache->uses_fp = 1;
662 /* At this point, only allow argument register moves to other
663 registers or argument register moves to @(X,fp) which are
664 moving the register arguments onto the stack area allocated
665 by a former add somenumber to SP call. Don't allow moving
666 to an fp indirect address above fp + cache->sp_offset. */
667 for (; pc < limit_pc; pc += 2)
668 {
669 inst = read_memory_integer (pc, 2, byte_order);
670 if (IS_MOV_ARG_TO_IND_R14 (inst))
671 {
672 reg = GET_SOURCE_REG (inst);
673 if (cache->sp_offset > 0)
674 cache->saved_regs[reg] = cache->sp_offset;
675 }
676 else if (IS_MOV_ARG_TO_IND_R14_WITH_DISP (inst))
677 {
678 reg = GET_SOURCE_REG (inst);
679 offset = (inst & 0xf) * 4;
680 if (cache->sp_offset > offset)
681 cache->saved_regs[reg] = cache->sp_offset - offset;
682 }
683 else if (IS_MOV_ARG_TO_REG (inst))
684 continue;
685 else
686 break;
687 }
688 break;
689 }
690 else if (IS_JSR (inst))
691 {
692 /* We have found a jsr that has been scheduled into the prologue.
693 If we continue the scan and return a pc someplace after this,
694 then setting a breakpoint on this function will cause it to
695 appear to be called after the function it is calling via the
696 jsr, which will be very confusing. Most likely the next
697 instruction is going to be IS_MOV_SP_FP in the delay slot. If
698 so, note that before returning the current pc. */
699 if (pc + 2 < limit_pc)
700 {
701 inst = read_memory_integer (pc + 2, 2, byte_order);
702 if (IS_MOV_SP_FP (inst))
703 cache->uses_fp = 1;
704 }
705 break;
706 }
707 #if 0 /* This used to just stop when it found an instruction
708 that was not considered part of the prologue. Now,
709 we just keep going looking for likely
710 instructions. */
711 else
712 break;
713 #endif
714 }
715
716 return pc;
717 }
718
719 /* Skip any prologue before the guts of a function. */
720 static CORE_ADDR
721 sh_skip_prologue (struct gdbarch *gdbarch, CORE_ADDR pc)
722 {
723 CORE_ADDR post_prologue_pc, func_addr, func_end_addr, limit_pc;
724 struct sh_frame_cache cache;
725
726 /* See if we can determine the end of the prologue via the symbol table.
727 If so, then return either PC, or the PC after the prologue, whichever
728 is greater. */
729 if (find_pc_partial_function (pc, NULL, &func_addr, &func_end_addr))
730 {
731 post_prologue_pc = skip_prologue_using_sal (gdbarch, func_addr);
732 if (post_prologue_pc != 0)
733 return max (pc, post_prologue_pc);
734 }
735
736 /* Can't determine prologue from the symbol table, need to examine
737 instructions. */
738
739 /* Find an upper limit on the function prologue using the debug
740 information. If the debug information could not be used to provide
741 that bound, then use an arbitrary large number as the upper bound. */
742 limit_pc = skip_prologue_using_sal (gdbarch, pc);
743 if (limit_pc == 0)
744 /* Don't go any further than 28 instructions. */
745 limit_pc = pc + (2 * 28);
746
747 /* Do not allow limit_pc to be past the function end, if we know
748 where that end is... */
749 if (func_end_addr != 0)
750 limit_pc = min (limit_pc, func_end_addr);
751
752 cache.sp_offset = -4;
753 post_prologue_pc = sh_analyze_prologue (gdbarch, pc, limit_pc, &cache, 0);
754 if (cache.uses_fp)
755 pc = post_prologue_pc;
756
757 return pc;
758 }
759
760 /* The ABI says:
761
762 Aggregate types not bigger than 8 bytes that have the same size and
763 alignment as one of the integer scalar types are returned in the
764 same registers as the integer type they match.
765
766 For example, a 2-byte aligned structure with size 2 bytes has the
767 same size and alignment as a short int, and will be returned in R0.
768 A 4-byte aligned structure with size 8 bytes has the same size and
769 alignment as a long long int, and will be returned in R0 and R1.
770
771 When an aggregate type is returned in R0 and R1, R0 contains the
772 first four bytes of the aggregate, and R1 contains the
773 remainder. If the size of the aggregate type is not a multiple of 4
774 bytes, the aggregate is tail-padded up to a multiple of 4
775 bytes. The value of the padding is undefined. For little-endian
776 targets the padding will appear at the most significant end of the
777 last element, for big-endian targets the padding appears at the
778 least significant end of the last element.
779
780 All other aggregate types are returned by address. The caller
781 function passes the address of an area large enough to hold the
782 aggregate value in R2. The called function stores the result in
783 this location.
784
785 To reiterate, structs smaller than 8 bytes could also be returned
786 in memory, if they don't pass the "same size and alignment as an
787 integer type" rule.
788
789 For example, in
790
791 struct s { char c[3]; } wibble;
792 struct s foo(void) { return wibble; }
793
794 the return value from foo() will be in memory, not
795 in R0, because there is no 3-byte integer type.
796
797 Similarly, in
798
799 struct s { char c[2]; } wibble;
800 struct s foo(void) { return wibble; }
801
802 because a struct containing two chars has alignment 1, that matches
803 type char, but size 2, that matches type short. There's no integer
804 type that has alignment 1 and size 2, so the struct is returned in
805 memory. */
806
807 static int
808 sh_use_struct_convention (int renesas_abi, struct type *type)
809 {
810 int len = TYPE_LENGTH (type);
811 int nelem = TYPE_NFIELDS (type);
812
813 /* The Renesas ABI returns aggregate types always on stack. */
814 if (renesas_abi && (TYPE_CODE (type) == TYPE_CODE_STRUCT
815 || TYPE_CODE (type) == TYPE_CODE_UNION))
816 return 1;
817
818 /* Non-power of 2 length types and types bigger than 8 bytes (which don't
819 fit in two registers anyway) use struct convention. */
820 if (len != 1 && len != 2 && len != 4 && len != 8)
821 return 1;
822
823 /* Scalar types and aggregate types with exactly one field are aligned
824 by definition. They are returned in registers. */
825 if (nelem <= 1)
826 return 0;
827
828 /* If the first field in the aggregate has the same length as the entire
829 aggregate type, the type is returned in registers. */
830 if (TYPE_LENGTH (TYPE_FIELD_TYPE (type, 0)) == len)
831 return 0;
832
833 /* If the size of the aggregate is 8 bytes and the first field is
834 of size 4 bytes its alignment is equal to long long's alignment,
835 so it's returned in registers. */
836 if (len == 8 && TYPE_LENGTH (TYPE_FIELD_TYPE (type, 0)) == 4)
837 return 0;
838
839 /* Otherwise use struct convention. */
840 return 1;
841 }
842
843 static int
844 sh_use_struct_convention_nofpu (int renesas_abi, struct type *type)
845 {
846 /* The Renesas ABI returns long longs/doubles etc. always on stack. */
847 if (renesas_abi && TYPE_NFIELDS (type) == 0 && TYPE_LENGTH (type) >= 8)
848 return 1;
849 return sh_use_struct_convention (renesas_abi, type);
850 }
851
852 static CORE_ADDR
853 sh_frame_align (struct gdbarch *ignore, CORE_ADDR sp)
854 {
855 return sp & ~3;
856 }
857
858 /* Function: push_dummy_call (formerly push_arguments)
859 Setup the function arguments for calling a function in the inferior.
860
861 On the Renesas SH architecture, there are four registers (R4 to R7)
862 which are dedicated for passing function arguments. Up to the first
863 four arguments (depending on size) may go into these registers.
864 The rest go on the stack.
865
866 MVS: Except on SH variants that have floating point registers.
867 In that case, float and double arguments are passed in the same
868 manner, but using FP registers instead of GP registers.
869
870 Arguments that are smaller than 4 bytes will still take up a whole
871 register or a whole 32-bit word on the stack, and will be
872 right-justified in the register or the stack word. This includes
873 chars, shorts, and small aggregate types.
874
875 Arguments that are larger than 4 bytes may be split between two or
876 more registers. If there are not enough registers free, an argument
877 may be passed partly in a register (or registers), and partly on the
878 stack. This includes doubles, long longs, and larger aggregates.
879 As far as I know, there is no upper limit to the size of aggregates
880 that will be passed in this way; in other words, the convention of
881 passing a pointer to a large aggregate instead of a copy is not used.
882
883 MVS: The above appears to be true for the SH variants that do not
884 have an FPU, however those that have an FPU appear to copy the
885 aggregate argument onto the stack (and not place it in registers)
886 if it is larger than 16 bytes (four GP registers).
887
888 An exceptional case exists for struct arguments (and possibly other
889 aggregates such as arrays) if the size is larger than 4 bytes but
890 not a multiple of 4 bytes. In this case the argument is never split
891 between the registers and the stack, but instead is copied in its
892 entirety onto the stack, AND also copied into as many registers as
893 there is room for. In other words, space in registers permitting,
894 two copies of the same argument are passed in. As far as I can tell,
895 only the one on the stack is used, although that may be a function
896 of the level of compiler optimization. I suspect this is a compiler
897 bug. Arguments of these odd sizes are left-justified within the
898 word (as opposed to arguments smaller than 4 bytes, which are
899 right-justified).
900
901 If the function is to return an aggregate type such as a struct, it
902 is either returned in the normal return value register R0 (if its
903 size is no greater than one byte), or else the caller must allocate
904 space into which the callee will copy the return value (if the size
905 is greater than one byte). In this case, a pointer to the return
906 value location is passed into the callee in register R2, which does
907 not displace any of the other arguments passed in via registers R4
908 to R7. */
909
910 /* Helper function to justify value in register according to endianess. */
911 static char *
912 sh_justify_value_in_reg (struct gdbarch *gdbarch, struct value *val, int len)
913 {
914 static char valbuf[4];
915
916 memset (valbuf, 0, sizeof (valbuf));
917 if (len < 4)
918 {
919 /* value gets right-justified in the register or stack word. */
920 if (gdbarch_byte_order (gdbarch) == BFD_ENDIAN_BIG)
921 memcpy (valbuf + (4 - len), (char *) value_contents (val), len);
922 else
923 memcpy (valbuf, (char *) value_contents (val), len);
924 return valbuf;
925 }
926 return (char *) value_contents (val);
927 }
928
929 /* Helper function to eval number of bytes to allocate on stack. */
930 static CORE_ADDR
931 sh_stack_allocsize (int nargs, struct value **args)
932 {
933 int stack_alloc = 0;
934 while (nargs-- > 0)
935 stack_alloc += ((TYPE_LENGTH (value_type (args[nargs])) + 3) & ~3);
936 return stack_alloc;
937 }
938
939 /* Helper functions for getting the float arguments right. Registers usage
940 depends on the ABI and the endianess. The comments should enlighten how
941 it's intended to work. */
942
943 /* This array stores which of the float arg registers are already in use. */
944 static int flt_argreg_array[FLOAT_ARGLAST_REGNUM - FLOAT_ARG0_REGNUM + 1];
945
946 /* This function just resets the above array to "no reg used so far". */
947 static void
948 sh_init_flt_argreg (void)
949 {
950 memset (flt_argreg_array, 0, sizeof flt_argreg_array);
951 }
952
953 /* This function returns the next register to use for float arg passing.
954 It returns either a valid value between FLOAT_ARG0_REGNUM and
955 FLOAT_ARGLAST_REGNUM if a register is available, otherwise it returns
956 FLOAT_ARGLAST_REGNUM + 1 to indicate that no register is available.
957
958 Note that register number 0 in flt_argreg_array corresponds with the
959 real float register fr4. In contrast to FLOAT_ARG0_REGNUM (value is
960 29) the parity of the register number is preserved, which is important
961 for the double register passing test (see the "argreg & 1" test below). */
962 static int
963 sh_next_flt_argreg (struct gdbarch *gdbarch, int len, struct type *func_type)
964 {
965 int argreg;
966
967 /* First search for the next free register. */
968 for (argreg = 0; argreg <= FLOAT_ARGLAST_REGNUM - FLOAT_ARG0_REGNUM;
969 ++argreg)
970 if (!flt_argreg_array[argreg])
971 break;
972
973 /* No register left? */
974 if (argreg > FLOAT_ARGLAST_REGNUM - FLOAT_ARG0_REGNUM)
975 return FLOAT_ARGLAST_REGNUM + 1;
976
977 if (len == 8)
978 {
979 /* Doubles are always starting in a even register number. */
980 if (argreg & 1)
981 {
982 /* In gcc ABI, the skipped register is lost for further argument
983 passing now. Not so in Renesas ABI. */
984 if (!sh_is_renesas_calling_convention (func_type))
985 flt_argreg_array[argreg] = 1;
986
987 ++argreg;
988
989 /* No register left? */
990 if (argreg > FLOAT_ARGLAST_REGNUM - FLOAT_ARG0_REGNUM)
991 return FLOAT_ARGLAST_REGNUM + 1;
992 }
993 /* Also mark the next register as used. */
994 flt_argreg_array[argreg + 1] = 1;
995 }
996 else if (gdbarch_byte_order (gdbarch) == BFD_ENDIAN_LITTLE
997 && !sh_is_renesas_calling_convention (func_type))
998 {
999 /* In little endian, gcc passes floats like this: f5, f4, f7, f6, ... */
1000 if (!flt_argreg_array[argreg + 1])
1001 ++argreg;
1002 }
1003 flt_argreg_array[argreg] = 1;
1004 return FLOAT_ARG0_REGNUM + argreg;
1005 }
1006
1007 /* Helper function which figures out, if a type is treated like a float type.
1008
1009 The FPU ABIs have a special way how to treat types as float types.
1010 Structures with exactly one member, which is of type float or double, are
1011 treated exactly as the base types float or double:
1012
1013 struct sf {
1014 float f;
1015 };
1016
1017 struct sd {
1018 double d;
1019 };
1020
1021 are handled the same way as just
1022
1023 float f;
1024
1025 double d;
1026
1027 As a result, arguments of these struct types are pushed into floating point
1028 registers exactly as floats or doubles, using the same decision algorithm.
1029
1030 The same is valid if these types are used as function return types. The
1031 above structs are returned in fr0 resp. fr0,fr1 instead of in r0, r0,r1
1032 or even using struct convention as it is for other structs. */
1033
1034 static int
1035 sh_treat_as_flt_p (struct type *type)
1036 {
1037 int len = TYPE_LENGTH (type);
1038
1039 /* Ordinary float types are obviously treated as float. */
1040 if (TYPE_CODE (type) == TYPE_CODE_FLT)
1041 return 1;
1042 /* Otherwise non-struct types are not treated as float. */
1043 if (TYPE_CODE (type) != TYPE_CODE_STRUCT)
1044 return 0;
1045 /* Otherwise structs with more than one memeber are not treated as float. */
1046 if (TYPE_NFIELDS (type) != 1)
1047 return 0;
1048 /* Otherwise if the type of that member is float, the whole type is
1049 treated as float. */
1050 if (TYPE_CODE (TYPE_FIELD_TYPE (type, 0)) == TYPE_CODE_FLT)
1051 return 1;
1052 /* Otherwise it's not treated as float. */
1053 return 0;
1054 }
1055
1056 static CORE_ADDR
1057 sh_push_dummy_call_fpu (struct gdbarch *gdbarch,
1058 struct value *function,
1059 struct regcache *regcache,
1060 CORE_ADDR bp_addr, int nargs,
1061 struct value **args,
1062 CORE_ADDR sp, int struct_return,
1063 CORE_ADDR struct_addr)
1064 {
1065 enum bfd_endian byte_order = gdbarch_byte_order (gdbarch);
1066 int stack_offset = 0;
1067 int argreg = ARG0_REGNUM;
1068 int flt_argreg = 0;
1069 int argnum;
1070 struct type *func_type = value_type (function);
1071 struct type *type;
1072 CORE_ADDR regval;
1073 char *val;
1074 int len, reg_size = 0;
1075 int pass_on_stack = 0;
1076 int treat_as_flt;
1077 int last_reg_arg = INT_MAX;
1078
1079 /* The Renesas ABI expects all varargs arguments, plus the last
1080 non-vararg argument to be on the stack, no matter how many
1081 registers have been used so far. */
1082 if (sh_is_renesas_calling_convention (func_type)
1083 && TYPE_VARARGS (func_type))
1084 last_reg_arg = TYPE_NFIELDS (func_type) - 2;
1085
1086 /* First force sp to a 4-byte alignment. */
1087 sp = sh_frame_align (gdbarch, sp);
1088
1089 /* Make room on stack for args. */
1090 sp -= sh_stack_allocsize (nargs, args);
1091
1092 /* Initialize float argument mechanism. */
1093 sh_init_flt_argreg ();
1094
1095 /* Now load as many as possible of the first arguments into
1096 registers, and push the rest onto the stack. There are 16 bytes
1097 in four registers available. Loop thru args from first to last. */
1098 for (argnum = 0; argnum < nargs; argnum++)
1099 {
1100 type = value_type (args[argnum]);
1101 len = TYPE_LENGTH (type);
1102 val = sh_justify_value_in_reg (gdbarch, args[argnum], len);
1103
1104 /* Some decisions have to be made how various types are handled.
1105 This also differs in different ABIs. */
1106 pass_on_stack = 0;
1107
1108 /* Find out the next register to use for a floating point value. */
1109 treat_as_flt = sh_treat_as_flt_p (type);
1110 if (treat_as_flt)
1111 flt_argreg = sh_next_flt_argreg (gdbarch, len, func_type);
1112 /* In Renesas ABI, long longs and aggregate types are always passed
1113 on stack. */
1114 else if (sh_is_renesas_calling_convention (func_type)
1115 && ((TYPE_CODE (type) == TYPE_CODE_INT && len == 8)
1116 || TYPE_CODE (type) == TYPE_CODE_STRUCT
1117 || TYPE_CODE (type) == TYPE_CODE_UNION))
1118 pass_on_stack = 1;
1119 /* In contrast to non-FPU CPUs, arguments are never split between
1120 registers and stack. If an argument doesn't fit in the remaining
1121 registers it's always pushed entirely on the stack. */
1122 else if (len > ((ARGLAST_REGNUM - argreg + 1) * 4))
1123 pass_on_stack = 1;
1124
1125 while (len > 0)
1126 {
1127 if ((treat_as_flt && flt_argreg > FLOAT_ARGLAST_REGNUM)
1128 || (!treat_as_flt && (argreg > ARGLAST_REGNUM
1129 || pass_on_stack))
1130 || argnum > last_reg_arg)
1131 {
1132 /* The data goes entirely on the stack, 4-byte aligned. */
1133 reg_size = (len + 3) & ~3;
1134 write_memory (sp + stack_offset, val, reg_size);
1135 stack_offset += reg_size;
1136 }
1137 else if (treat_as_flt && flt_argreg <= FLOAT_ARGLAST_REGNUM)
1138 {
1139 /* Argument goes in a float argument register. */
1140 reg_size = register_size (gdbarch, flt_argreg);
1141 regval = extract_unsigned_integer (val, reg_size, byte_order);
1142 /* In little endian mode, float types taking two registers
1143 (doubles on sh4, long doubles on sh2e, sh3e and sh4) must
1144 be stored swapped in the argument registers. The below
1145 code first writes the first 32 bits in the next but one
1146 register, increments the val and len values accordingly
1147 and then proceeds as normal by writing the second 32 bits
1148 into the next register. */
1149 if (gdbarch_byte_order (gdbarch) == BFD_ENDIAN_LITTLE
1150 && TYPE_LENGTH (type) == 2 * reg_size)
1151 {
1152 regcache_cooked_write_unsigned (regcache, flt_argreg + 1,
1153 regval);
1154 val += reg_size;
1155 len -= reg_size;
1156 regval = extract_unsigned_integer (val, reg_size,
1157 byte_order);
1158 }
1159 regcache_cooked_write_unsigned (regcache, flt_argreg++, regval);
1160 }
1161 else if (!treat_as_flt && argreg <= ARGLAST_REGNUM)
1162 {
1163 /* there's room in a register */
1164 reg_size = register_size (gdbarch, argreg);
1165 regval = extract_unsigned_integer (val, reg_size, byte_order);
1166 regcache_cooked_write_unsigned (regcache, argreg++, regval);
1167 }
1168 /* Store the value one register at a time or in one step on
1169 stack. */
1170 len -= reg_size;
1171 val += reg_size;
1172 }
1173 }
1174
1175 if (struct_return)
1176 {
1177 if (sh_is_renesas_calling_convention (func_type))
1178 /* If the function uses the Renesas ABI, subtract another 4 bytes from
1179 the stack and store the struct return address there. */
1180 write_memory_unsigned_integer (sp -= 4, 4, byte_order, struct_addr);
1181 else
1182 /* Using the gcc ABI, the "struct return pointer" pseudo-argument has
1183 its own dedicated register. */
1184 regcache_cooked_write_unsigned (regcache,
1185 STRUCT_RETURN_REGNUM, struct_addr);
1186 }
1187
1188 /* Store return address. */
1189 regcache_cooked_write_unsigned (regcache, PR_REGNUM, bp_addr);
1190
1191 /* Update stack pointer. */
1192 regcache_cooked_write_unsigned (regcache,
1193 gdbarch_sp_regnum (gdbarch), sp);
1194
1195 return sp;
1196 }
1197
1198 static CORE_ADDR
1199 sh_push_dummy_call_nofpu (struct gdbarch *gdbarch,
1200 struct value *function,
1201 struct regcache *regcache,
1202 CORE_ADDR bp_addr,
1203 int nargs, struct value **args,
1204 CORE_ADDR sp, int struct_return,
1205 CORE_ADDR struct_addr)
1206 {
1207 enum bfd_endian byte_order = gdbarch_byte_order (gdbarch);
1208 int stack_offset = 0;
1209 int argreg = ARG0_REGNUM;
1210 int argnum;
1211 struct type *func_type = value_type (function);
1212 struct type *type;
1213 CORE_ADDR regval;
1214 char *val;
1215 int len, reg_size = 0;
1216 int pass_on_stack = 0;
1217 int last_reg_arg = INT_MAX;
1218
1219 /* The Renesas ABI expects all varargs arguments, plus the last
1220 non-vararg argument to be on the stack, no matter how many
1221 registers have been used so far. */
1222 if (sh_is_renesas_calling_convention (func_type)
1223 && TYPE_VARARGS (func_type))
1224 last_reg_arg = TYPE_NFIELDS (func_type) - 2;
1225
1226 /* First force sp to a 4-byte alignment. */
1227 sp = sh_frame_align (gdbarch, sp);
1228
1229 /* Make room on stack for args. */
1230 sp -= sh_stack_allocsize (nargs, args);
1231
1232 /* Now load as many as possible of the first arguments into
1233 registers, and push the rest onto the stack. There are 16 bytes
1234 in four registers available. Loop thru args from first to last. */
1235 for (argnum = 0; argnum < nargs; argnum++)
1236 {
1237 type = value_type (args[argnum]);
1238 len = TYPE_LENGTH (type);
1239 val = sh_justify_value_in_reg (gdbarch, args[argnum], len);
1240
1241 /* Some decisions have to be made how various types are handled.
1242 This also differs in different ABIs. */
1243 pass_on_stack = 0;
1244 /* Renesas ABI pushes doubles and long longs entirely on stack.
1245 Same goes for aggregate types. */
1246 if (sh_is_renesas_calling_convention (func_type)
1247 && ((TYPE_CODE (type) == TYPE_CODE_INT && len >= 8)
1248 || (TYPE_CODE (type) == TYPE_CODE_FLT && len >= 8)
1249 || TYPE_CODE (type) == TYPE_CODE_STRUCT
1250 || TYPE_CODE (type) == TYPE_CODE_UNION))
1251 pass_on_stack = 1;
1252 while (len > 0)
1253 {
1254 if (argreg > ARGLAST_REGNUM || pass_on_stack
1255 || argnum > last_reg_arg)
1256 {
1257 /* The remainder of the data goes entirely on the stack,
1258 4-byte aligned. */
1259 reg_size = (len + 3) & ~3;
1260 write_memory (sp + stack_offset, val, reg_size);
1261 stack_offset += reg_size;
1262 }
1263 else if (argreg <= ARGLAST_REGNUM)
1264 {
1265 /* There's room in a register. */
1266 reg_size = register_size (gdbarch, argreg);
1267 regval = extract_unsigned_integer (val, reg_size, byte_order);
1268 regcache_cooked_write_unsigned (regcache, argreg++, regval);
1269 }
1270 /* Store the value reg_size bytes at a time. This means that things
1271 larger than reg_size bytes may go partly in registers and partly
1272 on the stack. */
1273 len -= reg_size;
1274 val += reg_size;
1275 }
1276 }
1277
1278 if (struct_return)
1279 {
1280 if (sh_is_renesas_calling_convention (func_type))
1281 /* If the function uses the Renesas ABI, subtract another 4 bytes from
1282 the stack and store the struct return address there. */
1283 write_memory_unsigned_integer (sp -= 4, 4, byte_order, struct_addr);
1284 else
1285 /* Using the gcc ABI, the "struct return pointer" pseudo-argument has
1286 its own dedicated register. */
1287 regcache_cooked_write_unsigned (regcache,
1288 STRUCT_RETURN_REGNUM, struct_addr);
1289 }
1290
1291 /* Store return address. */
1292 regcache_cooked_write_unsigned (regcache, PR_REGNUM, bp_addr);
1293
1294 /* Update stack pointer. */
1295 regcache_cooked_write_unsigned (regcache,
1296 gdbarch_sp_regnum (gdbarch), sp);
1297
1298 return sp;
1299 }
1300
1301 /* Find a function's return value in the appropriate registers (in
1302 regbuf), and copy it into valbuf. Extract from an array REGBUF
1303 containing the (raw) register state a function return value of type
1304 TYPE, and copy that, in virtual format, into VALBUF. */
1305 static void
1306 sh_extract_return_value_nofpu (struct type *type, struct regcache *regcache,
1307 void *valbuf)
1308 {
1309 struct gdbarch *gdbarch = get_regcache_arch (regcache);
1310 enum bfd_endian byte_order = gdbarch_byte_order (gdbarch);
1311 int len = TYPE_LENGTH (type);
1312 int return_register = R0_REGNUM;
1313 int offset;
1314
1315 if (len <= 4)
1316 {
1317 ULONGEST c;
1318
1319 regcache_cooked_read_unsigned (regcache, R0_REGNUM, &c);
1320 store_unsigned_integer (valbuf, len, byte_order, c);
1321 }
1322 else if (len == 8)
1323 {
1324 int i, regnum = R0_REGNUM;
1325 for (i = 0; i < len; i += 4)
1326 regcache_raw_read (regcache, regnum++, (char *) valbuf + i);
1327 }
1328 else
1329 error (_("bad size for return value"));
1330 }
1331
1332 static void
1333 sh_extract_return_value_fpu (struct type *type, struct regcache *regcache,
1334 void *valbuf)
1335 {
1336 struct gdbarch *gdbarch = get_regcache_arch (regcache);
1337 if (sh_treat_as_flt_p (type))
1338 {
1339 int len = TYPE_LENGTH (type);
1340 int i, regnum = gdbarch_fp0_regnum (gdbarch);
1341 for (i = 0; i < len; i += 4)
1342 if (gdbarch_byte_order (gdbarch) == BFD_ENDIAN_LITTLE)
1343 regcache_raw_read (regcache, regnum++,
1344 (char *) valbuf + len - 4 - i);
1345 else
1346 regcache_raw_read (regcache, regnum++, (char *) valbuf + i);
1347 }
1348 else
1349 sh_extract_return_value_nofpu (type, regcache, valbuf);
1350 }
1351
1352 /* Write into appropriate registers a function return value
1353 of type TYPE, given in virtual format.
1354 If the architecture is sh4 or sh3e, store a function's return value
1355 in the R0 general register or in the FP0 floating point register,
1356 depending on the type of the return value. In all the other cases
1357 the result is stored in r0, left-justified. */
1358 static void
1359 sh_store_return_value_nofpu (struct type *type, struct regcache *regcache,
1360 const void *valbuf)
1361 {
1362 struct gdbarch *gdbarch = get_regcache_arch (regcache);
1363 enum bfd_endian byte_order = gdbarch_byte_order (gdbarch);
1364 ULONGEST val;
1365 int len = TYPE_LENGTH (type);
1366
1367 if (len <= 4)
1368 {
1369 val = extract_unsigned_integer (valbuf, len, byte_order);
1370 regcache_cooked_write_unsigned (regcache, R0_REGNUM, val);
1371 }
1372 else
1373 {
1374 int i, regnum = R0_REGNUM;
1375 for (i = 0; i < len; i += 4)
1376 regcache_raw_write (regcache, regnum++, (char *) valbuf + i);
1377 }
1378 }
1379
1380 static void
1381 sh_store_return_value_fpu (struct type *type, struct regcache *regcache,
1382 const void *valbuf)
1383 {
1384 struct gdbarch *gdbarch = get_regcache_arch (regcache);
1385 if (sh_treat_as_flt_p (type))
1386 {
1387 int len = TYPE_LENGTH (type);
1388 int i, regnum = gdbarch_fp0_regnum (gdbarch);
1389 for (i = 0; i < len; i += 4)
1390 if (gdbarch_byte_order (gdbarch) == BFD_ENDIAN_LITTLE)
1391 regcache_raw_write (regcache, regnum++,
1392 (char *) valbuf + len - 4 - i);
1393 else
1394 regcache_raw_write (regcache, regnum++, (char *) valbuf + i);
1395 }
1396 else
1397 sh_store_return_value_nofpu (type, regcache, valbuf);
1398 }
1399
1400 static enum return_value_convention
1401 sh_return_value_nofpu (struct gdbarch *gdbarch, struct type *func_type,
1402 struct type *type, struct regcache *regcache,
1403 gdb_byte *readbuf, const gdb_byte *writebuf)
1404 {
1405 if (sh_use_struct_convention_nofpu (
1406 sh_is_renesas_calling_convention (func_type), type))
1407 return RETURN_VALUE_STRUCT_CONVENTION;
1408 if (writebuf)
1409 sh_store_return_value_nofpu (type, regcache, writebuf);
1410 else if (readbuf)
1411 sh_extract_return_value_nofpu (type, regcache, readbuf);
1412 return RETURN_VALUE_REGISTER_CONVENTION;
1413 }
1414
1415 static enum return_value_convention
1416 sh_return_value_fpu (struct gdbarch *gdbarch, struct type *func_type,
1417 struct type *type, struct regcache *regcache,
1418 gdb_byte *readbuf, const gdb_byte *writebuf)
1419 {
1420 if (sh_use_struct_convention (
1421 sh_is_renesas_calling_convention (func_type), type))
1422 return RETURN_VALUE_STRUCT_CONVENTION;
1423 if (writebuf)
1424 sh_store_return_value_fpu (type, regcache, writebuf);
1425 else if (readbuf)
1426 sh_extract_return_value_fpu (type, regcache, readbuf);
1427 return RETURN_VALUE_REGISTER_CONVENTION;
1428 }
1429
1430 /* Print the registers in a form similar to the E7000. */
1431
1432 static void
1433 sh_generic_show_regs (struct frame_info *frame)
1434 {
1435 printf_filtered
1436 (" PC %s SR %08lx PR %08lx MACH %08lx\n",
1437 phex (get_frame_register_unsigned (frame,
1438 gdbarch_pc_regnum
1439 (get_frame_arch (frame))), 4),
1440 (long) get_frame_register_unsigned (frame, SR_REGNUM),
1441 (long) get_frame_register_unsigned (frame, PR_REGNUM),
1442 (long) get_frame_register_unsigned (frame, MACH_REGNUM));
1443
1444 printf_filtered
1445 (" GBR %08lx VBR %08lx MACL %08lx\n",
1446 (long) get_frame_register_unsigned (frame, GBR_REGNUM),
1447 (long) get_frame_register_unsigned (frame, VBR_REGNUM),
1448 (long) get_frame_register_unsigned (frame, MACL_REGNUM));
1449
1450 printf_filtered
1451 ("R0-R7 %08lx %08lx %08lx %08lx %08lx %08lx %08lx %08lx\n",
1452 (long) get_frame_register_unsigned (frame, 0),
1453 (long) get_frame_register_unsigned (frame, 1),
1454 (long) get_frame_register_unsigned (frame, 2),
1455 (long) get_frame_register_unsigned (frame, 3),
1456 (long) get_frame_register_unsigned (frame, 4),
1457 (long) get_frame_register_unsigned (frame, 5),
1458 (long) get_frame_register_unsigned (frame, 6),
1459 (long) get_frame_register_unsigned (frame, 7));
1460 printf_filtered
1461 ("R8-R15 %08lx %08lx %08lx %08lx %08lx %08lx %08lx %08lx\n",
1462 (long) get_frame_register_unsigned (frame, 8),
1463 (long) get_frame_register_unsigned (frame, 9),
1464 (long) get_frame_register_unsigned (frame, 10),
1465 (long) get_frame_register_unsigned (frame, 11),
1466 (long) get_frame_register_unsigned (frame, 12),
1467 (long) get_frame_register_unsigned (frame, 13),
1468 (long) get_frame_register_unsigned (frame, 14),
1469 (long) get_frame_register_unsigned (frame, 15));
1470 }
1471
1472 static void
1473 sh3_show_regs (struct frame_info *frame)
1474 {
1475 printf_filtered
1476 (" PC %s SR %08lx PR %08lx MACH %08lx\n",
1477 phex (get_frame_register_unsigned (frame,
1478 gdbarch_pc_regnum
1479 (get_frame_arch (frame))), 4),
1480 (long) get_frame_register_unsigned (frame, SR_REGNUM),
1481 (long) get_frame_register_unsigned (frame, PR_REGNUM),
1482 (long) get_frame_register_unsigned (frame, MACH_REGNUM));
1483
1484 printf_filtered
1485 (" GBR %08lx VBR %08lx MACL %08lx\n",
1486 (long) get_frame_register_unsigned (frame, GBR_REGNUM),
1487 (long) get_frame_register_unsigned (frame, VBR_REGNUM),
1488 (long) get_frame_register_unsigned (frame, MACL_REGNUM));
1489 printf_filtered
1490 (" SSR %08lx SPC %08lx\n",
1491 (long) get_frame_register_unsigned (frame, SSR_REGNUM),
1492 (long) get_frame_register_unsigned (frame, SPC_REGNUM));
1493
1494 printf_filtered
1495 ("R0-R7 %08lx %08lx %08lx %08lx %08lx %08lx %08lx %08lx\n",
1496 (long) get_frame_register_unsigned (frame, 0),
1497 (long) get_frame_register_unsigned (frame, 1),
1498 (long) get_frame_register_unsigned (frame, 2),
1499 (long) get_frame_register_unsigned (frame, 3),
1500 (long) get_frame_register_unsigned (frame, 4),
1501 (long) get_frame_register_unsigned (frame, 5),
1502 (long) get_frame_register_unsigned (frame, 6),
1503 (long) get_frame_register_unsigned (frame, 7));
1504 printf_filtered
1505 ("R8-R15 %08lx %08lx %08lx %08lx %08lx %08lx %08lx %08lx\n",
1506 (long) get_frame_register_unsigned (frame, 8),
1507 (long) get_frame_register_unsigned (frame, 9),
1508 (long) get_frame_register_unsigned (frame, 10),
1509 (long) get_frame_register_unsigned (frame, 11),
1510 (long) get_frame_register_unsigned (frame, 12),
1511 (long) get_frame_register_unsigned (frame, 13),
1512 (long) get_frame_register_unsigned (frame, 14),
1513 (long) get_frame_register_unsigned (frame, 15));
1514 }
1515
1516 static void
1517 sh2e_show_regs (struct frame_info *frame)
1518 {
1519 struct gdbarch *gdbarch = get_frame_arch (frame);
1520 printf_filtered
1521 (" PC %s SR %08lx PR %08lx MACH %08lx\n",
1522 phex (get_frame_register_unsigned (frame,
1523 gdbarch_pc_regnum (gdbarch)), 4),
1524 (long) get_frame_register_unsigned (frame, SR_REGNUM),
1525 (long) get_frame_register_unsigned (frame, PR_REGNUM),
1526 (long) get_frame_register_unsigned (frame, MACH_REGNUM));
1527
1528 printf_filtered
1529 (" GBR %08lx VBR %08lx MACL %08lx\n",
1530 (long) get_frame_register_unsigned (frame, GBR_REGNUM),
1531 (long) get_frame_register_unsigned (frame, VBR_REGNUM),
1532 (long) get_frame_register_unsigned (frame, MACL_REGNUM));
1533 printf_filtered
1534 (" SSR %08lx SPC %08lx FPUL %08lx FPSCR %08lx\n",
1535 (long) get_frame_register_unsigned (frame, SSR_REGNUM),
1536 (long) get_frame_register_unsigned (frame, SPC_REGNUM),
1537 (long) get_frame_register_unsigned (frame, FPUL_REGNUM),
1538 (long) get_frame_register_unsigned (frame, FPSCR_REGNUM));
1539
1540 printf_filtered
1541 ("R0-R7 %08lx %08lx %08lx %08lx %08lx %08lx %08lx %08lx\n",
1542 (long) get_frame_register_unsigned (frame, 0),
1543 (long) get_frame_register_unsigned (frame, 1),
1544 (long) get_frame_register_unsigned (frame, 2),
1545 (long) get_frame_register_unsigned (frame, 3),
1546 (long) get_frame_register_unsigned (frame, 4),
1547 (long) get_frame_register_unsigned (frame, 5),
1548 (long) get_frame_register_unsigned (frame, 6),
1549 (long) get_frame_register_unsigned (frame, 7));
1550 printf_filtered
1551 ("R8-R15 %08lx %08lx %08lx %08lx %08lx %08lx %08lx %08lx\n",
1552 (long) get_frame_register_unsigned (frame, 8),
1553 (long) get_frame_register_unsigned (frame, 9),
1554 (long) get_frame_register_unsigned (frame, 10),
1555 (long) get_frame_register_unsigned (frame, 11),
1556 (long) get_frame_register_unsigned (frame, 12),
1557 (long) get_frame_register_unsigned (frame, 13),
1558 (long) get_frame_register_unsigned (frame, 14),
1559 (long) get_frame_register_unsigned (frame, 15));
1560
1561 printf_filtered
1562 ("FP0-FP7 %08lx %08lx %08lx %08lx %08lx %08lx %08lx %08lx\n",
1563 (long) get_frame_register_unsigned
1564 (frame, gdbarch_fp0_regnum (gdbarch) + 0),
1565 (long) get_frame_register_unsigned
1566 (frame, gdbarch_fp0_regnum (gdbarch) + 1),
1567 (long) get_frame_register_unsigned
1568 (frame, gdbarch_fp0_regnum (gdbarch) + 2),
1569 (long) get_frame_register_unsigned
1570 (frame, gdbarch_fp0_regnum (gdbarch) + 3),
1571 (long) get_frame_register_unsigned
1572 (frame, gdbarch_fp0_regnum (gdbarch) + 4),
1573 (long) get_frame_register_unsigned
1574 (frame, gdbarch_fp0_regnum (gdbarch) + 5),
1575 (long) get_frame_register_unsigned
1576 (frame, gdbarch_fp0_regnum (gdbarch) + 6),
1577 (long) get_frame_register_unsigned
1578 (frame, gdbarch_fp0_regnum (gdbarch) + 7));
1579 printf_filtered
1580 ("FP8-FP15 %08lx %08lx %08lx %08lx %08lx %08lx %08lx %08lx\n",
1581 (long) get_frame_register_unsigned
1582 (frame, gdbarch_fp0_regnum (gdbarch) + 8),
1583 (long) get_frame_register_unsigned
1584 (frame, gdbarch_fp0_regnum (gdbarch) + 9),
1585 (long) get_frame_register_unsigned
1586 (frame, gdbarch_fp0_regnum (gdbarch) + 10),
1587 (long) get_frame_register_unsigned
1588 (frame, gdbarch_fp0_regnum (gdbarch) + 11),
1589 (long) get_frame_register_unsigned
1590 (frame, gdbarch_fp0_regnum (gdbarch) + 12),
1591 (long) get_frame_register_unsigned
1592 (frame, gdbarch_fp0_regnum (gdbarch) + 13),
1593 (long) get_frame_register_unsigned
1594 (frame, gdbarch_fp0_regnum (gdbarch) + 14),
1595 (long) get_frame_register_unsigned
1596 (frame, gdbarch_fp0_regnum (gdbarch) + 15));
1597 }
1598
1599 static void
1600 sh2a_show_regs (struct frame_info *frame)
1601 {
1602 struct gdbarch *gdbarch = get_frame_arch (frame);
1603 int pr = get_frame_register_unsigned (frame, FPSCR_REGNUM) & 0x80000;
1604
1605 printf_filtered
1606 (" PC %s SR %08lx PR %08lx MACH %08lx\n",
1607 phex (get_frame_register_unsigned (frame,
1608 gdbarch_pc_regnum (gdbarch)), 4),
1609 (long) get_frame_register_unsigned (frame, SR_REGNUM),
1610 (long) get_frame_register_unsigned (frame, PR_REGNUM),
1611 (long) get_frame_register_unsigned (frame, MACH_REGNUM));
1612
1613 printf_filtered
1614 (" GBR %08lx VBR %08lx TBR %08lx MACL %08lx\n",
1615 (long) get_frame_register_unsigned (frame, GBR_REGNUM),
1616 (long) get_frame_register_unsigned (frame, VBR_REGNUM),
1617 (long) get_frame_register_unsigned (frame, TBR_REGNUM),
1618 (long) get_frame_register_unsigned (frame, MACL_REGNUM));
1619 printf_filtered
1620 (" SSR %08lx SPC %08lx FPUL %08lx FPSCR %08lx\n",
1621 (long) get_frame_register_unsigned (frame, SSR_REGNUM),
1622 (long) get_frame_register_unsigned (frame, SPC_REGNUM),
1623 (long) get_frame_register_unsigned (frame, FPUL_REGNUM),
1624 (long) get_frame_register_unsigned (frame, FPSCR_REGNUM));
1625
1626 printf_filtered
1627 ("R0-R7 %08lx %08lx %08lx %08lx %08lx %08lx %08lx %08lx\n",
1628 (long) get_frame_register_unsigned (frame, 0),
1629 (long) get_frame_register_unsigned (frame, 1),
1630 (long) get_frame_register_unsigned (frame, 2),
1631 (long) get_frame_register_unsigned (frame, 3),
1632 (long) get_frame_register_unsigned (frame, 4),
1633 (long) get_frame_register_unsigned (frame, 5),
1634 (long) get_frame_register_unsigned (frame, 6),
1635 (long) get_frame_register_unsigned (frame, 7));
1636 printf_filtered
1637 ("R8-R15 %08lx %08lx %08lx %08lx %08lx %08lx %08lx %08lx\n",
1638 (long) get_frame_register_unsigned (frame, 8),
1639 (long) get_frame_register_unsigned (frame, 9),
1640 (long) get_frame_register_unsigned (frame, 10),
1641 (long) get_frame_register_unsigned (frame, 11),
1642 (long) get_frame_register_unsigned (frame, 12),
1643 (long) get_frame_register_unsigned (frame, 13),
1644 (long) get_frame_register_unsigned (frame, 14),
1645 (long) get_frame_register_unsigned (frame, 15));
1646
1647 printf_filtered
1648 (pr ? "DR0-DR6 %08lx%08lx %08lx%08lx %08lx%08lx %08lx%08lx\n"
1649 : "FP0-FP7 %08lx %08lx %08lx %08lx %08lx %08lx %08lx %08lx\n",
1650 (long) get_frame_register_unsigned
1651 (frame, gdbarch_fp0_regnum (gdbarch) + 0),
1652 (long) get_frame_register_unsigned
1653 (frame, gdbarch_fp0_regnum (gdbarch) + 1),
1654 (long) get_frame_register_unsigned
1655 (frame, gdbarch_fp0_regnum (gdbarch) + 2),
1656 (long) get_frame_register_unsigned
1657 (frame, gdbarch_fp0_regnum (gdbarch) + 3),
1658 (long) get_frame_register_unsigned
1659 (frame, gdbarch_fp0_regnum (gdbarch) + 4),
1660 (long) get_frame_register_unsigned
1661 (frame, gdbarch_fp0_regnum (gdbarch) + 5),
1662 (long) get_frame_register_unsigned
1663 (frame, gdbarch_fp0_regnum (gdbarch) + 6),
1664 (long) get_frame_register_unsigned
1665 (frame, gdbarch_fp0_regnum (gdbarch) + 7));
1666 printf_filtered
1667 (pr ? "DR8-DR14 %08lx%08lx %08lx%08lx %08lx%08lx %08lx%08lx\n"
1668 : "FP8-FP15 %08lx %08lx %08lx %08lx %08lx %08lx %08lx %08lx\n",
1669 (long) get_frame_register_unsigned
1670 (frame, gdbarch_fp0_regnum (gdbarch) + 8),
1671 (long) get_frame_register_unsigned
1672 (frame, gdbarch_fp0_regnum (gdbarch) + 9),
1673 (long) get_frame_register_unsigned
1674 (frame, gdbarch_fp0_regnum (gdbarch) + 10),
1675 (long) get_frame_register_unsigned
1676 (frame, gdbarch_fp0_regnum (gdbarch) + 11),
1677 (long) get_frame_register_unsigned
1678 (frame, gdbarch_fp0_regnum (gdbarch) + 12),
1679 (long) get_frame_register_unsigned
1680 (frame, gdbarch_fp0_regnum (gdbarch) + 13),
1681 (long) get_frame_register_unsigned
1682 (frame, gdbarch_fp0_regnum (gdbarch) + 14),
1683 (long) get_frame_register_unsigned
1684 (frame, gdbarch_fp0_regnum (gdbarch) + 15));
1685 printf_filtered
1686 ("BANK=%-3d\n", (int) get_frame_register_unsigned (frame, BANK_REGNUM));
1687 printf_filtered
1688 ("R0b-R7b %08lx %08lx %08lx %08lx %08lx %08lx %08lx %08lx\n",
1689 (long) get_frame_register_unsigned (frame, R0_BANK0_REGNUM + 0),
1690 (long) get_frame_register_unsigned (frame, R0_BANK0_REGNUM + 1),
1691 (long) get_frame_register_unsigned (frame, R0_BANK0_REGNUM + 2),
1692 (long) get_frame_register_unsigned (frame, R0_BANK0_REGNUM + 3),
1693 (long) get_frame_register_unsigned (frame, R0_BANK0_REGNUM + 4),
1694 (long) get_frame_register_unsigned (frame, R0_BANK0_REGNUM + 5),
1695 (long) get_frame_register_unsigned (frame, R0_BANK0_REGNUM + 6),
1696 (long) get_frame_register_unsigned (frame, R0_BANK0_REGNUM + 7));
1697 printf_filtered
1698 ("R8b-R14b %08lx %08lx %08lx %08lx %08lx %08lx %08lx\n",
1699 (long) get_frame_register_unsigned (frame, R0_BANK0_REGNUM + 8),
1700 (long) get_frame_register_unsigned (frame, R0_BANK0_REGNUM + 9),
1701 (long) get_frame_register_unsigned (frame, R0_BANK0_REGNUM + 10),
1702 (long) get_frame_register_unsigned (frame, R0_BANK0_REGNUM + 11),
1703 (long) get_frame_register_unsigned (frame, R0_BANK0_REGNUM + 12),
1704 (long) get_frame_register_unsigned (frame, R0_BANK0_REGNUM + 13),
1705 (long) get_frame_register_unsigned (frame, R0_BANK0_REGNUM + 14));
1706 printf_filtered
1707 ("MACHb=%08lx IVNb=%08lx PRb=%08lx GBRb=%08lx MACLb=%08lx\n",
1708 (long) get_frame_register_unsigned (frame, R0_BANK0_REGNUM + 15),
1709 (long) get_frame_register_unsigned (frame, R0_BANK0_REGNUM + 16),
1710 (long) get_frame_register_unsigned (frame, R0_BANK0_REGNUM + 17),
1711 (long) get_frame_register_unsigned (frame, R0_BANK0_REGNUM + 18),
1712 (long) get_frame_register_unsigned (frame, R0_BANK0_REGNUM + 19));
1713 }
1714
1715 static void
1716 sh2a_nofpu_show_regs (struct frame_info *frame)
1717 {
1718 int pr = get_frame_register_unsigned (frame, FPSCR_REGNUM) & 0x80000;
1719
1720 printf_filtered
1721 (" PC %s SR %08lx PR %08lx MACH %08lx\n",
1722 phex (get_frame_register_unsigned (frame,
1723 gdbarch_pc_regnum
1724 (get_frame_arch (frame))), 4),
1725 (long) get_frame_register_unsigned (frame, SR_REGNUM),
1726 (long) get_frame_register_unsigned (frame, PR_REGNUM),
1727 (long) get_frame_register_unsigned (frame, MACH_REGNUM));
1728
1729 printf_filtered
1730 (" GBR %08lx VBR %08lx TBR %08lx MACL %08lx\n",
1731 (long) get_frame_register_unsigned (frame, GBR_REGNUM),
1732 (long) get_frame_register_unsigned (frame, VBR_REGNUM),
1733 (long) get_frame_register_unsigned (frame, TBR_REGNUM),
1734 (long) get_frame_register_unsigned (frame, MACL_REGNUM));
1735 printf_filtered
1736 (" SSR %08lx SPC %08lx FPUL %08lx FPSCR %08lx\n",
1737 (long) get_frame_register_unsigned (frame, SSR_REGNUM),
1738 (long) get_frame_register_unsigned (frame, SPC_REGNUM),
1739 (long) get_frame_register_unsigned (frame, FPUL_REGNUM),
1740 (long) get_frame_register_unsigned (frame, FPSCR_REGNUM));
1741
1742 printf_filtered
1743 ("R0-R7 %08lx %08lx %08lx %08lx %08lx %08lx %08lx %08lx\n",
1744 (long) get_frame_register_unsigned (frame, 0),
1745 (long) get_frame_register_unsigned (frame, 1),
1746 (long) get_frame_register_unsigned (frame, 2),
1747 (long) get_frame_register_unsigned (frame, 3),
1748 (long) get_frame_register_unsigned (frame, 4),
1749 (long) get_frame_register_unsigned (frame, 5),
1750 (long) get_frame_register_unsigned (frame, 6),
1751 (long) get_frame_register_unsigned (frame, 7));
1752 printf_filtered
1753 ("R8-R15 %08lx %08lx %08lx %08lx %08lx %08lx %08lx %08lx\n",
1754 (long) get_frame_register_unsigned (frame, 8),
1755 (long) get_frame_register_unsigned (frame, 9),
1756 (long) get_frame_register_unsigned (frame, 10),
1757 (long) get_frame_register_unsigned (frame, 11),
1758 (long) get_frame_register_unsigned (frame, 12),
1759 (long) get_frame_register_unsigned (frame, 13),
1760 (long) get_frame_register_unsigned (frame, 14),
1761 (long) get_frame_register_unsigned (frame, 15));
1762
1763 printf_filtered
1764 ("BANK=%-3d\n", (int) get_frame_register_unsigned (frame, BANK_REGNUM));
1765 printf_filtered
1766 ("R0b-R7b %08lx %08lx %08lx %08lx %08lx %08lx %08lx %08lx\n",
1767 (long) get_frame_register_unsigned (frame, R0_BANK0_REGNUM + 0),
1768 (long) get_frame_register_unsigned (frame, R0_BANK0_REGNUM + 1),
1769 (long) get_frame_register_unsigned (frame, R0_BANK0_REGNUM + 2),
1770 (long) get_frame_register_unsigned (frame, R0_BANK0_REGNUM + 3),
1771 (long) get_frame_register_unsigned (frame, R0_BANK0_REGNUM + 4),
1772 (long) get_frame_register_unsigned (frame, R0_BANK0_REGNUM + 5),
1773 (long) get_frame_register_unsigned (frame, R0_BANK0_REGNUM + 6),
1774 (long) get_frame_register_unsigned (frame, R0_BANK0_REGNUM + 7));
1775 printf_filtered
1776 ("R8b-R14b %08lx %08lx %08lx %08lx %08lx %08lx %08lx\n",
1777 (long) get_frame_register_unsigned (frame, R0_BANK0_REGNUM + 8),
1778 (long) get_frame_register_unsigned (frame, R0_BANK0_REGNUM + 9),
1779 (long) get_frame_register_unsigned (frame, R0_BANK0_REGNUM + 10),
1780 (long) get_frame_register_unsigned (frame, R0_BANK0_REGNUM + 11),
1781 (long) get_frame_register_unsigned (frame, R0_BANK0_REGNUM + 12),
1782 (long) get_frame_register_unsigned (frame, R0_BANK0_REGNUM + 13),
1783 (long) get_frame_register_unsigned (frame, R0_BANK0_REGNUM + 14));
1784 printf_filtered
1785 ("MACHb=%08lx IVNb=%08lx PRb=%08lx GBRb=%08lx MACLb=%08lx\n",
1786 (long) get_frame_register_unsigned (frame, R0_BANK0_REGNUM + 15),
1787 (long) get_frame_register_unsigned (frame, R0_BANK0_REGNUM + 16),
1788 (long) get_frame_register_unsigned (frame, R0_BANK0_REGNUM + 17),
1789 (long) get_frame_register_unsigned (frame, R0_BANK0_REGNUM + 18),
1790 (long) get_frame_register_unsigned (frame, R0_BANK0_REGNUM + 19));
1791 }
1792
1793 static void
1794 sh3e_show_regs (struct frame_info *frame)
1795 {
1796 struct gdbarch *gdbarch = get_frame_arch (frame);
1797 printf_filtered
1798 (" PC %s SR %08lx PR %08lx MACH %08lx\n",
1799 phex (get_frame_register_unsigned (frame,
1800 gdbarch_pc_regnum (gdbarch)), 4),
1801 (long) get_frame_register_unsigned (frame, SR_REGNUM),
1802 (long) get_frame_register_unsigned (frame, PR_REGNUM),
1803 (long) get_frame_register_unsigned (frame, MACH_REGNUM));
1804
1805 printf_filtered
1806 (" GBR %08lx VBR %08lx MACL %08lx\n",
1807 (long) get_frame_register_unsigned (frame, GBR_REGNUM),
1808 (long) get_frame_register_unsigned (frame, VBR_REGNUM),
1809 (long) get_frame_register_unsigned (frame, MACL_REGNUM));
1810 printf_filtered
1811 (" SSR %08lx SPC %08lx FPUL %08lx FPSCR %08lx\n",
1812 (long) get_frame_register_unsigned (frame, SSR_REGNUM),
1813 (long) get_frame_register_unsigned (frame, SPC_REGNUM),
1814 (long) get_frame_register_unsigned (frame, FPUL_REGNUM),
1815 (long) get_frame_register_unsigned (frame, FPSCR_REGNUM));
1816
1817 printf_filtered
1818 ("R0-R7 %08lx %08lx %08lx %08lx %08lx %08lx %08lx %08lx\n",
1819 (long) get_frame_register_unsigned (frame, 0),
1820 (long) get_frame_register_unsigned (frame, 1),
1821 (long) get_frame_register_unsigned (frame, 2),
1822 (long) get_frame_register_unsigned (frame, 3),
1823 (long) get_frame_register_unsigned (frame, 4),
1824 (long) get_frame_register_unsigned (frame, 5),
1825 (long) get_frame_register_unsigned (frame, 6),
1826 (long) get_frame_register_unsigned (frame, 7));
1827 printf_filtered
1828 ("R8-R15 %08lx %08lx %08lx %08lx %08lx %08lx %08lx %08lx\n",
1829 (long) get_frame_register_unsigned (frame, 8),
1830 (long) get_frame_register_unsigned (frame, 9),
1831 (long) get_frame_register_unsigned (frame, 10),
1832 (long) get_frame_register_unsigned (frame, 11),
1833 (long) get_frame_register_unsigned (frame, 12),
1834 (long) get_frame_register_unsigned (frame, 13),
1835 (long) get_frame_register_unsigned (frame, 14),
1836 (long) get_frame_register_unsigned (frame, 15));
1837
1838 printf_filtered
1839 ("FP0-FP7 %08lx %08lx %08lx %08lx %08lx %08lx %08lx %08lx\n",
1840 (long) get_frame_register_unsigned
1841 (frame, gdbarch_fp0_regnum (gdbarch) + 0),
1842 (long) get_frame_register_unsigned
1843 (frame, gdbarch_fp0_regnum (gdbarch) + 1),
1844 (long) get_frame_register_unsigned
1845 (frame, gdbarch_fp0_regnum (gdbarch) + 2),
1846 (long) get_frame_register_unsigned
1847 (frame, gdbarch_fp0_regnum (gdbarch) + 3),
1848 (long) get_frame_register_unsigned
1849 (frame, gdbarch_fp0_regnum (gdbarch) + 4),
1850 (long) get_frame_register_unsigned
1851 (frame, gdbarch_fp0_regnum (gdbarch) + 5),
1852 (long) get_frame_register_unsigned
1853 (frame, gdbarch_fp0_regnum (gdbarch) + 6),
1854 (long) get_frame_register_unsigned
1855 (frame, gdbarch_fp0_regnum (gdbarch) + 7));
1856 printf_filtered
1857 ("FP8-FP15 %08lx %08lx %08lx %08lx %08lx %08lx %08lx %08lx\n",
1858 (long) get_frame_register_unsigned
1859 (frame, gdbarch_fp0_regnum (gdbarch) + 8),
1860 (long) get_frame_register_unsigned
1861 (frame, gdbarch_fp0_regnum (gdbarch) + 9),
1862 (long) get_frame_register_unsigned
1863 (frame, gdbarch_fp0_regnum (gdbarch) + 10),
1864 (long) get_frame_register_unsigned
1865 (frame, gdbarch_fp0_regnum (gdbarch) + 11),
1866 (long) get_frame_register_unsigned
1867 (frame, gdbarch_fp0_regnum (gdbarch) + 12),
1868 (long) get_frame_register_unsigned
1869 (frame, gdbarch_fp0_regnum (gdbarch) + 13),
1870 (long) get_frame_register_unsigned
1871 (frame, gdbarch_fp0_regnum (gdbarch) + 14),
1872 (long) get_frame_register_unsigned
1873 (frame, gdbarch_fp0_regnum (gdbarch) + 15));
1874 }
1875
1876 static void
1877 sh3_dsp_show_regs (struct frame_info *frame)
1878 {
1879 printf_filtered
1880 (" PC %s SR %08lx PR %08lx MACH %08lx\n",
1881 phex (get_frame_register_unsigned (frame,
1882 gdbarch_pc_regnum
1883 (get_frame_arch (frame))), 4),
1884 (long) get_frame_register_unsigned (frame, SR_REGNUM),
1885 (long) get_frame_register_unsigned (frame, PR_REGNUM),
1886 (long) get_frame_register_unsigned (frame, MACH_REGNUM));
1887
1888 printf_filtered
1889 (" GBR %08lx VBR %08lx MACL %08lx\n",
1890 (long) get_frame_register_unsigned (frame, GBR_REGNUM),
1891 (long) get_frame_register_unsigned (frame, VBR_REGNUM),
1892 (long) get_frame_register_unsigned (frame, MACL_REGNUM));
1893
1894 printf_filtered
1895 (" SSR %08lx SPC %08lx DSR %08lx\n",
1896 (long) get_frame_register_unsigned (frame, SSR_REGNUM),
1897 (long) get_frame_register_unsigned (frame, SPC_REGNUM),
1898 (long) get_frame_register_unsigned (frame, DSR_REGNUM));
1899
1900 printf_filtered
1901 ("R0-R7 %08lx %08lx %08lx %08lx %08lx %08lx %08lx %08lx\n",
1902 (long) get_frame_register_unsigned (frame, 0),
1903 (long) get_frame_register_unsigned (frame, 1),
1904 (long) get_frame_register_unsigned (frame, 2),
1905 (long) get_frame_register_unsigned (frame, 3),
1906 (long) get_frame_register_unsigned (frame, 4),
1907 (long) get_frame_register_unsigned (frame, 5),
1908 (long) get_frame_register_unsigned (frame, 6),
1909 (long) get_frame_register_unsigned (frame, 7));
1910 printf_filtered
1911 ("R8-R15 %08lx %08lx %08lx %08lx %08lx %08lx %08lx %08lx\n",
1912 (long) get_frame_register_unsigned (frame, 8),
1913 (long) get_frame_register_unsigned (frame, 9),
1914 (long) get_frame_register_unsigned (frame, 10),
1915 (long) get_frame_register_unsigned (frame, 11),
1916 (long) get_frame_register_unsigned (frame, 12),
1917 (long) get_frame_register_unsigned (frame, 13),
1918 (long) get_frame_register_unsigned (frame, 14),
1919 (long) get_frame_register_unsigned (frame, 15));
1920
1921 printf_filtered
1922 ("A0G=%02lx A0=%08lx M0=%08lx X0=%08lx Y0=%08lx RS=%08lx MOD=%08lx\n",
1923 (long) get_frame_register_unsigned (frame, A0G_REGNUM) & 0xff,
1924 (long) get_frame_register_unsigned (frame, A0_REGNUM),
1925 (long) get_frame_register_unsigned (frame, M0_REGNUM),
1926 (long) get_frame_register_unsigned (frame, X0_REGNUM),
1927 (long) get_frame_register_unsigned (frame, Y0_REGNUM),
1928 (long) get_frame_register_unsigned (frame, RS_REGNUM),
1929 (long) get_frame_register_unsigned (frame, MOD_REGNUM));
1930 printf_filtered
1931 ("A1G=%02lx A1=%08lx M1=%08lx X1=%08lx Y1=%08lx RE=%08lx\n",
1932 (long) get_frame_register_unsigned (frame, A1G_REGNUM) & 0xff,
1933 (long) get_frame_register_unsigned (frame, A1_REGNUM),
1934 (long) get_frame_register_unsigned (frame, M1_REGNUM),
1935 (long) get_frame_register_unsigned (frame, X1_REGNUM),
1936 (long) get_frame_register_unsigned (frame, Y1_REGNUM),
1937 (long) get_frame_register_unsigned (frame, RE_REGNUM));
1938 }
1939
1940 static void
1941 sh4_show_regs (struct frame_info *frame)
1942 {
1943 struct gdbarch *gdbarch = get_frame_arch (frame);
1944 int pr = get_frame_register_unsigned (frame, FPSCR_REGNUM) & 0x80000;
1945
1946 printf_filtered
1947 (" PC %s SR %08lx PR %08lx MACH %08lx\n",
1948 phex (get_frame_register_unsigned (frame,
1949 gdbarch_pc_regnum (gdbarch)), 4),
1950 (long) get_frame_register_unsigned (frame, SR_REGNUM),
1951 (long) get_frame_register_unsigned (frame, PR_REGNUM),
1952 (long) get_frame_register_unsigned (frame, MACH_REGNUM));
1953
1954 printf_filtered
1955 (" GBR %08lx VBR %08lx MACL %08lx\n",
1956 (long) get_frame_register_unsigned (frame, GBR_REGNUM),
1957 (long) get_frame_register_unsigned (frame, VBR_REGNUM),
1958 (long) get_frame_register_unsigned (frame, MACL_REGNUM));
1959 printf_filtered
1960 (" SSR %08lx SPC %08lx FPUL %08lx FPSCR %08lx\n",
1961 (long) get_frame_register_unsigned (frame, SSR_REGNUM),
1962 (long) get_frame_register_unsigned (frame, SPC_REGNUM),
1963 (long) get_frame_register_unsigned (frame, FPUL_REGNUM),
1964 (long) get_frame_register_unsigned (frame, FPSCR_REGNUM));
1965
1966 printf_filtered
1967 ("R0-R7 %08lx %08lx %08lx %08lx %08lx %08lx %08lx %08lx\n",
1968 (long) get_frame_register_unsigned (frame, 0),
1969 (long) get_frame_register_unsigned (frame, 1),
1970 (long) get_frame_register_unsigned (frame, 2),
1971 (long) get_frame_register_unsigned (frame, 3),
1972 (long) get_frame_register_unsigned (frame, 4),
1973 (long) get_frame_register_unsigned (frame, 5),
1974 (long) get_frame_register_unsigned (frame, 6),
1975 (long) get_frame_register_unsigned (frame, 7));
1976 printf_filtered
1977 ("R8-R15 %08lx %08lx %08lx %08lx %08lx %08lx %08lx %08lx\n",
1978 (long) get_frame_register_unsigned (frame, 8),
1979 (long) get_frame_register_unsigned (frame, 9),
1980 (long) get_frame_register_unsigned (frame, 10),
1981 (long) get_frame_register_unsigned (frame, 11),
1982 (long) get_frame_register_unsigned (frame, 12),
1983 (long) get_frame_register_unsigned (frame, 13),
1984 (long) get_frame_register_unsigned (frame, 14),
1985 (long) get_frame_register_unsigned (frame, 15));
1986
1987 printf_filtered
1988 (pr ? "DR0-DR6 %08lx%08lx %08lx%08lx %08lx%08lx %08lx%08lx\n"
1989 : "FP0-FP7 %08lx %08lx %08lx %08lx %08lx %08lx %08lx %08lx\n",
1990 (long) get_frame_register_unsigned
1991 (frame, gdbarch_fp0_regnum (gdbarch) + 0),
1992 (long) get_frame_register_unsigned
1993 (frame, gdbarch_fp0_regnum (gdbarch) + 1),
1994 (long) get_frame_register_unsigned
1995 (frame, gdbarch_fp0_regnum (gdbarch) + 2),
1996 (long) get_frame_register_unsigned
1997 (frame, gdbarch_fp0_regnum (gdbarch) + 3),
1998 (long) get_frame_register_unsigned
1999 (frame, gdbarch_fp0_regnum (gdbarch) + 4),
2000 (long) get_frame_register_unsigned
2001 (frame, gdbarch_fp0_regnum (gdbarch) + 5),
2002 (long) get_frame_register_unsigned
2003 (frame, gdbarch_fp0_regnum (gdbarch) + 6),
2004 (long) get_frame_register_unsigned
2005 (frame, gdbarch_fp0_regnum (gdbarch) + 7));
2006 printf_filtered
2007 (pr ? "DR8-DR14 %08lx%08lx %08lx%08lx %08lx%08lx %08lx%08lx\n"
2008 : "FP8-FP15 %08lx %08lx %08lx %08lx %08lx %08lx %08lx %08lx\n",
2009 (long) get_frame_register_unsigned
2010 (frame, gdbarch_fp0_regnum (gdbarch) + 8),
2011 (long) get_frame_register_unsigned
2012 (frame, gdbarch_fp0_regnum (gdbarch) + 9),
2013 (long) get_frame_register_unsigned
2014 (frame, gdbarch_fp0_regnum (gdbarch) + 10),
2015 (long) get_frame_register_unsigned
2016 (frame, gdbarch_fp0_regnum (gdbarch) + 11),
2017 (long) get_frame_register_unsigned
2018 (frame, gdbarch_fp0_regnum (gdbarch) + 12),
2019 (long) get_frame_register_unsigned
2020 (frame, gdbarch_fp0_regnum (gdbarch) + 13),
2021 (long) get_frame_register_unsigned
2022 (frame, gdbarch_fp0_regnum (gdbarch) + 14),
2023 (long) get_frame_register_unsigned
2024 (frame, gdbarch_fp0_regnum (gdbarch) + 15));
2025 }
2026
2027 static void
2028 sh4_nofpu_show_regs (struct frame_info *frame)
2029 {
2030 printf_filtered
2031 (" PC %s SR %08lx PR %08lx MACH %08lx\n",
2032 phex (get_frame_register_unsigned (frame,
2033 gdbarch_pc_regnum
2034 (get_frame_arch (frame))), 4),
2035 (long) get_frame_register_unsigned (frame, SR_REGNUM),
2036 (long) get_frame_register_unsigned (frame, PR_REGNUM),
2037 (long) get_frame_register_unsigned (frame, MACH_REGNUM));
2038
2039 printf_filtered
2040 (" GBR %08lx VBR %08lx MACL %08lx\n",
2041 (long) get_frame_register_unsigned (frame, GBR_REGNUM),
2042 (long) get_frame_register_unsigned (frame, VBR_REGNUM),
2043 (long) get_frame_register_unsigned (frame, MACL_REGNUM));
2044 printf_filtered
2045 (" SSR %08lx SPC %08lx FPUL %08lx FPSCR %08lx\n",
2046 (long) get_frame_register_unsigned (frame, SSR_REGNUM),
2047 (long) get_frame_register_unsigned (frame, SPC_REGNUM),
2048 (long) get_frame_register_unsigned (frame, FPUL_REGNUM),
2049 (long) get_frame_register_unsigned (frame, FPSCR_REGNUM));
2050
2051 printf_filtered
2052 ("R0-R7 %08lx %08lx %08lx %08lx %08lx %08lx %08lx %08lx\n",
2053 (long) get_frame_register_unsigned (frame, 0),
2054 (long) get_frame_register_unsigned (frame, 1),
2055 (long) get_frame_register_unsigned (frame, 2),
2056 (long) get_frame_register_unsigned (frame, 3),
2057 (long) get_frame_register_unsigned (frame, 4),
2058 (long) get_frame_register_unsigned (frame, 5),
2059 (long) get_frame_register_unsigned (frame, 6),
2060 (long) get_frame_register_unsigned (frame, 7));
2061 printf_filtered
2062 ("R8-R15 %08lx %08lx %08lx %08lx %08lx %08lx %08lx %08lx\n",
2063 (long) get_frame_register_unsigned (frame, 8),
2064 (long) get_frame_register_unsigned (frame, 9),
2065 (long) get_frame_register_unsigned (frame, 10),
2066 (long) get_frame_register_unsigned (frame, 11),
2067 (long) get_frame_register_unsigned (frame, 12),
2068 (long) get_frame_register_unsigned (frame, 13),
2069 (long) get_frame_register_unsigned (frame, 14),
2070 (long) get_frame_register_unsigned (frame, 15));
2071 }
2072
2073 static void
2074 sh_dsp_show_regs (struct frame_info *frame)
2075 {
2076 printf_filtered
2077 (" PC %s SR %08lx PR %08lx MACH %08lx\n",
2078 phex (get_frame_register_unsigned (frame,
2079 gdbarch_pc_regnum
2080 (get_frame_arch (frame))), 4),
2081 (long) get_frame_register_unsigned (frame, SR_REGNUM),
2082 (long) get_frame_register_unsigned (frame, PR_REGNUM),
2083 (long) get_frame_register_unsigned (frame, MACH_REGNUM));
2084
2085 printf_filtered
2086 (" GBR %08lx VBR %08lx DSR %08lx MACL %08lx\n",
2087 (long) get_frame_register_unsigned (frame, GBR_REGNUM),
2088 (long) get_frame_register_unsigned (frame, VBR_REGNUM),
2089 (long) get_frame_register_unsigned (frame, DSR_REGNUM),
2090 (long) get_frame_register_unsigned (frame, MACL_REGNUM));
2091
2092 printf_filtered
2093 ("R0-R7 %08lx %08lx %08lx %08lx %08lx %08lx %08lx %08lx\n",
2094 (long) get_frame_register_unsigned (frame, 0),
2095 (long) get_frame_register_unsigned (frame, 1),
2096 (long) get_frame_register_unsigned (frame, 2),
2097 (long) get_frame_register_unsigned (frame, 3),
2098 (long) get_frame_register_unsigned (frame, 4),
2099 (long) get_frame_register_unsigned (frame, 5),
2100 (long) get_frame_register_unsigned (frame, 6),
2101 (long) get_frame_register_unsigned (frame, 7));
2102 printf_filtered
2103 ("R8-R15 %08lx %08lx %08lx %08lx %08lx %08lx %08lx %08lx\n",
2104 (long) get_frame_register_unsigned (frame, 8),
2105 (long) get_frame_register_unsigned (frame, 9),
2106 (long) get_frame_register_unsigned (frame, 10),
2107 (long) get_frame_register_unsigned (frame, 11),
2108 (long) get_frame_register_unsigned (frame, 12),
2109 (long) get_frame_register_unsigned (frame, 13),
2110 (long) get_frame_register_unsigned (frame, 14),
2111 (long) get_frame_register_unsigned (frame, 15));
2112
2113 printf_filtered
2114 ("A0G=%02lx A0=%08lx M0=%08lx X0=%08lx Y0=%08lx RS=%08lx MOD=%08lx\n",
2115 (long) get_frame_register_unsigned (frame, A0G_REGNUM) & 0xff,
2116 (long) get_frame_register_unsigned (frame, A0_REGNUM),
2117 (long) get_frame_register_unsigned (frame, M0_REGNUM),
2118 (long) get_frame_register_unsigned (frame, X0_REGNUM),
2119 (long) get_frame_register_unsigned (frame, Y0_REGNUM),
2120 (long) get_frame_register_unsigned (frame, RS_REGNUM),
2121 (long) get_frame_register_unsigned (frame, MOD_REGNUM));
2122 printf_filtered ("A1G=%02lx A1=%08lx M1=%08lx X1=%08lx Y1=%08lx RE=%08lx\n",
2123 (long) get_frame_register_unsigned (frame, A1G_REGNUM) & 0xff,
2124 (long) get_frame_register_unsigned (frame, A1_REGNUM),
2125 (long) get_frame_register_unsigned (frame, M1_REGNUM),
2126 (long) get_frame_register_unsigned (frame, X1_REGNUM),
2127 (long) get_frame_register_unsigned (frame, Y1_REGNUM),
2128 (long) get_frame_register_unsigned (frame, RE_REGNUM));
2129 }
2130
2131 static void
2132 sh_show_regs_command (char *args, int from_tty)
2133 {
2134 if (sh_show_regs)
2135 (*sh_show_regs) (get_current_frame ());
2136 }
2137
2138 static struct type *
2139 sh_sh2a_register_type (struct gdbarch *gdbarch, int reg_nr)
2140 {
2141 if ((reg_nr >= gdbarch_fp0_regnum (gdbarch)
2142 && (reg_nr <= FP_LAST_REGNUM)) || (reg_nr == FPUL_REGNUM))
2143 return builtin_type (gdbarch)->builtin_float;
2144 else if (reg_nr >= DR0_REGNUM && reg_nr <= DR_LAST_REGNUM)
2145 return builtin_type (gdbarch)->builtin_double;
2146 else
2147 return builtin_type (gdbarch)->builtin_int;
2148 }
2149
2150 /* Return the GDB type object for the "standard" data type
2151 of data in register N. */
2152 static struct type *
2153 sh_sh3e_register_type (struct gdbarch *gdbarch, int reg_nr)
2154 {
2155 if ((reg_nr >= gdbarch_fp0_regnum (gdbarch)
2156 && (reg_nr <= FP_LAST_REGNUM)) || (reg_nr == FPUL_REGNUM))
2157 return builtin_type (gdbarch)->builtin_float;
2158 else
2159 return builtin_type (gdbarch)->builtin_int;
2160 }
2161
2162 static struct type *
2163 sh_sh4_build_float_register_type (struct gdbarch *gdbarch, int high)
2164 {
2165 return lookup_array_range_type (builtin_type (gdbarch)->builtin_float,
2166 0, high);
2167 }
2168
2169 static struct type *
2170 sh_sh4_register_type (struct gdbarch *gdbarch, int reg_nr)
2171 {
2172 if ((reg_nr >= gdbarch_fp0_regnum (gdbarch)
2173 && (reg_nr <= FP_LAST_REGNUM)) || (reg_nr == FPUL_REGNUM))
2174 return builtin_type (gdbarch)->builtin_float;
2175 else if (reg_nr >= DR0_REGNUM && reg_nr <= DR_LAST_REGNUM)
2176 return builtin_type (gdbarch)->builtin_double;
2177 else if (reg_nr >= FV0_REGNUM && reg_nr <= FV_LAST_REGNUM)
2178 return sh_sh4_build_float_register_type (gdbarch, 3);
2179 else
2180 return builtin_type (gdbarch)->builtin_int;
2181 }
2182
2183 static struct type *
2184 sh_default_register_type (struct gdbarch *gdbarch, int reg_nr)
2185 {
2186 return builtin_type (gdbarch)->builtin_int;
2187 }
2188
2189 /* Is a register in a reggroup?
2190 The default code in reggroup.c doesn't identify system registers, some
2191 float registers or any of the vector registers.
2192 TODO: sh2a and dsp registers. */
2193 static int
2194 sh_register_reggroup_p (struct gdbarch *gdbarch, int regnum,
2195 struct reggroup *reggroup)
2196 {
2197 if (gdbarch_register_name (gdbarch, regnum) == NULL
2198 || *gdbarch_register_name (gdbarch, regnum) == '\0')
2199 return 0;
2200
2201 if (reggroup == float_reggroup
2202 && (regnum == FPUL_REGNUM
2203 || regnum == FPSCR_REGNUM))
2204 return 1;
2205
2206 if (regnum >= FV0_REGNUM && regnum <= FV_LAST_REGNUM)
2207 {
2208 if (reggroup == vector_reggroup || reggroup == float_reggroup)
2209 return 1;
2210 if (reggroup == general_reggroup)
2211 return 0;
2212 }
2213
2214 if (regnum == VBR_REGNUM
2215 || regnum == SR_REGNUM
2216 || regnum == FPSCR_REGNUM
2217 || regnum == SSR_REGNUM
2218 || regnum == SPC_REGNUM)
2219 {
2220 if (reggroup == system_reggroup)
2221 return 1;
2222 if (reggroup == general_reggroup)
2223 return 0;
2224 }
2225
2226 /* The default code can cope with any other registers. */
2227 return default_register_reggroup_p (gdbarch, regnum, reggroup);
2228 }
2229
2230 /* On the sh4, the DRi pseudo registers are problematic if the target
2231 is little endian. When the user writes one of those registers, for
2232 instance with 'ser var $dr0=1', we want the double to be stored
2233 like this:
2234 fr0 = 0x00 0x00 0x00 0x00 0x00 0xf0 0x3f
2235 fr1 = 0x00 0x00 0x00 0x00 0x00 0x00 0x00
2236
2237 This corresponds to little endian byte order & big endian word
2238 order. However if we let gdb write the register w/o conversion, it
2239 will write fr0 and fr1 this way:
2240 fr0 = 0x00 0x00 0x00 0x00 0x00 0x00 0x00
2241 fr1 = 0x00 0x00 0x00 0x00 0x00 0xf0 0x3f
2242 because it will consider fr0 and fr1 as a single LE stretch of memory.
2243
2244 To achieve what we want we must force gdb to store things in
2245 floatformat_ieee_double_littlebyte_bigword (which is defined in
2246 include/floatformat.h and libiberty/floatformat.c.
2247
2248 In case the target is big endian, there is no problem, the
2249 raw bytes will look like:
2250 fr0 = 0x3f 0xf0 0x00 0x00 0x00 0x00 0x00
2251 fr1 = 0x00 0x00 0x00 0x00 0x00 0x00 0x00
2252
2253 The other pseudo registers (the FVs) also don't pose a problem
2254 because they are stored as 4 individual FP elements. */
2255
2256 static void
2257 sh_register_convert_to_virtual (int regnum, struct type *type,
2258 char *from, char *to)
2259 {
2260 if (regnum >= DR0_REGNUM && regnum <= DR_LAST_REGNUM)
2261 {
2262 DOUBLEST val;
2263 floatformat_to_doublest (&floatformat_ieee_double_littlebyte_bigword,
2264 from, &val);
2265 store_typed_floating (to, type, val);
2266 }
2267 else
2268 error
2269 ("sh_register_convert_to_virtual called with non DR register number");
2270 }
2271
2272 static void
2273 sh_register_convert_to_raw (struct type *type, int regnum,
2274 const void *from, void *to)
2275 {
2276 if (regnum >= DR0_REGNUM && regnum <= DR_LAST_REGNUM)
2277 {
2278 DOUBLEST val = extract_typed_floating (from, type);
2279 floatformat_from_doublest (&floatformat_ieee_double_littlebyte_bigword,
2280 &val, to);
2281 }
2282 else
2283 error (_("sh_register_convert_to_raw called with non DR register number"));
2284 }
2285
2286 /* For vectors of 4 floating point registers. */
2287 static int
2288 fv_reg_base_num (struct gdbarch *gdbarch, int fv_regnum)
2289 {
2290 int fp_regnum;
2291
2292 fp_regnum = gdbarch_fp0_regnum (gdbarch)
2293 + (fv_regnum - FV0_REGNUM) * 4;
2294 return fp_regnum;
2295 }
2296
2297 /* For double precision floating point registers, i.e 2 fp regs. */
2298 static int
2299 dr_reg_base_num (struct gdbarch *gdbarch, int dr_regnum)
2300 {
2301 int fp_regnum;
2302
2303 fp_regnum = gdbarch_fp0_regnum (gdbarch)
2304 + (dr_regnum - DR0_REGNUM) * 2;
2305 return fp_regnum;
2306 }
2307
2308 /* Concatenate PORTIONS contiguous raw registers starting at
2309 BASE_REGNUM into BUFFER. */
2310
2311 static enum register_status
2312 pseudo_register_read_portions (struct gdbarch *gdbarch,
2313 struct regcache *regcache,
2314 int portions,
2315 int base_regnum, gdb_byte *buffer)
2316 {
2317 int portion;
2318
2319 for (portion = 0; portion < portions; portion++)
2320 {
2321 enum register_status status;
2322 gdb_byte *b;
2323
2324 b = buffer + register_size (gdbarch, base_regnum) * portion;
2325 status = regcache_raw_read (regcache, base_regnum + portion, b);
2326 if (status != REG_VALID)
2327 return status;
2328 }
2329
2330 return REG_VALID;
2331 }
2332
2333 static enum register_status
2334 sh_pseudo_register_read (struct gdbarch *gdbarch, struct regcache *regcache,
2335 int reg_nr, gdb_byte *buffer)
2336 {
2337 int base_regnum;
2338 char temp_buffer[MAX_REGISTER_SIZE];
2339 enum register_status status;
2340
2341 if (reg_nr == PSEUDO_BANK_REGNUM)
2342 return regcache_raw_read (regcache, BANK_REGNUM, buffer);
2343 else if (reg_nr >= DR0_REGNUM && reg_nr <= DR_LAST_REGNUM)
2344 {
2345 base_regnum = dr_reg_base_num (gdbarch, reg_nr);
2346
2347 /* Build the value in the provided buffer. */
2348 /* Read the real regs for which this one is an alias. */
2349 status = pseudo_register_read_portions (gdbarch, regcache,
2350 2, base_regnum, temp_buffer);
2351 if (status == REG_VALID)
2352 {
2353 /* We must pay attention to the endiannes. */
2354 sh_register_convert_to_virtual (reg_nr,
2355 register_type (gdbarch, reg_nr),
2356 temp_buffer, buffer);
2357 }
2358 return status;
2359 }
2360 else if (reg_nr >= FV0_REGNUM && reg_nr <= FV_LAST_REGNUM)
2361 {
2362 base_regnum = fv_reg_base_num (gdbarch, reg_nr);
2363
2364 /* Read the real regs for which this one is an alias. */
2365 return pseudo_register_read_portions (gdbarch, regcache,
2366 4, base_regnum, buffer);
2367 }
2368 else
2369 gdb_assert_not_reached ("invalid pseudo register number");
2370 }
2371
2372 static void
2373 sh_pseudo_register_write (struct gdbarch *gdbarch, struct regcache *regcache,
2374 int reg_nr, const gdb_byte *buffer)
2375 {
2376 int base_regnum, portion;
2377 char temp_buffer[MAX_REGISTER_SIZE];
2378
2379 if (reg_nr == PSEUDO_BANK_REGNUM)
2380 {
2381 /* When the bank register is written to, the whole register bank
2382 is switched and all values in the bank registers must be read
2383 from the target/sim again. We're just invalidating the regcache
2384 so that a re-read happens next time it's necessary. */
2385 int bregnum;
2386
2387 regcache_raw_write (regcache, BANK_REGNUM, buffer);
2388 for (bregnum = R0_BANK0_REGNUM; bregnum < MACLB_REGNUM; ++bregnum)
2389 regcache_invalidate (regcache, bregnum);
2390 }
2391 else if (reg_nr >= DR0_REGNUM && reg_nr <= DR_LAST_REGNUM)
2392 {
2393 base_regnum = dr_reg_base_num (gdbarch, reg_nr);
2394
2395 /* We must pay attention to the endiannes. */
2396 sh_register_convert_to_raw (register_type (gdbarch, reg_nr),
2397 reg_nr, buffer, temp_buffer);
2398
2399 /* Write the real regs for which this one is an alias. */
2400 for (portion = 0; portion < 2; portion++)
2401 regcache_raw_write (regcache, base_regnum + portion,
2402 (temp_buffer
2403 + register_size (gdbarch,
2404 base_regnum) * portion));
2405 }
2406 else if (reg_nr >= FV0_REGNUM && reg_nr <= FV_LAST_REGNUM)
2407 {
2408 base_regnum = fv_reg_base_num (gdbarch, reg_nr);
2409
2410 /* Write the real regs for which this one is an alias. */
2411 for (portion = 0; portion < 4; portion++)
2412 regcache_raw_write (regcache, base_regnum + portion,
2413 ((char *) buffer
2414 + register_size (gdbarch,
2415 base_regnum) * portion));
2416 }
2417 }
2418
2419 static int
2420 sh_dsp_register_sim_regno (struct gdbarch *gdbarch, int nr)
2421 {
2422 if (legacy_register_sim_regno (gdbarch, nr) < 0)
2423 return legacy_register_sim_regno (gdbarch, nr);
2424 if (nr >= DSR_REGNUM && nr <= Y1_REGNUM)
2425 return nr - DSR_REGNUM + SIM_SH_DSR_REGNUM;
2426 if (nr == MOD_REGNUM)
2427 return SIM_SH_MOD_REGNUM;
2428 if (nr == RS_REGNUM)
2429 return SIM_SH_RS_REGNUM;
2430 if (nr == RE_REGNUM)
2431 return SIM_SH_RE_REGNUM;
2432 if (nr >= DSP_R0_BANK_REGNUM && nr <= DSP_R7_BANK_REGNUM)
2433 return nr - DSP_R0_BANK_REGNUM + SIM_SH_R0_BANK_REGNUM;
2434 return nr;
2435 }
2436
2437 static int
2438 sh_sh2a_register_sim_regno (struct gdbarch *gdbarch, int nr)
2439 {
2440 switch (nr)
2441 {
2442 case TBR_REGNUM:
2443 return SIM_SH_TBR_REGNUM;
2444 case IBNR_REGNUM:
2445 return SIM_SH_IBNR_REGNUM;
2446 case IBCR_REGNUM:
2447 return SIM_SH_IBCR_REGNUM;
2448 case BANK_REGNUM:
2449 return SIM_SH_BANK_REGNUM;
2450 case MACLB_REGNUM:
2451 return SIM_SH_BANK_MACL_REGNUM;
2452 case GBRB_REGNUM:
2453 return SIM_SH_BANK_GBR_REGNUM;
2454 case PRB_REGNUM:
2455 return SIM_SH_BANK_PR_REGNUM;
2456 case IVNB_REGNUM:
2457 return SIM_SH_BANK_IVN_REGNUM;
2458 case MACHB_REGNUM:
2459 return SIM_SH_BANK_MACH_REGNUM;
2460 default:
2461 break;
2462 }
2463 return legacy_register_sim_regno (gdbarch, nr);
2464 }
2465
2466 /* Set up the register unwinding such that call-clobbered registers are
2467 not displayed in frames >0 because the true value is not certain.
2468 The 'undefined' registers will show up as 'not available' unless the
2469 CFI says otherwise.
2470
2471 This function is currently set up for SH4 and compatible only. */
2472
2473 static void
2474 sh_dwarf2_frame_init_reg (struct gdbarch *gdbarch, int regnum,
2475 struct dwarf2_frame_state_reg *reg,
2476 struct frame_info *this_frame)
2477 {
2478 /* Mark the PC as the destination for the return address. */
2479 if (regnum == gdbarch_pc_regnum (gdbarch))
2480 reg->how = DWARF2_FRAME_REG_RA;
2481
2482 /* Mark the stack pointer as the call frame address. */
2483 else if (regnum == gdbarch_sp_regnum (gdbarch))
2484 reg->how = DWARF2_FRAME_REG_CFA;
2485
2486 /* The above was taken from the default init_reg in dwarf2-frame.c
2487 while the below is SH specific. */
2488
2489 /* Caller save registers. */
2490 else if ((regnum >= R0_REGNUM && regnum <= R0_REGNUM+7)
2491 || (regnum >= FR0_REGNUM && regnum <= FR0_REGNUM+11)
2492 || (regnum >= DR0_REGNUM && regnum <= DR0_REGNUM+5)
2493 || (regnum >= FV0_REGNUM && regnum <= FV0_REGNUM+2)
2494 || (regnum == MACH_REGNUM)
2495 || (regnum == MACL_REGNUM)
2496 || (regnum == FPUL_REGNUM)
2497 || (regnum == SR_REGNUM))
2498 reg->how = DWARF2_FRAME_REG_UNDEFINED;
2499
2500 /* Callee save registers. */
2501 else if ((regnum >= R0_REGNUM+8 && regnum <= R0_REGNUM+15)
2502 || (regnum >= FR0_REGNUM+12 && regnum <= FR0_REGNUM+15)
2503 || (regnum >= DR0_REGNUM+6 && regnum <= DR0_REGNUM+8)
2504 || (regnum == FV0_REGNUM+3))
2505 reg->how = DWARF2_FRAME_REG_SAME_VALUE;
2506
2507 /* Other registers. These are not in the ABI and may or may not
2508 mean anything in frames >0 so don't show them. */
2509 else if ((regnum >= R0_BANK0_REGNUM && regnum <= R0_BANK0_REGNUM+15)
2510 || (regnum == GBR_REGNUM)
2511 || (regnum == VBR_REGNUM)
2512 || (regnum == FPSCR_REGNUM)
2513 || (regnum == SSR_REGNUM)
2514 || (regnum == SPC_REGNUM))
2515 reg->how = DWARF2_FRAME_REG_UNDEFINED;
2516 }
2517
2518 static struct sh_frame_cache *
2519 sh_alloc_frame_cache (void)
2520 {
2521 struct sh_frame_cache *cache;
2522 int i;
2523
2524 cache = FRAME_OBSTACK_ZALLOC (struct sh_frame_cache);
2525
2526 /* Base address. */
2527 cache->base = 0;
2528 cache->saved_sp = 0;
2529 cache->sp_offset = 0;
2530 cache->pc = 0;
2531
2532 /* Frameless until proven otherwise. */
2533 cache->uses_fp = 0;
2534
2535 /* Saved registers. We initialize these to -1 since zero is a valid
2536 offset (that's where fp is supposed to be stored). */
2537 for (i = 0; i < SH_NUM_REGS; i++)
2538 {
2539 cache->saved_regs[i] = -1;
2540 }
2541
2542 return cache;
2543 }
2544
2545 static struct sh_frame_cache *
2546 sh_frame_cache (struct frame_info *this_frame, void **this_cache)
2547 {
2548 struct gdbarch *gdbarch = get_frame_arch (this_frame);
2549 struct sh_frame_cache *cache;
2550 CORE_ADDR current_pc;
2551 int i;
2552
2553 if (*this_cache)
2554 return *this_cache;
2555
2556 cache = sh_alloc_frame_cache ();
2557 *this_cache = cache;
2558
2559 /* In principle, for normal frames, fp holds the frame pointer,
2560 which holds the base address for the current stack frame.
2561 However, for functions that don't need it, the frame pointer is
2562 optional. For these "frameless" functions the frame pointer is
2563 actually the frame pointer of the calling frame. */
2564 cache->base = get_frame_register_unsigned (this_frame, FP_REGNUM);
2565 if (cache->base == 0)
2566 return cache;
2567
2568 cache->pc = get_frame_func (this_frame);
2569 current_pc = get_frame_pc (this_frame);
2570 if (cache->pc != 0)
2571 {
2572 ULONGEST fpscr;
2573
2574 /* Check for the existence of the FPSCR register. If it exists,
2575 fetch its value for use in prologue analysis. Passing a zero
2576 value is the best choice for architecture variants upon which
2577 there's no FPSCR register. */
2578 if (gdbarch_register_reggroup_p (gdbarch, FPSCR_REGNUM, all_reggroup))
2579 fpscr = get_frame_register_unsigned (this_frame, FPSCR_REGNUM);
2580 else
2581 fpscr = 0;
2582
2583 sh_analyze_prologue (gdbarch, cache->pc, current_pc, cache, fpscr);
2584 }
2585
2586 if (!cache->uses_fp)
2587 {
2588 /* We didn't find a valid frame, which means that CACHE->base
2589 currently holds the frame pointer for our calling frame. If
2590 we're at the start of a function, or somewhere half-way its
2591 prologue, the function's frame probably hasn't been fully
2592 setup yet. Try to reconstruct the base address for the stack
2593 frame by looking at the stack pointer. For truly "frameless"
2594 functions this might work too. */
2595 cache->base = get_frame_register_unsigned
2596 (this_frame, gdbarch_sp_regnum (gdbarch));
2597 }
2598
2599 /* Now that we have the base address for the stack frame we can
2600 calculate the value of sp in the calling frame. */
2601 cache->saved_sp = cache->base + cache->sp_offset;
2602
2603 /* Adjust all the saved registers such that they contain addresses
2604 instead of offsets. */
2605 for (i = 0; i < SH_NUM_REGS; i++)
2606 if (cache->saved_regs[i] != -1)
2607 cache->saved_regs[i] = cache->saved_sp - cache->saved_regs[i] - 4;
2608
2609 return cache;
2610 }
2611
2612 static struct value *
2613 sh_frame_prev_register (struct frame_info *this_frame,
2614 void **this_cache, int regnum)
2615 {
2616 struct gdbarch *gdbarch = get_frame_arch (this_frame);
2617 struct sh_frame_cache *cache = sh_frame_cache (this_frame, this_cache);
2618
2619 gdb_assert (regnum >= 0);
2620
2621 if (regnum == gdbarch_sp_regnum (gdbarch) && cache->saved_sp)
2622 return frame_unwind_got_constant (this_frame, regnum, cache->saved_sp);
2623
2624 /* The PC of the previous frame is stored in the PR register of
2625 the current frame. Frob regnum so that we pull the value from
2626 the correct place. */
2627 if (regnum == gdbarch_pc_regnum (gdbarch))
2628 regnum = PR_REGNUM;
2629
2630 if (regnum < SH_NUM_REGS && cache->saved_regs[regnum] != -1)
2631 return frame_unwind_got_memory (this_frame, regnum,
2632 cache->saved_regs[regnum]);
2633
2634 return frame_unwind_got_register (this_frame, regnum, regnum);
2635 }
2636
2637 static void
2638 sh_frame_this_id (struct frame_info *this_frame, void **this_cache,
2639 struct frame_id *this_id)
2640 {
2641 struct sh_frame_cache *cache = sh_frame_cache (this_frame, this_cache);
2642
2643 /* This marks the outermost frame. */
2644 if (cache->base == 0)
2645 return;
2646
2647 *this_id = frame_id_build (cache->saved_sp, cache->pc);
2648 }
2649
2650 static const struct frame_unwind sh_frame_unwind = {
2651 NORMAL_FRAME,
2652 default_frame_unwind_stop_reason,
2653 sh_frame_this_id,
2654 sh_frame_prev_register,
2655 NULL,
2656 default_frame_sniffer
2657 };
2658
2659 static CORE_ADDR
2660 sh_unwind_sp (struct gdbarch *gdbarch, struct frame_info *next_frame)
2661 {
2662 return frame_unwind_register_unsigned (next_frame,
2663 gdbarch_sp_regnum (gdbarch));
2664 }
2665
2666 static CORE_ADDR
2667 sh_unwind_pc (struct gdbarch *gdbarch, struct frame_info *next_frame)
2668 {
2669 return frame_unwind_register_unsigned (next_frame,
2670 gdbarch_pc_regnum (gdbarch));
2671 }
2672
2673 static struct frame_id
2674 sh_dummy_id (struct gdbarch *gdbarch, struct frame_info *this_frame)
2675 {
2676 CORE_ADDR sp = get_frame_register_unsigned (this_frame,
2677 gdbarch_sp_regnum (gdbarch));
2678 return frame_id_build (sp, get_frame_pc (this_frame));
2679 }
2680
2681 static CORE_ADDR
2682 sh_frame_base_address (struct frame_info *this_frame, void **this_cache)
2683 {
2684 struct sh_frame_cache *cache = sh_frame_cache (this_frame, this_cache);
2685
2686 return cache->base;
2687 }
2688
2689 static const struct frame_base sh_frame_base = {
2690 &sh_frame_unwind,
2691 sh_frame_base_address,
2692 sh_frame_base_address,
2693 sh_frame_base_address
2694 };
2695
2696 static struct sh_frame_cache *
2697 sh_make_stub_cache (struct frame_info *this_frame)
2698 {
2699 struct gdbarch *gdbarch = get_frame_arch (this_frame);
2700 struct sh_frame_cache *cache;
2701
2702 cache = sh_alloc_frame_cache ();
2703
2704 cache->saved_sp
2705 = get_frame_register_unsigned (this_frame, gdbarch_sp_regnum (gdbarch));
2706
2707 return cache;
2708 }
2709
2710 static void
2711 sh_stub_this_id (struct frame_info *this_frame, void **this_cache,
2712 struct frame_id *this_id)
2713 {
2714 struct sh_frame_cache *cache;
2715
2716 if (*this_cache == NULL)
2717 *this_cache = sh_make_stub_cache (this_frame);
2718 cache = *this_cache;
2719
2720 *this_id = frame_id_build (cache->saved_sp, get_frame_pc (this_frame));
2721 }
2722
2723 static int
2724 sh_stub_unwind_sniffer (const struct frame_unwind *self,
2725 struct frame_info *this_frame,
2726 void **this_prologue_cache)
2727 {
2728 CORE_ADDR addr_in_block;
2729
2730 addr_in_block = get_frame_address_in_block (this_frame);
2731 if (in_plt_section (addr_in_block, NULL))
2732 return 1;
2733
2734 return 0;
2735 }
2736
2737 static const struct frame_unwind sh_stub_unwind =
2738 {
2739 NORMAL_FRAME,
2740 default_frame_unwind_stop_reason,
2741 sh_stub_this_id,
2742 sh_frame_prev_register,
2743 NULL,
2744 sh_stub_unwind_sniffer
2745 };
2746
2747 /* The epilogue is defined here as the area at the end of a function,
2748 either on the `ret' instruction itself or after an instruction which
2749 destroys the function's stack frame. */
2750 static int
2751 sh_in_function_epilogue_p (struct gdbarch *gdbarch, CORE_ADDR pc)
2752 {
2753 enum bfd_endian byte_order = gdbarch_byte_order (gdbarch);
2754 CORE_ADDR func_addr = 0, func_end = 0;
2755
2756 if (find_pc_partial_function (pc, NULL, &func_addr, &func_end))
2757 {
2758 ULONGEST inst;
2759 /* The sh epilogue is max. 14 bytes long. Give another 14 bytes
2760 for a nop and some fixed data (e.g. big offsets) which are
2761 unfortunately also treated as part of the function (which
2762 means, they are below func_end. */
2763 CORE_ADDR addr = func_end - 28;
2764 if (addr < func_addr + 4)
2765 addr = func_addr + 4;
2766 if (pc < addr)
2767 return 0;
2768
2769 /* First search forward until hitting an rts. */
2770 while (addr < func_end
2771 && !IS_RTS (read_memory_unsigned_integer (addr, 2, byte_order)))
2772 addr += 2;
2773 if (addr >= func_end)
2774 return 0;
2775
2776 /* At this point we should find a mov.l @r15+,r14 instruction,
2777 either before or after the rts. If not, then the function has
2778 probably no "normal" epilogue and we bail out here. */
2779 inst = read_memory_unsigned_integer (addr - 2, 2, byte_order);
2780 if (IS_RESTORE_FP (read_memory_unsigned_integer (addr - 2, 2,
2781 byte_order)))
2782 addr -= 2;
2783 else if (!IS_RESTORE_FP (read_memory_unsigned_integer (addr + 2, 2,
2784 byte_order)))
2785 return 0;
2786
2787 inst = read_memory_unsigned_integer (addr - 2, 2, byte_order);
2788
2789 /* Step over possible lds.l @r15+,macl. */
2790 if (IS_MACL_LDS (inst))
2791 {
2792 addr -= 2;
2793 inst = read_memory_unsigned_integer (addr - 2, 2, byte_order);
2794 }
2795
2796 /* Step over possible lds.l @r15+,pr. */
2797 if (IS_LDS (inst))
2798 {
2799 addr -= 2;
2800 inst = read_memory_unsigned_integer (addr - 2, 2, byte_order);
2801 }
2802
2803 /* Step over possible mov r14,r15. */
2804 if (IS_MOV_FP_SP (inst))
2805 {
2806 addr -= 2;
2807 inst = read_memory_unsigned_integer (addr - 2, 2, byte_order);
2808 }
2809
2810 /* Now check for FP adjustments, using add #imm,r14 or add rX, r14
2811 instructions. */
2812 while (addr > func_addr + 4
2813 && (IS_ADD_REG_TO_FP (inst) || IS_ADD_IMM_FP (inst)))
2814 {
2815 addr -= 2;
2816 inst = read_memory_unsigned_integer (addr - 2, 2, byte_order);
2817 }
2818
2819 /* On SH2a check if the previous instruction was perhaps a MOVI20.
2820 That's allowed for the epilogue. */
2821 if ((gdbarch_bfd_arch_info (gdbarch)->mach == bfd_mach_sh2a
2822 || gdbarch_bfd_arch_info (gdbarch)->mach == bfd_mach_sh2a_nofpu)
2823 && addr > func_addr + 6
2824 && IS_MOVI20 (read_memory_unsigned_integer (addr - 4, 2,
2825 byte_order)))
2826 addr -= 4;
2827
2828 if (pc >= addr)
2829 return 1;
2830 }
2831 return 0;
2832 }
2833
2834
2835 /* Supply register REGNUM from the buffer specified by REGS and LEN
2836 in the register set REGSET to register cache REGCACHE.
2837 REGTABLE specifies where each register can be found in REGS.
2838 If REGNUM is -1, do this for all registers in REGSET. */
2839
2840 void
2841 sh_corefile_supply_regset (const struct regset *regset,
2842 struct regcache *regcache,
2843 int regnum, const void *regs, size_t len)
2844 {
2845 struct gdbarch *gdbarch = get_regcache_arch (regcache);
2846 struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch);
2847 const struct sh_corefile_regmap *regmap = (regset == &sh_corefile_gregset
2848 ? tdep->core_gregmap
2849 : tdep->core_fpregmap);
2850 int i;
2851
2852 for (i = 0; regmap[i].regnum != -1; i++)
2853 {
2854 if ((regnum == -1 || regnum == regmap[i].regnum)
2855 && regmap[i].offset + 4 <= len)
2856 regcache_raw_supply (regcache, regmap[i].regnum,
2857 (char *)regs + regmap[i].offset);
2858 }
2859 }
2860
2861 /* Collect register REGNUM in the register set REGSET from register cache
2862 REGCACHE into the buffer specified by REGS and LEN.
2863 REGTABLE specifies where each register can be found in REGS.
2864 If REGNUM is -1, do this for all registers in REGSET. */
2865
2866 void
2867 sh_corefile_collect_regset (const struct regset *regset,
2868 const struct regcache *regcache,
2869 int regnum, void *regs, size_t len)
2870 {
2871 struct gdbarch *gdbarch = get_regcache_arch (regcache);
2872 struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch);
2873 const struct sh_corefile_regmap *regmap = (regset == &sh_corefile_gregset
2874 ? tdep->core_gregmap
2875 : tdep->core_fpregmap);
2876 int i;
2877
2878 for (i = 0; regmap[i].regnum != -1; i++)
2879 {
2880 if ((regnum == -1 || regnum == regmap[i].regnum)
2881 && regmap[i].offset + 4 <= len)
2882 regcache_raw_collect (regcache, regmap[i].regnum,
2883 (char *)regs + regmap[i].offset);
2884 }
2885 }
2886
2887 /* The following two regsets have the same contents, so it is tempting to
2888 unify them, but they are distiguished by their address, so don't. */
2889
2890 struct regset sh_corefile_gregset =
2891 {
2892 NULL,
2893 sh_corefile_supply_regset,
2894 sh_corefile_collect_regset
2895 };
2896
2897 static struct regset sh_corefile_fpregset =
2898 {
2899 NULL,
2900 sh_corefile_supply_regset,
2901 sh_corefile_collect_regset
2902 };
2903
2904 static const struct regset *
2905 sh_regset_from_core_section (struct gdbarch *gdbarch, const char *sect_name,
2906 size_t sect_size)
2907 {
2908 struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch);
2909
2910 if (tdep->core_gregmap && strcmp (sect_name, ".reg") == 0)
2911 return &sh_corefile_gregset;
2912
2913 if (tdep->core_fpregmap && strcmp (sect_name, ".reg2") == 0)
2914 return &sh_corefile_fpregset;
2915
2916 return NULL;
2917 }
2918 \f
2919
2920 static struct gdbarch *
2921 sh_gdbarch_init (struct gdbarch_info info, struct gdbarch_list *arches)
2922 {
2923 struct gdbarch *gdbarch;
2924 struct gdbarch_tdep *tdep;
2925
2926 sh_show_regs = sh_generic_show_regs;
2927 switch (info.bfd_arch_info->mach)
2928 {
2929 case bfd_mach_sh2e:
2930 sh_show_regs = sh2e_show_regs;
2931 break;
2932 case bfd_mach_sh2a:
2933 sh_show_regs = sh2a_show_regs;
2934 break;
2935 case bfd_mach_sh2a_nofpu:
2936 sh_show_regs = sh2a_nofpu_show_regs;
2937 break;
2938 case bfd_mach_sh_dsp:
2939 sh_show_regs = sh_dsp_show_regs;
2940 break;
2941
2942 case bfd_mach_sh3:
2943 case bfd_mach_sh3_nommu:
2944 case bfd_mach_sh2a_nofpu_or_sh3_nommu:
2945 sh_show_regs = sh3_show_regs;
2946 break;
2947
2948 case bfd_mach_sh3e:
2949 case bfd_mach_sh2a_or_sh3e:
2950 sh_show_regs = sh3e_show_regs;
2951 break;
2952
2953 case bfd_mach_sh3_dsp:
2954 case bfd_mach_sh4al_dsp:
2955 sh_show_regs = sh3_dsp_show_regs;
2956 break;
2957
2958 case bfd_mach_sh4:
2959 case bfd_mach_sh4a:
2960 case bfd_mach_sh2a_or_sh4:
2961 sh_show_regs = sh4_show_regs;
2962 break;
2963
2964 case bfd_mach_sh4_nofpu:
2965 case bfd_mach_sh4_nommu_nofpu:
2966 case bfd_mach_sh4a_nofpu:
2967 case bfd_mach_sh2a_nofpu_or_sh4_nommu_nofpu:
2968 sh_show_regs = sh4_nofpu_show_regs;
2969 break;
2970
2971 case bfd_mach_sh5:
2972 sh_show_regs = sh64_show_regs;
2973 /* SH5 is handled entirely in sh64-tdep.c. */
2974 return sh64_gdbarch_init (info, arches);
2975 }
2976
2977 /* If there is already a candidate, use it. */
2978 arches = gdbarch_list_lookup_by_info (arches, &info);
2979 if (arches != NULL)
2980 return arches->gdbarch;
2981
2982 /* None found, create a new architecture from the information
2983 provided. */
2984 tdep = XZALLOC (struct gdbarch_tdep);
2985 gdbarch = gdbarch_alloc (&info, tdep);
2986
2987 set_gdbarch_short_bit (gdbarch, 2 * TARGET_CHAR_BIT);
2988 set_gdbarch_int_bit (gdbarch, 4 * TARGET_CHAR_BIT);
2989 set_gdbarch_long_bit (gdbarch, 4 * TARGET_CHAR_BIT);
2990 set_gdbarch_long_long_bit (gdbarch, 8 * TARGET_CHAR_BIT);
2991 set_gdbarch_float_bit (gdbarch, 4 * TARGET_CHAR_BIT);
2992 set_gdbarch_double_bit (gdbarch, 8 * TARGET_CHAR_BIT);
2993 set_gdbarch_long_double_bit (gdbarch, 8 * TARGET_CHAR_BIT);
2994 set_gdbarch_ptr_bit (gdbarch, 4 * TARGET_CHAR_BIT);
2995
2996 set_gdbarch_num_regs (gdbarch, SH_NUM_REGS);
2997 set_gdbarch_sp_regnum (gdbarch, 15);
2998 set_gdbarch_pc_regnum (gdbarch, 16);
2999 set_gdbarch_fp0_regnum (gdbarch, -1);
3000 set_gdbarch_num_pseudo_regs (gdbarch, 0);
3001
3002 set_gdbarch_register_type (gdbarch, sh_default_register_type);
3003 set_gdbarch_register_reggroup_p (gdbarch, sh_register_reggroup_p);
3004
3005 set_gdbarch_breakpoint_from_pc (gdbarch, sh_breakpoint_from_pc);
3006
3007 set_gdbarch_print_insn (gdbarch, print_insn_sh);
3008 set_gdbarch_register_sim_regno (gdbarch, legacy_register_sim_regno);
3009
3010 set_gdbarch_return_value (gdbarch, sh_return_value_nofpu);
3011
3012 set_gdbarch_skip_prologue (gdbarch, sh_skip_prologue);
3013 set_gdbarch_inner_than (gdbarch, core_addr_lessthan);
3014
3015 set_gdbarch_push_dummy_call (gdbarch, sh_push_dummy_call_nofpu);
3016
3017 set_gdbarch_believe_pcc_promotion (gdbarch, 1);
3018
3019 set_gdbarch_frame_align (gdbarch, sh_frame_align);
3020 set_gdbarch_unwind_sp (gdbarch, sh_unwind_sp);
3021 set_gdbarch_unwind_pc (gdbarch, sh_unwind_pc);
3022 set_gdbarch_dummy_id (gdbarch, sh_dummy_id);
3023 frame_base_set_default (gdbarch, &sh_frame_base);
3024
3025 set_gdbarch_in_function_epilogue_p (gdbarch, sh_in_function_epilogue_p);
3026
3027 dwarf2_frame_set_init_reg (gdbarch, sh_dwarf2_frame_init_reg);
3028
3029 set_gdbarch_regset_from_core_section (gdbarch, sh_regset_from_core_section);
3030
3031 switch (info.bfd_arch_info->mach)
3032 {
3033 case bfd_mach_sh:
3034 set_gdbarch_register_name (gdbarch, sh_sh_register_name);
3035 break;
3036
3037 case bfd_mach_sh2:
3038 set_gdbarch_register_name (gdbarch, sh_sh_register_name);
3039 break;
3040
3041 case bfd_mach_sh2e:
3042 /* doubles on sh2e and sh3e are actually 4 byte. */
3043 set_gdbarch_double_bit (gdbarch, 4 * TARGET_CHAR_BIT);
3044
3045 set_gdbarch_register_name (gdbarch, sh_sh2e_register_name);
3046 set_gdbarch_register_type (gdbarch, sh_sh3e_register_type);
3047 set_gdbarch_fp0_regnum (gdbarch, 25);
3048 set_gdbarch_return_value (gdbarch, sh_return_value_fpu);
3049 set_gdbarch_push_dummy_call (gdbarch, sh_push_dummy_call_fpu);
3050 break;
3051
3052 case bfd_mach_sh2a:
3053 set_gdbarch_register_name (gdbarch, sh_sh2a_register_name);
3054 set_gdbarch_register_type (gdbarch, sh_sh2a_register_type);
3055 set_gdbarch_register_sim_regno (gdbarch, sh_sh2a_register_sim_regno);
3056
3057 set_gdbarch_fp0_regnum (gdbarch, 25);
3058 set_gdbarch_num_pseudo_regs (gdbarch, 9);
3059 set_gdbarch_pseudo_register_read (gdbarch, sh_pseudo_register_read);
3060 set_gdbarch_pseudo_register_write (gdbarch, sh_pseudo_register_write);
3061 set_gdbarch_return_value (gdbarch, sh_return_value_fpu);
3062 set_gdbarch_push_dummy_call (gdbarch, sh_push_dummy_call_fpu);
3063 break;
3064
3065 case bfd_mach_sh2a_nofpu:
3066 set_gdbarch_register_name (gdbarch, sh_sh2a_nofpu_register_name);
3067 set_gdbarch_register_sim_regno (gdbarch, sh_sh2a_register_sim_regno);
3068
3069 set_gdbarch_num_pseudo_regs (gdbarch, 1);
3070 set_gdbarch_pseudo_register_read (gdbarch, sh_pseudo_register_read);
3071 set_gdbarch_pseudo_register_write (gdbarch, sh_pseudo_register_write);
3072 break;
3073
3074 case bfd_mach_sh_dsp:
3075 set_gdbarch_register_name (gdbarch, sh_sh_dsp_register_name);
3076 set_gdbarch_register_sim_regno (gdbarch, sh_dsp_register_sim_regno);
3077 break;
3078
3079 case bfd_mach_sh3:
3080 case bfd_mach_sh3_nommu:
3081 case bfd_mach_sh2a_nofpu_or_sh3_nommu:
3082 set_gdbarch_register_name (gdbarch, sh_sh3_register_name);
3083 break;
3084
3085 case bfd_mach_sh3e:
3086 case bfd_mach_sh2a_or_sh3e:
3087 /* doubles on sh2e and sh3e are actually 4 byte. */
3088 set_gdbarch_double_bit (gdbarch, 4 * TARGET_CHAR_BIT);
3089
3090 set_gdbarch_register_name (gdbarch, sh_sh3e_register_name);
3091 set_gdbarch_register_type (gdbarch, sh_sh3e_register_type);
3092 set_gdbarch_fp0_regnum (gdbarch, 25);
3093 set_gdbarch_return_value (gdbarch, sh_return_value_fpu);
3094 set_gdbarch_push_dummy_call (gdbarch, sh_push_dummy_call_fpu);
3095 break;
3096
3097 case bfd_mach_sh3_dsp:
3098 set_gdbarch_register_name (gdbarch, sh_sh3_dsp_register_name);
3099 set_gdbarch_register_sim_regno (gdbarch, sh_dsp_register_sim_regno);
3100 break;
3101
3102 case bfd_mach_sh4:
3103 case bfd_mach_sh4a:
3104 case bfd_mach_sh2a_or_sh4:
3105 set_gdbarch_register_name (gdbarch, sh_sh4_register_name);
3106 set_gdbarch_register_type (gdbarch, sh_sh4_register_type);
3107 set_gdbarch_fp0_regnum (gdbarch, 25);
3108 set_gdbarch_num_pseudo_regs (gdbarch, 13);
3109 set_gdbarch_pseudo_register_read (gdbarch, sh_pseudo_register_read);
3110 set_gdbarch_pseudo_register_write (gdbarch, sh_pseudo_register_write);
3111 set_gdbarch_return_value (gdbarch, sh_return_value_fpu);
3112 set_gdbarch_push_dummy_call (gdbarch, sh_push_dummy_call_fpu);
3113 break;
3114
3115 case bfd_mach_sh4_nofpu:
3116 case bfd_mach_sh4a_nofpu:
3117 case bfd_mach_sh4_nommu_nofpu:
3118 case bfd_mach_sh2a_nofpu_or_sh4_nommu_nofpu:
3119 set_gdbarch_register_name (gdbarch, sh_sh4_nofpu_register_name);
3120 break;
3121
3122 case bfd_mach_sh4al_dsp:
3123 set_gdbarch_register_name (gdbarch, sh_sh4al_dsp_register_name);
3124 set_gdbarch_register_sim_regno (gdbarch, sh_dsp_register_sim_regno);
3125 break;
3126
3127 default:
3128 set_gdbarch_register_name (gdbarch, sh_sh_register_name);
3129 break;
3130 }
3131
3132 /* Hook in ABI-specific overrides, if they have been registered. */
3133 gdbarch_init_osabi (info, gdbarch);
3134
3135 dwarf2_append_unwinders (gdbarch);
3136 frame_unwind_append_unwinder (gdbarch, &sh_stub_unwind);
3137 frame_unwind_append_unwinder (gdbarch, &sh_frame_unwind);
3138
3139 return gdbarch;
3140 }
3141
3142 static void
3143 show_sh_command (char *args, int from_tty)
3144 {
3145 help_list (showshcmdlist, "show sh ", all_commands, gdb_stdout);
3146 }
3147
3148 static void
3149 set_sh_command (char *args, int from_tty)
3150 {
3151 printf_unfiltered
3152 ("\"set sh\" must be followed by an appropriate subcommand.\n");
3153 help_list (setshcmdlist, "set sh ", all_commands, gdb_stdout);
3154 }
3155
3156 extern initialize_file_ftype _initialize_sh_tdep; /* -Wmissing-prototypes */
3157
3158 void
3159 _initialize_sh_tdep (void)
3160 {
3161 struct cmd_list_element *c;
3162
3163 gdbarch_register (bfd_arch_sh, sh_gdbarch_init, NULL);
3164
3165 add_com ("regs", class_vars, sh_show_regs_command, _("Print all registers"));
3166
3167 add_prefix_cmd ("sh", no_class, set_sh_command, "SH specific commands.",
3168 &setshcmdlist, "set sh ", 0, &setlist);
3169 add_prefix_cmd ("sh", no_class, show_sh_command, "SH specific commands.",
3170 &showshcmdlist, "show sh ", 0, &showlist);
3171
3172 add_setshow_enum_cmd ("calling-convention", class_vars, sh_cc_enum,
3173 &sh_active_calling_convention,
3174 _("Set calling convention used when calling target "
3175 "functions from GDB."),
3176 _("Show calling convention used when calling target "
3177 "functions from GDB."),
3178 _("gcc - Use GCC calling convention (default).\n"
3179 "renesas - Enforce Renesas calling convention."),
3180 NULL, NULL,
3181 &setshcmdlist, &showshcmdlist);
3182 }