* MAINTAINERS: Revert h8300 state to un-deleted.
[binutils-gdb.git] / gdb / sh64-tdep.c
1 /* Target-dependent code for Renesas Super-H, for GDB.
2
3 Copyright 1993, 1994, 1995, 1996, 1997, 1998, 1999, 2000, 2001,
4 2002, 2003, 2004, 2005 Free Software Foundation, Inc.
5
6 This file is part of GDB.
7
8 This program is free software; you can redistribute it and/or modify
9 it under the terms of the GNU General Public License as published by
10 the Free Software Foundation; either version 2 of the License, or
11 (at your option) any later version.
12
13 This program is distributed in the hope that it will be useful,
14 but WITHOUT ANY WARRANTY; without even the implied warranty of
15 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
16 GNU General Public License for more details.
17
18 You should have received a copy of the GNU General Public License
19 along with this program; if not, write to the Free Software
20 Foundation, Inc., 59 Temple Place - Suite 330,
21 Boston, MA 02111-1307, USA. */
22
23 /*
24 Contributed by Steve Chamberlain
25 sac@cygnus.com
26 */
27
28 #include "defs.h"
29 #include "frame.h"
30 #include "frame-base.h"
31 #include "frame-unwind.h"
32 #include "dwarf2-frame.h"
33 #include "symtab.h"
34 #include "gdbtypes.h"
35 #include "gdbcmd.h"
36 #include "gdbcore.h"
37 #include "value.h"
38 #include "dis-asm.h"
39 #include "inferior.h"
40 #include "gdb_string.h"
41 #include "gdb_assert.h"
42 #include "arch-utils.h"
43 #include "regcache.h"
44 #include "osabi.h"
45
46 #include "elf-bfd.h"
47
48 /* sh flags */
49 #include "elf/sh.h"
50 /* registers numbers shared with the simulator */
51 #include "gdb/sim-sh.h"
52
53 /* Information that is dependent on the processor variant. */
54 enum sh_abi
55 {
56 SH_ABI_UNKNOWN,
57 SH_ABI_32,
58 SH_ABI_64
59 };
60
61 struct gdbarch_tdep
62 {
63 enum sh_abi sh_abi;
64 };
65
66 struct sh64_frame_cache
67 {
68 /* Base address. */
69 CORE_ADDR base;
70 LONGEST sp_offset;
71 CORE_ADDR pc;
72
73 /* Flag showing that a frame has been created in the prologue code. */
74 int uses_fp;
75
76 int media_mode;
77
78 /* Saved registers. */
79 CORE_ADDR saved_regs[SIM_SH64_NR_REGS];
80 CORE_ADDR saved_sp;
81 };
82
83 /* Registers of SH5 */
84 enum
85 {
86 R0_REGNUM = 0,
87 DEFAULT_RETURN_REGNUM = 2,
88 STRUCT_RETURN_REGNUM = 2,
89 ARG0_REGNUM = 2,
90 ARGLAST_REGNUM = 9,
91 FLOAT_ARGLAST_REGNUM = 11,
92 MEDIA_FP_REGNUM = 14,
93 PR_REGNUM = 18,
94 SR_REGNUM = 65,
95 DR0_REGNUM = 141,
96 DR_LAST_REGNUM = 172,
97 /* FPP stands for Floating Point Pair, to avoid confusion with
98 GDB's FP0_REGNUM, which is the number of the first Floating
99 point register. Unfortunately on the sh5, the floating point
100 registers are called FR, and the floating point pairs are called FP. */
101 FPP0_REGNUM = 173,
102 FPP_LAST_REGNUM = 204,
103 FV0_REGNUM = 205,
104 FV_LAST_REGNUM = 220,
105 R0_C_REGNUM = 221,
106 R_LAST_C_REGNUM = 236,
107 PC_C_REGNUM = 237,
108 GBR_C_REGNUM = 238,
109 MACH_C_REGNUM = 239,
110 MACL_C_REGNUM = 240,
111 PR_C_REGNUM = 241,
112 T_C_REGNUM = 242,
113 FPSCR_C_REGNUM = 243,
114 FPUL_C_REGNUM = 244,
115 FP0_C_REGNUM = 245,
116 FP_LAST_C_REGNUM = 260,
117 DR0_C_REGNUM = 261,
118 DR_LAST_C_REGNUM = 268,
119 FV0_C_REGNUM = 269,
120 FV_LAST_C_REGNUM = 272,
121 FPSCR_REGNUM = SIM_SH64_FPCSR_REGNUM,
122 SSR_REGNUM = SIM_SH64_SSR_REGNUM,
123 SPC_REGNUM = SIM_SH64_SPC_REGNUM,
124 TR7_REGNUM = SIM_SH64_TR0_REGNUM + 7,
125 FP_LAST_REGNUM = SIM_SH64_FR0_REGNUM + SIM_SH64_NR_FP_REGS - 1
126 };
127
128 static const char *
129 sh64_register_name (int reg_nr)
130 {
131 static char *register_names[] =
132 {
133 /* SH MEDIA MODE (ISA 32) */
134 /* general registers (64-bit) 0-63 */
135 "r0", "r1", "r2", "r3", "r4", "r5", "r6", "r7",
136 "r8", "r9", "r10", "r11", "r12", "r13", "r14", "r15",
137 "r16", "r17", "r18", "r19", "r20", "r21", "r22", "r23",
138 "r24", "r25", "r26", "r27", "r28", "r29", "r30", "r31",
139 "r32", "r33", "r34", "r35", "r36", "r37", "r38", "r39",
140 "r40", "r41", "r42", "r43", "r44", "r45", "r46", "r47",
141 "r48", "r49", "r50", "r51", "r52", "r53", "r54", "r55",
142 "r56", "r57", "r58", "r59", "r60", "r61", "r62", "r63",
143
144 /* pc (64-bit) 64 */
145 "pc",
146
147 /* status reg., saved status reg., saved pc reg. (64-bit) 65-67 */
148 "sr", "ssr", "spc",
149
150 /* target registers (64-bit) 68-75*/
151 "tr0", "tr1", "tr2", "tr3", "tr4", "tr5", "tr6", "tr7",
152
153 /* floating point state control register (32-bit) 76 */
154 "fpscr",
155
156 /* single precision floating point registers (32-bit) 77-140*/
157 "fr0", "fr1", "fr2", "fr3", "fr4", "fr5", "fr6", "fr7",
158 "fr8", "fr9", "fr10", "fr11", "fr12", "fr13", "fr14", "fr15",
159 "fr16", "fr17", "fr18", "fr19", "fr20", "fr21", "fr22", "fr23",
160 "fr24", "fr25", "fr26", "fr27", "fr28", "fr29", "fr30", "fr31",
161 "fr32", "fr33", "fr34", "fr35", "fr36", "fr37", "fr38", "fr39",
162 "fr40", "fr41", "fr42", "fr43", "fr44", "fr45", "fr46", "fr47",
163 "fr48", "fr49", "fr50", "fr51", "fr52", "fr53", "fr54", "fr55",
164 "fr56", "fr57", "fr58", "fr59", "fr60", "fr61", "fr62", "fr63",
165
166 /* double precision registers (pseudo) 141-172 */
167 "dr0", "dr2", "dr4", "dr6", "dr8", "dr10", "dr12", "dr14",
168 "dr16", "dr18", "dr20", "dr22", "dr24", "dr26", "dr28", "dr30",
169 "dr32", "dr34", "dr36", "dr38", "dr40", "dr42", "dr44", "dr46",
170 "dr48", "dr50", "dr52", "dr54", "dr56", "dr58", "dr60", "dr62",
171
172 /* floating point pairs (pseudo) 173-204*/
173 "fp0", "fp2", "fp4", "fp6", "fp8", "fp10", "fp12", "fp14",
174 "fp16", "fp18", "fp20", "fp22", "fp24", "fp26", "fp28", "fp30",
175 "fp32", "fp34", "fp36", "fp38", "fp40", "fp42", "fp44", "fp46",
176 "fp48", "fp50", "fp52", "fp54", "fp56", "fp58", "fp60", "fp62",
177
178 /* floating point vectors (4 floating point regs) (pseudo) 205-220*/
179 "fv0", "fv4", "fv8", "fv12", "fv16", "fv20", "fv24", "fv28",
180 "fv32", "fv36", "fv40", "fv44", "fv48", "fv52", "fv56", "fv60",
181
182 /* SH COMPACT MODE (ISA 16) (all pseudo) 221-272*/
183 "r0_c", "r1_c", "r2_c", "r3_c", "r4_c", "r5_c", "r6_c", "r7_c",
184 "r8_c", "r9_c", "r10_c", "r11_c", "r12_c", "r13_c", "r14_c", "r15_c",
185 "pc_c",
186 "gbr_c", "mach_c", "macl_c", "pr_c", "t_c",
187 "fpscr_c", "fpul_c",
188 "fr0_c", "fr1_c", "fr2_c", "fr3_c", "fr4_c", "fr5_c", "fr6_c", "fr7_c",
189 "fr8_c", "fr9_c", "fr10_c", "fr11_c", "fr12_c", "fr13_c", "fr14_c", "fr15_c",
190 "dr0_c", "dr2_c", "dr4_c", "dr6_c", "dr8_c", "dr10_c", "dr12_c", "dr14_c",
191 "fv0_c", "fv4_c", "fv8_c", "fv12_c",
192 /* FIXME!!!! XF0 XF15, XD0 XD14 ?????*/
193 };
194
195 if (reg_nr < 0)
196 return NULL;
197 if (reg_nr >= (sizeof (register_names) / sizeof (*register_names)))
198 return NULL;
199 return register_names[reg_nr];
200 }
201
202 #define NUM_PSEUDO_REGS_SH_MEDIA 80
203 #define NUM_PSEUDO_REGS_SH_COMPACT 51
204
205 /* Macros and functions for setting and testing a bit in a minimal
206 symbol that marks it as 32-bit function. The MSB of the minimal
207 symbol's "info" field is used for this purpose.
208
209 ELF_MAKE_MSYMBOL_SPECIAL
210 tests whether an ELF symbol is "special", i.e. refers
211 to a 32-bit function, and sets a "special" bit in a
212 minimal symbol to mark it as a 32-bit function
213 MSYMBOL_IS_SPECIAL tests the "special" bit in a minimal symbol */
214
215 #define MSYMBOL_IS_SPECIAL(msym) \
216 (((long) MSYMBOL_INFO (msym) & 0x80000000) != 0)
217
218 static void
219 sh64_elf_make_msymbol_special (asymbol *sym, struct minimal_symbol *msym)
220 {
221 if (msym == NULL)
222 return;
223
224 if (((elf_symbol_type *)(sym))->internal_elf_sym.st_other == STO_SH5_ISA32)
225 {
226 MSYMBOL_INFO (msym) = (char *) (((long) MSYMBOL_INFO (msym)) | 0x80000000);
227 SYMBOL_VALUE_ADDRESS (msym) |= 1;
228 }
229 }
230
231 /* ISA32 (shmedia) function addresses are odd (bit 0 is set). Here
232 are some macros to test, set, or clear bit 0 of addresses. */
233 #define IS_ISA32_ADDR(addr) ((addr) & 1)
234 #define MAKE_ISA32_ADDR(addr) ((addr) | 1)
235 #define UNMAKE_ISA32_ADDR(addr) ((addr) & ~1)
236
237 static int
238 pc_is_isa32 (bfd_vma memaddr)
239 {
240 struct minimal_symbol *sym;
241
242 /* If bit 0 of the address is set, assume this is a
243 ISA32 (shmedia) address. */
244 if (IS_ISA32_ADDR (memaddr))
245 return 1;
246
247 /* A flag indicating that this is a ISA32 function is stored by elfread.c in
248 the high bit of the info field. Use this to decide if the function is
249 ISA16 or ISA32. */
250 sym = lookup_minimal_symbol_by_pc (memaddr);
251 if (sym)
252 return MSYMBOL_IS_SPECIAL (sym);
253 else
254 return 0;
255 }
256
257 static const unsigned char *
258 sh64_breakpoint_from_pc (CORE_ADDR *pcptr, int *lenptr)
259 {
260 /* The BRK instruction for shmedia is
261 01101111 11110101 11111111 11110000
262 which translates in big endian mode to 0x6f, 0xf5, 0xff, 0xf0
263 and in little endian mode to 0xf0, 0xff, 0xf5, 0x6f */
264
265 /* The BRK instruction for shcompact is
266 00000000 00111011
267 which translates in big endian mode to 0x0, 0x3b
268 and in little endian mode to 0x3b, 0x0*/
269
270 if (TARGET_BYTE_ORDER == BFD_ENDIAN_BIG)
271 {
272 if (pc_is_isa32 (*pcptr))
273 {
274 static unsigned char big_breakpoint_media[] = {0x6f, 0xf5, 0xff, 0xf0};
275 *pcptr = UNMAKE_ISA32_ADDR (*pcptr);
276 *lenptr = sizeof (big_breakpoint_media);
277 return big_breakpoint_media;
278 }
279 else
280 {
281 static unsigned char big_breakpoint_compact[] = {0x0, 0x3b};
282 *lenptr = sizeof (big_breakpoint_compact);
283 return big_breakpoint_compact;
284 }
285 }
286 else
287 {
288 if (pc_is_isa32 (*pcptr))
289 {
290 static unsigned char little_breakpoint_media[] = {0xf0, 0xff, 0xf5, 0x6f};
291 *pcptr = UNMAKE_ISA32_ADDR (*pcptr);
292 *lenptr = sizeof (little_breakpoint_media);
293 return little_breakpoint_media;
294 }
295 else
296 {
297 static unsigned char little_breakpoint_compact[] = {0x3b, 0x0};
298 *lenptr = sizeof (little_breakpoint_compact);
299 return little_breakpoint_compact;
300 }
301 }
302 }
303
304 /* Prologue looks like
305 [mov.l <regs>,@-r15]...
306 [sts.l pr,@-r15]
307 [mov.l r14,@-r15]
308 [mov r15,r14]
309
310 Actually it can be more complicated than this. For instance, with
311 newer gcc's:
312
313 mov.l r14,@-r15
314 add #-12,r15
315 mov r15,r14
316 mov r4,r1
317 mov r5,r2
318 mov.l r6,@(4,r14)
319 mov.l r7,@(8,r14)
320 mov.b r1,@r14
321 mov r14,r1
322 mov r14,r1
323 add #2,r1
324 mov.w r2,@r1
325
326 */
327
328 /* PTABS/L Rn, TRa 0110101111110001nnnnnnl00aaa0000
329 with l=1 and n = 18 0110101111110001010010100aaa0000 */
330 #define IS_PTABSL_R18(x) (((x) & 0xffffff8f) == 0x6bf14a00)
331
332 /* STS.L PR,@-r0 0100000000100010
333 r0-4-->r0, PR-->(r0) */
334 #define IS_STS_R0(x) ((x) == 0x4022)
335
336 /* STS PR, Rm 0000mmmm00101010
337 PR-->Rm */
338 #define IS_STS_PR(x) (((x) & 0xf0ff) == 0x2a)
339
340 /* MOV.L Rm,@(disp,r15) 00011111mmmmdddd
341 Rm-->(dispx4+r15) */
342 #define IS_MOV_TO_R15(x) (((x) & 0xff00) == 0x1f00)
343
344 /* MOV.L R14,@(disp,r15) 000111111110dddd
345 R14-->(dispx4+r15) */
346 #define IS_MOV_R14(x) (((x) & 0xfff0) == 0x1fe0)
347
348 /* ST.Q R14, disp, R18 101011001110dddddddddd0100100000
349 R18-->(dispx8+R14) */
350 #define IS_STQ_R18_R14(x) (((x) & 0xfff003ff) == 0xace00120)
351
352 /* ST.Q R15, disp, R18 101011001111dddddddddd0100100000
353 R18-->(dispx8+R15) */
354 #define IS_STQ_R18_R15(x) (((x) & 0xfff003ff) == 0xacf00120)
355
356 /* ST.L R15, disp, R18 101010001111dddddddddd0100100000
357 R18-->(dispx4+R15) */
358 #define IS_STL_R18_R15(x) (((x) & 0xfff003ff) == 0xa8f00120)
359
360 /* ST.Q R15, disp, R14 1010 1100 1111 dddd dddd dd00 1110 0000
361 R14-->(dispx8+R15) */
362 #define IS_STQ_R14_R15(x) (((x) & 0xfff003ff) == 0xacf000e0)
363
364 /* ST.L R15, disp, R14 1010 1000 1111 dddd dddd dd00 1110 0000
365 R14-->(dispx4+R15) */
366 #define IS_STL_R14_R15(x) (((x) & 0xfff003ff) == 0xa8f000e0)
367
368 /* ADDI.L R15,imm,R15 1101 0100 1111 ssss ssss ss00 1111 0000
369 R15 + imm --> R15 */
370 #define IS_ADDIL_SP_MEDIA(x) (((x) & 0xfff003ff) == 0xd4f000f0)
371
372 /* ADDI R15,imm,R15 1101 0000 1111 ssss ssss ss00 1111 0000
373 R15 + imm --> R15 */
374 #define IS_ADDI_SP_MEDIA(x) (((x) & 0xfff003ff) == 0xd0f000f0)
375
376 /* ADD.L R15,R63,R14 0000 0000 1111 1000 1111 1100 1110 0000
377 R15 + R63 --> R14 */
378 #define IS_ADDL_SP_FP_MEDIA(x) ((x) == 0x00f8fce0)
379
380 /* ADD R15,R63,R14 0000 0000 1111 1001 1111 1100 1110 0000
381 R15 + R63 --> R14 */
382 #define IS_ADD_SP_FP_MEDIA(x) ((x) == 0x00f9fce0)
383
384 #define IS_MOV_SP_FP_MEDIA(x) (IS_ADDL_SP_FP_MEDIA(x) || IS_ADD_SP_FP_MEDIA(x))
385
386 /* MOV #imm, R0 1110 0000 ssss ssss
387 #imm-->R0 */
388 #define IS_MOV_R0(x) (((x) & 0xff00) == 0xe000)
389
390 /* MOV.L @(disp,PC), R0 1101 0000 iiii iiii */
391 #define IS_MOVL_R0(x) (((x) & 0xff00) == 0xd000)
392
393 /* ADD r15,r0 0011 0000 1111 1100
394 r15+r0-->r0 */
395 #define IS_ADD_SP_R0(x) ((x) == 0x30fc)
396
397 /* MOV.L R14 @-R0 0010 0000 1110 0110
398 R14-->(R0-4), R0-4-->R0 */
399 #define IS_MOV_R14_R0(x) ((x) == 0x20e6)
400
401 /* ADD Rm,R63,Rn Rm+R63-->Rn 0000 00mm mmmm 1001 1111 11nn nnnn 0000
402 where Rm is one of r2-r9 which are the argument registers. */
403 /* FIXME: Recognize the float and double register moves too! */
404 #define IS_MEDIA_IND_ARG_MOV(x) \
405 ((((x) & 0xfc0ffc0f) == 0x0009fc00) && (((x) & 0x03f00000) >= 0x00200000 && ((x) & 0x03f00000) <= 0x00900000))
406
407 /* ST.Q Rn,0,Rm Rm-->Rn+0 1010 11nn nnnn 0000 0000 00mm mmmm 0000
408 or ST.L Rn,0,Rm Rm-->Rn+0 1010 10nn nnnn 0000 0000 00mm mmmm 0000
409 where Rm is one of r2-r9 which are the argument registers. */
410 #define IS_MEDIA_ARG_MOV(x) \
411 (((((x) & 0xfc0ffc0f) == 0xac000000) || (((x) & 0xfc0ffc0f) == 0xa8000000)) \
412 && (((x) & 0x000003f0) >= 0x00000020 && ((x) & 0x000003f0) <= 0x00000090))
413
414 /* ST.B R14,0,Rn Rn-->(R14+0) 1010 0000 1110 0000 0000 00nn nnnn 0000*/
415 /* ST.W R14,0,Rn Rn-->(R14+0) 1010 0100 1110 0000 0000 00nn nnnn 0000*/
416 /* ST.L R14,0,Rn Rn-->(R14+0) 1010 1000 1110 0000 0000 00nn nnnn 0000*/
417 /* FST.S R14,0,FRn Rn-->(R14+0) 1011 0100 1110 0000 0000 00nn nnnn 0000*/
418 /* FST.D R14,0,DRn Rn-->(R14+0) 1011 1100 1110 0000 0000 00nn nnnn 0000*/
419 #define IS_MEDIA_MOV_TO_R14(x) \
420 ((((x) & 0xfffffc0f) == 0xa0e00000) \
421 || (((x) & 0xfffffc0f) == 0xa4e00000) \
422 || (((x) & 0xfffffc0f) == 0xa8e00000) \
423 || (((x) & 0xfffffc0f) == 0xb4e00000) \
424 || (((x) & 0xfffffc0f) == 0xbce00000))
425
426 /* MOV Rm, Rn Rm-->Rn 0110 nnnn mmmm 0011
427 where Rm is r2-r9 */
428 #define IS_COMPACT_IND_ARG_MOV(x) \
429 ((((x) & 0xf00f) == 0x6003) && (((x) & 0x00f0) >= 0x0020) && (((x) & 0x00f0) <= 0x0090))
430
431 /* compact direct arg move!
432 MOV.L Rn, @r14 0010 1110 mmmm 0010 */
433 #define IS_COMPACT_ARG_MOV(x) \
434 (((((x) & 0xff0f) == 0x2e02) && (((x) & 0x00f0) >= 0x0020) && ((x) & 0x00f0) <= 0x0090))
435
436 /* MOV.B Rm, @R14 0010 1110 mmmm 0000
437 MOV.W Rm, @R14 0010 1110 mmmm 0001 */
438 #define IS_COMPACT_MOV_TO_R14(x) \
439 ((((x) & 0xff0f) == 0x2e00) || (((x) & 0xff0f) == 0x2e01))
440
441 #define IS_JSR_R0(x) ((x) == 0x400b)
442 #define IS_NOP(x) ((x) == 0x0009)
443
444
445 /* MOV r15,r14 0110111011110011
446 r15-->r14 */
447 #define IS_MOV_SP_FP(x) ((x) == 0x6ef3)
448
449 /* ADD #imm,r15 01111111iiiiiiii
450 r15+imm-->r15 */
451 #define IS_ADD_SP(x) (((x) & 0xff00) == 0x7f00)
452
453 /* Skip any prologue before the guts of a function */
454
455 /* Skip the prologue using the debug information. If this fails we'll
456 fall back on the 'guess' method below. */
457 static CORE_ADDR
458 after_prologue (CORE_ADDR pc)
459 {
460 struct symtab_and_line sal;
461 CORE_ADDR func_addr, func_end;
462
463 /* If we can not find the symbol in the partial symbol table, then
464 there is no hope we can determine the function's start address
465 with this code. */
466 if (!find_pc_partial_function (pc, NULL, &func_addr, &func_end))
467 return 0;
468
469
470 /* Get the line associated with FUNC_ADDR. */
471 sal = find_pc_line (func_addr, 0);
472
473 /* There are only two cases to consider. First, the end of the source line
474 is within the function bounds. In that case we return the end of the
475 source line. Second is the end of the source line extends beyond the
476 bounds of the current function. We need to use the slow code to
477 examine instructions in that case. */
478 if (sal.end < func_end)
479 return sal.end;
480 else
481 return 0;
482 }
483
484 static CORE_ADDR
485 look_for_args_moves (CORE_ADDR start_pc, int media_mode)
486 {
487 CORE_ADDR here, end;
488 int w;
489 int insn_size = (media_mode ? 4 : 2);
490
491 for (here = start_pc, end = start_pc + (insn_size * 28); here < end;)
492 {
493 if (media_mode)
494 {
495 w = read_memory_integer (UNMAKE_ISA32_ADDR (here), insn_size);
496 here += insn_size;
497 if (IS_MEDIA_IND_ARG_MOV (w))
498 {
499 /* This must be followed by a store to r14, so the argument
500 is where the debug info says it is. This can happen after
501 the SP has been saved, unfortunately. */
502
503 int next_insn = read_memory_integer (UNMAKE_ISA32_ADDR (here),
504 insn_size);
505 here += insn_size;
506 if (IS_MEDIA_MOV_TO_R14 (next_insn))
507 start_pc = here;
508 }
509 else if (IS_MEDIA_ARG_MOV (w))
510 {
511 /* These instructions store directly the argument in r14. */
512 start_pc = here;
513 }
514 else
515 break;
516 }
517 else
518 {
519 w = read_memory_integer (here, insn_size);
520 w = w & 0xffff;
521 here += insn_size;
522 if (IS_COMPACT_IND_ARG_MOV (w))
523 {
524 /* This must be followed by a store to r14, so the argument
525 is where the debug info says it is. This can happen after
526 the SP has been saved, unfortunately. */
527
528 int next_insn = 0xffff & read_memory_integer (here, insn_size);
529 here += insn_size;
530 if (IS_COMPACT_MOV_TO_R14 (next_insn))
531 start_pc = here;
532 }
533 else if (IS_COMPACT_ARG_MOV (w))
534 {
535 /* These instructions store directly the argument in r14. */
536 start_pc = here;
537 }
538 else if (IS_MOVL_R0 (w))
539 {
540 /* There is a function that gcc calls to get the arguments
541 passed correctly to the function. Only after this
542 function call the arguments will be found at the place
543 where they are supposed to be. This happens in case the
544 argument has to be stored into a 64-bit register (for
545 instance doubles, long longs). SHcompact doesn't have
546 access to the full 64-bits, so we store the register in
547 stack slot and store the address of the stack slot in
548 the register, then do a call through a wrapper that
549 loads the memory value into the register. A SHcompact
550 callee calls an argument decoder
551 (GCC_shcompact_incoming_args) that stores the 64-bit
552 value in a stack slot and stores the address of the
553 stack slot in the register. GCC thinks the argument is
554 just passed by transparent reference, but this is only
555 true after the argument decoder is called. Such a call
556 needs to be considered part of the prologue. */
557
558 /* This must be followed by a JSR @r0 instruction and by
559 a NOP instruction. After these, the prologue is over! */
560
561 int next_insn = 0xffff & read_memory_integer (here, insn_size);
562 here += insn_size;
563 if (IS_JSR_R0 (next_insn))
564 {
565 next_insn = 0xffff & read_memory_integer (here, insn_size);
566 here += insn_size;
567
568 if (IS_NOP (next_insn))
569 start_pc = here;
570 }
571 }
572 else
573 break;
574 }
575 }
576
577 return start_pc;
578 }
579
580 static CORE_ADDR
581 sh64_skip_prologue_hard_way (CORE_ADDR start_pc)
582 {
583 CORE_ADDR here, end;
584 int updated_fp = 0;
585 int insn_size = 4;
586 int media_mode = 1;
587
588 if (!start_pc)
589 return 0;
590
591 if (pc_is_isa32 (start_pc) == 0)
592 {
593 insn_size = 2;
594 media_mode = 0;
595 }
596
597 for (here = start_pc, end = start_pc + (insn_size * 28); here < end;)
598 {
599
600 if (media_mode)
601 {
602 int w = read_memory_integer (UNMAKE_ISA32_ADDR (here), insn_size);
603 here += insn_size;
604 if (IS_STQ_R18_R14 (w) || IS_STQ_R18_R15 (w) || IS_STQ_R14_R15 (w)
605 || IS_STL_R14_R15 (w) || IS_STL_R18_R15 (w)
606 || IS_ADDIL_SP_MEDIA (w) || IS_ADDI_SP_MEDIA (w) || IS_PTABSL_R18 (w))
607 {
608 start_pc = here;
609 }
610 else if (IS_MOV_SP_FP (w) || IS_MOV_SP_FP_MEDIA(w))
611 {
612 start_pc = here;
613 updated_fp = 1;
614 }
615 else
616 if (updated_fp)
617 {
618 /* Don't bail out yet, we may have arguments stored in
619 registers here, according to the debug info, so that
620 gdb can print the frames correctly. */
621 start_pc = look_for_args_moves (here - insn_size, media_mode);
622 break;
623 }
624 }
625 else
626 {
627 int w = 0xffff & read_memory_integer (here, insn_size);
628 here += insn_size;
629
630 if (IS_STS_R0 (w) || IS_STS_PR (w)
631 || IS_MOV_TO_R15 (w) || IS_MOV_R14 (w)
632 || IS_MOV_R0 (w) || IS_ADD_SP_R0 (w) || IS_MOV_R14_R0 (w))
633 {
634 start_pc = here;
635 }
636 else if (IS_MOV_SP_FP (w))
637 {
638 start_pc = here;
639 updated_fp = 1;
640 }
641 else
642 if (updated_fp)
643 {
644 /* Don't bail out yet, we may have arguments stored in
645 registers here, according to the debug info, so that
646 gdb can print the frames correctly. */
647 start_pc = look_for_args_moves (here - insn_size, media_mode);
648 break;
649 }
650 }
651 }
652
653 return start_pc;
654 }
655
656 static CORE_ADDR
657 sh64_skip_prologue (CORE_ADDR pc)
658 {
659 CORE_ADDR post_prologue_pc;
660
661 /* See if we can determine the end of the prologue via the symbol table.
662 If so, then return either PC, or the PC after the prologue, whichever
663 is greater. */
664 post_prologue_pc = after_prologue (pc);
665
666 /* If after_prologue returned a useful address, then use it. Else
667 fall back on the instruction skipping code. */
668 if (post_prologue_pc != 0)
669 return max (pc, post_prologue_pc);
670 else
671 return sh64_skip_prologue_hard_way (pc);
672 }
673
674 /* Should call_function allocate stack space for a struct return? */
675 static int
676 sh64_use_struct_convention (struct type *type)
677 {
678 return (TYPE_LENGTH (type) > 8);
679 }
680
681 /* Disassemble an instruction. */
682 static int
683 gdb_print_insn_sh64 (bfd_vma memaddr, disassemble_info *info)
684 {
685 info->endian = TARGET_BYTE_ORDER;
686 return print_insn_sh (memaddr, info);
687 }
688
689 /* For vectors of 4 floating point registers. */
690 static int
691 sh64_fv_reg_base_num (int fv_regnum)
692 {
693 int fp_regnum;
694
695 fp_regnum = FP0_REGNUM +
696 (fv_regnum - FV0_REGNUM) * 4;
697 return fp_regnum;
698 }
699
700 /* For double precision floating point registers, i.e 2 fp regs.*/
701 static int
702 sh64_dr_reg_base_num (int dr_regnum)
703 {
704 int fp_regnum;
705
706 fp_regnum = FP0_REGNUM +
707 (dr_regnum - DR0_REGNUM) * 2;
708 return fp_regnum;
709 }
710
711 /* For pairs of floating point registers */
712 static int
713 sh64_fpp_reg_base_num (int fpp_regnum)
714 {
715 int fp_regnum;
716
717 fp_regnum = FP0_REGNUM +
718 (fpp_regnum - FPP0_REGNUM) * 2;
719 return fp_regnum;
720 }
721
722 /* *INDENT-OFF* */
723 /*
724 SH COMPACT MODE (ISA 16) (all pseudo) 221-272
725 GDB_REGNUM BASE_REGNUM
726 r0_c 221 0
727 r1_c 222 1
728 r2_c 223 2
729 r3_c 224 3
730 r4_c 225 4
731 r5_c 226 5
732 r6_c 227 6
733 r7_c 228 7
734 r8_c 229 8
735 r9_c 230 9
736 r10_c 231 10
737 r11_c 232 11
738 r12_c 233 12
739 r13_c 234 13
740 r14_c 235 14
741 r15_c 236 15
742
743 pc_c 237 64
744 gbr_c 238 16
745 mach_c 239 17
746 macl_c 240 17
747 pr_c 241 18
748 t_c 242 19
749 fpscr_c 243 76
750 fpul_c 244 109
751
752 fr0_c 245 77
753 fr1_c 246 78
754 fr2_c 247 79
755 fr3_c 248 80
756 fr4_c 249 81
757 fr5_c 250 82
758 fr6_c 251 83
759 fr7_c 252 84
760 fr8_c 253 85
761 fr9_c 254 86
762 fr10_c 255 87
763 fr11_c 256 88
764 fr12_c 257 89
765 fr13_c 258 90
766 fr14_c 259 91
767 fr15_c 260 92
768
769 dr0_c 261 77
770 dr2_c 262 79
771 dr4_c 263 81
772 dr6_c 264 83
773 dr8_c 265 85
774 dr10_c 266 87
775 dr12_c 267 89
776 dr14_c 268 91
777
778 fv0_c 269 77
779 fv4_c 270 81
780 fv8_c 271 85
781 fv12_c 272 91
782 */
783 /* *INDENT-ON* */
784 static int
785 sh64_compact_reg_base_num (int reg_nr)
786 {
787 int base_regnum = reg_nr;
788
789 /* general register N maps to general register N */
790 if (reg_nr >= R0_C_REGNUM
791 && reg_nr <= R_LAST_C_REGNUM)
792 base_regnum = reg_nr - R0_C_REGNUM;
793
794 /* floating point register N maps to floating point register N */
795 else if (reg_nr >= FP0_C_REGNUM
796 && reg_nr <= FP_LAST_C_REGNUM)
797 base_regnum = reg_nr - FP0_C_REGNUM + FP0_REGNUM;
798
799 /* double prec register N maps to base regnum for double prec register N */
800 else if (reg_nr >= DR0_C_REGNUM
801 && reg_nr <= DR_LAST_C_REGNUM)
802 base_regnum = sh64_dr_reg_base_num (DR0_REGNUM + reg_nr - DR0_C_REGNUM);
803
804 /* vector N maps to base regnum for vector register N */
805 else if (reg_nr >= FV0_C_REGNUM
806 && reg_nr <= FV_LAST_C_REGNUM)
807 base_regnum = sh64_fv_reg_base_num (FV0_REGNUM + reg_nr - FV0_C_REGNUM);
808
809 else if (reg_nr == PC_C_REGNUM)
810 base_regnum = PC_REGNUM;
811
812 else if (reg_nr == GBR_C_REGNUM)
813 base_regnum = 16;
814
815 else if (reg_nr == MACH_C_REGNUM
816 || reg_nr == MACL_C_REGNUM)
817 base_regnum = 17;
818
819 else if (reg_nr == PR_C_REGNUM)
820 base_regnum = PR_REGNUM;
821
822 else if (reg_nr == T_C_REGNUM)
823 base_regnum = 19;
824
825 else if (reg_nr == FPSCR_C_REGNUM)
826 base_regnum = FPSCR_REGNUM; /*???? this register is a mess. */
827
828 else if (reg_nr == FPUL_C_REGNUM)
829 base_regnum = FP0_REGNUM + 32;
830
831 return base_regnum;
832 }
833
834 static int
835 sign_extend (int value, int bits)
836 {
837 value = value & ((1 << bits) - 1);
838 return (value & (1 << (bits - 1))
839 ? value | (~((1 << bits) - 1))
840 : value);
841 }
842
843 static void
844 sh64_analyze_prologue (struct gdbarch *gdbarch,
845 struct sh64_frame_cache *cache,
846 CORE_ADDR func_pc,
847 CORE_ADDR current_pc)
848 {
849 int reg_nr;
850 int pc;
851 int opc;
852 int insn;
853 int r0_val = 0;
854 int insn_size;
855 int gdb_register_number;
856 int register_number;
857 struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch);
858
859 cache->sp_offset = 0;
860
861 /* Loop around examining the prologue insns until we find something
862 that does not appear to be part of the prologue. But give up
863 after 20 of them, since we're getting silly then. */
864
865 pc = func_pc;
866
867 if (cache->media_mode)
868 insn_size = 4;
869 else
870 insn_size = 2;
871
872 opc = pc + (insn_size * 28);
873 if (opc > current_pc)
874 opc = current_pc;
875 for ( ; pc <= opc; pc += insn_size)
876 {
877 insn = read_memory_integer (cache->media_mode ? UNMAKE_ISA32_ADDR (pc)
878 : pc,
879 insn_size);
880
881 if (!cache->media_mode)
882 {
883 if (IS_STS_PR (insn))
884 {
885 int next_insn = read_memory_integer (pc + insn_size, insn_size);
886 if (IS_MOV_TO_R15 (next_insn))
887 {
888 cache->saved_regs[PR_REGNUM] =
889 cache->sp_offset - ((((next_insn & 0xf) ^ 0x8) - 0x8) << 2);
890 pc += insn_size;
891 }
892 }
893
894 else if (IS_MOV_R14 (insn))
895 cache->saved_regs[MEDIA_FP_REGNUM] =
896 cache->sp_offset - ((((insn & 0xf) ^ 0x8) - 0x8) << 2);
897
898 else if (IS_MOV_R0 (insn))
899 {
900 /* Put in R0 the offset from SP at which to store some
901 registers. We are interested in this value, because it
902 will tell us where the given registers are stored within
903 the frame. */
904 r0_val = ((insn & 0xff) ^ 0x80) - 0x80;
905 }
906
907 else if (IS_ADD_SP_R0 (insn))
908 {
909 /* This instruction still prepares r0, but we don't care.
910 We already have the offset in r0_val. */
911 }
912
913 else if (IS_STS_R0 (insn))
914 {
915 /* Store PR at r0_val-4 from SP. Decrement r0 by 4*/
916 cache->saved_regs[PR_REGNUM] = cache->sp_offset - (r0_val - 4);
917 r0_val -= 4;
918 }
919
920 else if (IS_MOV_R14_R0 (insn))
921 {
922 /* Store R14 at r0_val-4 from SP. Decrement r0 by 4 */
923 cache->saved_regs[MEDIA_FP_REGNUM] = cache->sp_offset
924 - (r0_val - 4);
925 r0_val -= 4;
926 }
927
928 else if (IS_ADD_SP (insn))
929 cache->sp_offset -= ((insn & 0xff) ^ 0x80) - 0x80;
930
931 else if (IS_MOV_SP_FP (insn))
932 break;
933 }
934 else
935 {
936 if (IS_ADDIL_SP_MEDIA (insn) || IS_ADDI_SP_MEDIA (insn))
937 cache->sp_offset -=
938 sign_extend ((((insn & 0xffc00) ^ 0x80000) - 0x80000) >> 10, 9);
939
940 else if (IS_STQ_R18_R15 (insn))
941 cache->saved_regs[PR_REGNUM] =
942 cache->sp_offset - (sign_extend ((insn & 0xffc00) >> 10, 9) << 3);
943
944 else if (IS_STL_R18_R15 (insn))
945 cache->saved_regs[PR_REGNUM] =
946 cache->sp_offset - (sign_extend ((insn & 0xffc00) >> 10, 9) << 2);
947
948 else if (IS_STQ_R14_R15 (insn))
949 cache->saved_regs[MEDIA_FP_REGNUM] =
950 cache->sp_offset - (sign_extend ((insn & 0xffc00) >> 10, 9) << 3);
951
952 else if (IS_STL_R14_R15 (insn))
953 cache->saved_regs[MEDIA_FP_REGNUM] =
954 cache->sp_offset - (sign_extend ((insn & 0xffc00) >> 10, 9) << 2);
955
956 else if (IS_MOV_SP_FP_MEDIA (insn))
957 break;
958 }
959 }
960
961 if (cache->saved_regs[MEDIA_FP_REGNUM] >= 0)
962 cache->uses_fp = 1;
963 }
964
965 static CORE_ADDR
966 sh64_extract_struct_value_address (struct regcache *regcache)
967 {
968 /* FIXME: cagney/2004-01-17: Does the ABI guarantee that the return
969 address regster is preserved across function calls? Probably
970 not, making this function wrong. */
971 ULONGEST val;
972 regcache_raw_read_unsigned (regcache, STRUCT_RETURN_REGNUM, &val);
973 return val;
974 }
975
976 static CORE_ADDR
977 sh64_frame_align (struct gdbarch *ignore, CORE_ADDR sp)
978 {
979 return sp & ~7;
980 }
981
982 /* Function: push_dummy_call
983 Setup the function arguments for calling a function in the inferior.
984
985 On the Renesas SH architecture, there are four registers (R4 to R7)
986 which are dedicated for passing function arguments. Up to the first
987 four arguments (depending on size) may go into these registers.
988 The rest go on the stack.
989
990 Arguments that are smaller than 4 bytes will still take up a whole
991 register or a whole 32-bit word on the stack, and will be
992 right-justified in the register or the stack word. This includes
993 chars, shorts, and small aggregate types.
994
995 Arguments that are larger than 4 bytes may be split between two or
996 more registers. If there are not enough registers free, an argument
997 may be passed partly in a register (or registers), and partly on the
998 stack. This includes doubles, long longs, and larger aggregates.
999 As far as I know, there is no upper limit to the size of aggregates
1000 that will be passed in this way; in other words, the convention of
1001 passing a pointer to a large aggregate instead of a copy is not used.
1002
1003 An exceptional case exists for struct arguments (and possibly other
1004 aggregates such as arrays) if the size is larger than 4 bytes but
1005 not a multiple of 4 bytes. In this case the argument is never split
1006 between the registers and the stack, but instead is copied in its
1007 entirety onto the stack, AND also copied into as many registers as
1008 there is room for. In other words, space in registers permitting,
1009 two copies of the same argument are passed in. As far as I can tell,
1010 only the one on the stack is used, although that may be a function
1011 of the level of compiler optimization. I suspect this is a compiler
1012 bug. Arguments of these odd sizes are left-justified within the
1013 word (as opposed to arguments smaller than 4 bytes, which are
1014 right-justified).
1015
1016 If the function is to return an aggregate type such as a struct, it
1017 is either returned in the normal return value register R0 (if its
1018 size is no greater than one byte), or else the caller must allocate
1019 space into which the callee will copy the return value (if the size
1020 is greater than one byte). In this case, a pointer to the return
1021 value location is passed into the callee in register R2, which does
1022 not displace any of the other arguments passed in via registers R4
1023 to R7. */
1024
1025 /* R2-R9 for integer types and integer equivalent (char, pointers) and
1026 non-scalar (struct, union) elements (even if the elements are
1027 floats).
1028 FR0-FR11 for single precision floating point (float)
1029 DR0-DR10 for double precision floating point (double)
1030
1031 If a float is argument number 3 (for instance) and arguments number
1032 1,2, and 4 are integer, the mapping will be:
1033 arg1 -->R2, arg2 --> R3, arg3 -->FR0, arg4 --> R5. I.e. R4 is not used.
1034
1035 If a float is argument number 10 (for instance) and arguments number
1036 1 through 10 are integer, the mapping will be:
1037 arg1->R2, arg2->R3, arg3->R4, arg4->R5, arg5->R6, arg6->R7, arg7->R8,
1038 arg8->R9, arg9->(0,SP)stack(8-byte aligned), arg10->FR0, arg11->stack(16,SP).
1039 I.e. there is hole in the stack.
1040
1041 Different rules apply for variable arguments functions, and for functions
1042 for which the prototype is not known. */
1043
1044 static CORE_ADDR
1045 sh64_push_dummy_call (struct gdbarch *gdbarch,
1046 struct value *function,
1047 struct regcache *regcache,
1048 CORE_ADDR bp_addr,
1049 int nargs, struct value **args,
1050 CORE_ADDR sp, int struct_return,
1051 CORE_ADDR struct_addr)
1052 {
1053 int stack_offset, stack_alloc;
1054 int int_argreg;
1055 int float_argreg;
1056 int double_argreg;
1057 int float_arg_index = 0;
1058 int double_arg_index = 0;
1059 int argnum;
1060 struct type *type;
1061 CORE_ADDR regval;
1062 char *val;
1063 char valbuf[8];
1064 char valbuf_tmp[8];
1065 int len;
1066 int argreg_size;
1067 int fp_args[12];
1068
1069 memset (fp_args, 0, sizeof (fp_args));
1070
1071 /* first force sp to a 8-byte alignment */
1072 sp = sh64_frame_align (gdbarch, sp);
1073
1074 /* The "struct return pointer" pseudo-argument has its own dedicated
1075 register */
1076
1077 if (struct_return)
1078 regcache_cooked_write_unsigned (regcache,
1079 STRUCT_RETURN_REGNUM, struct_addr);
1080
1081 /* Now make sure there's space on the stack */
1082 for (argnum = 0, stack_alloc = 0; argnum < nargs; argnum++)
1083 stack_alloc += ((TYPE_LENGTH (value_type (args[argnum])) + 7) & ~7);
1084 sp -= stack_alloc; /* make room on stack for args */
1085
1086 /* Now load as many as possible of the first arguments into
1087 registers, and push the rest onto the stack. There are 64 bytes
1088 in eight registers available. Loop thru args from first to last. */
1089
1090 int_argreg = ARG0_REGNUM;
1091 float_argreg = FP0_REGNUM;
1092 double_argreg = DR0_REGNUM;
1093
1094 for (argnum = 0, stack_offset = 0; argnum < nargs; argnum++)
1095 {
1096 type = value_type (args[argnum]);
1097 len = TYPE_LENGTH (type);
1098 memset (valbuf, 0, sizeof (valbuf));
1099
1100 if (TYPE_CODE (type) != TYPE_CODE_FLT)
1101 {
1102 argreg_size = register_size (current_gdbarch, int_argreg);
1103
1104 if (len < argreg_size)
1105 {
1106 /* value gets right-justified in the register or stack word */
1107 if (TARGET_BYTE_ORDER == BFD_ENDIAN_BIG)
1108 memcpy (valbuf + argreg_size - len,
1109 (char *) value_contents (args[argnum]), len);
1110 else
1111 memcpy (valbuf, (char *) value_contents (args[argnum]), len);
1112
1113 val = valbuf;
1114 }
1115 else
1116 val = (char *) value_contents (args[argnum]);
1117
1118 while (len > 0)
1119 {
1120 if (int_argreg > ARGLAST_REGNUM)
1121 {
1122 /* must go on the stack */
1123 write_memory (sp + stack_offset, val, argreg_size);
1124 stack_offset += 8;/*argreg_size;*/
1125 }
1126 /* NOTE WELL!!!!! This is not an "else if" clause!!!
1127 That's because some *&^%$ things get passed on the stack
1128 AND in the registers! */
1129 if (int_argreg <= ARGLAST_REGNUM)
1130 {
1131 /* there's room in a register */
1132 regval = extract_unsigned_integer (val, argreg_size);
1133 regcache_cooked_write_unsigned (regcache, int_argreg, regval);
1134 }
1135 /* Store the value 8 bytes at a time. This means that
1136 things larger than 8 bytes may go partly in registers
1137 and partly on the stack. FIXME: argreg is incremented
1138 before we use its size. */
1139 len -= argreg_size;
1140 val += argreg_size;
1141 int_argreg++;
1142 }
1143 }
1144 else
1145 {
1146 val = (char *) value_contents (args[argnum]);
1147 if (len == 4)
1148 {
1149 /* Where is it going to be stored? */
1150 while (fp_args[float_arg_index])
1151 float_arg_index ++;
1152
1153 /* Now float_argreg points to the register where it
1154 should be stored. Are we still within the allowed
1155 register set? */
1156 if (float_arg_index <= FLOAT_ARGLAST_REGNUM)
1157 {
1158 /* Goes in FR0...FR11 */
1159 regcache_cooked_write (regcache,
1160 FP0_REGNUM + float_arg_index,
1161 val);
1162 fp_args[float_arg_index] = 1;
1163 /* Skip the corresponding general argument register. */
1164 int_argreg ++;
1165 }
1166 else
1167 ;
1168 /* Store it as the integers, 8 bytes at the time, if
1169 necessary spilling on the stack. */
1170
1171 }
1172 else if (len == 8)
1173 {
1174 /* Where is it going to be stored? */
1175 while (fp_args[double_arg_index])
1176 double_arg_index += 2;
1177 /* Now double_argreg points to the register
1178 where it should be stored.
1179 Are we still within the allowed register set? */
1180 if (double_arg_index < FLOAT_ARGLAST_REGNUM)
1181 {
1182 /* Goes in DR0...DR10 */
1183 /* The numbering of the DRi registers is consecutive,
1184 i.e. includes odd numbers. */
1185 int double_register_offset = double_arg_index / 2;
1186 int regnum = DR0_REGNUM + double_register_offset;
1187 regcache_cooked_write (regcache, regnum, val);
1188 fp_args[double_arg_index] = 1;
1189 fp_args[double_arg_index + 1] = 1;
1190 /* Skip the corresponding general argument register. */
1191 int_argreg ++;
1192 }
1193 else
1194 ;
1195 /* Store it as the integers, 8 bytes at the time, if
1196 necessary spilling on the stack. */
1197 }
1198 }
1199 }
1200 /* Store return address. */
1201 regcache_cooked_write_unsigned (regcache, PR_REGNUM, bp_addr);
1202
1203 /* Update stack pointer. */
1204 regcache_cooked_write_unsigned (regcache, SP_REGNUM, sp);
1205
1206 return sp;
1207 }
1208
1209 /* Find a function's return value in the appropriate registers (in
1210 regbuf), and copy it into valbuf. Extract from an array REGBUF
1211 containing the (raw) register state a function return value of type
1212 TYPE, and copy that, in virtual format, into VALBUF. */
1213 static void
1214 sh64_extract_return_value (struct type *type, struct regcache *regcache,
1215 void *valbuf)
1216 {
1217 int len = TYPE_LENGTH (type);
1218
1219 if (TYPE_CODE (type) == TYPE_CODE_FLT)
1220 {
1221 if (len == 4)
1222 {
1223 /* Return value stored in FP0_REGNUM */
1224 regcache_raw_read (regcache, FP0_REGNUM, valbuf);
1225 }
1226 else if (len == 8)
1227 {
1228 /* return value stored in DR0_REGNUM */
1229 DOUBLEST val;
1230 char buf[8];
1231
1232 regcache_cooked_read (regcache, DR0_REGNUM, &buf);
1233
1234 if (TARGET_BYTE_ORDER == BFD_ENDIAN_LITTLE)
1235 floatformat_to_doublest (&floatformat_ieee_double_littlebyte_bigword,
1236 buf, &val);
1237 else
1238 floatformat_to_doublest (&floatformat_ieee_double_big,
1239 buf, &val);
1240 store_typed_floating (valbuf, type, val);
1241 }
1242 }
1243 else
1244 {
1245 if (len <= 8)
1246 {
1247 int offset;
1248 char buf[8];
1249 /* Result is in register 2. If smaller than 8 bytes, it is padded
1250 at the most significant end. */
1251 regcache_raw_read (regcache, DEFAULT_RETURN_REGNUM, buf);
1252
1253 if (TARGET_BYTE_ORDER == BFD_ENDIAN_BIG)
1254 offset = register_size (current_gdbarch, DEFAULT_RETURN_REGNUM)
1255 - len;
1256 else
1257 offset = 0;
1258 memcpy (valbuf, buf + offset, len);
1259 }
1260 else
1261 error ("bad size for return value");
1262 }
1263 }
1264
1265 /* Write into appropriate registers a function return value
1266 of type TYPE, given in virtual format.
1267 If the architecture is sh4 or sh3e, store a function's return value
1268 in the R0 general register or in the FP0 floating point register,
1269 depending on the type of the return value. In all the other cases
1270 the result is stored in r0, left-justified. */
1271
1272 static void
1273 sh64_store_return_value (struct type *type, struct regcache *regcache,
1274 const void *valbuf)
1275 {
1276 char buf[64]; /* more than enough... */
1277 int len = TYPE_LENGTH (type);
1278
1279 if (TYPE_CODE (type) == TYPE_CODE_FLT)
1280 {
1281 int i, regnum = FP0_REGNUM;
1282 for (i = 0; i < len; i += 4)
1283 if (TARGET_BYTE_ORDER == BFD_ENDIAN_LITTLE)
1284 regcache_raw_write (regcache, regnum++,
1285 (char *) valbuf + len - 4 - i);
1286 else
1287 regcache_raw_write (regcache, regnum++, (char *) valbuf + i);
1288 }
1289 else
1290 {
1291 int return_register = DEFAULT_RETURN_REGNUM;
1292 int offset = 0;
1293
1294 if (len <= register_size (current_gdbarch, return_register))
1295 {
1296 /* Pad with zeros. */
1297 memset (buf, 0, register_size (current_gdbarch, return_register));
1298 if (TARGET_BYTE_ORDER == BFD_ENDIAN_LITTLE)
1299 offset = 0; /*register_size (current_gdbarch,
1300 return_register) - len;*/
1301 else
1302 offset = register_size (current_gdbarch, return_register) - len;
1303
1304 memcpy (buf + offset, valbuf, len);
1305 regcache_raw_write (regcache, return_register, buf);
1306 }
1307 else
1308 regcache_raw_write (regcache, return_register, valbuf);
1309 }
1310 }
1311
1312 static enum return_value_convention
1313 sh64_return_value (struct gdbarch *gdbarch, struct type *type,
1314 struct regcache *regcache,
1315 void *readbuf, const void *writebuf)
1316 {
1317 if (sh64_use_struct_convention (type))
1318 return RETURN_VALUE_STRUCT_CONVENTION;
1319 if (writebuf)
1320 sh64_store_return_value (type, regcache, writebuf);
1321 else if (readbuf)
1322 sh64_extract_return_value (type, regcache, readbuf);
1323 return RETURN_VALUE_REGISTER_CONVENTION;
1324 }
1325
1326 static void
1327 sh64_show_media_regs (void)
1328 {
1329 int i;
1330
1331 printf_filtered ("PC=%s SR=%016llx \n",
1332 paddr (read_register (PC_REGNUM)),
1333 (long long) read_register (SR_REGNUM));
1334
1335 printf_filtered ("SSR=%016llx SPC=%016llx \n",
1336 (long long) read_register (SSR_REGNUM),
1337 (long long) read_register (SPC_REGNUM));
1338 printf_filtered ("FPSCR=%016lx\n ",
1339 (long) read_register (FPSCR_REGNUM));
1340
1341 for (i = 0; i < 64; i = i + 4)
1342 printf_filtered ("\nR%d-R%d %016llx %016llx %016llx %016llx\n",
1343 i, i + 3,
1344 (long long) read_register (i + 0),
1345 (long long) read_register (i + 1),
1346 (long long) read_register (i + 2),
1347 (long long) read_register (i + 3));
1348
1349 printf_filtered ("\n");
1350
1351 for (i = 0; i < 64; i = i + 8)
1352 printf_filtered ("FR%d-FR%d %08lx %08lx %08lx %08lx %08lx %08lx %08lx %08lx\n",
1353 i, i + 7,
1354 (long) read_register (FP0_REGNUM + i + 0),
1355 (long) read_register (FP0_REGNUM + i + 1),
1356 (long) read_register (FP0_REGNUM + i + 2),
1357 (long) read_register (FP0_REGNUM + i + 3),
1358 (long) read_register (FP0_REGNUM + i + 4),
1359 (long) read_register (FP0_REGNUM + i + 5),
1360 (long) read_register (FP0_REGNUM + i + 6),
1361 (long) read_register (FP0_REGNUM + i + 7));
1362 }
1363
1364 static void
1365 sh64_show_compact_regs (void)
1366 {
1367 int i;
1368
1369 printf_filtered ("PC=%s \n",
1370 paddr (read_register (PC_C_REGNUM)));
1371
1372 printf_filtered ("GBR=%08lx MACH=%08lx MACL=%08lx PR=%08lx T=%08lx\n",
1373 (long) read_register (GBR_C_REGNUM),
1374 (long) read_register (MACH_C_REGNUM),
1375 (long) read_register (MACL_C_REGNUM),
1376 (long) read_register (PR_C_REGNUM),
1377 (long) read_register (T_C_REGNUM));
1378 printf_filtered ("FPSCR=%08lx FPUL=%08lx\n",
1379 (long) read_register (FPSCR_C_REGNUM),
1380 (long) read_register (FPUL_C_REGNUM));
1381
1382 for (i = 0; i < 16; i = i + 4)
1383 printf_filtered ("\nR%d-R%d %08lx %08lx %08lx %08lx\n",
1384 i, i + 3,
1385 (long) read_register (i + 0),
1386 (long) read_register (i + 1),
1387 (long) read_register (i + 2),
1388 (long) read_register (i + 3));
1389
1390 printf_filtered ("\n");
1391
1392 for (i = 0; i < 16; i = i + 8)
1393 printf_filtered ("FR%d-FR%d %08lx %08lx %08lx %08lx %08lx %08lx %08lx %08lx\n",
1394 i, i + 7,
1395 (long) read_register (FP0_REGNUM + i + 0),
1396 (long) read_register (FP0_REGNUM + i + 1),
1397 (long) read_register (FP0_REGNUM + i + 2),
1398 (long) read_register (FP0_REGNUM + i + 3),
1399 (long) read_register (FP0_REGNUM + i + 4),
1400 (long) read_register (FP0_REGNUM + i + 5),
1401 (long) read_register (FP0_REGNUM + i + 6),
1402 (long) read_register (FP0_REGNUM + i + 7));
1403 }
1404
1405 /* FIXME!!! This only shows the registers for shmedia, excluding the
1406 pseudo registers. */
1407 void
1408 sh64_show_regs (void)
1409 {
1410 if (deprecated_selected_frame
1411 && pc_is_isa32 (get_frame_pc (deprecated_selected_frame)))
1412 sh64_show_media_regs ();
1413 else
1414 sh64_show_compact_regs ();
1415 }
1416
1417 /* *INDENT-OFF* */
1418 /*
1419 SH MEDIA MODE (ISA 32)
1420 general registers (64-bit) 0-63
1421 0 r0, r1, r2, r3, r4, r5, r6, r7,
1422 64 r8, r9, r10, r11, r12, r13, r14, r15,
1423 128 r16, r17, r18, r19, r20, r21, r22, r23,
1424 192 r24, r25, r26, r27, r28, r29, r30, r31,
1425 256 r32, r33, r34, r35, r36, r37, r38, r39,
1426 320 r40, r41, r42, r43, r44, r45, r46, r47,
1427 384 r48, r49, r50, r51, r52, r53, r54, r55,
1428 448 r56, r57, r58, r59, r60, r61, r62, r63,
1429
1430 pc (64-bit) 64
1431 512 pc,
1432
1433 status reg., saved status reg., saved pc reg. (64-bit) 65-67
1434 520 sr, ssr, spc,
1435
1436 target registers (64-bit) 68-75
1437 544 tr0, tr1, tr2, tr3, tr4, tr5, tr6, tr7,
1438
1439 floating point state control register (32-bit) 76
1440 608 fpscr,
1441
1442 single precision floating point registers (32-bit) 77-140
1443 612 fr0, fr1, fr2, fr3, fr4, fr5, fr6, fr7,
1444 644 fr8, fr9, fr10, fr11, fr12, fr13, fr14, fr15,
1445 676 fr16, fr17, fr18, fr19, fr20, fr21, fr22, fr23,
1446 708 fr24, fr25, fr26, fr27, fr28, fr29, fr30, fr31,
1447 740 fr32, fr33, fr34, fr35, fr36, fr37, fr38, fr39,
1448 772 fr40, fr41, fr42, fr43, fr44, fr45, fr46, fr47,
1449 804 fr48, fr49, fr50, fr51, fr52, fr53, fr54, fr55,
1450 836 fr56, fr57, fr58, fr59, fr60, fr61, fr62, fr63,
1451
1452 TOTAL SPACE FOR REGISTERS: 868 bytes
1453
1454 From here on they are all pseudo registers: no memory allocated.
1455 REGISTER_BYTE returns the register byte for the base register.
1456
1457 double precision registers (pseudo) 141-172
1458 dr0, dr2, dr4, dr6, dr8, dr10, dr12, dr14,
1459 dr16, dr18, dr20, dr22, dr24, dr26, dr28, dr30,
1460 dr32, dr34, dr36, dr38, dr40, dr42, dr44, dr46,
1461 dr48, dr50, dr52, dr54, dr56, dr58, dr60, dr62,
1462
1463 floating point pairs (pseudo) 173-204
1464 fp0, fp2, fp4, fp6, fp8, fp10, fp12, fp14,
1465 fp16, fp18, fp20, fp22, fp24, fp26, fp28, fp30,
1466 fp32, fp34, fp36, fp38, fp40, fp42, fp44, fp46,
1467 fp48, fp50, fp52, fp54, fp56, fp58, fp60, fp62,
1468
1469 floating point vectors (4 floating point regs) (pseudo) 205-220
1470 fv0, fv4, fv8, fv12, fv16, fv20, fv24, fv28,
1471 fv32, fv36, fv40, fv44, fv48, fv52, fv56, fv60,
1472
1473 SH COMPACT MODE (ISA 16) (all pseudo) 221-272
1474 r0_c, r1_c, r2_c, r3_c, r4_c, r5_c, r6_c, r7_c,
1475 r8_c, r9_c, r10_c, r11_c, r12_c, r13_c, r14_c, r15_c,
1476 pc_c,
1477 gbr_c, mach_c, macl_c, pr_c, t_c,
1478 fpscr_c, fpul_c,
1479 fr0_c, fr1_c, fr2_c, fr3_c, fr4_c, fr5_c, fr6_c, fr7_c,
1480 fr8_c, fr9_c, fr10_c, fr11_c, fr12_c, fr13_c, fr14_c, fr15_c
1481 dr0_c, dr2_c, dr4_c, dr6_c, dr8_c, dr10_c, dr12_c, dr14_c
1482 fv0_c, fv4_c, fv8_c, fv12_c
1483 */
1484
1485 static struct type *
1486 sh64_build_float_register_type (int high)
1487 {
1488 struct type *temp;
1489
1490 temp = create_range_type (NULL, builtin_type_int, 0, high);
1491 return create_array_type (NULL, builtin_type_float, temp);
1492 }
1493
1494 /* Return the GDB type object for the "standard" data type
1495 of data in register REG_NR. */
1496 static struct type *
1497 sh64_register_type (struct gdbarch *gdbarch, int reg_nr)
1498 {
1499 if ((reg_nr >= FP0_REGNUM
1500 && reg_nr <= FP_LAST_REGNUM)
1501 || (reg_nr >= FP0_C_REGNUM
1502 && reg_nr <= FP_LAST_C_REGNUM))
1503 return builtin_type_float;
1504 else if ((reg_nr >= DR0_REGNUM
1505 && reg_nr <= DR_LAST_REGNUM)
1506 || (reg_nr >= DR0_C_REGNUM
1507 && reg_nr <= DR_LAST_C_REGNUM))
1508 return builtin_type_double;
1509 else if (reg_nr >= FPP0_REGNUM
1510 && reg_nr <= FPP_LAST_REGNUM)
1511 return sh64_build_float_register_type (1);
1512 else if ((reg_nr >= FV0_REGNUM
1513 && reg_nr <= FV_LAST_REGNUM)
1514 ||(reg_nr >= FV0_C_REGNUM
1515 && reg_nr <= FV_LAST_C_REGNUM))
1516 return sh64_build_float_register_type (3);
1517 else if (reg_nr == FPSCR_REGNUM)
1518 return builtin_type_int;
1519 else if (reg_nr >= R0_C_REGNUM
1520 && reg_nr < FP0_C_REGNUM)
1521 return builtin_type_int;
1522 else
1523 return builtin_type_long_long;
1524 }
1525
1526 static void
1527 sh64_register_convert_to_virtual (int regnum, struct type *type,
1528 char *from, char *to)
1529 {
1530 if (TARGET_BYTE_ORDER != BFD_ENDIAN_LITTLE)
1531 {
1532 /* It is a no-op. */
1533 memcpy (to, from, register_size (current_gdbarch, regnum));
1534 return;
1535 }
1536
1537 if ((regnum >= DR0_REGNUM
1538 && regnum <= DR_LAST_REGNUM)
1539 || (regnum >= DR0_C_REGNUM
1540 && regnum <= DR_LAST_C_REGNUM))
1541 {
1542 DOUBLEST val;
1543 floatformat_to_doublest (&floatformat_ieee_double_littlebyte_bigword,
1544 from, &val);
1545 store_typed_floating (to, type, val);
1546 }
1547 else
1548 error ("sh64_register_convert_to_virtual called with non DR register number");
1549 }
1550
1551 static void
1552 sh64_register_convert_to_raw (struct type *type, int regnum,
1553 const void *from, void *to)
1554 {
1555 if (TARGET_BYTE_ORDER != BFD_ENDIAN_LITTLE)
1556 {
1557 /* It is a no-op. */
1558 memcpy (to, from, register_size (current_gdbarch, regnum));
1559 return;
1560 }
1561
1562 if ((regnum >= DR0_REGNUM
1563 && regnum <= DR_LAST_REGNUM)
1564 || (regnum >= DR0_C_REGNUM
1565 && regnum <= DR_LAST_C_REGNUM))
1566 {
1567 DOUBLEST val = deprecated_extract_floating (from, TYPE_LENGTH(type));
1568 floatformat_from_doublest (&floatformat_ieee_double_littlebyte_bigword,
1569 &val, to);
1570 }
1571 else
1572 error ("sh64_register_convert_to_raw called with non DR register number");
1573 }
1574
1575 static void
1576 sh64_pseudo_register_read (struct gdbarch *gdbarch, struct regcache *regcache,
1577 int reg_nr, void *buffer)
1578 {
1579 int base_regnum;
1580 int portion;
1581 int offset = 0;
1582 char temp_buffer[MAX_REGISTER_SIZE];
1583
1584 if (reg_nr >= DR0_REGNUM
1585 && reg_nr <= DR_LAST_REGNUM)
1586 {
1587 base_regnum = sh64_dr_reg_base_num (reg_nr);
1588
1589 /* Build the value in the provided buffer. */
1590 /* DR regs are double precision registers obtained by
1591 concatenating 2 single precision floating point registers. */
1592 for (portion = 0; portion < 2; portion++)
1593 regcache_raw_read (regcache, base_regnum + portion,
1594 (temp_buffer
1595 + register_size (gdbarch, base_regnum) * portion));
1596
1597 /* We must pay attention to the endianness. */
1598 sh64_register_convert_to_virtual (reg_nr,
1599 gdbarch_register_type (gdbarch,
1600 reg_nr),
1601 temp_buffer, buffer);
1602
1603 }
1604
1605 else if (reg_nr >= FPP0_REGNUM
1606 && reg_nr <= FPP_LAST_REGNUM)
1607 {
1608 base_regnum = sh64_fpp_reg_base_num (reg_nr);
1609
1610 /* Build the value in the provided buffer. */
1611 /* FPP regs are pairs of single precision registers obtained by
1612 concatenating 2 single precision floating point registers. */
1613 for (portion = 0; portion < 2; portion++)
1614 regcache_raw_read (regcache, base_regnum + portion,
1615 ((char *) buffer
1616 + register_size (gdbarch, base_regnum) * portion));
1617 }
1618
1619 else if (reg_nr >= FV0_REGNUM
1620 && reg_nr <= FV_LAST_REGNUM)
1621 {
1622 base_regnum = sh64_fv_reg_base_num (reg_nr);
1623
1624 /* Build the value in the provided buffer. */
1625 /* FV regs are vectors of single precision registers obtained by
1626 concatenating 4 single precision floating point registers. */
1627 for (portion = 0; portion < 4; portion++)
1628 regcache_raw_read (regcache, base_regnum + portion,
1629 ((char *) buffer
1630 + register_size (gdbarch, base_regnum) * portion));
1631 }
1632
1633 /* sh compact pseudo registers. 1-to-1 with a shmedia register */
1634 else if (reg_nr >= R0_C_REGNUM
1635 && reg_nr <= T_C_REGNUM)
1636 {
1637 base_regnum = sh64_compact_reg_base_num (reg_nr);
1638
1639 /* Build the value in the provided buffer. */
1640 regcache_raw_read (regcache, base_regnum, temp_buffer);
1641 if (TARGET_BYTE_ORDER == BFD_ENDIAN_BIG)
1642 offset = 4;
1643 memcpy (buffer, temp_buffer + offset, 4); /* get LOWER 32 bits only????*/
1644 }
1645
1646 else if (reg_nr >= FP0_C_REGNUM
1647 && reg_nr <= FP_LAST_C_REGNUM)
1648 {
1649 base_regnum = sh64_compact_reg_base_num (reg_nr);
1650
1651 /* Build the value in the provided buffer. */
1652 /* Floating point registers map 1-1 to the media fp regs,
1653 they have the same size and endianness. */
1654 regcache_raw_read (regcache, base_regnum, buffer);
1655 }
1656
1657 else if (reg_nr >= DR0_C_REGNUM
1658 && reg_nr <= DR_LAST_C_REGNUM)
1659 {
1660 base_regnum = sh64_compact_reg_base_num (reg_nr);
1661
1662 /* DR_C regs are double precision registers obtained by
1663 concatenating 2 single precision floating point registers. */
1664 for (portion = 0; portion < 2; portion++)
1665 regcache_raw_read (regcache, base_regnum + portion,
1666 (temp_buffer
1667 + register_size (gdbarch, base_regnum) * portion));
1668
1669 /* We must pay attention to the endianness. */
1670 sh64_register_convert_to_virtual (reg_nr,
1671 gdbarch_register_type (gdbarch,
1672 reg_nr),
1673 temp_buffer, buffer);
1674 }
1675
1676 else if (reg_nr >= FV0_C_REGNUM
1677 && reg_nr <= FV_LAST_C_REGNUM)
1678 {
1679 base_regnum = sh64_compact_reg_base_num (reg_nr);
1680
1681 /* Build the value in the provided buffer. */
1682 /* FV_C regs are vectors of single precision registers obtained by
1683 concatenating 4 single precision floating point registers. */
1684 for (portion = 0; portion < 4; portion++)
1685 regcache_raw_read (regcache, base_regnum + portion,
1686 ((char *) buffer
1687 + register_size (gdbarch, base_regnum) * portion));
1688 }
1689
1690 else if (reg_nr == FPSCR_C_REGNUM)
1691 {
1692 int fpscr_base_regnum;
1693 int sr_base_regnum;
1694 unsigned int fpscr_value;
1695 unsigned int sr_value;
1696 unsigned int fpscr_c_value;
1697 unsigned int fpscr_c_part1_value;
1698 unsigned int fpscr_c_part2_value;
1699
1700 fpscr_base_regnum = FPSCR_REGNUM;
1701 sr_base_regnum = SR_REGNUM;
1702
1703 /* Build the value in the provided buffer. */
1704 /* FPSCR_C is a very weird register that contains sparse bits
1705 from the FPSCR and the SR architectural registers.
1706 Specifically: */
1707 /* *INDENT-OFF* */
1708 /*
1709 FPSRC_C bit
1710 0 Bit 0 of FPSCR
1711 1 reserved
1712 2-17 Bit 2-18 of FPSCR
1713 18-20 Bits 12,13,14 of SR
1714 21-31 reserved
1715 */
1716 /* *INDENT-ON* */
1717 /* Get FPSCR into a local buffer */
1718 regcache_raw_read (regcache, fpscr_base_regnum, temp_buffer);
1719 /* Get value as an int. */
1720 fpscr_value = extract_unsigned_integer (temp_buffer, 4);
1721 /* Get SR into a local buffer */
1722 regcache_raw_read (regcache, sr_base_regnum, temp_buffer);
1723 /* Get value as an int. */
1724 sr_value = extract_unsigned_integer (temp_buffer, 4);
1725 /* Build the new value. */
1726 fpscr_c_part1_value = fpscr_value & 0x3fffd;
1727 fpscr_c_part2_value = (sr_value & 0x7000) << 6;
1728 fpscr_c_value = fpscr_c_part1_value | fpscr_c_part2_value;
1729 /* Store that in out buffer!!! */
1730 store_unsigned_integer (buffer, 4, fpscr_c_value);
1731 /* FIXME There is surely an endianness gotcha here. */
1732 }
1733
1734 else if (reg_nr == FPUL_C_REGNUM)
1735 {
1736 base_regnum = sh64_compact_reg_base_num (reg_nr);
1737
1738 /* FPUL_C register is floating point register 32,
1739 same size, same endianness. */
1740 regcache_raw_read (regcache, base_regnum, buffer);
1741 }
1742 }
1743
1744 static void
1745 sh64_pseudo_register_write (struct gdbarch *gdbarch, struct regcache *regcache,
1746 int reg_nr, const void *buffer)
1747 {
1748 int base_regnum, portion;
1749 int offset;
1750 char temp_buffer[MAX_REGISTER_SIZE];
1751
1752 if (reg_nr >= DR0_REGNUM
1753 && reg_nr <= DR_LAST_REGNUM)
1754 {
1755 base_regnum = sh64_dr_reg_base_num (reg_nr);
1756 /* We must pay attention to the endianness. */
1757 sh64_register_convert_to_raw (gdbarch_register_type (gdbarch, reg_nr),
1758 reg_nr,
1759 buffer, temp_buffer);
1760
1761 /* Write the real regs for which this one is an alias. */
1762 for (portion = 0; portion < 2; portion++)
1763 regcache_raw_write (regcache, base_regnum + portion,
1764 (temp_buffer
1765 + register_size (gdbarch,
1766 base_regnum) * portion));
1767 }
1768
1769 else if (reg_nr >= FPP0_REGNUM
1770 && reg_nr <= FPP_LAST_REGNUM)
1771 {
1772 base_regnum = sh64_fpp_reg_base_num (reg_nr);
1773
1774 /* Write the real regs for which this one is an alias. */
1775 for (portion = 0; portion < 2; portion++)
1776 regcache_raw_write (regcache, base_regnum + portion,
1777 ((char *) buffer
1778 + register_size (gdbarch,
1779 base_regnum) * portion));
1780 }
1781
1782 else if (reg_nr >= FV0_REGNUM
1783 && reg_nr <= FV_LAST_REGNUM)
1784 {
1785 base_regnum = sh64_fv_reg_base_num (reg_nr);
1786
1787 /* Write the real regs for which this one is an alias. */
1788 for (portion = 0; portion < 4; portion++)
1789 regcache_raw_write (regcache, base_regnum + portion,
1790 ((char *) buffer
1791 + register_size (gdbarch,
1792 base_regnum) * portion));
1793 }
1794
1795 /* sh compact general pseudo registers. 1-to-1 with a shmedia
1796 register but only 4 bytes of it. */
1797 else if (reg_nr >= R0_C_REGNUM
1798 && reg_nr <= T_C_REGNUM)
1799 {
1800 base_regnum = sh64_compact_reg_base_num (reg_nr);
1801 /* reg_nr is 32 bit here, and base_regnum is 64 bits. */
1802 if (TARGET_BYTE_ORDER == BFD_ENDIAN_BIG)
1803 offset = 4;
1804 else
1805 offset = 0;
1806 /* Let's read the value of the base register into a temporary
1807 buffer, so that overwriting the last four bytes with the new
1808 value of the pseudo will leave the upper 4 bytes unchanged. */
1809 regcache_raw_read (regcache, base_regnum, temp_buffer);
1810 /* Write as an 8 byte quantity */
1811 memcpy (temp_buffer + offset, buffer, 4);
1812 regcache_raw_write (regcache, base_regnum, temp_buffer);
1813 }
1814
1815 /* sh floating point compact pseudo registers. 1-to-1 with a shmedia
1816 registers. Both are 4 bytes. */
1817 else if (reg_nr >= FP0_C_REGNUM
1818 && reg_nr <= FP_LAST_C_REGNUM)
1819 {
1820 base_regnum = sh64_compact_reg_base_num (reg_nr);
1821 regcache_raw_write (regcache, base_regnum, buffer);
1822 }
1823
1824 else if (reg_nr >= DR0_C_REGNUM
1825 && reg_nr <= DR_LAST_C_REGNUM)
1826 {
1827 base_regnum = sh64_compact_reg_base_num (reg_nr);
1828 for (portion = 0; portion < 2; portion++)
1829 {
1830 /* We must pay attention to the endianness. */
1831 sh64_register_convert_to_raw (gdbarch_register_type (gdbarch,
1832 reg_nr),
1833 reg_nr,
1834 buffer, temp_buffer);
1835
1836 regcache_raw_write (regcache, base_regnum + portion,
1837 (temp_buffer
1838 + register_size (gdbarch,
1839 base_regnum) * portion));
1840 }
1841 }
1842
1843 else if (reg_nr >= FV0_C_REGNUM
1844 && reg_nr <= FV_LAST_C_REGNUM)
1845 {
1846 base_regnum = sh64_compact_reg_base_num (reg_nr);
1847
1848 for (portion = 0; portion < 4; portion++)
1849 {
1850 regcache_raw_write (regcache, base_regnum + portion,
1851 ((char *) buffer
1852 + register_size (gdbarch,
1853 base_regnum) * portion));
1854 }
1855 }
1856
1857 else if (reg_nr == FPSCR_C_REGNUM)
1858 {
1859 int fpscr_base_regnum;
1860 int sr_base_regnum;
1861 unsigned int fpscr_value;
1862 unsigned int sr_value;
1863 unsigned int old_fpscr_value;
1864 unsigned int old_sr_value;
1865 unsigned int fpscr_c_value;
1866 unsigned int fpscr_mask;
1867 unsigned int sr_mask;
1868
1869 fpscr_base_regnum = FPSCR_REGNUM;
1870 sr_base_regnum = SR_REGNUM;
1871
1872 /* FPSCR_C is a very weird register that contains sparse bits
1873 from the FPSCR and the SR architectural registers.
1874 Specifically: */
1875 /* *INDENT-OFF* */
1876 /*
1877 FPSRC_C bit
1878 0 Bit 0 of FPSCR
1879 1 reserved
1880 2-17 Bit 2-18 of FPSCR
1881 18-20 Bits 12,13,14 of SR
1882 21-31 reserved
1883 */
1884 /* *INDENT-ON* */
1885 /* Get value as an int. */
1886 fpscr_c_value = extract_unsigned_integer (buffer, 4);
1887
1888 /* Build the new values. */
1889 fpscr_mask = 0x0003fffd;
1890 sr_mask = 0x001c0000;
1891
1892 fpscr_value = fpscr_c_value & fpscr_mask;
1893 sr_value = (fpscr_value & sr_mask) >> 6;
1894
1895 regcache_raw_read (regcache, fpscr_base_regnum, temp_buffer);
1896 old_fpscr_value = extract_unsigned_integer (temp_buffer, 4);
1897 old_fpscr_value &= 0xfffc0002;
1898 fpscr_value |= old_fpscr_value;
1899 store_unsigned_integer (temp_buffer, 4, fpscr_value);
1900 regcache_raw_write (regcache, fpscr_base_regnum, temp_buffer);
1901
1902 regcache_raw_read (regcache, sr_base_regnum, temp_buffer);
1903 old_sr_value = extract_unsigned_integer (temp_buffer, 4);
1904 old_sr_value &= 0xffff8fff;
1905 sr_value |= old_sr_value;
1906 store_unsigned_integer (temp_buffer, 4, sr_value);
1907 regcache_raw_write (regcache, sr_base_regnum, temp_buffer);
1908 }
1909
1910 else if (reg_nr == FPUL_C_REGNUM)
1911 {
1912 base_regnum = sh64_compact_reg_base_num (reg_nr);
1913 regcache_raw_write (regcache, base_regnum, buffer);
1914 }
1915 }
1916
1917 /* FIXME:!! THIS SHOULD TAKE CARE OF GETTING THE RIGHT PORTION OF THE
1918 shmedia REGISTERS. */
1919 /* Control registers, compact mode. */
1920 static void
1921 sh64_do_cr_c_register_info (struct ui_file *file, struct frame_info *frame,
1922 int cr_c_regnum)
1923 {
1924 switch (cr_c_regnum)
1925 {
1926 case PC_C_REGNUM:
1927 fprintf_filtered (file, "pc_c\t0x%08x\n",
1928 (int) get_frame_register_unsigned (frame, cr_c_regnum));
1929 break;
1930 case GBR_C_REGNUM:
1931 fprintf_filtered (file, "gbr_c\t0x%08x\n",
1932 (int) get_frame_register_unsigned (frame, cr_c_regnum));
1933 break;
1934 case MACH_C_REGNUM:
1935 fprintf_filtered (file, "mach_c\t0x%08x\n",
1936 (int) get_frame_register_unsigned (frame, cr_c_regnum));
1937 break;
1938 case MACL_C_REGNUM:
1939 fprintf_filtered (file, "macl_c\t0x%08x\n",
1940 (int) get_frame_register_unsigned (frame, cr_c_regnum));
1941 break;
1942 case PR_C_REGNUM:
1943 fprintf_filtered (file, "pr_c\t0x%08x\n",
1944 (int) get_frame_register_unsigned (frame, cr_c_regnum));
1945 break;
1946 case T_C_REGNUM:
1947 fprintf_filtered (file, "t_c\t0x%08x\n",
1948 (int) get_frame_register_unsigned (frame, cr_c_regnum));
1949 break;
1950 case FPSCR_C_REGNUM:
1951 fprintf_filtered (file, "fpscr_c\t0x%08x\n",
1952 (int) get_frame_register_unsigned (frame, cr_c_regnum));
1953 break;
1954 case FPUL_C_REGNUM:
1955 fprintf_filtered (file, "fpul_c\t0x%08x\n",
1956 (int) get_frame_register_unsigned (frame, cr_c_regnum));
1957 break;
1958 }
1959 }
1960
1961 static void
1962 sh64_do_fp_register (struct gdbarch *gdbarch, struct ui_file *file,
1963 struct frame_info *frame, int regnum)
1964 { /* do values for FP (float) regs */
1965 char *raw_buffer;
1966 double flt; /* double extracted from raw hex data */
1967 int inv;
1968 int j;
1969
1970 /* Allocate space for the float. */
1971 raw_buffer = (char *) alloca (register_size (gdbarch, FP0_REGNUM));
1972
1973 /* Get the data in raw format. */
1974 if (!frame_register_read (frame, regnum, raw_buffer))
1975 error ("can't read register %d (%s)", regnum, REGISTER_NAME (regnum));
1976
1977 /* Get the register as a number */
1978 flt = unpack_double (builtin_type_float, raw_buffer, &inv);
1979
1980 /* Print the name and some spaces. */
1981 fputs_filtered (REGISTER_NAME (regnum), file);
1982 print_spaces_filtered (15 - strlen (REGISTER_NAME (regnum)), file);
1983
1984 /* Print the value. */
1985 if (inv)
1986 fprintf_filtered (file, "<invalid float>");
1987 else
1988 fprintf_filtered (file, "%-10.9g", flt);
1989
1990 /* Print the fp register as hex. */
1991 fprintf_filtered (file, "\t(raw 0x");
1992 for (j = 0; j < register_size (gdbarch, regnum); j++)
1993 {
1994 int idx = TARGET_BYTE_ORDER == BFD_ENDIAN_BIG ? j
1995 : register_size (gdbarch, regnum) - 1 - j;
1996 fprintf_filtered (file, "%02x", (unsigned char) raw_buffer[idx]);
1997 }
1998 fprintf_filtered (file, ")");
1999 fprintf_filtered (file, "\n");
2000 }
2001
2002 static void
2003 sh64_do_pseudo_register (struct gdbarch *gdbarch, struct ui_file *file,
2004 struct frame_info *frame, int regnum)
2005 {
2006 /* All the sh64-compact mode registers are pseudo registers. */
2007
2008 if (regnum < NUM_REGS
2009 || regnum >= NUM_REGS + NUM_PSEUDO_REGS_SH_MEDIA
2010 + NUM_PSEUDO_REGS_SH_COMPACT)
2011 internal_error (__FILE__, __LINE__,
2012 _("Invalid pseudo register number %d\n"), regnum);
2013
2014 else if ((regnum >= DR0_REGNUM && regnum <= DR_LAST_REGNUM))
2015 {
2016 int fp_regnum = sh64_dr_reg_base_num (regnum);
2017 fprintf_filtered (file, "dr%d\t0x%08x%08x\n", regnum - DR0_REGNUM,
2018 (unsigned) get_frame_register_unsigned (frame, fp_regnum),
2019 (unsigned) get_frame_register_unsigned (frame, fp_regnum + 1));
2020 }
2021
2022 else if ((regnum >= DR0_C_REGNUM && regnum <= DR_LAST_C_REGNUM))
2023 {
2024 int fp_regnum = sh64_compact_reg_base_num (regnum);
2025 fprintf_filtered (file, "dr%d_c\t0x%08x%08x\n", regnum - DR0_C_REGNUM,
2026 (unsigned) get_frame_register_unsigned (frame, fp_regnum),
2027 (unsigned) get_frame_register_unsigned (frame, fp_regnum + 1));
2028 }
2029
2030 else if ((regnum >= FV0_REGNUM && regnum <= FV_LAST_REGNUM))
2031 {
2032 int fp_regnum = sh64_fv_reg_base_num (regnum);
2033 fprintf_filtered (file, "fv%d\t0x%08x\t0x%08x\t0x%08x\t0x%08x\n",
2034 regnum - FV0_REGNUM,
2035 (unsigned) get_frame_register_unsigned (frame, fp_regnum),
2036 (unsigned) get_frame_register_unsigned (frame, fp_regnum + 1),
2037 (unsigned) get_frame_register_unsigned (frame, fp_regnum + 2),
2038 (unsigned) get_frame_register_unsigned (frame, fp_regnum + 3));
2039 }
2040
2041 else if ((regnum >= FV0_C_REGNUM && regnum <= FV_LAST_C_REGNUM))
2042 {
2043 int fp_regnum = sh64_compact_reg_base_num (regnum);
2044 fprintf_filtered (file, "fv%d_c\t0x%08x\t0x%08x\t0x%08x\t0x%08x\n",
2045 regnum - FV0_C_REGNUM,
2046 (unsigned) get_frame_register_unsigned (frame, fp_regnum),
2047 (unsigned) get_frame_register_unsigned (frame, fp_regnum + 1),
2048 (unsigned) get_frame_register_unsigned (frame, fp_regnum + 2),
2049 (unsigned) get_frame_register_unsigned (frame, fp_regnum + 3));
2050 }
2051
2052 else if (regnum >= FPP0_REGNUM && regnum <= FPP_LAST_REGNUM)
2053 {
2054 int fp_regnum = sh64_fpp_reg_base_num (regnum);
2055 fprintf_filtered (file, "fpp%d\t0x%08x\t0x%08x\n", regnum - FPP0_REGNUM,
2056 (unsigned) get_frame_register_unsigned (frame, fp_regnum),
2057 (unsigned) get_frame_register_unsigned (frame, fp_regnum + 1));
2058 }
2059
2060 else if (regnum >= R0_C_REGNUM && regnum <= R_LAST_C_REGNUM)
2061 {
2062 int c_regnum = sh64_compact_reg_base_num (regnum);
2063 fprintf_filtered (file, "r%d_c\t0x%08x\n", regnum - R0_C_REGNUM,
2064 (unsigned) get_frame_register_unsigned (frame, c_regnum));
2065 }
2066 else if (regnum >= FP0_C_REGNUM && regnum <= FP_LAST_C_REGNUM)
2067 /* This should work also for pseudoregs. */
2068 sh64_do_fp_register (gdbarch, file, frame, regnum);
2069 else if (regnum >= PC_C_REGNUM && regnum <= FPUL_C_REGNUM)
2070 sh64_do_cr_c_register_info (file, frame, regnum);
2071 }
2072
2073 static void
2074 sh64_do_register (struct gdbarch *gdbarch, struct ui_file *file,
2075 struct frame_info *frame, int regnum)
2076 {
2077 char raw_buffer[MAX_REGISTER_SIZE];
2078
2079 fputs_filtered (REGISTER_NAME (regnum), file);
2080 print_spaces_filtered (15 - strlen (REGISTER_NAME (regnum)), file);
2081
2082 /* Get the data in raw format. */
2083 if (!frame_register_read (frame, regnum, raw_buffer))
2084 fprintf_filtered (file, "*value not available*\n");
2085
2086 val_print (gdbarch_register_type (gdbarch, regnum), raw_buffer, 0, 0,
2087 file, 'x', 1, 0, Val_pretty_default);
2088 fprintf_filtered (file, "\t");
2089 val_print (gdbarch_register_type (gdbarch, regnum), raw_buffer, 0, 0,
2090 file, 0, 1, 0, Val_pretty_default);
2091 fprintf_filtered (file, "\n");
2092 }
2093
2094 static void
2095 sh64_print_register (struct gdbarch *gdbarch, struct ui_file *file,
2096 struct frame_info *frame, int regnum)
2097 {
2098 if (regnum < 0 || regnum >= NUM_REGS + NUM_PSEUDO_REGS)
2099 internal_error (__FILE__, __LINE__,
2100 _("Invalid register number %d\n"), regnum);
2101
2102 else if (regnum >= 0 && regnum < NUM_REGS)
2103 {
2104 if (TYPE_CODE (gdbarch_register_type (gdbarch, regnum)) == TYPE_CODE_FLT)
2105 sh64_do_fp_register (gdbarch, file, frame, regnum); /* FP regs */
2106 else
2107 sh64_do_register (gdbarch, file, frame, regnum);
2108 }
2109
2110 else if (regnum < NUM_REGS + NUM_PSEUDO_REGS)
2111 sh64_do_pseudo_register (gdbarch, file, frame, regnum);
2112 }
2113
2114 static void
2115 sh64_media_print_registers_info (struct gdbarch *gdbarch, struct ui_file *file,
2116 struct frame_info *frame, int regnum,
2117 int fpregs)
2118 {
2119 if (regnum != -1) /* do one specified register */
2120 {
2121 if (*(REGISTER_NAME (regnum)) == '\0')
2122 error ("Not a valid register for the current processor type");
2123
2124 sh64_print_register (gdbarch, file, frame, regnum);
2125 }
2126 else
2127 /* do all (or most) registers */
2128 {
2129 regnum = 0;
2130 while (regnum < NUM_REGS)
2131 {
2132 /* If the register name is empty, it is undefined for this
2133 processor, so don't display anything. */
2134 if (REGISTER_NAME (regnum) == NULL
2135 || *(REGISTER_NAME (regnum)) == '\0')
2136 {
2137 regnum++;
2138 continue;
2139 }
2140
2141 if (TYPE_CODE (gdbarch_register_type (gdbarch, regnum))
2142 == TYPE_CODE_FLT)
2143 {
2144 if (fpregs)
2145 {
2146 /* true for "INFO ALL-REGISTERS" command */
2147 sh64_do_fp_register (gdbarch, file, frame, regnum);
2148 regnum ++;
2149 }
2150 else
2151 regnum += FP_LAST_REGNUM - FP0_REGNUM; /* skip FP regs */
2152 }
2153 else
2154 {
2155 sh64_do_register (gdbarch, file, frame, regnum);
2156 regnum++;
2157 }
2158 }
2159
2160 if (fpregs)
2161 while (regnum < NUM_REGS + NUM_PSEUDO_REGS)
2162 {
2163 sh64_do_pseudo_register (gdbarch, file, frame, regnum);
2164 regnum++;
2165 }
2166 }
2167 }
2168
2169 static void
2170 sh64_compact_print_registers_info (struct gdbarch *gdbarch,
2171 struct ui_file *file,
2172 struct frame_info *frame, int regnum,
2173 int fpregs)
2174 {
2175 if (regnum != -1) /* do one specified register */
2176 {
2177 if (*(REGISTER_NAME (regnum)) == '\0')
2178 error ("Not a valid register for the current processor type");
2179
2180 if (regnum >= 0 && regnum < R0_C_REGNUM)
2181 error ("Not a valid register for the current processor mode.");
2182
2183 sh64_print_register (gdbarch, file, frame, regnum);
2184 }
2185 else
2186 /* do all compact registers */
2187 {
2188 regnum = R0_C_REGNUM;
2189 while (regnum < NUM_REGS + NUM_PSEUDO_REGS)
2190 {
2191 sh64_do_pseudo_register (gdbarch, file, frame, regnum);
2192 regnum++;
2193 }
2194 }
2195 }
2196
2197 static void
2198 sh64_print_registers_info (struct gdbarch *gdbarch, struct ui_file *file,
2199 struct frame_info *frame, int regnum, int fpregs)
2200 {
2201 if (pc_is_isa32 (get_frame_pc (frame)))
2202 sh64_media_print_registers_info (gdbarch, file, frame, regnum, fpregs);
2203 else
2204 sh64_compact_print_registers_info (gdbarch, file, frame, regnum, fpregs);
2205 }
2206
2207 static struct sh64_frame_cache *
2208 sh64_alloc_frame_cache (void)
2209 {
2210 struct sh64_frame_cache *cache;
2211 int i;
2212
2213 cache = FRAME_OBSTACK_ZALLOC (struct sh64_frame_cache);
2214
2215 /* Base address. */
2216 cache->base = 0;
2217 cache->saved_sp = 0;
2218 cache->sp_offset = 0;
2219 cache->pc = 0;
2220
2221 /* Frameless until proven otherwise. */
2222 cache->uses_fp = 0;
2223
2224 /* Saved registers. We initialize these to -1 since zero is a valid
2225 offset (that's where fp is supposed to be stored). */
2226 for (i = 0; i < SIM_SH64_NR_REGS; i++)
2227 {
2228 cache->saved_regs[i] = -1;
2229 }
2230
2231 return cache;
2232 }
2233
2234 static struct sh64_frame_cache *
2235 sh64_frame_cache (struct frame_info *next_frame, void **this_cache)
2236 {
2237 struct sh64_frame_cache *cache;
2238 CORE_ADDR current_pc;
2239 int i;
2240
2241 if (*this_cache)
2242 return *this_cache;
2243
2244 cache = sh64_alloc_frame_cache ();
2245 *this_cache = cache;
2246
2247 current_pc = frame_pc_unwind (next_frame);
2248 cache->media_mode = pc_is_isa32 (current_pc);
2249
2250 /* In principle, for normal frames, fp holds the frame pointer,
2251 which holds the base address for the current stack frame.
2252 However, for functions that don't need it, the frame pointer is
2253 optional. For these "frameless" functions the frame pointer is
2254 actually the frame pointer of the calling frame. */
2255 cache->base = frame_unwind_register_unsigned (next_frame, MEDIA_FP_REGNUM);
2256 if (cache->base == 0)
2257 return cache;
2258
2259 cache->pc = frame_func_unwind (next_frame);
2260 if (cache->pc != 0)
2261 sh64_analyze_prologue (current_gdbarch, cache, cache->pc, current_pc);
2262
2263 if (!cache->uses_fp)
2264 {
2265 /* We didn't find a valid frame, which means that CACHE->base
2266 currently holds the frame pointer for our calling frame. If
2267 we're at the start of a function, or somewhere half-way its
2268 prologue, the function's frame probably hasn't been fully
2269 setup yet. Try to reconstruct the base address for the stack
2270 frame by looking at the stack pointer. For truly "frameless"
2271 functions this might work too. */
2272 cache->base = frame_unwind_register_unsigned (next_frame, SP_REGNUM);
2273 }
2274
2275 /* Now that we have the base address for the stack frame we can
2276 calculate the value of sp in the calling frame. */
2277 cache->saved_sp = cache->base + cache->sp_offset;
2278
2279 /* Adjust all the saved registers such that they contain addresses
2280 instead of offsets. */
2281 for (i = 0; i < SIM_SH64_NR_REGS; i++)
2282 if (cache->saved_regs[i] != -1)
2283 cache->saved_regs[i] = cache->saved_sp - cache->saved_regs[i];
2284
2285 return cache;
2286 }
2287
2288 static void
2289 sh64_frame_prev_register (struct frame_info *next_frame, void **this_cache,
2290 int regnum, int *optimizedp,
2291 enum lval_type *lvalp, CORE_ADDR *addrp,
2292 int *realnump, void *valuep)
2293 {
2294 struct sh64_frame_cache *cache = sh64_frame_cache (next_frame, this_cache);
2295
2296 gdb_assert (regnum >= 0);
2297
2298 if (regnum == SP_REGNUM && cache->saved_sp)
2299 {
2300 *optimizedp = 0;
2301 *lvalp = not_lval;
2302 *addrp = 0;
2303 *realnump = -1;
2304 if (valuep)
2305 {
2306 /* Store the value. */
2307 store_unsigned_integer (valuep,
2308 register_size (current_gdbarch, SP_REGNUM),
2309 cache->saved_sp);
2310 }
2311 return;
2312 }
2313
2314 /* The PC of the previous frame is stored in the PR register of
2315 the current frame. Frob regnum so that we pull the value from
2316 the correct place. */
2317 if (regnum == PC_REGNUM)
2318 regnum = PR_REGNUM;
2319
2320 if (regnum < SIM_SH64_NR_REGS && cache->saved_regs[regnum] != -1)
2321 {
2322 int reg_size = register_size (current_gdbarch, regnum);
2323 int size;
2324
2325 *optimizedp = 0;
2326 *lvalp = lval_memory;
2327 *addrp = cache->saved_regs[regnum];
2328 *realnump = -1;
2329 if (gdbarch_tdep (current_gdbarch)->sh_abi == SH_ABI_32
2330 && (regnum == MEDIA_FP_REGNUM || regnum == PR_REGNUM))
2331 size = 4;
2332 else
2333 size = reg_size;
2334 if (valuep)
2335 {
2336 memset (valuep, 0, reg_size);
2337 if (TARGET_BYTE_ORDER == BFD_ENDIAN_LITTLE)
2338 read_memory (*addrp, valuep, size);
2339 else
2340 read_memory (*addrp, (char *) valuep + reg_size - size, size);
2341 }
2342 return;
2343 }
2344
2345 *optimizedp = 0;
2346 *lvalp = lval_register;
2347 *addrp = 0;
2348 *realnump = regnum;
2349 if (valuep)
2350 frame_unwind_register (next_frame, (*realnump), valuep);
2351 }
2352
2353 static void
2354 sh64_frame_this_id (struct frame_info *next_frame, void **this_cache,
2355 struct frame_id *this_id)
2356 {
2357 struct sh64_frame_cache *cache = sh64_frame_cache (next_frame, this_cache);
2358
2359 /* This marks the outermost frame. */
2360 if (cache->base == 0)
2361 return;
2362
2363 *this_id = frame_id_build (cache->saved_sp, cache->pc);
2364 }
2365
2366 static const struct frame_unwind sh64_frame_unwind = {
2367 NORMAL_FRAME,
2368 sh64_frame_this_id,
2369 sh64_frame_prev_register
2370 };
2371
2372 static const struct frame_unwind *
2373 sh64_frame_sniffer (struct frame_info *next_frame)
2374 {
2375 return &sh64_frame_unwind;
2376 }
2377
2378 static CORE_ADDR
2379 sh64_unwind_sp (struct gdbarch *gdbarch, struct frame_info *next_frame)
2380 {
2381 return frame_unwind_register_unsigned (next_frame, SP_REGNUM);
2382 }
2383
2384 static CORE_ADDR
2385 sh64_unwind_pc (struct gdbarch *gdbarch, struct frame_info *next_frame)
2386 {
2387 return frame_unwind_register_unsigned (next_frame, PC_REGNUM);
2388 }
2389
2390 static struct frame_id
2391 sh64_unwind_dummy_id (struct gdbarch *gdbarch, struct frame_info *next_frame)
2392 {
2393 return frame_id_build (sh64_unwind_sp (gdbarch, next_frame),
2394 frame_pc_unwind (next_frame));
2395 }
2396
2397 static CORE_ADDR
2398 sh64_frame_base_address (struct frame_info *next_frame, void **this_cache)
2399 {
2400 struct sh64_frame_cache *cache = sh64_frame_cache (next_frame, this_cache);
2401
2402 return cache->base;
2403 }
2404
2405 static const struct frame_base sh64_frame_base = {
2406 &sh64_frame_unwind,
2407 sh64_frame_base_address,
2408 sh64_frame_base_address,
2409 sh64_frame_base_address
2410 };
2411
2412
2413 struct gdbarch *
2414 sh64_gdbarch_init (struct gdbarch_info info, struct gdbarch_list *arches)
2415 {
2416 struct gdbarch *gdbarch;
2417 struct gdbarch_tdep *tdep;
2418
2419 /* If there is already a candidate, use it. */
2420 arches = gdbarch_list_lookup_by_info (arches, &info);
2421 if (arches != NULL)
2422 return arches->gdbarch;
2423
2424 /* None found, create a new architecture from the information
2425 provided. */
2426 tdep = XMALLOC (struct gdbarch_tdep);
2427 gdbarch = gdbarch_alloc (&info, tdep);
2428
2429 /* Determine the ABI */
2430 if (info.abfd && bfd_get_arch_size (info.abfd) == 64)
2431 {
2432 /* If the ABI is the 64-bit one, it can only be sh-media. */
2433 tdep->sh_abi = SH_ABI_64;
2434 set_gdbarch_ptr_bit (gdbarch, 8 * TARGET_CHAR_BIT);
2435 set_gdbarch_long_bit (gdbarch, 8 * TARGET_CHAR_BIT);
2436 }
2437 else
2438 {
2439 /* If the ABI is the 32-bit one it could be either media or
2440 compact. */
2441 tdep->sh_abi = SH_ABI_32;
2442 set_gdbarch_ptr_bit (gdbarch, 4 * TARGET_CHAR_BIT);
2443 set_gdbarch_long_bit (gdbarch, 4 * TARGET_CHAR_BIT);
2444 }
2445
2446 set_gdbarch_short_bit (gdbarch, 2 * TARGET_CHAR_BIT);
2447 set_gdbarch_int_bit (gdbarch, 4 * TARGET_CHAR_BIT);
2448 set_gdbarch_long_bit (gdbarch, 4 * TARGET_CHAR_BIT);
2449 set_gdbarch_long_long_bit (gdbarch, 8 * TARGET_CHAR_BIT);
2450 set_gdbarch_float_bit (gdbarch, 4 * TARGET_CHAR_BIT);
2451 set_gdbarch_double_bit (gdbarch, 8 * TARGET_CHAR_BIT);
2452 set_gdbarch_long_double_bit (gdbarch, 8 * TARGET_CHAR_BIT);
2453
2454 /* The number of real registers is the same whether we are in
2455 ISA16(compact) or ISA32(media). */
2456 set_gdbarch_num_regs (gdbarch, SIM_SH64_NR_REGS);
2457 set_gdbarch_sp_regnum (gdbarch, 15);
2458 set_gdbarch_pc_regnum (gdbarch, 64);
2459 set_gdbarch_fp0_regnum (gdbarch, SIM_SH64_FR0_REGNUM);
2460 set_gdbarch_num_pseudo_regs (gdbarch, NUM_PSEUDO_REGS_SH_MEDIA
2461 + NUM_PSEUDO_REGS_SH_COMPACT);
2462
2463 set_gdbarch_register_name (gdbarch, sh64_register_name);
2464 set_gdbarch_register_type (gdbarch, sh64_register_type);
2465
2466 set_gdbarch_pseudo_register_read (gdbarch, sh64_pseudo_register_read);
2467 set_gdbarch_pseudo_register_write (gdbarch, sh64_pseudo_register_write);
2468
2469 set_gdbarch_breakpoint_from_pc (gdbarch, sh64_breakpoint_from_pc);
2470
2471 set_gdbarch_print_insn (gdbarch, gdb_print_insn_sh64);
2472 set_gdbarch_register_sim_regno (gdbarch, legacy_register_sim_regno);
2473
2474 set_gdbarch_write_pc (gdbarch, generic_target_write_pc);
2475
2476 set_gdbarch_return_value (gdbarch, sh64_return_value);
2477 set_gdbarch_deprecated_extract_struct_value_address (gdbarch,
2478 sh64_extract_struct_value_address);
2479
2480 set_gdbarch_skip_prologue (gdbarch, sh64_skip_prologue);
2481 set_gdbarch_inner_than (gdbarch, core_addr_lessthan);
2482
2483 set_gdbarch_push_dummy_call (gdbarch, sh64_push_dummy_call);
2484
2485 set_gdbarch_believe_pcc_promotion (gdbarch, 1);
2486
2487 set_gdbarch_frame_align (gdbarch, sh64_frame_align);
2488 set_gdbarch_unwind_sp (gdbarch, sh64_unwind_sp);
2489 set_gdbarch_unwind_pc (gdbarch, sh64_unwind_pc);
2490 set_gdbarch_unwind_dummy_id (gdbarch, sh64_unwind_dummy_id);
2491 frame_base_set_default (gdbarch, &sh64_frame_base);
2492
2493 set_gdbarch_print_registers_info (gdbarch, sh64_print_registers_info);
2494
2495 set_gdbarch_elf_make_msymbol_special (gdbarch,
2496 sh64_elf_make_msymbol_special);
2497
2498 /* Hook in ABI-specific overrides, if they have been registered. */
2499 gdbarch_init_osabi (info, gdbarch);
2500
2501 frame_unwind_append_sniffer (gdbarch, dwarf2_frame_sniffer);
2502 frame_unwind_append_sniffer (gdbarch, sh64_frame_sniffer);
2503
2504 return gdbarch;
2505 }