2004-01-17 Andrew Cagney <cagney@redhat.com>
[binutils-gdb.git] / gdb / sh64-tdep.c
1 /* Target-dependent code for Renesas Super-H, for GDB.
2
3 Copyright 1993, 1994, 1995, 1996, 1997, 1998, 1999, 2000, 2001,
4 2002, 2003, 2004 Free Software Foundation, Inc.
5
6 This file is part of GDB.
7
8 This program is free software; you can redistribute it and/or modify
9 it under the terms of the GNU General Public License as published by
10 the Free Software Foundation; either version 2 of the License, or
11 (at your option) any later version.
12
13 This program is distributed in the hope that it will be useful,
14 but WITHOUT ANY WARRANTY; without even the implied warranty of
15 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
16 GNU General Public License for more details.
17
18 You should have received a copy of the GNU General Public License
19 along with this program; if not, write to the Free Software
20 Foundation, Inc., 59 Temple Place - Suite 330,
21 Boston, MA 02111-1307, USA. */
22
23 /*
24 Contributed by Steve Chamberlain
25 sac@cygnus.com
26 */
27
28 #include "defs.h"
29 #include "frame.h"
30 #include "symtab.h"
31 #include "symfile.h"
32 #include "gdbtypes.h"
33 #include "gdbcmd.h"
34 #include "gdbcore.h"
35 #include "value.h"
36 #include "dis-asm.h"
37 #include "inferior.h"
38 #include "gdb_string.h"
39 #include "arch-utils.h"
40 #include "floatformat.h"
41 #include "regcache.h"
42 #include "doublest.h"
43 #include "osabi.h"
44
45 #include "elf-bfd.h"
46 #include "solib-svr4.h"
47
48 /* sh flags */
49 #include "elf/sh.h"
50 /* registers numbers shared with the simulator */
51 #include "gdb/sim-sh.h"
52
53 /* Information that is dependent on the processor variant. */
54 enum sh_abi
55 {
56 SH_ABI_UNKNOWN,
57 SH_ABI_32,
58 SH_ABI_64
59 };
60
61 struct gdbarch_tdep
62 {
63 enum sh_abi sh_abi;
64 };
65
66 /* Registers of SH5 */
67 enum
68 {
69 R0_REGNUM = 0,
70 DEFAULT_RETURN_REGNUM = 2,
71 STRUCT_RETURN_REGNUM = 2,
72 ARG0_REGNUM = 2,
73 ARGLAST_REGNUM = 9,
74 FLOAT_ARGLAST_REGNUM = 11,
75 PR_REGNUM = 18,
76 SR_REGNUM = 65,
77 DR0_REGNUM = 141,
78 DR_LAST_REGNUM = 172,
79 /* FPP stands for Floating Point Pair, to avoid confusion with
80 GDB's FP0_REGNUM, which is the number of the first Floating
81 point register. Unfortunately on the sh5, the floating point
82 registers are called FR, and the floating point pairs are called FP. */
83 FPP0_REGNUM = 173,
84 FPP_LAST_REGNUM = 204,
85 FV0_REGNUM = 205,
86 FV_LAST_REGNUM = 220,
87 R0_C_REGNUM = 221,
88 R_LAST_C_REGNUM = 236,
89 PC_C_REGNUM = 237,
90 GBR_C_REGNUM = 238,
91 MACH_C_REGNUM = 239,
92 MACL_C_REGNUM = 240,
93 PR_C_REGNUM = 241,
94 T_C_REGNUM = 242,
95 FPSCR_C_REGNUM = 243,
96 FPUL_C_REGNUM = 244,
97 FP0_C_REGNUM = 245,
98 FP_LAST_C_REGNUM = 260,
99 DR0_C_REGNUM = 261,
100 DR_LAST_C_REGNUM = 268,
101 FV0_C_REGNUM = 269,
102 FV_LAST_C_REGNUM = 272,
103 FPSCR_REGNUM = SIM_SH64_FPCSR_REGNUM,
104 SSR_REGNUM = SIM_SH64_SSR_REGNUM,
105 SPC_REGNUM = SIM_SH64_SPC_REGNUM,
106 TR7_REGNUM = SIM_SH64_TR0_REGNUM + 7,
107 FP_LAST_REGNUM = SIM_SH64_FR0_REGNUM + SIM_SH64_NR_FP_REGS - 1
108 };
109
110
111 /* Define other aspects of the stack frame.
112 we keep a copy of the worked out return pc lying around, since it
113 is a useful bit of info */
114
115 struct frame_extra_info
116 {
117 CORE_ADDR return_pc;
118 int leaf_function;
119 int f_offset;
120 };
121
122 static const char *
123 sh64_register_name (int reg_nr)
124 {
125 static char *register_names[] =
126 {
127 /* SH MEDIA MODE (ISA 32) */
128 /* general registers (64-bit) 0-63 */
129 "r0", "r1", "r2", "r3", "r4", "r5", "r6", "r7",
130 "r8", "r9", "r10", "r11", "r12", "r13", "r14", "r15",
131 "r16", "r17", "r18", "r19", "r20", "r21", "r22", "r23",
132 "r24", "r25", "r26", "r27", "r28", "r29", "r30", "r31",
133 "r32", "r33", "r34", "r35", "r36", "r37", "r38", "r39",
134 "r40", "r41", "r42", "r43", "r44", "r45", "r46", "r47",
135 "r48", "r49", "r50", "r51", "r52", "r53", "r54", "r55",
136 "r56", "r57", "r58", "r59", "r60", "r61", "r62", "r63",
137
138 /* pc (64-bit) 64 */
139 "pc",
140
141 /* status reg., saved status reg., saved pc reg. (64-bit) 65-67 */
142 "sr", "ssr", "spc",
143
144 /* target registers (64-bit) 68-75*/
145 "tr0", "tr1", "tr2", "tr3", "tr4", "tr5", "tr6", "tr7",
146
147 /* floating point state control register (32-bit) 76 */
148 "fpscr",
149
150 /* single precision floating point registers (32-bit) 77-140*/
151 "fr0", "fr1", "fr2", "fr3", "fr4", "fr5", "fr6", "fr7",
152 "fr8", "fr9", "fr10", "fr11", "fr12", "fr13", "fr14", "fr15",
153 "fr16", "fr17", "fr18", "fr19", "fr20", "fr21", "fr22", "fr23",
154 "fr24", "fr25", "fr26", "fr27", "fr28", "fr29", "fr30", "fr31",
155 "fr32", "fr33", "fr34", "fr35", "fr36", "fr37", "fr38", "fr39",
156 "fr40", "fr41", "fr42", "fr43", "fr44", "fr45", "fr46", "fr47",
157 "fr48", "fr49", "fr50", "fr51", "fr52", "fr53", "fr54", "fr55",
158 "fr56", "fr57", "fr58", "fr59", "fr60", "fr61", "fr62", "fr63",
159
160 /* double precision registers (pseudo) 141-172 */
161 "dr0", "dr2", "dr4", "dr6", "dr8", "dr10", "dr12", "dr14",
162 "dr16", "dr18", "dr20", "dr22", "dr24", "dr26", "dr28", "dr30",
163 "dr32", "dr34", "dr36", "dr38", "dr40", "dr42", "dr44", "dr46",
164 "dr48", "dr50", "dr52", "dr54", "dr56", "dr58", "dr60", "dr62",
165
166 /* floating point pairs (pseudo) 173-204*/
167 "fp0", "fp2", "fp4", "fp6", "fp8", "fp10", "fp12", "fp14",
168 "fp16", "fp18", "fp20", "fp22", "fp24", "fp26", "fp28", "fp30",
169 "fp32", "fp34", "fp36", "fp38", "fp40", "fp42", "fp44", "fp46",
170 "fp48", "fp50", "fp52", "fp54", "fp56", "fp58", "fp60", "fp62",
171
172 /* floating point vectors (4 floating point regs) (pseudo) 205-220*/
173 "fv0", "fv4", "fv8", "fv12", "fv16", "fv20", "fv24", "fv28",
174 "fv32", "fv36", "fv40", "fv44", "fv48", "fv52", "fv56", "fv60",
175
176 /* SH COMPACT MODE (ISA 16) (all pseudo) 221-272*/
177 "r0_c", "r1_c", "r2_c", "r3_c", "r4_c", "r5_c", "r6_c", "r7_c",
178 "r8_c", "r9_c", "r10_c", "r11_c", "r12_c", "r13_c", "r14_c", "r15_c",
179 "pc_c",
180 "gbr_c", "mach_c", "macl_c", "pr_c", "t_c",
181 "fpscr_c", "fpul_c",
182 "fr0_c", "fr1_c", "fr2_c", "fr3_c", "fr4_c", "fr5_c", "fr6_c", "fr7_c",
183 "fr8_c", "fr9_c", "fr10_c", "fr11_c", "fr12_c", "fr13_c", "fr14_c", "fr15_c",
184 "dr0_c", "dr2_c", "dr4_c", "dr6_c", "dr8_c", "dr10_c", "dr12_c", "dr14_c",
185 "fv0_c", "fv4_c", "fv8_c", "fv12_c",
186 /* FIXME!!!! XF0 XF15, XD0 XD14 ?????*/
187 };
188
189 if (reg_nr < 0)
190 return NULL;
191 if (reg_nr >= (sizeof (register_names) / sizeof (*register_names)))
192 return NULL;
193 return register_names[reg_nr];
194 }
195
196 #define NUM_PSEUDO_REGS_SH_MEDIA 80
197 #define NUM_PSEUDO_REGS_SH_COMPACT 51
198
199 /* Macros and functions for setting and testing a bit in a minimal
200 symbol that marks it as 32-bit function. The MSB of the minimal
201 symbol's "info" field is used for this purpose.
202
203 ELF_MAKE_MSYMBOL_SPECIAL
204 tests whether an ELF symbol is "special", i.e. refers
205 to a 32-bit function, and sets a "special" bit in a
206 minimal symbol to mark it as a 32-bit function
207 MSYMBOL_IS_SPECIAL tests the "special" bit in a minimal symbol */
208
209 #define MSYMBOL_IS_SPECIAL(msym) \
210 (((long) MSYMBOL_INFO (msym) & 0x80000000) != 0)
211
212 static void
213 sh64_elf_make_msymbol_special (asymbol *sym, struct minimal_symbol *msym)
214 {
215 if (msym == NULL)
216 return;
217
218 if (((elf_symbol_type *)(sym))->internal_elf_sym.st_other == STO_SH5_ISA32)
219 {
220 MSYMBOL_INFO (msym) = (char *) (((long) MSYMBOL_INFO (msym)) | 0x80000000);
221 SYMBOL_VALUE_ADDRESS (msym) |= 1;
222 }
223 }
224
225 /* ISA32 (shmedia) function addresses are odd (bit 0 is set). Here
226 are some macros to test, set, or clear bit 0 of addresses. */
227 #define IS_ISA32_ADDR(addr) ((addr) & 1)
228 #define MAKE_ISA32_ADDR(addr) ((addr) | 1)
229 #define UNMAKE_ISA32_ADDR(addr) ((addr) & ~1)
230
231 static int
232 pc_is_isa32 (bfd_vma memaddr)
233 {
234 struct minimal_symbol *sym;
235
236 /* If bit 0 of the address is set, assume this is a
237 ISA32 (shmedia) address. */
238 if (IS_ISA32_ADDR (memaddr))
239 return 1;
240
241 /* A flag indicating that this is a ISA32 function is stored by elfread.c in
242 the high bit of the info field. Use this to decide if the function is
243 ISA16 or ISA32. */
244 sym = lookup_minimal_symbol_by_pc (memaddr);
245 if (sym)
246 return MSYMBOL_IS_SPECIAL (sym);
247 else
248 return 0;
249 }
250
251 static const unsigned char *
252 sh64_breakpoint_from_pc (CORE_ADDR *pcptr, int *lenptr)
253 {
254 /* The BRK instruction for shmedia is
255 01101111 11110101 11111111 11110000
256 which translates in big endian mode to 0x6f, 0xf5, 0xff, 0xf0
257 and in little endian mode to 0xf0, 0xff, 0xf5, 0x6f */
258
259 /* The BRK instruction for shcompact is
260 00000000 00111011
261 which translates in big endian mode to 0x0, 0x3b
262 and in little endian mode to 0x3b, 0x0*/
263
264 if (TARGET_BYTE_ORDER == BFD_ENDIAN_BIG)
265 {
266 if (pc_is_isa32 (*pcptr))
267 {
268 static unsigned char big_breakpoint_media[] = {0x6f, 0xf5, 0xff, 0xf0};
269 *pcptr = UNMAKE_ISA32_ADDR (*pcptr);
270 *lenptr = sizeof (big_breakpoint_media);
271 return big_breakpoint_media;
272 }
273 else
274 {
275 static unsigned char big_breakpoint_compact[] = {0x0, 0x3b};
276 *lenptr = sizeof (big_breakpoint_compact);
277 return big_breakpoint_compact;
278 }
279 }
280 else
281 {
282 if (pc_is_isa32 (*pcptr))
283 {
284 static unsigned char little_breakpoint_media[] = {0xf0, 0xff, 0xf5, 0x6f};
285 *pcptr = UNMAKE_ISA32_ADDR (*pcptr);
286 *lenptr = sizeof (little_breakpoint_media);
287 return little_breakpoint_media;
288 }
289 else
290 {
291 static unsigned char little_breakpoint_compact[] = {0x3b, 0x0};
292 *lenptr = sizeof (little_breakpoint_compact);
293 return little_breakpoint_compact;
294 }
295 }
296 }
297
298 /* Prologue looks like
299 [mov.l <regs>,@-r15]...
300 [sts.l pr,@-r15]
301 [mov.l r14,@-r15]
302 [mov r15,r14]
303
304 Actually it can be more complicated than this. For instance, with
305 newer gcc's:
306
307 mov.l r14,@-r15
308 add #-12,r15
309 mov r15,r14
310 mov r4,r1
311 mov r5,r2
312 mov.l r6,@(4,r14)
313 mov.l r7,@(8,r14)
314 mov.b r1,@r14
315 mov r14,r1
316 mov r14,r1
317 add #2,r1
318 mov.w r2,@r1
319
320 */
321
322 /* PTABS/L Rn, TRa 0110101111110001nnnnnnl00aaa0000
323 with l=1 and n = 18 0110101111110001010010100aaa0000 */
324 #define IS_PTABSL_R18(x) (((x) & 0xffffff8f) == 0x6bf14a00)
325
326 /* STS.L PR,@-r0 0100000000100010
327 r0-4-->r0, PR-->(r0) */
328 #define IS_STS_R0(x) ((x) == 0x4022)
329
330 /* STS PR, Rm 0000mmmm00101010
331 PR-->Rm */
332 #define IS_STS_PR(x) (((x) & 0xf0ff) == 0x2a)
333
334 /* MOV.L Rm,@(disp,r15) 00011111mmmmdddd
335 Rm-->(dispx4+r15) */
336 #define IS_MOV_TO_R15(x) (((x) & 0xff00) == 0x1f00)
337
338 /* MOV.L R14,@(disp,r15) 000111111110dddd
339 R14-->(dispx4+r15) */
340 #define IS_MOV_R14(x) (((x) & 0xfff0) == 0x1fe0)
341
342 /* ST.Q R14, disp, R18 101011001110dddddddddd0100100000
343 R18-->(dispx8+R14) */
344 #define IS_STQ_R18_R14(x) (((x) & 0xfff003ff) == 0xace00120)
345
346 /* ST.Q R15, disp, R18 101011001111dddddddddd0100100000
347 R18-->(dispx8+R15) */
348 #define IS_STQ_R18_R15(x) (((x) & 0xfff003ff) == 0xacf00120)
349
350 /* ST.L R15, disp, R18 101010001111dddddddddd0100100000
351 R18-->(dispx4+R15) */
352 #define IS_STL_R18_R15(x) (((x) & 0xfff003ff) == 0xa8f00120)
353
354 /* ST.Q R15, disp, R14 1010 1100 1111 dddd dddd dd00 1110 0000
355 R14-->(dispx8+R15) */
356 #define IS_STQ_R14_R15(x) (((x) & 0xfff003ff) == 0xacf000e0)
357
358 /* ST.L R15, disp, R14 1010 1000 1111 dddd dddd dd00 1110 0000
359 R14-->(dispx4+R15) */
360 #define IS_STL_R14_R15(x) (((x) & 0xfff003ff) == 0xa8f000e0)
361
362 /* ADDI.L R15,imm,R15 1101 0100 1111 ssss ssss ss00 1111 0000
363 R15 + imm --> R15 */
364 #define IS_ADDIL_SP_MEDIA(x) (((x) & 0xfff003ff) == 0xd4f000f0)
365
366 /* ADDI R15,imm,R15 1101 0000 1111 ssss ssss ss00 1111 0000
367 R15 + imm --> R15 */
368 #define IS_ADDI_SP_MEDIA(x) (((x) & 0xfff003ff) == 0xd0f000f0)
369
370 /* ADD.L R15,R63,R14 0000 0000 1111 1000 1111 1100 1110 0000
371 R15 + R63 --> R14 */
372 #define IS_ADDL_SP_FP_MEDIA(x) ((x) == 0x00f8fce0)
373
374 /* ADD R15,R63,R14 0000 0000 1111 1001 1111 1100 1110 0000
375 R15 + R63 --> R14 */
376 #define IS_ADD_SP_FP_MEDIA(x) ((x) == 0x00f9fce0)
377
378 #define IS_MOV_SP_FP_MEDIA(x) (IS_ADDL_SP_FP_MEDIA(x) || IS_ADD_SP_FP_MEDIA(x))
379
380 /* MOV #imm, R0 1110 0000 ssss ssss
381 #imm-->R0 */
382 #define IS_MOV_R0(x) (((x) & 0xff00) == 0xe000)
383
384 /* MOV.L @(disp,PC), R0 1101 0000 iiii iiii */
385 #define IS_MOVL_R0(x) (((x) & 0xff00) == 0xd000)
386
387 /* ADD r15,r0 0011 0000 1111 1100
388 r15+r0-->r0 */
389 #define IS_ADD_SP_R0(x) ((x) == 0x30fc)
390
391 /* MOV.L R14 @-R0 0010 0000 1110 0110
392 R14-->(R0-4), R0-4-->R0 */
393 #define IS_MOV_R14_R0(x) ((x) == 0x20e6)
394
395 /* ADD Rm,R63,Rn Rm+R63-->Rn 0000 00mm mmmm 1001 1111 11nn nnnn 0000
396 where Rm is one of r2-r9 which are the argument registers. */
397 /* FIXME: Recognize the float and double register moves too! */
398 #define IS_MEDIA_IND_ARG_MOV(x) \
399 ((((x) & 0xfc0ffc0f) == 0x0009fc00) && (((x) & 0x03f00000) >= 0x00200000 && ((x) & 0x03f00000) <= 0x00900000))
400
401 /* ST.Q Rn,0,Rm Rm-->Rn+0 1010 11nn nnnn 0000 0000 00mm mmmm 0000
402 or ST.L Rn,0,Rm Rm-->Rn+0 1010 10nn nnnn 0000 0000 00mm mmmm 0000
403 where Rm is one of r2-r9 which are the argument registers. */
404 #define IS_MEDIA_ARG_MOV(x) \
405 (((((x) & 0xfc0ffc0f) == 0xac000000) || (((x) & 0xfc0ffc0f) == 0xa8000000)) \
406 && (((x) & 0x000003f0) >= 0x00000020 && ((x) & 0x000003f0) <= 0x00000090))
407
408 /* ST.B R14,0,Rn Rn-->(R14+0) 1010 0000 1110 0000 0000 00nn nnnn 0000*/
409 /* ST.W R14,0,Rn Rn-->(R14+0) 1010 0100 1110 0000 0000 00nn nnnn 0000*/
410 /* ST.L R14,0,Rn Rn-->(R14+0) 1010 1000 1110 0000 0000 00nn nnnn 0000*/
411 /* FST.S R14,0,FRn Rn-->(R14+0) 1011 0100 1110 0000 0000 00nn nnnn 0000*/
412 /* FST.D R14,0,DRn Rn-->(R14+0) 1011 1100 1110 0000 0000 00nn nnnn 0000*/
413 #define IS_MEDIA_MOV_TO_R14(x) \
414 ((((x) & 0xfffffc0f) == 0xa0e00000) \
415 || (((x) & 0xfffffc0f) == 0xa4e00000) \
416 || (((x) & 0xfffffc0f) == 0xa8e00000) \
417 || (((x) & 0xfffffc0f) == 0xb4e00000) \
418 || (((x) & 0xfffffc0f) == 0xbce00000))
419
420 /* MOV Rm, Rn Rm-->Rn 0110 nnnn mmmm 0011
421 where Rm is r2-r9 */
422 #define IS_COMPACT_IND_ARG_MOV(x) \
423 ((((x) & 0xf00f) == 0x6003) && (((x) & 0x00f0) >= 0x0020) && (((x) & 0x00f0) <= 0x0090))
424
425 /* compact direct arg move!
426 MOV.L Rn, @r14 0010 1110 mmmm 0010 */
427 #define IS_COMPACT_ARG_MOV(x) \
428 (((((x) & 0xff0f) == 0x2e02) && (((x) & 0x00f0) >= 0x0020) && ((x) & 0x00f0) <= 0x0090))
429
430 /* MOV.B Rm, @R14 0010 1110 mmmm 0000
431 MOV.W Rm, @R14 0010 1110 mmmm 0001 */
432 #define IS_COMPACT_MOV_TO_R14(x) \
433 ((((x) & 0xff0f) == 0x2e00) || (((x) & 0xff0f) == 0x2e01))
434
435 #define IS_JSR_R0(x) ((x) == 0x400b)
436 #define IS_NOP(x) ((x) == 0x0009)
437
438
439 /* MOV r15,r14 0110111011110011
440 r15-->r14 */
441 #define IS_MOV_SP_FP(x) ((x) == 0x6ef3)
442
443 /* ADD #imm,r15 01111111iiiiiiii
444 r15+imm-->r15 */
445 #define IS_ADD_SP(x) (((x) & 0xff00) == 0x7f00)
446
447 /* Skip any prologue before the guts of a function */
448
449 /* Skip the prologue using the debug information. If this fails we'll
450 fall back on the 'guess' method below. */
451 static CORE_ADDR
452 after_prologue (CORE_ADDR pc)
453 {
454 struct symtab_and_line sal;
455 CORE_ADDR func_addr, func_end;
456
457 /* If we can not find the symbol in the partial symbol table, then
458 there is no hope we can determine the function's start address
459 with this code. */
460 if (!find_pc_partial_function (pc, NULL, &func_addr, &func_end))
461 return 0;
462
463 /* Get the line associated with FUNC_ADDR. */
464 sal = find_pc_line (func_addr, 0);
465
466 /* There are only two cases to consider. First, the end of the source line
467 is within the function bounds. In that case we return the end of the
468 source line. Second is the end of the source line extends beyond the
469 bounds of the current function. We need to use the slow code to
470 examine instructions in that case. */
471 if (sal.end < func_end)
472 return sal.end;
473 else
474 return 0;
475 }
476
477 static CORE_ADDR
478 look_for_args_moves (CORE_ADDR start_pc, int media_mode)
479 {
480 CORE_ADDR here, end;
481 int w;
482 int insn_size = (media_mode ? 4 : 2);
483
484 for (here = start_pc, end = start_pc + (insn_size * 28); here < end;)
485 {
486 if (media_mode)
487 {
488 w = read_memory_integer (UNMAKE_ISA32_ADDR (here), insn_size);
489 here += insn_size;
490 if (IS_MEDIA_IND_ARG_MOV (w))
491 {
492 /* This must be followed by a store to r14, so the argument
493 is where the debug info says it is. This can happen after
494 the SP has been saved, unfortunately. */
495
496 int next_insn = read_memory_integer (UNMAKE_ISA32_ADDR (here),
497 insn_size);
498 here += insn_size;
499 if (IS_MEDIA_MOV_TO_R14 (next_insn))
500 start_pc = here;
501 }
502 else if (IS_MEDIA_ARG_MOV (w))
503 {
504 /* These instructions store directly the argument in r14. */
505 start_pc = here;
506 }
507 else
508 break;
509 }
510 else
511 {
512 w = read_memory_integer (here, insn_size);
513 w = w & 0xffff;
514 here += insn_size;
515 if (IS_COMPACT_IND_ARG_MOV (w))
516 {
517 /* This must be followed by a store to r14, so the argument
518 is where the debug info says it is. This can happen after
519 the SP has been saved, unfortunately. */
520
521 int next_insn = 0xffff & read_memory_integer (here, insn_size);
522 here += insn_size;
523 if (IS_COMPACT_MOV_TO_R14 (next_insn))
524 start_pc = here;
525 }
526 else if (IS_COMPACT_ARG_MOV (w))
527 {
528 /* These instructions store directly the argument in r14. */
529 start_pc = here;
530 }
531 else if (IS_MOVL_R0 (w))
532 {
533 /* There is a function that gcc calls to get the arguments
534 passed correctly to the function. Only after this
535 function call the arguments will be found at the place
536 where they are supposed to be. This happens in case the
537 argument has to be stored into a 64-bit register (for
538 instance doubles, long longs). SHcompact doesn't have
539 access to the full 64-bits, so we store the register in
540 stack slot and store the address of the stack slot in
541 the register, then do a call through a wrapper that
542 loads the memory value into the register. A SHcompact
543 callee calls an argument decoder
544 (GCC_shcompact_incoming_args) that stores the 64-bit
545 value in a stack slot and stores the address of the
546 stack slot in the register. GCC thinks the argument is
547 just passed by transparent reference, but this is only
548 true after the argument decoder is called. Such a call
549 needs to be considered part of the prologue. */
550
551 /* This must be followed by a JSR @r0 instruction and by
552 a NOP instruction. After these, the prologue is over! */
553
554 int next_insn = 0xffff & read_memory_integer (here, insn_size);
555 here += insn_size;
556 if (IS_JSR_R0 (next_insn))
557 {
558 next_insn = 0xffff & read_memory_integer (here, insn_size);
559 here += insn_size;
560
561 if (IS_NOP (next_insn))
562 start_pc = here;
563 }
564 }
565 else
566 break;
567 }
568 }
569
570 return start_pc;
571 }
572
573 static CORE_ADDR
574 sh64_skip_prologue_hard_way (CORE_ADDR start_pc)
575 {
576 CORE_ADDR here, end;
577 int updated_fp = 0;
578 int insn_size = 4;
579 int media_mode = 1;
580
581 if (!start_pc)
582 return 0;
583
584 if (pc_is_isa32 (start_pc) == 0)
585 {
586 insn_size = 2;
587 media_mode = 0;
588 }
589
590 for (here = start_pc, end = start_pc + (insn_size * 28); here < end;)
591 {
592
593 if (media_mode)
594 {
595 int w = read_memory_integer (UNMAKE_ISA32_ADDR (here), insn_size);
596 here += insn_size;
597 if (IS_STQ_R18_R14 (w) || IS_STQ_R18_R15 (w) || IS_STQ_R14_R15 (w)
598 || IS_STL_R14_R15 (w) || IS_STL_R18_R15 (w)
599 || IS_ADDIL_SP_MEDIA (w) || IS_ADDI_SP_MEDIA (w) || IS_PTABSL_R18 (w))
600 {
601 start_pc = here;
602 }
603 else if (IS_MOV_SP_FP (w) || IS_MOV_SP_FP_MEDIA(w))
604 {
605 start_pc = here;
606 updated_fp = 1;
607 }
608 else
609 if (updated_fp)
610 {
611 /* Don't bail out yet, we may have arguments stored in
612 registers here, according to the debug info, so that
613 gdb can print the frames correctly. */
614 start_pc = look_for_args_moves (here - insn_size, media_mode);
615 break;
616 }
617 }
618 else
619 {
620 int w = 0xffff & read_memory_integer (here, insn_size);
621 here += insn_size;
622
623 if (IS_STS_R0 (w) || IS_STS_PR (w)
624 || IS_MOV_TO_R15 (w) || IS_MOV_R14 (w)
625 || IS_MOV_R0 (w) || IS_ADD_SP_R0 (w) || IS_MOV_R14_R0 (w))
626 {
627 start_pc = here;
628 }
629 else if (IS_MOV_SP_FP (w))
630 {
631 start_pc = here;
632 updated_fp = 1;
633 }
634 else
635 if (updated_fp)
636 {
637 /* Don't bail out yet, we may have arguments stored in
638 registers here, according to the debug info, so that
639 gdb can print the frames correctly. */
640 start_pc = look_for_args_moves (here - insn_size, media_mode);
641 break;
642 }
643 }
644 }
645
646 return start_pc;
647 }
648
649 static CORE_ADDR
650 sh_skip_prologue (CORE_ADDR pc)
651 {
652 CORE_ADDR post_prologue_pc;
653
654 /* See if we can determine the end of the prologue via the symbol table.
655 If so, then return either PC, or the PC after the prologue, whichever
656 is greater. */
657 post_prologue_pc = after_prologue (pc);
658
659 /* If after_prologue returned a useful address, then use it. Else
660 fall back on the instruction skipping code. */
661 if (post_prologue_pc != 0)
662 return max (pc, post_prologue_pc);
663 else
664 return sh64_skip_prologue_hard_way (pc);
665 }
666
667 /* Immediately after a function call, return the saved pc.
668 Can't always go through the frames for this because on some machines
669 the new frame is not set up until the new function executes
670 some instructions.
671
672 The return address is the value saved in the PR register + 4 */
673 static CORE_ADDR
674 sh_saved_pc_after_call (struct frame_info *frame)
675 {
676 return (ADDR_BITS_REMOVE (read_register (PR_REGNUM)));
677 }
678
679 /* Should call_function allocate stack space for a struct return? */
680 static int
681 sh64_use_struct_convention (int gcc_p, struct type *type)
682 {
683 return (TYPE_LENGTH (type) > 8);
684 }
685
686 /* Store the address of the place in which to copy the structure the
687 subroutine will return. This is called from call_function.
688
689 We store structs through a pointer passed in R2 */
690 static void
691 sh64_store_struct_return (CORE_ADDR addr, CORE_ADDR sp)
692 {
693 write_register (STRUCT_RETURN_REGNUM, (addr));
694 }
695
696 /* Disassemble an instruction. */
697 static int
698 gdb_print_insn_sh (bfd_vma memaddr, disassemble_info *info)
699 {
700 info->endian = TARGET_BYTE_ORDER;
701 return print_insn_sh (memaddr, info);
702 }
703
704 /* Given a register number RN as it appears in an assembly
705 instruction, find the corresponding register number in the GDB
706 scheme. */
707 static int
708 translate_insn_rn (int rn, int media_mode)
709 {
710 /* FIXME: this assumes that the number rn is for a not pseudo
711 register only. */
712 if (media_mode)
713 return rn;
714 else
715 {
716 /* These registers don't have a corresponding compact one. */
717 /* FIXME: This is probably not enough. */
718 #if 0
719 if ((rn >= 16 && rn <= 63) || (rn >= 93 && rn <= 140))
720 return rn;
721 #endif
722 if (rn >= 0 && rn <= R0_C_REGNUM)
723 return R0_C_REGNUM + rn;
724 else
725 return rn;
726 }
727 }
728
729 /* Given a GDB frame, determine the address of the calling function's
730 frame. This will be used to create a new GDB frame struct, and
731 then DEPRECATED_INIT_EXTRA_FRAME_INFO and DEPRECATED_INIT_FRAME_PC
732 will be called for the new frame.
733
734 For us, the frame address is its stack pointer value, so we look up
735 the function prologue to determine the caller's sp value, and return it. */
736 static CORE_ADDR
737 sh64_frame_chain (struct frame_info *frame)
738 {
739 if (DEPRECATED_PC_IN_CALL_DUMMY (get_frame_pc (frame),
740 get_frame_base (frame),
741 get_frame_base (frame)))
742 return get_frame_base (frame); /* dummy frame same as caller's frame */
743 if (get_frame_pc (frame)
744 && !deprecated_inside_entry_file (get_frame_pc (frame)))
745 {
746 int media_mode = pc_is_isa32 (get_frame_pc (frame));
747 int size;
748 if (gdbarch_tdep (current_gdbarch)->sh_abi == SH_ABI_32)
749 size = 4;
750 else
751 size = register_size (current_gdbarch,
752 translate_insn_rn (DEPRECATED_FP_REGNUM,
753 media_mode));
754 return read_memory_integer (get_frame_base (frame)
755 + get_frame_extra_info (frame)->f_offset,
756 size);
757 }
758 else
759 return 0;
760 }
761
762 static CORE_ADDR
763 sh64_get_saved_pr (struct frame_info *fi, int pr_regnum)
764 {
765 int media_mode = 0;
766
767 for (; fi; fi = get_next_frame (fi))
768 if (DEPRECATED_PC_IN_CALL_DUMMY (get_frame_pc (fi), get_frame_base (fi),
769 get_frame_base (fi)))
770 /* When the caller requests PR from the dummy frame, we return
771 PC because that's where the previous routine appears to have
772 done a call from. */
773 return deprecated_read_register_dummy (get_frame_pc (fi),
774 get_frame_base (fi), pr_regnum);
775 else
776 {
777 DEPRECATED_FRAME_INIT_SAVED_REGS (fi);
778 if (!get_frame_pc (fi))
779 return 0;
780
781 media_mode = pc_is_isa32 (get_frame_pc (fi));
782
783 if (deprecated_get_frame_saved_regs (fi)[pr_regnum] != 0)
784 {
785 int gdb_reg_num = translate_insn_rn (pr_regnum, media_mode);
786 int size = ((gdbarch_tdep (current_gdbarch)->sh_abi == SH_ABI_32)
787 ? 4
788 : register_size (current_gdbarch, gdb_reg_num));
789 return read_memory_integer (deprecated_get_frame_saved_regs (fi)[pr_regnum], size);
790 }
791 }
792 return read_register (pr_regnum);
793 }
794
795 /* For vectors of 4 floating point registers. */
796 static int
797 fv_reg_base_num (int fv_regnum)
798 {
799 int fp_regnum;
800
801 fp_regnum = FP0_REGNUM +
802 (fv_regnum - FV0_REGNUM) * 4;
803 return fp_regnum;
804 }
805
806 /* For double precision floating point registers, i.e 2 fp regs.*/
807 static int
808 dr_reg_base_num (int dr_regnum)
809 {
810 int fp_regnum;
811
812 fp_regnum = FP0_REGNUM +
813 (dr_regnum - DR0_REGNUM) * 2;
814 return fp_regnum;
815 }
816
817 /* For pairs of floating point registers */
818 static int
819 fpp_reg_base_num (int fpp_regnum)
820 {
821 int fp_regnum;
822
823 fp_regnum = FP0_REGNUM +
824 (fpp_regnum - FPP0_REGNUM) * 2;
825 return fp_regnum;
826 }
827
828 static int
829 is_media_pseudo (int rn)
830 {
831 return (rn >= DR0_REGNUM && rn <= FV_LAST_REGNUM);
832 }
833
834 static int
835 sh64_media_reg_base_num (int reg_nr)
836 {
837 int base_regnum = -1;
838
839 if (reg_nr >= DR0_REGNUM
840 && reg_nr <= DR_LAST_REGNUM)
841 base_regnum = dr_reg_base_num (reg_nr);
842
843 else if (reg_nr >= FPP0_REGNUM
844 && reg_nr <= FPP_LAST_REGNUM)
845 base_regnum = fpp_reg_base_num (reg_nr);
846
847 else if (reg_nr >= FV0_REGNUM
848 && reg_nr <= FV_LAST_REGNUM)
849 base_regnum = fv_reg_base_num (reg_nr);
850
851 return base_regnum;
852 }
853
854 /* *INDENT-OFF* */
855 /*
856 SH COMPACT MODE (ISA 16) (all pseudo) 221-272
857 GDB_REGNUM BASE_REGNUM
858 r0_c 221 0
859 r1_c 222 1
860 r2_c 223 2
861 r3_c 224 3
862 r4_c 225 4
863 r5_c 226 5
864 r6_c 227 6
865 r7_c 228 7
866 r8_c 229 8
867 r9_c 230 9
868 r10_c 231 10
869 r11_c 232 11
870 r12_c 233 12
871 r13_c 234 13
872 r14_c 235 14
873 r15_c 236 15
874
875 pc_c 237 64
876 gbr_c 238 16
877 mach_c 239 17
878 macl_c 240 17
879 pr_c 241 18
880 t_c 242 19
881 fpscr_c 243 76
882 fpul_c 244 109
883
884 fr0_c 245 77
885 fr1_c 246 78
886 fr2_c 247 79
887 fr3_c 248 80
888 fr4_c 249 81
889 fr5_c 250 82
890 fr6_c 251 83
891 fr7_c 252 84
892 fr8_c 253 85
893 fr9_c 254 86
894 fr10_c 255 87
895 fr11_c 256 88
896 fr12_c 257 89
897 fr13_c 258 90
898 fr14_c 259 91
899 fr15_c 260 92
900
901 dr0_c 261 77
902 dr2_c 262 79
903 dr4_c 263 81
904 dr6_c 264 83
905 dr8_c 265 85
906 dr10_c 266 87
907 dr12_c 267 89
908 dr14_c 268 91
909
910 fv0_c 269 77
911 fv4_c 270 81
912 fv8_c 271 85
913 fv12_c 272 91
914 */
915 /* *INDENT-ON* */
916 static int
917 sh64_compact_reg_base_num (int reg_nr)
918 {
919 int base_regnum = -1;
920
921 /* general register N maps to general register N */
922 if (reg_nr >= R0_C_REGNUM
923 && reg_nr <= R_LAST_C_REGNUM)
924 base_regnum = reg_nr - R0_C_REGNUM;
925
926 /* floating point register N maps to floating point register N */
927 else if (reg_nr >= FP0_C_REGNUM
928 && reg_nr <= FP_LAST_C_REGNUM)
929 base_regnum = reg_nr - FP0_C_REGNUM + FP0_REGNUM;
930
931 /* double prec register N maps to base regnum for double prec register N */
932 else if (reg_nr >= DR0_C_REGNUM
933 && reg_nr <= DR_LAST_C_REGNUM)
934 base_regnum = dr_reg_base_num (DR0_REGNUM
935 + reg_nr - DR0_C_REGNUM);
936
937 /* vector N maps to base regnum for vector register N */
938 else if (reg_nr >= FV0_C_REGNUM
939 && reg_nr <= FV_LAST_C_REGNUM)
940 base_regnum = fv_reg_base_num (FV0_REGNUM
941 + reg_nr - FV0_C_REGNUM);
942
943 else if (reg_nr == PC_C_REGNUM)
944 base_regnum = PC_REGNUM;
945
946 else if (reg_nr == GBR_C_REGNUM)
947 base_regnum = 16;
948
949 else if (reg_nr == MACH_C_REGNUM
950 || reg_nr == MACL_C_REGNUM)
951 base_regnum = 17;
952
953 else if (reg_nr == PR_C_REGNUM)
954 base_regnum = 18;
955
956 else if (reg_nr == T_C_REGNUM)
957 base_regnum = 19;
958
959 else if (reg_nr == FPSCR_C_REGNUM)
960 base_regnum = FPSCR_REGNUM; /*???? this register is a mess. */
961
962 else if (reg_nr == FPUL_C_REGNUM)
963 base_regnum = FP0_REGNUM + 32;
964
965 return base_regnum;
966 }
967
968 /* Given a register number RN (according to the gdb scheme) , return
969 its corresponding architectural register. In media mode, only a
970 subset of the registers is pseudo registers. For compact mode, all
971 the registers are pseudo. */
972 static int
973 translate_rn_to_arch_reg_num (int rn, int media_mode)
974 {
975
976 if (media_mode)
977 {
978 if (!is_media_pseudo (rn))
979 return rn;
980 else
981 return sh64_media_reg_base_num (rn);
982 }
983 else
984 /* All compact registers are pseudo. */
985 return sh64_compact_reg_base_num (rn);
986 }
987
988 static int
989 sign_extend (int value, int bits)
990 {
991 value = value & ((1 << bits) - 1);
992 return (value & (1 << (bits - 1))
993 ? value | (~((1 << bits) - 1))
994 : value);
995 }
996
997 static void
998 sh64_nofp_frame_init_saved_regs (struct frame_info *fi)
999 {
1000 int *where = (int *) alloca ((NUM_REGS + NUM_PSEUDO_REGS) * sizeof (int));
1001 int rn;
1002 int have_fp = 0;
1003 int fp_regnum;
1004 int sp_regnum;
1005 int depth;
1006 int pc;
1007 int opc;
1008 int insn;
1009 int r0_val = 0;
1010 int media_mode = 0;
1011 int insn_size;
1012 int gdb_register_number;
1013 int register_number;
1014 char *dummy_regs = deprecated_generic_find_dummy_frame (get_frame_pc (fi),
1015 get_frame_base (fi));
1016 struct gdbarch_tdep *tdep = gdbarch_tdep (current_gdbarch);
1017
1018 if (deprecated_get_frame_saved_regs (fi) == NULL)
1019 frame_saved_regs_zalloc (fi);
1020 else
1021 memset (deprecated_get_frame_saved_regs (fi), 0, SIZEOF_FRAME_SAVED_REGS);
1022
1023 if (dummy_regs)
1024 {
1025 /* DANGER! This is ONLY going to work if the char buffer format of
1026 the saved registers is byte-for-byte identical to the
1027 CORE_ADDR regs[NUM_REGS] format used by struct frame_saved_regs! */
1028 memcpy (deprecated_get_frame_saved_regs (fi), dummy_regs, SIZEOF_FRAME_SAVED_REGS);
1029 return;
1030 }
1031
1032 get_frame_extra_info (fi)->leaf_function = 1;
1033 get_frame_extra_info (fi)->f_offset = 0;
1034
1035 for (rn = 0; rn < NUM_REGS + NUM_PSEUDO_REGS; rn++)
1036 where[rn] = -1;
1037
1038 depth = 0;
1039
1040 /* Loop around examining the prologue insns until we find something
1041 that does not appear to be part of the prologue. But give up
1042 after 20 of them, since we're getting silly then. */
1043
1044 pc = get_frame_func (fi);
1045 if (!pc)
1046 {
1047 deprecated_update_frame_pc_hack (fi, 0);
1048 return;
1049 }
1050
1051 if (pc_is_isa32 (pc))
1052 {
1053 media_mode = 1;
1054 insn_size = 4;
1055 }
1056 else
1057 {
1058 media_mode = 0;
1059 insn_size = 2;
1060 }
1061
1062 /* The frame pointer register is general register 14 in shmedia and
1063 shcompact modes. In sh compact it is a pseudo register. Same goes
1064 for the stack pointer register, which is register 15. */
1065 fp_regnum = translate_insn_rn (DEPRECATED_FP_REGNUM, media_mode);
1066 sp_regnum = translate_insn_rn (SP_REGNUM, media_mode);
1067
1068 for (opc = pc + (insn_size * 28); pc < opc; pc += insn_size)
1069 {
1070 insn = read_memory_integer (media_mode ? UNMAKE_ISA32_ADDR (pc) : pc,
1071 insn_size);
1072
1073 if (media_mode == 0)
1074 {
1075 if (IS_STS_PR (insn))
1076 {
1077 int next_insn = read_memory_integer (pc + insn_size, insn_size);
1078 if (IS_MOV_TO_R15 (next_insn))
1079 {
1080 int reg_nr = PR_C_REGNUM;
1081
1082 where[reg_nr] = depth - ((((next_insn & 0xf) ^ 0x8) - 0x8) << 2);
1083 get_frame_extra_info (fi)->leaf_function = 0;
1084 pc += insn_size;
1085 }
1086 }
1087 else if (IS_MOV_R14 (insn))
1088 {
1089 where[fp_regnum] = depth - ((((insn & 0xf) ^ 0x8) - 0x8) << 2);
1090 }
1091
1092 else if (IS_MOV_R0 (insn))
1093 {
1094 /* Put in R0 the offset from SP at which to store some
1095 registers. We are interested in this value, because it
1096 will tell us where the given registers are stored within
1097 the frame. */
1098 r0_val = ((insn & 0xff) ^ 0x80) - 0x80;
1099 }
1100 else if (IS_ADD_SP_R0 (insn))
1101 {
1102 /* This instruction still prepares r0, but we don't care.
1103 We already have the offset in r0_val. */
1104 }
1105 else if (IS_STS_R0 (insn))
1106 {
1107 /* Store PR at r0_val-4 from SP. Decrement r0 by 4*/
1108 int reg_nr = PR_C_REGNUM;
1109 where[reg_nr] = depth - (r0_val - 4);
1110 r0_val -= 4;
1111 get_frame_extra_info (fi)->leaf_function = 0;
1112 }
1113 else if (IS_MOV_R14_R0 (insn))
1114 {
1115 /* Store R14 at r0_val-4 from SP. Decrement r0 by 4 */
1116 where[fp_regnum] = depth - (r0_val - 4);
1117 r0_val -= 4;
1118 }
1119
1120 else if (IS_ADD_SP (insn))
1121 {
1122 depth -= ((insn & 0xff) ^ 0x80) - 0x80;
1123 }
1124 else if (IS_MOV_SP_FP (insn))
1125 break;
1126 }
1127 else
1128 {
1129 if (IS_ADDIL_SP_MEDIA (insn)
1130 || IS_ADDI_SP_MEDIA (insn))
1131 {
1132 depth -= sign_extend ((((insn & 0xffc00) ^ 0x80000) - 0x80000) >> 10, 9);
1133 }
1134
1135 else if (IS_STQ_R18_R15 (insn))
1136 {
1137 where[PR_REGNUM] =
1138 depth - (sign_extend ((insn & 0xffc00) >> 10, 9) << 3);
1139 get_frame_extra_info (fi)->leaf_function = 0;
1140 }
1141
1142 else if (IS_STL_R18_R15 (insn))
1143 {
1144 where[PR_REGNUM] =
1145 depth - (sign_extend ((insn & 0xffc00) >> 10, 9) << 2);
1146 get_frame_extra_info (fi)->leaf_function = 0;
1147 }
1148
1149 else if (IS_STQ_R14_R15 (insn))
1150 {
1151 where[fp_regnum] = depth - (sign_extend ((insn & 0xffc00) >> 10, 9) << 3);
1152 }
1153
1154 else if (IS_STL_R14_R15 (insn))
1155 {
1156 where[fp_regnum] = depth - (sign_extend ((insn & 0xffc00) >> 10, 9) << 2);
1157 }
1158
1159 else if (IS_MOV_SP_FP_MEDIA (insn))
1160 break;
1161 }
1162 }
1163
1164 /* Now we know how deep things are, we can work out their addresses. */
1165 for (rn = 0; rn < NUM_REGS + NUM_PSEUDO_REGS; rn++)
1166 {
1167 register_number = translate_rn_to_arch_reg_num (rn, media_mode);
1168
1169 if (where[rn] >= 0)
1170 {
1171 if (rn == fp_regnum)
1172 have_fp = 1;
1173
1174 /* Watch out! saved_regs is only for the real registers, and
1175 doesn't include space for the pseudo registers. */
1176 deprecated_get_frame_saved_regs (fi)[register_number]
1177 = get_frame_base (fi) - where[rn] + depth;
1178 }
1179 else
1180 deprecated_get_frame_saved_regs (fi)[register_number] = 0;
1181 }
1182
1183 if (have_fp)
1184 {
1185 /* SP_REGNUM is 15. For shmedia 15 is the real register. For
1186 shcompact 15 is the arch register corresponding to the pseudo
1187 register r15 which still is the SP register. */
1188 /* The place on the stack where fp is stored contains the sp of
1189 the caller. */
1190 /* Again, saved_registers contains only space for the real
1191 registers, so we store in DEPRECATED_FP_REGNUM position. */
1192 int size;
1193 if (tdep->sh_abi == SH_ABI_32)
1194 size = 4;
1195 else
1196 size = register_size (current_gdbarch, fp_regnum);
1197 deprecated_get_frame_saved_regs (fi)[sp_regnum]
1198 = read_memory_integer (deprecated_get_frame_saved_regs (fi)[fp_regnum],
1199 size);
1200 }
1201 else
1202 deprecated_get_frame_saved_regs (fi)[sp_regnum] = get_frame_base (fi);
1203
1204 get_frame_extra_info (fi)->f_offset = depth - where[fp_regnum];
1205 }
1206
1207 /* Initialize the extra info saved in a FRAME */
1208 static void
1209 sh64_init_extra_frame_info (int fromleaf, struct frame_info *fi)
1210 {
1211 int media_mode = pc_is_isa32 (get_frame_pc (fi));
1212
1213 frame_extra_info_zalloc (fi, sizeof (struct frame_extra_info));
1214
1215 if (get_next_frame (fi))
1216 deprecated_update_frame_pc_hack (fi, DEPRECATED_FRAME_SAVED_PC (get_next_frame (fi)));
1217
1218 if (DEPRECATED_PC_IN_CALL_DUMMY (get_frame_pc (fi), get_frame_base (fi),
1219 get_frame_base (fi)))
1220 {
1221 /* We need to setup fi->frame here because call_function_by_hand
1222 gets it wrong by assuming it's always FP. */
1223 deprecated_update_frame_base_hack (fi, deprecated_read_register_dummy (get_frame_pc (fi), get_frame_base (fi), SP_REGNUM));
1224 get_frame_extra_info (fi)->return_pc =
1225 deprecated_read_register_dummy (get_frame_pc (fi),
1226 get_frame_base (fi), PC_REGNUM);
1227 get_frame_extra_info (fi)->f_offset = -(DEPRECATED_CALL_DUMMY_LENGTH + 4);
1228 get_frame_extra_info (fi)->leaf_function = 0;
1229 return;
1230 }
1231 else
1232 {
1233 DEPRECATED_FRAME_INIT_SAVED_REGS (fi);
1234 get_frame_extra_info (fi)->return_pc =
1235 sh64_get_saved_pr (fi, PR_REGNUM);
1236 }
1237 }
1238
1239 static void
1240 sh64_get_saved_register (char *raw_buffer, int *optimized, CORE_ADDR *addrp,
1241 struct frame_info *frame, int regnum,
1242 enum lval_type *lval)
1243 {
1244 int media_mode;
1245 int live_regnum = regnum;
1246 struct gdbarch_tdep *tdep = gdbarch_tdep (current_gdbarch);
1247
1248 if (!target_has_registers)
1249 error ("No registers.");
1250
1251 /* Normal systems don't optimize out things with register numbers. */
1252 if (optimized != NULL)
1253 *optimized = 0;
1254
1255 if (addrp) /* default assumption: not found in memory */
1256 *addrp = 0;
1257
1258 if (raw_buffer)
1259 memset (raw_buffer, 0, sizeof (raw_buffer));
1260
1261 /* We must do this here, before the following while loop changes
1262 frame, and makes it NULL. If this is a media register number,
1263 but we are in compact mode, it will become the corresponding
1264 compact pseudo register. If there is no corresponding compact
1265 pseudo-register what do we do?*/
1266 media_mode = pc_is_isa32 (get_frame_pc (frame));
1267 live_regnum = translate_insn_rn (regnum, media_mode);
1268
1269 /* Note: since the current frame's registers could only have been
1270 saved by frames INTERIOR TO the current frame, we skip examining
1271 the current frame itself: otherwise, we would be getting the
1272 previous frame's registers which were saved by the current frame. */
1273
1274 while (frame && ((frame = get_next_frame (frame)) != NULL))
1275 {
1276 if (DEPRECATED_PC_IN_CALL_DUMMY (get_frame_pc (frame),
1277 get_frame_base (frame),
1278 get_frame_base (frame)))
1279 {
1280 if (lval) /* found it in a CALL_DUMMY frame */
1281 *lval = not_lval;
1282 if (raw_buffer)
1283 memcpy (raw_buffer,
1284 (deprecated_generic_find_dummy_frame (get_frame_pc (frame), get_frame_base (frame))
1285 + DEPRECATED_REGISTER_BYTE (regnum)),
1286 register_size (current_gdbarch, regnum));
1287 return;
1288 }
1289
1290 DEPRECATED_FRAME_INIT_SAVED_REGS (frame);
1291 if (deprecated_get_frame_saved_regs (frame) != NULL
1292 && deprecated_get_frame_saved_regs (frame)[regnum] != 0)
1293 {
1294 if (lval) /* found it saved on the stack */
1295 *lval = lval_memory;
1296 if (regnum == SP_REGNUM)
1297 {
1298 if (raw_buffer) /* SP register treated specially */
1299 store_unsigned_integer (raw_buffer,
1300 register_size (current_gdbarch,
1301 regnum),
1302 deprecated_get_frame_saved_regs (frame)[regnum]);
1303 }
1304 else
1305 { /* any other register */
1306
1307 if (addrp)
1308 *addrp = deprecated_get_frame_saved_regs (frame)[regnum];
1309 if (raw_buffer)
1310 {
1311 int size;
1312 if (tdep->sh_abi == SH_ABI_32
1313 && (live_regnum == DEPRECATED_FP_REGNUM
1314 || live_regnum == PR_REGNUM))
1315 size = 4;
1316 else
1317 size = register_size (current_gdbarch, live_regnum);
1318 if (TARGET_BYTE_ORDER == BFD_ENDIAN_LITTLE)
1319 read_memory (deprecated_get_frame_saved_regs (frame)[regnum],
1320 raw_buffer, size);
1321 else
1322 read_memory (deprecated_get_frame_saved_regs (frame)[regnum],
1323 raw_buffer
1324 + register_size (current_gdbarch, live_regnum)
1325 - size,
1326 size);
1327 }
1328 }
1329 return;
1330 }
1331 }
1332
1333 /* If we get thru the loop to this point, it means the register was
1334 not saved in any frame. Return the actual live-register value. */
1335
1336 if (lval) /* found it in a live register */
1337 *lval = lval_register;
1338 if (addrp)
1339 *addrp = DEPRECATED_REGISTER_BYTE (live_regnum);
1340 if (raw_buffer)
1341 deprecated_read_register_gen (live_regnum, raw_buffer);
1342 }
1343
1344 static CORE_ADDR
1345 sh64_extract_struct_value_address (char *regbuf)
1346 {
1347 return (extract_unsigned_integer ((regbuf + DEPRECATED_REGISTER_BYTE (STRUCT_RETURN_REGNUM)),
1348 register_size (current_gdbarch,
1349 STRUCT_RETURN_REGNUM)));
1350 }
1351
1352 static CORE_ADDR
1353 sh_frame_saved_pc (struct frame_info *frame)
1354 {
1355 return (get_frame_extra_info (frame)->return_pc);
1356 }
1357
1358 /* Discard from the stack the innermost frame, restoring all saved registers.
1359 Used in the 'return' command. */
1360 static void
1361 sh64_pop_frame (void)
1362 {
1363 struct frame_info *frame = get_current_frame ();
1364 CORE_ADDR fp;
1365 int regnum;
1366 struct gdbarch_tdep *tdep = gdbarch_tdep (current_gdbarch);
1367
1368 int media_mode = pc_is_isa32 (get_frame_pc (frame));
1369
1370 if (DEPRECATED_PC_IN_CALL_DUMMY (get_frame_pc (frame),
1371 get_frame_base (frame),
1372 get_frame_base (frame)))
1373 generic_pop_dummy_frame ();
1374 else
1375 {
1376 fp = get_frame_base (frame);
1377 DEPRECATED_FRAME_INIT_SAVED_REGS (frame);
1378
1379 /* Copy regs from where they were saved in the frame */
1380 for (regnum = 0; regnum < NUM_REGS + NUM_PSEUDO_REGS; regnum++)
1381 if (deprecated_get_frame_saved_regs (frame)[regnum])
1382 {
1383 int size;
1384 if (tdep->sh_abi == SH_ABI_32
1385 && (regnum == DEPRECATED_FP_REGNUM
1386 || regnum == PR_REGNUM))
1387 size = 4;
1388 else
1389 size = register_size (current_gdbarch,
1390 translate_insn_rn (regnum, media_mode));
1391 write_register (regnum,
1392 read_memory_integer (deprecated_get_frame_saved_regs (frame)[regnum],
1393 size));
1394 }
1395
1396 write_register (PC_REGNUM, get_frame_extra_info (frame)->return_pc);
1397 write_register (SP_REGNUM, fp + 8);
1398 }
1399 flush_cached_frames ();
1400 }
1401
1402 static CORE_ADDR
1403 sh_frame_align (struct gdbarch *ignore, CORE_ADDR sp)
1404 {
1405 return sp & ~3;
1406 }
1407
1408 /* Function: push_arguments
1409 Setup the function arguments for calling a function in the inferior.
1410
1411 On the Renesas SH architecture, there are four registers (R4 to R7)
1412 which are dedicated for passing function arguments. Up to the first
1413 four arguments (depending on size) may go into these registers.
1414 The rest go on the stack.
1415
1416 Arguments that are smaller than 4 bytes will still take up a whole
1417 register or a whole 32-bit word on the stack, and will be
1418 right-justified in the register or the stack word. This includes
1419 chars, shorts, and small aggregate types.
1420
1421 Arguments that are larger than 4 bytes may be split between two or
1422 more registers. If there are not enough registers free, an argument
1423 may be passed partly in a register (or registers), and partly on the
1424 stack. This includes doubles, long longs, and larger aggregates.
1425 As far as I know, there is no upper limit to the size of aggregates
1426 that will be passed in this way; in other words, the convention of
1427 passing a pointer to a large aggregate instead of a copy is not used.
1428
1429 An exceptional case exists for struct arguments (and possibly other
1430 aggregates such as arrays) if the size is larger than 4 bytes but
1431 not a multiple of 4 bytes. In this case the argument is never split
1432 between the registers and the stack, but instead is copied in its
1433 entirety onto the stack, AND also copied into as many registers as
1434 there is room for. In other words, space in registers permitting,
1435 two copies of the same argument are passed in. As far as I can tell,
1436 only the one on the stack is used, although that may be a function
1437 of the level of compiler optimization. I suspect this is a compiler
1438 bug. Arguments of these odd sizes are left-justified within the
1439 word (as opposed to arguments smaller than 4 bytes, which are
1440 right-justified).
1441
1442 If the function is to return an aggregate type such as a struct, it
1443 is either returned in the normal return value register R0 (if its
1444 size is no greater than one byte), or else the caller must allocate
1445 space into which the callee will copy the return value (if the size
1446 is greater than one byte). In this case, a pointer to the return
1447 value location is passed into the callee in register R2, which does
1448 not displace any of the other arguments passed in via registers R4
1449 to R7. */
1450
1451 /* R2-R9 for integer types and integer equivalent (char, pointers) and
1452 non-scalar (struct, union) elements (even if the elements are
1453 floats).
1454 FR0-FR11 for single precision floating point (float)
1455 DR0-DR10 for double precision floating point (double)
1456
1457 If a float is argument number 3 (for instance) and arguments number
1458 1,2, and 4 are integer, the mapping will be:
1459 arg1 -->R2, arg2 --> R3, arg3 -->FR0, arg4 --> R5. I.e. R4 is not used.
1460
1461 If a float is argument number 10 (for instance) and arguments number
1462 1 through 10 are integer, the mapping will be:
1463 arg1->R2, arg2->R3, arg3->R4, arg4->R5, arg5->R6, arg6->R7, arg7->R8,
1464 arg8->R9, arg9->(0,SP)stack(8-byte aligned), arg10->FR0, arg11->stack(16,SP).
1465 I.e. there is hole in the stack.
1466
1467 Different rules apply for variable arguments functions, and for functions
1468 for which the prototype is not known. */
1469
1470 static CORE_ADDR
1471 sh64_push_arguments (int nargs, struct value **args, CORE_ADDR sp,
1472 int struct_return, CORE_ADDR struct_addr)
1473 {
1474 int stack_offset, stack_alloc;
1475 int int_argreg;
1476 int float_argreg;
1477 int double_argreg;
1478 int float_arg_index = 0;
1479 int double_arg_index = 0;
1480 int argnum;
1481 struct type *type;
1482 CORE_ADDR regval;
1483 char *val;
1484 char valbuf[8];
1485 char valbuf_tmp[8];
1486 int len;
1487 int argreg_size;
1488 int fp_args[12];
1489
1490 memset (fp_args, 0, sizeof (fp_args));
1491
1492 /* first force sp to a 8-byte alignment */
1493 sp = sp & ~7;
1494
1495 /* The "struct return pointer" pseudo-argument has its own dedicated
1496 register */
1497
1498 if (struct_return)
1499 write_register (STRUCT_RETURN_REGNUM, struct_addr);
1500
1501 /* Now make sure there's space on the stack */
1502 for (argnum = 0, stack_alloc = 0; argnum < nargs; argnum++)
1503 stack_alloc += ((TYPE_LENGTH (VALUE_TYPE (args[argnum])) + 7) & ~7);
1504 sp -= stack_alloc; /* make room on stack for args */
1505
1506 /* Now load as many as possible of the first arguments into
1507 registers, and push the rest onto the stack. There are 64 bytes
1508 in eight registers available. Loop thru args from first to last. */
1509
1510 int_argreg = ARG0_REGNUM;
1511 float_argreg = FP0_REGNUM;
1512 double_argreg = DR0_REGNUM;
1513
1514 for (argnum = 0, stack_offset = 0; argnum < nargs; argnum++)
1515 {
1516 type = VALUE_TYPE (args[argnum]);
1517 len = TYPE_LENGTH (type);
1518 memset (valbuf, 0, sizeof (valbuf));
1519
1520 if (TYPE_CODE (type) != TYPE_CODE_FLT)
1521 {
1522 argreg_size = register_size (current_gdbarch, int_argreg);
1523
1524 if (len < argreg_size)
1525 {
1526 /* value gets right-justified in the register or stack word */
1527 if (TARGET_BYTE_ORDER == BFD_ENDIAN_BIG)
1528 memcpy (valbuf + argreg_size - len,
1529 (char *) VALUE_CONTENTS (args[argnum]), len);
1530 else
1531 memcpy (valbuf, (char *) VALUE_CONTENTS (args[argnum]), len);
1532
1533 val = valbuf;
1534 }
1535 else
1536 val = (char *) VALUE_CONTENTS (args[argnum]);
1537
1538 while (len > 0)
1539 {
1540 if (int_argreg > ARGLAST_REGNUM)
1541 {
1542 /* must go on the stack */
1543 write_memory (sp + stack_offset, val, argreg_size);
1544 stack_offset += 8;/*argreg_size;*/
1545 }
1546 /* NOTE WELL!!!!! This is not an "else if" clause!!!
1547 That's because some *&^%$ things get passed on the stack
1548 AND in the registers! */
1549 if (int_argreg <= ARGLAST_REGNUM)
1550 {
1551 /* there's room in a register */
1552 regval = extract_unsigned_integer (val, argreg_size);
1553 write_register (int_argreg, regval);
1554 }
1555 /* Store the value 8 bytes at a time. This means that
1556 things larger than 8 bytes may go partly in registers
1557 and partly on the stack. FIXME: argreg is incremented
1558 before we use its size. */
1559 len -= argreg_size;
1560 val += argreg_size;
1561 int_argreg++;
1562 }
1563 }
1564 else
1565 {
1566 val = (char *) VALUE_CONTENTS (args[argnum]);
1567 if (len == 4)
1568 {
1569 /* Where is it going to be stored? */
1570 while (fp_args[float_arg_index])
1571 float_arg_index ++;
1572
1573 /* Now float_argreg points to the register where it
1574 should be stored. Are we still within the allowed
1575 register set? */
1576 if (float_arg_index <= FLOAT_ARGLAST_REGNUM)
1577 {
1578 /* Goes in FR0...FR11 */
1579 deprecated_write_register_gen (FP0_REGNUM + float_arg_index,
1580 val);
1581 fp_args[float_arg_index] = 1;
1582 /* Skip the corresponding general argument register. */
1583 int_argreg ++;
1584 }
1585 else
1586 ;
1587 /* Store it as the integers, 8 bytes at the time, if
1588 necessary spilling on the stack. */
1589
1590 }
1591 else if (len == 8)
1592 {
1593 /* Where is it going to be stored? */
1594 while (fp_args[double_arg_index])
1595 double_arg_index += 2;
1596 /* Now double_argreg points to the register
1597 where it should be stored.
1598 Are we still within the allowed register set? */
1599 if (double_arg_index < FLOAT_ARGLAST_REGNUM)
1600 {
1601 /* Goes in DR0...DR10 */
1602 /* The numbering of the DRi registers is consecutive,
1603 i.e. includes odd numbers. */
1604 int double_register_offset = double_arg_index / 2;
1605 int regnum = DR0_REGNUM +
1606 double_register_offset;
1607 #if 0
1608 if (TARGET_BYTE_ORDER == BFD_ENDIAN_LITTLE)
1609 {
1610 memset (valbuf_tmp, 0, sizeof (valbuf_tmp));
1611 DEPRECATED_REGISTER_CONVERT_TO_VIRTUAL (regnum,
1612 type, val,
1613 valbuf_tmp);
1614 val = valbuf_tmp;
1615 }
1616 #endif
1617 /* Note: must use write_register_gen here instead
1618 of regcache_raw_write, because
1619 regcache_raw_write works only for real
1620 registers, not pseudo. write_register_gen will
1621 call the gdbarch function to do register
1622 writes, and that will properly know how to deal
1623 with pseudoregs. */
1624 deprecated_write_register_gen (regnum, val);
1625 fp_args[double_arg_index] = 1;
1626 fp_args[double_arg_index + 1] = 1;
1627 /* Skip the corresponding general argument register. */
1628 int_argreg ++;
1629 }
1630 else
1631 ;
1632 /* Store it as the integers, 8 bytes at the time, if
1633 necessary spilling on the stack. */
1634 }
1635 }
1636 }
1637 return sp;
1638 }
1639
1640 /* Function: push_return_address (pc)
1641 Set up the return address for the inferior function call.
1642 Needed for targets where we don't actually execute a JSR/BSR instruction */
1643
1644 static CORE_ADDR
1645 sh64_push_return_address (CORE_ADDR pc, CORE_ADDR sp)
1646 {
1647 write_register (PR_REGNUM, entry_point_address ());
1648 return sp;
1649 }
1650
1651 /* Find a function's return value in the appropriate registers (in
1652 regbuf), and copy it into valbuf. Extract from an array REGBUF
1653 containing the (raw) register state a function return value of type
1654 TYPE, and copy that, in virtual format, into VALBUF. */
1655 static void
1656 sh64_extract_return_value (struct type *type, char *regbuf, char *valbuf)
1657 {
1658 int offset;
1659 int return_register;
1660 int len = TYPE_LENGTH (type);
1661
1662 if (TYPE_CODE (type) == TYPE_CODE_FLT)
1663 {
1664 if (len == 4)
1665 {
1666 /* Return value stored in FP0_REGNUM */
1667 return_register = FP0_REGNUM;
1668 offset = DEPRECATED_REGISTER_BYTE (return_register);
1669 memcpy (valbuf, (char *) regbuf + offset, len);
1670 }
1671 else if (len == 8)
1672 {
1673 /* return value stored in DR0_REGNUM */
1674 DOUBLEST val;
1675
1676 return_register = DR0_REGNUM;
1677 offset = DEPRECATED_REGISTER_BYTE (return_register);
1678
1679 if (TARGET_BYTE_ORDER == BFD_ENDIAN_LITTLE)
1680 floatformat_to_doublest (&floatformat_ieee_double_littlebyte_bigword,
1681 (char *) regbuf + offset, &val);
1682 else
1683 floatformat_to_doublest (&floatformat_ieee_double_big,
1684 (char *) regbuf + offset, &val);
1685 store_typed_floating (valbuf, type, val);
1686 }
1687 }
1688 else
1689 {
1690 if (len <= 8)
1691 {
1692 /* Result is in register 2. If smaller than 8 bytes, it is padded
1693 at the most significant end. */
1694 return_register = DEFAULT_RETURN_REGNUM;
1695 if (TARGET_BYTE_ORDER == BFD_ENDIAN_BIG)
1696 offset = DEPRECATED_REGISTER_BYTE (return_register) +
1697 register_size (current_gdbarch, return_register) - len;
1698 else
1699 offset = DEPRECATED_REGISTER_BYTE (return_register);
1700 memcpy (valbuf, (char *) regbuf + offset, len);
1701 }
1702 else
1703 error ("bad size for return value");
1704 }
1705 }
1706
1707 /* Write into appropriate registers a function return value
1708 of type TYPE, given in virtual format.
1709 If the architecture is sh4 or sh3e, store a function's return value
1710 in the R0 general register or in the FP0 floating point register,
1711 depending on the type of the return value. In all the other cases
1712 the result is stored in r0, left-justified. */
1713
1714 static void
1715 sh64_store_return_value (struct type *type, char *valbuf)
1716 {
1717 char buf[64]; /* more than enough... */
1718 int len = TYPE_LENGTH (type);
1719
1720 if (TYPE_CODE (type) == TYPE_CODE_FLT)
1721 {
1722 if (len == 4)
1723 {
1724 /* Return value stored in FP0_REGNUM */
1725 deprecated_write_register_gen (FP0_REGNUM, valbuf);
1726 }
1727 if (len == 8)
1728 {
1729 /* return value stored in DR0_REGNUM */
1730 /* FIXME: Implement */
1731 }
1732 }
1733 else
1734 {
1735 int return_register = DEFAULT_RETURN_REGNUM;
1736 int offset = 0;
1737
1738 if (len <= register_size (current_gdbarch, return_register))
1739 {
1740 /* Pad with zeros. */
1741 memset (buf, 0, register_size (current_gdbarch, return_register));
1742 if (TARGET_BYTE_ORDER == BFD_ENDIAN_LITTLE)
1743 offset = 0; /*register_size (current_gdbarch,
1744 return_register) - len;*/
1745 else
1746 offset = register_size (current_gdbarch, return_register) - len;
1747
1748 memcpy (buf + offset, valbuf, len);
1749 deprecated_write_register_gen (return_register, buf);
1750 }
1751 else
1752 deprecated_write_register_gen (return_register, valbuf);
1753 }
1754 }
1755
1756 static void
1757 sh64_show_media_regs (void)
1758 {
1759 int i;
1760
1761 printf_filtered ("PC=%s SR=%016llx \n",
1762 paddr (read_register (PC_REGNUM)),
1763 (long long) read_register (SR_REGNUM));
1764
1765 printf_filtered ("SSR=%016llx SPC=%016llx \n",
1766 (long long) read_register (SSR_REGNUM),
1767 (long long) read_register (SPC_REGNUM));
1768 printf_filtered ("FPSCR=%016lx\n ",
1769 (long) read_register (FPSCR_REGNUM));
1770
1771 for (i = 0; i < 64; i = i + 4)
1772 printf_filtered ("\nR%d-R%d %016llx %016llx %016llx %016llx\n",
1773 i, i + 3,
1774 (long long) read_register (i + 0),
1775 (long long) read_register (i + 1),
1776 (long long) read_register (i + 2),
1777 (long long) read_register (i + 3));
1778
1779 printf_filtered ("\n");
1780
1781 for (i = 0; i < 64; i = i + 8)
1782 printf_filtered ("FR%d-FR%d %08lx %08lx %08lx %08lx %08lx %08lx %08lx %08lx\n",
1783 i, i + 7,
1784 (long) read_register (FP0_REGNUM + i + 0),
1785 (long) read_register (FP0_REGNUM + i + 1),
1786 (long) read_register (FP0_REGNUM + i + 2),
1787 (long) read_register (FP0_REGNUM + i + 3),
1788 (long) read_register (FP0_REGNUM + i + 4),
1789 (long) read_register (FP0_REGNUM + i + 5),
1790 (long) read_register (FP0_REGNUM + i + 6),
1791 (long) read_register (FP0_REGNUM + i + 7));
1792 }
1793
1794 static void
1795 sh64_show_compact_regs (void)
1796 {
1797 int i;
1798
1799 printf_filtered ("PC=%s \n",
1800 paddr (read_register (PC_C_REGNUM)));
1801
1802 printf_filtered ("GBR=%08lx MACH=%08lx MACL=%08lx PR=%08lx T=%08lx\n",
1803 (long) read_register (GBR_C_REGNUM),
1804 (long) read_register (MACH_C_REGNUM),
1805 (long) read_register (MACL_C_REGNUM),
1806 (long) read_register (PR_C_REGNUM),
1807 (long) read_register (T_C_REGNUM));
1808 printf_filtered ("FPSCR=%08lx FPUL=%08lx\n",
1809 (long) read_register (FPSCR_C_REGNUM),
1810 (long) read_register (FPUL_C_REGNUM));
1811
1812 for (i = 0; i < 16; i = i + 4)
1813 printf_filtered ("\nR%d-R%d %08lx %08lx %08lx %08lx\n",
1814 i, i + 3,
1815 (long) read_register (i + 0),
1816 (long) read_register (i + 1),
1817 (long) read_register (i + 2),
1818 (long) read_register (i + 3));
1819
1820 printf_filtered ("\n");
1821
1822 for (i = 0; i < 16; i = i + 8)
1823 printf_filtered ("FR%d-FR%d %08lx %08lx %08lx %08lx %08lx %08lx %08lx %08lx\n",
1824 i, i + 7,
1825 (long) read_register (FP0_REGNUM + i + 0),
1826 (long) read_register (FP0_REGNUM + i + 1),
1827 (long) read_register (FP0_REGNUM + i + 2),
1828 (long) read_register (FP0_REGNUM + i + 3),
1829 (long) read_register (FP0_REGNUM + i + 4),
1830 (long) read_register (FP0_REGNUM + i + 5),
1831 (long) read_register (FP0_REGNUM + i + 6),
1832 (long) read_register (FP0_REGNUM + i + 7));
1833 }
1834
1835 /* FIXME!!! This only shows the registers for shmedia, excluding the
1836 pseudo registers. */
1837 void
1838 sh64_show_regs (void)
1839 {
1840 if (deprecated_selected_frame
1841 && pc_is_isa32 (get_frame_pc (deprecated_selected_frame)))
1842 sh64_show_media_regs ();
1843 else
1844 sh64_show_compact_regs ();
1845 }
1846
1847 /* *INDENT-OFF* */
1848 /*
1849 SH MEDIA MODE (ISA 32)
1850 general registers (64-bit) 0-63
1851 0 r0, r1, r2, r3, r4, r5, r6, r7,
1852 64 r8, r9, r10, r11, r12, r13, r14, r15,
1853 128 r16, r17, r18, r19, r20, r21, r22, r23,
1854 192 r24, r25, r26, r27, r28, r29, r30, r31,
1855 256 r32, r33, r34, r35, r36, r37, r38, r39,
1856 320 r40, r41, r42, r43, r44, r45, r46, r47,
1857 384 r48, r49, r50, r51, r52, r53, r54, r55,
1858 448 r56, r57, r58, r59, r60, r61, r62, r63,
1859
1860 pc (64-bit) 64
1861 512 pc,
1862
1863 status reg., saved status reg., saved pc reg. (64-bit) 65-67
1864 520 sr, ssr, spc,
1865
1866 target registers (64-bit) 68-75
1867 544 tr0, tr1, tr2, tr3, tr4, tr5, tr6, tr7,
1868
1869 floating point state control register (32-bit) 76
1870 608 fpscr,
1871
1872 single precision floating point registers (32-bit) 77-140
1873 612 fr0, fr1, fr2, fr3, fr4, fr5, fr6, fr7,
1874 644 fr8, fr9, fr10, fr11, fr12, fr13, fr14, fr15,
1875 676 fr16, fr17, fr18, fr19, fr20, fr21, fr22, fr23,
1876 708 fr24, fr25, fr26, fr27, fr28, fr29, fr30, fr31,
1877 740 fr32, fr33, fr34, fr35, fr36, fr37, fr38, fr39,
1878 772 fr40, fr41, fr42, fr43, fr44, fr45, fr46, fr47,
1879 804 fr48, fr49, fr50, fr51, fr52, fr53, fr54, fr55,
1880 836 fr56, fr57, fr58, fr59, fr60, fr61, fr62, fr63,
1881
1882 TOTAL SPACE FOR REGISTERS: 868 bytes
1883
1884 From here on they are all pseudo registers: no memory allocated.
1885 REGISTER_BYTE returns the register byte for the base register.
1886
1887 double precision registers (pseudo) 141-172
1888 dr0, dr2, dr4, dr6, dr8, dr10, dr12, dr14,
1889 dr16, dr18, dr20, dr22, dr24, dr26, dr28, dr30,
1890 dr32, dr34, dr36, dr38, dr40, dr42, dr44, dr46,
1891 dr48, dr50, dr52, dr54, dr56, dr58, dr60, dr62,
1892
1893 floating point pairs (pseudo) 173-204
1894 fp0, fp2, fp4, fp6, fp8, fp10, fp12, fp14,
1895 fp16, fp18, fp20, fp22, fp24, fp26, fp28, fp30,
1896 fp32, fp34, fp36, fp38, fp40, fp42, fp44, fp46,
1897 fp48, fp50, fp52, fp54, fp56, fp58, fp60, fp62,
1898
1899 floating point vectors (4 floating point regs) (pseudo) 205-220
1900 fv0, fv4, fv8, fv12, fv16, fv20, fv24, fv28,
1901 fv32, fv36, fv40, fv44, fv48, fv52, fv56, fv60,
1902
1903 SH COMPACT MODE (ISA 16) (all pseudo) 221-272
1904 r0_c, r1_c, r2_c, r3_c, r4_c, r5_c, r6_c, r7_c,
1905 r8_c, r9_c, r10_c, r11_c, r12_c, r13_c, r14_c, r15_c,
1906 pc_c,
1907 gbr_c, mach_c, macl_c, pr_c, t_c,
1908 fpscr_c, fpul_c,
1909 fr0_c, fr1_c, fr2_c, fr3_c, fr4_c, fr5_c, fr6_c, fr7_c,
1910 fr8_c, fr9_c, fr10_c, fr11_c, fr12_c, fr13_c, fr14_c, fr15_c
1911 dr0_c, dr2_c, dr4_c, dr6_c, dr8_c, dr10_c, dr12_c, dr14_c
1912 fv0_c, fv4_c, fv8_c, fv12_c
1913 */
1914 /* *INDENT-ON* */
1915 static int
1916 sh64_register_byte (int reg_nr)
1917 {
1918 int base_regnum = -1;
1919
1920 /* If it is a pseudo register, get the number of the first floating
1921 point register that is part of it. */
1922 if (reg_nr >= DR0_REGNUM
1923 && reg_nr <= DR_LAST_REGNUM)
1924 base_regnum = dr_reg_base_num (reg_nr);
1925
1926 else if (reg_nr >= FPP0_REGNUM
1927 && reg_nr <= FPP_LAST_REGNUM)
1928 base_regnum = fpp_reg_base_num (reg_nr);
1929
1930 else if (reg_nr >= FV0_REGNUM
1931 && reg_nr <= FV_LAST_REGNUM)
1932 base_regnum = fv_reg_base_num (reg_nr);
1933
1934 /* sh compact pseudo register. FPSCR is a pathological case, need to
1935 treat it as special. */
1936 else if ((reg_nr >= R0_C_REGNUM
1937 && reg_nr <= FV_LAST_C_REGNUM)
1938 && reg_nr != FPSCR_C_REGNUM)
1939 base_regnum = sh64_compact_reg_base_num (reg_nr);
1940
1941 /* Now return the offset in bytes within the register cache. */
1942 /* sh media pseudo register, i.e. any of DR, FFP, FV registers. */
1943 if (reg_nr >= DR0_REGNUM
1944 && reg_nr <= FV_LAST_REGNUM)
1945 return (base_regnum - FP0_REGNUM + 1) * 4
1946 + (TR7_REGNUM + 1) * 8;
1947
1948 /* sh compact pseudo register: general register */
1949 if ((reg_nr >= R0_C_REGNUM
1950 && reg_nr <= R_LAST_C_REGNUM))
1951 return (TARGET_BYTE_ORDER == BFD_ENDIAN_BIG
1952 ? base_regnum * 8 + 4
1953 : base_regnum * 8);
1954
1955 /* sh compact pseudo register: */
1956 if (reg_nr == PC_C_REGNUM
1957 || reg_nr == GBR_C_REGNUM
1958 || reg_nr == MACL_C_REGNUM
1959 || reg_nr == PR_C_REGNUM)
1960 return (TARGET_BYTE_ORDER == BFD_ENDIAN_BIG
1961 ? base_regnum * 8 + 4
1962 : base_regnum * 8);
1963
1964 if (reg_nr == MACH_C_REGNUM)
1965 return base_regnum * 8;
1966
1967 if (reg_nr == T_C_REGNUM)
1968 return base_regnum * 8; /* FIXME??? how do we get bit 0? Do we have to? */
1969
1970 /* sh compact pseudo register: floating point register */
1971 else if (reg_nr >= FP0_C_REGNUM
1972 && reg_nr <= FV_LAST_C_REGNUM)
1973 return (base_regnum - FP0_REGNUM) * 4
1974 + (TR7_REGNUM + 1) * 8 + 4;
1975
1976 else if (reg_nr == FPSCR_C_REGNUM)
1977 /* This is complicated, for now return the beginning of the
1978 architectural FPSCR register. */
1979 return (TR7_REGNUM + 1) * 8;
1980
1981 else if (reg_nr == FPUL_C_REGNUM)
1982 return ((base_regnum - FP0_REGNUM) * 4 +
1983 (TR7_REGNUM + 1) * 8 + 4);
1984
1985 /* It is not a pseudo register. */
1986 /* It is a 64 bit register. */
1987 else if (reg_nr <= TR7_REGNUM)
1988 return reg_nr * 8;
1989
1990 /* It is a 32 bit register. */
1991 else if (reg_nr == FPSCR_REGNUM)
1992 return (FPSCR_REGNUM * 8);
1993
1994 /* It is floating point 32-bit register */
1995 else
1996 return ((TR7_REGNUM + 1) * 8
1997 + (reg_nr - FP0_REGNUM + 1) * 4);
1998 }
1999
2000 static struct type *
2001 sh64_build_float_register_type (int high)
2002 {
2003 struct type *temp;
2004
2005 temp = create_range_type (NULL, builtin_type_int, 0, high);
2006 return create_array_type (NULL, builtin_type_float, temp);
2007 }
2008
2009 /* Return the GDB type object for the "standard" data type
2010 of data in register REG_NR. */
2011 static struct type *
2012 sh64_register_type (struct gdbarch *gdbarch, int reg_nr)
2013 {
2014 if ((reg_nr >= FP0_REGNUM
2015 && reg_nr <= FP_LAST_REGNUM)
2016 || (reg_nr >= FP0_C_REGNUM
2017 && reg_nr <= FP_LAST_C_REGNUM))
2018 return builtin_type_float;
2019 else if ((reg_nr >= DR0_REGNUM
2020 && reg_nr <= DR_LAST_REGNUM)
2021 || (reg_nr >= DR0_C_REGNUM
2022 && reg_nr <= DR_LAST_C_REGNUM))
2023 return builtin_type_double;
2024 else if (reg_nr >= FPP0_REGNUM
2025 && reg_nr <= FPP_LAST_REGNUM)
2026 return sh64_build_float_register_type (1);
2027 else if ((reg_nr >= FV0_REGNUM
2028 && reg_nr <= FV_LAST_REGNUM)
2029 ||(reg_nr >= FV0_C_REGNUM
2030 && reg_nr <= FV_LAST_C_REGNUM))
2031 return sh64_build_float_register_type (3);
2032 else if (reg_nr == FPSCR_REGNUM)
2033 return builtin_type_int;
2034 else if (reg_nr >= R0_C_REGNUM
2035 && reg_nr < FP0_C_REGNUM)
2036 return builtin_type_int;
2037 else
2038 return builtin_type_long_long;
2039 }
2040
2041 static void
2042 sh64_register_convert_to_virtual (int regnum, struct type *type,
2043 char *from, char *to)
2044 {
2045 if (TARGET_BYTE_ORDER != BFD_ENDIAN_LITTLE)
2046 {
2047 /* It is a no-op. */
2048 memcpy (to, from, register_size (current_gdbarch, regnum));
2049 return;
2050 }
2051
2052 if ((regnum >= DR0_REGNUM
2053 && regnum <= DR_LAST_REGNUM)
2054 || (regnum >= DR0_C_REGNUM
2055 && regnum <= DR_LAST_C_REGNUM))
2056 {
2057 DOUBLEST val;
2058 floatformat_to_doublest (&floatformat_ieee_double_littlebyte_bigword,
2059 from, &val);
2060 store_typed_floating (to, type, val);
2061 }
2062 else
2063 error ("sh64_register_convert_to_virtual called with non DR register number");
2064 }
2065
2066 static void
2067 sh64_register_convert_to_raw (struct type *type, int regnum,
2068 const void *from, void *to)
2069 {
2070 if (TARGET_BYTE_ORDER != BFD_ENDIAN_LITTLE)
2071 {
2072 /* It is a no-op. */
2073 memcpy (to, from, register_size (current_gdbarch, regnum));
2074 return;
2075 }
2076
2077 if ((regnum >= DR0_REGNUM
2078 && regnum <= DR_LAST_REGNUM)
2079 || (regnum >= DR0_C_REGNUM
2080 && regnum <= DR_LAST_C_REGNUM))
2081 {
2082 DOUBLEST val = deprecated_extract_floating (from, TYPE_LENGTH(type));
2083 floatformat_from_doublest (&floatformat_ieee_double_littlebyte_bigword,
2084 &val, to);
2085 }
2086 else
2087 error ("sh64_register_convert_to_raw called with non DR register number");
2088 }
2089
2090 static void
2091 sh64_pseudo_register_read (struct gdbarch *gdbarch, struct regcache *regcache,
2092 int reg_nr, void *buffer)
2093 {
2094 int base_regnum;
2095 int portion;
2096 int offset = 0;
2097 char temp_buffer[MAX_REGISTER_SIZE];
2098
2099 if (reg_nr >= DR0_REGNUM
2100 && reg_nr <= DR_LAST_REGNUM)
2101 {
2102 base_regnum = dr_reg_base_num (reg_nr);
2103
2104 /* Build the value in the provided buffer. */
2105 /* DR regs are double precision registers obtained by
2106 concatenating 2 single precision floating point registers. */
2107 for (portion = 0; portion < 2; portion++)
2108 regcache_raw_read (regcache, base_regnum + portion,
2109 (temp_buffer
2110 + register_size (gdbarch, base_regnum) * portion));
2111
2112 /* We must pay attention to the endianness. */
2113 sh64_register_convert_to_virtual (reg_nr,
2114 gdbarch_register_type (gdbarch,
2115 reg_nr),
2116 temp_buffer, buffer);
2117
2118 }
2119
2120 else if (reg_nr >= FPP0_REGNUM
2121 && reg_nr <= FPP_LAST_REGNUM)
2122 {
2123 base_regnum = fpp_reg_base_num (reg_nr);
2124
2125 /* Build the value in the provided buffer. */
2126 /* FPP regs are pairs of single precision registers obtained by
2127 concatenating 2 single precision floating point registers. */
2128 for (portion = 0; portion < 2; portion++)
2129 regcache_raw_read (regcache, base_regnum + portion,
2130 ((char *) buffer
2131 + register_size (gdbarch, base_regnum) * portion));
2132 }
2133
2134 else if (reg_nr >= FV0_REGNUM
2135 && reg_nr <= FV_LAST_REGNUM)
2136 {
2137 base_regnum = fv_reg_base_num (reg_nr);
2138
2139 /* Build the value in the provided buffer. */
2140 /* FV regs are vectors of single precision registers obtained by
2141 concatenating 4 single precision floating point registers. */
2142 for (portion = 0; portion < 4; portion++)
2143 regcache_raw_read (regcache, base_regnum + portion,
2144 ((char *) buffer
2145 + register_size (gdbarch, base_regnum) * portion));
2146 }
2147
2148 /* sh compact pseudo registers. 1-to-1 with a shmedia register */
2149 else if (reg_nr >= R0_C_REGNUM
2150 && reg_nr <= T_C_REGNUM)
2151 {
2152 base_regnum = sh64_compact_reg_base_num (reg_nr);
2153
2154 /* Build the value in the provided buffer. */
2155 regcache_raw_read (regcache, base_regnum, temp_buffer);
2156 if (TARGET_BYTE_ORDER == BFD_ENDIAN_BIG)
2157 offset = 4;
2158 memcpy (buffer, temp_buffer + offset, 4); /* get LOWER 32 bits only????*/
2159 }
2160
2161 else if (reg_nr >= FP0_C_REGNUM
2162 && reg_nr <= FP_LAST_C_REGNUM)
2163 {
2164 base_regnum = sh64_compact_reg_base_num (reg_nr);
2165
2166 /* Build the value in the provided buffer. */
2167 /* Floating point registers map 1-1 to the media fp regs,
2168 they have the same size and endianness. */
2169 regcache_raw_read (regcache, base_regnum, buffer);
2170 }
2171
2172 else if (reg_nr >= DR0_C_REGNUM
2173 && reg_nr <= DR_LAST_C_REGNUM)
2174 {
2175 base_regnum = sh64_compact_reg_base_num (reg_nr);
2176
2177 /* DR_C regs are double precision registers obtained by
2178 concatenating 2 single precision floating point registers. */
2179 for (portion = 0; portion < 2; portion++)
2180 regcache_raw_read (regcache, base_regnum + portion,
2181 (temp_buffer
2182 + register_size (gdbarch, base_regnum) * portion));
2183
2184 /* We must pay attention to the endianness. */
2185 sh64_register_convert_to_virtual (reg_nr,
2186 gdbarch_register_type (gdbarch,
2187 reg_nr),
2188 temp_buffer, buffer);
2189 }
2190
2191 else if (reg_nr >= FV0_C_REGNUM
2192 && reg_nr <= FV_LAST_C_REGNUM)
2193 {
2194 base_regnum = sh64_compact_reg_base_num (reg_nr);
2195
2196 /* Build the value in the provided buffer. */
2197 /* FV_C regs are vectors of single precision registers obtained by
2198 concatenating 4 single precision floating point registers. */
2199 for (portion = 0; portion < 4; portion++)
2200 regcache_raw_read (regcache, base_regnum + portion,
2201 ((char *) buffer
2202 + register_size (gdbarch, base_regnum) * portion));
2203 }
2204
2205 else if (reg_nr == FPSCR_C_REGNUM)
2206 {
2207 int fpscr_base_regnum;
2208 int sr_base_regnum;
2209 unsigned int fpscr_value;
2210 unsigned int sr_value;
2211 unsigned int fpscr_c_value;
2212 unsigned int fpscr_c_part1_value;
2213 unsigned int fpscr_c_part2_value;
2214
2215 fpscr_base_regnum = FPSCR_REGNUM;
2216 sr_base_regnum = SR_REGNUM;
2217
2218 /* Build the value in the provided buffer. */
2219 /* FPSCR_C is a very weird register that contains sparse bits
2220 from the FPSCR and the SR architectural registers.
2221 Specifically: */
2222 /* *INDENT-OFF* */
2223 /*
2224 FPSRC_C bit
2225 0 Bit 0 of FPSCR
2226 1 reserved
2227 2-17 Bit 2-18 of FPSCR
2228 18-20 Bits 12,13,14 of SR
2229 21-31 reserved
2230 */
2231 /* *INDENT-ON* */
2232 /* Get FPSCR into a local buffer */
2233 regcache_raw_read (regcache, fpscr_base_regnum, temp_buffer);
2234 /* Get value as an int. */
2235 fpscr_value = extract_unsigned_integer (temp_buffer, 4);
2236 /* Get SR into a local buffer */
2237 regcache_raw_read (regcache, sr_base_regnum, temp_buffer);
2238 /* Get value as an int. */
2239 sr_value = extract_unsigned_integer (temp_buffer, 4);
2240 /* Build the new value. */
2241 fpscr_c_part1_value = fpscr_value & 0x3fffd;
2242 fpscr_c_part2_value = (sr_value & 0x7000) << 6;
2243 fpscr_c_value = fpscr_c_part1_value | fpscr_c_part2_value;
2244 /* Store that in out buffer!!! */
2245 store_unsigned_integer (buffer, 4, fpscr_c_value);
2246 /* FIXME There is surely an endianness gotcha here. */
2247 }
2248
2249 else if (reg_nr == FPUL_C_REGNUM)
2250 {
2251 base_regnum = sh64_compact_reg_base_num (reg_nr);
2252
2253 /* FPUL_C register is floating point register 32,
2254 same size, same endianness. */
2255 regcache_raw_read (regcache, base_regnum, buffer);
2256 }
2257 }
2258
2259 static void
2260 sh64_pseudo_register_write (struct gdbarch *gdbarch, struct regcache *regcache,
2261 int reg_nr, const void *buffer)
2262 {
2263 int base_regnum, portion;
2264 int offset;
2265 char temp_buffer[MAX_REGISTER_SIZE];
2266
2267 if (reg_nr >= DR0_REGNUM
2268 && reg_nr <= DR_LAST_REGNUM)
2269 {
2270 base_regnum = dr_reg_base_num (reg_nr);
2271 /* We must pay attention to the endianness. */
2272 sh64_register_convert_to_raw (gdbarch_register_type (gdbarch, reg_nr),
2273 reg_nr,
2274 buffer, temp_buffer);
2275
2276 /* Write the real regs for which this one is an alias. */
2277 for (portion = 0; portion < 2; portion++)
2278 regcache_raw_write (regcache, base_regnum + portion,
2279 (temp_buffer
2280 + register_size (gdbarch,
2281 base_regnum) * portion));
2282 }
2283
2284 else if (reg_nr >= FPP0_REGNUM
2285 && reg_nr <= FPP_LAST_REGNUM)
2286 {
2287 base_regnum = fpp_reg_base_num (reg_nr);
2288
2289 /* Write the real regs for which this one is an alias. */
2290 for (portion = 0; portion < 2; portion++)
2291 regcache_raw_write (regcache, base_regnum + portion,
2292 ((char *) buffer
2293 + register_size (gdbarch,
2294 base_regnum) * portion));
2295 }
2296
2297 else if (reg_nr >= FV0_REGNUM
2298 && reg_nr <= FV_LAST_REGNUM)
2299 {
2300 base_regnum = fv_reg_base_num (reg_nr);
2301
2302 /* Write the real regs for which this one is an alias. */
2303 for (portion = 0; portion < 4; portion++)
2304 regcache_raw_write (regcache, base_regnum + portion,
2305 ((char *) buffer
2306 + register_size (gdbarch,
2307 base_regnum) * portion));
2308 }
2309
2310 /* sh compact general pseudo registers. 1-to-1 with a shmedia
2311 register but only 4 bytes of it. */
2312 else if (reg_nr >= R0_C_REGNUM
2313 && reg_nr <= T_C_REGNUM)
2314 {
2315 base_regnum = sh64_compact_reg_base_num (reg_nr);
2316 /* reg_nr is 32 bit here, and base_regnum is 64 bits. */
2317 if (TARGET_BYTE_ORDER == BFD_ENDIAN_BIG)
2318 offset = 4;
2319 else
2320 offset = 0;
2321 /* Let's read the value of the base register into a temporary
2322 buffer, so that overwriting the last four bytes with the new
2323 value of the pseudo will leave the upper 4 bytes unchanged. */
2324 regcache_raw_read (regcache, base_regnum, temp_buffer);
2325 /* Write as an 8 byte quantity */
2326 memcpy (temp_buffer + offset, buffer, 4);
2327 regcache_raw_write (regcache, base_regnum, temp_buffer);
2328 }
2329
2330 /* sh floating point compact pseudo registers. 1-to-1 with a shmedia
2331 registers. Both are 4 bytes. */
2332 else if (reg_nr >= FP0_C_REGNUM
2333 && reg_nr <= FP_LAST_C_REGNUM)
2334 {
2335 base_regnum = sh64_compact_reg_base_num (reg_nr);
2336 regcache_raw_write (regcache, base_regnum, buffer);
2337 }
2338
2339 else if (reg_nr >= DR0_C_REGNUM
2340 && reg_nr <= DR_LAST_C_REGNUM)
2341 {
2342 base_regnum = sh64_compact_reg_base_num (reg_nr);
2343 for (portion = 0; portion < 2; portion++)
2344 {
2345 /* We must pay attention to the endianness. */
2346 sh64_register_convert_to_raw (gdbarch_register_type (gdbarch,
2347 reg_nr),
2348 reg_nr,
2349 buffer, temp_buffer);
2350
2351 regcache_raw_write (regcache, base_regnum + portion,
2352 (temp_buffer
2353 + register_size (gdbarch,
2354 base_regnum) * portion));
2355 }
2356 }
2357
2358 else if (reg_nr >= FV0_C_REGNUM
2359 && reg_nr <= FV_LAST_C_REGNUM)
2360 {
2361 base_regnum = sh64_compact_reg_base_num (reg_nr);
2362
2363 for (portion = 0; portion < 4; portion++)
2364 {
2365 regcache_raw_write (regcache, base_regnum + portion,
2366 ((char *) buffer
2367 + register_size (gdbarch,
2368 base_regnum) * portion));
2369 }
2370 }
2371
2372 else if (reg_nr == FPSCR_C_REGNUM)
2373 {
2374 int fpscr_base_regnum;
2375 int sr_base_regnum;
2376 unsigned int fpscr_value;
2377 unsigned int sr_value;
2378 unsigned int old_fpscr_value;
2379 unsigned int old_sr_value;
2380 unsigned int fpscr_c_value;
2381 unsigned int fpscr_mask;
2382 unsigned int sr_mask;
2383
2384 fpscr_base_regnum = FPSCR_REGNUM;
2385 sr_base_regnum = SR_REGNUM;
2386
2387 /* FPSCR_C is a very weird register that contains sparse bits
2388 from the FPSCR and the SR architectural registers.
2389 Specifically: */
2390 /* *INDENT-OFF* */
2391 /*
2392 FPSRC_C bit
2393 0 Bit 0 of FPSCR
2394 1 reserved
2395 2-17 Bit 2-18 of FPSCR
2396 18-20 Bits 12,13,14 of SR
2397 21-31 reserved
2398 */
2399 /* *INDENT-ON* */
2400 /* Get value as an int. */
2401 fpscr_c_value = extract_unsigned_integer (buffer, 4);
2402
2403 /* Build the new values. */
2404 fpscr_mask = 0x0003fffd;
2405 sr_mask = 0x001c0000;
2406
2407 fpscr_value = fpscr_c_value & fpscr_mask;
2408 sr_value = (fpscr_value & sr_mask) >> 6;
2409
2410 regcache_raw_read (regcache, fpscr_base_regnum, temp_buffer);
2411 old_fpscr_value = extract_unsigned_integer (temp_buffer, 4);
2412 old_fpscr_value &= 0xfffc0002;
2413 fpscr_value |= old_fpscr_value;
2414 store_unsigned_integer (temp_buffer, 4, fpscr_value);
2415 regcache_raw_write (regcache, fpscr_base_regnum, temp_buffer);
2416
2417 regcache_raw_read (regcache, sr_base_regnum, temp_buffer);
2418 old_sr_value = extract_unsigned_integer (temp_buffer, 4);
2419 old_sr_value &= 0xffff8fff;
2420 sr_value |= old_sr_value;
2421 store_unsigned_integer (temp_buffer, 4, sr_value);
2422 regcache_raw_write (regcache, sr_base_regnum, temp_buffer);
2423 }
2424
2425 else if (reg_nr == FPUL_C_REGNUM)
2426 {
2427 base_regnum = sh64_compact_reg_base_num (reg_nr);
2428 regcache_raw_write (regcache, base_regnum, buffer);
2429 }
2430 }
2431
2432 /* Floating point vector of 4 float registers. */
2433 static void
2434 do_fv_register_info (struct gdbarch *gdbarch, struct ui_file *file,
2435 int fv_regnum)
2436 {
2437 int first_fp_reg_num = fv_reg_base_num (fv_regnum);
2438 fprintf_filtered (file, "fv%d\t0x%08x\t0x%08x\t0x%08x\t0x%08x\n",
2439 fv_regnum - FV0_REGNUM,
2440 (int) read_register (first_fp_reg_num),
2441 (int) read_register (first_fp_reg_num + 1),
2442 (int) read_register (first_fp_reg_num + 2),
2443 (int) read_register (first_fp_reg_num + 3));
2444 }
2445
2446 /* Floating point vector of 4 float registers, compact mode. */
2447 static void
2448 do_fv_c_register_info (int fv_regnum)
2449 {
2450 int first_fp_reg_num = sh64_compact_reg_base_num (fv_regnum);
2451 printf_filtered ("fv%d_c\t0x%08x\t0x%08x\t0x%08x\t0x%08x\n",
2452 fv_regnum - FV0_C_REGNUM,
2453 (int) read_register (first_fp_reg_num),
2454 (int) read_register (first_fp_reg_num + 1),
2455 (int) read_register (first_fp_reg_num + 2),
2456 (int) read_register (first_fp_reg_num + 3));
2457 }
2458
2459 /* Pairs of single regs. The DR are instead double precision
2460 registers. */
2461 static void
2462 do_fpp_register_info (int fpp_regnum)
2463 {
2464 int first_fp_reg_num = fpp_reg_base_num (fpp_regnum);
2465
2466 printf_filtered ("fpp%d\t0x%08x\t0x%08x\n",
2467 fpp_regnum - FPP0_REGNUM,
2468 (int) read_register (first_fp_reg_num),
2469 (int) read_register (first_fp_reg_num + 1));
2470 }
2471
2472 /* Double precision registers. */
2473 static void
2474 do_dr_register_info (struct gdbarch *gdbarch, struct ui_file *file,
2475 int dr_regnum)
2476 {
2477 int first_fp_reg_num = dr_reg_base_num (dr_regnum);
2478
2479 fprintf_filtered (file, "dr%d\t0x%08x%08x\n",
2480 dr_regnum - DR0_REGNUM,
2481 (int) read_register (first_fp_reg_num),
2482 (int) read_register (first_fp_reg_num + 1));
2483 }
2484
2485 /* Double precision registers, compact mode. */
2486 static void
2487 do_dr_c_register_info (int dr_regnum)
2488 {
2489 int first_fp_reg_num = sh64_compact_reg_base_num (dr_regnum);
2490
2491 printf_filtered ("dr%d_c\t0x%08x%08x\n",
2492 dr_regnum - DR0_C_REGNUM,
2493 (int) read_register (first_fp_reg_num),
2494 (int) read_register (first_fp_reg_num +1));
2495 }
2496
2497 /* General register in compact mode. */
2498 static void
2499 do_r_c_register_info (int r_c_regnum)
2500 {
2501 int regnum = sh64_compact_reg_base_num (r_c_regnum);
2502
2503 printf_filtered ("r%d_c\t0x%08x\n",
2504 r_c_regnum - R0_C_REGNUM,
2505 /*FIXME!!!*/ (int) read_register (regnum));
2506 }
2507
2508 /* FIXME:!! THIS SHOULD TAKE CARE OF GETTING THE RIGHT PORTION OF THE
2509 shmedia REGISTERS. */
2510 /* Control registers, compact mode. */
2511 static void
2512 do_cr_c_register_info (int cr_c_regnum)
2513 {
2514 switch (cr_c_regnum)
2515 {
2516 case 237: printf_filtered ("pc_c\t0x%08x\n", (int) read_register (cr_c_regnum));
2517 break;
2518 case 238: printf_filtered ("gbr_c\t0x%08x\n", (int) read_register (cr_c_regnum));
2519 break;
2520 case 239: printf_filtered ("mach_c\t0x%08x\n", (int) read_register (cr_c_regnum));
2521 break;
2522 case 240: printf_filtered ("macl_c\t0x%08x\n", (int) read_register (cr_c_regnum));
2523 break;
2524 case 241: printf_filtered ("pr_c\t0x%08x\n", (int) read_register (cr_c_regnum));
2525 break;
2526 case 242: printf_filtered ("t_c\t0x%08x\n", (int) read_register (cr_c_regnum));
2527 break;
2528 case 243: printf_filtered ("fpscr_c\t0x%08x\n", (int) read_register (cr_c_regnum));
2529 break;
2530 case 244: printf_filtered ("fpul_c\t0x%08x\n", (int)read_register (cr_c_regnum));
2531 break;
2532 }
2533 }
2534
2535 static void
2536 sh_do_fp_register (struct gdbarch *gdbarch, struct ui_file *file, int regnum)
2537 { /* do values for FP (float) regs */
2538 char *raw_buffer;
2539 double flt; /* double extracted from raw hex data */
2540 int inv;
2541 int j;
2542
2543 /* Allocate space for the float. */
2544 raw_buffer = (char *) alloca (register_size (gdbarch, FP0_REGNUM));
2545
2546 /* Get the data in raw format. */
2547 if (!frame_register_read (get_selected_frame (), regnum, raw_buffer))
2548 error ("can't read register %d (%s)", regnum, REGISTER_NAME (regnum));
2549
2550 /* Get the register as a number */
2551 flt = unpack_double (builtin_type_float, raw_buffer, &inv);
2552
2553 /* Print the name and some spaces. */
2554 fputs_filtered (REGISTER_NAME (regnum), file);
2555 print_spaces_filtered (15 - strlen (REGISTER_NAME (regnum)), file);
2556
2557 /* Print the value. */
2558 if (inv)
2559 fprintf_filtered (file, "<invalid float>");
2560 else
2561 fprintf_filtered (file, "%-10.9g", flt);
2562
2563 /* Print the fp register as hex. */
2564 fprintf_filtered (file, "\t(raw 0x");
2565 for (j = 0; j < register_size (gdbarch, regnum); j++)
2566 {
2567 int idx = TARGET_BYTE_ORDER == BFD_ENDIAN_BIG ? j
2568 : register_size (gdbarch, regnum) - 1 - j;
2569 fprintf_filtered (file, "%02x", (unsigned char) raw_buffer[idx]);
2570 }
2571 fprintf_filtered (file, ")");
2572 fprintf_filtered (file, "\n");
2573 }
2574
2575 static void
2576 sh64_do_pseudo_register (int regnum)
2577 {
2578 /* All the sh64-compact mode registers are pseudo registers. */
2579
2580 if (regnum < NUM_REGS
2581 || regnum >= NUM_REGS + NUM_PSEUDO_REGS_SH_MEDIA + NUM_PSEUDO_REGS_SH_COMPACT)
2582 internal_error (__FILE__, __LINE__,
2583 "Invalid pseudo register number %d\n", regnum);
2584
2585 else if ((regnum >= DR0_REGNUM
2586 && regnum <= DR_LAST_REGNUM))
2587 do_dr_register_info (current_gdbarch, gdb_stdout, regnum);
2588
2589 else if ((regnum >= DR0_C_REGNUM
2590 && regnum <= DR_LAST_C_REGNUM))
2591 do_dr_c_register_info (regnum);
2592
2593 else if ((regnum >= FV0_REGNUM
2594 && regnum <= FV_LAST_REGNUM))
2595 do_fv_register_info (current_gdbarch, gdb_stdout, regnum);
2596
2597 else if ((regnum >= FV0_C_REGNUM
2598 && regnum <= FV_LAST_C_REGNUM))
2599 do_fv_c_register_info (regnum);
2600
2601 else if (regnum >= FPP0_REGNUM
2602 && regnum <= FPP_LAST_REGNUM)
2603 do_fpp_register_info (regnum);
2604
2605 else if (regnum >= R0_C_REGNUM
2606 && regnum <= R_LAST_C_REGNUM)
2607 /* FIXME, this function will not print the right format. */
2608 do_r_c_register_info (regnum);
2609 else if (regnum >= FP0_C_REGNUM
2610 && regnum <= FP_LAST_C_REGNUM)
2611 /* This should work also for pseudoregs. */
2612 sh_do_fp_register (current_gdbarch, gdb_stdout, regnum);
2613 else if (regnum >= PC_C_REGNUM
2614 && regnum <= FPUL_C_REGNUM)
2615 do_cr_c_register_info (regnum);
2616 }
2617
2618 static void
2619 sh_do_register (struct gdbarch *gdbarch, struct ui_file *file, int regnum)
2620 {
2621 char raw_buffer[MAX_REGISTER_SIZE];
2622
2623 fputs_filtered (REGISTER_NAME (regnum), file);
2624 print_spaces_filtered (15 - strlen (REGISTER_NAME (regnum)), file);
2625
2626 /* Get the data in raw format. */
2627 if (!frame_register_read (get_selected_frame (), regnum, raw_buffer))
2628 fprintf_filtered (file, "*value not available*\n");
2629
2630 val_print (gdbarch_register_type (gdbarch, regnum), raw_buffer, 0, 0,
2631 file, 'x', 1, 0, Val_pretty_default);
2632 fprintf_filtered (file, "\t");
2633 val_print (gdbarch_register_type (gdbarch, regnum), raw_buffer, 0, 0,
2634 file, 0, 1, 0, Val_pretty_default);
2635 fprintf_filtered (file, "\n");
2636 }
2637
2638 static void
2639 sh_print_register (struct gdbarch *gdbarch, struct ui_file *file, int regnum)
2640 {
2641 if (regnum < 0 || regnum >= NUM_REGS + NUM_PSEUDO_REGS)
2642 internal_error (__FILE__, __LINE__,
2643 "Invalid register number %d\n", regnum);
2644
2645 else if (regnum >= 0 && regnum < NUM_REGS)
2646 {
2647 if (TYPE_CODE (gdbarch_register_type (gdbarch, regnum)) == TYPE_CODE_FLT)
2648 sh_do_fp_register (gdbarch, file, regnum); /* FP regs */
2649 else
2650 sh_do_register (gdbarch, file, regnum); /* All other regs */
2651 }
2652
2653 else if (regnum < NUM_REGS + NUM_PSEUDO_REGS)
2654 sh64_do_pseudo_register (regnum);
2655 }
2656
2657 static void
2658 sh_print_registers_info (struct gdbarch *gdbarch, struct ui_file *file,
2659 struct frame_info *frame, int regnum, int fpregs)
2660 {
2661 if (regnum != -1) /* do one specified register */
2662 {
2663 if (*(REGISTER_NAME (regnum)) == '\0')
2664 error ("Not a valid register for the current processor type");
2665
2666 sh_print_register (gdbarch, file, regnum);
2667 }
2668 else
2669 /* do all (or most) registers */
2670 {
2671 regnum = 0;
2672 while (regnum < NUM_REGS)
2673 {
2674 /* If the register name is empty, it is undefined for this
2675 processor, so don't display anything. */
2676 if (REGISTER_NAME (regnum) == NULL
2677 || *(REGISTER_NAME (regnum)) == '\0')
2678 {
2679 regnum++;
2680 continue;
2681 }
2682
2683 if (TYPE_CODE (gdbarch_register_type (gdbarch, regnum)) == TYPE_CODE_FLT)
2684 {
2685 if (fpregs)
2686 {
2687 /* true for "INFO ALL-REGISTERS" command */
2688 sh_do_fp_register (gdbarch, file, regnum); /* FP regs */
2689 regnum ++;
2690 }
2691 else
2692 regnum += FP_LAST_REGNUM - FP0_REGNUM; /* skip FP regs */
2693 }
2694 else
2695 {
2696 sh_do_register (gdbarch, file, regnum); /* All other regs */
2697 regnum++;
2698 }
2699 }
2700
2701 if (fpregs)
2702 while (regnum < NUM_REGS + NUM_PSEUDO_REGS)
2703 {
2704 sh64_do_pseudo_register (regnum);
2705 regnum++;
2706 }
2707 }
2708 }
2709
2710 static void
2711 sh_compact_do_registers_info (int regnum, int fpregs)
2712 {
2713 if (regnum != -1) /* do one specified register */
2714 {
2715 if (*(REGISTER_NAME (regnum)) == '\0')
2716 error ("Not a valid register for the current processor type");
2717
2718 if (regnum >= 0 && regnum < R0_C_REGNUM)
2719 error ("Not a valid register for the current processor mode.");
2720
2721 sh_print_register (current_gdbarch, gdb_stdout, regnum);
2722 }
2723 else
2724 /* do all compact registers */
2725 {
2726 regnum = R0_C_REGNUM;
2727 while (regnum < NUM_REGS + NUM_PSEUDO_REGS)
2728 {
2729 sh64_do_pseudo_register (regnum);
2730 regnum++;
2731 }
2732 }
2733 }
2734
2735 static void
2736 sh64_do_registers_info (int regnum, int fpregs)
2737 {
2738 if (pc_is_isa32 (get_frame_pc (deprecated_selected_frame)))
2739 sh_print_registers_info (current_gdbarch, gdb_stdout,
2740 deprecated_selected_frame, regnum, fpregs);
2741 else
2742 sh_compact_do_registers_info (regnum, fpregs);
2743 }
2744
2745 #ifdef SVR4_SHARED_LIBS
2746
2747 /* Fetch (and possibly build) an appropriate link_map_offsets structure
2748 for native i386 linux targets using the struct offsets defined in
2749 link.h (but without actual reference to that file).
2750
2751 This makes it possible to access i386-linux shared libraries from
2752 a gdb that was not built on an i386-linux host (for cross debugging).
2753 */
2754
2755 struct link_map_offsets *
2756 sh_linux_svr4_fetch_link_map_offsets (void)
2757 {
2758 static struct link_map_offsets lmo;
2759 static struct link_map_offsets *lmp = 0;
2760
2761 if (lmp == 0)
2762 {
2763 lmp = &lmo;
2764
2765 lmo.r_debug_size = 8; /* 20 not actual size but all we need */
2766
2767 lmo.r_map_offset = 4;
2768 lmo.r_map_size = 4;
2769
2770 lmo.link_map_size = 20; /* 552 not actual size but all we need */
2771
2772 lmo.l_addr_offset = 0;
2773 lmo.l_addr_size = 4;
2774
2775 lmo.l_name_offset = 4;
2776 lmo.l_name_size = 4;
2777
2778 lmo.l_next_offset = 12;
2779 lmo.l_next_size = 4;
2780
2781 lmo.l_prev_offset = 16;
2782 lmo.l_prev_size = 4;
2783 }
2784
2785 return lmp;
2786 }
2787 #endif /* SVR4_SHARED_LIBS */
2788
2789 gdbarch_init_ftype sh64_gdbarch_init;
2790
2791 struct gdbarch *
2792 sh64_gdbarch_init (struct gdbarch_info info, struct gdbarch_list *arches)
2793 {
2794 static LONGEST sh64_call_dummy_words[] = {0};
2795 struct gdbarch *gdbarch;
2796 struct gdbarch_tdep *tdep;
2797
2798 /* If there is already a candidate, use it. */
2799 arches = gdbarch_list_lookup_by_info (arches, &info);
2800 if (arches != NULL)
2801 return arches->gdbarch;
2802
2803 /* None found, create a new architecture from the information
2804 provided. */
2805 tdep = XMALLOC (struct gdbarch_tdep);
2806 gdbarch = gdbarch_alloc (&info, tdep);
2807
2808 /* NOTE: cagney/2002-12-06: This can be deleted when this arch is
2809 ready to unwind the PC first (see frame.c:get_prev_frame()). */
2810 set_gdbarch_deprecated_init_frame_pc (gdbarch, deprecated_init_frame_pc_default);
2811
2812 /* Determine the ABI */
2813 if (info.abfd && bfd_get_arch_size (info.abfd) == 64)
2814 {
2815 /* If the ABI is the 64-bit one, it can only be sh-media. */
2816 tdep->sh_abi = SH_ABI_64;
2817 set_gdbarch_ptr_bit (gdbarch, 8 * TARGET_CHAR_BIT);
2818 set_gdbarch_long_bit (gdbarch, 8 * TARGET_CHAR_BIT);
2819 }
2820 else
2821 {
2822 /* If the ABI is the 32-bit one it could be either media or
2823 compact. */
2824 tdep->sh_abi = SH_ABI_32;
2825 set_gdbarch_ptr_bit (gdbarch, 4 * TARGET_CHAR_BIT);
2826 set_gdbarch_long_bit (gdbarch, 4 * TARGET_CHAR_BIT);
2827 }
2828
2829 set_gdbarch_short_bit (gdbarch, 2 * TARGET_CHAR_BIT);
2830 set_gdbarch_int_bit (gdbarch, 4 * TARGET_CHAR_BIT);
2831 set_gdbarch_long_long_bit (gdbarch, 8 * TARGET_CHAR_BIT);
2832 set_gdbarch_float_bit (gdbarch, 4 * TARGET_CHAR_BIT);
2833 set_gdbarch_double_bit (gdbarch, 8 * TARGET_CHAR_BIT);
2834 set_gdbarch_long_double_bit (gdbarch, 8 * TARGET_CHAR_BIT);
2835
2836 set_gdbarch_sp_regnum (gdbarch, 15);
2837 set_gdbarch_deprecated_fp_regnum (gdbarch, 14);
2838
2839 set_gdbarch_print_insn (gdbarch, gdb_print_insn_sh);
2840 set_gdbarch_register_sim_regno (gdbarch, legacy_register_sim_regno);
2841
2842 set_gdbarch_write_pc (gdbarch, generic_target_write_pc);
2843
2844 set_gdbarch_skip_prologue (gdbarch, sh_skip_prologue);
2845 set_gdbarch_inner_than (gdbarch, core_addr_lessthan);
2846
2847 set_gdbarch_frame_args_skip (gdbarch, 0);
2848 set_gdbarch_frameless_function_invocation (gdbarch, frameless_look_for_prologue);
2849 set_gdbarch_believe_pcc_promotion (gdbarch, 1);
2850
2851 set_gdbarch_deprecated_frame_saved_pc (gdbarch, sh_frame_saved_pc);
2852 set_gdbarch_deprecated_saved_pc_after_call (gdbarch, sh_saved_pc_after_call);
2853 set_gdbarch_frame_align (gdbarch, sh_frame_align);
2854
2855 set_gdbarch_num_pseudo_regs (gdbarch, NUM_PSEUDO_REGS_SH_MEDIA + NUM_PSEUDO_REGS_SH_COMPACT);
2856 set_gdbarch_fp0_regnum (gdbarch, SIM_SH64_FR0_REGNUM);
2857 set_gdbarch_pc_regnum (gdbarch, 64);
2858
2859 /* The number of real registers is the same whether we are in
2860 ISA16(compact) or ISA32(media). */
2861 set_gdbarch_num_regs (gdbarch, SIM_SH64_NR_REGS);
2862 set_gdbarch_deprecated_register_bytes (gdbarch,
2863 ((SIM_SH64_NR_FP_REGS + 1) * 4)
2864 + (SIM_SH64_NR_REGS - SIM_SH64_NR_FP_REGS -1) * 8);
2865
2866 set_gdbarch_register_name (gdbarch, sh64_register_name);
2867 set_gdbarch_register_type (gdbarch, sh64_register_type);
2868 set_gdbarch_deprecated_store_return_value (gdbarch, sh64_store_return_value);
2869 set_gdbarch_deprecated_register_byte (gdbarch, sh64_register_byte);
2870 set_gdbarch_pseudo_register_read (gdbarch, sh64_pseudo_register_read);
2871 set_gdbarch_pseudo_register_write (gdbarch, sh64_pseudo_register_write);
2872
2873 set_gdbarch_deprecated_do_registers_info (gdbarch, sh64_do_registers_info);
2874 set_gdbarch_deprecated_frame_init_saved_regs (gdbarch, sh64_nofp_frame_init_saved_regs);
2875 set_gdbarch_breakpoint_from_pc (gdbarch, sh64_breakpoint_from_pc);
2876 set_gdbarch_deprecated_call_dummy_words (gdbarch, sh64_call_dummy_words);
2877 set_gdbarch_deprecated_sizeof_call_dummy_words (gdbarch, sizeof (sh64_call_dummy_words));
2878
2879 set_gdbarch_deprecated_init_extra_frame_info (gdbarch, sh64_init_extra_frame_info);
2880 set_gdbarch_deprecated_frame_chain (gdbarch, sh64_frame_chain);
2881 set_gdbarch_deprecated_get_saved_register (gdbarch, sh64_get_saved_register);
2882 set_gdbarch_deprecated_extract_return_value (gdbarch, sh64_extract_return_value);
2883 set_gdbarch_deprecated_push_arguments (gdbarch, sh64_push_arguments);
2884 set_gdbarch_deprecated_push_return_address (gdbarch, sh64_push_return_address);
2885 set_gdbarch_deprecated_dummy_write_sp (gdbarch, deprecated_write_sp);
2886 set_gdbarch_deprecated_store_struct_return (gdbarch, sh64_store_struct_return);
2887 set_gdbarch_deprecated_extract_struct_value_address (gdbarch, sh64_extract_struct_value_address);
2888 set_gdbarch_use_struct_convention (gdbarch, sh64_use_struct_convention);
2889 set_gdbarch_deprecated_pop_frame (gdbarch, sh64_pop_frame);
2890 set_gdbarch_elf_make_msymbol_special (gdbarch,
2891 sh64_elf_make_msymbol_special);
2892
2893 /* Hook in ABI-specific overrides, if they have been registered. */
2894 gdbarch_init_osabi (info, gdbarch);
2895
2896 return gdbarch;
2897 }