Allocate ppc64 got and dynrelocs before plt
[binutils-gdb.git] / gdb / sh64-tdep.c
1 /* Target-dependent code for Renesas Super-H, for GDB.
2
3 Copyright (C) 1993-2016 Free Software Foundation, Inc.
4
5 This file is part of GDB.
6
7 This program is free software; you can redistribute it and/or modify
8 it under the terms of the GNU General Public License as published by
9 the Free Software Foundation; either version 3 of the License, or
10 (at your option) any later version.
11
12 This program is distributed in the hope that it will be useful,
13 but WITHOUT ANY WARRANTY; without even the implied warranty of
14 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
15 GNU General Public License for more details.
16
17 You should have received a copy of the GNU General Public License
18 along with this program. If not, see <http://www.gnu.org/licenses/>. */
19
20 /* Contributed by Steve Chamberlain
21 sac@cygnus.com. */
22
23 #include "defs.h"
24 #include "frame.h"
25 #include "frame-base.h"
26 #include "frame-unwind.h"
27 #include "dwarf2-frame.h"
28 #include "symtab.h"
29 #include "gdbtypes.h"
30 #include "gdbcmd.h"
31 #include "gdbcore.h"
32 #include "value.h"
33 #include "dis-asm.h"
34 #include "inferior.h"
35 #include "arch-utils.h"
36 #include "regcache.h"
37 #include "osabi.h"
38 #include "valprint.h"
39
40 #include "elf-bfd.h"
41
42 /* sh flags */
43 #include "elf/sh.h"
44 /* Register numbers shared with the simulator. */
45 #include "gdb/sim-sh.h"
46 #include "language.h"
47 #include "sh64-tdep.h"
48
49 /* Information that is dependent on the processor variant. */
50 enum sh_abi
51 {
52 SH_ABI_UNKNOWN,
53 SH_ABI_32,
54 SH_ABI_64
55 };
56
57 struct gdbarch_tdep
58 {
59 enum sh_abi sh_abi;
60 };
61
62 struct sh64_frame_cache
63 {
64 /* Base address. */
65 CORE_ADDR base;
66 LONGEST sp_offset;
67 CORE_ADDR pc;
68
69 /* Flag showing that a frame has been created in the prologue code. */
70 int uses_fp;
71
72 int media_mode;
73
74 /* Saved registers. */
75 CORE_ADDR saved_regs[SIM_SH64_NR_REGS];
76 CORE_ADDR saved_sp;
77 };
78
79 /* Registers of SH5 */
80 enum
81 {
82 R0_REGNUM = 0,
83 DEFAULT_RETURN_REGNUM = 2,
84 STRUCT_RETURN_REGNUM = 2,
85 ARG0_REGNUM = 2,
86 ARGLAST_REGNUM = 9,
87 FLOAT_ARGLAST_REGNUM = 11,
88 MEDIA_FP_REGNUM = 14,
89 PR_REGNUM = 18,
90 SR_REGNUM = 65,
91 DR0_REGNUM = 141,
92 DR_LAST_REGNUM = 172,
93 /* FPP stands for Floating Point Pair, to avoid confusion with
94 GDB's gdbarch_fp0_regnum, which is the number of the first Floating
95 point register. Unfortunately on the sh5, the floating point
96 registers are called FR, and the floating point pairs are called FP. */
97 FPP0_REGNUM = 173,
98 FPP_LAST_REGNUM = 204,
99 FV0_REGNUM = 205,
100 FV_LAST_REGNUM = 220,
101 R0_C_REGNUM = 221,
102 R_LAST_C_REGNUM = 236,
103 PC_C_REGNUM = 237,
104 GBR_C_REGNUM = 238,
105 MACH_C_REGNUM = 239,
106 MACL_C_REGNUM = 240,
107 PR_C_REGNUM = 241,
108 T_C_REGNUM = 242,
109 FPSCR_C_REGNUM = 243,
110 FPUL_C_REGNUM = 244,
111 FP0_C_REGNUM = 245,
112 FP_LAST_C_REGNUM = 260,
113 DR0_C_REGNUM = 261,
114 DR_LAST_C_REGNUM = 268,
115 FV0_C_REGNUM = 269,
116 FV_LAST_C_REGNUM = 272,
117 FPSCR_REGNUM = SIM_SH64_FPCSR_REGNUM,
118 SSR_REGNUM = SIM_SH64_SSR_REGNUM,
119 SPC_REGNUM = SIM_SH64_SPC_REGNUM,
120 TR7_REGNUM = SIM_SH64_TR0_REGNUM + 7,
121 FP_LAST_REGNUM = SIM_SH64_FR0_REGNUM + SIM_SH64_NR_FP_REGS - 1
122 };
123
124 static const char *
125 sh64_register_name (struct gdbarch *gdbarch, int reg_nr)
126 {
127 static char *register_names[] =
128 {
129 /* SH MEDIA MODE (ISA 32) */
130 /* general registers (64-bit) 0-63 */
131 "r0", "r1", "r2", "r3", "r4", "r5", "r6", "r7",
132 "r8", "r9", "r10", "r11", "r12", "r13", "r14", "r15",
133 "r16", "r17", "r18", "r19", "r20", "r21", "r22", "r23",
134 "r24", "r25", "r26", "r27", "r28", "r29", "r30", "r31",
135 "r32", "r33", "r34", "r35", "r36", "r37", "r38", "r39",
136 "r40", "r41", "r42", "r43", "r44", "r45", "r46", "r47",
137 "r48", "r49", "r50", "r51", "r52", "r53", "r54", "r55",
138 "r56", "r57", "r58", "r59", "r60", "r61", "r62", "r63",
139
140 /* pc (64-bit) 64 */
141 "pc",
142
143 /* status reg., saved status reg., saved pc reg. (64-bit) 65-67 */
144 "sr", "ssr", "spc",
145
146 /* target registers (64-bit) 68-75 */
147 "tr0", "tr1", "tr2", "tr3", "tr4", "tr5", "tr6", "tr7",
148
149 /* floating point state control register (32-bit) 76 */
150 "fpscr",
151
152 /* single precision floating point registers (32-bit) 77-140 */
153 "fr0", "fr1", "fr2", "fr3", "fr4", "fr5", "fr6", "fr7",
154 "fr8", "fr9", "fr10", "fr11", "fr12", "fr13", "fr14", "fr15",
155 "fr16", "fr17", "fr18", "fr19", "fr20", "fr21", "fr22", "fr23",
156 "fr24", "fr25", "fr26", "fr27", "fr28", "fr29", "fr30", "fr31",
157 "fr32", "fr33", "fr34", "fr35", "fr36", "fr37", "fr38", "fr39",
158 "fr40", "fr41", "fr42", "fr43", "fr44", "fr45", "fr46", "fr47",
159 "fr48", "fr49", "fr50", "fr51", "fr52", "fr53", "fr54", "fr55",
160 "fr56", "fr57", "fr58", "fr59", "fr60", "fr61", "fr62", "fr63",
161
162 /* double precision registers (pseudo) 141-172 */
163 "dr0", "dr2", "dr4", "dr6", "dr8", "dr10", "dr12", "dr14",
164 "dr16", "dr18", "dr20", "dr22", "dr24", "dr26", "dr28", "dr30",
165 "dr32", "dr34", "dr36", "dr38", "dr40", "dr42", "dr44", "dr46",
166 "dr48", "dr50", "dr52", "dr54", "dr56", "dr58", "dr60", "dr62",
167
168 /* floating point pairs (pseudo) 173-204 */
169 "fp0", "fp2", "fp4", "fp6", "fp8", "fp10", "fp12", "fp14",
170 "fp16", "fp18", "fp20", "fp22", "fp24", "fp26", "fp28", "fp30",
171 "fp32", "fp34", "fp36", "fp38", "fp40", "fp42", "fp44", "fp46",
172 "fp48", "fp50", "fp52", "fp54", "fp56", "fp58", "fp60", "fp62",
173
174 /* floating point vectors (4 floating point regs) (pseudo) 205-220 */
175 "fv0", "fv4", "fv8", "fv12", "fv16", "fv20", "fv24", "fv28",
176 "fv32", "fv36", "fv40", "fv44", "fv48", "fv52", "fv56", "fv60",
177
178 /* SH COMPACT MODE (ISA 16) (all pseudo) 221-272 */
179 "r0_c", "r1_c", "r2_c", "r3_c", "r4_c", "r5_c", "r6_c", "r7_c",
180 "r8_c", "r9_c", "r10_c", "r11_c", "r12_c", "r13_c", "r14_c", "r15_c",
181 "pc_c",
182 "gbr_c", "mach_c", "macl_c", "pr_c", "t_c",
183 "fpscr_c", "fpul_c",
184 "fr0_c", "fr1_c", "fr2_c", "fr3_c",
185 "fr4_c", "fr5_c", "fr6_c", "fr7_c",
186 "fr8_c", "fr9_c", "fr10_c", "fr11_c",
187 "fr12_c", "fr13_c", "fr14_c", "fr15_c",
188 "dr0_c", "dr2_c", "dr4_c", "dr6_c",
189 "dr8_c", "dr10_c", "dr12_c", "dr14_c",
190 "fv0_c", "fv4_c", "fv8_c", "fv12_c",
191 /* FIXME!!!! XF0 XF15, XD0 XD14 ????? */
192 };
193
194 if (reg_nr < 0)
195 return NULL;
196 if (reg_nr >= (sizeof (register_names) / sizeof (*register_names)))
197 return NULL;
198 return register_names[reg_nr];
199 }
200
201 #define NUM_PSEUDO_REGS_SH_MEDIA 80
202 #define NUM_PSEUDO_REGS_SH_COMPACT 51
203
204 /* Macros and functions for setting and testing a bit in a minimal
205 symbol that marks it as 32-bit function. The MSB of the minimal
206 symbol's "info" field is used for this purpose.
207
208 gdbarch_elf_make_msymbol_special tests whether an ELF symbol is "special",
209 i.e. refers to a 32-bit function, and sets a "special" bit in a
210 minimal symbol to mark it as a 32-bit function
211 MSYMBOL_IS_SPECIAL tests the "special" bit in a minimal symbol */
212
213 #define MSYMBOL_IS_SPECIAL(msym) \
214 MSYMBOL_TARGET_FLAG_1 (msym)
215
216 static void
217 sh64_elf_make_msymbol_special (asymbol *sym, struct minimal_symbol *msym)
218 {
219 if (msym == NULL)
220 return;
221
222 if (((elf_symbol_type *)(sym))->internal_elf_sym.st_other == STO_SH5_ISA32)
223 {
224 MSYMBOL_TARGET_FLAG_1 (msym) = 1;
225 SET_MSYMBOL_VALUE_ADDRESS (msym, MSYMBOL_VALUE_RAW_ADDRESS (msym) | 1);
226 }
227 }
228
229 /* ISA32 (shmedia) function addresses are odd (bit 0 is set). Here
230 are some macros to test, set, or clear bit 0 of addresses. */
231 #define IS_ISA32_ADDR(addr) ((addr) & 1)
232 #define MAKE_ISA32_ADDR(addr) ((addr) | 1)
233 #define UNMAKE_ISA32_ADDR(addr) ((addr) & ~1)
234
235 static int
236 pc_is_isa32 (bfd_vma memaddr)
237 {
238 struct bound_minimal_symbol sym;
239
240 /* If bit 0 of the address is set, assume this is a
241 ISA32 (shmedia) address. */
242 if (IS_ISA32_ADDR (memaddr))
243 return 1;
244
245 /* A flag indicating that this is a ISA32 function is stored by elfread.c in
246 the high bit of the info field. Use this to decide if the function is
247 ISA16 or ISA32. */
248 sym = lookup_minimal_symbol_by_pc (memaddr);
249 if (sym.minsym)
250 return MSYMBOL_IS_SPECIAL (sym.minsym);
251 else
252 return 0;
253 }
254
255 static const unsigned char *
256 sh64_breakpoint_from_pc (struct gdbarch *gdbarch,
257 CORE_ADDR *pcptr, int *lenptr)
258 {
259 /* The BRK instruction for shmedia is
260 01101111 11110101 11111111 11110000
261 which translates in big endian mode to 0x6f, 0xf5, 0xff, 0xf0
262 and in little endian mode to 0xf0, 0xff, 0xf5, 0x6f */
263
264 /* The BRK instruction for shcompact is
265 00000000 00111011
266 which translates in big endian mode to 0x0, 0x3b
267 and in little endian mode to 0x3b, 0x0 */
268
269 if (gdbarch_byte_order (gdbarch) == BFD_ENDIAN_BIG)
270 {
271 if (pc_is_isa32 (*pcptr))
272 {
273 static unsigned char big_breakpoint_media[] = {
274 0x6f, 0xf5, 0xff, 0xf0
275 };
276 *pcptr = UNMAKE_ISA32_ADDR (*pcptr);
277 *lenptr = sizeof (big_breakpoint_media);
278 return big_breakpoint_media;
279 }
280 else
281 {
282 static unsigned char big_breakpoint_compact[] = {0x0, 0x3b};
283 *lenptr = sizeof (big_breakpoint_compact);
284 return big_breakpoint_compact;
285 }
286 }
287 else
288 {
289 if (pc_is_isa32 (*pcptr))
290 {
291 static unsigned char little_breakpoint_media[] = {
292 0xf0, 0xff, 0xf5, 0x6f
293 };
294 *pcptr = UNMAKE_ISA32_ADDR (*pcptr);
295 *lenptr = sizeof (little_breakpoint_media);
296 return little_breakpoint_media;
297 }
298 else
299 {
300 static unsigned char little_breakpoint_compact[] = {0x3b, 0x0};
301 *lenptr = sizeof (little_breakpoint_compact);
302 return little_breakpoint_compact;
303 }
304 }
305 }
306
307 /* Prologue looks like
308 [mov.l <regs>,@-r15]...
309 [sts.l pr,@-r15]
310 [mov.l r14,@-r15]
311 [mov r15,r14]
312
313 Actually it can be more complicated than this. For instance, with
314 newer gcc's:
315
316 mov.l r14,@-r15
317 add #-12,r15
318 mov r15,r14
319 mov r4,r1
320 mov r5,r2
321 mov.l r6,@(4,r14)
322 mov.l r7,@(8,r14)
323 mov.b r1,@r14
324 mov r14,r1
325 mov r14,r1
326 add #2,r1
327 mov.w r2,@r1
328
329 */
330
331 /* PTABS/L Rn, TRa 0110101111110001nnnnnnl00aaa0000
332 with l=1 and n = 18 0110101111110001010010100aaa0000 */
333 #define IS_PTABSL_R18(x) (((x) & 0xffffff8f) == 0x6bf14a00)
334
335 /* STS.L PR,@-r0 0100000000100010
336 r0-4-->r0, PR-->(r0) */
337 #define IS_STS_R0(x) ((x) == 0x4022)
338
339 /* STS PR, Rm 0000mmmm00101010
340 PR-->Rm */
341 #define IS_STS_PR(x) (((x) & 0xf0ff) == 0x2a)
342
343 /* MOV.L Rm,@(disp,r15) 00011111mmmmdddd
344 Rm-->(dispx4+r15) */
345 #define IS_MOV_TO_R15(x) (((x) & 0xff00) == 0x1f00)
346
347 /* MOV.L R14,@(disp,r15) 000111111110dddd
348 R14-->(dispx4+r15) */
349 #define IS_MOV_R14(x) (((x) & 0xfff0) == 0x1fe0)
350
351 /* ST.Q R14, disp, R18 101011001110dddddddddd0100100000
352 R18-->(dispx8+R14) */
353 #define IS_STQ_R18_R14(x) (((x) & 0xfff003ff) == 0xace00120)
354
355 /* ST.Q R15, disp, R18 101011001111dddddddddd0100100000
356 R18-->(dispx8+R15) */
357 #define IS_STQ_R18_R15(x) (((x) & 0xfff003ff) == 0xacf00120)
358
359 /* ST.L R15, disp, R18 101010001111dddddddddd0100100000
360 R18-->(dispx4+R15) */
361 #define IS_STL_R18_R15(x) (((x) & 0xfff003ff) == 0xa8f00120)
362
363 /* ST.Q R15, disp, R14 1010 1100 1111 dddd dddd dd00 1110 0000
364 R14-->(dispx8+R15) */
365 #define IS_STQ_R14_R15(x) (((x) & 0xfff003ff) == 0xacf000e0)
366
367 /* ST.L R15, disp, R14 1010 1000 1111 dddd dddd dd00 1110 0000
368 R14-->(dispx4+R15) */
369 #define IS_STL_R14_R15(x) (((x) & 0xfff003ff) == 0xa8f000e0)
370
371 /* ADDI.L R15,imm,R15 1101 0100 1111 ssss ssss ss00 1111 0000
372 R15 + imm --> R15 */
373 #define IS_ADDIL_SP_MEDIA(x) (((x) & 0xfff003ff) == 0xd4f000f0)
374
375 /* ADDI R15,imm,R15 1101 0000 1111 ssss ssss ss00 1111 0000
376 R15 + imm --> R15 */
377 #define IS_ADDI_SP_MEDIA(x) (((x) & 0xfff003ff) == 0xd0f000f0)
378
379 /* ADD.L R15,R63,R14 0000 0000 1111 1000 1111 1100 1110 0000
380 R15 + R63 --> R14 */
381 #define IS_ADDL_SP_FP_MEDIA(x) ((x) == 0x00f8fce0)
382
383 /* ADD R15,R63,R14 0000 0000 1111 1001 1111 1100 1110 0000
384 R15 + R63 --> R14 */
385 #define IS_ADD_SP_FP_MEDIA(x) ((x) == 0x00f9fce0)
386
387 #define IS_MOV_SP_FP_MEDIA(x) \
388 (IS_ADDL_SP_FP_MEDIA(x) || IS_ADD_SP_FP_MEDIA(x))
389
390 /* MOV #imm, R0 1110 0000 ssss ssss
391 #imm-->R0 */
392 #define IS_MOV_R0(x) (((x) & 0xff00) == 0xe000)
393
394 /* MOV.L @(disp,PC), R0 1101 0000 iiii iiii */
395 #define IS_MOVL_R0(x) (((x) & 0xff00) == 0xd000)
396
397 /* ADD r15,r0 0011 0000 1111 1100
398 r15+r0-->r0 */
399 #define IS_ADD_SP_R0(x) ((x) == 0x30fc)
400
401 /* MOV.L R14 @-R0 0010 0000 1110 0110
402 R14-->(R0-4), R0-4-->R0 */
403 #define IS_MOV_R14_R0(x) ((x) == 0x20e6)
404
405 /* ADD Rm,R63,Rn Rm+R63-->Rn 0000 00mm mmmm 1001 1111 11nn nnnn 0000
406 where Rm is one of r2-r9 which are the argument registers. */
407 /* FIXME: Recognize the float and double register moves too! */
408 #define IS_MEDIA_IND_ARG_MOV(x) \
409 ((((x) & 0xfc0ffc0f) == 0x0009fc00) \
410 && (((x) & 0x03f00000) >= 0x00200000 \
411 && ((x) & 0x03f00000) <= 0x00900000))
412
413 /* ST.Q Rn,0,Rm Rm-->Rn+0 1010 11nn nnnn 0000 0000 00mm mmmm 0000
414 or ST.L Rn,0,Rm Rm-->Rn+0 1010 10nn nnnn 0000 0000 00mm mmmm 0000
415 where Rm is one of r2-r9 which are the argument registers. */
416 #define IS_MEDIA_ARG_MOV(x) \
417 (((((x) & 0xfc0ffc0f) == 0xac000000) || (((x) & 0xfc0ffc0f) == 0xa8000000)) \
418 && (((x) & 0x000003f0) >= 0x00000020 && ((x) & 0x000003f0) <= 0x00000090))
419
420 /* ST.B R14,0,Rn Rn-->(R14+0) 1010 0000 1110 0000 0000 00nn nnnn 0000 */
421 /* ST.W R14,0,Rn Rn-->(R14+0) 1010 0100 1110 0000 0000 00nn nnnn 0000 */
422 /* ST.L R14,0,Rn Rn-->(R14+0) 1010 1000 1110 0000 0000 00nn nnnn 0000 */
423 /* FST.S R14,0,FRn Rn-->(R14+0) 1011 0100 1110 0000 0000 00nn nnnn 0000 */
424 /* FST.D R14,0,DRn Rn-->(R14+0) 1011 1100 1110 0000 0000 00nn nnnn 0000 */
425 #define IS_MEDIA_MOV_TO_R14(x) \
426 ((((x) & 0xfffffc0f) == 0xa0e00000) \
427 || (((x) & 0xfffffc0f) == 0xa4e00000) \
428 || (((x) & 0xfffffc0f) == 0xa8e00000) \
429 || (((x) & 0xfffffc0f) == 0xb4e00000) \
430 || (((x) & 0xfffffc0f) == 0xbce00000))
431
432 /* MOV Rm, Rn Rm-->Rn 0110 nnnn mmmm 0011
433 where Rm is r2-r9 */
434 #define IS_COMPACT_IND_ARG_MOV(x) \
435 ((((x) & 0xf00f) == 0x6003) && (((x) & 0x00f0) >= 0x0020) \
436 && (((x) & 0x00f0) <= 0x0090))
437
438 /* compact direct arg move!
439 MOV.L Rn, @r14 0010 1110 mmmm 0010 */
440 #define IS_COMPACT_ARG_MOV(x) \
441 (((((x) & 0xff0f) == 0x2e02) && (((x) & 0x00f0) >= 0x0020) \
442 && ((x) & 0x00f0) <= 0x0090))
443
444 /* MOV.B Rm, @R14 0010 1110 mmmm 0000
445 MOV.W Rm, @R14 0010 1110 mmmm 0001 */
446 #define IS_COMPACT_MOV_TO_R14(x) \
447 ((((x) & 0xff0f) == 0x2e00) || (((x) & 0xff0f) == 0x2e01))
448
449 #define IS_JSR_R0(x) ((x) == 0x400b)
450 #define IS_NOP(x) ((x) == 0x0009)
451
452
453 /* MOV r15,r14 0110111011110011
454 r15-->r14 */
455 #define IS_MOV_SP_FP(x) ((x) == 0x6ef3)
456
457 /* ADD #imm,r15 01111111iiiiiiii
458 r15+imm-->r15 */
459 #define IS_ADD_SP(x) (((x) & 0xff00) == 0x7f00)
460
461 /* Skip any prologue before the guts of a function. */
462
463 /* Skip the prologue using the debug information. If this fails we'll
464 fall back on the 'guess' method below. */
465 static CORE_ADDR
466 after_prologue (CORE_ADDR pc)
467 {
468 struct symtab_and_line sal;
469 CORE_ADDR func_addr, func_end;
470
471 /* If we can not find the symbol in the partial symbol table, then
472 there is no hope we can determine the function's start address
473 with this code. */
474 if (!find_pc_partial_function (pc, NULL, &func_addr, &func_end))
475 return 0;
476
477
478 /* Get the line associated with FUNC_ADDR. */
479 sal = find_pc_line (func_addr, 0);
480
481 /* There are only two cases to consider. First, the end of the source line
482 is within the function bounds. In that case we return the end of the
483 source line. Second is the end of the source line extends beyond the
484 bounds of the current function. We need to use the slow code to
485 examine instructions in that case. */
486 if (sal.end < func_end)
487 return sal.end;
488 else
489 return 0;
490 }
491
492 static CORE_ADDR
493 look_for_args_moves (struct gdbarch *gdbarch,
494 CORE_ADDR start_pc, int media_mode)
495 {
496 enum bfd_endian byte_order = gdbarch_byte_order (gdbarch);
497 CORE_ADDR here, end;
498 int w;
499 int insn_size = (media_mode ? 4 : 2);
500
501 for (here = start_pc, end = start_pc + (insn_size * 28); here < end;)
502 {
503 if (media_mode)
504 {
505 w = read_memory_integer (UNMAKE_ISA32_ADDR (here),
506 insn_size, byte_order);
507 here += insn_size;
508 if (IS_MEDIA_IND_ARG_MOV (w))
509 {
510 /* This must be followed by a store to r14, so the argument
511 is where the debug info says it is. This can happen after
512 the SP has been saved, unfortunately. */
513
514 int next_insn = read_memory_integer (UNMAKE_ISA32_ADDR (here),
515 insn_size, byte_order);
516 here += insn_size;
517 if (IS_MEDIA_MOV_TO_R14 (next_insn))
518 start_pc = here;
519 }
520 else if (IS_MEDIA_ARG_MOV (w))
521 {
522 /* These instructions store directly the argument in r14. */
523 start_pc = here;
524 }
525 else
526 break;
527 }
528 else
529 {
530 w = read_memory_integer (here, insn_size, byte_order);
531 w = w & 0xffff;
532 here += insn_size;
533 if (IS_COMPACT_IND_ARG_MOV (w))
534 {
535 /* This must be followed by a store to r14, so the argument
536 is where the debug info says it is. This can happen after
537 the SP has been saved, unfortunately. */
538
539 int next_insn = 0xffff & read_memory_integer (here, insn_size,
540 byte_order);
541 here += insn_size;
542 if (IS_COMPACT_MOV_TO_R14 (next_insn))
543 start_pc = here;
544 }
545 else if (IS_COMPACT_ARG_MOV (w))
546 {
547 /* These instructions store directly the argument in r14. */
548 start_pc = here;
549 }
550 else if (IS_MOVL_R0 (w))
551 {
552 /* There is a function that gcc calls to get the arguments
553 passed correctly to the function. Only after this
554 function call the arguments will be found at the place
555 where they are supposed to be. This happens in case the
556 argument has to be stored into a 64-bit register (for
557 instance doubles, long longs). SHcompact doesn't have
558 access to the full 64-bits, so we store the register in
559 stack slot and store the address of the stack slot in
560 the register, then do a call through a wrapper that
561 loads the memory value into the register. A SHcompact
562 callee calls an argument decoder
563 (GCC_shcompact_incoming_args) that stores the 64-bit
564 value in a stack slot and stores the address of the
565 stack slot in the register. GCC thinks the argument is
566 just passed by transparent reference, but this is only
567 true after the argument decoder is called. Such a call
568 needs to be considered part of the prologue. */
569
570 /* This must be followed by a JSR @r0 instruction and by
571 a NOP instruction. After these, the prologue is over! */
572
573 int next_insn = 0xffff & read_memory_integer (here, insn_size,
574 byte_order);
575 here += insn_size;
576 if (IS_JSR_R0 (next_insn))
577 {
578 next_insn = 0xffff & read_memory_integer (here, insn_size,
579 byte_order);
580 here += insn_size;
581
582 if (IS_NOP (next_insn))
583 start_pc = here;
584 }
585 }
586 else
587 break;
588 }
589 }
590
591 return start_pc;
592 }
593
594 static CORE_ADDR
595 sh64_skip_prologue_hard_way (struct gdbarch *gdbarch, CORE_ADDR start_pc)
596 {
597 enum bfd_endian byte_order = gdbarch_byte_order (gdbarch);
598 CORE_ADDR here, end;
599 int updated_fp = 0;
600 int insn_size = 4;
601 int media_mode = 1;
602
603 if (!start_pc)
604 return 0;
605
606 if (pc_is_isa32 (start_pc) == 0)
607 {
608 insn_size = 2;
609 media_mode = 0;
610 }
611
612 for (here = start_pc, end = start_pc + (insn_size * 28); here < end;)
613 {
614
615 if (media_mode)
616 {
617 int w = read_memory_integer (UNMAKE_ISA32_ADDR (here),
618 insn_size, byte_order);
619 here += insn_size;
620 if (IS_STQ_R18_R14 (w) || IS_STQ_R18_R15 (w) || IS_STQ_R14_R15 (w)
621 || IS_STL_R14_R15 (w) || IS_STL_R18_R15 (w)
622 || IS_ADDIL_SP_MEDIA (w) || IS_ADDI_SP_MEDIA (w)
623 || IS_PTABSL_R18 (w))
624 {
625 start_pc = here;
626 }
627 else if (IS_MOV_SP_FP (w) || IS_MOV_SP_FP_MEDIA(w))
628 {
629 start_pc = here;
630 updated_fp = 1;
631 }
632 else
633 if (updated_fp)
634 {
635 /* Don't bail out yet, we may have arguments stored in
636 registers here, according to the debug info, so that
637 gdb can print the frames correctly. */
638 start_pc = look_for_args_moves (gdbarch,
639 here - insn_size, media_mode);
640 break;
641 }
642 }
643 else
644 {
645 int w = 0xffff & read_memory_integer (here, insn_size, byte_order);
646 here += insn_size;
647
648 if (IS_STS_R0 (w) || IS_STS_PR (w)
649 || IS_MOV_TO_R15 (w) || IS_MOV_R14 (w)
650 || IS_MOV_R0 (w) || IS_ADD_SP_R0 (w) || IS_MOV_R14_R0 (w))
651 {
652 start_pc = here;
653 }
654 else if (IS_MOV_SP_FP (w))
655 {
656 start_pc = here;
657 updated_fp = 1;
658 }
659 else
660 if (updated_fp)
661 {
662 /* Don't bail out yet, we may have arguments stored in
663 registers here, according to the debug info, so that
664 gdb can print the frames correctly. */
665 start_pc = look_for_args_moves (gdbarch,
666 here - insn_size, media_mode);
667 break;
668 }
669 }
670 }
671
672 return start_pc;
673 }
674
675 static CORE_ADDR
676 sh64_skip_prologue (struct gdbarch *gdbarch, CORE_ADDR pc)
677 {
678 CORE_ADDR post_prologue_pc;
679
680 /* See if we can determine the end of the prologue via the symbol table.
681 If so, then return either PC, or the PC after the prologue, whichever
682 is greater. */
683 post_prologue_pc = after_prologue (pc);
684
685 /* If after_prologue returned a useful address, then use it. Else
686 fall back on the instruction skipping code. */
687 if (post_prologue_pc != 0)
688 return max (pc, post_prologue_pc);
689 else
690 return sh64_skip_prologue_hard_way (gdbarch, pc);
691 }
692
693 /* Should call_function allocate stack space for a struct return? */
694 static int
695 sh64_use_struct_convention (struct type *type)
696 {
697 return (TYPE_LENGTH (type) > 8);
698 }
699
700 /* For vectors of 4 floating point registers. */
701 static int
702 sh64_fv_reg_base_num (struct gdbarch *gdbarch, int fv_regnum)
703 {
704 int fp_regnum;
705
706 fp_regnum = gdbarch_fp0_regnum (gdbarch) + (fv_regnum - FV0_REGNUM) * 4;
707 return fp_regnum;
708 }
709
710 /* For double precision floating point registers, i.e 2 fp regs. */
711 static int
712 sh64_dr_reg_base_num (struct gdbarch *gdbarch, int dr_regnum)
713 {
714 int fp_regnum;
715
716 fp_regnum = gdbarch_fp0_regnum (gdbarch) + (dr_regnum - DR0_REGNUM) * 2;
717 return fp_regnum;
718 }
719
720 /* For pairs of floating point registers. */
721 static int
722 sh64_fpp_reg_base_num (struct gdbarch *gdbarch, int fpp_regnum)
723 {
724 int fp_regnum;
725
726 fp_regnum = gdbarch_fp0_regnum (gdbarch) + (fpp_regnum - FPP0_REGNUM) * 2;
727 return fp_regnum;
728 }
729
730 /* *INDENT-OFF* */
731 /*
732 SH COMPACT MODE (ISA 16) (all pseudo) 221-272
733 GDB_REGNUM BASE_REGNUM
734 r0_c 221 0
735 r1_c 222 1
736 r2_c 223 2
737 r3_c 224 3
738 r4_c 225 4
739 r5_c 226 5
740 r6_c 227 6
741 r7_c 228 7
742 r8_c 229 8
743 r9_c 230 9
744 r10_c 231 10
745 r11_c 232 11
746 r12_c 233 12
747 r13_c 234 13
748 r14_c 235 14
749 r15_c 236 15
750
751 pc_c 237 64
752 gbr_c 238 16
753 mach_c 239 17
754 macl_c 240 17
755 pr_c 241 18
756 t_c 242 19
757 fpscr_c 243 76
758 fpul_c 244 109
759
760 fr0_c 245 77
761 fr1_c 246 78
762 fr2_c 247 79
763 fr3_c 248 80
764 fr4_c 249 81
765 fr5_c 250 82
766 fr6_c 251 83
767 fr7_c 252 84
768 fr8_c 253 85
769 fr9_c 254 86
770 fr10_c 255 87
771 fr11_c 256 88
772 fr12_c 257 89
773 fr13_c 258 90
774 fr14_c 259 91
775 fr15_c 260 92
776
777 dr0_c 261 77
778 dr2_c 262 79
779 dr4_c 263 81
780 dr6_c 264 83
781 dr8_c 265 85
782 dr10_c 266 87
783 dr12_c 267 89
784 dr14_c 268 91
785
786 fv0_c 269 77
787 fv4_c 270 81
788 fv8_c 271 85
789 fv12_c 272 91
790 */
791 /* *INDENT-ON* */
792 static int
793 sh64_compact_reg_base_num (struct gdbarch *gdbarch, int reg_nr)
794 {
795 int base_regnum = reg_nr;
796
797 /* general register N maps to general register N */
798 if (reg_nr >= R0_C_REGNUM
799 && reg_nr <= R_LAST_C_REGNUM)
800 base_regnum = reg_nr - R0_C_REGNUM;
801
802 /* floating point register N maps to floating point register N */
803 else if (reg_nr >= FP0_C_REGNUM
804 && reg_nr <= FP_LAST_C_REGNUM)
805 base_regnum = reg_nr - FP0_C_REGNUM + gdbarch_fp0_regnum (gdbarch);
806
807 /* double prec register N maps to base regnum for double prec register N */
808 else if (reg_nr >= DR0_C_REGNUM
809 && reg_nr <= DR_LAST_C_REGNUM)
810 base_regnum = sh64_dr_reg_base_num (gdbarch,
811 DR0_REGNUM + reg_nr - DR0_C_REGNUM);
812
813 /* vector N maps to base regnum for vector register N */
814 else if (reg_nr >= FV0_C_REGNUM
815 && reg_nr <= FV_LAST_C_REGNUM)
816 base_regnum = sh64_fv_reg_base_num (gdbarch,
817 FV0_REGNUM + reg_nr - FV0_C_REGNUM);
818
819 else if (reg_nr == PC_C_REGNUM)
820 base_regnum = gdbarch_pc_regnum (gdbarch);
821
822 else if (reg_nr == GBR_C_REGNUM)
823 base_regnum = 16;
824
825 else if (reg_nr == MACH_C_REGNUM
826 || reg_nr == MACL_C_REGNUM)
827 base_regnum = 17;
828
829 else if (reg_nr == PR_C_REGNUM)
830 base_regnum = PR_REGNUM;
831
832 else if (reg_nr == T_C_REGNUM)
833 base_regnum = 19;
834
835 else if (reg_nr == FPSCR_C_REGNUM)
836 base_regnum = FPSCR_REGNUM; /*???? this register is a mess. */
837
838 else if (reg_nr == FPUL_C_REGNUM)
839 base_regnum = gdbarch_fp0_regnum (gdbarch) + 32;
840
841 return base_regnum;
842 }
843
844 static int
845 sign_extend (int value, int bits)
846 {
847 value = value & ((1 << bits) - 1);
848 return (value & (1 << (bits - 1))
849 ? value | (~((1 << bits) - 1))
850 : value);
851 }
852
853 static void
854 sh64_analyze_prologue (struct gdbarch *gdbarch,
855 struct sh64_frame_cache *cache,
856 CORE_ADDR func_pc,
857 CORE_ADDR current_pc)
858 {
859 int pc;
860 int opc;
861 int insn;
862 int r0_val = 0;
863 int insn_size;
864 enum bfd_endian byte_order = gdbarch_byte_order (gdbarch);
865
866 cache->sp_offset = 0;
867
868 /* Loop around examining the prologue insns until we find something
869 that does not appear to be part of the prologue. But give up
870 after 20 of them, since we're getting silly then. */
871
872 pc = func_pc;
873
874 if (cache->media_mode)
875 insn_size = 4;
876 else
877 insn_size = 2;
878
879 opc = pc + (insn_size * 28);
880 if (opc > current_pc)
881 opc = current_pc;
882 for ( ; pc <= opc; pc += insn_size)
883 {
884 insn = read_memory_integer (cache->media_mode ? UNMAKE_ISA32_ADDR (pc)
885 : pc,
886 insn_size, byte_order);
887
888 if (!cache->media_mode)
889 {
890 if (IS_STS_PR (insn))
891 {
892 int next_insn = read_memory_integer (pc + insn_size,
893 insn_size, byte_order);
894 if (IS_MOV_TO_R15 (next_insn))
895 {
896 cache->saved_regs[PR_REGNUM]
897 = cache->sp_offset - ((((next_insn & 0xf) ^ 0x8)
898 - 0x8) << 2);
899 pc += insn_size;
900 }
901 }
902
903 else if (IS_MOV_R14 (insn))
904 cache->saved_regs[MEDIA_FP_REGNUM] =
905 cache->sp_offset - ((((insn & 0xf) ^ 0x8) - 0x8) << 2);
906
907 else if (IS_MOV_R0 (insn))
908 {
909 /* Put in R0 the offset from SP at which to store some
910 registers. We are interested in this value, because it
911 will tell us where the given registers are stored within
912 the frame. */
913 r0_val = ((insn & 0xff) ^ 0x80) - 0x80;
914 }
915
916 else if (IS_ADD_SP_R0 (insn))
917 {
918 /* This instruction still prepares r0, but we don't care.
919 We already have the offset in r0_val. */
920 }
921
922 else if (IS_STS_R0 (insn))
923 {
924 /* Store PR at r0_val-4 from SP. Decrement r0 by 4. */
925 cache->saved_regs[PR_REGNUM] = cache->sp_offset - (r0_val - 4);
926 r0_val -= 4;
927 }
928
929 else if (IS_MOV_R14_R0 (insn))
930 {
931 /* Store R14 at r0_val-4 from SP. Decrement r0 by 4. */
932 cache->saved_regs[MEDIA_FP_REGNUM] = cache->sp_offset
933 - (r0_val - 4);
934 r0_val -= 4;
935 }
936
937 else if (IS_ADD_SP (insn))
938 cache->sp_offset -= ((insn & 0xff) ^ 0x80) - 0x80;
939
940 else if (IS_MOV_SP_FP (insn))
941 break;
942 }
943 else
944 {
945 if (IS_ADDIL_SP_MEDIA (insn) || IS_ADDI_SP_MEDIA (insn))
946 cache->sp_offset -=
947 sign_extend ((((insn & 0xffc00) ^ 0x80000) - 0x80000) >> 10, 9);
948
949 else if (IS_STQ_R18_R15 (insn))
950 cache->saved_regs[PR_REGNUM]
951 = cache->sp_offset - (sign_extend ((insn & 0xffc00) >> 10,
952 9) << 3);
953
954 else if (IS_STL_R18_R15 (insn))
955 cache->saved_regs[PR_REGNUM]
956 = cache->sp_offset - (sign_extend ((insn & 0xffc00) >> 10,
957 9) << 2);
958
959 else if (IS_STQ_R14_R15 (insn))
960 cache->saved_regs[MEDIA_FP_REGNUM]
961 = cache->sp_offset - (sign_extend ((insn & 0xffc00) >> 10,
962 9) << 3);
963
964 else if (IS_STL_R14_R15 (insn))
965 cache->saved_regs[MEDIA_FP_REGNUM]
966 = cache->sp_offset - (sign_extend ((insn & 0xffc00) >> 10,
967 9) << 2);
968
969 else if (IS_MOV_SP_FP_MEDIA (insn))
970 break;
971 }
972 }
973
974 if (cache->saved_regs[MEDIA_FP_REGNUM] >= 0)
975 cache->uses_fp = 1;
976 }
977
978 static CORE_ADDR
979 sh64_frame_align (struct gdbarch *ignore, CORE_ADDR sp)
980 {
981 return sp & ~7;
982 }
983
984 /* Function: push_dummy_call
985 Setup the function arguments for calling a function in the inferior.
986
987 On the Renesas SH architecture, there are four registers (R4 to R7)
988 which are dedicated for passing function arguments. Up to the first
989 four arguments (depending on size) may go into these registers.
990 The rest go on the stack.
991
992 Arguments that are smaller than 4 bytes will still take up a whole
993 register or a whole 32-bit word on the stack, and will be
994 right-justified in the register or the stack word. This includes
995 chars, shorts, and small aggregate types.
996
997 Arguments that are larger than 4 bytes may be split between two or
998 more registers. If there are not enough registers free, an argument
999 may be passed partly in a register (or registers), and partly on the
1000 stack. This includes doubles, long longs, and larger aggregates.
1001 As far as I know, there is no upper limit to the size of aggregates
1002 that will be passed in this way; in other words, the convention of
1003 passing a pointer to a large aggregate instead of a copy is not used.
1004
1005 An exceptional case exists for struct arguments (and possibly other
1006 aggregates such as arrays) if the size is larger than 4 bytes but
1007 not a multiple of 4 bytes. In this case the argument is never split
1008 between the registers and the stack, but instead is copied in its
1009 entirety onto the stack, AND also copied into as many registers as
1010 there is room for. In other words, space in registers permitting,
1011 two copies of the same argument are passed in. As far as I can tell,
1012 only the one on the stack is used, although that may be a function
1013 of the level of compiler optimization. I suspect this is a compiler
1014 bug. Arguments of these odd sizes are left-justified within the
1015 word (as opposed to arguments smaller than 4 bytes, which are
1016 right-justified).
1017
1018 If the function is to return an aggregate type such as a struct, it
1019 is either returned in the normal return value register R0 (if its
1020 size is no greater than one byte), or else the caller must allocate
1021 space into which the callee will copy the return value (if the size
1022 is greater than one byte). In this case, a pointer to the return
1023 value location is passed into the callee in register R2, which does
1024 not displace any of the other arguments passed in via registers R4
1025 to R7. */
1026
1027 /* R2-R9 for integer types and integer equivalent (char, pointers) and
1028 non-scalar (struct, union) elements (even if the elements are
1029 floats).
1030 FR0-FR11 for single precision floating point (float)
1031 DR0-DR10 for double precision floating point (double)
1032
1033 If a float is argument number 3 (for instance) and arguments number
1034 1,2, and 4 are integer, the mapping will be:
1035 arg1 -->R2, arg2 --> R3, arg3 -->FR0, arg4 --> R5. I.e. R4 is not used.
1036
1037 If a float is argument number 10 (for instance) and arguments number
1038 1 through 10 are integer, the mapping will be:
1039 arg1->R2, arg2->R3, arg3->R4, arg4->R5, arg5->R6, arg6->R7, arg7->R8,
1040 arg8->R9, arg9->(0,SP)stack(8-byte aligned), arg10->FR0,
1041 arg11->stack(16,SP). I.e. there is hole in the stack.
1042
1043 Different rules apply for variable arguments functions, and for functions
1044 for which the prototype is not known. */
1045
1046 static CORE_ADDR
1047 sh64_push_dummy_call (struct gdbarch *gdbarch,
1048 struct value *function,
1049 struct regcache *regcache,
1050 CORE_ADDR bp_addr,
1051 int nargs, struct value **args,
1052 CORE_ADDR sp, int struct_return,
1053 CORE_ADDR struct_addr)
1054 {
1055 enum bfd_endian byte_order = gdbarch_byte_order (gdbarch);
1056 int stack_offset, stack_alloc;
1057 int int_argreg;
1058 int float_arg_index = 0;
1059 int double_arg_index = 0;
1060 int argnum;
1061 struct type *type;
1062 CORE_ADDR regval;
1063 const gdb_byte *val;
1064 gdb_byte valbuf[8];
1065 int len;
1066 int argreg_size;
1067 int fp_args[12];
1068
1069 memset (fp_args, 0, sizeof (fp_args));
1070
1071 /* First force sp to a 8-byte alignment. */
1072 sp = sh64_frame_align (gdbarch, sp);
1073
1074 /* The "struct return pointer" pseudo-argument has its own dedicated
1075 register. */
1076
1077 if (struct_return)
1078 regcache_cooked_write_unsigned (regcache,
1079 STRUCT_RETURN_REGNUM, struct_addr);
1080
1081 /* Now make sure there's space on the stack. */
1082 for (argnum = 0, stack_alloc = 0; argnum < nargs; argnum++)
1083 stack_alloc += ((TYPE_LENGTH (value_type (args[argnum])) + 7) & ~7);
1084 sp -= stack_alloc; /* Make room on stack for args. */
1085
1086 /* Now load as many as possible of the first arguments into
1087 registers, and push the rest onto the stack. There are 64 bytes
1088 in eight registers available. Loop thru args from first to last. */
1089
1090 int_argreg = ARG0_REGNUM;
1091
1092 for (argnum = 0, stack_offset = 0; argnum < nargs; argnum++)
1093 {
1094 type = value_type (args[argnum]);
1095 len = TYPE_LENGTH (type);
1096 memset (valbuf, 0, sizeof (valbuf));
1097
1098 if (TYPE_CODE (type) != TYPE_CODE_FLT)
1099 {
1100 argreg_size = register_size (gdbarch, int_argreg);
1101
1102 if (len < argreg_size)
1103 {
1104 /* value gets right-justified in the register or stack word. */
1105 if (gdbarch_byte_order (gdbarch) == BFD_ENDIAN_BIG)
1106 memcpy (valbuf + argreg_size - len,
1107 value_contents (args[argnum]), len);
1108 else
1109 memcpy (valbuf, value_contents (args[argnum]), len);
1110
1111 val = valbuf;
1112 }
1113 else
1114 val = value_contents (args[argnum]);
1115
1116 while (len > 0)
1117 {
1118 if (int_argreg > ARGLAST_REGNUM)
1119 {
1120 /* Must go on the stack. */
1121 write_memory (sp + stack_offset, val, argreg_size);
1122 stack_offset += 8;/*argreg_size;*/
1123 }
1124 /* NOTE WELL!!!!! This is not an "else if" clause!!!
1125 That's because some *&^%$ things get passed on the stack
1126 AND in the registers! */
1127 if (int_argreg <= ARGLAST_REGNUM)
1128 {
1129 /* There's room in a register. */
1130 regval = extract_unsigned_integer (val, argreg_size,
1131 byte_order);
1132 regcache_cooked_write_unsigned (regcache,
1133 int_argreg, regval);
1134 }
1135 /* Store the value 8 bytes at a time. This means that
1136 things larger than 8 bytes may go partly in registers
1137 and partly on the stack. FIXME: argreg is incremented
1138 before we use its size. */
1139 len -= argreg_size;
1140 val += argreg_size;
1141 int_argreg++;
1142 }
1143 }
1144 else
1145 {
1146 val = value_contents (args[argnum]);
1147 if (len == 4)
1148 {
1149 /* Where is it going to be stored? */
1150 while (fp_args[float_arg_index])
1151 float_arg_index ++;
1152
1153 /* Now float_argreg points to the register where it
1154 should be stored. Are we still within the allowed
1155 register set? */
1156 if (float_arg_index <= FLOAT_ARGLAST_REGNUM)
1157 {
1158 /* Goes in FR0...FR11 */
1159 regcache_cooked_write (regcache,
1160 gdbarch_fp0_regnum (gdbarch)
1161 + float_arg_index,
1162 val);
1163 fp_args[float_arg_index] = 1;
1164 /* Skip the corresponding general argument register. */
1165 int_argreg ++;
1166 }
1167 else
1168 {
1169 /* Store it as the integers, 8 bytes at the time, if
1170 necessary spilling on the stack. */
1171 }
1172 }
1173 else if (len == 8)
1174 {
1175 /* Where is it going to be stored? */
1176 while (fp_args[double_arg_index])
1177 double_arg_index += 2;
1178 /* Now double_argreg points to the register
1179 where it should be stored.
1180 Are we still within the allowed register set? */
1181 if (double_arg_index < FLOAT_ARGLAST_REGNUM)
1182 {
1183 /* Goes in DR0...DR10 */
1184 /* The numbering of the DRi registers is consecutive,
1185 i.e. includes odd numbers. */
1186 int double_register_offset = double_arg_index / 2;
1187 int regnum = DR0_REGNUM + double_register_offset;
1188 regcache_cooked_write (regcache, regnum, val);
1189 fp_args[double_arg_index] = 1;
1190 fp_args[double_arg_index + 1] = 1;
1191 /* Skip the corresponding general argument register. */
1192 int_argreg ++;
1193 }
1194 else
1195 {
1196 /* Store it as the integers, 8 bytes at the time, if
1197 necessary spilling on the stack. */
1198 }
1199 }
1200 }
1201 }
1202 /* Store return address. */
1203 regcache_cooked_write_unsigned (regcache, PR_REGNUM, bp_addr);
1204
1205 /* Update stack pointer. */
1206 regcache_cooked_write_unsigned (regcache,
1207 gdbarch_sp_regnum (gdbarch), sp);
1208
1209 return sp;
1210 }
1211
1212 /* Find a function's return value in the appropriate registers (in
1213 regbuf), and copy it into valbuf. Extract from an array REGBUF
1214 containing the (raw) register state a function return value of type
1215 TYPE, and copy that, in virtual format, into VALBUF. */
1216 static void
1217 sh64_extract_return_value (struct type *type, struct regcache *regcache,
1218 gdb_byte *valbuf)
1219 {
1220 struct gdbarch *gdbarch = get_regcache_arch (regcache);
1221 int len = TYPE_LENGTH (type);
1222
1223 if (TYPE_CODE (type) == TYPE_CODE_FLT)
1224 {
1225 if (len == 4)
1226 {
1227 /* Return value stored in gdbarch_fp0_regnum. */
1228 regcache_raw_read (regcache,
1229 gdbarch_fp0_regnum (gdbarch), valbuf);
1230 }
1231 else if (len == 8)
1232 {
1233 /* return value stored in DR0_REGNUM. */
1234 DOUBLEST val;
1235 gdb_byte buf[8];
1236
1237 regcache_cooked_read (regcache, DR0_REGNUM, buf);
1238
1239 if (gdbarch_byte_order (gdbarch) == BFD_ENDIAN_LITTLE)
1240 floatformat_to_doublest (&floatformat_ieee_double_littlebyte_bigword,
1241 buf, &val);
1242 else
1243 floatformat_to_doublest (&floatformat_ieee_double_big,
1244 buf, &val);
1245 store_typed_floating (valbuf, type, val);
1246 }
1247 }
1248 else
1249 {
1250 if (len <= 8)
1251 {
1252 int offset;
1253 gdb_byte buf[8];
1254 /* Result is in register 2. If smaller than 8 bytes, it is padded
1255 at the most significant end. */
1256 regcache_raw_read (regcache, DEFAULT_RETURN_REGNUM, buf);
1257
1258 if (gdbarch_byte_order (gdbarch) == BFD_ENDIAN_BIG)
1259 offset = register_size (gdbarch, DEFAULT_RETURN_REGNUM)
1260 - len;
1261 else
1262 offset = 0;
1263 memcpy (valbuf, buf + offset, len);
1264 }
1265 else
1266 error (_("bad size for return value"));
1267 }
1268 }
1269
1270 /* Write into appropriate registers a function return value
1271 of type TYPE, given in virtual format.
1272 If the architecture is sh4 or sh3e, store a function's return value
1273 in the R0 general register or in the FP0 floating point register,
1274 depending on the type of the return value. In all the other cases
1275 the result is stored in r0, left-justified. */
1276
1277 static void
1278 sh64_store_return_value (struct type *type, struct regcache *regcache,
1279 const gdb_byte *valbuf)
1280 {
1281 struct gdbarch *gdbarch = get_regcache_arch (regcache);
1282 gdb_byte buf[64]; /* more than enough... */
1283 int len = TYPE_LENGTH (type);
1284
1285 if (TYPE_CODE (type) == TYPE_CODE_FLT)
1286 {
1287 int i, regnum = gdbarch_fp0_regnum (gdbarch);
1288 for (i = 0; i < len; i += 4)
1289 if (gdbarch_byte_order (gdbarch) == BFD_ENDIAN_LITTLE)
1290 regcache_raw_write (regcache, regnum++,
1291 valbuf + len - 4 - i);
1292 else
1293 regcache_raw_write (regcache, regnum++, valbuf + i);
1294 }
1295 else
1296 {
1297 int return_register = DEFAULT_RETURN_REGNUM;
1298 int offset = 0;
1299
1300 if (len <= register_size (gdbarch, return_register))
1301 {
1302 /* Pad with zeros. */
1303 memset (buf, 0, register_size (gdbarch, return_register));
1304 if (gdbarch_byte_order (gdbarch) == BFD_ENDIAN_LITTLE)
1305 offset = 0; /*register_size (gdbarch,
1306 return_register) - len;*/
1307 else
1308 offset = register_size (gdbarch, return_register) - len;
1309
1310 memcpy (buf + offset, valbuf, len);
1311 regcache_raw_write (regcache, return_register, buf);
1312 }
1313 else
1314 regcache_raw_write (regcache, return_register, valbuf);
1315 }
1316 }
1317
1318 static enum return_value_convention
1319 sh64_return_value (struct gdbarch *gdbarch, struct value *function,
1320 struct type *type, struct regcache *regcache,
1321 gdb_byte *readbuf, const gdb_byte *writebuf)
1322 {
1323 if (sh64_use_struct_convention (type))
1324 return RETURN_VALUE_STRUCT_CONVENTION;
1325 if (writebuf)
1326 sh64_store_return_value (type, regcache, writebuf);
1327 else if (readbuf)
1328 sh64_extract_return_value (type, regcache, readbuf);
1329 return RETURN_VALUE_REGISTER_CONVENTION;
1330 }
1331
1332 /* *INDENT-OFF* */
1333 /*
1334 SH MEDIA MODE (ISA 32)
1335 general registers (64-bit) 0-63
1336 0 r0, r1, r2, r3, r4, r5, r6, r7,
1337 64 r8, r9, r10, r11, r12, r13, r14, r15,
1338 128 r16, r17, r18, r19, r20, r21, r22, r23,
1339 192 r24, r25, r26, r27, r28, r29, r30, r31,
1340 256 r32, r33, r34, r35, r36, r37, r38, r39,
1341 320 r40, r41, r42, r43, r44, r45, r46, r47,
1342 384 r48, r49, r50, r51, r52, r53, r54, r55,
1343 448 r56, r57, r58, r59, r60, r61, r62, r63,
1344
1345 pc (64-bit) 64
1346 512 pc,
1347
1348 status reg., saved status reg., saved pc reg. (64-bit) 65-67
1349 520 sr, ssr, spc,
1350
1351 target registers (64-bit) 68-75
1352 544 tr0, tr1, tr2, tr3, tr4, tr5, tr6, tr7,
1353
1354 floating point state control register (32-bit) 76
1355 608 fpscr,
1356
1357 single precision floating point registers (32-bit) 77-140
1358 612 fr0, fr1, fr2, fr3, fr4, fr5, fr6, fr7,
1359 644 fr8, fr9, fr10, fr11, fr12, fr13, fr14, fr15,
1360 676 fr16, fr17, fr18, fr19, fr20, fr21, fr22, fr23,
1361 708 fr24, fr25, fr26, fr27, fr28, fr29, fr30, fr31,
1362 740 fr32, fr33, fr34, fr35, fr36, fr37, fr38, fr39,
1363 772 fr40, fr41, fr42, fr43, fr44, fr45, fr46, fr47,
1364 804 fr48, fr49, fr50, fr51, fr52, fr53, fr54, fr55,
1365 836 fr56, fr57, fr58, fr59, fr60, fr61, fr62, fr63,
1366
1367 TOTAL SPACE FOR REGISTERS: 868 bytes
1368
1369 From here on they are all pseudo registers: no memory allocated.
1370 REGISTER_BYTE returns the register byte for the base register.
1371
1372 double precision registers (pseudo) 141-172
1373 dr0, dr2, dr4, dr6, dr8, dr10, dr12, dr14,
1374 dr16, dr18, dr20, dr22, dr24, dr26, dr28, dr30,
1375 dr32, dr34, dr36, dr38, dr40, dr42, dr44, dr46,
1376 dr48, dr50, dr52, dr54, dr56, dr58, dr60, dr62,
1377
1378 floating point pairs (pseudo) 173-204
1379 fp0, fp2, fp4, fp6, fp8, fp10, fp12, fp14,
1380 fp16, fp18, fp20, fp22, fp24, fp26, fp28, fp30,
1381 fp32, fp34, fp36, fp38, fp40, fp42, fp44, fp46,
1382 fp48, fp50, fp52, fp54, fp56, fp58, fp60, fp62,
1383
1384 floating point vectors (4 floating point regs) (pseudo) 205-220
1385 fv0, fv4, fv8, fv12, fv16, fv20, fv24, fv28,
1386 fv32, fv36, fv40, fv44, fv48, fv52, fv56, fv60,
1387
1388 SH COMPACT MODE (ISA 16) (all pseudo) 221-272
1389 r0_c, r1_c, r2_c, r3_c, r4_c, r5_c, r6_c, r7_c,
1390 r8_c, r9_c, r10_c, r11_c, r12_c, r13_c, r14_c, r15_c,
1391 pc_c,
1392 gbr_c, mach_c, macl_c, pr_c, t_c,
1393 fpscr_c, fpul_c,
1394 fr0_c, fr1_c, fr2_c, fr3_c, fr4_c, fr5_c, fr6_c, fr7_c,
1395 fr8_c, fr9_c, fr10_c, fr11_c, fr12_c, fr13_c, fr14_c, fr15_c
1396 dr0_c, dr2_c, dr4_c, dr6_c, dr8_c, dr10_c, dr12_c, dr14_c
1397 fv0_c, fv4_c, fv8_c, fv12_c
1398 */
1399
1400 static struct type *
1401 sh64_build_float_register_type (struct gdbarch *gdbarch, int high)
1402 {
1403 return lookup_array_range_type (builtin_type (gdbarch)->builtin_float,
1404 0, high);
1405 }
1406
1407 /* Return the GDB type object for the "standard" data type
1408 of data in register REG_NR. */
1409 static struct type *
1410 sh64_register_type (struct gdbarch *gdbarch, int reg_nr)
1411 {
1412 if ((reg_nr >= gdbarch_fp0_regnum (gdbarch)
1413 && reg_nr <= FP_LAST_REGNUM)
1414 || (reg_nr >= FP0_C_REGNUM
1415 && reg_nr <= FP_LAST_C_REGNUM))
1416 return builtin_type (gdbarch)->builtin_float;
1417 else if ((reg_nr >= DR0_REGNUM
1418 && reg_nr <= DR_LAST_REGNUM)
1419 || (reg_nr >= DR0_C_REGNUM
1420 && reg_nr <= DR_LAST_C_REGNUM))
1421 return builtin_type (gdbarch)->builtin_double;
1422 else if (reg_nr >= FPP0_REGNUM
1423 && reg_nr <= FPP_LAST_REGNUM)
1424 return sh64_build_float_register_type (gdbarch, 1);
1425 else if ((reg_nr >= FV0_REGNUM
1426 && reg_nr <= FV_LAST_REGNUM)
1427 ||(reg_nr >= FV0_C_REGNUM
1428 && reg_nr <= FV_LAST_C_REGNUM))
1429 return sh64_build_float_register_type (gdbarch, 3);
1430 else if (reg_nr == FPSCR_REGNUM)
1431 return builtin_type (gdbarch)->builtin_int;
1432 else if (reg_nr >= R0_C_REGNUM
1433 && reg_nr < FP0_C_REGNUM)
1434 return builtin_type (gdbarch)->builtin_int;
1435 else
1436 return builtin_type (gdbarch)->builtin_long_long;
1437 }
1438
1439 static void
1440 sh64_register_convert_to_virtual (struct gdbarch *gdbarch, int regnum,
1441 struct type *type, gdb_byte *from, gdb_byte *to)
1442 {
1443 if (gdbarch_byte_order (gdbarch) != BFD_ENDIAN_LITTLE)
1444 {
1445 /* It is a no-op. */
1446 memcpy (to, from, register_size (gdbarch, regnum));
1447 return;
1448 }
1449
1450 if ((regnum >= DR0_REGNUM
1451 && regnum <= DR_LAST_REGNUM)
1452 || (regnum >= DR0_C_REGNUM
1453 && regnum <= DR_LAST_C_REGNUM))
1454 {
1455 DOUBLEST val;
1456 floatformat_to_doublest (&floatformat_ieee_double_littlebyte_bigword,
1457 from, &val);
1458 store_typed_floating (to, type, val);
1459 }
1460 else
1461 error (_("sh64_register_convert_to_virtual "
1462 "called with non DR register number"));
1463 }
1464
1465 static void
1466 sh64_register_convert_to_raw (struct gdbarch *gdbarch, struct type *type,
1467 int regnum, const void *from, void *to)
1468 {
1469 if (gdbarch_byte_order (gdbarch) != BFD_ENDIAN_LITTLE)
1470 {
1471 /* It is a no-op. */
1472 memcpy (to, from, register_size (gdbarch, regnum));
1473 return;
1474 }
1475
1476 if ((regnum >= DR0_REGNUM
1477 && regnum <= DR_LAST_REGNUM)
1478 || (regnum >= DR0_C_REGNUM
1479 && regnum <= DR_LAST_C_REGNUM))
1480 {
1481 DOUBLEST val = extract_typed_floating (from, type);
1482 floatformat_from_doublest (&floatformat_ieee_double_littlebyte_bigword,
1483 &val, to);
1484 }
1485 else
1486 error (_("sh64_register_convert_to_raw called "
1487 "with non DR register number"));
1488 }
1489
1490 /* Concatenate PORTIONS contiguous raw registers starting at
1491 BASE_REGNUM into BUFFER. */
1492
1493 static enum register_status
1494 pseudo_register_read_portions (struct gdbarch *gdbarch,
1495 struct regcache *regcache,
1496 int portions,
1497 int base_regnum, gdb_byte *buffer)
1498 {
1499 int portion;
1500
1501 for (portion = 0; portion < portions; portion++)
1502 {
1503 enum register_status status;
1504 gdb_byte *b;
1505
1506 b = buffer + register_size (gdbarch, base_regnum) * portion;
1507 status = regcache_raw_read (regcache, base_regnum + portion, b);
1508 if (status != REG_VALID)
1509 return status;
1510 }
1511
1512 return REG_VALID;
1513 }
1514
1515 static enum register_status
1516 sh64_pseudo_register_read (struct gdbarch *gdbarch, struct regcache *regcache,
1517 int reg_nr, gdb_byte *buffer)
1518 {
1519 enum bfd_endian byte_order = gdbarch_byte_order (gdbarch);
1520 int base_regnum;
1521 int offset = 0;
1522 gdb_byte temp_buffer[MAX_REGISTER_SIZE];
1523 enum register_status status;
1524
1525 if (reg_nr >= DR0_REGNUM
1526 && reg_nr <= DR_LAST_REGNUM)
1527 {
1528 base_regnum = sh64_dr_reg_base_num (gdbarch, reg_nr);
1529
1530 /* Build the value in the provided buffer. */
1531 /* DR regs are double precision registers obtained by
1532 concatenating 2 single precision floating point registers. */
1533 status = pseudo_register_read_portions (gdbarch, regcache,
1534 2, base_regnum, temp_buffer);
1535 if (status == REG_VALID)
1536 {
1537 /* We must pay attention to the endianness. */
1538 sh64_register_convert_to_virtual (gdbarch, reg_nr,
1539 register_type (gdbarch, reg_nr),
1540 temp_buffer, buffer);
1541 }
1542
1543 return status;
1544 }
1545
1546 else if (reg_nr >= FPP0_REGNUM
1547 && reg_nr <= FPP_LAST_REGNUM)
1548 {
1549 base_regnum = sh64_fpp_reg_base_num (gdbarch, reg_nr);
1550
1551 /* Build the value in the provided buffer. */
1552 /* FPP regs are pairs of single precision registers obtained by
1553 concatenating 2 single precision floating point registers. */
1554 return pseudo_register_read_portions (gdbarch, regcache,
1555 2, base_regnum, buffer);
1556 }
1557
1558 else if (reg_nr >= FV0_REGNUM
1559 && reg_nr <= FV_LAST_REGNUM)
1560 {
1561 base_regnum = sh64_fv_reg_base_num (gdbarch, reg_nr);
1562
1563 /* Build the value in the provided buffer. */
1564 /* FV regs are vectors of single precision registers obtained by
1565 concatenating 4 single precision floating point registers. */
1566 return pseudo_register_read_portions (gdbarch, regcache,
1567 4, base_regnum, buffer);
1568 }
1569
1570 /* sh compact pseudo registers. 1-to-1 with a shmedia register. */
1571 else if (reg_nr >= R0_C_REGNUM
1572 && reg_nr <= T_C_REGNUM)
1573 {
1574 base_regnum = sh64_compact_reg_base_num (gdbarch, reg_nr);
1575
1576 /* Build the value in the provided buffer. */
1577 status = regcache_raw_read (regcache, base_regnum, temp_buffer);
1578 if (status != REG_VALID)
1579 return status;
1580 if (gdbarch_byte_order (gdbarch) == BFD_ENDIAN_BIG)
1581 offset = 4;
1582 memcpy (buffer,
1583 temp_buffer + offset, 4); /* get LOWER 32 bits only???? */
1584 return REG_VALID;
1585 }
1586
1587 else if (reg_nr >= FP0_C_REGNUM
1588 && reg_nr <= FP_LAST_C_REGNUM)
1589 {
1590 base_regnum = sh64_compact_reg_base_num (gdbarch, reg_nr);
1591
1592 /* Build the value in the provided buffer. */
1593 /* Floating point registers map 1-1 to the media fp regs,
1594 they have the same size and endianness. */
1595 return regcache_raw_read (regcache, base_regnum, buffer);
1596 }
1597
1598 else if (reg_nr >= DR0_C_REGNUM
1599 && reg_nr <= DR_LAST_C_REGNUM)
1600 {
1601 base_regnum = sh64_compact_reg_base_num (gdbarch, reg_nr);
1602
1603 /* DR_C regs are double precision registers obtained by
1604 concatenating 2 single precision floating point registers. */
1605 status = pseudo_register_read_portions (gdbarch, regcache,
1606 2, base_regnum, temp_buffer);
1607 if (status == REG_VALID)
1608 {
1609 /* We must pay attention to the endianness. */
1610 sh64_register_convert_to_virtual (gdbarch, reg_nr,
1611 register_type (gdbarch, reg_nr),
1612 temp_buffer, buffer);
1613 }
1614 return status;
1615 }
1616
1617 else if (reg_nr >= FV0_C_REGNUM
1618 && reg_nr <= FV_LAST_C_REGNUM)
1619 {
1620 base_regnum = sh64_compact_reg_base_num (gdbarch, reg_nr);
1621
1622 /* Build the value in the provided buffer. */
1623 /* FV_C regs are vectors of single precision registers obtained by
1624 concatenating 4 single precision floating point registers. */
1625 return pseudo_register_read_portions (gdbarch, regcache,
1626 4, base_regnum, buffer);
1627 }
1628
1629 else if (reg_nr == FPSCR_C_REGNUM)
1630 {
1631 int fpscr_base_regnum;
1632 int sr_base_regnum;
1633 unsigned int fpscr_value;
1634 unsigned int sr_value;
1635 unsigned int fpscr_c_value;
1636 unsigned int fpscr_c_part1_value;
1637 unsigned int fpscr_c_part2_value;
1638
1639 fpscr_base_regnum = FPSCR_REGNUM;
1640 sr_base_regnum = SR_REGNUM;
1641
1642 /* Build the value in the provided buffer. */
1643 /* FPSCR_C is a very weird register that contains sparse bits
1644 from the FPSCR and the SR architectural registers.
1645 Specifically: */
1646 /* *INDENT-OFF* */
1647 /*
1648 FPSRC_C bit
1649 0 Bit 0 of FPSCR
1650 1 reserved
1651 2-17 Bit 2-18 of FPSCR
1652 18-20 Bits 12,13,14 of SR
1653 21-31 reserved
1654 */
1655 /* *INDENT-ON* */
1656 /* Get FPSCR into a local buffer. */
1657 status = regcache_raw_read (regcache, fpscr_base_regnum, temp_buffer);
1658 if (status != REG_VALID)
1659 return status;
1660 /* Get value as an int. */
1661 fpscr_value = extract_unsigned_integer (temp_buffer, 4, byte_order);
1662 /* Get SR into a local buffer */
1663 status = regcache_raw_read (regcache, sr_base_regnum, temp_buffer);
1664 if (status != REG_VALID)
1665 return status;
1666 /* Get value as an int. */
1667 sr_value = extract_unsigned_integer (temp_buffer, 4, byte_order);
1668 /* Build the new value. */
1669 fpscr_c_part1_value = fpscr_value & 0x3fffd;
1670 fpscr_c_part2_value = (sr_value & 0x7000) << 6;
1671 fpscr_c_value = fpscr_c_part1_value | fpscr_c_part2_value;
1672 /* Store that in out buffer!!! */
1673 store_unsigned_integer (buffer, 4, byte_order, fpscr_c_value);
1674 /* FIXME There is surely an endianness gotcha here. */
1675
1676 return REG_VALID;
1677 }
1678
1679 else if (reg_nr == FPUL_C_REGNUM)
1680 {
1681 base_regnum = sh64_compact_reg_base_num (gdbarch, reg_nr);
1682
1683 /* FPUL_C register is floating point register 32,
1684 same size, same endianness. */
1685 return regcache_raw_read (regcache, base_regnum, buffer);
1686 }
1687 else
1688 gdb_assert_not_reached ("invalid pseudo register number");
1689 }
1690
1691 static void
1692 sh64_pseudo_register_write (struct gdbarch *gdbarch, struct regcache *regcache,
1693 int reg_nr, const gdb_byte *buffer)
1694 {
1695 enum bfd_endian byte_order = gdbarch_byte_order (gdbarch);
1696 int base_regnum, portion;
1697 int offset;
1698 gdb_byte temp_buffer[MAX_REGISTER_SIZE];
1699
1700 if (reg_nr >= DR0_REGNUM
1701 && reg_nr <= DR_LAST_REGNUM)
1702 {
1703 base_regnum = sh64_dr_reg_base_num (gdbarch, reg_nr);
1704 /* We must pay attention to the endianness. */
1705 sh64_register_convert_to_raw (gdbarch, register_type (gdbarch, reg_nr),
1706 reg_nr,
1707 buffer, temp_buffer);
1708
1709 /* Write the real regs for which this one is an alias. */
1710 for (portion = 0; portion < 2; portion++)
1711 regcache_raw_write (regcache, base_regnum + portion,
1712 (temp_buffer
1713 + register_size (gdbarch,
1714 base_regnum) * portion));
1715 }
1716
1717 else if (reg_nr >= FPP0_REGNUM
1718 && reg_nr <= FPP_LAST_REGNUM)
1719 {
1720 base_regnum = sh64_fpp_reg_base_num (gdbarch, reg_nr);
1721
1722 /* Write the real regs for which this one is an alias. */
1723 for (portion = 0; portion < 2; portion++)
1724 regcache_raw_write (regcache, base_regnum + portion,
1725 (buffer + register_size (gdbarch,
1726 base_regnum) * portion));
1727 }
1728
1729 else if (reg_nr >= FV0_REGNUM
1730 && reg_nr <= FV_LAST_REGNUM)
1731 {
1732 base_regnum = sh64_fv_reg_base_num (gdbarch, reg_nr);
1733
1734 /* Write the real regs for which this one is an alias. */
1735 for (portion = 0; portion < 4; portion++)
1736 regcache_raw_write (regcache, base_regnum + portion,
1737 (buffer + register_size (gdbarch,
1738 base_regnum) * portion));
1739 }
1740
1741 /* sh compact general pseudo registers. 1-to-1 with a shmedia
1742 register but only 4 bytes of it. */
1743 else if (reg_nr >= R0_C_REGNUM
1744 && reg_nr <= T_C_REGNUM)
1745 {
1746 base_regnum = sh64_compact_reg_base_num (gdbarch, reg_nr);
1747 /* reg_nr is 32 bit here, and base_regnum is 64 bits. */
1748 if (gdbarch_byte_order (gdbarch) == BFD_ENDIAN_BIG)
1749 offset = 4;
1750 else
1751 offset = 0;
1752 /* Let's read the value of the base register into a temporary
1753 buffer, so that overwriting the last four bytes with the new
1754 value of the pseudo will leave the upper 4 bytes unchanged. */
1755 regcache_raw_read (regcache, base_regnum, temp_buffer);
1756 /* Write as an 8 byte quantity. */
1757 memcpy (temp_buffer + offset, buffer, 4);
1758 regcache_raw_write (regcache, base_regnum, temp_buffer);
1759 }
1760
1761 /* sh floating point compact pseudo registers. 1-to-1 with a shmedia
1762 registers. Both are 4 bytes. */
1763 else if (reg_nr >= FP0_C_REGNUM
1764 && reg_nr <= FP_LAST_C_REGNUM)
1765 {
1766 base_regnum = sh64_compact_reg_base_num (gdbarch, reg_nr);
1767 regcache_raw_write (regcache, base_regnum, buffer);
1768 }
1769
1770 else if (reg_nr >= DR0_C_REGNUM
1771 && reg_nr <= DR_LAST_C_REGNUM)
1772 {
1773 base_regnum = sh64_compact_reg_base_num (gdbarch, reg_nr);
1774 for (portion = 0; portion < 2; portion++)
1775 {
1776 /* We must pay attention to the endianness. */
1777 sh64_register_convert_to_raw (gdbarch,
1778 register_type (gdbarch, reg_nr),
1779 reg_nr,
1780 buffer, temp_buffer);
1781
1782 regcache_raw_write (regcache, base_regnum + portion,
1783 (temp_buffer
1784 + register_size (gdbarch,
1785 base_regnum) * portion));
1786 }
1787 }
1788
1789 else if (reg_nr >= FV0_C_REGNUM
1790 && reg_nr <= FV_LAST_C_REGNUM)
1791 {
1792 base_regnum = sh64_compact_reg_base_num (gdbarch, reg_nr);
1793
1794 for (portion = 0; portion < 4; portion++)
1795 {
1796 regcache_raw_write (regcache, base_regnum + portion,
1797 (buffer
1798 + register_size (gdbarch,
1799 base_regnum) * portion));
1800 }
1801 }
1802
1803 else if (reg_nr == FPSCR_C_REGNUM)
1804 {
1805 int fpscr_base_regnum;
1806 int sr_base_regnum;
1807 unsigned int fpscr_value;
1808 unsigned int sr_value;
1809 unsigned int old_fpscr_value;
1810 unsigned int old_sr_value;
1811 unsigned int fpscr_c_value;
1812 unsigned int fpscr_mask;
1813 unsigned int sr_mask;
1814
1815 fpscr_base_regnum = FPSCR_REGNUM;
1816 sr_base_regnum = SR_REGNUM;
1817
1818 /* FPSCR_C is a very weird register that contains sparse bits
1819 from the FPSCR and the SR architectural registers.
1820 Specifically: */
1821 /* *INDENT-OFF* */
1822 /*
1823 FPSRC_C bit
1824 0 Bit 0 of FPSCR
1825 1 reserved
1826 2-17 Bit 2-18 of FPSCR
1827 18-20 Bits 12,13,14 of SR
1828 21-31 reserved
1829 */
1830 /* *INDENT-ON* */
1831 /* Get value as an int. */
1832 fpscr_c_value = extract_unsigned_integer (buffer, 4, byte_order);
1833
1834 /* Build the new values. */
1835 fpscr_mask = 0x0003fffd;
1836 sr_mask = 0x001c0000;
1837
1838 fpscr_value = fpscr_c_value & fpscr_mask;
1839 sr_value = (fpscr_value & sr_mask) >> 6;
1840
1841 regcache_raw_read (regcache, fpscr_base_regnum, temp_buffer);
1842 old_fpscr_value = extract_unsigned_integer (temp_buffer, 4, byte_order);
1843 old_fpscr_value &= 0xfffc0002;
1844 fpscr_value |= old_fpscr_value;
1845 store_unsigned_integer (temp_buffer, 4, byte_order, fpscr_value);
1846 regcache_raw_write (regcache, fpscr_base_regnum, temp_buffer);
1847
1848 regcache_raw_read (regcache, sr_base_regnum, temp_buffer);
1849 old_sr_value = extract_unsigned_integer (temp_buffer, 4, byte_order);
1850 old_sr_value &= 0xffff8fff;
1851 sr_value |= old_sr_value;
1852 store_unsigned_integer (temp_buffer, 4, byte_order, sr_value);
1853 regcache_raw_write (regcache, sr_base_regnum, temp_buffer);
1854 }
1855
1856 else if (reg_nr == FPUL_C_REGNUM)
1857 {
1858 base_regnum = sh64_compact_reg_base_num (gdbarch, reg_nr);
1859 regcache_raw_write (regcache, base_regnum, buffer);
1860 }
1861 }
1862
1863 /* FIXME:!! THIS SHOULD TAKE CARE OF GETTING THE RIGHT PORTION OF THE
1864 shmedia REGISTERS. */
1865 /* Control registers, compact mode. */
1866 static void
1867 sh64_do_cr_c_register_info (struct ui_file *file, struct frame_info *frame,
1868 int cr_c_regnum)
1869 {
1870 switch (cr_c_regnum)
1871 {
1872 case PC_C_REGNUM:
1873 fprintf_filtered (file, "pc_c\t0x%08x\n",
1874 (int) get_frame_register_unsigned (frame, cr_c_regnum));
1875 break;
1876 case GBR_C_REGNUM:
1877 fprintf_filtered (file, "gbr_c\t0x%08x\n",
1878 (int) get_frame_register_unsigned (frame, cr_c_regnum));
1879 break;
1880 case MACH_C_REGNUM:
1881 fprintf_filtered (file, "mach_c\t0x%08x\n",
1882 (int) get_frame_register_unsigned (frame, cr_c_regnum));
1883 break;
1884 case MACL_C_REGNUM:
1885 fprintf_filtered (file, "macl_c\t0x%08x\n",
1886 (int) get_frame_register_unsigned (frame, cr_c_regnum));
1887 break;
1888 case PR_C_REGNUM:
1889 fprintf_filtered (file, "pr_c\t0x%08x\n",
1890 (int) get_frame_register_unsigned (frame, cr_c_regnum));
1891 break;
1892 case T_C_REGNUM:
1893 fprintf_filtered (file, "t_c\t0x%08x\n",
1894 (int) get_frame_register_unsigned (frame, cr_c_regnum));
1895 break;
1896 case FPSCR_C_REGNUM:
1897 fprintf_filtered (file, "fpscr_c\t0x%08x\n",
1898 (int) get_frame_register_unsigned (frame, cr_c_regnum));
1899 break;
1900 case FPUL_C_REGNUM:
1901 fprintf_filtered (file, "fpul_c\t0x%08x\n",
1902 (int) get_frame_register_unsigned (frame, cr_c_regnum));
1903 break;
1904 }
1905 }
1906
1907 static void
1908 sh64_do_fp_register (struct gdbarch *gdbarch, struct ui_file *file,
1909 struct frame_info *frame, int regnum)
1910 { /* Do values for FP (float) regs. */
1911 unsigned char *raw_buffer;
1912 double flt; /* Double extracted from raw hex data. */
1913 int inv;
1914
1915 /* Allocate space for the float. */
1916 raw_buffer = (unsigned char *)
1917 alloca (register_size (gdbarch, gdbarch_fp0_regnum (gdbarch)));
1918
1919 /* Get the data in raw format. */
1920 if (!deprecated_frame_register_read (frame, regnum, raw_buffer))
1921 error (_("can't read register %d (%s)"),
1922 regnum, gdbarch_register_name (gdbarch, regnum));
1923
1924 /* Get the register as a number. */
1925 flt = unpack_double (builtin_type (gdbarch)->builtin_float,
1926 raw_buffer, &inv);
1927
1928 /* Print the name and some spaces. */
1929 fputs_filtered (gdbarch_register_name (gdbarch, regnum), file);
1930 print_spaces_filtered (15 - strlen (gdbarch_register_name
1931 (gdbarch, regnum)), file);
1932
1933 /* Print the value. */
1934 if (inv)
1935 fprintf_filtered (file, "<invalid float>");
1936 else
1937 fprintf_filtered (file, "%-10.9g", flt);
1938
1939 /* Print the fp register as hex. */
1940 fprintf_filtered (file, "\t(raw ");
1941 print_hex_chars (file, raw_buffer,
1942 register_size (gdbarch, regnum),
1943 gdbarch_byte_order (gdbarch));
1944 fprintf_filtered (file, ")");
1945 fprintf_filtered (file, "\n");
1946 }
1947
1948 static void
1949 sh64_do_pseudo_register (struct gdbarch *gdbarch, struct ui_file *file,
1950 struct frame_info *frame, int regnum)
1951 {
1952 /* All the sh64-compact mode registers are pseudo registers. */
1953
1954 if (regnum < gdbarch_num_regs (gdbarch)
1955 || regnum >= gdbarch_num_regs (gdbarch)
1956 + NUM_PSEUDO_REGS_SH_MEDIA
1957 + NUM_PSEUDO_REGS_SH_COMPACT)
1958 internal_error (__FILE__, __LINE__,
1959 _("Invalid pseudo register number %d\n"), regnum);
1960
1961 else if ((regnum >= DR0_REGNUM && regnum <= DR_LAST_REGNUM))
1962 {
1963 int fp_regnum = sh64_dr_reg_base_num (gdbarch, regnum);
1964 fprintf_filtered (file, "dr%d\t0x%08x%08x\n", regnum - DR0_REGNUM,
1965 (unsigned) get_frame_register_unsigned (frame, fp_regnum),
1966 (unsigned) get_frame_register_unsigned (frame, fp_regnum + 1));
1967 }
1968
1969 else if ((regnum >= DR0_C_REGNUM && regnum <= DR_LAST_C_REGNUM))
1970 {
1971 int fp_regnum = sh64_compact_reg_base_num (gdbarch, regnum);
1972 fprintf_filtered (file, "dr%d_c\t0x%08x%08x\n", regnum - DR0_C_REGNUM,
1973 (unsigned) get_frame_register_unsigned (frame, fp_regnum),
1974 (unsigned) get_frame_register_unsigned (frame, fp_regnum + 1));
1975 }
1976
1977 else if ((regnum >= FV0_REGNUM && regnum <= FV_LAST_REGNUM))
1978 {
1979 int fp_regnum = sh64_fv_reg_base_num (gdbarch, regnum);
1980 fprintf_filtered (file, "fv%d\t0x%08x\t0x%08x\t0x%08x\t0x%08x\n",
1981 regnum - FV0_REGNUM,
1982 (unsigned) get_frame_register_unsigned (frame, fp_regnum),
1983 (unsigned) get_frame_register_unsigned (frame, fp_regnum + 1),
1984 (unsigned) get_frame_register_unsigned (frame, fp_regnum + 2),
1985 (unsigned) get_frame_register_unsigned (frame, fp_regnum + 3));
1986 }
1987
1988 else if ((regnum >= FV0_C_REGNUM && regnum <= FV_LAST_C_REGNUM))
1989 {
1990 int fp_regnum = sh64_compact_reg_base_num (gdbarch, regnum);
1991 fprintf_filtered (file, "fv%d_c\t0x%08x\t0x%08x\t0x%08x\t0x%08x\n",
1992 regnum - FV0_C_REGNUM,
1993 (unsigned) get_frame_register_unsigned (frame, fp_regnum),
1994 (unsigned) get_frame_register_unsigned (frame, fp_regnum + 1),
1995 (unsigned) get_frame_register_unsigned (frame, fp_regnum + 2),
1996 (unsigned) get_frame_register_unsigned (frame, fp_regnum + 3));
1997 }
1998
1999 else if (regnum >= FPP0_REGNUM && regnum <= FPP_LAST_REGNUM)
2000 {
2001 int fp_regnum = sh64_fpp_reg_base_num (gdbarch, regnum);
2002 fprintf_filtered (file, "fpp%d\t0x%08x\t0x%08x\n", regnum - FPP0_REGNUM,
2003 (unsigned) get_frame_register_unsigned (frame, fp_regnum),
2004 (unsigned) get_frame_register_unsigned (frame, fp_regnum + 1));
2005 }
2006
2007 else if (regnum >= R0_C_REGNUM && regnum <= R_LAST_C_REGNUM)
2008 {
2009 int c_regnum = sh64_compact_reg_base_num (gdbarch, regnum);
2010 fprintf_filtered (file, "r%d_c\t0x%08x\n", regnum - R0_C_REGNUM,
2011 (unsigned) get_frame_register_unsigned (frame, c_regnum));
2012 }
2013 else if (regnum >= FP0_C_REGNUM && regnum <= FP_LAST_C_REGNUM)
2014 /* This should work also for pseudoregs. */
2015 sh64_do_fp_register (gdbarch, file, frame, regnum);
2016 else if (regnum >= PC_C_REGNUM && regnum <= FPUL_C_REGNUM)
2017 sh64_do_cr_c_register_info (file, frame, regnum);
2018 }
2019
2020 static void
2021 sh64_do_register (struct gdbarch *gdbarch, struct ui_file *file,
2022 struct frame_info *frame, int regnum)
2023 {
2024 unsigned char raw_buffer[MAX_REGISTER_SIZE];
2025 struct value_print_options opts;
2026
2027 fputs_filtered (gdbarch_register_name (gdbarch, regnum), file);
2028 print_spaces_filtered (15 - strlen (gdbarch_register_name
2029 (gdbarch, regnum)), file);
2030
2031 /* Get the data in raw format. */
2032 if (!deprecated_frame_register_read (frame, regnum, raw_buffer))
2033 {
2034 fprintf_filtered (file, "*value not available*\n");
2035 return;
2036 }
2037
2038 get_formatted_print_options (&opts, 'x');
2039 opts.deref_ref = 1;
2040 val_print (register_type (gdbarch, regnum), raw_buffer, 0, 0,
2041 file, 0, NULL, &opts, current_language);
2042 fprintf_filtered (file, "\t");
2043 get_formatted_print_options (&opts, 0);
2044 opts.deref_ref = 1;
2045 val_print (register_type (gdbarch, regnum), raw_buffer, 0, 0,
2046 file, 0, NULL, &opts, current_language);
2047 fprintf_filtered (file, "\n");
2048 }
2049
2050 static void
2051 sh64_print_register (struct gdbarch *gdbarch, struct ui_file *file,
2052 struct frame_info *frame, int regnum)
2053 {
2054 if (regnum < 0 || regnum >= gdbarch_num_regs (gdbarch)
2055 + gdbarch_num_pseudo_regs (gdbarch))
2056 internal_error (__FILE__, __LINE__,
2057 _("Invalid register number %d\n"), regnum);
2058
2059 else if (regnum >= 0 && regnum < gdbarch_num_regs (gdbarch))
2060 {
2061 if (TYPE_CODE (register_type (gdbarch, regnum)) == TYPE_CODE_FLT)
2062 sh64_do_fp_register (gdbarch, file, frame, regnum); /* FP regs */
2063 else
2064 sh64_do_register (gdbarch, file, frame, regnum);
2065 }
2066
2067 else if (regnum < gdbarch_num_regs (gdbarch)
2068 + gdbarch_num_pseudo_regs (gdbarch))
2069 sh64_do_pseudo_register (gdbarch, file, frame, regnum);
2070 }
2071
2072 static void
2073 sh64_media_print_registers_info (struct gdbarch *gdbarch, struct ui_file *file,
2074 struct frame_info *frame, int regnum,
2075 int fpregs)
2076 {
2077 if (regnum != -1) /* Do one specified register. */
2078 {
2079 if (*(gdbarch_register_name (gdbarch, regnum)) == '\0')
2080 error (_("Not a valid register for the current processor type"));
2081
2082 sh64_print_register (gdbarch, file, frame, regnum);
2083 }
2084 else
2085 /* Do all (or most) registers. */
2086 {
2087 regnum = 0;
2088 while (regnum < gdbarch_num_regs (gdbarch))
2089 {
2090 /* If the register name is empty, it is undefined for this
2091 processor, so don't display anything. */
2092 if (gdbarch_register_name (gdbarch, regnum) == NULL
2093 || *(gdbarch_register_name (gdbarch, regnum)) == '\0')
2094 {
2095 regnum++;
2096 continue;
2097 }
2098
2099 if (TYPE_CODE (register_type (gdbarch, regnum))
2100 == TYPE_CODE_FLT)
2101 {
2102 if (fpregs)
2103 {
2104 /* true for "INFO ALL-REGISTERS" command. */
2105 sh64_do_fp_register (gdbarch, file, frame, regnum);
2106 regnum ++;
2107 }
2108 else
2109 regnum += FP_LAST_REGNUM - gdbarch_fp0_regnum (gdbarch);
2110 /* skip FP regs */
2111 }
2112 else
2113 {
2114 sh64_do_register (gdbarch, file, frame, regnum);
2115 regnum++;
2116 }
2117 }
2118
2119 if (fpregs)
2120 while (regnum < gdbarch_num_regs (gdbarch)
2121 + gdbarch_num_pseudo_regs (gdbarch))
2122 {
2123 sh64_do_pseudo_register (gdbarch, file, frame, regnum);
2124 regnum++;
2125 }
2126 }
2127 }
2128
2129 static void
2130 sh64_compact_print_registers_info (struct gdbarch *gdbarch,
2131 struct ui_file *file,
2132 struct frame_info *frame, int regnum,
2133 int fpregs)
2134 {
2135 if (regnum != -1) /* Do one specified register. */
2136 {
2137 if (*(gdbarch_register_name (gdbarch, regnum)) == '\0')
2138 error (_("Not a valid register for the current processor type"));
2139
2140 if (regnum >= 0 && regnum < R0_C_REGNUM)
2141 error (_("Not a valid register for the current processor mode."));
2142
2143 sh64_print_register (gdbarch, file, frame, regnum);
2144 }
2145 else
2146 /* Do all compact registers. */
2147 {
2148 regnum = R0_C_REGNUM;
2149 while (regnum < gdbarch_num_regs (gdbarch)
2150 + gdbarch_num_pseudo_regs (gdbarch))
2151 {
2152 sh64_do_pseudo_register (gdbarch, file, frame, regnum);
2153 regnum++;
2154 }
2155 }
2156 }
2157
2158 static void
2159 sh64_print_registers_info (struct gdbarch *gdbarch, struct ui_file *file,
2160 struct frame_info *frame, int regnum, int fpregs)
2161 {
2162 if (pc_is_isa32 (get_frame_pc (frame)))
2163 sh64_media_print_registers_info (gdbarch, file, frame, regnum, fpregs);
2164 else
2165 sh64_compact_print_registers_info (gdbarch, file, frame, regnum, fpregs);
2166 }
2167
2168 static struct sh64_frame_cache *
2169 sh64_alloc_frame_cache (void)
2170 {
2171 struct sh64_frame_cache *cache;
2172 int i;
2173
2174 cache = FRAME_OBSTACK_ZALLOC (struct sh64_frame_cache);
2175
2176 /* Base address. */
2177 cache->base = 0;
2178 cache->saved_sp = 0;
2179 cache->sp_offset = 0;
2180 cache->pc = 0;
2181
2182 /* Frameless until proven otherwise. */
2183 cache->uses_fp = 0;
2184
2185 /* Saved registers. We initialize these to -1 since zero is a valid
2186 offset (that's where fp is supposed to be stored). */
2187 for (i = 0; i < SIM_SH64_NR_REGS; i++)
2188 {
2189 cache->saved_regs[i] = -1;
2190 }
2191
2192 return cache;
2193 }
2194
2195 static struct sh64_frame_cache *
2196 sh64_frame_cache (struct frame_info *this_frame, void **this_cache)
2197 {
2198 struct gdbarch *gdbarch;
2199 struct sh64_frame_cache *cache;
2200 CORE_ADDR current_pc;
2201 int i;
2202
2203 if (*this_cache)
2204 return (struct sh64_frame_cache *) *this_cache;
2205
2206 gdbarch = get_frame_arch (this_frame);
2207 cache = sh64_alloc_frame_cache ();
2208 *this_cache = cache;
2209
2210 current_pc = get_frame_pc (this_frame);
2211 cache->media_mode = pc_is_isa32 (current_pc);
2212
2213 /* In principle, for normal frames, fp holds the frame pointer,
2214 which holds the base address for the current stack frame.
2215 However, for functions that don't need it, the frame pointer is
2216 optional. For these "frameless" functions the frame pointer is
2217 actually the frame pointer of the calling frame. */
2218 cache->base = get_frame_register_unsigned (this_frame, MEDIA_FP_REGNUM);
2219 if (cache->base == 0)
2220 return cache;
2221
2222 cache->pc = get_frame_func (this_frame);
2223 if (cache->pc != 0)
2224 sh64_analyze_prologue (gdbarch, cache, cache->pc, current_pc);
2225
2226 if (!cache->uses_fp)
2227 {
2228 /* We didn't find a valid frame, which means that CACHE->base
2229 currently holds the frame pointer for our calling frame. If
2230 we're at the start of a function, or somewhere half-way its
2231 prologue, the function's frame probably hasn't been fully
2232 setup yet. Try to reconstruct the base address for the stack
2233 frame by looking at the stack pointer. For truly "frameless"
2234 functions this might work too. */
2235 cache->base = get_frame_register_unsigned
2236 (this_frame, gdbarch_sp_regnum (gdbarch));
2237 }
2238
2239 /* Now that we have the base address for the stack frame we can
2240 calculate the value of sp in the calling frame. */
2241 cache->saved_sp = cache->base + cache->sp_offset;
2242
2243 /* Adjust all the saved registers such that they contain addresses
2244 instead of offsets. */
2245 for (i = 0; i < SIM_SH64_NR_REGS; i++)
2246 if (cache->saved_regs[i] != -1)
2247 cache->saved_regs[i] = cache->saved_sp - cache->saved_regs[i];
2248
2249 return cache;
2250 }
2251
2252 static struct value *
2253 sh64_frame_prev_register (struct frame_info *this_frame,
2254 void **this_cache, int regnum)
2255 {
2256 struct sh64_frame_cache *cache = sh64_frame_cache (this_frame, this_cache);
2257 struct gdbarch *gdbarch = get_frame_arch (this_frame);
2258 enum bfd_endian byte_order = gdbarch_byte_order (gdbarch);
2259
2260 gdb_assert (regnum >= 0);
2261
2262 if (regnum == gdbarch_sp_regnum (gdbarch) && cache->saved_sp)
2263 frame_unwind_got_constant (this_frame, regnum, cache->saved_sp);
2264
2265 /* The PC of the previous frame is stored in the PR register of
2266 the current frame. Frob regnum so that we pull the value from
2267 the correct place. */
2268 if (regnum == gdbarch_pc_regnum (gdbarch))
2269 regnum = PR_REGNUM;
2270
2271 if (regnum < SIM_SH64_NR_REGS && cache->saved_regs[regnum] != -1)
2272 {
2273 if (gdbarch_tdep (gdbarch)->sh_abi == SH_ABI_32
2274 && (regnum == MEDIA_FP_REGNUM || regnum == PR_REGNUM))
2275 {
2276 CORE_ADDR val;
2277 val = read_memory_unsigned_integer (cache->saved_regs[regnum],
2278 4, byte_order);
2279 return frame_unwind_got_constant (this_frame, regnum, val);
2280 }
2281
2282 return frame_unwind_got_memory (this_frame, regnum,
2283 cache->saved_regs[regnum]);
2284 }
2285
2286 return frame_unwind_got_register (this_frame, regnum, regnum);
2287 }
2288
2289 static void
2290 sh64_frame_this_id (struct frame_info *this_frame, void **this_cache,
2291 struct frame_id *this_id)
2292 {
2293 struct sh64_frame_cache *cache = sh64_frame_cache (this_frame, this_cache);
2294
2295 /* This marks the outermost frame. */
2296 if (cache->base == 0)
2297 return;
2298
2299 *this_id = frame_id_build (cache->saved_sp, cache->pc);
2300 }
2301
2302 static const struct frame_unwind sh64_frame_unwind = {
2303 NORMAL_FRAME,
2304 default_frame_unwind_stop_reason,
2305 sh64_frame_this_id,
2306 sh64_frame_prev_register,
2307 NULL,
2308 default_frame_sniffer
2309 };
2310
2311 static CORE_ADDR
2312 sh64_unwind_sp (struct gdbarch *gdbarch, struct frame_info *next_frame)
2313 {
2314 return frame_unwind_register_unsigned (next_frame,
2315 gdbarch_sp_regnum (gdbarch));
2316 }
2317
2318 static CORE_ADDR
2319 sh64_unwind_pc (struct gdbarch *gdbarch, struct frame_info *next_frame)
2320 {
2321 return frame_unwind_register_unsigned (next_frame,
2322 gdbarch_pc_regnum (gdbarch));
2323 }
2324
2325 static struct frame_id
2326 sh64_dummy_id (struct gdbarch *gdbarch, struct frame_info *this_frame)
2327 {
2328 CORE_ADDR sp = get_frame_register_unsigned (this_frame,
2329 gdbarch_sp_regnum (gdbarch));
2330 return frame_id_build (sp, get_frame_pc (this_frame));
2331 }
2332
2333 static CORE_ADDR
2334 sh64_frame_base_address (struct frame_info *this_frame, void **this_cache)
2335 {
2336 struct sh64_frame_cache *cache = sh64_frame_cache (this_frame, this_cache);
2337
2338 return cache->base;
2339 }
2340
2341 static const struct frame_base sh64_frame_base = {
2342 &sh64_frame_unwind,
2343 sh64_frame_base_address,
2344 sh64_frame_base_address,
2345 sh64_frame_base_address
2346 };
2347
2348
2349 struct gdbarch *
2350 sh64_gdbarch_init (struct gdbarch_info info, struct gdbarch_list *arches)
2351 {
2352 struct gdbarch *gdbarch;
2353 struct gdbarch_tdep *tdep;
2354
2355 /* If there is already a candidate, use it. */
2356 arches = gdbarch_list_lookup_by_info (arches, &info);
2357 if (arches != NULL)
2358 return arches->gdbarch;
2359
2360 /* None found, create a new architecture from the information
2361 provided. */
2362 tdep = XNEW (struct gdbarch_tdep);
2363 gdbarch = gdbarch_alloc (&info, tdep);
2364
2365 /* Determine the ABI */
2366 if (info.abfd && bfd_get_arch_size (info.abfd) == 64)
2367 {
2368 /* If the ABI is the 64-bit one, it can only be sh-media. */
2369 tdep->sh_abi = SH_ABI_64;
2370 set_gdbarch_ptr_bit (gdbarch, 8 * TARGET_CHAR_BIT);
2371 set_gdbarch_long_bit (gdbarch, 8 * TARGET_CHAR_BIT);
2372 }
2373 else
2374 {
2375 /* If the ABI is the 32-bit one it could be either media or
2376 compact. */
2377 tdep->sh_abi = SH_ABI_32;
2378 set_gdbarch_ptr_bit (gdbarch, 4 * TARGET_CHAR_BIT);
2379 set_gdbarch_long_bit (gdbarch, 4 * TARGET_CHAR_BIT);
2380 }
2381
2382 set_gdbarch_short_bit (gdbarch, 2 * TARGET_CHAR_BIT);
2383 set_gdbarch_int_bit (gdbarch, 4 * TARGET_CHAR_BIT);
2384 set_gdbarch_long_bit (gdbarch, 4 * TARGET_CHAR_BIT);
2385 set_gdbarch_long_long_bit (gdbarch, 8 * TARGET_CHAR_BIT);
2386 set_gdbarch_float_bit (gdbarch, 4 * TARGET_CHAR_BIT);
2387 set_gdbarch_double_bit (gdbarch, 8 * TARGET_CHAR_BIT);
2388 set_gdbarch_long_double_bit (gdbarch, 8 * TARGET_CHAR_BIT);
2389
2390 /* The number of real registers is the same whether we are in
2391 ISA16(compact) or ISA32(media). */
2392 set_gdbarch_num_regs (gdbarch, SIM_SH64_NR_REGS);
2393 set_gdbarch_sp_regnum (gdbarch, 15);
2394 set_gdbarch_pc_regnum (gdbarch, 64);
2395 set_gdbarch_fp0_regnum (gdbarch, SIM_SH64_FR0_REGNUM);
2396 set_gdbarch_num_pseudo_regs (gdbarch, NUM_PSEUDO_REGS_SH_MEDIA
2397 + NUM_PSEUDO_REGS_SH_COMPACT);
2398
2399 set_gdbarch_register_name (gdbarch, sh64_register_name);
2400 set_gdbarch_register_type (gdbarch, sh64_register_type);
2401
2402 set_gdbarch_pseudo_register_read (gdbarch, sh64_pseudo_register_read);
2403 set_gdbarch_pseudo_register_write (gdbarch, sh64_pseudo_register_write);
2404
2405 set_gdbarch_breakpoint_from_pc (gdbarch, sh64_breakpoint_from_pc);
2406
2407 set_gdbarch_print_insn (gdbarch, print_insn_sh);
2408 set_gdbarch_register_sim_regno (gdbarch, legacy_register_sim_regno);
2409
2410 set_gdbarch_return_value (gdbarch, sh64_return_value);
2411
2412 set_gdbarch_skip_prologue (gdbarch, sh64_skip_prologue);
2413 set_gdbarch_inner_than (gdbarch, core_addr_lessthan);
2414
2415 set_gdbarch_push_dummy_call (gdbarch, sh64_push_dummy_call);
2416
2417 set_gdbarch_believe_pcc_promotion (gdbarch, 1);
2418
2419 set_gdbarch_frame_align (gdbarch, sh64_frame_align);
2420 set_gdbarch_unwind_sp (gdbarch, sh64_unwind_sp);
2421 set_gdbarch_unwind_pc (gdbarch, sh64_unwind_pc);
2422 set_gdbarch_dummy_id (gdbarch, sh64_dummy_id);
2423 frame_base_set_default (gdbarch, &sh64_frame_base);
2424
2425 set_gdbarch_print_registers_info (gdbarch, sh64_print_registers_info);
2426
2427 set_gdbarch_elf_make_msymbol_special (gdbarch,
2428 sh64_elf_make_msymbol_special);
2429
2430 /* Hook in ABI-specific overrides, if they have been registered. */
2431 gdbarch_init_osabi (info, gdbarch);
2432
2433 dwarf2_append_unwinders (gdbarch);
2434 frame_unwind_append_unwinder (gdbarch, &sh64_frame_unwind);
2435
2436 return gdbarch;
2437 }