2007-06-09 Markus Deuling <deuling@de.ibm.com>
[binutils-gdb.git] / gdb / sh64-tdep.c
1 /* Target-dependent code for Renesas Super-H, for GDB.
2
3 Copyright (C) 1993, 1994, 1995, 1996, 1997, 1998, 1999, 2000, 2001, 2002,
4 2003, 2004, 2005, 2007 Free Software Foundation, Inc.
5
6 This file is part of GDB.
7
8 This program is free software; you can redistribute it and/or modify
9 it under the terms of the GNU General Public License as published by
10 the Free Software Foundation; either version 2 of the License, or
11 (at your option) any later version.
12
13 This program is distributed in the hope that it will be useful,
14 but WITHOUT ANY WARRANTY; without even the implied warranty of
15 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
16 GNU General Public License for more details.
17
18 You should have received a copy of the GNU General Public License
19 along with this program; if not, write to the Free Software
20 Foundation, Inc., 51 Franklin Street, Fifth Floor,
21 Boston, MA 02110-1301, USA. */
22
23 /*
24 Contributed by Steve Chamberlain
25 sac@cygnus.com
26 */
27
28 #include "defs.h"
29 #include "frame.h"
30 #include "frame-base.h"
31 #include "frame-unwind.h"
32 #include "dwarf2-frame.h"
33 #include "symtab.h"
34 #include "gdbtypes.h"
35 #include "gdbcmd.h"
36 #include "gdbcore.h"
37 #include "value.h"
38 #include "dis-asm.h"
39 #include "inferior.h"
40 #include "gdb_string.h"
41 #include "gdb_assert.h"
42 #include "arch-utils.h"
43 #include "regcache.h"
44 #include "osabi.h"
45
46 #include "elf-bfd.h"
47
48 /* sh flags */
49 #include "elf/sh.h"
50 /* registers numbers shared with the simulator */
51 #include "gdb/sim-sh.h"
52
53 /* Information that is dependent on the processor variant. */
54 enum sh_abi
55 {
56 SH_ABI_UNKNOWN,
57 SH_ABI_32,
58 SH_ABI_64
59 };
60
61 struct gdbarch_tdep
62 {
63 enum sh_abi sh_abi;
64 };
65
66 struct sh64_frame_cache
67 {
68 /* Base address. */
69 CORE_ADDR base;
70 LONGEST sp_offset;
71 CORE_ADDR pc;
72
73 /* Flag showing that a frame has been created in the prologue code. */
74 int uses_fp;
75
76 int media_mode;
77
78 /* Saved registers. */
79 CORE_ADDR saved_regs[SIM_SH64_NR_REGS];
80 CORE_ADDR saved_sp;
81 };
82
83 /* Registers of SH5 */
84 enum
85 {
86 R0_REGNUM = 0,
87 DEFAULT_RETURN_REGNUM = 2,
88 STRUCT_RETURN_REGNUM = 2,
89 ARG0_REGNUM = 2,
90 ARGLAST_REGNUM = 9,
91 FLOAT_ARGLAST_REGNUM = 11,
92 MEDIA_FP_REGNUM = 14,
93 PR_REGNUM = 18,
94 SR_REGNUM = 65,
95 DR0_REGNUM = 141,
96 DR_LAST_REGNUM = 172,
97 /* FPP stands for Floating Point Pair, to avoid confusion with
98 GDB's FP0_REGNUM, which is the number of the first Floating
99 point register. Unfortunately on the sh5, the floating point
100 registers are called FR, and the floating point pairs are called FP. */
101 FPP0_REGNUM = 173,
102 FPP_LAST_REGNUM = 204,
103 FV0_REGNUM = 205,
104 FV_LAST_REGNUM = 220,
105 R0_C_REGNUM = 221,
106 R_LAST_C_REGNUM = 236,
107 PC_C_REGNUM = 237,
108 GBR_C_REGNUM = 238,
109 MACH_C_REGNUM = 239,
110 MACL_C_REGNUM = 240,
111 PR_C_REGNUM = 241,
112 T_C_REGNUM = 242,
113 FPSCR_C_REGNUM = 243,
114 FPUL_C_REGNUM = 244,
115 FP0_C_REGNUM = 245,
116 FP_LAST_C_REGNUM = 260,
117 DR0_C_REGNUM = 261,
118 DR_LAST_C_REGNUM = 268,
119 FV0_C_REGNUM = 269,
120 FV_LAST_C_REGNUM = 272,
121 FPSCR_REGNUM = SIM_SH64_FPCSR_REGNUM,
122 SSR_REGNUM = SIM_SH64_SSR_REGNUM,
123 SPC_REGNUM = SIM_SH64_SPC_REGNUM,
124 TR7_REGNUM = SIM_SH64_TR0_REGNUM + 7,
125 FP_LAST_REGNUM = SIM_SH64_FR0_REGNUM + SIM_SH64_NR_FP_REGS - 1
126 };
127
128 static const char *
129 sh64_register_name (int reg_nr)
130 {
131 static char *register_names[] =
132 {
133 /* SH MEDIA MODE (ISA 32) */
134 /* general registers (64-bit) 0-63 */
135 "r0", "r1", "r2", "r3", "r4", "r5", "r6", "r7",
136 "r8", "r9", "r10", "r11", "r12", "r13", "r14", "r15",
137 "r16", "r17", "r18", "r19", "r20", "r21", "r22", "r23",
138 "r24", "r25", "r26", "r27", "r28", "r29", "r30", "r31",
139 "r32", "r33", "r34", "r35", "r36", "r37", "r38", "r39",
140 "r40", "r41", "r42", "r43", "r44", "r45", "r46", "r47",
141 "r48", "r49", "r50", "r51", "r52", "r53", "r54", "r55",
142 "r56", "r57", "r58", "r59", "r60", "r61", "r62", "r63",
143
144 /* pc (64-bit) 64 */
145 "pc",
146
147 /* status reg., saved status reg., saved pc reg. (64-bit) 65-67 */
148 "sr", "ssr", "spc",
149
150 /* target registers (64-bit) 68-75*/
151 "tr0", "tr1", "tr2", "tr3", "tr4", "tr5", "tr6", "tr7",
152
153 /* floating point state control register (32-bit) 76 */
154 "fpscr",
155
156 /* single precision floating point registers (32-bit) 77-140*/
157 "fr0", "fr1", "fr2", "fr3", "fr4", "fr5", "fr6", "fr7",
158 "fr8", "fr9", "fr10", "fr11", "fr12", "fr13", "fr14", "fr15",
159 "fr16", "fr17", "fr18", "fr19", "fr20", "fr21", "fr22", "fr23",
160 "fr24", "fr25", "fr26", "fr27", "fr28", "fr29", "fr30", "fr31",
161 "fr32", "fr33", "fr34", "fr35", "fr36", "fr37", "fr38", "fr39",
162 "fr40", "fr41", "fr42", "fr43", "fr44", "fr45", "fr46", "fr47",
163 "fr48", "fr49", "fr50", "fr51", "fr52", "fr53", "fr54", "fr55",
164 "fr56", "fr57", "fr58", "fr59", "fr60", "fr61", "fr62", "fr63",
165
166 /* double precision registers (pseudo) 141-172 */
167 "dr0", "dr2", "dr4", "dr6", "dr8", "dr10", "dr12", "dr14",
168 "dr16", "dr18", "dr20", "dr22", "dr24", "dr26", "dr28", "dr30",
169 "dr32", "dr34", "dr36", "dr38", "dr40", "dr42", "dr44", "dr46",
170 "dr48", "dr50", "dr52", "dr54", "dr56", "dr58", "dr60", "dr62",
171
172 /* floating point pairs (pseudo) 173-204*/
173 "fp0", "fp2", "fp4", "fp6", "fp8", "fp10", "fp12", "fp14",
174 "fp16", "fp18", "fp20", "fp22", "fp24", "fp26", "fp28", "fp30",
175 "fp32", "fp34", "fp36", "fp38", "fp40", "fp42", "fp44", "fp46",
176 "fp48", "fp50", "fp52", "fp54", "fp56", "fp58", "fp60", "fp62",
177
178 /* floating point vectors (4 floating point regs) (pseudo) 205-220*/
179 "fv0", "fv4", "fv8", "fv12", "fv16", "fv20", "fv24", "fv28",
180 "fv32", "fv36", "fv40", "fv44", "fv48", "fv52", "fv56", "fv60",
181
182 /* SH COMPACT MODE (ISA 16) (all pseudo) 221-272*/
183 "r0_c", "r1_c", "r2_c", "r3_c", "r4_c", "r5_c", "r6_c", "r7_c",
184 "r8_c", "r9_c", "r10_c", "r11_c", "r12_c", "r13_c", "r14_c", "r15_c",
185 "pc_c",
186 "gbr_c", "mach_c", "macl_c", "pr_c", "t_c",
187 "fpscr_c", "fpul_c",
188 "fr0_c", "fr1_c", "fr2_c", "fr3_c", "fr4_c", "fr5_c", "fr6_c", "fr7_c",
189 "fr8_c", "fr9_c", "fr10_c", "fr11_c", "fr12_c", "fr13_c", "fr14_c", "fr15_c",
190 "dr0_c", "dr2_c", "dr4_c", "dr6_c", "dr8_c", "dr10_c", "dr12_c", "dr14_c",
191 "fv0_c", "fv4_c", "fv8_c", "fv12_c",
192 /* FIXME!!!! XF0 XF15, XD0 XD14 ?????*/
193 };
194
195 if (reg_nr < 0)
196 return NULL;
197 if (reg_nr >= (sizeof (register_names) / sizeof (*register_names)))
198 return NULL;
199 return register_names[reg_nr];
200 }
201
202 #define NUM_PSEUDO_REGS_SH_MEDIA 80
203 #define NUM_PSEUDO_REGS_SH_COMPACT 51
204
205 /* Macros and functions for setting and testing a bit in a minimal
206 symbol that marks it as 32-bit function. The MSB of the minimal
207 symbol's "info" field is used for this purpose.
208
209 gdbarch_elf_make_msymbol_special tests whether an ELF symbol is "special",
210 i.e. refers to a 32-bit function, and sets a "special" bit in a
211 minimal symbol to mark it as a 32-bit function
212 MSYMBOL_IS_SPECIAL tests the "special" bit in a minimal symbol */
213
214 #define MSYMBOL_IS_SPECIAL(msym) \
215 (((long) MSYMBOL_INFO (msym) & 0x80000000) != 0)
216
217 static void
218 sh64_elf_make_msymbol_special (asymbol *sym, struct minimal_symbol *msym)
219 {
220 if (msym == NULL)
221 return;
222
223 if (((elf_symbol_type *)(sym))->internal_elf_sym.st_other == STO_SH5_ISA32)
224 {
225 MSYMBOL_INFO (msym) = (char *) (((long) MSYMBOL_INFO (msym)) | 0x80000000);
226 SYMBOL_VALUE_ADDRESS (msym) |= 1;
227 }
228 }
229
230 /* ISA32 (shmedia) function addresses are odd (bit 0 is set). Here
231 are some macros to test, set, or clear bit 0 of addresses. */
232 #define IS_ISA32_ADDR(addr) ((addr) & 1)
233 #define MAKE_ISA32_ADDR(addr) ((addr) | 1)
234 #define UNMAKE_ISA32_ADDR(addr) ((addr) & ~1)
235
236 static int
237 pc_is_isa32 (bfd_vma memaddr)
238 {
239 struct minimal_symbol *sym;
240
241 /* If bit 0 of the address is set, assume this is a
242 ISA32 (shmedia) address. */
243 if (IS_ISA32_ADDR (memaddr))
244 return 1;
245
246 /* A flag indicating that this is a ISA32 function is stored by elfread.c in
247 the high bit of the info field. Use this to decide if the function is
248 ISA16 or ISA32. */
249 sym = lookup_minimal_symbol_by_pc (memaddr);
250 if (sym)
251 return MSYMBOL_IS_SPECIAL (sym);
252 else
253 return 0;
254 }
255
256 static const unsigned char *
257 sh64_breakpoint_from_pc (CORE_ADDR *pcptr, int *lenptr)
258 {
259 /* The BRK instruction for shmedia is
260 01101111 11110101 11111111 11110000
261 which translates in big endian mode to 0x6f, 0xf5, 0xff, 0xf0
262 and in little endian mode to 0xf0, 0xff, 0xf5, 0x6f */
263
264 /* The BRK instruction for shcompact is
265 00000000 00111011
266 which translates in big endian mode to 0x0, 0x3b
267 and in little endian mode to 0x3b, 0x0*/
268
269 if (gdbarch_byte_order (current_gdbarch) == BFD_ENDIAN_BIG)
270 {
271 if (pc_is_isa32 (*pcptr))
272 {
273 static unsigned char big_breakpoint_media[] = {0x6f, 0xf5, 0xff, 0xf0};
274 *pcptr = UNMAKE_ISA32_ADDR (*pcptr);
275 *lenptr = sizeof (big_breakpoint_media);
276 return big_breakpoint_media;
277 }
278 else
279 {
280 static unsigned char big_breakpoint_compact[] = {0x0, 0x3b};
281 *lenptr = sizeof (big_breakpoint_compact);
282 return big_breakpoint_compact;
283 }
284 }
285 else
286 {
287 if (pc_is_isa32 (*pcptr))
288 {
289 static unsigned char little_breakpoint_media[] = {0xf0, 0xff, 0xf5, 0x6f};
290 *pcptr = UNMAKE_ISA32_ADDR (*pcptr);
291 *lenptr = sizeof (little_breakpoint_media);
292 return little_breakpoint_media;
293 }
294 else
295 {
296 static unsigned char little_breakpoint_compact[] = {0x3b, 0x0};
297 *lenptr = sizeof (little_breakpoint_compact);
298 return little_breakpoint_compact;
299 }
300 }
301 }
302
303 /* Prologue looks like
304 [mov.l <regs>,@-r15]...
305 [sts.l pr,@-r15]
306 [mov.l r14,@-r15]
307 [mov r15,r14]
308
309 Actually it can be more complicated than this. For instance, with
310 newer gcc's:
311
312 mov.l r14,@-r15
313 add #-12,r15
314 mov r15,r14
315 mov r4,r1
316 mov r5,r2
317 mov.l r6,@(4,r14)
318 mov.l r7,@(8,r14)
319 mov.b r1,@r14
320 mov r14,r1
321 mov r14,r1
322 add #2,r1
323 mov.w r2,@r1
324
325 */
326
327 /* PTABS/L Rn, TRa 0110101111110001nnnnnnl00aaa0000
328 with l=1 and n = 18 0110101111110001010010100aaa0000 */
329 #define IS_PTABSL_R18(x) (((x) & 0xffffff8f) == 0x6bf14a00)
330
331 /* STS.L PR,@-r0 0100000000100010
332 r0-4-->r0, PR-->(r0) */
333 #define IS_STS_R0(x) ((x) == 0x4022)
334
335 /* STS PR, Rm 0000mmmm00101010
336 PR-->Rm */
337 #define IS_STS_PR(x) (((x) & 0xf0ff) == 0x2a)
338
339 /* MOV.L Rm,@(disp,r15) 00011111mmmmdddd
340 Rm-->(dispx4+r15) */
341 #define IS_MOV_TO_R15(x) (((x) & 0xff00) == 0x1f00)
342
343 /* MOV.L R14,@(disp,r15) 000111111110dddd
344 R14-->(dispx4+r15) */
345 #define IS_MOV_R14(x) (((x) & 0xfff0) == 0x1fe0)
346
347 /* ST.Q R14, disp, R18 101011001110dddddddddd0100100000
348 R18-->(dispx8+R14) */
349 #define IS_STQ_R18_R14(x) (((x) & 0xfff003ff) == 0xace00120)
350
351 /* ST.Q R15, disp, R18 101011001111dddddddddd0100100000
352 R18-->(dispx8+R15) */
353 #define IS_STQ_R18_R15(x) (((x) & 0xfff003ff) == 0xacf00120)
354
355 /* ST.L R15, disp, R18 101010001111dddddddddd0100100000
356 R18-->(dispx4+R15) */
357 #define IS_STL_R18_R15(x) (((x) & 0xfff003ff) == 0xa8f00120)
358
359 /* ST.Q R15, disp, R14 1010 1100 1111 dddd dddd dd00 1110 0000
360 R14-->(dispx8+R15) */
361 #define IS_STQ_R14_R15(x) (((x) & 0xfff003ff) == 0xacf000e0)
362
363 /* ST.L R15, disp, R14 1010 1000 1111 dddd dddd dd00 1110 0000
364 R14-->(dispx4+R15) */
365 #define IS_STL_R14_R15(x) (((x) & 0xfff003ff) == 0xa8f000e0)
366
367 /* ADDI.L R15,imm,R15 1101 0100 1111 ssss ssss ss00 1111 0000
368 R15 + imm --> R15 */
369 #define IS_ADDIL_SP_MEDIA(x) (((x) & 0xfff003ff) == 0xd4f000f0)
370
371 /* ADDI R15,imm,R15 1101 0000 1111 ssss ssss ss00 1111 0000
372 R15 + imm --> R15 */
373 #define IS_ADDI_SP_MEDIA(x) (((x) & 0xfff003ff) == 0xd0f000f0)
374
375 /* ADD.L R15,R63,R14 0000 0000 1111 1000 1111 1100 1110 0000
376 R15 + R63 --> R14 */
377 #define IS_ADDL_SP_FP_MEDIA(x) ((x) == 0x00f8fce0)
378
379 /* ADD R15,R63,R14 0000 0000 1111 1001 1111 1100 1110 0000
380 R15 + R63 --> R14 */
381 #define IS_ADD_SP_FP_MEDIA(x) ((x) == 0x00f9fce0)
382
383 #define IS_MOV_SP_FP_MEDIA(x) (IS_ADDL_SP_FP_MEDIA(x) || IS_ADD_SP_FP_MEDIA(x))
384
385 /* MOV #imm, R0 1110 0000 ssss ssss
386 #imm-->R0 */
387 #define IS_MOV_R0(x) (((x) & 0xff00) == 0xe000)
388
389 /* MOV.L @(disp,PC), R0 1101 0000 iiii iiii */
390 #define IS_MOVL_R0(x) (((x) & 0xff00) == 0xd000)
391
392 /* ADD r15,r0 0011 0000 1111 1100
393 r15+r0-->r0 */
394 #define IS_ADD_SP_R0(x) ((x) == 0x30fc)
395
396 /* MOV.L R14 @-R0 0010 0000 1110 0110
397 R14-->(R0-4), R0-4-->R0 */
398 #define IS_MOV_R14_R0(x) ((x) == 0x20e6)
399
400 /* ADD Rm,R63,Rn Rm+R63-->Rn 0000 00mm mmmm 1001 1111 11nn nnnn 0000
401 where Rm is one of r2-r9 which are the argument registers. */
402 /* FIXME: Recognize the float and double register moves too! */
403 #define IS_MEDIA_IND_ARG_MOV(x) \
404 ((((x) & 0xfc0ffc0f) == 0x0009fc00) && (((x) & 0x03f00000) >= 0x00200000 && ((x) & 0x03f00000) <= 0x00900000))
405
406 /* ST.Q Rn,0,Rm Rm-->Rn+0 1010 11nn nnnn 0000 0000 00mm mmmm 0000
407 or ST.L Rn,0,Rm Rm-->Rn+0 1010 10nn nnnn 0000 0000 00mm mmmm 0000
408 where Rm is one of r2-r9 which are the argument registers. */
409 #define IS_MEDIA_ARG_MOV(x) \
410 (((((x) & 0xfc0ffc0f) == 0xac000000) || (((x) & 0xfc0ffc0f) == 0xa8000000)) \
411 && (((x) & 0x000003f0) >= 0x00000020 && ((x) & 0x000003f0) <= 0x00000090))
412
413 /* ST.B R14,0,Rn Rn-->(R14+0) 1010 0000 1110 0000 0000 00nn nnnn 0000*/
414 /* ST.W R14,0,Rn Rn-->(R14+0) 1010 0100 1110 0000 0000 00nn nnnn 0000*/
415 /* ST.L R14,0,Rn Rn-->(R14+0) 1010 1000 1110 0000 0000 00nn nnnn 0000*/
416 /* FST.S R14,0,FRn Rn-->(R14+0) 1011 0100 1110 0000 0000 00nn nnnn 0000*/
417 /* FST.D R14,0,DRn Rn-->(R14+0) 1011 1100 1110 0000 0000 00nn nnnn 0000*/
418 #define IS_MEDIA_MOV_TO_R14(x) \
419 ((((x) & 0xfffffc0f) == 0xa0e00000) \
420 || (((x) & 0xfffffc0f) == 0xa4e00000) \
421 || (((x) & 0xfffffc0f) == 0xa8e00000) \
422 || (((x) & 0xfffffc0f) == 0xb4e00000) \
423 || (((x) & 0xfffffc0f) == 0xbce00000))
424
425 /* MOV Rm, Rn Rm-->Rn 0110 nnnn mmmm 0011
426 where Rm is r2-r9 */
427 #define IS_COMPACT_IND_ARG_MOV(x) \
428 ((((x) & 0xf00f) == 0x6003) && (((x) & 0x00f0) >= 0x0020) && (((x) & 0x00f0) <= 0x0090))
429
430 /* compact direct arg move!
431 MOV.L Rn, @r14 0010 1110 mmmm 0010 */
432 #define IS_COMPACT_ARG_MOV(x) \
433 (((((x) & 0xff0f) == 0x2e02) && (((x) & 0x00f0) >= 0x0020) && ((x) & 0x00f0) <= 0x0090))
434
435 /* MOV.B Rm, @R14 0010 1110 mmmm 0000
436 MOV.W Rm, @R14 0010 1110 mmmm 0001 */
437 #define IS_COMPACT_MOV_TO_R14(x) \
438 ((((x) & 0xff0f) == 0x2e00) || (((x) & 0xff0f) == 0x2e01))
439
440 #define IS_JSR_R0(x) ((x) == 0x400b)
441 #define IS_NOP(x) ((x) == 0x0009)
442
443
444 /* MOV r15,r14 0110111011110011
445 r15-->r14 */
446 #define IS_MOV_SP_FP(x) ((x) == 0x6ef3)
447
448 /* ADD #imm,r15 01111111iiiiiiii
449 r15+imm-->r15 */
450 #define IS_ADD_SP(x) (((x) & 0xff00) == 0x7f00)
451
452 /* Skip any prologue before the guts of a function */
453
454 /* Skip the prologue using the debug information. If this fails we'll
455 fall back on the 'guess' method below. */
456 static CORE_ADDR
457 after_prologue (CORE_ADDR pc)
458 {
459 struct symtab_and_line sal;
460 CORE_ADDR func_addr, func_end;
461
462 /* If we can not find the symbol in the partial symbol table, then
463 there is no hope we can determine the function's start address
464 with this code. */
465 if (!find_pc_partial_function (pc, NULL, &func_addr, &func_end))
466 return 0;
467
468
469 /* Get the line associated with FUNC_ADDR. */
470 sal = find_pc_line (func_addr, 0);
471
472 /* There are only two cases to consider. First, the end of the source line
473 is within the function bounds. In that case we return the end of the
474 source line. Second is the end of the source line extends beyond the
475 bounds of the current function. We need to use the slow code to
476 examine instructions in that case. */
477 if (sal.end < func_end)
478 return sal.end;
479 else
480 return 0;
481 }
482
483 static CORE_ADDR
484 look_for_args_moves (CORE_ADDR start_pc, int media_mode)
485 {
486 CORE_ADDR here, end;
487 int w;
488 int insn_size = (media_mode ? 4 : 2);
489
490 for (here = start_pc, end = start_pc + (insn_size * 28); here < end;)
491 {
492 if (media_mode)
493 {
494 w = read_memory_integer (UNMAKE_ISA32_ADDR (here), insn_size);
495 here += insn_size;
496 if (IS_MEDIA_IND_ARG_MOV (w))
497 {
498 /* This must be followed by a store to r14, so the argument
499 is where the debug info says it is. This can happen after
500 the SP has been saved, unfortunately. */
501
502 int next_insn = read_memory_integer (UNMAKE_ISA32_ADDR (here),
503 insn_size);
504 here += insn_size;
505 if (IS_MEDIA_MOV_TO_R14 (next_insn))
506 start_pc = here;
507 }
508 else if (IS_MEDIA_ARG_MOV (w))
509 {
510 /* These instructions store directly the argument in r14. */
511 start_pc = here;
512 }
513 else
514 break;
515 }
516 else
517 {
518 w = read_memory_integer (here, insn_size);
519 w = w & 0xffff;
520 here += insn_size;
521 if (IS_COMPACT_IND_ARG_MOV (w))
522 {
523 /* This must be followed by a store to r14, so the argument
524 is where the debug info says it is. This can happen after
525 the SP has been saved, unfortunately. */
526
527 int next_insn = 0xffff & read_memory_integer (here, insn_size);
528 here += insn_size;
529 if (IS_COMPACT_MOV_TO_R14 (next_insn))
530 start_pc = here;
531 }
532 else if (IS_COMPACT_ARG_MOV (w))
533 {
534 /* These instructions store directly the argument in r14. */
535 start_pc = here;
536 }
537 else if (IS_MOVL_R0 (w))
538 {
539 /* There is a function that gcc calls to get the arguments
540 passed correctly to the function. Only after this
541 function call the arguments will be found at the place
542 where they are supposed to be. This happens in case the
543 argument has to be stored into a 64-bit register (for
544 instance doubles, long longs). SHcompact doesn't have
545 access to the full 64-bits, so we store the register in
546 stack slot and store the address of the stack slot in
547 the register, then do a call through a wrapper that
548 loads the memory value into the register. A SHcompact
549 callee calls an argument decoder
550 (GCC_shcompact_incoming_args) that stores the 64-bit
551 value in a stack slot and stores the address of the
552 stack slot in the register. GCC thinks the argument is
553 just passed by transparent reference, but this is only
554 true after the argument decoder is called. Such a call
555 needs to be considered part of the prologue. */
556
557 /* This must be followed by a JSR @r0 instruction and by
558 a NOP instruction. After these, the prologue is over! */
559
560 int next_insn = 0xffff & read_memory_integer (here, insn_size);
561 here += insn_size;
562 if (IS_JSR_R0 (next_insn))
563 {
564 next_insn = 0xffff & read_memory_integer (here, insn_size);
565 here += insn_size;
566
567 if (IS_NOP (next_insn))
568 start_pc = here;
569 }
570 }
571 else
572 break;
573 }
574 }
575
576 return start_pc;
577 }
578
579 static CORE_ADDR
580 sh64_skip_prologue_hard_way (CORE_ADDR start_pc)
581 {
582 CORE_ADDR here, end;
583 int updated_fp = 0;
584 int insn_size = 4;
585 int media_mode = 1;
586
587 if (!start_pc)
588 return 0;
589
590 if (pc_is_isa32 (start_pc) == 0)
591 {
592 insn_size = 2;
593 media_mode = 0;
594 }
595
596 for (here = start_pc, end = start_pc + (insn_size * 28); here < end;)
597 {
598
599 if (media_mode)
600 {
601 int w = read_memory_integer (UNMAKE_ISA32_ADDR (here), insn_size);
602 here += insn_size;
603 if (IS_STQ_R18_R14 (w) || IS_STQ_R18_R15 (w) || IS_STQ_R14_R15 (w)
604 || IS_STL_R14_R15 (w) || IS_STL_R18_R15 (w)
605 || IS_ADDIL_SP_MEDIA (w) || IS_ADDI_SP_MEDIA (w) || IS_PTABSL_R18 (w))
606 {
607 start_pc = here;
608 }
609 else if (IS_MOV_SP_FP (w) || IS_MOV_SP_FP_MEDIA(w))
610 {
611 start_pc = here;
612 updated_fp = 1;
613 }
614 else
615 if (updated_fp)
616 {
617 /* Don't bail out yet, we may have arguments stored in
618 registers here, according to the debug info, so that
619 gdb can print the frames correctly. */
620 start_pc = look_for_args_moves (here - insn_size, media_mode);
621 break;
622 }
623 }
624 else
625 {
626 int w = 0xffff & read_memory_integer (here, insn_size);
627 here += insn_size;
628
629 if (IS_STS_R0 (w) || IS_STS_PR (w)
630 || IS_MOV_TO_R15 (w) || IS_MOV_R14 (w)
631 || IS_MOV_R0 (w) || IS_ADD_SP_R0 (w) || IS_MOV_R14_R0 (w))
632 {
633 start_pc = here;
634 }
635 else if (IS_MOV_SP_FP (w))
636 {
637 start_pc = here;
638 updated_fp = 1;
639 }
640 else
641 if (updated_fp)
642 {
643 /* Don't bail out yet, we may have arguments stored in
644 registers here, according to the debug info, so that
645 gdb can print the frames correctly. */
646 start_pc = look_for_args_moves (here - insn_size, media_mode);
647 break;
648 }
649 }
650 }
651
652 return start_pc;
653 }
654
655 static CORE_ADDR
656 sh64_skip_prologue (CORE_ADDR pc)
657 {
658 CORE_ADDR post_prologue_pc;
659
660 /* See if we can determine the end of the prologue via the symbol table.
661 If so, then return either PC, or the PC after the prologue, whichever
662 is greater. */
663 post_prologue_pc = after_prologue (pc);
664
665 /* If after_prologue returned a useful address, then use it. Else
666 fall back on the instruction skipping code. */
667 if (post_prologue_pc != 0)
668 return max (pc, post_prologue_pc);
669 else
670 return sh64_skip_prologue_hard_way (pc);
671 }
672
673 /* Should call_function allocate stack space for a struct return? */
674 static int
675 sh64_use_struct_convention (struct type *type)
676 {
677 return (TYPE_LENGTH (type) > 8);
678 }
679
680 /* Disassemble an instruction. */
681 static int
682 gdb_print_insn_sh64 (bfd_vma memaddr, disassemble_info *info)
683 {
684 info->endian = gdbarch_byte_order (current_gdbarch);
685 return print_insn_sh (memaddr, info);
686 }
687
688 /* For vectors of 4 floating point registers. */
689 static int
690 sh64_fv_reg_base_num (int fv_regnum)
691 {
692 int fp_regnum;
693
694 fp_regnum = FP0_REGNUM +
695 (fv_regnum - FV0_REGNUM) * 4;
696 return fp_regnum;
697 }
698
699 /* For double precision floating point registers, i.e 2 fp regs.*/
700 static int
701 sh64_dr_reg_base_num (int dr_regnum)
702 {
703 int fp_regnum;
704
705 fp_regnum = FP0_REGNUM +
706 (dr_regnum - DR0_REGNUM) * 2;
707 return fp_regnum;
708 }
709
710 /* For pairs of floating point registers */
711 static int
712 sh64_fpp_reg_base_num (int fpp_regnum)
713 {
714 int fp_regnum;
715
716 fp_regnum = FP0_REGNUM +
717 (fpp_regnum - FPP0_REGNUM) * 2;
718 return fp_regnum;
719 }
720
721 /* *INDENT-OFF* */
722 /*
723 SH COMPACT MODE (ISA 16) (all pseudo) 221-272
724 GDB_REGNUM BASE_REGNUM
725 r0_c 221 0
726 r1_c 222 1
727 r2_c 223 2
728 r3_c 224 3
729 r4_c 225 4
730 r5_c 226 5
731 r6_c 227 6
732 r7_c 228 7
733 r8_c 229 8
734 r9_c 230 9
735 r10_c 231 10
736 r11_c 232 11
737 r12_c 233 12
738 r13_c 234 13
739 r14_c 235 14
740 r15_c 236 15
741
742 pc_c 237 64
743 gbr_c 238 16
744 mach_c 239 17
745 macl_c 240 17
746 pr_c 241 18
747 t_c 242 19
748 fpscr_c 243 76
749 fpul_c 244 109
750
751 fr0_c 245 77
752 fr1_c 246 78
753 fr2_c 247 79
754 fr3_c 248 80
755 fr4_c 249 81
756 fr5_c 250 82
757 fr6_c 251 83
758 fr7_c 252 84
759 fr8_c 253 85
760 fr9_c 254 86
761 fr10_c 255 87
762 fr11_c 256 88
763 fr12_c 257 89
764 fr13_c 258 90
765 fr14_c 259 91
766 fr15_c 260 92
767
768 dr0_c 261 77
769 dr2_c 262 79
770 dr4_c 263 81
771 dr6_c 264 83
772 dr8_c 265 85
773 dr10_c 266 87
774 dr12_c 267 89
775 dr14_c 268 91
776
777 fv0_c 269 77
778 fv4_c 270 81
779 fv8_c 271 85
780 fv12_c 272 91
781 */
782 /* *INDENT-ON* */
783 static int
784 sh64_compact_reg_base_num (int reg_nr)
785 {
786 int base_regnum = reg_nr;
787
788 /* general register N maps to general register N */
789 if (reg_nr >= R0_C_REGNUM
790 && reg_nr <= R_LAST_C_REGNUM)
791 base_regnum = reg_nr - R0_C_REGNUM;
792
793 /* floating point register N maps to floating point register N */
794 else if (reg_nr >= FP0_C_REGNUM
795 && reg_nr <= FP_LAST_C_REGNUM)
796 base_regnum = reg_nr - FP0_C_REGNUM + FP0_REGNUM;
797
798 /* double prec register N maps to base regnum for double prec register N */
799 else if (reg_nr >= DR0_C_REGNUM
800 && reg_nr <= DR_LAST_C_REGNUM)
801 base_regnum = sh64_dr_reg_base_num (DR0_REGNUM + reg_nr - DR0_C_REGNUM);
802
803 /* vector N maps to base regnum for vector register N */
804 else if (reg_nr >= FV0_C_REGNUM
805 && reg_nr <= FV_LAST_C_REGNUM)
806 base_regnum = sh64_fv_reg_base_num (FV0_REGNUM + reg_nr - FV0_C_REGNUM);
807
808 else if (reg_nr == PC_C_REGNUM)
809 base_regnum = PC_REGNUM;
810
811 else if (reg_nr == GBR_C_REGNUM)
812 base_regnum = 16;
813
814 else if (reg_nr == MACH_C_REGNUM
815 || reg_nr == MACL_C_REGNUM)
816 base_regnum = 17;
817
818 else if (reg_nr == PR_C_REGNUM)
819 base_regnum = PR_REGNUM;
820
821 else if (reg_nr == T_C_REGNUM)
822 base_regnum = 19;
823
824 else if (reg_nr == FPSCR_C_REGNUM)
825 base_regnum = FPSCR_REGNUM; /*???? this register is a mess. */
826
827 else if (reg_nr == FPUL_C_REGNUM)
828 base_regnum = FP0_REGNUM + 32;
829
830 return base_regnum;
831 }
832
833 static int
834 sign_extend (int value, int bits)
835 {
836 value = value & ((1 << bits) - 1);
837 return (value & (1 << (bits - 1))
838 ? value | (~((1 << bits) - 1))
839 : value);
840 }
841
842 static void
843 sh64_analyze_prologue (struct gdbarch *gdbarch,
844 struct sh64_frame_cache *cache,
845 CORE_ADDR func_pc,
846 CORE_ADDR current_pc)
847 {
848 int reg_nr;
849 int pc;
850 int opc;
851 int insn;
852 int r0_val = 0;
853 int insn_size;
854 int gdb_register_number;
855 int register_number;
856 struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch);
857
858 cache->sp_offset = 0;
859
860 /* Loop around examining the prologue insns until we find something
861 that does not appear to be part of the prologue. But give up
862 after 20 of them, since we're getting silly then. */
863
864 pc = func_pc;
865
866 if (cache->media_mode)
867 insn_size = 4;
868 else
869 insn_size = 2;
870
871 opc = pc + (insn_size * 28);
872 if (opc > current_pc)
873 opc = current_pc;
874 for ( ; pc <= opc; pc += insn_size)
875 {
876 insn = read_memory_integer (cache->media_mode ? UNMAKE_ISA32_ADDR (pc)
877 : pc,
878 insn_size);
879
880 if (!cache->media_mode)
881 {
882 if (IS_STS_PR (insn))
883 {
884 int next_insn = read_memory_integer (pc + insn_size, insn_size);
885 if (IS_MOV_TO_R15 (next_insn))
886 {
887 cache->saved_regs[PR_REGNUM] =
888 cache->sp_offset - ((((next_insn & 0xf) ^ 0x8) - 0x8) << 2);
889 pc += insn_size;
890 }
891 }
892
893 else if (IS_MOV_R14 (insn))
894 cache->saved_regs[MEDIA_FP_REGNUM] =
895 cache->sp_offset - ((((insn & 0xf) ^ 0x8) - 0x8) << 2);
896
897 else if (IS_MOV_R0 (insn))
898 {
899 /* Put in R0 the offset from SP at which to store some
900 registers. We are interested in this value, because it
901 will tell us where the given registers are stored within
902 the frame. */
903 r0_val = ((insn & 0xff) ^ 0x80) - 0x80;
904 }
905
906 else if (IS_ADD_SP_R0 (insn))
907 {
908 /* This instruction still prepares r0, but we don't care.
909 We already have the offset in r0_val. */
910 }
911
912 else if (IS_STS_R0 (insn))
913 {
914 /* Store PR at r0_val-4 from SP. Decrement r0 by 4*/
915 cache->saved_regs[PR_REGNUM] = cache->sp_offset - (r0_val - 4);
916 r0_val -= 4;
917 }
918
919 else if (IS_MOV_R14_R0 (insn))
920 {
921 /* Store R14 at r0_val-4 from SP. Decrement r0 by 4 */
922 cache->saved_regs[MEDIA_FP_REGNUM] = cache->sp_offset
923 - (r0_val - 4);
924 r0_val -= 4;
925 }
926
927 else if (IS_ADD_SP (insn))
928 cache->sp_offset -= ((insn & 0xff) ^ 0x80) - 0x80;
929
930 else if (IS_MOV_SP_FP (insn))
931 break;
932 }
933 else
934 {
935 if (IS_ADDIL_SP_MEDIA (insn) || IS_ADDI_SP_MEDIA (insn))
936 cache->sp_offset -=
937 sign_extend ((((insn & 0xffc00) ^ 0x80000) - 0x80000) >> 10, 9);
938
939 else if (IS_STQ_R18_R15 (insn))
940 cache->saved_regs[PR_REGNUM] =
941 cache->sp_offset - (sign_extend ((insn & 0xffc00) >> 10, 9) << 3);
942
943 else if (IS_STL_R18_R15 (insn))
944 cache->saved_regs[PR_REGNUM] =
945 cache->sp_offset - (sign_extend ((insn & 0xffc00) >> 10, 9) << 2);
946
947 else if (IS_STQ_R14_R15 (insn))
948 cache->saved_regs[MEDIA_FP_REGNUM] =
949 cache->sp_offset - (sign_extend ((insn & 0xffc00) >> 10, 9) << 3);
950
951 else if (IS_STL_R14_R15 (insn))
952 cache->saved_regs[MEDIA_FP_REGNUM] =
953 cache->sp_offset - (sign_extend ((insn & 0xffc00) >> 10, 9) << 2);
954
955 else if (IS_MOV_SP_FP_MEDIA (insn))
956 break;
957 }
958 }
959
960 if (cache->saved_regs[MEDIA_FP_REGNUM] >= 0)
961 cache->uses_fp = 1;
962 }
963
964 static CORE_ADDR
965 sh64_extract_struct_value_address (struct regcache *regcache)
966 {
967 /* FIXME: cagney/2004-01-17: Does the ABI guarantee that the return
968 address regster is preserved across function calls? Probably
969 not, making this function wrong. */
970 ULONGEST val;
971 regcache_raw_read_unsigned (regcache, STRUCT_RETURN_REGNUM, &val);
972 return val;
973 }
974
975 static CORE_ADDR
976 sh64_frame_align (struct gdbarch *ignore, CORE_ADDR sp)
977 {
978 return sp & ~7;
979 }
980
981 /* Function: push_dummy_call
982 Setup the function arguments for calling a function in the inferior.
983
984 On the Renesas SH architecture, there are four registers (R4 to R7)
985 which are dedicated for passing function arguments. Up to the first
986 four arguments (depending on size) may go into these registers.
987 The rest go on the stack.
988
989 Arguments that are smaller than 4 bytes will still take up a whole
990 register or a whole 32-bit word on the stack, and will be
991 right-justified in the register or the stack word. This includes
992 chars, shorts, and small aggregate types.
993
994 Arguments that are larger than 4 bytes may be split between two or
995 more registers. If there are not enough registers free, an argument
996 may be passed partly in a register (or registers), and partly on the
997 stack. This includes doubles, long longs, and larger aggregates.
998 As far as I know, there is no upper limit to the size of aggregates
999 that will be passed in this way; in other words, the convention of
1000 passing a pointer to a large aggregate instead of a copy is not used.
1001
1002 An exceptional case exists for struct arguments (and possibly other
1003 aggregates such as arrays) if the size is larger than 4 bytes but
1004 not a multiple of 4 bytes. In this case the argument is never split
1005 between the registers and the stack, but instead is copied in its
1006 entirety onto the stack, AND also copied into as many registers as
1007 there is room for. In other words, space in registers permitting,
1008 two copies of the same argument are passed in. As far as I can tell,
1009 only the one on the stack is used, although that may be a function
1010 of the level of compiler optimization. I suspect this is a compiler
1011 bug. Arguments of these odd sizes are left-justified within the
1012 word (as opposed to arguments smaller than 4 bytes, which are
1013 right-justified).
1014
1015 If the function is to return an aggregate type such as a struct, it
1016 is either returned in the normal return value register R0 (if its
1017 size is no greater than one byte), or else the caller must allocate
1018 space into which the callee will copy the return value (if the size
1019 is greater than one byte). In this case, a pointer to the return
1020 value location is passed into the callee in register R2, which does
1021 not displace any of the other arguments passed in via registers R4
1022 to R7. */
1023
1024 /* R2-R9 for integer types and integer equivalent (char, pointers) and
1025 non-scalar (struct, union) elements (even if the elements are
1026 floats).
1027 FR0-FR11 for single precision floating point (float)
1028 DR0-DR10 for double precision floating point (double)
1029
1030 If a float is argument number 3 (for instance) and arguments number
1031 1,2, and 4 are integer, the mapping will be:
1032 arg1 -->R2, arg2 --> R3, arg3 -->FR0, arg4 --> R5. I.e. R4 is not used.
1033
1034 If a float is argument number 10 (for instance) and arguments number
1035 1 through 10 are integer, the mapping will be:
1036 arg1->R2, arg2->R3, arg3->R4, arg4->R5, arg5->R6, arg6->R7, arg7->R8,
1037 arg8->R9, arg9->(0,SP)stack(8-byte aligned), arg10->FR0, arg11->stack(16,SP).
1038 I.e. there is hole in the stack.
1039
1040 Different rules apply for variable arguments functions, and for functions
1041 for which the prototype is not known. */
1042
1043 static CORE_ADDR
1044 sh64_push_dummy_call (struct gdbarch *gdbarch,
1045 struct value *function,
1046 struct regcache *regcache,
1047 CORE_ADDR bp_addr,
1048 int nargs, struct value **args,
1049 CORE_ADDR sp, int struct_return,
1050 CORE_ADDR struct_addr)
1051 {
1052 int stack_offset, stack_alloc;
1053 int int_argreg;
1054 int float_argreg;
1055 int double_argreg;
1056 int float_arg_index = 0;
1057 int double_arg_index = 0;
1058 int argnum;
1059 struct type *type;
1060 CORE_ADDR regval;
1061 char *val;
1062 char valbuf[8];
1063 char valbuf_tmp[8];
1064 int len;
1065 int argreg_size;
1066 int fp_args[12];
1067
1068 memset (fp_args, 0, sizeof (fp_args));
1069
1070 /* first force sp to a 8-byte alignment */
1071 sp = sh64_frame_align (gdbarch, sp);
1072
1073 /* The "struct return pointer" pseudo-argument has its own dedicated
1074 register */
1075
1076 if (struct_return)
1077 regcache_cooked_write_unsigned (regcache,
1078 STRUCT_RETURN_REGNUM, struct_addr);
1079
1080 /* Now make sure there's space on the stack */
1081 for (argnum = 0, stack_alloc = 0; argnum < nargs; argnum++)
1082 stack_alloc += ((TYPE_LENGTH (value_type (args[argnum])) + 7) & ~7);
1083 sp -= stack_alloc; /* make room on stack for args */
1084
1085 /* Now load as many as possible of the first arguments into
1086 registers, and push the rest onto the stack. There are 64 bytes
1087 in eight registers available. Loop thru args from first to last. */
1088
1089 int_argreg = ARG0_REGNUM;
1090 float_argreg = FP0_REGNUM;
1091 double_argreg = DR0_REGNUM;
1092
1093 for (argnum = 0, stack_offset = 0; argnum < nargs; argnum++)
1094 {
1095 type = value_type (args[argnum]);
1096 len = TYPE_LENGTH (type);
1097 memset (valbuf, 0, sizeof (valbuf));
1098
1099 if (TYPE_CODE (type) != TYPE_CODE_FLT)
1100 {
1101 argreg_size = register_size (current_gdbarch, int_argreg);
1102
1103 if (len < argreg_size)
1104 {
1105 /* value gets right-justified in the register or stack word */
1106 if (gdbarch_byte_order (current_gdbarch) == BFD_ENDIAN_BIG)
1107 memcpy (valbuf + argreg_size - len,
1108 (char *) value_contents (args[argnum]), len);
1109 else
1110 memcpy (valbuf, (char *) value_contents (args[argnum]), len);
1111
1112 val = valbuf;
1113 }
1114 else
1115 val = (char *) value_contents (args[argnum]);
1116
1117 while (len > 0)
1118 {
1119 if (int_argreg > ARGLAST_REGNUM)
1120 {
1121 /* must go on the stack */
1122 write_memory (sp + stack_offset, (const bfd_byte *) val,
1123 argreg_size);
1124 stack_offset += 8;/*argreg_size;*/
1125 }
1126 /* NOTE WELL!!!!! This is not an "else if" clause!!!
1127 That's because some *&^%$ things get passed on the stack
1128 AND in the registers! */
1129 if (int_argreg <= ARGLAST_REGNUM)
1130 {
1131 /* there's room in a register */
1132 regval = extract_unsigned_integer (val, argreg_size);
1133 regcache_cooked_write_unsigned (regcache, int_argreg, regval);
1134 }
1135 /* Store the value 8 bytes at a time. This means that
1136 things larger than 8 bytes may go partly in registers
1137 and partly on the stack. FIXME: argreg is incremented
1138 before we use its size. */
1139 len -= argreg_size;
1140 val += argreg_size;
1141 int_argreg++;
1142 }
1143 }
1144 else
1145 {
1146 val = (char *) value_contents (args[argnum]);
1147 if (len == 4)
1148 {
1149 /* Where is it going to be stored? */
1150 while (fp_args[float_arg_index])
1151 float_arg_index ++;
1152
1153 /* Now float_argreg points to the register where it
1154 should be stored. Are we still within the allowed
1155 register set? */
1156 if (float_arg_index <= FLOAT_ARGLAST_REGNUM)
1157 {
1158 /* Goes in FR0...FR11 */
1159 regcache_cooked_write (regcache,
1160 FP0_REGNUM + float_arg_index,
1161 val);
1162 fp_args[float_arg_index] = 1;
1163 /* Skip the corresponding general argument register. */
1164 int_argreg ++;
1165 }
1166 else
1167 ;
1168 /* Store it as the integers, 8 bytes at the time, if
1169 necessary spilling on the stack. */
1170
1171 }
1172 else if (len == 8)
1173 {
1174 /* Where is it going to be stored? */
1175 while (fp_args[double_arg_index])
1176 double_arg_index += 2;
1177 /* Now double_argreg points to the register
1178 where it should be stored.
1179 Are we still within the allowed register set? */
1180 if (double_arg_index < FLOAT_ARGLAST_REGNUM)
1181 {
1182 /* Goes in DR0...DR10 */
1183 /* The numbering of the DRi registers is consecutive,
1184 i.e. includes odd numbers. */
1185 int double_register_offset = double_arg_index / 2;
1186 int regnum = DR0_REGNUM + double_register_offset;
1187 regcache_cooked_write (regcache, regnum, val);
1188 fp_args[double_arg_index] = 1;
1189 fp_args[double_arg_index + 1] = 1;
1190 /* Skip the corresponding general argument register. */
1191 int_argreg ++;
1192 }
1193 else
1194 ;
1195 /* Store it as the integers, 8 bytes at the time, if
1196 necessary spilling on the stack. */
1197 }
1198 }
1199 }
1200 /* Store return address. */
1201 regcache_cooked_write_unsigned (regcache, PR_REGNUM, bp_addr);
1202
1203 /* Update stack pointer. */
1204 regcache_cooked_write_unsigned (regcache, SP_REGNUM, sp);
1205
1206 return sp;
1207 }
1208
1209 /* Find a function's return value in the appropriate registers (in
1210 regbuf), and copy it into valbuf. Extract from an array REGBUF
1211 containing the (raw) register state a function return value of type
1212 TYPE, and copy that, in virtual format, into VALBUF. */
1213 static void
1214 sh64_extract_return_value (struct type *type, struct regcache *regcache,
1215 void *valbuf)
1216 {
1217 int len = TYPE_LENGTH (type);
1218
1219 if (TYPE_CODE (type) == TYPE_CODE_FLT)
1220 {
1221 if (len == 4)
1222 {
1223 /* Return value stored in FP0_REGNUM */
1224 regcache_raw_read (regcache, FP0_REGNUM, valbuf);
1225 }
1226 else if (len == 8)
1227 {
1228 /* return value stored in DR0_REGNUM */
1229 DOUBLEST val;
1230 gdb_byte buf[8];
1231
1232 regcache_cooked_read (regcache, DR0_REGNUM, buf);
1233
1234 if (gdbarch_byte_order (current_gdbarch) == BFD_ENDIAN_LITTLE)
1235 floatformat_to_doublest (&floatformat_ieee_double_littlebyte_bigword,
1236 buf, &val);
1237 else
1238 floatformat_to_doublest (&floatformat_ieee_double_big,
1239 buf, &val);
1240 store_typed_floating (valbuf, type, val);
1241 }
1242 }
1243 else
1244 {
1245 if (len <= 8)
1246 {
1247 int offset;
1248 char buf[8];
1249 /* Result is in register 2. If smaller than 8 bytes, it is padded
1250 at the most significant end. */
1251 regcache_raw_read (regcache, DEFAULT_RETURN_REGNUM, buf);
1252
1253 if (gdbarch_byte_order (current_gdbarch) == BFD_ENDIAN_BIG)
1254 offset = register_size (current_gdbarch, DEFAULT_RETURN_REGNUM)
1255 - len;
1256 else
1257 offset = 0;
1258 memcpy (valbuf, buf + offset, len);
1259 }
1260 else
1261 error ("bad size for return value");
1262 }
1263 }
1264
1265 /* Write into appropriate registers a function return value
1266 of type TYPE, given in virtual format.
1267 If the architecture is sh4 or sh3e, store a function's return value
1268 in the R0 general register or in the FP0 floating point register,
1269 depending on the type of the return value. In all the other cases
1270 the result is stored in r0, left-justified. */
1271
1272 static void
1273 sh64_store_return_value (struct type *type, struct regcache *regcache,
1274 const void *valbuf)
1275 {
1276 char buf[64]; /* more than enough... */
1277 int len = TYPE_LENGTH (type);
1278
1279 if (TYPE_CODE (type) == TYPE_CODE_FLT)
1280 {
1281 int i, regnum = FP0_REGNUM;
1282 for (i = 0; i < len; i += 4)
1283 if (gdbarch_byte_order (current_gdbarch) == BFD_ENDIAN_LITTLE)
1284 regcache_raw_write (regcache, regnum++,
1285 (char *) valbuf + len - 4 - i);
1286 else
1287 regcache_raw_write (regcache, regnum++, (char *) valbuf + i);
1288 }
1289 else
1290 {
1291 int return_register = DEFAULT_RETURN_REGNUM;
1292 int offset = 0;
1293
1294 if (len <= register_size (current_gdbarch, return_register))
1295 {
1296 /* Pad with zeros. */
1297 memset (buf, 0, register_size (current_gdbarch, return_register));
1298 if (gdbarch_byte_order (current_gdbarch) == BFD_ENDIAN_LITTLE)
1299 offset = 0; /*register_size (current_gdbarch,
1300 return_register) - len;*/
1301 else
1302 offset = register_size (current_gdbarch, return_register) - len;
1303
1304 memcpy (buf + offset, valbuf, len);
1305 regcache_raw_write (regcache, return_register, buf);
1306 }
1307 else
1308 regcache_raw_write (regcache, return_register, valbuf);
1309 }
1310 }
1311
1312 static enum return_value_convention
1313 sh64_return_value (struct gdbarch *gdbarch, struct type *type,
1314 struct regcache *regcache,
1315 gdb_byte *readbuf, const gdb_byte *writebuf)
1316 {
1317 if (sh64_use_struct_convention (type))
1318 return RETURN_VALUE_STRUCT_CONVENTION;
1319 if (writebuf)
1320 sh64_store_return_value (type, regcache, writebuf);
1321 else if (readbuf)
1322 sh64_extract_return_value (type, regcache, readbuf);
1323 return RETURN_VALUE_REGISTER_CONVENTION;
1324 }
1325
1326 static void
1327 sh64_show_media_regs (void)
1328 {
1329 int i;
1330
1331 printf_filtered ("PC=%s SR=%016llx \n",
1332 paddr (read_register (PC_REGNUM)),
1333 (long long) read_register (SR_REGNUM));
1334
1335 printf_filtered ("SSR=%016llx SPC=%016llx \n",
1336 (long long) read_register (SSR_REGNUM),
1337 (long long) read_register (SPC_REGNUM));
1338 printf_filtered ("FPSCR=%016lx\n ",
1339 (long) read_register (FPSCR_REGNUM));
1340
1341 for (i = 0; i < 64; i = i + 4)
1342 printf_filtered ("\nR%d-R%d %016llx %016llx %016llx %016llx\n",
1343 i, i + 3,
1344 (long long) read_register (i + 0),
1345 (long long) read_register (i + 1),
1346 (long long) read_register (i + 2),
1347 (long long) read_register (i + 3));
1348
1349 printf_filtered ("\n");
1350
1351 for (i = 0; i < 64; i = i + 8)
1352 printf_filtered ("FR%d-FR%d %08lx %08lx %08lx %08lx %08lx %08lx %08lx %08lx\n",
1353 i, i + 7,
1354 (long) read_register (FP0_REGNUM + i + 0),
1355 (long) read_register (FP0_REGNUM + i + 1),
1356 (long) read_register (FP0_REGNUM + i + 2),
1357 (long) read_register (FP0_REGNUM + i + 3),
1358 (long) read_register (FP0_REGNUM + i + 4),
1359 (long) read_register (FP0_REGNUM + i + 5),
1360 (long) read_register (FP0_REGNUM + i + 6),
1361 (long) read_register (FP0_REGNUM + i + 7));
1362 }
1363
1364 static void
1365 sh64_show_compact_regs (void)
1366 {
1367 int i;
1368
1369 printf_filtered ("PC=%s \n",
1370 paddr (read_register (PC_C_REGNUM)));
1371
1372 printf_filtered ("GBR=%08lx MACH=%08lx MACL=%08lx PR=%08lx T=%08lx\n",
1373 (long) read_register (GBR_C_REGNUM),
1374 (long) read_register (MACH_C_REGNUM),
1375 (long) read_register (MACL_C_REGNUM),
1376 (long) read_register (PR_C_REGNUM),
1377 (long) read_register (T_C_REGNUM));
1378 printf_filtered ("FPSCR=%08lx FPUL=%08lx\n",
1379 (long) read_register (FPSCR_C_REGNUM),
1380 (long) read_register (FPUL_C_REGNUM));
1381
1382 for (i = 0; i < 16; i = i + 4)
1383 printf_filtered ("\nR%d-R%d %08lx %08lx %08lx %08lx\n",
1384 i, i + 3,
1385 (long) read_register (i + 0),
1386 (long) read_register (i + 1),
1387 (long) read_register (i + 2),
1388 (long) read_register (i + 3));
1389
1390 printf_filtered ("\n");
1391
1392 for (i = 0; i < 16; i = i + 8)
1393 printf_filtered ("FR%d-FR%d %08lx %08lx %08lx %08lx %08lx %08lx %08lx %08lx\n",
1394 i, i + 7,
1395 (long) read_register (FP0_REGNUM + i + 0),
1396 (long) read_register (FP0_REGNUM + i + 1),
1397 (long) read_register (FP0_REGNUM + i + 2),
1398 (long) read_register (FP0_REGNUM + i + 3),
1399 (long) read_register (FP0_REGNUM + i + 4),
1400 (long) read_register (FP0_REGNUM + i + 5),
1401 (long) read_register (FP0_REGNUM + i + 6),
1402 (long) read_register (FP0_REGNUM + i + 7));
1403 }
1404
1405 /* FIXME!!! This only shows the registers for shmedia, excluding the
1406 pseudo registers. */
1407 void
1408 sh64_show_regs (void)
1409 {
1410 if (pc_is_isa32 (get_frame_pc (get_selected_frame (NULL))))
1411 sh64_show_media_regs ();
1412 else
1413 sh64_show_compact_regs ();
1414 }
1415
1416 /* *INDENT-OFF* */
1417 /*
1418 SH MEDIA MODE (ISA 32)
1419 general registers (64-bit) 0-63
1420 0 r0, r1, r2, r3, r4, r5, r6, r7,
1421 64 r8, r9, r10, r11, r12, r13, r14, r15,
1422 128 r16, r17, r18, r19, r20, r21, r22, r23,
1423 192 r24, r25, r26, r27, r28, r29, r30, r31,
1424 256 r32, r33, r34, r35, r36, r37, r38, r39,
1425 320 r40, r41, r42, r43, r44, r45, r46, r47,
1426 384 r48, r49, r50, r51, r52, r53, r54, r55,
1427 448 r56, r57, r58, r59, r60, r61, r62, r63,
1428
1429 pc (64-bit) 64
1430 512 pc,
1431
1432 status reg., saved status reg., saved pc reg. (64-bit) 65-67
1433 520 sr, ssr, spc,
1434
1435 target registers (64-bit) 68-75
1436 544 tr0, tr1, tr2, tr3, tr4, tr5, tr6, tr7,
1437
1438 floating point state control register (32-bit) 76
1439 608 fpscr,
1440
1441 single precision floating point registers (32-bit) 77-140
1442 612 fr0, fr1, fr2, fr3, fr4, fr5, fr6, fr7,
1443 644 fr8, fr9, fr10, fr11, fr12, fr13, fr14, fr15,
1444 676 fr16, fr17, fr18, fr19, fr20, fr21, fr22, fr23,
1445 708 fr24, fr25, fr26, fr27, fr28, fr29, fr30, fr31,
1446 740 fr32, fr33, fr34, fr35, fr36, fr37, fr38, fr39,
1447 772 fr40, fr41, fr42, fr43, fr44, fr45, fr46, fr47,
1448 804 fr48, fr49, fr50, fr51, fr52, fr53, fr54, fr55,
1449 836 fr56, fr57, fr58, fr59, fr60, fr61, fr62, fr63,
1450
1451 TOTAL SPACE FOR REGISTERS: 868 bytes
1452
1453 From here on they are all pseudo registers: no memory allocated.
1454 REGISTER_BYTE returns the register byte for the base register.
1455
1456 double precision registers (pseudo) 141-172
1457 dr0, dr2, dr4, dr6, dr8, dr10, dr12, dr14,
1458 dr16, dr18, dr20, dr22, dr24, dr26, dr28, dr30,
1459 dr32, dr34, dr36, dr38, dr40, dr42, dr44, dr46,
1460 dr48, dr50, dr52, dr54, dr56, dr58, dr60, dr62,
1461
1462 floating point pairs (pseudo) 173-204
1463 fp0, fp2, fp4, fp6, fp8, fp10, fp12, fp14,
1464 fp16, fp18, fp20, fp22, fp24, fp26, fp28, fp30,
1465 fp32, fp34, fp36, fp38, fp40, fp42, fp44, fp46,
1466 fp48, fp50, fp52, fp54, fp56, fp58, fp60, fp62,
1467
1468 floating point vectors (4 floating point regs) (pseudo) 205-220
1469 fv0, fv4, fv8, fv12, fv16, fv20, fv24, fv28,
1470 fv32, fv36, fv40, fv44, fv48, fv52, fv56, fv60,
1471
1472 SH COMPACT MODE (ISA 16) (all pseudo) 221-272
1473 r0_c, r1_c, r2_c, r3_c, r4_c, r5_c, r6_c, r7_c,
1474 r8_c, r9_c, r10_c, r11_c, r12_c, r13_c, r14_c, r15_c,
1475 pc_c,
1476 gbr_c, mach_c, macl_c, pr_c, t_c,
1477 fpscr_c, fpul_c,
1478 fr0_c, fr1_c, fr2_c, fr3_c, fr4_c, fr5_c, fr6_c, fr7_c,
1479 fr8_c, fr9_c, fr10_c, fr11_c, fr12_c, fr13_c, fr14_c, fr15_c
1480 dr0_c, dr2_c, dr4_c, dr6_c, dr8_c, dr10_c, dr12_c, dr14_c
1481 fv0_c, fv4_c, fv8_c, fv12_c
1482 */
1483
1484 static struct type *
1485 sh64_build_float_register_type (int high)
1486 {
1487 struct type *temp;
1488
1489 temp = create_range_type (NULL, builtin_type_int, 0, high);
1490 return create_array_type (NULL, builtin_type_float, temp);
1491 }
1492
1493 /* Return the GDB type object for the "standard" data type
1494 of data in register REG_NR. */
1495 static struct type *
1496 sh64_register_type (struct gdbarch *gdbarch, int reg_nr)
1497 {
1498 if ((reg_nr >= FP0_REGNUM
1499 && reg_nr <= FP_LAST_REGNUM)
1500 || (reg_nr >= FP0_C_REGNUM
1501 && reg_nr <= FP_LAST_C_REGNUM))
1502 return builtin_type_float;
1503 else if ((reg_nr >= DR0_REGNUM
1504 && reg_nr <= DR_LAST_REGNUM)
1505 || (reg_nr >= DR0_C_REGNUM
1506 && reg_nr <= DR_LAST_C_REGNUM))
1507 return builtin_type_double;
1508 else if (reg_nr >= FPP0_REGNUM
1509 && reg_nr <= FPP_LAST_REGNUM)
1510 return sh64_build_float_register_type (1);
1511 else if ((reg_nr >= FV0_REGNUM
1512 && reg_nr <= FV_LAST_REGNUM)
1513 ||(reg_nr >= FV0_C_REGNUM
1514 && reg_nr <= FV_LAST_C_REGNUM))
1515 return sh64_build_float_register_type (3);
1516 else if (reg_nr == FPSCR_REGNUM)
1517 return builtin_type_int;
1518 else if (reg_nr >= R0_C_REGNUM
1519 && reg_nr < FP0_C_REGNUM)
1520 return builtin_type_int;
1521 else
1522 return builtin_type_long_long;
1523 }
1524
1525 static void
1526 sh64_register_convert_to_virtual (int regnum, struct type *type,
1527 char *from, char *to)
1528 {
1529 if (gdbarch_byte_order (current_gdbarch) != BFD_ENDIAN_LITTLE)
1530 {
1531 /* It is a no-op. */
1532 memcpy (to, from, register_size (current_gdbarch, regnum));
1533 return;
1534 }
1535
1536 if ((regnum >= DR0_REGNUM
1537 && regnum <= DR_LAST_REGNUM)
1538 || (regnum >= DR0_C_REGNUM
1539 && regnum <= DR_LAST_C_REGNUM))
1540 {
1541 DOUBLEST val;
1542 floatformat_to_doublest (&floatformat_ieee_double_littlebyte_bigword,
1543 from, &val);
1544 store_typed_floating (to, type, val);
1545 }
1546 else
1547 error ("sh64_register_convert_to_virtual called with non DR register number");
1548 }
1549
1550 static void
1551 sh64_register_convert_to_raw (struct type *type, int regnum,
1552 const void *from, void *to)
1553 {
1554 if (gdbarch_byte_order (current_gdbarch) != BFD_ENDIAN_LITTLE)
1555 {
1556 /* It is a no-op. */
1557 memcpy (to, from, register_size (current_gdbarch, regnum));
1558 return;
1559 }
1560
1561 if ((regnum >= DR0_REGNUM
1562 && regnum <= DR_LAST_REGNUM)
1563 || (regnum >= DR0_C_REGNUM
1564 && regnum <= DR_LAST_C_REGNUM))
1565 {
1566 DOUBLEST val = deprecated_extract_floating (from, TYPE_LENGTH(type));
1567 floatformat_from_doublest (&floatformat_ieee_double_littlebyte_bigword,
1568 &val, to);
1569 }
1570 else
1571 error ("sh64_register_convert_to_raw called with non DR register number");
1572 }
1573
1574 static void
1575 sh64_pseudo_register_read (struct gdbarch *gdbarch, struct regcache *regcache,
1576 int reg_nr, gdb_byte *buffer)
1577 {
1578 int base_regnum;
1579 int portion;
1580 int offset = 0;
1581 char temp_buffer[MAX_REGISTER_SIZE];
1582
1583 if (reg_nr >= DR0_REGNUM
1584 && reg_nr <= DR_LAST_REGNUM)
1585 {
1586 base_regnum = sh64_dr_reg_base_num (reg_nr);
1587
1588 /* Build the value in the provided buffer. */
1589 /* DR regs are double precision registers obtained by
1590 concatenating 2 single precision floating point registers. */
1591 for (portion = 0; portion < 2; portion++)
1592 regcache_raw_read (regcache, base_regnum + portion,
1593 (temp_buffer
1594 + register_size (gdbarch, base_regnum) * portion));
1595
1596 /* We must pay attention to the endianness. */
1597 sh64_register_convert_to_virtual (reg_nr,
1598 register_type (gdbarch, reg_nr),
1599 temp_buffer, buffer);
1600
1601 }
1602
1603 else if (reg_nr >= FPP0_REGNUM
1604 && reg_nr <= FPP_LAST_REGNUM)
1605 {
1606 base_regnum = sh64_fpp_reg_base_num (reg_nr);
1607
1608 /* Build the value in the provided buffer. */
1609 /* FPP regs are pairs of single precision registers obtained by
1610 concatenating 2 single precision floating point registers. */
1611 for (portion = 0; portion < 2; portion++)
1612 regcache_raw_read (regcache, base_regnum + portion,
1613 ((char *) buffer
1614 + register_size (gdbarch, base_regnum) * portion));
1615 }
1616
1617 else if (reg_nr >= FV0_REGNUM
1618 && reg_nr <= FV_LAST_REGNUM)
1619 {
1620 base_regnum = sh64_fv_reg_base_num (reg_nr);
1621
1622 /* Build the value in the provided buffer. */
1623 /* FV regs are vectors of single precision registers obtained by
1624 concatenating 4 single precision floating point registers. */
1625 for (portion = 0; portion < 4; portion++)
1626 regcache_raw_read (regcache, base_regnum + portion,
1627 ((char *) buffer
1628 + register_size (gdbarch, base_regnum) * portion));
1629 }
1630
1631 /* sh compact pseudo registers. 1-to-1 with a shmedia register */
1632 else if (reg_nr >= R0_C_REGNUM
1633 && reg_nr <= T_C_REGNUM)
1634 {
1635 base_regnum = sh64_compact_reg_base_num (reg_nr);
1636
1637 /* Build the value in the provided buffer. */
1638 regcache_raw_read (regcache, base_regnum, temp_buffer);
1639 if (gdbarch_byte_order (current_gdbarch) == BFD_ENDIAN_BIG)
1640 offset = 4;
1641 memcpy (buffer, temp_buffer + offset, 4); /* get LOWER 32 bits only????*/
1642 }
1643
1644 else if (reg_nr >= FP0_C_REGNUM
1645 && reg_nr <= FP_LAST_C_REGNUM)
1646 {
1647 base_regnum = sh64_compact_reg_base_num (reg_nr);
1648
1649 /* Build the value in the provided buffer. */
1650 /* Floating point registers map 1-1 to the media fp regs,
1651 they have the same size and endianness. */
1652 regcache_raw_read (regcache, base_regnum, buffer);
1653 }
1654
1655 else if (reg_nr >= DR0_C_REGNUM
1656 && reg_nr <= DR_LAST_C_REGNUM)
1657 {
1658 base_regnum = sh64_compact_reg_base_num (reg_nr);
1659
1660 /* DR_C regs are double precision registers obtained by
1661 concatenating 2 single precision floating point registers. */
1662 for (portion = 0; portion < 2; portion++)
1663 regcache_raw_read (regcache, base_regnum + portion,
1664 (temp_buffer
1665 + register_size (gdbarch, base_regnum) * portion));
1666
1667 /* We must pay attention to the endianness. */
1668 sh64_register_convert_to_virtual (reg_nr,
1669 register_type (gdbarch, reg_nr),
1670 temp_buffer, buffer);
1671 }
1672
1673 else if (reg_nr >= FV0_C_REGNUM
1674 && reg_nr <= FV_LAST_C_REGNUM)
1675 {
1676 base_regnum = sh64_compact_reg_base_num (reg_nr);
1677
1678 /* Build the value in the provided buffer. */
1679 /* FV_C regs are vectors of single precision registers obtained by
1680 concatenating 4 single precision floating point registers. */
1681 for (portion = 0; portion < 4; portion++)
1682 regcache_raw_read (regcache, base_regnum + portion,
1683 ((char *) buffer
1684 + register_size (gdbarch, base_regnum) * portion));
1685 }
1686
1687 else if (reg_nr == FPSCR_C_REGNUM)
1688 {
1689 int fpscr_base_regnum;
1690 int sr_base_regnum;
1691 unsigned int fpscr_value;
1692 unsigned int sr_value;
1693 unsigned int fpscr_c_value;
1694 unsigned int fpscr_c_part1_value;
1695 unsigned int fpscr_c_part2_value;
1696
1697 fpscr_base_regnum = FPSCR_REGNUM;
1698 sr_base_regnum = SR_REGNUM;
1699
1700 /* Build the value in the provided buffer. */
1701 /* FPSCR_C is a very weird register that contains sparse bits
1702 from the FPSCR and the SR architectural registers.
1703 Specifically: */
1704 /* *INDENT-OFF* */
1705 /*
1706 FPSRC_C bit
1707 0 Bit 0 of FPSCR
1708 1 reserved
1709 2-17 Bit 2-18 of FPSCR
1710 18-20 Bits 12,13,14 of SR
1711 21-31 reserved
1712 */
1713 /* *INDENT-ON* */
1714 /* Get FPSCR into a local buffer */
1715 regcache_raw_read (regcache, fpscr_base_regnum, temp_buffer);
1716 /* Get value as an int. */
1717 fpscr_value = extract_unsigned_integer (temp_buffer, 4);
1718 /* Get SR into a local buffer */
1719 regcache_raw_read (regcache, sr_base_regnum, temp_buffer);
1720 /* Get value as an int. */
1721 sr_value = extract_unsigned_integer (temp_buffer, 4);
1722 /* Build the new value. */
1723 fpscr_c_part1_value = fpscr_value & 0x3fffd;
1724 fpscr_c_part2_value = (sr_value & 0x7000) << 6;
1725 fpscr_c_value = fpscr_c_part1_value | fpscr_c_part2_value;
1726 /* Store that in out buffer!!! */
1727 store_unsigned_integer (buffer, 4, fpscr_c_value);
1728 /* FIXME There is surely an endianness gotcha here. */
1729 }
1730
1731 else if (reg_nr == FPUL_C_REGNUM)
1732 {
1733 base_regnum = sh64_compact_reg_base_num (reg_nr);
1734
1735 /* FPUL_C register is floating point register 32,
1736 same size, same endianness. */
1737 regcache_raw_read (regcache, base_regnum, buffer);
1738 }
1739 }
1740
1741 static void
1742 sh64_pseudo_register_write (struct gdbarch *gdbarch, struct regcache *regcache,
1743 int reg_nr, const gdb_byte *buffer)
1744 {
1745 int base_regnum, portion;
1746 int offset;
1747 char temp_buffer[MAX_REGISTER_SIZE];
1748
1749 if (reg_nr >= DR0_REGNUM
1750 && reg_nr <= DR_LAST_REGNUM)
1751 {
1752 base_regnum = sh64_dr_reg_base_num (reg_nr);
1753 /* We must pay attention to the endianness. */
1754 sh64_register_convert_to_raw (register_type (gdbarch, reg_nr),
1755 reg_nr,
1756 buffer, temp_buffer);
1757
1758 /* Write the real regs for which this one is an alias. */
1759 for (portion = 0; portion < 2; portion++)
1760 regcache_raw_write (regcache, base_regnum + portion,
1761 (temp_buffer
1762 + register_size (gdbarch,
1763 base_regnum) * portion));
1764 }
1765
1766 else if (reg_nr >= FPP0_REGNUM
1767 && reg_nr <= FPP_LAST_REGNUM)
1768 {
1769 base_regnum = sh64_fpp_reg_base_num (reg_nr);
1770
1771 /* Write the real regs for which this one is an alias. */
1772 for (portion = 0; portion < 2; portion++)
1773 regcache_raw_write (regcache, base_regnum + portion,
1774 ((char *) buffer
1775 + register_size (gdbarch,
1776 base_regnum) * portion));
1777 }
1778
1779 else if (reg_nr >= FV0_REGNUM
1780 && reg_nr <= FV_LAST_REGNUM)
1781 {
1782 base_regnum = sh64_fv_reg_base_num (reg_nr);
1783
1784 /* Write the real regs for which this one is an alias. */
1785 for (portion = 0; portion < 4; portion++)
1786 regcache_raw_write (regcache, base_regnum + portion,
1787 ((char *) buffer
1788 + register_size (gdbarch,
1789 base_regnum) * portion));
1790 }
1791
1792 /* sh compact general pseudo registers. 1-to-1 with a shmedia
1793 register but only 4 bytes of it. */
1794 else if (reg_nr >= R0_C_REGNUM
1795 && reg_nr <= T_C_REGNUM)
1796 {
1797 base_regnum = sh64_compact_reg_base_num (reg_nr);
1798 /* reg_nr is 32 bit here, and base_regnum is 64 bits. */
1799 if (gdbarch_byte_order (current_gdbarch) == BFD_ENDIAN_BIG)
1800 offset = 4;
1801 else
1802 offset = 0;
1803 /* Let's read the value of the base register into a temporary
1804 buffer, so that overwriting the last four bytes with the new
1805 value of the pseudo will leave the upper 4 bytes unchanged. */
1806 regcache_raw_read (regcache, base_regnum, temp_buffer);
1807 /* Write as an 8 byte quantity */
1808 memcpy (temp_buffer + offset, buffer, 4);
1809 regcache_raw_write (regcache, base_regnum, temp_buffer);
1810 }
1811
1812 /* sh floating point compact pseudo registers. 1-to-1 with a shmedia
1813 registers. Both are 4 bytes. */
1814 else if (reg_nr >= FP0_C_REGNUM
1815 && reg_nr <= FP_LAST_C_REGNUM)
1816 {
1817 base_regnum = sh64_compact_reg_base_num (reg_nr);
1818 regcache_raw_write (regcache, base_regnum, buffer);
1819 }
1820
1821 else if (reg_nr >= DR0_C_REGNUM
1822 && reg_nr <= DR_LAST_C_REGNUM)
1823 {
1824 base_regnum = sh64_compact_reg_base_num (reg_nr);
1825 for (portion = 0; portion < 2; portion++)
1826 {
1827 /* We must pay attention to the endianness. */
1828 sh64_register_convert_to_raw (register_type (gdbarch, reg_nr),
1829 reg_nr,
1830 buffer, temp_buffer);
1831
1832 regcache_raw_write (regcache, base_regnum + portion,
1833 (temp_buffer
1834 + register_size (gdbarch,
1835 base_regnum) * portion));
1836 }
1837 }
1838
1839 else if (reg_nr >= FV0_C_REGNUM
1840 && reg_nr <= FV_LAST_C_REGNUM)
1841 {
1842 base_regnum = sh64_compact_reg_base_num (reg_nr);
1843
1844 for (portion = 0; portion < 4; portion++)
1845 {
1846 regcache_raw_write (regcache, base_regnum + portion,
1847 ((char *) buffer
1848 + register_size (gdbarch,
1849 base_regnum) * portion));
1850 }
1851 }
1852
1853 else if (reg_nr == FPSCR_C_REGNUM)
1854 {
1855 int fpscr_base_regnum;
1856 int sr_base_regnum;
1857 unsigned int fpscr_value;
1858 unsigned int sr_value;
1859 unsigned int old_fpscr_value;
1860 unsigned int old_sr_value;
1861 unsigned int fpscr_c_value;
1862 unsigned int fpscr_mask;
1863 unsigned int sr_mask;
1864
1865 fpscr_base_regnum = FPSCR_REGNUM;
1866 sr_base_regnum = SR_REGNUM;
1867
1868 /* FPSCR_C is a very weird register that contains sparse bits
1869 from the FPSCR and the SR architectural registers.
1870 Specifically: */
1871 /* *INDENT-OFF* */
1872 /*
1873 FPSRC_C bit
1874 0 Bit 0 of FPSCR
1875 1 reserved
1876 2-17 Bit 2-18 of FPSCR
1877 18-20 Bits 12,13,14 of SR
1878 21-31 reserved
1879 */
1880 /* *INDENT-ON* */
1881 /* Get value as an int. */
1882 fpscr_c_value = extract_unsigned_integer (buffer, 4);
1883
1884 /* Build the new values. */
1885 fpscr_mask = 0x0003fffd;
1886 sr_mask = 0x001c0000;
1887
1888 fpscr_value = fpscr_c_value & fpscr_mask;
1889 sr_value = (fpscr_value & sr_mask) >> 6;
1890
1891 regcache_raw_read (regcache, fpscr_base_regnum, temp_buffer);
1892 old_fpscr_value = extract_unsigned_integer (temp_buffer, 4);
1893 old_fpscr_value &= 0xfffc0002;
1894 fpscr_value |= old_fpscr_value;
1895 store_unsigned_integer (temp_buffer, 4, fpscr_value);
1896 regcache_raw_write (regcache, fpscr_base_regnum, temp_buffer);
1897
1898 regcache_raw_read (regcache, sr_base_regnum, temp_buffer);
1899 old_sr_value = extract_unsigned_integer (temp_buffer, 4);
1900 old_sr_value &= 0xffff8fff;
1901 sr_value |= old_sr_value;
1902 store_unsigned_integer (temp_buffer, 4, sr_value);
1903 regcache_raw_write (regcache, sr_base_regnum, temp_buffer);
1904 }
1905
1906 else if (reg_nr == FPUL_C_REGNUM)
1907 {
1908 base_regnum = sh64_compact_reg_base_num (reg_nr);
1909 regcache_raw_write (regcache, base_regnum, buffer);
1910 }
1911 }
1912
1913 /* FIXME:!! THIS SHOULD TAKE CARE OF GETTING THE RIGHT PORTION OF THE
1914 shmedia REGISTERS. */
1915 /* Control registers, compact mode. */
1916 static void
1917 sh64_do_cr_c_register_info (struct ui_file *file, struct frame_info *frame,
1918 int cr_c_regnum)
1919 {
1920 switch (cr_c_regnum)
1921 {
1922 case PC_C_REGNUM:
1923 fprintf_filtered (file, "pc_c\t0x%08x\n",
1924 (int) get_frame_register_unsigned (frame, cr_c_regnum));
1925 break;
1926 case GBR_C_REGNUM:
1927 fprintf_filtered (file, "gbr_c\t0x%08x\n",
1928 (int) get_frame_register_unsigned (frame, cr_c_regnum));
1929 break;
1930 case MACH_C_REGNUM:
1931 fprintf_filtered (file, "mach_c\t0x%08x\n",
1932 (int) get_frame_register_unsigned (frame, cr_c_regnum));
1933 break;
1934 case MACL_C_REGNUM:
1935 fprintf_filtered (file, "macl_c\t0x%08x\n",
1936 (int) get_frame_register_unsigned (frame, cr_c_regnum));
1937 break;
1938 case PR_C_REGNUM:
1939 fprintf_filtered (file, "pr_c\t0x%08x\n",
1940 (int) get_frame_register_unsigned (frame, cr_c_regnum));
1941 break;
1942 case T_C_REGNUM:
1943 fprintf_filtered (file, "t_c\t0x%08x\n",
1944 (int) get_frame_register_unsigned (frame, cr_c_regnum));
1945 break;
1946 case FPSCR_C_REGNUM:
1947 fprintf_filtered (file, "fpscr_c\t0x%08x\n",
1948 (int) get_frame_register_unsigned (frame, cr_c_regnum));
1949 break;
1950 case FPUL_C_REGNUM:
1951 fprintf_filtered (file, "fpul_c\t0x%08x\n",
1952 (int) get_frame_register_unsigned (frame, cr_c_regnum));
1953 break;
1954 }
1955 }
1956
1957 static void
1958 sh64_do_fp_register (struct gdbarch *gdbarch, struct ui_file *file,
1959 struct frame_info *frame, int regnum)
1960 { /* do values for FP (float) regs */
1961 unsigned char *raw_buffer;
1962 double flt; /* double extracted from raw hex data */
1963 int inv;
1964 int j;
1965
1966 /* Allocate space for the float. */
1967 raw_buffer = (unsigned char *) alloca (register_size (gdbarch, FP0_REGNUM));
1968
1969 /* Get the data in raw format. */
1970 if (!frame_register_read (frame, regnum, raw_buffer))
1971 error ("can't read register %d (%s)",
1972 regnum, gdbarch_register_name (current_gdbarch, regnum));
1973
1974 /* Get the register as a number */
1975 flt = unpack_double (builtin_type_float, raw_buffer, &inv);
1976
1977 /* Print the name and some spaces. */
1978 fputs_filtered (gdbarch_register_name (current_gdbarch, regnum), file);
1979 print_spaces_filtered (15 - strlen (gdbarch_register_name
1980 (current_gdbarch, regnum)), file);
1981
1982 /* Print the value. */
1983 if (inv)
1984 fprintf_filtered (file, "<invalid float>");
1985 else
1986 fprintf_filtered (file, "%-10.9g", flt);
1987
1988 /* Print the fp register as hex. */
1989 fprintf_filtered (file, "\t(raw 0x");
1990 for (j = 0; j < register_size (gdbarch, regnum); j++)
1991 {
1992 int idx = gdbarch_byte_order (current_gdbarch)
1993 == BFD_ENDIAN_BIG ? j : register_size
1994 (gdbarch, regnum) - 1 - j;
1995 fprintf_filtered (file, "%02x", raw_buffer[idx]);
1996 }
1997 fprintf_filtered (file, ")");
1998 fprintf_filtered (file, "\n");
1999 }
2000
2001 static void
2002 sh64_do_pseudo_register (struct gdbarch *gdbarch, struct ui_file *file,
2003 struct frame_info *frame, int regnum)
2004 {
2005 /* All the sh64-compact mode registers are pseudo registers. */
2006
2007 if (regnum < gdbarch_num_regs (current_gdbarch)
2008 || regnum >= gdbarch_num_regs (current_gdbarch)
2009 + NUM_PSEUDO_REGS_SH_MEDIA
2010 + NUM_PSEUDO_REGS_SH_COMPACT)
2011 internal_error (__FILE__, __LINE__,
2012 _("Invalid pseudo register number %d\n"), regnum);
2013
2014 else if ((regnum >= DR0_REGNUM && regnum <= DR_LAST_REGNUM))
2015 {
2016 int fp_regnum = sh64_dr_reg_base_num (regnum);
2017 fprintf_filtered (file, "dr%d\t0x%08x%08x\n", regnum - DR0_REGNUM,
2018 (unsigned) get_frame_register_unsigned (frame, fp_regnum),
2019 (unsigned) get_frame_register_unsigned (frame, fp_regnum + 1));
2020 }
2021
2022 else if ((regnum >= DR0_C_REGNUM && regnum <= DR_LAST_C_REGNUM))
2023 {
2024 int fp_regnum = sh64_compact_reg_base_num (regnum);
2025 fprintf_filtered (file, "dr%d_c\t0x%08x%08x\n", regnum - DR0_C_REGNUM,
2026 (unsigned) get_frame_register_unsigned (frame, fp_regnum),
2027 (unsigned) get_frame_register_unsigned (frame, fp_regnum + 1));
2028 }
2029
2030 else if ((regnum >= FV0_REGNUM && regnum <= FV_LAST_REGNUM))
2031 {
2032 int fp_regnum = sh64_fv_reg_base_num (regnum);
2033 fprintf_filtered (file, "fv%d\t0x%08x\t0x%08x\t0x%08x\t0x%08x\n",
2034 regnum - FV0_REGNUM,
2035 (unsigned) get_frame_register_unsigned (frame, fp_regnum),
2036 (unsigned) get_frame_register_unsigned (frame, fp_regnum + 1),
2037 (unsigned) get_frame_register_unsigned (frame, fp_regnum + 2),
2038 (unsigned) get_frame_register_unsigned (frame, fp_regnum + 3));
2039 }
2040
2041 else if ((regnum >= FV0_C_REGNUM && regnum <= FV_LAST_C_REGNUM))
2042 {
2043 int fp_regnum = sh64_compact_reg_base_num (regnum);
2044 fprintf_filtered (file, "fv%d_c\t0x%08x\t0x%08x\t0x%08x\t0x%08x\n",
2045 regnum - FV0_C_REGNUM,
2046 (unsigned) get_frame_register_unsigned (frame, fp_regnum),
2047 (unsigned) get_frame_register_unsigned (frame, fp_regnum + 1),
2048 (unsigned) get_frame_register_unsigned (frame, fp_regnum + 2),
2049 (unsigned) get_frame_register_unsigned (frame, fp_regnum + 3));
2050 }
2051
2052 else if (regnum >= FPP0_REGNUM && regnum <= FPP_LAST_REGNUM)
2053 {
2054 int fp_regnum = sh64_fpp_reg_base_num (regnum);
2055 fprintf_filtered (file, "fpp%d\t0x%08x\t0x%08x\n", regnum - FPP0_REGNUM,
2056 (unsigned) get_frame_register_unsigned (frame, fp_regnum),
2057 (unsigned) get_frame_register_unsigned (frame, fp_regnum + 1));
2058 }
2059
2060 else if (regnum >= R0_C_REGNUM && regnum <= R_LAST_C_REGNUM)
2061 {
2062 int c_regnum = sh64_compact_reg_base_num (regnum);
2063 fprintf_filtered (file, "r%d_c\t0x%08x\n", regnum - R0_C_REGNUM,
2064 (unsigned) get_frame_register_unsigned (frame, c_regnum));
2065 }
2066 else if (regnum >= FP0_C_REGNUM && regnum <= FP_LAST_C_REGNUM)
2067 /* This should work also for pseudoregs. */
2068 sh64_do_fp_register (gdbarch, file, frame, regnum);
2069 else if (regnum >= PC_C_REGNUM && regnum <= FPUL_C_REGNUM)
2070 sh64_do_cr_c_register_info (file, frame, regnum);
2071 }
2072
2073 static void
2074 sh64_do_register (struct gdbarch *gdbarch, struct ui_file *file,
2075 struct frame_info *frame, int regnum)
2076 {
2077 unsigned char raw_buffer[MAX_REGISTER_SIZE];
2078
2079 fputs_filtered (gdbarch_register_name (current_gdbarch, regnum), file);
2080 print_spaces_filtered (15 - strlen (gdbarch_register_name
2081 (current_gdbarch, regnum)), file);
2082
2083 /* Get the data in raw format. */
2084 if (!frame_register_read (frame, regnum, raw_buffer))
2085 fprintf_filtered (file, "*value not available*\n");
2086
2087 val_print (register_type (gdbarch, regnum), raw_buffer, 0, 0,
2088 file, 'x', 1, 0, Val_pretty_default);
2089 fprintf_filtered (file, "\t");
2090 val_print (register_type (gdbarch, regnum), raw_buffer, 0, 0,
2091 file, 0, 1, 0, Val_pretty_default);
2092 fprintf_filtered (file, "\n");
2093 }
2094
2095 static void
2096 sh64_print_register (struct gdbarch *gdbarch, struct ui_file *file,
2097 struct frame_info *frame, int regnum)
2098 {
2099 if (regnum < 0 || regnum >= gdbarch_num_regs (current_gdbarch)
2100 + gdbarch_num_pseudo_regs (current_gdbarch))
2101 internal_error (__FILE__, __LINE__,
2102 _("Invalid register number %d\n"), regnum);
2103
2104 else if (regnum >= 0 && regnum < gdbarch_num_regs (current_gdbarch))
2105 {
2106 if (TYPE_CODE (register_type (gdbarch, regnum)) == TYPE_CODE_FLT)
2107 sh64_do_fp_register (gdbarch, file, frame, regnum); /* FP regs */
2108 else
2109 sh64_do_register (gdbarch, file, frame, regnum);
2110 }
2111
2112 else if (regnum < gdbarch_num_regs (current_gdbarch)
2113 + gdbarch_num_pseudo_regs (current_gdbarch))
2114 sh64_do_pseudo_register (gdbarch, file, frame, regnum);
2115 }
2116
2117 static void
2118 sh64_media_print_registers_info (struct gdbarch *gdbarch, struct ui_file *file,
2119 struct frame_info *frame, int regnum,
2120 int fpregs)
2121 {
2122 if (regnum != -1) /* do one specified register */
2123 {
2124 if (*(gdbarch_register_name (current_gdbarch, regnum)) == '\0')
2125 error ("Not a valid register for the current processor type");
2126
2127 sh64_print_register (gdbarch, file, frame, regnum);
2128 }
2129 else
2130 /* do all (or most) registers */
2131 {
2132 regnum = 0;
2133 while (regnum < gdbarch_num_regs (current_gdbarch))
2134 {
2135 /* If the register name is empty, it is undefined for this
2136 processor, so don't display anything. */
2137 if (gdbarch_register_name (current_gdbarch, regnum) == NULL
2138 || *(gdbarch_register_name (current_gdbarch, regnum)) == '\0')
2139 {
2140 regnum++;
2141 continue;
2142 }
2143
2144 if (TYPE_CODE (register_type (gdbarch, regnum))
2145 == TYPE_CODE_FLT)
2146 {
2147 if (fpregs)
2148 {
2149 /* true for "INFO ALL-REGISTERS" command */
2150 sh64_do_fp_register (gdbarch, file, frame, regnum);
2151 regnum ++;
2152 }
2153 else
2154 regnum += FP_LAST_REGNUM - FP0_REGNUM; /* skip FP regs */
2155 }
2156 else
2157 {
2158 sh64_do_register (gdbarch, file, frame, regnum);
2159 regnum++;
2160 }
2161 }
2162
2163 if (fpregs)
2164 while (regnum < gdbarch_num_regs (current_gdbarch)
2165 + gdbarch_num_pseudo_regs (current_gdbarch))
2166 {
2167 sh64_do_pseudo_register (gdbarch, file, frame, regnum);
2168 regnum++;
2169 }
2170 }
2171 }
2172
2173 static void
2174 sh64_compact_print_registers_info (struct gdbarch *gdbarch,
2175 struct ui_file *file,
2176 struct frame_info *frame, int regnum,
2177 int fpregs)
2178 {
2179 if (regnum != -1) /* do one specified register */
2180 {
2181 if (*(gdbarch_register_name (current_gdbarch, regnum)) == '\0')
2182 error ("Not a valid register for the current processor type");
2183
2184 if (regnum >= 0 && regnum < R0_C_REGNUM)
2185 error ("Not a valid register for the current processor mode.");
2186
2187 sh64_print_register (gdbarch, file, frame, regnum);
2188 }
2189 else
2190 /* do all compact registers */
2191 {
2192 regnum = R0_C_REGNUM;
2193 while (regnum < gdbarch_num_regs (current_gdbarch)
2194 + gdbarch_num_pseudo_regs (current_gdbarch))
2195 {
2196 sh64_do_pseudo_register (gdbarch, file, frame, regnum);
2197 regnum++;
2198 }
2199 }
2200 }
2201
2202 static void
2203 sh64_print_registers_info (struct gdbarch *gdbarch, struct ui_file *file,
2204 struct frame_info *frame, int regnum, int fpregs)
2205 {
2206 if (pc_is_isa32 (get_frame_pc (frame)))
2207 sh64_media_print_registers_info (gdbarch, file, frame, regnum, fpregs);
2208 else
2209 sh64_compact_print_registers_info (gdbarch, file, frame, regnum, fpregs);
2210 }
2211
2212 static struct sh64_frame_cache *
2213 sh64_alloc_frame_cache (void)
2214 {
2215 struct sh64_frame_cache *cache;
2216 int i;
2217
2218 cache = FRAME_OBSTACK_ZALLOC (struct sh64_frame_cache);
2219
2220 /* Base address. */
2221 cache->base = 0;
2222 cache->saved_sp = 0;
2223 cache->sp_offset = 0;
2224 cache->pc = 0;
2225
2226 /* Frameless until proven otherwise. */
2227 cache->uses_fp = 0;
2228
2229 /* Saved registers. We initialize these to -1 since zero is a valid
2230 offset (that's where fp is supposed to be stored). */
2231 for (i = 0; i < SIM_SH64_NR_REGS; i++)
2232 {
2233 cache->saved_regs[i] = -1;
2234 }
2235
2236 return cache;
2237 }
2238
2239 static struct sh64_frame_cache *
2240 sh64_frame_cache (struct frame_info *next_frame, void **this_cache)
2241 {
2242 struct sh64_frame_cache *cache;
2243 CORE_ADDR current_pc;
2244 int i;
2245
2246 if (*this_cache)
2247 return *this_cache;
2248
2249 cache = sh64_alloc_frame_cache ();
2250 *this_cache = cache;
2251
2252 current_pc = frame_pc_unwind (next_frame);
2253 cache->media_mode = pc_is_isa32 (current_pc);
2254
2255 /* In principle, for normal frames, fp holds the frame pointer,
2256 which holds the base address for the current stack frame.
2257 However, for functions that don't need it, the frame pointer is
2258 optional. For these "frameless" functions the frame pointer is
2259 actually the frame pointer of the calling frame. */
2260 cache->base = frame_unwind_register_unsigned (next_frame, MEDIA_FP_REGNUM);
2261 if (cache->base == 0)
2262 return cache;
2263
2264 cache->pc = frame_func_unwind (next_frame, NORMAL_FRAME);
2265 if (cache->pc != 0)
2266 sh64_analyze_prologue (current_gdbarch, cache, cache->pc, current_pc);
2267
2268 if (!cache->uses_fp)
2269 {
2270 /* We didn't find a valid frame, which means that CACHE->base
2271 currently holds the frame pointer for our calling frame. If
2272 we're at the start of a function, or somewhere half-way its
2273 prologue, the function's frame probably hasn't been fully
2274 setup yet. Try to reconstruct the base address for the stack
2275 frame by looking at the stack pointer. For truly "frameless"
2276 functions this might work too. */
2277 cache->base = frame_unwind_register_unsigned (next_frame, SP_REGNUM);
2278 }
2279
2280 /* Now that we have the base address for the stack frame we can
2281 calculate the value of sp in the calling frame. */
2282 cache->saved_sp = cache->base + cache->sp_offset;
2283
2284 /* Adjust all the saved registers such that they contain addresses
2285 instead of offsets. */
2286 for (i = 0; i < SIM_SH64_NR_REGS; i++)
2287 if (cache->saved_regs[i] != -1)
2288 cache->saved_regs[i] = cache->saved_sp - cache->saved_regs[i];
2289
2290 return cache;
2291 }
2292
2293 static void
2294 sh64_frame_prev_register (struct frame_info *next_frame, void **this_cache,
2295 int regnum, int *optimizedp,
2296 enum lval_type *lvalp, CORE_ADDR *addrp,
2297 int *realnump, gdb_byte *valuep)
2298 {
2299 struct sh64_frame_cache *cache = sh64_frame_cache (next_frame, this_cache);
2300
2301 gdb_assert (regnum >= 0);
2302
2303 if (regnum == SP_REGNUM && cache->saved_sp)
2304 {
2305 *optimizedp = 0;
2306 *lvalp = not_lval;
2307 *addrp = 0;
2308 *realnump = -1;
2309 if (valuep)
2310 {
2311 /* Store the value. */
2312 store_unsigned_integer (valuep,
2313 register_size (current_gdbarch, SP_REGNUM),
2314 cache->saved_sp);
2315 }
2316 return;
2317 }
2318
2319 /* The PC of the previous frame is stored in the PR register of
2320 the current frame. Frob regnum so that we pull the value from
2321 the correct place. */
2322 if (regnum == PC_REGNUM)
2323 regnum = PR_REGNUM;
2324
2325 if (regnum < SIM_SH64_NR_REGS && cache->saved_regs[regnum] != -1)
2326 {
2327 int reg_size = register_size (current_gdbarch, regnum);
2328 int size;
2329
2330 *optimizedp = 0;
2331 *lvalp = lval_memory;
2332 *addrp = cache->saved_regs[regnum];
2333 *realnump = -1;
2334 if (gdbarch_tdep (current_gdbarch)->sh_abi == SH_ABI_32
2335 && (regnum == MEDIA_FP_REGNUM || regnum == PR_REGNUM))
2336 size = 4;
2337 else
2338 size = reg_size;
2339 if (valuep)
2340 {
2341 memset (valuep, 0, reg_size);
2342 if (gdbarch_byte_order (current_gdbarch) == BFD_ENDIAN_LITTLE)
2343 read_memory (*addrp, valuep, size);
2344 else
2345 read_memory (*addrp, (char *) valuep + reg_size - size, size);
2346 }
2347 return;
2348 }
2349
2350 *optimizedp = 0;
2351 *lvalp = lval_register;
2352 *addrp = 0;
2353 *realnump = regnum;
2354 if (valuep)
2355 frame_unwind_register (next_frame, (*realnump), valuep);
2356 }
2357
2358 static void
2359 sh64_frame_this_id (struct frame_info *next_frame, void **this_cache,
2360 struct frame_id *this_id)
2361 {
2362 struct sh64_frame_cache *cache = sh64_frame_cache (next_frame, this_cache);
2363
2364 /* This marks the outermost frame. */
2365 if (cache->base == 0)
2366 return;
2367
2368 *this_id = frame_id_build (cache->saved_sp, cache->pc);
2369 }
2370
2371 static const struct frame_unwind sh64_frame_unwind = {
2372 NORMAL_FRAME,
2373 sh64_frame_this_id,
2374 sh64_frame_prev_register
2375 };
2376
2377 static const struct frame_unwind *
2378 sh64_frame_sniffer (struct frame_info *next_frame)
2379 {
2380 return &sh64_frame_unwind;
2381 }
2382
2383 static CORE_ADDR
2384 sh64_unwind_sp (struct gdbarch *gdbarch, struct frame_info *next_frame)
2385 {
2386 return frame_unwind_register_unsigned (next_frame, SP_REGNUM);
2387 }
2388
2389 static CORE_ADDR
2390 sh64_unwind_pc (struct gdbarch *gdbarch, struct frame_info *next_frame)
2391 {
2392 return frame_unwind_register_unsigned (next_frame, PC_REGNUM);
2393 }
2394
2395 static struct frame_id
2396 sh64_unwind_dummy_id (struct gdbarch *gdbarch, struct frame_info *next_frame)
2397 {
2398 return frame_id_build (sh64_unwind_sp (gdbarch, next_frame),
2399 frame_pc_unwind (next_frame));
2400 }
2401
2402 static CORE_ADDR
2403 sh64_frame_base_address (struct frame_info *next_frame, void **this_cache)
2404 {
2405 struct sh64_frame_cache *cache = sh64_frame_cache (next_frame, this_cache);
2406
2407 return cache->base;
2408 }
2409
2410 static const struct frame_base sh64_frame_base = {
2411 &sh64_frame_unwind,
2412 sh64_frame_base_address,
2413 sh64_frame_base_address,
2414 sh64_frame_base_address
2415 };
2416
2417
2418 struct gdbarch *
2419 sh64_gdbarch_init (struct gdbarch_info info, struct gdbarch_list *arches)
2420 {
2421 struct gdbarch *gdbarch;
2422 struct gdbarch_tdep *tdep;
2423
2424 /* If there is already a candidate, use it. */
2425 arches = gdbarch_list_lookup_by_info (arches, &info);
2426 if (arches != NULL)
2427 return arches->gdbarch;
2428
2429 /* None found, create a new architecture from the information
2430 provided. */
2431 tdep = XMALLOC (struct gdbarch_tdep);
2432 gdbarch = gdbarch_alloc (&info, tdep);
2433
2434 /* Determine the ABI */
2435 if (info.abfd && bfd_get_arch_size (info.abfd) == 64)
2436 {
2437 /* If the ABI is the 64-bit one, it can only be sh-media. */
2438 tdep->sh_abi = SH_ABI_64;
2439 set_gdbarch_ptr_bit (gdbarch, 8 * TARGET_CHAR_BIT);
2440 set_gdbarch_long_bit (gdbarch, 8 * TARGET_CHAR_BIT);
2441 }
2442 else
2443 {
2444 /* If the ABI is the 32-bit one it could be either media or
2445 compact. */
2446 tdep->sh_abi = SH_ABI_32;
2447 set_gdbarch_ptr_bit (gdbarch, 4 * TARGET_CHAR_BIT);
2448 set_gdbarch_long_bit (gdbarch, 4 * TARGET_CHAR_BIT);
2449 }
2450
2451 set_gdbarch_short_bit (gdbarch, 2 * TARGET_CHAR_BIT);
2452 set_gdbarch_int_bit (gdbarch, 4 * TARGET_CHAR_BIT);
2453 set_gdbarch_long_bit (gdbarch, 4 * TARGET_CHAR_BIT);
2454 set_gdbarch_long_long_bit (gdbarch, 8 * TARGET_CHAR_BIT);
2455 set_gdbarch_float_bit (gdbarch, 4 * TARGET_CHAR_BIT);
2456 set_gdbarch_double_bit (gdbarch, 8 * TARGET_CHAR_BIT);
2457 set_gdbarch_long_double_bit (gdbarch, 8 * TARGET_CHAR_BIT);
2458
2459 /* The number of real registers is the same whether we are in
2460 ISA16(compact) or ISA32(media). */
2461 set_gdbarch_num_regs (gdbarch, SIM_SH64_NR_REGS);
2462 set_gdbarch_sp_regnum (gdbarch, 15);
2463 set_gdbarch_pc_regnum (gdbarch, 64);
2464 set_gdbarch_fp0_regnum (gdbarch, SIM_SH64_FR0_REGNUM);
2465 set_gdbarch_num_pseudo_regs (gdbarch, NUM_PSEUDO_REGS_SH_MEDIA
2466 + NUM_PSEUDO_REGS_SH_COMPACT);
2467
2468 set_gdbarch_register_name (gdbarch, sh64_register_name);
2469 set_gdbarch_register_type (gdbarch, sh64_register_type);
2470
2471 set_gdbarch_pseudo_register_read (gdbarch, sh64_pseudo_register_read);
2472 set_gdbarch_pseudo_register_write (gdbarch, sh64_pseudo_register_write);
2473
2474 set_gdbarch_breakpoint_from_pc (gdbarch, sh64_breakpoint_from_pc);
2475
2476 set_gdbarch_print_insn (gdbarch, gdb_print_insn_sh64);
2477 set_gdbarch_register_sim_regno (gdbarch, legacy_register_sim_regno);
2478
2479 set_gdbarch_write_pc (gdbarch, generic_target_write_pc);
2480
2481 set_gdbarch_return_value (gdbarch, sh64_return_value);
2482 set_gdbarch_deprecated_extract_struct_value_address (gdbarch,
2483 sh64_extract_struct_value_address);
2484
2485 set_gdbarch_skip_prologue (gdbarch, sh64_skip_prologue);
2486 set_gdbarch_inner_than (gdbarch, core_addr_lessthan);
2487
2488 set_gdbarch_push_dummy_call (gdbarch, sh64_push_dummy_call);
2489
2490 set_gdbarch_believe_pcc_promotion (gdbarch, 1);
2491
2492 set_gdbarch_frame_align (gdbarch, sh64_frame_align);
2493 set_gdbarch_unwind_sp (gdbarch, sh64_unwind_sp);
2494 set_gdbarch_unwind_pc (gdbarch, sh64_unwind_pc);
2495 set_gdbarch_unwind_dummy_id (gdbarch, sh64_unwind_dummy_id);
2496 frame_base_set_default (gdbarch, &sh64_frame_base);
2497
2498 set_gdbarch_print_registers_info (gdbarch, sh64_print_registers_info);
2499
2500 set_gdbarch_elf_make_msymbol_special (gdbarch,
2501 sh64_elf_make_msymbol_special);
2502
2503 /* Hook in ABI-specific overrides, if they have been registered. */
2504 gdbarch_init_osabi (info, gdbarch);
2505
2506 frame_unwind_append_sniffer (gdbarch, dwarf2_frame_sniffer);
2507 frame_unwind_append_sniffer (gdbarch, sh64_frame_sniffer);
2508
2509 return gdbarch;
2510 }