Include gdb_assert.h in common-defs.h
[binutils-gdb.git] / gdb / sh64-tdep.c
1 /* Target-dependent code for Renesas Super-H, for GDB.
2
3 Copyright (C) 1993-2014 Free Software Foundation, Inc.
4
5 This file is part of GDB.
6
7 This program is free software; you can redistribute it and/or modify
8 it under the terms of the GNU General Public License as published by
9 the Free Software Foundation; either version 3 of the License, or
10 (at your option) any later version.
11
12 This program is distributed in the hope that it will be useful,
13 but WITHOUT ANY WARRANTY; without even the implied warranty of
14 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
15 GNU General Public License for more details.
16
17 You should have received a copy of the GNU General Public License
18 along with this program. If not, see <http://www.gnu.org/licenses/>. */
19
20 /* Contributed by Steve Chamberlain
21 sac@cygnus.com. */
22
23 #include "defs.h"
24 #include "frame.h"
25 #include "frame-base.h"
26 #include "frame-unwind.h"
27 #include "dwarf2-frame.h"
28 #include "symtab.h"
29 #include "gdbtypes.h"
30 #include "gdbcmd.h"
31 #include "gdbcore.h"
32 #include "value.h"
33 #include "dis-asm.h"
34 #include "inferior.h"
35 #include <string.h>
36 #include "arch-utils.h"
37 #include "regcache.h"
38 #include "osabi.h"
39 #include "valprint.h"
40
41 #include "elf-bfd.h"
42
43 /* sh flags */
44 #include "elf/sh.h"
45 /* Register numbers shared with the simulator. */
46 #include "gdb/sim-sh.h"
47 #include "language.h"
48 #include "sh64-tdep.h"
49
50 /* Information that is dependent on the processor variant. */
51 enum sh_abi
52 {
53 SH_ABI_UNKNOWN,
54 SH_ABI_32,
55 SH_ABI_64
56 };
57
58 struct gdbarch_tdep
59 {
60 enum sh_abi sh_abi;
61 };
62
63 struct sh64_frame_cache
64 {
65 /* Base address. */
66 CORE_ADDR base;
67 LONGEST sp_offset;
68 CORE_ADDR pc;
69
70 /* Flag showing that a frame has been created in the prologue code. */
71 int uses_fp;
72
73 int media_mode;
74
75 /* Saved registers. */
76 CORE_ADDR saved_regs[SIM_SH64_NR_REGS];
77 CORE_ADDR saved_sp;
78 };
79
80 /* Registers of SH5 */
81 enum
82 {
83 R0_REGNUM = 0,
84 DEFAULT_RETURN_REGNUM = 2,
85 STRUCT_RETURN_REGNUM = 2,
86 ARG0_REGNUM = 2,
87 ARGLAST_REGNUM = 9,
88 FLOAT_ARGLAST_REGNUM = 11,
89 MEDIA_FP_REGNUM = 14,
90 PR_REGNUM = 18,
91 SR_REGNUM = 65,
92 DR0_REGNUM = 141,
93 DR_LAST_REGNUM = 172,
94 /* FPP stands for Floating Point Pair, to avoid confusion with
95 GDB's gdbarch_fp0_regnum, which is the number of the first Floating
96 point register. Unfortunately on the sh5, the floating point
97 registers are called FR, and the floating point pairs are called FP. */
98 FPP0_REGNUM = 173,
99 FPP_LAST_REGNUM = 204,
100 FV0_REGNUM = 205,
101 FV_LAST_REGNUM = 220,
102 R0_C_REGNUM = 221,
103 R_LAST_C_REGNUM = 236,
104 PC_C_REGNUM = 237,
105 GBR_C_REGNUM = 238,
106 MACH_C_REGNUM = 239,
107 MACL_C_REGNUM = 240,
108 PR_C_REGNUM = 241,
109 T_C_REGNUM = 242,
110 FPSCR_C_REGNUM = 243,
111 FPUL_C_REGNUM = 244,
112 FP0_C_REGNUM = 245,
113 FP_LAST_C_REGNUM = 260,
114 DR0_C_REGNUM = 261,
115 DR_LAST_C_REGNUM = 268,
116 FV0_C_REGNUM = 269,
117 FV_LAST_C_REGNUM = 272,
118 FPSCR_REGNUM = SIM_SH64_FPCSR_REGNUM,
119 SSR_REGNUM = SIM_SH64_SSR_REGNUM,
120 SPC_REGNUM = SIM_SH64_SPC_REGNUM,
121 TR7_REGNUM = SIM_SH64_TR0_REGNUM + 7,
122 FP_LAST_REGNUM = SIM_SH64_FR0_REGNUM + SIM_SH64_NR_FP_REGS - 1
123 };
124
125 static const char *
126 sh64_register_name (struct gdbarch *gdbarch, int reg_nr)
127 {
128 static char *register_names[] =
129 {
130 /* SH MEDIA MODE (ISA 32) */
131 /* general registers (64-bit) 0-63 */
132 "r0", "r1", "r2", "r3", "r4", "r5", "r6", "r7",
133 "r8", "r9", "r10", "r11", "r12", "r13", "r14", "r15",
134 "r16", "r17", "r18", "r19", "r20", "r21", "r22", "r23",
135 "r24", "r25", "r26", "r27", "r28", "r29", "r30", "r31",
136 "r32", "r33", "r34", "r35", "r36", "r37", "r38", "r39",
137 "r40", "r41", "r42", "r43", "r44", "r45", "r46", "r47",
138 "r48", "r49", "r50", "r51", "r52", "r53", "r54", "r55",
139 "r56", "r57", "r58", "r59", "r60", "r61", "r62", "r63",
140
141 /* pc (64-bit) 64 */
142 "pc",
143
144 /* status reg., saved status reg., saved pc reg. (64-bit) 65-67 */
145 "sr", "ssr", "spc",
146
147 /* target registers (64-bit) 68-75 */
148 "tr0", "tr1", "tr2", "tr3", "tr4", "tr5", "tr6", "tr7",
149
150 /* floating point state control register (32-bit) 76 */
151 "fpscr",
152
153 /* single precision floating point registers (32-bit) 77-140 */
154 "fr0", "fr1", "fr2", "fr3", "fr4", "fr5", "fr6", "fr7",
155 "fr8", "fr9", "fr10", "fr11", "fr12", "fr13", "fr14", "fr15",
156 "fr16", "fr17", "fr18", "fr19", "fr20", "fr21", "fr22", "fr23",
157 "fr24", "fr25", "fr26", "fr27", "fr28", "fr29", "fr30", "fr31",
158 "fr32", "fr33", "fr34", "fr35", "fr36", "fr37", "fr38", "fr39",
159 "fr40", "fr41", "fr42", "fr43", "fr44", "fr45", "fr46", "fr47",
160 "fr48", "fr49", "fr50", "fr51", "fr52", "fr53", "fr54", "fr55",
161 "fr56", "fr57", "fr58", "fr59", "fr60", "fr61", "fr62", "fr63",
162
163 /* double precision registers (pseudo) 141-172 */
164 "dr0", "dr2", "dr4", "dr6", "dr8", "dr10", "dr12", "dr14",
165 "dr16", "dr18", "dr20", "dr22", "dr24", "dr26", "dr28", "dr30",
166 "dr32", "dr34", "dr36", "dr38", "dr40", "dr42", "dr44", "dr46",
167 "dr48", "dr50", "dr52", "dr54", "dr56", "dr58", "dr60", "dr62",
168
169 /* floating point pairs (pseudo) 173-204 */
170 "fp0", "fp2", "fp4", "fp6", "fp8", "fp10", "fp12", "fp14",
171 "fp16", "fp18", "fp20", "fp22", "fp24", "fp26", "fp28", "fp30",
172 "fp32", "fp34", "fp36", "fp38", "fp40", "fp42", "fp44", "fp46",
173 "fp48", "fp50", "fp52", "fp54", "fp56", "fp58", "fp60", "fp62",
174
175 /* floating point vectors (4 floating point regs) (pseudo) 205-220 */
176 "fv0", "fv4", "fv8", "fv12", "fv16", "fv20", "fv24", "fv28",
177 "fv32", "fv36", "fv40", "fv44", "fv48", "fv52", "fv56", "fv60",
178
179 /* SH COMPACT MODE (ISA 16) (all pseudo) 221-272 */
180 "r0_c", "r1_c", "r2_c", "r3_c", "r4_c", "r5_c", "r6_c", "r7_c",
181 "r8_c", "r9_c", "r10_c", "r11_c", "r12_c", "r13_c", "r14_c", "r15_c",
182 "pc_c",
183 "gbr_c", "mach_c", "macl_c", "pr_c", "t_c",
184 "fpscr_c", "fpul_c",
185 "fr0_c", "fr1_c", "fr2_c", "fr3_c",
186 "fr4_c", "fr5_c", "fr6_c", "fr7_c",
187 "fr8_c", "fr9_c", "fr10_c", "fr11_c",
188 "fr12_c", "fr13_c", "fr14_c", "fr15_c",
189 "dr0_c", "dr2_c", "dr4_c", "dr6_c",
190 "dr8_c", "dr10_c", "dr12_c", "dr14_c",
191 "fv0_c", "fv4_c", "fv8_c", "fv12_c",
192 /* FIXME!!!! XF0 XF15, XD0 XD14 ????? */
193 };
194
195 if (reg_nr < 0)
196 return NULL;
197 if (reg_nr >= (sizeof (register_names) / sizeof (*register_names)))
198 return NULL;
199 return register_names[reg_nr];
200 }
201
202 #define NUM_PSEUDO_REGS_SH_MEDIA 80
203 #define NUM_PSEUDO_REGS_SH_COMPACT 51
204
205 /* Macros and functions for setting and testing a bit in a minimal
206 symbol that marks it as 32-bit function. The MSB of the minimal
207 symbol's "info" field is used for this purpose.
208
209 gdbarch_elf_make_msymbol_special tests whether an ELF symbol is "special",
210 i.e. refers to a 32-bit function, and sets a "special" bit in a
211 minimal symbol to mark it as a 32-bit function
212 MSYMBOL_IS_SPECIAL tests the "special" bit in a minimal symbol */
213
214 #define MSYMBOL_IS_SPECIAL(msym) \
215 MSYMBOL_TARGET_FLAG_1 (msym)
216
217 static void
218 sh64_elf_make_msymbol_special (asymbol *sym, struct minimal_symbol *msym)
219 {
220 if (msym == NULL)
221 return;
222
223 if (((elf_symbol_type *)(sym))->internal_elf_sym.st_other == STO_SH5_ISA32)
224 {
225 MSYMBOL_TARGET_FLAG_1 (msym) = 1;
226 SET_MSYMBOL_VALUE_ADDRESS (msym, MSYMBOL_VALUE_RAW_ADDRESS (msym) | 1);
227 }
228 }
229
230 /* ISA32 (shmedia) function addresses are odd (bit 0 is set). Here
231 are some macros to test, set, or clear bit 0 of addresses. */
232 #define IS_ISA32_ADDR(addr) ((addr) & 1)
233 #define MAKE_ISA32_ADDR(addr) ((addr) | 1)
234 #define UNMAKE_ISA32_ADDR(addr) ((addr) & ~1)
235
236 static int
237 pc_is_isa32 (bfd_vma memaddr)
238 {
239 struct bound_minimal_symbol sym;
240
241 /* If bit 0 of the address is set, assume this is a
242 ISA32 (shmedia) address. */
243 if (IS_ISA32_ADDR (memaddr))
244 return 1;
245
246 /* A flag indicating that this is a ISA32 function is stored by elfread.c in
247 the high bit of the info field. Use this to decide if the function is
248 ISA16 or ISA32. */
249 sym = lookup_minimal_symbol_by_pc (memaddr);
250 if (sym.minsym)
251 return MSYMBOL_IS_SPECIAL (sym.minsym);
252 else
253 return 0;
254 }
255
256 static const unsigned char *
257 sh64_breakpoint_from_pc (struct gdbarch *gdbarch,
258 CORE_ADDR *pcptr, int *lenptr)
259 {
260 /* The BRK instruction for shmedia is
261 01101111 11110101 11111111 11110000
262 which translates in big endian mode to 0x6f, 0xf5, 0xff, 0xf0
263 and in little endian mode to 0xf0, 0xff, 0xf5, 0x6f */
264
265 /* The BRK instruction for shcompact is
266 00000000 00111011
267 which translates in big endian mode to 0x0, 0x3b
268 and in little endian mode to 0x3b, 0x0 */
269
270 if (gdbarch_byte_order (gdbarch) == BFD_ENDIAN_BIG)
271 {
272 if (pc_is_isa32 (*pcptr))
273 {
274 static unsigned char big_breakpoint_media[] = {
275 0x6f, 0xf5, 0xff, 0xf0
276 };
277 *pcptr = UNMAKE_ISA32_ADDR (*pcptr);
278 *lenptr = sizeof (big_breakpoint_media);
279 return big_breakpoint_media;
280 }
281 else
282 {
283 static unsigned char big_breakpoint_compact[] = {0x0, 0x3b};
284 *lenptr = sizeof (big_breakpoint_compact);
285 return big_breakpoint_compact;
286 }
287 }
288 else
289 {
290 if (pc_is_isa32 (*pcptr))
291 {
292 static unsigned char little_breakpoint_media[] = {
293 0xf0, 0xff, 0xf5, 0x6f
294 };
295 *pcptr = UNMAKE_ISA32_ADDR (*pcptr);
296 *lenptr = sizeof (little_breakpoint_media);
297 return little_breakpoint_media;
298 }
299 else
300 {
301 static unsigned char little_breakpoint_compact[] = {0x3b, 0x0};
302 *lenptr = sizeof (little_breakpoint_compact);
303 return little_breakpoint_compact;
304 }
305 }
306 }
307
308 /* Prologue looks like
309 [mov.l <regs>,@-r15]...
310 [sts.l pr,@-r15]
311 [mov.l r14,@-r15]
312 [mov r15,r14]
313
314 Actually it can be more complicated than this. For instance, with
315 newer gcc's:
316
317 mov.l r14,@-r15
318 add #-12,r15
319 mov r15,r14
320 mov r4,r1
321 mov r5,r2
322 mov.l r6,@(4,r14)
323 mov.l r7,@(8,r14)
324 mov.b r1,@r14
325 mov r14,r1
326 mov r14,r1
327 add #2,r1
328 mov.w r2,@r1
329
330 */
331
332 /* PTABS/L Rn, TRa 0110101111110001nnnnnnl00aaa0000
333 with l=1 and n = 18 0110101111110001010010100aaa0000 */
334 #define IS_PTABSL_R18(x) (((x) & 0xffffff8f) == 0x6bf14a00)
335
336 /* STS.L PR,@-r0 0100000000100010
337 r0-4-->r0, PR-->(r0) */
338 #define IS_STS_R0(x) ((x) == 0x4022)
339
340 /* STS PR, Rm 0000mmmm00101010
341 PR-->Rm */
342 #define IS_STS_PR(x) (((x) & 0xf0ff) == 0x2a)
343
344 /* MOV.L Rm,@(disp,r15) 00011111mmmmdddd
345 Rm-->(dispx4+r15) */
346 #define IS_MOV_TO_R15(x) (((x) & 0xff00) == 0x1f00)
347
348 /* MOV.L R14,@(disp,r15) 000111111110dddd
349 R14-->(dispx4+r15) */
350 #define IS_MOV_R14(x) (((x) & 0xfff0) == 0x1fe0)
351
352 /* ST.Q R14, disp, R18 101011001110dddddddddd0100100000
353 R18-->(dispx8+R14) */
354 #define IS_STQ_R18_R14(x) (((x) & 0xfff003ff) == 0xace00120)
355
356 /* ST.Q R15, disp, R18 101011001111dddddddddd0100100000
357 R18-->(dispx8+R15) */
358 #define IS_STQ_R18_R15(x) (((x) & 0xfff003ff) == 0xacf00120)
359
360 /* ST.L R15, disp, R18 101010001111dddddddddd0100100000
361 R18-->(dispx4+R15) */
362 #define IS_STL_R18_R15(x) (((x) & 0xfff003ff) == 0xa8f00120)
363
364 /* ST.Q R15, disp, R14 1010 1100 1111 dddd dddd dd00 1110 0000
365 R14-->(dispx8+R15) */
366 #define IS_STQ_R14_R15(x) (((x) & 0xfff003ff) == 0xacf000e0)
367
368 /* ST.L R15, disp, R14 1010 1000 1111 dddd dddd dd00 1110 0000
369 R14-->(dispx4+R15) */
370 #define IS_STL_R14_R15(x) (((x) & 0xfff003ff) == 0xa8f000e0)
371
372 /* ADDI.L R15,imm,R15 1101 0100 1111 ssss ssss ss00 1111 0000
373 R15 + imm --> R15 */
374 #define IS_ADDIL_SP_MEDIA(x) (((x) & 0xfff003ff) == 0xd4f000f0)
375
376 /* ADDI R15,imm,R15 1101 0000 1111 ssss ssss ss00 1111 0000
377 R15 + imm --> R15 */
378 #define IS_ADDI_SP_MEDIA(x) (((x) & 0xfff003ff) == 0xd0f000f0)
379
380 /* ADD.L R15,R63,R14 0000 0000 1111 1000 1111 1100 1110 0000
381 R15 + R63 --> R14 */
382 #define IS_ADDL_SP_FP_MEDIA(x) ((x) == 0x00f8fce0)
383
384 /* ADD R15,R63,R14 0000 0000 1111 1001 1111 1100 1110 0000
385 R15 + R63 --> R14 */
386 #define IS_ADD_SP_FP_MEDIA(x) ((x) == 0x00f9fce0)
387
388 #define IS_MOV_SP_FP_MEDIA(x) \
389 (IS_ADDL_SP_FP_MEDIA(x) || IS_ADD_SP_FP_MEDIA(x))
390
391 /* MOV #imm, R0 1110 0000 ssss ssss
392 #imm-->R0 */
393 #define IS_MOV_R0(x) (((x) & 0xff00) == 0xe000)
394
395 /* MOV.L @(disp,PC), R0 1101 0000 iiii iiii */
396 #define IS_MOVL_R0(x) (((x) & 0xff00) == 0xd000)
397
398 /* ADD r15,r0 0011 0000 1111 1100
399 r15+r0-->r0 */
400 #define IS_ADD_SP_R0(x) ((x) == 0x30fc)
401
402 /* MOV.L R14 @-R0 0010 0000 1110 0110
403 R14-->(R0-4), R0-4-->R0 */
404 #define IS_MOV_R14_R0(x) ((x) == 0x20e6)
405
406 /* ADD Rm,R63,Rn Rm+R63-->Rn 0000 00mm mmmm 1001 1111 11nn nnnn 0000
407 where Rm is one of r2-r9 which are the argument registers. */
408 /* FIXME: Recognize the float and double register moves too! */
409 #define IS_MEDIA_IND_ARG_MOV(x) \
410 ((((x) & 0xfc0ffc0f) == 0x0009fc00) \
411 && (((x) & 0x03f00000) >= 0x00200000 \
412 && ((x) & 0x03f00000) <= 0x00900000))
413
414 /* ST.Q Rn,0,Rm Rm-->Rn+0 1010 11nn nnnn 0000 0000 00mm mmmm 0000
415 or ST.L Rn,0,Rm Rm-->Rn+0 1010 10nn nnnn 0000 0000 00mm mmmm 0000
416 where Rm is one of r2-r9 which are the argument registers. */
417 #define IS_MEDIA_ARG_MOV(x) \
418 (((((x) & 0xfc0ffc0f) == 0xac000000) || (((x) & 0xfc0ffc0f) == 0xa8000000)) \
419 && (((x) & 0x000003f0) >= 0x00000020 && ((x) & 0x000003f0) <= 0x00000090))
420
421 /* ST.B R14,0,Rn Rn-->(R14+0) 1010 0000 1110 0000 0000 00nn nnnn 0000 */
422 /* ST.W R14,0,Rn Rn-->(R14+0) 1010 0100 1110 0000 0000 00nn nnnn 0000 */
423 /* ST.L R14,0,Rn Rn-->(R14+0) 1010 1000 1110 0000 0000 00nn nnnn 0000 */
424 /* FST.S R14,0,FRn Rn-->(R14+0) 1011 0100 1110 0000 0000 00nn nnnn 0000 */
425 /* FST.D R14,0,DRn Rn-->(R14+0) 1011 1100 1110 0000 0000 00nn nnnn 0000 */
426 #define IS_MEDIA_MOV_TO_R14(x) \
427 ((((x) & 0xfffffc0f) == 0xa0e00000) \
428 || (((x) & 0xfffffc0f) == 0xa4e00000) \
429 || (((x) & 0xfffffc0f) == 0xa8e00000) \
430 || (((x) & 0xfffffc0f) == 0xb4e00000) \
431 || (((x) & 0xfffffc0f) == 0xbce00000))
432
433 /* MOV Rm, Rn Rm-->Rn 0110 nnnn mmmm 0011
434 where Rm is r2-r9 */
435 #define IS_COMPACT_IND_ARG_MOV(x) \
436 ((((x) & 0xf00f) == 0x6003) && (((x) & 0x00f0) >= 0x0020) \
437 && (((x) & 0x00f0) <= 0x0090))
438
439 /* compact direct arg move!
440 MOV.L Rn, @r14 0010 1110 mmmm 0010 */
441 #define IS_COMPACT_ARG_MOV(x) \
442 (((((x) & 0xff0f) == 0x2e02) && (((x) & 0x00f0) >= 0x0020) \
443 && ((x) & 0x00f0) <= 0x0090))
444
445 /* MOV.B Rm, @R14 0010 1110 mmmm 0000
446 MOV.W Rm, @R14 0010 1110 mmmm 0001 */
447 #define IS_COMPACT_MOV_TO_R14(x) \
448 ((((x) & 0xff0f) == 0x2e00) || (((x) & 0xff0f) == 0x2e01))
449
450 #define IS_JSR_R0(x) ((x) == 0x400b)
451 #define IS_NOP(x) ((x) == 0x0009)
452
453
454 /* MOV r15,r14 0110111011110011
455 r15-->r14 */
456 #define IS_MOV_SP_FP(x) ((x) == 0x6ef3)
457
458 /* ADD #imm,r15 01111111iiiiiiii
459 r15+imm-->r15 */
460 #define IS_ADD_SP(x) (((x) & 0xff00) == 0x7f00)
461
462 /* Skip any prologue before the guts of a function. */
463
464 /* Skip the prologue using the debug information. If this fails we'll
465 fall back on the 'guess' method below. */
466 static CORE_ADDR
467 after_prologue (CORE_ADDR pc)
468 {
469 struct symtab_and_line sal;
470 CORE_ADDR func_addr, func_end;
471
472 /* If we can not find the symbol in the partial symbol table, then
473 there is no hope we can determine the function's start address
474 with this code. */
475 if (!find_pc_partial_function (pc, NULL, &func_addr, &func_end))
476 return 0;
477
478
479 /* Get the line associated with FUNC_ADDR. */
480 sal = find_pc_line (func_addr, 0);
481
482 /* There are only two cases to consider. First, the end of the source line
483 is within the function bounds. In that case we return the end of the
484 source line. Second is the end of the source line extends beyond the
485 bounds of the current function. We need to use the slow code to
486 examine instructions in that case. */
487 if (sal.end < func_end)
488 return sal.end;
489 else
490 return 0;
491 }
492
493 static CORE_ADDR
494 look_for_args_moves (struct gdbarch *gdbarch,
495 CORE_ADDR start_pc, int media_mode)
496 {
497 enum bfd_endian byte_order = gdbarch_byte_order (gdbarch);
498 CORE_ADDR here, end;
499 int w;
500 int insn_size = (media_mode ? 4 : 2);
501
502 for (here = start_pc, end = start_pc + (insn_size * 28); here < end;)
503 {
504 if (media_mode)
505 {
506 w = read_memory_integer (UNMAKE_ISA32_ADDR (here),
507 insn_size, byte_order);
508 here += insn_size;
509 if (IS_MEDIA_IND_ARG_MOV (w))
510 {
511 /* This must be followed by a store to r14, so the argument
512 is where the debug info says it is. This can happen after
513 the SP has been saved, unfortunately. */
514
515 int next_insn = read_memory_integer (UNMAKE_ISA32_ADDR (here),
516 insn_size, byte_order);
517 here += insn_size;
518 if (IS_MEDIA_MOV_TO_R14 (next_insn))
519 start_pc = here;
520 }
521 else if (IS_MEDIA_ARG_MOV (w))
522 {
523 /* These instructions store directly the argument in r14. */
524 start_pc = here;
525 }
526 else
527 break;
528 }
529 else
530 {
531 w = read_memory_integer (here, insn_size, byte_order);
532 w = w & 0xffff;
533 here += insn_size;
534 if (IS_COMPACT_IND_ARG_MOV (w))
535 {
536 /* This must be followed by a store to r14, so the argument
537 is where the debug info says it is. This can happen after
538 the SP has been saved, unfortunately. */
539
540 int next_insn = 0xffff & read_memory_integer (here, insn_size,
541 byte_order);
542 here += insn_size;
543 if (IS_COMPACT_MOV_TO_R14 (next_insn))
544 start_pc = here;
545 }
546 else if (IS_COMPACT_ARG_MOV (w))
547 {
548 /* These instructions store directly the argument in r14. */
549 start_pc = here;
550 }
551 else if (IS_MOVL_R0 (w))
552 {
553 /* There is a function that gcc calls to get the arguments
554 passed correctly to the function. Only after this
555 function call the arguments will be found at the place
556 where they are supposed to be. This happens in case the
557 argument has to be stored into a 64-bit register (for
558 instance doubles, long longs). SHcompact doesn't have
559 access to the full 64-bits, so we store the register in
560 stack slot and store the address of the stack slot in
561 the register, then do a call through a wrapper that
562 loads the memory value into the register. A SHcompact
563 callee calls an argument decoder
564 (GCC_shcompact_incoming_args) that stores the 64-bit
565 value in a stack slot and stores the address of the
566 stack slot in the register. GCC thinks the argument is
567 just passed by transparent reference, but this is only
568 true after the argument decoder is called. Such a call
569 needs to be considered part of the prologue. */
570
571 /* This must be followed by a JSR @r0 instruction and by
572 a NOP instruction. After these, the prologue is over! */
573
574 int next_insn = 0xffff & read_memory_integer (here, insn_size,
575 byte_order);
576 here += insn_size;
577 if (IS_JSR_R0 (next_insn))
578 {
579 next_insn = 0xffff & read_memory_integer (here, insn_size,
580 byte_order);
581 here += insn_size;
582
583 if (IS_NOP (next_insn))
584 start_pc = here;
585 }
586 }
587 else
588 break;
589 }
590 }
591
592 return start_pc;
593 }
594
595 static CORE_ADDR
596 sh64_skip_prologue_hard_way (struct gdbarch *gdbarch, CORE_ADDR start_pc)
597 {
598 enum bfd_endian byte_order = gdbarch_byte_order (gdbarch);
599 CORE_ADDR here, end;
600 int updated_fp = 0;
601 int insn_size = 4;
602 int media_mode = 1;
603
604 if (!start_pc)
605 return 0;
606
607 if (pc_is_isa32 (start_pc) == 0)
608 {
609 insn_size = 2;
610 media_mode = 0;
611 }
612
613 for (here = start_pc, end = start_pc + (insn_size * 28); here < end;)
614 {
615
616 if (media_mode)
617 {
618 int w = read_memory_integer (UNMAKE_ISA32_ADDR (here),
619 insn_size, byte_order);
620 here += insn_size;
621 if (IS_STQ_R18_R14 (w) || IS_STQ_R18_R15 (w) || IS_STQ_R14_R15 (w)
622 || IS_STL_R14_R15 (w) || IS_STL_R18_R15 (w)
623 || IS_ADDIL_SP_MEDIA (w) || IS_ADDI_SP_MEDIA (w)
624 || IS_PTABSL_R18 (w))
625 {
626 start_pc = here;
627 }
628 else if (IS_MOV_SP_FP (w) || IS_MOV_SP_FP_MEDIA(w))
629 {
630 start_pc = here;
631 updated_fp = 1;
632 }
633 else
634 if (updated_fp)
635 {
636 /* Don't bail out yet, we may have arguments stored in
637 registers here, according to the debug info, so that
638 gdb can print the frames correctly. */
639 start_pc = look_for_args_moves (gdbarch,
640 here - insn_size, media_mode);
641 break;
642 }
643 }
644 else
645 {
646 int w = 0xffff & read_memory_integer (here, insn_size, byte_order);
647 here += insn_size;
648
649 if (IS_STS_R0 (w) || IS_STS_PR (w)
650 || IS_MOV_TO_R15 (w) || IS_MOV_R14 (w)
651 || IS_MOV_R0 (w) || IS_ADD_SP_R0 (w) || IS_MOV_R14_R0 (w))
652 {
653 start_pc = here;
654 }
655 else if (IS_MOV_SP_FP (w))
656 {
657 start_pc = here;
658 updated_fp = 1;
659 }
660 else
661 if (updated_fp)
662 {
663 /* Don't bail out yet, we may have arguments stored in
664 registers here, according to the debug info, so that
665 gdb can print the frames correctly. */
666 start_pc = look_for_args_moves (gdbarch,
667 here - insn_size, media_mode);
668 break;
669 }
670 }
671 }
672
673 return start_pc;
674 }
675
676 static CORE_ADDR
677 sh64_skip_prologue (struct gdbarch *gdbarch, CORE_ADDR pc)
678 {
679 CORE_ADDR post_prologue_pc;
680
681 /* See if we can determine the end of the prologue via the symbol table.
682 If so, then return either PC, or the PC after the prologue, whichever
683 is greater. */
684 post_prologue_pc = after_prologue (pc);
685
686 /* If after_prologue returned a useful address, then use it. Else
687 fall back on the instruction skipping code. */
688 if (post_prologue_pc != 0)
689 return max (pc, post_prologue_pc);
690 else
691 return sh64_skip_prologue_hard_way (gdbarch, pc);
692 }
693
694 /* Should call_function allocate stack space for a struct return? */
695 static int
696 sh64_use_struct_convention (struct type *type)
697 {
698 return (TYPE_LENGTH (type) > 8);
699 }
700
701 /* For vectors of 4 floating point registers. */
702 static int
703 sh64_fv_reg_base_num (struct gdbarch *gdbarch, int fv_regnum)
704 {
705 int fp_regnum;
706
707 fp_regnum = gdbarch_fp0_regnum (gdbarch) + (fv_regnum - FV0_REGNUM) * 4;
708 return fp_regnum;
709 }
710
711 /* For double precision floating point registers, i.e 2 fp regs. */
712 static int
713 sh64_dr_reg_base_num (struct gdbarch *gdbarch, int dr_regnum)
714 {
715 int fp_regnum;
716
717 fp_regnum = gdbarch_fp0_regnum (gdbarch) + (dr_regnum - DR0_REGNUM) * 2;
718 return fp_regnum;
719 }
720
721 /* For pairs of floating point registers. */
722 static int
723 sh64_fpp_reg_base_num (struct gdbarch *gdbarch, int fpp_regnum)
724 {
725 int fp_regnum;
726
727 fp_regnum = gdbarch_fp0_regnum (gdbarch) + (fpp_regnum - FPP0_REGNUM) * 2;
728 return fp_regnum;
729 }
730
731 /* *INDENT-OFF* */
732 /*
733 SH COMPACT MODE (ISA 16) (all pseudo) 221-272
734 GDB_REGNUM BASE_REGNUM
735 r0_c 221 0
736 r1_c 222 1
737 r2_c 223 2
738 r3_c 224 3
739 r4_c 225 4
740 r5_c 226 5
741 r6_c 227 6
742 r7_c 228 7
743 r8_c 229 8
744 r9_c 230 9
745 r10_c 231 10
746 r11_c 232 11
747 r12_c 233 12
748 r13_c 234 13
749 r14_c 235 14
750 r15_c 236 15
751
752 pc_c 237 64
753 gbr_c 238 16
754 mach_c 239 17
755 macl_c 240 17
756 pr_c 241 18
757 t_c 242 19
758 fpscr_c 243 76
759 fpul_c 244 109
760
761 fr0_c 245 77
762 fr1_c 246 78
763 fr2_c 247 79
764 fr3_c 248 80
765 fr4_c 249 81
766 fr5_c 250 82
767 fr6_c 251 83
768 fr7_c 252 84
769 fr8_c 253 85
770 fr9_c 254 86
771 fr10_c 255 87
772 fr11_c 256 88
773 fr12_c 257 89
774 fr13_c 258 90
775 fr14_c 259 91
776 fr15_c 260 92
777
778 dr0_c 261 77
779 dr2_c 262 79
780 dr4_c 263 81
781 dr6_c 264 83
782 dr8_c 265 85
783 dr10_c 266 87
784 dr12_c 267 89
785 dr14_c 268 91
786
787 fv0_c 269 77
788 fv4_c 270 81
789 fv8_c 271 85
790 fv12_c 272 91
791 */
792 /* *INDENT-ON* */
793 static int
794 sh64_compact_reg_base_num (struct gdbarch *gdbarch, int reg_nr)
795 {
796 int base_regnum = reg_nr;
797
798 /* general register N maps to general register N */
799 if (reg_nr >= R0_C_REGNUM
800 && reg_nr <= R_LAST_C_REGNUM)
801 base_regnum = reg_nr - R0_C_REGNUM;
802
803 /* floating point register N maps to floating point register N */
804 else if (reg_nr >= FP0_C_REGNUM
805 && reg_nr <= FP_LAST_C_REGNUM)
806 base_regnum = reg_nr - FP0_C_REGNUM + gdbarch_fp0_regnum (gdbarch);
807
808 /* double prec register N maps to base regnum for double prec register N */
809 else if (reg_nr >= DR0_C_REGNUM
810 && reg_nr <= DR_LAST_C_REGNUM)
811 base_regnum = sh64_dr_reg_base_num (gdbarch,
812 DR0_REGNUM + reg_nr - DR0_C_REGNUM);
813
814 /* vector N maps to base regnum for vector register N */
815 else if (reg_nr >= FV0_C_REGNUM
816 && reg_nr <= FV_LAST_C_REGNUM)
817 base_regnum = sh64_fv_reg_base_num (gdbarch,
818 FV0_REGNUM + reg_nr - FV0_C_REGNUM);
819
820 else if (reg_nr == PC_C_REGNUM)
821 base_regnum = gdbarch_pc_regnum (gdbarch);
822
823 else if (reg_nr == GBR_C_REGNUM)
824 base_regnum = 16;
825
826 else if (reg_nr == MACH_C_REGNUM
827 || reg_nr == MACL_C_REGNUM)
828 base_regnum = 17;
829
830 else if (reg_nr == PR_C_REGNUM)
831 base_regnum = PR_REGNUM;
832
833 else if (reg_nr == T_C_REGNUM)
834 base_regnum = 19;
835
836 else if (reg_nr == FPSCR_C_REGNUM)
837 base_regnum = FPSCR_REGNUM; /*???? this register is a mess. */
838
839 else if (reg_nr == FPUL_C_REGNUM)
840 base_regnum = gdbarch_fp0_regnum (gdbarch) + 32;
841
842 return base_regnum;
843 }
844
845 static int
846 sign_extend (int value, int bits)
847 {
848 value = value & ((1 << bits) - 1);
849 return (value & (1 << (bits - 1))
850 ? value | (~((1 << bits) - 1))
851 : value);
852 }
853
854 static void
855 sh64_analyze_prologue (struct gdbarch *gdbarch,
856 struct sh64_frame_cache *cache,
857 CORE_ADDR func_pc,
858 CORE_ADDR current_pc)
859 {
860 int pc;
861 int opc;
862 int insn;
863 int r0_val = 0;
864 int insn_size;
865 int gdb_register_number;
866 int register_number;
867 struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch);
868 enum bfd_endian byte_order = gdbarch_byte_order (gdbarch);
869
870 cache->sp_offset = 0;
871
872 /* Loop around examining the prologue insns until we find something
873 that does not appear to be part of the prologue. But give up
874 after 20 of them, since we're getting silly then. */
875
876 pc = func_pc;
877
878 if (cache->media_mode)
879 insn_size = 4;
880 else
881 insn_size = 2;
882
883 opc = pc + (insn_size * 28);
884 if (opc > current_pc)
885 opc = current_pc;
886 for ( ; pc <= opc; pc += insn_size)
887 {
888 insn = read_memory_integer (cache->media_mode ? UNMAKE_ISA32_ADDR (pc)
889 : pc,
890 insn_size, byte_order);
891
892 if (!cache->media_mode)
893 {
894 if (IS_STS_PR (insn))
895 {
896 int next_insn = read_memory_integer (pc + insn_size,
897 insn_size, byte_order);
898 if (IS_MOV_TO_R15 (next_insn))
899 {
900 cache->saved_regs[PR_REGNUM]
901 = cache->sp_offset - ((((next_insn & 0xf) ^ 0x8)
902 - 0x8) << 2);
903 pc += insn_size;
904 }
905 }
906
907 else if (IS_MOV_R14 (insn))
908 cache->saved_regs[MEDIA_FP_REGNUM] =
909 cache->sp_offset - ((((insn & 0xf) ^ 0x8) - 0x8) << 2);
910
911 else if (IS_MOV_R0 (insn))
912 {
913 /* Put in R0 the offset from SP at which to store some
914 registers. We are interested in this value, because it
915 will tell us where the given registers are stored within
916 the frame. */
917 r0_val = ((insn & 0xff) ^ 0x80) - 0x80;
918 }
919
920 else if (IS_ADD_SP_R0 (insn))
921 {
922 /* This instruction still prepares r0, but we don't care.
923 We already have the offset in r0_val. */
924 }
925
926 else if (IS_STS_R0 (insn))
927 {
928 /* Store PR at r0_val-4 from SP. Decrement r0 by 4. */
929 cache->saved_regs[PR_REGNUM] = cache->sp_offset - (r0_val - 4);
930 r0_val -= 4;
931 }
932
933 else if (IS_MOV_R14_R0 (insn))
934 {
935 /* Store R14 at r0_val-4 from SP. Decrement r0 by 4. */
936 cache->saved_regs[MEDIA_FP_REGNUM] = cache->sp_offset
937 - (r0_val - 4);
938 r0_val -= 4;
939 }
940
941 else if (IS_ADD_SP (insn))
942 cache->sp_offset -= ((insn & 0xff) ^ 0x80) - 0x80;
943
944 else if (IS_MOV_SP_FP (insn))
945 break;
946 }
947 else
948 {
949 if (IS_ADDIL_SP_MEDIA (insn) || IS_ADDI_SP_MEDIA (insn))
950 cache->sp_offset -=
951 sign_extend ((((insn & 0xffc00) ^ 0x80000) - 0x80000) >> 10, 9);
952
953 else if (IS_STQ_R18_R15 (insn))
954 cache->saved_regs[PR_REGNUM]
955 = cache->sp_offset - (sign_extend ((insn & 0xffc00) >> 10,
956 9) << 3);
957
958 else if (IS_STL_R18_R15 (insn))
959 cache->saved_regs[PR_REGNUM]
960 = cache->sp_offset - (sign_extend ((insn & 0xffc00) >> 10,
961 9) << 2);
962
963 else if (IS_STQ_R14_R15 (insn))
964 cache->saved_regs[MEDIA_FP_REGNUM]
965 = cache->sp_offset - (sign_extend ((insn & 0xffc00) >> 10,
966 9) << 3);
967
968 else if (IS_STL_R14_R15 (insn))
969 cache->saved_regs[MEDIA_FP_REGNUM]
970 = cache->sp_offset - (sign_extend ((insn & 0xffc00) >> 10,
971 9) << 2);
972
973 else if (IS_MOV_SP_FP_MEDIA (insn))
974 break;
975 }
976 }
977
978 if (cache->saved_regs[MEDIA_FP_REGNUM] >= 0)
979 cache->uses_fp = 1;
980 }
981
982 static CORE_ADDR
983 sh64_frame_align (struct gdbarch *ignore, CORE_ADDR sp)
984 {
985 return sp & ~7;
986 }
987
988 /* Function: push_dummy_call
989 Setup the function arguments for calling a function in the inferior.
990
991 On the Renesas SH architecture, there are four registers (R4 to R7)
992 which are dedicated for passing function arguments. Up to the first
993 four arguments (depending on size) may go into these registers.
994 The rest go on the stack.
995
996 Arguments that are smaller than 4 bytes will still take up a whole
997 register or a whole 32-bit word on the stack, and will be
998 right-justified in the register or the stack word. This includes
999 chars, shorts, and small aggregate types.
1000
1001 Arguments that are larger than 4 bytes may be split between two or
1002 more registers. If there are not enough registers free, an argument
1003 may be passed partly in a register (or registers), and partly on the
1004 stack. This includes doubles, long longs, and larger aggregates.
1005 As far as I know, there is no upper limit to the size of aggregates
1006 that will be passed in this way; in other words, the convention of
1007 passing a pointer to a large aggregate instead of a copy is not used.
1008
1009 An exceptional case exists for struct arguments (and possibly other
1010 aggregates such as arrays) if the size is larger than 4 bytes but
1011 not a multiple of 4 bytes. In this case the argument is never split
1012 between the registers and the stack, but instead is copied in its
1013 entirety onto the stack, AND also copied into as many registers as
1014 there is room for. In other words, space in registers permitting,
1015 two copies of the same argument are passed in. As far as I can tell,
1016 only the one on the stack is used, although that may be a function
1017 of the level of compiler optimization. I suspect this is a compiler
1018 bug. Arguments of these odd sizes are left-justified within the
1019 word (as opposed to arguments smaller than 4 bytes, which are
1020 right-justified).
1021
1022 If the function is to return an aggregate type such as a struct, it
1023 is either returned in the normal return value register R0 (if its
1024 size is no greater than one byte), or else the caller must allocate
1025 space into which the callee will copy the return value (if the size
1026 is greater than one byte). In this case, a pointer to the return
1027 value location is passed into the callee in register R2, which does
1028 not displace any of the other arguments passed in via registers R4
1029 to R7. */
1030
1031 /* R2-R9 for integer types and integer equivalent (char, pointers) and
1032 non-scalar (struct, union) elements (even if the elements are
1033 floats).
1034 FR0-FR11 for single precision floating point (float)
1035 DR0-DR10 for double precision floating point (double)
1036
1037 If a float is argument number 3 (for instance) and arguments number
1038 1,2, and 4 are integer, the mapping will be:
1039 arg1 -->R2, arg2 --> R3, arg3 -->FR0, arg4 --> R5. I.e. R4 is not used.
1040
1041 If a float is argument number 10 (for instance) and arguments number
1042 1 through 10 are integer, the mapping will be:
1043 arg1->R2, arg2->R3, arg3->R4, arg4->R5, arg5->R6, arg6->R7, arg7->R8,
1044 arg8->R9, arg9->(0,SP)stack(8-byte aligned), arg10->FR0,
1045 arg11->stack(16,SP). I.e. there is hole in the stack.
1046
1047 Different rules apply for variable arguments functions, and for functions
1048 for which the prototype is not known. */
1049
1050 static CORE_ADDR
1051 sh64_push_dummy_call (struct gdbarch *gdbarch,
1052 struct value *function,
1053 struct regcache *regcache,
1054 CORE_ADDR bp_addr,
1055 int nargs, struct value **args,
1056 CORE_ADDR sp, int struct_return,
1057 CORE_ADDR struct_addr)
1058 {
1059 enum bfd_endian byte_order = gdbarch_byte_order (gdbarch);
1060 int stack_offset, stack_alloc;
1061 int int_argreg;
1062 int float_argreg;
1063 int double_argreg;
1064 int float_arg_index = 0;
1065 int double_arg_index = 0;
1066 int argnum;
1067 struct type *type;
1068 CORE_ADDR regval;
1069 const gdb_byte *val;
1070 gdb_byte valbuf[8];
1071 int len;
1072 int argreg_size;
1073 int fp_args[12];
1074
1075 memset (fp_args, 0, sizeof (fp_args));
1076
1077 /* First force sp to a 8-byte alignment. */
1078 sp = sh64_frame_align (gdbarch, sp);
1079
1080 /* The "struct return pointer" pseudo-argument has its own dedicated
1081 register. */
1082
1083 if (struct_return)
1084 regcache_cooked_write_unsigned (regcache,
1085 STRUCT_RETURN_REGNUM, struct_addr);
1086
1087 /* Now make sure there's space on the stack. */
1088 for (argnum = 0, stack_alloc = 0; argnum < nargs; argnum++)
1089 stack_alloc += ((TYPE_LENGTH (value_type (args[argnum])) + 7) & ~7);
1090 sp -= stack_alloc; /* Make room on stack for args. */
1091
1092 /* Now load as many as possible of the first arguments into
1093 registers, and push the rest onto the stack. There are 64 bytes
1094 in eight registers available. Loop thru args from first to last. */
1095
1096 int_argreg = ARG0_REGNUM;
1097 float_argreg = gdbarch_fp0_regnum (gdbarch);
1098 double_argreg = DR0_REGNUM;
1099
1100 for (argnum = 0, stack_offset = 0; argnum < nargs; argnum++)
1101 {
1102 type = value_type (args[argnum]);
1103 len = TYPE_LENGTH (type);
1104 memset (valbuf, 0, sizeof (valbuf));
1105
1106 if (TYPE_CODE (type) != TYPE_CODE_FLT)
1107 {
1108 argreg_size = register_size (gdbarch, int_argreg);
1109
1110 if (len < argreg_size)
1111 {
1112 /* value gets right-justified in the register or stack word. */
1113 if (gdbarch_byte_order (gdbarch) == BFD_ENDIAN_BIG)
1114 memcpy (valbuf + argreg_size - len,
1115 value_contents (args[argnum]), len);
1116 else
1117 memcpy (valbuf, value_contents (args[argnum]), len);
1118
1119 val = valbuf;
1120 }
1121 else
1122 val = value_contents (args[argnum]);
1123
1124 while (len > 0)
1125 {
1126 if (int_argreg > ARGLAST_REGNUM)
1127 {
1128 /* Must go on the stack. */
1129 write_memory (sp + stack_offset, val, argreg_size);
1130 stack_offset += 8;/*argreg_size;*/
1131 }
1132 /* NOTE WELL!!!!! This is not an "else if" clause!!!
1133 That's because some *&^%$ things get passed on the stack
1134 AND in the registers! */
1135 if (int_argreg <= ARGLAST_REGNUM)
1136 {
1137 /* There's room in a register. */
1138 regval = extract_unsigned_integer (val, argreg_size,
1139 byte_order);
1140 regcache_cooked_write_unsigned (regcache,
1141 int_argreg, regval);
1142 }
1143 /* Store the value 8 bytes at a time. This means that
1144 things larger than 8 bytes may go partly in registers
1145 and partly on the stack. FIXME: argreg is incremented
1146 before we use its size. */
1147 len -= argreg_size;
1148 val += argreg_size;
1149 int_argreg++;
1150 }
1151 }
1152 else
1153 {
1154 val = value_contents (args[argnum]);
1155 if (len == 4)
1156 {
1157 /* Where is it going to be stored? */
1158 while (fp_args[float_arg_index])
1159 float_arg_index ++;
1160
1161 /* Now float_argreg points to the register where it
1162 should be stored. Are we still within the allowed
1163 register set? */
1164 if (float_arg_index <= FLOAT_ARGLAST_REGNUM)
1165 {
1166 /* Goes in FR0...FR11 */
1167 regcache_cooked_write (regcache,
1168 gdbarch_fp0_regnum (gdbarch)
1169 + float_arg_index,
1170 val);
1171 fp_args[float_arg_index] = 1;
1172 /* Skip the corresponding general argument register. */
1173 int_argreg ++;
1174 }
1175 else
1176 {
1177 /* Store it as the integers, 8 bytes at the time, if
1178 necessary spilling on the stack. */
1179 }
1180 }
1181 else if (len == 8)
1182 {
1183 /* Where is it going to be stored? */
1184 while (fp_args[double_arg_index])
1185 double_arg_index += 2;
1186 /* Now double_argreg points to the register
1187 where it should be stored.
1188 Are we still within the allowed register set? */
1189 if (double_arg_index < FLOAT_ARGLAST_REGNUM)
1190 {
1191 /* Goes in DR0...DR10 */
1192 /* The numbering of the DRi registers is consecutive,
1193 i.e. includes odd numbers. */
1194 int double_register_offset = double_arg_index / 2;
1195 int regnum = DR0_REGNUM + double_register_offset;
1196 regcache_cooked_write (regcache, regnum, val);
1197 fp_args[double_arg_index] = 1;
1198 fp_args[double_arg_index + 1] = 1;
1199 /* Skip the corresponding general argument register. */
1200 int_argreg ++;
1201 }
1202 else
1203 {
1204 /* Store it as the integers, 8 bytes at the time, if
1205 necessary spilling on the stack. */
1206 }
1207 }
1208 }
1209 }
1210 /* Store return address. */
1211 regcache_cooked_write_unsigned (regcache, PR_REGNUM, bp_addr);
1212
1213 /* Update stack pointer. */
1214 regcache_cooked_write_unsigned (regcache,
1215 gdbarch_sp_regnum (gdbarch), sp);
1216
1217 return sp;
1218 }
1219
1220 /* Find a function's return value in the appropriate registers (in
1221 regbuf), and copy it into valbuf. Extract from an array REGBUF
1222 containing the (raw) register state a function return value of type
1223 TYPE, and copy that, in virtual format, into VALBUF. */
1224 static void
1225 sh64_extract_return_value (struct type *type, struct regcache *regcache,
1226 void *valbuf)
1227 {
1228 struct gdbarch *gdbarch = get_regcache_arch (regcache);
1229 enum bfd_endian byte_order = gdbarch_byte_order (gdbarch);
1230 int len = TYPE_LENGTH (type);
1231
1232 if (TYPE_CODE (type) == TYPE_CODE_FLT)
1233 {
1234 if (len == 4)
1235 {
1236 /* Return value stored in gdbarch_fp0_regnum. */
1237 regcache_raw_read (regcache,
1238 gdbarch_fp0_regnum (gdbarch), valbuf);
1239 }
1240 else if (len == 8)
1241 {
1242 /* return value stored in DR0_REGNUM. */
1243 DOUBLEST val;
1244 gdb_byte buf[8];
1245
1246 regcache_cooked_read (regcache, DR0_REGNUM, buf);
1247
1248 if (gdbarch_byte_order (gdbarch) == BFD_ENDIAN_LITTLE)
1249 floatformat_to_doublest (&floatformat_ieee_double_littlebyte_bigword,
1250 buf, &val);
1251 else
1252 floatformat_to_doublest (&floatformat_ieee_double_big,
1253 buf, &val);
1254 store_typed_floating (valbuf, type, val);
1255 }
1256 }
1257 else
1258 {
1259 if (len <= 8)
1260 {
1261 int offset;
1262 gdb_byte buf[8];
1263 /* Result is in register 2. If smaller than 8 bytes, it is padded
1264 at the most significant end. */
1265 regcache_raw_read (regcache, DEFAULT_RETURN_REGNUM, buf);
1266
1267 if (gdbarch_byte_order (gdbarch) == BFD_ENDIAN_BIG)
1268 offset = register_size (gdbarch, DEFAULT_RETURN_REGNUM)
1269 - len;
1270 else
1271 offset = 0;
1272 memcpy (valbuf, buf + offset, len);
1273 }
1274 else
1275 error (_("bad size for return value"));
1276 }
1277 }
1278
1279 /* Write into appropriate registers a function return value
1280 of type TYPE, given in virtual format.
1281 If the architecture is sh4 or sh3e, store a function's return value
1282 in the R0 general register or in the FP0 floating point register,
1283 depending on the type of the return value. In all the other cases
1284 the result is stored in r0, left-justified. */
1285
1286 static void
1287 sh64_store_return_value (struct type *type, struct regcache *regcache,
1288 const gdb_byte *valbuf)
1289 {
1290 struct gdbarch *gdbarch = get_regcache_arch (regcache);
1291 gdb_byte buf[64]; /* more than enough... */
1292 int len = TYPE_LENGTH (type);
1293
1294 if (TYPE_CODE (type) == TYPE_CODE_FLT)
1295 {
1296 int i, regnum = gdbarch_fp0_regnum (gdbarch);
1297 for (i = 0; i < len; i += 4)
1298 if (gdbarch_byte_order (gdbarch) == BFD_ENDIAN_LITTLE)
1299 regcache_raw_write (regcache, regnum++,
1300 valbuf + len - 4 - i);
1301 else
1302 regcache_raw_write (regcache, regnum++, valbuf + i);
1303 }
1304 else
1305 {
1306 int return_register = DEFAULT_RETURN_REGNUM;
1307 int offset = 0;
1308
1309 if (len <= register_size (gdbarch, return_register))
1310 {
1311 /* Pad with zeros. */
1312 memset (buf, 0, register_size (gdbarch, return_register));
1313 if (gdbarch_byte_order (gdbarch) == BFD_ENDIAN_LITTLE)
1314 offset = 0; /*register_size (gdbarch,
1315 return_register) - len;*/
1316 else
1317 offset = register_size (gdbarch, return_register) - len;
1318
1319 memcpy (buf + offset, valbuf, len);
1320 regcache_raw_write (regcache, return_register, buf);
1321 }
1322 else
1323 regcache_raw_write (regcache, return_register, valbuf);
1324 }
1325 }
1326
1327 static enum return_value_convention
1328 sh64_return_value (struct gdbarch *gdbarch, struct value *function,
1329 struct type *type, struct regcache *regcache,
1330 gdb_byte *readbuf, const gdb_byte *writebuf)
1331 {
1332 if (sh64_use_struct_convention (type))
1333 return RETURN_VALUE_STRUCT_CONVENTION;
1334 if (writebuf)
1335 sh64_store_return_value (type, regcache, writebuf);
1336 else if (readbuf)
1337 sh64_extract_return_value (type, regcache, readbuf);
1338 return RETURN_VALUE_REGISTER_CONVENTION;
1339 }
1340
1341 /* *INDENT-OFF* */
1342 /*
1343 SH MEDIA MODE (ISA 32)
1344 general registers (64-bit) 0-63
1345 0 r0, r1, r2, r3, r4, r5, r6, r7,
1346 64 r8, r9, r10, r11, r12, r13, r14, r15,
1347 128 r16, r17, r18, r19, r20, r21, r22, r23,
1348 192 r24, r25, r26, r27, r28, r29, r30, r31,
1349 256 r32, r33, r34, r35, r36, r37, r38, r39,
1350 320 r40, r41, r42, r43, r44, r45, r46, r47,
1351 384 r48, r49, r50, r51, r52, r53, r54, r55,
1352 448 r56, r57, r58, r59, r60, r61, r62, r63,
1353
1354 pc (64-bit) 64
1355 512 pc,
1356
1357 status reg., saved status reg., saved pc reg. (64-bit) 65-67
1358 520 sr, ssr, spc,
1359
1360 target registers (64-bit) 68-75
1361 544 tr0, tr1, tr2, tr3, tr4, tr5, tr6, tr7,
1362
1363 floating point state control register (32-bit) 76
1364 608 fpscr,
1365
1366 single precision floating point registers (32-bit) 77-140
1367 612 fr0, fr1, fr2, fr3, fr4, fr5, fr6, fr7,
1368 644 fr8, fr9, fr10, fr11, fr12, fr13, fr14, fr15,
1369 676 fr16, fr17, fr18, fr19, fr20, fr21, fr22, fr23,
1370 708 fr24, fr25, fr26, fr27, fr28, fr29, fr30, fr31,
1371 740 fr32, fr33, fr34, fr35, fr36, fr37, fr38, fr39,
1372 772 fr40, fr41, fr42, fr43, fr44, fr45, fr46, fr47,
1373 804 fr48, fr49, fr50, fr51, fr52, fr53, fr54, fr55,
1374 836 fr56, fr57, fr58, fr59, fr60, fr61, fr62, fr63,
1375
1376 TOTAL SPACE FOR REGISTERS: 868 bytes
1377
1378 From here on they are all pseudo registers: no memory allocated.
1379 REGISTER_BYTE returns the register byte for the base register.
1380
1381 double precision registers (pseudo) 141-172
1382 dr0, dr2, dr4, dr6, dr8, dr10, dr12, dr14,
1383 dr16, dr18, dr20, dr22, dr24, dr26, dr28, dr30,
1384 dr32, dr34, dr36, dr38, dr40, dr42, dr44, dr46,
1385 dr48, dr50, dr52, dr54, dr56, dr58, dr60, dr62,
1386
1387 floating point pairs (pseudo) 173-204
1388 fp0, fp2, fp4, fp6, fp8, fp10, fp12, fp14,
1389 fp16, fp18, fp20, fp22, fp24, fp26, fp28, fp30,
1390 fp32, fp34, fp36, fp38, fp40, fp42, fp44, fp46,
1391 fp48, fp50, fp52, fp54, fp56, fp58, fp60, fp62,
1392
1393 floating point vectors (4 floating point regs) (pseudo) 205-220
1394 fv0, fv4, fv8, fv12, fv16, fv20, fv24, fv28,
1395 fv32, fv36, fv40, fv44, fv48, fv52, fv56, fv60,
1396
1397 SH COMPACT MODE (ISA 16) (all pseudo) 221-272
1398 r0_c, r1_c, r2_c, r3_c, r4_c, r5_c, r6_c, r7_c,
1399 r8_c, r9_c, r10_c, r11_c, r12_c, r13_c, r14_c, r15_c,
1400 pc_c,
1401 gbr_c, mach_c, macl_c, pr_c, t_c,
1402 fpscr_c, fpul_c,
1403 fr0_c, fr1_c, fr2_c, fr3_c, fr4_c, fr5_c, fr6_c, fr7_c,
1404 fr8_c, fr9_c, fr10_c, fr11_c, fr12_c, fr13_c, fr14_c, fr15_c
1405 dr0_c, dr2_c, dr4_c, dr6_c, dr8_c, dr10_c, dr12_c, dr14_c
1406 fv0_c, fv4_c, fv8_c, fv12_c
1407 */
1408
1409 static struct type *
1410 sh64_build_float_register_type (struct gdbarch *gdbarch, int high)
1411 {
1412 return lookup_array_range_type (builtin_type (gdbarch)->builtin_float,
1413 0, high);
1414 }
1415
1416 /* Return the GDB type object for the "standard" data type
1417 of data in register REG_NR. */
1418 static struct type *
1419 sh64_register_type (struct gdbarch *gdbarch, int reg_nr)
1420 {
1421 if ((reg_nr >= gdbarch_fp0_regnum (gdbarch)
1422 && reg_nr <= FP_LAST_REGNUM)
1423 || (reg_nr >= FP0_C_REGNUM
1424 && reg_nr <= FP_LAST_C_REGNUM))
1425 return builtin_type (gdbarch)->builtin_float;
1426 else if ((reg_nr >= DR0_REGNUM
1427 && reg_nr <= DR_LAST_REGNUM)
1428 || (reg_nr >= DR0_C_REGNUM
1429 && reg_nr <= DR_LAST_C_REGNUM))
1430 return builtin_type (gdbarch)->builtin_double;
1431 else if (reg_nr >= FPP0_REGNUM
1432 && reg_nr <= FPP_LAST_REGNUM)
1433 return sh64_build_float_register_type (gdbarch, 1);
1434 else if ((reg_nr >= FV0_REGNUM
1435 && reg_nr <= FV_LAST_REGNUM)
1436 ||(reg_nr >= FV0_C_REGNUM
1437 && reg_nr <= FV_LAST_C_REGNUM))
1438 return sh64_build_float_register_type (gdbarch, 3);
1439 else if (reg_nr == FPSCR_REGNUM)
1440 return builtin_type (gdbarch)->builtin_int;
1441 else if (reg_nr >= R0_C_REGNUM
1442 && reg_nr < FP0_C_REGNUM)
1443 return builtin_type (gdbarch)->builtin_int;
1444 else
1445 return builtin_type (gdbarch)->builtin_long_long;
1446 }
1447
1448 static void
1449 sh64_register_convert_to_virtual (struct gdbarch *gdbarch, int regnum,
1450 struct type *type, gdb_byte *from, gdb_byte *to)
1451 {
1452 if (gdbarch_byte_order (gdbarch) != BFD_ENDIAN_LITTLE)
1453 {
1454 /* It is a no-op. */
1455 memcpy (to, from, register_size (gdbarch, regnum));
1456 return;
1457 }
1458
1459 if ((regnum >= DR0_REGNUM
1460 && regnum <= DR_LAST_REGNUM)
1461 || (regnum >= DR0_C_REGNUM
1462 && regnum <= DR_LAST_C_REGNUM))
1463 {
1464 DOUBLEST val;
1465 floatformat_to_doublest (&floatformat_ieee_double_littlebyte_bigword,
1466 from, &val);
1467 store_typed_floating (to, type, val);
1468 }
1469 else
1470 error (_("sh64_register_convert_to_virtual "
1471 "called with non DR register number"));
1472 }
1473
1474 static void
1475 sh64_register_convert_to_raw (struct gdbarch *gdbarch, struct type *type,
1476 int regnum, const void *from, void *to)
1477 {
1478 if (gdbarch_byte_order (gdbarch) != BFD_ENDIAN_LITTLE)
1479 {
1480 /* It is a no-op. */
1481 memcpy (to, from, register_size (gdbarch, regnum));
1482 return;
1483 }
1484
1485 if ((regnum >= DR0_REGNUM
1486 && regnum <= DR_LAST_REGNUM)
1487 || (regnum >= DR0_C_REGNUM
1488 && regnum <= DR_LAST_C_REGNUM))
1489 {
1490 DOUBLEST val = extract_typed_floating (from, type);
1491 floatformat_from_doublest (&floatformat_ieee_double_littlebyte_bigword,
1492 &val, to);
1493 }
1494 else
1495 error (_("sh64_register_convert_to_raw called "
1496 "with non DR register number"));
1497 }
1498
1499 /* Concatenate PORTIONS contiguous raw registers starting at
1500 BASE_REGNUM into BUFFER. */
1501
1502 static enum register_status
1503 pseudo_register_read_portions (struct gdbarch *gdbarch,
1504 struct regcache *regcache,
1505 int portions,
1506 int base_regnum, gdb_byte *buffer)
1507 {
1508 int portion;
1509
1510 for (portion = 0; portion < portions; portion++)
1511 {
1512 enum register_status status;
1513 gdb_byte *b;
1514
1515 b = buffer + register_size (gdbarch, base_regnum) * portion;
1516 status = regcache_raw_read (regcache, base_regnum + portion, b);
1517 if (status != REG_VALID)
1518 return status;
1519 }
1520
1521 return REG_VALID;
1522 }
1523
1524 static enum register_status
1525 sh64_pseudo_register_read (struct gdbarch *gdbarch, struct regcache *regcache,
1526 int reg_nr, gdb_byte *buffer)
1527 {
1528 enum bfd_endian byte_order = gdbarch_byte_order (gdbarch);
1529 int base_regnum;
1530 int offset = 0;
1531 gdb_byte temp_buffer[MAX_REGISTER_SIZE];
1532 enum register_status status;
1533
1534 if (reg_nr >= DR0_REGNUM
1535 && reg_nr <= DR_LAST_REGNUM)
1536 {
1537 base_regnum = sh64_dr_reg_base_num (gdbarch, reg_nr);
1538
1539 /* Build the value in the provided buffer. */
1540 /* DR regs are double precision registers obtained by
1541 concatenating 2 single precision floating point registers. */
1542 status = pseudo_register_read_portions (gdbarch, regcache,
1543 2, base_regnum, temp_buffer);
1544 if (status == REG_VALID)
1545 {
1546 /* We must pay attention to the endianness. */
1547 sh64_register_convert_to_virtual (gdbarch, reg_nr,
1548 register_type (gdbarch, reg_nr),
1549 temp_buffer, buffer);
1550 }
1551
1552 return status;
1553 }
1554
1555 else if (reg_nr >= FPP0_REGNUM
1556 && reg_nr <= FPP_LAST_REGNUM)
1557 {
1558 base_regnum = sh64_fpp_reg_base_num (gdbarch, reg_nr);
1559
1560 /* Build the value in the provided buffer. */
1561 /* FPP regs are pairs of single precision registers obtained by
1562 concatenating 2 single precision floating point registers. */
1563 return pseudo_register_read_portions (gdbarch, regcache,
1564 2, base_regnum, buffer);
1565 }
1566
1567 else if (reg_nr >= FV0_REGNUM
1568 && reg_nr <= FV_LAST_REGNUM)
1569 {
1570 base_regnum = sh64_fv_reg_base_num (gdbarch, reg_nr);
1571
1572 /* Build the value in the provided buffer. */
1573 /* FV regs are vectors of single precision registers obtained by
1574 concatenating 4 single precision floating point registers. */
1575 return pseudo_register_read_portions (gdbarch, regcache,
1576 4, base_regnum, buffer);
1577 }
1578
1579 /* sh compact pseudo registers. 1-to-1 with a shmedia register. */
1580 else if (reg_nr >= R0_C_REGNUM
1581 && reg_nr <= T_C_REGNUM)
1582 {
1583 base_regnum = sh64_compact_reg_base_num (gdbarch, reg_nr);
1584
1585 /* Build the value in the provided buffer. */
1586 status = regcache_raw_read (regcache, base_regnum, temp_buffer);
1587 if (status != REG_VALID)
1588 return status;
1589 if (gdbarch_byte_order (gdbarch) == BFD_ENDIAN_BIG)
1590 offset = 4;
1591 memcpy (buffer,
1592 temp_buffer + offset, 4); /* get LOWER 32 bits only???? */
1593 return REG_VALID;
1594 }
1595
1596 else if (reg_nr >= FP0_C_REGNUM
1597 && reg_nr <= FP_LAST_C_REGNUM)
1598 {
1599 base_regnum = sh64_compact_reg_base_num (gdbarch, reg_nr);
1600
1601 /* Build the value in the provided buffer. */
1602 /* Floating point registers map 1-1 to the media fp regs,
1603 they have the same size and endianness. */
1604 return regcache_raw_read (regcache, base_regnum, buffer);
1605 }
1606
1607 else if (reg_nr >= DR0_C_REGNUM
1608 && reg_nr <= DR_LAST_C_REGNUM)
1609 {
1610 base_regnum = sh64_compact_reg_base_num (gdbarch, reg_nr);
1611
1612 /* DR_C regs are double precision registers obtained by
1613 concatenating 2 single precision floating point registers. */
1614 status = pseudo_register_read_portions (gdbarch, regcache,
1615 2, base_regnum, temp_buffer);
1616 if (status == REG_VALID)
1617 {
1618 /* We must pay attention to the endianness. */
1619 sh64_register_convert_to_virtual (gdbarch, reg_nr,
1620 register_type (gdbarch, reg_nr),
1621 temp_buffer, buffer);
1622 }
1623 return status;
1624 }
1625
1626 else if (reg_nr >= FV0_C_REGNUM
1627 && reg_nr <= FV_LAST_C_REGNUM)
1628 {
1629 base_regnum = sh64_compact_reg_base_num (gdbarch, reg_nr);
1630
1631 /* Build the value in the provided buffer. */
1632 /* FV_C regs are vectors of single precision registers obtained by
1633 concatenating 4 single precision floating point registers. */
1634 return pseudo_register_read_portions (gdbarch, regcache,
1635 4, base_regnum, buffer);
1636 }
1637
1638 else if (reg_nr == FPSCR_C_REGNUM)
1639 {
1640 int fpscr_base_regnum;
1641 int sr_base_regnum;
1642 unsigned int fpscr_value;
1643 unsigned int sr_value;
1644 unsigned int fpscr_c_value;
1645 unsigned int fpscr_c_part1_value;
1646 unsigned int fpscr_c_part2_value;
1647
1648 fpscr_base_regnum = FPSCR_REGNUM;
1649 sr_base_regnum = SR_REGNUM;
1650
1651 /* Build the value in the provided buffer. */
1652 /* FPSCR_C is a very weird register that contains sparse bits
1653 from the FPSCR and the SR architectural registers.
1654 Specifically: */
1655 /* *INDENT-OFF* */
1656 /*
1657 FPSRC_C bit
1658 0 Bit 0 of FPSCR
1659 1 reserved
1660 2-17 Bit 2-18 of FPSCR
1661 18-20 Bits 12,13,14 of SR
1662 21-31 reserved
1663 */
1664 /* *INDENT-ON* */
1665 /* Get FPSCR into a local buffer. */
1666 status = regcache_raw_read (regcache, fpscr_base_regnum, temp_buffer);
1667 if (status != REG_VALID)
1668 return status;
1669 /* Get value as an int. */
1670 fpscr_value = extract_unsigned_integer (temp_buffer, 4, byte_order);
1671 /* Get SR into a local buffer */
1672 status = regcache_raw_read (regcache, sr_base_regnum, temp_buffer);
1673 if (status != REG_VALID)
1674 return status;
1675 /* Get value as an int. */
1676 sr_value = extract_unsigned_integer (temp_buffer, 4, byte_order);
1677 /* Build the new value. */
1678 fpscr_c_part1_value = fpscr_value & 0x3fffd;
1679 fpscr_c_part2_value = (sr_value & 0x7000) << 6;
1680 fpscr_c_value = fpscr_c_part1_value | fpscr_c_part2_value;
1681 /* Store that in out buffer!!! */
1682 store_unsigned_integer (buffer, 4, byte_order, fpscr_c_value);
1683 /* FIXME There is surely an endianness gotcha here. */
1684
1685 return REG_VALID;
1686 }
1687
1688 else if (reg_nr == FPUL_C_REGNUM)
1689 {
1690 base_regnum = sh64_compact_reg_base_num (gdbarch, reg_nr);
1691
1692 /* FPUL_C register is floating point register 32,
1693 same size, same endianness. */
1694 return regcache_raw_read (regcache, base_regnum, buffer);
1695 }
1696 else
1697 gdb_assert_not_reached ("invalid pseudo register number");
1698 }
1699
1700 static void
1701 sh64_pseudo_register_write (struct gdbarch *gdbarch, struct regcache *regcache,
1702 int reg_nr, const gdb_byte *buffer)
1703 {
1704 enum bfd_endian byte_order = gdbarch_byte_order (gdbarch);
1705 int base_regnum, portion;
1706 int offset;
1707 gdb_byte temp_buffer[MAX_REGISTER_SIZE];
1708
1709 if (reg_nr >= DR0_REGNUM
1710 && reg_nr <= DR_LAST_REGNUM)
1711 {
1712 base_regnum = sh64_dr_reg_base_num (gdbarch, reg_nr);
1713 /* We must pay attention to the endianness. */
1714 sh64_register_convert_to_raw (gdbarch, register_type (gdbarch, reg_nr),
1715 reg_nr,
1716 buffer, temp_buffer);
1717
1718 /* Write the real regs for which this one is an alias. */
1719 for (portion = 0; portion < 2; portion++)
1720 regcache_raw_write (regcache, base_regnum + portion,
1721 (temp_buffer
1722 + register_size (gdbarch,
1723 base_regnum) * portion));
1724 }
1725
1726 else if (reg_nr >= FPP0_REGNUM
1727 && reg_nr <= FPP_LAST_REGNUM)
1728 {
1729 base_regnum = sh64_fpp_reg_base_num (gdbarch, reg_nr);
1730
1731 /* Write the real regs for which this one is an alias. */
1732 for (portion = 0; portion < 2; portion++)
1733 regcache_raw_write (regcache, base_regnum + portion,
1734 (buffer + register_size (gdbarch,
1735 base_regnum) * portion));
1736 }
1737
1738 else if (reg_nr >= FV0_REGNUM
1739 && reg_nr <= FV_LAST_REGNUM)
1740 {
1741 base_regnum = sh64_fv_reg_base_num (gdbarch, reg_nr);
1742
1743 /* Write the real regs for which this one is an alias. */
1744 for (portion = 0; portion < 4; portion++)
1745 regcache_raw_write (regcache, base_regnum + portion,
1746 (buffer + register_size (gdbarch,
1747 base_regnum) * portion));
1748 }
1749
1750 /* sh compact general pseudo registers. 1-to-1 with a shmedia
1751 register but only 4 bytes of it. */
1752 else if (reg_nr >= R0_C_REGNUM
1753 && reg_nr <= T_C_REGNUM)
1754 {
1755 base_regnum = sh64_compact_reg_base_num (gdbarch, reg_nr);
1756 /* reg_nr is 32 bit here, and base_regnum is 64 bits. */
1757 if (gdbarch_byte_order (gdbarch) == BFD_ENDIAN_BIG)
1758 offset = 4;
1759 else
1760 offset = 0;
1761 /* Let's read the value of the base register into a temporary
1762 buffer, so that overwriting the last four bytes with the new
1763 value of the pseudo will leave the upper 4 bytes unchanged. */
1764 regcache_raw_read (regcache, base_regnum, temp_buffer);
1765 /* Write as an 8 byte quantity. */
1766 memcpy (temp_buffer + offset, buffer, 4);
1767 regcache_raw_write (regcache, base_regnum, temp_buffer);
1768 }
1769
1770 /* sh floating point compact pseudo registers. 1-to-1 with a shmedia
1771 registers. Both are 4 bytes. */
1772 else if (reg_nr >= FP0_C_REGNUM
1773 && reg_nr <= FP_LAST_C_REGNUM)
1774 {
1775 base_regnum = sh64_compact_reg_base_num (gdbarch, reg_nr);
1776 regcache_raw_write (regcache, base_regnum, buffer);
1777 }
1778
1779 else if (reg_nr >= DR0_C_REGNUM
1780 && reg_nr <= DR_LAST_C_REGNUM)
1781 {
1782 base_regnum = sh64_compact_reg_base_num (gdbarch, reg_nr);
1783 for (portion = 0; portion < 2; portion++)
1784 {
1785 /* We must pay attention to the endianness. */
1786 sh64_register_convert_to_raw (gdbarch,
1787 register_type (gdbarch, reg_nr),
1788 reg_nr,
1789 buffer, temp_buffer);
1790
1791 regcache_raw_write (regcache, base_regnum + portion,
1792 (temp_buffer
1793 + register_size (gdbarch,
1794 base_regnum) * portion));
1795 }
1796 }
1797
1798 else if (reg_nr >= FV0_C_REGNUM
1799 && reg_nr <= FV_LAST_C_REGNUM)
1800 {
1801 base_regnum = sh64_compact_reg_base_num (gdbarch, reg_nr);
1802
1803 for (portion = 0; portion < 4; portion++)
1804 {
1805 regcache_raw_write (regcache, base_regnum + portion,
1806 (buffer
1807 + register_size (gdbarch,
1808 base_regnum) * portion));
1809 }
1810 }
1811
1812 else if (reg_nr == FPSCR_C_REGNUM)
1813 {
1814 int fpscr_base_regnum;
1815 int sr_base_regnum;
1816 unsigned int fpscr_value;
1817 unsigned int sr_value;
1818 unsigned int old_fpscr_value;
1819 unsigned int old_sr_value;
1820 unsigned int fpscr_c_value;
1821 unsigned int fpscr_mask;
1822 unsigned int sr_mask;
1823
1824 fpscr_base_regnum = FPSCR_REGNUM;
1825 sr_base_regnum = SR_REGNUM;
1826
1827 /* FPSCR_C is a very weird register that contains sparse bits
1828 from the FPSCR and the SR architectural registers.
1829 Specifically: */
1830 /* *INDENT-OFF* */
1831 /*
1832 FPSRC_C bit
1833 0 Bit 0 of FPSCR
1834 1 reserved
1835 2-17 Bit 2-18 of FPSCR
1836 18-20 Bits 12,13,14 of SR
1837 21-31 reserved
1838 */
1839 /* *INDENT-ON* */
1840 /* Get value as an int. */
1841 fpscr_c_value = extract_unsigned_integer (buffer, 4, byte_order);
1842
1843 /* Build the new values. */
1844 fpscr_mask = 0x0003fffd;
1845 sr_mask = 0x001c0000;
1846
1847 fpscr_value = fpscr_c_value & fpscr_mask;
1848 sr_value = (fpscr_value & sr_mask) >> 6;
1849
1850 regcache_raw_read (regcache, fpscr_base_regnum, temp_buffer);
1851 old_fpscr_value = extract_unsigned_integer (temp_buffer, 4, byte_order);
1852 old_fpscr_value &= 0xfffc0002;
1853 fpscr_value |= old_fpscr_value;
1854 store_unsigned_integer (temp_buffer, 4, byte_order, fpscr_value);
1855 regcache_raw_write (regcache, fpscr_base_regnum, temp_buffer);
1856
1857 regcache_raw_read (regcache, sr_base_regnum, temp_buffer);
1858 old_sr_value = extract_unsigned_integer (temp_buffer, 4, byte_order);
1859 old_sr_value &= 0xffff8fff;
1860 sr_value |= old_sr_value;
1861 store_unsigned_integer (temp_buffer, 4, byte_order, sr_value);
1862 regcache_raw_write (regcache, sr_base_regnum, temp_buffer);
1863 }
1864
1865 else if (reg_nr == FPUL_C_REGNUM)
1866 {
1867 base_regnum = sh64_compact_reg_base_num (gdbarch, reg_nr);
1868 regcache_raw_write (regcache, base_regnum, buffer);
1869 }
1870 }
1871
1872 /* FIXME:!! THIS SHOULD TAKE CARE OF GETTING THE RIGHT PORTION OF THE
1873 shmedia REGISTERS. */
1874 /* Control registers, compact mode. */
1875 static void
1876 sh64_do_cr_c_register_info (struct ui_file *file, struct frame_info *frame,
1877 int cr_c_regnum)
1878 {
1879 switch (cr_c_regnum)
1880 {
1881 case PC_C_REGNUM:
1882 fprintf_filtered (file, "pc_c\t0x%08x\n",
1883 (int) get_frame_register_unsigned (frame, cr_c_regnum));
1884 break;
1885 case GBR_C_REGNUM:
1886 fprintf_filtered (file, "gbr_c\t0x%08x\n",
1887 (int) get_frame_register_unsigned (frame, cr_c_regnum));
1888 break;
1889 case MACH_C_REGNUM:
1890 fprintf_filtered (file, "mach_c\t0x%08x\n",
1891 (int) get_frame_register_unsigned (frame, cr_c_regnum));
1892 break;
1893 case MACL_C_REGNUM:
1894 fprintf_filtered (file, "macl_c\t0x%08x\n",
1895 (int) get_frame_register_unsigned (frame, cr_c_regnum));
1896 break;
1897 case PR_C_REGNUM:
1898 fprintf_filtered (file, "pr_c\t0x%08x\n",
1899 (int) get_frame_register_unsigned (frame, cr_c_regnum));
1900 break;
1901 case T_C_REGNUM:
1902 fprintf_filtered (file, "t_c\t0x%08x\n",
1903 (int) get_frame_register_unsigned (frame, cr_c_regnum));
1904 break;
1905 case FPSCR_C_REGNUM:
1906 fprintf_filtered (file, "fpscr_c\t0x%08x\n",
1907 (int) get_frame_register_unsigned (frame, cr_c_regnum));
1908 break;
1909 case FPUL_C_REGNUM:
1910 fprintf_filtered (file, "fpul_c\t0x%08x\n",
1911 (int) get_frame_register_unsigned (frame, cr_c_regnum));
1912 break;
1913 }
1914 }
1915
1916 static void
1917 sh64_do_fp_register (struct gdbarch *gdbarch, struct ui_file *file,
1918 struct frame_info *frame, int regnum)
1919 { /* Do values for FP (float) regs. */
1920 unsigned char *raw_buffer;
1921 double flt; /* Double extracted from raw hex data. */
1922 int inv;
1923 int j;
1924
1925 /* Allocate space for the float. */
1926 raw_buffer = (unsigned char *)
1927 alloca (register_size (gdbarch, gdbarch_fp0_regnum (gdbarch)));
1928
1929 /* Get the data in raw format. */
1930 if (!deprecated_frame_register_read (frame, regnum, raw_buffer))
1931 error (_("can't read register %d (%s)"),
1932 regnum, gdbarch_register_name (gdbarch, regnum));
1933
1934 /* Get the register as a number. */
1935 flt = unpack_double (builtin_type (gdbarch)->builtin_float,
1936 raw_buffer, &inv);
1937
1938 /* Print the name and some spaces. */
1939 fputs_filtered (gdbarch_register_name (gdbarch, regnum), file);
1940 print_spaces_filtered (15 - strlen (gdbarch_register_name
1941 (gdbarch, regnum)), file);
1942
1943 /* Print the value. */
1944 if (inv)
1945 fprintf_filtered (file, "<invalid float>");
1946 else
1947 fprintf_filtered (file, "%-10.9g", flt);
1948
1949 /* Print the fp register as hex. */
1950 fprintf_filtered (file, "\t(raw ");
1951 print_hex_chars (file, raw_buffer,
1952 register_size (gdbarch, regnum),
1953 gdbarch_byte_order (gdbarch));
1954 fprintf_filtered (file, ")");
1955 fprintf_filtered (file, "\n");
1956 }
1957
1958 static void
1959 sh64_do_pseudo_register (struct gdbarch *gdbarch, struct ui_file *file,
1960 struct frame_info *frame, int regnum)
1961 {
1962 /* All the sh64-compact mode registers are pseudo registers. */
1963
1964 if (regnum < gdbarch_num_regs (gdbarch)
1965 || regnum >= gdbarch_num_regs (gdbarch)
1966 + NUM_PSEUDO_REGS_SH_MEDIA
1967 + NUM_PSEUDO_REGS_SH_COMPACT)
1968 internal_error (__FILE__, __LINE__,
1969 _("Invalid pseudo register number %d\n"), regnum);
1970
1971 else if ((regnum >= DR0_REGNUM && regnum <= DR_LAST_REGNUM))
1972 {
1973 int fp_regnum = sh64_dr_reg_base_num (gdbarch, regnum);
1974 fprintf_filtered (file, "dr%d\t0x%08x%08x\n", regnum - DR0_REGNUM,
1975 (unsigned) get_frame_register_unsigned (frame, fp_regnum),
1976 (unsigned) get_frame_register_unsigned (frame, fp_regnum + 1));
1977 }
1978
1979 else if ((regnum >= DR0_C_REGNUM && regnum <= DR_LAST_C_REGNUM))
1980 {
1981 int fp_regnum = sh64_compact_reg_base_num (gdbarch, regnum);
1982 fprintf_filtered (file, "dr%d_c\t0x%08x%08x\n", regnum - DR0_C_REGNUM,
1983 (unsigned) get_frame_register_unsigned (frame, fp_regnum),
1984 (unsigned) get_frame_register_unsigned (frame, fp_regnum + 1));
1985 }
1986
1987 else if ((regnum >= FV0_REGNUM && regnum <= FV_LAST_REGNUM))
1988 {
1989 int fp_regnum = sh64_fv_reg_base_num (gdbarch, regnum);
1990 fprintf_filtered (file, "fv%d\t0x%08x\t0x%08x\t0x%08x\t0x%08x\n",
1991 regnum - FV0_REGNUM,
1992 (unsigned) get_frame_register_unsigned (frame, fp_regnum),
1993 (unsigned) get_frame_register_unsigned (frame, fp_regnum + 1),
1994 (unsigned) get_frame_register_unsigned (frame, fp_regnum + 2),
1995 (unsigned) get_frame_register_unsigned (frame, fp_regnum + 3));
1996 }
1997
1998 else if ((regnum >= FV0_C_REGNUM && regnum <= FV_LAST_C_REGNUM))
1999 {
2000 int fp_regnum = sh64_compact_reg_base_num (gdbarch, regnum);
2001 fprintf_filtered (file, "fv%d_c\t0x%08x\t0x%08x\t0x%08x\t0x%08x\n",
2002 regnum - FV0_C_REGNUM,
2003 (unsigned) get_frame_register_unsigned (frame, fp_regnum),
2004 (unsigned) get_frame_register_unsigned (frame, fp_regnum + 1),
2005 (unsigned) get_frame_register_unsigned (frame, fp_regnum + 2),
2006 (unsigned) get_frame_register_unsigned (frame, fp_regnum + 3));
2007 }
2008
2009 else if (regnum >= FPP0_REGNUM && regnum <= FPP_LAST_REGNUM)
2010 {
2011 int fp_regnum = sh64_fpp_reg_base_num (gdbarch, regnum);
2012 fprintf_filtered (file, "fpp%d\t0x%08x\t0x%08x\n", regnum - FPP0_REGNUM,
2013 (unsigned) get_frame_register_unsigned (frame, fp_regnum),
2014 (unsigned) get_frame_register_unsigned (frame, fp_regnum + 1));
2015 }
2016
2017 else if (regnum >= R0_C_REGNUM && regnum <= R_LAST_C_REGNUM)
2018 {
2019 int c_regnum = sh64_compact_reg_base_num (gdbarch, regnum);
2020 fprintf_filtered (file, "r%d_c\t0x%08x\n", regnum - R0_C_REGNUM,
2021 (unsigned) get_frame_register_unsigned (frame, c_regnum));
2022 }
2023 else if (regnum >= FP0_C_REGNUM && regnum <= FP_LAST_C_REGNUM)
2024 /* This should work also for pseudoregs. */
2025 sh64_do_fp_register (gdbarch, file, frame, regnum);
2026 else if (regnum >= PC_C_REGNUM && regnum <= FPUL_C_REGNUM)
2027 sh64_do_cr_c_register_info (file, frame, regnum);
2028 }
2029
2030 static void
2031 sh64_do_register (struct gdbarch *gdbarch, struct ui_file *file,
2032 struct frame_info *frame, int regnum)
2033 {
2034 unsigned char raw_buffer[MAX_REGISTER_SIZE];
2035 struct value_print_options opts;
2036
2037 fputs_filtered (gdbarch_register_name (gdbarch, regnum), file);
2038 print_spaces_filtered (15 - strlen (gdbarch_register_name
2039 (gdbarch, regnum)), file);
2040
2041 /* Get the data in raw format. */
2042 if (!deprecated_frame_register_read (frame, regnum, raw_buffer))
2043 {
2044 fprintf_filtered (file, "*value not available*\n");
2045 return;
2046 }
2047
2048 get_formatted_print_options (&opts, 'x');
2049 opts.deref_ref = 1;
2050 val_print (register_type (gdbarch, regnum), raw_buffer, 0, 0,
2051 file, 0, NULL, &opts, current_language);
2052 fprintf_filtered (file, "\t");
2053 get_formatted_print_options (&opts, 0);
2054 opts.deref_ref = 1;
2055 val_print (register_type (gdbarch, regnum), raw_buffer, 0, 0,
2056 file, 0, NULL, &opts, current_language);
2057 fprintf_filtered (file, "\n");
2058 }
2059
2060 static void
2061 sh64_print_register (struct gdbarch *gdbarch, struct ui_file *file,
2062 struct frame_info *frame, int regnum)
2063 {
2064 if (regnum < 0 || regnum >= gdbarch_num_regs (gdbarch)
2065 + gdbarch_num_pseudo_regs (gdbarch))
2066 internal_error (__FILE__, __LINE__,
2067 _("Invalid register number %d\n"), regnum);
2068
2069 else if (regnum >= 0 && regnum < gdbarch_num_regs (gdbarch))
2070 {
2071 if (TYPE_CODE (register_type (gdbarch, regnum)) == TYPE_CODE_FLT)
2072 sh64_do_fp_register (gdbarch, file, frame, regnum); /* FP regs */
2073 else
2074 sh64_do_register (gdbarch, file, frame, regnum);
2075 }
2076
2077 else if (regnum < gdbarch_num_regs (gdbarch)
2078 + gdbarch_num_pseudo_regs (gdbarch))
2079 sh64_do_pseudo_register (gdbarch, file, frame, regnum);
2080 }
2081
2082 static void
2083 sh64_media_print_registers_info (struct gdbarch *gdbarch, struct ui_file *file,
2084 struct frame_info *frame, int regnum,
2085 int fpregs)
2086 {
2087 if (regnum != -1) /* Do one specified register. */
2088 {
2089 if (*(gdbarch_register_name (gdbarch, regnum)) == '\0')
2090 error (_("Not a valid register for the current processor type"));
2091
2092 sh64_print_register (gdbarch, file, frame, regnum);
2093 }
2094 else
2095 /* Do all (or most) registers. */
2096 {
2097 regnum = 0;
2098 while (regnum < gdbarch_num_regs (gdbarch))
2099 {
2100 /* If the register name is empty, it is undefined for this
2101 processor, so don't display anything. */
2102 if (gdbarch_register_name (gdbarch, regnum) == NULL
2103 || *(gdbarch_register_name (gdbarch, regnum)) == '\0')
2104 {
2105 regnum++;
2106 continue;
2107 }
2108
2109 if (TYPE_CODE (register_type (gdbarch, regnum))
2110 == TYPE_CODE_FLT)
2111 {
2112 if (fpregs)
2113 {
2114 /* true for "INFO ALL-REGISTERS" command. */
2115 sh64_do_fp_register (gdbarch, file, frame, regnum);
2116 regnum ++;
2117 }
2118 else
2119 regnum += FP_LAST_REGNUM - gdbarch_fp0_regnum (gdbarch);
2120 /* skip FP regs */
2121 }
2122 else
2123 {
2124 sh64_do_register (gdbarch, file, frame, regnum);
2125 regnum++;
2126 }
2127 }
2128
2129 if (fpregs)
2130 while (regnum < gdbarch_num_regs (gdbarch)
2131 + gdbarch_num_pseudo_regs (gdbarch))
2132 {
2133 sh64_do_pseudo_register (gdbarch, file, frame, regnum);
2134 regnum++;
2135 }
2136 }
2137 }
2138
2139 static void
2140 sh64_compact_print_registers_info (struct gdbarch *gdbarch,
2141 struct ui_file *file,
2142 struct frame_info *frame, int regnum,
2143 int fpregs)
2144 {
2145 if (regnum != -1) /* Do one specified register. */
2146 {
2147 if (*(gdbarch_register_name (gdbarch, regnum)) == '\0')
2148 error (_("Not a valid register for the current processor type"));
2149
2150 if (regnum >= 0 && regnum < R0_C_REGNUM)
2151 error (_("Not a valid register for the current processor mode."));
2152
2153 sh64_print_register (gdbarch, file, frame, regnum);
2154 }
2155 else
2156 /* Do all compact registers. */
2157 {
2158 regnum = R0_C_REGNUM;
2159 while (regnum < gdbarch_num_regs (gdbarch)
2160 + gdbarch_num_pseudo_regs (gdbarch))
2161 {
2162 sh64_do_pseudo_register (gdbarch, file, frame, regnum);
2163 regnum++;
2164 }
2165 }
2166 }
2167
2168 static void
2169 sh64_print_registers_info (struct gdbarch *gdbarch, struct ui_file *file,
2170 struct frame_info *frame, int regnum, int fpregs)
2171 {
2172 if (pc_is_isa32 (get_frame_pc (frame)))
2173 sh64_media_print_registers_info (gdbarch, file, frame, regnum, fpregs);
2174 else
2175 sh64_compact_print_registers_info (gdbarch, file, frame, regnum, fpregs);
2176 }
2177
2178 static struct sh64_frame_cache *
2179 sh64_alloc_frame_cache (void)
2180 {
2181 struct sh64_frame_cache *cache;
2182 int i;
2183
2184 cache = FRAME_OBSTACK_ZALLOC (struct sh64_frame_cache);
2185
2186 /* Base address. */
2187 cache->base = 0;
2188 cache->saved_sp = 0;
2189 cache->sp_offset = 0;
2190 cache->pc = 0;
2191
2192 /* Frameless until proven otherwise. */
2193 cache->uses_fp = 0;
2194
2195 /* Saved registers. We initialize these to -1 since zero is a valid
2196 offset (that's where fp is supposed to be stored). */
2197 for (i = 0; i < SIM_SH64_NR_REGS; i++)
2198 {
2199 cache->saved_regs[i] = -1;
2200 }
2201
2202 return cache;
2203 }
2204
2205 static struct sh64_frame_cache *
2206 sh64_frame_cache (struct frame_info *this_frame, void **this_cache)
2207 {
2208 struct gdbarch *gdbarch;
2209 struct sh64_frame_cache *cache;
2210 CORE_ADDR current_pc;
2211 int i;
2212
2213 if (*this_cache)
2214 return *this_cache;
2215
2216 gdbarch = get_frame_arch (this_frame);
2217 cache = sh64_alloc_frame_cache ();
2218 *this_cache = cache;
2219
2220 current_pc = get_frame_pc (this_frame);
2221 cache->media_mode = pc_is_isa32 (current_pc);
2222
2223 /* In principle, for normal frames, fp holds the frame pointer,
2224 which holds the base address for the current stack frame.
2225 However, for functions that don't need it, the frame pointer is
2226 optional. For these "frameless" functions the frame pointer is
2227 actually the frame pointer of the calling frame. */
2228 cache->base = get_frame_register_unsigned (this_frame, MEDIA_FP_REGNUM);
2229 if (cache->base == 0)
2230 return cache;
2231
2232 cache->pc = get_frame_func (this_frame);
2233 if (cache->pc != 0)
2234 sh64_analyze_prologue (gdbarch, cache, cache->pc, current_pc);
2235
2236 if (!cache->uses_fp)
2237 {
2238 /* We didn't find a valid frame, which means that CACHE->base
2239 currently holds the frame pointer for our calling frame. If
2240 we're at the start of a function, or somewhere half-way its
2241 prologue, the function's frame probably hasn't been fully
2242 setup yet. Try to reconstruct the base address for the stack
2243 frame by looking at the stack pointer. For truly "frameless"
2244 functions this might work too. */
2245 cache->base = get_frame_register_unsigned
2246 (this_frame, gdbarch_sp_regnum (gdbarch));
2247 }
2248
2249 /* Now that we have the base address for the stack frame we can
2250 calculate the value of sp in the calling frame. */
2251 cache->saved_sp = cache->base + cache->sp_offset;
2252
2253 /* Adjust all the saved registers such that they contain addresses
2254 instead of offsets. */
2255 for (i = 0; i < SIM_SH64_NR_REGS; i++)
2256 if (cache->saved_regs[i] != -1)
2257 cache->saved_regs[i] = cache->saved_sp - cache->saved_regs[i];
2258
2259 return cache;
2260 }
2261
2262 static struct value *
2263 sh64_frame_prev_register (struct frame_info *this_frame,
2264 void **this_cache, int regnum)
2265 {
2266 struct sh64_frame_cache *cache = sh64_frame_cache (this_frame, this_cache);
2267 struct gdbarch *gdbarch = get_frame_arch (this_frame);
2268 enum bfd_endian byte_order = gdbarch_byte_order (gdbarch);
2269
2270 gdb_assert (regnum >= 0);
2271
2272 if (regnum == gdbarch_sp_regnum (gdbarch) && cache->saved_sp)
2273 frame_unwind_got_constant (this_frame, regnum, cache->saved_sp);
2274
2275 /* The PC of the previous frame is stored in the PR register of
2276 the current frame. Frob regnum so that we pull the value from
2277 the correct place. */
2278 if (regnum == gdbarch_pc_regnum (gdbarch))
2279 regnum = PR_REGNUM;
2280
2281 if (regnum < SIM_SH64_NR_REGS && cache->saved_regs[regnum] != -1)
2282 {
2283 if (gdbarch_tdep (gdbarch)->sh_abi == SH_ABI_32
2284 && (regnum == MEDIA_FP_REGNUM || regnum == PR_REGNUM))
2285 {
2286 CORE_ADDR val;
2287 val = read_memory_unsigned_integer (cache->saved_regs[regnum],
2288 4, byte_order);
2289 return frame_unwind_got_constant (this_frame, regnum, val);
2290 }
2291
2292 return frame_unwind_got_memory (this_frame, regnum,
2293 cache->saved_regs[regnum]);
2294 }
2295
2296 return frame_unwind_got_register (this_frame, regnum, regnum);
2297 }
2298
2299 static void
2300 sh64_frame_this_id (struct frame_info *this_frame, void **this_cache,
2301 struct frame_id *this_id)
2302 {
2303 struct sh64_frame_cache *cache = sh64_frame_cache (this_frame, this_cache);
2304
2305 /* This marks the outermost frame. */
2306 if (cache->base == 0)
2307 return;
2308
2309 *this_id = frame_id_build (cache->saved_sp, cache->pc);
2310 }
2311
2312 static const struct frame_unwind sh64_frame_unwind = {
2313 NORMAL_FRAME,
2314 default_frame_unwind_stop_reason,
2315 sh64_frame_this_id,
2316 sh64_frame_prev_register,
2317 NULL,
2318 default_frame_sniffer
2319 };
2320
2321 static CORE_ADDR
2322 sh64_unwind_sp (struct gdbarch *gdbarch, struct frame_info *next_frame)
2323 {
2324 return frame_unwind_register_unsigned (next_frame,
2325 gdbarch_sp_regnum (gdbarch));
2326 }
2327
2328 static CORE_ADDR
2329 sh64_unwind_pc (struct gdbarch *gdbarch, struct frame_info *next_frame)
2330 {
2331 return frame_unwind_register_unsigned (next_frame,
2332 gdbarch_pc_regnum (gdbarch));
2333 }
2334
2335 static struct frame_id
2336 sh64_dummy_id (struct gdbarch *gdbarch, struct frame_info *this_frame)
2337 {
2338 CORE_ADDR sp = get_frame_register_unsigned (this_frame,
2339 gdbarch_sp_regnum (gdbarch));
2340 return frame_id_build (sp, get_frame_pc (this_frame));
2341 }
2342
2343 static CORE_ADDR
2344 sh64_frame_base_address (struct frame_info *this_frame, void **this_cache)
2345 {
2346 struct sh64_frame_cache *cache = sh64_frame_cache (this_frame, this_cache);
2347
2348 return cache->base;
2349 }
2350
2351 static const struct frame_base sh64_frame_base = {
2352 &sh64_frame_unwind,
2353 sh64_frame_base_address,
2354 sh64_frame_base_address,
2355 sh64_frame_base_address
2356 };
2357
2358
2359 struct gdbarch *
2360 sh64_gdbarch_init (struct gdbarch_info info, struct gdbarch_list *arches)
2361 {
2362 struct gdbarch *gdbarch;
2363 struct gdbarch_tdep *tdep;
2364
2365 /* If there is already a candidate, use it. */
2366 arches = gdbarch_list_lookup_by_info (arches, &info);
2367 if (arches != NULL)
2368 return arches->gdbarch;
2369
2370 /* None found, create a new architecture from the information
2371 provided. */
2372 tdep = XNEW (struct gdbarch_tdep);
2373 gdbarch = gdbarch_alloc (&info, tdep);
2374
2375 /* Determine the ABI */
2376 if (info.abfd && bfd_get_arch_size (info.abfd) == 64)
2377 {
2378 /* If the ABI is the 64-bit one, it can only be sh-media. */
2379 tdep->sh_abi = SH_ABI_64;
2380 set_gdbarch_ptr_bit (gdbarch, 8 * TARGET_CHAR_BIT);
2381 set_gdbarch_long_bit (gdbarch, 8 * TARGET_CHAR_BIT);
2382 }
2383 else
2384 {
2385 /* If the ABI is the 32-bit one it could be either media or
2386 compact. */
2387 tdep->sh_abi = SH_ABI_32;
2388 set_gdbarch_ptr_bit (gdbarch, 4 * TARGET_CHAR_BIT);
2389 set_gdbarch_long_bit (gdbarch, 4 * TARGET_CHAR_BIT);
2390 }
2391
2392 set_gdbarch_short_bit (gdbarch, 2 * TARGET_CHAR_BIT);
2393 set_gdbarch_int_bit (gdbarch, 4 * TARGET_CHAR_BIT);
2394 set_gdbarch_long_bit (gdbarch, 4 * TARGET_CHAR_BIT);
2395 set_gdbarch_long_long_bit (gdbarch, 8 * TARGET_CHAR_BIT);
2396 set_gdbarch_float_bit (gdbarch, 4 * TARGET_CHAR_BIT);
2397 set_gdbarch_double_bit (gdbarch, 8 * TARGET_CHAR_BIT);
2398 set_gdbarch_long_double_bit (gdbarch, 8 * TARGET_CHAR_BIT);
2399
2400 /* The number of real registers is the same whether we are in
2401 ISA16(compact) or ISA32(media). */
2402 set_gdbarch_num_regs (gdbarch, SIM_SH64_NR_REGS);
2403 set_gdbarch_sp_regnum (gdbarch, 15);
2404 set_gdbarch_pc_regnum (gdbarch, 64);
2405 set_gdbarch_fp0_regnum (gdbarch, SIM_SH64_FR0_REGNUM);
2406 set_gdbarch_num_pseudo_regs (gdbarch, NUM_PSEUDO_REGS_SH_MEDIA
2407 + NUM_PSEUDO_REGS_SH_COMPACT);
2408
2409 set_gdbarch_register_name (gdbarch, sh64_register_name);
2410 set_gdbarch_register_type (gdbarch, sh64_register_type);
2411
2412 set_gdbarch_pseudo_register_read (gdbarch, sh64_pseudo_register_read);
2413 set_gdbarch_pseudo_register_write (gdbarch, sh64_pseudo_register_write);
2414
2415 set_gdbarch_breakpoint_from_pc (gdbarch, sh64_breakpoint_from_pc);
2416
2417 set_gdbarch_print_insn (gdbarch, print_insn_sh);
2418 set_gdbarch_register_sim_regno (gdbarch, legacy_register_sim_regno);
2419
2420 set_gdbarch_return_value (gdbarch, sh64_return_value);
2421
2422 set_gdbarch_skip_prologue (gdbarch, sh64_skip_prologue);
2423 set_gdbarch_inner_than (gdbarch, core_addr_lessthan);
2424
2425 set_gdbarch_push_dummy_call (gdbarch, sh64_push_dummy_call);
2426
2427 set_gdbarch_believe_pcc_promotion (gdbarch, 1);
2428
2429 set_gdbarch_frame_align (gdbarch, sh64_frame_align);
2430 set_gdbarch_unwind_sp (gdbarch, sh64_unwind_sp);
2431 set_gdbarch_unwind_pc (gdbarch, sh64_unwind_pc);
2432 set_gdbarch_dummy_id (gdbarch, sh64_dummy_id);
2433 frame_base_set_default (gdbarch, &sh64_frame_base);
2434
2435 set_gdbarch_print_registers_info (gdbarch, sh64_print_registers_info);
2436
2437 set_gdbarch_elf_make_msymbol_special (gdbarch,
2438 sh64_elf_make_msymbol_special);
2439
2440 /* Hook in ABI-specific overrides, if they have been registered. */
2441 gdbarch_init_osabi (info, gdbarch);
2442
2443 dwarf2_append_unwinders (gdbarch);
2444 frame_unwind_append_unwinder (gdbarch, &sh64_frame_unwind);
2445
2446 return gdbarch;
2447 }