2010-03-04 Matthew Gretton-Dann <matthew.gretton-dann@arm.com>
[binutils-gdb.git] / gdb / solib-frv.c
1 /* Handle FR-V (FDPIC) shared libraries for GDB, the GNU Debugger.
2 Copyright (C) 2004, 2007, 2008, 2009, 2010 Free Software Foundation, Inc.
3
4 This file is part of GDB.
5
6 This program is free software; you can redistribute it and/or modify
7 it under the terms of the GNU General Public License as published by
8 the Free Software Foundation; either version 3 of the License, or
9 (at your option) any later version.
10
11 This program is distributed in the hope that it will be useful,
12 but WITHOUT ANY WARRANTY; without even the implied warranty of
13 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
14 GNU General Public License for more details.
15
16 You should have received a copy of the GNU General Public License
17 along with this program. If not, see <http://www.gnu.org/licenses/>. */
18
19
20 #include "defs.h"
21 #include "gdb_string.h"
22 #include "inferior.h"
23 #include "gdbcore.h"
24 #include "solib.h"
25 #include "solist.h"
26 #include "frv-tdep.h"
27 #include "objfiles.h"
28 #include "symtab.h"
29 #include "language.h"
30 #include "command.h"
31 #include "gdbcmd.h"
32 #include "elf/frv.h"
33 #include "exceptions.h"
34
35 /* Flag which indicates whether internal debug messages should be printed. */
36 static int solib_frv_debug;
37
38 /* FR-V pointers are four bytes wide. */
39 enum { FRV_PTR_SIZE = 4 };
40
41 /* Representation of loadmap and related structs for the FR-V FDPIC ABI. */
42
43 /* External versions; the size and alignment of the fields should be
44 the same as those on the target. When loaded, the placement of
45 the bits in each field will be the same as on the target. */
46 typedef gdb_byte ext_Elf32_Half[2];
47 typedef gdb_byte ext_Elf32_Addr[4];
48 typedef gdb_byte ext_Elf32_Word[4];
49
50 struct ext_elf32_fdpic_loadseg
51 {
52 /* Core address to which the segment is mapped. */
53 ext_Elf32_Addr addr;
54 /* VMA recorded in the program header. */
55 ext_Elf32_Addr p_vaddr;
56 /* Size of this segment in memory. */
57 ext_Elf32_Word p_memsz;
58 };
59
60 struct ext_elf32_fdpic_loadmap {
61 /* Protocol version number, must be zero. */
62 ext_Elf32_Half version;
63 /* Number of segments in this map. */
64 ext_Elf32_Half nsegs;
65 /* The actual memory map. */
66 struct ext_elf32_fdpic_loadseg segs[1 /* nsegs, actually */];
67 };
68
69 /* Internal versions; the types are GDB types and the data in each
70 of the fields is (or will be) decoded from the external struct
71 for ease of consumption. */
72 struct int_elf32_fdpic_loadseg
73 {
74 /* Core address to which the segment is mapped. */
75 CORE_ADDR addr;
76 /* VMA recorded in the program header. */
77 CORE_ADDR p_vaddr;
78 /* Size of this segment in memory. */
79 long p_memsz;
80 };
81
82 struct int_elf32_fdpic_loadmap {
83 /* Protocol version number, must be zero. */
84 int version;
85 /* Number of segments in this map. */
86 int nsegs;
87 /* The actual memory map. */
88 struct int_elf32_fdpic_loadseg segs[1 /* nsegs, actually */];
89 };
90
91 /* Given address LDMADDR, fetch and decode the loadmap at that address.
92 Return NULL if there is a problem reading the target memory or if
93 there doesn't appear to be a loadmap at the given address. The
94 allocated space (representing the loadmap) returned by this
95 function may be freed via a single call to xfree(). */
96
97 static struct int_elf32_fdpic_loadmap *
98 fetch_loadmap (CORE_ADDR ldmaddr)
99 {
100 enum bfd_endian byte_order = gdbarch_byte_order (target_gdbarch);
101 struct ext_elf32_fdpic_loadmap ext_ldmbuf_partial;
102 struct ext_elf32_fdpic_loadmap *ext_ldmbuf;
103 struct int_elf32_fdpic_loadmap *int_ldmbuf;
104 int ext_ldmbuf_size, int_ldmbuf_size;
105 int version, seg, nsegs;
106
107 /* Fetch initial portion of the loadmap. */
108 if (target_read_memory (ldmaddr, (gdb_byte *) &ext_ldmbuf_partial,
109 sizeof ext_ldmbuf_partial))
110 {
111 /* Problem reading the target's memory. */
112 return NULL;
113 }
114
115 /* Extract the version. */
116 version = extract_unsigned_integer (ext_ldmbuf_partial.version,
117 sizeof ext_ldmbuf_partial.version,
118 byte_order);
119 if (version != 0)
120 {
121 /* We only handle version 0. */
122 return NULL;
123 }
124
125 /* Extract the number of segments. */
126 nsegs = extract_unsigned_integer (ext_ldmbuf_partial.nsegs,
127 sizeof ext_ldmbuf_partial.nsegs,
128 byte_order);
129
130 if (nsegs <= 0)
131 return NULL;
132
133 /* Allocate space for the complete (external) loadmap. */
134 ext_ldmbuf_size = sizeof (struct ext_elf32_fdpic_loadmap)
135 + (nsegs - 1) * sizeof (struct ext_elf32_fdpic_loadseg);
136 ext_ldmbuf = xmalloc (ext_ldmbuf_size);
137
138 /* Copy over the portion of the loadmap that's already been read. */
139 memcpy (ext_ldmbuf, &ext_ldmbuf_partial, sizeof ext_ldmbuf_partial);
140
141 /* Read the rest of the loadmap from the target. */
142 if (target_read_memory (ldmaddr + sizeof ext_ldmbuf_partial,
143 (gdb_byte *) ext_ldmbuf + sizeof ext_ldmbuf_partial,
144 ext_ldmbuf_size - sizeof ext_ldmbuf_partial))
145 {
146 /* Couldn't read rest of the loadmap. */
147 xfree (ext_ldmbuf);
148 return NULL;
149 }
150
151 /* Allocate space into which to put information extract from the
152 external loadsegs. I.e, allocate the internal loadsegs. */
153 int_ldmbuf_size = sizeof (struct int_elf32_fdpic_loadmap)
154 + (nsegs - 1) * sizeof (struct int_elf32_fdpic_loadseg);
155 int_ldmbuf = xmalloc (int_ldmbuf_size);
156
157 /* Place extracted information in internal structs. */
158 int_ldmbuf->version = version;
159 int_ldmbuf->nsegs = nsegs;
160 for (seg = 0; seg < nsegs; seg++)
161 {
162 int_ldmbuf->segs[seg].addr
163 = extract_unsigned_integer (ext_ldmbuf->segs[seg].addr,
164 sizeof (ext_ldmbuf->segs[seg].addr),
165 byte_order);
166 int_ldmbuf->segs[seg].p_vaddr
167 = extract_unsigned_integer (ext_ldmbuf->segs[seg].p_vaddr,
168 sizeof (ext_ldmbuf->segs[seg].p_vaddr),
169 byte_order);
170 int_ldmbuf->segs[seg].p_memsz
171 = extract_unsigned_integer (ext_ldmbuf->segs[seg].p_memsz,
172 sizeof (ext_ldmbuf->segs[seg].p_memsz),
173 byte_order);
174 }
175
176 xfree (ext_ldmbuf);
177 return int_ldmbuf;
178 }
179
180 /* External link_map and elf32_fdpic_loadaddr struct definitions. */
181
182 typedef gdb_byte ext_ptr[4];
183
184 struct ext_elf32_fdpic_loadaddr
185 {
186 ext_ptr map; /* struct elf32_fdpic_loadmap *map; */
187 ext_ptr got_value; /* void *got_value; */
188 };
189
190 struct ext_link_map
191 {
192 struct ext_elf32_fdpic_loadaddr l_addr;
193
194 /* Absolute file name object was found in. */
195 ext_ptr l_name; /* char *l_name; */
196
197 /* Dynamic section of the shared object. */
198 ext_ptr l_ld; /* ElfW(Dyn) *l_ld; */
199
200 /* Chain of loaded objects. */
201 ext_ptr l_next, l_prev; /* struct link_map *l_next, *l_prev; */
202 };
203
204 /* Link map info to include in an allocated so_list entry */
205
206 struct lm_info
207 {
208 /* The loadmap, digested into an easier to use form. */
209 struct int_elf32_fdpic_loadmap *map;
210 /* The GOT address for this link map entry. */
211 CORE_ADDR got_value;
212 /* The link map address, needed for frv_fetch_objfile_link_map(). */
213 CORE_ADDR lm_addr;
214
215 /* Cached dynamic symbol table and dynamic relocs initialized and
216 used only by find_canonical_descriptor_in_load_object().
217
218 Note: kevinb/2004-02-26: It appears that calls to
219 bfd_canonicalize_dynamic_reloc() will use the same symbols as
220 those supplied to the first call to this function. Therefore,
221 it's important to NOT free the asymbol ** data structure
222 supplied to the first call. Thus the caching of the dynamic
223 symbols (dyn_syms) is critical for correct operation. The
224 caching of the dynamic relocations could be dispensed with. */
225 asymbol **dyn_syms;
226 arelent **dyn_relocs;
227 int dyn_reloc_count; /* number of dynamic relocs. */
228
229 };
230
231 /* The load map, got value, etc. are not available from the chain
232 of loaded shared objects. ``main_executable_lm_info'' provides
233 a way to get at this information so that it doesn't need to be
234 frequently recomputed. Initialized by frv_relocate_main_executable(). */
235 static struct lm_info *main_executable_lm_info;
236
237 static void frv_relocate_main_executable (void);
238 static CORE_ADDR main_got (void);
239 static int enable_break2 (void);
240
241 /*
242
243 LOCAL FUNCTION
244
245 bfd_lookup_symbol -- lookup the value for a specific symbol
246
247 SYNOPSIS
248
249 CORE_ADDR bfd_lookup_symbol (bfd *abfd, char *symname)
250
251 DESCRIPTION
252
253 An expensive way to lookup the value of a single symbol for
254 bfd's that are only temporary anyway. This is used by the
255 shared library support to find the address of the debugger
256 interface structures in the shared library.
257
258 Note that 0 is specifically allowed as an error return (no
259 such symbol).
260 */
261
262 static CORE_ADDR
263 bfd_lookup_symbol (bfd *abfd, char *symname)
264 {
265 long storage_needed;
266 asymbol *sym;
267 asymbol **symbol_table;
268 unsigned int number_of_symbols;
269 unsigned int i;
270 struct cleanup *back_to;
271 CORE_ADDR symaddr = 0;
272
273 storage_needed = bfd_get_symtab_upper_bound (abfd);
274
275 if (storage_needed > 0)
276 {
277 symbol_table = (asymbol **) xmalloc (storage_needed);
278 back_to = make_cleanup (xfree, symbol_table);
279 number_of_symbols = bfd_canonicalize_symtab (abfd, symbol_table);
280
281 for (i = 0; i < number_of_symbols; i++)
282 {
283 sym = *symbol_table++;
284 if (strcmp (sym->name, symname) == 0)
285 {
286 /* Bfd symbols are section relative. */
287 symaddr = sym->value + sym->section->vma;
288 break;
289 }
290 }
291 do_cleanups (back_to);
292 }
293
294 if (symaddr)
295 return symaddr;
296
297 /* Look for the symbol in the dynamic string table too. */
298
299 storage_needed = bfd_get_dynamic_symtab_upper_bound (abfd);
300
301 if (storage_needed > 0)
302 {
303 symbol_table = (asymbol **) xmalloc (storage_needed);
304 back_to = make_cleanup (xfree, symbol_table);
305 number_of_symbols = bfd_canonicalize_dynamic_symtab (abfd, symbol_table);
306
307 for (i = 0; i < number_of_symbols; i++)
308 {
309 sym = *symbol_table++;
310 if (strcmp (sym->name, symname) == 0)
311 {
312 /* Bfd symbols are section relative. */
313 symaddr = sym->value + sym->section->vma;
314 break;
315 }
316 }
317 do_cleanups (back_to);
318 }
319
320 return symaddr;
321 }
322
323
324 /*
325
326 LOCAL FUNCTION
327
328 open_symbol_file_object
329
330 SYNOPSIS
331
332 void open_symbol_file_object (void *from_tty)
333
334 DESCRIPTION
335
336 If no open symbol file, attempt to locate and open the main symbol
337 file.
338
339 If FROM_TTYP dereferences to a non-zero integer, allow messages to
340 be printed. This parameter is a pointer rather than an int because
341 open_symbol_file_object() is called via catch_errors() and
342 catch_errors() requires a pointer argument. */
343
344 static int
345 open_symbol_file_object (void *from_ttyp)
346 {
347 /* Unimplemented. */
348 return 0;
349 }
350
351 /* Cached value for lm_base(), below. */
352 static CORE_ADDR lm_base_cache = 0;
353
354 /* Link map address for main module. */
355 static CORE_ADDR main_lm_addr = 0;
356
357 /* Return the address from which the link map chain may be found. On
358 the FR-V, this may be found in a number of ways. Assuming that the
359 main executable has already been relocated, the easiest way to find
360 this value is to look up the address of _GLOBAL_OFFSET_TABLE_. A
361 pointer to the start of the link map will be located at the word found
362 at _GLOBAL_OFFSET_TABLE_ + 8. (This is part of the dynamic linker
363 reserve area mandated by the ABI.) */
364
365 static CORE_ADDR
366 lm_base (void)
367 {
368 enum bfd_endian byte_order = gdbarch_byte_order (target_gdbarch);
369 struct minimal_symbol *got_sym;
370 CORE_ADDR addr;
371 gdb_byte buf[FRV_PTR_SIZE];
372
373 /* One of our assumptions is that the main executable has been relocated.
374 Bail out if this has not happened. (Note that post_create_inferior()
375 in infcmd.c will call solib_add prior to solib_create_inferior_hook().
376 If we allow this to happen, lm_base_cache will be initialized with
377 a bogus value. */
378 if (main_executable_lm_info == 0)
379 return 0;
380
381 /* If we already have a cached value, return it. */
382 if (lm_base_cache)
383 return lm_base_cache;
384
385 got_sym = lookup_minimal_symbol ("_GLOBAL_OFFSET_TABLE_", NULL,
386 symfile_objfile);
387 if (got_sym == 0)
388 {
389 if (solib_frv_debug)
390 fprintf_unfiltered (gdb_stdlog,
391 "lm_base: _GLOBAL_OFFSET_TABLE_ not found.\n");
392 return 0;
393 }
394
395 addr = SYMBOL_VALUE_ADDRESS (got_sym) + 8;
396
397 if (solib_frv_debug)
398 fprintf_unfiltered (gdb_stdlog,
399 "lm_base: _GLOBAL_OFFSET_TABLE_ + 8 = %s\n",
400 hex_string_custom (addr, 8));
401
402 if (target_read_memory (addr, buf, sizeof buf) != 0)
403 return 0;
404 lm_base_cache = extract_unsigned_integer (buf, sizeof buf, byte_order);
405
406 if (solib_frv_debug)
407 fprintf_unfiltered (gdb_stdlog,
408 "lm_base: lm_base_cache = %s\n",
409 hex_string_custom (lm_base_cache, 8));
410
411 return lm_base_cache;
412 }
413
414
415 /* LOCAL FUNCTION
416
417 frv_current_sos -- build a list of currently loaded shared objects
418
419 SYNOPSIS
420
421 struct so_list *frv_current_sos ()
422
423 DESCRIPTION
424
425 Build a list of `struct so_list' objects describing the shared
426 objects currently loaded in the inferior. This list does not
427 include an entry for the main executable file.
428
429 Note that we only gather information directly available from the
430 inferior --- we don't examine any of the shared library files
431 themselves. The declaration of `struct so_list' says which fields
432 we provide values for. */
433
434 static struct so_list *
435 frv_current_sos (void)
436 {
437 enum bfd_endian byte_order = gdbarch_byte_order (target_gdbarch);
438 CORE_ADDR lm_addr, mgot;
439 struct so_list *sos_head = NULL;
440 struct so_list **sos_next_ptr = &sos_head;
441
442 /* Make sure that the main executable has been relocated. This is
443 required in order to find the address of the global offset table,
444 which in turn is used to find the link map info. (See lm_base()
445 for details.)
446
447 Note that the relocation of the main executable is also performed
448 by SOLIB_CREATE_INFERIOR_HOOK(), however, in the case of core
449 files, this hook is called too late in order to be of benefit to
450 SOLIB_ADD. SOLIB_ADD eventually calls this this function,
451 frv_current_sos, and also precedes the call to
452 SOLIB_CREATE_INFERIOR_HOOK(). (See post_create_inferior() in
453 infcmd.c.) */
454 if (main_executable_lm_info == 0 && core_bfd != NULL)
455 frv_relocate_main_executable ();
456
457 /* Fetch the GOT corresponding to the main executable. */
458 mgot = main_got ();
459
460 /* Locate the address of the first link map struct. */
461 lm_addr = lm_base ();
462
463 /* We have at least one link map entry. Fetch the the lot of them,
464 building the solist chain. */
465 while (lm_addr)
466 {
467 struct ext_link_map lm_buf;
468 CORE_ADDR got_addr;
469
470 if (solib_frv_debug)
471 fprintf_unfiltered (gdb_stdlog,
472 "current_sos: reading link_map entry at %s\n",
473 hex_string_custom (lm_addr, 8));
474
475 if (target_read_memory (lm_addr, (gdb_byte *) &lm_buf, sizeof (lm_buf)) != 0)
476 {
477 warning (_("frv_current_sos: Unable to read link map entry. Shared object chain may be incomplete."));
478 break;
479 }
480
481 got_addr
482 = extract_unsigned_integer (lm_buf.l_addr.got_value,
483 sizeof (lm_buf.l_addr.got_value),
484 byte_order);
485 /* If the got_addr is the same as mgotr, then we're looking at the
486 entry for the main executable. By convention, we don't include
487 this in the list of shared objects. */
488 if (got_addr != mgot)
489 {
490 int errcode;
491 char *name_buf;
492 struct int_elf32_fdpic_loadmap *loadmap;
493 struct so_list *sop;
494 CORE_ADDR addr;
495
496 /* Fetch the load map address. */
497 addr = extract_unsigned_integer (lm_buf.l_addr.map,
498 sizeof lm_buf.l_addr.map,
499 byte_order);
500 loadmap = fetch_loadmap (addr);
501 if (loadmap == NULL)
502 {
503 warning (_("frv_current_sos: Unable to fetch load map. Shared object chain may be incomplete."));
504 break;
505 }
506
507 sop = xcalloc (1, sizeof (struct so_list));
508 sop->lm_info = xcalloc (1, sizeof (struct lm_info));
509 sop->lm_info->map = loadmap;
510 sop->lm_info->got_value = got_addr;
511 sop->lm_info->lm_addr = lm_addr;
512 /* Fetch the name. */
513 addr = extract_unsigned_integer (lm_buf.l_name,
514 sizeof (lm_buf.l_name),
515 byte_order);
516 target_read_string (addr, &name_buf, SO_NAME_MAX_PATH_SIZE - 1,
517 &errcode);
518
519 if (solib_frv_debug)
520 fprintf_unfiltered (gdb_stdlog, "current_sos: name = %s\n",
521 name_buf);
522
523 if (errcode != 0)
524 warning (_("Can't read pathname for link map entry: %s."),
525 safe_strerror (errcode));
526 else
527 {
528 strncpy (sop->so_name, name_buf, SO_NAME_MAX_PATH_SIZE - 1);
529 sop->so_name[SO_NAME_MAX_PATH_SIZE - 1] = '\0';
530 xfree (name_buf);
531 strcpy (sop->so_original_name, sop->so_name);
532 }
533
534 *sos_next_ptr = sop;
535 sos_next_ptr = &sop->next;
536 }
537 else
538 {
539 main_lm_addr = lm_addr;
540 }
541
542 lm_addr = extract_unsigned_integer (lm_buf.l_next,
543 sizeof (lm_buf.l_next), byte_order);
544 }
545
546 enable_break2 ();
547
548 return sos_head;
549 }
550
551
552 /* Return 1 if PC lies in the dynamic symbol resolution code of the
553 run time loader. */
554
555 static CORE_ADDR interp_text_sect_low;
556 static CORE_ADDR interp_text_sect_high;
557 static CORE_ADDR interp_plt_sect_low;
558 static CORE_ADDR interp_plt_sect_high;
559
560 static int
561 frv_in_dynsym_resolve_code (CORE_ADDR pc)
562 {
563 return ((pc >= interp_text_sect_low && pc < interp_text_sect_high)
564 || (pc >= interp_plt_sect_low && pc < interp_plt_sect_high)
565 || in_plt_section (pc, NULL));
566 }
567
568 /* Given a loadmap and an address, return the displacement needed
569 to relocate the address. */
570
571 static CORE_ADDR
572 displacement_from_map (struct int_elf32_fdpic_loadmap *map,
573 CORE_ADDR addr)
574 {
575 int seg;
576
577 for (seg = 0; seg < map->nsegs; seg++)
578 {
579 if (map->segs[seg].p_vaddr <= addr
580 && addr < map->segs[seg].p_vaddr + map->segs[seg].p_memsz)
581 {
582 return map->segs[seg].addr - map->segs[seg].p_vaddr;
583 }
584 }
585
586 return 0;
587 }
588
589 /* Print a warning about being unable to set the dynamic linker
590 breakpoint. */
591
592 static void
593 enable_break_failure_warning (void)
594 {
595 warning (_("Unable to find dynamic linker breakpoint function.\n"
596 "GDB will be unable to debug shared library initializers\n"
597 "and track explicitly loaded dynamic code."));
598 }
599
600 /*
601
602 LOCAL FUNCTION
603
604 enable_break -- arrange for dynamic linker to hit breakpoint
605
606 SYNOPSIS
607
608 int enable_break (void)
609
610 DESCRIPTION
611
612 The dynamic linkers has, as part of its debugger interface, support
613 for arranging for the inferior to hit a breakpoint after mapping in
614 the shared libraries. This function enables that breakpoint.
615
616 On the FR-V, using the shared library (FDPIC) ABI, the symbol
617 _dl_debug_addr points to the r_debug struct which contains
618 a field called r_brk. r_brk is the address of the function
619 descriptor upon which a breakpoint must be placed. Being a
620 function descriptor, we must extract the entry point in order
621 to set the breakpoint.
622
623 Our strategy will be to get the .interp section from the
624 executable. This section will provide us with the name of the
625 interpreter. We'll open the interpreter and then look up
626 the address of _dl_debug_addr. We then relocate this address
627 using the interpreter's loadmap. Once the relocated address
628 is known, we fetch the value (address) corresponding to r_brk
629 and then use that value to fetch the entry point of the function
630 we're interested in.
631
632 */
633
634 static int enable_break1_done = 0;
635 static int enable_break2_done = 0;
636
637 static int
638 enable_break2 (void)
639 {
640 enum bfd_endian byte_order = gdbarch_byte_order (target_gdbarch);
641 int success = 0;
642 char **bkpt_namep;
643 asection *interp_sect;
644
645 if (!enable_break1_done || enable_break2_done)
646 return 1;
647
648 enable_break2_done = 1;
649
650 /* First, remove all the solib event breakpoints. Their addresses
651 may have changed since the last time we ran the program. */
652 remove_solib_event_breakpoints ();
653
654 interp_text_sect_low = interp_text_sect_high = 0;
655 interp_plt_sect_low = interp_plt_sect_high = 0;
656
657 /* Find the .interp section; if not found, warn the user and drop
658 into the old breakpoint at symbol code. */
659 interp_sect = bfd_get_section_by_name (exec_bfd, ".interp");
660 if (interp_sect)
661 {
662 unsigned int interp_sect_size;
663 gdb_byte *buf;
664 bfd *tmp_bfd = NULL;
665 int status;
666 CORE_ADDR addr, interp_loadmap_addr;
667 gdb_byte addr_buf[FRV_PTR_SIZE];
668 struct int_elf32_fdpic_loadmap *ldm;
669 volatile struct gdb_exception ex;
670
671 /* Read the contents of the .interp section into a local buffer;
672 the contents specify the dynamic linker this program uses. */
673 interp_sect_size = bfd_section_size (exec_bfd, interp_sect);
674 buf = alloca (interp_sect_size);
675 bfd_get_section_contents (exec_bfd, interp_sect,
676 buf, 0, interp_sect_size);
677
678 /* Now we need to figure out where the dynamic linker was
679 loaded so that we can load its symbols and place a breakpoint
680 in the dynamic linker itself.
681
682 This address is stored on the stack. However, I've been unable
683 to find any magic formula to find it for Solaris (appears to
684 be trivial on GNU/Linux). Therefore, we have to try an alternate
685 mechanism to find the dynamic linker's base address. */
686
687 TRY_CATCH (ex, RETURN_MASK_ALL)
688 {
689 tmp_bfd = solib_bfd_open (buf);
690 }
691 if (tmp_bfd == NULL)
692 {
693 enable_break_failure_warning ();
694 return 0;
695 }
696
697 status = frv_fdpic_loadmap_addresses (target_gdbarch,
698 &interp_loadmap_addr, 0);
699 if (status < 0)
700 {
701 warning (_("Unable to determine dynamic linker loadmap address."));
702 enable_break_failure_warning ();
703 bfd_close (tmp_bfd);
704 return 0;
705 }
706
707 if (solib_frv_debug)
708 fprintf_unfiltered (gdb_stdlog,
709 "enable_break: interp_loadmap_addr = %s\n",
710 hex_string_custom (interp_loadmap_addr, 8));
711
712 ldm = fetch_loadmap (interp_loadmap_addr);
713 if (ldm == NULL)
714 {
715 warning (_("Unable to load dynamic linker loadmap at address %s."),
716 hex_string_custom (interp_loadmap_addr, 8));
717 enable_break_failure_warning ();
718 bfd_close (tmp_bfd);
719 return 0;
720 }
721
722 /* Record the relocated start and end address of the dynamic linker
723 text and plt section for svr4_in_dynsym_resolve_code. */
724 interp_sect = bfd_get_section_by_name (tmp_bfd, ".text");
725 if (interp_sect)
726 {
727 interp_text_sect_low
728 = bfd_section_vma (tmp_bfd, interp_sect);
729 interp_text_sect_low
730 += displacement_from_map (ldm, interp_text_sect_low);
731 interp_text_sect_high
732 = interp_text_sect_low + bfd_section_size (tmp_bfd, interp_sect);
733 }
734 interp_sect = bfd_get_section_by_name (tmp_bfd, ".plt");
735 if (interp_sect)
736 {
737 interp_plt_sect_low =
738 bfd_section_vma (tmp_bfd, interp_sect);
739 interp_plt_sect_low
740 += displacement_from_map (ldm, interp_plt_sect_low);
741 interp_plt_sect_high =
742 interp_plt_sect_low + bfd_section_size (tmp_bfd, interp_sect);
743 }
744
745 addr = bfd_lookup_symbol (tmp_bfd, "_dl_debug_addr");
746 if (addr == 0)
747 {
748 warning (_("Could not find symbol _dl_debug_addr in dynamic linker"));
749 enable_break_failure_warning ();
750 bfd_close (tmp_bfd);
751 return 0;
752 }
753
754 if (solib_frv_debug)
755 fprintf_unfiltered (gdb_stdlog,
756 "enable_break: _dl_debug_addr (prior to relocation) = %s\n",
757 hex_string_custom (addr, 8));
758
759 addr += displacement_from_map (ldm, addr);
760
761 if (solib_frv_debug)
762 fprintf_unfiltered (gdb_stdlog,
763 "enable_break: _dl_debug_addr (after relocation) = %s\n",
764 hex_string_custom (addr, 8));
765
766 /* Fetch the address of the r_debug struct. */
767 if (target_read_memory (addr, addr_buf, sizeof addr_buf) != 0)
768 {
769 warning (_("Unable to fetch contents of _dl_debug_addr (at address %s) from dynamic linker"),
770 hex_string_custom (addr, 8));
771 }
772 addr = extract_unsigned_integer (addr_buf, sizeof addr_buf, byte_order);
773
774 /* Fetch the r_brk field. It's 8 bytes from the start of
775 _dl_debug_addr. */
776 if (target_read_memory (addr + 8, addr_buf, sizeof addr_buf) != 0)
777 {
778 warning (_("Unable to fetch _dl_debug_addr->r_brk (at address %s) from dynamic linker"),
779 hex_string_custom (addr + 8, 8));
780 enable_break_failure_warning ();
781 bfd_close (tmp_bfd);
782 return 0;
783 }
784 addr = extract_unsigned_integer (addr_buf, sizeof addr_buf, byte_order);
785
786 /* Now fetch the function entry point. */
787 if (target_read_memory (addr, addr_buf, sizeof addr_buf) != 0)
788 {
789 warning (_("Unable to fetch _dl_debug_addr->.r_brk entry point (at address %s) from dynamic linker"),
790 hex_string_custom (addr, 8));
791 enable_break_failure_warning ();
792 bfd_close (tmp_bfd);
793 return 0;
794 }
795 addr = extract_unsigned_integer (addr_buf, sizeof addr_buf, byte_order);
796
797 /* We're done with the temporary bfd. */
798 bfd_close (tmp_bfd);
799
800 /* We're also done with the loadmap. */
801 xfree (ldm);
802
803 /* Now (finally!) create the solib breakpoint. */
804 create_solib_event_breakpoint (target_gdbarch, addr);
805
806 return 1;
807 }
808
809 /* Tell the user we couldn't set a dynamic linker breakpoint. */
810 enable_break_failure_warning ();
811
812 /* Failure return. */
813 return 0;
814 }
815
816 static int
817 enable_break (void)
818 {
819 asection *interp_sect;
820
821 if (symfile_objfile == NULL)
822 {
823 if (solib_frv_debug)
824 fprintf_unfiltered (gdb_stdlog,
825 "enable_break: No symbol file found.\n");
826 return 0;
827 }
828
829 if (!symfile_objfile->ei.entry_point_p)
830 {
831 if (solib_frv_debug)
832 fprintf_unfiltered (gdb_stdlog,
833 "enable_break: Symbol file has no entry point.\n");
834 return 0;
835 }
836
837 /* Check for the presence of a .interp section. If there is no
838 such section, the executable is statically linked. */
839
840 interp_sect = bfd_get_section_by_name (exec_bfd, ".interp");
841
842 if (interp_sect == NULL)
843 {
844 if (solib_frv_debug)
845 fprintf_unfiltered (gdb_stdlog,
846 "enable_break: No .interp section found.\n");
847 return 0;
848 }
849
850 enable_break1_done = 1;
851 create_solib_event_breakpoint (target_gdbarch,
852 symfile_objfile->ei.entry_point);
853
854 if (solib_frv_debug)
855 fprintf_unfiltered (gdb_stdlog,
856 "enable_break: solib event breakpoint placed at entry point: %s\n",
857 hex_string_custom (symfile_objfile->ei.entry_point, 8));
858 return 1;
859 }
860
861 /*
862
863 LOCAL FUNCTION
864
865 special_symbol_handling -- additional shared library symbol handling
866
867 SYNOPSIS
868
869 void special_symbol_handling ()
870
871 DESCRIPTION
872
873 Once the symbols from a shared object have been loaded in the usual
874 way, we are called to do any system specific symbol handling that
875 is needed.
876
877 */
878
879 static void
880 frv_special_symbol_handling (void)
881 {
882 /* Nothing needed (yet) for FRV. */
883 }
884
885 static void
886 frv_relocate_main_executable (void)
887 {
888 int status;
889 CORE_ADDR exec_addr, interp_addr;
890 struct int_elf32_fdpic_loadmap *ldm;
891 struct cleanup *old_chain;
892 struct section_offsets *new_offsets;
893 int changed;
894 struct obj_section *osect;
895
896 status = frv_fdpic_loadmap_addresses (target_gdbarch,
897 &interp_addr, &exec_addr);
898
899 if (status < 0 || (exec_addr == 0 && interp_addr == 0))
900 {
901 /* Not using FDPIC ABI, so do nothing. */
902 return;
903 }
904
905 /* Fetch the loadmap located at ``exec_addr''. */
906 ldm = fetch_loadmap (exec_addr);
907 if (ldm == NULL)
908 error (_("Unable to load the executable's loadmap."));
909
910 if (main_executable_lm_info)
911 xfree (main_executable_lm_info);
912 main_executable_lm_info = xcalloc (1, sizeof (struct lm_info));
913 main_executable_lm_info->map = ldm;
914
915 new_offsets = xcalloc (symfile_objfile->num_sections,
916 sizeof (struct section_offsets));
917 old_chain = make_cleanup (xfree, new_offsets);
918 changed = 0;
919
920 ALL_OBJFILE_OSECTIONS (symfile_objfile, osect)
921 {
922 CORE_ADDR orig_addr, addr, offset;
923 int osect_idx;
924 int seg;
925
926 osect_idx = osect->the_bfd_section->index;
927
928 /* Current address of section. */
929 addr = obj_section_addr (osect);
930 /* Offset from where this section started. */
931 offset = ANOFFSET (symfile_objfile->section_offsets, osect_idx);
932 /* Original address prior to any past relocations. */
933 orig_addr = addr - offset;
934
935 for (seg = 0; seg < ldm->nsegs; seg++)
936 {
937 if (ldm->segs[seg].p_vaddr <= orig_addr
938 && orig_addr < ldm->segs[seg].p_vaddr + ldm->segs[seg].p_memsz)
939 {
940 new_offsets->offsets[osect_idx]
941 = ldm->segs[seg].addr - ldm->segs[seg].p_vaddr;
942
943 if (new_offsets->offsets[osect_idx] != offset)
944 changed = 1;
945 break;
946 }
947 }
948 }
949
950 if (changed)
951 objfile_relocate (symfile_objfile, new_offsets);
952
953 do_cleanups (old_chain);
954
955 /* Now that symfile_objfile has been relocated, we can compute the
956 GOT value and stash it away. */
957 main_executable_lm_info->got_value = main_got ();
958 }
959
960 /*
961
962 GLOBAL FUNCTION
963
964 frv_solib_create_inferior_hook -- shared library startup support
965
966 SYNOPSIS
967
968 void frv_solib_create_inferior_hook ()
969
970 DESCRIPTION
971
972 When gdb starts up the inferior, it nurses it along (through the
973 shell) until it is ready to execute it's first instruction. At this
974 point, this function gets called via expansion of the macro
975 SOLIB_CREATE_INFERIOR_HOOK.
976
977 For the FR-V shared library ABI (FDPIC), the main executable
978 needs to be relocated. The shared library breakpoints also need
979 to be enabled.
980 */
981
982 static void
983 frv_solib_create_inferior_hook (int from_tty)
984 {
985 /* Relocate main executable. */
986 frv_relocate_main_executable ();
987
988 /* Enable shared library breakpoints. */
989 if (!enable_break ())
990 {
991 warning (_("shared library handler failed to enable breakpoint"));
992 return;
993 }
994 }
995
996 static void
997 frv_clear_solib (void)
998 {
999 lm_base_cache = 0;
1000 enable_break1_done = 0;
1001 enable_break2_done = 0;
1002 main_lm_addr = 0;
1003 if (main_executable_lm_info != 0)
1004 {
1005 xfree (main_executable_lm_info->map);
1006 xfree (main_executable_lm_info->dyn_syms);
1007 xfree (main_executable_lm_info->dyn_relocs);
1008 xfree (main_executable_lm_info);
1009 main_executable_lm_info = 0;
1010 }
1011 }
1012
1013 static void
1014 frv_free_so (struct so_list *so)
1015 {
1016 xfree (so->lm_info->map);
1017 xfree (so->lm_info->dyn_syms);
1018 xfree (so->lm_info->dyn_relocs);
1019 xfree (so->lm_info);
1020 }
1021
1022 static void
1023 frv_relocate_section_addresses (struct so_list *so,
1024 struct target_section *sec)
1025 {
1026 int seg;
1027 struct int_elf32_fdpic_loadmap *map;
1028
1029 map = so->lm_info->map;
1030
1031 for (seg = 0; seg < map->nsegs; seg++)
1032 {
1033 if (map->segs[seg].p_vaddr <= sec->addr
1034 && sec->addr < map->segs[seg].p_vaddr + map->segs[seg].p_memsz)
1035 {
1036 CORE_ADDR displ = map->segs[seg].addr - map->segs[seg].p_vaddr;
1037 sec->addr += displ;
1038 sec->endaddr += displ;
1039 break;
1040 }
1041 }
1042 }
1043
1044 /* Return the GOT address associated with the main executable. Return
1045 0 if it can't be found. */
1046
1047 static CORE_ADDR
1048 main_got (void)
1049 {
1050 struct minimal_symbol *got_sym;
1051
1052 got_sym = lookup_minimal_symbol ("_GLOBAL_OFFSET_TABLE_", NULL, symfile_objfile);
1053 if (got_sym == 0)
1054 return 0;
1055
1056 return SYMBOL_VALUE_ADDRESS (got_sym);
1057 }
1058
1059 /* Find the global pointer for the given function address ADDR. */
1060
1061 CORE_ADDR
1062 frv_fdpic_find_global_pointer (CORE_ADDR addr)
1063 {
1064 struct so_list *so;
1065
1066 so = master_so_list ();
1067 while (so)
1068 {
1069 int seg;
1070 struct int_elf32_fdpic_loadmap *map;
1071
1072 map = so->lm_info->map;
1073
1074 for (seg = 0; seg < map->nsegs; seg++)
1075 {
1076 if (map->segs[seg].addr <= addr
1077 && addr < map->segs[seg].addr + map->segs[seg].p_memsz)
1078 return so->lm_info->got_value;
1079 }
1080
1081 so = so->next;
1082 }
1083
1084 /* Didn't find it it any of the shared objects. So assume it's in the
1085 main executable. */
1086 return main_got ();
1087 }
1088
1089 /* Forward declarations for frv_fdpic_find_canonical_descriptor(). */
1090 static CORE_ADDR find_canonical_descriptor_in_load_object
1091 (CORE_ADDR, CORE_ADDR, char *, bfd *, struct lm_info *);
1092
1093 /* Given a function entry point, attempt to find the canonical descriptor
1094 associated with that entry point. Return 0 if no canonical descriptor
1095 could be found. */
1096
1097 CORE_ADDR
1098 frv_fdpic_find_canonical_descriptor (CORE_ADDR entry_point)
1099 {
1100 char *name;
1101 CORE_ADDR addr;
1102 CORE_ADDR got_value;
1103 struct int_elf32_fdpic_loadmap *ldm = 0;
1104 struct symbol *sym;
1105 int status;
1106 CORE_ADDR exec_loadmap_addr;
1107
1108 /* Fetch the corresponding global pointer for the entry point. */
1109 got_value = frv_fdpic_find_global_pointer (entry_point);
1110
1111 /* Attempt to find the name of the function. If the name is available,
1112 it'll be used as an aid in finding matching functions in the dynamic
1113 symbol table. */
1114 sym = find_pc_function (entry_point);
1115 if (sym == 0)
1116 name = 0;
1117 else
1118 name = SYMBOL_LINKAGE_NAME (sym);
1119
1120 /* Check the main executable. */
1121 addr = find_canonical_descriptor_in_load_object
1122 (entry_point, got_value, name, symfile_objfile->obfd,
1123 main_executable_lm_info);
1124
1125 /* If descriptor not found via main executable, check each load object
1126 in list of shared objects. */
1127 if (addr == 0)
1128 {
1129 struct so_list *so;
1130
1131 so = master_so_list ();
1132 while (so)
1133 {
1134 addr = find_canonical_descriptor_in_load_object
1135 (entry_point, got_value, name, so->abfd, so->lm_info);
1136
1137 if (addr != 0)
1138 break;
1139
1140 so = so->next;
1141 }
1142 }
1143
1144 return addr;
1145 }
1146
1147 static CORE_ADDR
1148 find_canonical_descriptor_in_load_object
1149 (CORE_ADDR entry_point, CORE_ADDR got_value, char *name, bfd *abfd,
1150 struct lm_info *lm)
1151 {
1152 enum bfd_endian byte_order = gdbarch_byte_order (target_gdbarch);
1153 arelent *rel;
1154 unsigned int i;
1155 CORE_ADDR addr = 0;
1156
1157 /* Nothing to do if no bfd. */
1158 if (abfd == 0)
1159 return 0;
1160
1161 /* Nothing to do if no link map. */
1162 if (lm == 0)
1163 return 0;
1164
1165 /* We want to scan the dynamic relocs for R_FRV_FUNCDESC relocations.
1166 (More about this later.) But in order to fetch the relocs, we
1167 need to first fetch the dynamic symbols. These symbols need to
1168 be cached due to the way that bfd_canonicalize_dynamic_reloc()
1169 works. (See the comments in the declaration of struct lm_info
1170 for more information.) */
1171 if (lm->dyn_syms == NULL)
1172 {
1173 long storage_needed;
1174 unsigned int number_of_symbols;
1175
1176 /* Determine amount of space needed to hold the dynamic symbol table. */
1177 storage_needed = bfd_get_dynamic_symtab_upper_bound (abfd);
1178
1179 /* If there are no dynamic symbols, there's nothing to do. */
1180 if (storage_needed <= 0)
1181 return 0;
1182
1183 /* Allocate space for the dynamic symbol table. */
1184 lm->dyn_syms = (asymbol **) xmalloc (storage_needed);
1185
1186 /* Fetch the dynamic symbol table. */
1187 number_of_symbols = bfd_canonicalize_dynamic_symtab (abfd, lm->dyn_syms);
1188
1189 if (number_of_symbols == 0)
1190 return 0;
1191 }
1192
1193 /* Fetch the dynamic relocations if not already cached. */
1194 if (lm->dyn_relocs == NULL)
1195 {
1196 long storage_needed;
1197
1198 /* Determine amount of space needed to hold the dynamic relocs. */
1199 storage_needed = bfd_get_dynamic_reloc_upper_bound (abfd);
1200
1201 /* Bail out if there are no dynamic relocs. */
1202 if (storage_needed <= 0)
1203 return 0;
1204
1205 /* Allocate space for the relocs. */
1206 lm->dyn_relocs = (arelent **) xmalloc (storage_needed);
1207
1208 /* Fetch the dynamic relocs. */
1209 lm->dyn_reloc_count
1210 = bfd_canonicalize_dynamic_reloc (abfd, lm->dyn_relocs, lm->dyn_syms);
1211 }
1212
1213 /* Search the dynamic relocs. */
1214 for (i = 0; i < lm->dyn_reloc_count; i++)
1215 {
1216 rel = lm->dyn_relocs[i];
1217
1218 /* Relocs of interest are those which meet the following
1219 criteria:
1220
1221 - the names match (assuming the caller could provide
1222 a name which matches ``entry_point'').
1223 - the relocation type must be R_FRV_FUNCDESC. Relocs
1224 of this type are used (by the dynamic linker) to
1225 look up the address of a canonical descriptor (allocating
1226 it if need be) and initializing the GOT entry referred
1227 to by the offset to the address of the descriptor.
1228
1229 These relocs of interest may be used to obtain a
1230 candidate descriptor by first adjusting the reloc's
1231 address according to the link map and then dereferencing
1232 this address (which is a GOT entry) to obtain a descriptor
1233 address. */
1234 if ((name == 0 || strcmp (name, (*rel->sym_ptr_ptr)->name) == 0)
1235 && rel->howto->type == R_FRV_FUNCDESC)
1236 {
1237 gdb_byte buf [FRV_PTR_SIZE];
1238
1239 /* Compute address of address of candidate descriptor. */
1240 addr = rel->address + displacement_from_map (lm->map, rel->address);
1241
1242 /* Fetch address of candidate descriptor. */
1243 if (target_read_memory (addr, buf, sizeof buf) != 0)
1244 continue;
1245 addr = extract_unsigned_integer (buf, sizeof buf, byte_order);
1246
1247 /* Check for matching entry point. */
1248 if (target_read_memory (addr, buf, sizeof buf) != 0)
1249 continue;
1250 if (extract_unsigned_integer (buf, sizeof buf, byte_order)
1251 != entry_point)
1252 continue;
1253
1254 /* Check for matching got value. */
1255 if (target_read_memory (addr + 4, buf, sizeof buf) != 0)
1256 continue;
1257 if (extract_unsigned_integer (buf, sizeof buf, byte_order)
1258 != got_value)
1259 continue;
1260
1261 /* Match was successful! Exit loop. */
1262 break;
1263 }
1264 }
1265
1266 return addr;
1267 }
1268
1269 /* Given an objfile, return the address of its link map. This value is
1270 needed for TLS support. */
1271 CORE_ADDR
1272 frv_fetch_objfile_link_map (struct objfile *objfile)
1273 {
1274 struct so_list *so;
1275
1276 /* Cause frv_current_sos() to be run if it hasn't been already. */
1277 if (main_lm_addr == 0)
1278 solib_add (0, 0, 0, 1);
1279
1280 /* frv_current_sos() will set main_lm_addr for the main executable. */
1281 if (objfile == symfile_objfile)
1282 return main_lm_addr;
1283
1284 /* The other link map addresses may be found by examining the list
1285 of shared libraries. */
1286 for (so = master_so_list (); so; so = so->next)
1287 {
1288 if (so->objfile == objfile)
1289 return so->lm_info->lm_addr;
1290 }
1291
1292 /* Not found! */
1293 return 0;
1294 }
1295
1296 struct target_so_ops frv_so_ops;
1297
1298 /* Provide a prototype to silence -Wmissing-prototypes. */
1299 extern initialize_file_ftype _initialize_frv_solib;
1300
1301 void
1302 _initialize_frv_solib (void)
1303 {
1304 frv_so_ops.relocate_section_addresses = frv_relocate_section_addresses;
1305 frv_so_ops.free_so = frv_free_so;
1306 frv_so_ops.clear_solib = frv_clear_solib;
1307 frv_so_ops.solib_create_inferior_hook = frv_solib_create_inferior_hook;
1308 frv_so_ops.special_symbol_handling = frv_special_symbol_handling;
1309 frv_so_ops.current_sos = frv_current_sos;
1310 frv_so_ops.open_symbol_file_object = open_symbol_file_object;
1311 frv_so_ops.in_dynsym_resolve_code = frv_in_dynsym_resolve_code;
1312 frv_so_ops.bfd_open = solib_bfd_open;
1313
1314 /* Debug this file's internals. */
1315 add_setshow_zinteger_cmd ("solib-frv", class_maintenance,
1316 &solib_frv_debug, _("\
1317 Set internal debugging of shared library code for FR-V."), _("\
1318 Show internal debugging of shared library code for FR-V."), _("\
1319 When non-zero, FR-V solib specific internal debugging is enabled."),
1320 NULL,
1321 NULL, /* FIXME: i18n: */
1322 &setdebuglist, &showdebuglist);
1323 }