080fd795ed48e70e86c6a7f1676e720e10d1d623
[binutils-gdb.git] / gdb / solib-svr4.c
1 /* Handle SVR4 shared libraries for GDB, the GNU Debugger.
2
3 Copyright (C) 1990-2017 Free Software Foundation, Inc.
4
5 This file is part of GDB.
6
7 This program is free software; you can redistribute it and/or modify
8 it under the terms of the GNU General Public License as published by
9 the Free Software Foundation; either version 3 of the License, or
10 (at your option) any later version.
11
12 This program is distributed in the hope that it will be useful,
13 but WITHOUT ANY WARRANTY; without even the implied warranty of
14 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
15 GNU General Public License for more details.
16
17 You should have received a copy of the GNU General Public License
18 along with this program. If not, see <http://www.gnu.org/licenses/>. */
19
20 #include "defs.h"
21
22 #include "elf/external.h"
23 #include "elf/common.h"
24 #include "elf/mips.h"
25
26 #include "symtab.h"
27 #include "bfd.h"
28 #include "symfile.h"
29 #include "objfiles.h"
30 #include "gdbcore.h"
31 #include "target.h"
32 #include "inferior.h"
33 #include "infrun.h"
34 #include "regcache.h"
35 #include "gdbthread.h"
36 #include "observer.h"
37
38 #include "solist.h"
39 #include "solib.h"
40 #include "solib-svr4.h"
41
42 #include "bfd-target.h"
43 #include "elf-bfd.h"
44 #include "exec.h"
45 #include "auxv.h"
46 #include "gdb_bfd.h"
47 #include "probe.h"
48
49 static struct link_map_offsets *svr4_fetch_link_map_offsets (void);
50 static int svr4_have_link_map_offsets (void);
51 static void svr4_relocate_main_executable (void);
52 static void svr4_free_library_list (void *p_list);
53
54 /* On SVR4 systems, a list of symbols in the dynamic linker where
55 GDB can try to place a breakpoint to monitor shared library
56 events.
57
58 If none of these symbols are found, or other errors occur, then
59 SVR4 systems will fall back to using a symbol as the "startup
60 mapping complete" breakpoint address. */
61
62 static const char * const solib_break_names[] =
63 {
64 "r_debug_state",
65 "_r_debug_state",
66 "_dl_debug_state",
67 "rtld_db_dlactivity",
68 "__dl_rtld_db_dlactivity",
69 "_rtld_debug_state",
70
71 NULL
72 };
73
74 static const char * const bkpt_names[] =
75 {
76 "_start",
77 "__start",
78 "main",
79 NULL
80 };
81
82 static const char * const main_name_list[] =
83 {
84 "main_$main",
85 NULL
86 };
87
88 /* What to do when a probe stop occurs. */
89
90 enum probe_action
91 {
92 /* Something went seriously wrong. Stop using probes and
93 revert to using the older interface. */
94 PROBES_INTERFACE_FAILED,
95
96 /* No action is required. The shared object list is still
97 valid. */
98 DO_NOTHING,
99
100 /* The shared object list should be reloaded entirely. */
101 FULL_RELOAD,
102
103 /* Attempt to incrementally update the shared object list. If
104 the update fails or is not possible, fall back to reloading
105 the list in full. */
106 UPDATE_OR_RELOAD,
107 };
108
109 /* A probe's name and its associated action. */
110
111 struct probe_info
112 {
113 /* The name of the probe. */
114 const char *name;
115
116 /* What to do when a probe stop occurs. */
117 enum probe_action action;
118 };
119
120 /* A list of named probes and their associated actions. If all
121 probes are present in the dynamic linker then the probes-based
122 interface will be used. */
123
124 static const struct probe_info probe_info[] =
125 {
126 { "init_start", DO_NOTHING },
127 { "init_complete", FULL_RELOAD },
128 { "map_start", DO_NOTHING },
129 { "map_failed", DO_NOTHING },
130 { "reloc_complete", UPDATE_OR_RELOAD },
131 { "unmap_start", DO_NOTHING },
132 { "unmap_complete", FULL_RELOAD },
133 };
134
135 #define NUM_PROBES ARRAY_SIZE (probe_info)
136
137 /* Return non-zero if GDB_SO_NAME and INFERIOR_SO_NAME represent
138 the same shared library. */
139
140 static int
141 svr4_same_1 (const char *gdb_so_name, const char *inferior_so_name)
142 {
143 if (strcmp (gdb_so_name, inferior_so_name) == 0)
144 return 1;
145
146 /* On Solaris, when starting inferior we think that dynamic linker is
147 /usr/lib/ld.so.1, but later on, the table of loaded shared libraries
148 contains /lib/ld.so.1. Sometimes one file is a link to another, but
149 sometimes they have identical content, but are not linked to each
150 other. We don't restrict this check for Solaris, but the chances
151 of running into this situation elsewhere are very low. */
152 if (strcmp (gdb_so_name, "/usr/lib/ld.so.1") == 0
153 && strcmp (inferior_so_name, "/lib/ld.so.1") == 0)
154 return 1;
155
156 /* Similarly, we observed the same issue with sparc64, but with
157 different locations. */
158 if (strcmp (gdb_so_name, "/usr/lib/sparcv9/ld.so.1") == 0
159 && strcmp (inferior_so_name, "/lib/sparcv9/ld.so.1") == 0)
160 return 1;
161
162 return 0;
163 }
164
165 static int
166 svr4_same (struct so_list *gdb, struct so_list *inferior)
167 {
168 return (svr4_same_1 (gdb->so_original_name, inferior->so_original_name));
169 }
170
171 static lm_info_svr4 *
172 lm_info_read (CORE_ADDR lm_addr)
173 {
174 struct link_map_offsets *lmo = svr4_fetch_link_map_offsets ();
175 gdb_byte *lm;
176 lm_info_svr4 *lm_info;
177 struct cleanup *back_to;
178
179 lm = (gdb_byte *) xmalloc (lmo->link_map_size);
180 back_to = make_cleanup (xfree, lm);
181
182 if (target_read_memory (lm_addr, lm, lmo->link_map_size) != 0)
183 {
184 warning (_("Error reading shared library list entry at %s"),
185 paddress (target_gdbarch (), lm_addr)),
186 lm_info = NULL;
187 }
188 else
189 {
190 struct type *ptr_type = builtin_type (target_gdbarch ())->builtin_data_ptr;
191
192 lm_info = new lm_info_svr4;
193 lm_info->lm_addr = lm_addr;
194
195 lm_info->l_addr_inferior = extract_typed_address (&lm[lmo->l_addr_offset],
196 ptr_type);
197 lm_info->l_ld = extract_typed_address (&lm[lmo->l_ld_offset], ptr_type);
198 lm_info->l_next = extract_typed_address (&lm[lmo->l_next_offset],
199 ptr_type);
200 lm_info->l_prev = extract_typed_address (&lm[lmo->l_prev_offset],
201 ptr_type);
202 lm_info->l_name = extract_typed_address (&lm[lmo->l_name_offset],
203 ptr_type);
204 }
205
206 do_cleanups (back_to);
207
208 return lm_info;
209 }
210
211 static int
212 has_lm_dynamic_from_link_map (void)
213 {
214 struct link_map_offsets *lmo = svr4_fetch_link_map_offsets ();
215
216 return lmo->l_ld_offset >= 0;
217 }
218
219 static CORE_ADDR
220 lm_addr_check (const struct so_list *so, bfd *abfd)
221 {
222 lm_info_svr4 *li = (lm_info_svr4 *) so->lm_info;
223
224 if (!li->l_addr_p)
225 {
226 struct bfd_section *dyninfo_sect;
227 CORE_ADDR l_addr, l_dynaddr, dynaddr;
228
229 l_addr = li->l_addr_inferior;
230
231 if (! abfd || ! has_lm_dynamic_from_link_map ())
232 goto set_addr;
233
234 l_dynaddr = li->l_ld;
235
236 dyninfo_sect = bfd_get_section_by_name (abfd, ".dynamic");
237 if (dyninfo_sect == NULL)
238 goto set_addr;
239
240 dynaddr = bfd_section_vma (abfd, dyninfo_sect);
241
242 if (dynaddr + l_addr != l_dynaddr)
243 {
244 CORE_ADDR align = 0x1000;
245 CORE_ADDR minpagesize = align;
246
247 if (bfd_get_flavour (abfd) == bfd_target_elf_flavour)
248 {
249 Elf_Internal_Ehdr *ehdr = elf_tdata (abfd)->elf_header;
250 Elf_Internal_Phdr *phdr = elf_tdata (abfd)->phdr;
251 int i;
252
253 align = 1;
254
255 for (i = 0; i < ehdr->e_phnum; i++)
256 if (phdr[i].p_type == PT_LOAD && phdr[i].p_align > align)
257 align = phdr[i].p_align;
258
259 minpagesize = get_elf_backend_data (abfd)->minpagesize;
260 }
261
262 /* Turn it into a mask. */
263 align--;
264
265 /* If the changes match the alignment requirements, we
266 assume we're using a core file that was generated by the
267 same binary, just prelinked with a different base offset.
268 If it doesn't match, we may have a different binary, the
269 same binary with the dynamic table loaded at an unrelated
270 location, or anything, really. To avoid regressions,
271 don't adjust the base offset in the latter case, although
272 odds are that, if things really changed, debugging won't
273 quite work.
274
275 One could expect more the condition
276 ((l_addr & align) == 0 && ((l_dynaddr - dynaddr) & align) == 0)
277 but the one below is relaxed for PPC. The PPC kernel supports
278 either 4k or 64k page sizes. To be prepared for 64k pages,
279 PPC ELF files are built using an alignment requirement of 64k.
280 However, when running on a kernel supporting 4k pages, the memory
281 mapping of the library may not actually happen on a 64k boundary!
282
283 (In the usual case where (l_addr & align) == 0, this check is
284 equivalent to the possibly expected check above.)
285
286 Even on PPC it must be zero-aligned at least for MINPAGESIZE. */
287
288 l_addr = l_dynaddr - dynaddr;
289
290 if ((l_addr & (minpagesize - 1)) == 0
291 && (l_addr & align) == ((l_dynaddr - dynaddr) & align))
292 {
293 if (info_verbose)
294 printf_unfiltered (_("Using PIC (Position Independent Code) "
295 "prelink displacement %s for \"%s\".\n"),
296 paddress (target_gdbarch (), l_addr),
297 so->so_name);
298 }
299 else
300 {
301 /* There is no way to verify the library file matches. prelink
302 can during prelinking of an unprelinked file (or unprelinking
303 of a prelinked file) shift the DYNAMIC segment by arbitrary
304 offset without any page size alignment. There is no way to
305 find out the ELF header and/or Program Headers for a limited
306 verification if it they match. One could do a verification
307 of the DYNAMIC segment. Still the found address is the best
308 one GDB could find. */
309
310 warning (_(".dynamic section for \"%s\" "
311 "is not at the expected address "
312 "(wrong library or version mismatch?)"), so->so_name);
313 }
314 }
315
316 set_addr:
317 li->l_addr = l_addr;
318 li->l_addr_p = 1;
319 }
320
321 return li->l_addr;
322 }
323
324 /* Per pspace SVR4 specific data. */
325
326 struct svr4_info
327 {
328 CORE_ADDR debug_base; /* Base of dynamic linker structures. */
329
330 /* Validity flag for debug_loader_offset. */
331 int debug_loader_offset_p;
332
333 /* Load address for the dynamic linker, inferred. */
334 CORE_ADDR debug_loader_offset;
335
336 /* Name of the dynamic linker, valid if debug_loader_offset_p. */
337 char *debug_loader_name;
338
339 /* Load map address for the main executable. */
340 CORE_ADDR main_lm_addr;
341
342 CORE_ADDR interp_text_sect_low;
343 CORE_ADDR interp_text_sect_high;
344 CORE_ADDR interp_plt_sect_low;
345 CORE_ADDR interp_plt_sect_high;
346
347 /* Nonzero if the list of objects was last obtained from the target
348 via qXfer:libraries-svr4:read. */
349 int using_xfer;
350
351 /* Table of struct probe_and_action instances, used by the
352 probes-based interface to map breakpoint addresses to probes
353 and their associated actions. Lookup is performed using
354 probe_and_action->probe->address. */
355 htab_t probes_table;
356
357 /* List of objects loaded into the inferior, used by the probes-
358 based interface. */
359 struct so_list *solib_list;
360 };
361
362 /* Per-program-space data key. */
363 static const struct program_space_data *solib_svr4_pspace_data;
364
365 /* Free the probes table. */
366
367 static void
368 free_probes_table (struct svr4_info *info)
369 {
370 if (info->probes_table == NULL)
371 return;
372
373 htab_delete (info->probes_table);
374 info->probes_table = NULL;
375 }
376
377 /* Free the solib list. */
378
379 static void
380 free_solib_list (struct svr4_info *info)
381 {
382 svr4_free_library_list (&info->solib_list);
383 info->solib_list = NULL;
384 }
385
386 static void
387 svr4_pspace_data_cleanup (struct program_space *pspace, void *arg)
388 {
389 struct svr4_info *info = (struct svr4_info *) arg;
390
391 free_probes_table (info);
392 free_solib_list (info);
393
394 xfree (info);
395 }
396
397 /* Get the current svr4 data. If none is found yet, add it now. This
398 function always returns a valid object. */
399
400 static struct svr4_info *
401 get_svr4_info (void)
402 {
403 struct svr4_info *info;
404
405 info = (struct svr4_info *) program_space_data (current_program_space,
406 solib_svr4_pspace_data);
407 if (info != NULL)
408 return info;
409
410 info = XCNEW (struct svr4_info);
411 set_program_space_data (current_program_space, solib_svr4_pspace_data, info);
412 return info;
413 }
414
415 /* Local function prototypes */
416
417 static int match_main (const char *);
418
419 /* Read program header TYPE from inferior memory. The header is found
420 by scanning the OS auxillary vector.
421
422 If TYPE == -1, return the program headers instead of the contents of
423 one program header.
424
425 Return a pointer to allocated memory holding the program header contents,
426 or NULL on failure. If sucessful, and unless P_SECT_SIZE is NULL, the
427 size of those contents is returned to P_SECT_SIZE. Likewise, the target
428 architecture size (32-bit or 64-bit) is returned to P_ARCH_SIZE and
429 the base address of the section is returned in BASE_ADDR. */
430
431 static gdb_byte *
432 read_program_header (int type, int *p_sect_size, int *p_arch_size,
433 CORE_ADDR *base_addr)
434 {
435 enum bfd_endian byte_order = gdbarch_byte_order (target_gdbarch ());
436 CORE_ADDR at_phdr, at_phent, at_phnum, pt_phdr = 0;
437 int arch_size, sect_size;
438 CORE_ADDR sect_addr;
439 gdb_byte *buf;
440 int pt_phdr_p = 0;
441
442 /* Get required auxv elements from target. */
443 if (target_auxv_search (&current_target, AT_PHDR, &at_phdr) <= 0)
444 return 0;
445 if (target_auxv_search (&current_target, AT_PHENT, &at_phent) <= 0)
446 return 0;
447 if (target_auxv_search (&current_target, AT_PHNUM, &at_phnum) <= 0)
448 return 0;
449 if (!at_phdr || !at_phnum)
450 return 0;
451
452 /* Determine ELF architecture type. */
453 if (at_phent == sizeof (Elf32_External_Phdr))
454 arch_size = 32;
455 else if (at_phent == sizeof (Elf64_External_Phdr))
456 arch_size = 64;
457 else
458 return 0;
459
460 /* Find the requested segment. */
461 if (type == -1)
462 {
463 sect_addr = at_phdr;
464 sect_size = at_phent * at_phnum;
465 }
466 else if (arch_size == 32)
467 {
468 Elf32_External_Phdr phdr;
469 int i;
470
471 /* Search for requested PHDR. */
472 for (i = 0; i < at_phnum; i++)
473 {
474 int p_type;
475
476 if (target_read_memory (at_phdr + i * sizeof (phdr),
477 (gdb_byte *)&phdr, sizeof (phdr)))
478 return 0;
479
480 p_type = extract_unsigned_integer ((gdb_byte *) phdr.p_type,
481 4, byte_order);
482
483 if (p_type == PT_PHDR)
484 {
485 pt_phdr_p = 1;
486 pt_phdr = extract_unsigned_integer ((gdb_byte *) phdr.p_vaddr,
487 4, byte_order);
488 }
489
490 if (p_type == type)
491 break;
492 }
493
494 if (i == at_phnum)
495 return 0;
496
497 /* Retrieve address and size. */
498 sect_addr = extract_unsigned_integer ((gdb_byte *)phdr.p_vaddr,
499 4, byte_order);
500 sect_size = extract_unsigned_integer ((gdb_byte *)phdr.p_memsz,
501 4, byte_order);
502 }
503 else
504 {
505 Elf64_External_Phdr phdr;
506 int i;
507
508 /* Search for requested PHDR. */
509 for (i = 0; i < at_phnum; i++)
510 {
511 int p_type;
512
513 if (target_read_memory (at_phdr + i * sizeof (phdr),
514 (gdb_byte *)&phdr, sizeof (phdr)))
515 return 0;
516
517 p_type = extract_unsigned_integer ((gdb_byte *) phdr.p_type,
518 4, byte_order);
519
520 if (p_type == PT_PHDR)
521 {
522 pt_phdr_p = 1;
523 pt_phdr = extract_unsigned_integer ((gdb_byte *) phdr.p_vaddr,
524 8, byte_order);
525 }
526
527 if (p_type == type)
528 break;
529 }
530
531 if (i == at_phnum)
532 return 0;
533
534 /* Retrieve address and size. */
535 sect_addr = extract_unsigned_integer ((gdb_byte *)phdr.p_vaddr,
536 8, byte_order);
537 sect_size = extract_unsigned_integer ((gdb_byte *)phdr.p_memsz,
538 8, byte_order);
539 }
540
541 /* PT_PHDR is optional, but we really need it
542 for PIE to make this work in general. */
543
544 if (pt_phdr_p)
545 {
546 /* at_phdr is real address in memory. pt_phdr is what pheader says it is.
547 Relocation offset is the difference between the two. */
548 sect_addr = sect_addr + (at_phdr - pt_phdr);
549 }
550
551 /* Read in requested program header. */
552 buf = (gdb_byte *) xmalloc (sect_size);
553 if (target_read_memory (sect_addr, buf, sect_size))
554 {
555 xfree (buf);
556 return NULL;
557 }
558
559 if (p_arch_size)
560 *p_arch_size = arch_size;
561 if (p_sect_size)
562 *p_sect_size = sect_size;
563 if (base_addr)
564 *base_addr = sect_addr;
565
566 return buf;
567 }
568
569
570 /* Return program interpreter string. */
571 static char *
572 find_program_interpreter (void)
573 {
574 gdb_byte *buf = NULL;
575
576 /* If we have an exec_bfd, use its section table. */
577 if (exec_bfd
578 && bfd_get_flavour (exec_bfd) == bfd_target_elf_flavour)
579 {
580 struct bfd_section *interp_sect;
581
582 interp_sect = bfd_get_section_by_name (exec_bfd, ".interp");
583 if (interp_sect != NULL)
584 {
585 int sect_size = bfd_section_size (exec_bfd, interp_sect);
586
587 buf = (gdb_byte *) xmalloc (sect_size);
588 bfd_get_section_contents (exec_bfd, interp_sect, buf, 0, sect_size);
589 }
590 }
591
592 /* If we didn't find it, use the target auxillary vector. */
593 if (!buf)
594 buf = read_program_header (PT_INTERP, NULL, NULL, NULL);
595
596 return (char *) buf;
597 }
598
599
600 /* Scan for DESIRED_DYNTAG in .dynamic section of ABFD. If DESIRED_DYNTAG is
601 found, 1 is returned and the corresponding PTR is set. */
602
603 static int
604 scan_dyntag (const int desired_dyntag, bfd *abfd, CORE_ADDR *ptr,
605 CORE_ADDR *ptr_addr)
606 {
607 int arch_size, step, sect_size;
608 long current_dyntag;
609 CORE_ADDR dyn_ptr, dyn_addr;
610 gdb_byte *bufend, *bufstart, *buf;
611 Elf32_External_Dyn *x_dynp_32;
612 Elf64_External_Dyn *x_dynp_64;
613 struct bfd_section *sect;
614 struct target_section *target_section;
615
616 if (abfd == NULL)
617 return 0;
618
619 if (bfd_get_flavour (abfd) != bfd_target_elf_flavour)
620 return 0;
621
622 arch_size = bfd_get_arch_size (abfd);
623 if (arch_size == -1)
624 return 0;
625
626 /* Find the start address of the .dynamic section. */
627 sect = bfd_get_section_by_name (abfd, ".dynamic");
628 if (sect == NULL)
629 return 0;
630
631 for (target_section = current_target_sections->sections;
632 target_section < current_target_sections->sections_end;
633 target_section++)
634 if (sect == target_section->the_bfd_section)
635 break;
636 if (target_section < current_target_sections->sections_end)
637 dyn_addr = target_section->addr;
638 else
639 {
640 /* ABFD may come from OBJFILE acting only as a symbol file without being
641 loaded into the target (see add_symbol_file_command). This case is
642 such fallback to the file VMA address without the possibility of
643 having the section relocated to its actual in-memory address. */
644
645 dyn_addr = bfd_section_vma (abfd, sect);
646 }
647
648 /* Read in .dynamic from the BFD. We will get the actual value
649 from memory later. */
650 sect_size = bfd_section_size (abfd, sect);
651 buf = bufstart = (gdb_byte *) alloca (sect_size);
652 if (!bfd_get_section_contents (abfd, sect,
653 buf, 0, sect_size))
654 return 0;
655
656 /* Iterate over BUF and scan for DYNTAG. If found, set PTR and return. */
657 step = (arch_size == 32) ? sizeof (Elf32_External_Dyn)
658 : sizeof (Elf64_External_Dyn);
659 for (bufend = buf + sect_size;
660 buf < bufend;
661 buf += step)
662 {
663 if (arch_size == 32)
664 {
665 x_dynp_32 = (Elf32_External_Dyn *) buf;
666 current_dyntag = bfd_h_get_32 (abfd, (bfd_byte *) x_dynp_32->d_tag);
667 dyn_ptr = bfd_h_get_32 (abfd, (bfd_byte *) x_dynp_32->d_un.d_ptr);
668 }
669 else
670 {
671 x_dynp_64 = (Elf64_External_Dyn *) buf;
672 current_dyntag = bfd_h_get_64 (abfd, (bfd_byte *) x_dynp_64->d_tag);
673 dyn_ptr = bfd_h_get_64 (abfd, (bfd_byte *) x_dynp_64->d_un.d_ptr);
674 }
675 if (current_dyntag == DT_NULL)
676 return 0;
677 if (current_dyntag == desired_dyntag)
678 {
679 /* If requested, try to read the runtime value of this .dynamic
680 entry. */
681 if (ptr)
682 {
683 struct type *ptr_type;
684 gdb_byte ptr_buf[8];
685 CORE_ADDR ptr_addr_1;
686
687 ptr_type = builtin_type (target_gdbarch ())->builtin_data_ptr;
688 ptr_addr_1 = dyn_addr + (buf - bufstart) + arch_size / 8;
689 if (target_read_memory (ptr_addr_1, ptr_buf, arch_size / 8) == 0)
690 dyn_ptr = extract_typed_address (ptr_buf, ptr_type);
691 *ptr = dyn_ptr;
692 if (ptr_addr)
693 *ptr_addr = dyn_addr + (buf - bufstart);
694 }
695 return 1;
696 }
697 }
698
699 return 0;
700 }
701
702 /* Scan for DESIRED_DYNTAG in .dynamic section of the target's main executable,
703 found by consulting the OS auxillary vector. If DESIRED_DYNTAG is found, 1
704 is returned and the corresponding PTR is set. */
705
706 static int
707 scan_dyntag_auxv (const int desired_dyntag, CORE_ADDR *ptr,
708 CORE_ADDR *ptr_addr)
709 {
710 enum bfd_endian byte_order = gdbarch_byte_order (target_gdbarch ());
711 int sect_size, arch_size, step;
712 long current_dyntag;
713 CORE_ADDR dyn_ptr;
714 CORE_ADDR base_addr;
715 gdb_byte *bufend, *bufstart, *buf;
716
717 /* Read in .dynamic section. */
718 buf = bufstart = read_program_header (PT_DYNAMIC, &sect_size, &arch_size,
719 &base_addr);
720 if (!buf)
721 return 0;
722
723 /* Iterate over BUF and scan for DYNTAG. If found, set PTR and return. */
724 step = (arch_size == 32) ? sizeof (Elf32_External_Dyn)
725 : sizeof (Elf64_External_Dyn);
726 for (bufend = buf + sect_size;
727 buf < bufend;
728 buf += step)
729 {
730 if (arch_size == 32)
731 {
732 Elf32_External_Dyn *dynp = (Elf32_External_Dyn *) buf;
733
734 current_dyntag = extract_unsigned_integer ((gdb_byte *) dynp->d_tag,
735 4, byte_order);
736 dyn_ptr = extract_unsigned_integer ((gdb_byte *) dynp->d_un.d_ptr,
737 4, byte_order);
738 }
739 else
740 {
741 Elf64_External_Dyn *dynp = (Elf64_External_Dyn *) buf;
742
743 current_dyntag = extract_unsigned_integer ((gdb_byte *) dynp->d_tag,
744 8, byte_order);
745 dyn_ptr = extract_unsigned_integer ((gdb_byte *) dynp->d_un.d_ptr,
746 8, byte_order);
747 }
748 if (current_dyntag == DT_NULL)
749 break;
750
751 if (current_dyntag == desired_dyntag)
752 {
753 if (ptr)
754 *ptr = dyn_ptr;
755
756 if (ptr_addr)
757 *ptr_addr = base_addr + buf - bufstart;
758
759 xfree (bufstart);
760 return 1;
761 }
762 }
763
764 xfree (bufstart);
765 return 0;
766 }
767
768 /* Locate the base address of dynamic linker structs for SVR4 elf
769 targets.
770
771 For SVR4 elf targets the address of the dynamic linker's runtime
772 structure is contained within the dynamic info section in the
773 executable file. The dynamic section is also mapped into the
774 inferior address space. Because the runtime loader fills in the
775 real address before starting the inferior, we have to read in the
776 dynamic info section from the inferior address space.
777 If there are any errors while trying to find the address, we
778 silently return 0, otherwise the found address is returned. */
779
780 static CORE_ADDR
781 elf_locate_base (void)
782 {
783 struct bound_minimal_symbol msymbol;
784 CORE_ADDR dyn_ptr, dyn_ptr_addr;
785
786 /* Look for DT_MIPS_RLD_MAP first. MIPS executables use this
787 instead of DT_DEBUG, although they sometimes contain an unused
788 DT_DEBUG. */
789 if (scan_dyntag (DT_MIPS_RLD_MAP, exec_bfd, &dyn_ptr, NULL)
790 || scan_dyntag_auxv (DT_MIPS_RLD_MAP, &dyn_ptr, NULL))
791 {
792 struct type *ptr_type = builtin_type (target_gdbarch ())->builtin_data_ptr;
793 gdb_byte *pbuf;
794 int pbuf_size = TYPE_LENGTH (ptr_type);
795
796 pbuf = (gdb_byte *) alloca (pbuf_size);
797 /* DT_MIPS_RLD_MAP contains a pointer to the address
798 of the dynamic link structure. */
799 if (target_read_memory (dyn_ptr, pbuf, pbuf_size))
800 return 0;
801 return extract_typed_address (pbuf, ptr_type);
802 }
803
804 /* Then check DT_MIPS_RLD_MAP_REL. MIPS executables now use this form
805 because of needing to support PIE. DT_MIPS_RLD_MAP will also exist
806 in non-PIE. */
807 if (scan_dyntag (DT_MIPS_RLD_MAP_REL, exec_bfd, &dyn_ptr, &dyn_ptr_addr)
808 || scan_dyntag_auxv (DT_MIPS_RLD_MAP_REL, &dyn_ptr, &dyn_ptr_addr))
809 {
810 struct type *ptr_type = builtin_type (target_gdbarch ())->builtin_data_ptr;
811 gdb_byte *pbuf;
812 int pbuf_size = TYPE_LENGTH (ptr_type);
813
814 pbuf = (gdb_byte *) alloca (pbuf_size);
815 /* DT_MIPS_RLD_MAP_REL contains an offset from the address of the
816 DT slot to the address of the dynamic link structure. */
817 if (target_read_memory (dyn_ptr + dyn_ptr_addr, pbuf, pbuf_size))
818 return 0;
819 return extract_typed_address (pbuf, ptr_type);
820 }
821
822 /* Find DT_DEBUG. */
823 if (scan_dyntag (DT_DEBUG, exec_bfd, &dyn_ptr, NULL)
824 || scan_dyntag_auxv (DT_DEBUG, &dyn_ptr, NULL))
825 return dyn_ptr;
826
827 /* This may be a static executable. Look for the symbol
828 conventionally named _r_debug, as a last resort. */
829 msymbol = lookup_minimal_symbol ("_r_debug", NULL, symfile_objfile);
830 if (msymbol.minsym != NULL)
831 return BMSYMBOL_VALUE_ADDRESS (msymbol);
832
833 /* DT_DEBUG entry not found. */
834 return 0;
835 }
836
837 /* Locate the base address of dynamic linker structs.
838
839 For both the SunOS and SVR4 shared library implementations, if the
840 inferior executable has been linked dynamically, there is a single
841 address somewhere in the inferior's data space which is the key to
842 locating all of the dynamic linker's runtime structures. This
843 address is the value of the debug base symbol. The job of this
844 function is to find and return that address, or to return 0 if there
845 is no such address (the executable is statically linked for example).
846
847 For SunOS, the job is almost trivial, since the dynamic linker and
848 all of it's structures are statically linked to the executable at
849 link time. Thus the symbol for the address we are looking for has
850 already been added to the minimal symbol table for the executable's
851 objfile at the time the symbol file's symbols were read, and all we
852 have to do is look it up there. Note that we explicitly do NOT want
853 to find the copies in the shared library.
854
855 The SVR4 version is a bit more complicated because the address
856 is contained somewhere in the dynamic info section. We have to go
857 to a lot more work to discover the address of the debug base symbol.
858 Because of this complexity, we cache the value we find and return that
859 value on subsequent invocations. Note there is no copy in the
860 executable symbol tables. */
861
862 static CORE_ADDR
863 locate_base (struct svr4_info *info)
864 {
865 /* Check to see if we have a currently valid address, and if so, avoid
866 doing all this work again and just return the cached address. If
867 we have no cached address, try to locate it in the dynamic info
868 section for ELF executables. There's no point in doing any of this
869 though if we don't have some link map offsets to work with. */
870
871 if (info->debug_base == 0 && svr4_have_link_map_offsets ())
872 info->debug_base = elf_locate_base ();
873 return info->debug_base;
874 }
875
876 /* Find the first element in the inferior's dynamic link map, and
877 return its address in the inferior. Return zero if the address
878 could not be determined.
879
880 FIXME: Perhaps we should validate the info somehow, perhaps by
881 checking r_version for a known version number, or r_state for
882 RT_CONSISTENT. */
883
884 static CORE_ADDR
885 solib_svr4_r_map (struct svr4_info *info)
886 {
887 struct link_map_offsets *lmo = svr4_fetch_link_map_offsets ();
888 struct type *ptr_type = builtin_type (target_gdbarch ())->builtin_data_ptr;
889 CORE_ADDR addr = 0;
890
891 TRY
892 {
893 addr = read_memory_typed_address (info->debug_base + lmo->r_map_offset,
894 ptr_type);
895 }
896 CATCH (ex, RETURN_MASK_ERROR)
897 {
898 exception_print (gdb_stderr, ex);
899 }
900 END_CATCH
901
902 return addr;
903 }
904
905 /* Find r_brk from the inferior's debug base. */
906
907 static CORE_ADDR
908 solib_svr4_r_brk (struct svr4_info *info)
909 {
910 struct link_map_offsets *lmo = svr4_fetch_link_map_offsets ();
911 struct type *ptr_type = builtin_type (target_gdbarch ())->builtin_data_ptr;
912
913 return read_memory_typed_address (info->debug_base + lmo->r_brk_offset,
914 ptr_type);
915 }
916
917 /* Find the link map for the dynamic linker (if it is not in the
918 normal list of loaded shared objects). */
919
920 static CORE_ADDR
921 solib_svr4_r_ldsomap (struct svr4_info *info)
922 {
923 struct link_map_offsets *lmo = svr4_fetch_link_map_offsets ();
924 struct type *ptr_type = builtin_type (target_gdbarch ())->builtin_data_ptr;
925 enum bfd_endian byte_order = gdbarch_byte_order (target_gdbarch ());
926 ULONGEST version = 0;
927
928 TRY
929 {
930 /* Check version, and return zero if `struct r_debug' doesn't have
931 the r_ldsomap member. */
932 version
933 = read_memory_unsigned_integer (info->debug_base + lmo->r_version_offset,
934 lmo->r_version_size, byte_order);
935 }
936 CATCH (ex, RETURN_MASK_ERROR)
937 {
938 exception_print (gdb_stderr, ex);
939 }
940 END_CATCH
941
942 if (version < 2 || lmo->r_ldsomap_offset == -1)
943 return 0;
944
945 return read_memory_typed_address (info->debug_base + lmo->r_ldsomap_offset,
946 ptr_type);
947 }
948
949 /* On Solaris systems with some versions of the dynamic linker,
950 ld.so's l_name pointer points to the SONAME in the string table
951 rather than into writable memory. So that GDB can find shared
952 libraries when loading a core file generated by gcore, ensure that
953 memory areas containing the l_name string are saved in the core
954 file. */
955
956 static int
957 svr4_keep_data_in_core (CORE_ADDR vaddr, unsigned long size)
958 {
959 struct svr4_info *info;
960 CORE_ADDR ldsomap;
961 struct so_list *newobj;
962 struct cleanup *old_chain;
963 CORE_ADDR name_lm;
964
965 info = get_svr4_info ();
966
967 info->debug_base = 0;
968 locate_base (info);
969 if (!info->debug_base)
970 return 0;
971
972 ldsomap = solib_svr4_r_ldsomap (info);
973 if (!ldsomap)
974 return 0;
975
976 newobj = XCNEW (struct so_list);
977 old_chain = make_cleanup (xfree, newobj);
978 lm_info_svr4 *li = lm_info_read (ldsomap);
979 newobj->lm_info = li;
980 make_cleanup (xfree, newobj->lm_info);
981 name_lm = li != NULL ? li->l_name : 0;
982 do_cleanups (old_chain);
983
984 return (name_lm >= vaddr && name_lm < vaddr + size);
985 }
986
987 /* Implement the "open_symbol_file_object" target_so_ops method.
988
989 If no open symbol file, attempt to locate and open the main symbol
990 file. On SVR4 systems, this is the first link map entry. If its
991 name is here, we can open it. Useful when attaching to a process
992 without first loading its symbol file. */
993
994 static int
995 open_symbol_file_object (void *from_ttyp)
996 {
997 CORE_ADDR lm, l_name;
998 char *filename;
999 int errcode;
1000 int from_tty = *(int *)from_ttyp;
1001 struct link_map_offsets *lmo = svr4_fetch_link_map_offsets ();
1002 struct type *ptr_type = builtin_type (target_gdbarch ())->builtin_data_ptr;
1003 int l_name_size = TYPE_LENGTH (ptr_type);
1004 gdb_byte *l_name_buf = (gdb_byte *) xmalloc (l_name_size);
1005 struct cleanup *cleanups = make_cleanup (xfree, l_name_buf);
1006 struct svr4_info *info = get_svr4_info ();
1007 symfile_add_flags add_flags = 0;
1008
1009 if (from_tty)
1010 add_flags |= SYMFILE_VERBOSE;
1011
1012 if (symfile_objfile)
1013 if (!query (_("Attempt to reload symbols from process? ")))
1014 {
1015 do_cleanups (cleanups);
1016 return 0;
1017 }
1018
1019 /* Always locate the debug struct, in case it has moved. */
1020 info->debug_base = 0;
1021 if (locate_base (info) == 0)
1022 {
1023 do_cleanups (cleanups);
1024 return 0; /* failed somehow... */
1025 }
1026
1027 /* First link map member should be the executable. */
1028 lm = solib_svr4_r_map (info);
1029 if (lm == 0)
1030 {
1031 do_cleanups (cleanups);
1032 return 0; /* failed somehow... */
1033 }
1034
1035 /* Read address of name from target memory to GDB. */
1036 read_memory (lm + lmo->l_name_offset, l_name_buf, l_name_size);
1037
1038 /* Convert the address to host format. */
1039 l_name = extract_typed_address (l_name_buf, ptr_type);
1040
1041 if (l_name == 0)
1042 {
1043 do_cleanups (cleanups);
1044 return 0; /* No filename. */
1045 }
1046
1047 /* Now fetch the filename from target memory. */
1048 target_read_string (l_name, &filename, SO_NAME_MAX_PATH_SIZE - 1, &errcode);
1049 make_cleanup (xfree, filename);
1050
1051 if (errcode)
1052 {
1053 warning (_("failed to read exec filename from attached file: %s"),
1054 safe_strerror (errcode));
1055 do_cleanups (cleanups);
1056 return 0;
1057 }
1058
1059 /* Have a pathname: read the symbol file. */
1060 symbol_file_add_main (filename, add_flags);
1061
1062 do_cleanups (cleanups);
1063 return 1;
1064 }
1065
1066 /* Data exchange structure for the XML parser as returned by
1067 svr4_current_sos_via_xfer_libraries. */
1068
1069 struct svr4_library_list
1070 {
1071 struct so_list *head, **tailp;
1072
1073 /* Inferior address of struct link_map used for the main executable. It is
1074 NULL if not known. */
1075 CORE_ADDR main_lm;
1076 };
1077
1078 /* Implementation for target_so_ops.free_so. */
1079
1080 static void
1081 svr4_free_so (struct so_list *so)
1082 {
1083 lm_info_svr4 *li = (lm_info_svr4 *) so->lm_info;
1084
1085 delete li;
1086 }
1087
1088 /* Implement target_so_ops.clear_so. */
1089
1090 static void
1091 svr4_clear_so (struct so_list *so)
1092 {
1093 lm_info_svr4 *li = (lm_info_svr4 *) so->lm_info;
1094
1095 if (li != NULL)
1096 li->l_addr_p = 0;
1097 }
1098
1099 /* Free so_list built so far (called via cleanup). */
1100
1101 static void
1102 svr4_free_library_list (void *p_list)
1103 {
1104 struct so_list *list = *(struct so_list **) p_list;
1105
1106 while (list != NULL)
1107 {
1108 struct so_list *next = list->next;
1109
1110 free_so (list);
1111 list = next;
1112 }
1113 }
1114
1115 /* Copy library list. */
1116
1117 static struct so_list *
1118 svr4_copy_library_list (struct so_list *src)
1119 {
1120 struct so_list *dst = NULL;
1121 struct so_list **link = &dst;
1122
1123 while (src != NULL)
1124 {
1125 struct so_list *newobj;
1126
1127 newobj = XNEW (struct so_list);
1128 memcpy (newobj, src, sizeof (struct so_list));
1129
1130 lm_info_svr4 *src_li = (lm_info_svr4 *) src->lm_info;
1131 newobj->lm_info = new lm_info_svr4 (*src_li);
1132
1133 newobj->next = NULL;
1134 *link = newobj;
1135 link = &newobj->next;
1136
1137 src = src->next;
1138 }
1139
1140 return dst;
1141 }
1142
1143 #ifdef HAVE_LIBEXPAT
1144
1145 #include "xml-support.h"
1146
1147 /* Handle the start of a <library> element. Note: new elements are added
1148 at the tail of the list, keeping the list in order. */
1149
1150 static void
1151 library_list_start_library (struct gdb_xml_parser *parser,
1152 const struct gdb_xml_element *element,
1153 void *user_data, VEC(gdb_xml_value_s) *attributes)
1154 {
1155 struct svr4_library_list *list = (struct svr4_library_list *) user_data;
1156 const char *name
1157 = (const char *) xml_find_attribute (attributes, "name")->value;
1158 ULONGEST *lmp
1159 = (ULONGEST *) xml_find_attribute (attributes, "lm")->value;
1160 ULONGEST *l_addrp
1161 = (ULONGEST *) xml_find_attribute (attributes, "l_addr")->value;
1162 ULONGEST *l_ldp
1163 = (ULONGEST *) xml_find_attribute (attributes, "l_ld")->value;
1164 struct so_list *new_elem;
1165
1166 new_elem = XCNEW (struct so_list);
1167 lm_info_svr4 *li = new lm_info_svr4;
1168 new_elem->lm_info = li;
1169 li->lm_addr = *lmp;
1170 li->l_addr_inferior = *l_addrp;
1171 li->l_ld = *l_ldp;
1172
1173 strncpy (new_elem->so_name, name, sizeof (new_elem->so_name) - 1);
1174 new_elem->so_name[sizeof (new_elem->so_name) - 1] = 0;
1175 strcpy (new_elem->so_original_name, new_elem->so_name);
1176
1177 *list->tailp = new_elem;
1178 list->tailp = &new_elem->next;
1179 }
1180
1181 /* Handle the start of a <library-list-svr4> element. */
1182
1183 static void
1184 svr4_library_list_start_list (struct gdb_xml_parser *parser,
1185 const struct gdb_xml_element *element,
1186 void *user_data, VEC(gdb_xml_value_s) *attributes)
1187 {
1188 struct svr4_library_list *list = (struct svr4_library_list *) user_data;
1189 const char *version
1190 = (const char *) xml_find_attribute (attributes, "version")->value;
1191 struct gdb_xml_value *main_lm = xml_find_attribute (attributes, "main-lm");
1192
1193 if (strcmp (version, "1.0") != 0)
1194 gdb_xml_error (parser,
1195 _("SVR4 Library list has unsupported version \"%s\""),
1196 version);
1197
1198 if (main_lm)
1199 list->main_lm = *(ULONGEST *) main_lm->value;
1200 }
1201
1202 /* The allowed elements and attributes for an XML library list.
1203 The root element is a <library-list>. */
1204
1205 static const struct gdb_xml_attribute svr4_library_attributes[] =
1206 {
1207 { "name", GDB_XML_AF_NONE, NULL, NULL },
1208 { "lm", GDB_XML_AF_NONE, gdb_xml_parse_attr_ulongest, NULL },
1209 { "l_addr", GDB_XML_AF_NONE, gdb_xml_parse_attr_ulongest, NULL },
1210 { "l_ld", GDB_XML_AF_NONE, gdb_xml_parse_attr_ulongest, NULL },
1211 { NULL, GDB_XML_AF_NONE, NULL, NULL }
1212 };
1213
1214 static const struct gdb_xml_element svr4_library_list_children[] =
1215 {
1216 {
1217 "library", svr4_library_attributes, NULL,
1218 GDB_XML_EF_REPEATABLE | GDB_XML_EF_OPTIONAL,
1219 library_list_start_library, NULL
1220 },
1221 { NULL, NULL, NULL, GDB_XML_EF_NONE, NULL, NULL }
1222 };
1223
1224 static const struct gdb_xml_attribute svr4_library_list_attributes[] =
1225 {
1226 { "version", GDB_XML_AF_NONE, NULL, NULL },
1227 { "main-lm", GDB_XML_AF_OPTIONAL, gdb_xml_parse_attr_ulongest, NULL },
1228 { NULL, GDB_XML_AF_NONE, NULL, NULL }
1229 };
1230
1231 static const struct gdb_xml_element svr4_library_list_elements[] =
1232 {
1233 { "library-list-svr4", svr4_library_list_attributes, svr4_library_list_children,
1234 GDB_XML_EF_NONE, svr4_library_list_start_list, NULL },
1235 { NULL, NULL, NULL, GDB_XML_EF_NONE, NULL, NULL }
1236 };
1237
1238 /* Parse qXfer:libraries:read packet into *SO_LIST_RETURN. Return 1 if
1239
1240 Return 0 if packet not supported, *SO_LIST_RETURN is not modified in such
1241 case. Return 1 if *SO_LIST_RETURN contains the library list, it may be
1242 empty, caller is responsible for freeing all its entries. */
1243
1244 static int
1245 svr4_parse_libraries (const char *document, struct svr4_library_list *list)
1246 {
1247 struct cleanup *back_to = make_cleanup (svr4_free_library_list,
1248 &list->head);
1249
1250 memset (list, 0, sizeof (*list));
1251 list->tailp = &list->head;
1252 if (gdb_xml_parse_quick (_("target library list"), "library-list-svr4.dtd",
1253 svr4_library_list_elements, document, list) == 0)
1254 {
1255 /* Parsed successfully, keep the result. */
1256 discard_cleanups (back_to);
1257 return 1;
1258 }
1259
1260 do_cleanups (back_to);
1261 return 0;
1262 }
1263
1264 /* Attempt to get so_list from target via qXfer:libraries-svr4:read packet.
1265
1266 Return 0 if packet not supported, *SO_LIST_RETURN is not modified in such
1267 case. Return 1 if *SO_LIST_RETURN contains the library list, it may be
1268 empty, caller is responsible for freeing all its entries.
1269
1270 Note that ANNEX must be NULL if the remote does not explicitly allow
1271 qXfer:libraries-svr4:read packets with non-empty annexes. Support for
1272 this can be checked using target_augmented_libraries_svr4_read (). */
1273
1274 static int
1275 svr4_current_sos_via_xfer_libraries (struct svr4_library_list *list,
1276 const char *annex)
1277 {
1278 char *svr4_library_document;
1279 int result;
1280 struct cleanup *back_to;
1281
1282 gdb_assert (annex == NULL || target_augmented_libraries_svr4_read ());
1283
1284 /* Fetch the list of shared libraries. */
1285 svr4_library_document = target_read_stralloc (&current_target,
1286 TARGET_OBJECT_LIBRARIES_SVR4,
1287 annex);
1288 if (svr4_library_document == NULL)
1289 return 0;
1290
1291 back_to = make_cleanup (xfree, svr4_library_document);
1292 result = svr4_parse_libraries (svr4_library_document, list);
1293 do_cleanups (back_to);
1294
1295 return result;
1296 }
1297
1298 #else
1299
1300 static int
1301 svr4_current_sos_via_xfer_libraries (struct svr4_library_list *list,
1302 const char *annex)
1303 {
1304 return 0;
1305 }
1306
1307 #endif
1308
1309 /* If no shared library information is available from the dynamic
1310 linker, build a fallback list from other sources. */
1311
1312 static struct so_list *
1313 svr4_default_sos (void)
1314 {
1315 struct svr4_info *info = get_svr4_info ();
1316 struct so_list *newobj;
1317
1318 if (!info->debug_loader_offset_p)
1319 return NULL;
1320
1321 newobj = XCNEW (struct so_list);
1322 lm_info_svr4 *li = new lm_info_svr4;
1323 newobj->lm_info = li;
1324
1325 /* Nothing will ever check the other fields if we set l_addr_p. */
1326 li->l_addr = info->debug_loader_offset;
1327 li->l_addr_p = 1;
1328
1329 strncpy (newobj->so_name, info->debug_loader_name, SO_NAME_MAX_PATH_SIZE - 1);
1330 newobj->so_name[SO_NAME_MAX_PATH_SIZE - 1] = '\0';
1331 strcpy (newobj->so_original_name, newobj->so_name);
1332
1333 return newobj;
1334 }
1335
1336 /* Read the whole inferior libraries chain starting at address LM.
1337 Expect the first entry in the chain's previous entry to be PREV_LM.
1338 Add the entries to the tail referenced by LINK_PTR_PTR. Ignore the
1339 first entry if IGNORE_FIRST and set global MAIN_LM_ADDR according
1340 to it. Returns nonzero upon success. If zero is returned the
1341 entries stored to LINK_PTR_PTR are still valid although they may
1342 represent only part of the inferior library list. */
1343
1344 static int
1345 svr4_read_so_list (CORE_ADDR lm, CORE_ADDR prev_lm,
1346 struct so_list ***link_ptr_ptr, int ignore_first)
1347 {
1348 CORE_ADDR first_l_name = 0;
1349 CORE_ADDR next_lm;
1350
1351 for (; lm != 0; prev_lm = lm, lm = next_lm)
1352 {
1353 struct so_list *newobj;
1354 struct cleanup *old_chain;
1355 int errcode;
1356 char *buffer;
1357
1358 newobj = XCNEW (struct so_list);
1359 old_chain = make_cleanup_free_so (newobj);
1360
1361 lm_info_svr4 *li = lm_info_read (lm);
1362 newobj->lm_info = li;
1363 if (li == NULL)
1364 {
1365 do_cleanups (old_chain);
1366 return 0;
1367 }
1368
1369 next_lm = li->l_next;
1370
1371 if (li->l_prev != prev_lm)
1372 {
1373 warning (_("Corrupted shared library list: %s != %s"),
1374 paddress (target_gdbarch (), prev_lm),
1375 paddress (target_gdbarch (), li->l_prev));
1376 do_cleanups (old_chain);
1377 return 0;
1378 }
1379
1380 /* For SVR4 versions, the first entry in the link map is for the
1381 inferior executable, so we must ignore it. For some versions of
1382 SVR4, it has no name. For others (Solaris 2.3 for example), it
1383 does have a name, so we can no longer use a missing name to
1384 decide when to ignore it. */
1385 if (ignore_first && li->l_prev == 0)
1386 {
1387 struct svr4_info *info = get_svr4_info ();
1388
1389 first_l_name = li->l_name;
1390 info->main_lm_addr = li->lm_addr;
1391 do_cleanups (old_chain);
1392 continue;
1393 }
1394
1395 /* Extract this shared object's name. */
1396 target_read_string (li->l_name, &buffer, SO_NAME_MAX_PATH_SIZE - 1,
1397 &errcode);
1398 if (errcode != 0)
1399 {
1400 /* If this entry's l_name address matches that of the
1401 inferior executable, then this is not a normal shared
1402 object, but (most likely) a vDSO. In this case, silently
1403 skip it; otherwise emit a warning. */
1404 if (first_l_name == 0 || li->l_name != first_l_name)
1405 warning (_("Can't read pathname for load map: %s."),
1406 safe_strerror (errcode));
1407 do_cleanups (old_chain);
1408 continue;
1409 }
1410
1411 strncpy (newobj->so_name, buffer, SO_NAME_MAX_PATH_SIZE - 1);
1412 newobj->so_name[SO_NAME_MAX_PATH_SIZE - 1] = '\0';
1413 strcpy (newobj->so_original_name, newobj->so_name);
1414 xfree (buffer);
1415
1416 /* If this entry has no name, or its name matches the name
1417 for the main executable, don't include it in the list. */
1418 if (! newobj->so_name[0] || match_main (newobj->so_name))
1419 {
1420 do_cleanups (old_chain);
1421 continue;
1422 }
1423
1424 discard_cleanups (old_chain);
1425 newobj->next = 0;
1426 **link_ptr_ptr = newobj;
1427 *link_ptr_ptr = &newobj->next;
1428 }
1429
1430 return 1;
1431 }
1432
1433 /* Read the full list of currently loaded shared objects directly
1434 from the inferior, without referring to any libraries read and
1435 stored by the probes interface. Handle special cases relating
1436 to the first elements of the list. */
1437
1438 static struct so_list *
1439 svr4_current_sos_direct (struct svr4_info *info)
1440 {
1441 CORE_ADDR lm;
1442 struct so_list *head = NULL;
1443 struct so_list **link_ptr = &head;
1444 struct cleanup *back_to;
1445 int ignore_first;
1446 struct svr4_library_list library_list;
1447
1448 /* Fall back to manual examination of the target if the packet is not
1449 supported or gdbserver failed to find DT_DEBUG. gdb.server/solib-list.exp
1450 tests a case where gdbserver cannot find the shared libraries list while
1451 GDB itself is able to find it via SYMFILE_OBJFILE.
1452
1453 Unfortunately statically linked inferiors will also fall back through this
1454 suboptimal code path. */
1455
1456 info->using_xfer = svr4_current_sos_via_xfer_libraries (&library_list,
1457 NULL);
1458 if (info->using_xfer)
1459 {
1460 if (library_list.main_lm)
1461 info->main_lm_addr = library_list.main_lm;
1462
1463 return library_list.head ? library_list.head : svr4_default_sos ();
1464 }
1465
1466 /* Always locate the debug struct, in case it has moved. */
1467 info->debug_base = 0;
1468 locate_base (info);
1469
1470 /* If we can't find the dynamic linker's base structure, this
1471 must not be a dynamically linked executable. Hmm. */
1472 if (! info->debug_base)
1473 return svr4_default_sos ();
1474
1475 /* Assume that everything is a library if the dynamic loader was loaded
1476 late by a static executable. */
1477 if (exec_bfd && bfd_get_section_by_name (exec_bfd, ".dynamic") == NULL)
1478 ignore_first = 0;
1479 else
1480 ignore_first = 1;
1481
1482 back_to = make_cleanup (svr4_free_library_list, &head);
1483
1484 /* Walk the inferior's link map list, and build our list of
1485 `struct so_list' nodes. */
1486 lm = solib_svr4_r_map (info);
1487 if (lm)
1488 svr4_read_so_list (lm, 0, &link_ptr, ignore_first);
1489
1490 /* On Solaris, the dynamic linker is not in the normal list of
1491 shared objects, so make sure we pick it up too. Having
1492 symbol information for the dynamic linker is quite crucial
1493 for skipping dynamic linker resolver code. */
1494 lm = solib_svr4_r_ldsomap (info);
1495 if (lm)
1496 svr4_read_so_list (lm, 0, &link_ptr, 0);
1497
1498 discard_cleanups (back_to);
1499
1500 if (head == NULL)
1501 return svr4_default_sos ();
1502
1503 return head;
1504 }
1505
1506 /* Implement the main part of the "current_sos" target_so_ops
1507 method. */
1508
1509 static struct so_list *
1510 svr4_current_sos_1 (void)
1511 {
1512 struct svr4_info *info = get_svr4_info ();
1513
1514 /* If the solib list has been read and stored by the probes
1515 interface then we return a copy of the stored list. */
1516 if (info->solib_list != NULL)
1517 return svr4_copy_library_list (info->solib_list);
1518
1519 /* Otherwise obtain the solib list directly from the inferior. */
1520 return svr4_current_sos_direct (info);
1521 }
1522
1523 /* Implement the "current_sos" target_so_ops method. */
1524
1525 static struct so_list *
1526 svr4_current_sos (void)
1527 {
1528 struct so_list *so_head = svr4_current_sos_1 ();
1529 struct mem_range vsyscall_range;
1530
1531 /* Filter out the vDSO module, if present. Its symbol file would
1532 not be found on disk. The vDSO/vsyscall's OBJFILE is instead
1533 managed by symfile-mem.c:add_vsyscall_page. */
1534 if (gdbarch_vsyscall_range (target_gdbarch (), &vsyscall_range)
1535 && vsyscall_range.length != 0)
1536 {
1537 struct so_list **sop;
1538
1539 sop = &so_head;
1540 while (*sop != NULL)
1541 {
1542 struct so_list *so = *sop;
1543
1544 /* We can't simply match the vDSO by starting address alone,
1545 because lm_info->l_addr_inferior (and also l_addr) do not
1546 necessarily represent the real starting address of the
1547 ELF if the vDSO's ELF itself is "prelinked". The l_ld
1548 field (the ".dynamic" section of the shared object)
1549 always points at the absolute/resolved address though.
1550 So check whether that address is inside the vDSO's
1551 mapping instead.
1552
1553 E.g., on Linux 3.16 (x86_64) the vDSO is a regular
1554 0-based ELF, and we see:
1555
1556 (gdb) info auxv
1557 33 AT_SYSINFO_EHDR System-supplied DSO's ELF header 0x7ffff7ffb000
1558 (gdb) p/x *_r_debug.r_map.l_next
1559 $1 = {l_addr = 0x7ffff7ffb000, ..., l_ld = 0x7ffff7ffb318, ...}
1560
1561 And on Linux 2.6.32 (x86_64) we see:
1562
1563 (gdb) info auxv
1564 33 AT_SYSINFO_EHDR System-supplied DSO's ELF header 0x7ffff7ffe000
1565 (gdb) p/x *_r_debug.r_map.l_next
1566 $5 = {l_addr = 0x7ffff88fe000, ..., l_ld = 0x7ffff7ffe580, ... }
1567
1568 Dumping that vDSO shows:
1569
1570 (gdb) info proc mappings
1571 0x7ffff7ffe000 0x7ffff7fff000 0x1000 0 [vdso]
1572 (gdb) dump memory vdso.bin 0x7ffff7ffe000 0x7ffff7fff000
1573 # readelf -Wa vdso.bin
1574 [...]
1575 Entry point address: 0xffffffffff700700
1576 [...]
1577 Section Headers:
1578 [Nr] Name Type Address Off Size
1579 [ 0] NULL 0000000000000000 000000 000000
1580 [ 1] .hash HASH ffffffffff700120 000120 000038
1581 [ 2] .dynsym DYNSYM ffffffffff700158 000158 0000d8
1582 [...]
1583 [ 9] .dynamic DYNAMIC ffffffffff700580 000580 0000f0
1584 */
1585
1586 lm_info_svr4 *li = (lm_info_svr4 *) so->lm_info;
1587
1588 if (address_in_mem_range (li->l_ld, &vsyscall_range))
1589 {
1590 *sop = so->next;
1591 free_so (so);
1592 break;
1593 }
1594
1595 sop = &so->next;
1596 }
1597 }
1598
1599 return so_head;
1600 }
1601
1602 /* Get the address of the link_map for a given OBJFILE. */
1603
1604 CORE_ADDR
1605 svr4_fetch_objfile_link_map (struct objfile *objfile)
1606 {
1607 struct so_list *so;
1608 struct svr4_info *info = get_svr4_info ();
1609
1610 /* Cause svr4_current_sos() to be run if it hasn't been already. */
1611 if (info->main_lm_addr == 0)
1612 solib_add (NULL, 0, auto_solib_add);
1613
1614 /* svr4_current_sos() will set main_lm_addr for the main executable. */
1615 if (objfile == symfile_objfile)
1616 return info->main_lm_addr;
1617
1618 /* The other link map addresses may be found by examining the list
1619 of shared libraries. */
1620 for (so = master_so_list (); so; so = so->next)
1621 if (so->objfile == objfile)
1622 {
1623 lm_info_svr4 *li = (lm_info_svr4 *) so->lm_info;
1624
1625 return li->lm_addr;
1626 }
1627
1628 /* Not found! */
1629 return 0;
1630 }
1631
1632 /* On some systems, the only way to recognize the link map entry for
1633 the main executable file is by looking at its name. Return
1634 non-zero iff SONAME matches one of the known main executable names. */
1635
1636 static int
1637 match_main (const char *soname)
1638 {
1639 const char * const *mainp;
1640
1641 for (mainp = main_name_list; *mainp != NULL; mainp++)
1642 {
1643 if (strcmp (soname, *mainp) == 0)
1644 return (1);
1645 }
1646
1647 return (0);
1648 }
1649
1650 /* Return 1 if PC lies in the dynamic symbol resolution code of the
1651 SVR4 run time loader. */
1652
1653 int
1654 svr4_in_dynsym_resolve_code (CORE_ADDR pc)
1655 {
1656 struct svr4_info *info = get_svr4_info ();
1657
1658 return ((pc >= info->interp_text_sect_low
1659 && pc < info->interp_text_sect_high)
1660 || (pc >= info->interp_plt_sect_low
1661 && pc < info->interp_plt_sect_high)
1662 || in_plt_section (pc)
1663 || in_gnu_ifunc_stub (pc));
1664 }
1665
1666 /* Given an executable's ABFD and target, compute the entry-point
1667 address. */
1668
1669 static CORE_ADDR
1670 exec_entry_point (struct bfd *abfd, struct target_ops *targ)
1671 {
1672 CORE_ADDR addr;
1673
1674 /* KevinB wrote ... for most targets, the address returned by
1675 bfd_get_start_address() is the entry point for the start
1676 function. But, for some targets, bfd_get_start_address() returns
1677 the address of a function descriptor from which the entry point
1678 address may be extracted. This address is extracted by
1679 gdbarch_convert_from_func_ptr_addr(). The method
1680 gdbarch_convert_from_func_ptr_addr() is the merely the identify
1681 function for targets which don't use function descriptors. */
1682 addr = gdbarch_convert_from_func_ptr_addr (target_gdbarch (),
1683 bfd_get_start_address (abfd),
1684 targ);
1685 return gdbarch_addr_bits_remove (target_gdbarch (), addr);
1686 }
1687
1688 /* A probe and its associated action. */
1689
1690 struct probe_and_action
1691 {
1692 /* The probe. */
1693 struct probe *probe;
1694
1695 /* The relocated address of the probe. */
1696 CORE_ADDR address;
1697
1698 /* The action. */
1699 enum probe_action action;
1700 };
1701
1702 /* Returns a hash code for the probe_and_action referenced by p. */
1703
1704 static hashval_t
1705 hash_probe_and_action (const void *p)
1706 {
1707 const struct probe_and_action *pa = (const struct probe_and_action *) p;
1708
1709 return (hashval_t) pa->address;
1710 }
1711
1712 /* Returns non-zero if the probe_and_actions referenced by p1 and p2
1713 are equal. */
1714
1715 static int
1716 equal_probe_and_action (const void *p1, const void *p2)
1717 {
1718 const struct probe_and_action *pa1 = (const struct probe_and_action *) p1;
1719 const struct probe_and_action *pa2 = (const struct probe_and_action *) p2;
1720
1721 return pa1->address == pa2->address;
1722 }
1723
1724 /* Register a solib event probe and its associated action in the
1725 probes table. */
1726
1727 static void
1728 register_solib_event_probe (struct probe *probe, CORE_ADDR address,
1729 enum probe_action action)
1730 {
1731 struct svr4_info *info = get_svr4_info ();
1732 struct probe_and_action lookup, *pa;
1733 void **slot;
1734
1735 /* Create the probes table, if necessary. */
1736 if (info->probes_table == NULL)
1737 info->probes_table = htab_create_alloc (1, hash_probe_and_action,
1738 equal_probe_and_action,
1739 xfree, xcalloc, xfree);
1740
1741 lookup.probe = probe;
1742 lookup.address = address;
1743 slot = htab_find_slot (info->probes_table, &lookup, INSERT);
1744 gdb_assert (*slot == HTAB_EMPTY_ENTRY);
1745
1746 pa = XCNEW (struct probe_and_action);
1747 pa->probe = probe;
1748 pa->address = address;
1749 pa->action = action;
1750
1751 *slot = pa;
1752 }
1753
1754 /* Get the solib event probe at the specified location, and the
1755 action associated with it. Returns NULL if no solib event probe
1756 was found. */
1757
1758 static struct probe_and_action *
1759 solib_event_probe_at (struct svr4_info *info, CORE_ADDR address)
1760 {
1761 struct probe_and_action lookup;
1762 void **slot;
1763
1764 lookup.address = address;
1765 slot = htab_find_slot (info->probes_table, &lookup, NO_INSERT);
1766
1767 if (slot == NULL)
1768 return NULL;
1769
1770 return (struct probe_and_action *) *slot;
1771 }
1772
1773 /* Decide what action to take when the specified solib event probe is
1774 hit. */
1775
1776 static enum probe_action
1777 solib_event_probe_action (struct probe_and_action *pa)
1778 {
1779 enum probe_action action;
1780 unsigned probe_argc = 0;
1781 struct frame_info *frame = get_current_frame ();
1782
1783 action = pa->action;
1784 if (action == DO_NOTHING || action == PROBES_INTERFACE_FAILED)
1785 return action;
1786
1787 gdb_assert (action == FULL_RELOAD || action == UPDATE_OR_RELOAD);
1788
1789 /* Check that an appropriate number of arguments has been supplied.
1790 We expect:
1791 arg0: Lmid_t lmid (mandatory)
1792 arg1: struct r_debug *debug_base (mandatory)
1793 arg2: struct link_map *new (optional, for incremental updates) */
1794 TRY
1795 {
1796 probe_argc = get_probe_argument_count (pa->probe, frame);
1797 }
1798 CATCH (ex, RETURN_MASK_ERROR)
1799 {
1800 exception_print (gdb_stderr, ex);
1801 probe_argc = 0;
1802 }
1803 END_CATCH
1804
1805 /* If get_probe_argument_count throws an exception, probe_argc will
1806 be set to zero. However, if pa->probe does not have arguments,
1807 then get_probe_argument_count will succeed but probe_argc will
1808 also be zero. Both cases happen because of different things, but
1809 they are treated equally here: action will be set to
1810 PROBES_INTERFACE_FAILED. */
1811 if (probe_argc == 2)
1812 action = FULL_RELOAD;
1813 else if (probe_argc < 2)
1814 action = PROBES_INTERFACE_FAILED;
1815
1816 return action;
1817 }
1818
1819 /* Populate the shared object list by reading the entire list of
1820 shared objects from the inferior. Handle special cases relating
1821 to the first elements of the list. Returns nonzero on success. */
1822
1823 static int
1824 solist_update_full (struct svr4_info *info)
1825 {
1826 free_solib_list (info);
1827 info->solib_list = svr4_current_sos_direct (info);
1828
1829 return 1;
1830 }
1831
1832 /* Update the shared object list starting from the link-map entry
1833 passed by the linker in the probe's third argument. Returns
1834 nonzero if the list was successfully updated, or zero to indicate
1835 failure. */
1836
1837 static int
1838 solist_update_incremental (struct svr4_info *info, CORE_ADDR lm)
1839 {
1840 struct so_list *tail;
1841 CORE_ADDR prev_lm;
1842
1843 /* svr4_current_sos_direct contains logic to handle a number of
1844 special cases relating to the first elements of the list. To
1845 avoid duplicating this logic we defer to solist_update_full
1846 if the list is empty. */
1847 if (info->solib_list == NULL)
1848 return 0;
1849
1850 /* Fall back to a full update if we are using a remote target
1851 that does not support incremental transfers. */
1852 if (info->using_xfer && !target_augmented_libraries_svr4_read ())
1853 return 0;
1854
1855 /* Walk to the end of the list. */
1856 for (tail = info->solib_list; tail->next != NULL; tail = tail->next)
1857 /* Nothing. */;
1858
1859 lm_info_svr4 *li = (lm_info_svr4 *) tail->lm_info;
1860 prev_lm = li->lm_addr;
1861
1862 /* Read the new objects. */
1863 if (info->using_xfer)
1864 {
1865 struct svr4_library_list library_list;
1866 char annex[64];
1867
1868 xsnprintf (annex, sizeof (annex), "start=%s;prev=%s",
1869 phex_nz (lm, sizeof (lm)),
1870 phex_nz (prev_lm, sizeof (prev_lm)));
1871 if (!svr4_current_sos_via_xfer_libraries (&library_list, annex))
1872 return 0;
1873
1874 tail->next = library_list.head;
1875 }
1876 else
1877 {
1878 struct so_list **link = &tail->next;
1879
1880 /* IGNORE_FIRST may safely be set to zero here because the
1881 above check and deferral to solist_update_full ensures
1882 that this call to svr4_read_so_list will never see the
1883 first element. */
1884 if (!svr4_read_so_list (lm, prev_lm, &link, 0))
1885 return 0;
1886 }
1887
1888 return 1;
1889 }
1890
1891 /* Disable the probes-based linker interface and revert to the
1892 original interface. We don't reset the breakpoints as the
1893 ones set up for the probes-based interface are adequate. */
1894
1895 static void
1896 disable_probes_interface_cleanup (void *arg)
1897 {
1898 struct svr4_info *info = get_svr4_info ();
1899
1900 warning (_("Probes-based dynamic linker interface failed.\n"
1901 "Reverting to original interface.\n"));
1902
1903 free_probes_table (info);
1904 free_solib_list (info);
1905 }
1906
1907 /* Update the solib list as appropriate when using the
1908 probes-based linker interface. Do nothing if using the
1909 standard interface. */
1910
1911 static void
1912 svr4_handle_solib_event (void)
1913 {
1914 struct svr4_info *info = get_svr4_info ();
1915 struct probe_and_action *pa;
1916 enum probe_action action;
1917 struct cleanup *old_chain, *usm_chain;
1918 struct value *val = NULL;
1919 CORE_ADDR pc, debug_base, lm = 0;
1920 struct frame_info *frame = get_current_frame ();
1921
1922 /* Do nothing if not using the probes interface. */
1923 if (info->probes_table == NULL)
1924 return;
1925
1926 /* If anything goes wrong we revert to the original linker
1927 interface. */
1928 old_chain = make_cleanup (disable_probes_interface_cleanup, NULL);
1929
1930 pc = regcache_read_pc (get_current_regcache ());
1931 pa = solib_event_probe_at (info, pc);
1932 if (pa == NULL)
1933 {
1934 do_cleanups (old_chain);
1935 return;
1936 }
1937
1938 action = solib_event_probe_action (pa);
1939 if (action == PROBES_INTERFACE_FAILED)
1940 {
1941 do_cleanups (old_chain);
1942 return;
1943 }
1944
1945 if (action == DO_NOTHING)
1946 {
1947 discard_cleanups (old_chain);
1948 return;
1949 }
1950
1951 /* evaluate_probe_argument looks up symbols in the dynamic linker
1952 using find_pc_section. find_pc_section is accelerated by a cache
1953 called the section map. The section map is invalidated every
1954 time a shared library is loaded or unloaded, and if the inferior
1955 is generating a lot of shared library events then the section map
1956 will be updated every time svr4_handle_solib_event is called.
1957 We called find_pc_section in svr4_create_solib_event_breakpoints,
1958 so we can guarantee that the dynamic linker's sections are in the
1959 section map. We can therefore inhibit section map updates across
1960 these calls to evaluate_probe_argument and save a lot of time. */
1961 inhibit_section_map_updates (current_program_space);
1962 usm_chain = make_cleanup (resume_section_map_updates_cleanup,
1963 current_program_space);
1964
1965 TRY
1966 {
1967 val = evaluate_probe_argument (pa->probe, 1, frame);
1968 }
1969 CATCH (ex, RETURN_MASK_ERROR)
1970 {
1971 exception_print (gdb_stderr, ex);
1972 val = NULL;
1973 }
1974 END_CATCH
1975
1976 if (val == NULL)
1977 {
1978 do_cleanups (old_chain);
1979 return;
1980 }
1981
1982 debug_base = value_as_address (val);
1983 if (debug_base == 0)
1984 {
1985 do_cleanups (old_chain);
1986 return;
1987 }
1988
1989 /* Always locate the debug struct, in case it moved. */
1990 info->debug_base = 0;
1991 if (locate_base (info) == 0)
1992 {
1993 do_cleanups (old_chain);
1994 return;
1995 }
1996
1997 /* GDB does not currently support libraries loaded via dlmopen
1998 into namespaces other than the initial one. We must ignore
1999 any namespace other than the initial namespace here until
2000 support for this is added to GDB. */
2001 if (debug_base != info->debug_base)
2002 action = DO_NOTHING;
2003
2004 if (action == UPDATE_OR_RELOAD)
2005 {
2006 TRY
2007 {
2008 val = evaluate_probe_argument (pa->probe, 2, frame);
2009 }
2010 CATCH (ex, RETURN_MASK_ERROR)
2011 {
2012 exception_print (gdb_stderr, ex);
2013 do_cleanups (old_chain);
2014 return;
2015 }
2016 END_CATCH
2017
2018 if (val != NULL)
2019 lm = value_as_address (val);
2020
2021 if (lm == 0)
2022 action = FULL_RELOAD;
2023 }
2024
2025 /* Resume section map updates. */
2026 do_cleanups (usm_chain);
2027
2028 if (action == UPDATE_OR_RELOAD)
2029 {
2030 if (!solist_update_incremental (info, lm))
2031 action = FULL_RELOAD;
2032 }
2033
2034 if (action == FULL_RELOAD)
2035 {
2036 if (!solist_update_full (info))
2037 {
2038 do_cleanups (old_chain);
2039 return;
2040 }
2041 }
2042
2043 discard_cleanups (old_chain);
2044 }
2045
2046 /* Helper function for svr4_update_solib_event_breakpoints. */
2047
2048 static int
2049 svr4_update_solib_event_breakpoint (struct breakpoint *b, void *arg)
2050 {
2051 struct bp_location *loc;
2052
2053 if (b->type != bp_shlib_event)
2054 {
2055 /* Continue iterating. */
2056 return 0;
2057 }
2058
2059 for (loc = b->loc; loc != NULL; loc = loc->next)
2060 {
2061 struct svr4_info *info;
2062 struct probe_and_action *pa;
2063
2064 info = ((struct svr4_info *)
2065 program_space_data (loc->pspace, solib_svr4_pspace_data));
2066 if (info == NULL || info->probes_table == NULL)
2067 continue;
2068
2069 pa = solib_event_probe_at (info, loc->address);
2070 if (pa == NULL)
2071 continue;
2072
2073 if (pa->action == DO_NOTHING)
2074 {
2075 if (b->enable_state == bp_disabled && stop_on_solib_events)
2076 enable_breakpoint (b);
2077 else if (b->enable_state == bp_enabled && !stop_on_solib_events)
2078 disable_breakpoint (b);
2079 }
2080
2081 break;
2082 }
2083
2084 /* Continue iterating. */
2085 return 0;
2086 }
2087
2088 /* Enable or disable optional solib event breakpoints as appropriate.
2089 Called whenever stop_on_solib_events is changed. */
2090
2091 static void
2092 svr4_update_solib_event_breakpoints (void)
2093 {
2094 iterate_over_breakpoints (svr4_update_solib_event_breakpoint, NULL);
2095 }
2096
2097 /* Create and register solib event breakpoints. PROBES is an array
2098 of NUM_PROBES elements, each of which is vector of probes. A
2099 solib event breakpoint will be created and registered for each
2100 probe. */
2101
2102 static void
2103 svr4_create_probe_breakpoints (struct gdbarch *gdbarch,
2104 VEC (probe_p) **probes,
2105 struct objfile *objfile)
2106 {
2107 int i;
2108
2109 for (i = 0; i < NUM_PROBES; i++)
2110 {
2111 enum probe_action action = probe_info[i].action;
2112 struct probe *probe;
2113 int ix;
2114
2115 for (ix = 0;
2116 VEC_iterate (probe_p, probes[i], ix, probe);
2117 ++ix)
2118 {
2119 CORE_ADDR address = get_probe_address (probe, objfile);
2120
2121 create_solib_event_breakpoint (gdbarch, address);
2122 register_solib_event_probe (probe, address, action);
2123 }
2124 }
2125
2126 svr4_update_solib_event_breakpoints ();
2127 }
2128
2129 /* Both the SunOS and the SVR4 dynamic linkers call a marker function
2130 before and after mapping and unmapping shared libraries. The sole
2131 purpose of this method is to allow debuggers to set a breakpoint so
2132 they can track these changes.
2133
2134 Some versions of the glibc dynamic linker contain named probes
2135 to allow more fine grained stopping. Given the address of the
2136 original marker function, this function attempts to find these
2137 probes, and if found, sets breakpoints on those instead. If the
2138 probes aren't found, a single breakpoint is set on the original
2139 marker function. */
2140
2141 static void
2142 svr4_create_solib_event_breakpoints (struct gdbarch *gdbarch,
2143 CORE_ADDR address)
2144 {
2145 struct obj_section *os;
2146
2147 os = find_pc_section (address);
2148 if (os != NULL)
2149 {
2150 int with_prefix;
2151
2152 for (with_prefix = 0; with_prefix <= 1; with_prefix++)
2153 {
2154 VEC (probe_p) *probes[NUM_PROBES];
2155 int all_probes_found = 1;
2156 int checked_can_use_probe_arguments = 0;
2157 int i;
2158
2159 memset (probes, 0, sizeof (probes));
2160 for (i = 0; i < NUM_PROBES; i++)
2161 {
2162 const char *name = probe_info[i].name;
2163 struct probe *p;
2164 char buf[32];
2165
2166 /* Fedora 17 and Red Hat Enterprise Linux 6.2-6.4
2167 shipped with an early version of the probes code in
2168 which the probes' names were prefixed with "rtld_"
2169 and the "map_failed" probe did not exist. The
2170 locations of the probes are otherwise the same, so
2171 we check for probes with prefixed names if probes
2172 with unprefixed names are not present. */
2173 if (with_prefix)
2174 {
2175 xsnprintf (buf, sizeof (buf), "rtld_%s", name);
2176 name = buf;
2177 }
2178
2179 probes[i] = find_probes_in_objfile (os->objfile, "rtld", name);
2180
2181 /* The "map_failed" probe did not exist in early
2182 versions of the probes code in which the probes'
2183 names were prefixed with "rtld_". */
2184 if (strcmp (name, "rtld_map_failed") == 0)
2185 continue;
2186
2187 if (VEC_empty (probe_p, probes[i]))
2188 {
2189 all_probes_found = 0;
2190 break;
2191 }
2192
2193 /* Ensure probe arguments can be evaluated. */
2194 if (!checked_can_use_probe_arguments)
2195 {
2196 p = VEC_index (probe_p, probes[i], 0);
2197 if (!can_evaluate_probe_arguments (p))
2198 {
2199 all_probes_found = 0;
2200 break;
2201 }
2202 checked_can_use_probe_arguments = 1;
2203 }
2204 }
2205
2206 if (all_probes_found)
2207 svr4_create_probe_breakpoints (gdbarch, probes, os->objfile);
2208
2209 for (i = 0; i < NUM_PROBES; i++)
2210 VEC_free (probe_p, probes[i]);
2211
2212 if (all_probes_found)
2213 return;
2214 }
2215 }
2216
2217 create_solib_event_breakpoint (gdbarch, address);
2218 }
2219
2220 /* Helper function for gdb_bfd_lookup_symbol. */
2221
2222 static int
2223 cmp_name_and_sec_flags (const asymbol *sym, const void *data)
2224 {
2225 return (strcmp (sym->name, (const char *) data) == 0
2226 && (sym->section->flags & (SEC_CODE | SEC_DATA)) != 0);
2227 }
2228 /* Arrange for dynamic linker to hit breakpoint.
2229
2230 Both the SunOS and the SVR4 dynamic linkers have, as part of their
2231 debugger interface, support for arranging for the inferior to hit
2232 a breakpoint after mapping in the shared libraries. This function
2233 enables that breakpoint.
2234
2235 For SunOS, there is a special flag location (in_debugger) which we
2236 set to 1. When the dynamic linker sees this flag set, it will set
2237 a breakpoint at a location known only to itself, after saving the
2238 original contents of that place and the breakpoint address itself,
2239 in it's own internal structures. When we resume the inferior, it
2240 will eventually take a SIGTRAP when it runs into the breakpoint.
2241 We handle this (in a different place) by restoring the contents of
2242 the breakpointed location (which is only known after it stops),
2243 chasing around to locate the shared libraries that have been
2244 loaded, then resuming.
2245
2246 For SVR4, the debugger interface structure contains a member (r_brk)
2247 which is statically initialized at the time the shared library is
2248 built, to the offset of a function (_r_debug_state) which is guaran-
2249 teed to be called once before mapping in a library, and again when
2250 the mapping is complete. At the time we are examining this member,
2251 it contains only the unrelocated offset of the function, so we have
2252 to do our own relocation. Later, when the dynamic linker actually
2253 runs, it relocates r_brk to be the actual address of _r_debug_state().
2254
2255 The debugger interface structure also contains an enumeration which
2256 is set to either RT_ADD or RT_DELETE prior to changing the mapping,
2257 depending upon whether or not the library is being mapped or unmapped,
2258 and then set to RT_CONSISTENT after the library is mapped/unmapped. */
2259
2260 static int
2261 enable_break (struct svr4_info *info, int from_tty)
2262 {
2263 struct bound_minimal_symbol msymbol;
2264 const char * const *bkpt_namep;
2265 asection *interp_sect;
2266 char *interp_name;
2267 CORE_ADDR sym_addr;
2268
2269 info->interp_text_sect_low = info->interp_text_sect_high = 0;
2270 info->interp_plt_sect_low = info->interp_plt_sect_high = 0;
2271
2272 /* If we already have a shared library list in the target, and
2273 r_debug contains r_brk, set the breakpoint there - this should
2274 mean r_brk has already been relocated. Assume the dynamic linker
2275 is the object containing r_brk. */
2276
2277 solib_add (NULL, from_tty, auto_solib_add);
2278 sym_addr = 0;
2279 if (info->debug_base && solib_svr4_r_map (info) != 0)
2280 sym_addr = solib_svr4_r_brk (info);
2281
2282 if (sym_addr != 0)
2283 {
2284 struct obj_section *os;
2285
2286 sym_addr = gdbarch_addr_bits_remove
2287 (target_gdbarch (), gdbarch_convert_from_func_ptr_addr (target_gdbarch (),
2288 sym_addr,
2289 &current_target));
2290
2291 /* On at least some versions of Solaris there's a dynamic relocation
2292 on _r_debug.r_brk and SYM_ADDR may not be relocated yet, e.g., if
2293 we get control before the dynamic linker has self-relocated.
2294 Check if SYM_ADDR is in a known section, if it is assume we can
2295 trust its value. This is just a heuristic though, it could go away
2296 or be replaced if it's getting in the way.
2297
2298 On ARM we need to know whether the ISA of rtld_db_dlactivity (or
2299 however it's spelled in your particular system) is ARM or Thumb.
2300 That knowledge is encoded in the address, if it's Thumb the low bit
2301 is 1. However, we've stripped that info above and it's not clear
2302 what all the consequences are of passing a non-addr_bits_remove'd
2303 address to svr4_create_solib_event_breakpoints. The call to
2304 find_pc_section verifies we know about the address and have some
2305 hope of computing the right kind of breakpoint to use (via
2306 symbol info). It does mean that GDB needs to be pointed at a
2307 non-stripped version of the dynamic linker in order to obtain
2308 information it already knows about. Sigh. */
2309
2310 os = find_pc_section (sym_addr);
2311 if (os != NULL)
2312 {
2313 /* Record the relocated start and end address of the dynamic linker
2314 text and plt section for svr4_in_dynsym_resolve_code. */
2315 bfd *tmp_bfd;
2316 CORE_ADDR load_addr;
2317
2318 tmp_bfd = os->objfile->obfd;
2319 load_addr = ANOFFSET (os->objfile->section_offsets,
2320 SECT_OFF_TEXT (os->objfile));
2321
2322 interp_sect = bfd_get_section_by_name (tmp_bfd, ".text");
2323 if (interp_sect)
2324 {
2325 info->interp_text_sect_low =
2326 bfd_section_vma (tmp_bfd, interp_sect) + load_addr;
2327 info->interp_text_sect_high =
2328 info->interp_text_sect_low
2329 + bfd_section_size (tmp_bfd, interp_sect);
2330 }
2331 interp_sect = bfd_get_section_by_name (tmp_bfd, ".plt");
2332 if (interp_sect)
2333 {
2334 info->interp_plt_sect_low =
2335 bfd_section_vma (tmp_bfd, interp_sect) + load_addr;
2336 info->interp_plt_sect_high =
2337 info->interp_plt_sect_low
2338 + bfd_section_size (tmp_bfd, interp_sect);
2339 }
2340
2341 svr4_create_solib_event_breakpoints (target_gdbarch (), sym_addr);
2342 return 1;
2343 }
2344 }
2345
2346 /* Find the program interpreter; if not found, warn the user and drop
2347 into the old breakpoint at symbol code. */
2348 interp_name = find_program_interpreter ();
2349 if (interp_name)
2350 {
2351 CORE_ADDR load_addr = 0;
2352 int load_addr_found = 0;
2353 int loader_found_in_list = 0;
2354 struct so_list *so;
2355 struct target_ops *tmp_bfd_target;
2356
2357 sym_addr = 0;
2358
2359 /* Now we need to figure out where the dynamic linker was
2360 loaded so that we can load its symbols and place a breakpoint
2361 in the dynamic linker itself.
2362
2363 This address is stored on the stack. However, I've been unable
2364 to find any magic formula to find it for Solaris (appears to
2365 be trivial on GNU/Linux). Therefore, we have to try an alternate
2366 mechanism to find the dynamic linker's base address. */
2367
2368 gdb_bfd_ref_ptr tmp_bfd;
2369 TRY
2370 {
2371 tmp_bfd = solib_bfd_open (interp_name);
2372 }
2373 CATCH (ex, RETURN_MASK_ALL)
2374 {
2375 }
2376 END_CATCH
2377
2378 if (tmp_bfd == NULL)
2379 goto bkpt_at_symbol;
2380
2381 /* Now convert the TMP_BFD into a target. That way target, as
2382 well as BFD operations can be used. target_bfd_reopen
2383 acquires its own reference. */
2384 tmp_bfd_target = target_bfd_reopen (tmp_bfd.get ());
2385
2386 /* On a running target, we can get the dynamic linker's base
2387 address from the shared library table. */
2388 so = master_so_list ();
2389 while (so)
2390 {
2391 if (svr4_same_1 (interp_name, so->so_original_name))
2392 {
2393 load_addr_found = 1;
2394 loader_found_in_list = 1;
2395 load_addr = lm_addr_check (so, tmp_bfd.get ());
2396 break;
2397 }
2398 so = so->next;
2399 }
2400
2401 /* If we were not able to find the base address of the loader
2402 from our so_list, then try using the AT_BASE auxilliary entry. */
2403 if (!load_addr_found)
2404 if (target_auxv_search (&current_target, AT_BASE, &load_addr) > 0)
2405 {
2406 int addr_bit = gdbarch_addr_bit (target_gdbarch ());
2407
2408 /* Ensure LOAD_ADDR has proper sign in its possible upper bits so
2409 that `+ load_addr' will overflow CORE_ADDR width not creating
2410 invalid addresses like 0x101234567 for 32bit inferiors on 64bit
2411 GDB. */
2412
2413 if (addr_bit < (sizeof (CORE_ADDR) * HOST_CHAR_BIT))
2414 {
2415 CORE_ADDR space_size = (CORE_ADDR) 1 << addr_bit;
2416 CORE_ADDR tmp_entry_point = exec_entry_point (tmp_bfd.get (),
2417 tmp_bfd_target);
2418
2419 gdb_assert (load_addr < space_size);
2420
2421 /* TMP_ENTRY_POINT exceeding SPACE_SIZE would be for prelinked
2422 64bit ld.so with 32bit executable, it should not happen. */
2423
2424 if (tmp_entry_point < space_size
2425 && tmp_entry_point + load_addr >= space_size)
2426 load_addr -= space_size;
2427 }
2428
2429 load_addr_found = 1;
2430 }
2431
2432 /* Otherwise we find the dynamic linker's base address by examining
2433 the current pc (which should point at the entry point for the
2434 dynamic linker) and subtracting the offset of the entry point.
2435
2436 This is more fragile than the previous approaches, but is a good
2437 fallback method because it has actually been working well in
2438 most cases. */
2439 if (!load_addr_found)
2440 {
2441 struct regcache *regcache
2442 = get_thread_arch_regcache (inferior_ptid, target_gdbarch ());
2443
2444 load_addr = (regcache_read_pc (regcache)
2445 - exec_entry_point (tmp_bfd.get (), tmp_bfd_target));
2446 }
2447
2448 if (!loader_found_in_list)
2449 {
2450 info->debug_loader_name = xstrdup (interp_name);
2451 info->debug_loader_offset_p = 1;
2452 info->debug_loader_offset = load_addr;
2453 solib_add (NULL, from_tty, auto_solib_add);
2454 }
2455
2456 /* Record the relocated start and end address of the dynamic linker
2457 text and plt section for svr4_in_dynsym_resolve_code. */
2458 interp_sect = bfd_get_section_by_name (tmp_bfd.get (), ".text");
2459 if (interp_sect)
2460 {
2461 info->interp_text_sect_low =
2462 bfd_section_vma (tmp_bfd.get (), interp_sect) + load_addr;
2463 info->interp_text_sect_high =
2464 info->interp_text_sect_low
2465 + bfd_section_size (tmp_bfd.get (), interp_sect);
2466 }
2467 interp_sect = bfd_get_section_by_name (tmp_bfd.get (), ".plt");
2468 if (interp_sect)
2469 {
2470 info->interp_plt_sect_low =
2471 bfd_section_vma (tmp_bfd.get (), interp_sect) + load_addr;
2472 info->interp_plt_sect_high =
2473 info->interp_plt_sect_low
2474 + bfd_section_size (tmp_bfd.get (), interp_sect);
2475 }
2476
2477 /* Now try to set a breakpoint in the dynamic linker. */
2478 for (bkpt_namep = solib_break_names; *bkpt_namep != NULL; bkpt_namep++)
2479 {
2480 sym_addr = gdb_bfd_lookup_symbol (tmp_bfd.get (),
2481 cmp_name_and_sec_flags,
2482 *bkpt_namep);
2483 if (sym_addr != 0)
2484 break;
2485 }
2486
2487 if (sym_addr != 0)
2488 /* Convert 'sym_addr' from a function pointer to an address.
2489 Because we pass tmp_bfd_target instead of the current
2490 target, this will always produce an unrelocated value. */
2491 sym_addr = gdbarch_convert_from_func_ptr_addr (target_gdbarch (),
2492 sym_addr,
2493 tmp_bfd_target);
2494
2495 /* We're done with both the temporary bfd and target. Closing
2496 the target closes the underlying bfd, because it holds the
2497 only remaining reference. */
2498 target_close (tmp_bfd_target);
2499
2500 if (sym_addr != 0)
2501 {
2502 svr4_create_solib_event_breakpoints (target_gdbarch (),
2503 load_addr + sym_addr);
2504 xfree (interp_name);
2505 return 1;
2506 }
2507
2508 /* For whatever reason we couldn't set a breakpoint in the dynamic
2509 linker. Warn and drop into the old code. */
2510 bkpt_at_symbol:
2511 xfree (interp_name);
2512 warning (_("Unable to find dynamic linker breakpoint function.\n"
2513 "GDB will be unable to debug shared library initializers\n"
2514 "and track explicitly loaded dynamic code."));
2515 }
2516
2517 /* Scan through the lists of symbols, trying to look up the symbol and
2518 set a breakpoint there. Terminate loop when we/if we succeed. */
2519
2520 for (bkpt_namep = solib_break_names; *bkpt_namep != NULL; bkpt_namep++)
2521 {
2522 msymbol = lookup_minimal_symbol (*bkpt_namep, NULL, symfile_objfile);
2523 if ((msymbol.minsym != NULL)
2524 && (BMSYMBOL_VALUE_ADDRESS (msymbol) != 0))
2525 {
2526 sym_addr = BMSYMBOL_VALUE_ADDRESS (msymbol);
2527 sym_addr = gdbarch_convert_from_func_ptr_addr (target_gdbarch (),
2528 sym_addr,
2529 &current_target);
2530 svr4_create_solib_event_breakpoints (target_gdbarch (), sym_addr);
2531 return 1;
2532 }
2533 }
2534
2535 if (interp_name != NULL && !current_inferior ()->attach_flag)
2536 {
2537 for (bkpt_namep = bkpt_names; *bkpt_namep != NULL; bkpt_namep++)
2538 {
2539 msymbol = lookup_minimal_symbol (*bkpt_namep, NULL, symfile_objfile);
2540 if ((msymbol.minsym != NULL)
2541 && (BMSYMBOL_VALUE_ADDRESS (msymbol) != 0))
2542 {
2543 sym_addr = BMSYMBOL_VALUE_ADDRESS (msymbol);
2544 sym_addr = gdbarch_convert_from_func_ptr_addr (target_gdbarch (),
2545 sym_addr,
2546 &current_target);
2547 svr4_create_solib_event_breakpoints (target_gdbarch (), sym_addr);
2548 return 1;
2549 }
2550 }
2551 }
2552 return 0;
2553 }
2554
2555 /* Read the ELF program headers from ABFD. Return the contents and
2556 set *PHDRS_SIZE to the size of the program headers. */
2557
2558 static gdb_byte *
2559 read_program_headers_from_bfd (bfd *abfd, int *phdrs_size)
2560 {
2561 Elf_Internal_Ehdr *ehdr;
2562 gdb_byte *buf;
2563
2564 ehdr = elf_elfheader (abfd);
2565
2566 *phdrs_size = ehdr->e_phnum * ehdr->e_phentsize;
2567 if (*phdrs_size == 0)
2568 return NULL;
2569
2570 buf = (gdb_byte *) xmalloc (*phdrs_size);
2571 if (bfd_seek (abfd, ehdr->e_phoff, SEEK_SET) != 0
2572 || bfd_bread (buf, *phdrs_size, abfd) != *phdrs_size)
2573 {
2574 xfree (buf);
2575 return NULL;
2576 }
2577
2578 return buf;
2579 }
2580
2581 /* Return 1 and fill *DISPLACEMENTP with detected PIE offset of inferior
2582 exec_bfd. Otherwise return 0.
2583
2584 We relocate all of the sections by the same amount. This
2585 behavior is mandated by recent editions of the System V ABI.
2586 According to the System V Application Binary Interface,
2587 Edition 4.1, page 5-5:
2588
2589 ... Though the system chooses virtual addresses for
2590 individual processes, it maintains the segments' relative
2591 positions. Because position-independent code uses relative
2592 addressesing between segments, the difference between
2593 virtual addresses in memory must match the difference
2594 between virtual addresses in the file. The difference
2595 between the virtual address of any segment in memory and
2596 the corresponding virtual address in the file is thus a
2597 single constant value for any one executable or shared
2598 object in a given process. This difference is the base
2599 address. One use of the base address is to relocate the
2600 memory image of the program during dynamic linking.
2601
2602 The same language also appears in Edition 4.0 of the System V
2603 ABI and is left unspecified in some of the earlier editions.
2604
2605 Decide if the objfile needs to be relocated. As indicated above, we will
2606 only be here when execution is stopped. But during attachment PC can be at
2607 arbitrary address therefore regcache_read_pc can be misleading (contrary to
2608 the auxv AT_ENTRY value). Moreover for executable with interpreter section
2609 regcache_read_pc would point to the interpreter and not the main executable.
2610
2611 So, to summarize, relocations are necessary when the start address obtained
2612 from the executable is different from the address in auxv AT_ENTRY entry.
2613
2614 [ The astute reader will note that we also test to make sure that
2615 the executable in question has the DYNAMIC flag set. It is my
2616 opinion that this test is unnecessary (undesirable even). It
2617 was added to avoid inadvertent relocation of an executable
2618 whose e_type member in the ELF header is not ET_DYN. There may
2619 be a time in the future when it is desirable to do relocations
2620 on other types of files as well in which case this condition
2621 should either be removed or modified to accomodate the new file
2622 type. - Kevin, Nov 2000. ] */
2623
2624 static int
2625 svr4_exec_displacement (CORE_ADDR *displacementp)
2626 {
2627 /* ENTRY_POINT is a possible function descriptor - before
2628 a call to gdbarch_convert_from_func_ptr_addr. */
2629 CORE_ADDR entry_point, exec_displacement;
2630
2631 if (exec_bfd == NULL)
2632 return 0;
2633
2634 /* Therefore for ELF it is ET_EXEC and not ET_DYN. Both shared libraries
2635 being executed themselves and PIE (Position Independent Executable)
2636 executables are ET_DYN. */
2637
2638 if ((bfd_get_file_flags (exec_bfd) & DYNAMIC) == 0)
2639 return 0;
2640
2641 if (target_auxv_search (&current_target, AT_ENTRY, &entry_point) <= 0)
2642 return 0;
2643
2644 exec_displacement = entry_point - bfd_get_start_address (exec_bfd);
2645
2646 /* Verify the EXEC_DISPLACEMENT candidate complies with the required page
2647 alignment. It is cheaper than the program headers comparison below. */
2648
2649 if (bfd_get_flavour (exec_bfd) == bfd_target_elf_flavour)
2650 {
2651 const struct elf_backend_data *elf = get_elf_backend_data (exec_bfd);
2652
2653 /* p_align of PT_LOAD segments does not specify any alignment but
2654 only congruency of addresses:
2655 p_offset % p_align == p_vaddr % p_align
2656 Kernel is free to load the executable with lower alignment. */
2657
2658 if ((exec_displacement & (elf->minpagesize - 1)) != 0)
2659 return 0;
2660 }
2661
2662 /* Verify that the auxilliary vector describes the same file as exec_bfd, by
2663 comparing their program headers. If the program headers in the auxilliary
2664 vector do not match the program headers in the executable, then we are
2665 looking at a different file than the one used by the kernel - for
2666 instance, "gdb program" connected to "gdbserver :PORT ld.so program". */
2667
2668 if (bfd_get_flavour (exec_bfd) == bfd_target_elf_flavour)
2669 {
2670 /* Be optimistic and clear OK only if GDB was able to verify the headers
2671 really do not match. */
2672 int phdrs_size, phdrs2_size, ok = 1;
2673 gdb_byte *buf, *buf2;
2674 int arch_size;
2675
2676 buf = read_program_header (-1, &phdrs_size, &arch_size, NULL);
2677 buf2 = read_program_headers_from_bfd (exec_bfd, &phdrs2_size);
2678 if (buf != NULL && buf2 != NULL)
2679 {
2680 enum bfd_endian byte_order = gdbarch_byte_order (target_gdbarch ());
2681
2682 /* We are dealing with three different addresses. EXEC_BFD
2683 represents current address in on-disk file. target memory content
2684 may be different from EXEC_BFD as the file may have been prelinked
2685 to a different address after the executable has been loaded.
2686 Moreover the address of placement in target memory can be
2687 different from what the program headers in target memory say -
2688 this is the goal of PIE.
2689
2690 Detected DISPLACEMENT covers both the offsets of PIE placement and
2691 possible new prelink performed after start of the program. Here
2692 relocate BUF and BUF2 just by the EXEC_BFD vs. target memory
2693 content offset for the verification purpose. */
2694
2695 if (phdrs_size != phdrs2_size
2696 || bfd_get_arch_size (exec_bfd) != arch_size)
2697 ok = 0;
2698 else if (arch_size == 32
2699 && phdrs_size >= sizeof (Elf32_External_Phdr)
2700 && phdrs_size % sizeof (Elf32_External_Phdr) == 0)
2701 {
2702 Elf_Internal_Ehdr *ehdr2 = elf_tdata (exec_bfd)->elf_header;
2703 Elf_Internal_Phdr *phdr2 = elf_tdata (exec_bfd)->phdr;
2704 CORE_ADDR displacement = 0;
2705 int i;
2706
2707 /* DISPLACEMENT could be found more easily by the difference of
2708 ehdr2->e_entry. But we haven't read the ehdr yet, and we
2709 already have enough information to compute that displacement
2710 with what we've read. */
2711
2712 for (i = 0; i < ehdr2->e_phnum; i++)
2713 if (phdr2[i].p_type == PT_LOAD)
2714 {
2715 Elf32_External_Phdr *phdrp;
2716 gdb_byte *buf_vaddr_p, *buf_paddr_p;
2717 CORE_ADDR vaddr, paddr;
2718 CORE_ADDR displacement_vaddr = 0;
2719 CORE_ADDR displacement_paddr = 0;
2720
2721 phdrp = &((Elf32_External_Phdr *) buf)[i];
2722 buf_vaddr_p = (gdb_byte *) &phdrp->p_vaddr;
2723 buf_paddr_p = (gdb_byte *) &phdrp->p_paddr;
2724
2725 vaddr = extract_unsigned_integer (buf_vaddr_p, 4,
2726 byte_order);
2727 displacement_vaddr = vaddr - phdr2[i].p_vaddr;
2728
2729 paddr = extract_unsigned_integer (buf_paddr_p, 4,
2730 byte_order);
2731 displacement_paddr = paddr - phdr2[i].p_paddr;
2732
2733 if (displacement_vaddr == displacement_paddr)
2734 displacement = displacement_vaddr;
2735
2736 break;
2737 }
2738
2739 /* Now compare BUF and BUF2 with optional DISPLACEMENT. */
2740
2741 for (i = 0; i < phdrs_size / sizeof (Elf32_External_Phdr); i++)
2742 {
2743 Elf32_External_Phdr *phdrp;
2744 Elf32_External_Phdr *phdr2p;
2745 gdb_byte *buf_vaddr_p, *buf_paddr_p;
2746 CORE_ADDR vaddr, paddr;
2747 asection *plt2_asect;
2748
2749 phdrp = &((Elf32_External_Phdr *) buf)[i];
2750 buf_vaddr_p = (gdb_byte *) &phdrp->p_vaddr;
2751 buf_paddr_p = (gdb_byte *) &phdrp->p_paddr;
2752 phdr2p = &((Elf32_External_Phdr *) buf2)[i];
2753
2754 /* PT_GNU_STACK is an exception by being never relocated by
2755 prelink as its addresses are always zero. */
2756
2757 if (memcmp (phdrp, phdr2p, sizeof (*phdrp)) == 0)
2758 continue;
2759
2760 /* Check also other adjustment combinations - PR 11786. */
2761
2762 vaddr = extract_unsigned_integer (buf_vaddr_p, 4,
2763 byte_order);
2764 vaddr -= displacement;
2765 store_unsigned_integer (buf_vaddr_p, 4, byte_order, vaddr);
2766
2767 paddr = extract_unsigned_integer (buf_paddr_p, 4,
2768 byte_order);
2769 paddr -= displacement;
2770 store_unsigned_integer (buf_paddr_p, 4, byte_order, paddr);
2771
2772 if (memcmp (phdrp, phdr2p, sizeof (*phdrp)) == 0)
2773 continue;
2774
2775 /* Strip modifies the flags and alignment of PT_GNU_RELRO.
2776 CentOS-5 has problems with filesz, memsz as well.
2777 See PR 11786. */
2778 if (phdr2[i].p_type == PT_GNU_RELRO)
2779 {
2780 Elf32_External_Phdr tmp_phdr = *phdrp;
2781 Elf32_External_Phdr tmp_phdr2 = *phdr2p;
2782
2783 memset (tmp_phdr.p_filesz, 0, 4);
2784 memset (tmp_phdr.p_memsz, 0, 4);
2785 memset (tmp_phdr.p_flags, 0, 4);
2786 memset (tmp_phdr.p_align, 0, 4);
2787 memset (tmp_phdr2.p_filesz, 0, 4);
2788 memset (tmp_phdr2.p_memsz, 0, 4);
2789 memset (tmp_phdr2.p_flags, 0, 4);
2790 memset (tmp_phdr2.p_align, 0, 4);
2791
2792 if (memcmp (&tmp_phdr, &tmp_phdr2, sizeof (tmp_phdr))
2793 == 0)
2794 continue;
2795 }
2796
2797 /* prelink can convert .plt SHT_NOBITS to SHT_PROGBITS. */
2798 plt2_asect = bfd_get_section_by_name (exec_bfd, ".plt");
2799 if (plt2_asect)
2800 {
2801 int content2;
2802 gdb_byte *buf_filesz_p = (gdb_byte *) &phdrp->p_filesz;
2803 CORE_ADDR filesz;
2804
2805 content2 = (bfd_get_section_flags (exec_bfd, plt2_asect)
2806 & SEC_HAS_CONTENTS) != 0;
2807
2808 filesz = extract_unsigned_integer (buf_filesz_p, 4,
2809 byte_order);
2810
2811 /* PLT2_ASECT is from on-disk file (exec_bfd) while
2812 FILESZ is from the in-memory image. */
2813 if (content2)
2814 filesz += bfd_get_section_size (plt2_asect);
2815 else
2816 filesz -= bfd_get_section_size (plt2_asect);
2817
2818 store_unsigned_integer (buf_filesz_p, 4, byte_order,
2819 filesz);
2820
2821 if (memcmp (phdrp, phdr2p, sizeof (*phdrp)) == 0)
2822 continue;
2823 }
2824
2825 ok = 0;
2826 break;
2827 }
2828 }
2829 else if (arch_size == 64
2830 && phdrs_size >= sizeof (Elf64_External_Phdr)
2831 && phdrs_size % sizeof (Elf64_External_Phdr) == 0)
2832 {
2833 Elf_Internal_Ehdr *ehdr2 = elf_tdata (exec_bfd)->elf_header;
2834 Elf_Internal_Phdr *phdr2 = elf_tdata (exec_bfd)->phdr;
2835 CORE_ADDR displacement = 0;
2836 int i;
2837
2838 /* DISPLACEMENT could be found more easily by the difference of
2839 ehdr2->e_entry. But we haven't read the ehdr yet, and we
2840 already have enough information to compute that displacement
2841 with what we've read. */
2842
2843 for (i = 0; i < ehdr2->e_phnum; i++)
2844 if (phdr2[i].p_type == PT_LOAD)
2845 {
2846 Elf64_External_Phdr *phdrp;
2847 gdb_byte *buf_vaddr_p, *buf_paddr_p;
2848 CORE_ADDR vaddr, paddr;
2849 CORE_ADDR displacement_vaddr = 0;
2850 CORE_ADDR displacement_paddr = 0;
2851
2852 phdrp = &((Elf64_External_Phdr *) buf)[i];
2853 buf_vaddr_p = (gdb_byte *) &phdrp->p_vaddr;
2854 buf_paddr_p = (gdb_byte *) &phdrp->p_paddr;
2855
2856 vaddr = extract_unsigned_integer (buf_vaddr_p, 8,
2857 byte_order);
2858 displacement_vaddr = vaddr - phdr2[i].p_vaddr;
2859
2860 paddr = extract_unsigned_integer (buf_paddr_p, 8,
2861 byte_order);
2862 displacement_paddr = paddr - phdr2[i].p_paddr;
2863
2864 if (displacement_vaddr == displacement_paddr)
2865 displacement = displacement_vaddr;
2866
2867 break;
2868 }
2869
2870 /* Now compare BUF and BUF2 with optional DISPLACEMENT. */
2871
2872 for (i = 0; i < phdrs_size / sizeof (Elf64_External_Phdr); i++)
2873 {
2874 Elf64_External_Phdr *phdrp;
2875 Elf64_External_Phdr *phdr2p;
2876 gdb_byte *buf_vaddr_p, *buf_paddr_p;
2877 CORE_ADDR vaddr, paddr;
2878 asection *plt2_asect;
2879
2880 phdrp = &((Elf64_External_Phdr *) buf)[i];
2881 buf_vaddr_p = (gdb_byte *) &phdrp->p_vaddr;
2882 buf_paddr_p = (gdb_byte *) &phdrp->p_paddr;
2883 phdr2p = &((Elf64_External_Phdr *) buf2)[i];
2884
2885 /* PT_GNU_STACK is an exception by being never relocated by
2886 prelink as its addresses are always zero. */
2887
2888 if (memcmp (phdrp, phdr2p, sizeof (*phdrp)) == 0)
2889 continue;
2890
2891 /* Check also other adjustment combinations - PR 11786. */
2892
2893 vaddr = extract_unsigned_integer (buf_vaddr_p, 8,
2894 byte_order);
2895 vaddr -= displacement;
2896 store_unsigned_integer (buf_vaddr_p, 8, byte_order, vaddr);
2897
2898 paddr = extract_unsigned_integer (buf_paddr_p, 8,
2899 byte_order);
2900 paddr -= displacement;
2901 store_unsigned_integer (buf_paddr_p, 8, byte_order, paddr);
2902
2903 if (memcmp (phdrp, phdr2p, sizeof (*phdrp)) == 0)
2904 continue;
2905
2906 /* Strip modifies the flags and alignment of PT_GNU_RELRO.
2907 CentOS-5 has problems with filesz, memsz as well.
2908 See PR 11786. */
2909 if (phdr2[i].p_type == PT_GNU_RELRO)
2910 {
2911 Elf64_External_Phdr tmp_phdr = *phdrp;
2912 Elf64_External_Phdr tmp_phdr2 = *phdr2p;
2913
2914 memset (tmp_phdr.p_filesz, 0, 8);
2915 memset (tmp_phdr.p_memsz, 0, 8);
2916 memset (tmp_phdr.p_flags, 0, 4);
2917 memset (tmp_phdr.p_align, 0, 8);
2918 memset (tmp_phdr2.p_filesz, 0, 8);
2919 memset (tmp_phdr2.p_memsz, 0, 8);
2920 memset (tmp_phdr2.p_flags, 0, 4);
2921 memset (tmp_phdr2.p_align, 0, 8);
2922
2923 if (memcmp (&tmp_phdr, &tmp_phdr2, sizeof (tmp_phdr))
2924 == 0)
2925 continue;
2926 }
2927
2928 /* prelink can convert .plt SHT_NOBITS to SHT_PROGBITS. */
2929 plt2_asect = bfd_get_section_by_name (exec_bfd, ".plt");
2930 if (plt2_asect)
2931 {
2932 int content2;
2933 gdb_byte *buf_filesz_p = (gdb_byte *) &phdrp->p_filesz;
2934 CORE_ADDR filesz;
2935
2936 content2 = (bfd_get_section_flags (exec_bfd, plt2_asect)
2937 & SEC_HAS_CONTENTS) != 0;
2938
2939 filesz = extract_unsigned_integer (buf_filesz_p, 8,
2940 byte_order);
2941
2942 /* PLT2_ASECT is from on-disk file (exec_bfd) while
2943 FILESZ is from the in-memory image. */
2944 if (content2)
2945 filesz += bfd_get_section_size (plt2_asect);
2946 else
2947 filesz -= bfd_get_section_size (plt2_asect);
2948
2949 store_unsigned_integer (buf_filesz_p, 8, byte_order,
2950 filesz);
2951
2952 if (memcmp (phdrp, phdr2p, sizeof (*phdrp)) == 0)
2953 continue;
2954 }
2955
2956 ok = 0;
2957 break;
2958 }
2959 }
2960 else
2961 ok = 0;
2962 }
2963
2964 xfree (buf);
2965 xfree (buf2);
2966
2967 if (!ok)
2968 return 0;
2969 }
2970
2971 if (info_verbose)
2972 {
2973 /* It can be printed repeatedly as there is no easy way to check
2974 the executable symbols/file has been already relocated to
2975 displacement. */
2976
2977 printf_unfiltered (_("Using PIE (Position Independent Executable) "
2978 "displacement %s for \"%s\".\n"),
2979 paddress (target_gdbarch (), exec_displacement),
2980 bfd_get_filename (exec_bfd));
2981 }
2982
2983 *displacementp = exec_displacement;
2984 return 1;
2985 }
2986
2987 /* Relocate the main executable. This function should be called upon
2988 stopping the inferior process at the entry point to the program.
2989 The entry point from BFD is compared to the AT_ENTRY of AUXV and if they are
2990 different, the main executable is relocated by the proper amount. */
2991
2992 static void
2993 svr4_relocate_main_executable (void)
2994 {
2995 CORE_ADDR displacement;
2996
2997 /* If we are re-running this executable, SYMFILE_OBJFILE->SECTION_OFFSETS
2998 probably contains the offsets computed using the PIE displacement
2999 from the previous run, which of course are irrelevant for this run.
3000 So we need to determine the new PIE displacement and recompute the
3001 section offsets accordingly, even if SYMFILE_OBJFILE->SECTION_OFFSETS
3002 already contains pre-computed offsets.
3003
3004 If we cannot compute the PIE displacement, either:
3005
3006 - The executable is not PIE.
3007
3008 - SYMFILE_OBJFILE does not match the executable started in the target.
3009 This can happen for main executable symbols loaded at the host while
3010 `ld.so --ld-args main-executable' is loaded in the target.
3011
3012 Then we leave the section offsets untouched and use them as is for
3013 this run. Either:
3014
3015 - These section offsets were properly reset earlier, and thus
3016 already contain the correct values. This can happen for instance
3017 when reconnecting via the remote protocol to a target that supports
3018 the `qOffsets' packet.
3019
3020 - The section offsets were not reset earlier, and the best we can
3021 hope is that the old offsets are still applicable to the new run. */
3022
3023 if (! svr4_exec_displacement (&displacement))
3024 return;
3025
3026 /* Even DISPLACEMENT 0 is a valid new difference of in-memory vs. in-file
3027 addresses. */
3028
3029 if (symfile_objfile)
3030 {
3031 struct section_offsets *new_offsets;
3032 int i;
3033
3034 new_offsets = XALLOCAVEC (struct section_offsets,
3035 symfile_objfile->num_sections);
3036
3037 for (i = 0; i < symfile_objfile->num_sections; i++)
3038 new_offsets->offsets[i] = displacement;
3039
3040 objfile_relocate (symfile_objfile, new_offsets);
3041 }
3042 else if (exec_bfd)
3043 {
3044 asection *asect;
3045
3046 for (asect = exec_bfd->sections; asect != NULL; asect = asect->next)
3047 exec_set_section_address (bfd_get_filename (exec_bfd), asect->index,
3048 (bfd_section_vma (exec_bfd, asect)
3049 + displacement));
3050 }
3051 }
3052
3053 /* Implement the "create_inferior_hook" target_solib_ops method.
3054
3055 For SVR4 executables, this first instruction is either the first
3056 instruction in the dynamic linker (for dynamically linked
3057 executables) or the instruction at "start" for statically linked
3058 executables. For dynamically linked executables, the system
3059 first exec's /lib/libc.so.N, which contains the dynamic linker,
3060 and starts it running. The dynamic linker maps in any needed
3061 shared libraries, maps in the actual user executable, and then
3062 jumps to "start" in the user executable.
3063
3064 We can arrange to cooperate with the dynamic linker to discover the
3065 names of shared libraries that are dynamically linked, and the base
3066 addresses to which they are linked.
3067
3068 This function is responsible for discovering those names and
3069 addresses, and saving sufficient information about them to allow
3070 their symbols to be read at a later time. */
3071
3072 static void
3073 svr4_solib_create_inferior_hook (int from_tty)
3074 {
3075 struct svr4_info *info;
3076
3077 info = get_svr4_info ();
3078
3079 /* Clear the probes-based interface's state. */
3080 free_probes_table (info);
3081 free_solib_list (info);
3082
3083 /* Relocate the main executable if necessary. */
3084 svr4_relocate_main_executable ();
3085
3086 /* No point setting a breakpoint in the dynamic linker if we can't
3087 hit it (e.g., a core file, or a trace file). */
3088 if (!target_has_execution)
3089 return;
3090
3091 if (!svr4_have_link_map_offsets ())
3092 return;
3093
3094 if (!enable_break (info, from_tty))
3095 return;
3096 }
3097
3098 static void
3099 svr4_clear_solib (void)
3100 {
3101 struct svr4_info *info;
3102
3103 info = get_svr4_info ();
3104 info->debug_base = 0;
3105 info->debug_loader_offset_p = 0;
3106 info->debug_loader_offset = 0;
3107 xfree (info->debug_loader_name);
3108 info->debug_loader_name = NULL;
3109 }
3110
3111 /* Clear any bits of ADDR that wouldn't fit in a target-format
3112 data pointer. "Data pointer" here refers to whatever sort of
3113 address the dynamic linker uses to manage its sections. At the
3114 moment, we don't support shared libraries on any processors where
3115 code and data pointers are different sizes.
3116
3117 This isn't really the right solution. What we really need here is
3118 a way to do arithmetic on CORE_ADDR values that respects the
3119 natural pointer/address correspondence. (For example, on the MIPS,
3120 converting a 32-bit pointer to a 64-bit CORE_ADDR requires you to
3121 sign-extend the value. There, simply truncating the bits above
3122 gdbarch_ptr_bit, as we do below, is no good.) This should probably
3123 be a new gdbarch method or something. */
3124 static CORE_ADDR
3125 svr4_truncate_ptr (CORE_ADDR addr)
3126 {
3127 if (gdbarch_ptr_bit (target_gdbarch ()) == sizeof (CORE_ADDR) * 8)
3128 /* We don't need to truncate anything, and the bit twiddling below
3129 will fail due to overflow problems. */
3130 return addr;
3131 else
3132 return addr & (((CORE_ADDR) 1 << gdbarch_ptr_bit (target_gdbarch ())) - 1);
3133 }
3134
3135
3136 static void
3137 svr4_relocate_section_addresses (struct so_list *so,
3138 struct target_section *sec)
3139 {
3140 bfd *abfd = sec->the_bfd_section->owner;
3141
3142 sec->addr = svr4_truncate_ptr (sec->addr + lm_addr_check (so, abfd));
3143 sec->endaddr = svr4_truncate_ptr (sec->endaddr + lm_addr_check (so, abfd));
3144 }
3145 \f
3146
3147 /* Architecture-specific operations. */
3148
3149 /* Per-architecture data key. */
3150 static struct gdbarch_data *solib_svr4_data;
3151
3152 struct solib_svr4_ops
3153 {
3154 /* Return a description of the layout of `struct link_map'. */
3155 struct link_map_offsets *(*fetch_link_map_offsets)(void);
3156 };
3157
3158 /* Return a default for the architecture-specific operations. */
3159
3160 static void *
3161 solib_svr4_init (struct obstack *obstack)
3162 {
3163 struct solib_svr4_ops *ops;
3164
3165 ops = OBSTACK_ZALLOC (obstack, struct solib_svr4_ops);
3166 ops->fetch_link_map_offsets = NULL;
3167 return ops;
3168 }
3169
3170 /* Set the architecture-specific `struct link_map_offsets' fetcher for
3171 GDBARCH to FLMO. Also, install SVR4 solib_ops into GDBARCH. */
3172
3173 void
3174 set_solib_svr4_fetch_link_map_offsets (struct gdbarch *gdbarch,
3175 struct link_map_offsets *(*flmo) (void))
3176 {
3177 struct solib_svr4_ops *ops
3178 = (struct solib_svr4_ops *) gdbarch_data (gdbarch, solib_svr4_data);
3179
3180 ops->fetch_link_map_offsets = flmo;
3181
3182 set_solib_ops (gdbarch, &svr4_so_ops);
3183 }
3184
3185 /* Fetch a link_map_offsets structure using the architecture-specific
3186 `struct link_map_offsets' fetcher. */
3187
3188 static struct link_map_offsets *
3189 svr4_fetch_link_map_offsets (void)
3190 {
3191 struct solib_svr4_ops *ops
3192 = (struct solib_svr4_ops *) gdbarch_data (target_gdbarch (),
3193 solib_svr4_data);
3194
3195 gdb_assert (ops->fetch_link_map_offsets);
3196 return ops->fetch_link_map_offsets ();
3197 }
3198
3199 /* Return 1 if a link map offset fetcher has been defined, 0 otherwise. */
3200
3201 static int
3202 svr4_have_link_map_offsets (void)
3203 {
3204 struct solib_svr4_ops *ops
3205 = (struct solib_svr4_ops *) gdbarch_data (target_gdbarch (),
3206 solib_svr4_data);
3207
3208 return (ops->fetch_link_map_offsets != NULL);
3209 }
3210 \f
3211
3212 /* Most OS'es that have SVR4-style ELF dynamic libraries define a
3213 `struct r_debug' and a `struct link_map' that are binary compatible
3214 with the origional SVR4 implementation. */
3215
3216 /* Fetch (and possibly build) an appropriate `struct link_map_offsets'
3217 for an ILP32 SVR4 system. */
3218
3219 struct link_map_offsets *
3220 svr4_ilp32_fetch_link_map_offsets (void)
3221 {
3222 static struct link_map_offsets lmo;
3223 static struct link_map_offsets *lmp = NULL;
3224
3225 if (lmp == NULL)
3226 {
3227 lmp = &lmo;
3228
3229 lmo.r_version_offset = 0;
3230 lmo.r_version_size = 4;
3231 lmo.r_map_offset = 4;
3232 lmo.r_brk_offset = 8;
3233 lmo.r_ldsomap_offset = 20;
3234
3235 /* Everything we need is in the first 20 bytes. */
3236 lmo.link_map_size = 20;
3237 lmo.l_addr_offset = 0;
3238 lmo.l_name_offset = 4;
3239 lmo.l_ld_offset = 8;
3240 lmo.l_next_offset = 12;
3241 lmo.l_prev_offset = 16;
3242 }
3243
3244 return lmp;
3245 }
3246
3247 /* Fetch (and possibly build) an appropriate `struct link_map_offsets'
3248 for an LP64 SVR4 system. */
3249
3250 struct link_map_offsets *
3251 svr4_lp64_fetch_link_map_offsets (void)
3252 {
3253 static struct link_map_offsets lmo;
3254 static struct link_map_offsets *lmp = NULL;
3255
3256 if (lmp == NULL)
3257 {
3258 lmp = &lmo;
3259
3260 lmo.r_version_offset = 0;
3261 lmo.r_version_size = 4;
3262 lmo.r_map_offset = 8;
3263 lmo.r_brk_offset = 16;
3264 lmo.r_ldsomap_offset = 40;
3265
3266 /* Everything we need is in the first 40 bytes. */
3267 lmo.link_map_size = 40;
3268 lmo.l_addr_offset = 0;
3269 lmo.l_name_offset = 8;
3270 lmo.l_ld_offset = 16;
3271 lmo.l_next_offset = 24;
3272 lmo.l_prev_offset = 32;
3273 }
3274
3275 return lmp;
3276 }
3277 \f
3278
3279 struct target_so_ops svr4_so_ops;
3280
3281 /* Lookup global symbol for ELF DSOs linked with -Bsymbolic. Those DSOs have a
3282 different rule for symbol lookup. The lookup begins here in the DSO, not in
3283 the main executable. */
3284
3285 static struct block_symbol
3286 elf_lookup_lib_symbol (struct objfile *objfile,
3287 const char *name,
3288 const domain_enum domain)
3289 {
3290 bfd *abfd;
3291
3292 if (objfile == symfile_objfile)
3293 abfd = exec_bfd;
3294 else
3295 {
3296 /* OBJFILE should have been passed as the non-debug one. */
3297 gdb_assert (objfile->separate_debug_objfile_backlink == NULL);
3298
3299 abfd = objfile->obfd;
3300 }
3301
3302 if (abfd == NULL || scan_dyntag (DT_SYMBOLIC, abfd, NULL, NULL) != 1)
3303 return (struct block_symbol) {NULL, NULL};
3304
3305 return lookup_global_symbol_from_objfile (objfile, name, domain);
3306 }
3307
3308 extern initialize_file_ftype _initialize_svr4_solib; /* -Wmissing-prototypes */
3309
3310 void
3311 _initialize_svr4_solib (void)
3312 {
3313 solib_svr4_data = gdbarch_data_register_pre_init (solib_svr4_init);
3314 solib_svr4_pspace_data
3315 = register_program_space_data_with_cleanup (NULL, svr4_pspace_data_cleanup);
3316
3317 svr4_so_ops.relocate_section_addresses = svr4_relocate_section_addresses;
3318 svr4_so_ops.free_so = svr4_free_so;
3319 svr4_so_ops.clear_so = svr4_clear_so;
3320 svr4_so_ops.clear_solib = svr4_clear_solib;
3321 svr4_so_ops.solib_create_inferior_hook = svr4_solib_create_inferior_hook;
3322 svr4_so_ops.current_sos = svr4_current_sos;
3323 svr4_so_ops.open_symbol_file_object = open_symbol_file_object;
3324 svr4_so_ops.in_dynsym_resolve_code = svr4_in_dynsym_resolve_code;
3325 svr4_so_ops.bfd_open = solib_bfd_open;
3326 svr4_so_ops.lookup_lib_global_symbol = elf_lookup_lib_symbol;
3327 svr4_so_ops.same = svr4_same;
3328 svr4_so_ops.keep_data_in_core = svr4_keep_data_in_core;
3329 svr4_so_ops.update_breakpoints = svr4_update_solib_event_breakpoints;
3330 svr4_so_ops.handle_event = svr4_handle_solib_event;
3331 }