gdb: Add maint set ignore-prologue-end-flag
[binutils-gdb.git] / gdb / solib-svr4.c
1 /* Handle SVR4 shared libraries for GDB, the GNU Debugger.
2
3 Copyright (C) 1990-2022 Free Software Foundation, Inc.
4
5 This file is part of GDB.
6
7 This program is free software; you can redistribute it and/or modify
8 it under the terms of the GNU General Public License as published by
9 the Free Software Foundation; either version 3 of the License, or
10 (at your option) any later version.
11
12 This program is distributed in the hope that it will be useful,
13 but WITHOUT ANY WARRANTY; without even the implied warranty of
14 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
15 GNU General Public License for more details.
16
17 You should have received a copy of the GNU General Public License
18 along with this program. If not, see <http://www.gnu.org/licenses/>. */
19
20 #include "defs.h"
21
22 #include "elf/external.h"
23 #include "elf/common.h"
24 #include "elf/mips.h"
25
26 #include "symtab.h"
27 #include "bfd.h"
28 #include "symfile.h"
29 #include "objfiles.h"
30 #include "gdbcore.h"
31 #include "target.h"
32 #include "inferior.h"
33 #include "infrun.h"
34 #include "regcache.h"
35 #include "gdbthread.h"
36 #include "observable.h"
37
38 #include "solist.h"
39 #include "solib.h"
40 #include "solib-svr4.h"
41
42 #include "bfd-target.h"
43 #include "elf-bfd.h"
44 #include "exec.h"
45 #include "auxv.h"
46 #include "gdb_bfd.h"
47 #include "probe.h"
48
49 static struct link_map_offsets *svr4_fetch_link_map_offsets (void);
50 static int svr4_have_link_map_offsets (void);
51 static void svr4_relocate_main_executable (void);
52 static void svr4_free_library_list (void *p_list);
53 static void probes_table_remove_objfile_probes (struct objfile *objfile);
54 static void svr4_iterate_over_objfiles_in_search_order (
55 struct gdbarch *gdbarch, iterate_over_objfiles_in_search_order_cb_ftype *cb,
56 void *cb_data, struct objfile *objfile);
57
58
59 /* On SVR4 systems, a list of symbols in the dynamic linker where
60 GDB can try to place a breakpoint to monitor shared library
61 events.
62
63 If none of these symbols are found, or other errors occur, then
64 SVR4 systems will fall back to using a symbol as the "startup
65 mapping complete" breakpoint address. */
66
67 static const char * const solib_break_names[] =
68 {
69 "r_debug_state",
70 "_r_debug_state",
71 "_dl_debug_state",
72 "rtld_db_dlactivity",
73 "__dl_rtld_db_dlactivity",
74 "_rtld_debug_state",
75
76 NULL
77 };
78
79 static const char * const bkpt_names[] =
80 {
81 "_start",
82 "__start",
83 "main",
84 NULL
85 };
86
87 static const char * const main_name_list[] =
88 {
89 "main_$main",
90 NULL
91 };
92
93 /* What to do when a probe stop occurs. */
94
95 enum probe_action
96 {
97 /* Something went seriously wrong. Stop using probes and
98 revert to using the older interface. */
99 PROBES_INTERFACE_FAILED,
100
101 /* No action is required. The shared object list is still
102 valid. */
103 DO_NOTHING,
104
105 /* The shared object list should be reloaded entirely. */
106 FULL_RELOAD,
107
108 /* Attempt to incrementally update the shared object list. If
109 the update fails or is not possible, fall back to reloading
110 the list in full. */
111 UPDATE_OR_RELOAD,
112 };
113
114 /* A probe's name and its associated action. */
115
116 struct probe_info
117 {
118 /* The name of the probe. */
119 const char *name;
120
121 /* What to do when a probe stop occurs. */
122 enum probe_action action;
123 };
124
125 /* A list of named probes and their associated actions. If all
126 probes are present in the dynamic linker then the probes-based
127 interface will be used. */
128
129 static const struct probe_info probe_info[] =
130 {
131 { "init_start", DO_NOTHING },
132 { "init_complete", FULL_RELOAD },
133 { "map_start", DO_NOTHING },
134 { "map_failed", DO_NOTHING },
135 { "reloc_complete", UPDATE_OR_RELOAD },
136 { "unmap_start", DO_NOTHING },
137 { "unmap_complete", FULL_RELOAD },
138 };
139
140 #define NUM_PROBES ARRAY_SIZE (probe_info)
141
142 /* Return non-zero if GDB_SO_NAME and INFERIOR_SO_NAME represent
143 the same shared library. */
144
145 static int
146 svr4_same_1 (const char *gdb_so_name, const char *inferior_so_name)
147 {
148 if (strcmp (gdb_so_name, inferior_so_name) == 0)
149 return 1;
150
151 /* On Solaris, when starting inferior we think that dynamic linker is
152 /usr/lib/ld.so.1, but later on, the table of loaded shared libraries
153 contains /lib/ld.so.1. Sometimes one file is a link to another, but
154 sometimes they have identical content, but are not linked to each
155 other. We don't restrict this check for Solaris, but the chances
156 of running into this situation elsewhere are very low. */
157 if (strcmp (gdb_so_name, "/usr/lib/ld.so.1") == 0
158 && strcmp (inferior_so_name, "/lib/ld.so.1") == 0)
159 return 1;
160
161 /* Similarly, we observed the same issue with amd64 and sparcv9, but with
162 different locations. */
163 if (strcmp (gdb_so_name, "/usr/lib/amd64/ld.so.1") == 0
164 && strcmp (inferior_so_name, "/lib/amd64/ld.so.1") == 0)
165 return 1;
166
167 if (strcmp (gdb_so_name, "/usr/lib/sparcv9/ld.so.1") == 0
168 && strcmp (inferior_so_name, "/lib/sparcv9/ld.so.1") == 0)
169 return 1;
170
171 return 0;
172 }
173
174 static int
175 svr4_same (struct so_list *gdb, struct so_list *inferior)
176 {
177 return (svr4_same_1 (gdb->so_original_name, inferior->so_original_name));
178 }
179
180 static std::unique_ptr<lm_info_svr4>
181 lm_info_read (CORE_ADDR lm_addr)
182 {
183 struct link_map_offsets *lmo = svr4_fetch_link_map_offsets ();
184 std::unique_ptr<lm_info_svr4> lm_info;
185
186 gdb::byte_vector lm (lmo->link_map_size);
187
188 if (target_read_memory (lm_addr, lm.data (), lmo->link_map_size) != 0)
189 warning (_("Error reading shared library list entry at %s"),
190 paddress (target_gdbarch (), lm_addr));
191 else
192 {
193 struct type *ptr_type = builtin_type (target_gdbarch ())->builtin_data_ptr;
194
195 lm_info.reset (new lm_info_svr4);
196 lm_info->lm_addr = lm_addr;
197
198 lm_info->l_addr_inferior = extract_typed_address (&lm[lmo->l_addr_offset],
199 ptr_type);
200 lm_info->l_ld = extract_typed_address (&lm[lmo->l_ld_offset], ptr_type);
201 lm_info->l_next = extract_typed_address (&lm[lmo->l_next_offset],
202 ptr_type);
203 lm_info->l_prev = extract_typed_address (&lm[lmo->l_prev_offset],
204 ptr_type);
205 lm_info->l_name = extract_typed_address (&lm[lmo->l_name_offset],
206 ptr_type);
207 }
208
209 return lm_info;
210 }
211
212 static int
213 has_lm_dynamic_from_link_map (void)
214 {
215 struct link_map_offsets *lmo = svr4_fetch_link_map_offsets ();
216
217 return lmo->l_ld_offset >= 0;
218 }
219
220 static CORE_ADDR
221 lm_addr_check (const struct so_list *so, bfd *abfd)
222 {
223 lm_info_svr4 *li = (lm_info_svr4 *) so->lm_info;
224
225 if (!li->l_addr_p)
226 {
227 struct bfd_section *dyninfo_sect;
228 CORE_ADDR l_addr, l_dynaddr, dynaddr;
229
230 l_addr = li->l_addr_inferior;
231
232 if (! abfd || ! has_lm_dynamic_from_link_map ())
233 goto set_addr;
234
235 l_dynaddr = li->l_ld;
236
237 dyninfo_sect = bfd_get_section_by_name (abfd, ".dynamic");
238 if (dyninfo_sect == NULL)
239 goto set_addr;
240
241 dynaddr = bfd_section_vma (dyninfo_sect);
242
243 if (dynaddr + l_addr != l_dynaddr)
244 {
245 CORE_ADDR align = 0x1000;
246 CORE_ADDR minpagesize = align;
247
248 if (bfd_get_flavour (abfd) == bfd_target_elf_flavour)
249 {
250 Elf_Internal_Ehdr *ehdr = elf_tdata (abfd)->elf_header;
251 Elf_Internal_Phdr *phdr = elf_tdata (abfd)->phdr;
252 int i;
253
254 align = 1;
255
256 for (i = 0; i < ehdr->e_phnum; i++)
257 if (phdr[i].p_type == PT_LOAD && phdr[i].p_align > align)
258 align = phdr[i].p_align;
259
260 minpagesize = get_elf_backend_data (abfd)->minpagesize;
261 }
262
263 /* Turn it into a mask. */
264 align--;
265
266 /* If the changes match the alignment requirements, we
267 assume we're using a core file that was generated by the
268 same binary, just prelinked with a different base offset.
269 If it doesn't match, we may have a different binary, the
270 same binary with the dynamic table loaded at an unrelated
271 location, or anything, really. To avoid regressions,
272 don't adjust the base offset in the latter case, although
273 odds are that, if things really changed, debugging won't
274 quite work.
275
276 One could expect more the condition
277 ((l_addr & align) == 0 && ((l_dynaddr - dynaddr) & align) == 0)
278 but the one below is relaxed for PPC. The PPC kernel supports
279 either 4k or 64k page sizes. To be prepared for 64k pages,
280 PPC ELF files are built using an alignment requirement of 64k.
281 However, when running on a kernel supporting 4k pages, the memory
282 mapping of the library may not actually happen on a 64k boundary!
283
284 (In the usual case where (l_addr & align) == 0, this check is
285 equivalent to the possibly expected check above.)
286
287 Even on PPC it must be zero-aligned at least for MINPAGESIZE. */
288
289 l_addr = l_dynaddr - dynaddr;
290
291 if ((l_addr & (minpagesize - 1)) == 0
292 && (l_addr & align) == ((l_dynaddr - dynaddr) & align))
293 {
294 if (info_verbose)
295 gdb_printf (_("Using PIC (Position Independent Code) "
296 "prelink displacement %s for \"%s\".\n"),
297 paddress (target_gdbarch (), l_addr),
298 so->so_name);
299 }
300 else
301 {
302 /* There is no way to verify the library file matches. prelink
303 can during prelinking of an unprelinked file (or unprelinking
304 of a prelinked file) shift the DYNAMIC segment by arbitrary
305 offset without any page size alignment. There is no way to
306 find out the ELF header and/or Program Headers for a limited
307 verification if it they match. One could do a verification
308 of the DYNAMIC segment. Still the found address is the best
309 one GDB could find. */
310
311 warning (_(".dynamic section for \"%s\" "
312 "is not at the expected address "
313 "(wrong library or version mismatch?)"), so->so_name);
314 }
315 }
316
317 set_addr:
318 li->l_addr = l_addr;
319 li->l_addr_p = 1;
320 }
321
322 return li->l_addr;
323 }
324
325 /* Per pspace SVR4 specific data. */
326
327 struct svr4_info
328 {
329 svr4_info () = default;
330 ~svr4_info ();
331
332 /* Base of dynamic linker structures. */
333 CORE_ADDR debug_base = 0;
334
335 /* Validity flag for debug_loader_offset. */
336 int debug_loader_offset_p = 0;
337
338 /* Load address for the dynamic linker, inferred. */
339 CORE_ADDR debug_loader_offset = 0;
340
341 /* Name of the dynamic linker, valid if debug_loader_offset_p. */
342 char *debug_loader_name = nullptr;
343
344 /* Load map address for the main executable. */
345 CORE_ADDR main_lm_addr = 0;
346
347 CORE_ADDR interp_text_sect_low = 0;
348 CORE_ADDR interp_text_sect_high = 0;
349 CORE_ADDR interp_plt_sect_low = 0;
350 CORE_ADDR interp_plt_sect_high = 0;
351
352 /* Nonzero if the list of objects was last obtained from the target
353 via qXfer:libraries-svr4:read. */
354 int using_xfer = 0;
355
356 /* Table of struct probe_and_action instances, used by the
357 probes-based interface to map breakpoint addresses to probes
358 and their associated actions. Lookup is performed using
359 probe_and_action->prob->address. */
360 htab_up probes_table;
361
362 /* List of objects loaded into the inferior, used by the probes-
363 based interface. */
364 struct so_list *solib_list = nullptr;
365 };
366
367 /* Per-program-space data key. */
368 static const struct program_space_key<svr4_info> solib_svr4_pspace_data;
369
370 /* Free the probes table. */
371
372 static void
373 free_probes_table (struct svr4_info *info)
374 {
375 info->probes_table.reset (nullptr);
376 }
377
378 /* Free the solib list. */
379
380 static void
381 free_solib_list (struct svr4_info *info)
382 {
383 svr4_free_library_list (&info->solib_list);
384 info->solib_list = NULL;
385 }
386
387 svr4_info::~svr4_info ()
388 {
389 free_solib_list (this);
390 }
391
392 /* Get the svr4 data for program space PSPACE. If none is found yet, add it now.
393 This function always returns a valid object. */
394
395 static struct svr4_info *
396 get_svr4_info (program_space *pspace)
397 {
398 struct svr4_info *info = solib_svr4_pspace_data.get (pspace);
399
400 if (info == NULL)
401 info = solib_svr4_pspace_data.emplace (pspace);
402
403 return info;
404 }
405
406 /* Local function prototypes */
407
408 static int match_main (const char *);
409
410 /* Read program header TYPE from inferior memory. The header is found
411 by scanning the OS auxiliary vector.
412
413 If TYPE == -1, return the program headers instead of the contents of
414 one program header.
415
416 Return vector of bytes holding the program header contents, or an empty
417 optional on failure. If successful and P_ARCH_SIZE is non-NULL, the target
418 architecture size (32-bit or 64-bit) is returned to *P_ARCH_SIZE. Likewise,
419 the base address of the section is returned in *BASE_ADDR. */
420
421 static gdb::optional<gdb::byte_vector>
422 read_program_header (int type, int *p_arch_size, CORE_ADDR *base_addr)
423 {
424 enum bfd_endian byte_order = gdbarch_byte_order (target_gdbarch ());
425 CORE_ADDR at_phdr, at_phent, at_phnum, pt_phdr = 0;
426 int arch_size, sect_size;
427 CORE_ADDR sect_addr;
428 int pt_phdr_p = 0;
429
430 /* Get required auxv elements from target. */
431 if (target_auxv_search (current_inferior ()->top_target (),
432 AT_PHDR, &at_phdr) <= 0)
433 return {};
434 if (target_auxv_search (current_inferior ()->top_target (),
435 AT_PHENT, &at_phent) <= 0)
436 return {};
437 if (target_auxv_search (current_inferior ()->top_target (),
438 AT_PHNUM, &at_phnum) <= 0)
439 return {};
440 if (!at_phdr || !at_phnum)
441 return {};
442
443 /* Determine ELF architecture type. */
444 if (at_phent == sizeof (Elf32_External_Phdr))
445 arch_size = 32;
446 else if (at_phent == sizeof (Elf64_External_Phdr))
447 arch_size = 64;
448 else
449 return {};
450
451 /* Find the requested segment. */
452 if (type == -1)
453 {
454 sect_addr = at_phdr;
455 sect_size = at_phent * at_phnum;
456 }
457 else if (arch_size == 32)
458 {
459 Elf32_External_Phdr phdr;
460 int i;
461
462 /* Search for requested PHDR. */
463 for (i = 0; i < at_phnum; i++)
464 {
465 int p_type;
466
467 if (target_read_memory (at_phdr + i * sizeof (phdr),
468 (gdb_byte *)&phdr, sizeof (phdr)))
469 return {};
470
471 p_type = extract_unsigned_integer ((gdb_byte *) phdr.p_type,
472 4, byte_order);
473
474 if (p_type == PT_PHDR)
475 {
476 pt_phdr_p = 1;
477 pt_phdr = extract_unsigned_integer ((gdb_byte *) phdr.p_vaddr,
478 4, byte_order);
479 }
480
481 if (p_type == type)
482 break;
483 }
484
485 if (i == at_phnum)
486 return {};
487
488 /* Retrieve address and size. */
489 sect_addr = extract_unsigned_integer ((gdb_byte *)phdr.p_vaddr,
490 4, byte_order);
491 sect_size = extract_unsigned_integer ((gdb_byte *)phdr.p_memsz,
492 4, byte_order);
493 }
494 else
495 {
496 Elf64_External_Phdr phdr;
497 int i;
498
499 /* Search for requested PHDR. */
500 for (i = 0; i < at_phnum; i++)
501 {
502 int p_type;
503
504 if (target_read_memory (at_phdr + i * sizeof (phdr),
505 (gdb_byte *)&phdr, sizeof (phdr)))
506 return {};
507
508 p_type = extract_unsigned_integer ((gdb_byte *) phdr.p_type,
509 4, byte_order);
510
511 if (p_type == PT_PHDR)
512 {
513 pt_phdr_p = 1;
514 pt_phdr = extract_unsigned_integer ((gdb_byte *) phdr.p_vaddr,
515 8, byte_order);
516 }
517
518 if (p_type == type)
519 break;
520 }
521
522 if (i == at_phnum)
523 return {};
524
525 /* Retrieve address and size. */
526 sect_addr = extract_unsigned_integer ((gdb_byte *)phdr.p_vaddr,
527 8, byte_order);
528 sect_size = extract_unsigned_integer ((gdb_byte *)phdr.p_memsz,
529 8, byte_order);
530 }
531
532 /* PT_PHDR is optional, but we really need it
533 for PIE to make this work in general. */
534
535 if (pt_phdr_p)
536 {
537 /* at_phdr is real address in memory. pt_phdr is what pheader says it is.
538 Relocation offset is the difference between the two. */
539 sect_addr = sect_addr + (at_phdr - pt_phdr);
540 }
541
542 /* Read in requested program header. */
543 gdb::byte_vector buf (sect_size);
544 if (target_read_memory (sect_addr, buf.data (), sect_size))
545 return {};
546
547 if (p_arch_size)
548 *p_arch_size = arch_size;
549 if (base_addr)
550 *base_addr = sect_addr;
551
552 return buf;
553 }
554
555
556 /* Return program interpreter string. */
557 static gdb::optional<gdb::byte_vector>
558 find_program_interpreter (void)
559 {
560 /* If we have a current exec_bfd, use its section table. */
561 if (current_program_space->exec_bfd ()
562 && (bfd_get_flavour (current_program_space->exec_bfd ())
563 == bfd_target_elf_flavour))
564 {
565 struct bfd_section *interp_sect;
566
567 interp_sect = bfd_get_section_by_name (current_program_space->exec_bfd (),
568 ".interp");
569 if (interp_sect != NULL)
570 {
571 int sect_size = bfd_section_size (interp_sect);
572
573 gdb::byte_vector buf (sect_size);
574 bfd_get_section_contents (current_program_space->exec_bfd (),
575 interp_sect, buf.data (), 0, sect_size);
576 return buf;
577 }
578 }
579
580 /* If we didn't find it, use the target auxiliary vector. */
581 return read_program_header (PT_INTERP, NULL, NULL);
582 }
583
584
585 /* Scan for DESIRED_DYNTAG in .dynamic section of the target's main executable,
586 found by consulting the OS auxillary vector. If DESIRED_DYNTAG is found, 1
587 is returned and the corresponding PTR is set. */
588
589 static int
590 scan_dyntag_auxv (const int desired_dyntag, CORE_ADDR *ptr,
591 CORE_ADDR *ptr_addr)
592 {
593 enum bfd_endian byte_order = gdbarch_byte_order (target_gdbarch ());
594 int arch_size, step;
595 long current_dyntag;
596 CORE_ADDR dyn_ptr;
597 CORE_ADDR base_addr;
598
599 /* Read in .dynamic section. */
600 gdb::optional<gdb::byte_vector> ph_data
601 = read_program_header (PT_DYNAMIC, &arch_size, &base_addr);
602 if (!ph_data)
603 return 0;
604
605 /* Iterate over BUF and scan for DYNTAG. If found, set PTR and return. */
606 step = (arch_size == 32) ? sizeof (Elf32_External_Dyn)
607 : sizeof (Elf64_External_Dyn);
608 for (gdb_byte *buf = ph_data->data (), *bufend = buf + ph_data->size ();
609 buf < bufend; buf += step)
610 {
611 if (arch_size == 32)
612 {
613 Elf32_External_Dyn *dynp = (Elf32_External_Dyn *) buf;
614
615 current_dyntag = extract_unsigned_integer ((gdb_byte *) dynp->d_tag,
616 4, byte_order);
617 dyn_ptr = extract_unsigned_integer ((gdb_byte *) dynp->d_un.d_ptr,
618 4, byte_order);
619 }
620 else
621 {
622 Elf64_External_Dyn *dynp = (Elf64_External_Dyn *) buf;
623
624 current_dyntag = extract_unsigned_integer ((gdb_byte *) dynp->d_tag,
625 8, byte_order);
626 dyn_ptr = extract_unsigned_integer ((gdb_byte *) dynp->d_un.d_ptr,
627 8, byte_order);
628 }
629 if (current_dyntag == DT_NULL)
630 break;
631
632 if (current_dyntag == desired_dyntag)
633 {
634 if (ptr)
635 *ptr = dyn_ptr;
636
637 if (ptr_addr)
638 *ptr_addr = base_addr + buf - ph_data->data ();
639
640 return 1;
641 }
642 }
643
644 return 0;
645 }
646
647 /* Locate the base address of dynamic linker structs for SVR4 elf
648 targets.
649
650 For SVR4 elf targets the address of the dynamic linker's runtime
651 structure is contained within the dynamic info section in the
652 executable file. The dynamic section is also mapped into the
653 inferior address space. Because the runtime loader fills in the
654 real address before starting the inferior, we have to read in the
655 dynamic info section from the inferior address space.
656 If there are any errors while trying to find the address, we
657 silently return 0, otherwise the found address is returned. */
658
659 static CORE_ADDR
660 elf_locate_base (void)
661 {
662 struct bound_minimal_symbol msymbol;
663 CORE_ADDR dyn_ptr, dyn_ptr_addr;
664
665 /* Look for DT_MIPS_RLD_MAP first. MIPS executables use this
666 instead of DT_DEBUG, although they sometimes contain an unused
667 DT_DEBUG. */
668 if (gdb_bfd_scan_elf_dyntag (DT_MIPS_RLD_MAP,
669 current_program_space->exec_bfd (),
670 &dyn_ptr, NULL)
671 || scan_dyntag_auxv (DT_MIPS_RLD_MAP, &dyn_ptr, NULL))
672 {
673 struct type *ptr_type = builtin_type (target_gdbarch ())->builtin_data_ptr;
674 gdb_byte *pbuf;
675 int pbuf_size = TYPE_LENGTH (ptr_type);
676
677 pbuf = (gdb_byte *) alloca (pbuf_size);
678 /* DT_MIPS_RLD_MAP contains a pointer to the address
679 of the dynamic link structure. */
680 if (target_read_memory (dyn_ptr, pbuf, pbuf_size))
681 return 0;
682 return extract_typed_address (pbuf, ptr_type);
683 }
684
685 /* Then check DT_MIPS_RLD_MAP_REL. MIPS executables now use this form
686 because of needing to support PIE. DT_MIPS_RLD_MAP will also exist
687 in non-PIE. */
688 if (gdb_bfd_scan_elf_dyntag (DT_MIPS_RLD_MAP_REL,
689 current_program_space->exec_bfd (),
690 &dyn_ptr, &dyn_ptr_addr)
691 || scan_dyntag_auxv (DT_MIPS_RLD_MAP_REL, &dyn_ptr, &dyn_ptr_addr))
692 {
693 struct type *ptr_type = builtin_type (target_gdbarch ())->builtin_data_ptr;
694 gdb_byte *pbuf;
695 int pbuf_size = TYPE_LENGTH (ptr_type);
696
697 pbuf = (gdb_byte *) alloca (pbuf_size);
698 /* DT_MIPS_RLD_MAP_REL contains an offset from the address of the
699 DT slot to the address of the dynamic link structure. */
700 if (target_read_memory (dyn_ptr + dyn_ptr_addr, pbuf, pbuf_size))
701 return 0;
702 return extract_typed_address (pbuf, ptr_type);
703 }
704
705 /* Find DT_DEBUG. */
706 if (gdb_bfd_scan_elf_dyntag (DT_DEBUG, current_program_space->exec_bfd (),
707 &dyn_ptr, NULL)
708 || scan_dyntag_auxv (DT_DEBUG, &dyn_ptr, NULL))
709 return dyn_ptr;
710
711 /* This may be a static executable. Look for the symbol
712 conventionally named _r_debug, as a last resort. */
713 msymbol = lookup_minimal_symbol ("_r_debug", NULL,
714 current_program_space->symfile_object_file);
715 if (msymbol.minsym != NULL)
716 return BMSYMBOL_VALUE_ADDRESS (msymbol);
717
718 /* DT_DEBUG entry not found. */
719 return 0;
720 }
721
722 /* Locate the base address of dynamic linker structs.
723
724 For both the SunOS and SVR4 shared library implementations, if the
725 inferior executable has been linked dynamically, there is a single
726 address somewhere in the inferior's data space which is the key to
727 locating all of the dynamic linker's runtime structures. This
728 address is the value of the debug base symbol. The job of this
729 function is to find and return that address, or to return 0 if there
730 is no such address (the executable is statically linked for example).
731
732 For SunOS, the job is almost trivial, since the dynamic linker and
733 all of it's structures are statically linked to the executable at
734 link time. Thus the symbol for the address we are looking for has
735 already been added to the minimal symbol table for the executable's
736 objfile at the time the symbol file's symbols were read, and all we
737 have to do is look it up there. Note that we explicitly do NOT want
738 to find the copies in the shared library.
739
740 The SVR4 version is a bit more complicated because the address
741 is contained somewhere in the dynamic info section. We have to go
742 to a lot more work to discover the address of the debug base symbol.
743 Because of this complexity, we cache the value we find and return that
744 value on subsequent invocations. Note there is no copy in the
745 executable symbol tables. */
746
747 static CORE_ADDR
748 locate_base (struct svr4_info *info)
749 {
750 /* Check to see if we have a currently valid address, and if so, avoid
751 doing all this work again and just return the cached address. If
752 we have no cached address, try to locate it in the dynamic info
753 section for ELF executables. There's no point in doing any of this
754 though if we don't have some link map offsets to work with. */
755
756 if (info->debug_base == 0 && svr4_have_link_map_offsets ())
757 info->debug_base = elf_locate_base ();
758 return info->debug_base;
759 }
760
761 /* Find the first element in the inferior's dynamic link map, and
762 return its address in the inferior. Return zero if the address
763 could not be determined.
764
765 FIXME: Perhaps we should validate the info somehow, perhaps by
766 checking r_version for a known version number, or r_state for
767 RT_CONSISTENT. */
768
769 static CORE_ADDR
770 solib_svr4_r_map (struct svr4_info *info)
771 {
772 struct link_map_offsets *lmo = svr4_fetch_link_map_offsets ();
773 struct type *ptr_type = builtin_type (target_gdbarch ())->builtin_data_ptr;
774 CORE_ADDR addr = 0;
775
776 try
777 {
778 addr = read_memory_typed_address (info->debug_base + lmo->r_map_offset,
779 ptr_type);
780 }
781 catch (const gdb_exception_error &ex)
782 {
783 exception_print (gdb_stderr, ex);
784 }
785
786 return addr;
787 }
788
789 /* Find r_brk from the inferior's debug base. */
790
791 static CORE_ADDR
792 solib_svr4_r_brk (struct svr4_info *info)
793 {
794 struct link_map_offsets *lmo = svr4_fetch_link_map_offsets ();
795 struct type *ptr_type = builtin_type (target_gdbarch ())->builtin_data_ptr;
796
797 return read_memory_typed_address (info->debug_base + lmo->r_brk_offset,
798 ptr_type);
799 }
800
801 /* Find the link map for the dynamic linker (if it is not in the
802 normal list of loaded shared objects). */
803
804 static CORE_ADDR
805 solib_svr4_r_ldsomap (struct svr4_info *info)
806 {
807 struct link_map_offsets *lmo = svr4_fetch_link_map_offsets ();
808 struct type *ptr_type = builtin_type (target_gdbarch ())->builtin_data_ptr;
809 enum bfd_endian byte_order = type_byte_order (ptr_type);
810 ULONGEST version = 0;
811
812 try
813 {
814 /* Check version, and return zero if `struct r_debug' doesn't have
815 the r_ldsomap member. */
816 version
817 = read_memory_unsigned_integer (info->debug_base + lmo->r_version_offset,
818 lmo->r_version_size, byte_order);
819 }
820 catch (const gdb_exception_error &ex)
821 {
822 exception_print (gdb_stderr, ex);
823 }
824
825 if (version < 2 || lmo->r_ldsomap_offset == -1)
826 return 0;
827
828 return read_memory_typed_address (info->debug_base + lmo->r_ldsomap_offset,
829 ptr_type);
830 }
831
832 /* On Solaris systems with some versions of the dynamic linker,
833 ld.so's l_name pointer points to the SONAME in the string table
834 rather than into writable memory. So that GDB can find shared
835 libraries when loading a core file generated by gcore, ensure that
836 memory areas containing the l_name string are saved in the core
837 file. */
838
839 static int
840 svr4_keep_data_in_core (CORE_ADDR vaddr, unsigned long size)
841 {
842 struct svr4_info *info;
843 CORE_ADDR ldsomap;
844 CORE_ADDR name_lm;
845
846 info = get_svr4_info (current_program_space);
847
848 info->debug_base = 0;
849 locate_base (info);
850 if (!info->debug_base)
851 return 0;
852
853 ldsomap = solib_svr4_r_ldsomap (info);
854 if (!ldsomap)
855 return 0;
856
857 std::unique_ptr<lm_info_svr4> li = lm_info_read (ldsomap);
858 name_lm = li != NULL ? li->l_name : 0;
859
860 return (name_lm >= vaddr && name_lm < vaddr + size);
861 }
862
863 /* See solist.h. */
864
865 static int
866 open_symbol_file_object (int from_tty)
867 {
868 CORE_ADDR lm, l_name;
869 struct link_map_offsets *lmo = svr4_fetch_link_map_offsets ();
870 struct type *ptr_type = builtin_type (target_gdbarch ())->builtin_data_ptr;
871 int l_name_size = TYPE_LENGTH (ptr_type);
872 gdb::byte_vector l_name_buf (l_name_size);
873 struct svr4_info *info = get_svr4_info (current_program_space);
874 symfile_add_flags add_flags = 0;
875
876 if (from_tty)
877 add_flags |= SYMFILE_VERBOSE;
878
879 if (current_program_space->symfile_object_file)
880 if (!query (_("Attempt to reload symbols from process? ")))
881 return 0;
882
883 /* Always locate the debug struct, in case it has moved. */
884 info->debug_base = 0;
885 if (locate_base (info) == 0)
886 return 0; /* failed somehow... */
887
888 /* First link map member should be the executable. */
889 lm = solib_svr4_r_map (info);
890 if (lm == 0)
891 return 0; /* failed somehow... */
892
893 /* Read address of name from target memory to GDB. */
894 read_memory (lm + lmo->l_name_offset, l_name_buf.data (), l_name_size);
895
896 /* Convert the address to host format. */
897 l_name = extract_typed_address (l_name_buf.data (), ptr_type);
898
899 if (l_name == 0)
900 return 0; /* No filename. */
901
902 /* Now fetch the filename from target memory. */
903 gdb::unique_xmalloc_ptr<char> filename
904 = target_read_string (l_name, SO_NAME_MAX_PATH_SIZE - 1);
905
906 if (filename == nullptr)
907 {
908 warning (_("failed to read exec filename from attached file"));
909 return 0;
910 }
911
912 /* Have a pathname: read the symbol file. */
913 symbol_file_add_main (filename.get (), add_flags);
914
915 return 1;
916 }
917
918 /* Data exchange structure for the XML parser as returned by
919 svr4_current_sos_via_xfer_libraries. */
920
921 struct svr4_library_list
922 {
923 struct so_list *head, **tailp;
924
925 /* Inferior address of struct link_map used for the main executable. It is
926 NULL if not known. */
927 CORE_ADDR main_lm;
928 };
929
930 /* This module's 'free_objfile' observer. */
931
932 static void
933 svr4_free_objfile_observer (struct objfile *objfile)
934 {
935 probes_table_remove_objfile_probes (objfile);
936 }
937
938 /* Implementation for target_so_ops.free_so. */
939
940 static void
941 svr4_free_so (struct so_list *so)
942 {
943 lm_info_svr4 *li = (lm_info_svr4 *) so->lm_info;
944
945 delete li;
946 }
947
948 /* Implement target_so_ops.clear_so. */
949
950 static void
951 svr4_clear_so (struct so_list *so)
952 {
953 lm_info_svr4 *li = (lm_info_svr4 *) so->lm_info;
954
955 if (li != NULL)
956 li->l_addr_p = 0;
957 }
958
959 /* Free so_list built so far (called via cleanup). */
960
961 static void
962 svr4_free_library_list (void *p_list)
963 {
964 struct so_list *list = *(struct so_list **) p_list;
965
966 while (list != NULL)
967 {
968 struct so_list *next = list->next;
969
970 free_so (list);
971 list = next;
972 }
973 }
974
975 /* Copy library list. */
976
977 static struct so_list *
978 svr4_copy_library_list (struct so_list *src)
979 {
980 struct so_list *dst = NULL;
981 struct so_list **link = &dst;
982
983 while (src != NULL)
984 {
985 struct so_list *newobj;
986
987 newobj = XNEW (struct so_list);
988 memcpy (newobj, src, sizeof (struct so_list));
989
990 lm_info_svr4 *src_li = (lm_info_svr4 *) src->lm_info;
991 newobj->lm_info = new lm_info_svr4 (*src_li);
992
993 newobj->next = NULL;
994 *link = newobj;
995 link = &newobj->next;
996
997 src = src->next;
998 }
999
1000 return dst;
1001 }
1002
1003 #ifdef HAVE_LIBEXPAT
1004
1005 #include "xml-support.h"
1006
1007 /* Handle the start of a <library> element. Note: new elements are added
1008 at the tail of the list, keeping the list in order. */
1009
1010 static void
1011 library_list_start_library (struct gdb_xml_parser *parser,
1012 const struct gdb_xml_element *element,
1013 void *user_data,
1014 std::vector<gdb_xml_value> &attributes)
1015 {
1016 struct svr4_library_list *list = (struct svr4_library_list *) user_data;
1017 const char *name
1018 = (const char *) xml_find_attribute (attributes, "name")->value.get ();
1019 ULONGEST *lmp
1020 = (ULONGEST *) xml_find_attribute (attributes, "lm")->value.get ();
1021 ULONGEST *l_addrp
1022 = (ULONGEST *) xml_find_attribute (attributes, "l_addr")->value.get ();
1023 ULONGEST *l_ldp
1024 = (ULONGEST *) xml_find_attribute (attributes, "l_ld")->value.get ();
1025 struct so_list *new_elem;
1026
1027 new_elem = XCNEW (struct so_list);
1028 lm_info_svr4 *li = new lm_info_svr4;
1029 new_elem->lm_info = li;
1030 li->lm_addr = *lmp;
1031 li->l_addr_inferior = *l_addrp;
1032 li->l_ld = *l_ldp;
1033
1034 strncpy (new_elem->so_name, name, sizeof (new_elem->so_name) - 1);
1035 new_elem->so_name[sizeof (new_elem->so_name) - 1] = 0;
1036 strcpy (new_elem->so_original_name, new_elem->so_name);
1037
1038 *list->tailp = new_elem;
1039 list->tailp = &new_elem->next;
1040 }
1041
1042 /* Handle the start of a <library-list-svr4> element. */
1043
1044 static void
1045 svr4_library_list_start_list (struct gdb_xml_parser *parser,
1046 const struct gdb_xml_element *element,
1047 void *user_data,
1048 std::vector<gdb_xml_value> &attributes)
1049 {
1050 struct svr4_library_list *list = (struct svr4_library_list *) user_data;
1051 const char *version
1052 = (const char *) xml_find_attribute (attributes, "version")->value.get ();
1053 struct gdb_xml_value *main_lm = xml_find_attribute (attributes, "main-lm");
1054
1055 if (strcmp (version, "1.0") != 0)
1056 gdb_xml_error (parser,
1057 _("SVR4 Library list has unsupported version \"%s\""),
1058 version);
1059
1060 if (main_lm)
1061 list->main_lm = *(ULONGEST *) main_lm->value.get ();
1062 }
1063
1064 /* The allowed elements and attributes for an XML library list.
1065 The root element is a <library-list>. */
1066
1067 static const struct gdb_xml_attribute svr4_library_attributes[] =
1068 {
1069 { "name", GDB_XML_AF_NONE, NULL, NULL },
1070 { "lm", GDB_XML_AF_NONE, gdb_xml_parse_attr_ulongest, NULL },
1071 { "l_addr", GDB_XML_AF_NONE, gdb_xml_parse_attr_ulongest, NULL },
1072 { "l_ld", GDB_XML_AF_NONE, gdb_xml_parse_attr_ulongest, NULL },
1073 { NULL, GDB_XML_AF_NONE, NULL, NULL }
1074 };
1075
1076 static const struct gdb_xml_element svr4_library_list_children[] =
1077 {
1078 {
1079 "library", svr4_library_attributes, NULL,
1080 GDB_XML_EF_REPEATABLE | GDB_XML_EF_OPTIONAL,
1081 library_list_start_library, NULL
1082 },
1083 { NULL, NULL, NULL, GDB_XML_EF_NONE, NULL, NULL }
1084 };
1085
1086 static const struct gdb_xml_attribute svr4_library_list_attributes[] =
1087 {
1088 { "version", GDB_XML_AF_NONE, NULL, NULL },
1089 { "main-lm", GDB_XML_AF_OPTIONAL, gdb_xml_parse_attr_ulongest, NULL },
1090 { NULL, GDB_XML_AF_NONE, NULL, NULL }
1091 };
1092
1093 static const struct gdb_xml_element svr4_library_list_elements[] =
1094 {
1095 { "library-list-svr4", svr4_library_list_attributes, svr4_library_list_children,
1096 GDB_XML_EF_NONE, svr4_library_list_start_list, NULL },
1097 { NULL, NULL, NULL, GDB_XML_EF_NONE, NULL, NULL }
1098 };
1099
1100 /* Parse qXfer:libraries:read packet into *SO_LIST_RETURN. Return 1 if
1101
1102 Return 0 if packet not supported, *SO_LIST_RETURN is not modified in such
1103 case. Return 1 if *SO_LIST_RETURN contains the library list, it may be
1104 empty, caller is responsible for freeing all its entries. */
1105
1106 static int
1107 svr4_parse_libraries (const char *document, struct svr4_library_list *list)
1108 {
1109 auto cleanup = make_scope_exit ([&] ()
1110 {
1111 svr4_free_library_list (&list->head);
1112 });
1113
1114 memset (list, 0, sizeof (*list));
1115 list->tailp = &list->head;
1116 if (gdb_xml_parse_quick (_("target library list"), "library-list-svr4.dtd",
1117 svr4_library_list_elements, document, list) == 0)
1118 {
1119 /* Parsed successfully, keep the result. */
1120 cleanup.release ();
1121 return 1;
1122 }
1123
1124 return 0;
1125 }
1126
1127 /* Attempt to get so_list from target via qXfer:libraries-svr4:read packet.
1128
1129 Return 0 if packet not supported, *SO_LIST_RETURN is not modified in such
1130 case. Return 1 if *SO_LIST_RETURN contains the library list, it may be
1131 empty, caller is responsible for freeing all its entries.
1132
1133 Note that ANNEX must be NULL if the remote does not explicitly allow
1134 qXfer:libraries-svr4:read packets with non-empty annexes. Support for
1135 this can be checked using target_augmented_libraries_svr4_read (). */
1136
1137 static int
1138 svr4_current_sos_via_xfer_libraries (struct svr4_library_list *list,
1139 const char *annex)
1140 {
1141 gdb_assert (annex == NULL || target_augmented_libraries_svr4_read ());
1142
1143 /* Fetch the list of shared libraries. */
1144 gdb::optional<gdb::char_vector> svr4_library_document
1145 = target_read_stralloc (current_inferior ()->top_target (),
1146 TARGET_OBJECT_LIBRARIES_SVR4,
1147 annex);
1148 if (!svr4_library_document)
1149 return 0;
1150
1151 return svr4_parse_libraries (svr4_library_document->data (), list);
1152 }
1153
1154 #else
1155
1156 static int
1157 svr4_current_sos_via_xfer_libraries (struct svr4_library_list *list,
1158 const char *annex)
1159 {
1160 return 0;
1161 }
1162
1163 #endif
1164
1165 /* If no shared library information is available from the dynamic
1166 linker, build a fallback list from other sources. */
1167
1168 static struct so_list *
1169 svr4_default_sos (svr4_info *info)
1170 {
1171 struct so_list *newobj;
1172
1173 if (!info->debug_loader_offset_p)
1174 return NULL;
1175
1176 newobj = XCNEW (struct so_list);
1177 lm_info_svr4 *li = new lm_info_svr4;
1178 newobj->lm_info = li;
1179
1180 /* Nothing will ever check the other fields if we set l_addr_p. */
1181 li->l_addr = info->debug_loader_offset;
1182 li->l_addr_p = 1;
1183
1184 strncpy (newobj->so_name, info->debug_loader_name, SO_NAME_MAX_PATH_SIZE - 1);
1185 newobj->so_name[SO_NAME_MAX_PATH_SIZE - 1] = '\0';
1186 strcpy (newobj->so_original_name, newobj->so_name);
1187
1188 return newobj;
1189 }
1190
1191 /* Read the whole inferior libraries chain starting at address LM.
1192 Expect the first entry in the chain's previous entry to be PREV_LM.
1193 Add the entries to the tail referenced by LINK_PTR_PTR. Ignore the
1194 first entry if IGNORE_FIRST and set global MAIN_LM_ADDR according
1195 to it. Returns nonzero upon success. If zero is returned the
1196 entries stored to LINK_PTR_PTR are still valid although they may
1197 represent only part of the inferior library list. */
1198
1199 static int
1200 svr4_read_so_list (svr4_info *info, CORE_ADDR lm, CORE_ADDR prev_lm,
1201 struct so_list ***link_ptr_ptr, int ignore_first)
1202 {
1203 CORE_ADDR first_l_name = 0;
1204 CORE_ADDR next_lm;
1205
1206 for (; lm != 0; prev_lm = lm, lm = next_lm)
1207 {
1208 so_list_up newobj (XCNEW (struct so_list));
1209
1210 lm_info_svr4 *li = lm_info_read (lm).release ();
1211 newobj->lm_info = li;
1212 if (li == NULL)
1213 return 0;
1214
1215 next_lm = li->l_next;
1216
1217 if (li->l_prev != prev_lm)
1218 {
1219 warning (_("Corrupted shared library list: %s != %s"),
1220 paddress (target_gdbarch (), prev_lm),
1221 paddress (target_gdbarch (), li->l_prev));
1222 return 0;
1223 }
1224
1225 /* For SVR4 versions, the first entry in the link map is for the
1226 inferior executable, so we must ignore it. For some versions of
1227 SVR4, it has no name. For others (Solaris 2.3 for example), it
1228 does have a name, so we can no longer use a missing name to
1229 decide when to ignore it. */
1230 if (ignore_first && li->l_prev == 0)
1231 {
1232 first_l_name = li->l_name;
1233 info->main_lm_addr = li->lm_addr;
1234 continue;
1235 }
1236
1237 /* Extract this shared object's name. */
1238 gdb::unique_xmalloc_ptr<char> buffer
1239 = target_read_string (li->l_name, SO_NAME_MAX_PATH_SIZE - 1);
1240 if (buffer == nullptr)
1241 {
1242 /* If this entry's l_name address matches that of the
1243 inferior executable, then this is not a normal shared
1244 object, but (most likely) a vDSO. In this case, silently
1245 skip it; otherwise emit a warning. */
1246 if (first_l_name == 0 || li->l_name != first_l_name)
1247 warning (_("Can't read pathname for load map."));
1248 continue;
1249 }
1250
1251 strncpy (newobj->so_name, buffer.get (), SO_NAME_MAX_PATH_SIZE - 1);
1252 newobj->so_name[SO_NAME_MAX_PATH_SIZE - 1] = '\0';
1253 strcpy (newobj->so_original_name, newobj->so_name);
1254
1255 /* If this entry has no name, or its name matches the name
1256 for the main executable, don't include it in the list. */
1257 if (! newobj->so_name[0] || match_main (newobj->so_name))
1258 continue;
1259
1260 newobj->next = 0;
1261 /* Don't free it now. */
1262 **link_ptr_ptr = newobj.release ();
1263 *link_ptr_ptr = &(**link_ptr_ptr)->next;
1264 }
1265
1266 return 1;
1267 }
1268
1269 /* Read the full list of currently loaded shared objects directly
1270 from the inferior, without referring to any libraries read and
1271 stored by the probes interface. Handle special cases relating
1272 to the first elements of the list. */
1273
1274 static struct so_list *
1275 svr4_current_sos_direct (struct svr4_info *info)
1276 {
1277 CORE_ADDR lm;
1278 struct so_list *head = NULL;
1279 struct so_list **link_ptr = &head;
1280 int ignore_first;
1281 struct svr4_library_list library_list;
1282
1283 /* Fall back to manual examination of the target if the packet is not
1284 supported or gdbserver failed to find DT_DEBUG. gdb.server/solib-list.exp
1285 tests a case where gdbserver cannot find the shared libraries list while
1286 GDB itself is able to find it via SYMFILE_OBJFILE.
1287
1288 Unfortunately statically linked inferiors will also fall back through this
1289 suboptimal code path. */
1290
1291 info->using_xfer = svr4_current_sos_via_xfer_libraries (&library_list,
1292 NULL);
1293 if (info->using_xfer)
1294 {
1295 if (library_list.main_lm)
1296 info->main_lm_addr = library_list.main_lm;
1297
1298 return library_list.head ? library_list.head : svr4_default_sos (info);
1299 }
1300
1301 /* Always locate the debug struct, in case it has moved. */
1302 info->debug_base = 0;
1303 locate_base (info);
1304
1305 /* If we can't find the dynamic linker's base structure, this
1306 must not be a dynamically linked executable. Hmm. */
1307 if (! info->debug_base)
1308 return svr4_default_sos (info);
1309
1310 /* Assume that everything is a library if the dynamic loader was loaded
1311 late by a static executable. */
1312 if (current_program_space->exec_bfd ()
1313 && bfd_get_section_by_name (current_program_space->exec_bfd (),
1314 ".dynamic") == NULL)
1315 ignore_first = 0;
1316 else
1317 ignore_first = 1;
1318
1319 auto cleanup = make_scope_exit ([&] ()
1320 {
1321 svr4_free_library_list (&head);
1322 });
1323
1324 /* Walk the inferior's link map list, and build our list of
1325 `struct so_list' nodes. */
1326 lm = solib_svr4_r_map (info);
1327 if (lm)
1328 svr4_read_so_list (info, lm, 0, &link_ptr, ignore_first);
1329
1330 /* On Solaris, the dynamic linker is not in the normal list of
1331 shared objects, so make sure we pick it up too. Having
1332 symbol information for the dynamic linker is quite crucial
1333 for skipping dynamic linker resolver code. */
1334 lm = solib_svr4_r_ldsomap (info);
1335 if (lm)
1336 svr4_read_so_list (info, lm, 0, &link_ptr, 0);
1337
1338 cleanup.release ();
1339
1340 if (head == NULL)
1341 return svr4_default_sos (info);
1342
1343 return head;
1344 }
1345
1346 /* Implement the main part of the "current_sos" target_so_ops
1347 method. */
1348
1349 static struct so_list *
1350 svr4_current_sos_1 (svr4_info *info)
1351 {
1352 /* If the solib list has been read and stored by the probes
1353 interface then we return a copy of the stored list. */
1354 if (info->solib_list != NULL)
1355 return svr4_copy_library_list (info->solib_list);
1356
1357 /* Otherwise obtain the solib list directly from the inferior. */
1358 return svr4_current_sos_direct (info);
1359 }
1360
1361 /* Implement the "current_sos" target_so_ops method. */
1362
1363 static struct so_list *
1364 svr4_current_sos (void)
1365 {
1366 svr4_info *info = get_svr4_info (current_program_space);
1367 struct so_list *so_head = svr4_current_sos_1 (info);
1368 struct mem_range vsyscall_range;
1369
1370 /* Filter out the vDSO module, if present. Its symbol file would
1371 not be found on disk. The vDSO/vsyscall's OBJFILE is instead
1372 managed by symfile-mem.c:add_vsyscall_page. */
1373 if (gdbarch_vsyscall_range (target_gdbarch (), &vsyscall_range)
1374 && vsyscall_range.length != 0)
1375 {
1376 struct so_list **sop;
1377
1378 sop = &so_head;
1379 while (*sop != NULL)
1380 {
1381 struct so_list *so = *sop;
1382
1383 /* We can't simply match the vDSO by starting address alone,
1384 because lm_info->l_addr_inferior (and also l_addr) do not
1385 necessarily represent the real starting address of the
1386 ELF if the vDSO's ELF itself is "prelinked". The l_ld
1387 field (the ".dynamic" section of the shared object)
1388 always points at the absolute/resolved address though.
1389 So check whether that address is inside the vDSO's
1390 mapping instead.
1391
1392 E.g., on Linux 3.16 (x86_64) the vDSO is a regular
1393 0-based ELF, and we see:
1394
1395 (gdb) info auxv
1396 33 AT_SYSINFO_EHDR System-supplied DSO's ELF header 0x7ffff7ffb000
1397 (gdb) p/x *_r_debug.r_map.l_next
1398 $1 = {l_addr = 0x7ffff7ffb000, ..., l_ld = 0x7ffff7ffb318, ...}
1399
1400 And on Linux 2.6.32 (x86_64) we see:
1401
1402 (gdb) info auxv
1403 33 AT_SYSINFO_EHDR System-supplied DSO's ELF header 0x7ffff7ffe000
1404 (gdb) p/x *_r_debug.r_map.l_next
1405 $5 = {l_addr = 0x7ffff88fe000, ..., l_ld = 0x7ffff7ffe580, ... }
1406
1407 Dumping that vDSO shows:
1408
1409 (gdb) info proc mappings
1410 0x7ffff7ffe000 0x7ffff7fff000 0x1000 0 [vdso]
1411 (gdb) dump memory vdso.bin 0x7ffff7ffe000 0x7ffff7fff000
1412 # readelf -Wa vdso.bin
1413 [...]
1414 Entry point address: 0xffffffffff700700
1415 [...]
1416 Section Headers:
1417 [Nr] Name Type Address Off Size
1418 [ 0] NULL 0000000000000000 000000 000000
1419 [ 1] .hash HASH ffffffffff700120 000120 000038
1420 [ 2] .dynsym DYNSYM ffffffffff700158 000158 0000d8
1421 [...]
1422 [ 9] .dynamic DYNAMIC ffffffffff700580 000580 0000f0
1423 */
1424
1425 lm_info_svr4 *li = (lm_info_svr4 *) so->lm_info;
1426
1427 if (address_in_mem_range (li->l_ld, &vsyscall_range))
1428 {
1429 *sop = so->next;
1430 free_so (so);
1431 break;
1432 }
1433
1434 sop = &so->next;
1435 }
1436 }
1437
1438 return so_head;
1439 }
1440
1441 /* Get the address of the link_map for a given OBJFILE. */
1442
1443 CORE_ADDR
1444 svr4_fetch_objfile_link_map (struct objfile *objfile)
1445 {
1446 struct svr4_info *info = get_svr4_info (objfile->pspace);
1447
1448 /* Cause svr4_current_sos() to be run if it hasn't been already. */
1449 if (info->main_lm_addr == 0)
1450 solib_add (NULL, 0, auto_solib_add);
1451
1452 /* svr4_current_sos() will set main_lm_addr for the main executable. */
1453 if (objfile == current_program_space->symfile_object_file)
1454 return info->main_lm_addr;
1455
1456 /* If OBJFILE is a separate debug object file, look for the
1457 original object file. */
1458 if (objfile->separate_debug_objfile_backlink != NULL)
1459 objfile = objfile->separate_debug_objfile_backlink;
1460
1461 /* The other link map addresses may be found by examining the list
1462 of shared libraries. */
1463 for (struct so_list *so : current_program_space->solibs ())
1464 if (so->objfile == objfile)
1465 {
1466 lm_info_svr4 *li = (lm_info_svr4 *) so->lm_info;
1467
1468 return li->lm_addr;
1469 }
1470
1471 /* Not found! */
1472 return 0;
1473 }
1474
1475 /* On some systems, the only way to recognize the link map entry for
1476 the main executable file is by looking at its name. Return
1477 non-zero iff SONAME matches one of the known main executable names. */
1478
1479 static int
1480 match_main (const char *soname)
1481 {
1482 const char * const *mainp;
1483
1484 for (mainp = main_name_list; *mainp != NULL; mainp++)
1485 {
1486 if (strcmp (soname, *mainp) == 0)
1487 return (1);
1488 }
1489
1490 return (0);
1491 }
1492
1493 /* Return 1 if PC lies in the dynamic symbol resolution code of the
1494 SVR4 run time loader. */
1495
1496 int
1497 svr4_in_dynsym_resolve_code (CORE_ADDR pc)
1498 {
1499 struct svr4_info *info = get_svr4_info (current_program_space);
1500
1501 return ((pc >= info->interp_text_sect_low
1502 && pc < info->interp_text_sect_high)
1503 || (pc >= info->interp_plt_sect_low
1504 && pc < info->interp_plt_sect_high)
1505 || in_plt_section (pc)
1506 || in_gnu_ifunc_stub (pc));
1507 }
1508
1509 /* Given an executable's ABFD and target, compute the entry-point
1510 address. */
1511
1512 static CORE_ADDR
1513 exec_entry_point (struct bfd *abfd, struct target_ops *targ)
1514 {
1515 CORE_ADDR addr;
1516
1517 /* KevinB wrote ... for most targets, the address returned by
1518 bfd_get_start_address() is the entry point for the start
1519 function. But, for some targets, bfd_get_start_address() returns
1520 the address of a function descriptor from which the entry point
1521 address may be extracted. This address is extracted by
1522 gdbarch_convert_from_func_ptr_addr(). The method
1523 gdbarch_convert_from_func_ptr_addr() is the merely the identify
1524 function for targets which don't use function descriptors. */
1525 addr = gdbarch_convert_from_func_ptr_addr (target_gdbarch (),
1526 bfd_get_start_address (abfd),
1527 targ);
1528 return gdbarch_addr_bits_remove (target_gdbarch (), addr);
1529 }
1530
1531 /* A probe and its associated action. */
1532
1533 struct probe_and_action
1534 {
1535 /* The probe. */
1536 probe *prob;
1537
1538 /* The relocated address of the probe. */
1539 CORE_ADDR address;
1540
1541 /* The action. */
1542 enum probe_action action;
1543
1544 /* The objfile where this probe was found. */
1545 struct objfile *objfile;
1546 };
1547
1548 /* Returns a hash code for the probe_and_action referenced by p. */
1549
1550 static hashval_t
1551 hash_probe_and_action (const void *p)
1552 {
1553 const struct probe_and_action *pa = (const struct probe_and_action *) p;
1554
1555 return (hashval_t) pa->address;
1556 }
1557
1558 /* Returns non-zero if the probe_and_actions referenced by p1 and p2
1559 are equal. */
1560
1561 static int
1562 equal_probe_and_action (const void *p1, const void *p2)
1563 {
1564 const struct probe_and_action *pa1 = (const struct probe_and_action *) p1;
1565 const struct probe_and_action *pa2 = (const struct probe_and_action *) p2;
1566
1567 return pa1->address == pa2->address;
1568 }
1569
1570 /* Traversal function for probes_table_remove_objfile_probes. */
1571
1572 static int
1573 probes_table_htab_remove_objfile_probes (void **slot, void *info)
1574 {
1575 probe_and_action *pa = (probe_and_action *) *slot;
1576 struct objfile *objfile = (struct objfile *) info;
1577
1578 if (pa->objfile == objfile)
1579 htab_clear_slot (get_svr4_info (objfile->pspace)->probes_table.get (),
1580 slot);
1581
1582 return 1;
1583 }
1584
1585 /* Remove all probes that belong to OBJFILE from the probes table. */
1586
1587 static void
1588 probes_table_remove_objfile_probes (struct objfile *objfile)
1589 {
1590 svr4_info *info = get_svr4_info (objfile->pspace);
1591 if (info->probes_table != nullptr)
1592 htab_traverse_noresize (info->probes_table.get (),
1593 probes_table_htab_remove_objfile_probes, objfile);
1594 }
1595
1596 /* Register a solib event probe and its associated action in the
1597 probes table. */
1598
1599 static void
1600 register_solib_event_probe (svr4_info *info, struct objfile *objfile,
1601 probe *prob, CORE_ADDR address,
1602 enum probe_action action)
1603 {
1604 struct probe_and_action lookup, *pa;
1605 void **slot;
1606
1607 /* Create the probes table, if necessary. */
1608 if (info->probes_table == NULL)
1609 info->probes_table.reset (htab_create_alloc (1, hash_probe_and_action,
1610 equal_probe_and_action,
1611 xfree, xcalloc, xfree));
1612
1613 lookup.address = address;
1614 slot = htab_find_slot (info->probes_table.get (), &lookup, INSERT);
1615 gdb_assert (*slot == HTAB_EMPTY_ENTRY);
1616
1617 pa = XCNEW (struct probe_and_action);
1618 pa->prob = prob;
1619 pa->address = address;
1620 pa->action = action;
1621 pa->objfile = objfile;
1622
1623 *slot = pa;
1624 }
1625
1626 /* Get the solib event probe at the specified location, and the
1627 action associated with it. Returns NULL if no solib event probe
1628 was found. */
1629
1630 static struct probe_and_action *
1631 solib_event_probe_at (struct svr4_info *info, CORE_ADDR address)
1632 {
1633 struct probe_and_action lookup;
1634 void **slot;
1635
1636 lookup.address = address;
1637 slot = htab_find_slot (info->probes_table.get (), &lookup, NO_INSERT);
1638
1639 if (slot == NULL)
1640 return NULL;
1641
1642 return (struct probe_and_action *) *slot;
1643 }
1644
1645 /* Decide what action to take when the specified solib event probe is
1646 hit. */
1647
1648 static enum probe_action
1649 solib_event_probe_action (struct probe_and_action *pa)
1650 {
1651 enum probe_action action;
1652 unsigned probe_argc = 0;
1653 struct frame_info *frame = get_current_frame ();
1654
1655 action = pa->action;
1656 if (action == DO_NOTHING || action == PROBES_INTERFACE_FAILED)
1657 return action;
1658
1659 gdb_assert (action == FULL_RELOAD || action == UPDATE_OR_RELOAD);
1660
1661 /* Check that an appropriate number of arguments has been supplied.
1662 We expect:
1663 arg0: Lmid_t lmid (mandatory)
1664 arg1: struct r_debug *debug_base (mandatory)
1665 arg2: struct link_map *new (optional, for incremental updates) */
1666 try
1667 {
1668 probe_argc = pa->prob->get_argument_count (get_frame_arch (frame));
1669 }
1670 catch (const gdb_exception_error &ex)
1671 {
1672 exception_print (gdb_stderr, ex);
1673 probe_argc = 0;
1674 }
1675
1676 /* If get_argument_count throws an exception, probe_argc will be set
1677 to zero. However, if pa->prob does not have arguments, then
1678 get_argument_count will succeed but probe_argc will also be zero.
1679 Both cases happen because of different things, but they are
1680 treated equally here: action will be set to
1681 PROBES_INTERFACE_FAILED. */
1682 if (probe_argc == 2)
1683 action = FULL_RELOAD;
1684 else if (probe_argc < 2)
1685 action = PROBES_INTERFACE_FAILED;
1686
1687 return action;
1688 }
1689
1690 /* Populate the shared object list by reading the entire list of
1691 shared objects from the inferior. Handle special cases relating
1692 to the first elements of the list. Returns nonzero on success. */
1693
1694 static int
1695 solist_update_full (struct svr4_info *info)
1696 {
1697 free_solib_list (info);
1698 info->solib_list = svr4_current_sos_direct (info);
1699
1700 return 1;
1701 }
1702
1703 /* Update the shared object list starting from the link-map entry
1704 passed by the linker in the probe's third argument. Returns
1705 nonzero if the list was successfully updated, or zero to indicate
1706 failure. */
1707
1708 static int
1709 solist_update_incremental (struct svr4_info *info, CORE_ADDR lm)
1710 {
1711 struct so_list *tail;
1712 CORE_ADDR prev_lm;
1713
1714 /* svr4_current_sos_direct contains logic to handle a number of
1715 special cases relating to the first elements of the list. To
1716 avoid duplicating this logic we defer to solist_update_full
1717 if the list is empty. */
1718 if (info->solib_list == NULL)
1719 return 0;
1720
1721 /* Fall back to a full update if we are using a remote target
1722 that does not support incremental transfers. */
1723 if (info->using_xfer && !target_augmented_libraries_svr4_read ())
1724 return 0;
1725
1726 /* Walk to the end of the list. */
1727 for (tail = info->solib_list; tail->next != NULL; tail = tail->next)
1728 /* Nothing. */;
1729
1730 lm_info_svr4 *li = (lm_info_svr4 *) tail->lm_info;
1731 prev_lm = li->lm_addr;
1732
1733 /* Read the new objects. */
1734 if (info->using_xfer)
1735 {
1736 struct svr4_library_list library_list;
1737 char annex[64];
1738
1739 xsnprintf (annex, sizeof (annex), "start=%s;prev=%s",
1740 phex_nz (lm, sizeof (lm)),
1741 phex_nz (prev_lm, sizeof (prev_lm)));
1742 if (!svr4_current_sos_via_xfer_libraries (&library_list, annex))
1743 return 0;
1744
1745 tail->next = library_list.head;
1746 }
1747 else
1748 {
1749 struct so_list **link = &tail->next;
1750
1751 /* IGNORE_FIRST may safely be set to zero here because the
1752 above check and deferral to solist_update_full ensures
1753 that this call to svr4_read_so_list will never see the
1754 first element. */
1755 if (!svr4_read_so_list (info, lm, prev_lm, &link, 0))
1756 return 0;
1757 }
1758
1759 return 1;
1760 }
1761
1762 /* Disable the probes-based linker interface and revert to the
1763 original interface. We don't reset the breakpoints as the
1764 ones set up for the probes-based interface are adequate. */
1765
1766 static void
1767 disable_probes_interface (svr4_info *info)
1768 {
1769 warning (_("Probes-based dynamic linker interface failed.\n"
1770 "Reverting to original interface."));
1771
1772 free_probes_table (info);
1773 free_solib_list (info);
1774 }
1775
1776 /* Update the solib list as appropriate when using the
1777 probes-based linker interface. Do nothing if using the
1778 standard interface. */
1779
1780 static void
1781 svr4_handle_solib_event (void)
1782 {
1783 struct svr4_info *info = get_svr4_info (current_program_space);
1784 struct probe_and_action *pa;
1785 enum probe_action action;
1786 struct value *val = NULL;
1787 CORE_ADDR pc, debug_base, lm = 0;
1788 struct frame_info *frame = get_current_frame ();
1789
1790 /* Do nothing if not using the probes interface. */
1791 if (info->probes_table == NULL)
1792 return;
1793
1794 /* If anything goes wrong we revert to the original linker
1795 interface. */
1796 auto cleanup = make_scope_exit ([info] ()
1797 {
1798 disable_probes_interface (info);
1799 });
1800
1801 pc = regcache_read_pc (get_current_regcache ());
1802 pa = solib_event_probe_at (info, pc);
1803 if (pa == NULL)
1804 return;
1805
1806 action = solib_event_probe_action (pa);
1807 if (action == PROBES_INTERFACE_FAILED)
1808 return;
1809
1810 if (action == DO_NOTHING)
1811 {
1812 cleanup.release ();
1813 return;
1814 }
1815
1816 /* evaluate_argument looks up symbols in the dynamic linker
1817 using find_pc_section. find_pc_section is accelerated by a cache
1818 called the section map. The section map is invalidated every
1819 time a shared library is loaded or unloaded, and if the inferior
1820 is generating a lot of shared library events then the section map
1821 will be updated every time svr4_handle_solib_event is called.
1822 We called find_pc_section in svr4_create_solib_event_breakpoints,
1823 so we can guarantee that the dynamic linker's sections are in the
1824 section map. We can therefore inhibit section map updates across
1825 these calls to evaluate_argument and save a lot of time. */
1826 {
1827 scoped_restore inhibit_updates
1828 = inhibit_section_map_updates (current_program_space);
1829
1830 try
1831 {
1832 val = pa->prob->evaluate_argument (1, frame);
1833 }
1834 catch (const gdb_exception_error &ex)
1835 {
1836 exception_print (gdb_stderr, ex);
1837 val = NULL;
1838 }
1839
1840 if (val == NULL)
1841 return;
1842
1843 debug_base = value_as_address (val);
1844 if (debug_base == 0)
1845 return;
1846
1847 /* Always locate the debug struct, in case it moved. */
1848 info->debug_base = 0;
1849 if (locate_base (info) == 0)
1850 {
1851 /* It's possible for the reloc_complete probe to be triggered before
1852 the linker has set the DT_DEBUG pointer (for example, when the
1853 linker has finished relocating an LD_AUDIT library or its
1854 dependencies). Since we can't yet handle libraries from other link
1855 namespaces, we don't lose anything by ignoring them here. */
1856 struct value *link_map_id_val;
1857 try
1858 {
1859 link_map_id_val = pa->prob->evaluate_argument (0, frame);
1860 }
1861 catch (const gdb_exception_error)
1862 {
1863 link_map_id_val = NULL;
1864 }
1865 /* glibc and illumos' libc both define LM_ID_BASE as zero. */
1866 if (link_map_id_val != NULL && value_as_long (link_map_id_val) != 0)
1867 action = DO_NOTHING;
1868 else
1869 return;
1870 }
1871
1872 /* GDB does not currently support libraries loaded via dlmopen
1873 into namespaces other than the initial one. We must ignore
1874 any namespace other than the initial namespace here until
1875 support for this is added to GDB. */
1876 if (debug_base != info->debug_base)
1877 action = DO_NOTHING;
1878
1879 if (action == UPDATE_OR_RELOAD)
1880 {
1881 try
1882 {
1883 val = pa->prob->evaluate_argument (2, frame);
1884 }
1885 catch (const gdb_exception_error &ex)
1886 {
1887 exception_print (gdb_stderr, ex);
1888 return;
1889 }
1890
1891 if (val != NULL)
1892 lm = value_as_address (val);
1893
1894 if (lm == 0)
1895 action = FULL_RELOAD;
1896 }
1897
1898 /* Resume section map updates. Closing the scope is
1899 sufficient. */
1900 }
1901
1902 if (action == UPDATE_OR_RELOAD)
1903 {
1904 if (!solist_update_incremental (info, lm))
1905 action = FULL_RELOAD;
1906 }
1907
1908 if (action == FULL_RELOAD)
1909 {
1910 if (!solist_update_full (info))
1911 return;
1912 }
1913
1914 cleanup.release ();
1915 }
1916
1917 /* Helper function for svr4_update_solib_event_breakpoints. */
1918
1919 static bool
1920 svr4_update_solib_event_breakpoint (struct breakpoint *b)
1921 {
1922 if (b->type != bp_shlib_event)
1923 {
1924 /* Continue iterating. */
1925 return false;
1926 }
1927
1928 for (bp_location *loc : b->locations ())
1929 {
1930 struct svr4_info *info;
1931 struct probe_and_action *pa;
1932
1933 info = solib_svr4_pspace_data.get (loc->pspace);
1934 if (info == NULL || info->probes_table == NULL)
1935 continue;
1936
1937 pa = solib_event_probe_at (info, loc->address);
1938 if (pa == NULL)
1939 continue;
1940
1941 if (pa->action == DO_NOTHING)
1942 {
1943 if (b->enable_state == bp_disabled && stop_on_solib_events)
1944 enable_breakpoint (b);
1945 else if (b->enable_state == bp_enabled && !stop_on_solib_events)
1946 disable_breakpoint (b);
1947 }
1948
1949 break;
1950 }
1951
1952 /* Continue iterating. */
1953 return false;
1954 }
1955
1956 /* Enable or disable optional solib event breakpoints as appropriate.
1957 Called whenever stop_on_solib_events is changed. */
1958
1959 static void
1960 svr4_update_solib_event_breakpoints (void)
1961 {
1962 for (breakpoint *bp : all_breakpoints_safe ())
1963 svr4_update_solib_event_breakpoint (bp);
1964 }
1965
1966 /* Create and register solib event breakpoints. PROBES is an array
1967 of NUM_PROBES elements, each of which is vector of probes. A
1968 solib event breakpoint will be created and registered for each
1969 probe. */
1970
1971 static void
1972 svr4_create_probe_breakpoints (svr4_info *info, struct gdbarch *gdbarch,
1973 const std::vector<probe *> *probes,
1974 struct objfile *objfile)
1975 {
1976 for (int i = 0; i < NUM_PROBES; i++)
1977 {
1978 enum probe_action action = probe_info[i].action;
1979
1980 for (probe *p : probes[i])
1981 {
1982 CORE_ADDR address = p->get_relocated_address (objfile);
1983
1984 create_solib_event_breakpoint (gdbarch, address);
1985 register_solib_event_probe (info, objfile, p, address, action);
1986 }
1987 }
1988
1989 svr4_update_solib_event_breakpoints ();
1990 }
1991
1992 /* Find all the glibc named probes. Only if all of the probes are found, then
1993 create them and return true. Otherwise return false. If WITH_PREFIX is set
1994 then add "rtld" to the front of the probe names. */
1995 static bool
1996 svr4_find_and_create_probe_breakpoints (svr4_info *info,
1997 struct gdbarch *gdbarch,
1998 struct obj_section *os,
1999 bool with_prefix)
2000 {
2001 std::vector<probe *> probes[NUM_PROBES];
2002
2003 for (int i = 0; i < NUM_PROBES; i++)
2004 {
2005 const char *name = probe_info[i].name;
2006 char buf[32];
2007
2008 /* Fedora 17 and Red Hat Enterprise Linux 6.2-6.4 shipped with an early
2009 version of the probes code in which the probes' names were prefixed
2010 with "rtld_" and the "map_failed" probe did not exist. The locations
2011 of the probes are otherwise the same, so we check for probes with
2012 prefixed names if probes with unprefixed names are not present. */
2013 if (with_prefix)
2014 {
2015 xsnprintf (buf, sizeof (buf), "rtld_%s", name);
2016 name = buf;
2017 }
2018
2019 probes[i] = find_probes_in_objfile (os->objfile, "rtld", name);
2020
2021 /* The "map_failed" probe did not exist in early
2022 versions of the probes code in which the probes'
2023 names were prefixed with "rtld_". */
2024 if (with_prefix && streq (name, "rtld_map_failed"))
2025 continue;
2026
2027 /* Ensure at least one probe for the current name was found. */
2028 if (probes[i].empty ())
2029 return false;
2030
2031 /* Ensure probe arguments can be evaluated. */
2032 for (probe *p : probes[i])
2033 {
2034 if (!p->can_evaluate_arguments ())
2035 return false;
2036 /* This will fail if the probe is invalid. This has been seen on Arm
2037 due to references to symbols that have been resolved away. */
2038 try
2039 {
2040 p->get_argument_count (gdbarch);
2041 }
2042 catch (const gdb_exception_error &ex)
2043 {
2044 exception_print (gdb_stderr, ex);
2045 warning (_("Initializing probes-based dynamic linker interface "
2046 "failed.\nReverting to original interface."));
2047 return false;
2048 }
2049 }
2050 }
2051
2052 /* All probes found. Now create them. */
2053 svr4_create_probe_breakpoints (info, gdbarch, probes, os->objfile);
2054 return true;
2055 }
2056
2057 /* Both the SunOS and the SVR4 dynamic linkers call a marker function
2058 before and after mapping and unmapping shared libraries. The sole
2059 purpose of this method is to allow debuggers to set a breakpoint so
2060 they can track these changes.
2061
2062 Some versions of the glibc dynamic linker contain named probes
2063 to allow more fine grained stopping. Given the address of the
2064 original marker function, this function attempts to find these
2065 probes, and if found, sets breakpoints on those instead. If the
2066 probes aren't found, a single breakpoint is set on the original
2067 marker function. */
2068
2069 static void
2070 svr4_create_solib_event_breakpoints (svr4_info *info, struct gdbarch *gdbarch,
2071 CORE_ADDR address)
2072 {
2073 struct obj_section *os = find_pc_section (address);
2074
2075 if (os == nullptr
2076 || (!svr4_find_and_create_probe_breakpoints (info, gdbarch, os, false)
2077 && !svr4_find_and_create_probe_breakpoints (info, gdbarch, os, true)))
2078 create_solib_event_breakpoint (gdbarch, address);
2079 }
2080
2081 /* Helper function for gdb_bfd_lookup_symbol. */
2082
2083 static int
2084 cmp_name_and_sec_flags (const asymbol *sym, const void *data)
2085 {
2086 return (strcmp (sym->name, (const char *) data) == 0
2087 && (sym->section->flags & (SEC_CODE | SEC_DATA)) != 0);
2088 }
2089 /* Arrange for dynamic linker to hit breakpoint.
2090
2091 Both the SunOS and the SVR4 dynamic linkers have, as part of their
2092 debugger interface, support for arranging for the inferior to hit
2093 a breakpoint after mapping in the shared libraries. This function
2094 enables that breakpoint.
2095
2096 For SunOS, there is a special flag location (in_debugger) which we
2097 set to 1. When the dynamic linker sees this flag set, it will set
2098 a breakpoint at a location known only to itself, after saving the
2099 original contents of that place and the breakpoint address itself,
2100 in it's own internal structures. When we resume the inferior, it
2101 will eventually take a SIGTRAP when it runs into the breakpoint.
2102 We handle this (in a different place) by restoring the contents of
2103 the breakpointed location (which is only known after it stops),
2104 chasing around to locate the shared libraries that have been
2105 loaded, then resuming.
2106
2107 For SVR4, the debugger interface structure contains a member (r_brk)
2108 which is statically initialized at the time the shared library is
2109 built, to the offset of a function (_r_debug_state) which is guaran-
2110 teed to be called once before mapping in a library, and again when
2111 the mapping is complete. At the time we are examining this member,
2112 it contains only the unrelocated offset of the function, so we have
2113 to do our own relocation. Later, when the dynamic linker actually
2114 runs, it relocates r_brk to be the actual address of _r_debug_state().
2115
2116 The debugger interface structure also contains an enumeration which
2117 is set to either RT_ADD or RT_DELETE prior to changing the mapping,
2118 depending upon whether or not the library is being mapped or unmapped,
2119 and then set to RT_CONSISTENT after the library is mapped/unmapped. */
2120
2121 static int
2122 enable_break (struct svr4_info *info, int from_tty)
2123 {
2124 struct bound_minimal_symbol msymbol;
2125 const char * const *bkpt_namep;
2126 asection *interp_sect;
2127 CORE_ADDR sym_addr;
2128
2129 info->interp_text_sect_low = info->interp_text_sect_high = 0;
2130 info->interp_plt_sect_low = info->interp_plt_sect_high = 0;
2131
2132 /* If we already have a shared library list in the target, and
2133 r_debug contains r_brk, set the breakpoint there - this should
2134 mean r_brk has already been relocated. Assume the dynamic linker
2135 is the object containing r_brk. */
2136
2137 solib_add (NULL, from_tty, auto_solib_add);
2138 sym_addr = 0;
2139 if (info->debug_base && solib_svr4_r_map (info) != 0)
2140 sym_addr = solib_svr4_r_brk (info);
2141
2142 if (sym_addr != 0)
2143 {
2144 struct obj_section *os;
2145
2146 sym_addr = gdbarch_addr_bits_remove
2147 (target_gdbarch (),
2148 gdbarch_convert_from_func_ptr_addr
2149 (target_gdbarch (), sym_addr, current_inferior ()->top_target ()));
2150
2151 /* On at least some versions of Solaris there's a dynamic relocation
2152 on _r_debug.r_brk and SYM_ADDR may not be relocated yet, e.g., if
2153 we get control before the dynamic linker has self-relocated.
2154 Check if SYM_ADDR is in a known section, if it is assume we can
2155 trust its value. This is just a heuristic though, it could go away
2156 or be replaced if it's getting in the way.
2157
2158 On ARM we need to know whether the ISA of rtld_db_dlactivity (or
2159 however it's spelled in your particular system) is ARM or Thumb.
2160 That knowledge is encoded in the address, if it's Thumb the low bit
2161 is 1. However, we've stripped that info above and it's not clear
2162 what all the consequences are of passing a non-addr_bits_remove'd
2163 address to svr4_create_solib_event_breakpoints. The call to
2164 find_pc_section verifies we know about the address and have some
2165 hope of computing the right kind of breakpoint to use (via
2166 symbol info). It does mean that GDB needs to be pointed at a
2167 non-stripped version of the dynamic linker in order to obtain
2168 information it already knows about. Sigh. */
2169
2170 os = find_pc_section (sym_addr);
2171 if (os != NULL)
2172 {
2173 /* Record the relocated start and end address of the dynamic linker
2174 text and plt section for svr4_in_dynsym_resolve_code. */
2175 bfd *tmp_bfd;
2176 CORE_ADDR load_addr;
2177
2178 tmp_bfd = os->objfile->obfd;
2179 load_addr = os->objfile->text_section_offset ();
2180
2181 interp_sect = bfd_get_section_by_name (tmp_bfd, ".text");
2182 if (interp_sect)
2183 {
2184 info->interp_text_sect_low
2185 = bfd_section_vma (interp_sect) + load_addr;
2186 info->interp_text_sect_high
2187 = info->interp_text_sect_low + bfd_section_size (interp_sect);
2188 }
2189 interp_sect = bfd_get_section_by_name (tmp_bfd, ".plt");
2190 if (interp_sect)
2191 {
2192 info->interp_plt_sect_low
2193 = bfd_section_vma (interp_sect) + load_addr;
2194 info->interp_plt_sect_high
2195 = info->interp_plt_sect_low + bfd_section_size (interp_sect);
2196 }
2197
2198 svr4_create_solib_event_breakpoints (info, target_gdbarch (), sym_addr);
2199 return 1;
2200 }
2201 }
2202
2203 /* Find the program interpreter; if not found, warn the user and drop
2204 into the old breakpoint at symbol code. */
2205 gdb::optional<gdb::byte_vector> interp_name_holder
2206 = find_program_interpreter ();
2207 if (interp_name_holder)
2208 {
2209 const char *interp_name = (const char *) interp_name_holder->data ();
2210 CORE_ADDR load_addr = 0;
2211 int load_addr_found = 0;
2212 int loader_found_in_list = 0;
2213 struct target_ops *tmp_bfd_target;
2214
2215 sym_addr = 0;
2216
2217 /* Now we need to figure out where the dynamic linker was
2218 loaded so that we can load its symbols and place a breakpoint
2219 in the dynamic linker itself.
2220
2221 This address is stored on the stack. However, I've been unable
2222 to find any magic formula to find it for Solaris (appears to
2223 be trivial on GNU/Linux). Therefore, we have to try an alternate
2224 mechanism to find the dynamic linker's base address. */
2225
2226 gdb_bfd_ref_ptr tmp_bfd;
2227 try
2228 {
2229 tmp_bfd = solib_bfd_open (interp_name);
2230 }
2231 catch (const gdb_exception &ex)
2232 {
2233 }
2234
2235 if (tmp_bfd == NULL)
2236 goto bkpt_at_symbol;
2237
2238 /* Now convert the TMP_BFD into a target. That way target, as
2239 well as BFD operations can be used. */
2240 tmp_bfd_target = target_bfd_reopen (tmp_bfd);
2241
2242 /* On a running target, we can get the dynamic linker's base
2243 address from the shared library table. */
2244 for (struct so_list *so : current_program_space->solibs ())
2245 {
2246 if (svr4_same_1 (interp_name, so->so_original_name))
2247 {
2248 load_addr_found = 1;
2249 loader_found_in_list = 1;
2250 load_addr = lm_addr_check (so, tmp_bfd.get ());
2251 break;
2252 }
2253 }
2254
2255 /* If we were not able to find the base address of the loader
2256 from our so_list, then try using the AT_BASE auxilliary entry. */
2257 if (!load_addr_found)
2258 if (target_auxv_search (current_inferior ()->top_target (),
2259 AT_BASE, &load_addr) > 0)
2260 {
2261 int addr_bit = gdbarch_addr_bit (target_gdbarch ());
2262
2263 /* Ensure LOAD_ADDR has proper sign in its possible upper bits so
2264 that `+ load_addr' will overflow CORE_ADDR width not creating
2265 invalid addresses like 0x101234567 for 32bit inferiors on 64bit
2266 GDB. */
2267
2268 if (addr_bit < (sizeof (CORE_ADDR) * HOST_CHAR_BIT))
2269 {
2270 CORE_ADDR space_size = (CORE_ADDR) 1 << addr_bit;
2271 CORE_ADDR tmp_entry_point = exec_entry_point (tmp_bfd.get (),
2272 tmp_bfd_target);
2273
2274 gdb_assert (load_addr < space_size);
2275
2276 /* TMP_ENTRY_POINT exceeding SPACE_SIZE would be for prelinked
2277 64bit ld.so with 32bit executable, it should not happen. */
2278
2279 if (tmp_entry_point < space_size
2280 && tmp_entry_point + load_addr >= space_size)
2281 load_addr -= space_size;
2282 }
2283
2284 load_addr_found = 1;
2285 }
2286
2287 /* Otherwise we find the dynamic linker's base address by examining
2288 the current pc (which should point at the entry point for the
2289 dynamic linker) and subtracting the offset of the entry point.
2290
2291 This is more fragile than the previous approaches, but is a good
2292 fallback method because it has actually been working well in
2293 most cases. */
2294 if (!load_addr_found)
2295 {
2296 struct regcache *regcache
2297 = get_thread_arch_regcache (current_inferior ()->process_target (),
2298 inferior_ptid, target_gdbarch ());
2299
2300 load_addr = (regcache_read_pc (regcache)
2301 - exec_entry_point (tmp_bfd.get (), tmp_bfd_target));
2302 }
2303
2304 if (!loader_found_in_list)
2305 {
2306 info->debug_loader_name = xstrdup (interp_name);
2307 info->debug_loader_offset_p = 1;
2308 info->debug_loader_offset = load_addr;
2309 solib_add (NULL, from_tty, auto_solib_add);
2310 }
2311
2312 /* Record the relocated start and end address of the dynamic linker
2313 text and plt section for svr4_in_dynsym_resolve_code. */
2314 interp_sect = bfd_get_section_by_name (tmp_bfd.get (), ".text");
2315 if (interp_sect)
2316 {
2317 info->interp_text_sect_low
2318 = bfd_section_vma (interp_sect) + load_addr;
2319 info->interp_text_sect_high
2320 = info->interp_text_sect_low + bfd_section_size (interp_sect);
2321 }
2322 interp_sect = bfd_get_section_by_name (tmp_bfd.get (), ".plt");
2323 if (interp_sect)
2324 {
2325 info->interp_plt_sect_low
2326 = bfd_section_vma (interp_sect) + load_addr;
2327 info->interp_plt_sect_high
2328 = info->interp_plt_sect_low + bfd_section_size (interp_sect);
2329 }
2330
2331 /* Now try to set a breakpoint in the dynamic linker. */
2332 for (bkpt_namep = solib_break_names; *bkpt_namep != NULL; bkpt_namep++)
2333 {
2334 sym_addr = gdb_bfd_lookup_symbol (tmp_bfd.get (),
2335 cmp_name_and_sec_flags,
2336 *bkpt_namep);
2337 if (sym_addr != 0)
2338 break;
2339 }
2340
2341 if (sym_addr != 0)
2342 /* Convert 'sym_addr' from a function pointer to an address.
2343 Because we pass tmp_bfd_target instead of the current
2344 target, this will always produce an unrelocated value. */
2345 sym_addr = gdbarch_convert_from_func_ptr_addr (target_gdbarch (),
2346 sym_addr,
2347 tmp_bfd_target);
2348
2349 /* We're done with both the temporary bfd and target. Closing
2350 the target closes the underlying bfd, because it holds the
2351 only remaining reference. */
2352 target_close (tmp_bfd_target);
2353
2354 if (sym_addr != 0)
2355 {
2356 svr4_create_solib_event_breakpoints (info, target_gdbarch (),
2357 load_addr + sym_addr);
2358 return 1;
2359 }
2360
2361 /* For whatever reason we couldn't set a breakpoint in the dynamic
2362 linker. Warn and drop into the old code. */
2363 bkpt_at_symbol:
2364 warning (_("Unable to find dynamic linker breakpoint function.\n"
2365 "GDB will be unable to debug shared library initializers\n"
2366 "and track explicitly loaded dynamic code."));
2367 }
2368
2369 /* Scan through the lists of symbols, trying to look up the symbol and
2370 set a breakpoint there. Terminate loop when we/if we succeed. */
2371
2372 objfile *objf = current_program_space->symfile_object_file;
2373 for (bkpt_namep = solib_break_names; *bkpt_namep != NULL; bkpt_namep++)
2374 {
2375 msymbol = lookup_minimal_symbol (*bkpt_namep, NULL, objf);
2376 if ((msymbol.minsym != NULL)
2377 && (BMSYMBOL_VALUE_ADDRESS (msymbol) != 0))
2378 {
2379 sym_addr = BMSYMBOL_VALUE_ADDRESS (msymbol);
2380 sym_addr = gdbarch_convert_from_func_ptr_addr
2381 (target_gdbarch (), sym_addr, current_inferior ()->top_target ());
2382 svr4_create_solib_event_breakpoints (info, target_gdbarch (),
2383 sym_addr);
2384 return 1;
2385 }
2386 }
2387
2388 if (interp_name_holder && !current_inferior ()->attach_flag)
2389 {
2390 for (bkpt_namep = bkpt_names; *bkpt_namep != NULL; bkpt_namep++)
2391 {
2392 msymbol = lookup_minimal_symbol (*bkpt_namep, NULL, objf);
2393 if ((msymbol.minsym != NULL)
2394 && (BMSYMBOL_VALUE_ADDRESS (msymbol) != 0))
2395 {
2396 sym_addr = BMSYMBOL_VALUE_ADDRESS (msymbol);
2397 sym_addr = gdbarch_convert_from_func_ptr_addr
2398 (target_gdbarch (), sym_addr,
2399 current_inferior ()->top_target ());
2400 svr4_create_solib_event_breakpoints (info, target_gdbarch (),
2401 sym_addr);
2402 return 1;
2403 }
2404 }
2405 }
2406 return 0;
2407 }
2408
2409 /* Read the ELF program headers from ABFD. */
2410
2411 static gdb::optional<gdb::byte_vector>
2412 read_program_headers_from_bfd (bfd *abfd)
2413 {
2414 Elf_Internal_Ehdr *ehdr = elf_elfheader (abfd);
2415 int phdrs_size = ehdr->e_phnum * ehdr->e_phentsize;
2416 if (phdrs_size == 0)
2417 return {};
2418
2419 gdb::byte_vector buf (phdrs_size);
2420 if (bfd_seek (abfd, ehdr->e_phoff, SEEK_SET) != 0
2421 || bfd_bread (buf.data (), phdrs_size, abfd) != phdrs_size)
2422 return {};
2423
2424 return buf;
2425 }
2426
2427 /* Return 1 and fill *DISPLACEMENTP with detected PIE offset of inferior
2428 exec_bfd. Otherwise return 0.
2429
2430 We relocate all of the sections by the same amount. This
2431 behavior is mandated by recent editions of the System V ABI.
2432 According to the System V Application Binary Interface,
2433 Edition 4.1, page 5-5:
2434
2435 ... Though the system chooses virtual addresses for
2436 individual processes, it maintains the segments' relative
2437 positions. Because position-independent code uses relative
2438 addressing between segments, the difference between
2439 virtual addresses in memory must match the difference
2440 between virtual addresses in the file. The difference
2441 between the virtual address of any segment in memory and
2442 the corresponding virtual address in the file is thus a
2443 single constant value for any one executable or shared
2444 object in a given process. This difference is the base
2445 address. One use of the base address is to relocate the
2446 memory image of the program during dynamic linking.
2447
2448 The same language also appears in Edition 4.0 of the System V
2449 ABI and is left unspecified in some of the earlier editions.
2450
2451 Decide if the objfile needs to be relocated. As indicated above, we will
2452 only be here when execution is stopped. But during attachment PC can be at
2453 arbitrary address therefore regcache_read_pc can be misleading (contrary to
2454 the auxv AT_ENTRY value). Moreover for executable with interpreter section
2455 regcache_read_pc would point to the interpreter and not the main executable.
2456
2457 So, to summarize, relocations are necessary when the start address obtained
2458 from the executable is different from the address in auxv AT_ENTRY entry.
2459
2460 [ The astute reader will note that we also test to make sure that
2461 the executable in question has the DYNAMIC flag set. It is my
2462 opinion that this test is unnecessary (undesirable even). It
2463 was added to avoid inadvertent relocation of an executable
2464 whose e_type member in the ELF header is not ET_DYN. There may
2465 be a time in the future when it is desirable to do relocations
2466 on other types of files as well in which case this condition
2467 should either be removed or modified to accomodate the new file
2468 type. - Kevin, Nov 2000. ] */
2469
2470 static int
2471 svr4_exec_displacement (CORE_ADDR *displacementp)
2472 {
2473 /* ENTRY_POINT is a possible function descriptor - before
2474 a call to gdbarch_convert_from_func_ptr_addr. */
2475 CORE_ADDR entry_point, exec_displacement;
2476
2477 if (current_program_space->exec_bfd () == NULL)
2478 return 0;
2479
2480 /* Therefore for ELF it is ET_EXEC and not ET_DYN. Both shared libraries
2481 being executed themselves and PIE (Position Independent Executable)
2482 executables are ET_DYN. */
2483
2484 if ((bfd_get_file_flags (current_program_space->exec_bfd ()) & DYNAMIC) == 0)
2485 return 0;
2486
2487 if (target_auxv_search (current_inferior ()->top_target (),
2488 AT_ENTRY, &entry_point) <= 0)
2489 return 0;
2490
2491 exec_displacement
2492 = entry_point - bfd_get_start_address (current_program_space->exec_bfd ());
2493
2494 /* Verify the EXEC_DISPLACEMENT candidate complies with the required page
2495 alignment. It is cheaper than the program headers comparison below. */
2496
2497 if (bfd_get_flavour (current_program_space->exec_bfd ())
2498 == bfd_target_elf_flavour)
2499 {
2500 const struct elf_backend_data *elf
2501 = get_elf_backend_data (current_program_space->exec_bfd ());
2502
2503 /* p_align of PT_LOAD segments does not specify any alignment but
2504 only congruency of addresses:
2505 p_offset % p_align == p_vaddr % p_align
2506 Kernel is free to load the executable with lower alignment. */
2507
2508 if ((exec_displacement & (elf->minpagesize - 1)) != 0)
2509 return 0;
2510 }
2511
2512 /* Verify that the auxilliary vector describes the same file as exec_bfd, by
2513 comparing their program headers. If the program headers in the auxilliary
2514 vector do not match the program headers in the executable, then we are
2515 looking at a different file than the one used by the kernel - for
2516 instance, "gdb program" connected to "gdbserver :PORT ld.so program". */
2517
2518 if (bfd_get_flavour (current_program_space->exec_bfd ())
2519 == bfd_target_elf_flavour)
2520 {
2521 /* Be optimistic and return 0 only if GDB was able to verify the headers
2522 really do not match. */
2523 int arch_size;
2524
2525 gdb::optional<gdb::byte_vector> phdrs_target
2526 = read_program_header (-1, &arch_size, NULL);
2527 gdb::optional<gdb::byte_vector> phdrs_binary
2528 = read_program_headers_from_bfd (current_program_space->exec_bfd ());
2529 if (phdrs_target && phdrs_binary)
2530 {
2531 enum bfd_endian byte_order = gdbarch_byte_order (target_gdbarch ());
2532
2533 /* We are dealing with three different addresses. EXEC_BFD
2534 represents current address in on-disk file. target memory content
2535 may be different from EXEC_BFD as the file may have been prelinked
2536 to a different address after the executable has been loaded.
2537 Moreover the address of placement in target memory can be
2538 different from what the program headers in target memory say -
2539 this is the goal of PIE.
2540
2541 Detected DISPLACEMENT covers both the offsets of PIE placement and
2542 possible new prelink performed after start of the program. Here
2543 relocate BUF and BUF2 just by the EXEC_BFD vs. target memory
2544 content offset for the verification purpose. */
2545
2546 if (phdrs_target->size () != phdrs_binary->size ()
2547 || bfd_get_arch_size (current_program_space->exec_bfd ()) != arch_size)
2548 return 0;
2549 else if (arch_size == 32
2550 && phdrs_target->size () >= sizeof (Elf32_External_Phdr)
2551 && phdrs_target->size () % sizeof (Elf32_External_Phdr) == 0)
2552 {
2553 Elf_Internal_Ehdr *ehdr2
2554 = elf_tdata (current_program_space->exec_bfd ())->elf_header;
2555 Elf_Internal_Phdr *phdr2
2556 = elf_tdata (current_program_space->exec_bfd ())->phdr;
2557 CORE_ADDR displacement = 0;
2558 int i;
2559
2560 /* DISPLACEMENT could be found more easily by the difference of
2561 ehdr2->e_entry. But we haven't read the ehdr yet, and we
2562 already have enough information to compute that displacement
2563 with what we've read. */
2564
2565 for (i = 0; i < ehdr2->e_phnum; i++)
2566 if (phdr2[i].p_type == PT_LOAD)
2567 {
2568 Elf32_External_Phdr *phdrp;
2569 gdb_byte *buf_vaddr_p, *buf_paddr_p;
2570 CORE_ADDR vaddr, paddr;
2571 CORE_ADDR displacement_vaddr = 0;
2572 CORE_ADDR displacement_paddr = 0;
2573
2574 phdrp = &((Elf32_External_Phdr *) phdrs_target->data ())[i];
2575 buf_vaddr_p = (gdb_byte *) &phdrp->p_vaddr;
2576 buf_paddr_p = (gdb_byte *) &phdrp->p_paddr;
2577
2578 vaddr = extract_unsigned_integer (buf_vaddr_p, 4,
2579 byte_order);
2580 displacement_vaddr = vaddr - phdr2[i].p_vaddr;
2581
2582 paddr = extract_unsigned_integer (buf_paddr_p, 4,
2583 byte_order);
2584 displacement_paddr = paddr - phdr2[i].p_paddr;
2585
2586 if (displacement_vaddr == displacement_paddr)
2587 displacement = displacement_vaddr;
2588
2589 break;
2590 }
2591
2592 /* Now compare program headers from the target and the binary
2593 with optional DISPLACEMENT. */
2594
2595 for (i = 0;
2596 i < phdrs_target->size () / sizeof (Elf32_External_Phdr);
2597 i++)
2598 {
2599 Elf32_External_Phdr *phdrp;
2600 Elf32_External_Phdr *phdr2p;
2601 gdb_byte *buf_vaddr_p, *buf_paddr_p;
2602 CORE_ADDR vaddr, paddr;
2603 asection *plt2_asect;
2604
2605 phdrp = &((Elf32_External_Phdr *) phdrs_target->data ())[i];
2606 buf_vaddr_p = (gdb_byte *) &phdrp->p_vaddr;
2607 buf_paddr_p = (gdb_byte *) &phdrp->p_paddr;
2608 phdr2p = &((Elf32_External_Phdr *) phdrs_binary->data ())[i];
2609
2610 /* PT_GNU_STACK is an exception by being never relocated by
2611 prelink as its addresses are always zero. */
2612
2613 if (memcmp (phdrp, phdr2p, sizeof (*phdrp)) == 0)
2614 continue;
2615
2616 /* Check also other adjustment combinations - PR 11786. */
2617
2618 vaddr = extract_unsigned_integer (buf_vaddr_p, 4,
2619 byte_order);
2620 vaddr -= displacement;
2621 store_unsigned_integer (buf_vaddr_p, 4, byte_order, vaddr);
2622
2623 paddr = extract_unsigned_integer (buf_paddr_p, 4,
2624 byte_order);
2625 paddr -= displacement;
2626 store_unsigned_integer (buf_paddr_p, 4, byte_order, paddr);
2627
2628 if (memcmp (phdrp, phdr2p, sizeof (*phdrp)) == 0)
2629 continue;
2630
2631 /* Strip modifies the flags and alignment of PT_GNU_RELRO.
2632 CentOS-5 has problems with filesz, memsz as well.
2633 Strip also modifies memsz of PT_TLS.
2634 See PR 11786. */
2635 if (phdr2[i].p_type == PT_GNU_RELRO
2636 || phdr2[i].p_type == PT_TLS)
2637 {
2638 Elf32_External_Phdr tmp_phdr = *phdrp;
2639 Elf32_External_Phdr tmp_phdr2 = *phdr2p;
2640
2641 memset (tmp_phdr.p_filesz, 0, 4);
2642 memset (tmp_phdr.p_memsz, 0, 4);
2643 memset (tmp_phdr.p_flags, 0, 4);
2644 memset (tmp_phdr.p_align, 0, 4);
2645 memset (tmp_phdr2.p_filesz, 0, 4);
2646 memset (tmp_phdr2.p_memsz, 0, 4);
2647 memset (tmp_phdr2.p_flags, 0, 4);
2648 memset (tmp_phdr2.p_align, 0, 4);
2649
2650 if (memcmp (&tmp_phdr, &tmp_phdr2, sizeof (tmp_phdr))
2651 == 0)
2652 continue;
2653 }
2654
2655 /* prelink can convert .plt SHT_NOBITS to SHT_PROGBITS. */
2656 bfd *exec_bfd = current_program_space->exec_bfd ();
2657 plt2_asect = bfd_get_section_by_name (exec_bfd, ".plt");
2658 if (plt2_asect)
2659 {
2660 int content2;
2661 gdb_byte *buf_filesz_p = (gdb_byte *) &phdrp->p_filesz;
2662 CORE_ADDR filesz;
2663
2664 content2 = (bfd_section_flags (plt2_asect)
2665 & SEC_HAS_CONTENTS) != 0;
2666
2667 filesz = extract_unsigned_integer (buf_filesz_p, 4,
2668 byte_order);
2669
2670 /* PLT2_ASECT is from on-disk file (exec_bfd) while
2671 FILESZ is from the in-memory image. */
2672 if (content2)
2673 filesz += bfd_section_size (plt2_asect);
2674 else
2675 filesz -= bfd_section_size (plt2_asect);
2676
2677 store_unsigned_integer (buf_filesz_p, 4, byte_order,
2678 filesz);
2679
2680 if (memcmp (phdrp, phdr2p, sizeof (*phdrp)) == 0)
2681 continue;
2682 }
2683
2684 return 0;
2685 }
2686 }
2687 else if (arch_size == 64
2688 && phdrs_target->size () >= sizeof (Elf64_External_Phdr)
2689 && phdrs_target->size () % sizeof (Elf64_External_Phdr) == 0)
2690 {
2691 Elf_Internal_Ehdr *ehdr2
2692 = elf_tdata (current_program_space->exec_bfd ())->elf_header;
2693 Elf_Internal_Phdr *phdr2
2694 = elf_tdata (current_program_space->exec_bfd ())->phdr;
2695 CORE_ADDR displacement = 0;
2696 int i;
2697
2698 /* DISPLACEMENT could be found more easily by the difference of
2699 ehdr2->e_entry. But we haven't read the ehdr yet, and we
2700 already have enough information to compute that displacement
2701 with what we've read. */
2702
2703 for (i = 0; i < ehdr2->e_phnum; i++)
2704 if (phdr2[i].p_type == PT_LOAD)
2705 {
2706 Elf64_External_Phdr *phdrp;
2707 gdb_byte *buf_vaddr_p, *buf_paddr_p;
2708 CORE_ADDR vaddr, paddr;
2709 CORE_ADDR displacement_vaddr = 0;
2710 CORE_ADDR displacement_paddr = 0;
2711
2712 phdrp = &((Elf64_External_Phdr *) phdrs_target->data ())[i];
2713 buf_vaddr_p = (gdb_byte *) &phdrp->p_vaddr;
2714 buf_paddr_p = (gdb_byte *) &phdrp->p_paddr;
2715
2716 vaddr = extract_unsigned_integer (buf_vaddr_p, 8,
2717 byte_order);
2718 displacement_vaddr = vaddr - phdr2[i].p_vaddr;
2719
2720 paddr = extract_unsigned_integer (buf_paddr_p, 8,
2721 byte_order);
2722 displacement_paddr = paddr - phdr2[i].p_paddr;
2723
2724 if (displacement_vaddr == displacement_paddr)
2725 displacement = displacement_vaddr;
2726
2727 break;
2728 }
2729
2730 /* Now compare BUF and BUF2 with optional DISPLACEMENT. */
2731
2732 for (i = 0;
2733 i < phdrs_target->size () / sizeof (Elf64_External_Phdr);
2734 i++)
2735 {
2736 Elf64_External_Phdr *phdrp;
2737 Elf64_External_Phdr *phdr2p;
2738 gdb_byte *buf_vaddr_p, *buf_paddr_p;
2739 CORE_ADDR vaddr, paddr;
2740 asection *plt2_asect;
2741
2742 phdrp = &((Elf64_External_Phdr *) phdrs_target->data ())[i];
2743 buf_vaddr_p = (gdb_byte *) &phdrp->p_vaddr;
2744 buf_paddr_p = (gdb_byte *) &phdrp->p_paddr;
2745 phdr2p = &((Elf64_External_Phdr *) phdrs_binary->data ())[i];
2746
2747 /* PT_GNU_STACK is an exception by being never relocated by
2748 prelink as its addresses are always zero. */
2749
2750 if (memcmp (phdrp, phdr2p, sizeof (*phdrp)) == 0)
2751 continue;
2752
2753 /* Check also other adjustment combinations - PR 11786. */
2754
2755 vaddr = extract_unsigned_integer (buf_vaddr_p, 8,
2756 byte_order);
2757 vaddr -= displacement;
2758 store_unsigned_integer (buf_vaddr_p, 8, byte_order, vaddr);
2759
2760 paddr = extract_unsigned_integer (buf_paddr_p, 8,
2761 byte_order);
2762 paddr -= displacement;
2763 store_unsigned_integer (buf_paddr_p, 8, byte_order, paddr);
2764
2765 if (memcmp (phdrp, phdr2p, sizeof (*phdrp)) == 0)
2766 continue;
2767
2768 /* Strip modifies the flags and alignment of PT_GNU_RELRO.
2769 CentOS-5 has problems with filesz, memsz as well.
2770 Strip also modifies memsz of PT_TLS.
2771 See PR 11786. */
2772 if (phdr2[i].p_type == PT_GNU_RELRO
2773 || phdr2[i].p_type == PT_TLS)
2774 {
2775 Elf64_External_Phdr tmp_phdr = *phdrp;
2776 Elf64_External_Phdr tmp_phdr2 = *phdr2p;
2777
2778 memset (tmp_phdr.p_filesz, 0, 8);
2779 memset (tmp_phdr.p_memsz, 0, 8);
2780 memset (tmp_phdr.p_flags, 0, 4);
2781 memset (tmp_phdr.p_align, 0, 8);
2782 memset (tmp_phdr2.p_filesz, 0, 8);
2783 memset (tmp_phdr2.p_memsz, 0, 8);
2784 memset (tmp_phdr2.p_flags, 0, 4);
2785 memset (tmp_phdr2.p_align, 0, 8);
2786
2787 if (memcmp (&tmp_phdr, &tmp_phdr2, sizeof (tmp_phdr))
2788 == 0)
2789 continue;
2790 }
2791
2792 /* prelink can convert .plt SHT_NOBITS to SHT_PROGBITS. */
2793 plt2_asect
2794 = bfd_get_section_by_name (current_program_space->exec_bfd (),
2795 ".plt");
2796 if (plt2_asect)
2797 {
2798 int content2;
2799 gdb_byte *buf_filesz_p = (gdb_byte *) &phdrp->p_filesz;
2800 CORE_ADDR filesz;
2801
2802 content2 = (bfd_section_flags (plt2_asect)
2803 & SEC_HAS_CONTENTS) != 0;
2804
2805 filesz = extract_unsigned_integer (buf_filesz_p, 8,
2806 byte_order);
2807
2808 /* PLT2_ASECT is from on-disk file (current
2809 exec_bfd) while FILESZ is from the in-memory
2810 image. */
2811 if (content2)
2812 filesz += bfd_section_size (plt2_asect);
2813 else
2814 filesz -= bfd_section_size (plt2_asect);
2815
2816 store_unsigned_integer (buf_filesz_p, 8, byte_order,
2817 filesz);
2818
2819 if (memcmp (phdrp, phdr2p, sizeof (*phdrp)) == 0)
2820 continue;
2821 }
2822
2823 return 0;
2824 }
2825 }
2826 else
2827 return 0;
2828 }
2829 }
2830
2831 if (info_verbose)
2832 {
2833 /* It can be printed repeatedly as there is no easy way to check
2834 the executable symbols/file has been already relocated to
2835 displacement. */
2836
2837 gdb_printf (_("Using PIE (Position Independent Executable) "
2838 "displacement %s for \"%s\".\n"),
2839 paddress (target_gdbarch (), exec_displacement),
2840 bfd_get_filename (current_program_space->exec_bfd ()));
2841 }
2842
2843 *displacementp = exec_displacement;
2844 return 1;
2845 }
2846
2847 /* Relocate the main executable. This function should be called upon
2848 stopping the inferior process at the entry point to the program.
2849 The entry point from BFD is compared to the AT_ENTRY of AUXV and if they are
2850 different, the main executable is relocated by the proper amount. */
2851
2852 static void
2853 svr4_relocate_main_executable (void)
2854 {
2855 CORE_ADDR displacement;
2856
2857 /* If we are re-running this executable, SYMFILE_OBJFILE->SECTION_OFFSETS
2858 probably contains the offsets computed using the PIE displacement
2859 from the previous run, which of course are irrelevant for this run.
2860 So we need to determine the new PIE displacement and recompute the
2861 section offsets accordingly, even if SYMFILE_OBJFILE->SECTION_OFFSETS
2862 already contains pre-computed offsets.
2863
2864 If we cannot compute the PIE displacement, either:
2865
2866 - The executable is not PIE.
2867
2868 - SYMFILE_OBJFILE does not match the executable started in the target.
2869 This can happen for main executable symbols loaded at the host while
2870 `ld.so --ld-args main-executable' is loaded in the target.
2871
2872 Then we leave the section offsets untouched and use them as is for
2873 this run. Either:
2874
2875 - These section offsets were properly reset earlier, and thus
2876 already contain the correct values. This can happen for instance
2877 when reconnecting via the remote protocol to a target that supports
2878 the `qOffsets' packet.
2879
2880 - The section offsets were not reset earlier, and the best we can
2881 hope is that the old offsets are still applicable to the new run. */
2882
2883 if (! svr4_exec_displacement (&displacement))
2884 return;
2885
2886 /* Even DISPLACEMENT 0 is a valid new difference of in-memory vs. in-file
2887 addresses. */
2888
2889 objfile *objf = current_program_space->symfile_object_file;
2890 if (objf)
2891 {
2892 section_offsets new_offsets (objf->section_offsets.size (),
2893 displacement);
2894 objfile_relocate (objf, new_offsets);
2895 }
2896 else if (current_program_space->exec_bfd ())
2897 {
2898 asection *asect;
2899
2900 bfd *exec_bfd = current_program_space->exec_bfd ();
2901 for (asect = exec_bfd->sections; asect != NULL; asect = asect->next)
2902 exec_set_section_address (bfd_get_filename (exec_bfd), asect->index,
2903 bfd_section_vma (asect) + displacement);
2904 }
2905 }
2906
2907 /* Implement the "create_inferior_hook" target_solib_ops method.
2908
2909 For SVR4 executables, this first instruction is either the first
2910 instruction in the dynamic linker (for dynamically linked
2911 executables) or the instruction at "start" for statically linked
2912 executables. For dynamically linked executables, the system
2913 first exec's /lib/libc.so.N, which contains the dynamic linker,
2914 and starts it running. The dynamic linker maps in any needed
2915 shared libraries, maps in the actual user executable, and then
2916 jumps to "start" in the user executable.
2917
2918 We can arrange to cooperate with the dynamic linker to discover the
2919 names of shared libraries that are dynamically linked, and the base
2920 addresses to which they are linked.
2921
2922 This function is responsible for discovering those names and
2923 addresses, and saving sufficient information about them to allow
2924 their symbols to be read at a later time. */
2925
2926 static void
2927 svr4_solib_create_inferior_hook (int from_tty)
2928 {
2929 struct svr4_info *info;
2930
2931 info = get_svr4_info (current_program_space);
2932
2933 /* Clear the probes-based interface's state. */
2934 free_probes_table (info);
2935 free_solib_list (info);
2936
2937 /* Relocate the main executable if necessary. */
2938 svr4_relocate_main_executable ();
2939
2940 /* No point setting a breakpoint in the dynamic linker if we can't
2941 hit it (e.g., a core file, or a trace file). */
2942 if (!target_has_execution ())
2943 return;
2944
2945 if (!svr4_have_link_map_offsets ())
2946 return;
2947
2948 if (!enable_break (info, from_tty))
2949 return;
2950 }
2951
2952 static void
2953 svr4_clear_solib (void)
2954 {
2955 struct svr4_info *info;
2956
2957 info = get_svr4_info (current_program_space);
2958 info->debug_base = 0;
2959 info->debug_loader_offset_p = 0;
2960 info->debug_loader_offset = 0;
2961 xfree (info->debug_loader_name);
2962 info->debug_loader_name = NULL;
2963 }
2964
2965 /* Clear any bits of ADDR that wouldn't fit in a target-format
2966 data pointer. "Data pointer" here refers to whatever sort of
2967 address the dynamic linker uses to manage its sections. At the
2968 moment, we don't support shared libraries on any processors where
2969 code and data pointers are different sizes.
2970
2971 This isn't really the right solution. What we really need here is
2972 a way to do arithmetic on CORE_ADDR values that respects the
2973 natural pointer/address correspondence. (For example, on the MIPS,
2974 converting a 32-bit pointer to a 64-bit CORE_ADDR requires you to
2975 sign-extend the value. There, simply truncating the bits above
2976 gdbarch_ptr_bit, as we do below, is no good.) This should probably
2977 be a new gdbarch method or something. */
2978 static CORE_ADDR
2979 svr4_truncate_ptr (CORE_ADDR addr)
2980 {
2981 if (gdbarch_ptr_bit (target_gdbarch ()) == sizeof (CORE_ADDR) * 8)
2982 /* We don't need to truncate anything, and the bit twiddling below
2983 will fail due to overflow problems. */
2984 return addr;
2985 else
2986 return addr & (((CORE_ADDR) 1 << gdbarch_ptr_bit (target_gdbarch ())) - 1);
2987 }
2988
2989
2990 static void
2991 svr4_relocate_section_addresses (struct so_list *so,
2992 struct target_section *sec)
2993 {
2994 bfd *abfd = sec->the_bfd_section->owner;
2995
2996 sec->addr = svr4_truncate_ptr (sec->addr + lm_addr_check (so, abfd));
2997 sec->endaddr = svr4_truncate_ptr (sec->endaddr + lm_addr_check (so, abfd));
2998 }
2999 \f
3000
3001 /* Architecture-specific operations. */
3002
3003 /* Per-architecture data key. */
3004 static struct gdbarch_data *solib_svr4_data;
3005
3006 struct solib_svr4_ops
3007 {
3008 /* Return a description of the layout of `struct link_map'. */
3009 struct link_map_offsets *(*fetch_link_map_offsets)(void);
3010 };
3011
3012 /* Return a default for the architecture-specific operations. */
3013
3014 static void *
3015 solib_svr4_init (struct obstack *obstack)
3016 {
3017 struct solib_svr4_ops *ops;
3018
3019 ops = OBSTACK_ZALLOC (obstack, struct solib_svr4_ops);
3020 ops->fetch_link_map_offsets = NULL;
3021 return ops;
3022 }
3023
3024 /* Set the architecture-specific `struct link_map_offsets' fetcher for
3025 GDBARCH to FLMO. Also, install SVR4 solib_ops into GDBARCH. */
3026
3027 void
3028 set_solib_svr4_fetch_link_map_offsets (struct gdbarch *gdbarch,
3029 struct link_map_offsets *(*flmo) (void))
3030 {
3031 struct solib_svr4_ops *ops
3032 = (struct solib_svr4_ops *) gdbarch_data (gdbarch, solib_svr4_data);
3033
3034 ops->fetch_link_map_offsets = flmo;
3035
3036 set_solib_ops (gdbarch, &svr4_so_ops);
3037 set_gdbarch_iterate_over_objfiles_in_search_order
3038 (gdbarch, svr4_iterate_over_objfiles_in_search_order);
3039 }
3040
3041 /* Fetch a link_map_offsets structure using the architecture-specific
3042 `struct link_map_offsets' fetcher. */
3043
3044 static struct link_map_offsets *
3045 svr4_fetch_link_map_offsets (void)
3046 {
3047 struct solib_svr4_ops *ops
3048 = (struct solib_svr4_ops *) gdbarch_data (target_gdbarch (),
3049 solib_svr4_data);
3050
3051 gdb_assert (ops->fetch_link_map_offsets);
3052 return ops->fetch_link_map_offsets ();
3053 }
3054
3055 /* Return 1 if a link map offset fetcher has been defined, 0 otherwise. */
3056
3057 static int
3058 svr4_have_link_map_offsets (void)
3059 {
3060 struct solib_svr4_ops *ops
3061 = (struct solib_svr4_ops *) gdbarch_data (target_gdbarch (),
3062 solib_svr4_data);
3063
3064 return (ops->fetch_link_map_offsets != NULL);
3065 }
3066 \f
3067
3068 /* Most OS'es that have SVR4-style ELF dynamic libraries define a
3069 `struct r_debug' and a `struct link_map' that are binary compatible
3070 with the original SVR4 implementation. */
3071
3072 /* Fetch (and possibly build) an appropriate `struct link_map_offsets'
3073 for an ILP32 SVR4 system. */
3074
3075 struct link_map_offsets *
3076 svr4_ilp32_fetch_link_map_offsets (void)
3077 {
3078 static struct link_map_offsets lmo;
3079 static struct link_map_offsets *lmp = NULL;
3080
3081 if (lmp == NULL)
3082 {
3083 lmp = &lmo;
3084
3085 lmo.r_version_offset = 0;
3086 lmo.r_version_size = 4;
3087 lmo.r_map_offset = 4;
3088 lmo.r_brk_offset = 8;
3089 lmo.r_ldsomap_offset = 20;
3090
3091 /* Everything we need is in the first 20 bytes. */
3092 lmo.link_map_size = 20;
3093 lmo.l_addr_offset = 0;
3094 lmo.l_name_offset = 4;
3095 lmo.l_ld_offset = 8;
3096 lmo.l_next_offset = 12;
3097 lmo.l_prev_offset = 16;
3098 }
3099
3100 return lmp;
3101 }
3102
3103 /* Fetch (and possibly build) an appropriate `struct link_map_offsets'
3104 for an LP64 SVR4 system. */
3105
3106 struct link_map_offsets *
3107 svr4_lp64_fetch_link_map_offsets (void)
3108 {
3109 static struct link_map_offsets lmo;
3110 static struct link_map_offsets *lmp = NULL;
3111
3112 if (lmp == NULL)
3113 {
3114 lmp = &lmo;
3115
3116 lmo.r_version_offset = 0;
3117 lmo.r_version_size = 4;
3118 lmo.r_map_offset = 8;
3119 lmo.r_brk_offset = 16;
3120 lmo.r_ldsomap_offset = 40;
3121
3122 /* Everything we need is in the first 40 bytes. */
3123 lmo.link_map_size = 40;
3124 lmo.l_addr_offset = 0;
3125 lmo.l_name_offset = 8;
3126 lmo.l_ld_offset = 16;
3127 lmo.l_next_offset = 24;
3128 lmo.l_prev_offset = 32;
3129 }
3130
3131 return lmp;
3132 }
3133 \f
3134
3135 struct target_so_ops svr4_so_ops;
3136
3137 /* Search order for ELF DSOs linked with -Bsymbolic. Those DSOs have a
3138 different rule for symbol lookup. The lookup begins here in the DSO, not in
3139 the main executable. */
3140
3141 static void
3142 svr4_iterate_over_objfiles_in_search_order
3143 (struct gdbarch *gdbarch,
3144 iterate_over_objfiles_in_search_order_cb_ftype *cb,
3145 void *cb_data, struct objfile *current_objfile)
3146 {
3147 bool checked_current_objfile = false;
3148 if (current_objfile != nullptr)
3149 {
3150 bfd *abfd;
3151
3152 if (current_objfile->separate_debug_objfile_backlink != nullptr)
3153 current_objfile = current_objfile->separate_debug_objfile_backlink;
3154
3155 if (current_objfile == current_program_space->symfile_object_file)
3156 abfd = current_program_space->exec_bfd ();
3157 else
3158 abfd = current_objfile->obfd;
3159
3160 if (abfd != nullptr
3161 && gdb_bfd_scan_elf_dyntag (DT_SYMBOLIC, abfd, nullptr, nullptr) == 1)
3162 {
3163 checked_current_objfile = true;
3164 if (cb (current_objfile, cb_data) != 0)
3165 return;
3166 }
3167 }
3168
3169 for (objfile *objfile : current_program_space->objfiles ())
3170 {
3171 if (checked_current_objfile && objfile == current_objfile)
3172 continue;
3173 if (cb (objfile, cb_data) != 0)
3174 return;
3175 }
3176 }
3177
3178 void _initialize_svr4_solib ();
3179 void
3180 _initialize_svr4_solib ()
3181 {
3182 solib_svr4_data = gdbarch_data_register_pre_init (solib_svr4_init);
3183
3184 svr4_so_ops.relocate_section_addresses = svr4_relocate_section_addresses;
3185 svr4_so_ops.free_so = svr4_free_so;
3186 svr4_so_ops.clear_so = svr4_clear_so;
3187 svr4_so_ops.clear_solib = svr4_clear_solib;
3188 svr4_so_ops.solib_create_inferior_hook = svr4_solib_create_inferior_hook;
3189 svr4_so_ops.current_sos = svr4_current_sos;
3190 svr4_so_ops.open_symbol_file_object = open_symbol_file_object;
3191 svr4_so_ops.in_dynsym_resolve_code = svr4_in_dynsym_resolve_code;
3192 svr4_so_ops.bfd_open = solib_bfd_open;
3193 svr4_so_ops.same = svr4_same;
3194 svr4_so_ops.keep_data_in_core = svr4_keep_data_in_core;
3195 svr4_so_ops.update_breakpoints = svr4_update_solib_event_breakpoints;
3196 svr4_so_ops.handle_event = svr4_handle_solib_event;
3197
3198 gdb::observers::free_objfile.attach (svr4_free_objfile_observer,
3199 "solib-svr4");
3200 }