gdb/
[binutils-gdb.git] / gdb / solib-svr4.c
1 /* Handle SVR4 shared libraries for GDB, the GNU Debugger.
2
3 Copyright (C) 1990, 1991, 1992, 1993, 1994, 1995, 1996, 1998, 1999, 2000,
4 2001, 2003, 2004, 2005, 2006, 2007, 2008, 2009, 2010
5 Free Software Foundation, Inc.
6
7 This file is part of GDB.
8
9 This program is free software; you can redistribute it and/or modify
10 it under the terms of the GNU General Public License as published by
11 the Free Software Foundation; either version 3 of the License, or
12 (at your option) any later version.
13
14 This program is distributed in the hope that it will be useful,
15 but WITHOUT ANY WARRANTY; without even the implied warranty of
16 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
17 GNU General Public License for more details.
18
19 You should have received a copy of the GNU General Public License
20 along with this program. If not, see <http://www.gnu.org/licenses/>. */
21
22 #include "defs.h"
23
24 #include "elf/external.h"
25 #include "elf/common.h"
26 #include "elf/mips.h"
27
28 #include "symtab.h"
29 #include "bfd.h"
30 #include "symfile.h"
31 #include "objfiles.h"
32 #include "gdbcore.h"
33 #include "target.h"
34 #include "inferior.h"
35 #include "regcache.h"
36 #include "gdbthread.h"
37 #include "observer.h"
38
39 #include "gdb_assert.h"
40
41 #include "solist.h"
42 #include "solib.h"
43 #include "solib-svr4.h"
44
45 #include "bfd-target.h"
46 #include "elf-bfd.h"
47 #include "exec.h"
48 #include "auxv.h"
49 #include "exceptions.h"
50
51 static struct link_map_offsets *svr4_fetch_link_map_offsets (void);
52 static int svr4_have_link_map_offsets (void);
53 static void svr4_relocate_main_executable (void);
54
55 /* Link map info to include in an allocated so_list entry */
56
57 struct lm_info
58 {
59 /* Pointer to copy of link map from inferior. The type is char *
60 rather than void *, so that we may use byte offsets to find the
61 various fields without the need for a cast. */
62 gdb_byte *lm;
63
64 /* Amount by which addresses in the binary should be relocated to
65 match the inferior. This could most often be taken directly
66 from lm, but when prelinking is involved and the prelink base
67 address changes, we may need a different offset, we want to
68 warn about the difference and compute it only once. */
69 CORE_ADDR l_addr;
70
71 /* The target location of lm. */
72 CORE_ADDR lm_addr;
73 };
74
75 /* On SVR4 systems, a list of symbols in the dynamic linker where
76 GDB can try to place a breakpoint to monitor shared library
77 events.
78
79 If none of these symbols are found, or other errors occur, then
80 SVR4 systems will fall back to using a symbol as the "startup
81 mapping complete" breakpoint address. */
82
83 static char *solib_break_names[] =
84 {
85 "r_debug_state",
86 "_r_debug_state",
87 "_dl_debug_state",
88 "rtld_db_dlactivity",
89 "__dl_rtld_db_dlactivity",
90 "_rtld_debug_state",
91
92 NULL
93 };
94
95 static char *bkpt_names[] =
96 {
97 "_start",
98 "__start",
99 "main",
100 NULL
101 };
102
103 static char *main_name_list[] =
104 {
105 "main_$main",
106 NULL
107 };
108
109 /* Return non-zero if GDB_SO_NAME and INFERIOR_SO_NAME represent
110 the same shared library. */
111
112 static int
113 svr4_same_1 (const char *gdb_so_name, const char *inferior_so_name)
114 {
115 if (strcmp (gdb_so_name, inferior_so_name) == 0)
116 return 1;
117
118 /* On Solaris, when starting inferior we think that dynamic linker is
119 /usr/lib/ld.so.1, but later on, the table of loaded shared libraries
120 contains /lib/ld.so.1. Sometimes one file is a link to another, but
121 sometimes they have identical content, but are not linked to each
122 other. We don't restrict this check for Solaris, but the chances
123 of running into this situation elsewhere are very low. */
124 if (strcmp (gdb_so_name, "/usr/lib/ld.so.1") == 0
125 && strcmp (inferior_so_name, "/lib/ld.so.1") == 0)
126 return 1;
127
128 /* Similarly, we observed the same issue with sparc64, but with
129 different locations. */
130 if (strcmp (gdb_so_name, "/usr/lib/sparcv9/ld.so.1") == 0
131 && strcmp (inferior_so_name, "/lib/sparcv9/ld.so.1") == 0)
132 return 1;
133
134 return 0;
135 }
136
137 static int
138 svr4_same (struct so_list *gdb, struct so_list *inferior)
139 {
140 return (svr4_same_1 (gdb->so_original_name, inferior->so_original_name));
141 }
142
143 /* link map access functions */
144
145 static CORE_ADDR
146 LM_ADDR_FROM_LINK_MAP (struct so_list *so)
147 {
148 struct link_map_offsets *lmo = svr4_fetch_link_map_offsets ();
149 struct type *ptr_type = builtin_type (target_gdbarch)->builtin_data_ptr;
150
151 return extract_typed_address (so->lm_info->lm + lmo->l_addr_offset,
152 ptr_type);
153 }
154
155 static int
156 HAS_LM_DYNAMIC_FROM_LINK_MAP (void)
157 {
158 struct link_map_offsets *lmo = svr4_fetch_link_map_offsets ();
159
160 return lmo->l_ld_offset >= 0;
161 }
162
163 static CORE_ADDR
164 LM_DYNAMIC_FROM_LINK_MAP (struct so_list *so)
165 {
166 struct link_map_offsets *lmo = svr4_fetch_link_map_offsets ();
167 struct type *ptr_type = builtin_type (target_gdbarch)->builtin_data_ptr;
168
169 return extract_typed_address (so->lm_info->lm + lmo->l_ld_offset,
170 ptr_type);
171 }
172
173 static CORE_ADDR
174 LM_ADDR_CHECK (struct so_list *so, bfd *abfd)
175 {
176 if (so->lm_info->l_addr == (CORE_ADDR)-1)
177 {
178 struct bfd_section *dyninfo_sect;
179 CORE_ADDR l_addr, l_dynaddr, dynaddr, align = 0x1000;
180
181 l_addr = LM_ADDR_FROM_LINK_MAP (so);
182
183 if (! abfd || ! HAS_LM_DYNAMIC_FROM_LINK_MAP ())
184 goto set_addr;
185
186 l_dynaddr = LM_DYNAMIC_FROM_LINK_MAP (so);
187
188 dyninfo_sect = bfd_get_section_by_name (abfd, ".dynamic");
189 if (dyninfo_sect == NULL)
190 goto set_addr;
191
192 dynaddr = bfd_section_vma (abfd, dyninfo_sect);
193
194 if (dynaddr + l_addr != l_dynaddr)
195 {
196 if (bfd_get_flavour (abfd) == bfd_target_elf_flavour)
197 {
198 Elf_Internal_Ehdr *ehdr = elf_tdata (abfd)->elf_header;
199 Elf_Internal_Phdr *phdr = elf_tdata (abfd)->phdr;
200 int i;
201
202 align = 1;
203
204 for (i = 0; i < ehdr->e_phnum; i++)
205 if (phdr[i].p_type == PT_LOAD && phdr[i].p_align > align)
206 align = phdr[i].p_align;
207 }
208
209 /* Turn it into a mask. */
210 align--;
211
212 /* If the changes match the alignment requirements, we
213 assume we're using a core file that was generated by the
214 same binary, just prelinked with a different base offset.
215 If it doesn't match, we may have a different binary, the
216 same binary with the dynamic table loaded at an unrelated
217 location, or anything, really. To avoid regressions,
218 don't adjust the base offset in the latter case, although
219 odds are that, if things really changed, debugging won't
220 quite work.
221
222 One could expect more the condition
223 ((l_addr & align) == 0 && ((l_dynaddr - dynaddr) & align) == 0)
224 but the one below is relaxed for PPC. The PPC kernel supports
225 either 4k or 64k page sizes. To be prepared for 64k pages,
226 PPC ELF files are built using an alignment requirement of 64k.
227 However, when running on a kernel supporting 4k pages, the memory
228 mapping of the library may not actually happen on a 64k boundary!
229
230 (In the usual case where (l_addr & align) == 0, this check is
231 equivalent to the possibly expected check above.) */
232
233 if ((l_addr & align) == ((l_dynaddr - dynaddr) & align))
234 {
235 l_addr = l_dynaddr - dynaddr;
236
237 warning (_(".dynamic section for \"%s\" "
238 "is not at the expected address"), so->so_name);
239 warning (_("difference appears to be caused by prelink, "
240 "adjusting expectations"));
241 }
242 else
243 warning (_(".dynamic section for \"%s\" "
244 "is not at the expected address "
245 "(wrong library or version mismatch?)"), so->so_name);
246 }
247
248 set_addr:
249 so->lm_info->l_addr = l_addr;
250 }
251
252 return so->lm_info->l_addr;
253 }
254
255 static CORE_ADDR
256 LM_NEXT (struct so_list *so)
257 {
258 struct link_map_offsets *lmo = svr4_fetch_link_map_offsets ();
259 struct type *ptr_type = builtin_type (target_gdbarch)->builtin_data_ptr;
260
261 return extract_typed_address (so->lm_info->lm + lmo->l_next_offset,
262 ptr_type);
263 }
264
265 static CORE_ADDR
266 LM_NAME (struct so_list *so)
267 {
268 struct link_map_offsets *lmo = svr4_fetch_link_map_offsets ();
269 struct type *ptr_type = builtin_type (target_gdbarch)->builtin_data_ptr;
270
271 return extract_typed_address (so->lm_info->lm + lmo->l_name_offset,
272 ptr_type);
273 }
274
275 static int
276 IGNORE_FIRST_LINK_MAP_ENTRY (struct so_list *so)
277 {
278 struct link_map_offsets *lmo = svr4_fetch_link_map_offsets ();
279 struct type *ptr_type = builtin_type (target_gdbarch)->builtin_data_ptr;
280
281 /* Assume that everything is a library if the dynamic loader was loaded
282 late by a static executable. */
283 if (exec_bfd && bfd_get_section_by_name (exec_bfd, ".dynamic") == NULL)
284 return 0;
285
286 return extract_typed_address (so->lm_info->lm + lmo->l_prev_offset,
287 ptr_type) == 0;
288 }
289
290 /* Per pspace SVR4 specific data. */
291
292 struct svr4_info
293 {
294 CORE_ADDR debug_base; /* Base of dynamic linker structures */
295
296 /* Validity flag for debug_loader_offset. */
297 int debug_loader_offset_p;
298
299 /* Load address for the dynamic linker, inferred. */
300 CORE_ADDR debug_loader_offset;
301
302 /* Name of the dynamic linker, valid if debug_loader_offset_p. */
303 char *debug_loader_name;
304
305 /* Load map address for the main executable. */
306 CORE_ADDR main_lm_addr;
307
308 CORE_ADDR interp_text_sect_low;
309 CORE_ADDR interp_text_sect_high;
310 CORE_ADDR interp_plt_sect_low;
311 CORE_ADDR interp_plt_sect_high;
312 };
313
314 /* Per-program-space data key. */
315 static const struct program_space_data *solib_svr4_pspace_data;
316
317 static void
318 svr4_pspace_data_cleanup (struct program_space *pspace, void *arg)
319 {
320 struct svr4_info *info;
321
322 info = program_space_data (pspace, solib_svr4_pspace_data);
323 xfree (info);
324 }
325
326 /* Get the current svr4 data. If none is found yet, add it now. This
327 function always returns a valid object. */
328
329 static struct svr4_info *
330 get_svr4_info (void)
331 {
332 struct svr4_info *info;
333
334 info = program_space_data (current_program_space, solib_svr4_pspace_data);
335 if (info != NULL)
336 return info;
337
338 info = XZALLOC (struct svr4_info);
339 set_program_space_data (current_program_space, solib_svr4_pspace_data, info);
340 return info;
341 }
342
343 /* Local function prototypes */
344
345 static int match_main (char *);
346
347 static CORE_ADDR bfd_lookup_symbol (bfd *, char *);
348
349 /*
350
351 LOCAL FUNCTION
352
353 bfd_lookup_symbol -- lookup the value for a specific symbol
354
355 SYNOPSIS
356
357 CORE_ADDR bfd_lookup_symbol (bfd *abfd, char *symname)
358
359 DESCRIPTION
360
361 An expensive way to lookup the value of a single symbol for
362 bfd's that are only temporary anyway. This is used by the
363 shared library support to find the address of the debugger
364 notification routine in the shared library.
365
366 The returned symbol may be in a code or data section; functions
367 will normally be in a code section, but may be in a data section
368 if this architecture uses function descriptors.
369
370 Note that 0 is specifically allowed as an error return (no
371 such symbol).
372 */
373
374 static CORE_ADDR
375 bfd_lookup_symbol (bfd *abfd, char *symname)
376 {
377 long storage_needed;
378 asymbol *sym;
379 asymbol **symbol_table;
380 unsigned int number_of_symbols;
381 unsigned int i;
382 struct cleanup *back_to;
383 CORE_ADDR symaddr = 0;
384
385 storage_needed = bfd_get_symtab_upper_bound (abfd);
386
387 if (storage_needed > 0)
388 {
389 symbol_table = (asymbol **) xmalloc (storage_needed);
390 back_to = make_cleanup (xfree, symbol_table);
391 number_of_symbols = bfd_canonicalize_symtab (abfd, symbol_table);
392
393 for (i = 0; i < number_of_symbols; i++)
394 {
395 sym = *symbol_table++;
396 if (strcmp (sym->name, symname) == 0
397 && (sym->section->flags & (SEC_CODE | SEC_DATA)) != 0)
398 {
399 /* BFD symbols are section relative. */
400 symaddr = sym->value + sym->section->vma;
401 break;
402 }
403 }
404 do_cleanups (back_to);
405 }
406
407 if (symaddr)
408 return symaddr;
409
410 /* On FreeBSD, the dynamic linker is stripped by default. So we'll
411 have to check the dynamic string table too. */
412
413 storage_needed = bfd_get_dynamic_symtab_upper_bound (abfd);
414
415 if (storage_needed > 0)
416 {
417 symbol_table = (asymbol **) xmalloc (storage_needed);
418 back_to = make_cleanup (xfree, symbol_table);
419 number_of_symbols = bfd_canonicalize_dynamic_symtab (abfd, symbol_table);
420
421 for (i = 0; i < number_of_symbols; i++)
422 {
423 sym = *symbol_table++;
424
425 if (strcmp (sym->name, symname) == 0
426 && (sym->section->flags & (SEC_CODE | SEC_DATA)) != 0)
427 {
428 /* BFD symbols are section relative. */
429 symaddr = sym->value + sym->section->vma;
430 break;
431 }
432 }
433 do_cleanups (back_to);
434 }
435
436 return symaddr;
437 }
438
439
440 /* Read program header TYPE from inferior memory. The header is found
441 by scanning the OS auxillary vector.
442
443 Return a pointer to allocated memory holding the program header contents,
444 or NULL on failure. If sucessful, and unless P_SECT_SIZE is NULL, the
445 size of those contents is returned to P_SECT_SIZE. Likewise, the target
446 architecture size (32-bit or 64-bit) is returned to P_ARCH_SIZE. */
447
448 static gdb_byte *
449 read_program_header (int type, int *p_sect_size, int *p_arch_size)
450 {
451 enum bfd_endian byte_order = gdbarch_byte_order (target_gdbarch);
452 CORE_ADDR at_phdr, at_phent, at_phnum;
453 int arch_size, sect_size;
454 CORE_ADDR sect_addr;
455 gdb_byte *buf;
456
457 /* Get required auxv elements from target. */
458 if (target_auxv_search (&current_target, AT_PHDR, &at_phdr) <= 0)
459 return 0;
460 if (target_auxv_search (&current_target, AT_PHENT, &at_phent) <= 0)
461 return 0;
462 if (target_auxv_search (&current_target, AT_PHNUM, &at_phnum) <= 0)
463 return 0;
464 if (!at_phdr || !at_phnum)
465 return 0;
466
467 /* Determine ELF architecture type. */
468 if (at_phent == sizeof (Elf32_External_Phdr))
469 arch_size = 32;
470 else if (at_phent == sizeof (Elf64_External_Phdr))
471 arch_size = 64;
472 else
473 return 0;
474
475 /* Find .dynamic section via the PT_DYNAMIC PHDR. */
476 if (arch_size == 32)
477 {
478 Elf32_External_Phdr phdr;
479 int i;
480
481 /* Search for requested PHDR. */
482 for (i = 0; i < at_phnum; i++)
483 {
484 if (target_read_memory (at_phdr + i * sizeof (phdr),
485 (gdb_byte *)&phdr, sizeof (phdr)))
486 return 0;
487
488 if (extract_unsigned_integer ((gdb_byte *)phdr.p_type,
489 4, byte_order) == type)
490 break;
491 }
492
493 if (i == at_phnum)
494 return 0;
495
496 /* Retrieve address and size. */
497 sect_addr = extract_unsigned_integer ((gdb_byte *)phdr.p_vaddr,
498 4, byte_order);
499 sect_size = extract_unsigned_integer ((gdb_byte *)phdr.p_memsz,
500 4, byte_order);
501 }
502 else
503 {
504 Elf64_External_Phdr phdr;
505 int i;
506
507 /* Search for requested PHDR. */
508 for (i = 0; i < at_phnum; i++)
509 {
510 if (target_read_memory (at_phdr + i * sizeof (phdr),
511 (gdb_byte *)&phdr, sizeof (phdr)))
512 return 0;
513
514 if (extract_unsigned_integer ((gdb_byte *)phdr.p_type,
515 4, byte_order) == type)
516 break;
517 }
518
519 if (i == at_phnum)
520 return 0;
521
522 /* Retrieve address and size. */
523 sect_addr = extract_unsigned_integer ((gdb_byte *)phdr.p_vaddr,
524 8, byte_order);
525 sect_size = extract_unsigned_integer ((gdb_byte *)phdr.p_memsz,
526 8, byte_order);
527 }
528
529 /* Read in requested program header. */
530 buf = xmalloc (sect_size);
531 if (target_read_memory (sect_addr, buf, sect_size))
532 {
533 xfree (buf);
534 return NULL;
535 }
536
537 if (p_arch_size)
538 *p_arch_size = arch_size;
539 if (p_sect_size)
540 *p_sect_size = sect_size;
541
542 return buf;
543 }
544
545
546 /* Return program interpreter string. */
547 static gdb_byte *
548 find_program_interpreter (void)
549 {
550 gdb_byte *buf = NULL;
551
552 /* If we have an exec_bfd, use its section table. */
553 if (exec_bfd
554 && bfd_get_flavour (exec_bfd) == bfd_target_elf_flavour)
555 {
556 struct bfd_section *interp_sect;
557
558 interp_sect = bfd_get_section_by_name (exec_bfd, ".interp");
559 if (interp_sect != NULL)
560 {
561 CORE_ADDR sect_addr = bfd_section_vma (exec_bfd, interp_sect);
562 int sect_size = bfd_section_size (exec_bfd, interp_sect);
563
564 buf = xmalloc (sect_size);
565 bfd_get_section_contents (exec_bfd, interp_sect, buf, 0, sect_size);
566 }
567 }
568
569 /* If we didn't find it, use the target auxillary vector. */
570 if (!buf)
571 buf = read_program_header (PT_INTERP, NULL, NULL);
572
573 return buf;
574 }
575
576
577 /* Scan for DYNTAG in .dynamic section of ABFD. If DYNTAG is found 1 is
578 returned and the corresponding PTR is set. */
579
580 static int
581 scan_dyntag (int dyntag, bfd *abfd, CORE_ADDR *ptr)
582 {
583 int arch_size, step, sect_size;
584 long dyn_tag;
585 CORE_ADDR dyn_ptr, dyn_addr;
586 gdb_byte *bufend, *bufstart, *buf;
587 Elf32_External_Dyn *x_dynp_32;
588 Elf64_External_Dyn *x_dynp_64;
589 struct bfd_section *sect;
590 struct target_section *target_section;
591
592 if (abfd == NULL)
593 return 0;
594
595 if (bfd_get_flavour (abfd) != bfd_target_elf_flavour)
596 return 0;
597
598 arch_size = bfd_get_arch_size (abfd);
599 if (arch_size == -1)
600 return 0;
601
602 /* Find the start address of the .dynamic section. */
603 sect = bfd_get_section_by_name (abfd, ".dynamic");
604 if (sect == NULL)
605 return 0;
606
607 for (target_section = current_target_sections->sections;
608 target_section < current_target_sections->sections_end;
609 target_section++)
610 if (sect == target_section->the_bfd_section)
611 break;
612 if (target_section < current_target_sections->sections_end)
613 dyn_addr = target_section->addr;
614 else
615 {
616 /* ABFD may come from OBJFILE acting only as a symbol file without being
617 loaded into the target (see add_symbol_file_command). This case is
618 such fallback to the file VMA address without the possibility of
619 having the section relocated to its actual in-memory address. */
620
621 dyn_addr = bfd_section_vma (abfd, sect);
622 }
623
624 /* Read in .dynamic from the BFD. We will get the actual value
625 from memory later. */
626 sect_size = bfd_section_size (abfd, sect);
627 buf = bufstart = alloca (sect_size);
628 if (!bfd_get_section_contents (abfd, sect,
629 buf, 0, sect_size))
630 return 0;
631
632 /* Iterate over BUF and scan for DYNTAG. If found, set PTR and return. */
633 step = (arch_size == 32) ? sizeof (Elf32_External_Dyn)
634 : sizeof (Elf64_External_Dyn);
635 for (bufend = buf + sect_size;
636 buf < bufend;
637 buf += step)
638 {
639 if (arch_size == 32)
640 {
641 x_dynp_32 = (Elf32_External_Dyn *) buf;
642 dyn_tag = bfd_h_get_32 (abfd, (bfd_byte *) x_dynp_32->d_tag);
643 dyn_ptr = bfd_h_get_32 (abfd, (bfd_byte *) x_dynp_32->d_un.d_ptr);
644 }
645 else
646 {
647 x_dynp_64 = (Elf64_External_Dyn *) buf;
648 dyn_tag = bfd_h_get_64 (abfd, (bfd_byte *) x_dynp_64->d_tag);
649 dyn_ptr = bfd_h_get_64 (abfd, (bfd_byte *) x_dynp_64->d_un.d_ptr);
650 }
651 if (dyn_tag == DT_NULL)
652 return 0;
653 if (dyn_tag == dyntag)
654 {
655 /* If requested, try to read the runtime value of this .dynamic
656 entry. */
657 if (ptr)
658 {
659 struct type *ptr_type;
660 gdb_byte ptr_buf[8];
661 CORE_ADDR ptr_addr;
662
663 ptr_type = builtin_type (target_gdbarch)->builtin_data_ptr;
664 ptr_addr = dyn_addr + (buf - bufstart) + arch_size / 8;
665 if (target_read_memory (ptr_addr, ptr_buf, arch_size / 8) == 0)
666 dyn_ptr = extract_typed_address (ptr_buf, ptr_type);
667 *ptr = dyn_ptr;
668 }
669 return 1;
670 }
671 }
672
673 return 0;
674 }
675
676 /* Scan for DYNTAG in .dynamic section of the target's main executable,
677 found by consulting the OS auxillary vector. If DYNTAG is found 1 is
678 returned and the corresponding PTR is set. */
679
680 static int
681 scan_dyntag_auxv (int dyntag, CORE_ADDR *ptr)
682 {
683 enum bfd_endian byte_order = gdbarch_byte_order (target_gdbarch);
684 int sect_size, arch_size, step;
685 long dyn_tag;
686 CORE_ADDR dyn_ptr;
687 gdb_byte *bufend, *bufstart, *buf;
688
689 /* Read in .dynamic section. */
690 buf = bufstart = read_program_header (PT_DYNAMIC, &sect_size, &arch_size);
691 if (!buf)
692 return 0;
693
694 /* Iterate over BUF and scan for DYNTAG. If found, set PTR and return. */
695 step = (arch_size == 32) ? sizeof (Elf32_External_Dyn)
696 : sizeof (Elf64_External_Dyn);
697 for (bufend = buf + sect_size;
698 buf < bufend;
699 buf += step)
700 {
701 if (arch_size == 32)
702 {
703 Elf32_External_Dyn *dynp = (Elf32_External_Dyn *) buf;
704 dyn_tag = extract_unsigned_integer ((gdb_byte *) dynp->d_tag,
705 4, byte_order);
706 dyn_ptr = extract_unsigned_integer ((gdb_byte *) dynp->d_un.d_ptr,
707 4, byte_order);
708 }
709 else
710 {
711 Elf64_External_Dyn *dynp = (Elf64_External_Dyn *) buf;
712 dyn_tag = extract_unsigned_integer ((gdb_byte *) dynp->d_tag,
713 8, byte_order);
714 dyn_ptr = extract_unsigned_integer ((gdb_byte *) dynp->d_un.d_ptr,
715 8, byte_order);
716 }
717 if (dyn_tag == DT_NULL)
718 break;
719
720 if (dyn_tag == dyntag)
721 {
722 if (ptr)
723 *ptr = dyn_ptr;
724
725 xfree (bufstart);
726 return 1;
727 }
728 }
729
730 xfree (bufstart);
731 return 0;
732 }
733
734
735 /*
736
737 LOCAL FUNCTION
738
739 elf_locate_base -- locate the base address of dynamic linker structs
740 for SVR4 elf targets.
741
742 SYNOPSIS
743
744 CORE_ADDR elf_locate_base (void)
745
746 DESCRIPTION
747
748 For SVR4 elf targets the address of the dynamic linker's runtime
749 structure is contained within the dynamic info section in the
750 executable file. The dynamic section is also mapped into the
751 inferior address space. Because the runtime loader fills in the
752 real address before starting the inferior, we have to read in the
753 dynamic info section from the inferior address space.
754 If there are any errors while trying to find the address, we
755 silently return 0, otherwise the found address is returned.
756
757 */
758
759 static CORE_ADDR
760 elf_locate_base (void)
761 {
762 struct minimal_symbol *msymbol;
763 CORE_ADDR dyn_ptr;
764
765 /* Look for DT_MIPS_RLD_MAP first. MIPS executables use this
766 instead of DT_DEBUG, although they sometimes contain an unused
767 DT_DEBUG. */
768 if (scan_dyntag (DT_MIPS_RLD_MAP, exec_bfd, &dyn_ptr)
769 || scan_dyntag_auxv (DT_MIPS_RLD_MAP, &dyn_ptr))
770 {
771 struct type *ptr_type = builtin_type (target_gdbarch)->builtin_data_ptr;
772 gdb_byte *pbuf;
773 int pbuf_size = TYPE_LENGTH (ptr_type);
774 pbuf = alloca (pbuf_size);
775 /* DT_MIPS_RLD_MAP contains a pointer to the address
776 of the dynamic link structure. */
777 if (target_read_memory (dyn_ptr, pbuf, pbuf_size))
778 return 0;
779 return extract_typed_address (pbuf, ptr_type);
780 }
781
782 /* Find DT_DEBUG. */
783 if (scan_dyntag (DT_DEBUG, exec_bfd, &dyn_ptr)
784 || scan_dyntag_auxv (DT_DEBUG, &dyn_ptr))
785 return dyn_ptr;
786
787 /* This may be a static executable. Look for the symbol
788 conventionally named _r_debug, as a last resort. */
789 msymbol = lookup_minimal_symbol ("_r_debug", NULL, symfile_objfile);
790 if (msymbol != NULL)
791 return SYMBOL_VALUE_ADDRESS (msymbol);
792
793 /* DT_DEBUG entry not found. */
794 return 0;
795 }
796
797 /*
798
799 LOCAL FUNCTION
800
801 locate_base -- locate the base address of dynamic linker structs
802
803 SYNOPSIS
804
805 CORE_ADDR locate_base (struct svr4_info *)
806
807 DESCRIPTION
808
809 For both the SunOS and SVR4 shared library implementations, if the
810 inferior executable has been linked dynamically, there is a single
811 address somewhere in the inferior's data space which is the key to
812 locating all of the dynamic linker's runtime structures. This
813 address is the value of the debug base symbol. The job of this
814 function is to find and return that address, or to return 0 if there
815 is no such address (the executable is statically linked for example).
816
817 For SunOS, the job is almost trivial, since the dynamic linker and
818 all of it's structures are statically linked to the executable at
819 link time. Thus the symbol for the address we are looking for has
820 already been added to the minimal symbol table for the executable's
821 objfile at the time the symbol file's symbols were read, and all we
822 have to do is look it up there. Note that we explicitly do NOT want
823 to find the copies in the shared library.
824
825 The SVR4 version is a bit more complicated because the address
826 is contained somewhere in the dynamic info section. We have to go
827 to a lot more work to discover the address of the debug base symbol.
828 Because of this complexity, we cache the value we find and return that
829 value on subsequent invocations. Note there is no copy in the
830 executable symbol tables.
831
832 */
833
834 static CORE_ADDR
835 locate_base (struct svr4_info *info)
836 {
837 /* Check to see if we have a currently valid address, and if so, avoid
838 doing all this work again and just return the cached address. If
839 we have no cached address, try to locate it in the dynamic info
840 section for ELF executables. There's no point in doing any of this
841 though if we don't have some link map offsets to work with. */
842
843 if (info->debug_base == 0 && svr4_have_link_map_offsets ())
844 info->debug_base = elf_locate_base ();
845 return info->debug_base;
846 }
847
848 /* Find the first element in the inferior's dynamic link map, and
849 return its address in the inferior.
850
851 FIXME: Perhaps we should validate the info somehow, perhaps by
852 checking r_version for a known version number, or r_state for
853 RT_CONSISTENT. */
854
855 static CORE_ADDR
856 solib_svr4_r_map (struct svr4_info *info)
857 {
858 struct link_map_offsets *lmo = svr4_fetch_link_map_offsets ();
859 struct type *ptr_type = builtin_type (target_gdbarch)->builtin_data_ptr;
860
861 return read_memory_typed_address (info->debug_base + lmo->r_map_offset,
862 ptr_type);
863 }
864
865 /* Find r_brk from the inferior's debug base. */
866
867 static CORE_ADDR
868 solib_svr4_r_brk (struct svr4_info *info)
869 {
870 struct link_map_offsets *lmo = svr4_fetch_link_map_offsets ();
871 struct type *ptr_type = builtin_type (target_gdbarch)->builtin_data_ptr;
872
873 return read_memory_typed_address (info->debug_base + lmo->r_brk_offset,
874 ptr_type);
875 }
876
877 /* Find the link map for the dynamic linker (if it is not in the
878 normal list of loaded shared objects). */
879
880 static CORE_ADDR
881 solib_svr4_r_ldsomap (struct svr4_info *info)
882 {
883 struct link_map_offsets *lmo = svr4_fetch_link_map_offsets ();
884 struct type *ptr_type = builtin_type (target_gdbarch)->builtin_data_ptr;
885 enum bfd_endian byte_order = gdbarch_byte_order (target_gdbarch);
886 ULONGEST version;
887
888 /* Check version, and return zero if `struct r_debug' doesn't have
889 the r_ldsomap member. */
890 version
891 = read_memory_unsigned_integer (info->debug_base + lmo->r_version_offset,
892 lmo->r_version_size, byte_order);
893 if (version < 2 || lmo->r_ldsomap_offset == -1)
894 return 0;
895
896 return read_memory_typed_address (info->debug_base + lmo->r_ldsomap_offset,
897 ptr_type);
898 }
899
900 /* On Solaris systems with some versions of the dynamic linker,
901 ld.so's l_name pointer points to the SONAME in the string table
902 rather than into writable memory. So that GDB can find shared
903 libraries when loading a core file generated by gcore, ensure that
904 memory areas containing the l_name string are saved in the core
905 file. */
906
907 static int
908 svr4_keep_data_in_core (CORE_ADDR vaddr, unsigned long size)
909 {
910 struct svr4_info *info;
911 CORE_ADDR ldsomap;
912 struct so_list *new;
913 struct cleanup *old_chain;
914 struct link_map_offsets *lmo;
915 CORE_ADDR lm_name;
916
917 info = get_svr4_info ();
918
919 info->debug_base = 0;
920 locate_base (info);
921 if (!info->debug_base)
922 return 0;
923
924 ldsomap = solib_svr4_r_ldsomap (info);
925 if (!ldsomap)
926 return 0;
927
928 lmo = svr4_fetch_link_map_offsets ();
929 new = XZALLOC (struct so_list);
930 old_chain = make_cleanup (xfree, new);
931 new->lm_info = xmalloc (sizeof (struct lm_info));
932 make_cleanup (xfree, new->lm_info);
933 new->lm_info->l_addr = (CORE_ADDR)-1;
934 new->lm_info->lm_addr = ldsomap;
935 new->lm_info->lm = xzalloc (lmo->link_map_size);
936 make_cleanup (xfree, new->lm_info->lm);
937 read_memory (ldsomap, new->lm_info->lm, lmo->link_map_size);
938 lm_name = LM_NAME (new);
939 do_cleanups (old_chain);
940
941 return (lm_name >= vaddr && lm_name < vaddr + size);
942 }
943
944 /*
945
946 LOCAL FUNCTION
947
948 open_symbol_file_object
949
950 SYNOPSIS
951
952 void open_symbol_file_object (void *from_tty)
953
954 DESCRIPTION
955
956 If no open symbol file, attempt to locate and open the main symbol
957 file. On SVR4 systems, this is the first link map entry. If its
958 name is here, we can open it. Useful when attaching to a process
959 without first loading its symbol file.
960
961 If FROM_TTYP dereferences to a non-zero integer, allow messages to
962 be printed. This parameter is a pointer rather than an int because
963 open_symbol_file_object() is called via catch_errors() and
964 catch_errors() requires a pointer argument. */
965
966 static int
967 open_symbol_file_object (void *from_ttyp)
968 {
969 CORE_ADDR lm, l_name;
970 char *filename;
971 int errcode;
972 int from_tty = *(int *)from_ttyp;
973 struct link_map_offsets *lmo = svr4_fetch_link_map_offsets ();
974 struct type *ptr_type = builtin_type (target_gdbarch)->builtin_data_ptr;
975 int l_name_size = TYPE_LENGTH (ptr_type);
976 gdb_byte *l_name_buf = xmalloc (l_name_size);
977 struct cleanup *cleanups = make_cleanup (xfree, l_name_buf);
978 struct svr4_info *info = get_svr4_info ();
979
980 if (symfile_objfile)
981 if (!query (_("Attempt to reload symbols from process? ")))
982 return 0;
983
984 /* Always locate the debug struct, in case it has moved. */
985 info->debug_base = 0;
986 if (locate_base (info) == 0)
987 return 0; /* failed somehow... */
988
989 /* First link map member should be the executable. */
990 lm = solib_svr4_r_map (info);
991 if (lm == 0)
992 return 0; /* failed somehow... */
993
994 /* Read address of name from target memory to GDB. */
995 read_memory (lm + lmo->l_name_offset, l_name_buf, l_name_size);
996
997 /* Convert the address to host format. */
998 l_name = extract_typed_address (l_name_buf, ptr_type);
999
1000 /* Free l_name_buf. */
1001 do_cleanups (cleanups);
1002
1003 if (l_name == 0)
1004 return 0; /* No filename. */
1005
1006 /* Now fetch the filename from target memory. */
1007 target_read_string (l_name, &filename, SO_NAME_MAX_PATH_SIZE - 1, &errcode);
1008 make_cleanup (xfree, filename);
1009
1010 if (errcode)
1011 {
1012 warning (_("failed to read exec filename from attached file: %s"),
1013 safe_strerror (errcode));
1014 return 0;
1015 }
1016
1017 /* Have a pathname: read the symbol file. */
1018 symbol_file_add_main (filename, from_tty);
1019
1020 return 1;
1021 }
1022
1023 /* If no shared library information is available from the dynamic
1024 linker, build a fallback list from other sources. */
1025
1026 static struct so_list *
1027 svr4_default_sos (void)
1028 {
1029 struct svr4_info *info = get_svr4_info ();
1030
1031 struct so_list *head = NULL;
1032 struct so_list **link_ptr = &head;
1033
1034 if (info->debug_loader_offset_p)
1035 {
1036 struct so_list *new = XZALLOC (struct so_list);
1037
1038 new->lm_info = xmalloc (sizeof (struct lm_info));
1039
1040 /* Nothing will ever check the cached copy of the link
1041 map if we set l_addr. */
1042 new->lm_info->l_addr = info->debug_loader_offset;
1043 new->lm_info->lm_addr = 0;
1044 new->lm_info->lm = NULL;
1045
1046 strncpy (new->so_name, info->debug_loader_name,
1047 SO_NAME_MAX_PATH_SIZE - 1);
1048 new->so_name[SO_NAME_MAX_PATH_SIZE - 1] = '\0';
1049 strcpy (new->so_original_name, new->so_name);
1050
1051 *link_ptr = new;
1052 link_ptr = &new->next;
1053 }
1054
1055 return head;
1056 }
1057
1058 /* LOCAL FUNCTION
1059
1060 current_sos -- build a list of currently loaded shared objects
1061
1062 SYNOPSIS
1063
1064 struct so_list *current_sos ()
1065
1066 DESCRIPTION
1067
1068 Build a list of `struct so_list' objects describing the shared
1069 objects currently loaded in the inferior. This list does not
1070 include an entry for the main executable file.
1071
1072 Note that we only gather information directly available from the
1073 inferior --- we don't examine any of the shared library files
1074 themselves. The declaration of `struct so_list' says which fields
1075 we provide values for. */
1076
1077 static struct so_list *
1078 svr4_current_sos (void)
1079 {
1080 CORE_ADDR lm;
1081 struct so_list *head = 0;
1082 struct so_list **link_ptr = &head;
1083 CORE_ADDR ldsomap = 0;
1084 struct svr4_info *info;
1085
1086 info = get_svr4_info ();
1087
1088 /* Always locate the debug struct, in case it has moved. */
1089 info->debug_base = 0;
1090 locate_base (info);
1091
1092 /* If we can't find the dynamic linker's base structure, this
1093 must not be a dynamically linked executable. Hmm. */
1094 if (! info->debug_base)
1095 return svr4_default_sos ();
1096
1097 /* Walk the inferior's link map list, and build our list of
1098 `struct so_list' nodes. */
1099 lm = solib_svr4_r_map (info);
1100
1101 while (lm)
1102 {
1103 struct link_map_offsets *lmo = svr4_fetch_link_map_offsets ();
1104 struct so_list *new = XZALLOC (struct so_list);
1105 struct cleanup *old_chain = make_cleanup (xfree, new);
1106
1107 new->lm_info = xmalloc (sizeof (struct lm_info));
1108 make_cleanup (xfree, new->lm_info);
1109
1110 new->lm_info->l_addr = (CORE_ADDR)-1;
1111 new->lm_info->lm_addr = lm;
1112 new->lm_info->lm = xzalloc (lmo->link_map_size);
1113 make_cleanup (xfree, new->lm_info->lm);
1114
1115 read_memory (lm, new->lm_info->lm, lmo->link_map_size);
1116
1117 lm = LM_NEXT (new);
1118
1119 /* For SVR4 versions, the first entry in the link map is for the
1120 inferior executable, so we must ignore it. For some versions of
1121 SVR4, it has no name. For others (Solaris 2.3 for example), it
1122 does have a name, so we can no longer use a missing name to
1123 decide when to ignore it. */
1124 if (IGNORE_FIRST_LINK_MAP_ENTRY (new) && ldsomap == 0)
1125 {
1126 info->main_lm_addr = new->lm_info->lm_addr;
1127 free_so (new);
1128 }
1129 else
1130 {
1131 int errcode;
1132 char *buffer;
1133
1134 /* Extract this shared object's name. */
1135 target_read_string (LM_NAME (new), &buffer,
1136 SO_NAME_MAX_PATH_SIZE - 1, &errcode);
1137 if (errcode != 0)
1138 warning (_("Can't read pathname for load map: %s."),
1139 safe_strerror (errcode));
1140 else
1141 {
1142 strncpy (new->so_name, buffer, SO_NAME_MAX_PATH_SIZE - 1);
1143 new->so_name[SO_NAME_MAX_PATH_SIZE - 1] = '\0';
1144 strcpy (new->so_original_name, new->so_name);
1145 }
1146 xfree (buffer);
1147
1148 /* If this entry has no name, or its name matches the name
1149 for the main executable, don't include it in the list. */
1150 if (! new->so_name[0]
1151 || match_main (new->so_name))
1152 free_so (new);
1153 else
1154 {
1155 new->next = 0;
1156 *link_ptr = new;
1157 link_ptr = &new->next;
1158 }
1159 }
1160
1161 /* On Solaris, the dynamic linker is not in the normal list of
1162 shared objects, so make sure we pick it up too. Having
1163 symbol information for the dynamic linker is quite crucial
1164 for skipping dynamic linker resolver code. */
1165 if (lm == 0 && ldsomap == 0)
1166 lm = ldsomap = solib_svr4_r_ldsomap (info);
1167
1168 discard_cleanups (old_chain);
1169 }
1170
1171 if (head == NULL)
1172 return svr4_default_sos ();
1173
1174 return head;
1175 }
1176
1177 /* Get the address of the link_map for a given OBJFILE. */
1178
1179 CORE_ADDR
1180 svr4_fetch_objfile_link_map (struct objfile *objfile)
1181 {
1182 struct so_list *so;
1183 struct svr4_info *info = get_svr4_info ();
1184
1185 /* Cause svr4_current_sos() to be run if it hasn't been already. */
1186 if (info->main_lm_addr == 0)
1187 solib_add (NULL, 0, &current_target, auto_solib_add);
1188
1189 /* svr4_current_sos() will set main_lm_addr for the main executable. */
1190 if (objfile == symfile_objfile)
1191 return info->main_lm_addr;
1192
1193 /* The other link map addresses may be found by examining the list
1194 of shared libraries. */
1195 for (so = master_so_list (); so; so = so->next)
1196 if (so->objfile == objfile)
1197 return so->lm_info->lm_addr;
1198
1199 /* Not found! */
1200 return 0;
1201 }
1202
1203 /* On some systems, the only way to recognize the link map entry for
1204 the main executable file is by looking at its name. Return
1205 non-zero iff SONAME matches one of the known main executable names. */
1206
1207 static int
1208 match_main (char *soname)
1209 {
1210 char **mainp;
1211
1212 for (mainp = main_name_list; *mainp != NULL; mainp++)
1213 {
1214 if (strcmp (soname, *mainp) == 0)
1215 return (1);
1216 }
1217
1218 return (0);
1219 }
1220
1221 /* Return 1 if PC lies in the dynamic symbol resolution code of the
1222 SVR4 run time loader. */
1223
1224 int
1225 svr4_in_dynsym_resolve_code (CORE_ADDR pc)
1226 {
1227 struct svr4_info *info = get_svr4_info ();
1228
1229 return ((pc >= info->interp_text_sect_low
1230 && pc < info->interp_text_sect_high)
1231 || (pc >= info->interp_plt_sect_low
1232 && pc < info->interp_plt_sect_high)
1233 || in_plt_section (pc, NULL));
1234 }
1235
1236 /* Given an executable's ABFD and target, compute the entry-point
1237 address. */
1238
1239 static CORE_ADDR
1240 exec_entry_point (struct bfd *abfd, struct target_ops *targ)
1241 {
1242 /* KevinB wrote ... for most targets, the address returned by
1243 bfd_get_start_address() is the entry point for the start
1244 function. But, for some targets, bfd_get_start_address() returns
1245 the address of a function descriptor from which the entry point
1246 address may be extracted. This address is extracted by
1247 gdbarch_convert_from_func_ptr_addr(). The method
1248 gdbarch_convert_from_func_ptr_addr() is the merely the identify
1249 function for targets which don't use function descriptors. */
1250 return gdbarch_convert_from_func_ptr_addr (target_gdbarch,
1251 bfd_get_start_address (abfd),
1252 targ);
1253 }
1254
1255 /*
1256
1257 LOCAL FUNCTION
1258
1259 enable_break -- arrange for dynamic linker to hit breakpoint
1260
1261 SYNOPSIS
1262
1263 int enable_break (void)
1264
1265 DESCRIPTION
1266
1267 Both the SunOS and the SVR4 dynamic linkers have, as part of their
1268 debugger interface, support for arranging for the inferior to hit
1269 a breakpoint after mapping in the shared libraries. This function
1270 enables that breakpoint.
1271
1272 For SunOS, there is a special flag location (in_debugger) which we
1273 set to 1. When the dynamic linker sees this flag set, it will set
1274 a breakpoint at a location known only to itself, after saving the
1275 original contents of that place and the breakpoint address itself,
1276 in it's own internal structures. When we resume the inferior, it
1277 will eventually take a SIGTRAP when it runs into the breakpoint.
1278 We handle this (in a different place) by restoring the contents of
1279 the breakpointed location (which is only known after it stops),
1280 chasing around to locate the shared libraries that have been
1281 loaded, then resuming.
1282
1283 For SVR4, the debugger interface structure contains a member (r_brk)
1284 which is statically initialized at the time the shared library is
1285 built, to the offset of a function (_r_debug_state) which is guaran-
1286 teed to be called once before mapping in a library, and again when
1287 the mapping is complete. At the time we are examining this member,
1288 it contains only the unrelocated offset of the function, so we have
1289 to do our own relocation. Later, when the dynamic linker actually
1290 runs, it relocates r_brk to be the actual address of _r_debug_state().
1291
1292 The debugger interface structure also contains an enumeration which
1293 is set to either RT_ADD or RT_DELETE prior to changing the mapping,
1294 depending upon whether or not the library is being mapped or unmapped,
1295 and then set to RT_CONSISTENT after the library is mapped/unmapped.
1296 */
1297
1298 static int
1299 enable_break (struct svr4_info *info, int from_tty)
1300 {
1301 struct minimal_symbol *msymbol;
1302 char **bkpt_namep;
1303 asection *interp_sect;
1304 gdb_byte *interp_name;
1305 CORE_ADDR sym_addr;
1306
1307 /* First, remove all the solib event breakpoints. Their addresses
1308 may have changed since the last time we ran the program. */
1309 remove_solib_event_breakpoints ();
1310
1311 info->interp_text_sect_low = info->interp_text_sect_high = 0;
1312 info->interp_plt_sect_low = info->interp_plt_sect_high = 0;
1313
1314 /* If we already have a shared library list in the target, and
1315 r_debug contains r_brk, set the breakpoint there - this should
1316 mean r_brk has already been relocated. Assume the dynamic linker
1317 is the object containing r_brk. */
1318
1319 solib_add (NULL, from_tty, &current_target, auto_solib_add);
1320 sym_addr = 0;
1321 if (info->debug_base && solib_svr4_r_map (info) != 0)
1322 sym_addr = solib_svr4_r_brk (info);
1323
1324 if (sym_addr != 0)
1325 {
1326 struct obj_section *os;
1327
1328 sym_addr = gdbarch_addr_bits_remove
1329 (target_gdbarch, gdbarch_convert_from_func_ptr_addr (target_gdbarch,
1330 sym_addr,
1331 &current_target));
1332
1333 /* On at least some versions of Solaris there's a dynamic relocation
1334 on _r_debug.r_brk and SYM_ADDR may not be relocated yet, e.g., if
1335 we get control before the dynamic linker has self-relocated.
1336 Check if SYM_ADDR is in a known section, if it is assume we can
1337 trust its value. This is just a heuristic though, it could go away
1338 or be replaced if it's getting in the way.
1339
1340 On ARM we need to know whether the ISA of rtld_db_dlactivity (or
1341 however it's spelled in your particular system) is ARM or Thumb.
1342 That knowledge is encoded in the address, if it's Thumb the low bit
1343 is 1. However, we've stripped that info above and it's not clear
1344 what all the consequences are of passing a non-addr_bits_remove'd
1345 address to create_solib_event_breakpoint. The call to
1346 find_pc_section verifies we know about the address and have some
1347 hope of computing the right kind of breakpoint to use (via
1348 symbol info). It does mean that GDB needs to be pointed at a
1349 non-stripped version of the dynamic linker in order to obtain
1350 information it already knows about. Sigh. */
1351
1352 os = find_pc_section (sym_addr);
1353 if (os != NULL)
1354 {
1355 /* Record the relocated start and end address of the dynamic linker
1356 text and plt section for svr4_in_dynsym_resolve_code. */
1357 bfd *tmp_bfd;
1358 CORE_ADDR load_addr;
1359
1360 tmp_bfd = os->objfile->obfd;
1361 load_addr = ANOFFSET (os->objfile->section_offsets,
1362 os->objfile->sect_index_text);
1363
1364 interp_sect = bfd_get_section_by_name (tmp_bfd, ".text");
1365 if (interp_sect)
1366 {
1367 info->interp_text_sect_low =
1368 bfd_section_vma (tmp_bfd, interp_sect) + load_addr;
1369 info->interp_text_sect_high =
1370 info->interp_text_sect_low
1371 + bfd_section_size (tmp_bfd, interp_sect);
1372 }
1373 interp_sect = bfd_get_section_by_name (tmp_bfd, ".plt");
1374 if (interp_sect)
1375 {
1376 info->interp_plt_sect_low =
1377 bfd_section_vma (tmp_bfd, interp_sect) + load_addr;
1378 info->interp_plt_sect_high =
1379 info->interp_plt_sect_low
1380 + bfd_section_size (tmp_bfd, interp_sect);
1381 }
1382
1383 create_solib_event_breakpoint (target_gdbarch, sym_addr);
1384 return 1;
1385 }
1386 }
1387
1388 /* Find the program interpreter; if not found, warn the user and drop
1389 into the old breakpoint at symbol code. */
1390 interp_name = find_program_interpreter ();
1391 if (interp_name)
1392 {
1393 CORE_ADDR load_addr = 0;
1394 int load_addr_found = 0;
1395 int loader_found_in_list = 0;
1396 struct so_list *so;
1397 bfd *tmp_bfd = NULL;
1398 struct target_ops *tmp_bfd_target;
1399 volatile struct gdb_exception ex;
1400
1401 sym_addr = 0;
1402
1403 /* Now we need to figure out where the dynamic linker was
1404 loaded so that we can load its symbols and place a breakpoint
1405 in the dynamic linker itself.
1406
1407 This address is stored on the stack. However, I've been unable
1408 to find any magic formula to find it for Solaris (appears to
1409 be trivial on GNU/Linux). Therefore, we have to try an alternate
1410 mechanism to find the dynamic linker's base address. */
1411
1412 TRY_CATCH (ex, RETURN_MASK_ALL)
1413 {
1414 tmp_bfd = solib_bfd_open (interp_name);
1415 }
1416 if (tmp_bfd == NULL)
1417 goto bkpt_at_symbol;
1418
1419 /* Now convert the TMP_BFD into a target. That way target, as
1420 well as BFD operations can be used. Note that closing the
1421 target will also close the underlying bfd. */
1422 tmp_bfd_target = target_bfd_reopen (tmp_bfd);
1423
1424 /* On a running target, we can get the dynamic linker's base
1425 address from the shared library table. */
1426 so = master_so_list ();
1427 while (so)
1428 {
1429 if (svr4_same_1 (interp_name, so->so_original_name))
1430 {
1431 load_addr_found = 1;
1432 loader_found_in_list = 1;
1433 load_addr = LM_ADDR_CHECK (so, tmp_bfd);
1434 break;
1435 }
1436 so = so->next;
1437 }
1438
1439 /* If we were not able to find the base address of the loader
1440 from our so_list, then try using the AT_BASE auxilliary entry. */
1441 if (!load_addr_found)
1442 if (target_auxv_search (&current_target, AT_BASE, &load_addr) > 0)
1443 load_addr_found = 1;
1444
1445 /* Otherwise we find the dynamic linker's base address by examining
1446 the current pc (which should point at the entry point for the
1447 dynamic linker) and subtracting the offset of the entry point.
1448
1449 This is more fragile than the previous approaches, but is a good
1450 fallback method because it has actually been working well in
1451 most cases. */
1452 if (!load_addr_found)
1453 {
1454 struct regcache *regcache
1455 = get_thread_arch_regcache (inferior_ptid, target_gdbarch);
1456 load_addr = (regcache_read_pc (regcache)
1457 - exec_entry_point (tmp_bfd, tmp_bfd_target));
1458 }
1459
1460 if (!loader_found_in_list)
1461 {
1462 info->debug_loader_name = xstrdup (interp_name);
1463 info->debug_loader_offset_p = 1;
1464 info->debug_loader_offset = load_addr;
1465 solib_add (NULL, from_tty, &current_target, auto_solib_add);
1466 }
1467
1468 /* Record the relocated start and end address of the dynamic linker
1469 text and plt section for svr4_in_dynsym_resolve_code. */
1470 interp_sect = bfd_get_section_by_name (tmp_bfd, ".text");
1471 if (interp_sect)
1472 {
1473 info->interp_text_sect_low =
1474 bfd_section_vma (tmp_bfd, interp_sect) + load_addr;
1475 info->interp_text_sect_high =
1476 info->interp_text_sect_low
1477 + bfd_section_size (tmp_bfd, interp_sect);
1478 }
1479 interp_sect = bfd_get_section_by_name (tmp_bfd, ".plt");
1480 if (interp_sect)
1481 {
1482 info->interp_plt_sect_low =
1483 bfd_section_vma (tmp_bfd, interp_sect) + load_addr;
1484 info->interp_plt_sect_high =
1485 info->interp_plt_sect_low
1486 + bfd_section_size (tmp_bfd, interp_sect);
1487 }
1488
1489 /* Now try to set a breakpoint in the dynamic linker. */
1490 for (bkpt_namep = solib_break_names; *bkpt_namep != NULL; bkpt_namep++)
1491 {
1492 sym_addr = bfd_lookup_symbol (tmp_bfd, *bkpt_namep);
1493 if (sym_addr != 0)
1494 break;
1495 }
1496
1497 if (sym_addr != 0)
1498 /* Convert 'sym_addr' from a function pointer to an address.
1499 Because we pass tmp_bfd_target instead of the current
1500 target, this will always produce an unrelocated value. */
1501 sym_addr = gdbarch_convert_from_func_ptr_addr (target_gdbarch,
1502 sym_addr,
1503 tmp_bfd_target);
1504
1505 /* We're done with both the temporary bfd and target. Remember,
1506 closing the target closes the underlying bfd. */
1507 target_close (tmp_bfd_target, 0);
1508
1509 if (sym_addr != 0)
1510 {
1511 create_solib_event_breakpoint (target_gdbarch, load_addr + sym_addr);
1512 xfree (interp_name);
1513 return 1;
1514 }
1515
1516 /* For whatever reason we couldn't set a breakpoint in the dynamic
1517 linker. Warn and drop into the old code. */
1518 bkpt_at_symbol:
1519 xfree (interp_name);
1520 warning (_("Unable to find dynamic linker breakpoint function.\n"
1521 "GDB will be unable to debug shared library initializers\n"
1522 "and track explicitly loaded dynamic code."));
1523 }
1524
1525 /* Scan through the lists of symbols, trying to look up the symbol and
1526 set a breakpoint there. Terminate loop when we/if we succeed. */
1527
1528 for (bkpt_namep = solib_break_names; *bkpt_namep != NULL; bkpt_namep++)
1529 {
1530 msymbol = lookup_minimal_symbol (*bkpt_namep, NULL, symfile_objfile);
1531 if ((msymbol != NULL) && (SYMBOL_VALUE_ADDRESS (msymbol) != 0))
1532 {
1533 sym_addr = SYMBOL_VALUE_ADDRESS (msymbol);
1534 sym_addr = gdbarch_convert_from_func_ptr_addr (target_gdbarch,
1535 sym_addr,
1536 &current_target);
1537 create_solib_event_breakpoint (target_gdbarch, sym_addr);
1538 return 1;
1539 }
1540 }
1541
1542 for (bkpt_namep = bkpt_names; *bkpt_namep != NULL; bkpt_namep++)
1543 {
1544 msymbol = lookup_minimal_symbol (*bkpt_namep, NULL, symfile_objfile);
1545 if ((msymbol != NULL) && (SYMBOL_VALUE_ADDRESS (msymbol) != 0))
1546 {
1547 sym_addr = SYMBOL_VALUE_ADDRESS (msymbol);
1548 sym_addr = gdbarch_convert_from_func_ptr_addr (target_gdbarch,
1549 sym_addr,
1550 &current_target);
1551 create_solib_event_breakpoint (target_gdbarch, sym_addr);
1552 return 1;
1553 }
1554 }
1555 return 0;
1556 }
1557
1558 /*
1559
1560 LOCAL FUNCTION
1561
1562 special_symbol_handling -- additional shared library symbol handling
1563
1564 SYNOPSIS
1565
1566 void special_symbol_handling ()
1567
1568 DESCRIPTION
1569
1570 Once the symbols from a shared object have been loaded in the usual
1571 way, we are called to do any system specific symbol handling that
1572 is needed.
1573
1574 For SunOS4, this consisted of grunging around in the dynamic
1575 linkers structures to find symbol definitions for "common" symbols
1576 and adding them to the minimal symbol table for the runtime common
1577 objfile.
1578
1579 However, for SVR4, there's nothing to do.
1580
1581 */
1582
1583 static void
1584 svr4_special_symbol_handling (void)
1585 {
1586 svr4_relocate_main_executable ();
1587 }
1588
1589 /* Decide if the objfile needs to be relocated. As indicated above,
1590 we will only be here when execution is stopped at the beginning
1591 of the program. Relocation is necessary if the address at which
1592 we are presently stopped differs from the start address stored in
1593 the executable AND there's no interpreter section. The condition
1594 regarding the interpreter section is very important because if
1595 there *is* an interpreter section, execution will begin there
1596 instead. When there is an interpreter section, the start address
1597 is (presumably) used by the interpreter at some point to start
1598 execution of the program.
1599
1600 If there is an interpreter, it is normal for it to be set to an
1601 arbitrary address at the outset. The job of finding it is
1602 handled in enable_break().
1603
1604 So, to summarize, relocations are necessary when there is no
1605 interpreter section and the start address obtained from the
1606 executable is different from the address at which GDB is
1607 currently stopped.
1608
1609 [ The astute reader will note that we also test to make sure that
1610 the executable in question has the DYNAMIC flag set. It is my
1611 opinion that this test is unnecessary (undesirable even). It
1612 was added to avoid inadvertent relocation of an executable
1613 whose e_type member in the ELF header is not ET_DYN. There may
1614 be a time in the future when it is desirable to do relocations
1615 on other types of files as well in which case this condition
1616 should either be removed or modified to accomodate the new file
1617 type. (E.g, an ET_EXEC executable which has been built to be
1618 position-independent could safely be relocated by the OS if
1619 desired. It is true that this violates the ABI, but the ABI
1620 has been known to be bent from time to time.) - Kevin, Nov 2000. ]
1621 */
1622
1623 static CORE_ADDR
1624 svr4_static_exec_displacement (void)
1625 {
1626 asection *interp_sect;
1627 struct regcache *regcache
1628 = get_thread_arch_regcache (inferior_ptid, target_gdbarch);
1629 CORE_ADDR pc = regcache_read_pc (regcache);
1630
1631 interp_sect = bfd_get_section_by_name (exec_bfd, ".interp");
1632 if (interp_sect == NULL
1633 && (bfd_get_file_flags (exec_bfd) & DYNAMIC) != 0
1634 && (exec_entry_point (exec_bfd, &exec_ops) != pc))
1635 return pc - exec_entry_point (exec_bfd, &exec_ops);
1636
1637 return 0;
1638 }
1639
1640 /* We relocate all of the sections by the same amount. This
1641 behavior is mandated by recent editions of the System V ABI.
1642 According to the System V Application Binary Interface,
1643 Edition 4.1, page 5-5:
1644
1645 ... Though the system chooses virtual addresses for
1646 individual processes, it maintains the segments' relative
1647 positions. Because position-independent code uses relative
1648 addressesing between segments, the difference between
1649 virtual addresses in memory must match the difference
1650 between virtual addresses in the file. The difference
1651 between the virtual address of any segment in memory and
1652 the corresponding virtual address in the file is thus a
1653 single constant value for any one executable or shared
1654 object in a given process. This difference is the base
1655 address. One use of the base address is to relocate the
1656 memory image of the program during dynamic linking.
1657
1658 The same language also appears in Edition 4.0 of the System V
1659 ABI and is left unspecified in some of the earlier editions. */
1660
1661 static CORE_ADDR
1662 svr4_exec_displacement (void)
1663 {
1664 int found;
1665 /* ENTRY_POINT is a possible function descriptor - before
1666 a call to gdbarch_convert_from_func_ptr_addr. */
1667 CORE_ADDR entry_point;
1668
1669 if (exec_bfd == NULL)
1670 return 0;
1671
1672 if (target_auxv_search (&current_target, AT_ENTRY, &entry_point) == 1)
1673 return entry_point - bfd_get_start_address (exec_bfd);
1674
1675 return svr4_static_exec_displacement ();
1676 }
1677
1678 /* Relocate the main executable. This function should be called upon
1679 stopping the inferior process at the entry point to the program.
1680 The entry point from BFD is compared to the AT_ENTRY of AUXV and if they are
1681 different, the main executable is relocated by the proper amount. */
1682
1683 static void
1684 svr4_relocate_main_executable (void)
1685 {
1686 CORE_ADDR displacement = svr4_exec_displacement ();
1687
1688 /* Even if DISPLACEMENT is 0 still try to relocate it as this is a new
1689 difference of in-memory vs. in-file addresses and we could already
1690 relocate the executable at this function to improper address before. */
1691
1692 if (symfile_objfile)
1693 {
1694 struct section_offsets *new_offsets;
1695 int i;
1696
1697 new_offsets = alloca (symfile_objfile->num_sections
1698 * sizeof (*new_offsets));
1699
1700 for (i = 0; i < symfile_objfile->num_sections; i++)
1701 new_offsets->offsets[i] = displacement;
1702
1703 objfile_relocate (symfile_objfile, new_offsets);
1704 }
1705 else if (exec_bfd)
1706 {
1707 asection *asect;
1708
1709 for (asect = exec_bfd->sections; asect != NULL; asect = asect->next)
1710 exec_set_section_address (bfd_get_filename (exec_bfd), asect->index,
1711 (bfd_section_vma (exec_bfd, asect)
1712 + displacement));
1713 }
1714 }
1715
1716 /*
1717
1718 GLOBAL FUNCTION
1719
1720 svr4_solib_create_inferior_hook -- shared library startup support
1721
1722 SYNOPSIS
1723
1724 void svr4_solib_create_inferior_hook (int from_tty)
1725
1726 DESCRIPTION
1727
1728 When gdb starts up the inferior, it nurses it along (through the
1729 shell) until it is ready to execute it's first instruction. At this
1730 point, this function gets called via expansion of the macro
1731 SOLIB_CREATE_INFERIOR_HOOK.
1732
1733 For SunOS executables, this first instruction is typically the
1734 one at "_start", or a similar text label, regardless of whether
1735 the executable is statically or dynamically linked. The runtime
1736 startup code takes care of dynamically linking in any shared
1737 libraries, once gdb allows the inferior to continue.
1738
1739 For SVR4 executables, this first instruction is either the first
1740 instruction in the dynamic linker (for dynamically linked
1741 executables) or the instruction at "start" for statically linked
1742 executables. For dynamically linked executables, the system
1743 first exec's /lib/libc.so.N, which contains the dynamic linker,
1744 and starts it running. The dynamic linker maps in any needed
1745 shared libraries, maps in the actual user executable, and then
1746 jumps to "start" in the user executable.
1747
1748 For both SunOS shared libraries, and SVR4 shared libraries, we
1749 can arrange to cooperate with the dynamic linker to discover the
1750 names of shared libraries that are dynamically linked, and the
1751 base addresses to which they are linked.
1752
1753 This function is responsible for discovering those names and
1754 addresses, and saving sufficient information about them to allow
1755 their symbols to be read at a later time.
1756
1757 FIXME
1758
1759 Between enable_break() and disable_break(), this code does not
1760 properly handle hitting breakpoints which the user might have
1761 set in the startup code or in the dynamic linker itself. Proper
1762 handling will probably have to wait until the implementation is
1763 changed to use the "breakpoint handler function" method.
1764
1765 Also, what if child has exit()ed? Must exit loop somehow.
1766 */
1767
1768 static void
1769 svr4_solib_create_inferior_hook (int from_tty)
1770 {
1771 struct inferior *inf;
1772 struct thread_info *tp;
1773 struct svr4_info *info;
1774
1775 info = get_svr4_info ();
1776
1777 /* Relocate the main executable if necessary. */
1778 if (current_inferior ()->attach_flag == 0)
1779 svr4_relocate_main_executable ();
1780
1781 if (!svr4_have_link_map_offsets ())
1782 return;
1783
1784 if (!enable_break (info, from_tty))
1785 return;
1786
1787 #if defined(_SCO_DS)
1788 /* SCO needs the loop below, other systems should be using the
1789 special shared library breakpoints and the shared library breakpoint
1790 service routine.
1791
1792 Now run the target. It will eventually hit the breakpoint, at
1793 which point all of the libraries will have been mapped in and we
1794 can go groveling around in the dynamic linker structures to find
1795 out what we need to know about them. */
1796
1797 inf = current_inferior ();
1798 tp = inferior_thread ();
1799
1800 clear_proceed_status ();
1801 inf->stop_soon = STOP_QUIETLY;
1802 tp->stop_signal = TARGET_SIGNAL_0;
1803 do
1804 {
1805 target_resume (pid_to_ptid (-1), 0, tp->stop_signal);
1806 wait_for_inferior (0);
1807 }
1808 while (tp->stop_signal != TARGET_SIGNAL_TRAP);
1809 inf->stop_soon = NO_STOP_QUIETLY;
1810 #endif /* defined(_SCO_DS) */
1811 }
1812
1813 static void
1814 svr4_clear_solib (void)
1815 {
1816 struct svr4_info *info;
1817
1818 info = get_svr4_info ();
1819 info->debug_base = 0;
1820 info->debug_loader_offset_p = 0;
1821 info->debug_loader_offset = 0;
1822 xfree (info->debug_loader_name);
1823 info->debug_loader_name = NULL;
1824 }
1825
1826 static void
1827 svr4_free_so (struct so_list *so)
1828 {
1829 xfree (so->lm_info->lm);
1830 xfree (so->lm_info);
1831 }
1832
1833
1834 /* Clear any bits of ADDR that wouldn't fit in a target-format
1835 data pointer. "Data pointer" here refers to whatever sort of
1836 address the dynamic linker uses to manage its sections. At the
1837 moment, we don't support shared libraries on any processors where
1838 code and data pointers are different sizes.
1839
1840 This isn't really the right solution. What we really need here is
1841 a way to do arithmetic on CORE_ADDR values that respects the
1842 natural pointer/address correspondence. (For example, on the MIPS,
1843 converting a 32-bit pointer to a 64-bit CORE_ADDR requires you to
1844 sign-extend the value. There, simply truncating the bits above
1845 gdbarch_ptr_bit, as we do below, is no good.) This should probably
1846 be a new gdbarch method or something. */
1847 static CORE_ADDR
1848 svr4_truncate_ptr (CORE_ADDR addr)
1849 {
1850 if (gdbarch_ptr_bit (target_gdbarch) == sizeof (CORE_ADDR) * 8)
1851 /* We don't need to truncate anything, and the bit twiddling below
1852 will fail due to overflow problems. */
1853 return addr;
1854 else
1855 return addr & (((CORE_ADDR) 1 << gdbarch_ptr_bit (target_gdbarch)) - 1);
1856 }
1857
1858
1859 static void
1860 svr4_relocate_section_addresses (struct so_list *so,
1861 struct target_section *sec)
1862 {
1863 sec->addr = svr4_truncate_ptr (sec->addr + LM_ADDR_CHECK (so,
1864 sec->bfd));
1865 sec->endaddr = svr4_truncate_ptr (sec->endaddr + LM_ADDR_CHECK (so,
1866 sec->bfd));
1867 }
1868 \f
1869
1870 /* Architecture-specific operations. */
1871
1872 /* Per-architecture data key. */
1873 static struct gdbarch_data *solib_svr4_data;
1874
1875 struct solib_svr4_ops
1876 {
1877 /* Return a description of the layout of `struct link_map'. */
1878 struct link_map_offsets *(*fetch_link_map_offsets)(void);
1879 };
1880
1881 /* Return a default for the architecture-specific operations. */
1882
1883 static void *
1884 solib_svr4_init (struct obstack *obstack)
1885 {
1886 struct solib_svr4_ops *ops;
1887
1888 ops = OBSTACK_ZALLOC (obstack, struct solib_svr4_ops);
1889 ops->fetch_link_map_offsets = NULL;
1890 return ops;
1891 }
1892
1893 /* Set the architecture-specific `struct link_map_offsets' fetcher for
1894 GDBARCH to FLMO. Also, install SVR4 solib_ops into GDBARCH. */
1895
1896 void
1897 set_solib_svr4_fetch_link_map_offsets (struct gdbarch *gdbarch,
1898 struct link_map_offsets *(*flmo) (void))
1899 {
1900 struct solib_svr4_ops *ops = gdbarch_data (gdbarch, solib_svr4_data);
1901
1902 ops->fetch_link_map_offsets = flmo;
1903
1904 set_solib_ops (gdbarch, &svr4_so_ops);
1905 }
1906
1907 /* Fetch a link_map_offsets structure using the architecture-specific
1908 `struct link_map_offsets' fetcher. */
1909
1910 static struct link_map_offsets *
1911 svr4_fetch_link_map_offsets (void)
1912 {
1913 struct solib_svr4_ops *ops = gdbarch_data (target_gdbarch, solib_svr4_data);
1914
1915 gdb_assert (ops->fetch_link_map_offsets);
1916 return ops->fetch_link_map_offsets ();
1917 }
1918
1919 /* Return 1 if a link map offset fetcher has been defined, 0 otherwise. */
1920
1921 static int
1922 svr4_have_link_map_offsets (void)
1923 {
1924 struct solib_svr4_ops *ops = gdbarch_data (target_gdbarch, solib_svr4_data);
1925 return (ops->fetch_link_map_offsets != NULL);
1926 }
1927 \f
1928
1929 /* Most OS'es that have SVR4-style ELF dynamic libraries define a
1930 `struct r_debug' and a `struct link_map' that are binary compatible
1931 with the origional SVR4 implementation. */
1932
1933 /* Fetch (and possibly build) an appropriate `struct link_map_offsets'
1934 for an ILP32 SVR4 system. */
1935
1936 struct link_map_offsets *
1937 svr4_ilp32_fetch_link_map_offsets (void)
1938 {
1939 static struct link_map_offsets lmo;
1940 static struct link_map_offsets *lmp = NULL;
1941
1942 if (lmp == NULL)
1943 {
1944 lmp = &lmo;
1945
1946 lmo.r_version_offset = 0;
1947 lmo.r_version_size = 4;
1948 lmo.r_map_offset = 4;
1949 lmo.r_brk_offset = 8;
1950 lmo.r_ldsomap_offset = 20;
1951
1952 /* Everything we need is in the first 20 bytes. */
1953 lmo.link_map_size = 20;
1954 lmo.l_addr_offset = 0;
1955 lmo.l_name_offset = 4;
1956 lmo.l_ld_offset = 8;
1957 lmo.l_next_offset = 12;
1958 lmo.l_prev_offset = 16;
1959 }
1960
1961 return lmp;
1962 }
1963
1964 /* Fetch (and possibly build) an appropriate `struct link_map_offsets'
1965 for an LP64 SVR4 system. */
1966
1967 struct link_map_offsets *
1968 svr4_lp64_fetch_link_map_offsets (void)
1969 {
1970 static struct link_map_offsets lmo;
1971 static struct link_map_offsets *lmp = NULL;
1972
1973 if (lmp == NULL)
1974 {
1975 lmp = &lmo;
1976
1977 lmo.r_version_offset = 0;
1978 lmo.r_version_size = 4;
1979 lmo.r_map_offset = 8;
1980 lmo.r_brk_offset = 16;
1981 lmo.r_ldsomap_offset = 40;
1982
1983 /* Everything we need is in the first 40 bytes. */
1984 lmo.link_map_size = 40;
1985 lmo.l_addr_offset = 0;
1986 lmo.l_name_offset = 8;
1987 lmo.l_ld_offset = 16;
1988 lmo.l_next_offset = 24;
1989 lmo.l_prev_offset = 32;
1990 }
1991
1992 return lmp;
1993 }
1994 \f
1995
1996 struct target_so_ops svr4_so_ops;
1997
1998 /* Lookup global symbol for ELF DSOs linked with -Bsymbolic. Those DSOs have a
1999 different rule for symbol lookup. The lookup begins here in the DSO, not in
2000 the main executable. */
2001
2002 static struct symbol *
2003 elf_lookup_lib_symbol (const struct objfile *objfile,
2004 const char *name,
2005 const char *linkage_name,
2006 const domain_enum domain)
2007 {
2008 bfd *abfd;
2009
2010 if (objfile == symfile_objfile)
2011 abfd = exec_bfd;
2012 else
2013 {
2014 /* OBJFILE should have been passed as the non-debug one. */
2015 gdb_assert (objfile->separate_debug_objfile_backlink == NULL);
2016
2017 abfd = objfile->obfd;
2018 }
2019
2020 if (abfd == NULL || scan_dyntag (DT_SYMBOLIC, abfd, NULL) != 1)
2021 return NULL;
2022
2023 return lookup_global_symbol_from_objfile
2024 (objfile, name, linkage_name, domain);
2025 }
2026
2027 extern initialize_file_ftype _initialize_svr4_solib; /* -Wmissing-prototypes */
2028
2029 void
2030 _initialize_svr4_solib (void)
2031 {
2032 solib_svr4_data = gdbarch_data_register_pre_init (solib_svr4_init);
2033 solib_svr4_pspace_data
2034 = register_program_space_data_with_cleanup (svr4_pspace_data_cleanup);
2035
2036 svr4_so_ops.relocate_section_addresses = svr4_relocate_section_addresses;
2037 svr4_so_ops.free_so = svr4_free_so;
2038 svr4_so_ops.clear_solib = svr4_clear_solib;
2039 svr4_so_ops.solib_create_inferior_hook = svr4_solib_create_inferior_hook;
2040 svr4_so_ops.special_symbol_handling = svr4_special_symbol_handling;
2041 svr4_so_ops.current_sos = svr4_current_sos;
2042 svr4_so_ops.open_symbol_file_object = open_symbol_file_object;
2043 svr4_so_ops.in_dynsym_resolve_code = svr4_in_dynsym_resolve_code;
2044 svr4_so_ops.bfd_open = solib_bfd_open;
2045 svr4_so_ops.lookup_lib_global_symbol = elf_lookup_lib_symbol;
2046 svr4_so_ops.same = svr4_same;
2047 svr4_so_ops.keep_data_in_core = svr4_keep_data_in_core;
2048 }