gdb/
[binutils-gdb.git] / gdb / solib-svr4.c
1 /* Handle SVR4 shared libraries for GDB, the GNU Debugger.
2
3 Copyright (C) 1990, 1991, 1992, 1993, 1994, 1995, 1996, 1998, 1999, 2000,
4 2001, 2003, 2004, 2005, 2006, 2007, 2008, 2009, 2010
5 Free Software Foundation, Inc.
6
7 This file is part of GDB.
8
9 This program is free software; you can redistribute it and/or modify
10 it under the terms of the GNU General Public License as published by
11 the Free Software Foundation; either version 3 of the License, or
12 (at your option) any later version.
13
14 This program is distributed in the hope that it will be useful,
15 but WITHOUT ANY WARRANTY; without even the implied warranty of
16 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
17 GNU General Public License for more details.
18
19 You should have received a copy of the GNU General Public License
20 along with this program. If not, see <http://www.gnu.org/licenses/>. */
21
22 #include "defs.h"
23
24 #include "elf/external.h"
25 #include "elf/common.h"
26 #include "elf/mips.h"
27
28 #include "symtab.h"
29 #include "bfd.h"
30 #include "symfile.h"
31 #include "objfiles.h"
32 #include "gdbcore.h"
33 #include "target.h"
34 #include "inferior.h"
35 #include "regcache.h"
36 #include "gdbthread.h"
37 #include "observer.h"
38
39 #include "gdb_assert.h"
40
41 #include "solist.h"
42 #include "solib.h"
43 #include "solib-svr4.h"
44
45 #include "bfd-target.h"
46 #include "elf-bfd.h"
47 #include "exec.h"
48 #include "auxv.h"
49 #include "exceptions.h"
50
51 static struct link_map_offsets *svr4_fetch_link_map_offsets (void);
52 static int svr4_have_link_map_offsets (void);
53
54 /* Link map info to include in an allocated so_list entry */
55
56 struct lm_info
57 {
58 /* Pointer to copy of link map from inferior. The type is char *
59 rather than void *, so that we may use byte offsets to find the
60 various fields without the need for a cast. */
61 gdb_byte *lm;
62
63 /* Amount by which addresses in the binary should be relocated to
64 match the inferior. This could most often be taken directly
65 from lm, but when prelinking is involved and the prelink base
66 address changes, we may need a different offset, we want to
67 warn about the difference and compute it only once. */
68 CORE_ADDR l_addr;
69
70 /* The target location of lm. */
71 CORE_ADDR lm_addr;
72 };
73
74 /* On SVR4 systems, a list of symbols in the dynamic linker where
75 GDB can try to place a breakpoint to monitor shared library
76 events.
77
78 If none of these symbols are found, or other errors occur, then
79 SVR4 systems will fall back to using a symbol as the "startup
80 mapping complete" breakpoint address. */
81
82 static char *solib_break_names[] =
83 {
84 "r_debug_state",
85 "_r_debug_state",
86 "_dl_debug_state",
87 "rtld_db_dlactivity",
88 "_rtld_debug_state",
89
90 NULL
91 };
92
93 static char *bkpt_names[] =
94 {
95 "_start",
96 "__start",
97 "main",
98 NULL
99 };
100
101 static char *main_name_list[] =
102 {
103 "main_$main",
104 NULL
105 };
106
107 /* Return non-zero if GDB_SO_NAME and INFERIOR_SO_NAME represent
108 the same shared library. */
109
110 static int
111 svr4_same_1 (const char *gdb_so_name, const char *inferior_so_name)
112 {
113 if (strcmp (gdb_so_name, inferior_so_name) == 0)
114 return 1;
115
116 /* On Solaris, when starting inferior we think that dynamic linker is
117 /usr/lib/ld.so.1, but later on, the table of loaded shared libraries
118 contains /lib/ld.so.1. Sometimes one file is a link to another, but
119 sometimes they have identical content, but are not linked to each
120 other. We don't restrict this check for Solaris, but the chances
121 of running into this situation elsewhere are very low. */
122 if (strcmp (gdb_so_name, "/usr/lib/ld.so.1") == 0
123 && strcmp (inferior_so_name, "/lib/ld.so.1") == 0)
124 return 1;
125
126 /* Similarly, we observed the same issue with sparc64, but with
127 different locations. */
128 if (strcmp (gdb_so_name, "/usr/lib/sparcv9/ld.so.1") == 0
129 && strcmp (inferior_so_name, "/lib/sparcv9/ld.so.1") == 0)
130 return 1;
131
132 return 0;
133 }
134
135 static int
136 svr4_same (struct so_list *gdb, struct so_list *inferior)
137 {
138 return (svr4_same_1 (gdb->so_original_name, inferior->so_original_name));
139 }
140
141 /* link map access functions */
142
143 static CORE_ADDR
144 LM_ADDR_FROM_LINK_MAP (struct so_list *so)
145 {
146 struct link_map_offsets *lmo = svr4_fetch_link_map_offsets ();
147 struct type *ptr_type = builtin_type (target_gdbarch)->builtin_data_ptr;
148
149 return extract_typed_address (so->lm_info->lm + lmo->l_addr_offset,
150 ptr_type);
151 }
152
153 static int
154 HAS_LM_DYNAMIC_FROM_LINK_MAP (void)
155 {
156 struct link_map_offsets *lmo = svr4_fetch_link_map_offsets ();
157
158 return lmo->l_ld_offset >= 0;
159 }
160
161 static CORE_ADDR
162 LM_DYNAMIC_FROM_LINK_MAP (struct so_list *so)
163 {
164 struct link_map_offsets *lmo = svr4_fetch_link_map_offsets ();
165 struct type *ptr_type = builtin_type (target_gdbarch)->builtin_data_ptr;
166
167 return extract_typed_address (so->lm_info->lm + lmo->l_ld_offset,
168 ptr_type);
169 }
170
171 static CORE_ADDR
172 LM_ADDR_CHECK (struct so_list *so, bfd *abfd)
173 {
174 if (so->lm_info->l_addr == (CORE_ADDR)-1)
175 {
176 struct bfd_section *dyninfo_sect;
177 CORE_ADDR l_addr, l_dynaddr, dynaddr, align = 0x1000;
178
179 l_addr = LM_ADDR_FROM_LINK_MAP (so);
180
181 if (! abfd || ! HAS_LM_DYNAMIC_FROM_LINK_MAP ())
182 goto set_addr;
183
184 l_dynaddr = LM_DYNAMIC_FROM_LINK_MAP (so);
185
186 dyninfo_sect = bfd_get_section_by_name (abfd, ".dynamic");
187 if (dyninfo_sect == NULL)
188 goto set_addr;
189
190 dynaddr = bfd_section_vma (abfd, dyninfo_sect);
191
192 if (dynaddr + l_addr != l_dynaddr)
193 {
194 if (bfd_get_flavour (abfd) == bfd_target_elf_flavour)
195 {
196 Elf_Internal_Ehdr *ehdr = elf_tdata (abfd)->elf_header;
197 Elf_Internal_Phdr *phdr = elf_tdata (abfd)->phdr;
198 int i;
199
200 align = 1;
201
202 for (i = 0; i < ehdr->e_phnum; i++)
203 if (phdr[i].p_type == PT_LOAD && phdr[i].p_align > align)
204 align = phdr[i].p_align;
205 }
206
207 /* Turn it into a mask. */
208 align--;
209
210 /* If the changes match the alignment requirements, we
211 assume we're using a core file that was generated by the
212 same binary, just prelinked with a different base offset.
213 If it doesn't match, we may have a different binary, the
214 same binary with the dynamic table loaded at an unrelated
215 location, or anything, really. To avoid regressions,
216 don't adjust the base offset in the latter case, although
217 odds are that, if things really changed, debugging won't
218 quite work. */
219 if ((l_addr & align) == ((l_dynaddr - dynaddr) & align))
220 {
221 l_addr = l_dynaddr - dynaddr;
222
223 warning (_(".dynamic section for \"%s\" "
224 "is not at the expected address"), so->so_name);
225 warning (_("difference appears to be caused by prelink, "
226 "adjusting expectations"));
227 }
228 else
229 warning (_(".dynamic section for \"%s\" "
230 "is not at the expected address "
231 "(wrong library or version mismatch?)"), so->so_name);
232 }
233
234 set_addr:
235 so->lm_info->l_addr = l_addr;
236 }
237
238 return so->lm_info->l_addr;
239 }
240
241 static CORE_ADDR
242 LM_NEXT (struct so_list *so)
243 {
244 struct link_map_offsets *lmo = svr4_fetch_link_map_offsets ();
245 struct type *ptr_type = builtin_type (target_gdbarch)->builtin_data_ptr;
246
247 return extract_typed_address (so->lm_info->lm + lmo->l_next_offset,
248 ptr_type);
249 }
250
251 static CORE_ADDR
252 LM_NAME (struct so_list *so)
253 {
254 struct link_map_offsets *lmo = svr4_fetch_link_map_offsets ();
255 struct type *ptr_type = builtin_type (target_gdbarch)->builtin_data_ptr;
256
257 return extract_typed_address (so->lm_info->lm + lmo->l_name_offset,
258 ptr_type);
259 }
260
261 static int
262 IGNORE_FIRST_LINK_MAP_ENTRY (struct so_list *so)
263 {
264 struct link_map_offsets *lmo = svr4_fetch_link_map_offsets ();
265 struct type *ptr_type = builtin_type (target_gdbarch)->builtin_data_ptr;
266
267 /* Assume that everything is a library if the dynamic loader was loaded
268 late by a static executable. */
269 if (exec_bfd && bfd_get_section_by_name (exec_bfd, ".dynamic") == NULL)
270 return 0;
271
272 return extract_typed_address (so->lm_info->lm + lmo->l_prev_offset,
273 ptr_type) == 0;
274 }
275
276 /* Per pspace SVR4 specific data. */
277
278 struct svr4_info
279 {
280 CORE_ADDR debug_base; /* Base of dynamic linker structures */
281
282 /* Validity flag for debug_loader_offset. */
283 int debug_loader_offset_p;
284
285 /* Load address for the dynamic linker, inferred. */
286 CORE_ADDR debug_loader_offset;
287
288 /* Name of the dynamic linker, valid if debug_loader_offset_p. */
289 char *debug_loader_name;
290
291 /* Load map address for the main executable. */
292 CORE_ADDR main_lm_addr;
293
294 CORE_ADDR interp_text_sect_low;
295 CORE_ADDR interp_text_sect_high;
296 CORE_ADDR interp_plt_sect_low;
297 CORE_ADDR interp_plt_sect_high;
298 };
299
300 /* Per-program-space data key. */
301 static const struct program_space_data *solib_svr4_pspace_data;
302
303 static void
304 svr4_pspace_data_cleanup (struct program_space *pspace, void *arg)
305 {
306 struct svr4_info *info;
307
308 info = program_space_data (pspace, solib_svr4_pspace_data);
309 xfree (info);
310 }
311
312 /* Get the current svr4 data. If none is found yet, add it now. This
313 function always returns a valid object. */
314
315 static struct svr4_info *
316 get_svr4_info (void)
317 {
318 struct svr4_info *info;
319
320 info = program_space_data (current_program_space, solib_svr4_pspace_data);
321 if (info != NULL)
322 return info;
323
324 info = XZALLOC (struct svr4_info);
325 set_program_space_data (current_program_space, solib_svr4_pspace_data, info);
326 return info;
327 }
328
329 /* Local function prototypes */
330
331 static int match_main (char *);
332
333 static CORE_ADDR bfd_lookup_symbol (bfd *, char *);
334
335 /*
336
337 LOCAL FUNCTION
338
339 bfd_lookup_symbol -- lookup the value for a specific symbol
340
341 SYNOPSIS
342
343 CORE_ADDR bfd_lookup_symbol (bfd *abfd, char *symname)
344
345 DESCRIPTION
346
347 An expensive way to lookup the value of a single symbol for
348 bfd's that are only temporary anyway. This is used by the
349 shared library support to find the address of the debugger
350 notification routine in the shared library.
351
352 The returned symbol may be in a code or data section; functions
353 will normally be in a code section, but may be in a data section
354 if this architecture uses function descriptors.
355
356 Note that 0 is specifically allowed as an error return (no
357 such symbol).
358 */
359
360 static CORE_ADDR
361 bfd_lookup_symbol (bfd *abfd, char *symname)
362 {
363 long storage_needed;
364 asymbol *sym;
365 asymbol **symbol_table;
366 unsigned int number_of_symbols;
367 unsigned int i;
368 struct cleanup *back_to;
369 CORE_ADDR symaddr = 0;
370
371 storage_needed = bfd_get_symtab_upper_bound (abfd);
372
373 if (storage_needed > 0)
374 {
375 symbol_table = (asymbol **) xmalloc (storage_needed);
376 back_to = make_cleanup (xfree, symbol_table);
377 number_of_symbols = bfd_canonicalize_symtab (abfd, symbol_table);
378
379 for (i = 0; i < number_of_symbols; i++)
380 {
381 sym = *symbol_table++;
382 if (strcmp (sym->name, symname) == 0
383 && (sym->section->flags & (SEC_CODE | SEC_DATA)) != 0)
384 {
385 /* BFD symbols are section relative. */
386 symaddr = sym->value + sym->section->vma;
387 break;
388 }
389 }
390 do_cleanups (back_to);
391 }
392
393 if (symaddr)
394 return symaddr;
395
396 /* On FreeBSD, the dynamic linker is stripped by default. So we'll
397 have to check the dynamic string table too. */
398
399 storage_needed = bfd_get_dynamic_symtab_upper_bound (abfd);
400
401 if (storage_needed > 0)
402 {
403 symbol_table = (asymbol **) xmalloc (storage_needed);
404 back_to = make_cleanup (xfree, symbol_table);
405 number_of_symbols = bfd_canonicalize_dynamic_symtab (abfd, symbol_table);
406
407 for (i = 0; i < number_of_symbols; i++)
408 {
409 sym = *symbol_table++;
410
411 if (strcmp (sym->name, symname) == 0
412 && (sym->section->flags & (SEC_CODE | SEC_DATA)) != 0)
413 {
414 /* BFD symbols are section relative. */
415 symaddr = sym->value + sym->section->vma;
416 break;
417 }
418 }
419 do_cleanups (back_to);
420 }
421
422 return symaddr;
423 }
424
425
426 /* Read program header TYPE from inferior memory. The header is found
427 by scanning the OS auxillary vector.
428
429 Return a pointer to allocated memory holding the program header contents,
430 or NULL on failure. If sucessful, and unless P_SECT_SIZE is NULL, the
431 size of those contents is returned to P_SECT_SIZE. Likewise, the target
432 architecture size (32-bit or 64-bit) is returned to P_ARCH_SIZE. */
433
434 static gdb_byte *
435 read_program_header (int type, int *p_sect_size, int *p_arch_size)
436 {
437 enum bfd_endian byte_order = gdbarch_byte_order (target_gdbarch);
438 CORE_ADDR at_phdr, at_phent, at_phnum;
439 int arch_size, sect_size;
440 CORE_ADDR sect_addr;
441 gdb_byte *buf;
442
443 /* Get required auxv elements from target. */
444 if (target_auxv_search (&current_target, AT_PHDR, &at_phdr) <= 0)
445 return 0;
446 if (target_auxv_search (&current_target, AT_PHENT, &at_phent) <= 0)
447 return 0;
448 if (target_auxv_search (&current_target, AT_PHNUM, &at_phnum) <= 0)
449 return 0;
450 if (!at_phdr || !at_phnum)
451 return 0;
452
453 /* Determine ELF architecture type. */
454 if (at_phent == sizeof (Elf32_External_Phdr))
455 arch_size = 32;
456 else if (at_phent == sizeof (Elf64_External_Phdr))
457 arch_size = 64;
458 else
459 return 0;
460
461 /* Find .dynamic section via the PT_DYNAMIC PHDR. */
462 if (arch_size == 32)
463 {
464 Elf32_External_Phdr phdr;
465 int i;
466
467 /* Search for requested PHDR. */
468 for (i = 0; i < at_phnum; i++)
469 {
470 if (target_read_memory (at_phdr + i * sizeof (phdr),
471 (gdb_byte *)&phdr, sizeof (phdr)))
472 return 0;
473
474 if (extract_unsigned_integer ((gdb_byte *)phdr.p_type,
475 4, byte_order) == type)
476 break;
477 }
478
479 if (i == at_phnum)
480 return 0;
481
482 /* Retrieve address and size. */
483 sect_addr = extract_unsigned_integer ((gdb_byte *)phdr.p_vaddr,
484 4, byte_order);
485 sect_size = extract_unsigned_integer ((gdb_byte *)phdr.p_memsz,
486 4, byte_order);
487 }
488 else
489 {
490 Elf64_External_Phdr phdr;
491 int i;
492
493 /* Search for requested PHDR. */
494 for (i = 0; i < at_phnum; i++)
495 {
496 if (target_read_memory (at_phdr + i * sizeof (phdr),
497 (gdb_byte *)&phdr, sizeof (phdr)))
498 return 0;
499
500 if (extract_unsigned_integer ((gdb_byte *)phdr.p_type,
501 4, byte_order) == type)
502 break;
503 }
504
505 if (i == at_phnum)
506 return 0;
507
508 /* Retrieve address and size. */
509 sect_addr = extract_unsigned_integer ((gdb_byte *)phdr.p_vaddr,
510 8, byte_order);
511 sect_size = extract_unsigned_integer ((gdb_byte *)phdr.p_memsz,
512 8, byte_order);
513 }
514
515 /* Read in requested program header. */
516 buf = xmalloc (sect_size);
517 if (target_read_memory (sect_addr, buf, sect_size))
518 {
519 xfree (buf);
520 return NULL;
521 }
522
523 if (p_arch_size)
524 *p_arch_size = arch_size;
525 if (p_sect_size)
526 *p_sect_size = sect_size;
527
528 return buf;
529 }
530
531
532 /* Return program interpreter string. */
533 static gdb_byte *
534 find_program_interpreter (void)
535 {
536 gdb_byte *buf = NULL;
537
538 /* If we have an exec_bfd, use its section table. */
539 if (exec_bfd
540 && bfd_get_flavour (exec_bfd) == bfd_target_elf_flavour)
541 {
542 struct bfd_section *interp_sect;
543
544 interp_sect = bfd_get_section_by_name (exec_bfd, ".interp");
545 if (interp_sect != NULL)
546 {
547 CORE_ADDR sect_addr = bfd_section_vma (exec_bfd, interp_sect);
548 int sect_size = bfd_section_size (exec_bfd, interp_sect);
549
550 buf = xmalloc (sect_size);
551 bfd_get_section_contents (exec_bfd, interp_sect, buf, 0, sect_size);
552 }
553 }
554
555 /* If we didn't find it, use the target auxillary vector. */
556 if (!buf)
557 buf = read_program_header (PT_INTERP, NULL, NULL);
558
559 return buf;
560 }
561
562
563 /* Scan for DYNTAG in .dynamic section of ABFD. If DYNTAG is found 1 is
564 returned and the corresponding PTR is set. */
565
566 static int
567 scan_dyntag (int dyntag, bfd *abfd, CORE_ADDR *ptr)
568 {
569 int arch_size, step, sect_size;
570 long dyn_tag;
571 CORE_ADDR dyn_ptr;
572 gdb_byte *bufend, *bufstart, *buf;
573 Elf32_External_Dyn *x_dynp_32;
574 Elf64_External_Dyn *x_dynp_64;
575 struct bfd_section *sect;
576 struct target_section *target_section;
577
578 if (abfd == NULL)
579 return 0;
580
581 if (bfd_get_flavour (abfd) != bfd_target_elf_flavour)
582 return 0;
583
584 arch_size = bfd_get_arch_size (abfd);
585 if (arch_size == -1)
586 return 0;
587
588 /* Find the start address of the .dynamic section. */
589 sect = bfd_get_section_by_name (abfd, ".dynamic");
590 if (sect == NULL)
591 return 0;
592
593 for (target_section = current_target_sections->sections;
594 target_section < current_target_sections->sections_end;
595 target_section++)
596 if (sect == target_section->the_bfd_section)
597 break;
598 gdb_assert (target_section < current_target_sections->sections_end);
599
600 /* Read in .dynamic from the BFD. We will get the actual value
601 from memory later. */
602 sect_size = bfd_section_size (abfd, sect);
603 buf = bufstart = alloca (sect_size);
604 if (!bfd_get_section_contents (abfd, sect,
605 buf, 0, sect_size))
606 return 0;
607
608 /* Iterate over BUF and scan for DYNTAG. If found, set PTR and return. */
609 step = (arch_size == 32) ? sizeof (Elf32_External_Dyn)
610 : sizeof (Elf64_External_Dyn);
611 for (bufend = buf + sect_size;
612 buf < bufend;
613 buf += step)
614 {
615 if (arch_size == 32)
616 {
617 x_dynp_32 = (Elf32_External_Dyn *) buf;
618 dyn_tag = bfd_h_get_32 (abfd, (bfd_byte *) x_dynp_32->d_tag);
619 dyn_ptr = bfd_h_get_32 (abfd, (bfd_byte *) x_dynp_32->d_un.d_ptr);
620 }
621 else
622 {
623 x_dynp_64 = (Elf64_External_Dyn *) buf;
624 dyn_tag = bfd_h_get_64 (abfd, (bfd_byte *) x_dynp_64->d_tag);
625 dyn_ptr = bfd_h_get_64 (abfd, (bfd_byte *) x_dynp_64->d_un.d_ptr);
626 }
627 if (dyn_tag == DT_NULL)
628 return 0;
629 if (dyn_tag == dyntag)
630 {
631 /* If requested, try to read the runtime value of this .dynamic
632 entry. */
633 if (ptr)
634 {
635 struct type *ptr_type;
636 gdb_byte ptr_buf[8];
637 CORE_ADDR ptr_addr;
638
639 ptr_type = builtin_type (target_gdbarch)->builtin_data_ptr;
640 ptr_addr = target_section->addr + (buf - bufstart) + arch_size / 8;
641 if (target_read_memory (ptr_addr, ptr_buf, arch_size / 8) == 0)
642 dyn_ptr = extract_typed_address (ptr_buf, ptr_type);
643 *ptr = dyn_ptr;
644 }
645 return 1;
646 }
647 }
648
649 return 0;
650 }
651
652 /* Scan for DYNTAG in .dynamic section of the target's main executable,
653 found by consulting the OS auxillary vector. If DYNTAG is found 1 is
654 returned and the corresponding PTR is set. */
655
656 static int
657 scan_dyntag_auxv (int dyntag, CORE_ADDR *ptr)
658 {
659 enum bfd_endian byte_order = gdbarch_byte_order (target_gdbarch);
660 int sect_size, arch_size, step;
661 long dyn_tag;
662 CORE_ADDR dyn_ptr;
663 gdb_byte *bufend, *bufstart, *buf;
664
665 /* Read in .dynamic section. */
666 buf = bufstart = read_program_header (PT_DYNAMIC, &sect_size, &arch_size);
667 if (!buf)
668 return 0;
669
670 /* Iterate over BUF and scan for DYNTAG. If found, set PTR and return. */
671 step = (arch_size == 32) ? sizeof (Elf32_External_Dyn)
672 : sizeof (Elf64_External_Dyn);
673 for (bufend = buf + sect_size;
674 buf < bufend;
675 buf += step)
676 {
677 if (arch_size == 32)
678 {
679 Elf32_External_Dyn *dynp = (Elf32_External_Dyn *) buf;
680 dyn_tag = extract_unsigned_integer ((gdb_byte *) dynp->d_tag,
681 4, byte_order);
682 dyn_ptr = extract_unsigned_integer ((gdb_byte *) dynp->d_un.d_ptr,
683 4, byte_order);
684 }
685 else
686 {
687 Elf64_External_Dyn *dynp = (Elf64_External_Dyn *) buf;
688 dyn_tag = extract_unsigned_integer ((gdb_byte *) dynp->d_tag,
689 8, byte_order);
690 dyn_ptr = extract_unsigned_integer ((gdb_byte *) dynp->d_un.d_ptr,
691 8, byte_order);
692 }
693 if (dyn_tag == DT_NULL)
694 break;
695
696 if (dyn_tag == dyntag)
697 {
698 if (ptr)
699 *ptr = dyn_ptr;
700
701 xfree (bufstart);
702 return 1;
703 }
704 }
705
706 xfree (bufstart);
707 return 0;
708 }
709
710
711 /*
712
713 LOCAL FUNCTION
714
715 elf_locate_base -- locate the base address of dynamic linker structs
716 for SVR4 elf targets.
717
718 SYNOPSIS
719
720 CORE_ADDR elf_locate_base (void)
721
722 DESCRIPTION
723
724 For SVR4 elf targets the address of the dynamic linker's runtime
725 structure is contained within the dynamic info section in the
726 executable file. The dynamic section is also mapped into the
727 inferior address space. Because the runtime loader fills in the
728 real address before starting the inferior, we have to read in the
729 dynamic info section from the inferior address space.
730 If there are any errors while trying to find the address, we
731 silently return 0, otherwise the found address is returned.
732
733 */
734
735 static CORE_ADDR
736 elf_locate_base (void)
737 {
738 struct minimal_symbol *msymbol;
739 CORE_ADDR dyn_ptr;
740
741 /* Look for DT_MIPS_RLD_MAP first. MIPS executables use this
742 instead of DT_DEBUG, although they sometimes contain an unused
743 DT_DEBUG. */
744 if (scan_dyntag (DT_MIPS_RLD_MAP, exec_bfd, &dyn_ptr)
745 || scan_dyntag_auxv (DT_MIPS_RLD_MAP, &dyn_ptr))
746 {
747 struct type *ptr_type = builtin_type (target_gdbarch)->builtin_data_ptr;
748 gdb_byte *pbuf;
749 int pbuf_size = TYPE_LENGTH (ptr_type);
750 pbuf = alloca (pbuf_size);
751 /* DT_MIPS_RLD_MAP contains a pointer to the address
752 of the dynamic link structure. */
753 if (target_read_memory (dyn_ptr, pbuf, pbuf_size))
754 return 0;
755 return extract_typed_address (pbuf, ptr_type);
756 }
757
758 /* Find DT_DEBUG. */
759 if (scan_dyntag (DT_DEBUG, exec_bfd, &dyn_ptr)
760 || scan_dyntag_auxv (DT_DEBUG, &dyn_ptr))
761 return dyn_ptr;
762
763 /* This may be a static executable. Look for the symbol
764 conventionally named _r_debug, as a last resort. */
765 msymbol = lookup_minimal_symbol ("_r_debug", NULL, symfile_objfile);
766 if (msymbol != NULL)
767 return SYMBOL_VALUE_ADDRESS (msymbol);
768
769 /* DT_DEBUG entry not found. */
770 return 0;
771 }
772
773 /*
774
775 LOCAL FUNCTION
776
777 locate_base -- locate the base address of dynamic linker structs
778
779 SYNOPSIS
780
781 CORE_ADDR locate_base (struct svr4_info *)
782
783 DESCRIPTION
784
785 For both the SunOS and SVR4 shared library implementations, if the
786 inferior executable has been linked dynamically, there is a single
787 address somewhere in the inferior's data space which is the key to
788 locating all of the dynamic linker's runtime structures. This
789 address is the value of the debug base symbol. The job of this
790 function is to find and return that address, or to return 0 if there
791 is no such address (the executable is statically linked for example).
792
793 For SunOS, the job is almost trivial, since the dynamic linker and
794 all of it's structures are statically linked to the executable at
795 link time. Thus the symbol for the address we are looking for has
796 already been added to the minimal symbol table for the executable's
797 objfile at the time the symbol file's symbols were read, and all we
798 have to do is look it up there. Note that we explicitly do NOT want
799 to find the copies in the shared library.
800
801 The SVR4 version is a bit more complicated because the address
802 is contained somewhere in the dynamic info section. We have to go
803 to a lot more work to discover the address of the debug base symbol.
804 Because of this complexity, we cache the value we find and return that
805 value on subsequent invocations. Note there is no copy in the
806 executable symbol tables.
807
808 */
809
810 static CORE_ADDR
811 locate_base (struct svr4_info *info)
812 {
813 /* Check to see if we have a currently valid address, and if so, avoid
814 doing all this work again and just return the cached address. If
815 we have no cached address, try to locate it in the dynamic info
816 section for ELF executables. There's no point in doing any of this
817 though if we don't have some link map offsets to work with. */
818
819 if (info->debug_base == 0 && svr4_have_link_map_offsets ())
820 info->debug_base = elf_locate_base ();
821 return info->debug_base;
822 }
823
824 /* Find the first element in the inferior's dynamic link map, and
825 return its address in the inferior.
826
827 FIXME: Perhaps we should validate the info somehow, perhaps by
828 checking r_version for a known version number, or r_state for
829 RT_CONSISTENT. */
830
831 static CORE_ADDR
832 solib_svr4_r_map (struct svr4_info *info)
833 {
834 struct link_map_offsets *lmo = svr4_fetch_link_map_offsets ();
835 struct type *ptr_type = builtin_type (target_gdbarch)->builtin_data_ptr;
836
837 return read_memory_typed_address (info->debug_base + lmo->r_map_offset,
838 ptr_type);
839 }
840
841 /* Find r_brk from the inferior's debug base. */
842
843 static CORE_ADDR
844 solib_svr4_r_brk (struct svr4_info *info)
845 {
846 struct link_map_offsets *lmo = svr4_fetch_link_map_offsets ();
847 struct type *ptr_type = builtin_type (target_gdbarch)->builtin_data_ptr;
848
849 return read_memory_typed_address (info->debug_base + lmo->r_brk_offset,
850 ptr_type);
851 }
852
853 /* Find the link map for the dynamic linker (if it is not in the
854 normal list of loaded shared objects). */
855
856 static CORE_ADDR
857 solib_svr4_r_ldsomap (struct svr4_info *info)
858 {
859 struct link_map_offsets *lmo = svr4_fetch_link_map_offsets ();
860 struct type *ptr_type = builtin_type (target_gdbarch)->builtin_data_ptr;
861 enum bfd_endian byte_order = gdbarch_byte_order (target_gdbarch);
862 ULONGEST version;
863
864 /* Check version, and return zero if `struct r_debug' doesn't have
865 the r_ldsomap member. */
866 version
867 = read_memory_unsigned_integer (info->debug_base + lmo->r_version_offset,
868 lmo->r_version_size, byte_order);
869 if (version < 2 || lmo->r_ldsomap_offset == -1)
870 return 0;
871
872 return read_memory_typed_address (info->debug_base + lmo->r_ldsomap_offset,
873 ptr_type);
874 }
875
876 /* On Solaris systems with some versions of the dynamic linker,
877 ld.so's l_name pointer points to the SONAME in the string table
878 rather than into writable memory. So that GDB can find shared
879 libraries when loading a core file generated by gcore, ensure that
880 memory areas containing the l_name string are saved in the core
881 file. */
882
883 static int
884 svr4_keep_data_in_core (CORE_ADDR vaddr, unsigned long size)
885 {
886 struct svr4_info *info;
887 CORE_ADDR ldsomap;
888 struct so_list *new;
889 struct cleanup *old_chain;
890 struct link_map_offsets *lmo;
891 CORE_ADDR lm_name;
892
893 info = get_svr4_info ();
894
895 info->debug_base = 0;
896 locate_base (info);
897 if (!info->debug_base)
898 return 0;
899
900 ldsomap = solib_svr4_r_ldsomap (info);
901 if (!ldsomap)
902 return 0;
903
904 lmo = svr4_fetch_link_map_offsets ();
905 new = XZALLOC (struct so_list);
906 old_chain = make_cleanup (xfree, new);
907 new->lm_info = xmalloc (sizeof (struct lm_info));
908 make_cleanup (xfree, new->lm_info);
909 new->lm_info->l_addr = (CORE_ADDR)-1;
910 new->lm_info->lm_addr = ldsomap;
911 new->lm_info->lm = xzalloc (lmo->link_map_size);
912 make_cleanup (xfree, new->lm_info->lm);
913 read_memory (ldsomap, new->lm_info->lm, lmo->link_map_size);
914 lm_name = LM_NAME (new);
915 do_cleanups (old_chain);
916
917 return (lm_name >= vaddr && lm_name < vaddr + size);
918 }
919
920 /*
921
922 LOCAL FUNCTION
923
924 open_symbol_file_object
925
926 SYNOPSIS
927
928 void open_symbol_file_object (void *from_tty)
929
930 DESCRIPTION
931
932 If no open symbol file, attempt to locate and open the main symbol
933 file. On SVR4 systems, this is the first link map entry. If its
934 name is here, we can open it. Useful when attaching to a process
935 without first loading its symbol file.
936
937 If FROM_TTYP dereferences to a non-zero integer, allow messages to
938 be printed. This parameter is a pointer rather than an int because
939 open_symbol_file_object() is called via catch_errors() and
940 catch_errors() requires a pointer argument. */
941
942 static int
943 open_symbol_file_object (void *from_ttyp)
944 {
945 CORE_ADDR lm, l_name;
946 char *filename;
947 int errcode;
948 int from_tty = *(int *)from_ttyp;
949 struct link_map_offsets *lmo = svr4_fetch_link_map_offsets ();
950 struct type *ptr_type = builtin_type (target_gdbarch)->builtin_data_ptr;
951 int l_name_size = TYPE_LENGTH (ptr_type);
952 gdb_byte *l_name_buf = xmalloc (l_name_size);
953 struct cleanup *cleanups = make_cleanup (xfree, l_name_buf);
954 struct svr4_info *info = get_svr4_info ();
955
956 if (symfile_objfile)
957 if (!query (_("Attempt to reload symbols from process? ")))
958 return 0;
959
960 /* Always locate the debug struct, in case it has moved. */
961 info->debug_base = 0;
962 if (locate_base (info) == 0)
963 return 0; /* failed somehow... */
964
965 /* First link map member should be the executable. */
966 lm = solib_svr4_r_map (info);
967 if (lm == 0)
968 return 0; /* failed somehow... */
969
970 /* Read address of name from target memory to GDB. */
971 read_memory (lm + lmo->l_name_offset, l_name_buf, l_name_size);
972
973 /* Convert the address to host format. */
974 l_name = extract_typed_address (l_name_buf, ptr_type);
975
976 /* Free l_name_buf. */
977 do_cleanups (cleanups);
978
979 if (l_name == 0)
980 return 0; /* No filename. */
981
982 /* Now fetch the filename from target memory. */
983 target_read_string (l_name, &filename, SO_NAME_MAX_PATH_SIZE - 1, &errcode);
984 make_cleanup (xfree, filename);
985
986 if (errcode)
987 {
988 warning (_("failed to read exec filename from attached file: %s"),
989 safe_strerror (errcode));
990 return 0;
991 }
992
993 /* Have a pathname: read the symbol file. */
994 symbol_file_add_main (filename, from_tty);
995
996 return 1;
997 }
998
999 /* If no shared library information is available from the dynamic
1000 linker, build a fallback list from other sources. */
1001
1002 static struct so_list *
1003 svr4_default_sos (void)
1004 {
1005 struct svr4_info *info = get_svr4_info ();
1006
1007 struct so_list *head = NULL;
1008 struct so_list **link_ptr = &head;
1009
1010 if (info->debug_loader_offset_p)
1011 {
1012 struct so_list *new = XZALLOC (struct so_list);
1013
1014 new->lm_info = xmalloc (sizeof (struct lm_info));
1015
1016 /* Nothing will ever check the cached copy of the link
1017 map if we set l_addr. */
1018 new->lm_info->l_addr = info->debug_loader_offset;
1019 new->lm_info->lm_addr = 0;
1020 new->lm_info->lm = NULL;
1021
1022 strncpy (new->so_name, info->debug_loader_name,
1023 SO_NAME_MAX_PATH_SIZE - 1);
1024 new->so_name[SO_NAME_MAX_PATH_SIZE - 1] = '\0';
1025 strcpy (new->so_original_name, new->so_name);
1026
1027 *link_ptr = new;
1028 link_ptr = &new->next;
1029 }
1030
1031 return head;
1032 }
1033
1034 /* LOCAL FUNCTION
1035
1036 current_sos -- build a list of currently loaded shared objects
1037
1038 SYNOPSIS
1039
1040 struct so_list *current_sos ()
1041
1042 DESCRIPTION
1043
1044 Build a list of `struct so_list' objects describing the shared
1045 objects currently loaded in the inferior. This list does not
1046 include an entry for the main executable file.
1047
1048 Note that we only gather information directly available from the
1049 inferior --- we don't examine any of the shared library files
1050 themselves. The declaration of `struct so_list' says which fields
1051 we provide values for. */
1052
1053 static struct so_list *
1054 svr4_current_sos (void)
1055 {
1056 CORE_ADDR lm;
1057 struct so_list *head = 0;
1058 struct so_list **link_ptr = &head;
1059 CORE_ADDR ldsomap = 0;
1060 struct svr4_info *info;
1061
1062 info = get_svr4_info ();
1063
1064 /* Always locate the debug struct, in case it has moved. */
1065 info->debug_base = 0;
1066 locate_base (info);
1067
1068 /* If we can't find the dynamic linker's base structure, this
1069 must not be a dynamically linked executable. Hmm. */
1070 if (! info->debug_base)
1071 return svr4_default_sos ();
1072
1073 /* Walk the inferior's link map list, and build our list of
1074 `struct so_list' nodes. */
1075 lm = solib_svr4_r_map (info);
1076
1077 while (lm)
1078 {
1079 struct link_map_offsets *lmo = svr4_fetch_link_map_offsets ();
1080 struct so_list *new = XZALLOC (struct so_list);
1081 struct cleanup *old_chain = make_cleanup (xfree, new);
1082
1083 new->lm_info = xmalloc (sizeof (struct lm_info));
1084 make_cleanup (xfree, new->lm_info);
1085
1086 new->lm_info->l_addr = (CORE_ADDR)-1;
1087 new->lm_info->lm_addr = lm;
1088 new->lm_info->lm = xzalloc (lmo->link_map_size);
1089 make_cleanup (xfree, new->lm_info->lm);
1090
1091 read_memory (lm, new->lm_info->lm, lmo->link_map_size);
1092
1093 lm = LM_NEXT (new);
1094
1095 /* For SVR4 versions, the first entry in the link map is for the
1096 inferior executable, so we must ignore it. For some versions of
1097 SVR4, it has no name. For others (Solaris 2.3 for example), it
1098 does have a name, so we can no longer use a missing name to
1099 decide when to ignore it. */
1100 if (IGNORE_FIRST_LINK_MAP_ENTRY (new) && ldsomap == 0)
1101 {
1102 info->main_lm_addr = new->lm_info->lm_addr;
1103 free_so (new);
1104 }
1105 else
1106 {
1107 int errcode;
1108 char *buffer;
1109
1110 /* Extract this shared object's name. */
1111 target_read_string (LM_NAME (new), &buffer,
1112 SO_NAME_MAX_PATH_SIZE - 1, &errcode);
1113 if (errcode != 0)
1114 warning (_("Can't read pathname for load map: %s."),
1115 safe_strerror (errcode));
1116 else
1117 {
1118 strncpy (new->so_name, buffer, SO_NAME_MAX_PATH_SIZE - 1);
1119 new->so_name[SO_NAME_MAX_PATH_SIZE - 1] = '\0';
1120 strcpy (new->so_original_name, new->so_name);
1121 }
1122 xfree (buffer);
1123
1124 /* If this entry has no name, or its name matches the name
1125 for the main executable, don't include it in the list. */
1126 if (! new->so_name[0]
1127 || match_main (new->so_name))
1128 free_so (new);
1129 else
1130 {
1131 new->next = 0;
1132 *link_ptr = new;
1133 link_ptr = &new->next;
1134 }
1135 }
1136
1137 /* On Solaris, the dynamic linker is not in the normal list of
1138 shared objects, so make sure we pick it up too. Having
1139 symbol information for the dynamic linker is quite crucial
1140 for skipping dynamic linker resolver code. */
1141 if (lm == 0 && ldsomap == 0)
1142 lm = ldsomap = solib_svr4_r_ldsomap (info);
1143
1144 discard_cleanups (old_chain);
1145 }
1146
1147 if (head == NULL)
1148 return svr4_default_sos ();
1149
1150 return head;
1151 }
1152
1153 /* Get the address of the link_map for a given OBJFILE. */
1154
1155 CORE_ADDR
1156 svr4_fetch_objfile_link_map (struct objfile *objfile)
1157 {
1158 struct so_list *so;
1159 struct svr4_info *info = get_svr4_info ();
1160
1161 /* Cause svr4_current_sos() to be run if it hasn't been already. */
1162 if (info->main_lm_addr == 0)
1163 solib_add (NULL, 0, &current_target, auto_solib_add);
1164
1165 /* svr4_current_sos() will set main_lm_addr for the main executable. */
1166 if (objfile == symfile_objfile)
1167 return info->main_lm_addr;
1168
1169 /* The other link map addresses may be found by examining the list
1170 of shared libraries. */
1171 for (so = master_so_list (); so; so = so->next)
1172 if (so->objfile == objfile)
1173 return so->lm_info->lm_addr;
1174
1175 /* Not found! */
1176 return 0;
1177 }
1178
1179 /* On some systems, the only way to recognize the link map entry for
1180 the main executable file is by looking at its name. Return
1181 non-zero iff SONAME matches one of the known main executable names. */
1182
1183 static int
1184 match_main (char *soname)
1185 {
1186 char **mainp;
1187
1188 for (mainp = main_name_list; *mainp != NULL; mainp++)
1189 {
1190 if (strcmp (soname, *mainp) == 0)
1191 return (1);
1192 }
1193
1194 return (0);
1195 }
1196
1197 /* Return 1 if PC lies in the dynamic symbol resolution code of the
1198 SVR4 run time loader. */
1199
1200 int
1201 svr4_in_dynsym_resolve_code (CORE_ADDR pc)
1202 {
1203 struct svr4_info *info = get_svr4_info ();
1204
1205 return ((pc >= info->interp_text_sect_low
1206 && pc < info->interp_text_sect_high)
1207 || (pc >= info->interp_plt_sect_low
1208 && pc < info->interp_plt_sect_high)
1209 || in_plt_section (pc, NULL));
1210 }
1211
1212 /* Given an executable's ABFD and target, compute the entry-point
1213 address. */
1214
1215 static CORE_ADDR
1216 exec_entry_point (struct bfd *abfd, struct target_ops *targ)
1217 {
1218 /* KevinB wrote ... for most targets, the address returned by
1219 bfd_get_start_address() is the entry point for the start
1220 function. But, for some targets, bfd_get_start_address() returns
1221 the address of a function descriptor from which the entry point
1222 address may be extracted. This address is extracted by
1223 gdbarch_convert_from_func_ptr_addr(). The method
1224 gdbarch_convert_from_func_ptr_addr() is the merely the identify
1225 function for targets which don't use function descriptors. */
1226 return gdbarch_convert_from_func_ptr_addr (target_gdbarch,
1227 bfd_get_start_address (abfd),
1228 targ);
1229 }
1230
1231 /*
1232
1233 LOCAL FUNCTION
1234
1235 enable_break -- arrange for dynamic linker to hit breakpoint
1236
1237 SYNOPSIS
1238
1239 int enable_break (void)
1240
1241 DESCRIPTION
1242
1243 Both the SunOS and the SVR4 dynamic linkers have, as part of their
1244 debugger interface, support for arranging for the inferior to hit
1245 a breakpoint after mapping in the shared libraries. This function
1246 enables that breakpoint.
1247
1248 For SunOS, there is a special flag location (in_debugger) which we
1249 set to 1. When the dynamic linker sees this flag set, it will set
1250 a breakpoint at a location known only to itself, after saving the
1251 original contents of that place and the breakpoint address itself,
1252 in it's own internal structures. When we resume the inferior, it
1253 will eventually take a SIGTRAP when it runs into the breakpoint.
1254 We handle this (in a different place) by restoring the contents of
1255 the breakpointed location (which is only known after it stops),
1256 chasing around to locate the shared libraries that have been
1257 loaded, then resuming.
1258
1259 For SVR4, the debugger interface structure contains a member (r_brk)
1260 which is statically initialized at the time the shared library is
1261 built, to the offset of a function (_r_debug_state) which is guaran-
1262 teed to be called once before mapping in a library, and again when
1263 the mapping is complete. At the time we are examining this member,
1264 it contains only the unrelocated offset of the function, so we have
1265 to do our own relocation. Later, when the dynamic linker actually
1266 runs, it relocates r_brk to be the actual address of _r_debug_state().
1267
1268 The debugger interface structure also contains an enumeration which
1269 is set to either RT_ADD or RT_DELETE prior to changing the mapping,
1270 depending upon whether or not the library is being mapped or unmapped,
1271 and then set to RT_CONSISTENT after the library is mapped/unmapped.
1272 */
1273
1274 static int
1275 enable_break (struct svr4_info *info, int from_tty)
1276 {
1277 struct minimal_symbol *msymbol;
1278 char **bkpt_namep;
1279 asection *interp_sect;
1280 gdb_byte *interp_name;
1281 CORE_ADDR sym_addr;
1282
1283 /* First, remove all the solib event breakpoints. Their addresses
1284 may have changed since the last time we ran the program. */
1285 remove_solib_event_breakpoints ();
1286
1287 info->interp_text_sect_low = info->interp_text_sect_high = 0;
1288 info->interp_plt_sect_low = info->interp_plt_sect_high = 0;
1289
1290 /* If we already have a shared library list in the target, and
1291 r_debug contains r_brk, set the breakpoint there - this should
1292 mean r_brk has already been relocated. Assume the dynamic linker
1293 is the object containing r_brk. */
1294
1295 solib_add (NULL, from_tty, &current_target, auto_solib_add);
1296 sym_addr = 0;
1297 if (info->debug_base && solib_svr4_r_map (info) != 0)
1298 sym_addr = solib_svr4_r_brk (info);
1299
1300 if (sym_addr != 0)
1301 {
1302 struct obj_section *os;
1303
1304 sym_addr = gdbarch_addr_bits_remove
1305 (target_gdbarch, gdbarch_convert_from_func_ptr_addr (target_gdbarch,
1306 sym_addr,
1307 &current_target));
1308
1309 os = find_pc_section (sym_addr);
1310 if (os != NULL)
1311 {
1312 /* Record the relocated start and end address of the dynamic linker
1313 text and plt section for svr4_in_dynsym_resolve_code. */
1314 bfd *tmp_bfd;
1315 CORE_ADDR load_addr;
1316
1317 tmp_bfd = os->objfile->obfd;
1318 load_addr = ANOFFSET (os->objfile->section_offsets,
1319 os->objfile->sect_index_text);
1320
1321 interp_sect = bfd_get_section_by_name (tmp_bfd, ".text");
1322 if (interp_sect)
1323 {
1324 info->interp_text_sect_low =
1325 bfd_section_vma (tmp_bfd, interp_sect) + load_addr;
1326 info->interp_text_sect_high =
1327 info->interp_text_sect_low
1328 + bfd_section_size (tmp_bfd, interp_sect);
1329 }
1330 interp_sect = bfd_get_section_by_name (tmp_bfd, ".plt");
1331 if (interp_sect)
1332 {
1333 info->interp_plt_sect_low =
1334 bfd_section_vma (tmp_bfd, interp_sect) + load_addr;
1335 info->interp_plt_sect_high =
1336 info->interp_plt_sect_low
1337 + bfd_section_size (tmp_bfd, interp_sect);
1338 }
1339
1340 create_solib_event_breakpoint (target_gdbarch, sym_addr);
1341 return 1;
1342 }
1343 }
1344
1345 /* Find the program interpreter; if not found, warn the user and drop
1346 into the old breakpoint at symbol code. */
1347 interp_name = find_program_interpreter ();
1348 if (interp_name)
1349 {
1350 CORE_ADDR load_addr = 0;
1351 int load_addr_found = 0;
1352 int loader_found_in_list = 0;
1353 struct so_list *so;
1354 bfd *tmp_bfd = NULL;
1355 struct target_ops *tmp_bfd_target;
1356 volatile struct gdb_exception ex;
1357
1358 sym_addr = 0;
1359
1360 /* Now we need to figure out where the dynamic linker was
1361 loaded so that we can load its symbols and place a breakpoint
1362 in the dynamic linker itself.
1363
1364 This address is stored on the stack. However, I've been unable
1365 to find any magic formula to find it for Solaris (appears to
1366 be trivial on GNU/Linux). Therefore, we have to try an alternate
1367 mechanism to find the dynamic linker's base address. */
1368
1369 TRY_CATCH (ex, RETURN_MASK_ALL)
1370 {
1371 tmp_bfd = solib_bfd_open (interp_name);
1372 }
1373 if (tmp_bfd == NULL)
1374 goto bkpt_at_symbol;
1375
1376 /* Now convert the TMP_BFD into a target. That way target, as
1377 well as BFD operations can be used. Note that closing the
1378 target will also close the underlying bfd. */
1379 tmp_bfd_target = target_bfd_reopen (tmp_bfd);
1380
1381 /* On a running target, we can get the dynamic linker's base
1382 address from the shared library table. */
1383 so = master_so_list ();
1384 while (so)
1385 {
1386 if (svr4_same_1 (interp_name, so->so_original_name))
1387 {
1388 load_addr_found = 1;
1389 loader_found_in_list = 1;
1390 load_addr = LM_ADDR_CHECK (so, tmp_bfd);
1391 break;
1392 }
1393 so = so->next;
1394 }
1395
1396 /* If we were not able to find the base address of the loader
1397 from our so_list, then try using the AT_BASE auxilliary entry. */
1398 if (!load_addr_found)
1399 if (target_auxv_search (&current_target, AT_BASE, &load_addr) > 0)
1400 load_addr_found = 1;
1401
1402 /* Otherwise we find the dynamic linker's base address by examining
1403 the current pc (which should point at the entry point for the
1404 dynamic linker) and subtracting the offset of the entry point.
1405
1406 This is more fragile than the previous approaches, but is a good
1407 fallback method because it has actually been working well in
1408 most cases. */
1409 if (!load_addr_found)
1410 {
1411 struct regcache *regcache
1412 = get_thread_arch_regcache (inferior_ptid, target_gdbarch);
1413 load_addr = (regcache_read_pc (regcache)
1414 - exec_entry_point (tmp_bfd, tmp_bfd_target));
1415 }
1416
1417 if (!loader_found_in_list)
1418 {
1419 info->debug_loader_name = xstrdup (interp_name);
1420 info->debug_loader_offset_p = 1;
1421 info->debug_loader_offset = load_addr;
1422 solib_add (NULL, from_tty, &current_target, auto_solib_add);
1423 }
1424
1425 /* Record the relocated start and end address of the dynamic linker
1426 text and plt section for svr4_in_dynsym_resolve_code. */
1427 interp_sect = bfd_get_section_by_name (tmp_bfd, ".text");
1428 if (interp_sect)
1429 {
1430 info->interp_text_sect_low =
1431 bfd_section_vma (tmp_bfd, interp_sect) + load_addr;
1432 info->interp_text_sect_high =
1433 info->interp_text_sect_low
1434 + bfd_section_size (tmp_bfd, interp_sect);
1435 }
1436 interp_sect = bfd_get_section_by_name (tmp_bfd, ".plt");
1437 if (interp_sect)
1438 {
1439 info->interp_plt_sect_low =
1440 bfd_section_vma (tmp_bfd, interp_sect) + load_addr;
1441 info->interp_plt_sect_high =
1442 info->interp_plt_sect_low
1443 + bfd_section_size (tmp_bfd, interp_sect);
1444 }
1445
1446 /* Now try to set a breakpoint in the dynamic linker. */
1447 for (bkpt_namep = solib_break_names; *bkpt_namep != NULL; bkpt_namep++)
1448 {
1449 sym_addr = bfd_lookup_symbol (tmp_bfd, *bkpt_namep);
1450 if (sym_addr != 0)
1451 break;
1452 }
1453
1454 if (sym_addr != 0)
1455 /* Convert 'sym_addr' from a function pointer to an address.
1456 Because we pass tmp_bfd_target instead of the current
1457 target, this will always produce an unrelocated value. */
1458 sym_addr = gdbarch_convert_from_func_ptr_addr (target_gdbarch,
1459 sym_addr,
1460 tmp_bfd_target);
1461
1462 /* We're done with both the temporary bfd and target. Remember,
1463 closing the target closes the underlying bfd. */
1464 target_close (tmp_bfd_target, 0);
1465
1466 if (sym_addr != 0)
1467 {
1468 create_solib_event_breakpoint (target_gdbarch, load_addr + sym_addr);
1469 xfree (interp_name);
1470 return 1;
1471 }
1472
1473 /* For whatever reason we couldn't set a breakpoint in the dynamic
1474 linker. Warn and drop into the old code. */
1475 bkpt_at_symbol:
1476 xfree (interp_name);
1477 warning (_("Unable to find dynamic linker breakpoint function.\n"
1478 "GDB will be unable to debug shared library initializers\n"
1479 "and track explicitly loaded dynamic code."));
1480 }
1481
1482 /* Scan through the lists of symbols, trying to look up the symbol and
1483 set a breakpoint there. Terminate loop when we/if we succeed. */
1484
1485 for (bkpt_namep = solib_break_names; *bkpt_namep != NULL; bkpt_namep++)
1486 {
1487 msymbol = lookup_minimal_symbol (*bkpt_namep, NULL, symfile_objfile);
1488 if ((msymbol != NULL) && (SYMBOL_VALUE_ADDRESS (msymbol) != 0))
1489 {
1490 sym_addr = SYMBOL_VALUE_ADDRESS (msymbol);
1491 sym_addr = gdbarch_convert_from_func_ptr_addr (target_gdbarch,
1492 sym_addr,
1493 &current_target);
1494 create_solib_event_breakpoint (target_gdbarch, sym_addr);
1495 return 1;
1496 }
1497 }
1498
1499 for (bkpt_namep = bkpt_names; *bkpt_namep != NULL; bkpt_namep++)
1500 {
1501 msymbol = lookup_minimal_symbol (*bkpt_namep, NULL, symfile_objfile);
1502 if ((msymbol != NULL) && (SYMBOL_VALUE_ADDRESS (msymbol) != 0))
1503 {
1504 sym_addr = SYMBOL_VALUE_ADDRESS (msymbol);
1505 sym_addr = gdbarch_convert_from_func_ptr_addr (target_gdbarch,
1506 sym_addr,
1507 &current_target);
1508 create_solib_event_breakpoint (target_gdbarch, sym_addr);
1509 return 1;
1510 }
1511 }
1512 return 0;
1513 }
1514
1515 /*
1516
1517 LOCAL FUNCTION
1518
1519 special_symbol_handling -- additional shared library symbol handling
1520
1521 SYNOPSIS
1522
1523 void special_symbol_handling ()
1524
1525 DESCRIPTION
1526
1527 Once the symbols from a shared object have been loaded in the usual
1528 way, we are called to do any system specific symbol handling that
1529 is needed.
1530
1531 For SunOS4, this consisted of grunging around in the dynamic
1532 linkers structures to find symbol definitions for "common" symbols
1533 and adding them to the minimal symbol table for the runtime common
1534 objfile.
1535
1536 However, for SVR4, there's nothing to do.
1537
1538 */
1539
1540 static void
1541 svr4_special_symbol_handling (void)
1542 {
1543 }
1544
1545 /* Decide if the objfile needs to be relocated. As indicated above,
1546 we will only be here when execution is stopped at the beginning
1547 of the program. Relocation is necessary if the address at which
1548 we are presently stopped differs from the start address stored in
1549 the executable AND there's no interpreter section. The condition
1550 regarding the interpreter section is very important because if
1551 there *is* an interpreter section, execution will begin there
1552 instead. When there is an interpreter section, the start address
1553 is (presumably) used by the interpreter at some point to start
1554 execution of the program.
1555
1556 If there is an interpreter, it is normal for it to be set to an
1557 arbitrary address at the outset. The job of finding it is
1558 handled in enable_break().
1559
1560 So, to summarize, relocations are necessary when there is no
1561 interpreter section and the start address obtained from the
1562 executable is different from the address at which GDB is
1563 currently stopped.
1564
1565 [ The astute reader will note that we also test to make sure that
1566 the executable in question has the DYNAMIC flag set. It is my
1567 opinion that this test is unnecessary (undesirable even). It
1568 was added to avoid inadvertent relocation of an executable
1569 whose e_type member in the ELF header is not ET_DYN. There may
1570 be a time in the future when it is desirable to do relocations
1571 on other types of files as well in which case this condition
1572 should either be removed or modified to accomodate the new file
1573 type. (E.g, an ET_EXEC executable which has been built to be
1574 position-independent could safely be relocated by the OS if
1575 desired. It is true that this violates the ABI, but the ABI
1576 has been known to be bent from time to time.) - Kevin, Nov 2000. ]
1577 */
1578
1579 static CORE_ADDR
1580 svr4_static_exec_displacement (void)
1581 {
1582 asection *interp_sect;
1583 struct regcache *regcache
1584 = get_thread_arch_regcache (inferior_ptid, target_gdbarch);
1585 CORE_ADDR pc = regcache_read_pc (regcache);
1586
1587 interp_sect = bfd_get_section_by_name (exec_bfd, ".interp");
1588 if (interp_sect == NULL
1589 && (bfd_get_file_flags (exec_bfd) & DYNAMIC) != 0
1590 && (exec_entry_point (exec_bfd, &exec_ops) != pc))
1591 return pc - exec_entry_point (exec_bfd, &exec_ops);
1592
1593 return 0;
1594 }
1595
1596 /* We relocate all of the sections by the same amount. This
1597 behavior is mandated by recent editions of the System V ABI.
1598 According to the System V Application Binary Interface,
1599 Edition 4.1, page 5-5:
1600
1601 ... Though the system chooses virtual addresses for
1602 individual processes, it maintains the segments' relative
1603 positions. Because position-independent code uses relative
1604 addressesing between segments, the difference between
1605 virtual addresses in memory must match the difference
1606 between virtual addresses in the file. The difference
1607 between the virtual address of any segment in memory and
1608 the corresponding virtual address in the file is thus a
1609 single constant value for any one executable or shared
1610 object in a given process. This difference is the base
1611 address. One use of the base address is to relocate the
1612 memory image of the program during dynamic linking.
1613
1614 The same language also appears in Edition 4.0 of the System V
1615 ABI and is left unspecified in some of the earlier editions. */
1616
1617 static CORE_ADDR
1618 svr4_exec_displacement (void)
1619 {
1620 int found;
1621 CORE_ADDR entry_point;
1622
1623 if (exec_bfd == NULL)
1624 return 0;
1625
1626 if (target_auxv_search (&current_target, AT_ENTRY, &entry_point) == 1)
1627 return entry_point - exec_entry_point (exec_bfd, &current_target);
1628
1629 return svr4_static_exec_displacement ();
1630 }
1631
1632 /* Relocate the main executable. This function should be called upon
1633 stopping the inferior process at the entry point to the program.
1634 The entry point from BFD is compared to the AT_ENTRY of AUXV and if they are
1635 different, the main executable is relocated by the proper amount. */
1636
1637 static void
1638 svr4_relocate_main_executable (void)
1639 {
1640 CORE_ADDR displacement = svr4_exec_displacement ();
1641
1642 /* Even if DISPLACEMENT is 0 still try to relocate it as this is a new
1643 difference of in-memory vs. in-file addresses and we could already
1644 relocate the executable at this function to improper address before. */
1645
1646 if (symfile_objfile)
1647 {
1648 struct section_offsets *new_offsets;
1649 int i;
1650
1651 new_offsets = alloca (symfile_objfile->num_sections
1652 * sizeof (*new_offsets));
1653
1654 for (i = 0; i < symfile_objfile->num_sections; i++)
1655 new_offsets->offsets[i] = displacement;
1656
1657 objfile_relocate (symfile_objfile, new_offsets);
1658 }
1659 else if (exec_bfd)
1660 {
1661 asection *asect;
1662
1663 for (asect = exec_bfd->sections; asect != NULL; asect = asect->next)
1664 exec_set_section_address (bfd_get_filename (exec_bfd), asect->index,
1665 (bfd_section_vma (exec_bfd, asect)
1666 + displacement));
1667 }
1668 }
1669
1670 /*
1671
1672 GLOBAL FUNCTION
1673
1674 svr4_solib_create_inferior_hook -- shared library startup support
1675
1676 SYNOPSIS
1677
1678 void svr4_solib_create_inferior_hook (int from_tty)
1679
1680 DESCRIPTION
1681
1682 When gdb starts up the inferior, it nurses it along (through the
1683 shell) until it is ready to execute it's first instruction. At this
1684 point, this function gets called via expansion of the macro
1685 SOLIB_CREATE_INFERIOR_HOOK.
1686
1687 For SunOS executables, this first instruction is typically the
1688 one at "_start", or a similar text label, regardless of whether
1689 the executable is statically or dynamically linked. The runtime
1690 startup code takes care of dynamically linking in any shared
1691 libraries, once gdb allows the inferior to continue.
1692
1693 For SVR4 executables, this first instruction is either the first
1694 instruction in the dynamic linker (for dynamically linked
1695 executables) or the instruction at "start" for statically linked
1696 executables. For dynamically linked executables, the system
1697 first exec's /lib/libc.so.N, which contains the dynamic linker,
1698 and starts it running. The dynamic linker maps in any needed
1699 shared libraries, maps in the actual user executable, and then
1700 jumps to "start" in the user executable.
1701
1702 For both SunOS shared libraries, and SVR4 shared libraries, we
1703 can arrange to cooperate with the dynamic linker to discover the
1704 names of shared libraries that are dynamically linked, and the
1705 base addresses to which they are linked.
1706
1707 This function is responsible for discovering those names and
1708 addresses, and saving sufficient information about them to allow
1709 their symbols to be read at a later time.
1710
1711 FIXME
1712
1713 Between enable_break() and disable_break(), this code does not
1714 properly handle hitting breakpoints which the user might have
1715 set in the startup code or in the dynamic linker itself. Proper
1716 handling will probably have to wait until the implementation is
1717 changed to use the "breakpoint handler function" method.
1718
1719 Also, what if child has exit()ed? Must exit loop somehow.
1720 */
1721
1722 static void
1723 svr4_solib_create_inferior_hook (int from_tty)
1724 {
1725 struct inferior *inf;
1726 struct thread_info *tp;
1727 struct svr4_info *info;
1728
1729 info = get_svr4_info ();
1730
1731 /* Relocate the main executable if necessary. */
1732 svr4_relocate_main_executable ();
1733
1734 if (!svr4_have_link_map_offsets ())
1735 return;
1736
1737 if (!enable_break (info, from_tty))
1738 return;
1739
1740 #if defined(_SCO_DS)
1741 /* SCO needs the loop below, other systems should be using the
1742 special shared library breakpoints and the shared library breakpoint
1743 service routine.
1744
1745 Now run the target. It will eventually hit the breakpoint, at
1746 which point all of the libraries will have been mapped in and we
1747 can go groveling around in the dynamic linker structures to find
1748 out what we need to know about them. */
1749
1750 inf = current_inferior ();
1751 tp = inferior_thread ();
1752
1753 clear_proceed_status ();
1754 inf->stop_soon = STOP_QUIETLY;
1755 tp->stop_signal = TARGET_SIGNAL_0;
1756 do
1757 {
1758 target_resume (pid_to_ptid (-1), 0, tp->stop_signal);
1759 wait_for_inferior (0);
1760 }
1761 while (tp->stop_signal != TARGET_SIGNAL_TRAP);
1762 inf->stop_soon = NO_STOP_QUIETLY;
1763 #endif /* defined(_SCO_DS) */
1764 }
1765
1766 static void
1767 svr4_clear_solib (void)
1768 {
1769 struct svr4_info *info;
1770
1771 info = get_svr4_info ();
1772 info->debug_base = 0;
1773 info->debug_loader_offset_p = 0;
1774 info->debug_loader_offset = 0;
1775 xfree (info->debug_loader_name);
1776 info->debug_loader_name = NULL;
1777 }
1778
1779 static void
1780 svr4_free_so (struct so_list *so)
1781 {
1782 xfree (so->lm_info->lm);
1783 xfree (so->lm_info);
1784 }
1785
1786
1787 /* Clear any bits of ADDR that wouldn't fit in a target-format
1788 data pointer. "Data pointer" here refers to whatever sort of
1789 address the dynamic linker uses to manage its sections. At the
1790 moment, we don't support shared libraries on any processors where
1791 code and data pointers are different sizes.
1792
1793 This isn't really the right solution. What we really need here is
1794 a way to do arithmetic on CORE_ADDR values that respects the
1795 natural pointer/address correspondence. (For example, on the MIPS,
1796 converting a 32-bit pointer to a 64-bit CORE_ADDR requires you to
1797 sign-extend the value. There, simply truncating the bits above
1798 gdbarch_ptr_bit, as we do below, is no good.) This should probably
1799 be a new gdbarch method or something. */
1800 static CORE_ADDR
1801 svr4_truncate_ptr (CORE_ADDR addr)
1802 {
1803 if (gdbarch_ptr_bit (target_gdbarch) == sizeof (CORE_ADDR) * 8)
1804 /* We don't need to truncate anything, and the bit twiddling below
1805 will fail due to overflow problems. */
1806 return addr;
1807 else
1808 return addr & (((CORE_ADDR) 1 << gdbarch_ptr_bit (target_gdbarch)) - 1);
1809 }
1810
1811
1812 static void
1813 svr4_relocate_section_addresses (struct so_list *so,
1814 struct target_section *sec)
1815 {
1816 sec->addr = svr4_truncate_ptr (sec->addr + LM_ADDR_CHECK (so,
1817 sec->bfd));
1818 sec->endaddr = svr4_truncate_ptr (sec->endaddr + LM_ADDR_CHECK (so,
1819 sec->bfd));
1820 }
1821 \f
1822
1823 /* Architecture-specific operations. */
1824
1825 /* Per-architecture data key. */
1826 static struct gdbarch_data *solib_svr4_data;
1827
1828 struct solib_svr4_ops
1829 {
1830 /* Return a description of the layout of `struct link_map'. */
1831 struct link_map_offsets *(*fetch_link_map_offsets)(void);
1832 };
1833
1834 /* Return a default for the architecture-specific operations. */
1835
1836 static void *
1837 solib_svr4_init (struct obstack *obstack)
1838 {
1839 struct solib_svr4_ops *ops;
1840
1841 ops = OBSTACK_ZALLOC (obstack, struct solib_svr4_ops);
1842 ops->fetch_link_map_offsets = NULL;
1843 return ops;
1844 }
1845
1846 /* Set the architecture-specific `struct link_map_offsets' fetcher for
1847 GDBARCH to FLMO. Also, install SVR4 solib_ops into GDBARCH. */
1848
1849 void
1850 set_solib_svr4_fetch_link_map_offsets (struct gdbarch *gdbarch,
1851 struct link_map_offsets *(*flmo) (void))
1852 {
1853 struct solib_svr4_ops *ops = gdbarch_data (gdbarch, solib_svr4_data);
1854
1855 ops->fetch_link_map_offsets = flmo;
1856
1857 set_solib_ops (gdbarch, &svr4_so_ops);
1858 }
1859
1860 /* Fetch a link_map_offsets structure using the architecture-specific
1861 `struct link_map_offsets' fetcher. */
1862
1863 static struct link_map_offsets *
1864 svr4_fetch_link_map_offsets (void)
1865 {
1866 struct solib_svr4_ops *ops = gdbarch_data (target_gdbarch, solib_svr4_data);
1867
1868 gdb_assert (ops->fetch_link_map_offsets);
1869 return ops->fetch_link_map_offsets ();
1870 }
1871
1872 /* Return 1 if a link map offset fetcher has been defined, 0 otherwise. */
1873
1874 static int
1875 svr4_have_link_map_offsets (void)
1876 {
1877 struct solib_svr4_ops *ops = gdbarch_data (target_gdbarch, solib_svr4_data);
1878 return (ops->fetch_link_map_offsets != NULL);
1879 }
1880 \f
1881
1882 /* Most OS'es that have SVR4-style ELF dynamic libraries define a
1883 `struct r_debug' and a `struct link_map' that are binary compatible
1884 with the origional SVR4 implementation. */
1885
1886 /* Fetch (and possibly build) an appropriate `struct link_map_offsets'
1887 for an ILP32 SVR4 system. */
1888
1889 struct link_map_offsets *
1890 svr4_ilp32_fetch_link_map_offsets (void)
1891 {
1892 static struct link_map_offsets lmo;
1893 static struct link_map_offsets *lmp = NULL;
1894
1895 if (lmp == NULL)
1896 {
1897 lmp = &lmo;
1898
1899 lmo.r_version_offset = 0;
1900 lmo.r_version_size = 4;
1901 lmo.r_map_offset = 4;
1902 lmo.r_brk_offset = 8;
1903 lmo.r_ldsomap_offset = 20;
1904
1905 /* Everything we need is in the first 20 bytes. */
1906 lmo.link_map_size = 20;
1907 lmo.l_addr_offset = 0;
1908 lmo.l_name_offset = 4;
1909 lmo.l_ld_offset = 8;
1910 lmo.l_next_offset = 12;
1911 lmo.l_prev_offset = 16;
1912 }
1913
1914 return lmp;
1915 }
1916
1917 /* Fetch (and possibly build) an appropriate `struct link_map_offsets'
1918 for an LP64 SVR4 system. */
1919
1920 struct link_map_offsets *
1921 svr4_lp64_fetch_link_map_offsets (void)
1922 {
1923 static struct link_map_offsets lmo;
1924 static struct link_map_offsets *lmp = NULL;
1925
1926 if (lmp == NULL)
1927 {
1928 lmp = &lmo;
1929
1930 lmo.r_version_offset = 0;
1931 lmo.r_version_size = 4;
1932 lmo.r_map_offset = 8;
1933 lmo.r_brk_offset = 16;
1934 lmo.r_ldsomap_offset = 40;
1935
1936 /* Everything we need is in the first 40 bytes. */
1937 lmo.link_map_size = 40;
1938 lmo.l_addr_offset = 0;
1939 lmo.l_name_offset = 8;
1940 lmo.l_ld_offset = 16;
1941 lmo.l_next_offset = 24;
1942 lmo.l_prev_offset = 32;
1943 }
1944
1945 return lmp;
1946 }
1947 \f
1948
1949 struct target_so_ops svr4_so_ops;
1950
1951 /* Lookup global symbol for ELF DSOs linked with -Bsymbolic. Those DSOs have a
1952 different rule for symbol lookup. The lookup begins here in the DSO, not in
1953 the main executable. */
1954
1955 static struct symbol *
1956 elf_lookup_lib_symbol (const struct objfile *objfile,
1957 const char *name,
1958 const char *linkage_name,
1959 const domain_enum domain)
1960 {
1961 bfd *abfd;
1962
1963 if (objfile == symfile_objfile)
1964 abfd = exec_bfd;
1965 else
1966 {
1967 /* OBJFILE should have been passed as the non-debug one. */
1968 gdb_assert (objfile->separate_debug_objfile_backlink == NULL);
1969
1970 abfd = objfile->obfd;
1971 }
1972
1973 if (abfd == NULL || scan_dyntag (DT_SYMBOLIC, abfd, NULL) != 1)
1974 return NULL;
1975
1976 return lookup_global_symbol_from_objfile
1977 (objfile, name, linkage_name, domain);
1978 }
1979
1980 extern initialize_file_ftype _initialize_svr4_solib; /* -Wmissing-prototypes */
1981
1982 void
1983 _initialize_svr4_solib (void)
1984 {
1985 solib_svr4_data = gdbarch_data_register_pre_init (solib_svr4_init);
1986 solib_svr4_pspace_data
1987 = register_program_space_data_with_cleanup (svr4_pspace_data_cleanup);
1988
1989 svr4_so_ops.relocate_section_addresses = svr4_relocate_section_addresses;
1990 svr4_so_ops.free_so = svr4_free_so;
1991 svr4_so_ops.clear_solib = svr4_clear_solib;
1992 svr4_so_ops.solib_create_inferior_hook = svr4_solib_create_inferior_hook;
1993 svr4_so_ops.special_symbol_handling = svr4_special_symbol_handling;
1994 svr4_so_ops.current_sos = svr4_current_sos;
1995 svr4_so_ops.open_symbol_file_object = open_symbol_file_object;
1996 svr4_so_ops.in_dynsym_resolve_code = svr4_in_dynsym_resolve_code;
1997 svr4_so_ops.bfd_open = solib_bfd_open;
1998 svr4_so_ops.lookup_lib_global_symbol = elf_lookup_lib_symbol;
1999 svr4_so_ops.same = svr4_same;
2000 svr4_so_ops.keep_data_in_core = svr4_keep_data_in_core;
2001 }