gdb: fix auxv caching
[binutils-gdb.git] / gdb / solib-svr4.c
1 /* Handle SVR4 shared libraries for GDB, the GNU Debugger.
2
3 Copyright (C) 1990-2022 Free Software Foundation, Inc.
4
5 This file is part of GDB.
6
7 This program is free software; you can redistribute it and/or modify
8 it under the terms of the GNU General Public License as published by
9 the Free Software Foundation; either version 3 of the License, or
10 (at your option) any later version.
11
12 This program is distributed in the hope that it will be useful,
13 but WITHOUT ANY WARRANTY; without even the implied warranty of
14 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
15 GNU General Public License for more details.
16
17 You should have received a copy of the GNU General Public License
18 along with this program. If not, see <http://www.gnu.org/licenses/>. */
19
20 #include "defs.h"
21
22 #include "elf/external.h"
23 #include "elf/common.h"
24 #include "elf/mips.h"
25
26 #include "symtab.h"
27 #include "bfd.h"
28 #include "symfile.h"
29 #include "objfiles.h"
30 #include "gdbcore.h"
31 #include "target.h"
32 #include "inferior.h"
33 #include "infrun.h"
34 #include "regcache.h"
35 #include "gdbthread.h"
36 #include "observable.h"
37
38 #include "solist.h"
39 #include "solib.h"
40 #include "solib-svr4.h"
41
42 #include "bfd-target.h"
43 #include "elf-bfd.h"
44 #include "exec.h"
45 #include "auxv.h"
46 #include "gdb_bfd.h"
47 #include "probe.h"
48
49 static struct link_map_offsets *svr4_fetch_link_map_offsets (void);
50 static int svr4_have_link_map_offsets (void);
51 static void svr4_relocate_main_executable (void);
52 static void svr4_free_library_list (void *p_list);
53 static void probes_table_remove_objfile_probes (struct objfile *objfile);
54 static void svr4_iterate_over_objfiles_in_search_order
55 (gdbarch *gdbarch, iterate_over_objfiles_in_search_order_cb_ftype cb,
56 objfile *current_objfile);
57
58
59 /* On SVR4 systems, a list of symbols in the dynamic linker where
60 GDB can try to place a breakpoint to monitor shared library
61 events.
62
63 If none of these symbols are found, or other errors occur, then
64 SVR4 systems will fall back to using a symbol as the "startup
65 mapping complete" breakpoint address. */
66
67 static const char * const solib_break_names[] =
68 {
69 "r_debug_state",
70 "_r_debug_state",
71 "_dl_debug_state",
72 "rtld_db_dlactivity",
73 "__dl_rtld_db_dlactivity",
74 "_rtld_debug_state",
75
76 NULL
77 };
78
79 static const char * const bkpt_names[] =
80 {
81 "_start",
82 "__start",
83 "main",
84 NULL
85 };
86
87 static const char * const main_name_list[] =
88 {
89 "main_$main",
90 NULL
91 };
92
93 /* What to do when a probe stop occurs. */
94
95 enum probe_action
96 {
97 /* Something went seriously wrong. Stop using probes and
98 revert to using the older interface. */
99 PROBES_INTERFACE_FAILED,
100
101 /* No action is required. The shared object list is still
102 valid. */
103 DO_NOTHING,
104
105 /* The shared object list should be reloaded entirely. */
106 FULL_RELOAD,
107
108 /* Attempt to incrementally update the shared object list. If
109 the update fails or is not possible, fall back to reloading
110 the list in full. */
111 UPDATE_OR_RELOAD,
112 };
113
114 /* A probe's name and its associated action. */
115
116 struct probe_info
117 {
118 /* The name of the probe. */
119 const char *name;
120
121 /* What to do when a probe stop occurs. */
122 enum probe_action action;
123 };
124
125 /* A list of named probes and their associated actions. If all
126 probes are present in the dynamic linker then the probes-based
127 interface will be used. */
128
129 static const struct probe_info probe_info[] =
130 {
131 { "init_start", DO_NOTHING },
132 { "init_complete", FULL_RELOAD },
133 { "map_start", DO_NOTHING },
134 { "map_failed", DO_NOTHING },
135 { "reloc_complete", UPDATE_OR_RELOAD },
136 { "unmap_start", DO_NOTHING },
137 { "unmap_complete", FULL_RELOAD },
138 };
139
140 #define NUM_PROBES ARRAY_SIZE (probe_info)
141
142 /* Return non-zero if GDB_SO_NAME and INFERIOR_SO_NAME represent
143 the same shared library. */
144
145 static int
146 svr4_same_1 (const char *gdb_so_name, const char *inferior_so_name)
147 {
148 if (strcmp (gdb_so_name, inferior_so_name) == 0)
149 return 1;
150
151 /* On Solaris, when starting inferior we think that dynamic linker is
152 /usr/lib/ld.so.1, but later on, the table of loaded shared libraries
153 contains /lib/ld.so.1. Sometimes one file is a link to another, but
154 sometimes they have identical content, but are not linked to each
155 other. We don't restrict this check for Solaris, but the chances
156 of running into this situation elsewhere are very low. */
157 if (strcmp (gdb_so_name, "/usr/lib/ld.so.1") == 0
158 && strcmp (inferior_so_name, "/lib/ld.so.1") == 0)
159 return 1;
160
161 /* Similarly, we observed the same issue with amd64 and sparcv9, but with
162 different locations. */
163 if (strcmp (gdb_so_name, "/usr/lib/amd64/ld.so.1") == 0
164 && strcmp (inferior_so_name, "/lib/amd64/ld.so.1") == 0)
165 return 1;
166
167 if (strcmp (gdb_so_name, "/usr/lib/sparcv9/ld.so.1") == 0
168 && strcmp (inferior_so_name, "/lib/sparcv9/ld.so.1") == 0)
169 return 1;
170
171 return 0;
172 }
173
174 static int
175 svr4_same (struct so_list *gdb, struct so_list *inferior)
176 {
177 return (svr4_same_1 (gdb->so_original_name, inferior->so_original_name));
178 }
179
180 static std::unique_ptr<lm_info_svr4>
181 lm_info_read (CORE_ADDR lm_addr)
182 {
183 struct link_map_offsets *lmo = svr4_fetch_link_map_offsets ();
184 std::unique_ptr<lm_info_svr4> lm_info;
185
186 gdb::byte_vector lm (lmo->link_map_size);
187
188 if (target_read_memory (lm_addr, lm.data (), lmo->link_map_size) != 0)
189 warning (_("Error reading shared library list entry at %s"),
190 paddress (target_gdbarch (), lm_addr));
191 else
192 {
193 struct type *ptr_type = builtin_type (target_gdbarch ())->builtin_data_ptr;
194
195 lm_info.reset (new lm_info_svr4);
196 lm_info->lm_addr = lm_addr;
197
198 lm_info->l_addr_inferior = extract_typed_address (&lm[lmo->l_addr_offset],
199 ptr_type);
200 lm_info->l_ld = extract_typed_address (&lm[lmo->l_ld_offset], ptr_type);
201 lm_info->l_next = extract_typed_address (&lm[lmo->l_next_offset],
202 ptr_type);
203 lm_info->l_prev = extract_typed_address (&lm[lmo->l_prev_offset],
204 ptr_type);
205 lm_info->l_name = extract_typed_address (&lm[lmo->l_name_offset],
206 ptr_type);
207 }
208
209 return lm_info;
210 }
211
212 static int
213 has_lm_dynamic_from_link_map (void)
214 {
215 struct link_map_offsets *lmo = svr4_fetch_link_map_offsets ();
216
217 return lmo->l_ld_offset >= 0;
218 }
219
220 static CORE_ADDR
221 lm_addr_check (const struct so_list *so, bfd *abfd)
222 {
223 lm_info_svr4 *li = (lm_info_svr4 *) so->lm_info;
224
225 if (!li->l_addr_p)
226 {
227 struct bfd_section *dyninfo_sect;
228 CORE_ADDR l_addr, l_dynaddr, dynaddr;
229
230 l_addr = li->l_addr_inferior;
231
232 if (! abfd || ! has_lm_dynamic_from_link_map ())
233 goto set_addr;
234
235 l_dynaddr = li->l_ld;
236
237 dyninfo_sect = bfd_get_section_by_name (abfd, ".dynamic");
238 if (dyninfo_sect == NULL)
239 goto set_addr;
240
241 dynaddr = bfd_section_vma (dyninfo_sect);
242
243 if (dynaddr + l_addr != l_dynaddr)
244 {
245 CORE_ADDR align = 0x1000;
246 CORE_ADDR minpagesize = align;
247
248 if (bfd_get_flavour (abfd) == bfd_target_elf_flavour)
249 {
250 Elf_Internal_Ehdr *ehdr = elf_tdata (abfd)->elf_header;
251 Elf_Internal_Phdr *phdr = elf_tdata (abfd)->phdr;
252 int i;
253
254 align = 1;
255
256 for (i = 0; i < ehdr->e_phnum; i++)
257 if (phdr[i].p_type == PT_LOAD && phdr[i].p_align > align)
258 align = phdr[i].p_align;
259
260 minpagesize = get_elf_backend_data (abfd)->minpagesize;
261 }
262
263 /* Turn it into a mask. */
264 align--;
265
266 /* If the changes match the alignment requirements, we
267 assume we're using a core file that was generated by the
268 same binary, just prelinked with a different base offset.
269 If it doesn't match, we may have a different binary, the
270 same binary with the dynamic table loaded at an unrelated
271 location, or anything, really. To avoid regressions,
272 don't adjust the base offset in the latter case, although
273 odds are that, if things really changed, debugging won't
274 quite work.
275
276 One could expect more the condition
277 ((l_addr & align) == 0 && ((l_dynaddr - dynaddr) & align) == 0)
278 but the one below is relaxed for PPC. The PPC kernel supports
279 either 4k or 64k page sizes. To be prepared for 64k pages,
280 PPC ELF files are built using an alignment requirement of 64k.
281 However, when running on a kernel supporting 4k pages, the memory
282 mapping of the library may not actually happen on a 64k boundary!
283
284 (In the usual case where (l_addr & align) == 0, this check is
285 equivalent to the possibly expected check above.)
286
287 Even on PPC it must be zero-aligned at least for MINPAGESIZE. */
288
289 l_addr = l_dynaddr - dynaddr;
290
291 if ((l_addr & (minpagesize - 1)) == 0
292 && (l_addr & align) == ((l_dynaddr - dynaddr) & align))
293 {
294 if (info_verbose)
295 gdb_printf (_("Using PIC (Position Independent Code) "
296 "prelink displacement %s for \"%s\".\n"),
297 paddress (target_gdbarch (), l_addr),
298 so->so_name);
299 }
300 else
301 {
302 /* There is no way to verify the library file matches. prelink
303 can during prelinking of an unprelinked file (or unprelinking
304 of a prelinked file) shift the DYNAMIC segment by arbitrary
305 offset without any page size alignment. There is no way to
306 find out the ELF header and/or Program Headers for a limited
307 verification if it they match. One could do a verification
308 of the DYNAMIC segment. Still the found address is the best
309 one GDB could find. */
310
311 warning (_(".dynamic section for \"%s\" "
312 "is not at the expected address "
313 "(wrong library or version mismatch?)"), so->so_name);
314 }
315 }
316
317 set_addr:
318 li->l_addr = l_addr;
319 li->l_addr_p = 1;
320 }
321
322 return li->l_addr;
323 }
324
325 /* Per pspace SVR4 specific data. */
326
327 struct svr4_info
328 {
329 svr4_info () = default;
330 ~svr4_info ();
331
332 /* Base of dynamic linker structures. */
333 CORE_ADDR debug_base = 0;
334
335 /* Validity flag for debug_loader_offset. */
336 int debug_loader_offset_p = 0;
337
338 /* Load address for the dynamic linker, inferred. */
339 CORE_ADDR debug_loader_offset = 0;
340
341 /* Name of the dynamic linker, valid if debug_loader_offset_p. */
342 char *debug_loader_name = nullptr;
343
344 /* Load map address for the main executable. */
345 CORE_ADDR main_lm_addr = 0;
346
347 CORE_ADDR interp_text_sect_low = 0;
348 CORE_ADDR interp_text_sect_high = 0;
349 CORE_ADDR interp_plt_sect_low = 0;
350 CORE_ADDR interp_plt_sect_high = 0;
351
352 /* Nonzero if the list of objects was last obtained from the target
353 via qXfer:libraries-svr4:read. */
354 int using_xfer = 0;
355
356 /* Table of struct probe_and_action instances, used by the
357 probes-based interface to map breakpoint addresses to probes
358 and their associated actions. Lookup is performed using
359 probe_and_action->prob->address. */
360 htab_up probes_table;
361
362 /* List of objects loaded into the inferior, used by the probes-
363 based interface. */
364 struct so_list *solib_list = nullptr;
365 };
366
367 /* Per-program-space data key. */
368 static const registry<program_space>::key<svr4_info> solib_svr4_pspace_data;
369
370 /* Free the probes table. */
371
372 static void
373 free_probes_table (struct svr4_info *info)
374 {
375 info->probes_table.reset (nullptr);
376 }
377
378 /* Free the solib list. */
379
380 static void
381 free_solib_list (struct svr4_info *info)
382 {
383 svr4_free_library_list (&info->solib_list);
384 info->solib_list = NULL;
385 }
386
387 svr4_info::~svr4_info ()
388 {
389 free_solib_list (this);
390 }
391
392 /* Get the svr4 data for program space PSPACE. If none is found yet, add it now.
393 This function always returns a valid object. */
394
395 static struct svr4_info *
396 get_svr4_info (program_space *pspace)
397 {
398 struct svr4_info *info = solib_svr4_pspace_data.get (pspace);
399
400 if (info == NULL)
401 info = solib_svr4_pspace_data.emplace (pspace);
402
403 return info;
404 }
405
406 /* Local function prototypes */
407
408 static int match_main (const char *);
409
410 /* Read program header TYPE from inferior memory. The header is found
411 by scanning the OS auxiliary vector.
412
413 If TYPE == -1, return the program headers instead of the contents of
414 one program header.
415
416 Return vector of bytes holding the program header contents, or an empty
417 optional on failure. If successful and P_ARCH_SIZE is non-NULL, the target
418 architecture size (32-bit or 64-bit) is returned to *P_ARCH_SIZE. Likewise,
419 the base address of the section is returned in *BASE_ADDR. */
420
421 static gdb::optional<gdb::byte_vector>
422 read_program_header (int type, int *p_arch_size, CORE_ADDR *base_addr)
423 {
424 enum bfd_endian byte_order = gdbarch_byte_order (target_gdbarch ());
425 CORE_ADDR at_phdr, at_phent, at_phnum, pt_phdr = 0;
426 int arch_size, sect_size;
427 CORE_ADDR sect_addr;
428 int pt_phdr_p = 0;
429
430 /* Get required auxv elements from target. */
431 if (target_auxv_search (AT_PHDR, &at_phdr) <= 0)
432 return {};
433 if (target_auxv_search (AT_PHENT, &at_phent) <= 0)
434 return {};
435 if (target_auxv_search (AT_PHNUM, &at_phnum) <= 0)
436 return {};
437 if (!at_phdr || !at_phnum)
438 return {};
439
440 /* Determine ELF architecture type. */
441 if (at_phent == sizeof (Elf32_External_Phdr))
442 arch_size = 32;
443 else if (at_phent == sizeof (Elf64_External_Phdr))
444 arch_size = 64;
445 else
446 return {};
447
448 /* Find the requested segment. */
449 if (type == -1)
450 {
451 sect_addr = at_phdr;
452 sect_size = at_phent * at_phnum;
453 }
454 else if (arch_size == 32)
455 {
456 Elf32_External_Phdr phdr;
457 int i;
458
459 /* Search for requested PHDR. */
460 for (i = 0; i < at_phnum; i++)
461 {
462 int p_type;
463
464 if (target_read_memory (at_phdr + i * sizeof (phdr),
465 (gdb_byte *)&phdr, sizeof (phdr)))
466 return {};
467
468 p_type = extract_unsigned_integer ((gdb_byte *) phdr.p_type,
469 4, byte_order);
470
471 if (p_type == PT_PHDR)
472 {
473 pt_phdr_p = 1;
474 pt_phdr = extract_unsigned_integer ((gdb_byte *) phdr.p_vaddr,
475 4, byte_order);
476 }
477
478 if (p_type == type)
479 break;
480 }
481
482 if (i == at_phnum)
483 return {};
484
485 /* Retrieve address and size. */
486 sect_addr = extract_unsigned_integer ((gdb_byte *)phdr.p_vaddr,
487 4, byte_order);
488 sect_size = extract_unsigned_integer ((gdb_byte *)phdr.p_memsz,
489 4, byte_order);
490 }
491 else
492 {
493 Elf64_External_Phdr phdr;
494 int i;
495
496 /* Search for requested PHDR. */
497 for (i = 0; i < at_phnum; i++)
498 {
499 int p_type;
500
501 if (target_read_memory (at_phdr + i * sizeof (phdr),
502 (gdb_byte *)&phdr, sizeof (phdr)))
503 return {};
504
505 p_type = extract_unsigned_integer ((gdb_byte *) phdr.p_type,
506 4, byte_order);
507
508 if (p_type == PT_PHDR)
509 {
510 pt_phdr_p = 1;
511 pt_phdr = extract_unsigned_integer ((gdb_byte *) phdr.p_vaddr,
512 8, byte_order);
513 }
514
515 if (p_type == type)
516 break;
517 }
518
519 if (i == at_phnum)
520 return {};
521
522 /* Retrieve address and size. */
523 sect_addr = extract_unsigned_integer ((gdb_byte *)phdr.p_vaddr,
524 8, byte_order);
525 sect_size = extract_unsigned_integer ((gdb_byte *)phdr.p_memsz,
526 8, byte_order);
527 }
528
529 /* PT_PHDR is optional, but we really need it
530 for PIE to make this work in general. */
531
532 if (pt_phdr_p)
533 {
534 /* at_phdr is real address in memory. pt_phdr is what pheader says it is.
535 Relocation offset is the difference between the two. */
536 sect_addr = sect_addr + (at_phdr - pt_phdr);
537 }
538
539 /* Read in requested program header. */
540 gdb::byte_vector buf (sect_size);
541 if (target_read_memory (sect_addr, buf.data (), sect_size))
542 return {};
543
544 if (p_arch_size)
545 *p_arch_size = arch_size;
546 if (base_addr)
547 *base_addr = sect_addr;
548
549 return buf;
550 }
551
552
553 /* Return program interpreter string. */
554 static gdb::optional<gdb::byte_vector>
555 find_program_interpreter (void)
556 {
557 /* If we have a current exec_bfd, use its section table. */
558 if (current_program_space->exec_bfd ()
559 && (bfd_get_flavour (current_program_space->exec_bfd ())
560 == bfd_target_elf_flavour))
561 {
562 struct bfd_section *interp_sect;
563
564 interp_sect = bfd_get_section_by_name (current_program_space->exec_bfd (),
565 ".interp");
566 if (interp_sect != NULL)
567 {
568 int sect_size = bfd_section_size (interp_sect);
569
570 gdb::byte_vector buf (sect_size);
571 bfd_get_section_contents (current_program_space->exec_bfd (),
572 interp_sect, buf.data (), 0, sect_size);
573 return buf;
574 }
575 }
576
577 /* If we didn't find it, use the target auxiliary vector. */
578 return read_program_header (PT_INTERP, NULL, NULL);
579 }
580
581
582 /* Scan for DESIRED_DYNTAG in .dynamic section of the target's main executable,
583 found by consulting the OS auxillary vector. If DESIRED_DYNTAG is found, 1
584 is returned and the corresponding PTR is set. */
585
586 static int
587 scan_dyntag_auxv (const int desired_dyntag, CORE_ADDR *ptr,
588 CORE_ADDR *ptr_addr)
589 {
590 enum bfd_endian byte_order = gdbarch_byte_order (target_gdbarch ());
591 int arch_size, step;
592 long current_dyntag;
593 CORE_ADDR dyn_ptr;
594 CORE_ADDR base_addr;
595
596 /* Read in .dynamic section. */
597 gdb::optional<gdb::byte_vector> ph_data
598 = read_program_header (PT_DYNAMIC, &arch_size, &base_addr);
599 if (!ph_data)
600 return 0;
601
602 /* Iterate over BUF and scan for DYNTAG. If found, set PTR and return. */
603 step = (arch_size == 32) ? sizeof (Elf32_External_Dyn)
604 : sizeof (Elf64_External_Dyn);
605 for (gdb_byte *buf = ph_data->data (), *bufend = buf + ph_data->size ();
606 buf < bufend; buf += step)
607 {
608 if (arch_size == 32)
609 {
610 Elf32_External_Dyn *dynp = (Elf32_External_Dyn *) buf;
611
612 current_dyntag = extract_unsigned_integer ((gdb_byte *) dynp->d_tag,
613 4, byte_order);
614 dyn_ptr = extract_unsigned_integer ((gdb_byte *) dynp->d_un.d_ptr,
615 4, byte_order);
616 }
617 else
618 {
619 Elf64_External_Dyn *dynp = (Elf64_External_Dyn *) buf;
620
621 current_dyntag = extract_unsigned_integer ((gdb_byte *) dynp->d_tag,
622 8, byte_order);
623 dyn_ptr = extract_unsigned_integer ((gdb_byte *) dynp->d_un.d_ptr,
624 8, byte_order);
625 }
626 if (current_dyntag == DT_NULL)
627 break;
628
629 if (current_dyntag == desired_dyntag)
630 {
631 if (ptr)
632 *ptr = dyn_ptr;
633
634 if (ptr_addr)
635 *ptr_addr = base_addr + buf - ph_data->data ();
636
637 return 1;
638 }
639 }
640
641 return 0;
642 }
643
644 /* Locate the base address of dynamic linker structs for SVR4 elf
645 targets.
646
647 For SVR4 elf targets the address of the dynamic linker's runtime
648 structure is contained within the dynamic info section in the
649 executable file. The dynamic section is also mapped into the
650 inferior address space. Because the runtime loader fills in the
651 real address before starting the inferior, we have to read in the
652 dynamic info section from the inferior address space.
653 If there are any errors while trying to find the address, we
654 silently return 0, otherwise the found address is returned. */
655
656 static CORE_ADDR
657 elf_locate_base (void)
658 {
659 struct bound_minimal_symbol msymbol;
660 CORE_ADDR dyn_ptr, dyn_ptr_addr;
661
662 /* Look for DT_MIPS_RLD_MAP first. MIPS executables use this
663 instead of DT_DEBUG, although they sometimes contain an unused
664 DT_DEBUG. */
665 if (gdb_bfd_scan_elf_dyntag (DT_MIPS_RLD_MAP,
666 current_program_space->exec_bfd (),
667 &dyn_ptr, NULL)
668 || scan_dyntag_auxv (DT_MIPS_RLD_MAP, &dyn_ptr, NULL))
669 {
670 struct type *ptr_type = builtin_type (target_gdbarch ())->builtin_data_ptr;
671 gdb_byte *pbuf;
672 int pbuf_size = ptr_type->length ();
673
674 pbuf = (gdb_byte *) alloca (pbuf_size);
675 /* DT_MIPS_RLD_MAP contains a pointer to the address
676 of the dynamic link structure. */
677 if (target_read_memory (dyn_ptr, pbuf, pbuf_size))
678 return 0;
679 return extract_typed_address (pbuf, ptr_type);
680 }
681
682 /* Then check DT_MIPS_RLD_MAP_REL. MIPS executables now use this form
683 because of needing to support PIE. DT_MIPS_RLD_MAP will also exist
684 in non-PIE. */
685 if (gdb_bfd_scan_elf_dyntag (DT_MIPS_RLD_MAP_REL,
686 current_program_space->exec_bfd (),
687 &dyn_ptr, &dyn_ptr_addr)
688 || scan_dyntag_auxv (DT_MIPS_RLD_MAP_REL, &dyn_ptr, &dyn_ptr_addr))
689 {
690 struct type *ptr_type = builtin_type (target_gdbarch ())->builtin_data_ptr;
691 gdb_byte *pbuf;
692 int pbuf_size = ptr_type->length ();
693
694 pbuf = (gdb_byte *) alloca (pbuf_size);
695 /* DT_MIPS_RLD_MAP_REL contains an offset from the address of the
696 DT slot to the address of the dynamic link structure. */
697 if (target_read_memory (dyn_ptr + dyn_ptr_addr, pbuf, pbuf_size))
698 return 0;
699 return extract_typed_address (pbuf, ptr_type);
700 }
701
702 /* Find DT_DEBUG. */
703 if (gdb_bfd_scan_elf_dyntag (DT_DEBUG, current_program_space->exec_bfd (),
704 &dyn_ptr, NULL)
705 || scan_dyntag_auxv (DT_DEBUG, &dyn_ptr, NULL))
706 return dyn_ptr;
707
708 /* This may be a static executable. Look for the symbol
709 conventionally named _r_debug, as a last resort. */
710 msymbol = lookup_minimal_symbol ("_r_debug", NULL,
711 current_program_space->symfile_object_file);
712 if (msymbol.minsym != NULL)
713 return msymbol.value_address ();
714
715 /* DT_DEBUG entry not found. */
716 return 0;
717 }
718
719 /* Locate the base address of dynamic linker structs.
720
721 For both the SunOS and SVR4 shared library implementations, if the
722 inferior executable has been linked dynamically, there is a single
723 address somewhere in the inferior's data space which is the key to
724 locating all of the dynamic linker's runtime structures. This
725 address is the value of the debug base symbol. The job of this
726 function is to find and return that address, or to return 0 if there
727 is no such address (the executable is statically linked for example).
728
729 For SunOS, the job is almost trivial, since the dynamic linker and
730 all of it's structures are statically linked to the executable at
731 link time. Thus the symbol for the address we are looking for has
732 already been added to the minimal symbol table for the executable's
733 objfile at the time the symbol file's symbols were read, and all we
734 have to do is look it up there. Note that we explicitly do NOT want
735 to find the copies in the shared library.
736
737 The SVR4 version is a bit more complicated because the address
738 is contained somewhere in the dynamic info section. We have to go
739 to a lot more work to discover the address of the debug base symbol.
740 Because of this complexity, we cache the value we find and return that
741 value on subsequent invocations. Note there is no copy in the
742 executable symbol tables. */
743
744 static CORE_ADDR
745 locate_base (struct svr4_info *info)
746 {
747 /* Check to see if we have a currently valid address, and if so, avoid
748 doing all this work again and just return the cached address. If
749 we have no cached address, try to locate it in the dynamic info
750 section for ELF executables. There's no point in doing any of this
751 though if we don't have some link map offsets to work with. */
752
753 if (info->debug_base == 0 && svr4_have_link_map_offsets ())
754 info->debug_base = elf_locate_base ();
755 return info->debug_base;
756 }
757
758 /* Find the first element in the inferior's dynamic link map, and
759 return its address in the inferior. Return zero if the address
760 could not be determined.
761
762 FIXME: Perhaps we should validate the info somehow, perhaps by
763 checking r_version for a known version number, or r_state for
764 RT_CONSISTENT. */
765
766 static CORE_ADDR
767 solib_svr4_r_map (struct svr4_info *info)
768 {
769 struct link_map_offsets *lmo = svr4_fetch_link_map_offsets ();
770 struct type *ptr_type = builtin_type (target_gdbarch ())->builtin_data_ptr;
771 CORE_ADDR addr = 0;
772
773 try
774 {
775 addr = read_memory_typed_address (info->debug_base + lmo->r_map_offset,
776 ptr_type);
777 }
778 catch (const gdb_exception_error &ex)
779 {
780 exception_print (gdb_stderr, ex);
781 }
782
783 return addr;
784 }
785
786 /* Find r_brk from the inferior's debug base. */
787
788 static CORE_ADDR
789 solib_svr4_r_brk (struct svr4_info *info)
790 {
791 struct link_map_offsets *lmo = svr4_fetch_link_map_offsets ();
792 struct type *ptr_type = builtin_type (target_gdbarch ())->builtin_data_ptr;
793
794 return read_memory_typed_address (info->debug_base + lmo->r_brk_offset,
795 ptr_type);
796 }
797
798 /* Find the link map for the dynamic linker (if it is not in the
799 normal list of loaded shared objects). */
800
801 static CORE_ADDR
802 solib_svr4_r_ldsomap (struct svr4_info *info)
803 {
804 struct link_map_offsets *lmo = svr4_fetch_link_map_offsets ();
805 struct type *ptr_type = builtin_type (target_gdbarch ())->builtin_data_ptr;
806 enum bfd_endian byte_order = type_byte_order (ptr_type);
807 ULONGEST version = 0;
808
809 try
810 {
811 /* Check version, and return zero if `struct r_debug' doesn't have
812 the r_ldsomap member. */
813 version
814 = read_memory_unsigned_integer (info->debug_base + lmo->r_version_offset,
815 lmo->r_version_size, byte_order);
816 }
817 catch (const gdb_exception_error &ex)
818 {
819 exception_print (gdb_stderr, ex);
820 }
821
822 if (version < 2 || lmo->r_ldsomap_offset == -1)
823 return 0;
824
825 return read_memory_typed_address (info->debug_base + lmo->r_ldsomap_offset,
826 ptr_type);
827 }
828
829 /* On Solaris systems with some versions of the dynamic linker,
830 ld.so's l_name pointer points to the SONAME in the string table
831 rather than into writable memory. So that GDB can find shared
832 libraries when loading a core file generated by gcore, ensure that
833 memory areas containing the l_name string are saved in the core
834 file. */
835
836 static int
837 svr4_keep_data_in_core (CORE_ADDR vaddr, unsigned long size)
838 {
839 struct svr4_info *info;
840 CORE_ADDR ldsomap;
841 CORE_ADDR name_lm;
842
843 info = get_svr4_info (current_program_space);
844
845 info->debug_base = 0;
846 locate_base (info);
847 if (!info->debug_base)
848 return 0;
849
850 ldsomap = solib_svr4_r_ldsomap (info);
851 if (!ldsomap)
852 return 0;
853
854 std::unique_ptr<lm_info_svr4> li = lm_info_read (ldsomap);
855 name_lm = li != NULL ? li->l_name : 0;
856
857 return (name_lm >= vaddr && name_lm < vaddr + size);
858 }
859
860 /* See solist.h. */
861
862 static int
863 open_symbol_file_object (int from_tty)
864 {
865 CORE_ADDR lm, l_name;
866 struct link_map_offsets *lmo = svr4_fetch_link_map_offsets ();
867 struct type *ptr_type = builtin_type (target_gdbarch ())->builtin_data_ptr;
868 int l_name_size = ptr_type->length ();
869 gdb::byte_vector l_name_buf (l_name_size);
870 struct svr4_info *info = get_svr4_info (current_program_space);
871 symfile_add_flags add_flags = 0;
872
873 if (from_tty)
874 add_flags |= SYMFILE_VERBOSE;
875
876 if (current_program_space->symfile_object_file)
877 if (!query (_("Attempt to reload symbols from process? ")))
878 return 0;
879
880 /* Always locate the debug struct, in case it has moved. */
881 info->debug_base = 0;
882 if (locate_base (info) == 0)
883 return 0; /* failed somehow... */
884
885 /* First link map member should be the executable. */
886 lm = solib_svr4_r_map (info);
887 if (lm == 0)
888 return 0; /* failed somehow... */
889
890 /* Read address of name from target memory to GDB. */
891 read_memory (lm + lmo->l_name_offset, l_name_buf.data (), l_name_size);
892
893 /* Convert the address to host format. */
894 l_name = extract_typed_address (l_name_buf.data (), ptr_type);
895
896 if (l_name == 0)
897 return 0; /* No filename. */
898
899 /* Now fetch the filename from target memory. */
900 gdb::unique_xmalloc_ptr<char> filename
901 = target_read_string (l_name, SO_NAME_MAX_PATH_SIZE - 1);
902
903 if (filename == nullptr)
904 {
905 warning (_("failed to read exec filename from attached file"));
906 return 0;
907 }
908
909 /* Have a pathname: read the symbol file. */
910 symbol_file_add_main (filename.get (), add_flags);
911
912 return 1;
913 }
914
915 /* Data exchange structure for the XML parser as returned by
916 svr4_current_sos_via_xfer_libraries. */
917
918 struct svr4_library_list
919 {
920 struct so_list *head, **tailp;
921
922 /* Inferior address of struct link_map used for the main executable. It is
923 NULL if not known. */
924 CORE_ADDR main_lm;
925 };
926
927 /* This module's 'free_objfile' observer. */
928
929 static void
930 svr4_free_objfile_observer (struct objfile *objfile)
931 {
932 probes_table_remove_objfile_probes (objfile);
933 }
934
935 /* Implementation for target_so_ops.free_so. */
936
937 static void
938 svr4_free_so (struct so_list *so)
939 {
940 lm_info_svr4 *li = (lm_info_svr4 *) so->lm_info;
941
942 delete li;
943 }
944
945 /* Implement target_so_ops.clear_so. */
946
947 static void
948 svr4_clear_so (struct so_list *so)
949 {
950 lm_info_svr4 *li = (lm_info_svr4 *) so->lm_info;
951
952 if (li != NULL)
953 li->l_addr_p = 0;
954 }
955
956 /* Free so_list built so far (called via cleanup). */
957
958 static void
959 svr4_free_library_list (void *p_list)
960 {
961 struct so_list *list = *(struct so_list **) p_list;
962
963 while (list != NULL)
964 {
965 struct so_list *next = list->next;
966
967 free_so (list);
968 list = next;
969 }
970 }
971
972 /* Copy library list. */
973
974 static struct so_list *
975 svr4_copy_library_list (struct so_list *src)
976 {
977 struct so_list *dst = NULL;
978 struct so_list **link = &dst;
979
980 while (src != NULL)
981 {
982 struct so_list *newobj;
983
984 newobj = XNEW (struct so_list);
985 memcpy (newobj, src, sizeof (struct so_list));
986
987 lm_info_svr4 *src_li = (lm_info_svr4 *) src->lm_info;
988 newobj->lm_info = new lm_info_svr4 (*src_li);
989
990 newobj->next = NULL;
991 *link = newobj;
992 link = &newobj->next;
993
994 src = src->next;
995 }
996
997 return dst;
998 }
999
1000 #ifdef HAVE_LIBEXPAT
1001
1002 #include "xml-support.h"
1003
1004 /* Handle the start of a <library> element. Note: new elements are added
1005 at the tail of the list, keeping the list in order. */
1006
1007 static void
1008 library_list_start_library (struct gdb_xml_parser *parser,
1009 const struct gdb_xml_element *element,
1010 void *user_data,
1011 std::vector<gdb_xml_value> &attributes)
1012 {
1013 struct svr4_library_list *list = (struct svr4_library_list *) user_data;
1014 const char *name
1015 = (const char *) xml_find_attribute (attributes, "name")->value.get ();
1016 ULONGEST *lmp
1017 = (ULONGEST *) xml_find_attribute (attributes, "lm")->value.get ();
1018 ULONGEST *l_addrp
1019 = (ULONGEST *) xml_find_attribute (attributes, "l_addr")->value.get ();
1020 ULONGEST *l_ldp
1021 = (ULONGEST *) xml_find_attribute (attributes, "l_ld")->value.get ();
1022 struct so_list *new_elem;
1023
1024 new_elem = XCNEW (struct so_list);
1025 lm_info_svr4 *li = new lm_info_svr4;
1026 new_elem->lm_info = li;
1027 li->lm_addr = *lmp;
1028 li->l_addr_inferior = *l_addrp;
1029 li->l_ld = *l_ldp;
1030
1031 strncpy (new_elem->so_name, name, sizeof (new_elem->so_name) - 1);
1032 new_elem->so_name[sizeof (new_elem->so_name) - 1] = 0;
1033 strcpy (new_elem->so_original_name, new_elem->so_name);
1034
1035 *list->tailp = new_elem;
1036 list->tailp = &new_elem->next;
1037 }
1038
1039 /* Handle the start of a <library-list-svr4> element. */
1040
1041 static void
1042 svr4_library_list_start_list (struct gdb_xml_parser *parser,
1043 const struct gdb_xml_element *element,
1044 void *user_data,
1045 std::vector<gdb_xml_value> &attributes)
1046 {
1047 struct svr4_library_list *list = (struct svr4_library_list *) user_data;
1048 const char *version
1049 = (const char *) xml_find_attribute (attributes, "version")->value.get ();
1050 struct gdb_xml_value *main_lm = xml_find_attribute (attributes, "main-lm");
1051
1052 if (strcmp (version, "1.0") != 0)
1053 gdb_xml_error (parser,
1054 _("SVR4 Library list has unsupported version \"%s\""),
1055 version);
1056
1057 if (main_lm)
1058 list->main_lm = *(ULONGEST *) main_lm->value.get ();
1059 }
1060
1061 /* The allowed elements and attributes for an XML library list.
1062 The root element is a <library-list>. */
1063
1064 static const struct gdb_xml_attribute svr4_library_attributes[] =
1065 {
1066 { "name", GDB_XML_AF_NONE, NULL, NULL },
1067 { "lm", GDB_XML_AF_NONE, gdb_xml_parse_attr_ulongest, NULL },
1068 { "l_addr", GDB_XML_AF_NONE, gdb_xml_parse_attr_ulongest, NULL },
1069 { "l_ld", GDB_XML_AF_NONE, gdb_xml_parse_attr_ulongest, NULL },
1070 { NULL, GDB_XML_AF_NONE, NULL, NULL }
1071 };
1072
1073 static const struct gdb_xml_element svr4_library_list_children[] =
1074 {
1075 {
1076 "library", svr4_library_attributes, NULL,
1077 GDB_XML_EF_REPEATABLE | GDB_XML_EF_OPTIONAL,
1078 library_list_start_library, NULL
1079 },
1080 { NULL, NULL, NULL, GDB_XML_EF_NONE, NULL, NULL }
1081 };
1082
1083 static const struct gdb_xml_attribute svr4_library_list_attributes[] =
1084 {
1085 { "version", GDB_XML_AF_NONE, NULL, NULL },
1086 { "main-lm", GDB_XML_AF_OPTIONAL, gdb_xml_parse_attr_ulongest, NULL },
1087 { NULL, GDB_XML_AF_NONE, NULL, NULL }
1088 };
1089
1090 static const struct gdb_xml_element svr4_library_list_elements[] =
1091 {
1092 { "library-list-svr4", svr4_library_list_attributes, svr4_library_list_children,
1093 GDB_XML_EF_NONE, svr4_library_list_start_list, NULL },
1094 { NULL, NULL, NULL, GDB_XML_EF_NONE, NULL, NULL }
1095 };
1096
1097 /* Parse qXfer:libraries:read packet into *SO_LIST_RETURN. Return 1 if
1098
1099 Return 0 if packet not supported, *SO_LIST_RETURN is not modified in such
1100 case. Return 1 if *SO_LIST_RETURN contains the library list, it may be
1101 empty, caller is responsible for freeing all its entries. */
1102
1103 static int
1104 svr4_parse_libraries (const char *document, struct svr4_library_list *list)
1105 {
1106 auto cleanup = make_scope_exit ([&] ()
1107 {
1108 svr4_free_library_list (&list->head);
1109 });
1110
1111 memset (list, 0, sizeof (*list));
1112 list->tailp = &list->head;
1113 if (gdb_xml_parse_quick (_("target library list"), "library-list-svr4.dtd",
1114 svr4_library_list_elements, document, list) == 0)
1115 {
1116 /* Parsed successfully, keep the result. */
1117 cleanup.release ();
1118 return 1;
1119 }
1120
1121 return 0;
1122 }
1123
1124 /* Attempt to get so_list from target via qXfer:libraries-svr4:read packet.
1125
1126 Return 0 if packet not supported, *SO_LIST_RETURN is not modified in such
1127 case. Return 1 if *SO_LIST_RETURN contains the library list, it may be
1128 empty, caller is responsible for freeing all its entries.
1129
1130 Note that ANNEX must be NULL if the remote does not explicitly allow
1131 qXfer:libraries-svr4:read packets with non-empty annexes. Support for
1132 this can be checked using target_augmented_libraries_svr4_read (). */
1133
1134 static int
1135 svr4_current_sos_via_xfer_libraries (struct svr4_library_list *list,
1136 const char *annex)
1137 {
1138 gdb_assert (annex == NULL || target_augmented_libraries_svr4_read ());
1139
1140 /* Fetch the list of shared libraries. */
1141 gdb::optional<gdb::char_vector> svr4_library_document
1142 = target_read_stralloc (current_inferior ()->top_target (),
1143 TARGET_OBJECT_LIBRARIES_SVR4,
1144 annex);
1145 if (!svr4_library_document)
1146 return 0;
1147
1148 return svr4_parse_libraries (svr4_library_document->data (), list);
1149 }
1150
1151 #else
1152
1153 static int
1154 svr4_current_sos_via_xfer_libraries (struct svr4_library_list *list,
1155 const char *annex)
1156 {
1157 return 0;
1158 }
1159
1160 #endif
1161
1162 /* If no shared library information is available from the dynamic
1163 linker, build a fallback list from other sources. */
1164
1165 static struct so_list *
1166 svr4_default_sos (svr4_info *info)
1167 {
1168 struct so_list *newobj;
1169
1170 if (!info->debug_loader_offset_p)
1171 return NULL;
1172
1173 newobj = XCNEW (struct so_list);
1174 lm_info_svr4 *li = new lm_info_svr4;
1175 newobj->lm_info = li;
1176
1177 /* Nothing will ever check the other fields if we set l_addr_p. */
1178 li->l_addr = info->debug_loader_offset;
1179 li->l_addr_p = 1;
1180
1181 strncpy (newobj->so_name, info->debug_loader_name, SO_NAME_MAX_PATH_SIZE - 1);
1182 newobj->so_name[SO_NAME_MAX_PATH_SIZE - 1] = '\0';
1183 strcpy (newobj->so_original_name, newobj->so_name);
1184
1185 return newobj;
1186 }
1187
1188 /* Read the whole inferior libraries chain starting at address LM.
1189 Expect the first entry in the chain's previous entry to be PREV_LM.
1190 Add the entries to the tail referenced by LINK_PTR_PTR. Ignore the
1191 first entry if IGNORE_FIRST and set global MAIN_LM_ADDR according
1192 to it. Returns nonzero upon success. If zero is returned the
1193 entries stored to LINK_PTR_PTR are still valid although they may
1194 represent only part of the inferior library list. */
1195
1196 static int
1197 svr4_read_so_list (svr4_info *info, CORE_ADDR lm, CORE_ADDR prev_lm,
1198 struct so_list ***link_ptr_ptr, int ignore_first)
1199 {
1200 CORE_ADDR first_l_name = 0;
1201 CORE_ADDR next_lm;
1202
1203 for (; lm != 0; prev_lm = lm, lm = next_lm)
1204 {
1205 so_list_up newobj (XCNEW (struct so_list));
1206
1207 lm_info_svr4 *li = lm_info_read (lm).release ();
1208 newobj->lm_info = li;
1209 if (li == NULL)
1210 return 0;
1211
1212 next_lm = li->l_next;
1213
1214 if (li->l_prev != prev_lm)
1215 {
1216 warning (_("Corrupted shared library list: %s != %s"),
1217 paddress (target_gdbarch (), prev_lm),
1218 paddress (target_gdbarch (), li->l_prev));
1219 return 0;
1220 }
1221
1222 /* For SVR4 versions, the first entry in the link map is for the
1223 inferior executable, so we must ignore it. For some versions of
1224 SVR4, it has no name. For others (Solaris 2.3 for example), it
1225 does have a name, so we can no longer use a missing name to
1226 decide when to ignore it. */
1227 if (ignore_first && li->l_prev == 0)
1228 {
1229 first_l_name = li->l_name;
1230 info->main_lm_addr = li->lm_addr;
1231 continue;
1232 }
1233
1234 /* Extract this shared object's name. */
1235 gdb::unique_xmalloc_ptr<char> buffer
1236 = target_read_string (li->l_name, SO_NAME_MAX_PATH_SIZE - 1);
1237 if (buffer == nullptr)
1238 {
1239 /* If this entry's l_name address matches that of the
1240 inferior executable, then this is not a normal shared
1241 object, but (most likely) a vDSO. In this case, silently
1242 skip it; otherwise emit a warning. */
1243 if (first_l_name == 0 || li->l_name != first_l_name)
1244 warning (_("Can't read pathname for load map."));
1245 continue;
1246 }
1247
1248 strncpy (newobj->so_name, buffer.get (), SO_NAME_MAX_PATH_SIZE - 1);
1249 newobj->so_name[SO_NAME_MAX_PATH_SIZE - 1] = '\0';
1250 strcpy (newobj->so_original_name, newobj->so_name);
1251
1252 /* If this entry has no name, or its name matches the name
1253 for the main executable, don't include it in the list. */
1254 if (! newobj->so_name[0] || match_main (newobj->so_name))
1255 continue;
1256
1257 newobj->next = 0;
1258 /* Don't free it now. */
1259 **link_ptr_ptr = newobj.release ();
1260 *link_ptr_ptr = &(**link_ptr_ptr)->next;
1261 }
1262
1263 return 1;
1264 }
1265
1266 /* Read the full list of currently loaded shared objects directly
1267 from the inferior, without referring to any libraries read and
1268 stored by the probes interface. Handle special cases relating
1269 to the first elements of the list. */
1270
1271 static struct so_list *
1272 svr4_current_sos_direct (struct svr4_info *info)
1273 {
1274 CORE_ADDR lm;
1275 struct so_list *head = NULL;
1276 struct so_list **link_ptr = &head;
1277 int ignore_first;
1278 struct svr4_library_list library_list;
1279
1280 /* Fall back to manual examination of the target if the packet is not
1281 supported or gdbserver failed to find DT_DEBUG. gdb.server/solib-list.exp
1282 tests a case where gdbserver cannot find the shared libraries list while
1283 GDB itself is able to find it via SYMFILE_OBJFILE.
1284
1285 Unfortunately statically linked inferiors will also fall back through this
1286 suboptimal code path. */
1287
1288 info->using_xfer = svr4_current_sos_via_xfer_libraries (&library_list,
1289 NULL);
1290 if (info->using_xfer)
1291 {
1292 if (library_list.main_lm)
1293 info->main_lm_addr = library_list.main_lm;
1294
1295 return library_list.head ? library_list.head : svr4_default_sos (info);
1296 }
1297
1298 /* Always locate the debug struct, in case it has moved. */
1299 info->debug_base = 0;
1300 locate_base (info);
1301
1302 /* If we can't find the dynamic linker's base structure, this
1303 must not be a dynamically linked executable. Hmm. */
1304 if (! info->debug_base)
1305 return svr4_default_sos (info);
1306
1307 /* Assume that everything is a library if the dynamic loader was loaded
1308 late by a static executable. */
1309 if (current_program_space->exec_bfd ()
1310 && bfd_get_section_by_name (current_program_space->exec_bfd (),
1311 ".dynamic") == NULL)
1312 ignore_first = 0;
1313 else
1314 ignore_first = 1;
1315
1316 auto cleanup = make_scope_exit ([&] ()
1317 {
1318 svr4_free_library_list (&head);
1319 });
1320
1321 /* Walk the inferior's link map list, and build our list of
1322 `struct so_list' nodes. */
1323 lm = solib_svr4_r_map (info);
1324 if (lm)
1325 svr4_read_so_list (info, lm, 0, &link_ptr, ignore_first);
1326
1327 /* On Solaris, the dynamic linker is not in the normal list of
1328 shared objects, so make sure we pick it up too. Having
1329 symbol information for the dynamic linker is quite crucial
1330 for skipping dynamic linker resolver code. */
1331 lm = solib_svr4_r_ldsomap (info);
1332 if (lm)
1333 svr4_read_so_list (info, lm, 0, &link_ptr, 0);
1334
1335 cleanup.release ();
1336
1337 if (head == NULL)
1338 return svr4_default_sos (info);
1339
1340 return head;
1341 }
1342
1343 /* Implement the main part of the "current_sos" target_so_ops
1344 method. */
1345
1346 static struct so_list *
1347 svr4_current_sos_1 (svr4_info *info)
1348 {
1349 /* If the solib list has been read and stored by the probes
1350 interface then we return a copy of the stored list. */
1351 if (info->solib_list != NULL)
1352 return svr4_copy_library_list (info->solib_list);
1353
1354 /* Otherwise obtain the solib list directly from the inferior. */
1355 return svr4_current_sos_direct (info);
1356 }
1357
1358 /* Implement the "current_sos" target_so_ops method. */
1359
1360 static struct so_list *
1361 svr4_current_sos (void)
1362 {
1363 svr4_info *info = get_svr4_info (current_program_space);
1364 struct so_list *so_head = svr4_current_sos_1 (info);
1365 struct mem_range vsyscall_range;
1366
1367 /* Filter out the vDSO module, if present. Its symbol file would
1368 not be found on disk. The vDSO/vsyscall's OBJFILE is instead
1369 managed by symfile-mem.c:add_vsyscall_page. */
1370 if (gdbarch_vsyscall_range (target_gdbarch (), &vsyscall_range)
1371 && vsyscall_range.length != 0)
1372 {
1373 struct so_list **sop;
1374
1375 sop = &so_head;
1376 while (*sop != NULL)
1377 {
1378 struct so_list *so = *sop;
1379
1380 /* We can't simply match the vDSO by starting address alone,
1381 because lm_info->l_addr_inferior (and also l_addr) do not
1382 necessarily represent the real starting address of the
1383 ELF if the vDSO's ELF itself is "prelinked". The l_ld
1384 field (the ".dynamic" section of the shared object)
1385 always points at the absolute/resolved address though.
1386 So check whether that address is inside the vDSO's
1387 mapping instead.
1388
1389 E.g., on Linux 3.16 (x86_64) the vDSO is a regular
1390 0-based ELF, and we see:
1391
1392 (gdb) info auxv
1393 33 AT_SYSINFO_EHDR System-supplied DSO's ELF header 0x7ffff7ffb000
1394 (gdb) p/x *_r_debug.r_map.l_next
1395 $1 = {l_addr = 0x7ffff7ffb000, ..., l_ld = 0x7ffff7ffb318, ...}
1396
1397 And on Linux 2.6.32 (x86_64) we see:
1398
1399 (gdb) info auxv
1400 33 AT_SYSINFO_EHDR System-supplied DSO's ELF header 0x7ffff7ffe000
1401 (gdb) p/x *_r_debug.r_map.l_next
1402 $5 = {l_addr = 0x7ffff88fe000, ..., l_ld = 0x7ffff7ffe580, ... }
1403
1404 Dumping that vDSO shows:
1405
1406 (gdb) info proc mappings
1407 0x7ffff7ffe000 0x7ffff7fff000 0x1000 0 [vdso]
1408 (gdb) dump memory vdso.bin 0x7ffff7ffe000 0x7ffff7fff000
1409 # readelf -Wa vdso.bin
1410 [...]
1411 Entry point address: 0xffffffffff700700
1412 [...]
1413 Section Headers:
1414 [Nr] Name Type Address Off Size
1415 [ 0] NULL 0000000000000000 000000 000000
1416 [ 1] .hash HASH ffffffffff700120 000120 000038
1417 [ 2] .dynsym DYNSYM ffffffffff700158 000158 0000d8
1418 [...]
1419 [ 9] .dynamic DYNAMIC ffffffffff700580 000580 0000f0
1420 */
1421
1422 lm_info_svr4 *li = (lm_info_svr4 *) so->lm_info;
1423
1424 if (address_in_mem_range (li->l_ld, &vsyscall_range))
1425 {
1426 *sop = so->next;
1427 free_so (so);
1428 break;
1429 }
1430
1431 sop = &so->next;
1432 }
1433 }
1434
1435 return so_head;
1436 }
1437
1438 /* Get the address of the link_map for a given OBJFILE. */
1439
1440 CORE_ADDR
1441 svr4_fetch_objfile_link_map (struct objfile *objfile)
1442 {
1443 struct svr4_info *info = get_svr4_info (objfile->pspace);
1444
1445 /* Cause svr4_current_sos() to be run if it hasn't been already. */
1446 if (info->main_lm_addr == 0)
1447 solib_add (NULL, 0, auto_solib_add);
1448
1449 /* svr4_current_sos() will set main_lm_addr for the main executable. */
1450 if (objfile == current_program_space->symfile_object_file)
1451 return info->main_lm_addr;
1452
1453 /* The other link map addresses may be found by examining the list
1454 of shared libraries. */
1455 for (struct so_list *so : current_program_space->solibs ())
1456 if (so->objfile == objfile)
1457 {
1458 lm_info_svr4 *li = (lm_info_svr4 *) so->lm_info;
1459
1460 return li->lm_addr;
1461 }
1462
1463 /* Not found! */
1464 return 0;
1465 }
1466
1467 /* On some systems, the only way to recognize the link map entry for
1468 the main executable file is by looking at its name. Return
1469 non-zero iff SONAME matches one of the known main executable names. */
1470
1471 static int
1472 match_main (const char *soname)
1473 {
1474 const char * const *mainp;
1475
1476 for (mainp = main_name_list; *mainp != NULL; mainp++)
1477 {
1478 if (strcmp (soname, *mainp) == 0)
1479 return (1);
1480 }
1481
1482 return (0);
1483 }
1484
1485 /* Return 1 if PC lies in the dynamic symbol resolution code of the
1486 SVR4 run time loader. */
1487
1488 int
1489 svr4_in_dynsym_resolve_code (CORE_ADDR pc)
1490 {
1491 struct svr4_info *info = get_svr4_info (current_program_space);
1492
1493 return ((pc >= info->interp_text_sect_low
1494 && pc < info->interp_text_sect_high)
1495 || (pc >= info->interp_plt_sect_low
1496 && pc < info->interp_plt_sect_high)
1497 || in_plt_section (pc)
1498 || in_gnu_ifunc_stub (pc));
1499 }
1500
1501 /* Given an executable's ABFD and target, compute the entry-point
1502 address. */
1503
1504 static CORE_ADDR
1505 exec_entry_point (struct bfd *abfd, struct target_ops *targ)
1506 {
1507 CORE_ADDR addr;
1508
1509 /* KevinB wrote ... for most targets, the address returned by
1510 bfd_get_start_address() is the entry point for the start
1511 function. But, for some targets, bfd_get_start_address() returns
1512 the address of a function descriptor from which the entry point
1513 address may be extracted. This address is extracted by
1514 gdbarch_convert_from_func_ptr_addr(). The method
1515 gdbarch_convert_from_func_ptr_addr() is the merely the identify
1516 function for targets which don't use function descriptors. */
1517 addr = gdbarch_convert_from_func_ptr_addr (target_gdbarch (),
1518 bfd_get_start_address (abfd),
1519 targ);
1520 return gdbarch_addr_bits_remove (target_gdbarch (), addr);
1521 }
1522
1523 /* A probe and its associated action. */
1524
1525 struct probe_and_action
1526 {
1527 /* The probe. */
1528 probe *prob;
1529
1530 /* The relocated address of the probe. */
1531 CORE_ADDR address;
1532
1533 /* The action. */
1534 enum probe_action action;
1535
1536 /* The objfile where this probe was found. */
1537 struct objfile *objfile;
1538 };
1539
1540 /* Returns a hash code for the probe_and_action referenced by p. */
1541
1542 static hashval_t
1543 hash_probe_and_action (const void *p)
1544 {
1545 const struct probe_and_action *pa = (const struct probe_and_action *) p;
1546
1547 return (hashval_t) pa->address;
1548 }
1549
1550 /* Returns non-zero if the probe_and_actions referenced by p1 and p2
1551 are equal. */
1552
1553 static int
1554 equal_probe_and_action (const void *p1, const void *p2)
1555 {
1556 const struct probe_and_action *pa1 = (const struct probe_and_action *) p1;
1557 const struct probe_and_action *pa2 = (const struct probe_and_action *) p2;
1558
1559 return pa1->address == pa2->address;
1560 }
1561
1562 /* Traversal function for probes_table_remove_objfile_probes. */
1563
1564 static int
1565 probes_table_htab_remove_objfile_probes (void **slot, void *info)
1566 {
1567 probe_and_action *pa = (probe_and_action *) *slot;
1568 struct objfile *objfile = (struct objfile *) info;
1569
1570 if (pa->objfile == objfile)
1571 htab_clear_slot (get_svr4_info (objfile->pspace)->probes_table.get (),
1572 slot);
1573
1574 return 1;
1575 }
1576
1577 /* Remove all probes that belong to OBJFILE from the probes table. */
1578
1579 static void
1580 probes_table_remove_objfile_probes (struct objfile *objfile)
1581 {
1582 svr4_info *info = get_svr4_info (objfile->pspace);
1583 if (info->probes_table != nullptr)
1584 htab_traverse_noresize (info->probes_table.get (),
1585 probes_table_htab_remove_objfile_probes, objfile);
1586 }
1587
1588 /* Register a solib event probe and its associated action in the
1589 probes table. */
1590
1591 static void
1592 register_solib_event_probe (svr4_info *info, struct objfile *objfile,
1593 probe *prob, CORE_ADDR address,
1594 enum probe_action action)
1595 {
1596 struct probe_and_action lookup, *pa;
1597 void **slot;
1598
1599 /* Create the probes table, if necessary. */
1600 if (info->probes_table == NULL)
1601 info->probes_table.reset (htab_create_alloc (1, hash_probe_and_action,
1602 equal_probe_and_action,
1603 xfree, xcalloc, xfree));
1604
1605 lookup.address = address;
1606 slot = htab_find_slot (info->probes_table.get (), &lookup, INSERT);
1607 gdb_assert (*slot == HTAB_EMPTY_ENTRY);
1608
1609 pa = XCNEW (struct probe_and_action);
1610 pa->prob = prob;
1611 pa->address = address;
1612 pa->action = action;
1613 pa->objfile = objfile;
1614
1615 *slot = pa;
1616 }
1617
1618 /* Get the solib event probe at the specified location, and the
1619 action associated with it. Returns NULL if no solib event probe
1620 was found. */
1621
1622 static struct probe_and_action *
1623 solib_event_probe_at (struct svr4_info *info, CORE_ADDR address)
1624 {
1625 struct probe_and_action lookup;
1626 void **slot;
1627
1628 lookup.address = address;
1629 slot = htab_find_slot (info->probes_table.get (), &lookup, NO_INSERT);
1630
1631 if (slot == NULL)
1632 return NULL;
1633
1634 return (struct probe_and_action *) *slot;
1635 }
1636
1637 /* Decide what action to take when the specified solib event probe is
1638 hit. */
1639
1640 static enum probe_action
1641 solib_event_probe_action (struct probe_and_action *pa)
1642 {
1643 enum probe_action action;
1644 unsigned probe_argc = 0;
1645 frame_info_ptr frame = get_current_frame ();
1646
1647 action = pa->action;
1648 if (action == DO_NOTHING || action == PROBES_INTERFACE_FAILED)
1649 return action;
1650
1651 gdb_assert (action == FULL_RELOAD || action == UPDATE_OR_RELOAD);
1652
1653 /* Check that an appropriate number of arguments has been supplied.
1654 We expect:
1655 arg0: Lmid_t lmid (mandatory)
1656 arg1: struct r_debug *debug_base (mandatory)
1657 arg2: struct link_map *new (optional, for incremental updates) */
1658 try
1659 {
1660 probe_argc = pa->prob->get_argument_count (get_frame_arch (frame));
1661 }
1662 catch (const gdb_exception_error &ex)
1663 {
1664 exception_print (gdb_stderr, ex);
1665 probe_argc = 0;
1666 }
1667
1668 /* If get_argument_count throws an exception, probe_argc will be set
1669 to zero. However, if pa->prob does not have arguments, then
1670 get_argument_count will succeed but probe_argc will also be zero.
1671 Both cases happen because of different things, but they are
1672 treated equally here: action will be set to
1673 PROBES_INTERFACE_FAILED. */
1674 if (probe_argc == 2)
1675 action = FULL_RELOAD;
1676 else if (probe_argc < 2)
1677 action = PROBES_INTERFACE_FAILED;
1678
1679 return action;
1680 }
1681
1682 /* Populate the shared object list by reading the entire list of
1683 shared objects from the inferior. Handle special cases relating
1684 to the first elements of the list. Returns nonzero on success. */
1685
1686 static int
1687 solist_update_full (struct svr4_info *info)
1688 {
1689 free_solib_list (info);
1690 info->solib_list = svr4_current_sos_direct (info);
1691
1692 return 1;
1693 }
1694
1695 /* Update the shared object list starting from the link-map entry
1696 passed by the linker in the probe's third argument. Returns
1697 nonzero if the list was successfully updated, or zero to indicate
1698 failure. */
1699
1700 static int
1701 solist_update_incremental (struct svr4_info *info, CORE_ADDR lm)
1702 {
1703 struct so_list *tail;
1704 CORE_ADDR prev_lm;
1705
1706 /* svr4_current_sos_direct contains logic to handle a number of
1707 special cases relating to the first elements of the list. To
1708 avoid duplicating this logic we defer to solist_update_full
1709 if the list is empty. */
1710 if (info->solib_list == NULL)
1711 return 0;
1712
1713 /* Fall back to a full update if we are using a remote target
1714 that does not support incremental transfers. */
1715 if (info->using_xfer && !target_augmented_libraries_svr4_read ())
1716 return 0;
1717
1718 /* Walk to the end of the list. */
1719 for (tail = info->solib_list; tail->next != NULL; tail = tail->next)
1720 /* Nothing. */;
1721
1722 lm_info_svr4 *li = (lm_info_svr4 *) tail->lm_info;
1723 prev_lm = li->lm_addr;
1724
1725 /* Read the new objects. */
1726 if (info->using_xfer)
1727 {
1728 struct svr4_library_list library_list;
1729 char annex[64];
1730
1731 xsnprintf (annex, sizeof (annex), "start=%s;prev=%s",
1732 phex_nz (lm, sizeof (lm)),
1733 phex_nz (prev_lm, sizeof (prev_lm)));
1734 if (!svr4_current_sos_via_xfer_libraries (&library_list, annex))
1735 return 0;
1736
1737 tail->next = library_list.head;
1738 }
1739 else
1740 {
1741 struct so_list **link = &tail->next;
1742
1743 /* IGNORE_FIRST may safely be set to zero here because the
1744 above check and deferral to solist_update_full ensures
1745 that this call to svr4_read_so_list will never see the
1746 first element. */
1747 if (!svr4_read_so_list (info, lm, prev_lm, &link, 0))
1748 return 0;
1749 }
1750
1751 return 1;
1752 }
1753
1754 /* Disable the probes-based linker interface and revert to the
1755 original interface. We don't reset the breakpoints as the
1756 ones set up for the probes-based interface are adequate. */
1757
1758 static void
1759 disable_probes_interface (svr4_info *info)
1760 {
1761 warning (_("Probes-based dynamic linker interface failed.\n"
1762 "Reverting to original interface."));
1763
1764 free_probes_table (info);
1765 free_solib_list (info);
1766 }
1767
1768 /* Update the solib list as appropriate when using the
1769 probes-based linker interface. Do nothing if using the
1770 standard interface. */
1771
1772 static void
1773 svr4_handle_solib_event (void)
1774 {
1775 struct svr4_info *info = get_svr4_info (current_program_space);
1776 struct probe_and_action *pa;
1777 enum probe_action action;
1778 struct value *val = NULL;
1779 CORE_ADDR pc, debug_base, lm = 0;
1780 frame_info_ptr frame = get_current_frame ();
1781
1782 /* Do nothing if not using the probes interface. */
1783 if (info->probes_table == NULL)
1784 return;
1785
1786 /* If anything goes wrong we revert to the original linker
1787 interface. */
1788 auto cleanup = make_scope_exit ([info] ()
1789 {
1790 disable_probes_interface (info);
1791 });
1792
1793 pc = regcache_read_pc (get_current_regcache ());
1794 pa = solib_event_probe_at (info, pc);
1795 if (pa == NULL)
1796 return;
1797
1798 action = solib_event_probe_action (pa);
1799 if (action == PROBES_INTERFACE_FAILED)
1800 return;
1801
1802 if (action == DO_NOTHING)
1803 {
1804 cleanup.release ();
1805 return;
1806 }
1807
1808 /* evaluate_argument looks up symbols in the dynamic linker
1809 using find_pc_section. find_pc_section is accelerated by a cache
1810 called the section map. The section map is invalidated every
1811 time a shared library is loaded or unloaded, and if the inferior
1812 is generating a lot of shared library events then the section map
1813 will be updated every time svr4_handle_solib_event is called.
1814 We called find_pc_section in svr4_create_solib_event_breakpoints,
1815 so we can guarantee that the dynamic linker's sections are in the
1816 section map. We can therefore inhibit section map updates across
1817 these calls to evaluate_argument and save a lot of time. */
1818 {
1819 scoped_restore inhibit_updates
1820 = inhibit_section_map_updates (current_program_space);
1821
1822 try
1823 {
1824 val = pa->prob->evaluate_argument (1, frame);
1825 }
1826 catch (const gdb_exception_error &ex)
1827 {
1828 exception_print (gdb_stderr, ex);
1829 val = NULL;
1830 }
1831
1832 if (val == NULL)
1833 return;
1834
1835 debug_base = value_as_address (val);
1836 if (debug_base == 0)
1837 return;
1838
1839 /* Always locate the debug struct, in case it moved. */
1840 info->debug_base = 0;
1841 if (locate_base (info) == 0)
1842 {
1843 /* It's possible for the reloc_complete probe to be triggered before
1844 the linker has set the DT_DEBUG pointer (for example, when the
1845 linker has finished relocating an LD_AUDIT library or its
1846 dependencies). Since we can't yet handle libraries from other link
1847 namespaces, we don't lose anything by ignoring them here. */
1848 struct value *link_map_id_val;
1849 try
1850 {
1851 link_map_id_val = pa->prob->evaluate_argument (0, frame);
1852 }
1853 catch (const gdb_exception_error)
1854 {
1855 link_map_id_val = NULL;
1856 }
1857 /* glibc and illumos' libc both define LM_ID_BASE as zero. */
1858 if (link_map_id_val != NULL && value_as_long (link_map_id_val) != 0)
1859 action = DO_NOTHING;
1860 else
1861 return;
1862 }
1863
1864 /* GDB does not currently support libraries loaded via dlmopen
1865 into namespaces other than the initial one. We must ignore
1866 any namespace other than the initial namespace here until
1867 support for this is added to GDB. */
1868 if (debug_base != info->debug_base)
1869 action = DO_NOTHING;
1870
1871 if (action == UPDATE_OR_RELOAD)
1872 {
1873 try
1874 {
1875 val = pa->prob->evaluate_argument (2, frame);
1876 }
1877 catch (const gdb_exception_error &ex)
1878 {
1879 exception_print (gdb_stderr, ex);
1880 return;
1881 }
1882
1883 if (val != NULL)
1884 lm = value_as_address (val);
1885
1886 if (lm == 0)
1887 action = FULL_RELOAD;
1888 }
1889
1890 /* Resume section map updates. Closing the scope is
1891 sufficient. */
1892 }
1893
1894 if (action == UPDATE_OR_RELOAD)
1895 {
1896 if (!solist_update_incremental (info, lm))
1897 action = FULL_RELOAD;
1898 }
1899
1900 if (action == FULL_RELOAD)
1901 {
1902 if (!solist_update_full (info))
1903 return;
1904 }
1905
1906 cleanup.release ();
1907 }
1908
1909 /* Helper function for svr4_update_solib_event_breakpoints. */
1910
1911 static bool
1912 svr4_update_solib_event_breakpoint (struct breakpoint *b)
1913 {
1914 if (b->type != bp_shlib_event)
1915 {
1916 /* Continue iterating. */
1917 return false;
1918 }
1919
1920 for (bp_location *loc : b->locations ())
1921 {
1922 struct svr4_info *info;
1923 struct probe_and_action *pa;
1924
1925 info = solib_svr4_pspace_data.get (loc->pspace);
1926 if (info == NULL || info->probes_table == NULL)
1927 continue;
1928
1929 pa = solib_event_probe_at (info, loc->address);
1930 if (pa == NULL)
1931 continue;
1932
1933 if (pa->action == DO_NOTHING)
1934 {
1935 if (b->enable_state == bp_disabled && stop_on_solib_events)
1936 enable_breakpoint (b);
1937 else if (b->enable_state == bp_enabled && !stop_on_solib_events)
1938 disable_breakpoint (b);
1939 }
1940
1941 break;
1942 }
1943
1944 /* Continue iterating. */
1945 return false;
1946 }
1947
1948 /* Enable or disable optional solib event breakpoints as appropriate.
1949 Called whenever stop_on_solib_events is changed. */
1950
1951 static void
1952 svr4_update_solib_event_breakpoints (void)
1953 {
1954 for (breakpoint *bp : all_breakpoints_safe ())
1955 svr4_update_solib_event_breakpoint (bp);
1956 }
1957
1958 /* Create and register solib event breakpoints. PROBES is an array
1959 of NUM_PROBES elements, each of which is vector of probes. A
1960 solib event breakpoint will be created and registered for each
1961 probe. */
1962
1963 static void
1964 svr4_create_probe_breakpoints (svr4_info *info, struct gdbarch *gdbarch,
1965 const std::vector<probe *> *probes,
1966 struct objfile *objfile)
1967 {
1968 for (int i = 0; i < NUM_PROBES; i++)
1969 {
1970 enum probe_action action = probe_info[i].action;
1971
1972 for (probe *p : probes[i])
1973 {
1974 CORE_ADDR address = p->get_relocated_address (objfile);
1975
1976 create_solib_event_breakpoint (gdbarch, address);
1977 register_solib_event_probe (info, objfile, p, address, action);
1978 }
1979 }
1980
1981 svr4_update_solib_event_breakpoints ();
1982 }
1983
1984 /* Find all the glibc named probes. Only if all of the probes are found, then
1985 create them and return true. Otherwise return false. If WITH_PREFIX is set
1986 then add "rtld" to the front of the probe names. */
1987 static bool
1988 svr4_find_and_create_probe_breakpoints (svr4_info *info,
1989 struct gdbarch *gdbarch,
1990 struct obj_section *os,
1991 bool with_prefix)
1992 {
1993 std::vector<probe *> probes[NUM_PROBES];
1994
1995 for (int i = 0; i < NUM_PROBES; i++)
1996 {
1997 const char *name = probe_info[i].name;
1998 char buf[32];
1999
2000 /* Fedora 17 and Red Hat Enterprise Linux 6.2-6.4 shipped with an early
2001 version of the probes code in which the probes' names were prefixed
2002 with "rtld_" and the "map_failed" probe did not exist. The locations
2003 of the probes are otherwise the same, so we check for probes with
2004 prefixed names if probes with unprefixed names are not present. */
2005 if (with_prefix)
2006 {
2007 xsnprintf (buf, sizeof (buf), "rtld_%s", name);
2008 name = buf;
2009 }
2010
2011 probes[i] = find_probes_in_objfile (os->objfile, "rtld", name);
2012
2013 /* The "map_failed" probe did not exist in early
2014 versions of the probes code in which the probes'
2015 names were prefixed with "rtld_". */
2016 if (with_prefix && streq (name, "rtld_map_failed"))
2017 continue;
2018
2019 /* Ensure at least one probe for the current name was found. */
2020 if (probes[i].empty ())
2021 return false;
2022
2023 /* Ensure probe arguments can be evaluated. */
2024 for (probe *p : probes[i])
2025 {
2026 if (!p->can_evaluate_arguments ())
2027 return false;
2028 /* This will fail if the probe is invalid. This has been seen on Arm
2029 due to references to symbols that have been resolved away. */
2030 try
2031 {
2032 p->get_argument_count (gdbarch);
2033 }
2034 catch (const gdb_exception_error &ex)
2035 {
2036 exception_print (gdb_stderr, ex);
2037 warning (_("Initializing probes-based dynamic linker interface "
2038 "failed.\nReverting to original interface."));
2039 return false;
2040 }
2041 }
2042 }
2043
2044 /* All probes found. Now create them. */
2045 svr4_create_probe_breakpoints (info, gdbarch, probes, os->objfile);
2046 return true;
2047 }
2048
2049 /* Both the SunOS and the SVR4 dynamic linkers call a marker function
2050 before and after mapping and unmapping shared libraries. The sole
2051 purpose of this method is to allow debuggers to set a breakpoint so
2052 they can track these changes.
2053
2054 Some versions of the glibc dynamic linker contain named probes
2055 to allow more fine grained stopping. Given the address of the
2056 original marker function, this function attempts to find these
2057 probes, and if found, sets breakpoints on those instead. If the
2058 probes aren't found, a single breakpoint is set on the original
2059 marker function. */
2060
2061 static void
2062 svr4_create_solib_event_breakpoints (svr4_info *info, struct gdbarch *gdbarch,
2063 CORE_ADDR address)
2064 {
2065 struct obj_section *os = find_pc_section (address);
2066
2067 if (os == nullptr
2068 || (!svr4_find_and_create_probe_breakpoints (info, gdbarch, os, false)
2069 && !svr4_find_and_create_probe_breakpoints (info, gdbarch, os, true)))
2070 create_solib_event_breakpoint (gdbarch, address);
2071 }
2072
2073 /* Helper function for gdb_bfd_lookup_symbol. */
2074
2075 static int
2076 cmp_name_and_sec_flags (const asymbol *sym, const void *data)
2077 {
2078 return (strcmp (sym->name, (const char *) data) == 0
2079 && (sym->section->flags & (SEC_CODE | SEC_DATA)) != 0);
2080 }
2081 /* Arrange for dynamic linker to hit breakpoint.
2082
2083 Both the SunOS and the SVR4 dynamic linkers have, as part of their
2084 debugger interface, support for arranging for the inferior to hit
2085 a breakpoint after mapping in the shared libraries. This function
2086 enables that breakpoint.
2087
2088 For SunOS, there is a special flag location (in_debugger) which we
2089 set to 1. When the dynamic linker sees this flag set, it will set
2090 a breakpoint at a location known only to itself, after saving the
2091 original contents of that place and the breakpoint address itself,
2092 in it's own internal structures. When we resume the inferior, it
2093 will eventually take a SIGTRAP when it runs into the breakpoint.
2094 We handle this (in a different place) by restoring the contents of
2095 the breakpointed location (which is only known after it stops),
2096 chasing around to locate the shared libraries that have been
2097 loaded, then resuming.
2098
2099 For SVR4, the debugger interface structure contains a member (r_brk)
2100 which is statically initialized at the time the shared library is
2101 built, to the offset of a function (_r_debug_state) which is guaran-
2102 teed to be called once before mapping in a library, and again when
2103 the mapping is complete. At the time we are examining this member,
2104 it contains only the unrelocated offset of the function, so we have
2105 to do our own relocation. Later, when the dynamic linker actually
2106 runs, it relocates r_brk to be the actual address of _r_debug_state().
2107
2108 The debugger interface structure also contains an enumeration which
2109 is set to either RT_ADD or RT_DELETE prior to changing the mapping,
2110 depending upon whether or not the library is being mapped or unmapped,
2111 and then set to RT_CONSISTENT after the library is mapped/unmapped. */
2112
2113 static int
2114 enable_break (struct svr4_info *info, int from_tty)
2115 {
2116 struct bound_minimal_symbol msymbol;
2117 const char * const *bkpt_namep;
2118 asection *interp_sect;
2119 CORE_ADDR sym_addr;
2120
2121 info->interp_text_sect_low = info->interp_text_sect_high = 0;
2122 info->interp_plt_sect_low = info->interp_plt_sect_high = 0;
2123
2124 /* If we already have a shared library list in the target, and
2125 r_debug contains r_brk, set the breakpoint there - this should
2126 mean r_brk has already been relocated. Assume the dynamic linker
2127 is the object containing r_brk. */
2128
2129 solib_add (NULL, from_tty, auto_solib_add);
2130 sym_addr = 0;
2131 if (info->debug_base && solib_svr4_r_map (info) != 0)
2132 sym_addr = solib_svr4_r_brk (info);
2133
2134 if (sym_addr != 0)
2135 {
2136 struct obj_section *os;
2137
2138 sym_addr = gdbarch_addr_bits_remove
2139 (target_gdbarch (),
2140 gdbarch_convert_from_func_ptr_addr
2141 (target_gdbarch (), sym_addr, current_inferior ()->top_target ()));
2142
2143 /* On at least some versions of Solaris there's a dynamic relocation
2144 on _r_debug.r_brk and SYM_ADDR may not be relocated yet, e.g., if
2145 we get control before the dynamic linker has self-relocated.
2146 Check if SYM_ADDR is in a known section, if it is assume we can
2147 trust its value. This is just a heuristic though, it could go away
2148 or be replaced if it's getting in the way.
2149
2150 On ARM we need to know whether the ISA of rtld_db_dlactivity (or
2151 however it's spelled in your particular system) is ARM or Thumb.
2152 That knowledge is encoded in the address, if it's Thumb the low bit
2153 is 1. However, we've stripped that info above and it's not clear
2154 what all the consequences are of passing a non-addr_bits_remove'd
2155 address to svr4_create_solib_event_breakpoints. The call to
2156 find_pc_section verifies we know about the address and have some
2157 hope of computing the right kind of breakpoint to use (via
2158 symbol info). It does mean that GDB needs to be pointed at a
2159 non-stripped version of the dynamic linker in order to obtain
2160 information it already knows about. Sigh. */
2161
2162 os = find_pc_section (sym_addr);
2163 if (os != NULL)
2164 {
2165 /* Record the relocated start and end address of the dynamic linker
2166 text and plt section for svr4_in_dynsym_resolve_code. */
2167 bfd *tmp_bfd;
2168 CORE_ADDR load_addr;
2169
2170 tmp_bfd = os->objfile->obfd.get ();
2171 load_addr = os->objfile->text_section_offset ();
2172
2173 interp_sect = bfd_get_section_by_name (tmp_bfd, ".text");
2174 if (interp_sect)
2175 {
2176 info->interp_text_sect_low
2177 = bfd_section_vma (interp_sect) + load_addr;
2178 info->interp_text_sect_high
2179 = info->interp_text_sect_low + bfd_section_size (interp_sect);
2180 }
2181 interp_sect = bfd_get_section_by_name (tmp_bfd, ".plt");
2182 if (interp_sect)
2183 {
2184 info->interp_plt_sect_low
2185 = bfd_section_vma (interp_sect) + load_addr;
2186 info->interp_plt_sect_high
2187 = info->interp_plt_sect_low + bfd_section_size (interp_sect);
2188 }
2189
2190 svr4_create_solib_event_breakpoints (info, target_gdbarch (), sym_addr);
2191 return 1;
2192 }
2193 }
2194
2195 /* Find the program interpreter; if not found, warn the user and drop
2196 into the old breakpoint at symbol code. */
2197 gdb::optional<gdb::byte_vector> interp_name_holder
2198 = find_program_interpreter ();
2199 if (interp_name_holder)
2200 {
2201 const char *interp_name = (const char *) interp_name_holder->data ();
2202 CORE_ADDR load_addr = 0;
2203 int load_addr_found = 0;
2204 int loader_found_in_list = 0;
2205 struct target_ops *tmp_bfd_target;
2206
2207 sym_addr = 0;
2208
2209 /* Now we need to figure out where the dynamic linker was
2210 loaded so that we can load its symbols and place a breakpoint
2211 in the dynamic linker itself.
2212
2213 This address is stored on the stack. However, I've been unable
2214 to find any magic formula to find it for Solaris (appears to
2215 be trivial on GNU/Linux). Therefore, we have to try an alternate
2216 mechanism to find the dynamic linker's base address. */
2217
2218 gdb_bfd_ref_ptr tmp_bfd;
2219 try
2220 {
2221 tmp_bfd = solib_bfd_open (interp_name);
2222 }
2223 catch (const gdb_exception &ex)
2224 {
2225 }
2226
2227 if (tmp_bfd == NULL)
2228 goto bkpt_at_symbol;
2229
2230 /* Now convert the TMP_BFD into a target. That way target, as
2231 well as BFD operations can be used. */
2232 tmp_bfd_target = target_bfd_reopen (tmp_bfd);
2233
2234 /* On a running target, we can get the dynamic linker's base
2235 address from the shared library table. */
2236 for (struct so_list *so : current_program_space->solibs ())
2237 {
2238 if (svr4_same_1 (interp_name, so->so_original_name))
2239 {
2240 load_addr_found = 1;
2241 loader_found_in_list = 1;
2242 load_addr = lm_addr_check (so, tmp_bfd.get ());
2243 break;
2244 }
2245 }
2246
2247 /* If we were not able to find the base address of the loader
2248 from our so_list, then try using the AT_BASE auxilliary entry. */
2249 if (!load_addr_found)
2250 if (target_auxv_search (AT_BASE, &load_addr) > 0)
2251 {
2252 int addr_bit = gdbarch_addr_bit (target_gdbarch ());
2253
2254 /* Ensure LOAD_ADDR has proper sign in its possible upper bits so
2255 that `+ load_addr' will overflow CORE_ADDR width not creating
2256 invalid addresses like 0x101234567 for 32bit inferiors on 64bit
2257 GDB. */
2258
2259 if (addr_bit < (sizeof (CORE_ADDR) * HOST_CHAR_BIT))
2260 {
2261 CORE_ADDR space_size = (CORE_ADDR) 1 << addr_bit;
2262 CORE_ADDR tmp_entry_point = exec_entry_point (tmp_bfd.get (),
2263 tmp_bfd_target);
2264
2265 gdb_assert (load_addr < space_size);
2266
2267 /* TMP_ENTRY_POINT exceeding SPACE_SIZE would be for prelinked
2268 64bit ld.so with 32bit executable, it should not happen. */
2269
2270 if (tmp_entry_point < space_size
2271 && tmp_entry_point + load_addr >= space_size)
2272 load_addr -= space_size;
2273 }
2274
2275 load_addr_found = 1;
2276 }
2277
2278 /* Otherwise we find the dynamic linker's base address by examining
2279 the current pc (which should point at the entry point for the
2280 dynamic linker) and subtracting the offset of the entry point.
2281
2282 This is more fragile than the previous approaches, but is a good
2283 fallback method because it has actually been working well in
2284 most cases. */
2285 if (!load_addr_found)
2286 {
2287 struct regcache *regcache
2288 = get_thread_arch_regcache (current_inferior ()->process_target (),
2289 inferior_ptid, target_gdbarch ());
2290
2291 load_addr = (regcache_read_pc (regcache)
2292 - exec_entry_point (tmp_bfd.get (), tmp_bfd_target));
2293 }
2294
2295 if (!loader_found_in_list)
2296 {
2297 info->debug_loader_name = xstrdup (interp_name);
2298 info->debug_loader_offset_p = 1;
2299 info->debug_loader_offset = load_addr;
2300 solib_add (NULL, from_tty, auto_solib_add);
2301 }
2302
2303 /* Record the relocated start and end address of the dynamic linker
2304 text and plt section for svr4_in_dynsym_resolve_code. */
2305 interp_sect = bfd_get_section_by_name (tmp_bfd.get (), ".text");
2306 if (interp_sect)
2307 {
2308 info->interp_text_sect_low
2309 = bfd_section_vma (interp_sect) + load_addr;
2310 info->interp_text_sect_high
2311 = info->interp_text_sect_low + bfd_section_size (interp_sect);
2312 }
2313 interp_sect = bfd_get_section_by_name (tmp_bfd.get (), ".plt");
2314 if (interp_sect)
2315 {
2316 info->interp_plt_sect_low
2317 = bfd_section_vma (interp_sect) + load_addr;
2318 info->interp_plt_sect_high
2319 = info->interp_plt_sect_low + bfd_section_size (interp_sect);
2320 }
2321
2322 /* Now try to set a breakpoint in the dynamic linker. */
2323 for (bkpt_namep = solib_break_names; *bkpt_namep != NULL; bkpt_namep++)
2324 {
2325 sym_addr = gdb_bfd_lookup_symbol (tmp_bfd.get (),
2326 cmp_name_and_sec_flags,
2327 *bkpt_namep);
2328 if (sym_addr != 0)
2329 break;
2330 }
2331
2332 if (sym_addr != 0)
2333 /* Convert 'sym_addr' from a function pointer to an address.
2334 Because we pass tmp_bfd_target instead of the current
2335 target, this will always produce an unrelocated value. */
2336 sym_addr = gdbarch_convert_from_func_ptr_addr (target_gdbarch (),
2337 sym_addr,
2338 tmp_bfd_target);
2339
2340 /* We're done with both the temporary bfd and target. Closing
2341 the target closes the underlying bfd, because it holds the
2342 only remaining reference. */
2343 target_close (tmp_bfd_target);
2344
2345 if (sym_addr != 0)
2346 {
2347 svr4_create_solib_event_breakpoints (info, target_gdbarch (),
2348 load_addr + sym_addr);
2349 return 1;
2350 }
2351
2352 /* For whatever reason we couldn't set a breakpoint in the dynamic
2353 linker. Warn and drop into the old code. */
2354 bkpt_at_symbol:
2355 warning (_("Unable to find dynamic linker breakpoint function.\n"
2356 "GDB will be unable to debug shared library initializers\n"
2357 "and track explicitly loaded dynamic code."));
2358 }
2359
2360 /* Scan through the lists of symbols, trying to look up the symbol and
2361 set a breakpoint there. Terminate loop when we/if we succeed. */
2362
2363 objfile *objf = current_program_space->symfile_object_file;
2364 for (bkpt_namep = solib_break_names; *bkpt_namep != NULL; bkpt_namep++)
2365 {
2366 msymbol = lookup_minimal_symbol (*bkpt_namep, NULL, objf);
2367 if ((msymbol.minsym != NULL)
2368 && (msymbol.value_address () != 0))
2369 {
2370 sym_addr = msymbol.value_address ();
2371 sym_addr = gdbarch_convert_from_func_ptr_addr
2372 (target_gdbarch (), sym_addr, current_inferior ()->top_target ());
2373 svr4_create_solib_event_breakpoints (info, target_gdbarch (),
2374 sym_addr);
2375 return 1;
2376 }
2377 }
2378
2379 if (interp_name_holder && !current_inferior ()->attach_flag)
2380 {
2381 for (bkpt_namep = bkpt_names; *bkpt_namep != NULL; bkpt_namep++)
2382 {
2383 msymbol = lookup_minimal_symbol (*bkpt_namep, NULL, objf);
2384 if ((msymbol.minsym != NULL)
2385 && (msymbol.value_address () != 0))
2386 {
2387 sym_addr = msymbol.value_address ();
2388 sym_addr = gdbarch_convert_from_func_ptr_addr
2389 (target_gdbarch (), sym_addr,
2390 current_inferior ()->top_target ());
2391 svr4_create_solib_event_breakpoints (info, target_gdbarch (),
2392 sym_addr);
2393 return 1;
2394 }
2395 }
2396 }
2397 return 0;
2398 }
2399
2400 /* Read the ELF program headers from ABFD. */
2401
2402 static gdb::optional<gdb::byte_vector>
2403 read_program_headers_from_bfd (bfd *abfd)
2404 {
2405 Elf_Internal_Ehdr *ehdr = elf_elfheader (abfd);
2406 int phdrs_size = ehdr->e_phnum * ehdr->e_phentsize;
2407 if (phdrs_size == 0)
2408 return {};
2409
2410 gdb::byte_vector buf (phdrs_size);
2411 if (bfd_seek (abfd, ehdr->e_phoff, SEEK_SET) != 0
2412 || bfd_bread (buf.data (), phdrs_size, abfd) != phdrs_size)
2413 return {};
2414
2415 return buf;
2416 }
2417
2418 /* Return 1 and fill *DISPLACEMENTP with detected PIE offset of inferior
2419 exec_bfd. Otherwise return 0.
2420
2421 We relocate all of the sections by the same amount. This
2422 behavior is mandated by recent editions of the System V ABI.
2423 According to the System V Application Binary Interface,
2424 Edition 4.1, page 5-5:
2425
2426 ... Though the system chooses virtual addresses for
2427 individual processes, it maintains the segments' relative
2428 positions. Because position-independent code uses relative
2429 addressing between segments, the difference between
2430 virtual addresses in memory must match the difference
2431 between virtual addresses in the file. The difference
2432 between the virtual address of any segment in memory and
2433 the corresponding virtual address in the file is thus a
2434 single constant value for any one executable or shared
2435 object in a given process. This difference is the base
2436 address. One use of the base address is to relocate the
2437 memory image of the program during dynamic linking.
2438
2439 The same language also appears in Edition 4.0 of the System V
2440 ABI and is left unspecified in some of the earlier editions.
2441
2442 Decide if the objfile needs to be relocated. As indicated above, we will
2443 only be here when execution is stopped. But during attachment PC can be at
2444 arbitrary address therefore regcache_read_pc can be misleading (contrary to
2445 the auxv AT_ENTRY value). Moreover for executable with interpreter section
2446 regcache_read_pc would point to the interpreter and not the main executable.
2447
2448 So, to summarize, relocations are necessary when the start address obtained
2449 from the executable is different from the address in auxv AT_ENTRY entry.
2450
2451 [ The astute reader will note that we also test to make sure that
2452 the executable in question has the DYNAMIC flag set. It is my
2453 opinion that this test is unnecessary (undesirable even). It
2454 was added to avoid inadvertent relocation of an executable
2455 whose e_type member in the ELF header is not ET_DYN. There may
2456 be a time in the future when it is desirable to do relocations
2457 on other types of files as well in which case this condition
2458 should either be removed or modified to accomodate the new file
2459 type. - Kevin, Nov 2000. ] */
2460
2461 static int
2462 svr4_exec_displacement (CORE_ADDR *displacementp)
2463 {
2464 /* ENTRY_POINT is a possible function descriptor - before
2465 a call to gdbarch_convert_from_func_ptr_addr. */
2466 CORE_ADDR entry_point, exec_displacement;
2467
2468 if (current_program_space->exec_bfd () == NULL)
2469 return 0;
2470
2471 /* Therefore for ELF it is ET_EXEC and not ET_DYN. Both shared libraries
2472 being executed themselves and PIE (Position Independent Executable)
2473 executables are ET_DYN. */
2474
2475 if ((bfd_get_file_flags (current_program_space->exec_bfd ()) & DYNAMIC) == 0)
2476 return 0;
2477
2478 if (target_auxv_search (AT_ENTRY, &entry_point) <= 0)
2479 return 0;
2480
2481 exec_displacement
2482 = entry_point - bfd_get_start_address (current_program_space->exec_bfd ());
2483
2484 /* Verify the EXEC_DISPLACEMENT candidate complies with the required page
2485 alignment. It is cheaper than the program headers comparison below. */
2486
2487 if (bfd_get_flavour (current_program_space->exec_bfd ())
2488 == bfd_target_elf_flavour)
2489 {
2490 const struct elf_backend_data *elf
2491 = get_elf_backend_data (current_program_space->exec_bfd ());
2492
2493 /* p_align of PT_LOAD segments does not specify any alignment but
2494 only congruency of addresses:
2495 p_offset % p_align == p_vaddr % p_align
2496 Kernel is free to load the executable with lower alignment. */
2497
2498 if ((exec_displacement & (elf->minpagesize - 1)) != 0)
2499 return 0;
2500 }
2501
2502 /* Verify that the auxilliary vector describes the same file as exec_bfd, by
2503 comparing their program headers. If the program headers in the auxilliary
2504 vector do not match the program headers in the executable, then we are
2505 looking at a different file than the one used by the kernel - for
2506 instance, "gdb program" connected to "gdbserver :PORT ld.so program". */
2507
2508 if (bfd_get_flavour (current_program_space->exec_bfd ())
2509 == bfd_target_elf_flavour)
2510 {
2511 /* Be optimistic and return 0 only if GDB was able to verify the headers
2512 really do not match. */
2513 int arch_size;
2514
2515 gdb::optional<gdb::byte_vector> phdrs_target
2516 = read_program_header (-1, &arch_size, NULL);
2517 gdb::optional<gdb::byte_vector> phdrs_binary
2518 = read_program_headers_from_bfd (current_program_space->exec_bfd ());
2519 if (phdrs_target && phdrs_binary)
2520 {
2521 enum bfd_endian byte_order = gdbarch_byte_order (target_gdbarch ());
2522
2523 /* We are dealing with three different addresses. EXEC_BFD
2524 represents current address in on-disk file. target memory content
2525 may be different from EXEC_BFD as the file may have been prelinked
2526 to a different address after the executable has been loaded.
2527 Moreover the address of placement in target memory can be
2528 different from what the program headers in target memory say -
2529 this is the goal of PIE.
2530
2531 Detected DISPLACEMENT covers both the offsets of PIE placement and
2532 possible new prelink performed after start of the program. Here
2533 relocate BUF and BUF2 just by the EXEC_BFD vs. target memory
2534 content offset for the verification purpose. */
2535
2536 if (phdrs_target->size () != phdrs_binary->size ()
2537 || bfd_get_arch_size (current_program_space->exec_bfd ()) != arch_size)
2538 return 0;
2539 else if (arch_size == 32
2540 && phdrs_target->size () >= sizeof (Elf32_External_Phdr)
2541 && phdrs_target->size () % sizeof (Elf32_External_Phdr) == 0)
2542 {
2543 Elf_Internal_Ehdr *ehdr2
2544 = elf_tdata (current_program_space->exec_bfd ())->elf_header;
2545 Elf_Internal_Phdr *phdr2
2546 = elf_tdata (current_program_space->exec_bfd ())->phdr;
2547 CORE_ADDR displacement = 0;
2548 int i;
2549
2550 /* DISPLACEMENT could be found more easily by the difference of
2551 ehdr2->e_entry. But we haven't read the ehdr yet, and we
2552 already have enough information to compute that displacement
2553 with what we've read. */
2554
2555 for (i = 0; i < ehdr2->e_phnum; i++)
2556 if (phdr2[i].p_type == PT_LOAD)
2557 {
2558 Elf32_External_Phdr *phdrp;
2559 gdb_byte *buf_vaddr_p, *buf_paddr_p;
2560 CORE_ADDR vaddr, paddr;
2561 CORE_ADDR displacement_vaddr = 0;
2562 CORE_ADDR displacement_paddr = 0;
2563
2564 phdrp = &((Elf32_External_Phdr *) phdrs_target->data ())[i];
2565 buf_vaddr_p = (gdb_byte *) &phdrp->p_vaddr;
2566 buf_paddr_p = (gdb_byte *) &phdrp->p_paddr;
2567
2568 vaddr = extract_unsigned_integer (buf_vaddr_p, 4,
2569 byte_order);
2570 displacement_vaddr = vaddr - phdr2[i].p_vaddr;
2571
2572 paddr = extract_unsigned_integer (buf_paddr_p, 4,
2573 byte_order);
2574 displacement_paddr = paddr - phdr2[i].p_paddr;
2575
2576 if (displacement_vaddr == displacement_paddr)
2577 displacement = displacement_vaddr;
2578
2579 break;
2580 }
2581
2582 /* Now compare program headers from the target and the binary
2583 with optional DISPLACEMENT. */
2584
2585 for (i = 0;
2586 i < phdrs_target->size () / sizeof (Elf32_External_Phdr);
2587 i++)
2588 {
2589 Elf32_External_Phdr *phdrp;
2590 Elf32_External_Phdr *phdr2p;
2591 gdb_byte *buf_vaddr_p, *buf_paddr_p;
2592 CORE_ADDR vaddr, paddr;
2593 asection *plt2_asect;
2594
2595 phdrp = &((Elf32_External_Phdr *) phdrs_target->data ())[i];
2596 buf_vaddr_p = (gdb_byte *) &phdrp->p_vaddr;
2597 buf_paddr_p = (gdb_byte *) &phdrp->p_paddr;
2598 phdr2p = &((Elf32_External_Phdr *) phdrs_binary->data ())[i];
2599
2600 /* PT_GNU_STACK is an exception by being never relocated by
2601 prelink as its addresses are always zero. */
2602
2603 if (memcmp (phdrp, phdr2p, sizeof (*phdrp)) == 0)
2604 continue;
2605
2606 /* Check also other adjustment combinations - PR 11786. */
2607
2608 vaddr = extract_unsigned_integer (buf_vaddr_p, 4,
2609 byte_order);
2610 vaddr -= displacement;
2611 store_unsigned_integer (buf_vaddr_p, 4, byte_order, vaddr);
2612
2613 paddr = extract_unsigned_integer (buf_paddr_p, 4,
2614 byte_order);
2615 paddr -= displacement;
2616 store_unsigned_integer (buf_paddr_p, 4, byte_order, paddr);
2617
2618 if (memcmp (phdrp, phdr2p, sizeof (*phdrp)) == 0)
2619 continue;
2620
2621 /* Strip modifies the flags and alignment of PT_GNU_RELRO.
2622 CentOS-5 has problems with filesz, memsz as well.
2623 Strip also modifies memsz of PT_TLS.
2624 See PR 11786. */
2625 if (phdr2[i].p_type == PT_GNU_RELRO
2626 || phdr2[i].p_type == PT_TLS)
2627 {
2628 Elf32_External_Phdr tmp_phdr = *phdrp;
2629 Elf32_External_Phdr tmp_phdr2 = *phdr2p;
2630
2631 memset (tmp_phdr.p_filesz, 0, 4);
2632 memset (tmp_phdr.p_memsz, 0, 4);
2633 memset (tmp_phdr.p_flags, 0, 4);
2634 memset (tmp_phdr.p_align, 0, 4);
2635 memset (tmp_phdr2.p_filesz, 0, 4);
2636 memset (tmp_phdr2.p_memsz, 0, 4);
2637 memset (tmp_phdr2.p_flags, 0, 4);
2638 memset (tmp_phdr2.p_align, 0, 4);
2639
2640 if (memcmp (&tmp_phdr, &tmp_phdr2, sizeof (tmp_phdr))
2641 == 0)
2642 continue;
2643 }
2644
2645 /* prelink can convert .plt SHT_NOBITS to SHT_PROGBITS. */
2646 bfd *exec_bfd = current_program_space->exec_bfd ();
2647 plt2_asect = bfd_get_section_by_name (exec_bfd, ".plt");
2648 if (plt2_asect)
2649 {
2650 int content2;
2651 gdb_byte *buf_filesz_p = (gdb_byte *) &phdrp->p_filesz;
2652 CORE_ADDR filesz;
2653
2654 content2 = (bfd_section_flags (plt2_asect)
2655 & SEC_HAS_CONTENTS) != 0;
2656
2657 filesz = extract_unsigned_integer (buf_filesz_p, 4,
2658 byte_order);
2659
2660 /* PLT2_ASECT is from on-disk file (exec_bfd) while
2661 FILESZ is from the in-memory image. */
2662 if (content2)
2663 filesz += bfd_section_size (plt2_asect);
2664 else
2665 filesz -= bfd_section_size (plt2_asect);
2666
2667 store_unsigned_integer (buf_filesz_p, 4, byte_order,
2668 filesz);
2669
2670 if (memcmp (phdrp, phdr2p, sizeof (*phdrp)) == 0)
2671 continue;
2672 }
2673
2674 return 0;
2675 }
2676 }
2677 else if (arch_size == 64
2678 && phdrs_target->size () >= sizeof (Elf64_External_Phdr)
2679 && phdrs_target->size () % sizeof (Elf64_External_Phdr) == 0)
2680 {
2681 Elf_Internal_Ehdr *ehdr2
2682 = elf_tdata (current_program_space->exec_bfd ())->elf_header;
2683 Elf_Internal_Phdr *phdr2
2684 = elf_tdata (current_program_space->exec_bfd ())->phdr;
2685 CORE_ADDR displacement = 0;
2686 int i;
2687
2688 /* DISPLACEMENT could be found more easily by the difference of
2689 ehdr2->e_entry. But we haven't read the ehdr yet, and we
2690 already have enough information to compute that displacement
2691 with what we've read. */
2692
2693 for (i = 0; i < ehdr2->e_phnum; i++)
2694 if (phdr2[i].p_type == PT_LOAD)
2695 {
2696 Elf64_External_Phdr *phdrp;
2697 gdb_byte *buf_vaddr_p, *buf_paddr_p;
2698 CORE_ADDR vaddr, paddr;
2699 CORE_ADDR displacement_vaddr = 0;
2700 CORE_ADDR displacement_paddr = 0;
2701
2702 phdrp = &((Elf64_External_Phdr *) phdrs_target->data ())[i];
2703 buf_vaddr_p = (gdb_byte *) &phdrp->p_vaddr;
2704 buf_paddr_p = (gdb_byte *) &phdrp->p_paddr;
2705
2706 vaddr = extract_unsigned_integer (buf_vaddr_p, 8,
2707 byte_order);
2708 displacement_vaddr = vaddr - phdr2[i].p_vaddr;
2709
2710 paddr = extract_unsigned_integer (buf_paddr_p, 8,
2711 byte_order);
2712 displacement_paddr = paddr - phdr2[i].p_paddr;
2713
2714 if (displacement_vaddr == displacement_paddr)
2715 displacement = displacement_vaddr;
2716
2717 break;
2718 }
2719
2720 /* Now compare BUF and BUF2 with optional DISPLACEMENT. */
2721
2722 for (i = 0;
2723 i < phdrs_target->size () / sizeof (Elf64_External_Phdr);
2724 i++)
2725 {
2726 Elf64_External_Phdr *phdrp;
2727 Elf64_External_Phdr *phdr2p;
2728 gdb_byte *buf_vaddr_p, *buf_paddr_p;
2729 CORE_ADDR vaddr, paddr;
2730 asection *plt2_asect;
2731
2732 phdrp = &((Elf64_External_Phdr *) phdrs_target->data ())[i];
2733 buf_vaddr_p = (gdb_byte *) &phdrp->p_vaddr;
2734 buf_paddr_p = (gdb_byte *) &phdrp->p_paddr;
2735 phdr2p = &((Elf64_External_Phdr *) phdrs_binary->data ())[i];
2736
2737 /* PT_GNU_STACK is an exception by being never relocated by
2738 prelink as its addresses are always zero. */
2739
2740 if (memcmp (phdrp, phdr2p, sizeof (*phdrp)) == 0)
2741 continue;
2742
2743 /* Check also other adjustment combinations - PR 11786. */
2744
2745 vaddr = extract_unsigned_integer (buf_vaddr_p, 8,
2746 byte_order);
2747 vaddr -= displacement;
2748 store_unsigned_integer (buf_vaddr_p, 8, byte_order, vaddr);
2749
2750 paddr = extract_unsigned_integer (buf_paddr_p, 8,
2751 byte_order);
2752 paddr -= displacement;
2753 store_unsigned_integer (buf_paddr_p, 8, byte_order, paddr);
2754
2755 if (memcmp (phdrp, phdr2p, sizeof (*phdrp)) == 0)
2756 continue;
2757
2758 /* Strip modifies the flags and alignment of PT_GNU_RELRO.
2759 CentOS-5 has problems with filesz, memsz as well.
2760 Strip also modifies memsz of PT_TLS.
2761 See PR 11786. */
2762 if (phdr2[i].p_type == PT_GNU_RELRO
2763 || phdr2[i].p_type == PT_TLS)
2764 {
2765 Elf64_External_Phdr tmp_phdr = *phdrp;
2766 Elf64_External_Phdr tmp_phdr2 = *phdr2p;
2767
2768 memset (tmp_phdr.p_filesz, 0, 8);
2769 memset (tmp_phdr.p_memsz, 0, 8);
2770 memset (tmp_phdr.p_flags, 0, 4);
2771 memset (tmp_phdr.p_align, 0, 8);
2772 memset (tmp_phdr2.p_filesz, 0, 8);
2773 memset (tmp_phdr2.p_memsz, 0, 8);
2774 memset (tmp_phdr2.p_flags, 0, 4);
2775 memset (tmp_phdr2.p_align, 0, 8);
2776
2777 if (memcmp (&tmp_phdr, &tmp_phdr2, sizeof (tmp_phdr))
2778 == 0)
2779 continue;
2780 }
2781
2782 /* prelink can convert .plt SHT_NOBITS to SHT_PROGBITS. */
2783 plt2_asect
2784 = bfd_get_section_by_name (current_program_space->exec_bfd (),
2785 ".plt");
2786 if (plt2_asect)
2787 {
2788 int content2;
2789 gdb_byte *buf_filesz_p = (gdb_byte *) &phdrp->p_filesz;
2790 CORE_ADDR filesz;
2791
2792 content2 = (bfd_section_flags (plt2_asect)
2793 & SEC_HAS_CONTENTS) != 0;
2794
2795 filesz = extract_unsigned_integer (buf_filesz_p, 8,
2796 byte_order);
2797
2798 /* PLT2_ASECT is from on-disk file (current
2799 exec_bfd) while FILESZ is from the in-memory
2800 image. */
2801 if (content2)
2802 filesz += bfd_section_size (plt2_asect);
2803 else
2804 filesz -= bfd_section_size (plt2_asect);
2805
2806 store_unsigned_integer (buf_filesz_p, 8, byte_order,
2807 filesz);
2808
2809 if (memcmp (phdrp, phdr2p, sizeof (*phdrp)) == 0)
2810 continue;
2811 }
2812
2813 return 0;
2814 }
2815 }
2816 else
2817 return 0;
2818 }
2819 }
2820
2821 if (info_verbose)
2822 {
2823 /* It can be printed repeatedly as there is no easy way to check
2824 the executable symbols/file has been already relocated to
2825 displacement. */
2826
2827 gdb_printf (_("Using PIE (Position Independent Executable) "
2828 "displacement %s for \"%s\".\n"),
2829 paddress (target_gdbarch (), exec_displacement),
2830 bfd_get_filename (current_program_space->exec_bfd ()));
2831 }
2832
2833 *displacementp = exec_displacement;
2834 return 1;
2835 }
2836
2837 /* Relocate the main executable. This function should be called upon
2838 stopping the inferior process at the entry point to the program.
2839 The entry point from BFD is compared to the AT_ENTRY of AUXV and if they are
2840 different, the main executable is relocated by the proper amount. */
2841
2842 static void
2843 svr4_relocate_main_executable (void)
2844 {
2845 CORE_ADDR displacement;
2846
2847 /* If we are re-running this executable, SYMFILE_OBJFILE->SECTION_OFFSETS
2848 probably contains the offsets computed using the PIE displacement
2849 from the previous run, which of course are irrelevant for this run.
2850 So we need to determine the new PIE displacement and recompute the
2851 section offsets accordingly, even if SYMFILE_OBJFILE->SECTION_OFFSETS
2852 already contains pre-computed offsets.
2853
2854 If we cannot compute the PIE displacement, either:
2855
2856 - The executable is not PIE.
2857
2858 - SYMFILE_OBJFILE does not match the executable started in the target.
2859 This can happen for main executable symbols loaded at the host while
2860 `ld.so --ld-args main-executable' is loaded in the target.
2861
2862 Then we leave the section offsets untouched and use them as is for
2863 this run. Either:
2864
2865 - These section offsets were properly reset earlier, and thus
2866 already contain the correct values. This can happen for instance
2867 when reconnecting via the remote protocol to a target that supports
2868 the `qOffsets' packet.
2869
2870 - The section offsets were not reset earlier, and the best we can
2871 hope is that the old offsets are still applicable to the new run. */
2872
2873 if (! svr4_exec_displacement (&displacement))
2874 return;
2875
2876 /* Even DISPLACEMENT 0 is a valid new difference of in-memory vs. in-file
2877 addresses. */
2878
2879 objfile *objf = current_program_space->symfile_object_file;
2880 if (objf)
2881 {
2882 section_offsets new_offsets (objf->section_offsets.size (),
2883 displacement);
2884 objfile_relocate (objf, new_offsets);
2885 }
2886 else if (current_program_space->exec_bfd ())
2887 {
2888 asection *asect;
2889
2890 bfd *exec_bfd = current_program_space->exec_bfd ();
2891 for (asect = exec_bfd->sections; asect != NULL; asect = asect->next)
2892 exec_set_section_address (bfd_get_filename (exec_bfd), asect->index,
2893 bfd_section_vma (asect) + displacement);
2894 }
2895 }
2896
2897 /* Implement the "create_inferior_hook" target_solib_ops method.
2898
2899 For SVR4 executables, this first instruction is either the first
2900 instruction in the dynamic linker (for dynamically linked
2901 executables) or the instruction at "start" for statically linked
2902 executables. For dynamically linked executables, the system
2903 first exec's /lib/libc.so.N, which contains the dynamic linker,
2904 and starts it running. The dynamic linker maps in any needed
2905 shared libraries, maps in the actual user executable, and then
2906 jumps to "start" in the user executable.
2907
2908 We can arrange to cooperate with the dynamic linker to discover the
2909 names of shared libraries that are dynamically linked, and the base
2910 addresses to which they are linked.
2911
2912 This function is responsible for discovering those names and
2913 addresses, and saving sufficient information about them to allow
2914 their symbols to be read at a later time. */
2915
2916 static void
2917 svr4_solib_create_inferior_hook (int from_tty)
2918 {
2919 struct svr4_info *info;
2920
2921 info = get_svr4_info (current_program_space);
2922
2923 /* Clear the probes-based interface's state. */
2924 free_probes_table (info);
2925 free_solib_list (info);
2926
2927 /* Relocate the main executable if necessary. */
2928 svr4_relocate_main_executable ();
2929
2930 /* No point setting a breakpoint in the dynamic linker if we can't
2931 hit it (e.g., a core file, or a trace file). */
2932 if (!target_has_execution ())
2933 return;
2934
2935 if (!svr4_have_link_map_offsets ())
2936 return;
2937
2938 if (!enable_break (info, from_tty))
2939 return;
2940 }
2941
2942 static void
2943 svr4_clear_solib (void)
2944 {
2945 struct svr4_info *info;
2946
2947 info = get_svr4_info (current_program_space);
2948 info->debug_base = 0;
2949 info->debug_loader_offset_p = 0;
2950 info->debug_loader_offset = 0;
2951 xfree (info->debug_loader_name);
2952 info->debug_loader_name = NULL;
2953 }
2954
2955 /* Clear any bits of ADDR that wouldn't fit in a target-format
2956 data pointer. "Data pointer" here refers to whatever sort of
2957 address the dynamic linker uses to manage its sections. At the
2958 moment, we don't support shared libraries on any processors where
2959 code and data pointers are different sizes.
2960
2961 This isn't really the right solution. What we really need here is
2962 a way to do arithmetic on CORE_ADDR values that respects the
2963 natural pointer/address correspondence. (For example, on the MIPS,
2964 converting a 32-bit pointer to a 64-bit CORE_ADDR requires you to
2965 sign-extend the value. There, simply truncating the bits above
2966 gdbarch_ptr_bit, as we do below, is no good.) This should probably
2967 be a new gdbarch method or something. */
2968 static CORE_ADDR
2969 svr4_truncate_ptr (CORE_ADDR addr)
2970 {
2971 if (gdbarch_ptr_bit (target_gdbarch ()) == sizeof (CORE_ADDR) * 8)
2972 /* We don't need to truncate anything, and the bit twiddling below
2973 will fail due to overflow problems. */
2974 return addr;
2975 else
2976 return addr & (((CORE_ADDR) 1 << gdbarch_ptr_bit (target_gdbarch ())) - 1);
2977 }
2978
2979
2980 static void
2981 svr4_relocate_section_addresses (struct so_list *so,
2982 struct target_section *sec)
2983 {
2984 bfd *abfd = sec->the_bfd_section->owner;
2985
2986 sec->addr = svr4_truncate_ptr (sec->addr + lm_addr_check (so, abfd));
2987 sec->endaddr = svr4_truncate_ptr (sec->endaddr + lm_addr_check (so, abfd));
2988 }
2989 \f
2990
2991 /* Architecture-specific operations. */
2992
2993 struct solib_svr4_ops
2994 {
2995 /* Return a description of the layout of `struct link_map'. */
2996 struct link_map_offsets *(*fetch_link_map_offsets)(void) = nullptr;
2997 };
2998
2999 /* Per-architecture data key. */
3000 static const registry<gdbarch>::key<struct solib_svr4_ops> solib_svr4_data;
3001
3002 /* Return a default for the architecture-specific operations. */
3003
3004 static struct solib_svr4_ops *
3005 get_ops (struct gdbarch *gdbarch)
3006 {
3007 struct solib_svr4_ops *ops = solib_svr4_data.get (gdbarch);
3008 if (ops == nullptr)
3009 ops = solib_svr4_data.emplace (gdbarch);
3010 return ops;
3011 }
3012
3013 /* Set the architecture-specific `struct link_map_offsets' fetcher for
3014 GDBARCH to FLMO. Also, install SVR4 solib_ops into GDBARCH. */
3015
3016 void
3017 set_solib_svr4_fetch_link_map_offsets (struct gdbarch *gdbarch,
3018 struct link_map_offsets *(*flmo) (void))
3019 {
3020 struct solib_svr4_ops *ops = get_ops (gdbarch);
3021
3022 ops->fetch_link_map_offsets = flmo;
3023
3024 set_gdbarch_so_ops (gdbarch, &svr4_so_ops);
3025 set_gdbarch_iterate_over_objfiles_in_search_order
3026 (gdbarch, svr4_iterate_over_objfiles_in_search_order);
3027 }
3028
3029 /* Fetch a link_map_offsets structure using the architecture-specific
3030 `struct link_map_offsets' fetcher. */
3031
3032 static struct link_map_offsets *
3033 svr4_fetch_link_map_offsets (void)
3034 {
3035 struct solib_svr4_ops *ops = get_ops (target_gdbarch ());
3036
3037 gdb_assert (ops->fetch_link_map_offsets);
3038 return ops->fetch_link_map_offsets ();
3039 }
3040
3041 /* Return 1 if a link map offset fetcher has been defined, 0 otherwise. */
3042
3043 static int
3044 svr4_have_link_map_offsets (void)
3045 {
3046 struct solib_svr4_ops *ops = get_ops (target_gdbarch ());
3047
3048 return (ops->fetch_link_map_offsets != NULL);
3049 }
3050 \f
3051
3052 /* Most OS'es that have SVR4-style ELF dynamic libraries define a
3053 `struct r_debug' and a `struct link_map' that are binary compatible
3054 with the original SVR4 implementation. */
3055
3056 /* Fetch (and possibly build) an appropriate `struct link_map_offsets'
3057 for an ILP32 SVR4 system. */
3058
3059 struct link_map_offsets *
3060 svr4_ilp32_fetch_link_map_offsets (void)
3061 {
3062 static struct link_map_offsets lmo;
3063 static struct link_map_offsets *lmp = NULL;
3064
3065 if (lmp == NULL)
3066 {
3067 lmp = &lmo;
3068
3069 lmo.r_version_offset = 0;
3070 lmo.r_version_size = 4;
3071 lmo.r_map_offset = 4;
3072 lmo.r_brk_offset = 8;
3073 lmo.r_ldsomap_offset = 20;
3074
3075 /* Everything we need is in the first 20 bytes. */
3076 lmo.link_map_size = 20;
3077 lmo.l_addr_offset = 0;
3078 lmo.l_name_offset = 4;
3079 lmo.l_ld_offset = 8;
3080 lmo.l_next_offset = 12;
3081 lmo.l_prev_offset = 16;
3082 }
3083
3084 return lmp;
3085 }
3086
3087 /* Fetch (and possibly build) an appropriate `struct link_map_offsets'
3088 for an LP64 SVR4 system. */
3089
3090 struct link_map_offsets *
3091 svr4_lp64_fetch_link_map_offsets (void)
3092 {
3093 static struct link_map_offsets lmo;
3094 static struct link_map_offsets *lmp = NULL;
3095
3096 if (lmp == NULL)
3097 {
3098 lmp = &lmo;
3099
3100 lmo.r_version_offset = 0;
3101 lmo.r_version_size = 4;
3102 lmo.r_map_offset = 8;
3103 lmo.r_brk_offset = 16;
3104 lmo.r_ldsomap_offset = 40;
3105
3106 /* Everything we need is in the first 40 bytes. */
3107 lmo.link_map_size = 40;
3108 lmo.l_addr_offset = 0;
3109 lmo.l_name_offset = 8;
3110 lmo.l_ld_offset = 16;
3111 lmo.l_next_offset = 24;
3112 lmo.l_prev_offset = 32;
3113 }
3114
3115 return lmp;
3116 }
3117 \f
3118
3119 /* Search order for ELF DSOs linked with -Bsymbolic. Those DSOs have a
3120 different rule for symbol lookup. The lookup begins here in the DSO, not in
3121 the main executable. */
3122
3123 static void
3124 svr4_iterate_over_objfiles_in_search_order
3125 (gdbarch *gdbarch, iterate_over_objfiles_in_search_order_cb_ftype cb,
3126 objfile *current_objfile)
3127 {
3128 bool checked_current_objfile = false;
3129 if (current_objfile != nullptr)
3130 {
3131 bfd *abfd;
3132
3133 if (current_objfile->separate_debug_objfile_backlink != nullptr)
3134 current_objfile = current_objfile->separate_debug_objfile_backlink;
3135
3136 if (current_objfile == current_program_space->symfile_object_file)
3137 abfd = current_program_space->exec_bfd ();
3138 else
3139 abfd = current_objfile->obfd.get ();
3140
3141 if (abfd != nullptr
3142 && gdb_bfd_scan_elf_dyntag (DT_SYMBOLIC, abfd, nullptr, nullptr) == 1)
3143 {
3144 checked_current_objfile = true;
3145 if (cb (current_objfile))
3146 return;
3147 }
3148 }
3149
3150 for (objfile *objfile : current_program_space->objfiles ())
3151 {
3152 if (checked_current_objfile && objfile == current_objfile)
3153 continue;
3154 if (cb (objfile))
3155 return;
3156 }
3157 }
3158
3159 const struct target_so_ops svr4_so_ops =
3160 {
3161 svr4_relocate_section_addresses,
3162 svr4_free_so,
3163 svr4_clear_so,
3164 svr4_clear_solib,
3165 svr4_solib_create_inferior_hook,
3166 svr4_current_sos,
3167 open_symbol_file_object,
3168 svr4_in_dynsym_resolve_code,
3169 solib_bfd_open,
3170 nullptr,
3171 svr4_same,
3172 svr4_keep_data_in_core,
3173 svr4_update_solib_event_breakpoints,
3174 svr4_handle_solib_event,
3175 };
3176
3177 void _initialize_svr4_solib ();
3178 void
3179 _initialize_svr4_solib ()
3180 {
3181 gdb::observers::free_objfile.attach (svr4_free_objfile_observer,
3182 "solib-svr4");
3183 }