gdb/
[binutils-gdb.git] / gdb / solib-svr4.c
1 /* Handle SVR4 shared libraries for GDB, the GNU Debugger.
2
3 Copyright (C) 1990, 1991, 1992, 1993, 1994, 1995, 1996, 1998, 1999, 2000,
4 2001, 2003, 2004, 2005, 2006, 2007, 2008, 2009, 2010
5 Free Software Foundation, Inc.
6
7 This file is part of GDB.
8
9 This program is free software; you can redistribute it and/or modify
10 it under the terms of the GNU General Public License as published by
11 the Free Software Foundation; either version 3 of the License, or
12 (at your option) any later version.
13
14 This program is distributed in the hope that it will be useful,
15 but WITHOUT ANY WARRANTY; without even the implied warranty of
16 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
17 GNU General Public License for more details.
18
19 You should have received a copy of the GNU General Public License
20 along with this program. If not, see <http://www.gnu.org/licenses/>. */
21
22 #include "defs.h"
23
24 #include "elf/external.h"
25 #include "elf/common.h"
26 #include "elf/mips.h"
27
28 #include "symtab.h"
29 #include "bfd.h"
30 #include "symfile.h"
31 #include "objfiles.h"
32 #include "gdbcore.h"
33 #include "target.h"
34 #include "inferior.h"
35 #include "regcache.h"
36 #include "gdbthread.h"
37 #include "observer.h"
38
39 #include "gdb_assert.h"
40
41 #include "solist.h"
42 #include "solib.h"
43 #include "solib-svr4.h"
44
45 #include "bfd-target.h"
46 #include "elf-bfd.h"
47 #include "exec.h"
48 #include "auxv.h"
49 #include "exceptions.h"
50
51 static struct link_map_offsets *svr4_fetch_link_map_offsets (void);
52 static int svr4_have_link_map_offsets (void);
53 static void svr4_relocate_main_executable (void);
54
55 /* Link map info to include in an allocated so_list entry */
56
57 struct lm_info
58 {
59 /* Pointer to copy of link map from inferior. The type is char *
60 rather than void *, so that we may use byte offsets to find the
61 various fields without the need for a cast. */
62 gdb_byte *lm;
63
64 /* Amount by which addresses in the binary should be relocated to
65 match the inferior. This could most often be taken directly
66 from lm, but when prelinking is involved and the prelink base
67 address changes, we may need a different offset, we want to
68 warn about the difference and compute it only once. */
69 CORE_ADDR l_addr;
70
71 /* The target location of lm. */
72 CORE_ADDR lm_addr;
73 };
74
75 /* On SVR4 systems, a list of symbols in the dynamic linker where
76 GDB can try to place a breakpoint to monitor shared library
77 events.
78
79 If none of these symbols are found, or other errors occur, then
80 SVR4 systems will fall back to using a symbol as the "startup
81 mapping complete" breakpoint address. */
82
83 static char *solib_break_names[] =
84 {
85 "r_debug_state",
86 "_r_debug_state",
87 "_dl_debug_state",
88 "rtld_db_dlactivity",
89 "__dl_rtld_db_dlactivity",
90 "_rtld_debug_state",
91
92 NULL
93 };
94
95 static char *bkpt_names[] =
96 {
97 "_start",
98 "__start",
99 "main",
100 NULL
101 };
102
103 static char *main_name_list[] =
104 {
105 "main_$main",
106 NULL
107 };
108
109 /* Return non-zero if GDB_SO_NAME and INFERIOR_SO_NAME represent
110 the same shared library. */
111
112 static int
113 svr4_same_1 (const char *gdb_so_name, const char *inferior_so_name)
114 {
115 if (strcmp (gdb_so_name, inferior_so_name) == 0)
116 return 1;
117
118 /* On Solaris, when starting inferior we think that dynamic linker is
119 /usr/lib/ld.so.1, but later on, the table of loaded shared libraries
120 contains /lib/ld.so.1. Sometimes one file is a link to another, but
121 sometimes they have identical content, but are not linked to each
122 other. We don't restrict this check for Solaris, but the chances
123 of running into this situation elsewhere are very low. */
124 if (strcmp (gdb_so_name, "/usr/lib/ld.so.1") == 0
125 && strcmp (inferior_so_name, "/lib/ld.so.1") == 0)
126 return 1;
127
128 /* Similarly, we observed the same issue with sparc64, but with
129 different locations. */
130 if (strcmp (gdb_so_name, "/usr/lib/sparcv9/ld.so.1") == 0
131 && strcmp (inferior_so_name, "/lib/sparcv9/ld.so.1") == 0)
132 return 1;
133
134 return 0;
135 }
136
137 static int
138 svr4_same (struct so_list *gdb, struct so_list *inferior)
139 {
140 return (svr4_same_1 (gdb->so_original_name, inferior->so_original_name));
141 }
142
143 /* link map access functions */
144
145 static CORE_ADDR
146 LM_ADDR_FROM_LINK_MAP (struct so_list *so)
147 {
148 struct link_map_offsets *lmo = svr4_fetch_link_map_offsets ();
149 struct type *ptr_type = builtin_type (target_gdbarch)->builtin_data_ptr;
150
151 return extract_typed_address (so->lm_info->lm + lmo->l_addr_offset,
152 ptr_type);
153 }
154
155 static int
156 HAS_LM_DYNAMIC_FROM_LINK_MAP (void)
157 {
158 struct link_map_offsets *lmo = svr4_fetch_link_map_offsets ();
159
160 return lmo->l_ld_offset >= 0;
161 }
162
163 static CORE_ADDR
164 LM_DYNAMIC_FROM_LINK_MAP (struct so_list *so)
165 {
166 struct link_map_offsets *lmo = svr4_fetch_link_map_offsets ();
167 struct type *ptr_type = builtin_type (target_gdbarch)->builtin_data_ptr;
168
169 return extract_typed_address (so->lm_info->lm + lmo->l_ld_offset,
170 ptr_type);
171 }
172
173 static CORE_ADDR
174 LM_ADDR_CHECK (struct so_list *so, bfd *abfd)
175 {
176 if (so->lm_info->l_addr == (CORE_ADDR)-1)
177 {
178 struct bfd_section *dyninfo_sect;
179 CORE_ADDR l_addr, l_dynaddr, dynaddr, align = 0x1000;
180
181 l_addr = LM_ADDR_FROM_LINK_MAP (so);
182
183 if (! abfd || ! HAS_LM_DYNAMIC_FROM_LINK_MAP ())
184 goto set_addr;
185
186 l_dynaddr = LM_DYNAMIC_FROM_LINK_MAP (so);
187
188 dyninfo_sect = bfd_get_section_by_name (abfd, ".dynamic");
189 if (dyninfo_sect == NULL)
190 goto set_addr;
191
192 dynaddr = bfd_section_vma (abfd, dyninfo_sect);
193
194 if (dynaddr + l_addr != l_dynaddr)
195 {
196 if (bfd_get_flavour (abfd) == bfd_target_elf_flavour)
197 {
198 Elf_Internal_Ehdr *ehdr = elf_tdata (abfd)->elf_header;
199 Elf_Internal_Phdr *phdr = elf_tdata (abfd)->phdr;
200 int i;
201
202 align = 1;
203
204 for (i = 0; i < ehdr->e_phnum; i++)
205 if (phdr[i].p_type == PT_LOAD && phdr[i].p_align > align)
206 align = phdr[i].p_align;
207 }
208
209 /* Turn it into a mask. */
210 align--;
211
212 /* If the changes match the alignment requirements, we
213 assume we're using a core file that was generated by the
214 same binary, just prelinked with a different base offset.
215 If it doesn't match, we may have a different binary, the
216 same binary with the dynamic table loaded at an unrelated
217 location, or anything, really. To avoid regressions,
218 don't adjust the base offset in the latter case, although
219 odds are that, if things really changed, debugging won't
220 quite work. */
221 if ((l_addr & align) == ((l_dynaddr - dynaddr) & align))
222 {
223 l_addr = l_dynaddr - dynaddr;
224
225 warning (_(".dynamic section for \"%s\" "
226 "is not at the expected address"), so->so_name);
227 warning (_("difference appears to be caused by prelink, "
228 "adjusting expectations"));
229 }
230 else
231 warning (_(".dynamic section for \"%s\" "
232 "is not at the expected address "
233 "(wrong library or version mismatch?)"), so->so_name);
234 }
235
236 set_addr:
237 so->lm_info->l_addr = l_addr;
238 }
239
240 return so->lm_info->l_addr;
241 }
242
243 static CORE_ADDR
244 LM_NEXT (struct so_list *so)
245 {
246 struct link_map_offsets *lmo = svr4_fetch_link_map_offsets ();
247 struct type *ptr_type = builtin_type (target_gdbarch)->builtin_data_ptr;
248
249 return extract_typed_address (so->lm_info->lm + lmo->l_next_offset,
250 ptr_type);
251 }
252
253 static CORE_ADDR
254 LM_NAME (struct so_list *so)
255 {
256 struct link_map_offsets *lmo = svr4_fetch_link_map_offsets ();
257 struct type *ptr_type = builtin_type (target_gdbarch)->builtin_data_ptr;
258
259 return extract_typed_address (so->lm_info->lm + lmo->l_name_offset,
260 ptr_type);
261 }
262
263 static int
264 IGNORE_FIRST_LINK_MAP_ENTRY (struct so_list *so)
265 {
266 struct link_map_offsets *lmo = svr4_fetch_link_map_offsets ();
267 struct type *ptr_type = builtin_type (target_gdbarch)->builtin_data_ptr;
268
269 /* Assume that everything is a library if the dynamic loader was loaded
270 late by a static executable. */
271 if (exec_bfd && bfd_get_section_by_name (exec_bfd, ".dynamic") == NULL)
272 return 0;
273
274 return extract_typed_address (so->lm_info->lm + lmo->l_prev_offset,
275 ptr_type) == 0;
276 }
277
278 /* Per pspace SVR4 specific data. */
279
280 struct svr4_info
281 {
282 CORE_ADDR debug_base; /* Base of dynamic linker structures */
283
284 /* Validity flag for debug_loader_offset. */
285 int debug_loader_offset_p;
286
287 /* Load address for the dynamic linker, inferred. */
288 CORE_ADDR debug_loader_offset;
289
290 /* Name of the dynamic linker, valid if debug_loader_offset_p. */
291 char *debug_loader_name;
292
293 /* Load map address for the main executable. */
294 CORE_ADDR main_lm_addr;
295
296 CORE_ADDR interp_text_sect_low;
297 CORE_ADDR interp_text_sect_high;
298 CORE_ADDR interp_plt_sect_low;
299 CORE_ADDR interp_plt_sect_high;
300 };
301
302 /* Per-program-space data key. */
303 static const struct program_space_data *solib_svr4_pspace_data;
304
305 static void
306 svr4_pspace_data_cleanup (struct program_space *pspace, void *arg)
307 {
308 struct svr4_info *info;
309
310 info = program_space_data (pspace, solib_svr4_pspace_data);
311 xfree (info);
312 }
313
314 /* Get the current svr4 data. If none is found yet, add it now. This
315 function always returns a valid object. */
316
317 static struct svr4_info *
318 get_svr4_info (void)
319 {
320 struct svr4_info *info;
321
322 info = program_space_data (current_program_space, solib_svr4_pspace_data);
323 if (info != NULL)
324 return info;
325
326 info = XZALLOC (struct svr4_info);
327 set_program_space_data (current_program_space, solib_svr4_pspace_data, info);
328 return info;
329 }
330
331 /* Local function prototypes */
332
333 static int match_main (char *);
334
335 static CORE_ADDR bfd_lookup_symbol (bfd *, char *);
336
337 /*
338
339 LOCAL FUNCTION
340
341 bfd_lookup_symbol -- lookup the value for a specific symbol
342
343 SYNOPSIS
344
345 CORE_ADDR bfd_lookup_symbol (bfd *abfd, char *symname)
346
347 DESCRIPTION
348
349 An expensive way to lookup the value of a single symbol for
350 bfd's that are only temporary anyway. This is used by the
351 shared library support to find the address of the debugger
352 notification routine in the shared library.
353
354 The returned symbol may be in a code or data section; functions
355 will normally be in a code section, but may be in a data section
356 if this architecture uses function descriptors.
357
358 Note that 0 is specifically allowed as an error return (no
359 such symbol).
360 */
361
362 static CORE_ADDR
363 bfd_lookup_symbol (bfd *abfd, char *symname)
364 {
365 long storage_needed;
366 asymbol *sym;
367 asymbol **symbol_table;
368 unsigned int number_of_symbols;
369 unsigned int i;
370 struct cleanup *back_to;
371 CORE_ADDR symaddr = 0;
372
373 storage_needed = bfd_get_symtab_upper_bound (abfd);
374
375 if (storage_needed > 0)
376 {
377 symbol_table = (asymbol **) xmalloc (storage_needed);
378 back_to = make_cleanup (xfree, symbol_table);
379 number_of_symbols = bfd_canonicalize_symtab (abfd, symbol_table);
380
381 for (i = 0; i < number_of_symbols; i++)
382 {
383 sym = *symbol_table++;
384 if (strcmp (sym->name, symname) == 0
385 && (sym->section->flags & (SEC_CODE | SEC_DATA)) != 0)
386 {
387 /* BFD symbols are section relative. */
388 symaddr = sym->value + sym->section->vma;
389 break;
390 }
391 }
392 do_cleanups (back_to);
393 }
394
395 if (symaddr)
396 return symaddr;
397
398 /* On FreeBSD, the dynamic linker is stripped by default. So we'll
399 have to check the dynamic string table too. */
400
401 storage_needed = bfd_get_dynamic_symtab_upper_bound (abfd);
402
403 if (storage_needed > 0)
404 {
405 symbol_table = (asymbol **) xmalloc (storage_needed);
406 back_to = make_cleanup (xfree, symbol_table);
407 number_of_symbols = bfd_canonicalize_dynamic_symtab (abfd, symbol_table);
408
409 for (i = 0; i < number_of_symbols; i++)
410 {
411 sym = *symbol_table++;
412
413 if (strcmp (sym->name, symname) == 0
414 && (sym->section->flags & (SEC_CODE | SEC_DATA)) != 0)
415 {
416 /* BFD symbols are section relative. */
417 symaddr = sym->value + sym->section->vma;
418 break;
419 }
420 }
421 do_cleanups (back_to);
422 }
423
424 return symaddr;
425 }
426
427
428 /* Read program header TYPE from inferior memory. The header is found
429 by scanning the OS auxillary vector.
430
431 Return a pointer to allocated memory holding the program header contents,
432 or NULL on failure. If sucessful, and unless P_SECT_SIZE is NULL, the
433 size of those contents is returned to P_SECT_SIZE. Likewise, the target
434 architecture size (32-bit or 64-bit) is returned to P_ARCH_SIZE. */
435
436 static gdb_byte *
437 read_program_header (int type, int *p_sect_size, int *p_arch_size)
438 {
439 enum bfd_endian byte_order = gdbarch_byte_order (target_gdbarch);
440 CORE_ADDR at_phdr, at_phent, at_phnum;
441 int arch_size, sect_size;
442 CORE_ADDR sect_addr;
443 gdb_byte *buf;
444
445 /* Get required auxv elements from target. */
446 if (target_auxv_search (&current_target, AT_PHDR, &at_phdr) <= 0)
447 return 0;
448 if (target_auxv_search (&current_target, AT_PHENT, &at_phent) <= 0)
449 return 0;
450 if (target_auxv_search (&current_target, AT_PHNUM, &at_phnum) <= 0)
451 return 0;
452 if (!at_phdr || !at_phnum)
453 return 0;
454
455 /* Determine ELF architecture type. */
456 if (at_phent == sizeof (Elf32_External_Phdr))
457 arch_size = 32;
458 else if (at_phent == sizeof (Elf64_External_Phdr))
459 arch_size = 64;
460 else
461 return 0;
462
463 /* Find .dynamic section via the PT_DYNAMIC PHDR. */
464 if (arch_size == 32)
465 {
466 Elf32_External_Phdr phdr;
467 int i;
468
469 /* Search for requested PHDR. */
470 for (i = 0; i < at_phnum; i++)
471 {
472 if (target_read_memory (at_phdr + i * sizeof (phdr),
473 (gdb_byte *)&phdr, sizeof (phdr)))
474 return 0;
475
476 if (extract_unsigned_integer ((gdb_byte *)phdr.p_type,
477 4, byte_order) == type)
478 break;
479 }
480
481 if (i == at_phnum)
482 return 0;
483
484 /* Retrieve address and size. */
485 sect_addr = extract_unsigned_integer ((gdb_byte *)phdr.p_vaddr,
486 4, byte_order);
487 sect_size = extract_unsigned_integer ((gdb_byte *)phdr.p_memsz,
488 4, byte_order);
489 }
490 else
491 {
492 Elf64_External_Phdr phdr;
493 int i;
494
495 /* Search for requested PHDR. */
496 for (i = 0; i < at_phnum; i++)
497 {
498 if (target_read_memory (at_phdr + i * sizeof (phdr),
499 (gdb_byte *)&phdr, sizeof (phdr)))
500 return 0;
501
502 if (extract_unsigned_integer ((gdb_byte *)phdr.p_type,
503 4, byte_order) == type)
504 break;
505 }
506
507 if (i == at_phnum)
508 return 0;
509
510 /* Retrieve address and size. */
511 sect_addr = extract_unsigned_integer ((gdb_byte *)phdr.p_vaddr,
512 8, byte_order);
513 sect_size = extract_unsigned_integer ((gdb_byte *)phdr.p_memsz,
514 8, byte_order);
515 }
516
517 /* Read in requested program header. */
518 buf = xmalloc (sect_size);
519 if (target_read_memory (sect_addr, buf, sect_size))
520 {
521 xfree (buf);
522 return NULL;
523 }
524
525 if (p_arch_size)
526 *p_arch_size = arch_size;
527 if (p_sect_size)
528 *p_sect_size = sect_size;
529
530 return buf;
531 }
532
533
534 /* Return program interpreter string. */
535 static gdb_byte *
536 find_program_interpreter (void)
537 {
538 gdb_byte *buf = NULL;
539
540 /* If we have an exec_bfd, use its section table. */
541 if (exec_bfd
542 && bfd_get_flavour (exec_bfd) == bfd_target_elf_flavour)
543 {
544 struct bfd_section *interp_sect;
545
546 interp_sect = bfd_get_section_by_name (exec_bfd, ".interp");
547 if (interp_sect != NULL)
548 {
549 CORE_ADDR sect_addr = bfd_section_vma (exec_bfd, interp_sect);
550 int sect_size = bfd_section_size (exec_bfd, interp_sect);
551
552 buf = xmalloc (sect_size);
553 bfd_get_section_contents (exec_bfd, interp_sect, buf, 0, sect_size);
554 }
555 }
556
557 /* If we didn't find it, use the target auxillary vector. */
558 if (!buf)
559 buf = read_program_header (PT_INTERP, NULL, NULL);
560
561 return buf;
562 }
563
564
565 /* Scan for DYNTAG in .dynamic section of ABFD. If DYNTAG is found 1 is
566 returned and the corresponding PTR is set. */
567
568 static int
569 scan_dyntag (int dyntag, bfd *abfd, CORE_ADDR *ptr)
570 {
571 int arch_size, step, sect_size;
572 long dyn_tag;
573 CORE_ADDR dyn_ptr, dyn_addr;
574 gdb_byte *bufend, *bufstart, *buf;
575 Elf32_External_Dyn *x_dynp_32;
576 Elf64_External_Dyn *x_dynp_64;
577 struct bfd_section *sect;
578 struct target_section *target_section;
579
580 if (abfd == NULL)
581 return 0;
582
583 if (bfd_get_flavour (abfd) != bfd_target_elf_flavour)
584 return 0;
585
586 arch_size = bfd_get_arch_size (abfd);
587 if (arch_size == -1)
588 return 0;
589
590 /* Find the start address of the .dynamic section. */
591 sect = bfd_get_section_by_name (abfd, ".dynamic");
592 if (sect == NULL)
593 return 0;
594
595 for (target_section = current_target_sections->sections;
596 target_section < current_target_sections->sections_end;
597 target_section++)
598 if (sect == target_section->the_bfd_section)
599 break;
600 if (target_section < current_target_sections->sections_end)
601 dyn_addr = target_section->addr;
602 else
603 {
604 /* ABFD may come from OBJFILE acting only as a symbol file without being
605 loaded into the target (see add_symbol_file_command). This case is
606 such fallback to the file VMA address without the possibility of
607 having the section relocated to its actual in-memory address. */
608
609 dyn_addr = bfd_section_vma (abfd, sect);
610 }
611
612 /* Read in .dynamic from the BFD. We will get the actual value
613 from memory later. */
614 sect_size = bfd_section_size (abfd, sect);
615 buf = bufstart = alloca (sect_size);
616 if (!bfd_get_section_contents (abfd, sect,
617 buf, 0, sect_size))
618 return 0;
619
620 /* Iterate over BUF and scan for DYNTAG. If found, set PTR and return. */
621 step = (arch_size == 32) ? sizeof (Elf32_External_Dyn)
622 : sizeof (Elf64_External_Dyn);
623 for (bufend = buf + sect_size;
624 buf < bufend;
625 buf += step)
626 {
627 if (arch_size == 32)
628 {
629 x_dynp_32 = (Elf32_External_Dyn *) buf;
630 dyn_tag = bfd_h_get_32 (abfd, (bfd_byte *) x_dynp_32->d_tag);
631 dyn_ptr = bfd_h_get_32 (abfd, (bfd_byte *) x_dynp_32->d_un.d_ptr);
632 }
633 else
634 {
635 x_dynp_64 = (Elf64_External_Dyn *) buf;
636 dyn_tag = bfd_h_get_64 (abfd, (bfd_byte *) x_dynp_64->d_tag);
637 dyn_ptr = bfd_h_get_64 (abfd, (bfd_byte *) x_dynp_64->d_un.d_ptr);
638 }
639 if (dyn_tag == DT_NULL)
640 return 0;
641 if (dyn_tag == dyntag)
642 {
643 /* If requested, try to read the runtime value of this .dynamic
644 entry. */
645 if (ptr)
646 {
647 struct type *ptr_type;
648 gdb_byte ptr_buf[8];
649 CORE_ADDR ptr_addr;
650
651 ptr_type = builtin_type (target_gdbarch)->builtin_data_ptr;
652 ptr_addr = dyn_addr + (buf - bufstart) + arch_size / 8;
653 if (target_read_memory (ptr_addr, ptr_buf, arch_size / 8) == 0)
654 dyn_ptr = extract_typed_address (ptr_buf, ptr_type);
655 *ptr = dyn_ptr;
656 }
657 return 1;
658 }
659 }
660
661 return 0;
662 }
663
664 /* Scan for DYNTAG in .dynamic section of the target's main executable,
665 found by consulting the OS auxillary vector. If DYNTAG is found 1 is
666 returned and the corresponding PTR is set. */
667
668 static int
669 scan_dyntag_auxv (int dyntag, CORE_ADDR *ptr)
670 {
671 enum bfd_endian byte_order = gdbarch_byte_order (target_gdbarch);
672 int sect_size, arch_size, step;
673 long dyn_tag;
674 CORE_ADDR dyn_ptr;
675 gdb_byte *bufend, *bufstart, *buf;
676
677 /* Read in .dynamic section. */
678 buf = bufstart = read_program_header (PT_DYNAMIC, &sect_size, &arch_size);
679 if (!buf)
680 return 0;
681
682 /* Iterate over BUF and scan for DYNTAG. If found, set PTR and return. */
683 step = (arch_size == 32) ? sizeof (Elf32_External_Dyn)
684 : sizeof (Elf64_External_Dyn);
685 for (bufend = buf + sect_size;
686 buf < bufend;
687 buf += step)
688 {
689 if (arch_size == 32)
690 {
691 Elf32_External_Dyn *dynp = (Elf32_External_Dyn *) buf;
692 dyn_tag = extract_unsigned_integer ((gdb_byte *) dynp->d_tag,
693 4, byte_order);
694 dyn_ptr = extract_unsigned_integer ((gdb_byte *) dynp->d_un.d_ptr,
695 4, byte_order);
696 }
697 else
698 {
699 Elf64_External_Dyn *dynp = (Elf64_External_Dyn *) buf;
700 dyn_tag = extract_unsigned_integer ((gdb_byte *) dynp->d_tag,
701 8, byte_order);
702 dyn_ptr = extract_unsigned_integer ((gdb_byte *) dynp->d_un.d_ptr,
703 8, byte_order);
704 }
705 if (dyn_tag == DT_NULL)
706 break;
707
708 if (dyn_tag == dyntag)
709 {
710 if (ptr)
711 *ptr = dyn_ptr;
712
713 xfree (bufstart);
714 return 1;
715 }
716 }
717
718 xfree (bufstart);
719 return 0;
720 }
721
722
723 /*
724
725 LOCAL FUNCTION
726
727 elf_locate_base -- locate the base address of dynamic linker structs
728 for SVR4 elf targets.
729
730 SYNOPSIS
731
732 CORE_ADDR elf_locate_base (void)
733
734 DESCRIPTION
735
736 For SVR4 elf targets the address of the dynamic linker's runtime
737 structure is contained within the dynamic info section in the
738 executable file. The dynamic section is also mapped into the
739 inferior address space. Because the runtime loader fills in the
740 real address before starting the inferior, we have to read in the
741 dynamic info section from the inferior address space.
742 If there are any errors while trying to find the address, we
743 silently return 0, otherwise the found address is returned.
744
745 */
746
747 static CORE_ADDR
748 elf_locate_base (void)
749 {
750 struct minimal_symbol *msymbol;
751 CORE_ADDR dyn_ptr;
752
753 /* Look for DT_MIPS_RLD_MAP first. MIPS executables use this
754 instead of DT_DEBUG, although they sometimes contain an unused
755 DT_DEBUG. */
756 if (scan_dyntag (DT_MIPS_RLD_MAP, exec_bfd, &dyn_ptr)
757 || scan_dyntag_auxv (DT_MIPS_RLD_MAP, &dyn_ptr))
758 {
759 struct type *ptr_type = builtin_type (target_gdbarch)->builtin_data_ptr;
760 gdb_byte *pbuf;
761 int pbuf_size = TYPE_LENGTH (ptr_type);
762 pbuf = alloca (pbuf_size);
763 /* DT_MIPS_RLD_MAP contains a pointer to the address
764 of the dynamic link structure. */
765 if (target_read_memory (dyn_ptr, pbuf, pbuf_size))
766 return 0;
767 return extract_typed_address (pbuf, ptr_type);
768 }
769
770 /* Find DT_DEBUG. */
771 if (scan_dyntag (DT_DEBUG, exec_bfd, &dyn_ptr)
772 || scan_dyntag_auxv (DT_DEBUG, &dyn_ptr))
773 return dyn_ptr;
774
775 /* This may be a static executable. Look for the symbol
776 conventionally named _r_debug, as a last resort. */
777 msymbol = lookup_minimal_symbol ("_r_debug", NULL, symfile_objfile);
778 if (msymbol != NULL)
779 return SYMBOL_VALUE_ADDRESS (msymbol);
780
781 /* DT_DEBUG entry not found. */
782 return 0;
783 }
784
785 /*
786
787 LOCAL FUNCTION
788
789 locate_base -- locate the base address of dynamic linker structs
790
791 SYNOPSIS
792
793 CORE_ADDR locate_base (struct svr4_info *)
794
795 DESCRIPTION
796
797 For both the SunOS and SVR4 shared library implementations, if the
798 inferior executable has been linked dynamically, there is a single
799 address somewhere in the inferior's data space which is the key to
800 locating all of the dynamic linker's runtime structures. This
801 address is the value of the debug base symbol. The job of this
802 function is to find and return that address, or to return 0 if there
803 is no such address (the executable is statically linked for example).
804
805 For SunOS, the job is almost trivial, since the dynamic linker and
806 all of it's structures are statically linked to the executable at
807 link time. Thus the symbol for the address we are looking for has
808 already been added to the minimal symbol table for the executable's
809 objfile at the time the symbol file's symbols were read, and all we
810 have to do is look it up there. Note that we explicitly do NOT want
811 to find the copies in the shared library.
812
813 The SVR4 version is a bit more complicated because the address
814 is contained somewhere in the dynamic info section. We have to go
815 to a lot more work to discover the address of the debug base symbol.
816 Because of this complexity, we cache the value we find and return that
817 value on subsequent invocations. Note there is no copy in the
818 executable symbol tables.
819
820 */
821
822 static CORE_ADDR
823 locate_base (struct svr4_info *info)
824 {
825 /* Check to see if we have a currently valid address, and if so, avoid
826 doing all this work again and just return the cached address. If
827 we have no cached address, try to locate it in the dynamic info
828 section for ELF executables. There's no point in doing any of this
829 though if we don't have some link map offsets to work with. */
830
831 if (info->debug_base == 0 && svr4_have_link_map_offsets ())
832 info->debug_base = elf_locate_base ();
833 return info->debug_base;
834 }
835
836 /* Find the first element in the inferior's dynamic link map, and
837 return its address in the inferior.
838
839 FIXME: Perhaps we should validate the info somehow, perhaps by
840 checking r_version for a known version number, or r_state for
841 RT_CONSISTENT. */
842
843 static CORE_ADDR
844 solib_svr4_r_map (struct svr4_info *info)
845 {
846 struct link_map_offsets *lmo = svr4_fetch_link_map_offsets ();
847 struct type *ptr_type = builtin_type (target_gdbarch)->builtin_data_ptr;
848
849 return read_memory_typed_address (info->debug_base + lmo->r_map_offset,
850 ptr_type);
851 }
852
853 /* Find r_brk from the inferior's debug base. */
854
855 static CORE_ADDR
856 solib_svr4_r_brk (struct svr4_info *info)
857 {
858 struct link_map_offsets *lmo = svr4_fetch_link_map_offsets ();
859 struct type *ptr_type = builtin_type (target_gdbarch)->builtin_data_ptr;
860
861 return read_memory_typed_address (info->debug_base + lmo->r_brk_offset,
862 ptr_type);
863 }
864
865 /* Find the link map for the dynamic linker (if it is not in the
866 normal list of loaded shared objects). */
867
868 static CORE_ADDR
869 solib_svr4_r_ldsomap (struct svr4_info *info)
870 {
871 struct link_map_offsets *lmo = svr4_fetch_link_map_offsets ();
872 struct type *ptr_type = builtin_type (target_gdbarch)->builtin_data_ptr;
873 enum bfd_endian byte_order = gdbarch_byte_order (target_gdbarch);
874 ULONGEST version;
875
876 /* Check version, and return zero if `struct r_debug' doesn't have
877 the r_ldsomap member. */
878 version
879 = read_memory_unsigned_integer (info->debug_base + lmo->r_version_offset,
880 lmo->r_version_size, byte_order);
881 if (version < 2 || lmo->r_ldsomap_offset == -1)
882 return 0;
883
884 return read_memory_typed_address (info->debug_base + lmo->r_ldsomap_offset,
885 ptr_type);
886 }
887
888 /* On Solaris systems with some versions of the dynamic linker,
889 ld.so's l_name pointer points to the SONAME in the string table
890 rather than into writable memory. So that GDB can find shared
891 libraries when loading a core file generated by gcore, ensure that
892 memory areas containing the l_name string are saved in the core
893 file. */
894
895 static int
896 svr4_keep_data_in_core (CORE_ADDR vaddr, unsigned long size)
897 {
898 struct svr4_info *info;
899 CORE_ADDR ldsomap;
900 struct so_list *new;
901 struct cleanup *old_chain;
902 struct link_map_offsets *lmo;
903 CORE_ADDR lm_name;
904
905 info = get_svr4_info ();
906
907 info->debug_base = 0;
908 locate_base (info);
909 if (!info->debug_base)
910 return 0;
911
912 ldsomap = solib_svr4_r_ldsomap (info);
913 if (!ldsomap)
914 return 0;
915
916 lmo = svr4_fetch_link_map_offsets ();
917 new = XZALLOC (struct so_list);
918 old_chain = make_cleanup (xfree, new);
919 new->lm_info = xmalloc (sizeof (struct lm_info));
920 make_cleanup (xfree, new->lm_info);
921 new->lm_info->l_addr = (CORE_ADDR)-1;
922 new->lm_info->lm_addr = ldsomap;
923 new->lm_info->lm = xzalloc (lmo->link_map_size);
924 make_cleanup (xfree, new->lm_info->lm);
925 read_memory (ldsomap, new->lm_info->lm, lmo->link_map_size);
926 lm_name = LM_NAME (new);
927 do_cleanups (old_chain);
928
929 return (lm_name >= vaddr && lm_name < vaddr + size);
930 }
931
932 /*
933
934 LOCAL FUNCTION
935
936 open_symbol_file_object
937
938 SYNOPSIS
939
940 void open_symbol_file_object (void *from_tty)
941
942 DESCRIPTION
943
944 If no open symbol file, attempt to locate and open the main symbol
945 file. On SVR4 systems, this is the first link map entry. If its
946 name is here, we can open it. Useful when attaching to a process
947 without first loading its symbol file.
948
949 If FROM_TTYP dereferences to a non-zero integer, allow messages to
950 be printed. This parameter is a pointer rather than an int because
951 open_symbol_file_object() is called via catch_errors() and
952 catch_errors() requires a pointer argument. */
953
954 static int
955 open_symbol_file_object (void *from_ttyp)
956 {
957 CORE_ADDR lm, l_name;
958 char *filename;
959 int errcode;
960 int from_tty = *(int *)from_ttyp;
961 struct link_map_offsets *lmo = svr4_fetch_link_map_offsets ();
962 struct type *ptr_type = builtin_type (target_gdbarch)->builtin_data_ptr;
963 int l_name_size = TYPE_LENGTH (ptr_type);
964 gdb_byte *l_name_buf = xmalloc (l_name_size);
965 struct cleanup *cleanups = make_cleanup (xfree, l_name_buf);
966 struct svr4_info *info = get_svr4_info ();
967
968 if (symfile_objfile)
969 if (!query (_("Attempt to reload symbols from process? ")))
970 return 0;
971
972 /* Always locate the debug struct, in case it has moved. */
973 info->debug_base = 0;
974 if (locate_base (info) == 0)
975 return 0; /* failed somehow... */
976
977 /* First link map member should be the executable. */
978 lm = solib_svr4_r_map (info);
979 if (lm == 0)
980 return 0; /* failed somehow... */
981
982 /* Read address of name from target memory to GDB. */
983 read_memory (lm + lmo->l_name_offset, l_name_buf, l_name_size);
984
985 /* Convert the address to host format. */
986 l_name = extract_typed_address (l_name_buf, ptr_type);
987
988 /* Free l_name_buf. */
989 do_cleanups (cleanups);
990
991 if (l_name == 0)
992 return 0; /* No filename. */
993
994 /* Now fetch the filename from target memory. */
995 target_read_string (l_name, &filename, SO_NAME_MAX_PATH_SIZE - 1, &errcode);
996 make_cleanup (xfree, filename);
997
998 if (errcode)
999 {
1000 warning (_("failed to read exec filename from attached file: %s"),
1001 safe_strerror (errcode));
1002 return 0;
1003 }
1004
1005 /* Have a pathname: read the symbol file. */
1006 symbol_file_add_main (filename, from_tty);
1007
1008 return 1;
1009 }
1010
1011 /* If no shared library information is available from the dynamic
1012 linker, build a fallback list from other sources. */
1013
1014 static struct so_list *
1015 svr4_default_sos (void)
1016 {
1017 struct svr4_info *info = get_svr4_info ();
1018
1019 struct so_list *head = NULL;
1020 struct so_list **link_ptr = &head;
1021
1022 if (info->debug_loader_offset_p)
1023 {
1024 struct so_list *new = XZALLOC (struct so_list);
1025
1026 new->lm_info = xmalloc (sizeof (struct lm_info));
1027
1028 /* Nothing will ever check the cached copy of the link
1029 map if we set l_addr. */
1030 new->lm_info->l_addr = info->debug_loader_offset;
1031 new->lm_info->lm_addr = 0;
1032 new->lm_info->lm = NULL;
1033
1034 strncpy (new->so_name, info->debug_loader_name,
1035 SO_NAME_MAX_PATH_SIZE - 1);
1036 new->so_name[SO_NAME_MAX_PATH_SIZE - 1] = '\0';
1037 strcpy (new->so_original_name, new->so_name);
1038
1039 *link_ptr = new;
1040 link_ptr = &new->next;
1041 }
1042
1043 return head;
1044 }
1045
1046 /* LOCAL FUNCTION
1047
1048 current_sos -- build a list of currently loaded shared objects
1049
1050 SYNOPSIS
1051
1052 struct so_list *current_sos ()
1053
1054 DESCRIPTION
1055
1056 Build a list of `struct so_list' objects describing the shared
1057 objects currently loaded in the inferior. This list does not
1058 include an entry for the main executable file.
1059
1060 Note that we only gather information directly available from the
1061 inferior --- we don't examine any of the shared library files
1062 themselves. The declaration of `struct so_list' says which fields
1063 we provide values for. */
1064
1065 static struct so_list *
1066 svr4_current_sos (void)
1067 {
1068 CORE_ADDR lm;
1069 struct so_list *head = 0;
1070 struct so_list **link_ptr = &head;
1071 CORE_ADDR ldsomap = 0;
1072 struct svr4_info *info;
1073
1074 info = get_svr4_info ();
1075
1076 /* Always locate the debug struct, in case it has moved. */
1077 info->debug_base = 0;
1078 locate_base (info);
1079
1080 /* If we can't find the dynamic linker's base structure, this
1081 must not be a dynamically linked executable. Hmm. */
1082 if (! info->debug_base)
1083 return svr4_default_sos ();
1084
1085 /* Walk the inferior's link map list, and build our list of
1086 `struct so_list' nodes. */
1087 lm = solib_svr4_r_map (info);
1088
1089 while (lm)
1090 {
1091 struct link_map_offsets *lmo = svr4_fetch_link_map_offsets ();
1092 struct so_list *new = XZALLOC (struct so_list);
1093 struct cleanup *old_chain = make_cleanup (xfree, new);
1094
1095 new->lm_info = xmalloc (sizeof (struct lm_info));
1096 make_cleanup (xfree, new->lm_info);
1097
1098 new->lm_info->l_addr = (CORE_ADDR)-1;
1099 new->lm_info->lm_addr = lm;
1100 new->lm_info->lm = xzalloc (lmo->link_map_size);
1101 make_cleanup (xfree, new->lm_info->lm);
1102
1103 read_memory (lm, new->lm_info->lm, lmo->link_map_size);
1104
1105 lm = LM_NEXT (new);
1106
1107 /* For SVR4 versions, the first entry in the link map is for the
1108 inferior executable, so we must ignore it. For some versions of
1109 SVR4, it has no name. For others (Solaris 2.3 for example), it
1110 does have a name, so we can no longer use a missing name to
1111 decide when to ignore it. */
1112 if (IGNORE_FIRST_LINK_MAP_ENTRY (new) && ldsomap == 0)
1113 {
1114 info->main_lm_addr = new->lm_info->lm_addr;
1115 free_so (new);
1116 }
1117 else
1118 {
1119 int errcode;
1120 char *buffer;
1121
1122 /* Extract this shared object's name. */
1123 target_read_string (LM_NAME (new), &buffer,
1124 SO_NAME_MAX_PATH_SIZE - 1, &errcode);
1125 if (errcode != 0)
1126 warning (_("Can't read pathname for load map: %s."),
1127 safe_strerror (errcode));
1128 else
1129 {
1130 strncpy (new->so_name, buffer, SO_NAME_MAX_PATH_SIZE - 1);
1131 new->so_name[SO_NAME_MAX_PATH_SIZE - 1] = '\0';
1132 strcpy (new->so_original_name, new->so_name);
1133 }
1134 xfree (buffer);
1135
1136 /* If this entry has no name, or its name matches the name
1137 for the main executable, don't include it in the list. */
1138 if (! new->so_name[0]
1139 || match_main (new->so_name))
1140 free_so (new);
1141 else
1142 {
1143 new->next = 0;
1144 *link_ptr = new;
1145 link_ptr = &new->next;
1146 }
1147 }
1148
1149 /* On Solaris, the dynamic linker is not in the normal list of
1150 shared objects, so make sure we pick it up too. Having
1151 symbol information for the dynamic linker is quite crucial
1152 for skipping dynamic linker resolver code. */
1153 if (lm == 0 && ldsomap == 0)
1154 lm = ldsomap = solib_svr4_r_ldsomap (info);
1155
1156 discard_cleanups (old_chain);
1157 }
1158
1159 if (head == NULL)
1160 return svr4_default_sos ();
1161
1162 return head;
1163 }
1164
1165 /* Get the address of the link_map for a given OBJFILE. */
1166
1167 CORE_ADDR
1168 svr4_fetch_objfile_link_map (struct objfile *objfile)
1169 {
1170 struct so_list *so;
1171 struct svr4_info *info = get_svr4_info ();
1172
1173 /* Cause svr4_current_sos() to be run if it hasn't been already. */
1174 if (info->main_lm_addr == 0)
1175 solib_add (NULL, 0, &current_target, auto_solib_add);
1176
1177 /* svr4_current_sos() will set main_lm_addr for the main executable. */
1178 if (objfile == symfile_objfile)
1179 return info->main_lm_addr;
1180
1181 /* The other link map addresses may be found by examining the list
1182 of shared libraries. */
1183 for (so = master_so_list (); so; so = so->next)
1184 if (so->objfile == objfile)
1185 return so->lm_info->lm_addr;
1186
1187 /* Not found! */
1188 return 0;
1189 }
1190
1191 /* On some systems, the only way to recognize the link map entry for
1192 the main executable file is by looking at its name. Return
1193 non-zero iff SONAME matches one of the known main executable names. */
1194
1195 static int
1196 match_main (char *soname)
1197 {
1198 char **mainp;
1199
1200 for (mainp = main_name_list; *mainp != NULL; mainp++)
1201 {
1202 if (strcmp (soname, *mainp) == 0)
1203 return (1);
1204 }
1205
1206 return (0);
1207 }
1208
1209 /* Return 1 if PC lies in the dynamic symbol resolution code of the
1210 SVR4 run time loader. */
1211
1212 int
1213 svr4_in_dynsym_resolve_code (CORE_ADDR pc)
1214 {
1215 struct svr4_info *info = get_svr4_info ();
1216
1217 return ((pc >= info->interp_text_sect_low
1218 && pc < info->interp_text_sect_high)
1219 || (pc >= info->interp_plt_sect_low
1220 && pc < info->interp_plt_sect_high)
1221 || in_plt_section (pc, NULL));
1222 }
1223
1224 /* Given an executable's ABFD and target, compute the entry-point
1225 address. */
1226
1227 static CORE_ADDR
1228 exec_entry_point (struct bfd *abfd, struct target_ops *targ)
1229 {
1230 /* KevinB wrote ... for most targets, the address returned by
1231 bfd_get_start_address() is the entry point for the start
1232 function. But, for some targets, bfd_get_start_address() returns
1233 the address of a function descriptor from which the entry point
1234 address may be extracted. This address is extracted by
1235 gdbarch_convert_from_func_ptr_addr(). The method
1236 gdbarch_convert_from_func_ptr_addr() is the merely the identify
1237 function for targets which don't use function descriptors. */
1238 return gdbarch_convert_from_func_ptr_addr (target_gdbarch,
1239 bfd_get_start_address (abfd),
1240 targ);
1241 }
1242
1243 /*
1244
1245 LOCAL FUNCTION
1246
1247 enable_break -- arrange for dynamic linker to hit breakpoint
1248
1249 SYNOPSIS
1250
1251 int enable_break (void)
1252
1253 DESCRIPTION
1254
1255 Both the SunOS and the SVR4 dynamic linkers have, as part of their
1256 debugger interface, support for arranging for the inferior to hit
1257 a breakpoint after mapping in the shared libraries. This function
1258 enables that breakpoint.
1259
1260 For SunOS, there is a special flag location (in_debugger) which we
1261 set to 1. When the dynamic linker sees this flag set, it will set
1262 a breakpoint at a location known only to itself, after saving the
1263 original contents of that place and the breakpoint address itself,
1264 in it's own internal structures. When we resume the inferior, it
1265 will eventually take a SIGTRAP when it runs into the breakpoint.
1266 We handle this (in a different place) by restoring the contents of
1267 the breakpointed location (which is only known after it stops),
1268 chasing around to locate the shared libraries that have been
1269 loaded, then resuming.
1270
1271 For SVR4, the debugger interface structure contains a member (r_brk)
1272 which is statically initialized at the time the shared library is
1273 built, to the offset of a function (_r_debug_state) which is guaran-
1274 teed to be called once before mapping in a library, and again when
1275 the mapping is complete. At the time we are examining this member,
1276 it contains only the unrelocated offset of the function, so we have
1277 to do our own relocation. Later, when the dynamic linker actually
1278 runs, it relocates r_brk to be the actual address of _r_debug_state().
1279
1280 The debugger interface structure also contains an enumeration which
1281 is set to either RT_ADD or RT_DELETE prior to changing the mapping,
1282 depending upon whether or not the library is being mapped or unmapped,
1283 and then set to RT_CONSISTENT after the library is mapped/unmapped.
1284 */
1285
1286 static int
1287 enable_break (struct svr4_info *info, int from_tty)
1288 {
1289 struct minimal_symbol *msymbol;
1290 char **bkpt_namep;
1291 asection *interp_sect;
1292 gdb_byte *interp_name;
1293 CORE_ADDR sym_addr;
1294
1295 /* First, remove all the solib event breakpoints. Their addresses
1296 may have changed since the last time we ran the program. */
1297 remove_solib_event_breakpoints ();
1298
1299 info->interp_text_sect_low = info->interp_text_sect_high = 0;
1300 info->interp_plt_sect_low = info->interp_plt_sect_high = 0;
1301
1302 /* If we already have a shared library list in the target, and
1303 r_debug contains r_brk, set the breakpoint there - this should
1304 mean r_brk has already been relocated. Assume the dynamic linker
1305 is the object containing r_brk. */
1306
1307 solib_add (NULL, from_tty, &current_target, auto_solib_add);
1308 sym_addr = 0;
1309 if (info->debug_base && solib_svr4_r_map (info) != 0)
1310 sym_addr = solib_svr4_r_brk (info);
1311
1312 if (sym_addr != 0)
1313 {
1314 struct obj_section *os;
1315
1316 sym_addr = gdbarch_addr_bits_remove
1317 (target_gdbarch, gdbarch_convert_from_func_ptr_addr (target_gdbarch,
1318 sym_addr,
1319 &current_target));
1320
1321 os = find_pc_section (sym_addr);
1322 if (os != NULL)
1323 {
1324 /* Record the relocated start and end address of the dynamic linker
1325 text and plt section for svr4_in_dynsym_resolve_code. */
1326 bfd *tmp_bfd;
1327 CORE_ADDR load_addr;
1328
1329 tmp_bfd = os->objfile->obfd;
1330 load_addr = ANOFFSET (os->objfile->section_offsets,
1331 os->objfile->sect_index_text);
1332
1333 interp_sect = bfd_get_section_by_name (tmp_bfd, ".text");
1334 if (interp_sect)
1335 {
1336 info->interp_text_sect_low =
1337 bfd_section_vma (tmp_bfd, interp_sect) + load_addr;
1338 info->interp_text_sect_high =
1339 info->interp_text_sect_low
1340 + bfd_section_size (tmp_bfd, interp_sect);
1341 }
1342 interp_sect = bfd_get_section_by_name (tmp_bfd, ".plt");
1343 if (interp_sect)
1344 {
1345 info->interp_plt_sect_low =
1346 bfd_section_vma (tmp_bfd, interp_sect) + load_addr;
1347 info->interp_plt_sect_high =
1348 info->interp_plt_sect_low
1349 + bfd_section_size (tmp_bfd, interp_sect);
1350 }
1351
1352 create_solib_event_breakpoint (target_gdbarch, sym_addr);
1353 return 1;
1354 }
1355 }
1356
1357 /* Find the program interpreter; if not found, warn the user and drop
1358 into the old breakpoint at symbol code. */
1359 interp_name = find_program_interpreter ();
1360 if (interp_name)
1361 {
1362 CORE_ADDR load_addr = 0;
1363 int load_addr_found = 0;
1364 int loader_found_in_list = 0;
1365 struct so_list *so;
1366 bfd *tmp_bfd = NULL;
1367 struct target_ops *tmp_bfd_target;
1368 volatile struct gdb_exception ex;
1369
1370 sym_addr = 0;
1371
1372 /* Now we need to figure out where the dynamic linker was
1373 loaded so that we can load its symbols and place a breakpoint
1374 in the dynamic linker itself.
1375
1376 This address is stored on the stack. However, I've been unable
1377 to find any magic formula to find it for Solaris (appears to
1378 be trivial on GNU/Linux). Therefore, we have to try an alternate
1379 mechanism to find the dynamic linker's base address. */
1380
1381 TRY_CATCH (ex, RETURN_MASK_ALL)
1382 {
1383 tmp_bfd = solib_bfd_open (interp_name);
1384 }
1385 if (tmp_bfd == NULL)
1386 goto bkpt_at_symbol;
1387
1388 /* Now convert the TMP_BFD into a target. That way target, as
1389 well as BFD operations can be used. Note that closing the
1390 target will also close the underlying bfd. */
1391 tmp_bfd_target = target_bfd_reopen (tmp_bfd);
1392
1393 /* On a running target, we can get the dynamic linker's base
1394 address from the shared library table. */
1395 so = master_so_list ();
1396 while (so)
1397 {
1398 if (svr4_same_1 (interp_name, so->so_original_name))
1399 {
1400 load_addr_found = 1;
1401 loader_found_in_list = 1;
1402 load_addr = LM_ADDR_CHECK (so, tmp_bfd);
1403 break;
1404 }
1405 so = so->next;
1406 }
1407
1408 /* If we were not able to find the base address of the loader
1409 from our so_list, then try using the AT_BASE auxilliary entry. */
1410 if (!load_addr_found)
1411 if (target_auxv_search (&current_target, AT_BASE, &load_addr) > 0)
1412 load_addr_found = 1;
1413
1414 /* Otherwise we find the dynamic linker's base address by examining
1415 the current pc (which should point at the entry point for the
1416 dynamic linker) and subtracting the offset of the entry point.
1417
1418 This is more fragile than the previous approaches, but is a good
1419 fallback method because it has actually been working well in
1420 most cases. */
1421 if (!load_addr_found)
1422 {
1423 struct regcache *regcache
1424 = get_thread_arch_regcache (inferior_ptid, target_gdbarch);
1425 load_addr = (regcache_read_pc (regcache)
1426 - exec_entry_point (tmp_bfd, tmp_bfd_target));
1427 }
1428
1429 if (!loader_found_in_list)
1430 {
1431 info->debug_loader_name = xstrdup (interp_name);
1432 info->debug_loader_offset_p = 1;
1433 info->debug_loader_offset = load_addr;
1434 solib_add (NULL, from_tty, &current_target, auto_solib_add);
1435 }
1436
1437 /* Record the relocated start and end address of the dynamic linker
1438 text and plt section for svr4_in_dynsym_resolve_code. */
1439 interp_sect = bfd_get_section_by_name (tmp_bfd, ".text");
1440 if (interp_sect)
1441 {
1442 info->interp_text_sect_low =
1443 bfd_section_vma (tmp_bfd, interp_sect) + load_addr;
1444 info->interp_text_sect_high =
1445 info->interp_text_sect_low
1446 + bfd_section_size (tmp_bfd, interp_sect);
1447 }
1448 interp_sect = bfd_get_section_by_name (tmp_bfd, ".plt");
1449 if (interp_sect)
1450 {
1451 info->interp_plt_sect_low =
1452 bfd_section_vma (tmp_bfd, interp_sect) + load_addr;
1453 info->interp_plt_sect_high =
1454 info->interp_plt_sect_low
1455 + bfd_section_size (tmp_bfd, interp_sect);
1456 }
1457
1458 /* Now try to set a breakpoint in the dynamic linker. */
1459 for (bkpt_namep = solib_break_names; *bkpt_namep != NULL; bkpt_namep++)
1460 {
1461 sym_addr = bfd_lookup_symbol (tmp_bfd, *bkpt_namep);
1462 if (sym_addr != 0)
1463 break;
1464 }
1465
1466 if (sym_addr != 0)
1467 /* Convert 'sym_addr' from a function pointer to an address.
1468 Because we pass tmp_bfd_target instead of the current
1469 target, this will always produce an unrelocated value. */
1470 sym_addr = gdbarch_convert_from_func_ptr_addr (target_gdbarch,
1471 sym_addr,
1472 tmp_bfd_target);
1473
1474 /* We're done with both the temporary bfd and target. Remember,
1475 closing the target closes the underlying bfd. */
1476 target_close (tmp_bfd_target, 0);
1477
1478 if (sym_addr != 0)
1479 {
1480 create_solib_event_breakpoint (target_gdbarch, load_addr + sym_addr);
1481 xfree (interp_name);
1482 return 1;
1483 }
1484
1485 /* For whatever reason we couldn't set a breakpoint in the dynamic
1486 linker. Warn and drop into the old code. */
1487 bkpt_at_symbol:
1488 xfree (interp_name);
1489 warning (_("Unable to find dynamic linker breakpoint function.\n"
1490 "GDB will be unable to debug shared library initializers\n"
1491 "and track explicitly loaded dynamic code."));
1492 }
1493
1494 /* Scan through the lists of symbols, trying to look up the symbol and
1495 set a breakpoint there. Terminate loop when we/if we succeed. */
1496
1497 for (bkpt_namep = solib_break_names; *bkpt_namep != NULL; bkpt_namep++)
1498 {
1499 msymbol = lookup_minimal_symbol (*bkpt_namep, NULL, symfile_objfile);
1500 if ((msymbol != NULL) && (SYMBOL_VALUE_ADDRESS (msymbol) != 0))
1501 {
1502 sym_addr = SYMBOL_VALUE_ADDRESS (msymbol);
1503 sym_addr = gdbarch_convert_from_func_ptr_addr (target_gdbarch,
1504 sym_addr,
1505 &current_target);
1506 create_solib_event_breakpoint (target_gdbarch, sym_addr);
1507 return 1;
1508 }
1509 }
1510
1511 for (bkpt_namep = bkpt_names; *bkpt_namep != NULL; bkpt_namep++)
1512 {
1513 msymbol = lookup_minimal_symbol (*bkpt_namep, NULL, symfile_objfile);
1514 if ((msymbol != NULL) && (SYMBOL_VALUE_ADDRESS (msymbol) != 0))
1515 {
1516 sym_addr = SYMBOL_VALUE_ADDRESS (msymbol);
1517 sym_addr = gdbarch_convert_from_func_ptr_addr (target_gdbarch,
1518 sym_addr,
1519 &current_target);
1520 create_solib_event_breakpoint (target_gdbarch, sym_addr);
1521 return 1;
1522 }
1523 }
1524 return 0;
1525 }
1526
1527 /*
1528
1529 LOCAL FUNCTION
1530
1531 special_symbol_handling -- additional shared library symbol handling
1532
1533 SYNOPSIS
1534
1535 void special_symbol_handling ()
1536
1537 DESCRIPTION
1538
1539 Once the symbols from a shared object have been loaded in the usual
1540 way, we are called to do any system specific symbol handling that
1541 is needed.
1542
1543 For SunOS4, this consisted of grunging around in the dynamic
1544 linkers structures to find symbol definitions for "common" symbols
1545 and adding them to the minimal symbol table for the runtime common
1546 objfile.
1547
1548 However, for SVR4, there's nothing to do.
1549
1550 */
1551
1552 static void
1553 svr4_special_symbol_handling (void)
1554 {
1555 svr4_relocate_main_executable ();
1556 }
1557
1558 /* Decide if the objfile needs to be relocated. As indicated above,
1559 we will only be here when execution is stopped at the beginning
1560 of the program. Relocation is necessary if the address at which
1561 we are presently stopped differs from the start address stored in
1562 the executable AND there's no interpreter section. The condition
1563 regarding the interpreter section is very important because if
1564 there *is* an interpreter section, execution will begin there
1565 instead. When there is an interpreter section, the start address
1566 is (presumably) used by the interpreter at some point to start
1567 execution of the program.
1568
1569 If there is an interpreter, it is normal for it to be set to an
1570 arbitrary address at the outset. The job of finding it is
1571 handled in enable_break().
1572
1573 So, to summarize, relocations are necessary when there is no
1574 interpreter section and the start address obtained from the
1575 executable is different from the address at which GDB is
1576 currently stopped.
1577
1578 [ The astute reader will note that we also test to make sure that
1579 the executable in question has the DYNAMIC flag set. It is my
1580 opinion that this test is unnecessary (undesirable even). It
1581 was added to avoid inadvertent relocation of an executable
1582 whose e_type member in the ELF header is not ET_DYN. There may
1583 be a time in the future when it is desirable to do relocations
1584 on other types of files as well in which case this condition
1585 should either be removed or modified to accomodate the new file
1586 type. (E.g, an ET_EXEC executable which has been built to be
1587 position-independent could safely be relocated by the OS if
1588 desired. It is true that this violates the ABI, but the ABI
1589 has been known to be bent from time to time.) - Kevin, Nov 2000. ]
1590 */
1591
1592 static CORE_ADDR
1593 svr4_static_exec_displacement (void)
1594 {
1595 asection *interp_sect;
1596 struct regcache *regcache
1597 = get_thread_arch_regcache (inferior_ptid, target_gdbarch);
1598 CORE_ADDR pc = regcache_read_pc (regcache);
1599
1600 interp_sect = bfd_get_section_by_name (exec_bfd, ".interp");
1601 if (interp_sect == NULL
1602 && (bfd_get_file_flags (exec_bfd) & DYNAMIC) != 0
1603 && (exec_entry_point (exec_bfd, &exec_ops) != pc))
1604 return pc - exec_entry_point (exec_bfd, &exec_ops);
1605
1606 return 0;
1607 }
1608
1609 /* We relocate all of the sections by the same amount. This
1610 behavior is mandated by recent editions of the System V ABI.
1611 According to the System V Application Binary Interface,
1612 Edition 4.1, page 5-5:
1613
1614 ... Though the system chooses virtual addresses for
1615 individual processes, it maintains the segments' relative
1616 positions. Because position-independent code uses relative
1617 addressesing between segments, the difference between
1618 virtual addresses in memory must match the difference
1619 between virtual addresses in the file. The difference
1620 between the virtual address of any segment in memory and
1621 the corresponding virtual address in the file is thus a
1622 single constant value for any one executable or shared
1623 object in a given process. This difference is the base
1624 address. One use of the base address is to relocate the
1625 memory image of the program during dynamic linking.
1626
1627 The same language also appears in Edition 4.0 of the System V
1628 ABI and is left unspecified in some of the earlier editions. */
1629
1630 static CORE_ADDR
1631 svr4_exec_displacement (void)
1632 {
1633 int found;
1634 /* ENTRY_POINT is a possible function descriptor - before
1635 a call to gdbarch_convert_from_func_ptr_addr. */
1636 CORE_ADDR entry_point;
1637
1638 if (exec_bfd == NULL)
1639 return 0;
1640
1641 if (target_auxv_search (&current_target, AT_ENTRY, &entry_point) == 1)
1642 return entry_point - bfd_get_start_address (exec_bfd);
1643
1644 return svr4_static_exec_displacement ();
1645 }
1646
1647 /* Relocate the main executable. This function should be called upon
1648 stopping the inferior process at the entry point to the program.
1649 The entry point from BFD is compared to the AT_ENTRY of AUXV and if they are
1650 different, the main executable is relocated by the proper amount. */
1651
1652 static void
1653 svr4_relocate_main_executable (void)
1654 {
1655 CORE_ADDR displacement = svr4_exec_displacement ();
1656
1657 /* Even if DISPLACEMENT is 0 still try to relocate it as this is a new
1658 difference of in-memory vs. in-file addresses and we could already
1659 relocate the executable at this function to improper address before. */
1660
1661 if (symfile_objfile)
1662 {
1663 struct section_offsets *new_offsets;
1664 int i;
1665
1666 new_offsets = alloca (symfile_objfile->num_sections
1667 * sizeof (*new_offsets));
1668
1669 for (i = 0; i < symfile_objfile->num_sections; i++)
1670 new_offsets->offsets[i] = displacement;
1671
1672 objfile_relocate (symfile_objfile, new_offsets);
1673 }
1674 else if (exec_bfd)
1675 {
1676 asection *asect;
1677
1678 for (asect = exec_bfd->sections; asect != NULL; asect = asect->next)
1679 exec_set_section_address (bfd_get_filename (exec_bfd), asect->index,
1680 (bfd_section_vma (exec_bfd, asect)
1681 + displacement));
1682 }
1683 }
1684
1685 /*
1686
1687 GLOBAL FUNCTION
1688
1689 svr4_solib_create_inferior_hook -- shared library startup support
1690
1691 SYNOPSIS
1692
1693 void svr4_solib_create_inferior_hook (int from_tty)
1694
1695 DESCRIPTION
1696
1697 When gdb starts up the inferior, it nurses it along (through the
1698 shell) until it is ready to execute it's first instruction. At this
1699 point, this function gets called via expansion of the macro
1700 SOLIB_CREATE_INFERIOR_HOOK.
1701
1702 For SunOS executables, this first instruction is typically the
1703 one at "_start", or a similar text label, regardless of whether
1704 the executable is statically or dynamically linked. The runtime
1705 startup code takes care of dynamically linking in any shared
1706 libraries, once gdb allows the inferior to continue.
1707
1708 For SVR4 executables, this first instruction is either the first
1709 instruction in the dynamic linker (for dynamically linked
1710 executables) or the instruction at "start" for statically linked
1711 executables. For dynamically linked executables, the system
1712 first exec's /lib/libc.so.N, which contains the dynamic linker,
1713 and starts it running. The dynamic linker maps in any needed
1714 shared libraries, maps in the actual user executable, and then
1715 jumps to "start" in the user executable.
1716
1717 For both SunOS shared libraries, and SVR4 shared libraries, we
1718 can arrange to cooperate with the dynamic linker to discover the
1719 names of shared libraries that are dynamically linked, and the
1720 base addresses to which they are linked.
1721
1722 This function is responsible for discovering those names and
1723 addresses, and saving sufficient information about them to allow
1724 their symbols to be read at a later time.
1725
1726 FIXME
1727
1728 Between enable_break() and disable_break(), this code does not
1729 properly handle hitting breakpoints which the user might have
1730 set in the startup code or in the dynamic linker itself. Proper
1731 handling will probably have to wait until the implementation is
1732 changed to use the "breakpoint handler function" method.
1733
1734 Also, what if child has exit()ed? Must exit loop somehow.
1735 */
1736
1737 static void
1738 svr4_solib_create_inferior_hook (int from_tty)
1739 {
1740 struct inferior *inf;
1741 struct thread_info *tp;
1742 struct svr4_info *info;
1743
1744 info = get_svr4_info ();
1745
1746 /* Relocate the main executable if necessary. */
1747 if (current_inferior ()->attach_flag == 0)
1748 svr4_relocate_main_executable ();
1749
1750 if (!svr4_have_link_map_offsets ())
1751 return;
1752
1753 if (!enable_break (info, from_tty))
1754 return;
1755
1756 #if defined(_SCO_DS)
1757 /* SCO needs the loop below, other systems should be using the
1758 special shared library breakpoints and the shared library breakpoint
1759 service routine.
1760
1761 Now run the target. It will eventually hit the breakpoint, at
1762 which point all of the libraries will have been mapped in and we
1763 can go groveling around in the dynamic linker structures to find
1764 out what we need to know about them. */
1765
1766 inf = current_inferior ();
1767 tp = inferior_thread ();
1768
1769 clear_proceed_status ();
1770 inf->stop_soon = STOP_QUIETLY;
1771 tp->stop_signal = TARGET_SIGNAL_0;
1772 do
1773 {
1774 target_resume (pid_to_ptid (-1), 0, tp->stop_signal);
1775 wait_for_inferior (0);
1776 }
1777 while (tp->stop_signal != TARGET_SIGNAL_TRAP);
1778 inf->stop_soon = NO_STOP_QUIETLY;
1779 #endif /* defined(_SCO_DS) */
1780 }
1781
1782 static void
1783 svr4_clear_solib (void)
1784 {
1785 struct svr4_info *info;
1786
1787 info = get_svr4_info ();
1788 info->debug_base = 0;
1789 info->debug_loader_offset_p = 0;
1790 info->debug_loader_offset = 0;
1791 xfree (info->debug_loader_name);
1792 info->debug_loader_name = NULL;
1793 }
1794
1795 static void
1796 svr4_free_so (struct so_list *so)
1797 {
1798 xfree (so->lm_info->lm);
1799 xfree (so->lm_info);
1800 }
1801
1802
1803 /* Clear any bits of ADDR that wouldn't fit in a target-format
1804 data pointer. "Data pointer" here refers to whatever sort of
1805 address the dynamic linker uses to manage its sections. At the
1806 moment, we don't support shared libraries on any processors where
1807 code and data pointers are different sizes.
1808
1809 This isn't really the right solution. What we really need here is
1810 a way to do arithmetic on CORE_ADDR values that respects the
1811 natural pointer/address correspondence. (For example, on the MIPS,
1812 converting a 32-bit pointer to a 64-bit CORE_ADDR requires you to
1813 sign-extend the value. There, simply truncating the bits above
1814 gdbarch_ptr_bit, as we do below, is no good.) This should probably
1815 be a new gdbarch method or something. */
1816 static CORE_ADDR
1817 svr4_truncate_ptr (CORE_ADDR addr)
1818 {
1819 if (gdbarch_ptr_bit (target_gdbarch) == sizeof (CORE_ADDR) * 8)
1820 /* We don't need to truncate anything, and the bit twiddling below
1821 will fail due to overflow problems. */
1822 return addr;
1823 else
1824 return addr & (((CORE_ADDR) 1 << gdbarch_ptr_bit (target_gdbarch)) - 1);
1825 }
1826
1827
1828 static void
1829 svr4_relocate_section_addresses (struct so_list *so,
1830 struct target_section *sec)
1831 {
1832 sec->addr = svr4_truncate_ptr (sec->addr + LM_ADDR_CHECK (so,
1833 sec->bfd));
1834 sec->endaddr = svr4_truncate_ptr (sec->endaddr + LM_ADDR_CHECK (so,
1835 sec->bfd));
1836 }
1837 \f
1838
1839 /* Architecture-specific operations. */
1840
1841 /* Per-architecture data key. */
1842 static struct gdbarch_data *solib_svr4_data;
1843
1844 struct solib_svr4_ops
1845 {
1846 /* Return a description of the layout of `struct link_map'. */
1847 struct link_map_offsets *(*fetch_link_map_offsets)(void);
1848 };
1849
1850 /* Return a default for the architecture-specific operations. */
1851
1852 static void *
1853 solib_svr4_init (struct obstack *obstack)
1854 {
1855 struct solib_svr4_ops *ops;
1856
1857 ops = OBSTACK_ZALLOC (obstack, struct solib_svr4_ops);
1858 ops->fetch_link_map_offsets = NULL;
1859 return ops;
1860 }
1861
1862 /* Set the architecture-specific `struct link_map_offsets' fetcher for
1863 GDBARCH to FLMO. Also, install SVR4 solib_ops into GDBARCH. */
1864
1865 void
1866 set_solib_svr4_fetch_link_map_offsets (struct gdbarch *gdbarch,
1867 struct link_map_offsets *(*flmo) (void))
1868 {
1869 struct solib_svr4_ops *ops = gdbarch_data (gdbarch, solib_svr4_data);
1870
1871 ops->fetch_link_map_offsets = flmo;
1872
1873 set_solib_ops (gdbarch, &svr4_so_ops);
1874 }
1875
1876 /* Fetch a link_map_offsets structure using the architecture-specific
1877 `struct link_map_offsets' fetcher. */
1878
1879 static struct link_map_offsets *
1880 svr4_fetch_link_map_offsets (void)
1881 {
1882 struct solib_svr4_ops *ops = gdbarch_data (target_gdbarch, solib_svr4_data);
1883
1884 gdb_assert (ops->fetch_link_map_offsets);
1885 return ops->fetch_link_map_offsets ();
1886 }
1887
1888 /* Return 1 if a link map offset fetcher has been defined, 0 otherwise. */
1889
1890 static int
1891 svr4_have_link_map_offsets (void)
1892 {
1893 struct solib_svr4_ops *ops = gdbarch_data (target_gdbarch, solib_svr4_data);
1894 return (ops->fetch_link_map_offsets != NULL);
1895 }
1896 \f
1897
1898 /* Most OS'es that have SVR4-style ELF dynamic libraries define a
1899 `struct r_debug' and a `struct link_map' that are binary compatible
1900 with the origional SVR4 implementation. */
1901
1902 /* Fetch (and possibly build) an appropriate `struct link_map_offsets'
1903 for an ILP32 SVR4 system. */
1904
1905 struct link_map_offsets *
1906 svr4_ilp32_fetch_link_map_offsets (void)
1907 {
1908 static struct link_map_offsets lmo;
1909 static struct link_map_offsets *lmp = NULL;
1910
1911 if (lmp == NULL)
1912 {
1913 lmp = &lmo;
1914
1915 lmo.r_version_offset = 0;
1916 lmo.r_version_size = 4;
1917 lmo.r_map_offset = 4;
1918 lmo.r_brk_offset = 8;
1919 lmo.r_ldsomap_offset = 20;
1920
1921 /* Everything we need is in the first 20 bytes. */
1922 lmo.link_map_size = 20;
1923 lmo.l_addr_offset = 0;
1924 lmo.l_name_offset = 4;
1925 lmo.l_ld_offset = 8;
1926 lmo.l_next_offset = 12;
1927 lmo.l_prev_offset = 16;
1928 }
1929
1930 return lmp;
1931 }
1932
1933 /* Fetch (and possibly build) an appropriate `struct link_map_offsets'
1934 for an LP64 SVR4 system. */
1935
1936 struct link_map_offsets *
1937 svr4_lp64_fetch_link_map_offsets (void)
1938 {
1939 static struct link_map_offsets lmo;
1940 static struct link_map_offsets *lmp = NULL;
1941
1942 if (lmp == NULL)
1943 {
1944 lmp = &lmo;
1945
1946 lmo.r_version_offset = 0;
1947 lmo.r_version_size = 4;
1948 lmo.r_map_offset = 8;
1949 lmo.r_brk_offset = 16;
1950 lmo.r_ldsomap_offset = 40;
1951
1952 /* Everything we need is in the first 40 bytes. */
1953 lmo.link_map_size = 40;
1954 lmo.l_addr_offset = 0;
1955 lmo.l_name_offset = 8;
1956 lmo.l_ld_offset = 16;
1957 lmo.l_next_offset = 24;
1958 lmo.l_prev_offset = 32;
1959 }
1960
1961 return lmp;
1962 }
1963 \f
1964
1965 struct target_so_ops svr4_so_ops;
1966
1967 /* Lookup global symbol for ELF DSOs linked with -Bsymbolic. Those DSOs have a
1968 different rule for symbol lookup. The lookup begins here in the DSO, not in
1969 the main executable. */
1970
1971 static struct symbol *
1972 elf_lookup_lib_symbol (const struct objfile *objfile,
1973 const char *name,
1974 const char *linkage_name,
1975 const domain_enum domain)
1976 {
1977 bfd *abfd;
1978
1979 if (objfile == symfile_objfile)
1980 abfd = exec_bfd;
1981 else
1982 {
1983 /* OBJFILE should have been passed as the non-debug one. */
1984 gdb_assert (objfile->separate_debug_objfile_backlink == NULL);
1985
1986 abfd = objfile->obfd;
1987 }
1988
1989 if (abfd == NULL || scan_dyntag (DT_SYMBOLIC, abfd, NULL) != 1)
1990 return NULL;
1991
1992 return lookup_global_symbol_from_objfile
1993 (objfile, name, linkage_name, domain);
1994 }
1995
1996 extern initialize_file_ftype _initialize_svr4_solib; /* -Wmissing-prototypes */
1997
1998 void
1999 _initialize_svr4_solib (void)
2000 {
2001 solib_svr4_data = gdbarch_data_register_pre_init (solib_svr4_init);
2002 solib_svr4_pspace_data
2003 = register_program_space_data_with_cleanup (svr4_pspace_data_cleanup);
2004
2005 svr4_so_ops.relocate_section_addresses = svr4_relocate_section_addresses;
2006 svr4_so_ops.free_so = svr4_free_so;
2007 svr4_so_ops.clear_solib = svr4_clear_solib;
2008 svr4_so_ops.solib_create_inferior_hook = svr4_solib_create_inferior_hook;
2009 svr4_so_ops.special_symbol_handling = svr4_special_symbol_handling;
2010 svr4_so_ops.current_sos = svr4_current_sos;
2011 svr4_so_ops.open_symbol_file_object = open_symbol_file_object;
2012 svr4_so_ops.in_dynsym_resolve_code = svr4_in_dynsym_resolve_code;
2013 svr4_so_ops.bfd_open = solib_bfd_open;
2014 svr4_so_ops.lookup_lib_global_symbol = elf_lookup_lib_symbol;
2015 svr4_so_ops.same = svr4_same;
2016 svr4_so_ops.keep_data_in_core = svr4_keep_data_in_core;
2017 }