* solib.c (current_sos): Be more careful about freeing the new
[binutils-gdb.git] / gdb / solib.c
1 /* Handle SunOS and SVR4 shared libraries for GDB, the GNU Debugger.
2 Copyright 1990, 91, 92, 93, 94, 95, 96, 98, 1999
3 Free Software Foundation, Inc.
4
5 This file is part of GDB.
6
7 This program is free software; you can redistribute it and/or modify
8 it under the terms of the GNU General Public License as published by
9 the Free Software Foundation; either version 2 of the License, or
10 (at your option) any later version.
11
12 This program is distributed in the hope that it will be useful,
13 but WITHOUT ANY WARRANTY; without even the implied warranty of
14 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
15 GNU General Public License for more details.
16
17 You should have received a copy of the GNU General Public License
18 along with this program; if not, write to the Free Software
19 Foundation, Inc., 59 Temple Place - Suite 330,
20 Boston, MA 02111-1307, USA. */
21
22
23 #include "defs.h"
24
25 /* This file is only compilable if link.h is available. */
26
27 #ifdef HAVE_LINK_H
28
29 #include <sys/types.h>
30 #include <signal.h>
31 #include "gdb_string.h"
32 #include <sys/param.h>
33 #include <fcntl.h>
34
35 #ifndef SVR4_SHARED_LIBS
36 /* SunOS shared libs need the nlist structure. */
37 #include <a.out.h>
38 #else
39 #include "elf/external.h"
40 #endif
41
42 #include <link.h>
43
44 #include "symtab.h"
45 #include "bfd.h"
46 #include "symfile.h"
47 #include "objfiles.h"
48 #include "gdbcore.h"
49 #include "command.h"
50 #include "target.h"
51 #include "frame.h"
52 #include "gnu-regex.h"
53 #include "inferior.h"
54 #include "environ.h"
55 #include "language.h"
56 #include "gdbcmd.h"
57
58 #define MAX_PATH_SIZE 512 /* FIXME: Should be dynamic */
59
60 /* On SVR4 systems, a list of symbols in the dynamic linker where
61 GDB can try to place a breakpoint to monitor shared library
62 events.
63
64 If none of these symbols are found, or other errors occur, then
65 SVR4 systems will fall back to using a symbol as the "startup
66 mapping complete" breakpoint address. */
67
68 #ifdef SVR4_SHARED_LIBS
69 static char *solib_break_names[] =
70 {
71 "r_debug_state",
72 "_r_debug_state",
73 "_dl_debug_state",
74 "rtld_db_dlactivity",
75 NULL
76 };
77 #endif
78
79 #define BKPT_AT_SYMBOL 1
80
81 #if defined (BKPT_AT_SYMBOL) && defined (SVR4_SHARED_LIBS)
82 static char *bkpt_names[] =
83 {
84 #ifdef SOLIB_BKPT_NAME
85 SOLIB_BKPT_NAME, /* Prefer configured name if it exists. */
86 #endif
87 "_start",
88 "main",
89 NULL
90 };
91 #endif
92
93 /* Symbols which are used to locate the base of the link map structures. */
94
95 #ifndef SVR4_SHARED_LIBS
96 static char *debug_base_symbols[] =
97 {
98 "_DYNAMIC",
99 "_DYNAMIC__MGC",
100 NULL
101 };
102 #endif
103
104 static char *main_name_list[] =
105 {
106 "main_$main",
107 NULL
108 };
109
110 /* local data declarations */
111
112 /* Macro to extract an address from a solib structure.
113 When GDB is configured for some 32-bit targets (e.g. Solaris 2.7
114 sparc), BFD is configured to handle 64-bit targets, so CORE_ADDR is
115 64 bits. We have to extract only the significant bits of addresses
116 to get the right address when accessing the core file BFD. */
117
118 #define SOLIB_EXTRACT_ADDRESS(member) \
119 extract_address (&member, sizeof (member))
120
121 #ifndef SVR4_SHARED_LIBS
122
123 #define LM_ADDR(so) (SOLIB_EXTRACT_ADDRESS ((so) -> lm.lm_addr))
124 #define LM_NEXT(so) (SOLIB_EXTRACT_ADDRESS ((so) -> lm.lm_next))
125 #define LM_NAME(so) (SOLIB_EXTRACT_ADDRESS ((so) -> lm.lm_name))
126 /* Test for first link map entry; first entry is a shared library. */
127 #define IGNORE_FIRST_LINK_MAP_ENTRY(so) (0)
128 static struct link_dynamic dynamic_copy;
129 static struct link_dynamic_2 ld_2_copy;
130 static struct ld_debug debug_copy;
131 static CORE_ADDR debug_addr;
132 static CORE_ADDR flag_addr;
133
134 #else /* SVR4_SHARED_LIBS */
135
136 #define LM_ADDR(so) (SOLIB_EXTRACT_ADDRESS ((so) -> lm.l_addr))
137 #define LM_NEXT(so) (SOLIB_EXTRACT_ADDRESS ((so) -> lm.l_next))
138 #define LM_NAME(so) (SOLIB_EXTRACT_ADDRESS ((so) -> lm.l_name))
139 /* Test for first link map entry; first entry is the exec-file. */
140 #define IGNORE_FIRST_LINK_MAP_ENTRY(so) \
141 (SOLIB_EXTRACT_ADDRESS ((so) -> lm.l_prev) == 0)
142 static struct r_debug debug_copy;
143 char shadow_contents[BREAKPOINT_MAX]; /* Stash old bkpt addr contents */
144
145 #endif /* !SVR4_SHARED_LIBS */
146
147 struct so_list
148 {
149 /* The following fields of the structure come directly from the
150 dynamic linker's tables in the inferior, and are initialized by
151 current_sos. */
152
153 struct so_list *next; /* next structure in linked list */
154 struct link_map lm; /* copy of link map from inferior */
155 CORE_ADDR lmaddr; /* addr in inferior lm was read from */
156
157 /* Shared object file name, exactly as it appears in the
158 inferior's link map. This may be a relative path, or something
159 which needs to be looked up in LD_LIBRARY_PATH, etc. We use it
160 to tell which entries in the inferior's dynamic linker's link
161 map we've already loaded. */
162 char so_original_name[MAX_PATH_SIZE];
163
164 /* shared object file name, expanded to something GDB can open */
165 char so_name[MAX_PATH_SIZE];
166
167 /* The following fields of the structure are built from
168 information gathered from the shared object file itself, and
169 are initialized when we actually add it to our symbol tables. */
170
171 bfd *abfd;
172 CORE_ADDR lmend; /* upper addr bound of mapped object */
173 char symbols_loaded; /* flag: symbols read in yet? */
174 char from_tty; /* flag: print msgs? */
175 struct objfile *objfile; /* objfile for loaded lib */
176 struct section_table *sections;
177 struct section_table *sections_end;
178 struct section_table *textsection;
179 };
180
181 static struct so_list *so_list_head; /* List of known shared objects */
182 static CORE_ADDR debug_base; /* Base of dynamic linker structures */
183 static CORE_ADDR breakpoint_addr; /* Address where end bkpt is set */
184
185 static int solib_cleanup_queued = 0; /* make_run_cleanup called */
186
187 extern int
188 fdmatch PARAMS ((int, int)); /* In libiberty */
189
190 /* Local function prototypes */
191
192 static void
193 do_clear_solib PARAMS ((PTR));
194
195 static int
196 match_main PARAMS ((char *));
197
198 static void
199 special_symbol_handling PARAMS ((void));
200
201 static void
202 sharedlibrary_command PARAMS ((char *, int));
203
204 static int
205 enable_break PARAMS ((void));
206
207 static void
208 info_sharedlibrary_command PARAMS ((char *, int));
209
210 static int symbol_add_stub PARAMS ((PTR));
211
212 static CORE_ADDR
213 first_link_map_member PARAMS ((void));
214
215 static CORE_ADDR
216 locate_base PARAMS ((void));
217
218 static int solib_map_sections PARAMS ((PTR));
219
220 #ifdef SVR4_SHARED_LIBS
221
222 static CORE_ADDR
223 elf_locate_base PARAMS ((void));
224
225 #else
226
227 static struct so_list *current_sos (void);
228 static void free_so (struct so_list *node);
229
230 static int
231 disable_break PARAMS ((void));
232
233 static void
234 allocate_rt_common_objfile PARAMS ((void));
235
236 static void
237 solib_add_common_symbols (CORE_ADDR);
238
239 #endif
240
241 void _initialize_solib PARAMS ((void));
242
243 /* If non-zero, this is a prefix that will be added to the front of the name
244 shared libraries with an absolute filename for loading. */
245 static char *solib_absolute_prefix = NULL;
246
247 /* If non-empty, this is a search path for loading non-absolute shared library
248 symbol files. This takes precedence over the environment variables PATH
249 and LD_LIBRARY_PATH. */
250 static char *solib_search_path = NULL;
251
252 /*
253
254 LOCAL FUNCTION
255
256 solib_map_sections -- open bfd and build sections for shared lib
257
258 SYNOPSIS
259
260 static int solib_map_sections (struct so_list *so)
261
262 DESCRIPTION
263
264 Given a pointer to one of the shared objects in our list
265 of mapped objects, use the recorded name to open a bfd
266 descriptor for the object, build a section table, and then
267 relocate all the section addresses by the base address at
268 which the shared object was mapped.
269
270 FIXMES
271
272 In most (all?) cases the shared object file name recorded in the
273 dynamic linkage tables will be a fully qualified pathname. For
274 cases where it isn't, do we really mimic the systems search
275 mechanism correctly in the below code (particularly the tilde
276 expansion stuff?).
277 */
278
279 static int
280 solib_map_sections (arg)
281 PTR arg;
282 {
283 struct so_list *so = (struct so_list *) arg; /* catch_errors bogon */
284 char *filename;
285 char *scratch_pathname;
286 int scratch_chan;
287 struct section_table *p;
288 struct cleanup *old_chain;
289 bfd *abfd;
290
291 filename = tilde_expand (so->so_name);
292
293 if (solib_absolute_prefix && ROOTED_P (filename))
294 /* Prefix shared libraries with absolute filenames with
295 SOLIB_ABSOLUTE_PREFIX. */
296 {
297 char *pfxed_fn;
298 int pfx_len;
299
300 pfx_len = strlen (solib_absolute_prefix);
301
302 /* Remove trailing slashes. */
303 while (pfx_len > 0 && SLASH_P (solib_absolute_prefix[pfx_len - 1]))
304 pfx_len--;
305
306 pfxed_fn = xmalloc (pfx_len + strlen (filename) + 1);
307 strcpy (pfxed_fn, solib_absolute_prefix);
308 strcat (pfxed_fn, filename);
309 free (filename);
310
311 filename = pfxed_fn;
312 }
313
314 old_chain = make_cleanup (free, filename);
315
316 scratch_chan = -1;
317
318 if (solib_search_path)
319 scratch_chan = openp (solib_search_path,
320 1, filename, O_RDONLY, 0, &scratch_pathname);
321 if (scratch_chan < 0)
322 scratch_chan = openp (get_in_environ (inferior_environ, "PATH"),
323 1, filename, O_RDONLY, 0, &scratch_pathname);
324 if (scratch_chan < 0)
325 {
326 scratch_chan = openp (get_in_environ
327 (inferior_environ, "LD_LIBRARY_PATH"),
328 1, filename, O_RDONLY, 0, &scratch_pathname);
329 }
330 if (scratch_chan < 0)
331 {
332 perror_with_name (filename);
333 }
334 /* Leave scratch_pathname allocated. abfd->name will point to it. */
335
336 abfd = bfd_fdopenr (scratch_pathname, gnutarget, scratch_chan);
337 if (!abfd)
338 {
339 close (scratch_chan);
340 error ("Could not open `%s' as an executable file: %s",
341 scratch_pathname, bfd_errmsg (bfd_get_error ()));
342 }
343 /* Leave bfd open, core_xfer_memory and "info files" need it. */
344 so->abfd = abfd;
345 abfd->cacheable = true;
346
347 /* copy full path name into so_name, so that later symbol_file_add can find
348 it */
349 if (strlen (scratch_pathname) >= MAX_PATH_SIZE)
350 error ("Full path name length of shared library exceeds MAX_PATH_SIZE in so_list structure.");
351 strcpy (so->so_name, scratch_pathname);
352
353 if (!bfd_check_format (abfd, bfd_object))
354 {
355 error ("\"%s\": not in executable format: %s.",
356 scratch_pathname, bfd_errmsg (bfd_get_error ()));
357 }
358 if (build_section_table (abfd, &so->sections, &so->sections_end))
359 {
360 error ("Can't find the file sections in `%s': %s",
361 bfd_get_filename (abfd), bfd_errmsg (bfd_get_error ()));
362 }
363
364 for (p = so->sections; p < so->sections_end; p++)
365 {
366 /* Relocate the section binding addresses as recorded in the shared
367 object's file by the base address to which the object was actually
368 mapped. */
369 p->addr += LM_ADDR (so);
370 p->endaddr += LM_ADDR (so);
371 so->lmend = max (p->endaddr, so->lmend);
372 if (STREQ (p->the_bfd_section->name, ".text"))
373 {
374 so->textsection = p;
375 }
376 }
377
378 /* Free the file names, close the file now. */
379 do_cleanups (old_chain);
380
381 return (1);
382 }
383
384 #ifndef SVR4_SHARED_LIBS
385
386 /* Allocate the runtime common object file. */
387
388 static void
389 allocate_rt_common_objfile ()
390 {
391 struct objfile *objfile;
392 struct objfile *last_one;
393
394 objfile = (struct objfile *) xmalloc (sizeof (struct objfile));
395 memset (objfile, 0, sizeof (struct objfile));
396 objfile->md = NULL;
397 obstack_specify_allocation (&objfile->psymbol_cache.cache, 0, 0,
398 xmalloc, free);
399 obstack_specify_allocation (&objfile->psymbol_obstack, 0, 0, xmalloc,
400 free);
401 obstack_specify_allocation (&objfile->symbol_obstack, 0, 0, xmalloc,
402 free);
403 obstack_specify_allocation (&objfile->type_obstack, 0, 0, xmalloc,
404 free);
405 objfile->name = mstrsave (objfile->md, "rt_common");
406
407 /* Add this file onto the tail of the linked list of other such files. */
408
409 objfile->next = NULL;
410 if (object_files == NULL)
411 object_files = objfile;
412 else
413 {
414 for (last_one = object_files;
415 last_one->next;
416 last_one = last_one->next);
417 last_one->next = objfile;
418 }
419
420 rt_common_objfile = objfile;
421 }
422
423 /* Read all dynamically loaded common symbol definitions from the inferior
424 and put them into the minimal symbol table for the runtime common
425 objfile. */
426
427 static void
428 solib_add_common_symbols (rtc_symp)
429 CORE_ADDR rtc_symp;
430 {
431 struct rtc_symb inferior_rtc_symb;
432 struct nlist inferior_rtc_nlist;
433 int len;
434 char *name;
435
436 /* Remove any runtime common symbols from previous runs. */
437
438 if (rt_common_objfile != NULL && rt_common_objfile->minimal_symbol_count)
439 {
440 obstack_free (&rt_common_objfile->symbol_obstack, 0);
441 obstack_specify_allocation (&rt_common_objfile->symbol_obstack, 0, 0,
442 xmalloc, free);
443 rt_common_objfile->minimal_symbol_count = 0;
444 rt_common_objfile->msymbols = NULL;
445 }
446
447 init_minimal_symbol_collection ();
448 make_cleanup ((make_cleanup_func) discard_minimal_symbols, 0);
449
450 while (rtc_symp)
451 {
452 read_memory (rtc_symp,
453 (char *) &inferior_rtc_symb,
454 sizeof (inferior_rtc_symb));
455 read_memory (SOLIB_EXTRACT_ADDRESS (inferior_rtc_symb.rtc_sp),
456 (char *) &inferior_rtc_nlist,
457 sizeof (inferior_rtc_nlist));
458 if (inferior_rtc_nlist.n_type == N_COMM)
459 {
460 /* FIXME: The length of the symbol name is not available, but in the
461 current implementation the common symbol is allocated immediately
462 behind the name of the symbol. */
463 len = inferior_rtc_nlist.n_value - inferior_rtc_nlist.n_un.n_strx;
464
465 name = xmalloc (len);
466 read_memory (SOLIB_EXTRACT_ADDRESS (inferior_rtc_nlist.n_un.n_name),
467 name, len);
468
469 /* Allocate the runtime common objfile if necessary. */
470 if (rt_common_objfile == NULL)
471 allocate_rt_common_objfile ();
472
473 prim_record_minimal_symbol (name, inferior_rtc_nlist.n_value,
474 mst_bss, rt_common_objfile);
475 free (name);
476 }
477 rtc_symp = SOLIB_EXTRACT_ADDRESS (inferior_rtc_symb.rtc_next);
478 }
479
480 /* Install any minimal symbols that have been collected as the current
481 minimal symbols for the runtime common objfile. */
482
483 install_minimal_symbols (rt_common_objfile);
484 }
485
486 #endif /* SVR4_SHARED_LIBS */
487
488
489 #ifdef SVR4_SHARED_LIBS
490
491 static CORE_ADDR
492 bfd_lookup_symbol PARAMS ((bfd *, char *));
493
494 /*
495
496 LOCAL FUNCTION
497
498 bfd_lookup_symbol -- lookup the value for a specific symbol
499
500 SYNOPSIS
501
502 CORE_ADDR bfd_lookup_symbol (bfd *abfd, char *symname)
503
504 DESCRIPTION
505
506 An expensive way to lookup the value of a single symbol for
507 bfd's that are only temporary anyway. This is used by the
508 shared library support to find the address of the debugger
509 interface structures in the shared library.
510
511 Note that 0 is specifically allowed as an error return (no
512 such symbol).
513 */
514
515 static CORE_ADDR
516 bfd_lookup_symbol (abfd, symname)
517 bfd *abfd;
518 char *symname;
519 {
520 unsigned int storage_needed;
521 asymbol *sym;
522 asymbol **symbol_table;
523 unsigned int number_of_symbols;
524 unsigned int i;
525 struct cleanup *back_to;
526 CORE_ADDR symaddr = 0;
527
528 storage_needed = bfd_get_symtab_upper_bound (abfd);
529
530 if (storage_needed > 0)
531 {
532 symbol_table = (asymbol **) xmalloc (storage_needed);
533 back_to = make_cleanup (free, (PTR) symbol_table);
534 number_of_symbols = bfd_canonicalize_symtab (abfd, symbol_table);
535
536 for (i = 0; i < number_of_symbols; i++)
537 {
538 sym = *symbol_table++;
539 if (STREQ (sym->name, symname))
540 {
541 /* Bfd symbols are section relative. */
542 symaddr = sym->value + sym->section->vma;
543 break;
544 }
545 }
546 do_cleanups (back_to);
547 }
548 return (symaddr);
549 }
550
551 #ifdef HANDLE_SVR4_EXEC_EMULATORS
552
553 /*
554 Solaris BCP (the part of Solaris which allows it to run SunOS4
555 a.out files) throws in another wrinkle. Solaris does not fill
556 in the usual a.out link map structures when running BCP programs,
557 the only way to get at them is via groping around in the dynamic
558 linker.
559 The dynamic linker and it's structures are located in the shared
560 C library, which gets run as the executable's "interpreter" by
561 the kernel.
562
563 Note that we can assume nothing about the process state at the time
564 we need to find these structures. We may be stopped on the first
565 instruction of the interpreter (C shared library), the first
566 instruction of the executable itself, or somewhere else entirely
567 (if we attached to the process for example).
568 */
569
570 static char *debug_base_symbols[] =
571 {
572 "r_debug", /* Solaris 2.3 */
573 "_r_debug", /* Solaris 2.1, 2.2 */
574 NULL
575 };
576
577 static int
578 look_for_base PARAMS ((int, CORE_ADDR));
579
580 /*
581
582 LOCAL FUNCTION
583
584 look_for_base -- examine file for each mapped address segment
585
586 SYNOPSYS
587
588 static int look_for_base (int fd, CORE_ADDR baseaddr)
589
590 DESCRIPTION
591
592 This function is passed to proc_iterate_over_mappings, which
593 causes it to get called once for each mapped address space, with
594 an open file descriptor for the file mapped to that space, and the
595 base address of that mapped space.
596
597 Our job is to find the debug base symbol in the file that this
598 fd is open on, if it exists, and if so, initialize the dynamic
599 linker structure base address debug_base.
600
601 Note that this is a computationally expensive proposition, since
602 we basically have to open a bfd on every call, so we specifically
603 avoid opening the exec file.
604 */
605
606 static int
607 look_for_base (fd, baseaddr)
608 int fd;
609 CORE_ADDR baseaddr;
610 {
611 bfd *interp_bfd;
612 CORE_ADDR address = 0;
613 char **symbolp;
614
615 /* If the fd is -1, then there is no file that corresponds to this
616 mapped memory segment, so skip it. Also, if the fd corresponds
617 to the exec file, skip it as well. */
618
619 if (fd == -1
620 || (exec_bfd != NULL
621 && fdmatch (fileno ((FILE *) (exec_bfd->iostream)), fd)))
622 {
623 return (0);
624 }
625
626 /* Try to open whatever random file this fd corresponds to. Note that
627 we have no way currently to find the filename. Don't gripe about
628 any problems we might have, just fail. */
629
630 if ((interp_bfd = bfd_fdopenr ("unnamed", gnutarget, fd)) == NULL)
631 {
632 return (0);
633 }
634 if (!bfd_check_format (interp_bfd, bfd_object))
635 {
636 /* FIXME-leak: on failure, might not free all memory associated with
637 interp_bfd. */
638 bfd_close (interp_bfd);
639 return (0);
640 }
641
642 /* Now try to find our debug base symbol in this file, which we at
643 least know to be a valid ELF executable or shared library. */
644
645 for (symbolp = debug_base_symbols; *symbolp != NULL; symbolp++)
646 {
647 address = bfd_lookup_symbol (interp_bfd, *symbolp);
648 if (address != 0)
649 {
650 break;
651 }
652 }
653 if (address == 0)
654 {
655 /* FIXME-leak: on failure, might not free all memory associated with
656 interp_bfd. */
657 bfd_close (interp_bfd);
658 return (0);
659 }
660
661 /* Eureka! We found the symbol. But now we may need to relocate it
662 by the base address. If the symbol's value is less than the base
663 address of the shared library, then it hasn't yet been relocated
664 by the dynamic linker, and we have to do it ourself. FIXME: Note
665 that we make the assumption that the first segment that corresponds
666 to the shared library has the base address to which the library
667 was relocated. */
668
669 if (address < baseaddr)
670 {
671 address += baseaddr;
672 }
673 debug_base = address;
674 /* FIXME-leak: on failure, might not free all memory associated with
675 interp_bfd. */
676 bfd_close (interp_bfd);
677 return (1);
678 }
679 #endif /* HANDLE_SVR4_EXEC_EMULATORS */
680
681 /*
682
683 LOCAL FUNCTION
684
685 elf_locate_base -- locate the base address of dynamic linker structs
686 for SVR4 elf targets.
687
688 SYNOPSIS
689
690 CORE_ADDR elf_locate_base (void)
691
692 DESCRIPTION
693
694 For SVR4 elf targets the address of the dynamic linker's runtime
695 structure is contained within the dynamic info section in the
696 executable file. The dynamic section is also mapped into the
697 inferior address space. Because the runtime loader fills in the
698 real address before starting the inferior, we have to read in the
699 dynamic info section from the inferior address space.
700 If there are any errors while trying to find the address, we
701 silently return 0, otherwise the found address is returned.
702
703 */
704
705 static CORE_ADDR
706 elf_locate_base ()
707 {
708 sec_ptr dyninfo_sect;
709 int dyninfo_sect_size;
710 CORE_ADDR dyninfo_addr;
711 char *buf;
712 char *bufend;
713
714 /* Find the start address of the .dynamic section. */
715 dyninfo_sect = bfd_get_section_by_name (exec_bfd, ".dynamic");
716 if (dyninfo_sect == NULL)
717 return 0;
718 dyninfo_addr = bfd_section_vma (exec_bfd, dyninfo_sect);
719
720 /* Read in .dynamic section, silently ignore errors. */
721 dyninfo_sect_size = bfd_section_size (exec_bfd, dyninfo_sect);
722 buf = alloca (dyninfo_sect_size);
723 if (target_read_memory (dyninfo_addr, buf, dyninfo_sect_size))
724 return 0;
725
726 /* Find the DT_DEBUG entry in the the .dynamic section.
727 For mips elf we look for DT_MIPS_RLD_MAP, mips elf apparently has
728 no DT_DEBUG entries. */
729 #ifndef TARGET_ELF64
730 for (bufend = buf + dyninfo_sect_size;
731 buf < bufend;
732 buf += sizeof (Elf32_External_Dyn))
733 {
734 Elf32_External_Dyn *x_dynp = (Elf32_External_Dyn *) buf;
735 long dyn_tag;
736 CORE_ADDR dyn_ptr;
737
738 dyn_tag = bfd_h_get_32 (exec_bfd, (bfd_byte *) x_dynp->d_tag);
739 if (dyn_tag == DT_NULL)
740 break;
741 else if (dyn_tag == DT_DEBUG)
742 {
743 dyn_ptr = bfd_h_get_32 (exec_bfd, (bfd_byte *) x_dynp->d_un.d_ptr);
744 return dyn_ptr;
745 }
746 #ifdef DT_MIPS_RLD_MAP
747 else if (dyn_tag == DT_MIPS_RLD_MAP)
748 {
749 char pbuf[TARGET_PTR_BIT / HOST_CHAR_BIT];
750
751 /* DT_MIPS_RLD_MAP contains a pointer to the address
752 of the dynamic link structure. */
753 dyn_ptr = bfd_h_get_32 (exec_bfd, (bfd_byte *) x_dynp->d_un.d_ptr);
754 if (target_read_memory (dyn_ptr, pbuf, sizeof (pbuf)))
755 return 0;
756 return extract_unsigned_integer (pbuf, sizeof (pbuf));
757 }
758 #endif
759 }
760 #else /* ELF64 */
761 for (bufend = buf + dyninfo_sect_size;
762 buf < bufend;
763 buf += sizeof (Elf64_External_Dyn))
764 {
765 Elf64_External_Dyn *x_dynp = (Elf64_External_Dyn *) buf;
766 long dyn_tag;
767 CORE_ADDR dyn_ptr;
768
769 dyn_tag = bfd_h_get_64 (exec_bfd, (bfd_byte *) x_dynp->d_tag);
770 if (dyn_tag == DT_NULL)
771 break;
772 else if (dyn_tag == DT_DEBUG)
773 {
774 dyn_ptr = bfd_h_get_64 (exec_bfd, (bfd_byte *) x_dynp->d_un.d_ptr);
775 return dyn_ptr;
776 }
777 }
778 #endif
779
780 /* DT_DEBUG entry not found. */
781 return 0;
782 }
783
784 #endif /* SVR4_SHARED_LIBS */
785
786 /*
787
788 LOCAL FUNCTION
789
790 locate_base -- locate the base address of dynamic linker structs
791
792 SYNOPSIS
793
794 CORE_ADDR locate_base (void)
795
796 DESCRIPTION
797
798 For both the SunOS and SVR4 shared library implementations, if the
799 inferior executable has been linked dynamically, there is a single
800 address somewhere in the inferior's data space which is the key to
801 locating all of the dynamic linker's runtime structures. This
802 address is the value of the debug base symbol. The job of this
803 function is to find and return that address, or to return 0 if there
804 is no such address (the executable is statically linked for example).
805
806 For SunOS, the job is almost trivial, since the dynamic linker and
807 all of it's structures are statically linked to the executable at
808 link time. Thus the symbol for the address we are looking for has
809 already been added to the minimal symbol table for the executable's
810 objfile at the time the symbol file's symbols were read, and all we
811 have to do is look it up there. Note that we explicitly do NOT want
812 to find the copies in the shared library.
813
814 The SVR4 version is a bit more complicated because the address
815 is contained somewhere in the dynamic info section. We have to go
816 to a lot more work to discover the address of the debug base symbol.
817 Because of this complexity, we cache the value we find and return that
818 value on subsequent invocations. Note there is no copy in the
819 executable symbol tables.
820
821 */
822
823 static CORE_ADDR
824 locate_base ()
825 {
826
827 #ifndef SVR4_SHARED_LIBS
828
829 struct minimal_symbol *msymbol;
830 CORE_ADDR address = 0;
831 char **symbolp;
832
833 /* For SunOS, we want to limit the search for the debug base symbol to the
834 executable being debugged, since there is a duplicate named symbol in the
835 shared library. We don't want the shared library versions. */
836
837 for (symbolp = debug_base_symbols; *symbolp != NULL; symbolp++)
838 {
839 msymbol = lookup_minimal_symbol (*symbolp, NULL, symfile_objfile);
840 if ((msymbol != NULL) && (SYMBOL_VALUE_ADDRESS (msymbol) != 0))
841 {
842 address = SYMBOL_VALUE_ADDRESS (msymbol);
843 return (address);
844 }
845 }
846 return (0);
847
848 #else /* SVR4_SHARED_LIBS */
849
850 /* Check to see if we have a currently valid address, and if so, avoid
851 doing all this work again and just return the cached address. If
852 we have no cached address, try to locate it in the dynamic info
853 section for ELF executables. */
854
855 if (debug_base == 0)
856 {
857 if (exec_bfd != NULL
858 && bfd_get_flavour (exec_bfd) == bfd_target_elf_flavour)
859 debug_base = elf_locate_base ();
860 #ifdef HANDLE_SVR4_EXEC_EMULATORS
861 /* Try it the hard way for emulated executables. */
862 else if (inferior_pid != 0 && target_has_execution)
863 proc_iterate_over_mappings (look_for_base);
864 #endif
865 }
866 return (debug_base);
867
868 #endif /* !SVR4_SHARED_LIBS */
869
870 }
871
872 /*
873
874 LOCAL FUNCTION
875
876 first_link_map_member -- locate first member in dynamic linker's map
877
878 SYNOPSIS
879
880 static CORE_ADDR first_link_map_member (void)
881
882 DESCRIPTION
883
884 Find the first element in the inferior's dynamic link map, and
885 return its address in the inferior. This function doesn't copy the
886 link map entry itself into our address space; current_sos actually
887 does the reading. */
888
889 static CORE_ADDR
890 first_link_map_member ()
891 {
892 CORE_ADDR lm = 0;
893
894 #ifndef SVR4_SHARED_LIBS
895
896 read_memory (debug_base, (char *) &dynamic_copy, sizeof (dynamic_copy));
897 if (dynamic_copy.ld_version >= 2)
898 {
899 /* It is a version that we can deal with, so read in the secondary
900 structure and find the address of the link map list from it. */
901 read_memory (SOLIB_EXTRACT_ADDRESS (dynamic_copy.ld_un.ld_2),
902 (char *) &ld_2_copy, sizeof (struct link_dynamic_2));
903 lm = SOLIB_EXTRACT_ADDRESS (ld_2_copy.ld_loaded);
904 }
905
906 #else /* SVR4_SHARED_LIBS */
907
908 read_memory (debug_base, (char *) &debug_copy, sizeof (struct r_debug));
909 /* FIXME: Perhaps we should validate the info somehow, perhaps by
910 checking r_version for a known version number, or r_state for
911 RT_CONSISTENT. */
912 lm = SOLIB_EXTRACT_ADDRESS (debug_copy.r_map);
913
914 #endif /* !SVR4_SHARED_LIBS */
915
916 return (lm);
917 }
918
919 #ifdef SVR4_SHARED_LIBS
920 /*
921
922 LOCAL FUNCTION
923
924 open_exec_file_object
925
926 SYNOPSIS
927
928 void open_symbol_file_object (int from_tty)
929
930 DESCRIPTION
931
932 If no open symbol file, attempt to locate and open the main symbol
933 file. On SVR4 systems, this is the first link map entry. If its
934 name is here, we can open it. Useful when attaching to a process
935 without first loading its symbol file.
936
937 */
938
939 int
940 open_symbol_file_object (arg)
941 PTR arg;
942 {
943 int from_tty = (int) arg; /* sneak past catch_errors */
944 CORE_ADDR lm;
945 struct link_map lmcopy;
946 char *filename;
947 int errcode;
948
949 if (symfile_objfile)
950 if (!query ("Attempt to reload symbols from process? "))
951 return 0;
952
953 if ((debug_base = locate_base ()) == 0)
954 return 0; /* failed somehow... */
955
956 /* First link map member should be the executable. */
957 if ((lm = first_link_map_member ()) == 0)
958 return 0; /* failed somehow... */
959
960 /* Read from target memory to GDB. */
961 read_memory (lm, (void *) &lmcopy, sizeof (lmcopy));
962
963 if (lmcopy.l_name == 0)
964 return 0; /* no filename. */
965
966 /* Now fetch the filename from target memory. */
967 target_read_string (SOLIB_EXTRACT_ADDRESS (lmcopy.l_name), &filename,
968 MAX_PATH_SIZE - 1, &errcode);
969 if (errcode)
970 {
971 warning ("failed to read exec filename from attached file: %s",
972 safe_strerror (errcode));
973 return 0;
974 }
975
976 make_cleanup ((make_cleanup_func) free, (void *) filename);
977 /* Have a pathname: read the symbol file. */
978 symbol_file_command (filename, from_tty);
979
980 return 1;
981 }
982 #endif /* SVR4_SHARED_LIBS */
983
984
985 /* LOCAL FUNCTION
986
987 free_so --- free a `struct so_list' object
988
989 SYNOPSIS
990
991 void free_so (struct so_list *so)
992
993 DESCRIPTION
994
995 Free the storage associated with the `struct so_list' object SO.
996 If we have opened a BFD for SO, close it.
997
998 The caller is responsible for removing SO from whatever list it is
999 a member of. If we have placed SO's sections in some target's
1000 section table, the caller is responsible for removing them.
1001
1002 This function doesn't mess with objfiles at all. If there is an
1003 objfile associated with SO that needs to be removed, the caller is
1004 responsible for taking care of that. */
1005
1006 static void
1007 free_so (struct so_list *so)
1008 {
1009 char *bfd_filename = 0;
1010
1011 if (so->sections)
1012 free (so->sections);
1013
1014 if (so->abfd)
1015 {
1016 bfd_filename = bfd_get_filename (so->abfd);
1017 if (! bfd_close (so->abfd))
1018 warning ("cannot close \"%s\": %s",
1019 bfd_filename, bfd_errmsg (bfd_get_error ()));
1020 }
1021
1022 if (bfd_filename)
1023 free (bfd_filename);
1024
1025 free (so);
1026 }
1027
1028
1029 /* On some systems, the only way to recognize the link map entry for
1030 the main executable file is by looking at its name. Return
1031 non-zero iff SONAME matches one of the known main executable names. */
1032
1033 static int
1034 match_main (soname)
1035 char *soname;
1036 {
1037 char **mainp;
1038
1039 for (mainp = main_name_list; *mainp != NULL; mainp++)
1040 {
1041 if (strcmp (soname, *mainp) == 0)
1042 return (1);
1043 }
1044
1045 return (0);
1046 }
1047
1048
1049 /* LOCAL FUNCTION
1050
1051 current_sos -- build a list of currently loaded shared objects
1052
1053 SYNOPSIS
1054
1055 struct so_list *current_sos ()
1056
1057 DESCRIPTION
1058
1059 Build a list of `struct so_list' objects describing the shared
1060 objects currently loaded in the inferior. This list does not
1061 include an entry for the main executable file.
1062
1063 Note that we only gather information directly available from the
1064 inferior --- we don't examine any of the shared library files
1065 themselves. The declaration of `struct so_list' says which fields
1066 we provide values for. */
1067
1068 static struct so_list *
1069 current_sos ()
1070 {
1071 CORE_ADDR lm;
1072 struct so_list *head = 0;
1073 struct so_list **link_ptr = &head;
1074
1075 /* Make sure we've looked up the inferior's dynamic linker's base
1076 structure. */
1077 if (! debug_base)
1078 {
1079 debug_base = locate_base ();
1080
1081 /* If we can't find the dynamic linker's base structure, this
1082 must not be a dynamically linked executable. Hmm. */
1083 if (! debug_base)
1084 return 0;
1085 }
1086
1087 /* Walk the inferior's link map list, and build our list of
1088 `struct so_list' nodes. */
1089 lm = first_link_map_member ();
1090 while (lm)
1091 {
1092 struct so_list *new
1093 = (struct so_list *) xmalloc (sizeof (struct so_list));
1094 struct cleanup *old_chain = make_cleanup (free, new);
1095 memset (new, 0, sizeof (*new));
1096
1097 new->lmaddr = lm;
1098 read_memory (lm, (char *) &(new->lm), sizeof (struct link_map));
1099
1100 lm = LM_NEXT (new);
1101
1102 /* For SVR4 versions, the first entry in the link map is for the
1103 inferior executable, so we must ignore it. For some versions of
1104 SVR4, it has no name. For others (Solaris 2.3 for example), it
1105 does have a name, so we can no longer use a missing name to
1106 decide when to ignore it. */
1107 if (IGNORE_FIRST_LINK_MAP_ENTRY (new))
1108 free_so (new);
1109 else
1110 {
1111 int errcode;
1112 char *buffer;
1113
1114 /* Extract this shared object's name. */
1115 target_read_string (LM_NAME (new), &buffer,
1116 MAX_PATH_SIZE - 1, &errcode);
1117 if (errcode != 0)
1118 {
1119 warning ("current_sos: Can't read pathname for load map: %s\n",
1120 safe_strerror (errcode));
1121 }
1122 else
1123 {
1124 strncpy (new->so_name, buffer, MAX_PATH_SIZE - 1);
1125 new->so_name[MAX_PATH_SIZE - 1] = '\0';
1126 free (buffer);
1127 strcpy (new->so_original_name, new->so_name);
1128 }
1129
1130 /* If this entry has no name, or its name matches the name
1131 for the main executable, don't include it in the list. */
1132 if (! new->so_name[0]
1133 || match_main (new->so_name))
1134 free_so (new);
1135 else
1136 {
1137 new->next = 0;
1138 *link_ptr = new;
1139 link_ptr = &new->next;
1140 }
1141 }
1142
1143 discard_cleanups (old_chain);
1144 }
1145
1146 return head;
1147 }
1148
1149
1150 /* A small stub to get us past the arg-passing pinhole of catch_errors. */
1151
1152 static int
1153 symbol_add_stub (arg)
1154 PTR arg;
1155 {
1156 register struct so_list *so = (struct so_list *) arg; /* catch_errs bogon */
1157 CORE_ADDR text_addr = 0;
1158
1159 /* Have we already loaded this shared object? */
1160 ALL_OBJFILES (so->objfile)
1161 {
1162 if (strcmp (so->objfile->name, so->so_name) == 0)
1163 return 1;
1164 }
1165
1166 /* Find the shared object's text segment. */
1167 if (so->textsection)
1168 text_addr = so->textsection->addr;
1169 else if (so->abfd != NULL)
1170 {
1171 asection *lowest_sect;
1172
1173 /* If we didn't find a mapped non zero sized .text section, set up
1174 text_addr so that the relocation in symbol_file_add does no harm. */
1175 lowest_sect = bfd_get_section_by_name (so->abfd, ".text");
1176 if (lowest_sect == NULL)
1177 bfd_map_over_sections (so->abfd, find_lowest_section,
1178 (PTR) &lowest_sect);
1179 if (lowest_sect)
1180 text_addr = bfd_section_vma (so->abfd, lowest_sect)
1181 + LM_ADDR (so);
1182 }
1183
1184 {
1185 struct section_addr_info section_addrs;
1186
1187 memset (&section_addrs, 0, sizeof (section_addrs));
1188 section_addrs.text_addr = text_addr;
1189
1190 so->objfile = symbol_file_add (so->so_name, so->from_tty,
1191 &section_addrs, 0, OBJF_SHARED);
1192 }
1193
1194 return (1);
1195 }
1196
1197
1198 /* LOCAL FUNCTION
1199
1200 solib_add -- synchronize GDB's shared object list with the inferior's
1201
1202 SYNOPSIS
1203
1204 void solib_add (char *pattern, int from_tty, struct target_ops *TARGET)
1205
1206 DESCRIPTION
1207
1208 Extract the list of currently loaded shared objects from the
1209 inferior, and compare it with the list of shared objects for which
1210 GDB has currently loaded symbolic information. If new shared
1211 objects have been loaded, or old shared objects have disappeared,
1212 make the appropriate changes to GDB's tables.
1213
1214 If PATTERN is non-null, read symbols only for shared objects
1215 whose names match PATTERN.
1216
1217 If FROM_TTY is non-null, feel free to print messages about what
1218 we're doing.
1219
1220 If TARGET is non-null, add the sections of all new shared objects
1221 to TARGET's section table. Note that this doesn't remove any
1222 sections for shared objects that have been unloaded, and it
1223 doesn't check to see if the new shared objects are already present in
1224 the section table. But we only use this for core files and
1225 processes we've just attached to, so that's okay. */
1226
1227 void
1228 solib_add (char *pattern, int from_tty, struct target_ops *target)
1229 {
1230 struct so_list *inferior = current_sos ();
1231 struct so_list *gdb, **gdb_link;
1232
1233 /* #define JIMB_DEBUG */
1234 #ifdef JIMB_DEBUG
1235 printf ("GDB's shared library list:\n");
1236 for (gdb = so_list_head; gdb; gdb = gdb->next)
1237 printf (" %s\n", gdb->so_original_name);
1238 printf ("inferior's shared library list:\n");
1239 for (gdb = inferior; gdb; gdb = gdb->next)
1240 printf (" %s\n", gdb->so_original_name);
1241 #endif
1242
1243 #ifdef SVR4_SHARED_LIBS
1244 /* If we are attaching to a running process for which we
1245 have not opened a symbol file, we may be able to get its
1246 symbols now! */
1247 if (attach_flag &&
1248 symfile_objfile == NULL)
1249 catch_errors (open_symbol_file_object, (PTR) from_tty,
1250 "Error reading attached process's symbol file.\n",
1251 RETURN_MASK_ALL);
1252
1253 #endif SVR4_SHARED_LIBS
1254
1255 if (pattern)
1256 {
1257 char *re_err = re_comp (pattern);
1258
1259 if (re_err)
1260 error ("Invalid regexp: %s", re_err);
1261 }
1262
1263 /* Since this function might actually add some elements to the
1264 so_list_head list, arrange for it to be cleaned up when
1265 appropriate. */
1266 if (!solib_cleanup_queued)
1267 {
1268 make_run_cleanup (do_clear_solib, NULL);
1269 solib_cleanup_queued = 1;
1270 }
1271
1272 /* GDB and the inferior's dynamic linker each maintain their own
1273 list of currently loaded shared objects; we want to bring the
1274 former in sync with the latter. Scan both lists, seeing which
1275 shared objects appear where. There are three cases:
1276
1277 - A shared object appears on both lists. This means that GDB
1278 knows about it already, and it's still loaded in the inferior.
1279 Nothing needs to happen.
1280
1281 - A shared object appears only on GDB's list. This means that
1282 the inferior has unloaded it. We should remove the shared
1283 object from GDB's tables.
1284
1285 - A shared object appears only on the inferior's list. This
1286 means that it's just been loaded. We should add it to GDB's
1287 tables.
1288
1289 So we walk GDB's list, checking each entry to see if it appears
1290 in the inferior's list too. If it does, no action is needed, and
1291 we remove it from the inferior's list. If it doesn't, the
1292 inferior has unloaded it, and we remove it from GDB's list. By
1293 the time we're done walking GDB's list, the inferior's list
1294 contains only the new shared objects, which we then add. */
1295
1296 gdb = so_list_head;
1297 gdb_link = &so_list_head;
1298 while (gdb)
1299 {
1300 struct so_list *i = inferior;
1301 struct so_list **i_link = &inferior;
1302
1303 /* Check to see whether the shared object *gdb also appears in
1304 the inferior's current list. */
1305 while (i)
1306 {
1307 if (! strcmp (gdb->so_original_name, i->so_original_name))
1308 break;
1309
1310 i_link = &i->next;
1311 i = *i_link;
1312 }
1313
1314 /* If the shared object appears on the inferior's list too, then
1315 it's still loaded, so we don't need to do anything. Delete
1316 it from the inferior's list, and leave it on GDB's list. */
1317 if (i)
1318 {
1319 *i_link = i->next;
1320 #ifdef JIMB_DEBUG
1321 printf ("unchanged: %s\n", i->so_name);
1322 #endif
1323 free_so (i);
1324 gdb_link = &gdb->next;
1325 gdb = *gdb_link;
1326 }
1327
1328 /* If it's not on the inferior's list, remove it from GDB's tables. */
1329 else
1330 {
1331 *gdb_link = gdb->next;
1332 #ifdef JIMB_DEBUG
1333 printf ("removed: %s\n", gdb->so_name);
1334 #endif
1335
1336 /* Unless the user loaded it explicitly, free SO's objfile. */
1337 if (! (gdb->objfile->flags & OBJF_USERLOADED))
1338 free_objfile (gdb->objfile);
1339
1340 /* Some targets' section tables might be referring to
1341 sections from so->abfd; remove them. */
1342 remove_target_sections (gdb->abfd);
1343
1344 free_so (gdb);
1345 gdb = *gdb_link;
1346 }
1347 }
1348
1349 /* Now the inferior's list contains only shared objects that don't
1350 appear in GDB's list --- those that are newly loaded. Add them
1351 to GDB's shared object list, and read in their symbols, if
1352 appropriate. */
1353 if (inferior)
1354 {
1355 struct so_list *i;
1356
1357 /* Add the new shared objects to GDB's list. */
1358 *gdb_link = inferior;
1359
1360 /* Fill in the rest of each of the `struct so_list' nodes, and
1361 read symbols for those files whose names match PATTERN. */
1362 for (i = inferior; i; i = i->next)
1363 {
1364 i->from_tty = from_tty;
1365
1366 /* Fill in the rest of the `struct so_list' node. */
1367 catch_errors (solib_map_sections, i,
1368 "Error while mapping shared library sections:\n",
1369 RETURN_MASK_ALL);
1370
1371 if (! pattern || re_exec (i->so_name))
1372 {
1373 if (i->symbols_loaded)
1374 {
1375 if (from_tty)
1376 printf_unfiltered ("Symbols already loaded for %s\n",
1377 i->so_name);
1378 }
1379 else
1380 {
1381 #ifdef JIMB_DEBUG
1382 printf ("added: %s\n", i->so_name);
1383 #endif
1384 if (catch_errors
1385 (symbol_add_stub, i,
1386 "Error while reading shared library symbols:\n",
1387 RETURN_MASK_ALL))
1388 {
1389 if (from_tty)
1390 printf_unfiltered ("Loaded symbols for %s\n",
1391 i->so_name);
1392 i->symbols_loaded = 1;
1393 }
1394 }
1395 }
1396 }
1397
1398 /* If requested, add the shared objects' sections to the the
1399 TARGET's section table. */
1400 if (target)
1401 {
1402 int new_sections;
1403
1404 /* Figure out how many sections we'll need to add in total. */
1405 new_sections = 0;
1406 for (i = inferior; i; i = i->next)
1407 new_sections += (i->sections_end - i->sections);
1408
1409 if (new_sections > 0)
1410 {
1411 int space = target_resize_to_sections (target, new_sections);
1412
1413 for (i = inferior; i; i = i->next)
1414 {
1415 int count = (i->sections_end - i->sections);
1416 memcpy (target->to_sections + space,
1417 i->sections,
1418 count * sizeof (i->sections[0]));
1419 space += count;
1420 }
1421 }
1422 }
1423
1424 /* Getting new symbols may change our opinion about what is
1425 frameless. */
1426 reinit_frame_cache ();
1427
1428 special_symbol_handling ();
1429 }
1430
1431 #ifdef JIMB_DEBUG
1432 putchar ('\n');
1433 #endif
1434 }
1435
1436
1437 /*
1438
1439 LOCAL FUNCTION
1440
1441 info_sharedlibrary_command -- code for "info sharedlibrary"
1442
1443 SYNOPSIS
1444
1445 static void info_sharedlibrary_command ()
1446
1447 DESCRIPTION
1448
1449 Walk through the shared library list and print information
1450 about each attached library.
1451 */
1452
1453 static void
1454 info_sharedlibrary_command (ignore, from_tty)
1455 char *ignore;
1456 int from_tty;
1457 {
1458 register struct so_list *so = NULL; /* link map state variable */
1459 int header_done = 0;
1460 int addr_width;
1461 char *addr_fmt;
1462
1463 if (exec_bfd == NULL)
1464 {
1465 printf_unfiltered ("No executable file.\n");
1466 return;
1467 }
1468
1469 #ifndef TARGET_ELF64
1470 addr_width = 8 + 4;
1471 addr_fmt = "08l";
1472 #else
1473 addr_width = 16 + 4;
1474 addr_fmt = "016l";
1475 #endif
1476
1477 solib_add (0, 0, 0);
1478
1479 for (so = so_list_head; so; so = so->next)
1480 {
1481 if (so->so_name[0])
1482 {
1483 if (!header_done)
1484 {
1485 printf_unfiltered ("%-*s%-*s%-12s%s\n", addr_width, "From",
1486 addr_width, "To", "Syms Read",
1487 "Shared Object Library");
1488 header_done++;
1489 }
1490
1491 printf_unfiltered ("%-*s", addr_width,
1492 local_hex_string_custom ((unsigned long) LM_ADDR (so),
1493 addr_fmt));
1494 printf_unfiltered ("%-*s", addr_width,
1495 local_hex_string_custom ((unsigned long) so->lmend,
1496 addr_fmt));
1497 printf_unfiltered ("%-12s", so->symbols_loaded ? "Yes" : "No");
1498 printf_unfiltered ("%s\n", so->so_name);
1499 }
1500 }
1501 if (so_list_head == NULL)
1502 {
1503 printf_unfiltered ("No shared libraries loaded at this time.\n");
1504 }
1505 }
1506
1507 /*
1508
1509 GLOBAL FUNCTION
1510
1511 solib_address -- check to see if an address is in a shared lib
1512
1513 SYNOPSIS
1514
1515 char * solib_address (CORE_ADDR address)
1516
1517 DESCRIPTION
1518
1519 Provides a hook for other gdb routines to discover whether or
1520 not a particular address is within the mapped address space of
1521 a shared library. Any address between the base mapping address
1522 and the first address beyond the end of the last mapping, is
1523 considered to be within the shared library address space, for
1524 our purposes.
1525
1526 For example, this routine is called at one point to disable
1527 breakpoints which are in shared libraries that are not currently
1528 mapped in.
1529 */
1530
1531 char *
1532 solib_address (address)
1533 CORE_ADDR address;
1534 {
1535 register struct so_list *so = 0; /* link map state variable */
1536
1537 for (so = so_list_head; so; so = so->next)
1538 {
1539 if (LM_ADDR (so) <= address && address < so->lmend)
1540 return (so->so_name);
1541 }
1542
1543 return (0);
1544 }
1545
1546 /* Called by free_all_symtabs */
1547
1548 void
1549 clear_solib ()
1550 {
1551 /* This function is expected to handle ELF shared libraries. It is
1552 also used on Solaris, which can run either ELF or a.out binaries
1553 (for compatibility with SunOS 4), both of which can use shared
1554 libraries. So we don't know whether we have an ELF executable or
1555 an a.out executable until the user chooses an executable file.
1556
1557 ELF shared libraries don't get mapped into the address space
1558 until after the program starts, so we'd better not try to insert
1559 breakpoints in them immediately. We have to wait until the
1560 dynamic linker has loaded them; we'll hit a bp_shlib_event
1561 breakpoint (look for calls to create_solib_event_breakpoint) when
1562 it's ready.
1563
1564 SunOS shared libraries seem to be different --- they're present
1565 as soon as the process begins execution, so there's no need to
1566 put off inserting breakpoints. There's also nowhere to put a
1567 bp_shlib_event breakpoint, so if we put it off, we'll never get
1568 around to it.
1569
1570 So: disable breakpoints only if we're using ELF shared libs. */
1571 if (exec_bfd != NULL
1572 && bfd_get_flavour (exec_bfd) != bfd_target_aout_flavour)
1573 disable_breakpoints_in_shlibs (1);
1574
1575 while (so_list_head)
1576 {
1577 struct so_list *so = so_list_head;
1578 so_list_head = so->next;
1579 free_so (so);
1580 }
1581
1582 debug_base = 0;
1583 }
1584
1585 static void
1586 do_clear_solib (dummy)
1587 PTR dummy;
1588 {
1589 solib_cleanup_queued = 0;
1590 clear_solib ();
1591 }
1592
1593 #ifdef SVR4_SHARED_LIBS
1594
1595 /* Return 1 if PC lies in the dynamic symbol resolution code of the
1596 SVR4 run time loader. */
1597
1598 static CORE_ADDR interp_text_sect_low;
1599 static CORE_ADDR interp_text_sect_high;
1600 static CORE_ADDR interp_plt_sect_low;
1601 static CORE_ADDR interp_plt_sect_high;
1602
1603 int
1604 in_svr4_dynsym_resolve_code (pc)
1605 CORE_ADDR pc;
1606 {
1607 return ((pc >= interp_text_sect_low && pc < interp_text_sect_high)
1608 || (pc >= interp_plt_sect_low && pc < interp_plt_sect_high)
1609 || in_plt_section (pc, NULL));
1610 }
1611 #endif
1612
1613 /*
1614
1615 LOCAL FUNCTION
1616
1617 disable_break -- remove the "mapping changed" breakpoint
1618
1619 SYNOPSIS
1620
1621 static int disable_break ()
1622
1623 DESCRIPTION
1624
1625 Removes the breakpoint that gets hit when the dynamic linker
1626 completes a mapping change.
1627
1628 */
1629
1630 #ifndef SVR4_SHARED_LIBS
1631
1632 static int
1633 disable_break ()
1634 {
1635 int status = 1;
1636
1637 #ifndef SVR4_SHARED_LIBS
1638
1639 int in_debugger = 0;
1640
1641 /* Read the debugger structure from the inferior to retrieve the
1642 address of the breakpoint and the original contents of the
1643 breakpoint address. Remove the breakpoint by writing the original
1644 contents back. */
1645
1646 read_memory (debug_addr, (char *) &debug_copy, sizeof (debug_copy));
1647
1648 /* Set `in_debugger' to zero now. */
1649
1650 write_memory (flag_addr, (char *) &in_debugger, sizeof (in_debugger));
1651
1652 breakpoint_addr = SOLIB_EXTRACT_ADDRESS (debug_copy.ldd_bp_addr);
1653 write_memory (breakpoint_addr, (char *) &debug_copy.ldd_bp_inst,
1654 sizeof (debug_copy.ldd_bp_inst));
1655
1656 #else /* SVR4_SHARED_LIBS */
1657
1658 /* Note that breakpoint address and original contents are in our address
1659 space, so we just need to write the original contents back. */
1660
1661 if (memory_remove_breakpoint (breakpoint_addr, shadow_contents) != 0)
1662 {
1663 status = 0;
1664 }
1665
1666 #endif /* !SVR4_SHARED_LIBS */
1667
1668 /* For the SVR4 version, we always know the breakpoint address. For the
1669 SunOS version we don't know it until the above code is executed.
1670 Grumble if we are stopped anywhere besides the breakpoint address. */
1671
1672 if (stop_pc != breakpoint_addr)
1673 {
1674 warning ("stopped at unknown breakpoint while handling shared libraries");
1675 }
1676
1677 return (status);
1678 }
1679
1680 #endif /* #ifdef SVR4_SHARED_LIBS */
1681
1682 /*
1683
1684 LOCAL FUNCTION
1685
1686 enable_break -- arrange for dynamic linker to hit breakpoint
1687
1688 SYNOPSIS
1689
1690 int enable_break (void)
1691
1692 DESCRIPTION
1693
1694 Both the SunOS and the SVR4 dynamic linkers have, as part of their
1695 debugger interface, support for arranging for the inferior to hit
1696 a breakpoint after mapping in the shared libraries. This function
1697 enables that breakpoint.
1698
1699 For SunOS, there is a special flag location (in_debugger) which we
1700 set to 1. When the dynamic linker sees this flag set, it will set
1701 a breakpoint at a location known only to itself, after saving the
1702 original contents of that place and the breakpoint address itself,
1703 in it's own internal structures. When we resume the inferior, it
1704 will eventually take a SIGTRAP when it runs into the breakpoint.
1705 We handle this (in a different place) by restoring the contents of
1706 the breakpointed location (which is only known after it stops),
1707 chasing around to locate the shared libraries that have been
1708 loaded, then resuming.
1709
1710 For SVR4, the debugger interface structure contains a member (r_brk)
1711 which is statically initialized at the time the shared library is
1712 built, to the offset of a function (_r_debug_state) which is guaran-
1713 teed to be called once before mapping in a library, and again when
1714 the mapping is complete. At the time we are examining this member,
1715 it contains only the unrelocated offset of the function, so we have
1716 to do our own relocation. Later, when the dynamic linker actually
1717 runs, it relocates r_brk to be the actual address of _r_debug_state().
1718
1719 The debugger interface structure also contains an enumeration which
1720 is set to either RT_ADD or RT_DELETE prior to changing the mapping,
1721 depending upon whether or not the library is being mapped or unmapped,
1722 and then set to RT_CONSISTENT after the library is mapped/unmapped.
1723 */
1724
1725 static int
1726 enable_break ()
1727 {
1728 int success = 0;
1729
1730 #ifndef SVR4_SHARED_LIBS
1731
1732 int j;
1733 int in_debugger;
1734
1735 /* Get link_dynamic structure */
1736
1737 j = target_read_memory (debug_base, (char *) &dynamic_copy,
1738 sizeof (dynamic_copy));
1739 if (j)
1740 {
1741 /* unreadable */
1742 return (0);
1743 }
1744
1745 /* Calc address of debugger interface structure */
1746
1747 debug_addr = SOLIB_EXTRACT_ADDRESS (dynamic_copy.ldd);
1748
1749 /* Calc address of `in_debugger' member of debugger interface structure */
1750
1751 flag_addr = debug_addr + (CORE_ADDR) ((char *) &debug_copy.ldd_in_debugger -
1752 (char *) &debug_copy);
1753
1754 /* Write a value of 1 to this member. */
1755
1756 in_debugger = 1;
1757 write_memory (flag_addr, (char *) &in_debugger, sizeof (in_debugger));
1758 success = 1;
1759
1760 #else /* SVR4_SHARED_LIBS */
1761
1762 #ifdef BKPT_AT_SYMBOL
1763
1764 struct minimal_symbol *msymbol;
1765 char **bkpt_namep;
1766 asection *interp_sect;
1767
1768 /* First, remove all the solib event breakpoints. Their addresses
1769 may have changed since the last time we ran the program. */
1770 remove_solib_event_breakpoints ();
1771
1772 #ifdef SVR4_SHARED_LIBS
1773 interp_text_sect_low = interp_text_sect_high = 0;
1774 interp_plt_sect_low = interp_plt_sect_high = 0;
1775
1776 /* Find the .interp section; if not found, warn the user and drop
1777 into the old breakpoint at symbol code. */
1778 interp_sect = bfd_get_section_by_name (exec_bfd, ".interp");
1779 if (interp_sect)
1780 {
1781 unsigned int interp_sect_size;
1782 char *buf;
1783 CORE_ADDR load_addr;
1784 bfd *tmp_bfd;
1785 CORE_ADDR sym_addr = 0;
1786
1787 /* Read the contents of the .interp section into a local buffer;
1788 the contents specify the dynamic linker this program uses. */
1789 interp_sect_size = bfd_section_size (exec_bfd, interp_sect);
1790 buf = alloca (interp_sect_size);
1791 bfd_get_section_contents (exec_bfd, interp_sect,
1792 buf, 0, interp_sect_size);
1793
1794 /* Now we need to figure out where the dynamic linker was
1795 loaded so that we can load its symbols and place a breakpoint
1796 in the dynamic linker itself.
1797
1798 This address is stored on the stack. However, I've been unable
1799 to find any magic formula to find it for Solaris (appears to
1800 be trivial on GNU/Linux). Therefore, we have to try an alternate
1801 mechanism to find the dynamic linker's base address. */
1802 tmp_bfd = bfd_openr (buf, gnutarget);
1803 if (tmp_bfd == NULL)
1804 goto bkpt_at_symbol;
1805
1806 /* Make sure the dynamic linker's really a useful object. */
1807 if (!bfd_check_format (tmp_bfd, bfd_object))
1808 {
1809 warning ("Unable to grok dynamic linker %s as an object file", buf);
1810 bfd_close (tmp_bfd);
1811 goto bkpt_at_symbol;
1812 }
1813
1814 /* We find the dynamic linker's base address by examining the
1815 current pc (which point at the entry point for the dynamic
1816 linker) and subtracting the offset of the entry point. */
1817 load_addr = read_pc () - tmp_bfd->start_address;
1818
1819 /* Record the relocated start and end address of the dynamic linker
1820 text and plt section for in_svr4_dynsym_resolve_code. */
1821 interp_sect = bfd_get_section_by_name (tmp_bfd, ".text");
1822 if (interp_sect)
1823 {
1824 interp_text_sect_low =
1825 bfd_section_vma (tmp_bfd, interp_sect) + load_addr;
1826 interp_text_sect_high =
1827 interp_text_sect_low + bfd_section_size (tmp_bfd, interp_sect);
1828 }
1829 interp_sect = bfd_get_section_by_name (tmp_bfd, ".plt");
1830 if (interp_sect)
1831 {
1832 interp_plt_sect_low =
1833 bfd_section_vma (tmp_bfd, interp_sect) + load_addr;
1834 interp_plt_sect_high =
1835 interp_plt_sect_low + bfd_section_size (tmp_bfd, interp_sect);
1836 }
1837
1838 /* Now try to set a breakpoint in the dynamic linker. */
1839 for (bkpt_namep = solib_break_names; *bkpt_namep != NULL; bkpt_namep++)
1840 {
1841 sym_addr = bfd_lookup_symbol (tmp_bfd, *bkpt_namep);
1842 if (sym_addr != 0)
1843 break;
1844 }
1845
1846 /* We're done with the temporary bfd. */
1847 bfd_close (tmp_bfd);
1848
1849 if (sym_addr != 0)
1850 {
1851 create_solib_event_breakpoint (load_addr + sym_addr);
1852 return 1;
1853 }
1854
1855 /* For whatever reason we couldn't set a breakpoint in the dynamic
1856 linker. Warn and drop into the old code. */
1857 bkpt_at_symbol:
1858 warning ("Unable to find dynamic linker breakpoint function.\nGDB will be unable to debug shared library initializers\nand track explicitly loaded dynamic code.");
1859 }
1860 #endif
1861
1862 /* Scan through the list of symbols, trying to look up the symbol and
1863 set a breakpoint there. Terminate loop when we/if we succeed. */
1864
1865 breakpoint_addr = 0;
1866 for (bkpt_namep = bkpt_names; *bkpt_namep != NULL; bkpt_namep++)
1867 {
1868 msymbol = lookup_minimal_symbol (*bkpt_namep, NULL, symfile_objfile);
1869 if ((msymbol != NULL) && (SYMBOL_VALUE_ADDRESS (msymbol) != 0))
1870 {
1871 create_solib_event_breakpoint (SYMBOL_VALUE_ADDRESS (msymbol));
1872 return 1;
1873 }
1874 }
1875
1876 /* Nothing good happened. */
1877 success = 0;
1878
1879 #endif /* BKPT_AT_SYMBOL */
1880
1881 #endif /* !SVR4_SHARED_LIBS */
1882
1883 return (success);
1884 }
1885
1886 /*
1887
1888 GLOBAL FUNCTION
1889
1890 solib_create_inferior_hook -- shared library startup support
1891
1892 SYNOPSIS
1893
1894 void solib_create_inferior_hook()
1895
1896 DESCRIPTION
1897
1898 When gdb starts up the inferior, it nurses it along (through the
1899 shell) until it is ready to execute it's first instruction. At this
1900 point, this function gets called via expansion of the macro
1901 SOLIB_CREATE_INFERIOR_HOOK.
1902
1903 For SunOS executables, this first instruction is typically the
1904 one at "_start", or a similar text label, regardless of whether
1905 the executable is statically or dynamically linked. The runtime
1906 startup code takes care of dynamically linking in any shared
1907 libraries, once gdb allows the inferior to continue.
1908
1909 For SVR4 executables, this first instruction is either the first
1910 instruction in the dynamic linker (for dynamically linked
1911 executables) or the instruction at "start" for statically linked
1912 executables. For dynamically linked executables, the system
1913 first exec's /lib/libc.so.N, which contains the dynamic linker,
1914 and starts it running. The dynamic linker maps in any needed
1915 shared libraries, maps in the actual user executable, and then
1916 jumps to "start" in the user executable.
1917
1918 For both SunOS shared libraries, and SVR4 shared libraries, we
1919 can arrange to cooperate with the dynamic linker to discover the
1920 names of shared libraries that are dynamically linked, and the
1921 base addresses to which they are linked.
1922
1923 This function is responsible for discovering those names and
1924 addresses, and saving sufficient information about them to allow
1925 their symbols to be read at a later time.
1926
1927 FIXME
1928
1929 Between enable_break() and disable_break(), this code does not
1930 properly handle hitting breakpoints which the user might have
1931 set in the startup code or in the dynamic linker itself. Proper
1932 handling will probably have to wait until the implementation is
1933 changed to use the "breakpoint handler function" method.
1934
1935 Also, what if child has exit()ed? Must exit loop somehow.
1936 */
1937
1938 void
1939 solib_create_inferior_hook ()
1940 {
1941 /* If we are using the BKPT_AT_SYMBOL code, then we don't need the base
1942 yet. In fact, in the case of a SunOS4 executable being run on
1943 Solaris, we can't get it yet. current_sos will get it when it needs
1944 it. */
1945 #if !(defined (SVR4_SHARED_LIBS) && defined (BKPT_AT_SYMBOL))
1946 if ((debug_base = locate_base ()) == 0)
1947 {
1948 /* Can't find the symbol or the executable is statically linked. */
1949 return;
1950 }
1951 #endif
1952
1953 if (!enable_break ())
1954 {
1955 warning ("shared library handler failed to enable breakpoint");
1956 return;
1957 }
1958
1959 #if !defined(SVR4_SHARED_LIBS) || defined(_SCO_DS)
1960 /* SCO and SunOS need the loop below, other systems should be using the
1961 special shared library breakpoints and the shared library breakpoint
1962 service routine.
1963
1964 Now run the target. It will eventually hit the breakpoint, at
1965 which point all of the libraries will have been mapped in and we
1966 can go groveling around in the dynamic linker structures to find
1967 out what we need to know about them. */
1968
1969 clear_proceed_status ();
1970 stop_soon_quietly = 1;
1971 stop_signal = TARGET_SIGNAL_0;
1972 do
1973 {
1974 target_resume (-1, 0, stop_signal);
1975 wait_for_inferior ();
1976 }
1977 while (stop_signal != TARGET_SIGNAL_TRAP);
1978 stop_soon_quietly = 0;
1979
1980 #if !defined(_SCO_DS)
1981 /* We are now either at the "mapping complete" breakpoint (or somewhere
1982 else, a condition we aren't prepared to deal with anyway), so adjust
1983 the PC as necessary after a breakpoint, disable the breakpoint, and
1984 add any shared libraries that were mapped in. */
1985
1986 if (DECR_PC_AFTER_BREAK)
1987 {
1988 stop_pc -= DECR_PC_AFTER_BREAK;
1989 write_register (PC_REGNUM, stop_pc);
1990 }
1991
1992 if (!disable_break ())
1993 {
1994 warning ("shared library handler failed to disable breakpoint");
1995 }
1996
1997 if (auto_solib_add)
1998 solib_add ((char *) 0, 0, (struct target_ops *) 0);
1999 #endif /* ! _SCO_DS */
2000 #endif
2001 }
2002
2003 /*
2004
2005 LOCAL FUNCTION
2006
2007 special_symbol_handling -- additional shared library symbol handling
2008
2009 SYNOPSIS
2010
2011 void special_symbol_handling ()
2012
2013 DESCRIPTION
2014
2015 Once the symbols from a shared object have been loaded in the usual
2016 way, we are called to do any system specific symbol handling that
2017 is needed.
2018
2019 For SunOS4, this consists of grunging around in the dynamic
2020 linkers structures to find symbol definitions for "common" symbols
2021 and adding them to the minimal symbol table for the runtime common
2022 objfile.
2023
2024 */
2025
2026 static void
2027 special_symbol_handling ()
2028 {
2029 #ifndef SVR4_SHARED_LIBS
2030 int j;
2031
2032 if (debug_addr == 0)
2033 {
2034 /* Get link_dynamic structure */
2035
2036 j = target_read_memory (debug_base, (char *) &dynamic_copy,
2037 sizeof (dynamic_copy));
2038 if (j)
2039 {
2040 /* unreadable */
2041 return;
2042 }
2043
2044 /* Calc address of debugger interface structure */
2045 /* FIXME, this needs work for cross-debugging of core files
2046 (byteorder, size, alignment, etc). */
2047
2048 debug_addr = SOLIB_EXTRACT_ADDRESS (dynamic_copy.ldd);
2049 }
2050
2051 /* Read the debugger structure from the inferior, just to make sure
2052 we have a current copy. */
2053
2054 j = target_read_memory (debug_addr, (char *) &debug_copy,
2055 sizeof (debug_copy));
2056 if (j)
2057 return; /* unreadable */
2058
2059 /* Get common symbol definitions for the loaded object. */
2060
2061 if (debug_copy.ldd_cp)
2062 {
2063 solib_add_common_symbols (SOLIB_EXTRACT_ADDRESS (debug_copy.ldd_cp));
2064 }
2065
2066 #endif /* !SVR4_SHARED_LIBS */
2067 }
2068
2069
2070 /*
2071
2072 LOCAL FUNCTION
2073
2074 sharedlibrary_command -- handle command to explicitly add library
2075
2076 SYNOPSIS
2077
2078 static void sharedlibrary_command (char *args, int from_tty)
2079
2080 DESCRIPTION
2081
2082 */
2083
2084 static void
2085 sharedlibrary_command (args, from_tty)
2086 char *args;
2087 int from_tty;
2088 {
2089 dont_repeat ();
2090 solib_add (args, from_tty, (struct target_ops *) 0);
2091 }
2092
2093 #endif /* HAVE_LINK_H */
2094
2095 void
2096 _initialize_solib ()
2097 {
2098 #ifdef HAVE_LINK_H
2099
2100 add_com ("sharedlibrary", class_files, sharedlibrary_command,
2101 "Load shared object library symbols for files matching REGEXP.");
2102 add_info ("sharedlibrary", info_sharedlibrary_command,
2103 "Status of loaded shared object libraries.");
2104
2105 add_show_from_set
2106 (add_set_cmd ("auto-solib-add", class_support, var_zinteger,
2107 (char *) &auto_solib_add,
2108 "Set autoloading of shared library symbols.\n\
2109 If nonzero, symbols from all shared object libraries will be loaded\n\
2110 automatically when the inferior begins execution or when the dynamic linker\n\
2111 informs gdb that a new library has been loaded. Otherwise, symbols\n\
2112 must be loaded manually, using `sharedlibrary'.",
2113 &setlist),
2114 &showlist);
2115
2116 add_show_from_set
2117 (add_set_cmd ("solib-absolute-prefix", class_support, var_filename,
2118 (char *) &solib_absolute_prefix,
2119 "Set prefix for loading absolute shared library symbol files.\n\
2120 For other (relative) files, you can add values using `set solib-search-path'.",
2121 &setlist),
2122 &showlist);
2123 add_show_from_set
2124 (add_set_cmd ("solib-search-path", class_support, var_string,
2125 (char *) &solib_search_path,
2126 "Set the search path for loading non-absolute shared library symbol files.\n\
2127 This takes precedence over the environment variables PATH and LD_LIBRARY_PATH.",
2128 &setlist),
2129 &showlist);
2130
2131 #endif /* HAVE_LINK_H */
2132 }