Remove some uses of printf_unfiltered
[binutils-gdb.git] / gdb / solib.c
1 /* Handle shared libraries for GDB, the GNU Debugger.
2
3 Copyright (C) 1990-2022 Free Software Foundation, Inc.
4
5 This file is part of GDB.
6
7 This program is free software; you can redistribute it and/or modify
8 it under the terms of the GNU General Public License as published by
9 the Free Software Foundation; either version 3 of the License, or
10 (at your option) any later version.
11
12 This program is distributed in the hope that it will be useful,
13 but WITHOUT ANY WARRANTY; without even the implied warranty of
14 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
15 GNU General Public License for more details.
16
17 You should have received a copy of the GNU General Public License
18 along with this program. If not, see <http://www.gnu.org/licenses/>. */
19
20 #include "defs.h"
21
22 #include <sys/types.h>
23 #include <fcntl.h>
24 #include "symtab.h"
25 #include "bfd.h"
26 #include "build-id.h"
27 #include "symfile.h"
28 #include "objfiles.h"
29 #include "gdbcore.h"
30 #include "command.h"
31 #include "target.h"
32 #include "frame.h"
33 #include "gdbsupport/gdb_regex.h"
34 #include "inferior.h"
35 #include "gdbsupport/environ.h"
36 #include "language.h"
37 #include "gdbcmd.h"
38 #include "completer.h"
39 #include "elf/external.h"
40 #include "elf/common.h"
41 #include "filenames.h" /* for DOSish file names */
42 #include "exec.h"
43 #include "solist.h"
44 #include "observable.h"
45 #include "readline/tilde.h"
46 #include "remote.h"
47 #include "solib.h"
48 #include "interps.h"
49 #include "filesystem.h"
50 #include "gdb_bfd.h"
51 #include "gdbsupport/filestuff.h"
52 #include "gdbsupport/scoped_fd.h"
53 #include "debuginfod-support.h"
54 #include "source.h"
55 #include "cli/cli-style.h"
56
57 /* Architecture-specific operations. */
58
59 /* Per-architecture data key. */
60 static struct gdbarch_data *solib_data;
61
62 static void *
63 solib_init (struct obstack *obstack)
64 {
65 struct target_so_ops **ops;
66
67 ops = OBSTACK_ZALLOC (obstack, struct target_so_ops *);
68 *ops = current_target_so_ops;
69 return ops;
70 }
71
72 static const struct target_so_ops *
73 solib_ops (struct gdbarch *gdbarch)
74 {
75 const struct target_so_ops **ops
76 = (const struct target_so_ops **) gdbarch_data (gdbarch, solib_data);
77
78 return *ops;
79 }
80
81 /* Set the solib operations for GDBARCH to NEW_OPS. */
82
83 void
84 set_solib_ops (struct gdbarch *gdbarch, const struct target_so_ops *new_ops)
85 {
86 const struct target_so_ops **ops
87 = (const struct target_so_ops **) gdbarch_data (gdbarch, solib_data);
88
89 *ops = new_ops;
90 }
91 \f
92
93 /* external data declarations */
94
95 /* FIXME: gdbarch needs to control this variable, or else every
96 configuration needs to call set_solib_ops. */
97 struct target_so_ops *current_target_so_ops;
98
99 /* Local function prototypes */
100
101 /* If non-empty, this is a search path for loading non-absolute shared library
102 symbol files. This takes precedence over the environment variables PATH
103 and LD_LIBRARY_PATH. */
104 static std::string solib_search_path;
105 static void
106 show_solib_search_path (struct ui_file *file, int from_tty,
107 struct cmd_list_element *c, const char *value)
108 {
109 fprintf_filtered (file, _("The search path for loading non-absolute "
110 "shared library symbol files is %s.\n"),
111 value);
112 }
113
114 /* Same as HAVE_DOS_BASED_FILE_SYSTEM, but useable as an rvalue. */
115 #if (HAVE_DOS_BASED_FILE_SYSTEM)
116 # define DOS_BASED_FILE_SYSTEM 1
117 #else
118 # define DOS_BASED_FILE_SYSTEM 0
119 #endif
120
121 /* Return the full pathname of a binary file (the main executable or a
122 shared library file), or NULL if not found. If FD is non-NULL, *FD
123 is set to either -1 or an open file handle for the binary file.
124
125 Global variable GDB_SYSROOT is used as a prefix directory
126 to search for binary files if they have an absolute path.
127 If GDB_SYSROOT starts with "target:" and target filesystem
128 is the local filesystem then the "target:" prefix will be
129 stripped before the search starts. This ensures that the
130 same search algorithm is used for local files regardless of
131 whether a "target:" prefix was used.
132
133 Global variable SOLIB_SEARCH_PATH is used as a prefix directory
134 (or set of directories, as in LD_LIBRARY_PATH) to search for all
135 shared libraries if not found in either the sysroot (if set) or
136 the local filesystem. SOLIB_SEARCH_PATH is not used when searching
137 for the main executable.
138
139 Search algorithm:
140 * If a sysroot is set and path is absolute:
141 * Search for sysroot/path.
142 * else
143 * Look for it literally (unmodified).
144 * If IS_SOLIB is non-zero:
145 * Look in SOLIB_SEARCH_PATH.
146 * If available, use target defined search function.
147 * If NO sysroot is set, perform the following two searches:
148 * Look in inferior's $PATH.
149 * If IS_SOLIB is non-zero:
150 * Look in inferior's $LD_LIBRARY_PATH.
151 *
152 * The last check avoids doing this search when targeting remote
153 * machines since a sysroot will almost always be set.
154 */
155
156 static gdb::unique_xmalloc_ptr<char>
157 solib_find_1 (const char *in_pathname, int *fd, bool is_solib)
158 {
159 const struct target_so_ops *ops = solib_ops (target_gdbarch ());
160 int found_file = -1;
161 gdb::unique_xmalloc_ptr<char> temp_pathname;
162 const char *fskind = effective_target_file_system_kind ();
163 const char *sysroot = gdb_sysroot.c_str ();
164 int prefix_len, orig_prefix_len;
165
166 /* If the absolute prefix starts with "target:" but the filesystem
167 accessed by the target_fileio_* methods is the local filesystem
168 then we strip the "target:" prefix now and work with the local
169 filesystem. This ensures that the same search algorithm is used
170 for all local files regardless of whether a "target:" prefix was
171 used. */
172 if (is_target_filename (sysroot) && target_filesystem_is_local ())
173 sysroot += strlen (TARGET_SYSROOT_PREFIX);
174
175 /* Strip any trailing slashes from the absolute prefix. */
176 prefix_len = orig_prefix_len = strlen (sysroot);
177
178 while (prefix_len > 0 && IS_DIR_SEPARATOR (sysroot[prefix_len - 1]))
179 prefix_len--;
180
181 std::string sysroot_holder;
182 if (prefix_len == 0)
183 sysroot = NULL;
184 else if (prefix_len != orig_prefix_len)
185 {
186 sysroot_holder = std::string (sysroot, prefix_len);
187 sysroot = sysroot_holder.c_str ();
188 }
189
190 /* If we're on a non-DOS-based system, backslashes won't be
191 understood as directory separator, so, convert them to forward
192 slashes, iff we're supposed to handle DOS-based file system
193 semantics for target paths. */
194 if (!DOS_BASED_FILE_SYSTEM && fskind == file_system_kind_dos_based)
195 {
196 char *p;
197
198 /* Avoid clobbering our input. */
199 p = (char *) alloca (strlen (in_pathname) + 1);
200 strcpy (p, in_pathname);
201 in_pathname = p;
202
203 for (; *p; p++)
204 {
205 if (*p == '\\')
206 *p = '/';
207 }
208 }
209
210 /* Note, we're interested in IS_TARGET_ABSOLUTE_PATH, not
211 IS_ABSOLUTE_PATH. The latter is for host paths only, while
212 IN_PATHNAME is a target path. For example, if we're supposed to
213 be handling DOS-like semantics we want to consider a
214 'c:/foo/bar.dll' path as an absolute path, even on a Unix box.
215 With such a path, before giving up on the sysroot, we'll try:
216
217 1st attempt, c:/foo/bar.dll ==> /sysroot/c:/foo/bar.dll
218 2nd attempt, c:/foo/bar.dll ==> /sysroot/c/foo/bar.dll
219 3rd attempt, c:/foo/bar.dll ==> /sysroot/foo/bar.dll
220 */
221
222 if (!IS_TARGET_ABSOLUTE_PATH (fskind, in_pathname) || sysroot == NULL)
223 temp_pathname.reset (xstrdup (in_pathname));
224 else
225 {
226 bool need_dir_separator;
227
228 /* Concatenate the sysroot and the target reported filename. We
229 may need to glue them with a directory separator. Cases to
230 consider:
231
232 | sysroot | separator | in_pathname |
233 |-----------------+-----------+----------------|
234 | /some/dir | / | c:/foo/bar.dll |
235 | /some/dir | | /foo/bar.dll |
236 | target: | | c:/foo/bar.dll |
237 | target: | | /foo/bar.dll |
238 | target:some/dir | / | c:/foo/bar.dll |
239 | target:some/dir | | /foo/bar.dll |
240
241 IOW, we don't need to add a separator if IN_PATHNAME already
242 has one, or when the sysroot is exactly "target:".
243 There's no need to check for drive spec explicitly, as we only
244 get here if IN_PATHNAME is considered an absolute path. */
245 need_dir_separator = !(IS_DIR_SEPARATOR (in_pathname[0])
246 || strcmp (TARGET_SYSROOT_PREFIX, sysroot) == 0);
247
248 /* Cat the prefixed pathname together. */
249 temp_pathname.reset (concat (sysroot,
250 need_dir_separator ? SLASH_STRING : "",
251 in_pathname, (char *) NULL));
252 }
253
254 /* Handle files to be accessed via the target. */
255 if (is_target_filename (temp_pathname.get ()))
256 {
257 if (fd != NULL)
258 *fd = -1;
259 return temp_pathname;
260 }
261
262 /* Now see if we can open it. */
263 found_file = gdb_open_cloexec (temp_pathname.get (),
264 O_RDONLY | O_BINARY, 0).release ();
265
266 /* If the search in gdb_sysroot failed, and the path name has a
267 drive spec (e.g, c:/foo), try stripping ':' from the drive spec,
268 and retrying in the sysroot:
269 c:/foo/bar.dll ==> /sysroot/c/foo/bar.dll. */
270
271 if (found_file < 0
272 && sysroot != NULL
273 && HAS_TARGET_DRIVE_SPEC (fskind, in_pathname))
274 {
275 bool need_dir_separator = !IS_DIR_SEPARATOR (in_pathname[2]);
276 char drive[2] = { in_pathname[0], '\0' };
277
278 temp_pathname.reset (concat (sysroot,
279 SLASH_STRING,
280 drive,
281 need_dir_separator ? SLASH_STRING : "",
282 in_pathname + 2, (char *) NULL));
283
284 found_file = gdb_open_cloexec (temp_pathname.get (),
285 O_RDONLY | O_BINARY, 0).release ();
286 if (found_file < 0)
287 {
288 /* If the search in gdb_sysroot still failed, try fully
289 stripping the drive spec, and trying once more in the
290 sysroot before giving up.
291
292 c:/foo/bar.dll ==> /sysroot/foo/bar.dll. */
293
294 temp_pathname.reset (concat (sysroot,
295 need_dir_separator ? SLASH_STRING : "",
296 in_pathname + 2, (char *) NULL));
297
298 found_file = gdb_open_cloexec (temp_pathname.get (),
299 O_RDONLY | O_BINARY, 0).release ();
300 }
301 }
302
303 /* We try to find the library in various ways. After each attempt,
304 either found_file >= 0 and temp_pathname is a malloc'd string, or
305 found_file < 0 and temp_pathname does not point to storage that
306 needs to be freed. */
307
308 if (found_file < 0)
309 temp_pathname.reset (NULL);
310
311 /* If the search in gdb_sysroot failed, and the path name is
312 absolute at this point, make it relative. (openp will try and open the
313 file according to its absolute path otherwise, which is not what we want.)
314 Affects subsequent searches for this solib. */
315 if (found_file < 0 && IS_TARGET_ABSOLUTE_PATH (fskind, in_pathname))
316 {
317 /* First, get rid of any drive letters etc. */
318 while (!IS_TARGET_DIR_SEPARATOR (fskind, *in_pathname))
319 in_pathname++;
320
321 /* Next, get rid of all leading dir separators. */
322 while (IS_TARGET_DIR_SEPARATOR (fskind, *in_pathname))
323 in_pathname++;
324 }
325
326 /* If not found, and we're looking for a solib, search the
327 solib_search_path (if any). */
328 if (is_solib && found_file < 0 && !solib_search_path.empty ())
329 found_file = openp (solib_search_path.c_str (),
330 OPF_TRY_CWD_FIRST | OPF_RETURN_REALPATH,
331 in_pathname, O_RDONLY | O_BINARY, &temp_pathname);
332
333 /* If not found, and we're looking for a solib, next search the
334 solib_search_path (if any) for the basename only (ignoring the
335 path). This is to allow reading solibs from a path that differs
336 from the opened path. */
337 if (is_solib && found_file < 0 && !solib_search_path.empty ())
338 found_file = openp (solib_search_path.c_str (),
339 OPF_TRY_CWD_FIRST | OPF_RETURN_REALPATH,
340 target_lbasename (fskind, in_pathname),
341 O_RDONLY | O_BINARY, &temp_pathname);
342
343 /* If not found, and we're looking for a solib, try to use target
344 supplied solib search method. */
345 if (is_solib && found_file < 0 && ops->find_and_open_solib)
346 found_file = ops->find_and_open_solib (in_pathname, O_RDONLY | O_BINARY,
347 &temp_pathname);
348
349 /* If not found, next search the inferior's $PATH environment variable. */
350 if (found_file < 0 && sysroot == NULL)
351 found_file = openp (current_inferior ()->environment.get ("PATH"),
352 OPF_TRY_CWD_FIRST | OPF_RETURN_REALPATH, in_pathname,
353 O_RDONLY | O_BINARY, &temp_pathname);
354
355 /* If not found, and we're looking for a solib, next search the
356 inferior's $LD_LIBRARY_PATH environment variable. */
357 if (is_solib && found_file < 0 && sysroot == NULL)
358 found_file = openp (current_inferior ()->environment.get
359 ("LD_LIBRARY_PATH"),
360 OPF_TRY_CWD_FIRST | OPF_RETURN_REALPATH, in_pathname,
361 O_RDONLY | O_BINARY, &temp_pathname);
362
363 if (fd == NULL)
364 {
365 if (found_file >= 0)
366 close (found_file);
367 }
368 else
369 *fd = found_file;
370
371 return temp_pathname;
372 }
373
374 /* Return the full pathname of the main executable, or NULL if not
375 found. If FD is non-NULL, *FD is set to either -1 or an open file
376 handle for the main executable. */
377
378 gdb::unique_xmalloc_ptr<char>
379 exec_file_find (const char *in_pathname, int *fd)
380 {
381 gdb::unique_xmalloc_ptr<char> result;
382 const char *fskind = effective_target_file_system_kind ();
383
384 if (in_pathname == NULL)
385 return NULL;
386
387 if (!gdb_sysroot.empty () && IS_TARGET_ABSOLUTE_PATH (fskind, in_pathname))
388 {
389 result = solib_find_1 (in_pathname, fd, false);
390
391 if (result == NULL && fskind == file_system_kind_dos_based)
392 {
393 char *new_pathname;
394
395 new_pathname = (char *) alloca (strlen (in_pathname) + 5);
396 strcpy (new_pathname, in_pathname);
397 strcat (new_pathname, ".exe");
398
399 result = solib_find_1 (new_pathname, fd, false);
400 }
401 }
402 else
403 {
404 /* It's possible we don't have a full path, but rather just a
405 filename. Some targets, such as HP-UX, don't provide the
406 full path, sigh.
407
408 Attempt to qualify the filename against the source path.
409 (If that fails, we'll just fall back on the original
410 filename. Not much more we can do...) */
411
412 if (!source_full_path_of (in_pathname, &result))
413 result.reset (xstrdup (in_pathname));
414 if (fd != NULL)
415 *fd = -1;
416 }
417
418 return result;
419 }
420
421 /* Return the full pathname of a shared library file, or NULL if not
422 found. If FD is non-NULL, *FD is set to either -1 or an open file
423 handle for the shared library.
424
425 The search algorithm used is described in solib_find_1's comment
426 above. */
427
428 gdb::unique_xmalloc_ptr<char>
429 solib_find (const char *in_pathname, int *fd)
430 {
431 const char *solib_symbols_extension
432 = gdbarch_solib_symbols_extension (target_gdbarch ());
433
434 /* If solib_symbols_extension is set, replace the file's
435 extension. */
436 if (solib_symbols_extension != NULL)
437 {
438 const char *p = in_pathname + strlen (in_pathname);
439
440 while (p > in_pathname && *p != '.')
441 p--;
442
443 if (*p == '.')
444 {
445 char *new_pathname;
446
447 new_pathname
448 = (char *) alloca (p - in_pathname + 1
449 + strlen (solib_symbols_extension) + 1);
450 memcpy (new_pathname, in_pathname, p - in_pathname + 1);
451 strcpy (new_pathname + (p - in_pathname) + 1,
452 solib_symbols_extension);
453
454 in_pathname = new_pathname;
455 }
456 }
457
458 return solib_find_1 (in_pathname, fd, true);
459 }
460
461 /* Open and return a BFD for the shared library PATHNAME. If FD is not -1,
462 it is used as file handle to open the file. Throws an error if the file
463 could not be opened. Handles both local and remote file access.
464
465 If unsuccessful, the FD will be closed (unless FD was -1). */
466
467 gdb_bfd_ref_ptr
468 solib_bfd_fopen (const char *pathname, int fd)
469 {
470 gdb_bfd_ref_ptr abfd (gdb_bfd_open (pathname, gnutarget, fd));
471
472 if (abfd != NULL && !gdb_bfd_has_target_filename (abfd.get ()))
473 bfd_set_cacheable (abfd.get (), 1);
474
475 if (abfd == NULL)
476 {
477 /* Arrange to free PATHNAME when the error is thrown. */
478 error (_("Could not open `%s' as an executable file: %s"),
479 pathname, bfd_errmsg (bfd_get_error ()));
480 }
481
482 return abfd;
483 }
484
485 /* Find shared library PATHNAME and open a BFD for it. */
486
487 gdb_bfd_ref_ptr
488 solib_bfd_open (const char *pathname)
489 {
490 int found_file;
491 const struct bfd_arch_info *b;
492
493 /* Search for shared library file. */
494 gdb::unique_xmalloc_ptr<char> found_pathname
495 = solib_find (pathname, &found_file);
496 if (found_pathname == NULL)
497 {
498 /* Return failure if the file could not be found, so that we can
499 accumulate messages about missing libraries. */
500 if (errno == ENOENT)
501 return NULL;
502
503 perror_with_name (pathname);
504 }
505
506 /* Open bfd for shared library. */
507 gdb_bfd_ref_ptr abfd (solib_bfd_fopen (found_pathname.get (), found_file));
508
509 /* Check bfd format. */
510 if (!bfd_check_format (abfd.get (), bfd_object))
511 error (_("`%s': not in executable format: %s"),
512 bfd_get_filename (abfd.get ()), bfd_errmsg (bfd_get_error ()));
513
514 /* Check bfd arch. */
515 b = gdbarch_bfd_arch_info (target_gdbarch ());
516 if (!b->compatible (b, bfd_get_arch_info (abfd.get ())))
517 error (_("`%s': Shared library architecture %s is not compatible "
518 "with target architecture %s."), bfd_get_filename (abfd.get ()),
519 bfd_get_arch_info (abfd.get ())->printable_name,
520 b->printable_name);
521
522 return abfd;
523 }
524
525 /* Mapping of a core file's shared library sonames to their respective
526 build-ids. Added to the registries of core file bfds. */
527
528 typedef std::unordered_map<std::string, std::string> soname_build_id_map;
529
530 /* Key used to associate a soname_build_id_map to a core file bfd. */
531
532 static const struct bfd_key<soname_build_id_map> cbfd_soname_build_id_data_key;
533
534 /* See solib.h. */
535
536 void
537 set_cbfd_soname_build_id (gdb_bfd_ref_ptr abfd,
538 const char *soname,
539 const bfd_build_id *build_id)
540 {
541 gdb_assert (abfd.get () != nullptr);
542 gdb_assert (soname != nullptr);
543 gdb_assert (build_id != nullptr);
544
545 soname_build_id_map *mapptr = cbfd_soname_build_id_data_key.get (abfd.get ());
546
547 if (mapptr == nullptr)
548 mapptr = cbfd_soname_build_id_data_key.emplace (abfd.get ());
549
550 (*mapptr)[soname] = build_id_to_string (build_id);
551 }
552
553 /* See solib.h. */
554
555 gdb::unique_xmalloc_ptr<char>
556 get_cbfd_soname_build_id (gdb_bfd_ref_ptr abfd, const char *soname)
557 {
558 if (abfd.get () == nullptr || soname == nullptr)
559 return {};
560
561 soname_build_id_map *mapptr
562 = cbfd_soname_build_id_data_key.get (abfd.get ());
563
564 if (mapptr == nullptr)
565 return {};
566
567 auto it = mapptr->find (lbasename (soname));
568 if (it == mapptr->end ())
569 return {};
570
571 return make_unique_xstrdup (it->second.c_str ());
572 }
573
574 /* Given a pointer to one of the shared objects in our list of mapped
575 objects, use the recorded name to open a bfd descriptor for the
576 object, build a section table, relocate all the section addresses
577 by the base address at which the shared object was mapped, and then
578 add the sections to the target's section table.
579
580 FIXME: In most (all?) cases the shared object file name recorded in
581 the dynamic linkage tables will be a fully qualified pathname. For
582 cases where it isn't, do we really mimic the systems search
583 mechanism correctly in the below code (particularly the tilde
584 expansion stuff?). */
585
586 static int
587 solib_map_sections (struct so_list *so)
588 {
589 const struct target_so_ops *ops = solib_ops (target_gdbarch ());
590
591 gdb::unique_xmalloc_ptr<char> filename (tilde_expand (so->so_name));
592 gdb_bfd_ref_ptr abfd (ops->bfd_open (filename.get ()));
593 gdb::unique_xmalloc_ptr<char> build_id_hexstr
594 = get_cbfd_soname_build_id (current_program_space->cbfd, so->so_name);
595
596 /* If we already know the build-id of this solib from a core file, verify
597 it matches ABFD's build-id. If there is a mismatch or the solib wasn't
598 found, attempt to query debuginfod for the correct solib. */
599 if (build_id_hexstr.get () != nullptr)
600 {
601 bool mismatch = false;
602
603 if (abfd != nullptr && abfd->build_id != nullptr)
604 {
605 std::string build_id = build_id_to_string (abfd->build_id);
606
607 if (build_id != build_id_hexstr.get ())
608 mismatch = true;
609 }
610 if (abfd == nullptr || mismatch)
611 {
612 scoped_fd fd = debuginfod_exec_query ((const unsigned char*)
613 build_id_hexstr.get (),
614 0, so->so_name, &filename);
615
616 if (fd.get () >= 0)
617 abfd = ops->bfd_open (filename.get ());
618 else if (mismatch)
619 warning (_("Build-id of %ps does not match core file."),
620 styled_string (file_name_style.style (), filename.get ()));
621 }
622 }
623
624 if (abfd == NULL)
625 return 0;
626
627 /* Leave bfd open, core_xfer_memory and "info files" need it. */
628 so->abfd = abfd.release ();
629
630 /* Copy the full path name into so_name, allowing symbol_file_add
631 to find it later. This also affects the =library-loaded GDB/MI
632 event, and in particular the part of that notification providing
633 the library's host-side path. If we let the target dictate
634 that objfile's path, and the target is different from the host,
635 GDB/MI will not provide the correct host-side path. */
636 if (strlen (bfd_get_filename (so->abfd)) >= SO_NAME_MAX_PATH_SIZE)
637 error (_("Shared library file name is too long."));
638 strcpy (so->so_name, bfd_get_filename (so->abfd));
639
640 if (so->sections == nullptr)
641 so->sections = new target_section_table;
642 *so->sections = build_section_table (so->abfd);
643
644 for (target_section &p : *so->sections)
645 {
646 /* Relocate the section binding addresses as recorded in the shared
647 object's file by the base address to which the object was actually
648 mapped. */
649 ops->relocate_section_addresses (so, &p);
650
651 /* If the target didn't provide information about the address
652 range of the shared object, assume we want the location of
653 the .text section. */
654 if (so->addr_low == 0 && so->addr_high == 0
655 && strcmp (p.the_bfd_section->name, ".text") == 0)
656 {
657 so->addr_low = p.addr;
658 so->addr_high = p.endaddr;
659 }
660 }
661
662 /* Add the shared object's sections to the current set of file
663 section tables. Do this immediately after mapping the object so
664 that later nodes in the list can query this object, as is needed
665 in solib-osf.c. */
666 current_program_space->add_target_sections (so, *so->sections);
667
668 return 1;
669 }
670
671 /* Free symbol-file related contents of SO and reset for possible reloading
672 of SO. If we have opened a BFD for SO, close it. If we have placed SO's
673 sections in some target's section table, the caller is responsible for
674 removing them.
675
676 This function doesn't mess with objfiles at all. If there is an
677 objfile associated with SO that needs to be removed, the caller is
678 responsible for taking care of that. */
679
680 static void
681 clear_so (struct so_list *so)
682 {
683 const struct target_so_ops *ops = solib_ops (target_gdbarch ());
684
685 delete so->sections;
686 so->sections = NULL;
687
688 gdb_bfd_unref (so->abfd);
689 so->abfd = NULL;
690
691 /* Our caller closed the objfile, possibly via objfile_purge_solibs. */
692 so->symbols_loaded = 0;
693 so->objfile = NULL;
694
695 so->addr_low = so->addr_high = 0;
696
697 /* Restore the target-supplied file name. SO_NAME may be the path
698 of the symbol file. */
699 strcpy (so->so_name, so->so_original_name);
700
701 /* Do the same for target-specific data. */
702 if (ops->clear_so != NULL)
703 ops->clear_so (so);
704 }
705
706 /* Free the storage associated with the `struct so_list' object SO.
707 If we have opened a BFD for SO, close it.
708
709 The caller is responsible for removing SO from whatever list it is
710 a member of. If we have placed SO's sections in some target's
711 section table, the caller is responsible for removing them.
712
713 This function doesn't mess with objfiles at all. If there is an
714 objfile associated with SO that needs to be removed, the caller is
715 responsible for taking care of that. */
716
717 void
718 free_so (struct so_list *so)
719 {
720 const struct target_so_ops *ops = solib_ops (target_gdbarch ());
721
722 clear_so (so);
723 ops->free_so (so);
724
725 xfree (so);
726 }
727
728
729 /* Read in symbols for shared object SO. If SYMFILE_VERBOSE is set in FLAGS,
730 be chatty about it. Return true if any symbols were actually loaded. */
731
732 bool
733 solib_read_symbols (struct so_list *so, symfile_add_flags flags)
734 {
735 if (so->symbols_loaded)
736 {
737 /* If needed, we've already warned in our caller. */
738 }
739 else if (so->abfd == NULL)
740 {
741 /* We've already warned about this library, when trying to open
742 it. */
743 }
744 else
745 {
746
747 flags |= current_inferior ()->symfile_flags;
748
749 try
750 {
751 /* Have we already loaded this shared object? */
752 so->objfile = nullptr;
753 for (objfile *objfile : current_program_space->objfiles ())
754 {
755 if (filename_cmp (objfile_name (objfile), so->so_name) == 0
756 && objfile->addr_low == so->addr_low)
757 {
758 so->objfile = objfile;
759 break;
760 }
761 }
762 if (so->objfile == NULL)
763 {
764 section_addr_info sap
765 = build_section_addr_info_from_section_table (*so->sections);
766 so->objfile = symbol_file_add_from_bfd (so->abfd, so->so_name,
767 flags, &sap,
768 OBJF_SHARED, NULL);
769 so->objfile->addr_low = so->addr_low;
770 }
771
772 so->symbols_loaded = 1;
773 }
774 catch (const gdb_exception_error &e)
775 {
776 exception_fprintf (gdb_stderr, e, _("Error while reading shared"
777 " library symbols for %s:\n"),
778 so->so_name);
779 }
780
781 return true;
782 }
783
784 return false;
785 }
786
787 /* Return true if KNOWN->objfile is used by any other so_list object
788 in the list of shared libraries. Return false otherwise. */
789
790 static bool
791 solib_used (const struct so_list *const known)
792 {
793 for (const struct so_list *pivot : current_program_space->solibs ())
794 if (pivot != known && pivot->objfile == known->objfile)
795 return true;
796 return false;
797 }
798
799 /* See solib.h. */
800
801 void
802 update_solib_list (int from_tty)
803 {
804 const struct target_so_ops *ops = solib_ops (target_gdbarch ());
805 struct so_list *inferior = ops->current_sos();
806 struct so_list *gdb, **gdb_link;
807
808 /* We can reach here due to changing solib-search-path or the
809 sysroot, before having any inferior. */
810 if (target_has_execution () && inferior_ptid != null_ptid)
811 {
812 struct inferior *inf = current_inferior ();
813
814 /* If we are attaching to a running process for which we
815 have not opened a symbol file, we may be able to get its
816 symbols now! */
817 if (inf->attach_flag
818 && current_program_space->symfile_object_file == NULL)
819 {
820 try
821 {
822 ops->open_symbol_file_object (from_tty);
823 }
824 catch (const gdb_exception &ex)
825 {
826 exception_fprintf (gdb_stderr, ex,
827 "Error reading attached "
828 "process's symbol file.\n");
829 }
830 }
831 }
832
833 /* GDB and the inferior's dynamic linker each maintain their own
834 list of currently loaded shared objects; we want to bring the
835 former in sync with the latter. Scan both lists, seeing which
836 shared objects appear where. There are three cases:
837
838 - A shared object appears on both lists. This means that GDB
839 knows about it already, and it's still loaded in the inferior.
840 Nothing needs to happen.
841
842 - A shared object appears only on GDB's list. This means that
843 the inferior has unloaded it. We should remove the shared
844 object from GDB's tables.
845
846 - A shared object appears only on the inferior's list. This
847 means that it's just been loaded. We should add it to GDB's
848 tables.
849
850 So we walk GDB's list, checking each entry to see if it appears
851 in the inferior's list too. If it does, no action is needed, and
852 we remove it from the inferior's list. If it doesn't, the
853 inferior has unloaded it, and we remove it from GDB's list. By
854 the time we're done walking GDB's list, the inferior's list
855 contains only the new shared objects, which we then add. */
856
857 gdb = current_program_space->so_list;
858 gdb_link = &current_program_space->so_list;
859 while (gdb)
860 {
861 struct so_list *i = inferior;
862 struct so_list **i_link = &inferior;
863
864 /* Check to see whether the shared object *gdb also appears in
865 the inferior's current list. */
866 while (i)
867 {
868 if (ops->same)
869 {
870 if (ops->same (gdb, i))
871 break;
872 }
873 else
874 {
875 if (! filename_cmp (gdb->so_original_name, i->so_original_name))
876 break;
877 }
878
879 i_link = &i->next;
880 i = *i_link;
881 }
882
883 /* If the shared object appears on the inferior's list too, then
884 it's still loaded, so we don't need to do anything. Delete
885 it from the inferior's list, and leave it on GDB's list. */
886 if (i)
887 {
888 *i_link = i->next;
889 free_so (i);
890 gdb_link = &gdb->next;
891 gdb = *gdb_link;
892 }
893
894 /* If it's not on the inferior's list, remove it from GDB's tables. */
895 else
896 {
897 /* Notify any observer that the shared object has been
898 unloaded before we remove it from GDB's tables. */
899 gdb::observers::solib_unloaded.notify (gdb);
900
901 current_program_space->deleted_solibs.push_back (gdb->so_name);
902
903 *gdb_link = gdb->next;
904
905 /* Unless the user loaded it explicitly, free SO's objfile. */
906 if (gdb->objfile && ! (gdb->objfile->flags & OBJF_USERLOADED)
907 && !solib_used (gdb))
908 gdb->objfile->unlink ();
909
910 /* Some targets' section tables might be referring to
911 sections from so->abfd; remove them. */
912 current_program_space->remove_target_sections (gdb);
913
914 free_so (gdb);
915 gdb = *gdb_link;
916 }
917 }
918
919 /* Now the inferior's list contains only shared objects that don't
920 appear in GDB's list --- those that are newly loaded. Add them
921 to GDB's shared object list. */
922 if (inferior)
923 {
924 int not_found = 0;
925 const char *not_found_filename = NULL;
926
927 struct so_list *i;
928
929 /* Add the new shared objects to GDB's list. */
930 *gdb_link = inferior;
931
932 /* Fill in the rest of each of the `struct so_list' nodes. */
933 for (i = inferior; i; i = i->next)
934 {
935
936 i->pspace = current_program_space;
937 current_program_space->added_solibs.push_back (i);
938
939 try
940 {
941 /* Fill in the rest of the `struct so_list' node. */
942 if (!solib_map_sections (i))
943 {
944 not_found++;
945 if (not_found_filename == NULL)
946 not_found_filename = i->so_original_name;
947 }
948 }
949
950 catch (const gdb_exception_error &e)
951 {
952 exception_fprintf (gdb_stderr, e,
953 _("Error while mapping shared "
954 "library sections:\n"));
955 }
956
957 /* Notify any observer that the shared object has been
958 loaded now that we've added it to GDB's tables. */
959 gdb::observers::solib_loaded.notify (i);
960 }
961
962 /* If a library was not found, issue an appropriate warning
963 message. We have to use a single call to warning in case the
964 front end does something special with warnings, e.g., pop up
965 a dialog box. It Would Be Nice if we could get a "warning: "
966 prefix on each line in the CLI front end, though - it doesn't
967 stand out well. */
968
969 if (not_found == 1)
970 warning (_("Could not load shared library symbols for %s.\n"
971 "Do you need \"set solib-search-path\" "
972 "or \"set sysroot\"?"),
973 not_found_filename);
974 else if (not_found > 1)
975 warning (_("\
976 Could not load shared library symbols for %d libraries, e.g. %s.\n\
977 Use the \"info sharedlibrary\" command to see the complete listing.\n\
978 Do you need \"set solib-search-path\" or \"set sysroot\"?"),
979 not_found, not_found_filename);
980 }
981 }
982
983
984 /* Return non-zero if NAME is the libpthread shared library.
985
986 Uses a fairly simplistic heuristic approach where we check
987 the file name against "/libpthread". This can lead to false
988 positives, but this should be good enough in practice.
989
990 As of glibc-2.34, functions formerly residing in libpthread have
991 been moved to libc, so "/libc." needs to be checked too. (Matching
992 the "." will avoid matching libraries such as libcrypt.) */
993
994 bool
995 libpthread_name_p (const char *name)
996 {
997 return (strstr (name, "/libpthread") != NULL
998 || strstr (name, "/libc.") != NULL );
999 }
1000
1001 /* Return non-zero if SO is the libpthread shared library. */
1002
1003 static bool
1004 libpthread_solib_p (struct so_list *so)
1005 {
1006 return libpthread_name_p (so->so_name);
1007 }
1008
1009 /* Read in symbolic information for any shared objects whose names
1010 match PATTERN. (If we've already read a shared object's symbol
1011 info, leave it alone.) If PATTERN is zero, read them all.
1012
1013 If READSYMS is 0, defer reading symbolic information until later
1014 but still do any needed low level processing.
1015
1016 FROM_TTY is described for update_solib_list, above. */
1017
1018 void
1019 solib_add (const char *pattern, int from_tty, int readsyms)
1020 {
1021 if (print_symbol_loading_p (from_tty, 0, 0))
1022 {
1023 if (pattern != NULL)
1024 {
1025 printf_filtered (_("Loading symbols for shared libraries: %s\n"),
1026 pattern);
1027 }
1028 else
1029 printf_filtered (_("Loading symbols for shared libraries.\n"));
1030 }
1031
1032 current_program_space->solib_add_generation++;
1033
1034 if (pattern)
1035 {
1036 char *re_err = re_comp (pattern);
1037
1038 if (re_err)
1039 error (_("Invalid regexp: %s"), re_err);
1040 }
1041
1042 update_solib_list (from_tty);
1043
1044 /* Walk the list of currently loaded shared libraries, and read
1045 symbols for any that match the pattern --- or any whose symbols
1046 aren't already loaded, if no pattern was given. */
1047 {
1048 bool any_matches = false;
1049 bool loaded_any_symbols = false;
1050 symfile_add_flags add_flags = SYMFILE_DEFER_BP_RESET;
1051
1052 if (from_tty)
1053 add_flags |= SYMFILE_VERBOSE;
1054
1055 for (struct so_list *gdb : current_program_space->solibs ())
1056 if (! pattern || re_exec (gdb->so_name))
1057 {
1058 /* Normally, we would read the symbols from that library
1059 only if READSYMS is set. However, we're making a small
1060 exception for the pthread library, because we sometimes
1061 need the library symbols to be loaded in order to provide
1062 thread support (x86-linux for instance). */
1063 const int add_this_solib =
1064 (readsyms || libpthread_solib_p (gdb));
1065
1066 any_matches = true;
1067 if (add_this_solib)
1068 {
1069 if (gdb->symbols_loaded)
1070 {
1071 /* If no pattern was given, be quiet for shared
1072 libraries we have already loaded. */
1073 if (pattern && (from_tty || info_verbose))
1074 printf_filtered (_("Symbols already loaded for %s\n"),
1075 gdb->so_name);
1076 }
1077 else if (solib_read_symbols (gdb, add_flags))
1078 loaded_any_symbols = true;
1079 }
1080 }
1081
1082 if (loaded_any_symbols)
1083 breakpoint_re_set ();
1084
1085 if (from_tty && pattern && ! any_matches)
1086 printf_filtered
1087 ("No loaded shared libraries match the pattern `%s'.\n", pattern);
1088
1089 if (loaded_any_symbols)
1090 {
1091 /* Getting new symbols may change our opinion about what is
1092 frameless. */
1093 reinit_frame_cache ();
1094 }
1095 }
1096 }
1097
1098 /* Implement the "info sharedlibrary" command. Walk through the
1099 shared library list and print information about each attached
1100 library matching PATTERN. If PATTERN is elided, print them
1101 all. */
1102
1103 static void
1104 info_sharedlibrary_command (const char *pattern, int from_tty)
1105 {
1106 bool so_missing_debug_info = false;
1107 int addr_width;
1108 int nr_libs;
1109 struct gdbarch *gdbarch = target_gdbarch ();
1110 struct ui_out *uiout = current_uiout;
1111
1112 if (pattern)
1113 {
1114 char *re_err = re_comp (pattern);
1115
1116 if (re_err)
1117 error (_("Invalid regexp: %s"), re_err);
1118 }
1119
1120 /* "0x", a little whitespace, and two hex digits per byte of pointers. */
1121 addr_width = 4 + (gdbarch_ptr_bit (gdbarch) / 4);
1122
1123 update_solib_list (from_tty);
1124
1125 /* ui_out_emit_table table_emitter needs to know the number of rows,
1126 so we need to make two passes over the libs. */
1127
1128 nr_libs = 0;
1129 for (struct so_list *so : current_program_space->solibs ())
1130 {
1131 if (so->so_name[0])
1132 {
1133 if (pattern && ! re_exec (so->so_name))
1134 continue;
1135 ++nr_libs;
1136 }
1137 }
1138
1139 {
1140 ui_out_emit_table table_emitter (uiout, 4, nr_libs, "SharedLibraryTable");
1141
1142 /* The "- 1" is because ui_out adds one space between columns. */
1143 uiout->table_header (addr_width - 1, ui_left, "from", "From");
1144 uiout->table_header (addr_width - 1, ui_left, "to", "To");
1145 uiout->table_header (12 - 1, ui_left, "syms-read", "Syms Read");
1146 uiout->table_header (0, ui_noalign, "name", "Shared Object Library");
1147
1148 uiout->table_body ();
1149
1150 for (struct so_list *so : current_program_space->solibs ())
1151 {
1152 if (! so->so_name[0])
1153 continue;
1154 if (pattern && ! re_exec (so->so_name))
1155 continue;
1156
1157 ui_out_emit_tuple tuple_emitter (uiout, "lib");
1158
1159 if (so->addr_high != 0)
1160 {
1161 uiout->field_core_addr ("from", gdbarch, so->addr_low);
1162 uiout->field_core_addr ("to", gdbarch, so->addr_high);
1163 }
1164 else
1165 {
1166 uiout->field_skip ("from");
1167 uiout->field_skip ("to");
1168 }
1169
1170 if (! top_level_interpreter ()->interp_ui_out ()->is_mi_like_p ()
1171 && so->symbols_loaded
1172 && !objfile_has_symbols (so->objfile))
1173 {
1174 so_missing_debug_info = true;
1175 uiout->field_string ("syms-read", "Yes (*)");
1176 }
1177 else
1178 uiout->field_string ("syms-read", so->symbols_loaded ? "Yes" : "No");
1179
1180 uiout->field_string ("name", so->so_name, file_name_style.style ());
1181
1182 uiout->text ("\n");
1183 }
1184 }
1185
1186 if (nr_libs == 0)
1187 {
1188 if (pattern)
1189 uiout->message (_("No shared libraries matched.\n"));
1190 else
1191 uiout->message (_("No shared libraries loaded at this time.\n"));
1192 }
1193 else
1194 {
1195 if (so_missing_debug_info)
1196 uiout->message (_("(*): Shared library is missing "
1197 "debugging information.\n"));
1198 }
1199 }
1200
1201 /* See solib.h. */
1202
1203 bool
1204 solib_contains_address_p (const struct so_list *const solib,
1205 CORE_ADDR address)
1206 {
1207 if (solib->sections == nullptr)
1208 return false;
1209
1210 for (target_section &p : *solib->sections)
1211 if (p.addr <= address && address < p.endaddr)
1212 return true;
1213
1214 return false;
1215 }
1216
1217 /* If ADDRESS is in a shared lib in program space PSPACE, return its
1218 name.
1219
1220 Provides a hook for other gdb routines to discover whether or not a
1221 particular address is within the mapped address space of a shared
1222 library.
1223
1224 For example, this routine is called at one point to disable
1225 breakpoints which are in shared libraries that are not currently
1226 mapped in. */
1227
1228 char *
1229 solib_name_from_address (struct program_space *pspace, CORE_ADDR address)
1230 {
1231 struct so_list *so = NULL;
1232
1233 for (so = pspace->so_list; so; so = so->next)
1234 if (solib_contains_address_p (so, address))
1235 return (so->so_name);
1236
1237 return (0);
1238 }
1239
1240 /* See solib.h. */
1241
1242 bool
1243 solib_keep_data_in_core (CORE_ADDR vaddr, unsigned long size)
1244 {
1245 const struct target_so_ops *ops = solib_ops (target_gdbarch ());
1246
1247 if (ops->keep_data_in_core)
1248 return ops->keep_data_in_core (vaddr, size) != 0;
1249 else
1250 return false;
1251 }
1252
1253 /* Called by free_all_symtabs */
1254
1255 void
1256 clear_solib (void)
1257 {
1258 const struct target_so_ops *ops = solib_ops (target_gdbarch ());
1259
1260 disable_breakpoints_in_shlibs ();
1261
1262 while (current_program_space->so_list)
1263 {
1264 struct so_list *so = current_program_space->so_list;
1265
1266 current_program_space->so_list = so->next;
1267 gdb::observers::solib_unloaded.notify (so);
1268 current_program_space->remove_target_sections (so);
1269 free_so (so);
1270 }
1271
1272 ops->clear_solib ();
1273 }
1274
1275 /* Shared library startup support. When GDB starts up the inferior,
1276 it nurses it along (through the shell) until it is ready to execute
1277 its first instruction. At this point, this function gets
1278 called. */
1279
1280 void
1281 solib_create_inferior_hook (int from_tty)
1282 {
1283 const struct target_so_ops *ops = solib_ops (target_gdbarch ());
1284
1285 ops->solib_create_inferior_hook (from_tty);
1286 }
1287
1288 /* See solib.h. */
1289
1290 bool
1291 in_solib_dynsym_resolve_code (CORE_ADDR pc)
1292 {
1293 const struct target_so_ops *ops = solib_ops (target_gdbarch ());
1294
1295 return ops->in_dynsym_resolve_code (pc) != 0;
1296 }
1297
1298 /* Implements the "sharedlibrary" command. */
1299
1300 static void
1301 sharedlibrary_command (const char *args, int from_tty)
1302 {
1303 dont_repeat ();
1304 solib_add (args, from_tty, 1);
1305 }
1306
1307 /* Implements the command "nosharedlibrary", which discards symbols
1308 that have been auto-loaded from shared libraries. Symbols from
1309 shared libraries that were added by explicit request of the user
1310 are not discarded. Also called from remote.c. */
1311
1312 void
1313 no_shared_libraries (const char *ignored, int from_tty)
1314 {
1315 /* The order of the two routines below is important: clear_solib notifies
1316 the solib_unloaded observers, and some of these observers might need
1317 access to their associated objfiles. Therefore, we can not purge the
1318 solibs' objfiles before clear_solib has been called. */
1319
1320 clear_solib ();
1321 objfile_purge_solibs ();
1322 }
1323
1324 /* See solib.h. */
1325
1326 void
1327 update_solib_breakpoints (void)
1328 {
1329 const struct target_so_ops *ops = solib_ops (target_gdbarch ());
1330
1331 if (ops->update_breakpoints != NULL)
1332 ops->update_breakpoints ();
1333 }
1334
1335 /* See solib.h. */
1336
1337 void
1338 handle_solib_event (void)
1339 {
1340 const struct target_so_ops *ops = solib_ops (target_gdbarch ());
1341
1342 if (ops->handle_event != NULL)
1343 ops->handle_event ();
1344
1345 current_inferior ()->pspace->clear_solib_cache ();
1346
1347 /* Check for any newly added shared libraries if we're supposed to
1348 be adding them automatically. Switch terminal for any messages
1349 produced by breakpoint_re_set. */
1350 target_terminal::ours_for_output ();
1351 solib_add (NULL, 0, auto_solib_add);
1352 target_terminal::inferior ();
1353 }
1354
1355 /* Reload shared libraries, but avoid reloading the same symbol file
1356 we already have loaded. */
1357
1358 static void
1359 reload_shared_libraries_1 (int from_tty)
1360 {
1361 if (print_symbol_loading_p (from_tty, 0, 0))
1362 printf_filtered (_("Loading symbols for shared libraries.\n"));
1363
1364 for (struct so_list *so : current_program_space->solibs ())
1365 {
1366 const char *found_pathname = NULL;
1367 bool was_loaded = so->symbols_loaded != 0;
1368 symfile_add_flags add_flags = SYMFILE_DEFER_BP_RESET;
1369
1370 if (from_tty)
1371 add_flags |= SYMFILE_VERBOSE;
1372
1373 gdb::unique_xmalloc_ptr<char> filename
1374 (tilde_expand (so->so_original_name));
1375 gdb_bfd_ref_ptr abfd (solib_bfd_open (filename.get ()));
1376 if (abfd != NULL)
1377 found_pathname = bfd_get_filename (abfd.get ());
1378
1379 /* If this shared library is no longer associated with its previous
1380 symbol file, close that. */
1381 if ((found_pathname == NULL && was_loaded)
1382 || (found_pathname != NULL
1383 && filename_cmp (found_pathname, so->so_name) != 0))
1384 {
1385 if (so->objfile && ! (so->objfile->flags & OBJF_USERLOADED)
1386 && !solib_used (so))
1387 so->objfile->unlink ();
1388 current_program_space->remove_target_sections (so);
1389 clear_so (so);
1390 }
1391
1392 /* If this shared library is now associated with a new symbol
1393 file, open it. */
1394 if (found_pathname != NULL
1395 && (!was_loaded
1396 || filename_cmp (found_pathname, so->so_name) != 0))
1397 {
1398 bool got_error = false;
1399
1400 try
1401 {
1402 solib_map_sections (so);
1403 }
1404
1405 catch (const gdb_exception_error &e)
1406 {
1407 exception_fprintf (gdb_stderr, e,
1408 _("Error while mapping "
1409 "shared library sections:\n"));
1410 got_error = true;
1411 }
1412
1413 if (!got_error
1414 && (auto_solib_add || was_loaded || libpthread_solib_p (so)))
1415 solib_read_symbols (so, add_flags);
1416 }
1417 }
1418 }
1419
1420 static void
1421 reload_shared_libraries (const char *ignored, int from_tty,
1422 struct cmd_list_element *e)
1423 {
1424 const struct target_so_ops *ops;
1425
1426 reload_shared_libraries_1 (from_tty);
1427
1428 ops = solib_ops (target_gdbarch ());
1429
1430 /* Creating inferior hooks here has two purposes. First, if we reload
1431 shared libraries then the address of solib breakpoint we've computed
1432 previously might be no longer valid. For example, if we forgot to set
1433 solib-absolute-prefix and are setting it right now, then the previous
1434 breakpoint address is plain wrong. Second, installing solib hooks
1435 also implicitly figures were ld.so is and loads symbols for it.
1436 Absent this call, if we've just connected to a target and set
1437 solib-absolute-prefix or solib-search-path, we'll lose all information
1438 about ld.so. */
1439 if (target_has_execution ())
1440 {
1441 /* Reset or free private data structures not associated with
1442 so_list entries. */
1443 ops->clear_solib ();
1444
1445 /* Remove any previous solib event breakpoint. This is usually
1446 done in common code, at breakpoint_init_inferior time, but
1447 we're not really starting up the inferior here. */
1448 remove_solib_event_breakpoints ();
1449
1450 solib_create_inferior_hook (from_tty);
1451 }
1452
1453 /* Sometimes the platform-specific hook loads initial shared
1454 libraries, and sometimes it doesn't. If it doesn't FROM_TTY will be
1455 incorrectly 0 but such solib targets should be fixed anyway. If we
1456 made all the inferior hook methods consistent, this call could be
1457 removed. Call it only after the solib target has been initialized by
1458 solib_create_inferior_hook. */
1459
1460 solib_add (NULL, 0, auto_solib_add);
1461
1462 breakpoint_re_set ();
1463
1464 /* We may have loaded or unloaded debug info for some (or all)
1465 shared libraries. However, frames may still reference them. For
1466 example, a frame's unwinder might still point at DWARF FDE
1467 structures that are now freed. Also, getting new symbols may
1468 change our opinion about what is frameless. */
1469 reinit_frame_cache ();
1470 }
1471
1472 /* Wrapper for reload_shared_libraries that replaces "remote:"
1473 at the start of gdb_sysroot with "target:". */
1474
1475 static void
1476 gdb_sysroot_changed (const char *ignored, int from_tty,
1477 struct cmd_list_element *e)
1478 {
1479 const char *old_prefix = "remote:";
1480 const char *new_prefix = TARGET_SYSROOT_PREFIX;
1481
1482 if (startswith (gdb_sysroot.c_str (), old_prefix))
1483 {
1484 static bool warning_issued = false;
1485
1486 gdb_assert (strlen (old_prefix) == strlen (new_prefix));
1487 gdb_sysroot = new_prefix + gdb_sysroot.substr (strlen (old_prefix));
1488
1489 if (!warning_issued)
1490 {
1491 warning (_("\"%s\" is deprecated, use \"%s\" instead."),
1492 old_prefix, new_prefix);
1493 warning (_("sysroot set to \"%s\"."), gdb_sysroot.c_str ());
1494
1495 warning_issued = true;
1496 }
1497 }
1498
1499 reload_shared_libraries (ignored, from_tty, e);
1500 }
1501
1502 static void
1503 show_auto_solib_add (struct ui_file *file, int from_tty,
1504 struct cmd_list_element *c, const char *value)
1505 {
1506 fprintf_filtered (file, _("Autoloading of shared library symbols is %s.\n"),
1507 value);
1508 }
1509
1510
1511 /* Lookup the value for a specific symbol from dynamic symbol table. Look
1512 up symbol from ABFD. MATCH_SYM is a callback function to determine
1513 whether to pick up a symbol. DATA is the input of this callback
1514 function. Return NULL if symbol is not found. */
1515
1516 CORE_ADDR
1517 gdb_bfd_lookup_symbol_from_symtab (bfd *abfd,
1518 int (*match_sym) (const asymbol *,
1519 const void *),
1520 const void *data)
1521 {
1522 long storage_needed = bfd_get_symtab_upper_bound (abfd);
1523 CORE_ADDR symaddr = 0;
1524
1525 if (storage_needed > 0)
1526 {
1527 unsigned int i;
1528
1529 gdb::def_vector<asymbol *> storage (storage_needed / sizeof (asymbol *));
1530 asymbol **symbol_table = storage.data ();
1531 unsigned int number_of_symbols =
1532 bfd_canonicalize_symtab (abfd, symbol_table);
1533
1534 for (i = 0; i < number_of_symbols; i++)
1535 {
1536 asymbol *sym = *symbol_table++;
1537
1538 if (match_sym (sym, data))
1539 {
1540 struct gdbarch *gdbarch = target_gdbarch ();
1541 symaddr = sym->value;
1542
1543 /* Some ELF targets fiddle with addresses of symbols they
1544 consider special. They use minimal symbols to do that
1545 and this is needed for correct breakpoint placement,
1546 but we do not have full data here to build a complete
1547 minimal symbol, so just set the address and let the
1548 targets cope with that. */
1549 if (bfd_get_flavour (abfd) == bfd_target_elf_flavour
1550 && gdbarch_elf_make_msymbol_special_p (gdbarch))
1551 {
1552 struct minimal_symbol msym {};
1553
1554 SET_MSYMBOL_VALUE_ADDRESS (&msym, symaddr);
1555 gdbarch_elf_make_msymbol_special (gdbarch, sym, &msym);
1556 symaddr = MSYMBOL_VALUE_RAW_ADDRESS (&msym);
1557 }
1558
1559 /* BFD symbols are section relative. */
1560 symaddr += sym->section->vma;
1561 break;
1562 }
1563 }
1564 }
1565
1566 return symaddr;
1567 }
1568
1569 /* See solib.h. */
1570
1571 int
1572 gdb_bfd_scan_elf_dyntag (const int desired_dyntag, bfd *abfd, CORE_ADDR *ptr,
1573 CORE_ADDR *ptr_addr)
1574 {
1575 int arch_size, step, sect_size;
1576 long current_dyntag;
1577 CORE_ADDR dyn_ptr, dyn_addr;
1578 gdb_byte *bufend, *bufstart, *buf;
1579 Elf32_External_Dyn *x_dynp_32;
1580 Elf64_External_Dyn *x_dynp_64;
1581 struct bfd_section *sect;
1582
1583 if (abfd == NULL)
1584 return 0;
1585
1586 if (bfd_get_flavour (abfd) != bfd_target_elf_flavour)
1587 return 0;
1588
1589 arch_size = bfd_get_arch_size (abfd);
1590 if (arch_size == -1)
1591 return 0;
1592
1593 /* Find the start address of the .dynamic section. */
1594 sect = bfd_get_section_by_name (abfd, ".dynamic");
1595 if (sect == NULL)
1596 return 0;
1597
1598 bool found = false;
1599 for (const target_section &target_section
1600 : current_program_space->target_sections ())
1601 if (sect == target_section.the_bfd_section)
1602 {
1603 dyn_addr = target_section.addr;
1604 found = true;
1605 break;
1606 }
1607 if (!found)
1608 {
1609 /* ABFD may come from OBJFILE acting only as a symbol file without being
1610 loaded into the target (see add_symbol_file_command). This case is
1611 such fallback to the file VMA address without the possibility of
1612 having the section relocated to its actual in-memory address. */
1613
1614 dyn_addr = bfd_section_vma (sect);
1615 }
1616
1617 /* Read in .dynamic from the BFD. We will get the actual value
1618 from memory later. */
1619 sect_size = bfd_section_size (sect);
1620 buf = bufstart = (gdb_byte *) alloca (sect_size);
1621 if (!bfd_get_section_contents (abfd, sect,
1622 buf, 0, sect_size))
1623 return 0;
1624
1625 /* Iterate over BUF and scan for DYNTAG. If found, set PTR and return. */
1626 step = (arch_size == 32) ? sizeof (Elf32_External_Dyn)
1627 : sizeof (Elf64_External_Dyn);
1628 for (bufend = buf + sect_size;
1629 buf < bufend;
1630 buf += step)
1631 {
1632 if (arch_size == 32)
1633 {
1634 x_dynp_32 = (Elf32_External_Dyn *) buf;
1635 current_dyntag = bfd_h_get_32 (abfd, (bfd_byte *) x_dynp_32->d_tag);
1636 dyn_ptr = bfd_h_get_32 (abfd, (bfd_byte *) x_dynp_32->d_un.d_ptr);
1637 }
1638 else
1639 {
1640 x_dynp_64 = (Elf64_External_Dyn *) buf;
1641 current_dyntag = bfd_h_get_64 (abfd, (bfd_byte *) x_dynp_64->d_tag);
1642 dyn_ptr = bfd_h_get_64 (abfd, (bfd_byte *) x_dynp_64->d_un.d_ptr);
1643 }
1644 if (current_dyntag == DT_NULL)
1645 return 0;
1646 if (current_dyntag == desired_dyntag)
1647 {
1648 /* If requested, try to read the runtime value of this .dynamic
1649 entry. */
1650 if (ptr)
1651 {
1652 struct type *ptr_type;
1653 gdb_byte ptr_buf[8];
1654 CORE_ADDR ptr_addr_1;
1655
1656 ptr_type = builtin_type (target_gdbarch ())->builtin_data_ptr;
1657 ptr_addr_1 = dyn_addr + (buf - bufstart) + arch_size / 8;
1658 if (target_read_memory (ptr_addr_1, ptr_buf, arch_size / 8) == 0)
1659 dyn_ptr = extract_typed_address (ptr_buf, ptr_type);
1660 *ptr = dyn_ptr;
1661 if (ptr_addr)
1662 *ptr_addr = dyn_addr + (buf - bufstart);
1663 }
1664 return 1;
1665 }
1666 }
1667
1668 return 0;
1669 }
1670
1671 /* See solib.h. */
1672
1673 gdb::unique_xmalloc_ptr<char>
1674 gdb_bfd_read_elf_soname (const char *filename)
1675 {
1676 gdb_bfd_ref_ptr abfd = gdb_bfd_open (filename, gnutarget);
1677
1678 if (abfd == nullptr)
1679 return {};
1680
1681 /* Check that ABFD is an ET_DYN ELF file. */
1682 if (!bfd_check_format (abfd.get (), bfd_object)
1683 || !(bfd_get_file_flags (abfd.get ()) & DYNAMIC))
1684 return {};
1685
1686 CORE_ADDR idx;
1687 if (!gdb_bfd_scan_elf_dyntag (DT_SONAME, abfd.get (), &idx, nullptr))
1688 return {};
1689
1690 struct bfd_section *dynstr = bfd_get_section_by_name (abfd.get (), ".dynstr");
1691 int sect_size = bfd_section_size (dynstr);
1692 if (dynstr == nullptr || sect_size <= idx)
1693 return {};
1694
1695 /* Read soname from the string table. */
1696 gdb::byte_vector dynstr_buf;
1697 if (!gdb_bfd_get_full_section_contents (abfd.get (), dynstr, &dynstr_buf))
1698 return {};
1699
1700 /* Ensure soname is null-terminated before returning a copy. */
1701 char *soname = (char *) dynstr_buf.data () + idx;
1702 if (strnlen (soname, sect_size - idx) == sect_size - idx)
1703 return {};
1704
1705 return make_unique_xstrdup (soname);
1706 }
1707
1708 /* Lookup the value for a specific symbol from symbol table. Look up symbol
1709 from ABFD. MATCH_SYM is a callback function to determine whether to pick
1710 up a symbol. DATA is the input of this callback function. Return NULL
1711 if symbol is not found. */
1712
1713 static CORE_ADDR
1714 bfd_lookup_symbol_from_dyn_symtab (bfd *abfd,
1715 int (*match_sym) (const asymbol *,
1716 const void *),
1717 const void *data)
1718 {
1719 long storage_needed = bfd_get_dynamic_symtab_upper_bound (abfd);
1720 CORE_ADDR symaddr = 0;
1721
1722 if (storage_needed > 0)
1723 {
1724 unsigned int i;
1725 gdb::def_vector<asymbol *> storage (storage_needed / sizeof (asymbol *));
1726 asymbol **symbol_table = storage.data ();
1727 unsigned int number_of_symbols =
1728 bfd_canonicalize_dynamic_symtab (abfd, symbol_table);
1729
1730 for (i = 0; i < number_of_symbols; i++)
1731 {
1732 asymbol *sym = *symbol_table++;
1733
1734 if (match_sym (sym, data))
1735 {
1736 /* BFD symbols are section relative. */
1737 symaddr = sym->value + sym->section->vma;
1738 break;
1739 }
1740 }
1741 }
1742 return symaddr;
1743 }
1744
1745 /* Lookup the value for a specific symbol from symbol table and dynamic
1746 symbol table. Look up symbol from ABFD. MATCH_SYM is a callback
1747 function to determine whether to pick up a symbol. DATA is the
1748 input of this callback function. Return NULL if symbol is not
1749 found. */
1750
1751 CORE_ADDR
1752 gdb_bfd_lookup_symbol (bfd *abfd,
1753 int (*match_sym) (const asymbol *, const void *),
1754 const void *data)
1755 {
1756 CORE_ADDR symaddr = gdb_bfd_lookup_symbol_from_symtab (abfd, match_sym, data);
1757
1758 /* On FreeBSD, the dynamic linker is stripped by default. So we'll
1759 have to check the dynamic string table too. */
1760 if (symaddr == 0)
1761 symaddr = bfd_lookup_symbol_from_dyn_symtab (abfd, match_sym, data);
1762
1763 return symaddr;
1764 }
1765
1766 /* The shared library list may contain user-loaded object files that
1767 can be removed out-of-band by the user. So upon notification of
1768 free_objfile remove all references to any user-loaded file that is
1769 about to be freed. */
1770
1771 static void
1772 remove_user_added_objfile (struct objfile *objfile)
1773 {
1774 if (objfile != 0 && objfile->flags & OBJF_USERLOADED)
1775 {
1776 for (struct so_list *so : current_program_space->solibs ())
1777 if (so->objfile == objfile)
1778 so->objfile = NULL;
1779 }
1780 }
1781
1782 void _initialize_solib ();
1783 void
1784 _initialize_solib ()
1785 {
1786 solib_data = gdbarch_data_register_pre_init (solib_init);
1787
1788 gdb::observers::free_objfile.attach (remove_user_added_objfile,
1789 "solib");
1790 gdb::observers::inferior_execd.attach ([] (inferior *inf)
1791 {
1792 solib_create_inferior_hook (0);
1793 }, "solib");
1794
1795 add_com ("sharedlibrary", class_files, sharedlibrary_command,
1796 _("Load shared object library symbols for files matching REGEXP."));
1797 cmd_list_element *info_sharedlibrary_cmd
1798 = add_info ("sharedlibrary", info_sharedlibrary_command,
1799 _("Status of loaded shared object libraries."));
1800 add_info_alias ("dll", info_sharedlibrary_cmd, 1);
1801 add_com ("nosharedlibrary", class_files, no_shared_libraries,
1802 _("Unload all shared object library symbols."));
1803
1804 add_setshow_boolean_cmd ("auto-solib-add", class_support,
1805 &auto_solib_add, _("\
1806 Set autoloading of shared library symbols."), _("\
1807 Show autoloading of shared library symbols."), _("\
1808 If \"on\", symbols from all shared object libraries will be loaded\n\
1809 automatically when the inferior begins execution, when the dynamic linker\n\
1810 informs gdb that a new library has been loaded, or when attaching to the\n\
1811 inferior. Otherwise, symbols must be loaded manually, using \
1812 `sharedlibrary'."),
1813 NULL,
1814 show_auto_solib_add,
1815 &setlist, &showlist);
1816
1817 set_show_commands sysroot_cmds
1818 = add_setshow_optional_filename_cmd ("sysroot", class_support,
1819 &gdb_sysroot, _("\
1820 Set an alternate system root."), _("\
1821 Show the current system root."), _("\
1822 The system root is used to load absolute shared library symbol files.\n\
1823 For other (relative) files, you can add directories using\n\
1824 `set solib-search-path'."),
1825 gdb_sysroot_changed,
1826 NULL,
1827 &setlist, &showlist);
1828
1829 add_alias_cmd ("solib-absolute-prefix", sysroot_cmds.set, class_support, 0,
1830 &setlist);
1831 add_alias_cmd ("solib-absolute-prefix", sysroot_cmds.show, class_support, 0,
1832 &showlist);
1833
1834 add_setshow_optional_filename_cmd ("solib-search-path", class_support,
1835 &solib_search_path, _("\
1836 Set the search path for loading non-absolute shared library symbol files."),
1837 _("\
1838 Show the search path for loading non-absolute shared library symbol files."),
1839 _("\
1840 This takes precedence over the environment variables \
1841 PATH and LD_LIBRARY_PATH."),
1842 reload_shared_libraries,
1843 show_solib_search_path,
1844 &setlist, &showlist);
1845 }