Move solib_ops into gdbarch
[binutils-gdb.git] / gdb / solib.c
1 /* Handle shared libraries for GDB, the GNU Debugger.
2
3 Copyright (C) 1990-2022 Free Software Foundation, Inc.
4
5 This file is part of GDB.
6
7 This program is free software; you can redistribute it and/or modify
8 it under the terms of the GNU General Public License as published by
9 the Free Software Foundation; either version 3 of the License, or
10 (at your option) any later version.
11
12 This program is distributed in the hope that it will be useful,
13 but WITHOUT ANY WARRANTY; without even the implied warranty of
14 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
15 GNU General Public License for more details.
16
17 You should have received a copy of the GNU General Public License
18 along with this program. If not, see <http://www.gnu.org/licenses/>. */
19
20 #include "defs.h"
21
22 #include <sys/types.h>
23 #include <fcntl.h>
24 #include "symtab.h"
25 #include "bfd.h"
26 #include "build-id.h"
27 #include "symfile.h"
28 #include "objfiles.h"
29 #include "gdbcore.h"
30 #include "command.h"
31 #include "target.h"
32 #include "frame.h"
33 #include "gdbsupport/gdb_regex.h"
34 #include "inferior.h"
35 #include "gdbsupport/environ.h"
36 #include "language.h"
37 #include "gdbcmd.h"
38 #include "completer.h"
39 #include "elf/external.h"
40 #include "elf/common.h"
41 #include "filenames.h" /* for DOSish file names */
42 #include "exec.h"
43 #include "solist.h"
44 #include "observable.h"
45 #include "readline/tilde.h"
46 #include "remote.h"
47 #include "solib.h"
48 #include "interps.h"
49 #include "filesystem.h"
50 #include "gdb_bfd.h"
51 #include "gdbsupport/filestuff.h"
52 #include "gdbsupport/scoped_fd.h"
53 #include "debuginfod-support.h"
54 #include "source.h"
55 #include "cli/cli-style.h"
56 #include "solib-target.h"
57
58 /* Architecture-specific operations. */
59
60 \f
61
62 /* external data declarations */
63
64 /* Local function prototypes */
65
66 /* If non-empty, this is a search path for loading non-absolute shared library
67 symbol files. This takes precedence over the environment variables PATH
68 and LD_LIBRARY_PATH. */
69 static std::string solib_search_path;
70 static void
71 show_solib_search_path (struct ui_file *file, int from_tty,
72 struct cmd_list_element *c, const char *value)
73 {
74 gdb_printf (file, _("The search path for loading non-absolute "
75 "shared library symbol files is %s.\n"),
76 value);
77 }
78
79 /* Same as HAVE_DOS_BASED_FILE_SYSTEM, but useable as an rvalue. */
80 #if (HAVE_DOS_BASED_FILE_SYSTEM)
81 # define DOS_BASED_FILE_SYSTEM 1
82 #else
83 # define DOS_BASED_FILE_SYSTEM 0
84 #endif
85
86 /* Return the full pathname of a binary file (the main executable or a
87 shared library file), or NULL if not found. If FD is non-NULL, *FD
88 is set to either -1 or an open file handle for the binary file.
89
90 Global variable GDB_SYSROOT is used as a prefix directory
91 to search for binary files if they have an absolute path.
92 If GDB_SYSROOT starts with "target:" and target filesystem
93 is the local filesystem then the "target:" prefix will be
94 stripped before the search starts. This ensures that the
95 same search algorithm is used for local files regardless of
96 whether a "target:" prefix was used.
97
98 Global variable SOLIB_SEARCH_PATH is used as a prefix directory
99 (or set of directories, as in LD_LIBRARY_PATH) to search for all
100 shared libraries if not found in either the sysroot (if set) or
101 the local filesystem. SOLIB_SEARCH_PATH is not used when searching
102 for the main executable.
103
104 Search algorithm:
105 * If a sysroot is set and path is absolute:
106 * Search for sysroot/path.
107 * else
108 * Look for it literally (unmodified).
109 * If IS_SOLIB is non-zero:
110 * Look in SOLIB_SEARCH_PATH.
111 * If available, use target defined search function.
112 * If NO sysroot is set, perform the following two searches:
113 * Look in inferior's $PATH.
114 * If IS_SOLIB is non-zero:
115 * Look in inferior's $LD_LIBRARY_PATH.
116 *
117 * The last check avoids doing this search when targeting remote
118 * machines since a sysroot will almost always be set.
119 */
120
121 static gdb::unique_xmalloc_ptr<char>
122 solib_find_1 (const char *in_pathname, int *fd, bool is_solib)
123 {
124 const struct target_so_ops *ops = gdbarch_so_ops (target_gdbarch ());
125 int found_file = -1;
126 gdb::unique_xmalloc_ptr<char> temp_pathname;
127 const char *fskind = effective_target_file_system_kind ();
128 const char *sysroot = gdb_sysroot.c_str ();
129 int prefix_len, orig_prefix_len;
130
131 /* If the absolute prefix starts with "target:" but the filesystem
132 accessed by the target_fileio_* methods is the local filesystem
133 then we strip the "target:" prefix now and work with the local
134 filesystem. This ensures that the same search algorithm is used
135 for all local files regardless of whether a "target:" prefix was
136 used. */
137 if (is_target_filename (sysroot) && target_filesystem_is_local ())
138 sysroot += strlen (TARGET_SYSROOT_PREFIX);
139
140 /* Strip any trailing slashes from the absolute prefix. */
141 prefix_len = orig_prefix_len = strlen (sysroot);
142
143 while (prefix_len > 0 && IS_DIR_SEPARATOR (sysroot[prefix_len - 1]))
144 prefix_len--;
145
146 std::string sysroot_holder;
147 if (prefix_len == 0)
148 sysroot = NULL;
149 else if (prefix_len != orig_prefix_len)
150 {
151 sysroot_holder = std::string (sysroot, prefix_len);
152 sysroot = sysroot_holder.c_str ();
153 }
154
155 /* If we're on a non-DOS-based system, backslashes won't be
156 understood as directory separator, so, convert them to forward
157 slashes, iff we're supposed to handle DOS-based file system
158 semantics for target paths. */
159 if (!DOS_BASED_FILE_SYSTEM && fskind == file_system_kind_dos_based)
160 {
161 char *p;
162
163 /* Avoid clobbering our input. */
164 p = (char *) alloca (strlen (in_pathname) + 1);
165 strcpy (p, in_pathname);
166 in_pathname = p;
167
168 for (; *p; p++)
169 {
170 if (*p == '\\')
171 *p = '/';
172 }
173 }
174
175 /* Note, we're interested in IS_TARGET_ABSOLUTE_PATH, not
176 IS_ABSOLUTE_PATH. The latter is for host paths only, while
177 IN_PATHNAME is a target path. For example, if we're supposed to
178 be handling DOS-like semantics we want to consider a
179 'c:/foo/bar.dll' path as an absolute path, even on a Unix box.
180 With such a path, before giving up on the sysroot, we'll try:
181
182 1st attempt, c:/foo/bar.dll ==> /sysroot/c:/foo/bar.dll
183 2nd attempt, c:/foo/bar.dll ==> /sysroot/c/foo/bar.dll
184 3rd attempt, c:/foo/bar.dll ==> /sysroot/foo/bar.dll
185 */
186
187 if (!IS_TARGET_ABSOLUTE_PATH (fskind, in_pathname) || sysroot == NULL)
188 temp_pathname.reset (xstrdup (in_pathname));
189 else
190 {
191 bool need_dir_separator;
192
193 /* Concatenate the sysroot and the target reported filename. We
194 may need to glue them with a directory separator. Cases to
195 consider:
196
197 | sysroot | separator | in_pathname |
198 |-----------------+-----------+----------------|
199 | /some/dir | / | c:/foo/bar.dll |
200 | /some/dir | | /foo/bar.dll |
201 | target: | | c:/foo/bar.dll |
202 | target: | | /foo/bar.dll |
203 | target:some/dir | / | c:/foo/bar.dll |
204 | target:some/dir | | /foo/bar.dll |
205
206 IOW, we don't need to add a separator if IN_PATHNAME already
207 has one, or when the sysroot is exactly "target:".
208 There's no need to check for drive spec explicitly, as we only
209 get here if IN_PATHNAME is considered an absolute path. */
210 need_dir_separator = !(IS_DIR_SEPARATOR (in_pathname[0])
211 || strcmp (TARGET_SYSROOT_PREFIX, sysroot) == 0);
212
213 /* Cat the prefixed pathname together. */
214 temp_pathname.reset (concat (sysroot,
215 need_dir_separator ? SLASH_STRING : "",
216 in_pathname, (char *) NULL));
217 }
218
219 /* Handle files to be accessed via the target. */
220 if (is_target_filename (temp_pathname.get ()))
221 {
222 if (fd != NULL)
223 *fd = -1;
224 return temp_pathname;
225 }
226
227 /* Now see if we can open it. */
228 found_file = gdb_open_cloexec (temp_pathname.get (),
229 O_RDONLY | O_BINARY, 0).release ();
230
231 /* If the search in gdb_sysroot failed, and the path name has a
232 drive spec (e.g, c:/foo), try stripping ':' from the drive spec,
233 and retrying in the sysroot:
234 c:/foo/bar.dll ==> /sysroot/c/foo/bar.dll. */
235
236 if (found_file < 0
237 && sysroot != NULL
238 && HAS_TARGET_DRIVE_SPEC (fskind, in_pathname))
239 {
240 bool need_dir_separator = !IS_DIR_SEPARATOR (in_pathname[2]);
241 char drive[2] = { in_pathname[0], '\0' };
242
243 temp_pathname.reset (concat (sysroot,
244 SLASH_STRING,
245 drive,
246 need_dir_separator ? SLASH_STRING : "",
247 in_pathname + 2, (char *) NULL));
248
249 found_file = gdb_open_cloexec (temp_pathname.get (),
250 O_RDONLY | O_BINARY, 0).release ();
251 if (found_file < 0)
252 {
253 /* If the search in gdb_sysroot still failed, try fully
254 stripping the drive spec, and trying once more in the
255 sysroot before giving up.
256
257 c:/foo/bar.dll ==> /sysroot/foo/bar.dll. */
258
259 temp_pathname.reset (concat (sysroot,
260 need_dir_separator ? SLASH_STRING : "",
261 in_pathname + 2, (char *) NULL));
262
263 found_file = gdb_open_cloexec (temp_pathname.get (),
264 O_RDONLY | O_BINARY, 0).release ();
265 }
266 }
267
268 /* We try to find the library in various ways. After each attempt,
269 either found_file >= 0 and temp_pathname is a malloc'd string, or
270 found_file < 0 and temp_pathname does not point to storage that
271 needs to be freed. */
272
273 if (found_file < 0)
274 temp_pathname.reset (NULL);
275
276 /* If the search in gdb_sysroot failed, and the path name is
277 absolute at this point, make it relative. (openp will try and open the
278 file according to its absolute path otherwise, which is not what we want.)
279 Affects subsequent searches for this solib. */
280 if (found_file < 0 && IS_TARGET_ABSOLUTE_PATH (fskind, in_pathname))
281 {
282 /* First, get rid of any drive letters etc. */
283 while (!IS_TARGET_DIR_SEPARATOR (fskind, *in_pathname))
284 in_pathname++;
285
286 /* Next, get rid of all leading dir separators. */
287 while (IS_TARGET_DIR_SEPARATOR (fskind, *in_pathname))
288 in_pathname++;
289 }
290
291 /* If not found, and we're looking for a solib, search the
292 solib_search_path (if any). */
293 if (is_solib && found_file < 0 && !solib_search_path.empty ())
294 found_file = openp (solib_search_path.c_str (),
295 OPF_TRY_CWD_FIRST | OPF_RETURN_REALPATH,
296 in_pathname, O_RDONLY | O_BINARY, &temp_pathname);
297
298 /* If not found, and we're looking for a solib, next search the
299 solib_search_path (if any) for the basename only (ignoring the
300 path). This is to allow reading solibs from a path that differs
301 from the opened path. */
302 if (is_solib && found_file < 0 && !solib_search_path.empty ())
303 found_file = openp (solib_search_path.c_str (),
304 OPF_TRY_CWD_FIRST | OPF_RETURN_REALPATH,
305 target_lbasename (fskind, in_pathname),
306 O_RDONLY | O_BINARY, &temp_pathname);
307
308 /* If not found, and we're looking for a solib, try to use target
309 supplied solib search method. */
310 if (is_solib && found_file < 0 && ops->find_and_open_solib)
311 found_file = ops->find_and_open_solib (in_pathname, O_RDONLY | O_BINARY,
312 &temp_pathname);
313
314 /* If not found, next search the inferior's $PATH environment variable. */
315 if (found_file < 0 && sysroot == NULL)
316 found_file = openp (current_inferior ()->environment.get ("PATH"),
317 OPF_TRY_CWD_FIRST | OPF_RETURN_REALPATH, in_pathname,
318 O_RDONLY | O_BINARY, &temp_pathname);
319
320 /* If not found, and we're looking for a solib, next search the
321 inferior's $LD_LIBRARY_PATH environment variable. */
322 if (is_solib && found_file < 0 && sysroot == NULL)
323 found_file = openp (current_inferior ()->environment.get
324 ("LD_LIBRARY_PATH"),
325 OPF_TRY_CWD_FIRST | OPF_RETURN_REALPATH, in_pathname,
326 O_RDONLY | O_BINARY, &temp_pathname);
327
328 if (fd == NULL)
329 {
330 if (found_file >= 0)
331 close (found_file);
332 }
333 else
334 *fd = found_file;
335
336 return temp_pathname;
337 }
338
339 /* Return the full pathname of the main executable, or NULL if not
340 found. If FD is non-NULL, *FD is set to either -1 or an open file
341 handle for the main executable. */
342
343 gdb::unique_xmalloc_ptr<char>
344 exec_file_find (const char *in_pathname, int *fd)
345 {
346 gdb::unique_xmalloc_ptr<char> result;
347 const char *fskind = effective_target_file_system_kind ();
348
349 if (in_pathname == NULL)
350 return NULL;
351
352 if (!gdb_sysroot.empty () && IS_TARGET_ABSOLUTE_PATH (fskind, in_pathname))
353 {
354 result = solib_find_1 (in_pathname, fd, false);
355
356 if (result == NULL && fskind == file_system_kind_dos_based)
357 {
358 char *new_pathname;
359
360 new_pathname = (char *) alloca (strlen (in_pathname) + 5);
361 strcpy (new_pathname, in_pathname);
362 strcat (new_pathname, ".exe");
363
364 result = solib_find_1 (new_pathname, fd, false);
365 }
366 }
367 else
368 {
369 /* It's possible we don't have a full path, but rather just a
370 filename. Some targets, such as HP-UX, don't provide the
371 full path, sigh.
372
373 Attempt to qualify the filename against the source path.
374 (If that fails, we'll just fall back on the original
375 filename. Not much more we can do...) */
376
377 if (!source_full_path_of (in_pathname, &result))
378 result.reset (xstrdup (in_pathname));
379 if (fd != NULL)
380 *fd = -1;
381 }
382
383 return result;
384 }
385
386 /* Return the full pathname of a shared library file, or NULL if not
387 found. If FD is non-NULL, *FD is set to either -1 or an open file
388 handle for the shared library.
389
390 The search algorithm used is described in solib_find_1's comment
391 above. */
392
393 gdb::unique_xmalloc_ptr<char>
394 solib_find (const char *in_pathname, int *fd)
395 {
396 const char *solib_symbols_extension
397 = gdbarch_solib_symbols_extension (target_gdbarch ());
398
399 /* If solib_symbols_extension is set, replace the file's
400 extension. */
401 if (solib_symbols_extension != NULL)
402 {
403 const char *p = in_pathname + strlen (in_pathname);
404
405 while (p > in_pathname && *p != '.')
406 p--;
407
408 if (*p == '.')
409 {
410 char *new_pathname;
411
412 new_pathname
413 = (char *) alloca (p - in_pathname + 1
414 + strlen (solib_symbols_extension) + 1);
415 memcpy (new_pathname, in_pathname, p - in_pathname + 1);
416 strcpy (new_pathname + (p - in_pathname) + 1,
417 solib_symbols_extension);
418
419 in_pathname = new_pathname;
420 }
421 }
422
423 return solib_find_1 (in_pathname, fd, true);
424 }
425
426 /* Open and return a BFD for the shared library PATHNAME. If FD is not -1,
427 it is used as file handle to open the file. Throws an error if the file
428 could not be opened. Handles both local and remote file access.
429
430 If unsuccessful, the FD will be closed (unless FD was -1). */
431
432 gdb_bfd_ref_ptr
433 solib_bfd_fopen (const char *pathname, int fd)
434 {
435 gdb_bfd_ref_ptr abfd (gdb_bfd_open (pathname, gnutarget, fd));
436
437 if (abfd != NULL && !gdb_bfd_has_target_filename (abfd.get ()))
438 bfd_set_cacheable (abfd.get (), 1);
439
440 if (abfd == NULL)
441 {
442 /* Arrange to free PATHNAME when the error is thrown. */
443 error (_("Could not open `%s' as an executable file: %s"),
444 pathname, bfd_errmsg (bfd_get_error ()));
445 }
446
447 return abfd;
448 }
449
450 /* Find shared library PATHNAME and open a BFD for it. */
451
452 gdb_bfd_ref_ptr
453 solib_bfd_open (const char *pathname)
454 {
455 int found_file;
456 const struct bfd_arch_info *b;
457
458 /* Search for shared library file. */
459 gdb::unique_xmalloc_ptr<char> found_pathname
460 = solib_find (pathname, &found_file);
461 if (found_pathname == NULL)
462 {
463 /* Return failure if the file could not be found, so that we can
464 accumulate messages about missing libraries. */
465 if (errno == ENOENT)
466 return NULL;
467
468 perror_with_name (pathname);
469 }
470
471 /* Open bfd for shared library. */
472 gdb_bfd_ref_ptr abfd (solib_bfd_fopen (found_pathname.get (), found_file));
473
474 /* Check bfd format. */
475 if (!bfd_check_format (abfd.get (), bfd_object))
476 error (_("`%s': not in executable format: %s"),
477 bfd_get_filename (abfd.get ()), bfd_errmsg (bfd_get_error ()));
478
479 /* Check bfd arch. */
480 b = gdbarch_bfd_arch_info (target_gdbarch ());
481 if (!b->compatible (b, bfd_get_arch_info (abfd.get ())))
482 error (_("`%s': Shared library architecture %s is not compatible "
483 "with target architecture %s."), bfd_get_filename (abfd.get ()),
484 bfd_get_arch_info (abfd.get ())->printable_name,
485 b->printable_name);
486
487 return abfd;
488 }
489
490 /* Mapping of a core file's shared library sonames to their respective
491 build-ids. Added to the registries of core file bfds. */
492
493 typedef std::unordered_map<std::string, std::string> soname_build_id_map;
494
495 /* Key used to associate a soname_build_id_map to a core file bfd. */
496
497 static const struct registry<bfd>::key<soname_build_id_map>
498 cbfd_soname_build_id_data_key;
499
500 /* See solib.h. */
501
502 void
503 set_cbfd_soname_build_id (gdb_bfd_ref_ptr abfd,
504 const char *soname,
505 const bfd_build_id *build_id)
506 {
507 gdb_assert (abfd.get () != nullptr);
508 gdb_assert (soname != nullptr);
509 gdb_assert (build_id != nullptr);
510
511 soname_build_id_map *mapptr = cbfd_soname_build_id_data_key.get (abfd.get ());
512
513 if (mapptr == nullptr)
514 mapptr = cbfd_soname_build_id_data_key.emplace (abfd.get ());
515
516 (*mapptr)[soname] = build_id_to_string (build_id);
517 }
518
519 /* See solib.h. */
520
521 gdb::unique_xmalloc_ptr<char>
522 get_cbfd_soname_build_id (gdb_bfd_ref_ptr abfd, const char *soname)
523 {
524 if (abfd.get () == nullptr || soname == nullptr)
525 return {};
526
527 soname_build_id_map *mapptr
528 = cbfd_soname_build_id_data_key.get (abfd.get ());
529
530 if (mapptr == nullptr)
531 return {};
532
533 auto it = mapptr->find (lbasename (soname));
534 if (it == mapptr->end ())
535 return {};
536
537 return make_unique_xstrdup (it->second.c_str ());
538 }
539
540 /* Given a pointer to one of the shared objects in our list of mapped
541 objects, use the recorded name to open a bfd descriptor for the
542 object, build a section table, relocate all the section addresses
543 by the base address at which the shared object was mapped, and then
544 add the sections to the target's section table.
545
546 FIXME: In most (all?) cases the shared object file name recorded in
547 the dynamic linkage tables will be a fully qualified pathname. For
548 cases where it isn't, do we really mimic the systems search
549 mechanism correctly in the below code (particularly the tilde
550 expansion stuff?). */
551
552 static int
553 solib_map_sections (struct so_list *so)
554 {
555 const struct target_so_ops *ops = gdbarch_so_ops (target_gdbarch ());
556
557 gdb::unique_xmalloc_ptr<char> filename (tilde_expand (so->so_name));
558 gdb_bfd_ref_ptr abfd (ops->bfd_open (filename.get ()));
559 gdb::unique_xmalloc_ptr<char> build_id_hexstr
560 = get_cbfd_soname_build_id (current_program_space->cbfd, so->so_name);
561
562 /* If we already know the build-id of this solib from a core file, verify
563 it matches ABFD's build-id. If there is a mismatch or the solib wasn't
564 found, attempt to query debuginfod for the correct solib. */
565 if (build_id_hexstr.get () != nullptr)
566 {
567 bool mismatch = false;
568
569 if (abfd != nullptr && abfd->build_id != nullptr)
570 {
571 std::string build_id = build_id_to_string (abfd->build_id);
572
573 if (build_id != build_id_hexstr.get ())
574 mismatch = true;
575 }
576 if (abfd == nullptr || mismatch)
577 {
578 scoped_fd fd = debuginfod_exec_query ((const unsigned char*)
579 build_id_hexstr.get (),
580 0, so->so_name, &filename);
581
582 if (fd.get () >= 0)
583 abfd = ops->bfd_open (filename.get ());
584 else if (mismatch)
585 warning (_("Build-id of %ps does not match core file."),
586 styled_string (file_name_style.style (), filename.get ()));
587 }
588 }
589
590 if (abfd == NULL)
591 return 0;
592
593 /* Leave bfd open, core_xfer_memory and "info files" need it. */
594 so->abfd = abfd.release ();
595
596 /* Copy the full path name into so_name, allowing symbol_file_add
597 to find it later. This also affects the =library-loaded GDB/MI
598 event, and in particular the part of that notification providing
599 the library's host-side path. If we let the target dictate
600 that objfile's path, and the target is different from the host,
601 GDB/MI will not provide the correct host-side path. */
602 if (strlen (bfd_get_filename (so->abfd)) >= SO_NAME_MAX_PATH_SIZE)
603 error (_("Shared library file name is too long."));
604 strcpy (so->so_name, bfd_get_filename (so->abfd));
605
606 if (so->sections == nullptr)
607 so->sections = new target_section_table;
608 *so->sections = build_section_table (so->abfd);
609
610 for (target_section &p : *so->sections)
611 {
612 /* Relocate the section binding addresses as recorded in the shared
613 object's file by the base address to which the object was actually
614 mapped. */
615 ops->relocate_section_addresses (so, &p);
616
617 /* If the target didn't provide information about the address
618 range of the shared object, assume we want the location of
619 the .text section. */
620 if (so->addr_low == 0 && so->addr_high == 0
621 && strcmp (p.the_bfd_section->name, ".text") == 0)
622 {
623 so->addr_low = p.addr;
624 so->addr_high = p.endaddr;
625 }
626 }
627
628 /* Add the shared object's sections to the current set of file
629 section tables. Do this immediately after mapping the object so
630 that later nodes in the list can query this object, as is needed
631 in solib-osf.c. */
632 current_program_space->add_target_sections (so, *so->sections);
633
634 return 1;
635 }
636
637 /* Free symbol-file related contents of SO and reset for possible reloading
638 of SO. If we have opened a BFD for SO, close it. If we have placed SO's
639 sections in some target's section table, the caller is responsible for
640 removing them.
641
642 This function doesn't mess with objfiles at all. If there is an
643 objfile associated with SO that needs to be removed, the caller is
644 responsible for taking care of that. */
645
646 static void
647 clear_so (struct so_list *so)
648 {
649 const struct target_so_ops *ops = gdbarch_so_ops (target_gdbarch ());
650
651 delete so->sections;
652 so->sections = NULL;
653
654 gdb_bfd_unref (so->abfd);
655 so->abfd = NULL;
656
657 /* Our caller closed the objfile, possibly via objfile_purge_solibs. */
658 so->symbols_loaded = 0;
659 so->objfile = NULL;
660
661 so->addr_low = so->addr_high = 0;
662
663 /* Restore the target-supplied file name. SO_NAME may be the path
664 of the symbol file. */
665 strcpy (so->so_name, so->so_original_name);
666
667 /* Do the same for target-specific data. */
668 if (ops->clear_so != NULL)
669 ops->clear_so (so);
670 }
671
672 /* Free the storage associated with the `struct so_list' object SO.
673 If we have opened a BFD for SO, close it.
674
675 The caller is responsible for removing SO from whatever list it is
676 a member of. If we have placed SO's sections in some target's
677 section table, the caller is responsible for removing them.
678
679 This function doesn't mess with objfiles at all. If there is an
680 objfile associated with SO that needs to be removed, the caller is
681 responsible for taking care of that. */
682
683 void
684 free_so (struct so_list *so)
685 {
686 const struct target_so_ops *ops = gdbarch_so_ops (target_gdbarch ());
687
688 clear_so (so);
689 ops->free_so (so);
690
691 xfree (so);
692 }
693
694
695 /* Read in symbols for shared object SO. If SYMFILE_VERBOSE is set in FLAGS,
696 be chatty about it. Return true if any symbols were actually loaded. */
697
698 bool
699 solib_read_symbols (struct so_list *so, symfile_add_flags flags)
700 {
701 if (so->symbols_loaded)
702 {
703 /* If needed, we've already warned in our caller. */
704 }
705 else if (so->abfd == NULL)
706 {
707 /* We've already warned about this library, when trying to open
708 it. */
709 }
710 else
711 {
712
713 flags |= current_inferior ()->symfile_flags;
714
715 try
716 {
717 /* Have we already loaded this shared object? */
718 so->objfile = nullptr;
719 for (objfile *objfile : current_program_space->objfiles ())
720 {
721 if (filename_cmp (objfile_name (objfile), so->so_name) == 0
722 && objfile->addr_low == so->addr_low)
723 {
724 so->objfile = objfile;
725 break;
726 }
727 }
728 if (so->objfile == NULL)
729 {
730 section_addr_info sap
731 = build_section_addr_info_from_section_table (*so->sections);
732 gdb_bfd_ref_ptr tmp_bfd
733 (gdb_bfd_ref_ptr::new_reference (so->abfd));
734 so->objfile = symbol_file_add_from_bfd (tmp_bfd, so->so_name,
735 flags, &sap,
736 OBJF_SHARED, NULL);
737 so->objfile->addr_low = so->addr_low;
738 }
739
740 so->symbols_loaded = 1;
741 }
742 catch (const gdb_exception_error &e)
743 {
744 exception_fprintf (gdb_stderr, e, _("Error while reading shared"
745 " library symbols for %s:\n"),
746 so->so_name);
747 }
748
749 return true;
750 }
751
752 return false;
753 }
754
755 /* Return true if KNOWN->objfile is used by any other so_list object
756 in the list of shared libraries. Return false otherwise. */
757
758 static bool
759 solib_used (const struct so_list *const known)
760 {
761 for (const struct so_list *pivot : current_program_space->solibs ())
762 if (pivot != known && pivot->objfile == known->objfile)
763 return true;
764 return false;
765 }
766
767 /* See solib.h. */
768
769 void
770 update_solib_list (int from_tty)
771 {
772 const struct target_so_ops *ops = gdbarch_so_ops (target_gdbarch ());
773 struct so_list *inferior = ops->current_sos();
774 struct so_list *gdb, **gdb_link;
775
776 /* We can reach here due to changing solib-search-path or the
777 sysroot, before having any inferior. */
778 if (target_has_execution () && inferior_ptid != null_ptid)
779 {
780 struct inferior *inf = current_inferior ();
781
782 /* If we are attaching to a running process for which we
783 have not opened a symbol file, we may be able to get its
784 symbols now! */
785 if (inf->attach_flag
786 && current_program_space->symfile_object_file == NULL)
787 {
788 try
789 {
790 ops->open_symbol_file_object (from_tty);
791 }
792 catch (const gdb_exception &ex)
793 {
794 exception_fprintf (gdb_stderr, ex,
795 "Error reading attached "
796 "process's symbol file.\n");
797 }
798 }
799 }
800
801 /* GDB and the inferior's dynamic linker each maintain their own
802 list of currently loaded shared objects; we want to bring the
803 former in sync with the latter. Scan both lists, seeing which
804 shared objects appear where. There are three cases:
805
806 - A shared object appears on both lists. This means that GDB
807 knows about it already, and it's still loaded in the inferior.
808 Nothing needs to happen.
809
810 - A shared object appears only on GDB's list. This means that
811 the inferior has unloaded it. We should remove the shared
812 object from GDB's tables.
813
814 - A shared object appears only on the inferior's list. This
815 means that it's just been loaded. We should add it to GDB's
816 tables.
817
818 So we walk GDB's list, checking each entry to see if it appears
819 in the inferior's list too. If it does, no action is needed, and
820 we remove it from the inferior's list. If it doesn't, the
821 inferior has unloaded it, and we remove it from GDB's list. By
822 the time we're done walking GDB's list, the inferior's list
823 contains only the new shared objects, which we then add. */
824
825 gdb = current_program_space->so_list;
826 gdb_link = &current_program_space->so_list;
827 while (gdb)
828 {
829 struct so_list *i = inferior;
830 struct so_list **i_link = &inferior;
831
832 /* Check to see whether the shared object *gdb also appears in
833 the inferior's current list. */
834 while (i)
835 {
836 if (ops->same)
837 {
838 if (ops->same (gdb, i))
839 break;
840 }
841 else
842 {
843 if (! filename_cmp (gdb->so_original_name, i->so_original_name))
844 break;
845 }
846
847 i_link = &i->next;
848 i = *i_link;
849 }
850
851 /* If the shared object appears on the inferior's list too, then
852 it's still loaded, so we don't need to do anything. Delete
853 it from the inferior's list, and leave it on GDB's list. */
854 if (i)
855 {
856 *i_link = i->next;
857 free_so (i);
858 gdb_link = &gdb->next;
859 gdb = *gdb_link;
860 }
861
862 /* If it's not on the inferior's list, remove it from GDB's tables. */
863 else
864 {
865 /* Notify any observer that the shared object has been
866 unloaded before we remove it from GDB's tables. */
867 gdb::observers::solib_unloaded.notify (gdb);
868
869 current_program_space->deleted_solibs.push_back (gdb->so_name);
870
871 *gdb_link = gdb->next;
872
873 /* Unless the user loaded it explicitly, free SO's objfile. */
874 if (gdb->objfile && ! (gdb->objfile->flags & OBJF_USERLOADED)
875 && !solib_used (gdb))
876 gdb->objfile->unlink ();
877
878 /* Some targets' section tables might be referring to
879 sections from so->abfd; remove them. */
880 current_program_space->remove_target_sections (gdb);
881
882 free_so (gdb);
883 gdb = *gdb_link;
884 }
885 }
886
887 /* Now the inferior's list contains only shared objects that don't
888 appear in GDB's list --- those that are newly loaded. Add them
889 to GDB's shared object list. */
890 if (inferior)
891 {
892 int not_found = 0;
893 const char *not_found_filename = NULL;
894
895 struct so_list *i;
896
897 /* Add the new shared objects to GDB's list. */
898 *gdb_link = inferior;
899
900 /* Fill in the rest of each of the `struct so_list' nodes. */
901 for (i = inferior; i; i = i->next)
902 {
903
904 i->pspace = current_program_space;
905 current_program_space->added_solibs.push_back (i);
906
907 try
908 {
909 /* Fill in the rest of the `struct so_list' node. */
910 if (!solib_map_sections (i))
911 {
912 not_found++;
913 if (not_found_filename == NULL)
914 not_found_filename = i->so_original_name;
915 }
916 }
917
918 catch (const gdb_exception_error &e)
919 {
920 exception_fprintf (gdb_stderr, e,
921 _("Error while mapping shared "
922 "library sections:\n"));
923 }
924
925 /* Notify any observer that the shared object has been
926 loaded now that we've added it to GDB's tables. */
927 gdb::observers::solib_loaded.notify (i);
928 }
929
930 /* If a library was not found, issue an appropriate warning
931 message. We have to use a single call to warning in case the
932 front end does something special with warnings, e.g., pop up
933 a dialog box. It Would Be Nice if we could get a "warning: "
934 prefix on each line in the CLI front end, though - it doesn't
935 stand out well. */
936
937 if (not_found == 1)
938 warning (_("Could not load shared library symbols for %s.\n"
939 "Do you need \"set solib-search-path\" "
940 "or \"set sysroot\"?"),
941 not_found_filename);
942 else if (not_found > 1)
943 warning (_("\
944 Could not load shared library symbols for %d libraries, e.g. %s.\n\
945 Use the \"info sharedlibrary\" command to see the complete listing.\n\
946 Do you need \"set solib-search-path\" or \"set sysroot\"?"),
947 not_found, not_found_filename);
948 }
949 }
950
951
952 /* Return non-zero if NAME is the libpthread shared library.
953
954 Uses a fairly simplistic heuristic approach where we check
955 the file name against "/libpthread". This can lead to false
956 positives, but this should be good enough in practice.
957
958 As of glibc-2.34, functions formerly residing in libpthread have
959 been moved to libc, so "/libc." needs to be checked too. (Matching
960 the "." will avoid matching libraries such as libcrypt.) */
961
962 bool
963 libpthread_name_p (const char *name)
964 {
965 return (strstr (name, "/libpthread") != NULL
966 || strstr (name, "/libc.") != NULL );
967 }
968
969 /* Return non-zero if SO is the libpthread shared library. */
970
971 static bool
972 libpthread_solib_p (struct so_list *so)
973 {
974 return libpthread_name_p (so->so_name);
975 }
976
977 /* Read in symbolic information for any shared objects whose names
978 match PATTERN. (If we've already read a shared object's symbol
979 info, leave it alone.) If PATTERN is zero, read them all.
980
981 If READSYMS is 0, defer reading symbolic information until later
982 but still do any needed low level processing.
983
984 FROM_TTY is described for update_solib_list, above. */
985
986 void
987 solib_add (const char *pattern, int from_tty, int readsyms)
988 {
989 if (print_symbol_loading_p (from_tty, 0, 0))
990 {
991 if (pattern != NULL)
992 {
993 gdb_printf (_("Loading symbols for shared libraries: %s\n"),
994 pattern);
995 }
996 else
997 gdb_printf (_("Loading symbols for shared libraries.\n"));
998 }
999
1000 current_program_space->solib_add_generation++;
1001
1002 if (pattern)
1003 {
1004 char *re_err = re_comp (pattern);
1005
1006 if (re_err)
1007 error (_("Invalid regexp: %s"), re_err);
1008 }
1009
1010 update_solib_list (from_tty);
1011
1012 /* Walk the list of currently loaded shared libraries, and read
1013 symbols for any that match the pattern --- or any whose symbols
1014 aren't already loaded, if no pattern was given. */
1015 {
1016 bool any_matches = false;
1017 bool loaded_any_symbols = false;
1018 symfile_add_flags add_flags = SYMFILE_DEFER_BP_RESET;
1019
1020 if (from_tty)
1021 add_flags |= SYMFILE_VERBOSE;
1022
1023 for (struct so_list *gdb : current_program_space->solibs ())
1024 if (! pattern || re_exec (gdb->so_name))
1025 {
1026 /* Normally, we would read the symbols from that library
1027 only if READSYMS is set. However, we're making a small
1028 exception for the pthread library, because we sometimes
1029 need the library symbols to be loaded in order to provide
1030 thread support (x86-linux for instance). */
1031 const int add_this_solib =
1032 (readsyms || libpthread_solib_p (gdb));
1033
1034 any_matches = true;
1035 if (add_this_solib)
1036 {
1037 if (gdb->symbols_loaded)
1038 {
1039 /* If no pattern was given, be quiet for shared
1040 libraries we have already loaded. */
1041 if (pattern && (from_tty || info_verbose))
1042 gdb_printf (_("Symbols already loaded for %s\n"),
1043 gdb->so_name);
1044 }
1045 else if (solib_read_symbols (gdb, add_flags))
1046 loaded_any_symbols = true;
1047 }
1048 }
1049
1050 if (loaded_any_symbols)
1051 breakpoint_re_set ();
1052
1053 if (from_tty && pattern && ! any_matches)
1054 gdb_printf
1055 ("No loaded shared libraries match the pattern `%s'.\n", pattern);
1056
1057 if (loaded_any_symbols)
1058 {
1059 /* Getting new symbols may change our opinion about what is
1060 frameless. */
1061 reinit_frame_cache ();
1062 }
1063 }
1064 }
1065
1066 /* Implement the "info sharedlibrary" command. Walk through the
1067 shared library list and print information about each attached
1068 library matching PATTERN. If PATTERN is elided, print them
1069 all. */
1070
1071 static void
1072 info_sharedlibrary_command (const char *pattern, int from_tty)
1073 {
1074 bool so_missing_debug_info = false;
1075 int addr_width;
1076 int nr_libs;
1077 struct gdbarch *gdbarch = target_gdbarch ();
1078 struct ui_out *uiout = current_uiout;
1079
1080 if (pattern)
1081 {
1082 char *re_err = re_comp (pattern);
1083
1084 if (re_err)
1085 error (_("Invalid regexp: %s"), re_err);
1086 }
1087
1088 /* "0x", a little whitespace, and two hex digits per byte of pointers. */
1089 addr_width = 4 + (gdbarch_ptr_bit (gdbarch) / 4);
1090
1091 update_solib_list (from_tty);
1092
1093 /* ui_out_emit_table table_emitter needs to know the number of rows,
1094 so we need to make two passes over the libs. */
1095
1096 nr_libs = 0;
1097 for (struct so_list *so : current_program_space->solibs ())
1098 {
1099 if (so->so_name[0])
1100 {
1101 if (pattern && ! re_exec (so->so_name))
1102 continue;
1103 ++nr_libs;
1104 }
1105 }
1106
1107 {
1108 ui_out_emit_table table_emitter (uiout, 4, nr_libs, "SharedLibraryTable");
1109
1110 /* The "- 1" is because ui_out adds one space between columns. */
1111 uiout->table_header (addr_width - 1, ui_left, "from", "From");
1112 uiout->table_header (addr_width - 1, ui_left, "to", "To");
1113 uiout->table_header (12 - 1, ui_left, "syms-read", "Syms Read");
1114 uiout->table_header (0, ui_noalign, "name", "Shared Object Library");
1115
1116 uiout->table_body ();
1117
1118 for (struct so_list *so : current_program_space->solibs ())
1119 {
1120 if (! so->so_name[0])
1121 continue;
1122 if (pattern && ! re_exec (so->so_name))
1123 continue;
1124
1125 ui_out_emit_tuple tuple_emitter (uiout, "lib");
1126
1127 if (so->addr_high != 0)
1128 {
1129 uiout->field_core_addr ("from", gdbarch, so->addr_low);
1130 uiout->field_core_addr ("to", gdbarch, so->addr_high);
1131 }
1132 else
1133 {
1134 uiout->field_skip ("from");
1135 uiout->field_skip ("to");
1136 }
1137
1138 if (! top_level_interpreter ()->interp_ui_out ()->is_mi_like_p ()
1139 && so->symbols_loaded
1140 && !objfile_has_symbols (so->objfile))
1141 {
1142 so_missing_debug_info = true;
1143 uiout->field_string ("syms-read", "Yes (*)");
1144 }
1145 else
1146 uiout->field_string ("syms-read", so->symbols_loaded ? "Yes" : "No");
1147
1148 uiout->field_string ("name", so->so_name, file_name_style.style ());
1149
1150 uiout->text ("\n");
1151 }
1152 }
1153
1154 if (nr_libs == 0)
1155 {
1156 if (pattern)
1157 uiout->message (_("No shared libraries matched.\n"));
1158 else
1159 uiout->message (_("No shared libraries loaded at this time.\n"));
1160 }
1161 else
1162 {
1163 if (so_missing_debug_info)
1164 uiout->message (_("(*): Shared library is missing "
1165 "debugging information.\n"));
1166 }
1167 }
1168
1169 /* See solib.h. */
1170
1171 bool
1172 solib_contains_address_p (const struct so_list *const solib,
1173 CORE_ADDR address)
1174 {
1175 if (solib->sections == nullptr)
1176 return false;
1177
1178 for (target_section &p : *solib->sections)
1179 if (p.addr <= address && address < p.endaddr)
1180 return true;
1181
1182 return false;
1183 }
1184
1185 /* If ADDRESS is in a shared lib in program space PSPACE, return its
1186 name.
1187
1188 Provides a hook for other gdb routines to discover whether or not a
1189 particular address is within the mapped address space of a shared
1190 library.
1191
1192 For example, this routine is called at one point to disable
1193 breakpoints which are in shared libraries that are not currently
1194 mapped in. */
1195
1196 const char *
1197 solib_name_from_address (struct program_space *pspace, CORE_ADDR address)
1198 {
1199 struct so_list *so = NULL;
1200
1201 for (so = pspace->so_list; so; so = so->next)
1202 if (solib_contains_address_p (so, address))
1203 return (so->so_name);
1204
1205 return (0);
1206 }
1207
1208 /* See solib.h. */
1209
1210 bool
1211 solib_keep_data_in_core (CORE_ADDR vaddr, unsigned long size)
1212 {
1213 const struct target_so_ops *ops = gdbarch_so_ops (target_gdbarch ());
1214
1215 if (ops->keep_data_in_core)
1216 return ops->keep_data_in_core (vaddr, size) != 0;
1217 else
1218 return false;
1219 }
1220
1221 /* Called by free_all_symtabs */
1222
1223 void
1224 clear_solib (void)
1225 {
1226 const struct target_so_ops *ops = gdbarch_so_ops (target_gdbarch ());
1227
1228 disable_breakpoints_in_shlibs ();
1229
1230 while (current_program_space->so_list)
1231 {
1232 struct so_list *so = current_program_space->so_list;
1233
1234 current_program_space->so_list = so->next;
1235 gdb::observers::solib_unloaded.notify (so);
1236 current_program_space->remove_target_sections (so);
1237 free_so (so);
1238 }
1239
1240 ops->clear_solib ();
1241 }
1242
1243 /* Shared library startup support. When GDB starts up the inferior,
1244 it nurses it along (through the shell) until it is ready to execute
1245 its first instruction. At this point, this function gets
1246 called. */
1247
1248 void
1249 solib_create_inferior_hook (int from_tty)
1250 {
1251 const struct target_so_ops *ops = gdbarch_so_ops (target_gdbarch ());
1252
1253 ops->solib_create_inferior_hook (from_tty);
1254 }
1255
1256 /* See solib.h. */
1257
1258 bool
1259 in_solib_dynsym_resolve_code (CORE_ADDR pc)
1260 {
1261 const struct target_so_ops *ops = gdbarch_so_ops (target_gdbarch ());
1262
1263 return ops->in_dynsym_resolve_code (pc) != 0;
1264 }
1265
1266 /* Implements the "sharedlibrary" command. */
1267
1268 static void
1269 sharedlibrary_command (const char *args, int from_tty)
1270 {
1271 dont_repeat ();
1272 solib_add (args, from_tty, 1);
1273 }
1274
1275 /* Implements the command "nosharedlibrary", which discards symbols
1276 that have been auto-loaded from shared libraries. Symbols from
1277 shared libraries that were added by explicit request of the user
1278 are not discarded. Also called from remote.c. */
1279
1280 void
1281 no_shared_libraries (const char *ignored, int from_tty)
1282 {
1283 /* The order of the two routines below is important: clear_solib notifies
1284 the solib_unloaded observers, and some of these observers might need
1285 access to their associated objfiles. Therefore, we can not purge the
1286 solibs' objfiles before clear_solib has been called. */
1287
1288 clear_solib ();
1289 objfile_purge_solibs ();
1290 }
1291
1292 /* See solib.h. */
1293
1294 void
1295 update_solib_breakpoints (void)
1296 {
1297 const struct target_so_ops *ops = gdbarch_so_ops (target_gdbarch ());
1298
1299 if (ops->update_breakpoints != NULL)
1300 ops->update_breakpoints ();
1301 }
1302
1303 /* See solib.h. */
1304
1305 void
1306 handle_solib_event (void)
1307 {
1308 const struct target_so_ops *ops = gdbarch_so_ops (target_gdbarch ());
1309
1310 if (ops->handle_event != NULL)
1311 ops->handle_event ();
1312
1313 current_inferior ()->pspace->clear_solib_cache ();
1314
1315 /* Check for any newly added shared libraries if we're supposed to
1316 be adding them automatically. Switch terminal for any messages
1317 produced by breakpoint_re_set. */
1318 target_terminal::ours_for_output ();
1319 solib_add (NULL, 0, auto_solib_add);
1320 target_terminal::inferior ();
1321 }
1322
1323 /* Reload shared libraries, but avoid reloading the same symbol file
1324 we already have loaded. */
1325
1326 static void
1327 reload_shared_libraries_1 (int from_tty)
1328 {
1329 if (print_symbol_loading_p (from_tty, 0, 0))
1330 gdb_printf (_("Loading symbols for shared libraries.\n"));
1331
1332 for (struct so_list *so : current_program_space->solibs ())
1333 {
1334 const char *found_pathname = NULL;
1335 bool was_loaded = so->symbols_loaded != 0;
1336 symfile_add_flags add_flags = SYMFILE_DEFER_BP_RESET;
1337
1338 if (from_tty)
1339 add_flags |= SYMFILE_VERBOSE;
1340
1341 gdb::unique_xmalloc_ptr<char> filename
1342 (tilde_expand (so->so_original_name));
1343 gdb_bfd_ref_ptr abfd (solib_bfd_open (filename.get ()));
1344 if (abfd != NULL)
1345 found_pathname = bfd_get_filename (abfd.get ());
1346
1347 /* If this shared library is no longer associated with its previous
1348 symbol file, close that. */
1349 if ((found_pathname == NULL && was_loaded)
1350 || (found_pathname != NULL
1351 && filename_cmp (found_pathname, so->so_name) != 0))
1352 {
1353 if (so->objfile && ! (so->objfile->flags & OBJF_USERLOADED)
1354 && !solib_used (so))
1355 so->objfile->unlink ();
1356 current_program_space->remove_target_sections (so);
1357 clear_so (so);
1358 }
1359
1360 /* If this shared library is now associated with a new symbol
1361 file, open it. */
1362 if (found_pathname != NULL
1363 && (!was_loaded
1364 || filename_cmp (found_pathname, so->so_name) != 0))
1365 {
1366 bool got_error = false;
1367
1368 try
1369 {
1370 solib_map_sections (so);
1371 }
1372
1373 catch (const gdb_exception_error &e)
1374 {
1375 exception_fprintf (gdb_stderr, e,
1376 _("Error while mapping "
1377 "shared library sections:\n"));
1378 got_error = true;
1379 }
1380
1381 if (!got_error
1382 && (auto_solib_add || was_loaded || libpthread_solib_p (so)))
1383 solib_read_symbols (so, add_flags);
1384 }
1385 }
1386 }
1387
1388 static void
1389 reload_shared_libraries (const char *ignored, int from_tty,
1390 struct cmd_list_element *e)
1391 {
1392 const struct target_so_ops *ops;
1393
1394 reload_shared_libraries_1 (from_tty);
1395
1396 ops = gdbarch_so_ops (target_gdbarch ());
1397
1398 /* Creating inferior hooks here has two purposes. First, if we reload
1399 shared libraries then the address of solib breakpoint we've computed
1400 previously might be no longer valid. For example, if we forgot to set
1401 solib-absolute-prefix and are setting it right now, then the previous
1402 breakpoint address is plain wrong. Second, installing solib hooks
1403 also implicitly figures were ld.so is and loads symbols for it.
1404 Absent this call, if we've just connected to a target and set
1405 solib-absolute-prefix or solib-search-path, we'll lose all information
1406 about ld.so. */
1407 if (target_has_execution ())
1408 {
1409 /* Reset or free private data structures not associated with
1410 so_list entries. */
1411 ops->clear_solib ();
1412
1413 /* Remove any previous solib event breakpoint. This is usually
1414 done in common code, at breakpoint_init_inferior time, but
1415 we're not really starting up the inferior here. */
1416 remove_solib_event_breakpoints ();
1417
1418 solib_create_inferior_hook (from_tty);
1419 }
1420
1421 /* Sometimes the platform-specific hook loads initial shared
1422 libraries, and sometimes it doesn't. If it doesn't FROM_TTY will be
1423 incorrectly 0 but such solib targets should be fixed anyway. If we
1424 made all the inferior hook methods consistent, this call could be
1425 removed. Call it only after the solib target has been initialized by
1426 solib_create_inferior_hook. */
1427
1428 solib_add (NULL, 0, auto_solib_add);
1429
1430 breakpoint_re_set ();
1431
1432 /* We may have loaded or unloaded debug info for some (or all)
1433 shared libraries. However, frames may still reference them. For
1434 example, a frame's unwinder might still point at DWARF FDE
1435 structures that are now freed. Also, getting new symbols may
1436 change our opinion about what is frameless. */
1437 reinit_frame_cache ();
1438 }
1439
1440 /* Wrapper for reload_shared_libraries that replaces "remote:"
1441 at the start of gdb_sysroot with "target:". */
1442
1443 static void
1444 gdb_sysroot_changed (const char *ignored, int from_tty,
1445 struct cmd_list_element *e)
1446 {
1447 const char *old_prefix = "remote:";
1448 const char *new_prefix = TARGET_SYSROOT_PREFIX;
1449
1450 if (startswith (gdb_sysroot.c_str (), old_prefix))
1451 {
1452 static bool warning_issued = false;
1453
1454 gdb_assert (strlen (old_prefix) == strlen (new_prefix));
1455 gdb_sysroot = new_prefix + gdb_sysroot.substr (strlen (old_prefix));
1456
1457 if (!warning_issued)
1458 {
1459 warning (_("\"%s\" is deprecated, use \"%s\" instead."),
1460 old_prefix, new_prefix);
1461 warning (_("sysroot set to \"%s\"."), gdb_sysroot.c_str ());
1462
1463 warning_issued = true;
1464 }
1465 }
1466
1467 reload_shared_libraries (ignored, from_tty, e);
1468 }
1469
1470 static void
1471 show_auto_solib_add (struct ui_file *file, int from_tty,
1472 struct cmd_list_element *c, const char *value)
1473 {
1474 gdb_printf (file, _("Autoloading of shared library symbols is %s.\n"),
1475 value);
1476 }
1477
1478
1479 /* Lookup the value for a specific symbol from dynamic symbol table. Look
1480 up symbol from ABFD. MATCH_SYM is a callback function to determine
1481 whether to pick up a symbol. DATA is the input of this callback
1482 function. Return NULL if symbol is not found. */
1483
1484 CORE_ADDR
1485 gdb_bfd_lookup_symbol_from_symtab (bfd *abfd,
1486 int (*match_sym) (const asymbol *,
1487 const void *),
1488 const void *data)
1489 {
1490 long storage_needed = bfd_get_symtab_upper_bound (abfd);
1491 CORE_ADDR symaddr = 0;
1492
1493 if (storage_needed > 0)
1494 {
1495 unsigned int i;
1496
1497 gdb::def_vector<asymbol *> storage (storage_needed / sizeof (asymbol *));
1498 asymbol **symbol_table = storage.data ();
1499 unsigned int number_of_symbols =
1500 bfd_canonicalize_symtab (abfd, symbol_table);
1501
1502 for (i = 0; i < number_of_symbols; i++)
1503 {
1504 asymbol *sym = *symbol_table++;
1505
1506 if (match_sym (sym, data))
1507 {
1508 struct gdbarch *gdbarch = target_gdbarch ();
1509 symaddr = sym->value;
1510
1511 /* Some ELF targets fiddle with addresses of symbols they
1512 consider special. They use minimal symbols to do that
1513 and this is needed for correct breakpoint placement,
1514 but we do not have full data here to build a complete
1515 minimal symbol, so just set the address and let the
1516 targets cope with that. */
1517 if (bfd_get_flavour (abfd) == bfd_target_elf_flavour
1518 && gdbarch_elf_make_msymbol_special_p (gdbarch))
1519 {
1520 struct minimal_symbol msym {};
1521
1522 msym.set_value_address (symaddr);
1523 gdbarch_elf_make_msymbol_special (gdbarch, sym, &msym);
1524 symaddr = msym.value_raw_address ();
1525 }
1526
1527 /* BFD symbols are section relative. */
1528 symaddr += sym->section->vma;
1529 break;
1530 }
1531 }
1532 }
1533
1534 return symaddr;
1535 }
1536
1537 /* See solib.h. */
1538
1539 int
1540 gdb_bfd_scan_elf_dyntag (const int desired_dyntag, bfd *abfd, CORE_ADDR *ptr,
1541 CORE_ADDR *ptr_addr)
1542 {
1543 int arch_size, step, sect_size;
1544 long current_dyntag;
1545 CORE_ADDR dyn_ptr, dyn_addr;
1546 gdb_byte *bufend, *bufstart, *buf;
1547 Elf32_External_Dyn *x_dynp_32;
1548 Elf64_External_Dyn *x_dynp_64;
1549 struct bfd_section *sect;
1550
1551 if (abfd == NULL)
1552 return 0;
1553
1554 if (bfd_get_flavour (abfd) != bfd_target_elf_flavour)
1555 return 0;
1556
1557 arch_size = bfd_get_arch_size (abfd);
1558 if (arch_size == -1)
1559 return 0;
1560
1561 /* Find the start address of the .dynamic section. */
1562 sect = bfd_get_section_by_name (abfd, ".dynamic");
1563 if (sect == NULL)
1564 return 0;
1565
1566 bool found = false;
1567 for (const target_section &target_section
1568 : current_program_space->target_sections ())
1569 if (sect == target_section.the_bfd_section)
1570 {
1571 dyn_addr = target_section.addr;
1572 found = true;
1573 break;
1574 }
1575 if (!found)
1576 {
1577 /* ABFD may come from OBJFILE acting only as a symbol file without being
1578 loaded into the target (see add_symbol_file_command). This case is
1579 such fallback to the file VMA address without the possibility of
1580 having the section relocated to its actual in-memory address. */
1581
1582 dyn_addr = bfd_section_vma (sect);
1583 }
1584
1585 /* Read in .dynamic from the BFD. We will get the actual value
1586 from memory later. */
1587 sect_size = bfd_section_size (sect);
1588 buf = bufstart = (gdb_byte *) alloca (sect_size);
1589 if (!bfd_get_section_contents (abfd, sect,
1590 buf, 0, sect_size))
1591 return 0;
1592
1593 /* Iterate over BUF and scan for DYNTAG. If found, set PTR and return. */
1594 step = (arch_size == 32) ? sizeof (Elf32_External_Dyn)
1595 : sizeof (Elf64_External_Dyn);
1596 for (bufend = buf + sect_size;
1597 buf < bufend;
1598 buf += step)
1599 {
1600 if (arch_size == 32)
1601 {
1602 x_dynp_32 = (Elf32_External_Dyn *) buf;
1603 current_dyntag = bfd_h_get_32 (abfd, (bfd_byte *) x_dynp_32->d_tag);
1604 dyn_ptr = bfd_h_get_32 (abfd, (bfd_byte *) x_dynp_32->d_un.d_ptr);
1605 }
1606 else
1607 {
1608 x_dynp_64 = (Elf64_External_Dyn *) buf;
1609 current_dyntag = bfd_h_get_64 (abfd, (bfd_byte *) x_dynp_64->d_tag);
1610 dyn_ptr = bfd_h_get_64 (abfd, (bfd_byte *) x_dynp_64->d_un.d_ptr);
1611 }
1612 if (current_dyntag == DT_NULL)
1613 return 0;
1614 if (current_dyntag == desired_dyntag)
1615 {
1616 /* If requested, try to read the runtime value of this .dynamic
1617 entry. */
1618 if (ptr)
1619 {
1620 struct type *ptr_type;
1621 gdb_byte ptr_buf[8];
1622 CORE_ADDR ptr_addr_1;
1623
1624 ptr_type = builtin_type (target_gdbarch ())->builtin_data_ptr;
1625 ptr_addr_1 = dyn_addr + (buf - bufstart) + arch_size / 8;
1626 if (target_read_memory (ptr_addr_1, ptr_buf, arch_size / 8) == 0)
1627 dyn_ptr = extract_typed_address (ptr_buf, ptr_type);
1628 *ptr = dyn_ptr;
1629 if (ptr_addr)
1630 *ptr_addr = dyn_addr + (buf - bufstart);
1631 }
1632 return 1;
1633 }
1634 }
1635
1636 return 0;
1637 }
1638
1639 /* See solib.h. */
1640
1641 gdb::unique_xmalloc_ptr<char>
1642 gdb_bfd_read_elf_soname (const char *filename)
1643 {
1644 gdb_bfd_ref_ptr abfd = gdb_bfd_open (filename, gnutarget);
1645
1646 if (abfd == nullptr)
1647 return {};
1648
1649 /* Check that ABFD is an ET_DYN ELF file. */
1650 if (!bfd_check_format (abfd.get (), bfd_object)
1651 || !(bfd_get_file_flags (abfd.get ()) & DYNAMIC))
1652 return {};
1653
1654 CORE_ADDR idx;
1655 if (!gdb_bfd_scan_elf_dyntag (DT_SONAME, abfd.get (), &idx, nullptr))
1656 return {};
1657
1658 struct bfd_section *dynstr = bfd_get_section_by_name (abfd.get (), ".dynstr");
1659 int sect_size = bfd_section_size (dynstr);
1660 if (dynstr == nullptr || sect_size <= idx)
1661 return {};
1662
1663 /* Read soname from the string table. */
1664 gdb::byte_vector dynstr_buf;
1665 if (!gdb_bfd_get_full_section_contents (abfd.get (), dynstr, &dynstr_buf))
1666 return {};
1667
1668 /* Ensure soname is null-terminated before returning a copy. */
1669 char *soname = (char *) dynstr_buf.data () + idx;
1670 if (strnlen (soname, sect_size - idx) == sect_size - idx)
1671 return {};
1672
1673 return make_unique_xstrdup (soname);
1674 }
1675
1676 /* Lookup the value for a specific symbol from symbol table. Look up symbol
1677 from ABFD. MATCH_SYM is a callback function to determine whether to pick
1678 up a symbol. DATA is the input of this callback function. Return NULL
1679 if symbol is not found. */
1680
1681 static CORE_ADDR
1682 bfd_lookup_symbol_from_dyn_symtab (bfd *abfd,
1683 int (*match_sym) (const asymbol *,
1684 const void *),
1685 const void *data)
1686 {
1687 long storage_needed = bfd_get_dynamic_symtab_upper_bound (abfd);
1688 CORE_ADDR symaddr = 0;
1689
1690 if (storage_needed > 0)
1691 {
1692 unsigned int i;
1693 gdb::def_vector<asymbol *> storage (storage_needed / sizeof (asymbol *));
1694 asymbol **symbol_table = storage.data ();
1695 unsigned int number_of_symbols =
1696 bfd_canonicalize_dynamic_symtab (abfd, symbol_table);
1697
1698 for (i = 0; i < number_of_symbols; i++)
1699 {
1700 asymbol *sym = *symbol_table++;
1701
1702 if (match_sym (sym, data))
1703 {
1704 /* BFD symbols are section relative. */
1705 symaddr = sym->value + sym->section->vma;
1706 break;
1707 }
1708 }
1709 }
1710 return symaddr;
1711 }
1712
1713 /* Lookup the value for a specific symbol from symbol table and dynamic
1714 symbol table. Look up symbol from ABFD. MATCH_SYM is a callback
1715 function to determine whether to pick up a symbol. DATA is the
1716 input of this callback function. Return NULL if symbol is not
1717 found. */
1718
1719 CORE_ADDR
1720 gdb_bfd_lookup_symbol (bfd *abfd,
1721 int (*match_sym) (const asymbol *, const void *),
1722 const void *data)
1723 {
1724 CORE_ADDR symaddr = gdb_bfd_lookup_symbol_from_symtab (abfd, match_sym, data);
1725
1726 /* On FreeBSD, the dynamic linker is stripped by default. So we'll
1727 have to check the dynamic string table too. */
1728 if (symaddr == 0)
1729 symaddr = bfd_lookup_symbol_from_dyn_symtab (abfd, match_sym, data);
1730
1731 return symaddr;
1732 }
1733
1734 /* The shared library list may contain user-loaded object files that
1735 can be removed out-of-band by the user. So upon notification of
1736 free_objfile remove all references to any user-loaded file that is
1737 about to be freed. */
1738
1739 static void
1740 remove_user_added_objfile (struct objfile *objfile)
1741 {
1742 if (objfile != 0 && objfile->flags & OBJF_USERLOADED)
1743 {
1744 for (struct so_list *so : current_program_space->solibs ())
1745 if (so->objfile == objfile)
1746 so->objfile = NULL;
1747 }
1748 }
1749
1750 void _initialize_solib ();
1751 void
1752 _initialize_solib ()
1753 {
1754 gdb::observers::free_objfile.attach (remove_user_added_objfile,
1755 "solib");
1756 gdb::observers::inferior_execd.attach ([] (inferior *inf)
1757 {
1758 solib_create_inferior_hook (0);
1759 }, "solib");
1760
1761 add_com ("sharedlibrary", class_files, sharedlibrary_command,
1762 _("Load shared object library symbols for files matching REGEXP."));
1763 cmd_list_element *info_sharedlibrary_cmd
1764 = add_info ("sharedlibrary", info_sharedlibrary_command,
1765 _("Status of loaded shared object libraries."));
1766 add_info_alias ("dll", info_sharedlibrary_cmd, 1);
1767 add_com ("nosharedlibrary", class_files, no_shared_libraries,
1768 _("Unload all shared object library symbols."));
1769
1770 add_setshow_boolean_cmd ("auto-solib-add", class_support,
1771 &auto_solib_add, _("\
1772 Set autoloading of shared library symbols."), _("\
1773 Show autoloading of shared library symbols."), _("\
1774 If \"on\", symbols from all shared object libraries will be loaded\n\
1775 automatically when the inferior begins execution, when the dynamic linker\n\
1776 informs gdb that a new library has been loaded, or when attaching to the\n\
1777 inferior. Otherwise, symbols must be loaded manually, using \
1778 `sharedlibrary'."),
1779 NULL,
1780 show_auto_solib_add,
1781 &setlist, &showlist);
1782
1783 set_show_commands sysroot_cmds
1784 = add_setshow_optional_filename_cmd ("sysroot", class_support,
1785 &gdb_sysroot, _("\
1786 Set an alternate system root."), _("\
1787 Show the current system root."), _("\
1788 The system root is used to load absolute shared library symbol files.\n\
1789 For other (relative) files, you can add directories using\n\
1790 `set solib-search-path'."),
1791 gdb_sysroot_changed,
1792 NULL,
1793 &setlist, &showlist);
1794
1795 add_alias_cmd ("solib-absolute-prefix", sysroot_cmds.set, class_support, 0,
1796 &setlist);
1797 add_alias_cmd ("solib-absolute-prefix", sysroot_cmds.show, class_support, 0,
1798 &showlist);
1799
1800 add_setshow_optional_filename_cmd ("solib-search-path", class_support,
1801 &solib_search_path, _("\
1802 Set the search path for loading non-absolute shared library symbol files."),
1803 _("\
1804 Show the search path for loading non-absolute shared library symbol files."),
1805 _("\
1806 This takes precedence over the environment variables \
1807 PATH and LD_LIBRARY_PATH."),
1808 reload_shared_libraries,
1809 show_solib_search_path,
1810 &setlist, &showlist);
1811 }