* arm-tdep.c (arm_gdbarch_init): Use gdbarch_num_pseudo_regs
[binutils-gdb.git] / gdb / sparc-nat.c
1 /* Functions specific to running gdb native on a SPARC running SunOS4.
2 Copyright 1989, 1992, 1993, 1994, 1996, 1997, 1998, 1999, 2000, 2001
3 Free Software Foundation, Inc.
4
5 This file is part of GDB.
6
7 This program is free software; you can redistribute it and/or modify
8 it under the terms of the GNU General Public License as published by
9 the Free Software Foundation; either version 2 of the License, or
10 (at your option) any later version.
11
12 This program is distributed in the hope that it will be useful,
13 but WITHOUT ANY WARRANTY; without even the implied warranty of
14 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
15 GNU General Public License for more details.
16
17 You should have received a copy of the GNU General Public License
18 along with this program; if not, write to the Free Software
19 Foundation, Inc., 59 Temple Place - Suite 330,
20 Boston, MA 02111-1307, USA. */
21
22 #include "defs.h"
23 #include "inferior.h"
24 #include "target.h"
25 #include "gdbcore.h"
26 #include "regcache.h"
27
28 #ifdef HAVE_SYS_PARAM_H
29 #include <sys/param.h>
30 #endif
31 #include <signal.h>
32 #include <sys/ptrace.h>
33 #include <sys/wait.h>
34 #ifdef __linux__
35 #include <asm/reg.h>
36 #else
37 #include <machine/reg.h>
38 #endif
39 #include <sys/user.h>
40
41 /* We don't store all registers immediately when requested, since they
42 get sent over in large chunks anyway. Instead, we accumulate most
43 of the changes and send them over once. "deferred_stores" keeps
44 track of which sets of registers we have locally-changed copies of,
45 so we only need send the groups that have changed. */
46
47 #define INT_REGS 1
48 #define STACK_REGS 2
49 #define FP_REGS 4
50
51 /* Fetch one or more registers from the inferior. REGNO == -1 to get
52 them all. We actually fetch more than requested, when convenient,
53 marking them as valid so we won't fetch them again. */
54
55 void
56 fetch_inferior_registers (int regno)
57 {
58 struct regs inferior_registers;
59 struct fp_status inferior_fp_registers;
60 int i;
61
62 /* We should never be called with deferred stores, because a prerequisite
63 for writing regs is to have fetched them all (PREPARE_TO_STORE), sigh. */
64 if (deferred_stores)
65 internal_error (__FILE__, __LINE__, "failed internal consistency check");
66
67 DO_DEFERRED_STORES;
68
69 /* Global and Out regs are fetched directly, as well as the control
70 registers. If we're getting one of the in or local regs,
71 and the stack pointer has not yet been fetched,
72 we have to do that first, since they're found in memory relative
73 to the stack pointer. */
74 if (regno < O7_REGNUM /* including -1 */
75 || regno >= Y_REGNUM
76 || (!register_valid[SP_REGNUM] && regno < I7_REGNUM))
77 {
78 if (0 != ptrace (PTRACE_GETREGS, PIDGET (inferior_ptid),
79 (PTRACE_ARG3_TYPE) & inferior_registers, 0))
80 perror ("ptrace_getregs");
81
82 registers[REGISTER_BYTE (0)] = 0;
83 memcpy (&registers[REGISTER_BYTE (1)], &inferior_registers.r_g1,
84 15 * REGISTER_RAW_SIZE (G0_REGNUM));
85 *(int *) &registers[REGISTER_BYTE (PS_REGNUM)] = inferior_registers.r_ps;
86 *(int *) &registers[REGISTER_BYTE (PC_REGNUM)] = inferior_registers.r_pc;
87 *(int *) &registers[REGISTER_BYTE (NPC_REGNUM)] = inferior_registers.r_npc;
88 *(int *) &registers[REGISTER_BYTE (Y_REGNUM)] = inferior_registers.r_y;
89
90 for (i = G0_REGNUM; i <= O7_REGNUM; i++)
91 register_valid[i] = 1;
92 register_valid[Y_REGNUM] = 1;
93 register_valid[PS_REGNUM] = 1;
94 register_valid[PC_REGNUM] = 1;
95 register_valid[NPC_REGNUM] = 1;
96 /* If we don't set these valid, read_register_bytes() rereads
97 all the regs every time it is called! FIXME. */
98 register_valid[WIM_REGNUM] = 1; /* Not true yet, FIXME */
99 register_valid[TBR_REGNUM] = 1; /* Not true yet, FIXME */
100 register_valid[CPS_REGNUM] = 1; /* Not true yet, FIXME */
101 }
102
103 /* Floating point registers */
104 if (regno == -1 ||
105 regno == FPS_REGNUM ||
106 (regno >= FP0_REGNUM && regno <= FP0_REGNUM + 31))
107 {
108 if (0 != ptrace (PTRACE_GETFPREGS, PIDGET (inferior_ptid),
109 (PTRACE_ARG3_TYPE) & inferior_fp_registers,
110 0))
111 perror ("ptrace_getfpregs");
112 memcpy (&registers[REGISTER_BYTE (FP0_REGNUM)], &inferior_fp_registers,
113 sizeof inferior_fp_registers.fpu_fr);
114 memcpy (&registers[REGISTER_BYTE (FPS_REGNUM)],
115 &inferior_fp_registers.Fpu_fsr,
116 sizeof (FPU_FSR_TYPE));
117 for (i = FP0_REGNUM; i <= FP0_REGNUM + 31; i++)
118 register_valid[i] = 1;
119 register_valid[FPS_REGNUM] = 1;
120 }
121
122 /* These regs are saved on the stack by the kernel. Only read them
123 all (16 ptrace calls!) if we really need them. */
124 if (regno == -1)
125 {
126 CORE_ADDR sp = *(unsigned int *) & registers[REGISTER_BYTE (SP_REGNUM)];
127 target_read_memory (sp, &registers[REGISTER_BYTE (L0_REGNUM)],
128 16 * REGISTER_RAW_SIZE (L0_REGNUM));
129 for (i = L0_REGNUM; i <= I7_REGNUM; i++)
130 register_valid[i] = 1;
131 }
132 else if (regno >= L0_REGNUM && regno <= I7_REGNUM)
133 {
134 CORE_ADDR sp = *(unsigned int *) & registers[REGISTER_BYTE (SP_REGNUM)];
135 i = REGISTER_BYTE (regno);
136 if (register_valid[regno])
137 printf_unfiltered ("register %d valid and read\n", regno);
138 target_read_memory (sp + i - REGISTER_BYTE (L0_REGNUM),
139 &registers[i], REGISTER_RAW_SIZE (regno));
140 register_valid[regno] = 1;
141 }
142 }
143
144 /* Store our register values back into the inferior.
145 If REGNO is -1, do this for all registers.
146 Otherwise, REGNO specifies which register (so we can save time). */
147
148 void
149 store_inferior_registers (int regno)
150 {
151 struct regs inferior_registers;
152 struct fp_status inferior_fp_registers;
153 int wanna_store = INT_REGS + STACK_REGS + FP_REGS;
154
155 /* First decide which pieces of machine-state we need to modify.
156 Default for regno == -1 case is all pieces. */
157 if (regno >= 0)
158 if (FP0_REGNUM <= regno && regno < FP0_REGNUM + 32)
159 {
160 wanna_store = FP_REGS;
161 }
162 else
163 {
164 if (regno == SP_REGNUM)
165 wanna_store = INT_REGS + STACK_REGS;
166 else if (regno < L0_REGNUM || regno > I7_REGNUM)
167 wanna_store = INT_REGS;
168 else if (regno == FPS_REGNUM)
169 wanna_store = FP_REGS;
170 else
171 wanna_store = STACK_REGS;
172 }
173
174 /* See if we're forcing the stores to happen now, or deferring. */
175 if (regno == -2)
176 {
177 wanna_store = deferred_stores;
178 deferred_stores = 0;
179 }
180 else
181 {
182 if (wanna_store == STACK_REGS)
183 {
184 /* Fall through and just store one stack reg. If we deferred
185 it, we'd have to store them all, or remember more info. */
186 }
187 else
188 {
189 deferred_stores |= wanna_store;
190 return;
191 }
192 }
193
194 if (wanna_store & STACK_REGS)
195 {
196 CORE_ADDR sp = *(unsigned int *) & registers[REGISTER_BYTE (SP_REGNUM)];
197
198 if (regno < 0 || regno == SP_REGNUM)
199 {
200 if (!register_valid[L0_REGNUM + 5])
201 internal_error (__FILE__, __LINE__, "failed internal consistency check");
202 target_write_memory (sp,
203 &registers[REGISTER_BYTE (L0_REGNUM)],
204 16 * REGISTER_RAW_SIZE (L0_REGNUM));
205 }
206 else
207 {
208 if (!register_valid[regno])
209 internal_error (__FILE__, __LINE__, "failed internal consistency check");
210 target_write_memory (sp + REGISTER_BYTE (regno) - REGISTER_BYTE (L0_REGNUM),
211 &registers[REGISTER_BYTE (regno)],
212 REGISTER_RAW_SIZE (regno));
213 }
214
215 }
216
217 if (wanna_store & INT_REGS)
218 {
219 if (!register_valid[G1_REGNUM])
220 internal_error (__FILE__, __LINE__, "failed internal consistency check");
221
222 memcpy (&inferior_registers.r_g1, &registers[REGISTER_BYTE (G1_REGNUM)],
223 15 * REGISTER_RAW_SIZE (G1_REGNUM));
224
225 inferior_registers.r_ps =
226 *(int *) &registers[REGISTER_BYTE (PS_REGNUM)];
227 inferior_registers.r_pc =
228 *(int *) &registers[REGISTER_BYTE (PC_REGNUM)];
229 inferior_registers.r_npc =
230 *(int *) &registers[REGISTER_BYTE (NPC_REGNUM)];
231 inferior_registers.r_y =
232 *(int *) &registers[REGISTER_BYTE (Y_REGNUM)];
233
234 if (0 != ptrace (PTRACE_SETREGS, PIDGET (inferior_ptid),
235 (PTRACE_ARG3_TYPE) & inferior_registers, 0))
236 perror ("ptrace_setregs");
237 }
238
239 if (wanna_store & FP_REGS)
240 {
241 if (!register_valid[FP0_REGNUM + 9])
242 internal_error (__FILE__, __LINE__, "failed internal consistency check");
243 memcpy (&inferior_fp_registers, &registers[REGISTER_BYTE (FP0_REGNUM)],
244 sizeof inferior_fp_registers.fpu_fr);
245 memcpy (&inferior_fp_registers.Fpu_fsr,
246 &registers[REGISTER_BYTE (FPS_REGNUM)], sizeof (FPU_FSR_TYPE));
247 if (0 !=
248 ptrace (PTRACE_SETFPREGS, PIDGET (inferior_ptid),
249 (PTRACE_ARG3_TYPE) & inferior_fp_registers, 0))
250 perror ("ptrace_setfpregs");
251 }
252 }
253
254 /* Provide registers to GDB from a core file.
255
256 CORE_REG_SECT points to an array of bytes, which are the contents
257 of a `note' from a core file which BFD thinks might contain
258 register contents. CORE_REG_SIZE is its size.
259
260 WHICH says which register set corelow suspects this is:
261 0 --- the general-purpose register set
262 2 --- the floating-point register set
263
264 IGNORE is unused. */
265
266 static void
267 fetch_core_registers (char *core_reg_sect, unsigned core_reg_size,
268 int which, CORE_ADDR ignore)
269 {
270
271 if (which == 0)
272 {
273
274 /* Integer registers */
275
276 #define gregs ((struct regs *)core_reg_sect)
277 /* G0 *always* holds 0. */
278 *(int *) &registers[REGISTER_BYTE (0)] = 0;
279
280 /* The globals and output registers. */
281 memcpy (&registers[REGISTER_BYTE (G1_REGNUM)], &gregs->r_g1,
282 15 * REGISTER_RAW_SIZE (G1_REGNUM));
283 *(int *) &registers[REGISTER_BYTE (PS_REGNUM)] = gregs->r_ps;
284 *(int *) &registers[REGISTER_BYTE (PC_REGNUM)] = gregs->r_pc;
285 *(int *) &registers[REGISTER_BYTE (NPC_REGNUM)] = gregs->r_npc;
286 *(int *) &registers[REGISTER_BYTE (Y_REGNUM)] = gregs->r_y;
287
288 /* My best guess at where to get the locals and input
289 registers is exactly where they usually are, right above
290 the stack pointer. If the core dump was caused by a bus error
291 from blowing away the stack pointer (as is possible) then this
292 won't work, but it's worth the try. */
293 {
294 int sp;
295
296 sp = *(int *) &registers[REGISTER_BYTE (SP_REGNUM)];
297 if (0 != target_read_memory (sp, &registers[REGISTER_BYTE (L0_REGNUM)],
298 16 * REGISTER_RAW_SIZE (L0_REGNUM)))
299 {
300 /* fprintf_unfiltered so user can still use gdb */
301 fprintf_unfiltered (gdb_stderr,
302 "Couldn't read input and local registers from core file\n");
303 }
304 }
305 }
306 else if (which == 2)
307 {
308
309 /* Floating point registers */
310
311 #define fpuregs ((struct fpu *) core_reg_sect)
312 if (core_reg_size >= sizeof (struct fpu))
313 {
314 memcpy (&registers[REGISTER_BYTE (FP0_REGNUM)], fpuregs->fpu_regs,
315 sizeof (fpuregs->fpu_regs));
316 memcpy (&registers[REGISTER_BYTE (FPS_REGNUM)], &fpuregs->fpu_fsr,
317 sizeof (FPU_FSR_TYPE));
318 }
319 else
320 fprintf_unfiltered (gdb_stderr, "Couldn't read float regs from core file\n");
321 }
322 }
323
324 int
325 kernel_u_size (void)
326 {
327 return (sizeof (struct user));
328 }
329 \f
330
331 /* Register that we are able to handle sparc core file formats.
332 FIXME: is this really bfd_target_unknown_flavour? */
333
334 static struct core_fns sparc_core_fns =
335 {
336 bfd_target_unknown_flavour, /* core_flavour */
337 default_check_format, /* check_format */
338 default_core_sniffer, /* core_sniffer */
339 fetch_core_registers, /* core_read_registers */
340 NULL /* next */
341 };
342
343 void
344 _initialize_core_sparc (void)
345 {
346 add_core_fns (&sparc_core_fns);
347 }