e3401fe33eea13ed0bf1c3ac1268b7548169cfb3
[binutils-gdb.git] / gdb / sparc-tdep.c
1 /* Target-dependent code for SPARC.
2
3 Copyright (C) 2003-2020 Free Software Foundation, Inc.
4
5 This file is part of GDB.
6
7 This program is free software; you can redistribute it and/or modify
8 it under the terms of the GNU General Public License as published by
9 the Free Software Foundation; either version 3 of the License, or
10 (at your option) any later version.
11
12 This program is distributed in the hope that it will be useful,
13 but WITHOUT ANY WARRANTY; without even the implied warranty of
14 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
15 GNU General Public License for more details.
16
17 You should have received a copy of the GNU General Public License
18 along with this program. If not, see <http://www.gnu.org/licenses/>. */
19
20 #include "defs.h"
21 #include "arch-utils.h"
22 #include "dis-asm.h"
23 #include "dwarf2.h"
24 #include "dwarf2/frame.h"
25 #include "frame.h"
26 #include "frame-base.h"
27 #include "frame-unwind.h"
28 #include "gdbcore.h"
29 #include "gdbtypes.h"
30 #include "inferior.h"
31 #include "symtab.h"
32 #include "objfiles.h"
33 #include "osabi.h"
34 #include "regcache.h"
35 #include "target.h"
36 #include "target-descriptions.h"
37 #include "value.h"
38
39 #include "sparc-tdep.h"
40 #include "sparc-ravenscar-thread.h"
41 #include <algorithm>
42
43 struct regset;
44
45 /* This file implements the SPARC 32-bit ABI as defined by the section
46 "Low-Level System Information" of the SPARC Compliance Definition
47 (SCD) 2.4.1, which is the 32-bit System V psABI for SPARC. The SCD
48 lists changes with respect to the original 32-bit psABI as defined
49 in the "System V ABI, SPARC Processor Supplement".
50
51 Note that if we talk about SunOS, we mean SunOS 4.x, which was
52 BSD-based, which is sometimes (retroactively?) referred to as
53 Solaris 1.x. If we talk about Solaris we mean Solaris 2.x and
54 above (Solaris 7, 8 and 9 are nothing but Solaris 2.7, 2.8 and 2.9
55 suffering from severe version number inflation). Solaris 2.x is
56 also known as SunOS 5.x, since that's what uname(1) says. Solaris
57 2.x is SVR4-based. */
58
59 /* Please use the sparc32_-prefix for 32-bit specific code, the
60 sparc64_-prefix for 64-bit specific code and the sparc_-prefix for
61 code that can handle both. The 64-bit specific code lives in
62 sparc64-tdep.c; don't add any here. */
63
64 /* The SPARC Floating-Point Quad-Precision format is similar to
65 big-endian IA-64 Quad-Precision format. */
66 #define floatformats_sparc_quad floatformats_ia64_quad
67
68 /* The stack pointer is offset from the stack frame by a BIAS of 2047
69 (0x7ff) for 64-bit code. BIAS is likely to be defined on SPARC
70 hosts, so undefine it first. */
71 #undef BIAS
72 #define BIAS 2047
73
74 /* Macros to extract fields from SPARC instructions. */
75 #define X_OP(i) (((i) >> 30) & 0x3)
76 #define X_RD(i) (((i) >> 25) & 0x1f)
77 #define X_A(i) (((i) >> 29) & 1)
78 #define X_COND(i) (((i) >> 25) & 0xf)
79 #define X_OP2(i) (((i) >> 22) & 0x7)
80 #define X_IMM22(i) ((i) & 0x3fffff)
81 #define X_OP3(i) (((i) >> 19) & 0x3f)
82 #define X_RS1(i) (((i) >> 14) & 0x1f)
83 #define X_RS2(i) ((i) & 0x1f)
84 #define X_I(i) (((i) >> 13) & 1)
85 /* Sign extension macros. */
86 #define X_DISP22(i) ((X_IMM22 (i) ^ 0x200000) - 0x200000)
87 #define X_DISP19(i) ((((i) & 0x7ffff) ^ 0x40000) - 0x40000)
88 #define X_DISP10(i) ((((((i) >> 11) && 0x300) | (((i) >> 5) & 0xff)) ^ 0x200) - 0x200)
89 #define X_SIMM13(i) ((((i) & 0x1fff) ^ 0x1000) - 0x1000)
90 /* Macros to identify some instructions. */
91 /* RETURN (RETT in V8) */
92 #define X_RETTURN(i) ((X_OP (i) == 0x2) && (X_OP3 (i) == 0x39))
93
94 /* Fetch the instruction at PC. Instructions are always big-endian
95 even if the processor operates in little-endian mode. */
96
97 unsigned long
98 sparc_fetch_instruction (CORE_ADDR pc)
99 {
100 gdb_byte buf[4];
101 unsigned long insn;
102 int i;
103
104 /* If we can't read the instruction at PC, return zero. */
105 if (target_read_memory (pc, buf, sizeof (buf)))
106 return 0;
107
108 insn = 0;
109 for (i = 0; i < sizeof (buf); i++)
110 insn = (insn << 8) | buf[i];
111 return insn;
112 }
113 \f
114
115 /* Return non-zero if the instruction corresponding to PC is an "unimp"
116 instruction. */
117
118 static int
119 sparc_is_unimp_insn (CORE_ADDR pc)
120 {
121 const unsigned long insn = sparc_fetch_instruction (pc);
122
123 return ((insn & 0xc1c00000) == 0);
124 }
125
126 /* Return non-zero if the instruction corresponding to PC is an
127 "annulled" branch, i.e. the annul bit is set. */
128
129 int
130 sparc_is_annulled_branch_insn (CORE_ADDR pc)
131 {
132 /* The branch instructions featuring an annul bit can be identified
133 by the following bit patterns:
134
135 OP=0
136 OP2=1: Branch on Integer Condition Codes with Prediction (BPcc).
137 OP2=2: Branch on Integer Condition Codes (Bcc).
138 OP2=5: Branch on FP Condition Codes with Prediction (FBfcc).
139 OP2=6: Branch on FP Condition Codes (FBcc).
140 OP2=3 && Bit28=0:
141 Branch on Integer Register with Prediction (BPr).
142
143 This leaves out ILLTRAP (OP2=0), SETHI/NOP (OP2=4) and the V8
144 coprocessor branch instructions (Op2=7). */
145
146 const unsigned long insn = sparc_fetch_instruction (pc);
147 const unsigned op2 = X_OP2 (insn);
148
149 if ((X_OP (insn) == 0)
150 && ((op2 == 1) || (op2 == 2) || (op2 == 5) || (op2 == 6)
151 || ((op2 == 3) && ((insn & 0x10000000) == 0))))
152 return X_A (insn);
153 else
154 return 0;
155 }
156
157 /* OpenBSD/sparc includes StackGhost, which according to the author's
158 website http://stackghost.cerias.purdue.edu "... transparently and
159 automatically protects applications' stack frames; more
160 specifically, it guards the return pointers. The protection
161 mechanisms require no application source or binary modification and
162 imposes only a negligible performance penalty."
163
164 The same website provides the following description of how
165 StackGhost works:
166
167 "StackGhost interfaces with the kernel trap handler that would
168 normally write out registers to the stack and the handler that
169 would read them back in. By XORing a cookie into the
170 return-address saved in the user stack when it is actually written
171 to the stack, and then XOR it out when the return-address is pulled
172 from the stack, StackGhost can cause attacker corrupted return
173 pointers to behave in a manner the attacker cannot predict.
174 StackGhost can also use several unused bits in the return pointer
175 to detect a smashed return pointer and abort the process."
176
177 For GDB this means that whenever we're reading %i7 from a stack
178 frame's window save area, we'll have to XOR the cookie.
179
180 More information on StackGuard can be found on in:
181
182 Mike Frantzen and Mike Shuey. "StackGhost: Hardware Facilitated
183 Stack Protection." 2001. Published in USENIX Security Symposium
184 '01. */
185
186 /* Fetch StackGhost Per-Process XOR cookie. */
187
188 ULONGEST
189 sparc_fetch_wcookie (struct gdbarch *gdbarch)
190 {
191 enum bfd_endian byte_order = gdbarch_byte_order (gdbarch);
192 struct target_ops *ops = current_top_target ();
193 gdb_byte buf[8];
194 int len;
195
196 len = target_read (ops, TARGET_OBJECT_WCOOKIE, NULL, buf, 0, 8);
197 if (len == -1)
198 return 0;
199
200 /* We should have either an 32-bit or an 64-bit cookie. */
201 gdb_assert (len == 4 || len == 8);
202
203 return extract_unsigned_integer (buf, len, byte_order);
204 }
205 \f
206
207 /* The functions on this page are intended to be used to classify
208 function arguments. */
209
210 /* Check whether TYPE is "Integral or Pointer". */
211
212 static int
213 sparc_integral_or_pointer_p (const struct type *type)
214 {
215 int len = TYPE_LENGTH (type);
216
217 switch (type->code ())
218 {
219 case TYPE_CODE_INT:
220 case TYPE_CODE_BOOL:
221 case TYPE_CODE_CHAR:
222 case TYPE_CODE_ENUM:
223 case TYPE_CODE_RANGE:
224 /* We have byte, half-word, word and extended-word/doubleword
225 integral types. The doubleword is an extension to the
226 original 32-bit ABI by the SCD 2.4.x. */
227 return (len == 1 || len == 2 || len == 4 || len == 8);
228 case TYPE_CODE_PTR:
229 case TYPE_CODE_REF:
230 case TYPE_CODE_RVALUE_REF:
231 /* Allow either 32-bit or 64-bit pointers. */
232 return (len == 4 || len == 8);
233 default:
234 break;
235 }
236
237 return 0;
238 }
239
240 /* Check whether TYPE is "Floating". */
241
242 static int
243 sparc_floating_p (const struct type *type)
244 {
245 switch (type->code ())
246 {
247 case TYPE_CODE_FLT:
248 {
249 int len = TYPE_LENGTH (type);
250 return (len == 4 || len == 8 || len == 16);
251 }
252 default:
253 break;
254 }
255
256 return 0;
257 }
258
259 /* Check whether TYPE is "Complex Floating". */
260
261 static int
262 sparc_complex_floating_p (const struct type *type)
263 {
264 switch (type->code ())
265 {
266 case TYPE_CODE_COMPLEX:
267 {
268 int len = TYPE_LENGTH (type);
269 return (len == 8 || len == 16 || len == 32);
270 }
271 default:
272 break;
273 }
274
275 return 0;
276 }
277
278 /* Check whether TYPE is "Structure or Union".
279
280 In terms of Ada subprogram calls, arrays are treated the same as
281 struct and union types. So this function also returns non-zero
282 for array types. */
283
284 static int
285 sparc_structure_or_union_p (const struct type *type)
286 {
287 switch (type->code ())
288 {
289 case TYPE_CODE_STRUCT:
290 case TYPE_CODE_UNION:
291 case TYPE_CODE_ARRAY:
292 return 1;
293 default:
294 break;
295 }
296
297 return 0;
298 }
299
300 /* Return true if TYPE is returned by memory, false if returned by
301 register. */
302
303 static bool
304 sparc_structure_return_p (const struct type *type)
305 {
306 if (type->code () == TYPE_CODE_ARRAY && type->is_vector ())
307 {
308 /* Float vectors are always returned by memory. */
309 if (sparc_floating_p (check_typedef (TYPE_TARGET_TYPE (type))))
310 return true;
311 /* Integer vectors are returned by memory if the vector size
312 is greater than 8 bytes long. */
313 return (TYPE_LENGTH (type) > 8);
314 }
315
316 if (sparc_floating_p (type))
317 {
318 /* Floating point types are passed by register for size 4 and
319 8 bytes, and by memory for size 16 bytes. */
320 return (TYPE_LENGTH (type) == 16);
321 }
322
323 /* Other than that, only aggregates of all sizes get returned by
324 memory. */
325 return sparc_structure_or_union_p (type);
326 }
327
328 /* Return true if arguments of the given TYPE are passed by
329 memory; false if returned by register. */
330
331 static bool
332 sparc_arg_by_memory_p (const struct type *type)
333 {
334 if (type->code () == TYPE_CODE_ARRAY && type->is_vector ())
335 {
336 /* Float vectors are always passed by memory. */
337 if (sparc_floating_p (check_typedef (TYPE_TARGET_TYPE (type))))
338 return true;
339 /* Integer vectors are passed by memory if the vector size
340 is greater than 8 bytes long. */
341 return (TYPE_LENGTH (type) > 8);
342 }
343
344 /* Floats are passed by register for size 4 and 8 bytes, and by memory
345 for size 16 bytes. */
346 if (sparc_floating_p (type))
347 return (TYPE_LENGTH (type) == 16);
348
349 /* Complex floats and aggregates of all sizes are passed by memory. */
350 if (sparc_complex_floating_p (type) || sparc_structure_or_union_p (type))
351 return true;
352
353 /* Everything else gets passed by register. */
354 return false;
355 }
356
357 /* Register information. */
358 #define SPARC32_FPU_REGISTERS \
359 "f0", "f1", "f2", "f3", "f4", "f5", "f6", "f7", \
360 "f8", "f9", "f10", "f11", "f12", "f13", "f14", "f15", \
361 "f16", "f17", "f18", "f19", "f20", "f21", "f22", "f23", \
362 "f24", "f25", "f26", "f27", "f28", "f29", "f30", "f31"
363 #define SPARC32_CP0_REGISTERS \
364 "y", "psr", "wim", "tbr", "pc", "npc", "fsr", "csr"
365
366 static const char * const sparc_core_register_names[] = {
367 SPARC_CORE_REGISTERS
368 };
369 static const char * const sparc32_fpu_register_names[] = {
370 SPARC32_FPU_REGISTERS
371 };
372 static const char * const sparc32_cp0_register_names[] = {
373 SPARC32_CP0_REGISTERS
374 };
375
376 static const char * const sparc32_register_names[] =
377 {
378 SPARC_CORE_REGISTERS,
379 SPARC32_FPU_REGISTERS,
380 SPARC32_CP0_REGISTERS
381 };
382
383 /* Total number of registers. */
384 #define SPARC32_NUM_REGS ARRAY_SIZE (sparc32_register_names)
385
386 /* We provide the aliases %d0..%d30 for the floating registers as
387 "psuedo" registers. */
388
389 static const char * const sparc32_pseudo_register_names[] =
390 {
391 "d0", "d2", "d4", "d6", "d8", "d10", "d12", "d14",
392 "d16", "d18", "d20", "d22", "d24", "d26", "d28", "d30"
393 };
394
395 /* Total number of pseudo registers. */
396 #define SPARC32_NUM_PSEUDO_REGS ARRAY_SIZE (sparc32_pseudo_register_names)
397
398 /* Return the name of pseudo register REGNUM. */
399
400 static const char *
401 sparc32_pseudo_register_name (struct gdbarch *gdbarch, int regnum)
402 {
403 regnum -= gdbarch_num_regs (gdbarch);
404
405 if (regnum < SPARC32_NUM_PSEUDO_REGS)
406 return sparc32_pseudo_register_names[regnum];
407
408 internal_error (__FILE__, __LINE__,
409 _("sparc32_pseudo_register_name: bad register number %d"),
410 regnum);
411 }
412
413 /* Return the name of register REGNUM. */
414
415 static const char *
416 sparc32_register_name (struct gdbarch *gdbarch, int regnum)
417 {
418 if (tdesc_has_registers (gdbarch_target_desc (gdbarch)))
419 return tdesc_register_name (gdbarch, regnum);
420
421 if (regnum >= 0 && regnum < gdbarch_num_regs (gdbarch))
422 return sparc32_register_names[regnum];
423
424 return sparc32_pseudo_register_name (gdbarch, regnum);
425 }
426 \f
427 /* Construct types for ISA-specific registers. */
428
429 static struct type *
430 sparc_psr_type (struct gdbarch *gdbarch)
431 {
432 struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch);
433
434 if (!tdep->sparc_psr_type)
435 {
436 struct type *type;
437
438 type = arch_flags_type (gdbarch, "builtin_type_sparc_psr", 32);
439 append_flags_type_flag (type, 5, "ET");
440 append_flags_type_flag (type, 6, "PS");
441 append_flags_type_flag (type, 7, "S");
442 append_flags_type_flag (type, 12, "EF");
443 append_flags_type_flag (type, 13, "EC");
444
445 tdep->sparc_psr_type = type;
446 }
447
448 return tdep->sparc_psr_type;
449 }
450
451 static struct type *
452 sparc_fsr_type (struct gdbarch *gdbarch)
453 {
454 struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch);
455
456 if (!tdep->sparc_fsr_type)
457 {
458 struct type *type;
459
460 type = arch_flags_type (gdbarch, "builtin_type_sparc_fsr", 32);
461 append_flags_type_flag (type, 0, "NXA");
462 append_flags_type_flag (type, 1, "DZA");
463 append_flags_type_flag (type, 2, "UFA");
464 append_flags_type_flag (type, 3, "OFA");
465 append_flags_type_flag (type, 4, "NVA");
466 append_flags_type_flag (type, 5, "NXC");
467 append_flags_type_flag (type, 6, "DZC");
468 append_flags_type_flag (type, 7, "UFC");
469 append_flags_type_flag (type, 8, "OFC");
470 append_flags_type_flag (type, 9, "NVC");
471 append_flags_type_flag (type, 22, "NS");
472 append_flags_type_flag (type, 23, "NXM");
473 append_flags_type_flag (type, 24, "DZM");
474 append_flags_type_flag (type, 25, "UFM");
475 append_flags_type_flag (type, 26, "OFM");
476 append_flags_type_flag (type, 27, "NVM");
477
478 tdep->sparc_fsr_type = type;
479 }
480
481 return tdep->sparc_fsr_type;
482 }
483
484 /* Return the GDB type object for the "standard" data type of data in
485 pseudo register REGNUM. */
486
487 static struct type *
488 sparc32_pseudo_register_type (struct gdbarch *gdbarch, int regnum)
489 {
490 regnum -= gdbarch_num_regs (gdbarch);
491
492 if (regnum >= SPARC32_D0_REGNUM && regnum <= SPARC32_D30_REGNUM)
493 return builtin_type (gdbarch)->builtin_double;
494
495 internal_error (__FILE__, __LINE__,
496 _("sparc32_pseudo_register_type: bad register number %d"),
497 regnum);
498 }
499
500 /* Return the GDB type object for the "standard" data type of data in
501 register REGNUM. */
502
503 static struct type *
504 sparc32_register_type (struct gdbarch *gdbarch, int regnum)
505 {
506 if (tdesc_has_registers (gdbarch_target_desc (gdbarch)))
507 return tdesc_register_type (gdbarch, regnum);
508
509 if (regnum >= SPARC_F0_REGNUM && regnum <= SPARC_F31_REGNUM)
510 return builtin_type (gdbarch)->builtin_float;
511
512 if (regnum == SPARC_SP_REGNUM || regnum == SPARC_FP_REGNUM)
513 return builtin_type (gdbarch)->builtin_data_ptr;
514
515 if (regnum == SPARC32_PC_REGNUM || regnum == SPARC32_NPC_REGNUM)
516 return builtin_type (gdbarch)->builtin_func_ptr;
517
518 if (regnum == SPARC32_PSR_REGNUM)
519 return sparc_psr_type (gdbarch);
520
521 if (regnum == SPARC32_FSR_REGNUM)
522 return sparc_fsr_type (gdbarch);
523
524 if (regnum >= gdbarch_num_regs (gdbarch))
525 return sparc32_pseudo_register_type (gdbarch, regnum);
526
527 return builtin_type (gdbarch)->builtin_int32;
528 }
529
530 static enum register_status
531 sparc32_pseudo_register_read (struct gdbarch *gdbarch,
532 readable_regcache *regcache,
533 int regnum, gdb_byte *buf)
534 {
535 enum register_status status;
536
537 regnum -= gdbarch_num_regs (gdbarch);
538 gdb_assert (regnum >= SPARC32_D0_REGNUM && regnum <= SPARC32_D30_REGNUM);
539
540 regnum = SPARC_F0_REGNUM + 2 * (regnum - SPARC32_D0_REGNUM);
541 status = regcache->raw_read (regnum, buf);
542 if (status == REG_VALID)
543 status = regcache->raw_read (regnum + 1, buf + 4);
544 return status;
545 }
546
547 static void
548 sparc32_pseudo_register_write (struct gdbarch *gdbarch,
549 struct regcache *regcache,
550 int regnum, const gdb_byte *buf)
551 {
552 regnum -= gdbarch_num_regs (gdbarch);
553 gdb_assert (regnum >= SPARC32_D0_REGNUM && regnum <= SPARC32_D30_REGNUM);
554
555 regnum = SPARC_F0_REGNUM + 2 * (regnum - SPARC32_D0_REGNUM);
556 regcache->raw_write (regnum, buf);
557 regcache->raw_write (regnum + 1, buf + 4);
558 }
559 \f
560 /* Implement the stack_frame_destroyed_p gdbarch method. */
561
562 int
563 sparc_stack_frame_destroyed_p (struct gdbarch *gdbarch, CORE_ADDR pc)
564 {
565 /* This function must return true if we are one instruction after an
566 instruction that destroyed the stack frame of the current
567 function. The SPARC instructions used to restore the callers
568 stack frame are RESTORE and RETURN/RETT.
569
570 Of these RETURN/RETT is a branch instruction and thus we return
571 true if we are in its delay slot.
572
573 RESTORE is almost always found in the delay slot of a branch
574 instruction that transfers control to the caller, such as JMPL.
575 Thus the next instruction is in the caller frame and we don't
576 need to do anything about it. */
577
578 unsigned int insn = sparc_fetch_instruction (pc - 4);
579
580 return X_RETTURN (insn);
581 }
582 \f
583
584 static CORE_ADDR
585 sparc32_frame_align (struct gdbarch *gdbarch, CORE_ADDR address)
586 {
587 /* The ABI requires double-word alignment. */
588 return address & ~0x7;
589 }
590
591 static CORE_ADDR
592 sparc32_push_dummy_code (struct gdbarch *gdbarch, CORE_ADDR sp,
593 CORE_ADDR funcaddr,
594 struct value **args, int nargs,
595 struct type *value_type,
596 CORE_ADDR *real_pc, CORE_ADDR *bp_addr,
597 struct regcache *regcache)
598 {
599 enum bfd_endian byte_order = gdbarch_byte_order (gdbarch);
600
601 *bp_addr = sp - 4;
602 *real_pc = funcaddr;
603
604 if (using_struct_return (gdbarch, NULL, value_type))
605 {
606 gdb_byte buf[4];
607
608 /* This is an UNIMP instruction. */
609 store_unsigned_integer (buf, 4, byte_order,
610 TYPE_LENGTH (value_type) & 0x1fff);
611 write_memory (sp - 8, buf, 4);
612 return sp - 8;
613 }
614
615 return sp - 4;
616 }
617
618 static CORE_ADDR
619 sparc32_store_arguments (struct regcache *regcache, int nargs,
620 struct value **args, CORE_ADDR sp,
621 function_call_return_method return_method,
622 CORE_ADDR struct_addr)
623 {
624 struct gdbarch *gdbarch = regcache->arch ();
625 enum bfd_endian byte_order = gdbarch_byte_order (gdbarch);
626 /* Number of words in the "parameter array". */
627 int num_elements = 0;
628 int element = 0;
629 int i;
630
631 for (i = 0; i < nargs; i++)
632 {
633 struct type *type = value_type (args[i]);
634 int len = TYPE_LENGTH (type);
635
636 if (sparc_arg_by_memory_p (type))
637 {
638 /* Structure, Union and Quad-Precision Arguments. */
639 sp -= len;
640
641 /* Use doubleword alignment for these values. That's always
642 correct, and wasting a few bytes shouldn't be a problem. */
643 sp &= ~0x7;
644
645 write_memory (sp, value_contents (args[i]), len);
646 args[i] = value_from_pointer (lookup_pointer_type (type), sp);
647 num_elements++;
648 }
649 else if (sparc_floating_p (type))
650 {
651 /* Floating arguments. */
652 gdb_assert (len == 4 || len == 8);
653 num_elements += (len / 4);
654 }
655 else
656 {
657 /* Arguments passed via the General Purpose Registers. */
658 num_elements += ((len + 3) / 4);
659 }
660 }
661
662 /* Always allocate at least six words. */
663 sp -= std::max (6, num_elements) * 4;
664
665 /* The psABI says that "Software convention requires space for the
666 struct/union return value pointer, even if the word is unused." */
667 sp -= 4;
668
669 /* The psABI says that "Although software convention and the
670 operating system require every stack frame to be doubleword
671 aligned." */
672 sp &= ~0x7;
673
674 for (i = 0; i < nargs; i++)
675 {
676 const bfd_byte *valbuf = value_contents (args[i]);
677 struct type *type = value_type (args[i]);
678 int len = TYPE_LENGTH (type);
679 gdb_byte buf[4];
680
681 if (len < 4)
682 {
683 memset (buf, 0, 4 - len);
684 memcpy (buf + 4 - len, valbuf, len);
685 valbuf = buf;
686 len = 4;
687 }
688
689 gdb_assert (len == 4 || len == 8);
690
691 if (element < 6)
692 {
693 int regnum = SPARC_O0_REGNUM + element;
694
695 regcache->cooked_write (regnum, valbuf);
696 if (len > 4 && element < 5)
697 regcache->cooked_write (regnum + 1, valbuf + 4);
698 }
699
700 /* Always store the argument in memory. */
701 write_memory (sp + 4 + element * 4, valbuf, len);
702 element += len / 4;
703 }
704
705 gdb_assert (element == num_elements);
706
707 if (return_method == return_method_struct)
708 {
709 gdb_byte buf[4];
710
711 store_unsigned_integer (buf, 4, byte_order, struct_addr);
712 write_memory (sp, buf, 4);
713 }
714
715 return sp;
716 }
717
718 static CORE_ADDR
719 sparc32_push_dummy_call (struct gdbarch *gdbarch, struct value *function,
720 struct regcache *regcache, CORE_ADDR bp_addr,
721 int nargs, struct value **args, CORE_ADDR sp,
722 function_call_return_method return_method,
723 CORE_ADDR struct_addr)
724 {
725 CORE_ADDR call_pc = (return_method == return_method_struct
726 ? (bp_addr - 12) : (bp_addr - 8));
727
728 /* Set return address. */
729 regcache_cooked_write_unsigned (regcache, SPARC_O7_REGNUM, call_pc);
730
731 /* Set up function arguments. */
732 sp = sparc32_store_arguments (regcache, nargs, args, sp, return_method,
733 struct_addr);
734
735 /* Allocate the 16-word window save area. */
736 sp -= 16 * 4;
737
738 /* Stack should be doubleword aligned at this point. */
739 gdb_assert (sp % 8 == 0);
740
741 /* Finally, update the stack pointer. */
742 regcache_cooked_write_unsigned (regcache, SPARC_SP_REGNUM, sp);
743
744 return sp;
745 }
746 \f
747
748 /* Use the program counter to determine the contents and size of a
749 breakpoint instruction. Return a pointer to a string of bytes that
750 encode a breakpoint instruction, store the length of the string in
751 *LEN and optionally adjust *PC to point to the correct memory
752 location for inserting the breakpoint. */
753 constexpr gdb_byte sparc_break_insn[] = { 0x91, 0xd0, 0x20, 0x01 };
754
755 typedef BP_MANIPULATION (sparc_break_insn) sparc_breakpoint;
756 \f
757
758 /* Allocate and initialize a frame cache. */
759
760 static struct sparc_frame_cache *
761 sparc_alloc_frame_cache (void)
762 {
763 struct sparc_frame_cache *cache;
764
765 cache = FRAME_OBSTACK_ZALLOC (struct sparc_frame_cache);
766
767 /* Base address. */
768 cache->base = 0;
769 cache->pc = 0;
770
771 /* Frameless until proven otherwise. */
772 cache->frameless_p = 1;
773 cache->frame_offset = 0;
774 cache->saved_regs_mask = 0;
775 cache->copied_regs_mask = 0;
776 cache->struct_return_p = 0;
777
778 return cache;
779 }
780
781 /* GCC generates several well-known sequences of instructions at the begining
782 of each function prologue when compiling with -fstack-check. If one of
783 such sequences starts at START_PC, then return the address of the
784 instruction immediately past this sequence. Otherwise, return START_PC. */
785
786 static CORE_ADDR
787 sparc_skip_stack_check (const CORE_ADDR start_pc)
788 {
789 CORE_ADDR pc = start_pc;
790 unsigned long insn;
791 int probing_loop = 0;
792
793 /* With GCC, all stack checking sequences begin with the same two
794 instructions, plus an optional one in the case of a probing loop:
795
796 sethi <some immediate>, %g1
797 sub %sp, %g1, %g1
798
799 or:
800
801 sethi <some immediate>, %g1
802 sethi <some immediate>, %g4
803 sub %sp, %g1, %g1
804
805 or:
806
807 sethi <some immediate>, %g1
808 sub %sp, %g1, %g1
809 sethi <some immediate>, %g4
810
811 If the optional instruction is found (setting g4), assume that a
812 probing loop will follow. */
813
814 /* sethi <some immediate>, %g1 */
815 insn = sparc_fetch_instruction (pc);
816 pc = pc + 4;
817 if (!(X_OP (insn) == 0 && X_OP2 (insn) == 0x4 && X_RD (insn) == 1))
818 return start_pc;
819
820 /* optional: sethi <some immediate>, %g4 */
821 insn = sparc_fetch_instruction (pc);
822 pc = pc + 4;
823 if (X_OP (insn) == 0 && X_OP2 (insn) == 0x4 && X_RD (insn) == 4)
824 {
825 probing_loop = 1;
826 insn = sparc_fetch_instruction (pc);
827 pc = pc + 4;
828 }
829
830 /* sub %sp, %g1, %g1 */
831 if (!(X_OP (insn) == 2 && X_OP3 (insn) == 0x4 && !X_I(insn)
832 && X_RD (insn) == 1 && X_RS1 (insn) == 14 && X_RS2 (insn) == 1))
833 return start_pc;
834
835 insn = sparc_fetch_instruction (pc);
836 pc = pc + 4;
837
838 /* optional: sethi <some immediate>, %g4 */
839 if (X_OP (insn) == 0 && X_OP2 (insn) == 0x4 && X_RD (insn) == 4)
840 {
841 probing_loop = 1;
842 insn = sparc_fetch_instruction (pc);
843 pc = pc + 4;
844 }
845
846 /* First possible sequence:
847 [first two instructions above]
848 clr [%g1 - some immediate] */
849
850 /* clr [%g1 - some immediate] */
851 if (X_OP (insn) == 3 && X_OP3(insn) == 0x4 && X_I(insn)
852 && X_RS1 (insn) == 1 && X_RD (insn) == 0)
853 {
854 /* Valid stack-check sequence, return the new PC. */
855 return pc;
856 }
857
858 /* Second possible sequence: A small number of probes.
859 [first two instructions above]
860 clr [%g1]
861 add %g1, -<some immediate>, %g1
862 clr [%g1]
863 [repeat the two instructions above any (small) number of times]
864 clr [%g1 - some immediate] */
865
866 /* clr [%g1] */
867 else if (X_OP (insn) == 3 && X_OP3(insn) == 0x4 && !X_I(insn)
868 && X_RS1 (insn) == 1 && X_RD (insn) == 0)
869 {
870 while (1)
871 {
872 /* add %g1, -<some immediate>, %g1 */
873 insn = sparc_fetch_instruction (pc);
874 pc = pc + 4;
875 if (!(X_OP (insn) == 2 && X_OP3(insn) == 0 && X_I(insn)
876 && X_RS1 (insn) == 1 && X_RD (insn) == 1))
877 break;
878
879 /* clr [%g1] */
880 insn = sparc_fetch_instruction (pc);
881 pc = pc + 4;
882 if (!(X_OP (insn) == 3 && X_OP3(insn) == 0x4 && !X_I(insn)
883 && X_RD (insn) == 0 && X_RS1 (insn) == 1))
884 return start_pc;
885 }
886
887 /* clr [%g1 - some immediate] */
888 if (!(X_OP (insn) == 3 && X_OP3(insn) == 0x4 && X_I(insn)
889 && X_RS1 (insn) == 1 && X_RD (insn) == 0))
890 return start_pc;
891
892 /* We found a valid stack-check sequence, return the new PC. */
893 return pc;
894 }
895
896 /* Third sequence: A probing loop.
897 [first three instructions above]
898 sub %g1, %g4, %g4
899 cmp %g1, %g4
900 be <disp>
901 add %g1, -<some immediate>, %g1
902 ba <disp>
903 clr [%g1]
904
905 And an optional last probe for the remainder:
906
907 clr [%g4 - some immediate] */
908
909 if (probing_loop)
910 {
911 /* sub %g1, %g4, %g4 */
912 if (!(X_OP (insn) == 2 && X_OP3 (insn) == 0x4 && !X_I(insn)
913 && X_RD (insn) == 4 && X_RS1 (insn) == 1 && X_RS2 (insn) == 4))
914 return start_pc;
915
916 /* cmp %g1, %g4 */
917 insn = sparc_fetch_instruction (pc);
918 pc = pc + 4;
919 if (!(X_OP (insn) == 2 && X_OP3 (insn) == 0x14 && !X_I(insn)
920 && X_RD (insn) == 0 && X_RS1 (insn) == 1 && X_RS2 (insn) == 4))
921 return start_pc;
922
923 /* be <disp> */
924 insn = sparc_fetch_instruction (pc);
925 pc = pc + 4;
926 if (!(X_OP (insn) == 0 && X_COND (insn) == 0x1))
927 return start_pc;
928
929 /* add %g1, -<some immediate>, %g1 */
930 insn = sparc_fetch_instruction (pc);
931 pc = pc + 4;
932 if (!(X_OP (insn) == 2 && X_OP3(insn) == 0 && X_I(insn)
933 && X_RS1 (insn) == 1 && X_RD (insn) == 1))
934 return start_pc;
935
936 /* ba <disp> */
937 insn = sparc_fetch_instruction (pc);
938 pc = pc + 4;
939 if (!(X_OP (insn) == 0 && X_COND (insn) == 0x8))
940 return start_pc;
941
942 /* clr [%g1] (st %g0, [%g1] or st %g0, [%g1+0]) */
943 insn = sparc_fetch_instruction (pc);
944 pc = pc + 4;
945 if (!(X_OP (insn) == 3 && X_OP3(insn) == 0x4
946 && X_RD (insn) == 0 && X_RS1 (insn) == 1
947 && (!X_I(insn) || X_SIMM13 (insn) == 0)))
948 return start_pc;
949
950 /* We found a valid stack-check sequence, return the new PC. */
951
952 /* optional: clr [%g4 - some immediate] */
953 insn = sparc_fetch_instruction (pc);
954 pc = pc + 4;
955 if (!(X_OP (insn) == 3 && X_OP3(insn) == 0x4 && X_I(insn)
956 && X_RS1 (insn) == 4 && X_RD (insn) == 0))
957 return pc - 4;
958 else
959 return pc;
960 }
961
962 /* No stack check code in our prologue, return the start_pc. */
963 return start_pc;
964 }
965
966 /* Record the effect of a SAVE instruction on CACHE. */
967
968 void
969 sparc_record_save_insn (struct sparc_frame_cache *cache)
970 {
971 /* The frame is set up. */
972 cache->frameless_p = 0;
973
974 /* The frame pointer contains the CFA. */
975 cache->frame_offset = 0;
976
977 /* The `local' and `in' registers are all saved. */
978 cache->saved_regs_mask = 0xffff;
979
980 /* The `out' registers are all renamed. */
981 cache->copied_regs_mask = 0xff;
982 }
983
984 /* Do a full analysis of the prologue at PC and update CACHE accordingly.
985 Bail out early if CURRENT_PC is reached. Return the address where
986 the analysis stopped.
987
988 We handle both the traditional register window model and the single
989 register window (aka flat) model. */
990
991 CORE_ADDR
992 sparc_analyze_prologue (struct gdbarch *gdbarch, CORE_ADDR pc,
993 CORE_ADDR current_pc, struct sparc_frame_cache *cache)
994 {
995 struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch);
996 unsigned long insn;
997 int offset = 0;
998 int dest = -1;
999
1000 pc = sparc_skip_stack_check (pc);
1001
1002 if (current_pc <= pc)
1003 return current_pc;
1004
1005 /* We have to handle to "Procedure Linkage Table" (PLT) special. On
1006 SPARC the linker usually defines a symbol (typically
1007 _PROCEDURE_LINKAGE_TABLE_) at the start of the .plt section.
1008 This symbol makes us end up here with PC pointing at the start of
1009 the PLT and CURRENT_PC probably pointing at a PLT entry. If we
1010 would do our normal prologue analysis, we would probably conclude
1011 that we've got a frame when in reality we don't, since the
1012 dynamic linker patches up the first PLT with some code that
1013 starts with a SAVE instruction. Patch up PC such that it points
1014 at the start of our PLT entry. */
1015 if (tdep->plt_entry_size > 0 && in_plt_section (current_pc))
1016 pc = current_pc - ((current_pc - pc) % tdep->plt_entry_size);
1017
1018 insn = sparc_fetch_instruction (pc);
1019
1020 /* Recognize store insns and record their sources. */
1021 while (X_OP (insn) == 3
1022 && (X_OP3 (insn) == 0x4 /* stw */
1023 || X_OP3 (insn) == 0x7 /* std */
1024 || X_OP3 (insn) == 0xe) /* stx */
1025 && X_RS1 (insn) == SPARC_SP_REGNUM)
1026 {
1027 int regnum = X_RD (insn);
1028
1029 /* Recognize stores into the corresponding stack slots. */
1030 if (regnum >= SPARC_L0_REGNUM && regnum <= SPARC_I7_REGNUM
1031 && ((X_I (insn)
1032 && X_SIMM13 (insn) == (X_OP3 (insn) == 0xe
1033 ? (regnum - SPARC_L0_REGNUM) * 8 + BIAS
1034 : (regnum - SPARC_L0_REGNUM) * 4))
1035 || (!X_I (insn) && regnum == SPARC_L0_REGNUM)))
1036 {
1037 cache->saved_regs_mask |= (1 << (regnum - SPARC_L0_REGNUM));
1038 if (X_OP3 (insn) == 0x7)
1039 cache->saved_regs_mask |= (1 << (regnum + 1 - SPARC_L0_REGNUM));
1040 }
1041
1042 offset += 4;
1043
1044 insn = sparc_fetch_instruction (pc + offset);
1045 }
1046
1047 /* Recognize a SETHI insn and record its destination. */
1048 if (X_OP (insn) == 0 && X_OP2 (insn) == 0x04)
1049 {
1050 dest = X_RD (insn);
1051 offset += 4;
1052
1053 insn = sparc_fetch_instruction (pc + offset);
1054 }
1055
1056 /* Allow for an arithmetic operation on DEST or %g1. */
1057 if (X_OP (insn) == 2 && X_I (insn)
1058 && (X_RD (insn) == 1 || X_RD (insn) == dest))
1059 {
1060 offset += 4;
1061
1062 insn = sparc_fetch_instruction (pc + offset);
1063 }
1064
1065 /* Check for the SAVE instruction that sets up the frame. */
1066 if (X_OP (insn) == 2 && X_OP3 (insn) == 0x3c)
1067 {
1068 sparc_record_save_insn (cache);
1069 offset += 4;
1070 return pc + offset;
1071 }
1072
1073 /* Check for an arithmetic operation on %sp. */
1074 if (X_OP (insn) == 2
1075 && (X_OP3 (insn) == 0 || X_OP3 (insn) == 0x4)
1076 && X_RS1 (insn) == SPARC_SP_REGNUM
1077 && X_RD (insn) == SPARC_SP_REGNUM)
1078 {
1079 if (X_I (insn))
1080 {
1081 cache->frame_offset = X_SIMM13 (insn);
1082 if (X_OP3 (insn) == 0)
1083 cache->frame_offset = -cache->frame_offset;
1084 }
1085 offset += 4;
1086
1087 insn = sparc_fetch_instruction (pc + offset);
1088
1089 /* Check for an arithmetic operation that sets up the frame. */
1090 if (X_OP (insn) == 2
1091 && (X_OP3 (insn) == 0 || X_OP3 (insn) == 0x4)
1092 && X_RS1 (insn) == SPARC_SP_REGNUM
1093 && X_RD (insn) == SPARC_FP_REGNUM)
1094 {
1095 cache->frameless_p = 0;
1096 cache->frame_offset = 0;
1097 /* We could check that the amount subtracted to %sp above is the
1098 same as the one added here, but this seems superfluous. */
1099 cache->copied_regs_mask |= 0x40;
1100 offset += 4;
1101
1102 insn = sparc_fetch_instruction (pc + offset);
1103 }
1104
1105 /* Check for a move (or) operation that copies the return register. */
1106 if (X_OP (insn) == 2
1107 && X_OP3 (insn) == 0x2
1108 && !X_I (insn)
1109 && X_RS1 (insn) == SPARC_G0_REGNUM
1110 && X_RS2 (insn) == SPARC_O7_REGNUM
1111 && X_RD (insn) == SPARC_I7_REGNUM)
1112 {
1113 cache->copied_regs_mask |= 0x80;
1114 offset += 4;
1115 }
1116
1117 return pc + offset;
1118 }
1119
1120 return pc;
1121 }
1122
1123 /* Return PC of first real instruction of the function starting at
1124 START_PC. */
1125
1126 static CORE_ADDR
1127 sparc32_skip_prologue (struct gdbarch *gdbarch, CORE_ADDR start_pc)
1128 {
1129 struct symtab_and_line sal;
1130 CORE_ADDR func_start, func_end;
1131 struct sparc_frame_cache cache;
1132
1133 /* This is the preferred method, find the end of the prologue by
1134 using the debugging information. */
1135 if (find_pc_partial_function (start_pc, NULL, &func_start, &func_end))
1136 {
1137 sal = find_pc_line (func_start, 0);
1138
1139 if (sal.end < func_end
1140 && start_pc <= sal.end)
1141 return sal.end;
1142 }
1143
1144 start_pc = sparc_analyze_prologue (gdbarch, start_pc, 0xffffffffUL, &cache);
1145
1146 /* The psABI says that "Although the first 6 words of arguments
1147 reside in registers, the standard stack frame reserves space for
1148 them.". It also suggests that a function may use that space to
1149 "write incoming arguments 0 to 5" into that space, and that's
1150 indeed what GCC seems to be doing. In that case GCC will
1151 generate debug information that points to the stack slots instead
1152 of the registers, so we should consider the instructions that
1153 write out these incoming arguments onto the stack. */
1154
1155 while (1)
1156 {
1157 unsigned long insn = sparc_fetch_instruction (start_pc);
1158
1159 /* Recognize instructions that store incoming arguments into the
1160 corresponding stack slots. */
1161 if (X_OP (insn) == 3 && (X_OP3 (insn) & 0x3c) == 0x04
1162 && X_I (insn) && X_RS1 (insn) == SPARC_FP_REGNUM)
1163 {
1164 int regnum = X_RD (insn);
1165
1166 /* Case of arguments still in %o[0..5]. */
1167 if (regnum >= SPARC_O0_REGNUM && regnum <= SPARC_O5_REGNUM
1168 && !(cache.copied_regs_mask & (1 << (regnum - SPARC_O0_REGNUM)))
1169 && X_SIMM13 (insn) == 68 + (regnum - SPARC_O0_REGNUM) * 4)
1170 {
1171 start_pc += 4;
1172 continue;
1173 }
1174
1175 /* Case of arguments copied into %i[0..5]. */
1176 if (regnum >= SPARC_I0_REGNUM && regnum <= SPARC_I5_REGNUM
1177 && (cache.copied_regs_mask & (1 << (regnum - SPARC_I0_REGNUM)))
1178 && X_SIMM13 (insn) == 68 + (regnum - SPARC_I0_REGNUM) * 4)
1179 {
1180 start_pc += 4;
1181 continue;
1182 }
1183 }
1184
1185 break;
1186 }
1187
1188 return start_pc;
1189 }
1190
1191 /* Normal frames. */
1192
1193 struct sparc_frame_cache *
1194 sparc_frame_cache (struct frame_info *this_frame, void **this_cache)
1195 {
1196 struct sparc_frame_cache *cache;
1197
1198 if (*this_cache)
1199 return (struct sparc_frame_cache *) *this_cache;
1200
1201 cache = sparc_alloc_frame_cache ();
1202 *this_cache = cache;
1203
1204 cache->pc = get_frame_func (this_frame);
1205 if (cache->pc != 0)
1206 sparc_analyze_prologue (get_frame_arch (this_frame), cache->pc,
1207 get_frame_pc (this_frame), cache);
1208
1209 if (cache->frameless_p)
1210 {
1211 /* This function is frameless, so %fp (%i6) holds the frame
1212 pointer for our calling frame. Use %sp (%o6) as this frame's
1213 base address. */
1214 cache->base =
1215 get_frame_register_unsigned (this_frame, SPARC_SP_REGNUM);
1216 }
1217 else
1218 {
1219 /* For normal frames, %fp (%i6) holds the frame pointer, the
1220 base address for the current stack frame. */
1221 cache->base =
1222 get_frame_register_unsigned (this_frame, SPARC_FP_REGNUM);
1223 }
1224
1225 cache->base += cache->frame_offset;
1226
1227 if (cache->base & 1)
1228 cache->base += BIAS;
1229
1230 return cache;
1231 }
1232
1233 static int
1234 sparc32_struct_return_from_sym (struct symbol *sym)
1235 {
1236 struct type *type = check_typedef (SYMBOL_TYPE (sym));
1237 enum type_code code = type->code ();
1238
1239 if (code == TYPE_CODE_FUNC || code == TYPE_CODE_METHOD)
1240 {
1241 type = check_typedef (TYPE_TARGET_TYPE (type));
1242 if (sparc_structure_or_union_p (type)
1243 || (sparc_floating_p (type) && TYPE_LENGTH (type) == 16))
1244 return 1;
1245 }
1246
1247 return 0;
1248 }
1249
1250 struct sparc_frame_cache *
1251 sparc32_frame_cache (struct frame_info *this_frame, void **this_cache)
1252 {
1253 struct sparc_frame_cache *cache;
1254 struct symbol *sym;
1255
1256 if (*this_cache)
1257 return (struct sparc_frame_cache *) *this_cache;
1258
1259 cache = sparc_frame_cache (this_frame, this_cache);
1260
1261 sym = find_pc_function (cache->pc);
1262 if (sym)
1263 {
1264 cache->struct_return_p = sparc32_struct_return_from_sym (sym);
1265 }
1266 else
1267 {
1268 /* There is no debugging information for this function to
1269 help us determine whether this function returns a struct
1270 or not. So we rely on another heuristic which is to check
1271 the instruction at the return address and see if this is
1272 an "unimp" instruction. If it is, then it is a struct-return
1273 function. */
1274 CORE_ADDR pc;
1275 int regnum =
1276 (cache->copied_regs_mask & 0x80) ? SPARC_I7_REGNUM : SPARC_O7_REGNUM;
1277
1278 pc = get_frame_register_unsigned (this_frame, regnum) + 8;
1279 if (sparc_is_unimp_insn (pc))
1280 cache->struct_return_p = 1;
1281 }
1282
1283 return cache;
1284 }
1285
1286 static void
1287 sparc32_frame_this_id (struct frame_info *this_frame, void **this_cache,
1288 struct frame_id *this_id)
1289 {
1290 struct sparc_frame_cache *cache =
1291 sparc32_frame_cache (this_frame, this_cache);
1292
1293 /* This marks the outermost frame. */
1294 if (cache->base == 0)
1295 return;
1296
1297 (*this_id) = frame_id_build (cache->base, cache->pc);
1298 }
1299
1300 static struct value *
1301 sparc32_frame_prev_register (struct frame_info *this_frame,
1302 void **this_cache, int regnum)
1303 {
1304 struct gdbarch *gdbarch = get_frame_arch (this_frame);
1305 struct sparc_frame_cache *cache =
1306 sparc32_frame_cache (this_frame, this_cache);
1307
1308 if (regnum == SPARC32_PC_REGNUM || regnum == SPARC32_NPC_REGNUM)
1309 {
1310 CORE_ADDR pc = (regnum == SPARC32_NPC_REGNUM) ? 4 : 0;
1311
1312 /* If this functions has a Structure, Union or Quad-Precision
1313 return value, we have to skip the UNIMP instruction that encodes
1314 the size of the structure. */
1315 if (cache->struct_return_p)
1316 pc += 4;
1317
1318 regnum =
1319 (cache->copied_regs_mask & 0x80) ? SPARC_I7_REGNUM : SPARC_O7_REGNUM;
1320 pc += get_frame_register_unsigned (this_frame, regnum) + 8;
1321 return frame_unwind_got_constant (this_frame, regnum, pc);
1322 }
1323
1324 /* Handle StackGhost. */
1325 {
1326 ULONGEST wcookie = sparc_fetch_wcookie (gdbarch);
1327
1328 if (wcookie != 0 && !cache->frameless_p && regnum == SPARC_I7_REGNUM)
1329 {
1330 CORE_ADDR addr = cache->base + (regnum - SPARC_L0_REGNUM) * 4;
1331 ULONGEST i7;
1332
1333 /* Read the value in from memory. */
1334 i7 = get_frame_memory_unsigned (this_frame, addr, 4);
1335 return frame_unwind_got_constant (this_frame, regnum, i7 ^ wcookie);
1336 }
1337 }
1338
1339 /* The previous frame's `local' and `in' registers may have been saved
1340 in the register save area. */
1341 if (regnum >= SPARC_L0_REGNUM && regnum <= SPARC_I7_REGNUM
1342 && (cache->saved_regs_mask & (1 << (regnum - SPARC_L0_REGNUM))))
1343 {
1344 CORE_ADDR addr = cache->base + (regnum - SPARC_L0_REGNUM) * 4;
1345
1346 return frame_unwind_got_memory (this_frame, regnum, addr);
1347 }
1348
1349 /* The previous frame's `out' registers may be accessible as the current
1350 frame's `in' registers. */
1351 if (regnum >= SPARC_O0_REGNUM && regnum <= SPARC_O7_REGNUM
1352 && (cache->copied_regs_mask & (1 << (regnum - SPARC_O0_REGNUM))))
1353 regnum += (SPARC_I0_REGNUM - SPARC_O0_REGNUM);
1354
1355 return frame_unwind_got_register (this_frame, regnum, regnum);
1356 }
1357
1358 static const struct frame_unwind sparc32_frame_unwind =
1359 {
1360 NORMAL_FRAME,
1361 default_frame_unwind_stop_reason,
1362 sparc32_frame_this_id,
1363 sparc32_frame_prev_register,
1364 NULL,
1365 default_frame_sniffer
1366 };
1367 \f
1368
1369 static CORE_ADDR
1370 sparc32_frame_base_address (struct frame_info *this_frame, void **this_cache)
1371 {
1372 struct sparc_frame_cache *cache =
1373 sparc32_frame_cache (this_frame, this_cache);
1374
1375 return cache->base;
1376 }
1377
1378 static const struct frame_base sparc32_frame_base =
1379 {
1380 &sparc32_frame_unwind,
1381 sparc32_frame_base_address,
1382 sparc32_frame_base_address,
1383 sparc32_frame_base_address
1384 };
1385
1386 static struct frame_id
1387 sparc_dummy_id (struct gdbarch *gdbarch, struct frame_info *this_frame)
1388 {
1389 CORE_ADDR sp;
1390
1391 sp = get_frame_register_unsigned (this_frame, SPARC_SP_REGNUM);
1392 if (sp & 1)
1393 sp += BIAS;
1394 return frame_id_build (sp, get_frame_pc (this_frame));
1395 }
1396 \f
1397
1398 /* Extract a function return value of TYPE from REGCACHE, and copy
1399 that into VALBUF. */
1400
1401 static void
1402 sparc32_extract_return_value (struct type *type, struct regcache *regcache,
1403 gdb_byte *valbuf)
1404 {
1405 int len = TYPE_LENGTH (type);
1406 gdb_byte buf[32];
1407
1408 gdb_assert (!sparc_structure_return_p (type));
1409
1410 if (sparc_floating_p (type) || sparc_complex_floating_p (type)
1411 || type->code () == TYPE_CODE_ARRAY)
1412 {
1413 /* Floating return values. */
1414 regcache->cooked_read (SPARC_F0_REGNUM, buf);
1415 if (len > 4)
1416 regcache->cooked_read (SPARC_F1_REGNUM, buf + 4);
1417 if (len > 8)
1418 {
1419 regcache->cooked_read (SPARC_F2_REGNUM, buf + 8);
1420 regcache->cooked_read (SPARC_F3_REGNUM, buf + 12);
1421 }
1422 if (len > 16)
1423 {
1424 regcache->cooked_read (SPARC_F4_REGNUM, buf + 16);
1425 regcache->cooked_read (SPARC_F5_REGNUM, buf + 20);
1426 regcache->cooked_read (SPARC_F6_REGNUM, buf + 24);
1427 regcache->cooked_read (SPARC_F7_REGNUM, buf + 28);
1428 }
1429 memcpy (valbuf, buf, len);
1430 }
1431 else
1432 {
1433 /* Integral and pointer return values. */
1434 gdb_assert (sparc_integral_or_pointer_p (type));
1435
1436 regcache->cooked_read (SPARC_O0_REGNUM, buf);
1437 if (len > 4)
1438 {
1439 regcache->cooked_read (SPARC_O1_REGNUM, buf + 4);
1440 gdb_assert (len == 8);
1441 memcpy (valbuf, buf, 8);
1442 }
1443 else
1444 {
1445 /* Just stripping off any unused bytes should preserve the
1446 signed-ness just fine. */
1447 memcpy (valbuf, buf + 4 - len, len);
1448 }
1449 }
1450 }
1451
1452 /* Store the function return value of type TYPE from VALBUF into
1453 REGCACHE. */
1454
1455 static void
1456 sparc32_store_return_value (struct type *type, struct regcache *regcache,
1457 const gdb_byte *valbuf)
1458 {
1459 int len = TYPE_LENGTH (type);
1460 gdb_byte buf[32];
1461
1462 gdb_assert (!sparc_structure_return_p (type));
1463
1464 if (sparc_floating_p (type) || sparc_complex_floating_p (type))
1465 {
1466 /* Floating return values. */
1467 memcpy (buf, valbuf, len);
1468 regcache->cooked_write (SPARC_F0_REGNUM, buf);
1469 if (len > 4)
1470 regcache->cooked_write (SPARC_F1_REGNUM, buf + 4);
1471 if (len > 8)
1472 {
1473 regcache->cooked_write (SPARC_F2_REGNUM, buf + 8);
1474 regcache->cooked_write (SPARC_F3_REGNUM, buf + 12);
1475 }
1476 if (len > 16)
1477 {
1478 regcache->cooked_write (SPARC_F4_REGNUM, buf + 16);
1479 regcache->cooked_write (SPARC_F5_REGNUM, buf + 20);
1480 regcache->cooked_write (SPARC_F6_REGNUM, buf + 24);
1481 regcache->cooked_write (SPARC_F7_REGNUM, buf + 28);
1482 }
1483 }
1484 else
1485 {
1486 /* Integral and pointer return values. */
1487 gdb_assert (sparc_integral_or_pointer_p (type));
1488
1489 if (len > 4)
1490 {
1491 gdb_assert (len == 8);
1492 memcpy (buf, valbuf, 8);
1493 regcache->cooked_write (SPARC_O1_REGNUM, buf + 4);
1494 }
1495 else
1496 {
1497 /* ??? Do we need to do any sign-extension here? */
1498 memcpy (buf + 4 - len, valbuf, len);
1499 }
1500 regcache->cooked_write (SPARC_O0_REGNUM, buf);
1501 }
1502 }
1503
1504 static enum return_value_convention
1505 sparc32_return_value (struct gdbarch *gdbarch, struct value *function,
1506 struct type *type, struct regcache *regcache,
1507 gdb_byte *readbuf, const gdb_byte *writebuf)
1508 {
1509 enum bfd_endian byte_order = gdbarch_byte_order (gdbarch);
1510
1511 /* The psABI says that "...every stack frame reserves the word at
1512 %fp+64. If a function returns a structure, union, or
1513 quad-precision value, this word should hold the address of the
1514 object into which the return value should be copied." This
1515 guarantees that we can always find the return value, not just
1516 before the function returns. */
1517
1518 if (sparc_structure_return_p (type))
1519 {
1520 ULONGEST sp;
1521 CORE_ADDR addr;
1522
1523 if (readbuf)
1524 {
1525 regcache_cooked_read_unsigned (regcache, SPARC_SP_REGNUM, &sp);
1526 addr = read_memory_unsigned_integer (sp + 64, 4, byte_order);
1527 read_memory (addr, readbuf, TYPE_LENGTH (type));
1528 }
1529 if (writebuf)
1530 {
1531 regcache_cooked_read_unsigned (regcache, SPARC_SP_REGNUM, &sp);
1532 addr = read_memory_unsigned_integer (sp + 64, 4, byte_order);
1533 write_memory (addr, writebuf, TYPE_LENGTH (type));
1534 }
1535
1536 return RETURN_VALUE_ABI_PRESERVES_ADDRESS;
1537 }
1538
1539 if (readbuf)
1540 sparc32_extract_return_value (type, regcache, readbuf);
1541 if (writebuf)
1542 sparc32_store_return_value (type, regcache, writebuf);
1543
1544 return RETURN_VALUE_REGISTER_CONVENTION;
1545 }
1546
1547 static int
1548 sparc32_stabs_argument_has_addr (struct gdbarch *gdbarch, struct type *type)
1549 {
1550 return (sparc_structure_or_union_p (type)
1551 || (sparc_floating_p (type) && TYPE_LENGTH (type) == 16)
1552 || sparc_complex_floating_p (type));
1553 }
1554
1555 static int
1556 sparc32_dwarf2_struct_return_p (struct frame_info *this_frame)
1557 {
1558 CORE_ADDR pc = get_frame_address_in_block (this_frame);
1559 struct symbol *sym = find_pc_function (pc);
1560
1561 if (sym)
1562 return sparc32_struct_return_from_sym (sym);
1563 return 0;
1564 }
1565
1566 static void
1567 sparc32_dwarf2_frame_init_reg (struct gdbarch *gdbarch, int regnum,
1568 struct dwarf2_frame_state_reg *reg,
1569 struct frame_info *this_frame)
1570 {
1571 int off;
1572
1573 switch (regnum)
1574 {
1575 case SPARC_G0_REGNUM:
1576 /* Since %g0 is always zero, there is no point in saving it, and
1577 people will be inclined omit it from the CFI. Make sure we
1578 don't warn about that. */
1579 reg->how = DWARF2_FRAME_REG_SAME_VALUE;
1580 break;
1581 case SPARC_SP_REGNUM:
1582 reg->how = DWARF2_FRAME_REG_CFA;
1583 break;
1584 case SPARC32_PC_REGNUM:
1585 case SPARC32_NPC_REGNUM:
1586 reg->how = DWARF2_FRAME_REG_RA_OFFSET;
1587 off = 8;
1588 if (sparc32_dwarf2_struct_return_p (this_frame))
1589 off += 4;
1590 if (regnum == SPARC32_NPC_REGNUM)
1591 off += 4;
1592 reg->loc.offset = off;
1593 break;
1594 }
1595 }
1596
1597 /* Implement the execute_dwarf_cfa_vendor_op method. */
1598
1599 static bool
1600 sparc_execute_dwarf_cfa_vendor_op (struct gdbarch *gdbarch, gdb_byte op,
1601 struct dwarf2_frame_state *fs)
1602 {
1603 /* Only DW_CFA_GNU_window_save is expected on SPARC. */
1604 if (op != DW_CFA_GNU_window_save)
1605 return false;
1606
1607 uint64_t reg;
1608 int size = register_size (gdbarch, 0);
1609
1610 fs->regs.alloc_regs (32);
1611 for (reg = 8; reg < 16; reg++)
1612 {
1613 fs->regs.reg[reg].how = DWARF2_FRAME_REG_SAVED_REG;
1614 fs->regs.reg[reg].loc.reg = reg + 16;
1615 }
1616 for (reg = 16; reg < 32; reg++)
1617 {
1618 fs->regs.reg[reg].how = DWARF2_FRAME_REG_SAVED_OFFSET;
1619 fs->regs.reg[reg].loc.offset = (reg - 16) * size;
1620 }
1621
1622 return true;
1623 }
1624
1625 \f
1626 /* The SPARC Architecture doesn't have hardware single-step support,
1627 and most operating systems don't implement it either, so we provide
1628 software single-step mechanism. */
1629
1630 static CORE_ADDR
1631 sparc_analyze_control_transfer (struct regcache *regcache,
1632 CORE_ADDR pc, CORE_ADDR *npc)
1633 {
1634 unsigned long insn = sparc_fetch_instruction (pc);
1635 int conditional_p = X_COND (insn) & 0x7;
1636 int branch_p = 0, fused_p = 0;
1637 long offset = 0; /* Must be signed for sign-extend. */
1638
1639 if (X_OP (insn) == 0 && X_OP2 (insn) == 3)
1640 {
1641 if ((insn & 0x10000000) == 0)
1642 {
1643 /* Branch on Integer Register with Prediction (BPr). */
1644 branch_p = 1;
1645 conditional_p = 1;
1646 }
1647 else
1648 {
1649 /* Compare and Branch */
1650 branch_p = 1;
1651 fused_p = 1;
1652 offset = 4 * X_DISP10 (insn);
1653 }
1654 }
1655 else if (X_OP (insn) == 0 && X_OP2 (insn) == 6)
1656 {
1657 /* Branch on Floating-Point Condition Codes (FBfcc). */
1658 branch_p = 1;
1659 offset = 4 * X_DISP22 (insn);
1660 }
1661 else if (X_OP (insn) == 0 && X_OP2 (insn) == 5)
1662 {
1663 /* Branch on Floating-Point Condition Codes with Prediction
1664 (FBPfcc). */
1665 branch_p = 1;
1666 offset = 4 * X_DISP19 (insn);
1667 }
1668 else if (X_OP (insn) == 0 && X_OP2 (insn) == 2)
1669 {
1670 /* Branch on Integer Condition Codes (Bicc). */
1671 branch_p = 1;
1672 offset = 4 * X_DISP22 (insn);
1673 }
1674 else if (X_OP (insn) == 0 && X_OP2 (insn) == 1)
1675 {
1676 /* Branch on Integer Condition Codes with Prediction (BPcc). */
1677 branch_p = 1;
1678 offset = 4 * X_DISP19 (insn);
1679 }
1680 else if (X_OP (insn) == 2 && X_OP3 (insn) == 0x3a)
1681 {
1682 struct frame_info *frame = get_current_frame ();
1683
1684 /* Trap instruction (TRAP). */
1685 return gdbarch_tdep (regcache->arch ())->step_trap (frame,
1686 insn);
1687 }
1688
1689 /* FIXME: Handle DONE and RETRY instructions. */
1690
1691 if (branch_p)
1692 {
1693 if (fused_p)
1694 {
1695 /* Fused compare-and-branch instructions are non-delayed,
1696 and do not have an annulling capability. So we need to
1697 always set a breakpoint on both the NPC and the branch
1698 target address. */
1699 gdb_assert (offset != 0);
1700 return pc + offset;
1701 }
1702 else if (conditional_p)
1703 {
1704 /* For conditional branches, return nPC + 4 iff the annul
1705 bit is 1. */
1706 return (X_A (insn) ? *npc + 4 : 0);
1707 }
1708 else
1709 {
1710 /* For unconditional branches, return the target if its
1711 specified condition is "always" and return nPC + 4 if the
1712 condition is "never". If the annul bit is 1, set *NPC to
1713 zero. */
1714 if (X_COND (insn) == 0x0)
1715 pc = *npc, offset = 4;
1716 if (X_A (insn))
1717 *npc = 0;
1718
1719 return pc + offset;
1720 }
1721 }
1722
1723 return 0;
1724 }
1725
1726 static CORE_ADDR
1727 sparc_step_trap (struct frame_info *frame, unsigned long insn)
1728 {
1729 return 0;
1730 }
1731
1732 static std::vector<CORE_ADDR>
1733 sparc_software_single_step (struct regcache *regcache)
1734 {
1735 struct gdbarch *arch = regcache->arch ();
1736 struct gdbarch_tdep *tdep = gdbarch_tdep (arch);
1737 CORE_ADDR npc, nnpc;
1738
1739 CORE_ADDR pc, orig_npc;
1740 std::vector<CORE_ADDR> next_pcs;
1741
1742 pc = regcache_raw_get_unsigned (regcache, tdep->pc_regnum);
1743 orig_npc = npc = regcache_raw_get_unsigned (regcache, tdep->npc_regnum);
1744
1745 /* Analyze the instruction at PC. */
1746 nnpc = sparc_analyze_control_transfer (regcache, pc, &npc);
1747 if (npc != 0)
1748 next_pcs.push_back (npc);
1749
1750 if (nnpc != 0)
1751 next_pcs.push_back (nnpc);
1752
1753 /* Assert that we have set at least one breakpoint, and that
1754 they're not set at the same spot - unless we're going
1755 from here straight to NULL, i.e. a call or jump to 0. */
1756 gdb_assert (npc != 0 || nnpc != 0 || orig_npc == 0);
1757 gdb_assert (nnpc != npc || orig_npc == 0);
1758
1759 return next_pcs;
1760 }
1761
1762 static void
1763 sparc_write_pc (struct regcache *regcache, CORE_ADDR pc)
1764 {
1765 struct gdbarch_tdep *tdep = gdbarch_tdep (regcache->arch ());
1766
1767 regcache_cooked_write_unsigned (regcache, tdep->pc_regnum, pc);
1768 regcache_cooked_write_unsigned (regcache, tdep->npc_regnum, pc + 4);
1769 }
1770 \f
1771
1772 /* Iterate over core file register note sections. */
1773
1774 static void
1775 sparc_iterate_over_regset_sections (struct gdbarch *gdbarch,
1776 iterate_over_regset_sections_cb *cb,
1777 void *cb_data,
1778 const struct regcache *regcache)
1779 {
1780 struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch);
1781
1782 cb (".reg", tdep->sizeof_gregset, tdep->sizeof_gregset, tdep->gregset, NULL,
1783 cb_data);
1784 cb (".reg2", tdep->sizeof_fpregset, tdep->sizeof_fpregset, tdep->fpregset,
1785 NULL, cb_data);
1786 }
1787 \f
1788
1789 static int
1790 validate_tdesc_registers (const struct target_desc *tdesc,
1791 struct tdesc_arch_data *tdesc_data,
1792 const char *feature_name,
1793 const char * const register_names[],
1794 unsigned int registers_num,
1795 unsigned int reg_start)
1796 {
1797 int valid_p = 1;
1798 const struct tdesc_feature *feature;
1799
1800 feature = tdesc_find_feature (tdesc, feature_name);
1801 if (feature == NULL)
1802 return 0;
1803
1804 for (unsigned int i = 0; i < registers_num; i++)
1805 valid_p &= tdesc_numbered_register (feature, tdesc_data,
1806 reg_start + i,
1807 register_names[i]);
1808
1809 return valid_p;
1810 }
1811
1812 static struct gdbarch *
1813 sparc32_gdbarch_init (struct gdbarch_info info, struct gdbarch_list *arches)
1814 {
1815 struct gdbarch_tdep *tdep;
1816 const struct target_desc *tdesc = info.target_desc;
1817 struct gdbarch *gdbarch;
1818 int valid_p = 1;
1819
1820 /* If there is already a candidate, use it. */
1821 arches = gdbarch_list_lookup_by_info (arches, &info);
1822 if (arches != NULL)
1823 return arches->gdbarch;
1824
1825 /* Allocate space for the new architecture. */
1826 tdep = XCNEW (struct gdbarch_tdep);
1827 gdbarch = gdbarch_alloc (&info, tdep);
1828
1829 tdep->pc_regnum = SPARC32_PC_REGNUM;
1830 tdep->npc_regnum = SPARC32_NPC_REGNUM;
1831 tdep->step_trap = sparc_step_trap;
1832 tdep->fpu_register_names = sparc32_fpu_register_names;
1833 tdep->fpu_registers_num = ARRAY_SIZE (sparc32_fpu_register_names);
1834 tdep->cp0_register_names = sparc32_cp0_register_names;
1835 tdep->cp0_registers_num = ARRAY_SIZE (sparc32_cp0_register_names);
1836
1837 set_gdbarch_long_double_bit (gdbarch, 128);
1838 set_gdbarch_long_double_format (gdbarch, floatformats_sparc_quad);
1839
1840 set_gdbarch_wchar_bit (gdbarch, 16);
1841 set_gdbarch_wchar_signed (gdbarch, 1);
1842
1843 set_gdbarch_num_regs (gdbarch, SPARC32_NUM_REGS);
1844 set_gdbarch_register_name (gdbarch, sparc32_register_name);
1845 set_gdbarch_register_type (gdbarch, sparc32_register_type);
1846 set_gdbarch_num_pseudo_regs (gdbarch, SPARC32_NUM_PSEUDO_REGS);
1847 set_tdesc_pseudo_register_name (gdbarch, sparc32_pseudo_register_name);
1848 set_tdesc_pseudo_register_type (gdbarch, sparc32_pseudo_register_type);
1849 set_gdbarch_pseudo_register_read (gdbarch, sparc32_pseudo_register_read);
1850 set_gdbarch_pseudo_register_write (gdbarch, sparc32_pseudo_register_write);
1851
1852 /* Register numbers of various important registers. */
1853 set_gdbarch_sp_regnum (gdbarch, SPARC_SP_REGNUM); /* %sp */
1854 set_gdbarch_pc_regnum (gdbarch, SPARC32_PC_REGNUM); /* %pc */
1855 set_gdbarch_fp0_regnum (gdbarch, SPARC_F0_REGNUM); /* %f0 */
1856
1857 /* Call dummy code. */
1858 set_gdbarch_frame_align (gdbarch, sparc32_frame_align);
1859 set_gdbarch_call_dummy_location (gdbarch, ON_STACK);
1860 set_gdbarch_push_dummy_code (gdbarch, sparc32_push_dummy_code);
1861 set_gdbarch_push_dummy_call (gdbarch, sparc32_push_dummy_call);
1862
1863 set_gdbarch_return_value (gdbarch, sparc32_return_value);
1864 set_gdbarch_stabs_argument_has_addr
1865 (gdbarch, sparc32_stabs_argument_has_addr);
1866
1867 set_gdbarch_skip_prologue (gdbarch, sparc32_skip_prologue);
1868
1869 /* Stack grows downward. */
1870 set_gdbarch_inner_than (gdbarch, core_addr_lessthan);
1871
1872 set_gdbarch_breakpoint_kind_from_pc (gdbarch,
1873 sparc_breakpoint::kind_from_pc);
1874 set_gdbarch_sw_breakpoint_from_kind (gdbarch,
1875 sparc_breakpoint::bp_from_kind);
1876
1877 set_gdbarch_frame_args_skip (gdbarch, 8);
1878
1879 set_gdbarch_software_single_step (gdbarch, sparc_software_single_step);
1880 set_gdbarch_write_pc (gdbarch, sparc_write_pc);
1881
1882 set_gdbarch_dummy_id (gdbarch, sparc_dummy_id);
1883
1884 frame_base_set_default (gdbarch, &sparc32_frame_base);
1885
1886 /* Hook in the DWARF CFI frame unwinder. */
1887 dwarf2_frame_set_init_reg (gdbarch, sparc32_dwarf2_frame_init_reg);
1888 /* Register DWARF vendor CFI handler. */
1889 set_gdbarch_execute_dwarf_cfa_vendor_op (gdbarch,
1890 sparc_execute_dwarf_cfa_vendor_op);
1891 /* FIXME: kettenis/20050423: Don't enable the unwinder until the
1892 StackGhost issues have been resolved. */
1893
1894 /* Hook in ABI-specific overrides, if they have been registered. */
1895 gdbarch_init_osabi (info, gdbarch);
1896
1897 frame_unwind_append_unwinder (gdbarch, &sparc32_frame_unwind);
1898
1899 if (tdesc_has_registers (tdesc))
1900 {
1901 struct tdesc_arch_data *tdesc_data = tdesc_data_alloc ();
1902
1903 /* Validate that the descriptor provides the mandatory registers
1904 and allocate their numbers. */
1905 valid_p &= validate_tdesc_registers (tdesc, tdesc_data,
1906 "org.gnu.gdb.sparc.cpu",
1907 sparc_core_register_names,
1908 ARRAY_SIZE (sparc_core_register_names),
1909 SPARC_G0_REGNUM);
1910 valid_p &= validate_tdesc_registers (tdesc, tdesc_data,
1911 "org.gnu.gdb.sparc.fpu",
1912 tdep->fpu_register_names,
1913 tdep->fpu_registers_num,
1914 SPARC_F0_REGNUM);
1915 valid_p &= validate_tdesc_registers (tdesc, tdesc_data,
1916 "org.gnu.gdb.sparc.cp0",
1917 tdep->cp0_register_names,
1918 tdep->cp0_registers_num,
1919 SPARC_F0_REGNUM
1920 + tdep->fpu_registers_num);
1921 if (!valid_p)
1922 {
1923 tdesc_data_cleanup (tdesc_data);
1924 return NULL;
1925 }
1926
1927 /* Target description may have changed. */
1928 info.tdesc_data = tdesc_data;
1929 tdesc_use_registers (gdbarch, tdesc, tdesc_data);
1930 }
1931
1932 /* If we have register sets, enable the generic core file support. */
1933 if (tdep->gregset)
1934 set_gdbarch_iterate_over_regset_sections
1935 (gdbarch, sparc_iterate_over_regset_sections);
1936
1937 register_sparc_ravenscar_ops (gdbarch);
1938
1939 return gdbarch;
1940 }
1941 \f
1942 /* Helper functions for dealing with register windows. */
1943
1944 void
1945 sparc_supply_rwindow (struct regcache *regcache, CORE_ADDR sp, int regnum)
1946 {
1947 struct gdbarch *gdbarch = regcache->arch ();
1948 enum bfd_endian byte_order = gdbarch_byte_order (gdbarch);
1949 int offset = 0;
1950 gdb_byte buf[8];
1951 int i;
1952
1953 if (sp & 1)
1954 {
1955 /* Registers are 64-bit. */
1956 sp += BIAS;
1957
1958 for (i = SPARC_L0_REGNUM; i <= SPARC_I7_REGNUM; i++)
1959 {
1960 if (regnum == i || regnum == -1)
1961 {
1962 target_read_memory (sp + ((i - SPARC_L0_REGNUM) * 8), buf, 8);
1963
1964 /* Handle StackGhost. */
1965 if (i == SPARC_I7_REGNUM)
1966 {
1967 ULONGEST wcookie = sparc_fetch_wcookie (gdbarch);
1968 ULONGEST i7;
1969
1970 i7 = extract_unsigned_integer (buf + offset, 8, byte_order);
1971 store_unsigned_integer (buf + offset, 8, byte_order,
1972 i7 ^ wcookie);
1973 }
1974
1975 regcache->raw_supply (i, buf);
1976 }
1977 }
1978 }
1979 else
1980 {
1981 /* Registers are 32-bit. Toss any sign-extension of the stack
1982 pointer. */
1983 sp &= 0xffffffffUL;
1984
1985 /* Clear out the top half of the temporary buffer, and put the
1986 register value in the bottom half if we're in 64-bit mode. */
1987 if (gdbarch_ptr_bit (regcache->arch ()) == 64)
1988 {
1989 memset (buf, 0, 4);
1990 offset = 4;
1991 }
1992
1993 for (i = SPARC_L0_REGNUM; i <= SPARC_I7_REGNUM; i++)
1994 {
1995 if (regnum == i || regnum == -1)
1996 {
1997 target_read_memory (sp + ((i - SPARC_L0_REGNUM) * 4),
1998 buf + offset, 4);
1999
2000 /* Handle StackGhost. */
2001 if (i == SPARC_I7_REGNUM)
2002 {
2003 ULONGEST wcookie = sparc_fetch_wcookie (gdbarch);
2004 ULONGEST i7;
2005
2006 i7 = extract_unsigned_integer (buf + offset, 4, byte_order);
2007 store_unsigned_integer (buf + offset, 4, byte_order,
2008 i7 ^ wcookie);
2009 }
2010
2011 regcache->raw_supply (i, buf);
2012 }
2013 }
2014 }
2015 }
2016
2017 void
2018 sparc_collect_rwindow (const struct regcache *regcache,
2019 CORE_ADDR sp, int regnum)
2020 {
2021 struct gdbarch *gdbarch = regcache->arch ();
2022 enum bfd_endian byte_order = gdbarch_byte_order (gdbarch);
2023 int offset = 0;
2024 gdb_byte buf[8];
2025 int i;
2026
2027 if (sp & 1)
2028 {
2029 /* Registers are 64-bit. */
2030 sp += BIAS;
2031
2032 for (i = SPARC_L0_REGNUM; i <= SPARC_I7_REGNUM; i++)
2033 {
2034 if (regnum == -1 || regnum == SPARC_SP_REGNUM || regnum == i)
2035 {
2036 regcache->raw_collect (i, buf);
2037
2038 /* Handle StackGhost. */
2039 if (i == SPARC_I7_REGNUM)
2040 {
2041 ULONGEST wcookie = sparc_fetch_wcookie (gdbarch);
2042 ULONGEST i7;
2043
2044 i7 = extract_unsigned_integer (buf + offset, 8, byte_order);
2045 store_unsigned_integer (buf, 8, byte_order, i7 ^ wcookie);
2046 }
2047
2048 target_write_memory (sp + ((i - SPARC_L0_REGNUM) * 8), buf, 8);
2049 }
2050 }
2051 }
2052 else
2053 {
2054 /* Registers are 32-bit. Toss any sign-extension of the stack
2055 pointer. */
2056 sp &= 0xffffffffUL;
2057
2058 /* Only use the bottom half if we're in 64-bit mode. */
2059 if (gdbarch_ptr_bit (regcache->arch ()) == 64)
2060 offset = 4;
2061
2062 for (i = SPARC_L0_REGNUM; i <= SPARC_I7_REGNUM; i++)
2063 {
2064 if (regnum == -1 || regnum == SPARC_SP_REGNUM || regnum == i)
2065 {
2066 regcache->raw_collect (i, buf);
2067
2068 /* Handle StackGhost. */
2069 if (i == SPARC_I7_REGNUM)
2070 {
2071 ULONGEST wcookie = sparc_fetch_wcookie (gdbarch);
2072 ULONGEST i7;
2073
2074 i7 = extract_unsigned_integer (buf + offset, 4, byte_order);
2075 store_unsigned_integer (buf + offset, 4, byte_order,
2076 i7 ^ wcookie);
2077 }
2078
2079 target_write_memory (sp + ((i - SPARC_L0_REGNUM) * 4),
2080 buf + offset, 4);
2081 }
2082 }
2083 }
2084 }
2085
2086 /* Helper functions for dealing with register sets. */
2087
2088 void
2089 sparc32_supply_gregset (const struct sparc_gregmap *gregmap,
2090 struct regcache *regcache,
2091 int regnum, const void *gregs)
2092 {
2093 const gdb_byte *regs = (const gdb_byte *) gregs;
2094 gdb_byte zero[4] = { 0 };
2095 int i;
2096
2097 if (regnum == SPARC32_PSR_REGNUM || regnum == -1)
2098 regcache->raw_supply (SPARC32_PSR_REGNUM, regs + gregmap->r_psr_offset);
2099
2100 if (regnum == SPARC32_PC_REGNUM || regnum == -1)
2101 regcache->raw_supply (SPARC32_PC_REGNUM, regs + gregmap->r_pc_offset);
2102
2103 if (regnum == SPARC32_NPC_REGNUM || regnum == -1)
2104 regcache->raw_supply (SPARC32_NPC_REGNUM, regs + gregmap->r_npc_offset);
2105
2106 if (regnum == SPARC32_Y_REGNUM || regnum == -1)
2107 regcache->raw_supply (SPARC32_Y_REGNUM, regs + gregmap->r_y_offset);
2108
2109 if (regnum == SPARC_G0_REGNUM || regnum == -1)
2110 regcache->raw_supply (SPARC_G0_REGNUM, &zero);
2111
2112 if ((regnum >= SPARC_G1_REGNUM && regnum <= SPARC_O7_REGNUM) || regnum == -1)
2113 {
2114 int offset = gregmap->r_g1_offset;
2115
2116 for (i = SPARC_G1_REGNUM; i <= SPARC_O7_REGNUM; i++)
2117 {
2118 if (regnum == i || regnum == -1)
2119 regcache->raw_supply (i, regs + offset);
2120 offset += 4;
2121 }
2122 }
2123
2124 if ((regnum >= SPARC_L0_REGNUM && regnum <= SPARC_I7_REGNUM) || regnum == -1)
2125 {
2126 /* Not all of the register set variants include Locals and
2127 Inputs. For those that don't, we read them off the stack. */
2128 if (gregmap->r_l0_offset == -1)
2129 {
2130 ULONGEST sp;
2131
2132 regcache_cooked_read_unsigned (regcache, SPARC_SP_REGNUM, &sp);
2133 sparc_supply_rwindow (regcache, sp, regnum);
2134 }
2135 else
2136 {
2137 int offset = gregmap->r_l0_offset;
2138
2139 for (i = SPARC_L0_REGNUM; i <= SPARC_I7_REGNUM; i++)
2140 {
2141 if (regnum == i || regnum == -1)
2142 regcache->raw_supply (i, regs + offset);
2143 offset += 4;
2144 }
2145 }
2146 }
2147 }
2148
2149 void
2150 sparc32_collect_gregset (const struct sparc_gregmap *gregmap,
2151 const struct regcache *regcache,
2152 int regnum, void *gregs)
2153 {
2154 gdb_byte *regs = (gdb_byte *) gregs;
2155 int i;
2156
2157 if (regnum == SPARC32_PSR_REGNUM || regnum == -1)
2158 regcache->raw_collect (SPARC32_PSR_REGNUM, regs + gregmap->r_psr_offset);
2159
2160 if (regnum == SPARC32_PC_REGNUM || regnum == -1)
2161 regcache->raw_collect (SPARC32_PC_REGNUM, regs + gregmap->r_pc_offset);
2162
2163 if (regnum == SPARC32_NPC_REGNUM || regnum == -1)
2164 regcache->raw_collect (SPARC32_NPC_REGNUM, regs + gregmap->r_npc_offset);
2165
2166 if (regnum == SPARC32_Y_REGNUM || regnum == -1)
2167 regcache->raw_collect (SPARC32_Y_REGNUM, regs + gregmap->r_y_offset);
2168
2169 if ((regnum >= SPARC_G1_REGNUM && regnum <= SPARC_O7_REGNUM) || regnum == -1)
2170 {
2171 int offset = gregmap->r_g1_offset;
2172
2173 /* %g0 is always zero. */
2174 for (i = SPARC_G1_REGNUM; i <= SPARC_O7_REGNUM; i++)
2175 {
2176 if (regnum == i || regnum == -1)
2177 regcache->raw_collect (i, regs + offset);
2178 offset += 4;
2179 }
2180 }
2181
2182 if ((regnum >= SPARC_L0_REGNUM && regnum <= SPARC_I7_REGNUM) || regnum == -1)
2183 {
2184 /* Not all of the register set variants include Locals and
2185 Inputs. For those that don't, we read them off the stack. */
2186 if (gregmap->r_l0_offset != -1)
2187 {
2188 int offset = gregmap->r_l0_offset;
2189
2190 for (i = SPARC_L0_REGNUM; i <= SPARC_I7_REGNUM; i++)
2191 {
2192 if (regnum == i || regnum == -1)
2193 regcache->raw_collect (i, regs + offset);
2194 offset += 4;
2195 }
2196 }
2197 }
2198 }
2199
2200 void
2201 sparc32_supply_fpregset (const struct sparc_fpregmap *fpregmap,
2202 struct regcache *regcache,
2203 int regnum, const void *fpregs)
2204 {
2205 const gdb_byte *regs = (const gdb_byte *) fpregs;
2206 int i;
2207
2208 for (i = 0; i < 32; i++)
2209 {
2210 if (regnum == (SPARC_F0_REGNUM + i) || regnum == -1)
2211 regcache->raw_supply (SPARC_F0_REGNUM + i,
2212 regs + fpregmap->r_f0_offset + (i * 4));
2213 }
2214
2215 if (regnum == SPARC32_FSR_REGNUM || regnum == -1)
2216 regcache->raw_supply (SPARC32_FSR_REGNUM, regs + fpregmap->r_fsr_offset);
2217 }
2218
2219 void
2220 sparc32_collect_fpregset (const struct sparc_fpregmap *fpregmap,
2221 const struct regcache *regcache,
2222 int regnum, void *fpregs)
2223 {
2224 gdb_byte *regs = (gdb_byte *) fpregs;
2225 int i;
2226
2227 for (i = 0; i < 32; i++)
2228 {
2229 if (regnum == (SPARC_F0_REGNUM + i) || regnum == -1)
2230 regcache->raw_collect (SPARC_F0_REGNUM + i,
2231 regs + fpregmap->r_f0_offset + (i * 4));
2232 }
2233
2234 if (regnum == SPARC32_FSR_REGNUM || regnum == -1)
2235 regcache->raw_collect (SPARC32_FSR_REGNUM,
2236 regs + fpregmap->r_fsr_offset);
2237 }
2238 \f
2239
2240 /* SunOS 4. */
2241
2242 /* From <machine/reg.h>. */
2243 const struct sparc_gregmap sparc32_sunos4_gregmap =
2244 {
2245 0 * 4, /* %psr */
2246 1 * 4, /* %pc */
2247 2 * 4, /* %npc */
2248 3 * 4, /* %y */
2249 -1, /* %wim */
2250 -1, /* %tbr */
2251 4 * 4, /* %g1 */
2252 -1 /* %l0 */
2253 };
2254
2255 const struct sparc_fpregmap sparc32_sunos4_fpregmap =
2256 {
2257 0 * 4, /* %f0 */
2258 33 * 4, /* %fsr */
2259 };
2260
2261 const struct sparc_fpregmap sparc32_bsd_fpregmap =
2262 {
2263 0 * 4, /* %f0 */
2264 32 * 4, /* %fsr */
2265 };
2266
2267 void _initialize_sparc_tdep ();
2268 void
2269 _initialize_sparc_tdep ()
2270 {
2271 register_gdbarch_init (bfd_arch_sparc, sparc32_gdbarch_init);
2272 }