2000-05-17 Michael Snyder <msnyder@seadog.cygnus.com>
[binutils-gdb.git] / gdb / sparc-tdep.c
1 /* Target-dependent code for the SPARC for GDB, the GNU debugger.
2 Copyright 1986, 1987, 1989, 1991, 1992, 1993, 1994, 1995, 1996, 1997
3 Free Software Foundation, Inc.
4
5 This file is part of GDB.
6
7 This program is free software; you can redistribute it and/or modify
8 it under the terms of the GNU General Public License as published by
9 the Free Software Foundation; either version 2 of the License, or
10 (at your option) any later version.
11
12 This program is distributed in the hope that it will be useful,
13 but WITHOUT ANY WARRANTY; without even the implied warranty of
14 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
15 GNU General Public License for more details.
16
17 You should have received a copy of the GNU General Public License
18 along with this program; if not, write to the Free Software
19 Foundation, Inc., 59 Temple Place - Suite 330,
20 Boston, MA 02111-1307, USA. */
21
22 /* ??? Support for calling functions from gdb in sparc64 is unfinished. */
23
24 #include "defs.h"
25 #include "arch-utils.h"
26 #include "frame.h"
27 #include "inferior.h"
28 #include "obstack.h"
29 #include "target.h"
30 #include "value.h"
31 #include "bfd.h"
32 #include "gdb_string.h"
33
34 #ifdef USE_PROC_FS
35 #include <sys/procfs.h>
36 #endif
37
38 #include "gdbcore.h"
39
40 #include "symfile.h" /* for 'entry_point_address' */
41
42 /*
43 * Some local macros that have multi-arch and non-multi-arch versions:
44 */
45
46 #if (GDB_MULTI_ARCH > 0)
47
48 /* Does the target have Floating Point registers? */
49 #define SPARC_HAS_FPU (gdbarch_tdep (current_gdbarch)->has_fpu)
50 /* Number of bytes devoted to Floating Point registers: */
51 #define FP_REGISTER_BYTES (gdbarch_tdep (current_gdbarch)->fp_register_bytes)
52 /* Highest numbered Floating Point register. */
53 #define FP_MAX_REGNUM (gdbarch_tdep (current_gdbarch)->fp_max_regnum)
54 /* Size of a general (integer) register: */
55 #define SPARC_INTREG_SIZE (gdbarch_tdep (current_gdbarch)->intreg_size)
56 /* Offset within the call dummy stack of the saved registers. */
57 #define DUMMY_REG_SAVE_OFFSET (gdbarch_tdep (current_gdbarch)->reg_save_offset)
58
59 #else /* non-multi-arch */
60
61
62 /* Does the target have Floating Point registers? */
63 #if defined(TARGET_SPARCLET) || defined(TARGET_SPARCLITE)
64 #define SPARC_HAS_FPU 0
65 #else
66 #define SPARC_HAS_FPU 1
67 #endif
68
69 /* Number of bytes devoted to Floating Point registers: */
70 #if (GDB_TARGET_IS_SPARC64)
71 #define FP_REGISTER_BYTES (64 * 4)
72 #else
73 #if (SPARC_HAS_FPU)
74 #define FP_REGISTER_BYTES (32 * 4)
75 #else
76 #define FP_REGISTER_BYTES 0
77 #endif
78 #endif
79
80 /* Highest numbered Floating Point register. */
81 #if (GDB_TARGET_IS_SPARC64)
82 #define FP_MAX_REGNUM (FP0_REGNUM + 48)
83 #else
84 #define FP_MAX_REGNUM (FP0_REGNUM + 32)
85 #endif
86
87 /* Size of a general (integer) register: */
88 #define SPARC_INTREG_SIZE (REGISTER_RAW_SIZE (G0_REGNUM))
89
90 /* Offset within the call dummy stack of the saved registers. */
91 #if (GDB_TARGET_IS_SPARC64)
92 #define DUMMY_REG_SAVE_OFFSET (128 + 16)
93 #else
94 #define DUMMY_REG_SAVE_OFFSET 0x60
95 #endif
96
97 #endif /* GDB_MULTI_ARCH */
98
99 struct gdbarch_tdep
100 {
101 int has_fpu;
102 int fp_register_bytes;
103 int y_regnum;
104 int fp_max_regnum;
105 int intreg_size;
106 int reg_save_offset;
107 int call_dummy_call_offset;
108 int print_insn_mach;
109 };
110
111 /* Now make GDB_TARGET_IS_SPARC64 a runtime test. */
112 /* FIXME MVS: or try testing bfd_arch_info.arch and bfd_arch_info.mach ...
113 * define GDB_TARGET_IS_SPARC64 \
114 * (TARGET_ARCHITECTURE->arch == bfd_arch_sparc && \
115 * (TARGET_ARCHITECTURE->mach == bfd_mach_sparc_v9 || \
116 * TARGET_ARCHITECTURE->mach == bfd_mach_sparc_v9a))
117 */
118
119 /* From infrun.c */
120 extern int stop_after_trap;
121
122 /* We don't store all registers immediately when requested, since they
123 get sent over in large chunks anyway. Instead, we accumulate most
124 of the changes and send them over once. "deferred_stores" keeps
125 track of which sets of registers we have locally-changed copies of,
126 so we only need send the groups that have changed. */
127
128 int deferred_stores = 0; /* Accumulated stores we want to do eventually. */
129
130
131 /* Some machines, such as Fujitsu SPARClite 86x, have a bi-endian mode
132 where instructions are big-endian and data are little-endian.
133 This flag is set when we detect that the target is of this type. */
134
135 int bi_endian = 0;
136
137
138 /* Fetch a single instruction. Even on bi-endian machines
139 such as sparc86x, instructions are always big-endian. */
140
141 static unsigned long
142 fetch_instruction (pc)
143 CORE_ADDR pc;
144 {
145 unsigned long retval;
146 int i;
147 unsigned char buf[4];
148
149 read_memory (pc, buf, sizeof (buf));
150
151 /* Start at the most significant end of the integer, and work towards
152 the least significant. */
153 retval = 0;
154 for (i = 0; i < sizeof (buf); ++i)
155 retval = (retval << 8) | buf[i];
156 return retval;
157 }
158
159
160 /* Branches with prediction are treated like their non-predicting cousins. */
161 /* FIXME: What about floating point branches? */
162
163 /* Macros to extract fields from sparc instructions. */
164 #define X_OP(i) (((i) >> 30) & 0x3)
165 #define X_RD(i) (((i) >> 25) & 0x1f)
166 #define X_A(i) (((i) >> 29) & 1)
167 #define X_COND(i) (((i) >> 25) & 0xf)
168 #define X_OP2(i) (((i) >> 22) & 0x7)
169 #define X_IMM22(i) ((i) & 0x3fffff)
170 #define X_OP3(i) (((i) >> 19) & 0x3f)
171 #define X_RS1(i) (((i) >> 14) & 0x1f)
172 #define X_I(i) (((i) >> 13) & 1)
173 #define X_IMM13(i) ((i) & 0x1fff)
174 /* Sign extension macros. */
175 #define X_SIMM13(i) ((X_IMM13 (i) ^ 0x1000) - 0x1000)
176 #define X_DISP22(i) ((X_IMM22 (i) ^ 0x200000) - 0x200000)
177 #define X_CC(i) (((i) >> 20) & 3)
178 #define X_P(i) (((i) >> 19) & 1)
179 #define X_DISP19(i) ((((i) & 0x7ffff) ^ 0x40000) - 0x40000)
180 #define X_RCOND(i) (((i) >> 25) & 7)
181 #define X_DISP16(i) ((((((i) >> 6) && 0xc000) | ((i) & 0x3fff)) ^ 0x8000) - 0x8000)
182 #define X_FCN(i) (((i) >> 25) & 31)
183
184 typedef enum
185 {
186 Error, not_branch, bicc, bicca, ba, baa, ticc, ta, done_retry
187 } branch_type;
188
189 /* Simulate single-step ptrace call for sun4. Code written by Gary
190 Beihl (beihl@mcc.com). */
191
192 /* npc4 and next_pc describe the situation at the time that the
193 step-breakpoint was set, not necessary the current value of NPC_REGNUM. */
194 static CORE_ADDR next_pc, npc4, target;
195 static int brknpc4, brktrg;
196 typedef char binsn_quantum[BREAKPOINT_MAX];
197 static binsn_quantum break_mem[3];
198
199 static branch_type isbranch (long, CORE_ADDR, CORE_ADDR *);
200
201 /* single_step() is called just before we want to resume the inferior,
202 if we want to single-step it but there is no hardware or kernel single-step
203 support (as on all SPARCs). We find all the possible targets of the
204 coming instruction and breakpoint them.
205
206 single_step is also called just after the inferior stops. If we had
207 set up a simulated single-step, we undo our damage. */
208
209 void
210 sparc_software_single_step (ignore, insert_breakpoints_p)
211 enum target_signal ignore; /* pid, but we don't need it */
212 int insert_breakpoints_p;
213 {
214 branch_type br;
215 CORE_ADDR pc;
216 long pc_instruction;
217
218 if (insert_breakpoints_p)
219 {
220 /* Always set breakpoint for NPC. */
221 next_pc = read_register (NPC_REGNUM);
222 npc4 = next_pc + 4; /* branch not taken */
223
224 target_insert_breakpoint (next_pc, break_mem[0]);
225 /* printf_unfiltered ("set break at %x\n",next_pc); */
226
227 pc = read_register (PC_REGNUM);
228 pc_instruction = fetch_instruction (pc);
229 br = isbranch (pc_instruction, pc, &target);
230 brknpc4 = brktrg = 0;
231
232 if (br == bicca)
233 {
234 /* Conditional annulled branch will either end up at
235 npc (if taken) or at npc+4 (if not taken).
236 Trap npc+4. */
237 brknpc4 = 1;
238 target_insert_breakpoint (npc4, break_mem[1]);
239 }
240 else if (br == baa && target != next_pc)
241 {
242 /* Unconditional annulled branch will always end up at
243 the target. */
244 brktrg = 1;
245 target_insert_breakpoint (target, break_mem[2]);
246 }
247 else if (GDB_TARGET_IS_SPARC64 && br == done_retry)
248 {
249 brktrg = 1;
250 target_insert_breakpoint (target, break_mem[2]);
251 }
252 }
253 else
254 {
255 /* Remove breakpoints */
256 target_remove_breakpoint (next_pc, break_mem[0]);
257
258 if (brknpc4)
259 target_remove_breakpoint (npc4, break_mem[1]);
260
261 if (brktrg)
262 target_remove_breakpoint (target, break_mem[2]);
263 }
264 }
265 \f
266 struct frame_extra_info
267 {
268 CORE_ADDR bottom;
269 int in_prologue;
270 int flat;
271 /* Following fields only relevant for flat frames. */
272 CORE_ADDR pc_addr;
273 CORE_ADDR fp_addr;
274 /* Add this to ->frame to get the value of the stack pointer at the
275 time of the register saves. */
276 int sp_offset;
277 };
278
279 /* Call this for each newly created frame. For SPARC, we need to
280 calculate the bottom of the frame, and do some extra work if the
281 prologue has been generated via the -mflat option to GCC. In
282 particular, we need to know where the previous fp and the pc have
283 been stashed, since their exact position within the frame may vary. */
284
285 void
286 sparc_init_extra_frame_info (fromleaf, fi)
287 int fromleaf;
288 struct frame_info *fi;
289 {
290 char *name;
291 CORE_ADDR prologue_start, prologue_end;
292 int insn;
293
294 fi->extra_info = (struct frame_extra_info *)
295 frame_obstack_alloc (sizeof (struct frame_extra_info));
296 frame_saved_regs_zalloc (fi);
297
298 fi->extra_info->bottom =
299 (fi->next ?
300 (fi->frame == fi->next->frame ? fi->next->extra_info->bottom :
301 fi->next->frame) : read_sp ());
302
303 /* If fi->next is NULL, then we already set ->frame by passing read_fp()
304 to create_new_frame. */
305 if (fi->next)
306 {
307 char *buf;
308
309 buf = alloca (MAX_REGISTER_RAW_SIZE);
310
311 /* Compute ->frame as if not flat. If it is flat, we'll change
312 it later. */
313 if (fi->next->next != NULL
314 && (fi->next->next->signal_handler_caller
315 || frame_in_dummy (fi->next->next))
316 && frameless_look_for_prologue (fi->next))
317 {
318 /* A frameless function interrupted by a signal did not change
319 the frame pointer, fix up frame pointer accordingly. */
320 fi->frame = FRAME_FP (fi->next);
321 fi->extra_info->bottom = fi->next->extra_info->bottom;
322 }
323 else
324 {
325 /* Should we adjust for stack bias here? */
326 get_saved_register (buf, 0, 0, fi, FP_REGNUM, 0);
327 fi->frame = extract_address (buf, REGISTER_RAW_SIZE (FP_REGNUM));
328
329 if (GDB_TARGET_IS_SPARC64 && (fi->frame & 1))
330 fi->frame += 2047;
331 }
332 }
333
334 /* Decide whether this is a function with a ``flat register window''
335 frame. For such functions, the frame pointer is actually in %i7. */
336 fi->extra_info->flat = 0;
337 fi->extra_info->in_prologue = 0;
338 if (find_pc_partial_function (fi->pc, &name, &prologue_start, &prologue_end))
339 {
340 /* See if the function starts with an add (which will be of a
341 negative number if a flat frame) to the sp. FIXME: Does not
342 handle large frames which will need more than one instruction
343 to adjust the sp. */
344 insn = fetch_instruction (prologue_start, 4);
345 if (X_OP (insn) == 2 && X_RD (insn) == 14 && X_OP3 (insn) == 0
346 && X_I (insn) && X_SIMM13 (insn) < 0)
347 {
348 int offset = X_SIMM13 (insn);
349
350 /* Then look for a save of %i7 into the frame. */
351 insn = fetch_instruction (prologue_start + 4);
352 if (X_OP (insn) == 3
353 && X_RD (insn) == 31
354 && X_OP3 (insn) == 4
355 && X_RS1 (insn) == 14)
356 {
357 char *buf;
358
359 buf = alloca (MAX_REGISTER_RAW_SIZE);
360
361 /* We definitely have a flat frame now. */
362 fi->extra_info->flat = 1;
363
364 fi->extra_info->sp_offset = offset;
365
366 /* Overwrite the frame's address with the value in %i7. */
367 get_saved_register (buf, 0, 0, fi, I7_REGNUM, 0);
368 fi->frame = extract_address (buf, REGISTER_RAW_SIZE (I7_REGNUM));
369
370 if (GDB_TARGET_IS_SPARC64 && (fi->frame & 1))
371 fi->frame += 2047;
372
373 /* Record where the fp got saved. */
374 fi->extra_info->fp_addr =
375 fi->frame + fi->extra_info->sp_offset + X_SIMM13 (insn);
376
377 /* Also try to collect where the pc got saved to. */
378 fi->extra_info->pc_addr = 0;
379 insn = fetch_instruction (prologue_start + 12);
380 if (X_OP (insn) == 3
381 && X_RD (insn) == 15
382 && X_OP3 (insn) == 4
383 && X_RS1 (insn) == 14)
384 fi->extra_info->pc_addr =
385 fi->frame + fi->extra_info->sp_offset + X_SIMM13 (insn);
386 }
387 }
388 else
389 {
390 /* Check if the PC is in the function prologue before a SAVE
391 instruction has been executed yet. If so, set the frame
392 to the current value of the stack pointer and set
393 the in_prologue flag. */
394 CORE_ADDR addr;
395 struct symtab_and_line sal;
396
397 sal = find_pc_line (prologue_start, 0);
398 if (sal.line == 0) /* no line info, use PC */
399 prologue_end = fi->pc;
400 else if (sal.end < prologue_end)
401 prologue_end = sal.end;
402 if (fi->pc < prologue_end)
403 {
404 for (addr = prologue_start; addr < fi->pc; addr += 4)
405 {
406 insn = read_memory_integer (addr, 4);
407 if (X_OP (insn) == 2 && X_OP3 (insn) == 0x3c)
408 break; /* SAVE seen, stop searching */
409 }
410 if (addr >= fi->pc)
411 {
412 fi->extra_info->in_prologue = 1;
413 fi->frame = read_register (SP_REGNUM);
414 }
415 }
416 }
417 }
418 if (fi->next && fi->frame == 0)
419 {
420 /* Kludge to cause init_prev_frame_info to destroy the new frame. */
421 fi->frame = fi->next->frame;
422 fi->pc = fi->next->pc;
423 }
424 }
425
426 CORE_ADDR
427 sparc_frame_chain (frame)
428 struct frame_info *frame;
429 {
430 /* Value that will cause FRAME_CHAIN_VALID to not worry about the chain
431 value. If it realy is zero, we detect it later in
432 sparc_init_prev_frame. */
433 return (CORE_ADDR) 1;
434 }
435
436 CORE_ADDR
437 sparc_extract_struct_value_address (regbuf)
438 char *regbuf;
439 {
440 return extract_address (regbuf + REGISTER_BYTE (O0_REGNUM),
441 REGISTER_RAW_SIZE (O0_REGNUM));
442 }
443
444 /* Find the pc saved in frame FRAME. */
445
446 CORE_ADDR
447 sparc_frame_saved_pc (frame)
448 struct frame_info *frame;
449 {
450 char *buf;
451 CORE_ADDR addr;
452
453 buf = alloca (MAX_REGISTER_RAW_SIZE);
454 if (frame->signal_handler_caller)
455 {
456 /* This is the signal trampoline frame.
457 Get the saved PC from the sigcontext structure. */
458
459 #ifndef SIGCONTEXT_PC_OFFSET
460 #define SIGCONTEXT_PC_OFFSET 12
461 #endif
462
463 CORE_ADDR sigcontext_addr;
464 char *scbuf;
465 int saved_pc_offset = SIGCONTEXT_PC_OFFSET;
466 char *name = NULL;
467
468 scbuf = alloca (TARGET_PTR_BIT / HOST_CHAR_BIT);
469
470 /* Solaris2 ucbsigvechandler passes a pointer to a sigcontext
471 as the third parameter. The offset to the saved pc is 12. */
472 find_pc_partial_function (frame->pc, &name,
473 (CORE_ADDR *) NULL, (CORE_ADDR *) NULL);
474 if (name && STREQ (name, "ucbsigvechandler"))
475 saved_pc_offset = 12;
476
477 /* The sigcontext address is contained in register O2. */
478 get_saved_register (buf, (int *) NULL, (CORE_ADDR *) NULL,
479 frame, O0_REGNUM + 2, (enum lval_type *) NULL);
480 sigcontext_addr = extract_address (buf, REGISTER_RAW_SIZE (O0_REGNUM + 2));
481
482 /* Don't cause a memory_error when accessing sigcontext in case the
483 stack layout has changed or the stack is corrupt. */
484 target_read_memory (sigcontext_addr + saved_pc_offset,
485 scbuf, sizeof (scbuf));
486 return extract_address (scbuf, sizeof (scbuf));
487 }
488 else if (frame->extra_info->in_prologue ||
489 (frame->next != NULL &&
490 (frame->next->signal_handler_caller ||
491 frame_in_dummy (frame->next)) &&
492 frameless_look_for_prologue (frame)))
493 {
494 /* A frameless function interrupted by a signal did not save
495 the PC, it is still in %o7. */
496 get_saved_register (buf, (int *) NULL, (CORE_ADDR *) NULL,
497 frame, O7_REGNUM, (enum lval_type *) NULL);
498 return PC_ADJUST (extract_address (buf, SPARC_INTREG_SIZE));
499 }
500 if (frame->extra_info->flat)
501 addr = frame->extra_info->pc_addr;
502 else
503 addr = frame->extra_info->bottom + FRAME_SAVED_I0 +
504 SPARC_INTREG_SIZE * (I7_REGNUM - I0_REGNUM);
505
506 if (addr == 0)
507 /* A flat frame leaf function might not save the PC anywhere,
508 just leave it in %o7. */
509 return PC_ADJUST (read_register (O7_REGNUM));
510
511 read_memory (addr, buf, SPARC_INTREG_SIZE);
512 return PC_ADJUST (extract_address (buf, SPARC_INTREG_SIZE));
513 }
514
515 /* Since an individual frame in the frame cache is defined by two
516 arguments (a frame pointer and a stack pointer), we need two
517 arguments to get info for an arbitrary stack frame. This routine
518 takes two arguments and makes the cached frames look as if these
519 two arguments defined a frame on the cache. This allows the rest
520 of info frame to extract the important arguments without
521 difficulty. */
522
523 struct frame_info *
524 setup_arbitrary_frame (argc, argv)
525 int argc;
526 CORE_ADDR *argv;
527 {
528 struct frame_info *frame;
529
530 if (argc != 2)
531 error ("Sparc frame specifications require two arguments: fp and sp");
532
533 frame = create_new_frame (argv[0], 0);
534
535 if (!frame)
536 internal_error ("create_new_frame returned invalid frame");
537
538 frame->extra_info->bottom = argv[1];
539 frame->pc = FRAME_SAVED_PC (frame);
540 return frame;
541 }
542
543 /* Given a pc value, skip it forward past the function prologue by
544 disassembling instructions that appear to be a prologue.
545
546 If FRAMELESS_P is set, we are only testing to see if the function
547 is frameless. This allows a quicker answer.
548
549 This routine should be more specific in its actions; making sure
550 that it uses the same register in the initial prologue section. */
551
552 static CORE_ADDR examine_prologue (CORE_ADDR, int, struct frame_info *,
553 CORE_ADDR *);
554
555 static CORE_ADDR
556 examine_prologue (start_pc, frameless_p, fi, saved_regs)
557 CORE_ADDR start_pc;
558 int frameless_p;
559 struct frame_info *fi;
560 CORE_ADDR *saved_regs;
561 {
562 int insn;
563 int dest = -1;
564 CORE_ADDR pc = start_pc;
565 int is_flat = 0;
566
567 insn = fetch_instruction (pc);
568
569 /* Recognize the `sethi' insn and record its destination. */
570 if (X_OP (insn) == 0 && X_OP2 (insn) == 4)
571 {
572 dest = X_RD (insn);
573 pc += 4;
574 insn = fetch_instruction (pc);
575 }
576
577 /* Recognize an add immediate value to register to either %g1 or
578 the destination register recorded above. Actually, this might
579 well recognize several different arithmetic operations.
580 It doesn't check that rs1 == rd because in theory "sub %g0, 5, %g1"
581 followed by "save %sp, %g1, %sp" is a valid prologue (Not that
582 I imagine any compiler really does that, however). */
583 if (X_OP (insn) == 2
584 && X_I (insn)
585 && (X_RD (insn) == 1 || X_RD (insn) == dest))
586 {
587 pc += 4;
588 insn = fetch_instruction (pc);
589 }
590
591 /* Recognize any SAVE insn. */
592 if (X_OP (insn) == 2 && X_OP3 (insn) == 60)
593 {
594 pc += 4;
595 if (frameless_p) /* If the save is all we care about, */
596 return pc; /* return before doing more work */
597 insn = fetch_instruction (pc);
598 }
599 /* Recognize add to %sp. */
600 else if (X_OP (insn) == 2 && X_RD (insn) == 14 && X_OP3 (insn) == 0)
601 {
602 pc += 4;
603 if (frameless_p) /* If the add is all we care about, */
604 return pc; /* return before doing more work */
605 is_flat = 1;
606 insn = fetch_instruction (pc);
607 /* Recognize store of frame pointer (i7). */
608 if (X_OP (insn) == 3
609 && X_RD (insn) == 31
610 && X_OP3 (insn) == 4
611 && X_RS1 (insn) == 14)
612 {
613 pc += 4;
614 insn = fetch_instruction (pc);
615
616 /* Recognize sub %sp, <anything>, %i7. */
617 if (X_OP (insn) == 2
618 && X_OP3 (insn) == 4
619 && X_RS1 (insn) == 14
620 && X_RD (insn) == 31)
621 {
622 pc += 4;
623 insn = fetch_instruction (pc);
624 }
625 else
626 return pc;
627 }
628 else
629 return pc;
630 }
631 else
632 /* Without a save or add instruction, it's not a prologue. */
633 return start_pc;
634
635 while (1)
636 {
637 /* Recognize stores into the frame from the input registers.
638 This recognizes all non alternate stores of an input register,
639 into a location offset from the frame pointer between
640 +68 and +92. */
641
642 /* The above will fail for arguments that are promoted
643 (eg. shorts to ints or floats to doubles), because the compiler
644 will pass them in positive-offset frame space, but the prologue
645 will save them (after conversion) in negative frame space at an
646 unpredictable offset. Therefore I am going to remove the
647 restriction on the target-address of the save, on the theory
648 that any unbroken sequence of saves from input registers must
649 be part of the prologue. In un-optimized code (at least), I'm
650 fairly sure that the compiler would emit SOME other instruction
651 (eg. a move or add) before emitting another save that is actually
652 a part of the function body.
653
654 Besides, the reserved stack space is different for SPARC64 anyway.
655
656 MVS 4/23/2000 */
657
658 if (X_OP (insn) == 3
659 && (X_OP3 (insn) & 0x3c) == 4 /* Store, non-alternate. */
660 && (X_RD (insn) & 0x18) == 0x18 /* Input register. */
661 && X_I (insn) /* Immediate mode. */
662 && X_RS1 (insn) == 30) /* Off of frame pointer. */
663 ; /* empty statement -- fall thru to end of loop */
664 else if (GDB_TARGET_IS_SPARC64
665 && X_OP (insn) == 3
666 && (X_OP3 (insn) & 0x3c) == 12 /* store, extended (64-bit) */
667 && (X_RD (insn) & 0x18) == 0x18 /* input register */
668 && X_I (insn) /* immediate mode */
669 && X_RS1 (insn) == 30) /* off of frame pointer */
670 ; /* empty statement -- fall thru to end of loop */
671 else if (X_OP (insn) == 3
672 && (X_OP3 (insn) & 0x3c) == 36 /* store, floating-point */
673 && X_I (insn) /* immediate mode */
674 && X_RS1 (insn) == 30) /* off of frame pointer */
675 ; /* empty statement -- fall thru to end of loop */
676 else if (is_flat
677 && X_OP (insn) == 3
678 && X_OP3 (insn) == 4 /* store? */
679 && X_RS1 (insn) == 14) /* off of frame pointer */
680 {
681 if (saved_regs && X_I (insn))
682 saved_regs[X_RD (insn)] =
683 fi->frame + fi->extra_info->sp_offset + X_SIMM13 (insn);
684 }
685 else
686 break;
687 pc += 4;
688 insn = fetch_instruction (pc);
689 }
690
691 return pc;
692 }
693
694 CORE_ADDR
695 sparc_skip_prologue (start_pc, frameless_p)
696 CORE_ADDR start_pc;
697 int frameless_p;
698 {
699 return examine_prologue (start_pc, frameless_p, NULL, NULL);
700 }
701
702 /* Check instruction at ADDR to see if it is a branch.
703 All non-annulled instructions will go to NPC or will trap.
704 Set *TARGET if we find a candidate branch; set to zero if not.
705
706 This isn't static as it's used by remote-sa.sparc.c. */
707
708 static branch_type
709 isbranch (instruction, addr, target)
710 long instruction;
711 CORE_ADDR addr, *target;
712 {
713 branch_type val = not_branch;
714 long int offset = 0; /* Must be signed for sign-extend. */
715
716 *target = 0;
717
718 if (X_OP (instruction) == 0
719 && (X_OP2 (instruction) == 2
720 || X_OP2 (instruction) == 6
721 || X_OP2 (instruction) == 1
722 || X_OP2 (instruction) == 3
723 || X_OP2 (instruction) == 5
724 || (GDB_TARGET_IS_SPARC64 && X_OP2 (instruction) == 7)))
725 {
726 if (X_COND (instruction) == 8)
727 val = X_A (instruction) ? baa : ba;
728 else
729 val = X_A (instruction) ? bicca : bicc;
730 switch (X_OP2 (instruction))
731 {
732 case 7:
733 if (!GDB_TARGET_IS_SPARC64)
734 break;
735 /* else fall thru */
736 case 2:
737 case 6:
738 offset = 4 * X_DISP22 (instruction);
739 break;
740 case 1:
741 case 5:
742 offset = 4 * X_DISP19 (instruction);
743 break;
744 case 3:
745 offset = 4 * X_DISP16 (instruction);
746 break;
747 }
748 *target = addr + offset;
749 }
750 else if (GDB_TARGET_IS_SPARC64
751 && X_OP (instruction) == 2
752 && X_OP3 (instruction) == 62)
753 {
754 if (X_FCN (instruction) == 0)
755 {
756 /* done */
757 *target = read_register (TNPC_REGNUM);
758 val = done_retry;
759 }
760 else if (X_FCN (instruction) == 1)
761 {
762 /* retry */
763 *target = read_register (TPC_REGNUM);
764 val = done_retry;
765 }
766 }
767
768 return val;
769 }
770 \f
771 /* Find register number REGNUM relative to FRAME and put its
772 (raw) contents in *RAW_BUFFER. Set *OPTIMIZED if the variable
773 was optimized out (and thus can't be fetched). If the variable
774 was fetched from memory, set *ADDRP to where it was fetched from,
775 otherwise it was fetched from a register.
776
777 The argument RAW_BUFFER must point to aligned memory. */
778
779 void
780 sparc_get_saved_register (raw_buffer, optimized, addrp, frame, regnum, lval)
781 char *raw_buffer;
782 int *optimized;
783 CORE_ADDR *addrp;
784 struct frame_info *frame;
785 int regnum;
786 enum lval_type *lval;
787 {
788 struct frame_info *frame1;
789 CORE_ADDR addr;
790
791 if (!target_has_registers)
792 error ("No registers.");
793
794 if (optimized)
795 *optimized = 0;
796
797 addr = 0;
798
799 /* FIXME This code extracted from infcmd.c; should put elsewhere! */
800 if (frame == NULL)
801 {
802 /* error ("No selected frame."); */
803 if (!target_has_registers)
804 error ("The program has no registers now.");
805 if (selected_frame == NULL)
806 error ("No selected frame.");
807 /* Try to use selected frame */
808 frame = get_prev_frame (selected_frame);
809 if (frame == 0)
810 error ("Cmd not meaningful in the outermost frame.");
811 }
812
813
814 frame1 = frame->next;
815
816 /* Get saved PC from the frame info if not in innermost frame. */
817 if (regnum == PC_REGNUM && frame1 != NULL)
818 {
819 if (lval != NULL)
820 *lval = not_lval;
821 if (raw_buffer != NULL)
822 {
823 /* Put it back in target format. */
824 store_address (raw_buffer, REGISTER_RAW_SIZE (regnum), frame->pc);
825 }
826 if (addrp != NULL)
827 *addrp = 0;
828 return;
829 }
830
831 while (frame1 != NULL)
832 {
833 /* FIXME MVS: wrong test for dummy frame at entry. */
834
835 if (frame1->pc >= (frame1->extra_info->bottom ?
836 frame1->extra_info->bottom : read_sp ())
837 && frame1->pc <= FRAME_FP (frame1))
838 {
839 /* Dummy frame. All but the window regs are in there somewhere.
840 The window registers are saved on the stack, just like in a
841 normal frame. */
842 if (regnum >= G1_REGNUM && regnum < G1_REGNUM + 7)
843 addr = frame1->frame + (regnum - G0_REGNUM) * SPARC_INTREG_SIZE
844 - (FP_REGISTER_BYTES + 8 * SPARC_INTREG_SIZE);
845 else if (regnum >= I0_REGNUM && regnum < I0_REGNUM + 8)
846 addr = (frame1->prev->extra_info->bottom
847 + (regnum - I0_REGNUM) * SPARC_INTREG_SIZE
848 + FRAME_SAVED_I0);
849 else if (regnum >= L0_REGNUM && regnum < L0_REGNUM + 8)
850 addr = (frame1->prev->extra_info->bottom
851 + (regnum - L0_REGNUM) * SPARC_INTREG_SIZE
852 + FRAME_SAVED_L0);
853 else if (regnum >= O0_REGNUM && regnum < O0_REGNUM + 8)
854 addr = frame1->frame + (regnum - O0_REGNUM) * SPARC_INTREG_SIZE
855 - (FP_REGISTER_BYTES + 16 * SPARC_INTREG_SIZE);
856 else if (SPARC_HAS_FPU &&
857 regnum >= FP0_REGNUM && regnum < FP0_REGNUM + 32)
858 addr = frame1->frame + (regnum - FP0_REGNUM) * 4
859 - (FP_REGISTER_BYTES);
860 else if (GDB_TARGET_IS_SPARC64 && SPARC_HAS_FPU &&
861 regnum >= FP0_REGNUM + 32 && regnum < FP_MAX_REGNUM)
862 addr = frame1->frame + 32 * 4 + (regnum - FP0_REGNUM - 32) * 8
863 - (FP_REGISTER_BYTES);
864 else if (regnum >= Y_REGNUM && regnum < NUM_REGS)
865 addr = frame1->frame + (regnum - Y_REGNUM) * SPARC_INTREG_SIZE
866 - (FP_REGISTER_BYTES + 24 * SPARC_INTREG_SIZE);
867 }
868 else if (frame1->extra_info->flat)
869 {
870
871 if (regnum == RP_REGNUM)
872 addr = frame1->extra_info->pc_addr;
873 else if (regnum == I7_REGNUM)
874 addr = frame1->extra_info->fp_addr;
875 else
876 {
877 CORE_ADDR func_start;
878 CORE_ADDR *regs;
879
880 regs = alloca (NUM_REGS * sizeof (CORE_ADDR));
881 memset (regs, 0, NUM_REGS * sizeof (CORE_ADDR));
882
883 find_pc_partial_function (frame1->pc, NULL, &func_start, NULL);
884 examine_prologue (func_start, 0, frame1, regs);
885 addr = regs[regnum];
886 }
887 }
888 else
889 {
890 /* Normal frame. Local and In registers are saved on stack. */
891 if (regnum >= I0_REGNUM && regnum < I0_REGNUM + 8)
892 addr = (frame1->prev->extra_info->bottom
893 + (regnum - I0_REGNUM) * SPARC_INTREG_SIZE
894 + FRAME_SAVED_I0);
895 else if (regnum >= L0_REGNUM && regnum < L0_REGNUM + 8)
896 addr = (frame1->prev->extra_info->bottom
897 + (regnum - L0_REGNUM) * SPARC_INTREG_SIZE
898 + FRAME_SAVED_L0);
899 else if (regnum >= O0_REGNUM && regnum < O0_REGNUM + 8)
900 {
901 /* Outs become ins. */
902 get_saved_register (raw_buffer, optimized, addrp, frame1,
903 (regnum - O0_REGNUM + I0_REGNUM), lval);
904 return;
905 }
906 }
907 if (addr != 0)
908 break;
909 frame1 = frame1->next;
910 }
911 if (addr != 0)
912 {
913 if (lval != NULL)
914 *lval = lval_memory;
915 if (regnum == SP_REGNUM)
916 {
917 if (raw_buffer != NULL)
918 {
919 /* Put it back in target format. */
920 store_address (raw_buffer, REGISTER_RAW_SIZE (regnum), addr);
921 }
922 if (addrp != NULL)
923 *addrp = 0;
924 return;
925 }
926 if (raw_buffer != NULL)
927 read_memory (addr, raw_buffer, REGISTER_RAW_SIZE (regnum));
928 }
929 else
930 {
931 if (lval != NULL)
932 *lval = lval_register;
933 addr = REGISTER_BYTE (regnum);
934 if (raw_buffer != NULL)
935 read_register_gen (regnum, raw_buffer);
936 }
937 if (addrp != NULL)
938 *addrp = addr;
939 }
940
941 /* Push an empty stack frame, and record in it the current PC, regs, etc.
942
943 We save the non-windowed registers and the ins. The locals and outs
944 are new; they don't need to be saved. The i's and l's of
945 the last frame were already saved on the stack. */
946
947 /* Definitely see tm-sparc.h for more doc of the frame format here. */
948
949 /* See tm-sparc.h for how this is calculated. */
950
951 #define DUMMY_STACK_REG_BUF_SIZE \
952 (((8+8+8) * SPARC_INTREG_SIZE) + FP_REGISTER_BYTES)
953 #define DUMMY_STACK_SIZE \
954 (DUMMY_STACK_REG_BUF_SIZE + DUMMY_REG_SAVE_OFFSET)
955
956 void
957 sparc_push_dummy_frame ()
958 {
959 CORE_ADDR sp, old_sp;
960 char *register_temp;
961
962 register_temp = alloca (DUMMY_STACK_SIZE);
963
964 old_sp = sp = read_sp ();
965
966 if (GDB_TARGET_IS_SPARC64)
967 {
968 /* PC, NPC, CCR, FSR, FPRS, Y, ASI */
969 read_register_bytes (REGISTER_BYTE (PC_REGNUM), &register_temp[0],
970 REGISTER_RAW_SIZE (PC_REGNUM) * 7);
971 read_register_bytes (REGISTER_BYTE (PSTATE_REGNUM),
972 &register_temp[7 * SPARC_INTREG_SIZE],
973 REGISTER_RAW_SIZE (PSTATE_REGNUM));
974 /* FIXME: not sure what needs to be saved here. */
975 }
976 else
977 {
978 /* Y, PS, WIM, TBR, PC, NPC, FPS, CPS regs */
979 read_register_bytes (REGISTER_BYTE (Y_REGNUM), &register_temp[0],
980 REGISTER_RAW_SIZE (Y_REGNUM) * 8);
981 }
982
983 read_register_bytes (REGISTER_BYTE (O0_REGNUM),
984 &register_temp[8 * SPARC_INTREG_SIZE],
985 SPARC_INTREG_SIZE * 8);
986
987 read_register_bytes (REGISTER_BYTE (G0_REGNUM),
988 &register_temp[16 * SPARC_INTREG_SIZE],
989 SPARC_INTREG_SIZE * 8);
990
991 if (SPARC_HAS_FPU)
992 read_register_bytes (REGISTER_BYTE (FP0_REGNUM),
993 &register_temp[24 * SPARC_INTREG_SIZE],
994 FP_REGISTER_BYTES);
995
996 sp -= DUMMY_STACK_SIZE;
997
998 write_sp (sp);
999
1000 write_memory (sp + DUMMY_REG_SAVE_OFFSET, &register_temp[0],
1001 DUMMY_STACK_REG_BUF_SIZE);
1002
1003 if (strcmp (target_shortname, "sim") != 0)
1004 {
1005 write_fp (old_sp);
1006
1007 /* Set return address register for the call dummy to the current PC. */
1008 write_register (I7_REGNUM, read_pc () - 8);
1009 }
1010 else
1011 {
1012 /* The call dummy will write this value to FP before executing
1013 the 'save'. This ensures that register window flushes work
1014 correctly in the simulator. */
1015 write_register (G0_REGNUM + 1, read_register (FP_REGNUM));
1016
1017 /* The call dummy will write this value to FP after executing
1018 the 'save'. */
1019 write_register (G0_REGNUM + 2, old_sp);
1020
1021 /* The call dummy will write this value to the return address (%i7) after
1022 executing the 'save'. */
1023 write_register (G0_REGNUM + 3, read_pc () - 8);
1024
1025 /* Set the FP that the call dummy will be using after the 'save'.
1026 This makes backtraces from an inferior function call work properly. */
1027 write_register (FP_REGNUM, old_sp);
1028 }
1029 }
1030
1031 /* sparc_frame_find_saved_regs (). This function is here only because
1032 pop_frame uses it. Note there is an interesting corner case which
1033 I think few ports of GDB get right--if you are popping a frame
1034 which does not save some register that *is* saved by a more inner
1035 frame (such a frame will never be a dummy frame because dummy
1036 frames save all registers). Rewriting pop_frame to use
1037 get_saved_register would solve this problem and also get rid of the
1038 ugly duplication between sparc_frame_find_saved_regs and
1039 get_saved_register.
1040
1041 Stores, into an array of CORE_ADDR,
1042 the addresses of the saved registers of frame described by FRAME_INFO.
1043 This includes special registers such as pc and fp saved in special
1044 ways in the stack frame. sp is even more special:
1045 the address we return for it IS the sp for the next frame.
1046
1047 Note that on register window machines, we are currently making the
1048 assumption that window registers are being saved somewhere in the
1049 frame in which they are being used. If they are stored in an
1050 inferior frame, find_saved_register will break.
1051
1052 On the Sun 4, the only time all registers are saved is when
1053 a dummy frame is involved. Otherwise, the only saved registers
1054 are the LOCAL and IN registers which are saved as a result
1055 of the "save/restore" opcodes. This condition is determined
1056 by address rather than by value.
1057
1058 The "pc" is not stored in a frame on the SPARC. (What is stored
1059 is a return address minus 8.) sparc_pop_frame knows how to
1060 deal with that. Other routines might or might not.
1061
1062 See tm-sparc.h (PUSH_DUMMY_FRAME and friends) for CRITICAL information
1063 about how this works. */
1064
1065 static void sparc_frame_find_saved_regs (struct frame_info *, CORE_ADDR *);
1066
1067 static void
1068 sparc_frame_find_saved_regs (fi, saved_regs_addr)
1069 struct frame_info *fi;
1070 CORE_ADDR *saved_regs_addr;
1071 {
1072 register int regnum;
1073 CORE_ADDR frame_addr = FRAME_FP (fi);
1074
1075 if (!fi)
1076 internal_error ("Bad frame info struct in FRAME_FIND_SAVED_REGS");
1077
1078 memset (saved_regs_addr, 0, NUM_REGS * sizeof (CORE_ADDR));
1079
1080 if (fi->pc >= (fi->extra_info->bottom ?
1081 fi->extra_info->bottom : read_sp ())
1082 && fi->pc <= FRAME_FP (fi))
1083 {
1084 /* Dummy frame. All but the window regs are in there somewhere. */
1085 for (regnum = G1_REGNUM; regnum < G1_REGNUM + 7; regnum++)
1086 saved_regs_addr[regnum] =
1087 frame_addr + (regnum - G0_REGNUM) * SPARC_INTREG_SIZE
1088 - DUMMY_STACK_REG_BUF_SIZE + 16 * SPARC_INTREG_SIZE;
1089
1090 for (regnum = I0_REGNUM; regnum < I0_REGNUM + 8; regnum++)
1091 saved_regs_addr[regnum] =
1092 frame_addr + (regnum - I0_REGNUM) * SPARC_INTREG_SIZE
1093 - DUMMY_STACK_REG_BUF_SIZE + 8 * SPARC_INTREG_SIZE;
1094
1095 if (SPARC_HAS_FPU)
1096 for (regnum = FP0_REGNUM; regnum < FP_MAX_REGNUM; regnum++)
1097 saved_regs_addr[regnum] = frame_addr + (regnum - FP0_REGNUM) * 4
1098 - DUMMY_STACK_REG_BUF_SIZE + 24 * SPARC_INTREG_SIZE;
1099
1100 if (GDB_TARGET_IS_SPARC64)
1101 {
1102 for (regnum = PC_REGNUM; regnum < PC_REGNUM + 7; regnum++)
1103 {
1104 saved_regs_addr[regnum] =
1105 frame_addr + (regnum - PC_REGNUM) * SPARC_INTREG_SIZE
1106 - DUMMY_STACK_REG_BUF_SIZE;
1107 }
1108 saved_regs_addr[PSTATE_REGNUM] =
1109 frame_addr + 8 * SPARC_INTREG_SIZE - DUMMY_STACK_REG_BUF_SIZE;
1110 }
1111 else
1112 for (regnum = Y_REGNUM; regnum < NUM_REGS; regnum++)
1113 saved_regs_addr[regnum] =
1114 frame_addr + (regnum - Y_REGNUM) * SPARC_INTREG_SIZE
1115 - DUMMY_STACK_REG_BUF_SIZE;
1116
1117 frame_addr = fi->extra_info->bottom ?
1118 fi->extra_info->bottom : read_sp ();
1119 }
1120 else if (fi->extra_info->flat)
1121 {
1122 CORE_ADDR func_start;
1123 find_pc_partial_function (fi->pc, NULL, &func_start, NULL);
1124 examine_prologue (func_start, 0, fi, saved_regs_addr);
1125
1126 /* Flat register window frame. */
1127 saved_regs_addr[RP_REGNUM] = fi->extra_info->pc_addr;
1128 saved_regs_addr[I7_REGNUM] = fi->extra_info->fp_addr;
1129 }
1130 else
1131 {
1132 /* Normal frame. Just Local and In registers */
1133 frame_addr = fi->extra_info->bottom ?
1134 fi->extra_info->bottom : read_sp ();
1135 for (regnum = L0_REGNUM; regnum < L0_REGNUM + 8; regnum++)
1136 saved_regs_addr[regnum] =
1137 (frame_addr + (regnum - L0_REGNUM) * SPARC_INTREG_SIZE
1138 + FRAME_SAVED_L0);
1139 for (regnum = I0_REGNUM; regnum < I0_REGNUM + 8; regnum++)
1140 saved_regs_addr[regnum] =
1141 (frame_addr + (regnum - I0_REGNUM) * SPARC_INTREG_SIZE
1142 + FRAME_SAVED_I0);
1143 }
1144 if (fi->next)
1145 {
1146 if (fi->extra_info->flat)
1147 {
1148 saved_regs_addr[O7_REGNUM] = fi->extra_info->pc_addr;
1149 }
1150 else
1151 {
1152 /* Pull off either the next frame pointer or the stack pointer */
1153 CORE_ADDR next_next_frame_addr =
1154 (fi->next->extra_info->bottom ?
1155 fi->next->extra_info->bottom : read_sp ());
1156 for (regnum = O0_REGNUM; regnum < O0_REGNUM + 8; regnum++)
1157 saved_regs_addr[regnum] =
1158 (next_next_frame_addr
1159 + (regnum - O0_REGNUM) * SPARC_INTREG_SIZE
1160 + FRAME_SAVED_I0);
1161 }
1162 }
1163 /* Otherwise, whatever we would get from ptrace(GETREGS) is accurate */
1164 /* FIXME -- should this adjust for the sparc64 offset? */
1165 saved_regs_addr[SP_REGNUM] = FRAME_FP (fi);
1166 }
1167
1168 /* Discard from the stack the innermost frame, restoring all saved registers.
1169
1170 Note that the values stored in fsr by get_frame_saved_regs are *in
1171 the context of the called frame*. What this means is that the i
1172 regs of fsr must be restored into the o regs of the (calling) frame that
1173 we pop into. We don't care about the output regs of the calling frame,
1174 since unless it's a dummy frame, it won't have any output regs in it.
1175
1176 We never have to bother with %l (local) regs, since the called routine's
1177 locals get tossed, and the calling routine's locals are already saved
1178 on its stack. */
1179
1180 /* Definitely see tm-sparc.h for more doc of the frame format here. */
1181
1182 void
1183 sparc_pop_frame ()
1184 {
1185 register struct frame_info *frame = get_current_frame ();
1186 register CORE_ADDR pc;
1187 CORE_ADDR *fsr;
1188 char *raw_buffer;
1189 int regnum;
1190
1191 fsr = alloca (NUM_REGS * sizeof (CORE_ADDR));
1192 raw_buffer = alloca (REGISTER_BYTES);
1193 sparc_frame_find_saved_regs (frame, &fsr[0]);
1194 if (SPARC_HAS_FPU)
1195 {
1196 if (fsr[FP0_REGNUM])
1197 {
1198 read_memory (fsr[FP0_REGNUM], raw_buffer, FP_REGISTER_BYTES);
1199 write_register_bytes (REGISTER_BYTE (FP0_REGNUM),
1200 raw_buffer, FP_REGISTER_BYTES);
1201 }
1202 if (!(GDB_TARGET_IS_SPARC64))
1203 {
1204 if (fsr[FPS_REGNUM])
1205 {
1206 read_memory (fsr[FPS_REGNUM], raw_buffer, SPARC_INTREG_SIZE);
1207 write_register_gen (FPS_REGNUM, raw_buffer);
1208 }
1209 if (fsr[CPS_REGNUM])
1210 {
1211 read_memory (fsr[CPS_REGNUM], raw_buffer, SPARC_INTREG_SIZE);
1212 write_register_gen (CPS_REGNUM, raw_buffer);
1213 }
1214 }
1215 }
1216 if (fsr[G1_REGNUM])
1217 {
1218 read_memory (fsr[G1_REGNUM], raw_buffer, 7 * SPARC_INTREG_SIZE);
1219 write_register_bytes (REGISTER_BYTE (G1_REGNUM), raw_buffer,
1220 7 * SPARC_INTREG_SIZE);
1221 }
1222
1223 if (frame->extra_info->flat)
1224 {
1225 /* Each register might or might not have been saved, need to test
1226 individually. */
1227 for (regnum = L0_REGNUM; regnum < L0_REGNUM + 8; ++regnum)
1228 if (fsr[regnum])
1229 write_register (regnum, read_memory_integer (fsr[regnum],
1230 SPARC_INTREG_SIZE));
1231 for (regnum = I0_REGNUM; regnum < I0_REGNUM + 8; ++regnum)
1232 if (fsr[regnum])
1233 write_register (regnum, read_memory_integer (fsr[regnum],
1234 SPARC_INTREG_SIZE));
1235
1236 /* Handle all outs except stack pointer (o0-o5; o7). */
1237 for (regnum = O0_REGNUM; regnum < O0_REGNUM + 6; ++regnum)
1238 if (fsr[regnum])
1239 write_register (regnum, read_memory_integer (fsr[regnum],
1240 SPARC_INTREG_SIZE));
1241 if (fsr[O0_REGNUM + 7])
1242 write_register (O0_REGNUM + 7,
1243 read_memory_integer (fsr[O0_REGNUM + 7],
1244 SPARC_INTREG_SIZE));
1245
1246 write_sp (frame->frame);
1247 }
1248 else if (fsr[I0_REGNUM])
1249 {
1250 CORE_ADDR sp;
1251
1252 char *reg_temp;
1253
1254 reg_temp = alloca (REGISTER_BYTES);
1255
1256 read_memory (fsr[I0_REGNUM], raw_buffer, 8 * SPARC_INTREG_SIZE);
1257
1258 /* Get the ins and locals which we are about to restore. Just
1259 moving the stack pointer is all that is really needed, except
1260 store_inferior_registers is then going to write the ins and
1261 locals from the registers array, so we need to muck with the
1262 registers array. */
1263 sp = fsr[SP_REGNUM];
1264
1265 if (GDB_TARGET_IS_SPARC64 && (sp & 1))
1266 sp += 2047;
1267
1268 read_memory (sp, reg_temp, SPARC_INTREG_SIZE * 16);
1269
1270 /* Restore the out registers.
1271 Among other things this writes the new stack pointer. */
1272 write_register_bytes (REGISTER_BYTE (O0_REGNUM), raw_buffer,
1273 SPARC_INTREG_SIZE * 8);
1274
1275 write_register_bytes (REGISTER_BYTE (L0_REGNUM), reg_temp,
1276 SPARC_INTREG_SIZE * 16);
1277 }
1278
1279 if (!(GDB_TARGET_IS_SPARC64))
1280 if (fsr[PS_REGNUM])
1281 write_register (PS_REGNUM,
1282 read_memory_integer (fsr[PS_REGNUM],
1283 REGISTER_RAW_SIZE (PS_REGNUM)));
1284
1285 if (fsr[Y_REGNUM])
1286 write_register (Y_REGNUM,
1287 read_memory_integer (fsr[Y_REGNUM],
1288 REGISTER_RAW_SIZE (Y_REGNUM)));
1289 if (fsr[PC_REGNUM])
1290 {
1291 /* Explicitly specified PC (and maybe NPC) -- just restore them. */
1292 write_register (PC_REGNUM,
1293 read_memory_integer (fsr[PC_REGNUM],
1294 REGISTER_RAW_SIZE (PC_REGNUM)));
1295 if (fsr[NPC_REGNUM])
1296 write_register (NPC_REGNUM,
1297 read_memory_integer (fsr[NPC_REGNUM],
1298 REGISTER_RAW_SIZE (NPC_REGNUM)));
1299 }
1300 else if (frame->extra_info->flat)
1301 {
1302 if (frame->extra_info->pc_addr)
1303 pc = PC_ADJUST ((CORE_ADDR)
1304 read_memory_integer (frame->extra_info->pc_addr,
1305 REGISTER_RAW_SIZE (PC_REGNUM)));
1306 else
1307 {
1308 /* I think this happens only in the innermost frame, if so then
1309 it is a complicated way of saying
1310 "pc = read_register (O7_REGNUM);". */
1311 char *buf;
1312
1313 buf = alloca (MAX_REGISTER_RAW_SIZE);
1314 get_saved_register (buf, 0, 0, frame, O7_REGNUM, 0);
1315 pc = PC_ADJUST (extract_address
1316 (buf, REGISTER_RAW_SIZE (O7_REGNUM)));
1317 }
1318
1319 write_register (PC_REGNUM, pc);
1320 write_register (NPC_REGNUM, pc + 4);
1321 }
1322 else if (fsr[I7_REGNUM])
1323 {
1324 /* Return address in %i7 -- adjust it, then restore PC and NPC from it */
1325 pc = PC_ADJUST ((CORE_ADDR) read_memory_integer (fsr[I7_REGNUM],
1326 SPARC_INTREG_SIZE));
1327 write_register (PC_REGNUM, pc);
1328 write_register (NPC_REGNUM, pc + 4);
1329 }
1330 flush_cached_frames ();
1331 }
1332
1333 /* On the Sun 4 under SunOS, the compile will leave a fake insn which
1334 encodes the structure size being returned. If we detect such
1335 a fake insn, step past it. */
1336
1337 CORE_ADDR
1338 sparc_pc_adjust (pc)
1339 CORE_ADDR pc;
1340 {
1341 unsigned long insn;
1342 char buf[4];
1343 int err;
1344
1345 err = target_read_memory (pc + 8, buf, 4);
1346 insn = extract_unsigned_integer (buf, 4);
1347 if ((err == 0) && (insn & 0xffc00000) == 0)
1348 return pc + 12;
1349 else
1350 return pc + 8;
1351 }
1352
1353 /* If pc is in a shared library trampoline, return its target.
1354 The SunOs 4.x linker rewrites the jump table entries for PIC
1355 compiled modules in the main executable to bypass the dynamic linker
1356 with jumps of the form
1357 sethi %hi(addr),%g1
1358 jmp %g1+%lo(addr)
1359 and removes the corresponding jump table relocation entry in the
1360 dynamic relocations.
1361 find_solib_trampoline_target relies on the presence of the jump
1362 table relocation entry, so we have to detect these jump instructions
1363 by hand. */
1364
1365 CORE_ADDR
1366 sunos4_skip_trampoline_code (pc)
1367 CORE_ADDR pc;
1368 {
1369 unsigned long insn1;
1370 char buf[4];
1371 int err;
1372
1373 err = target_read_memory (pc, buf, 4);
1374 insn1 = extract_unsigned_integer (buf, 4);
1375 if (err == 0 && (insn1 & 0xffc00000) == 0x03000000)
1376 {
1377 unsigned long insn2;
1378
1379 err = target_read_memory (pc + 4, buf, 4);
1380 insn2 = extract_unsigned_integer (buf, 4);
1381 if (err == 0 && (insn2 & 0xffffe000) == 0x81c06000)
1382 {
1383 CORE_ADDR target_pc = (insn1 & 0x3fffff) << 10;
1384 int delta = insn2 & 0x1fff;
1385
1386 /* Sign extend the displacement. */
1387 if (delta & 0x1000)
1388 delta |= ~0x1fff;
1389 return target_pc + delta;
1390 }
1391 }
1392 return find_solib_trampoline_target (pc);
1393 }
1394 \f
1395 #ifdef USE_PROC_FS /* Target dependent support for /proc */
1396 /* *INDENT-OFF* */
1397 /* The /proc interface divides the target machine's register set up into
1398 two different sets, the general register set (gregset) and the floating
1399 point register set (fpregset). For each set, there is an ioctl to get
1400 the current register set and another ioctl to set the current values.
1401
1402 The actual structure passed through the ioctl interface is, of course,
1403 naturally machine dependent, and is different for each set of registers.
1404 For the sparc for example, the general register set is typically defined
1405 by:
1406
1407 typedef int gregset_t[38];
1408
1409 #define R_G0 0
1410 ...
1411 #define R_TBR 37
1412
1413 and the floating point set by:
1414
1415 typedef struct prfpregset {
1416 union {
1417 u_long pr_regs[32];
1418 double pr_dregs[16];
1419 } pr_fr;
1420 void * pr_filler;
1421 u_long pr_fsr;
1422 u_char pr_qcnt;
1423 u_char pr_q_entrysize;
1424 u_char pr_en;
1425 u_long pr_q[64];
1426 } prfpregset_t;
1427
1428 These routines provide the packing and unpacking of gregset_t and
1429 fpregset_t formatted data.
1430
1431 */
1432 /* *INDENT-ON* */
1433
1434
1435
1436 /* Given a pointer to a general register set in /proc format (gregset_t *),
1437 unpack the register contents and supply them as gdb's idea of the current
1438 register values. */
1439
1440 void
1441 supply_gregset (gregsetp)
1442 prgregset_t *gregsetp;
1443 {
1444 prgreg_t *regp = (prgreg_t *) gregsetp;
1445 int regi, offset = 0;
1446
1447 /* If the host is 64-bit sparc, but the target is 32-bit sparc,
1448 then the gregset may contain 64-bit ints while supply_register
1449 is expecting 32-bit ints. Compensate. */
1450 if (sizeof (regp[0]) == 8 && SPARC_INTREG_SIZE == 4)
1451 offset = 4;
1452
1453 /* GDB register numbers for Gn, On, Ln, In all match /proc reg numbers. */
1454 /* FIXME MVS: assumes the order of the first 32 elements... */
1455 for (regi = G0_REGNUM; regi <= I7_REGNUM; regi++)
1456 {
1457 supply_register (regi, ((char *) (regp + regi)) + offset);
1458 }
1459
1460 /* These require a bit more care. */
1461 supply_register (PC_REGNUM, ((char *) (regp + R_PC)) + offset);
1462 supply_register (NPC_REGNUM, ((char *) (regp + R_nPC)) + offset);
1463 supply_register (Y_REGNUM, ((char *) (regp + R_Y)) + offset);
1464
1465 if (GDB_TARGET_IS_SPARC64)
1466 {
1467 #ifdef R_CCR
1468 supply_register (CCR_REGNUM, ((char *) (regp + R_CCR)) + offset);
1469 #else
1470 supply_register (CCR_REGNUM, NULL);
1471 #endif
1472 #ifdef R_FPRS
1473 supply_register (FPRS_REGNUM, ((char *) (regp + R_FPRS)) + offset);
1474 #else
1475 supply_register (FPRS_REGNUM, NULL);
1476 #endif
1477 #ifdef R_ASI
1478 supply_register (ASI_REGNUM, ((char *) (regp + R_ASI)) + offset);
1479 #else
1480 supply_register (ASI_REGNUM, NULL);
1481 #endif
1482 }
1483 else /* sparc32 */
1484 {
1485 #ifdef R_PS
1486 supply_register (PS_REGNUM, ((char *) (regp + R_PS)) + offset);
1487 #else
1488 supply_register (PS_REGNUM, NULL);
1489 #endif
1490
1491 /* For 64-bit hosts, R_WIM and R_TBR may not be defined.
1492 Steal R_ASI and R_FPRS, and hope for the best! */
1493
1494 #if !defined (R_WIM) && defined (R_ASI)
1495 #define R_WIM R_ASI
1496 #endif
1497
1498 #if !defined (R_TBR) && defined (R_FPRS)
1499 #define R_TBR R_FPRS
1500 #endif
1501
1502 #if defined (R_WIM)
1503 supply_register (WIM_REGNUM, ((char *) (regp + R_WIM)) + offset);
1504 #else
1505 supply_register (WIM_REGNUM, NULL);
1506 #endif
1507
1508 #if defined (R_TBR)
1509 supply_register (TBR_REGNUM, ((char *) (regp + R_TBR)) + offset);
1510 #else
1511 supply_register (TBR_REGNUM, NULL);
1512 #endif
1513 }
1514
1515 /* Fill inaccessible registers with zero. */
1516 if (GDB_TARGET_IS_SPARC64)
1517 {
1518 /*
1519 * don't know how to get value of any of the following:
1520 */
1521 supply_register (VER_REGNUM, NULL);
1522 supply_register (TICK_REGNUM, NULL);
1523 supply_register (PIL_REGNUM, NULL);
1524 supply_register (PSTATE_REGNUM, NULL);
1525 supply_register (TSTATE_REGNUM, NULL);
1526 supply_register (TBA_REGNUM, NULL);
1527 supply_register (TL_REGNUM, NULL);
1528 supply_register (TT_REGNUM, NULL);
1529 supply_register (TPC_REGNUM, NULL);
1530 supply_register (TNPC_REGNUM, NULL);
1531 supply_register (WSTATE_REGNUM, NULL);
1532 supply_register (CWP_REGNUM, NULL);
1533 supply_register (CANSAVE_REGNUM, NULL);
1534 supply_register (CANRESTORE_REGNUM, NULL);
1535 supply_register (CLEANWIN_REGNUM, NULL);
1536 supply_register (OTHERWIN_REGNUM, NULL);
1537 supply_register (ASR16_REGNUM, NULL);
1538 supply_register (ASR17_REGNUM, NULL);
1539 supply_register (ASR18_REGNUM, NULL);
1540 supply_register (ASR19_REGNUM, NULL);
1541 supply_register (ASR20_REGNUM, NULL);
1542 supply_register (ASR21_REGNUM, NULL);
1543 supply_register (ASR22_REGNUM, NULL);
1544 supply_register (ASR23_REGNUM, NULL);
1545 supply_register (ASR24_REGNUM, NULL);
1546 supply_register (ASR25_REGNUM, NULL);
1547 supply_register (ASR26_REGNUM, NULL);
1548 supply_register (ASR27_REGNUM, NULL);
1549 supply_register (ASR28_REGNUM, NULL);
1550 supply_register (ASR29_REGNUM, NULL);
1551 supply_register (ASR30_REGNUM, NULL);
1552 supply_register (ASR31_REGNUM, NULL);
1553 supply_register (ICC_REGNUM, NULL);
1554 supply_register (XCC_REGNUM, NULL);
1555 }
1556 else
1557 {
1558 supply_register (CPS_REGNUM, NULL);
1559 }
1560 }
1561
1562 void
1563 fill_gregset (gregsetp, regno)
1564 prgregset_t *gregsetp;
1565 int regno;
1566 {
1567 prgreg_t *regp = (prgreg_t *) gregsetp;
1568 int regi, offset = 0;
1569
1570 /* If the host is 64-bit sparc, but the target is 32-bit sparc,
1571 then the gregset may contain 64-bit ints while supply_register
1572 is expecting 32-bit ints. Compensate. */
1573 if (sizeof (regp[0]) == 8 && SPARC_INTREG_SIZE == 4)
1574 offset = 4;
1575
1576 for (regi = 0; regi <= R_I7; regi++)
1577 if ((regno == -1) || (regno == regi))
1578 read_register_gen (regi, (char *) (regp + regi) + offset);
1579
1580 if ((regno == -1) || (regno == PC_REGNUM))
1581 read_register_gen (PC_REGNUM, (char *) (regp + R_PC) + offset);
1582
1583 if ((regno == -1) || (regno == NPC_REGNUM))
1584 read_register_gen (NPC_REGNUM, (char *) (regp + R_nPC) + offset);
1585
1586 if ((regno == -1) || (regno == Y_REGNUM))
1587 read_register_gen (Y_REGNUM, (char *) (regp + R_Y) + offset);
1588
1589 if (GDB_TARGET_IS_SPARC64)
1590 {
1591 #ifdef R_CCR
1592 if (regno == -1 || regno == CCR_REGNUM)
1593 read_register_gen (CCR_REGNUM, ((char *) (regp + R_CCR)) + offset);
1594 #endif
1595 #ifdef R_FPRS
1596 if (regno == -1 || regno == FPRS_REGNUM)
1597 read_register_gen (FPRS_REGNUM, ((char *) (regp + R_FPRS)) + offset);
1598 #endif
1599 #ifdef R_ASI
1600 if (regno == -1 || regno == ASI_REGNUM)
1601 read_register_gen (ASI_REGNUM, ((char *) (regp + R_ASI)) + offset);
1602 #endif
1603 }
1604 else /* sparc32 */
1605 {
1606 #ifdef R_PS
1607 if (regno == -1 || regno == PS_REGNUM)
1608 read_register_gen (PS_REGNUM, ((char *) (regp + R_PS)) + offset);
1609 #endif
1610
1611 /* For 64-bit hosts, R_WIM and R_TBR may not be defined.
1612 Steal R_ASI and R_FPRS, and hope for the best! */
1613
1614 #if !defined (R_WIM) && defined (R_ASI)
1615 #define R_WIM R_ASI
1616 #endif
1617
1618 #if !defined (R_TBR) && defined (R_FPRS)
1619 #define R_TBR R_FPRS
1620 #endif
1621
1622 #if defined (R_WIM)
1623 if (regno == -1 || regno == WIM_REGNUM)
1624 read_register_gen (WIM_REGNUM, ((char *) (regp + R_WIM)) + offset);
1625 #else
1626 if (regno == -1 || regno == WIM_REGNUM)
1627 read_register_gen (WIM_REGNUM, NULL);
1628 #endif
1629
1630 #if defined (R_TBR)
1631 if (regno == -1 || regno == TBR_REGNUM)
1632 read_register_gen (TBR_REGNUM, ((char *) (regp + R_TBR)) + offset);
1633 #else
1634 if (regno == -1 || regno == TBR_REGNUM)
1635 read_register_gen (TBR_REGNUM, NULL);
1636 #endif
1637 }
1638 }
1639
1640 /* Given a pointer to a floating point register set in /proc format
1641 (fpregset_t *), unpack the register contents and supply them as gdb's
1642 idea of the current floating point register values. */
1643
1644 void
1645 supply_fpregset (fpregsetp)
1646 prfpregset_t *fpregsetp;
1647 {
1648 register int regi;
1649 char *from;
1650
1651 if (!SPARC_HAS_FPU)
1652 return;
1653
1654 for (regi = FP0_REGNUM; regi < FP_MAX_REGNUM; regi++)
1655 {
1656 from = (char *) &fpregsetp->pr_fr.pr_regs[regi - FP0_REGNUM];
1657 supply_register (regi, from);
1658 }
1659
1660 if (GDB_TARGET_IS_SPARC64)
1661 {
1662 /*
1663 * don't know how to get value of the following.
1664 */
1665 supply_register (FSR_REGNUM, NULL); /* zero it out for now */
1666 supply_register (FCC0_REGNUM, NULL);
1667 supply_register (FCC1_REGNUM, NULL); /* don't know how to get value */
1668 supply_register (FCC2_REGNUM, NULL); /* don't know how to get value */
1669 supply_register (FCC3_REGNUM, NULL); /* don't know how to get value */
1670 }
1671 else
1672 {
1673 supply_register (FPS_REGNUM, (char *) &(fpregsetp->pr_fsr));
1674 }
1675 }
1676
1677 /* Given a pointer to a floating point register set in /proc format
1678 (fpregset_t *), update the register specified by REGNO from gdb's idea
1679 of the current floating point register set. If REGNO is -1, update
1680 them all. */
1681 /* This will probably need some changes for sparc64. */
1682
1683 void
1684 fill_fpregset (fpregsetp, regno)
1685 prfpregset_t *fpregsetp;
1686 int regno;
1687 {
1688 int regi;
1689 char *to;
1690 char *from;
1691
1692 if (!SPARC_HAS_FPU)
1693 return;
1694
1695 for (regi = FP0_REGNUM; regi < FP_MAX_REGNUM; regi++)
1696 {
1697 if ((regno == -1) || (regno == regi))
1698 {
1699 from = (char *) &registers[REGISTER_BYTE (regi)];
1700 to = (char *) &fpregsetp->pr_fr.pr_regs[regi - FP0_REGNUM];
1701 memcpy (to, from, REGISTER_RAW_SIZE (regi));
1702 }
1703 }
1704
1705 if (!(GDB_TARGET_IS_SPARC64)) /* FIXME: does Sparc64 have this register? */
1706 if ((regno == -1) || (regno == FPS_REGNUM))
1707 {
1708 from = (char *)&registers[REGISTER_BYTE (FPS_REGNUM)];
1709 to = (char *) &fpregsetp->pr_fsr;
1710 memcpy (to, from, REGISTER_RAW_SIZE (FPS_REGNUM));
1711 }
1712 }
1713
1714 #endif /* USE_PROC_FS */
1715
1716
1717 #ifdef GET_LONGJMP_TARGET
1718
1719 /* Figure out where the longjmp will land. We expect that we have just entered
1720 longjmp and haven't yet setup the stack frame, so the args are still in the
1721 output regs. %o0 (O0_REGNUM) points at the jmp_buf structure from which we
1722 extract the pc (JB_PC) that we will land at. The pc is copied into ADDR.
1723 This routine returns true on success */
1724
1725 int
1726 get_longjmp_target (pc)
1727 CORE_ADDR *pc;
1728 {
1729 CORE_ADDR jb_addr;
1730 #define LONGJMP_TARGET_SIZE 4
1731 char buf[LONGJMP_TARGET_SIZE];
1732
1733 jb_addr = read_register (O0_REGNUM);
1734
1735 if (target_read_memory (jb_addr + JB_PC * JB_ELEMENT_SIZE, buf,
1736 LONGJMP_TARGET_SIZE))
1737 return 0;
1738
1739 *pc = extract_address (buf, LONGJMP_TARGET_SIZE);
1740
1741 return 1;
1742 }
1743 #endif /* GET_LONGJMP_TARGET */
1744 \f
1745 #ifdef STATIC_TRANSFORM_NAME
1746 /* SunPRO (3.0 at least), encodes the static variables. This is not
1747 related to C++ mangling, it is done for C too. */
1748
1749 char *
1750 sunpro_static_transform_name (name)
1751 char *name;
1752 {
1753 char *p;
1754 if (name[0] == '$')
1755 {
1756 /* For file-local statics there will be a dollar sign, a bunch
1757 of junk (the contents of which match a string given in the
1758 N_OPT), a period and the name. For function-local statics
1759 there will be a bunch of junk (which seems to change the
1760 second character from 'A' to 'B'), a period, the name of the
1761 function, and the name. So just skip everything before the
1762 last period. */
1763 p = strrchr (name, '.');
1764 if (p != NULL)
1765 name = p + 1;
1766 }
1767 return name;
1768 }
1769 #endif /* STATIC_TRANSFORM_NAME */
1770 \f
1771
1772 /* Utilities for printing registers.
1773 Page numbers refer to the SPARC Architecture Manual. */
1774
1775 static void dump_ccreg (char *, int);
1776
1777 static void
1778 dump_ccreg (reg, val)
1779 char *reg;
1780 int val;
1781 {
1782 /* page 41 */
1783 printf_unfiltered ("%s:%s,%s,%s,%s", reg,
1784 val & 8 ? "N" : "NN",
1785 val & 4 ? "Z" : "NZ",
1786 val & 2 ? "O" : "NO",
1787 val & 1 ? "C" : "NC");
1788 }
1789
1790 static char *
1791 decode_asi (val)
1792 int val;
1793 {
1794 /* page 72 */
1795 switch (val)
1796 {
1797 case 4:
1798 return "ASI_NUCLEUS";
1799 case 0x0c:
1800 return "ASI_NUCLEUS_LITTLE";
1801 case 0x10:
1802 return "ASI_AS_IF_USER_PRIMARY";
1803 case 0x11:
1804 return "ASI_AS_IF_USER_SECONDARY";
1805 case 0x18:
1806 return "ASI_AS_IF_USER_PRIMARY_LITTLE";
1807 case 0x19:
1808 return "ASI_AS_IF_USER_SECONDARY_LITTLE";
1809 case 0x80:
1810 return "ASI_PRIMARY";
1811 case 0x81:
1812 return "ASI_SECONDARY";
1813 case 0x82:
1814 return "ASI_PRIMARY_NOFAULT";
1815 case 0x83:
1816 return "ASI_SECONDARY_NOFAULT";
1817 case 0x88:
1818 return "ASI_PRIMARY_LITTLE";
1819 case 0x89:
1820 return "ASI_SECONDARY_LITTLE";
1821 case 0x8a:
1822 return "ASI_PRIMARY_NOFAULT_LITTLE";
1823 case 0x8b:
1824 return "ASI_SECONDARY_NOFAULT_LITTLE";
1825 default:
1826 return NULL;
1827 }
1828 }
1829
1830 /* PRINT_REGISTER_HOOK routine.
1831 Pretty print various registers. */
1832 /* FIXME: Would be nice if this did some fancy things for 32 bit sparc. */
1833
1834 void
1835 sparc_print_register_hook (regno)
1836 int regno;
1837 {
1838 ULONGEST val;
1839
1840 /* Handle double/quad versions of lower 32 fp regs. */
1841 if (regno >= FP0_REGNUM && regno < FP0_REGNUM + 32
1842 && (regno & 1) == 0)
1843 {
1844 char value[16];
1845
1846 if (!read_relative_register_raw_bytes (regno, value)
1847 && !read_relative_register_raw_bytes (regno + 1, value + 4))
1848 {
1849 printf_unfiltered ("\t");
1850 print_floating (value, builtin_type_double, gdb_stdout);
1851 }
1852 #if 0 /* FIXME: gdb doesn't handle long doubles */
1853 if ((regno & 3) == 0)
1854 {
1855 if (!read_relative_register_raw_bytes (regno + 2, value + 8)
1856 && !read_relative_register_raw_bytes (regno + 3, value + 12))
1857 {
1858 printf_unfiltered ("\t");
1859 print_floating (value, builtin_type_long_double, gdb_stdout);
1860 }
1861 }
1862 #endif
1863 return;
1864 }
1865
1866 #if 0 /* FIXME: gdb doesn't handle long doubles */
1867 /* Print upper fp regs as long double if appropriate. */
1868 if (regno >= FP0_REGNUM + 32 && regno < FP_MAX_REGNUM
1869 /* We test for even numbered regs and not a multiple of 4 because
1870 the upper fp regs are recorded as doubles. */
1871 && (regno & 1) == 0)
1872 {
1873 char value[16];
1874
1875 if (!read_relative_register_raw_bytes (regno, value)
1876 && !read_relative_register_raw_bytes (regno + 1, value + 8))
1877 {
1878 printf_unfiltered ("\t");
1879 print_floating (value, builtin_type_long_double, gdb_stdout);
1880 }
1881 return;
1882 }
1883 #endif
1884
1885 /* FIXME: Some of these are priviledged registers.
1886 Not sure how they should be handled. */
1887
1888 #define BITS(n, mask) ((int) (((val) >> (n)) & (mask)))
1889
1890 val = read_register (regno);
1891
1892 /* pages 40 - 60 */
1893 if (GDB_TARGET_IS_SPARC64)
1894 switch (regno)
1895 {
1896 case CCR_REGNUM:
1897 printf_unfiltered ("\t");
1898 dump_ccreg ("xcc", val >> 4);
1899 printf_unfiltered (", ");
1900 dump_ccreg ("icc", val & 15);
1901 break;
1902 case FPRS_REGNUM:
1903 printf ("\tfef:%d, du:%d, dl:%d",
1904 BITS (2, 1), BITS (1, 1), BITS (0, 1));
1905 break;
1906 case FSR_REGNUM:
1907 {
1908 static char *fcc[4] =
1909 {"=", "<", ">", "?"};
1910 static char *rd[4] =
1911 {"N", "0", "+", "-"};
1912 /* Long, but I'd rather leave it as is and use a wide screen. */
1913 printf_filtered ("\t0:%s, 1:%s, 2:%s, 3:%s, rd:%s, tem:%d, ",
1914 fcc[BITS (10, 3)], fcc[BITS (32, 3)],
1915 fcc[BITS (34, 3)], fcc[BITS (36, 3)],
1916 rd[BITS (30, 3)], BITS (23, 31));
1917 printf_filtered ("ns:%d, ver:%d, ftt:%d, qne:%d, aexc:%d, cexc:%d",
1918 BITS (22, 1), BITS (17, 7), BITS (14, 7),
1919 BITS (13, 1), BITS (5, 31), BITS (0, 31));
1920 break;
1921 }
1922 case ASI_REGNUM:
1923 {
1924 char *asi = decode_asi (val);
1925 if (asi != NULL)
1926 printf ("\t%s", asi);
1927 break;
1928 }
1929 case VER_REGNUM:
1930 printf ("\tmanuf:%d, impl:%d, mask:%d, maxtl:%d, maxwin:%d",
1931 BITS (48, 0xffff), BITS (32, 0xffff),
1932 BITS (24, 0xff), BITS (8, 0xff), BITS (0, 31));
1933 break;
1934 case PSTATE_REGNUM:
1935 {
1936 static char *mm[4] =
1937 {"tso", "pso", "rso", "?"};
1938 printf_filtered ("\tcle:%d, tle:%d, mm:%s, red:%d, ",
1939 BITS (9, 1), BITS (8, 1),
1940 mm[BITS (6, 3)], BITS (5, 1));
1941 printf_filtered ("pef:%d, am:%d, priv:%d, ie:%d, ag:%d",
1942 BITS (4, 1), BITS (3, 1), BITS (2, 1),
1943 BITS (1, 1), BITS (0, 1));
1944 break;
1945 }
1946 case TSTATE_REGNUM:
1947 /* FIXME: print all 4? */
1948 break;
1949 case TT_REGNUM:
1950 /* FIXME: print all 4? */
1951 break;
1952 case TPC_REGNUM:
1953 /* FIXME: print all 4? */
1954 break;
1955 case TNPC_REGNUM:
1956 /* FIXME: print all 4? */
1957 break;
1958 case WSTATE_REGNUM:
1959 printf ("\tother:%d, normal:%d", BITS (3, 7), BITS (0, 7));
1960 break;
1961 case CWP_REGNUM:
1962 printf ("\t%d", BITS (0, 31));
1963 break;
1964 case CANSAVE_REGNUM:
1965 printf ("\t%-2d before spill", BITS (0, 31));
1966 break;
1967 case CANRESTORE_REGNUM:
1968 printf ("\t%-2d before fill", BITS (0, 31));
1969 break;
1970 case CLEANWIN_REGNUM:
1971 printf ("\t%-2d before clean", BITS (0, 31));
1972 break;
1973 case OTHERWIN_REGNUM:
1974 printf ("\t%d", BITS (0, 31));
1975 break;
1976 }
1977 else /* Sparc32 */
1978 switch (regno)
1979 {
1980 case PS_REGNUM:
1981 printf ("\ticc:%c%c%c%c, pil:%d, s:%d, ps:%d, et:%d, cwp:%d",
1982 BITS (23, 1) ? 'N' : '-', BITS (22, 1) ? 'Z' : '-',
1983 BITS (21, 1) ? 'V' : '-', BITS (20, 1) ? 'C' : '-',
1984 BITS (8, 15), BITS (7, 1), BITS (6, 1), BITS (5, 1),
1985 BITS (0, 31));
1986 break;
1987 case FPS_REGNUM:
1988 {
1989 static char *fcc[4] =
1990 {"=", "<", ">", "?"};
1991 static char *rd[4] =
1992 {"N", "0", "+", "-"};
1993 /* Long, but I'd rather leave it as is and use a wide screen. */
1994 printf ("\trd:%s, tem:%d, ns:%d, ver:%d, ftt:%d, qne:%d, "
1995 "fcc:%s, aexc:%d, cexc:%d",
1996 rd[BITS (30, 3)], BITS (23, 31), BITS (22, 1), BITS (17, 7),
1997 BITS (14, 7), BITS (13, 1), fcc[BITS (10, 3)], BITS (5, 31),
1998 BITS (0, 31));
1999 break;
2000 }
2001 }
2002
2003 #undef BITS
2004 }
2005 \f
2006 int
2007 gdb_print_insn_sparc (memaddr, info)
2008 bfd_vma memaddr;
2009 disassemble_info *info;
2010 {
2011 /* It's necessary to override mach again because print_insn messes it up. */
2012 info->mach = TARGET_ARCHITECTURE->mach;
2013 return print_insn_sparc (memaddr, info);
2014 }
2015 \f
2016 /* The SPARC passes the arguments on the stack; arguments smaller
2017 than an int are promoted to an int. The first 6 words worth of
2018 args are also passed in registers o0 - o5. */
2019
2020 CORE_ADDR
2021 sparc32_push_arguments (nargs, args, sp, struct_return, struct_addr)
2022 int nargs;
2023 value_ptr *args;
2024 CORE_ADDR sp;
2025 int struct_return;
2026 CORE_ADDR struct_addr;
2027 {
2028 int i, j, oregnum;
2029 int accumulate_size = 0;
2030 struct sparc_arg
2031 {
2032 char *contents;
2033 int len;
2034 int offset;
2035 };
2036 struct sparc_arg *sparc_args =
2037 (struct sparc_arg *) alloca (nargs * sizeof (struct sparc_arg));
2038 struct sparc_arg *m_arg;
2039
2040 /* Promote arguments if necessary, and calculate their stack offsets
2041 and sizes. */
2042 for (i = 0, m_arg = sparc_args; i < nargs; i++, m_arg++)
2043 {
2044 value_ptr arg = args[i];
2045 struct type *arg_type = check_typedef (VALUE_TYPE (arg));
2046 /* Cast argument to long if necessary as the compiler does it too. */
2047 switch (TYPE_CODE (arg_type))
2048 {
2049 case TYPE_CODE_INT:
2050 case TYPE_CODE_BOOL:
2051 case TYPE_CODE_CHAR:
2052 case TYPE_CODE_RANGE:
2053 case TYPE_CODE_ENUM:
2054 if (TYPE_LENGTH (arg_type) < TYPE_LENGTH (builtin_type_long))
2055 {
2056 arg_type = builtin_type_long;
2057 arg = value_cast (arg_type, arg);
2058 }
2059 break;
2060 default:
2061 break;
2062 }
2063 m_arg->len = TYPE_LENGTH (arg_type);
2064 m_arg->offset = accumulate_size;
2065 accumulate_size = (accumulate_size + m_arg->len + 3) & ~3;
2066 m_arg->contents = VALUE_CONTENTS (arg);
2067 }
2068
2069 /* Make room for the arguments on the stack. */
2070 accumulate_size += CALL_DUMMY_STACK_ADJUST;
2071 sp = ((sp - accumulate_size) & ~7) + CALL_DUMMY_STACK_ADJUST;
2072
2073 /* `Push' arguments on the stack. */
2074 for (i = 0, oregnum = 0, m_arg = sparc_args;
2075 i < nargs;
2076 i++, m_arg++)
2077 {
2078 write_memory (sp + m_arg->offset, m_arg->contents, m_arg->len);
2079 for (j = 0;
2080 j < m_arg->len && oregnum < 6;
2081 j += SPARC_INTREG_SIZE, oregnum++)
2082 write_register_gen (O0_REGNUM + oregnum, m_arg->contents + j);
2083 }
2084
2085 return sp;
2086 }
2087
2088
2089 /* Extract from an array REGBUF containing the (raw) register state
2090 a function return value of type TYPE, and copy that, in virtual format,
2091 into VALBUF. */
2092
2093 void
2094 sparc32_extract_return_value (type, regbuf, valbuf)
2095 struct type *type;
2096 char *regbuf;
2097 char *valbuf;
2098 {
2099 int typelen = TYPE_LENGTH (type);
2100 int regsize = REGISTER_RAW_SIZE (O0_REGNUM);
2101
2102 if (TYPE_CODE (type) == TYPE_CODE_FLT && SPARC_HAS_FPU)
2103 memcpy (valbuf, &regbuf[REGISTER_BYTE (FP0_REGNUM)], typelen);
2104 else
2105 memcpy (valbuf,
2106 &regbuf[O0_REGNUM * regsize +
2107 (typelen >= regsize
2108 || TARGET_BYTE_ORDER == LITTLE_ENDIAN ? 0
2109 : regsize - typelen)],
2110 typelen);
2111 }
2112
2113
2114 /* Write into appropriate registers a function return value
2115 of type TYPE, given in virtual format. On SPARCs with FPUs,
2116 float values are returned in %f0 (and %f1). In all other cases,
2117 values are returned in register %o0. */
2118
2119 void
2120 sparc_store_return_value (type, valbuf)
2121 struct type *type;
2122 char *valbuf;
2123 {
2124 int regno;
2125 char *buffer;
2126
2127 buffer = alloca(MAX_REGISTER_RAW_SIZE);
2128
2129 if (TYPE_CODE (type) == TYPE_CODE_FLT && SPARC_HAS_FPU)
2130 /* Floating-point values are returned in the register pair */
2131 /* formed by %f0 and %f1 (doubles are, anyway). */
2132 regno = FP0_REGNUM;
2133 else
2134 /* Other values are returned in register %o0. */
2135 regno = O0_REGNUM;
2136
2137 /* Add leading zeros to the value. */
2138 if (TYPE_LENGTH (type) < REGISTER_RAW_SIZE (regno))
2139 {
2140 memset (buffer, 0, REGISTER_RAW_SIZE (regno));
2141 memcpy (buffer + REGISTER_RAW_SIZE (regno) - TYPE_LENGTH (type), valbuf,
2142 TYPE_LENGTH (type));
2143 write_register_gen (regno, buffer);
2144 }
2145 else
2146 write_register_bytes (REGISTER_BYTE (regno), valbuf, TYPE_LENGTH (type));
2147 }
2148
2149 extern void
2150 sparclet_store_return_value (struct type *type, char *valbuf)
2151 {
2152 /* Other values are returned in register %o0. */
2153 write_register_bytes (REGISTER_BYTE (O0_REGNUM), valbuf,
2154 TYPE_LENGTH (type));
2155 }
2156
2157
2158 #ifndef CALL_DUMMY_CALL_OFFSET
2159 #define CALL_DUMMY_CALL_OFFSET \
2160 (gdbarch_tdep (current_gdbarch)->call_dummy_call_offset)
2161 #endif /* CALL_DUMMY_CALL_OFFSET */
2162
2163 /* Insert the function address into a call dummy instruction sequence
2164 stored at DUMMY.
2165
2166 For structs and unions, if the function was compiled with Sun cc,
2167 it expects 'unimp' after the call. But gcc doesn't use that
2168 (twisted) convention. So leave a nop there for gcc (FIX_CALL_DUMMY
2169 can assume it is operating on a pristine CALL_DUMMY, not one that
2170 has already been customized for a different function). */
2171
2172 void
2173 sparc_fix_call_dummy (dummy, pc, fun, value_type, using_gcc)
2174 char *dummy;
2175 CORE_ADDR pc;
2176 CORE_ADDR fun;
2177 struct type *value_type;
2178 int using_gcc;
2179 {
2180 int i;
2181
2182 /* Store the relative adddress of the target function into the
2183 'call' instruction. */
2184 store_unsigned_integer (dummy + CALL_DUMMY_CALL_OFFSET, 4,
2185 (0x40000000
2186 | (((fun - (pc + CALL_DUMMY_CALL_OFFSET)) >> 2)
2187 & 0x3fffffff)));
2188
2189 /* Comply with strange Sun cc calling convention for struct-returning
2190 functions. */
2191 if (!using_gcc
2192 && (TYPE_CODE (value_type) == TYPE_CODE_STRUCT
2193 || TYPE_CODE (value_type) == TYPE_CODE_UNION))
2194 store_unsigned_integer (dummy + CALL_DUMMY_CALL_OFFSET + 8, 4,
2195 TYPE_LENGTH (value_type) & 0x1fff);
2196
2197 if (!(GDB_TARGET_IS_SPARC64))
2198 {
2199 /* If this is not a simulator target, change the first four
2200 instructions of the call dummy to NOPs. Those instructions
2201 include a 'save' instruction and are designed to work around
2202 problems with register window flushing in the simulator. */
2203
2204 if (strcmp (target_shortname, "sim") != 0)
2205 {
2206 for (i = 0; i < 4; i++)
2207 store_unsigned_integer (dummy + (i * 4), 4, 0x01000000);
2208 }
2209 }
2210
2211 /* If this is a bi-endian target, GDB has written the call dummy
2212 in little-endian order. We must byte-swap it back to big-endian. */
2213 if (bi_endian)
2214 {
2215 for (i = 0; i < CALL_DUMMY_LENGTH; i += 4)
2216 {
2217 char tmp = dummy[i];
2218 dummy[i] = dummy[i + 3];
2219 dummy[i + 3] = tmp;
2220 tmp = dummy[i + 1];
2221 dummy[i + 1] = dummy[i + 2];
2222 dummy[i + 2] = tmp;
2223 }
2224 }
2225 }
2226
2227
2228 /* Set target byte order based on machine type. */
2229
2230 static int
2231 sparc_target_architecture_hook (ap)
2232 const bfd_arch_info_type *ap;
2233 {
2234 int i, j;
2235
2236 if (ap->mach == bfd_mach_sparc_sparclite_le)
2237 {
2238 if (TARGET_BYTE_ORDER_SELECTABLE_P)
2239 {
2240 target_byte_order = LITTLE_ENDIAN;
2241 bi_endian = 1;
2242 }
2243 else
2244 {
2245 warning ("This GDB does not support little endian sparclite.");
2246 }
2247 }
2248 else
2249 bi_endian = 0;
2250 return 1;
2251 }
2252 \f
2253
2254 /*
2255 * Module "constructor" function.
2256 */
2257
2258 static struct gdbarch * sparc_gdbarch_init (struct gdbarch_info info,
2259 struct gdbarch_list *arches);
2260
2261 void
2262 _initialize_sparc_tdep ()
2263 {
2264 /* Hook us into the gdbarch mechanism. */
2265 register_gdbarch_init (bfd_arch_sparc, sparc_gdbarch_init);
2266
2267 tm_print_insn = gdb_print_insn_sparc;
2268 tm_print_insn_info.mach = TM_PRINT_INSN_MACH; /* Selects sparc/sparclite */
2269 target_architecture_hook = sparc_target_architecture_hook;
2270 }
2271
2272 /* Compensate for stack bias. Note that we currently don't handle
2273 mixed 32/64 bit code. */
2274
2275 CORE_ADDR
2276 sparc64_read_sp (void)
2277 {
2278 CORE_ADDR sp = read_register (SP_REGNUM);
2279
2280 if (sp & 1)
2281 sp += 2047;
2282 return sp;
2283 }
2284
2285 CORE_ADDR
2286 sparc64_read_fp (void)
2287 {
2288 CORE_ADDR fp = read_register (FP_REGNUM);
2289
2290 if (fp & 1)
2291 fp += 2047;
2292 return fp;
2293 }
2294
2295 void
2296 sparc64_write_sp (val)
2297 CORE_ADDR val;
2298 {
2299 CORE_ADDR oldsp = read_register (SP_REGNUM);
2300 if (oldsp & 1)
2301 write_register (SP_REGNUM, val - 2047);
2302 else
2303 write_register (SP_REGNUM, val);
2304 }
2305
2306 void
2307 sparc64_write_fp (val)
2308 CORE_ADDR val;
2309 {
2310 CORE_ADDR oldfp = read_register (FP_REGNUM);
2311 if (oldfp & 1)
2312 write_register (FP_REGNUM, val - 2047);
2313 else
2314 write_register (FP_REGNUM, val);
2315 }
2316
2317 /* The SPARC 64 ABI passes floating-point arguments in FP0 to FP31,
2318 and all other arguments in O0 to O5. They are also copied onto
2319 the stack in the correct places. Apparently (empirically),
2320 structs of less than 16 bytes are passed member-by-member in
2321 separate registers, but I am unable to figure out the algorithm.
2322 Some members go in floating point regs, but I don't know which.
2323
2324 FIXME: Handle small structs (less than 16 bytes containing floats).
2325
2326 The counting regimen for using both integer and FP registers
2327 for argument passing is rather odd -- a single counter is used
2328 for both; this means that if the arguments alternate between
2329 int and float, we will waste every other register of both types. */
2330
2331 CORE_ADDR
2332 sparc64_push_arguments (nargs, args, sp, struct_return, struct_retaddr)
2333 int nargs;
2334 value_ptr *args;
2335 CORE_ADDR sp;
2336 int struct_return;
2337 CORE_ADDR struct_retaddr;
2338 {
2339 int i, j, register_counter = 0;
2340 CORE_ADDR tempsp;
2341 struct type *sparc_intreg_type =
2342 TYPE_LENGTH (builtin_type_long) == SPARC_INTREG_SIZE ?
2343 builtin_type_long : builtin_type_long_long;
2344
2345 sp = (sp & ~(((unsigned long) SPARC_INTREG_SIZE) - 1UL));
2346
2347 /* Figure out how much space we'll need. */
2348 for (i = nargs - 1; i >= 0; i--)
2349 {
2350 int len = TYPE_LENGTH (check_typedef (VALUE_TYPE (args[i])));
2351 value_ptr copyarg = args[i];
2352 int copylen = len;
2353
2354 if (copylen < SPARC_INTREG_SIZE)
2355 {
2356 copyarg = value_cast (sparc_intreg_type, copyarg);
2357 copylen = SPARC_INTREG_SIZE;
2358 }
2359 sp -= copylen;
2360 }
2361
2362 /* Round down. */
2363 sp = sp & ~7;
2364 tempsp = sp;
2365
2366 /* if STRUCT_RETURN, then first argument is the struct return location. */
2367 if (struct_return)
2368 write_register (O0_REGNUM + register_counter++, struct_retaddr);
2369
2370 /* Now write the arguments onto the stack, while writing FP
2371 arguments into the FP registers, and other arguments into the
2372 first six 'O' registers. */
2373
2374 for (i = 0; i < nargs; i++)
2375 {
2376 int len = TYPE_LENGTH (check_typedef (VALUE_TYPE (args[i])));
2377 value_ptr copyarg = args[i];
2378 enum type_code typecode = TYPE_CODE (VALUE_TYPE (args[i]));
2379 int copylen = len;
2380
2381 if (typecode == TYPE_CODE_INT ||
2382 typecode == TYPE_CODE_BOOL ||
2383 typecode == TYPE_CODE_CHAR ||
2384 typecode == TYPE_CODE_RANGE ||
2385 typecode == TYPE_CODE_ENUM)
2386 if (len < SPARC_INTREG_SIZE)
2387 {
2388 /* Small ints will all take up the size of one intreg on
2389 the stack. */
2390 copyarg = value_cast (sparc_intreg_type, copyarg);
2391 copylen = SPARC_INTREG_SIZE;
2392 }
2393
2394 write_memory (tempsp, VALUE_CONTENTS (copyarg), copylen);
2395 tempsp += copylen;
2396
2397 /* Corner case: Structs consisting of a single float member are floats.
2398 * FIXME! I don't know about structs containing multiple floats!
2399 * Structs containing mixed floats and ints are even more weird.
2400 */
2401
2402
2403
2404 /* Separate float args from all other args. */
2405 if (typecode == TYPE_CODE_FLT && SPARC_HAS_FPU)
2406 {
2407 if (register_counter < 16)
2408 {
2409 /* This arg gets copied into a FP register. */
2410 int fpreg;
2411
2412 switch (len) {
2413 case 4: /* Single-precision (float) */
2414 fpreg = FP0_REGNUM + 2 * register_counter + 1;
2415 register_counter += 1;
2416 break;
2417 case 8: /* Double-precision (double) */
2418 fpreg = FP0_REGNUM + 2 * register_counter;
2419 register_counter += 1;
2420 break;
2421 case 16: /* Quad-precision (long double) */
2422 fpreg = FP0_REGNUM + 2 * register_counter;
2423 register_counter += 2;
2424 break;
2425 }
2426 write_register_bytes (REGISTER_BYTE (fpreg),
2427 VALUE_CONTENTS (args[i]),
2428 len);
2429 }
2430 }
2431 else /* all other args go into the first six 'o' registers */
2432 {
2433 for (j = 0;
2434 j < len && register_counter < 6;
2435 j += SPARC_INTREG_SIZE)
2436 {
2437 int oreg = O0_REGNUM + register_counter;
2438
2439 write_register_gen (oreg, VALUE_CONTENTS (copyarg) + j);
2440 register_counter += 1;
2441 }
2442 }
2443 }
2444 return sp;
2445 }
2446
2447 /* Values <= 32 bytes are returned in o0-o3 (floating-point values are
2448 returned in f0-f3). */
2449
2450 void
2451 sp64_extract_return_value (type, regbuf, valbuf, bitoffset)
2452 struct type *type;
2453 char *regbuf;
2454 char *valbuf;
2455 int bitoffset;
2456 {
2457 int typelen = TYPE_LENGTH (type);
2458 int regsize = REGISTER_RAW_SIZE (O0_REGNUM);
2459
2460 if (TYPE_CODE (type) == TYPE_CODE_FLT && SPARC_HAS_FPU)
2461 {
2462 memcpy (valbuf, &regbuf[REGISTER_BYTE (FP0_REGNUM)], typelen);
2463 return;
2464 }
2465
2466 if (TYPE_CODE (type) != TYPE_CODE_STRUCT
2467 || (TYPE_LENGTH (type) > 32))
2468 {
2469 memcpy (valbuf,
2470 &regbuf[O0_REGNUM * regsize +
2471 (typelen >= regsize ? 0 : regsize - typelen)],
2472 typelen);
2473 return;
2474 }
2475 else
2476 {
2477 char *o0 = &regbuf[O0_REGNUM * regsize];
2478 char *f0 = &regbuf[FP0_REGNUM * regsize];
2479 int x;
2480
2481 for (x = 0; x < TYPE_NFIELDS (type); x++)
2482 {
2483 struct field *f = &TYPE_FIELDS (type)[x];
2484 /* FIXME: We may need to handle static fields here. */
2485 int whichreg = (f->loc.bitpos + bitoffset) / 32;
2486 int remainder = ((f->loc.bitpos + bitoffset) % 32) / 8;
2487 int where = (f->loc.bitpos + bitoffset) / 8;
2488 int size = TYPE_LENGTH (f->type);
2489 int typecode = TYPE_CODE (f->type);
2490
2491 if (typecode == TYPE_CODE_STRUCT)
2492 {
2493 sp64_extract_return_value (f->type,
2494 regbuf,
2495 valbuf,
2496 bitoffset + f->loc.bitpos);
2497 }
2498 else if (typecode == TYPE_CODE_FLT && SPARC_HAS_FPU)
2499 {
2500 memcpy (valbuf + where, &f0[whichreg * 4] + remainder, size);
2501 }
2502 else
2503 {
2504 memcpy (valbuf + where, &o0[whichreg * 4] + remainder, size);
2505 }
2506 }
2507 }
2508 }
2509
2510 extern void
2511 sparc64_extract_return_value (struct type *type, char *regbuf, char *valbuf)
2512 {
2513 sp64_extract_return_value (type, regbuf, valbuf, 0);
2514 }
2515
2516 extern void
2517 sparclet_extract_return_value (struct type *type,
2518 char *regbuf,
2519 char *valbuf)
2520 {
2521 regbuf += REGISTER_RAW_SIZE (O0_REGNUM) * 8;
2522 if (TYPE_LENGTH (type) < REGISTER_RAW_SIZE (O0_REGNUM))
2523 regbuf += REGISTER_RAW_SIZE (O0_REGNUM) - TYPE_LENGTH (type);
2524
2525 memcpy ((void *) valbuf, regbuf, TYPE_LENGTH (type));
2526 }
2527
2528
2529 extern CORE_ADDR
2530 sparc32_stack_align (CORE_ADDR addr)
2531 {
2532 return ((addr + 7) & -8);
2533 }
2534
2535 extern CORE_ADDR
2536 sparc64_stack_align (CORE_ADDR addr)
2537 {
2538 return ((addr + 15) & -16);
2539 }
2540
2541 extern void
2542 sparc_print_extra_frame_info (struct frame_info *fi)
2543 {
2544 if (fi && fi->extra_info && fi->extra_info->flat)
2545 printf_filtered (" flat, pc saved at 0x%s, fp saved at 0x%s\n",
2546 paddr_nz (fi->extra_info->pc_addr),
2547 paddr_nz (fi->extra_info->fp_addr));
2548 }
2549
2550 /* MULTI_ARCH support */
2551
2552 static char *
2553 sparc32_register_name (int regno)
2554 {
2555 static char *register_names[] =
2556 { "g0", "g1", "g2", "g3", "g4", "g5", "g6", "g7",
2557 "o0", "o1", "o2", "o3", "o4", "o5", "sp", "o7",
2558 "l0", "l1", "l2", "l3", "l4", "l5", "l6", "l7",
2559 "i0", "i1", "i2", "i3", "i4", "i5", "fp", "i7",
2560
2561 "f0", "f1", "f2", "f3", "f4", "f5", "f6", "f7",
2562 "f8", "f9", "f10", "f11", "f12", "f13", "f14", "f15",
2563 "f16", "f17", "f18", "f19", "f20", "f21", "f22", "f23",
2564 "f24", "f25", "f26", "f27", "f28", "f29", "f30", "f31",
2565
2566 "y", "psr", "wim", "tbr", "pc", "npc", "fpsr", "cpsr"
2567 };
2568
2569 if (regno < 0 ||
2570 regno >= (sizeof (register_names) / sizeof (register_names[0])))
2571 return NULL;
2572 else
2573 return register_names[regno];
2574 }
2575
2576 static char *
2577 sparc64_register_name (int regno)
2578 {
2579 static char *register_names[] =
2580 { "g0", "g1", "g2", "g3", "g4", "g5", "g6", "g7",
2581 "o0", "o1", "o2", "o3", "o4", "o5", "sp", "o7",
2582 "l0", "l1", "l2", "l3", "l4", "l5", "l6", "l7",
2583 "i0", "i1", "i2", "i3", "i4", "i5", "fp", "i7",
2584
2585 "f0", "f1", "f2", "f3", "f4", "f5", "f6", "f7",
2586 "f8", "f9", "f10", "f11", "f12", "f13", "f14", "f15",
2587 "f16", "f17", "f18", "f19", "f20", "f21", "f22", "f23",
2588 "f24", "f25", "f26", "f27", "f28", "f29", "f30", "f31",
2589 "f32", "f34", "f36", "f38", "f40", "f42", "f44", "f46",
2590 "f48", "f50", "f52", "f54", "f56", "f58", "f60", "f62",
2591
2592 "pc", "npc", "ccr", "fsr", "fprs", "y", "asi", "ver",
2593 "tick", "pil", "pstate", "tstate", "tba", "tl", "tt", "tpc",
2594 "tnpc", "wstate", "cwp", "cansave", "canrestore", "cleanwin", "otherwin",
2595 "asr16", "asr17", "asr18", "asr19", "asr20", "asr21", "asr22", "asr23",
2596 "asr24", "asr25", "asr26", "asr27", "asr28", "asr29", "asr30", "asr31",
2597 /* These are here at the end to simplify removing them if we have to. */
2598 "icc", "xcc", "fcc0", "fcc1", "fcc2", "fcc3"
2599 };
2600
2601 if (regno < 0 ||
2602 regno >= (sizeof (register_names) / sizeof (register_names[0])))
2603 return NULL;
2604 else
2605 return register_names[regno];
2606 }
2607
2608 static char *
2609 sparclite_register_name (int regno)
2610 {
2611 static char *register_names[] =
2612 { "g0", "g1", "g2", "g3", "g4", "g5", "g6", "g7",
2613 "o0", "o1", "o2", "o3", "o4", "o5", "sp", "o7",
2614 "l0", "l1", "l2", "l3", "l4", "l5", "l6", "l7",
2615 "i0", "i1", "i2", "i3", "i4", "i5", "fp", "i7",
2616
2617 "f0", "f1", "f2", "f3", "f4", "f5", "f6", "f7",
2618 "f8", "f9", "f10", "f11", "f12", "f13", "f14", "f15",
2619 "f16", "f17", "f18", "f19", "f20", "f21", "f22", "f23",
2620 "f24", "f25", "f26", "f27", "f28", "f29", "f30", "f31",
2621
2622 "y", "psr", "wim", "tbr", "pc", "npc", "fpsr", "cpsr",
2623 "dia1", "dia2", "dda1", "dda2", "ddv1", "ddv2", "dcr", "dsr"
2624 };
2625
2626 if (regno < 0 ||
2627 regno >= (sizeof (register_names) / sizeof (register_names[0])))
2628 return NULL;
2629 else
2630 return register_names[regno];
2631 }
2632
2633 static char *
2634 sparclet_register_name (int regno)
2635 {
2636 static char *register_names[] =
2637 { "g0", "g1", "g2", "g3", "g4", "g5", "g6", "g7",
2638 "o0", "o1", "o2", "o3", "o4", "o5", "sp", "o7",
2639 "l0", "l1", "l2", "l3", "l4", "l5", "l6", "l7",
2640 "i0", "i1", "i2", "i3", "i4", "i5", "fp", "i7",
2641
2642 "", "", "", "", "", "", "", "", /* no floating point registers */
2643 "", "", "", "", "", "", "", "",
2644 "", "", "", "", "", "", "", "",
2645 "", "", "", "", "", "", "", "",
2646
2647 "y", "psr", "wim", "tbr", "pc", "npc", "", "", /* no FPSR or CPSR */
2648 "ccsr", "ccpr", "cccrcr", "ccor", "ccobr", "ccibr", "ccir", "",
2649
2650 /* ASR15 ASR19 (don't display them) */
2651 "asr1", "", "asr17", "asr18", "", "asr20", "asr21", "asr22"
2652 /* None of the rest get displayed */
2653 #if 0
2654 "awr0", "awr1", "awr2", "awr3", "awr4", "awr5", "awr6", "awr7",
2655 "awr8", "awr9", "awr10", "awr11", "awr12", "awr13", "awr14", "awr15",
2656 "awr16", "awr17", "awr18", "awr19", "awr20", "awr21", "awr22", "awr23",
2657 "awr24", "awr25", "awr26", "awr27", "awr28", "awr29", "awr30", "awr31",
2658 "apsr"
2659 #endif /* 0 */
2660 };
2661
2662 if (regno < 0 ||
2663 regno >= (sizeof (register_names) / sizeof (register_names[0])))
2664 return NULL;
2665 else
2666 return register_names[regno];
2667 }
2668
2669 CORE_ADDR
2670 sparc_push_return_address (CORE_ADDR pc_unused, CORE_ADDR sp)
2671 {
2672 if (CALL_DUMMY_LOCATION == AT_ENTRY_POINT)
2673 {
2674 /* The return PC of the dummy_frame is the former 'current' PC
2675 (where we were before we made the target function call).
2676 This is saved in %i7 by push_dummy_frame.
2677
2678 We will save the 'call dummy location' (ie. the address
2679 to which the target function will return) in %o7.
2680 This address will actually be the program's entry point.
2681 There will be a special call_dummy breakpoint there. */
2682
2683 write_register (O7_REGNUM,
2684 CALL_DUMMY_ADDRESS () - 8);
2685 }
2686
2687 return sp;
2688 }
2689
2690 /* Should call_function allocate stack space for a struct return? */
2691
2692 static int
2693 sparc64_use_struct_convention (int gcc_p, struct type *type)
2694 {
2695 return (TYPE_LENGTH (type) > 32);
2696 }
2697
2698 /* Store the address of the place in which to copy the structure the
2699 subroutine will return. This is called from call_function_by_hand.
2700 The ultimate mystery is, tho, what is the value "16"?
2701
2702 MVS: That's the offset from where the sp is now, to where the
2703 subroutine is gonna expect to find the struct return address. */
2704
2705 static void
2706 sparc32_store_struct_return (CORE_ADDR addr, CORE_ADDR sp)
2707 {
2708 char *val;
2709 CORE_ADDR o7;
2710
2711 val = alloca (SPARC_INTREG_SIZE);
2712 store_unsigned_integer (val, SPARC_INTREG_SIZE, addr);
2713 write_memory (sp + (16 * SPARC_INTREG_SIZE), val, SPARC_INTREG_SIZE);
2714
2715 if (CALL_DUMMY_LOCATION == AT_ENTRY_POINT)
2716 {
2717 /* Now adjust the value of the link register, which was previously
2718 stored by push_return_address. Functions that return structs are
2719 peculiar in that they return to link register + 12, rather than
2720 link register + 8. */
2721
2722 o7 = read_register (O7_REGNUM);
2723 write_register (O7_REGNUM, o7 - 4);
2724 }
2725 }
2726
2727 static void
2728 sparc64_store_struct_return (CORE_ADDR addr, CORE_ADDR sp)
2729 {
2730 /* FIXME: V9 uses %o0 for this. */
2731 /* FIXME MVS: Only for small enough structs!!! */
2732
2733 target_write_memory (sp + (16 * SPARC_INTREG_SIZE),
2734 (char *) &addr, SPARC_INTREG_SIZE);
2735 #if 0
2736 if (CALL_DUMMY_LOCATION == AT_ENTRY_POINT)
2737 {
2738 /* Now adjust the value of the link register, which was previously
2739 stored by push_return_address. Functions that return structs are
2740 peculiar in that they return to link register + 12, rather than
2741 link register + 8. */
2742
2743 write_register (O7_REGNUM, read_register (O7_REGNUM) - 4);
2744 }
2745 #endif
2746 }
2747
2748 /* Default target data type for register REGNO. */
2749
2750 static struct type *
2751 sparc32_register_virtual_type (int regno)
2752 {
2753 if (regno == PC_REGNUM ||
2754 regno == FP_REGNUM ||
2755 regno == SP_REGNUM)
2756 return builtin_type_unsigned_int;
2757 if (regno < 32)
2758 return builtin_type_int;
2759 if (regno < 64)
2760 return builtin_type_float;
2761 return builtin_type_int;
2762 }
2763
2764 static struct type *
2765 sparc64_register_virtual_type (int regno)
2766 {
2767 if (regno == PC_REGNUM ||
2768 regno == FP_REGNUM ||
2769 regno == SP_REGNUM)
2770 return builtin_type_unsigned_long_long;
2771 if (regno < 32)
2772 return builtin_type_long_long;
2773 if (regno < 64)
2774 return builtin_type_float;
2775 if (regno < 80)
2776 return builtin_type_double;
2777 return builtin_type_long_long;
2778 }
2779
2780 /* Number of bytes of storage in the actual machine representation for
2781 register REGNO. */
2782
2783 static int
2784 sparc32_register_size (int regno)
2785 {
2786 return 4;
2787 }
2788
2789 static int
2790 sparc64_register_size (int regno)
2791 {
2792 return (regno < 32 ? 8 : regno < 64 ? 4 : 8);
2793 }
2794
2795 /* Index within the `registers' buffer of the first byte of the space
2796 for register REGNO. */
2797
2798 static int
2799 sparc32_register_byte (int regno)
2800 {
2801 return (regno * 4);
2802 }
2803
2804 static int
2805 sparc64_register_byte (int regno)
2806 {
2807 if (regno < 32)
2808 return regno * 8;
2809 else if (regno < 64)
2810 return 32 * 8 + (regno - 32) * 4;
2811 else if (regno < 80)
2812 return 32 * 8 + 32 * 4 + (regno - 64) * 8;
2813 else
2814 return 64 * 8 + (regno - 80) * 8;
2815 }
2816
2817 /* Advance PC across any function entry prologue instructions to reach
2818 some "real" code. SKIP_PROLOGUE_FRAMELESS_P advances the PC past
2819 some of the prologue, but stops as soon as it knows that the
2820 function has a frame. Its result is equal to its input PC if the
2821 function is frameless, unequal otherwise. */
2822
2823 static CORE_ADDR
2824 sparc_gdbarch_skip_prologue (CORE_ADDR ip)
2825 {
2826 return examine_prologue (ip, 0, NULL, NULL);
2827 }
2828
2829 /* Immediately after a function call, return the saved pc.
2830 Can't go through the frames for this because on some machines
2831 the new frame is not set up until the new function executes
2832 some instructions. */
2833
2834 static CORE_ADDR
2835 sparc_saved_pc_after_call (struct frame_info *fi)
2836 {
2837 return sparc_pc_adjust (read_register (RP_REGNUM));
2838 }
2839
2840 /* Convert registers between 'raw' and 'virtual' formats.
2841 They are the same on sparc, so there's nothing to do. */
2842
2843 static void
2844 sparc_convert_to_virtual (int regnum, struct type *type, char *from, char *to)
2845 { /* do nothing (should never be called) */
2846 }
2847
2848 static void
2849 sparc_convert_to_raw (struct type *type, int regnum, char *from, char *to)
2850 { /* do nothing (should never be called) */
2851 }
2852
2853 /* Init saved regs: nothing to do, just a place-holder function. */
2854
2855 static void
2856 sparc_frame_init_saved_regs (struct frame_info *fi_ignored)
2857 { /* no-op */
2858 }
2859
2860 /* The frame address: stored in the 'frame' field of the frame_info. */
2861
2862 static CORE_ADDR
2863 sparc_frame_address (struct frame_info *fi)
2864 {
2865 return fi->frame;
2866 }
2867
2868 /* gdbarch fix call dummy:
2869 All this function does is rearrange the arguments before calling
2870 sparc_fix_call_dummy (which does the real work). */
2871
2872 static void
2873 sparc_gdbarch_fix_call_dummy (char *dummy,
2874 CORE_ADDR pc,
2875 CORE_ADDR fun,
2876 int nargs,
2877 struct value **args,
2878 struct type *type,
2879 int gcc_p)
2880 {
2881 if (CALL_DUMMY_LOCATION == ON_STACK)
2882 sparc_fix_call_dummy (dummy, pc, fun, type, gcc_p);
2883 }
2884
2885 /* Coerce float to double: a no-op. */
2886
2887 static int
2888 sparc_coerce_float_to_double (struct type *formal, struct type *actual)
2889 {
2890 return 1;
2891 }
2892
2893 /* CALL_DUMMY_ADDRESS: fetch the breakpoint address for a call dummy. */
2894
2895 static CORE_ADDR
2896 sparc_call_dummy_address (void)
2897 {
2898 return (CALL_DUMMY_START_OFFSET) + CALL_DUMMY_BREAKPOINT_OFFSET;
2899 }
2900
2901 /* Supply the Y register number to those that need it. */
2902
2903 int
2904 sparc_y_regnum (void)
2905 {
2906 return gdbarch_tdep (current_gdbarch)->y_regnum;
2907 }
2908
2909 int
2910 sparc_reg_struct_has_addr (int gcc_p, struct type *type)
2911 {
2912 if (GDB_TARGET_IS_SPARC64)
2913 return (TYPE_LENGTH (type) > 32);
2914 else
2915 return (gcc_p != 1);
2916 }
2917
2918 int
2919 sparc_intreg_size (void)
2920 {
2921 return SPARC_INTREG_SIZE;
2922 }
2923
2924 static int
2925 sparc_return_value_on_stack (struct type *type)
2926 {
2927 if (TYPE_CODE (type) == TYPE_CODE_FLT &&
2928 TYPE_LENGTH (type) > 8)
2929 return 1;
2930 else
2931 return 0;
2932 }
2933
2934 /*
2935 * Gdbarch "constructor" function.
2936 */
2937
2938 #define SPARC32_CALL_DUMMY_ON_STACK
2939
2940 #define SPARC_SP_REGNUM 14
2941 #define SPARC_FP_REGNUM 30
2942 #define SPARC_FP0_REGNUM 32
2943 #define SPARC32_NPC_REGNUM 69
2944 #define SPARC32_PC_REGNUM 68
2945 #define SPARC32_Y_REGNUM 64
2946 #define SPARC64_PC_REGNUM 80
2947 #define SPARC64_NPC_REGNUM 81
2948 #define SPARC64_Y_REGNUM 85
2949
2950 static struct gdbarch *
2951 sparc_gdbarch_init (struct gdbarch_info info, struct gdbarch_list *arches)
2952 {
2953 struct gdbarch *gdbarch;
2954 struct gdbarch_tdep *tdep;
2955
2956 static LONGEST call_dummy_32[] =
2957 { 0xbc100001, 0x9de38000, 0xbc100002, 0xbe100003,
2958 0xda03a058, 0xd803a054, 0xd603a050, 0xd403a04c,
2959 0xd203a048, 0x40000000, 0xd003a044, 0x01000000,
2960 0x91d02001, 0x01000000
2961 };
2962 static LONGEST call_dummy_64[] =
2963 { 0x9de3bec0fd3fa7f7LL, 0xf93fa7eff53fa7e7LL,
2964 0xf13fa7dfed3fa7d7LL, 0xe93fa7cfe53fa7c7LL,
2965 0xe13fa7bfdd3fa7b7LL, 0xd93fa7afd53fa7a7LL,
2966 0xd13fa79fcd3fa797LL, 0xc93fa78fc53fa787LL,
2967 0xc13fa77fcc3fa777LL, 0xc83fa76fc43fa767LL,
2968 0xc03fa75ffc3fa757LL, 0xf83fa74ff43fa747LL,
2969 0xf03fa73f01000000LL, 0x0100000001000000LL,
2970 0x0100000091580000LL, 0xd027a72b93500000LL,
2971 0xd027a72791480000LL, 0xd027a72391400000LL,
2972 0xd027a71fda5ba8a7LL, 0xd85ba89fd65ba897LL,
2973 0xd45ba88fd25ba887LL, 0x9fc02000d05ba87fLL,
2974 0x0100000091d02001LL, 0x0100000001000000LL
2975 };
2976 static LONGEST call_dummy_nil[] = {0};
2977
2978 /* First see if there is already a gdbarch that can satisfy the request. */
2979 arches = gdbarch_list_lookup_by_info (arches, &info);
2980 if (arches != NULL)
2981 return arches->gdbarch;
2982
2983 /* None found: is the request for a sparc architecture? */
2984 if (info.bfd_architecture != bfd_arch_sparc)
2985 return NULL; /* No; then it's not for us. */
2986
2987 /* Yes: create a new gdbarch for the specified machine type. */
2988 tdep = (struct gdbarch_tdep *) xmalloc (sizeof (struct gdbarch_tdep));
2989 gdbarch = gdbarch_alloc (&info, tdep);
2990
2991 /* First set settings that are common for all sparc architectures. */
2992 set_gdbarch_believe_pcc_promotion (gdbarch, 1);
2993 set_gdbarch_breakpoint_from_pc (gdbarch, memory_breakpoint_from_pc);
2994 set_gdbarch_coerce_float_to_double (gdbarch,
2995 sparc_coerce_float_to_double);
2996 set_gdbarch_call_dummy_breakpoint_offset_p (gdbarch, 1);
2997 set_gdbarch_call_dummy_p (gdbarch, 1);
2998 set_gdbarch_call_dummy_stack_adjust_p (gdbarch, 1);
2999 set_gdbarch_decr_pc_after_break (gdbarch, 0);
3000 set_gdbarch_double_bit (gdbarch, 8 * TARGET_CHAR_BIT);
3001 set_gdbarch_extract_struct_value_address (gdbarch,
3002 sparc_extract_struct_value_address);
3003 set_gdbarch_fix_call_dummy (gdbarch, sparc_gdbarch_fix_call_dummy);
3004 set_gdbarch_float_bit (gdbarch, 4 * TARGET_CHAR_BIT);
3005 set_gdbarch_fp_regnum (gdbarch, SPARC_FP_REGNUM);
3006 set_gdbarch_fp0_regnum (gdbarch, SPARC_FP0_REGNUM);
3007 set_gdbarch_frame_args_address (gdbarch, sparc_frame_address);
3008 set_gdbarch_frame_chain (gdbarch, sparc_frame_chain);
3009 set_gdbarch_frame_init_saved_regs (gdbarch, sparc_frame_init_saved_regs);
3010 set_gdbarch_frame_locals_address (gdbarch, sparc_frame_address);
3011 set_gdbarch_frame_num_args (gdbarch, frame_num_args_unknown);
3012 set_gdbarch_frame_saved_pc (gdbarch, sparc_frame_saved_pc);
3013 set_gdbarch_frameless_function_invocation (gdbarch,
3014 frameless_look_for_prologue);
3015 set_gdbarch_get_saved_register (gdbarch, sparc_get_saved_register);
3016 set_gdbarch_ieee_float (gdbarch, 1);
3017 set_gdbarch_init_extra_frame_info (gdbarch, sparc_init_extra_frame_info);
3018 set_gdbarch_inner_than (gdbarch, core_addr_lessthan);
3019 set_gdbarch_int_bit (gdbarch, 4 * TARGET_CHAR_BIT);
3020 set_gdbarch_long_double_bit (gdbarch, 16 * TARGET_CHAR_BIT);
3021 set_gdbarch_long_long_bit (gdbarch, 8 * TARGET_CHAR_BIT);
3022 set_gdbarch_max_register_raw_size (gdbarch, 8);
3023 set_gdbarch_max_register_virtual_size (gdbarch, 8);
3024 #ifdef DO_CALL_DUMMY_ON_STACK
3025 set_gdbarch_pc_in_call_dummy (gdbarch, pc_in_call_dummy_on_stack);
3026 #else
3027 set_gdbarch_pc_in_call_dummy (gdbarch, pc_in_call_dummy_at_entry_point);
3028 #endif
3029 set_gdbarch_pop_frame (gdbarch, sparc_pop_frame);
3030 set_gdbarch_push_return_address (gdbarch, sparc_push_return_address);
3031 set_gdbarch_push_dummy_frame (gdbarch, sparc_push_dummy_frame);
3032 set_gdbarch_read_pc (gdbarch, generic_target_read_pc);
3033 set_gdbarch_register_convert_to_raw (gdbarch, sparc_convert_to_raw);
3034 set_gdbarch_register_convert_to_virtual (gdbarch,
3035 sparc_convert_to_virtual);
3036 set_gdbarch_register_convertible (gdbarch,
3037 generic_register_convertible_not);
3038 set_gdbarch_reg_struct_has_addr (gdbarch, sparc_reg_struct_has_addr);
3039 set_gdbarch_return_value_on_stack (gdbarch, sparc_return_value_on_stack);
3040 set_gdbarch_saved_pc_after_call (gdbarch, sparc_saved_pc_after_call);
3041 set_gdbarch_short_bit (gdbarch, 2 * TARGET_CHAR_BIT);
3042 set_gdbarch_skip_prologue (gdbarch, sparc_gdbarch_skip_prologue);
3043 set_gdbarch_sp_regnum (gdbarch, SPARC_SP_REGNUM);
3044 set_gdbarch_use_generic_dummy_frames (gdbarch, 0);
3045 set_gdbarch_write_pc (gdbarch, generic_target_write_pc);
3046
3047 /*
3048 * Settings that depend only on 32/64 bit word size
3049 */
3050
3051 switch (info.bfd_arch_info->mach)
3052 {
3053 case bfd_mach_sparc:
3054 case bfd_mach_sparc_sparclet:
3055 case bfd_mach_sparc_sparclite:
3056 case bfd_mach_sparc_v8plus:
3057 case bfd_mach_sparc_v8plusa:
3058 case bfd_mach_sparc_sparclite_le:
3059 /* 32-bit machine types: */
3060
3061 #ifdef SPARC32_CALL_DUMMY_ON_STACK
3062 set_gdbarch_call_dummy_address (gdbarch, sparc_call_dummy_address);
3063 set_gdbarch_call_dummy_breakpoint_offset (gdbarch, 0x30);
3064 set_gdbarch_call_dummy_length (gdbarch, 0x38);
3065 set_gdbarch_call_dummy_location (gdbarch, ON_STACK);
3066 set_gdbarch_call_dummy_words (gdbarch, call_dummy_32);
3067 #else
3068 set_gdbarch_call_dummy_address (gdbarch, entry_point_address);
3069 set_gdbarch_call_dummy_breakpoint_offset (gdbarch, 0);
3070 set_gdbarch_call_dummy_length (gdbarch, 0);
3071 set_gdbarch_call_dummy_location (gdbarch, AT_ENTRY_POINT);
3072 set_gdbarch_call_dummy_words (gdbarch, call_dummy_nil);
3073 #endif
3074 set_gdbarch_call_dummy_stack_adjust (gdbarch, 68);
3075 set_gdbarch_call_dummy_start_offset (gdbarch, 0);
3076 set_gdbarch_frame_args_skip (gdbarch, 68);
3077 set_gdbarch_function_start_offset (gdbarch, 0);
3078 set_gdbarch_long_bit (gdbarch, 4 * TARGET_CHAR_BIT);
3079 set_gdbarch_npc_regnum (gdbarch, SPARC32_NPC_REGNUM);
3080 set_gdbarch_pc_regnum (gdbarch, SPARC32_PC_REGNUM);
3081 set_gdbarch_ptr_bit (gdbarch, 4 * TARGET_CHAR_BIT);
3082 set_gdbarch_push_arguments (gdbarch, sparc32_push_arguments);
3083 set_gdbarch_read_fp (gdbarch, generic_target_read_fp);
3084 set_gdbarch_read_sp (gdbarch, generic_target_read_sp);
3085
3086 set_gdbarch_register_byte (gdbarch, sparc32_register_byte);
3087 set_gdbarch_register_raw_size (gdbarch, sparc32_register_size);
3088 set_gdbarch_register_size (gdbarch, 4);
3089 set_gdbarch_register_virtual_size (gdbarch, sparc32_register_size);
3090 set_gdbarch_register_virtual_type (gdbarch,
3091 sparc32_register_virtual_type);
3092 #ifdef SPARC32_CALL_DUMMY_ON_STACK
3093 set_gdbarch_sizeof_call_dummy_words (gdbarch, sizeof (call_dummy_32));
3094 #else
3095 set_gdbarch_sizeof_call_dummy_words (gdbarch, 0);
3096 #endif
3097 set_gdbarch_stack_align (gdbarch, sparc32_stack_align);
3098 set_gdbarch_store_struct_return (gdbarch, sparc32_store_struct_return);
3099 set_gdbarch_use_struct_convention (gdbarch,
3100 generic_use_struct_convention);
3101 set_gdbarch_write_fp (gdbarch, generic_target_write_fp);
3102 set_gdbarch_write_sp (gdbarch, generic_target_write_sp);
3103 tdep->y_regnum = SPARC32_Y_REGNUM;
3104 tdep->fp_max_regnum = SPARC_FP0_REGNUM + 32;
3105 tdep->intreg_size = 4;
3106 tdep->reg_save_offset = 0x60;
3107 tdep->call_dummy_call_offset = 0x24;
3108 break;
3109
3110 case bfd_mach_sparc_v9:
3111 case bfd_mach_sparc_v9a:
3112 /* 64-bit machine types: */
3113 default: /* Any new machine type is likely to be 64-bit. */
3114
3115 #ifdef SPARC64_CALL_DUMMY_ON_STACK
3116 set_gdbarch_call_dummy_address (gdbarch, sparc_call_dummy_address);
3117 set_gdbarch_call_dummy_breakpoint_offset (gdbarch, 8 * 4);
3118 set_gdbarch_call_dummy_length (gdbarch, 192);
3119 set_gdbarch_call_dummy_location (gdbarch, ON_STACK);
3120 set_gdbarch_call_dummy_start_offset (gdbarch, 148);
3121 set_gdbarch_call_dummy_words (gdbarch, call_dummy_64);
3122 #else
3123 set_gdbarch_call_dummy_address (gdbarch, entry_point_address);
3124 set_gdbarch_call_dummy_breakpoint_offset (gdbarch, 0);
3125 set_gdbarch_call_dummy_length (gdbarch, 0);
3126 set_gdbarch_call_dummy_location (gdbarch, AT_ENTRY_POINT);
3127 set_gdbarch_call_dummy_start_offset (gdbarch, 0);
3128 set_gdbarch_call_dummy_words (gdbarch, call_dummy_nil);
3129 #endif
3130 set_gdbarch_call_dummy_stack_adjust (gdbarch, 128);
3131 set_gdbarch_frame_args_skip (gdbarch, 136);
3132 set_gdbarch_function_start_offset (gdbarch, 0);
3133 set_gdbarch_long_bit (gdbarch, 8 * TARGET_CHAR_BIT);
3134 set_gdbarch_npc_regnum (gdbarch, SPARC64_NPC_REGNUM);
3135 set_gdbarch_pc_regnum (gdbarch, SPARC64_PC_REGNUM);
3136 set_gdbarch_ptr_bit (gdbarch, 8 * TARGET_CHAR_BIT);
3137 set_gdbarch_push_arguments (gdbarch, sparc64_push_arguments);
3138 /* NOTE different for at_entry */
3139 set_gdbarch_read_fp (gdbarch, sparc64_read_fp);
3140 set_gdbarch_read_sp (gdbarch, sparc64_read_sp);
3141 /* Some of the registers aren't 64 bits, but it's a lot simpler just
3142 to assume they all are (since most of them are). */
3143 set_gdbarch_register_byte (gdbarch, sparc64_register_byte);
3144 set_gdbarch_register_raw_size (gdbarch, sparc64_register_size);
3145 set_gdbarch_register_size (gdbarch, 8);
3146 set_gdbarch_register_virtual_size (gdbarch, sparc64_register_size);
3147 set_gdbarch_register_virtual_type (gdbarch,
3148 sparc64_register_virtual_type);
3149 #ifdef SPARC64_CALL_DUMMY_ON_STACK
3150 set_gdbarch_sizeof_call_dummy_words (gdbarch, sizeof (call_dummy_64));
3151 #else
3152 set_gdbarch_sizeof_call_dummy_words (gdbarch, 0);
3153 #endif
3154 set_gdbarch_stack_align (gdbarch, sparc64_stack_align);
3155 set_gdbarch_store_struct_return (gdbarch, sparc64_store_struct_return);
3156 set_gdbarch_use_struct_convention (gdbarch,
3157 sparc64_use_struct_convention);
3158 set_gdbarch_write_fp (gdbarch, sparc64_write_fp);
3159 set_gdbarch_write_sp (gdbarch, sparc64_write_sp);
3160 tdep->y_regnum = SPARC64_Y_REGNUM;
3161 tdep->fp_max_regnum = SPARC_FP0_REGNUM + 48;
3162 tdep->intreg_size = 8;
3163 tdep->reg_save_offset = 0x90;
3164 tdep->call_dummy_call_offset = 148 + 4 * 5;
3165 break;
3166 }
3167
3168 /*
3169 * Settings that vary per-architecture:
3170 */
3171
3172 switch (info.bfd_arch_info->mach)
3173 {
3174 case bfd_mach_sparc:
3175 set_gdbarch_extract_return_value (gdbarch, sparc32_extract_return_value);
3176 set_gdbarch_frame_chain_valid (gdbarch, file_frame_chain_valid);
3177 set_gdbarch_num_regs (gdbarch, 72);
3178 set_gdbarch_register_bytes (gdbarch, 32*4 + 32*4 + 8*4);
3179 set_gdbarch_register_name (gdbarch, sparc32_register_name);
3180 set_gdbarch_store_return_value (gdbarch, sparc_store_return_value);
3181 tdep->has_fpu = 1; /* (all but sparclet and sparclite) */
3182 tdep->fp_register_bytes = 32 * 4;
3183 tdep->print_insn_mach = bfd_mach_sparc;
3184 break;
3185 case bfd_mach_sparc_sparclet:
3186 set_gdbarch_extract_return_value (gdbarch,
3187 sparclet_extract_return_value);
3188 set_gdbarch_frame_chain_valid (gdbarch, file_frame_chain_valid);
3189 set_gdbarch_num_regs (gdbarch, 32 + 32 + 8 + 8 + 8);
3190 set_gdbarch_register_bytes (gdbarch, 32*4 + 32*4 + 8*4 + 8*4 + 8*4);
3191 set_gdbarch_register_name (gdbarch, sparclet_register_name);
3192 set_gdbarch_store_return_value (gdbarch, sparclet_store_return_value);
3193 tdep->has_fpu = 0; /* (all but sparclet and sparclite) */
3194 tdep->fp_register_bytes = 0;
3195 tdep->print_insn_mach = bfd_mach_sparc_sparclet;
3196 break;
3197 case bfd_mach_sparc_sparclite:
3198 set_gdbarch_extract_return_value (gdbarch, sparc32_extract_return_value);
3199 set_gdbarch_frame_chain_valid (gdbarch, func_frame_chain_valid);
3200 set_gdbarch_num_regs (gdbarch, 80);
3201 set_gdbarch_register_bytes (gdbarch, 32*4 + 32*4 + 8*4 + 8*4);
3202 set_gdbarch_register_name (gdbarch, sparclite_register_name);
3203 set_gdbarch_store_return_value (gdbarch, sparc_store_return_value);
3204 tdep->has_fpu = 0; /* (all but sparclet and sparclite) */
3205 tdep->fp_register_bytes = 0;
3206 tdep->print_insn_mach = bfd_mach_sparc_sparclite;
3207 break;
3208 case bfd_mach_sparc_v8plus:
3209 set_gdbarch_extract_return_value (gdbarch, sparc32_extract_return_value);
3210 set_gdbarch_frame_chain_valid (gdbarch, file_frame_chain_valid);
3211 set_gdbarch_num_regs (gdbarch, 72);
3212 set_gdbarch_register_bytes (gdbarch, 32*4 + 32*4 + 8*4);
3213 set_gdbarch_register_name (gdbarch, sparc32_register_name);
3214 set_gdbarch_store_return_value (gdbarch, sparc_store_return_value);
3215 tdep->print_insn_mach = bfd_mach_sparc;
3216 tdep->fp_register_bytes = 32 * 4;
3217 tdep->has_fpu = 1; /* (all but sparclet and sparclite) */
3218 break;
3219 case bfd_mach_sparc_v8plusa:
3220 set_gdbarch_extract_return_value (gdbarch, sparc32_extract_return_value);
3221 set_gdbarch_frame_chain_valid (gdbarch, file_frame_chain_valid);
3222 set_gdbarch_num_regs (gdbarch, 72);
3223 set_gdbarch_register_bytes (gdbarch, 32*4 + 32*4 + 8*4);
3224 set_gdbarch_register_name (gdbarch, sparc32_register_name);
3225 set_gdbarch_store_return_value (gdbarch, sparc_store_return_value);
3226 tdep->has_fpu = 1; /* (all but sparclet and sparclite) */
3227 tdep->fp_register_bytes = 32 * 4;
3228 tdep->print_insn_mach = bfd_mach_sparc;
3229 break;
3230 case bfd_mach_sparc_sparclite_le:
3231 set_gdbarch_extract_return_value (gdbarch, sparc32_extract_return_value);
3232 set_gdbarch_frame_chain_valid (gdbarch, func_frame_chain_valid);
3233 set_gdbarch_num_regs (gdbarch, 80);
3234 set_gdbarch_register_bytes (gdbarch, 32*4 + 32*4 + 8*4 + 8*4);
3235 set_gdbarch_register_name (gdbarch, sparclite_register_name);
3236 set_gdbarch_store_return_value (gdbarch, sparc_store_return_value);
3237 tdep->has_fpu = 0; /* (all but sparclet and sparclite) */
3238 tdep->fp_register_bytes = 0;
3239 tdep->print_insn_mach = bfd_mach_sparc_sparclite;
3240 break;
3241 case bfd_mach_sparc_v9:
3242 set_gdbarch_extract_return_value (gdbarch, sparc64_extract_return_value);
3243 set_gdbarch_frame_chain_valid (gdbarch, file_frame_chain_valid);
3244 set_gdbarch_num_regs (gdbarch, 125);
3245 set_gdbarch_register_bytes (gdbarch, 32*8 + 32*8 + 45*8);
3246 set_gdbarch_register_name (gdbarch, sparc64_register_name);
3247 set_gdbarch_store_return_value (gdbarch, sparc_store_return_value);
3248 tdep->has_fpu = 1; /* (all but sparclet and sparclite) */
3249 tdep->fp_register_bytes = 64 * 4;
3250 tdep->print_insn_mach = bfd_mach_sparc_v9a;
3251 break;
3252 case bfd_mach_sparc_v9a:
3253 set_gdbarch_extract_return_value (gdbarch, sparc64_extract_return_value);
3254 set_gdbarch_frame_chain_valid (gdbarch, file_frame_chain_valid);
3255 set_gdbarch_num_regs (gdbarch, 125);
3256 set_gdbarch_register_bytes (gdbarch, 32*8 + 32*8 + 45*8);
3257 set_gdbarch_register_name (gdbarch, sparc64_register_name);
3258 set_gdbarch_store_return_value (gdbarch, sparc_store_return_value);
3259 tdep->has_fpu = 1; /* (all but sparclet and sparclite) */
3260 tdep->fp_register_bytes = 64 * 4;
3261 tdep->print_insn_mach = bfd_mach_sparc_v9a;
3262 break;
3263 }
3264
3265 return gdbarch;
3266 }
3267