* lib/ada.exp (standard_ada_testfile): New proc.
[binutils-gdb.git] / gdb / spu-linux-nat.c
1 /* SPU native-dependent code for GDB, the GNU debugger.
2 Copyright (C) 2006-2012 Free Software Foundation, Inc.
3
4 Contributed by Ulrich Weigand <uweigand@de.ibm.com>.
5
6 This file is part of GDB.
7
8 This program is free software; you can redistribute it and/or modify
9 it under the terms of the GNU General Public License as published by
10 the Free Software Foundation; either version 3 of the License, or
11 (at your option) any later version.
12
13 This program is distributed in the hope that it will be useful,
14 but WITHOUT ANY WARRANTY; without even the implied warranty of
15 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
16 GNU General Public License for more details.
17
18 You should have received a copy of the GNU General Public License
19 along with this program. If not, see <http://www.gnu.org/licenses/>. */
20
21 #include "defs.h"
22 #include "gdbcore.h"
23 #include "gdb_string.h"
24 #include "target.h"
25 #include "inferior.h"
26 #include "inf-child.h"
27 #include "inf-ptrace.h"
28 #include "regcache.h"
29 #include "symfile.h"
30 #include "gdb_wait.h"
31 #include "gdbthread.h"
32
33 #include <sys/ptrace.h>
34 #include <asm/ptrace.h>
35 #include <sys/types.h>
36 #include <sys/param.h>
37
38 #include "spu-tdep.h"
39
40 /* PPU side system calls. */
41 #define INSTR_SC 0x44000002
42 #define NR_spu_run 0x0116
43
44
45 /* Fetch PPU register REGNO. */
46 static ULONGEST
47 fetch_ppc_register (int regno)
48 {
49 PTRACE_TYPE_RET res;
50
51 int tid = TIDGET (inferior_ptid);
52 if (tid == 0)
53 tid = PIDGET (inferior_ptid);
54
55 #ifndef __powerpc64__
56 /* If running as a 32-bit process on a 64-bit system, we attempt
57 to get the full 64-bit register content of the target process.
58 If the PPC special ptrace call fails, we're on a 32-bit system;
59 just fall through to the regular ptrace call in that case. */
60 {
61 gdb_byte buf[8];
62
63 errno = 0;
64 ptrace (PPC_PTRACE_PEEKUSR_3264, tid,
65 (PTRACE_TYPE_ARG3) (regno * 8), buf);
66 if (errno == 0)
67 ptrace (PPC_PTRACE_PEEKUSR_3264, tid,
68 (PTRACE_TYPE_ARG3) (regno * 8 + 4), buf + 4);
69 if (errno == 0)
70 return (ULONGEST) *(uint64_t *)buf;
71 }
72 #endif
73
74 errno = 0;
75 res = ptrace (PT_READ_U, tid,
76 (PTRACE_TYPE_ARG3) (regno * sizeof (PTRACE_TYPE_RET)), 0);
77 if (errno != 0)
78 {
79 char mess[128];
80 xsnprintf (mess, sizeof mess, "reading PPC register #%d", regno);
81 perror_with_name (_(mess));
82 }
83
84 return (ULONGEST) (unsigned long) res;
85 }
86
87 /* Fetch WORD from PPU memory at (aligned) MEMADDR in thread TID. */
88 static int
89 fetch_ppc_memory_1 (int tid, ULONGEST memaddr, PTRACE_TYPE_RET *word)
90 {
91 errno = 0;
92
93 #ifndef __powerpc64__
94 if (memaddr >> 32)
95 {
96 uint64_t addr_8 = (uint64_t) memaddr;
97 ptrace (PPC_PTRACE_PEEKTEXT_3264, tid, (PTRACE_TYPE_ARG3) &addr_8, word);
98 }
99 else
100 #endif
101 *word = ptrace (PT_READ_I, tid, (PTRACE_TYPE_ARG3) (size_t) memaddr, 0);
102
103 return errno;
104 }
105
106 /* Store WORD into PPU memory at (aligned) MEMADDR in thread TID. */
107 static int
108 store_ppc_memory_1 (int tid, ULONGEST memaddr, PTRACE_TYPE_RET word)
109 {
110 errno = 0;
111
112 #ifndef __powerpc64__
113 if (memaddr >> 32)
114 {
115 uint64_t addr_8 = (uint64_t) memaddr;
116 ptrace (PPC_PTRACE_POKEDATA_3264, tid, (PTRACE_TYPE_ARG3) &addr_8, word);
117 }
118 else
119 #endif
120 ptrace (PT_WRITE_D, tid, (PTRACE_TYPE_ARG3) (size_t) memaddr, word);
121
122 return errno;
123 }
124
125 /* Fetch LEN bytes of PPU memory at MEMADDR to MYADDR. */
126 static int
127 fetch_ppc_memory (ULONGEST memaddr, gdb_byte *myaddr, int len)
128 {
129 int i, ret;
130
131 ULONGEST addr = memaddr & -(ULONGEST) sizeof (PTRACE_TYPE_RET);
132 int count = ((((memaddr + len) - addr) + sizeof (PTRACE_TYPE_RET) - 1)
133 / sizeof (PTRACE_TYPE_RET));
134 PTRACE_TYPE_RET *buffer;
135
136 int tid = TIDGET (inferior_ptid);
137 if (tid == 0)
138 tid = PIDGET (inferior_ptid);
139
140 buffer = (PTRACE_TYPE_RET *) alloca (count * sizeof (PTRACE_TYPE_RET));
141 for (i = 0; i < count; i++, addr += sizeof (PTRACE_TYPE_RET))
142 {
143 ret = fetch_ppc_memory_1 (tid, addr, &buffer[i]);
144 if (ret)
145 return ret;
146 }
147
148 memcpy (myaddr,
149 (char *) buffer + (memaddr & (sizeof (PTRACE_TYPE_RET) - 1)),
150 len);
151
152 return 0;
153 }
154
155 /* Store LEN bytes from MYADDR to PPU memory at MEMADDR. */
156 static int
157 store_ppc_memory (ULONGEST memaddr, const gdb_byte *myaddr, int len)
158 {
159 int i, ret;
160
161 ULONGEST addr = memaddr & -(ULONGEST) sizeof (PTRACE_TYPE_RET);
162 int count = ((((memaddr + len) - addr) + sizeof (PTRACE_TYPE_RET) - 1)
163 / sizeof (PTRACE_TYPE_RET));
164 PTRACE_TYPE_RET *buffer;
165
166 int tid = TIDGET (inferior_ptid);
167 if (tid == 0)
168 tid = PIDGET (inferior_ptid);
169
170 buffer = (PTRACE_TYPE_RET *) alloca (count * sizeof (PTRACE_TYPE_RET));
171
172 if (addr != memaddr || len < (int) sizeof (PTRACE_TYPE_RET))
173 {
174 ret = fetch_ppc_memory_1 (tid, addr, &buffer[0]);
175 if (ret)
176 return ret;
177 }
178
179 if (count > 1)
180 {
181 ret = fetch_ppc_memory_1 (tid, addr + (count - 1)
182 * sizeof (PTRACE_TYPE_RET),
183 &buffer[count - 1]);
184 if (ret)
185 return ret;
186 }
187
188 memcpy ((char *) buffer + (memaddr & (sizeof (PTRACE_TYPE_RET) - 1)),
189 myaddr, len);
190
191 for (i = 0; i < count; i++, addr += sizeof (PTRACE_TYPE_RET))
192 {
193 ret = store_ppc_memory_1 (tid, addr, buffer[i]);
194 if (ret)
195 return ret;
196 }
197
198 return 0;
199 }
200
201
202 /* If the PPU thread is currently stopped on a spu_run system call,
203 return to FD and ADDR the file handle and NPC parameter address
204 used with the system call. Return non-zero if successful. */
205 static int
206 parse_spufs_run (int *fd, ULONGEST *addr)
207 {
208 enum bfd_endian byte_order = gdbarch_byte_order (target_gdbarch);
209 gdb_byte buf[4];
210 ULONGEST pc = fetch_ppc_register (32); /* nip */
211
212 /* Fetch instruction preceding current NIP. */
213 if (fetch_ppc_memory (pc-4, buf, 4) != 0)
214 return 0;
215 /* It should be a "sc" instruction. */
216 if (extract_unsigned_integer (buf, 4, byte_order) != INSTR_SC)
217 return 0;
218 /* System call number should be NR_spu_run. */
219 if (fetch_ppc_register (0) != NR_spu_run)
220 return 0;
221
222 /* Register 3 contains fd, register 4 the NPC param pointer. */
223 *fd = fetch_ppc_register (34); /* orig_gpr3 */
224 *addr = fetch_ppc_register (4);
225 return 1;
226 }
227
228
229 /* Copy LEN bytes at OFFSET in spufs file ANNEX into/from READBUF or WRITEBUF,
230 using the /proc file system. */
231 static LONGEST
232 spu_proc_xfer_spu (const char *annex, gdb_byte *readbuf,
233 const gdb_byte *writebuf,
234 ULONGEST offset, LONGEST len)
235 {
236 char buf[128];
237 int fd = 0;
238 int ret = -1;
239 int pid = PIDGET (inferior_ptid);
240
241 if (!annex)
242 return 0;
243
244 xsnprintf (buf, sizeof buf, "/proc/%d/fd/%s", pid, annex);
245 fd = open (buf, writebuf? O_WRONLY : O_RDONLY);
246 if (fd <= 0)
247 return -1;
248
249 if (offset != 0
250 && lseek (fd, (off_t) offset, SEEK_SET) != (off_t) offset)
251 {
252 close (fd);
253 return 0;
254 }
255
256 if (writebuf)
257 ret = write (fd, writebuf, (size_t) len);
258 else if (readbuf)
259 ret = read (fd, readbuf, (size_t) len);
260
261 close (fd);
262 return ret;
263 }
264
265
266 /* Inferior memory should contain an SPE executable image at location ADDR.
267 Allocate a BFD representing that executable. Return NULL on error. */
268
269 static void *
270 spu_bfd_iovec_open (struct bfd *nbfd, void *open_closure)
271 {
272 return open_closure;
273 }
274
275 static int
276 spu_bfd_iovec_close (struct bfd *nbfd, void *stream)
277 {
278 xfree (stream);
279 return 1;
280 }
281
282 static file_ptr
283 spu_bfd_iovec_pread (struct bfd *abfd, void *stream, void *buf,
284 file_ptr nbytes, file_ptr offset)
285 {
286 ULONGEST addr = *(ULONGEST *)stream;
287
288 if (fetch_ppc_memory (addr + offset, buf, nbytes) != 0)
289 {
290 bfd_set_error (bfd_error_invalid_operation);
291 return -1;
292 }
293
294 return nbytes;
295 }
296
297 static int
298 spu_bfd_iovec_stat (struct bfd *abfd, void *stream, struct stat *sb)
299 {
300 /* We don't have an easy way of finding the size of embedded spu
301 images. We could parse the in-memory ELF header and section
302 table to find the extent of the last section but that seems
303 pointless when the size is needed only for checks of other
304 parsed values in dbxread.c. */
305 sb->st_size = INT_MAX;
306 return 0;
307 }
308
309 static bfd *
310 spu_bfd_open (ULONGEST addr)
311 {
312 struct bfd *nbfd;
313 asection *spu_name;
314
315 ULONGEST *open_closure = xmalloc (sizeof (ULONGEST));
316 *open_closure = addr;
317
318 nbfd = gdb_bfd_openr_iovec ("<in-memory>", "elf32-spu",
319 spu_bfd_iovec_open, open_closure,
320 spu_bfd_iovec_pread, spu_bfd_iovec_close,
321 spu_bfd_iovec_stat);
322 if (!nbfd)
323 return NULL;
324
325 if (!bfd_check_format (nbfd, bfd_object))
326 {
327 gdb_bfd_unref (nbfd);
328 return NULL;
329 }
330
331 /* Retrieve SPU name note and update BFD name. */
332 spu_name = bfd_get_section_by_name (nbfd, ".note.spu_name");
333 if (spu_name)
334 {
335 int sect_size = bfd_section_size (nbfd, spu_name);
336 if (sect_size > 20)
337 {
338 char *buf = alloca (sect_size - 20 + 1);
339 bfd_get_section_contents (nbfd, spu_name, buf, 20, sect_size - 20);
340 buf[sect_size - 20] = '\0';
341
342 xfree ((char *)nbfd->filename);
343 nbfd->filename = xstrdup (buf);
344 }
345 }
346
347 return nbfd;
348 }
349
350 /* INFERIOR_FD is a file handle passed by the inferior to the
351 spu_run system call. Assuming the SPE context was allocated
352 by the libspe library, try to retrieve the main SPE executable
353 file from its copy within the target process. */
354 static void
355 spu_symbol_file_add_from_memory (int inferior_fd)
356 {
357 ULONGEST addr;
358 struct bfd *nbfd;
359
360 char id[128];
361 char annex[32];
362 int len;
363
364 /* Read object ID. */
365 xsnprintf (annex, sizeof annex, "%d/object-id", inferior_fd);
366 len = spu_proc_xfer_spu (annex, id, NULL, 0, sizeof id);
367 if (len <= 0 || len >= sizeof id)
368 return;
369 id[len] = 0;
370 addr = strtoulst (id, NULL, 16);
371 if (!addr)
372 return;
373
374 /* Open BFD representing SPE executable and read its symbols. */
375 nbfd = spu_bfd_open (addr);
376 if (nbfd)
377 {
378 struct cleanup *cleanup = make_cleanup_bfd_unref (nbfd);
379
380 symbol_file_add_from_bfd (nbfd, SYMFILE_VERBOSE | SYMFILE_MAINLINE,
381 NULL, 0, NULL);
382 do_cleanups (cleanup);
383 }
384 }
385
386
387 /* Override the post_startup_inferior routine to continue running
388 the inferior until the first spu_run system call. */
389 static void
390 spu_child_post_startup_inferior (ptid_t ptid)
391 {
392 int fd;
393 ULONGEST addr;
394
395 int tid = TIDGET (ptid);
396 if (tid == 0)
397 tid = PIDGET (ptid);
398
399 while (!parse_spufs_run (&fd, &addr))
400 {
401 ptrace (PT_SYSCALL, tid, (PTRACE_TYPE_ARG3) 0, 0);
402 waitpid (tid, NULL, __WALL | __WNOTHREAD);
403 }
404 }
405
406 /* Override the post_attach routine to try load the SPE executable
407 file image from its copy inside the target process. */
408 static void
409 spu_child_post_attach (int pid)
410 {
411 int fd;
412 ULONGEST addr;
413
414 /* Like child_post_startup_inferior, if we happened to attach to
415 the inferior while it wasn't currently in spu_run, continue
416 running it until we get back there. */
417 while (!parse_spufs_run (&fd, &addr))
418 {
419 ptrace (PT_SYSCALL, pid, (PTRACE_TYPE_ARG3) 0, 0);
420 waitpid (pid, NULL, __WALL | __WNOTHREAD);
421 }
422
423 /* If the user has not provided an executable file, try to extract
424 the image from inside the target process. */
425 if (!get_exec_file (0))
426 spu_symbol_file_add_from_memory (fd);
427 }
428
429 /* Wait for child PTID to do something. Return id of the child,
430 minus_one_ptid in case of error; store status into *OURSTATUS. */
431 static ptid_t
432 spu_child_wait (struct target_ops *ops,
433 ptid_t ptid, struct target_waitstatus *ourstatus, int options)
434 {
435 int save_errno;
436 int status;
437 pid_t pid;
438
439 do
440 {
441 set_sigint_trap (); /* Causes SIGINT to be passed on to the
442 attached process. */
443
444 pid = waitpid (PIDGET (ptid), &status, 0);
445 if (pid == -1 && errno == ECHILD)
446 /* Try again with __WCLONE to check cloned processes. */
447 pid = waitpid (PIDGET (ptid), &status, __WCLONE);
448
449 save_errno = errno;
450
451 /* Make sure we don't report an event for the exit of the
452 original program, if we've detached from it. */
453 if (pid != -1 && !WIFSTOPPED (status) && pid != PIDGET (inferior_ptid))
454 {
455 pid = -1;
456 save_errno = EINTR;
457 }
458
459 clear_sigint_trap ();
460 }
461 while (pid == -1 && save_errno == EINTR);
462
463 if (pid == -1)
464 {
465 warning (_("Child process unexpectedly missing: %s"),
466 safe_strerror (save_errno));
467
468 /* Claim it exited with unknown signal. */
469 ourstatus->kind = TARGET_WAITKIND_SIGNALLED;
470 ourstatus->value.sig = GDB_SIGNAL_UNKNOWN;
471 return inferior_ptid;
472 }
473
474 store_waitstatus (ourstatus, status);
475 return pid_to_ptid (pid);
476 }
477
478 /* Override the fetch_inferior_register routine. */
479 static void
480 spu_fetch_inferior_registers (struct target_ops *ops,
481 struct regcache *regcache, int regno)
482 {
483 int fd;
484 ULONGEST addr;
485
486 /* We must be stopped on a spu_run system call. */
487 if (!parse_spufs_run (&fd, &addr))
488 return;
489
490 /* The ID register holds the spufs file handle. */
491 if (regno == -1 || regno == SPU_ID_REGNUM)
492 {
493 struct gdbarch *gdbarch = get_regcache_arch (regcache);
494 enum bfd_endian byte_order = gdbarch_byte_order (gdbarch);
495 char buf[4];
496 store_unsigned_integer (buf, 4, byte_order, fd);
497 regcache_raw_supply (regcache, SPU_ID_REGNUM, buf);
498 }
499
500 /* The NPC register is found at ADDR. */
501 if (regno == -1 || regno == SPU_PC_REGNUM)
502 {
503 gdb_byte buf[4];
504 if (fetch_ppc_memory (addr, buf, 4) == 0)
505 regcache_raw_supply (regcache, SPU_PC_REGNUM, buf);
506 }
507
508 /* The GPRs are found in the "regs" spufs file. */
509 if (regno == -1 || (regno >= 0 && regno < SPU_NUM_GPRS))
510 {
511 gdb_byte buf[16 * SPU_NUM_GPRS];
512 char annex[32];
513 int i;
514
515 xsnprintf (annex, sizeof annex, "%d/regs", fd);
516 if (spu_proc_xfer_spu (annex, buf, NULL, 0, sizeof buf) == sizeof buf)
517 for (i = 0; i < SPU_NUM_GPRS; i++)
518 regcache_raw_supply (regcache, i, buf + i*16);
519 }
520 }
521
522 /* Override the store_inferior_register routine. */
523 static void
524 spu_store_inferior_registers (struct target_ops *ops,
525 struct regcache *regcache, int regno)
526 {
527 int fd;
528 ULONGEST addr;
529
530 /* We must be stopped on a spu_run system call. */
531 if (!parse_spufs_run (&fd, &addr))
532 return;
533
534 /* The NPC register is found at ADDR. */
535 if (regno == -1 || regno == SPU_PC_REGNUM)
536 {
537 gdb_byte buf[4];
538 regcache_raw_collect (regcache, SPU_PC_REGNUM, buf);
539 store_ppc_memory (addr, buf, 4);
540 }
541
542 /* The GPRs are found in the "regs" spufs file. */
543 if (regno == -1 || (regno >= 0 && regno < SPU_NUM_GPRS))
544 {
545 gdb_byte buf[16 * SPU_NUM_GPRS];
546 char annex[32];
547 int i;
548
549 for (i = 0; i < SPU_NUM_GPRS; i++)
550 regcache_raw_collect (regcache, i, buf + i*16);
551
552 xsnprintf (annex, sizeof annex, "%d/regs", fd);
553 spu_proc_xfer_spu (annex, NULL, buf, 0, sizeof buf);
554 }
555 }
556
557 /* Override the to_xfer_partial routine. */
558 static LONGEST
559 spu_xfer_partial (struct target_ops *ops,
560 enum target_object object, const char *annex,
561 gdb_byte *readbuf, const gdb_byte *writebuf,
562 ULONGEST offset, LONGEST len)
563 {
564 if (object == TARGET_OBJECT_SPU)
565 return spu_proc_xfer_spu (annex, readbuf, writebuf, offset, len);
566
567 if (object == TARGET_OBJECT_MEMORY)
568 {
569 int fd;
570 ULONGEST addr;
571 char mem_annex[32], lslr_annex[32];
572 gdb_byte buf[32];
573 ULONGEST lslr;
574 LONGEST ret;
575
576 /* We must be stopped on a spu_run system call. */
577 if (!parse_spufs_run (&fd, &addr))
578 return 0;
579
580 /* Use the "mem" spufs file to access SPU local store. */
581 xsnprintf (mem_annex, sizeof mem_annex, "%d/mem", fd);
582 ret = spu_proc_xfer_spu (mem_annex, readbuf, writebuf, offset, len);
583 if (ret > 0)
584 return ret;
585
586 /* SPU local store access wraps the address around at the
587 local store limit. We emulate this here. To avoid needing
588 an extra access to retrieve the LSLR, we only do that after
589 trying the original address first, and getting end-of-file. */
590 xsnprintf (lslr_annex, sizeof lslr_annex, "%d/lslr", fd);
591 memset (buf, 0, sizeof buf);
592 if (spu_proc_xfer_spu (lslr_annex, buf, NULL, 0, sizeof buf) <= 0)
593 return ret;
594
595 lslr = strtoulst (buf, NULL, 16);
596 return spu_proc_xfer_spu (mem_annex, readbuf, writebuf,
597 offset & lslr, len);
598 }
599
600 return -1;
601 }
602
603 /* Override the to_can_use_hw_breakpoint routine. */
604 static int
605 spu_can_use_hw_breakpoint (int type, int cnt, int othertype)
606 {
607 return 0;
608 }
609
610
611 /* Initialize SPU native target. */
612 void
613 _initialize_spu_nat (void)
614 {
615 /* Generic ptrace methods. */
616 struct target_ops *t;
617 t = inf_ptrace_target ();
618
619 /* Add SPU methods. */
620 t->to_post_attach = spu_child_post_attach;
621 t->to_post_startup_inferior = spu_child_post_startup_inferior;
622 t->to_wait = spu_child_wait;
623 t->to_fetch_registers = spu_fetch_inferior_registers;
624 t->to_store_registers = spu_store_inferior_registers;
625 t->to_xfer_partial = spu_xfer_partial;
626 t->to_can_use_hw_breakpoint = spu_can_use_hw_breakpoint;
627
628 /* Register SPU target. */
629 add_target (t);
630 }