502fc83cb5d31b6dd8e108ccc9d3dcc771370628
[binutils-gdb.git] / gdb / spu-tdep.c
1 /* SPU target-dependent code for GDB, the GNU debugger.
2 Copyright (C) 2006, 2007, 2008 Free Software Foundation, Inc.
3
4 Contributed by Ulrich Weigand <uweigand@de.ibm.com>.
5 Based on a port by Sid Manning <sid@us.ibm.com>.
6
7 This file is part of GDB.
8
9 This program is free software; you can redistribute it and/or modify
10 it under the terms of the GNU General Public License as published by
11 the Free Software Foundation; either version 3 of the License, or
12 (at your option) any later version.
13
14 This program is distributed in the hope that it will be useful,
15 but WITHOUT ANY WARRANTY; without even the implied warranty of
16 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
17 GNU General Public License for more details.
18
19 You should have received a copy of the GNU General Public License
20 along with this program. If not, see <http://www.gnu.org/licenses/>. */
21
22 #include "defs.h"
23 #include "arch-utils.h"
24 #include "gdbtypes.h"
25 #include "gdbcmd.h"
26 #include "gdbcore.h"
27 #include "gdb_string.h"
28 #include "gdb_assert.h"
29 #include "frame.h"
30 #include "frame-unwind.h"
31 #include "frame-base.h"
32 #include "trad-frame.h"
33 #include "symtab.h"
34 #include "symfile.h"
35 #include "value.h"
36 #include "inferior.h"
37 #include "dis-asm.h"
38 #include "objfiles.h"
39 #include "language.h"
40 #include "regcache.h"
41 #include "reggroups.h"
42 #include "floatformat.h"
43 #include "observer.h"
44
45 #include "spu-tdep.h"
46
47
48 /* The tdep structure. */
49 struct gdbarch_tdep
50 {
51 /* SPU-specific vector type. */
52 struct type *spu_builtin_type_vec128;
53 };
54
55
56 /* SPU-specific vector type. */
57 static struct type *
58 spu_builtin_type_vec128 (struct gdbarch *gdbarch)
59 {
60 struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch);
61
62 if (!tdep->spu_builtin_type_vec128)
63 {
64 struct type *t;
65
66 t = init_composite_type ("__spu_builtin_type_vec128", TYPE_CODE_UNION);
67 append_composite_type_field (t, "uint128", builtin_type_int128);
68 append_composite_type_field (t, "v2_int64",
69 init_vector_type (builtin_type_int64, 2));
70 append_composite_type_field (t, "v4_int32",
71 init_vector_type (builtin_type_int32, 4));
72 append_composite_type_field (t, "v8_int16",
73 init_vector_type (builtin_type_int16, 8));
74 append_composite_type_field (t, "v16_int8",
75 init_vector_type (builtin_type_int8, 16));
76 append_composite_type_field (t, "v2_double",
77 init_vector_type (builtin_type_double, 2));
78 append_composite_type_field (t, "v4_float",
79 init_vector_type (builtin_type_float, 4));
80
81 TYPE_FLAGS (t) |= TYPE_FLAG_VECTOR;
82 TYPE_NAME (t) = "spu_builtin_type_vec128";
83
84 tdep->spu_builtin_type_vec128 = t;
85 }
86
87 return tdep->spu_builtin_type_vec128;
88 }
89
90
91 /* The list of available "info spu " commands. */
92 static struct cmd_list_element *infospucmdlist = NULL;
93
94 /* Registers. */
95
96 static const char *
97 spu_register_name (struct gdbarch *gdbarch, int reg_nr)
98 {
99 static char *register_names[] =
100 {
101 "r0", "r1", "r2", "r3", "r4", "r5", "r6", "r7",
102 "r8", "r9", "r10", "r11", "r12", "r13", "r14", "r15",
103 "r16", "r17", "r18", "r19", "r20", "r21", "r22", "r23",
104 "r24", "r25", "r26", "r27", "r28", "r29", "r30", "r31",
105 "r32", "r33", "r34", "r35", "r36", "r37", "r38", "r39",
106 "r40", "r41", "r42", "r43", "r44", "r45", "r46", "r47",
107 "r48", "r49", "r50", "r51", "r52", "r53", "r54", "r55",
108 "r56", "r57", "r58", "r59", "r60", "r61", "r62", "r63",
109 "r64", "r65", "r66", "r67", "r68", "r69", "r70", "r71",
110 "r72", "r73", "r74", "r75", "r76", "r77", "r78", "r79",
111 "r80", "r81", "r82", "r83", "r84", "r85", "r86", "r87",
112 "r88", "r89", "r90", "r91", "r92", "r93", "r94", "r95",
113 "r96", "r97", "r98", "r99", "r100", "r101", "r102", "r103",
114 "r104", "r105", "r106", "r107", "r108", "r109", "r110", "r111",
115 "r112", "r113", "r114", "r115", "r116", "r117", "r118", "r119",
116 "r120", "r121", "r122", "r123", "r124", "r125", "r126", "r127",
117 "id", "pc", "sp", "fpscr", "srr0", "lslr", "decr", "decr_status"
118 };
119
120 if (reg_nr < 0)
121 return NULL;
122 if (reg_nr >= sizeof register_names / sizeof *register_names)
123 return NULL;
124
125 return register_names[reg_nr];
126 }
127
128 static struct type *
129 spu_register_type (struct gdbarch *gdbarch, int reg_nr)
130 {
131 if (reg_nr < SPU_NUM_GPRS)
132 return spu_builtin_type_vec128 (gdbarch);
133
134 switch (reg_nr)
135 {
136 case SPU_ID_REGNUM:
137 return builtin_type_uint32;
138
139 case SPU_PC_REGNUM:
140 return builtin_type_void_func_ptr;
141
142 case SPU_SP_REGNUM:
143 return builtin_type_void_data_ptr;
144
145 case SPU_FPSCR_REGNUM:
146 return builtin_type_uint128;
147
148 case SPU_SRR0_REGNUM:
149 return builtin_type_uint32;
150
151 case SPU_LSLR_REGNUM:
152 return builtin_type_uint32;
153
154 case SPU_DECR_REGNUM:
155 return builtin_type_uint32;
156
157 case SPU_DECR_STATUS_REGNUM:
158 return builtin_type_uint32;
159
160 default:
161 internal_error (__FILE__, __LINE__, "invalid regnum");
162 }
163 }
164
165 /* Pseudo registers for preferred slots - stack pointer. */
166
167 static void
168 spu_pseudo_register_read_spu (struct regcache *regcache, const char *regname,
169 gdb_byte *buf)
170 {
171 gdb_byte reg[32];
172 char annex[32];
173 ULONGEST id;
174
175 regcache_raw_read_unsigned (regcache, SPU_ID_REGNUM, &id);
176 xsnprintf (annex, sizeof annex, "%d/%s", (int) id, regname);
177 memset (reg, 0, sizeof reg);
178 target_read (&current_target, TARGET_OBJECT_SPU, annex,
179 reg, 0, sizeof reg);
180
181 store_unsigned_integer (buf, 4, strtoulst (reg, NULL, 16));
182 }
183
184 static void
185 spu_pseudo_register_read (struct gdbarch *gdbarch, struct regcache *regcache,
186 int regnum, gdb_byte *buf)
187 {
188 gdb_byte reg[16];
189 char annex[32];
190 ULONGEST id;
191
192 switch (regnum)
193 {
194 case SPU_SP_REGNUM:
195 regcache_raw_read (regcache, SPU_RAW_SP_REGNUM, reg);
196 memcpy (buf, reg, 4);
197 break;
198
199 case SPU_FPSCR_REGNUM:
200 regcache_raw_read_unsigned (regcache, SPU_ID_REGNUM, &id);
201 xsnprintf (annex, sizeof annex, "%d/fpcr", (int) id);
202 target_read (&current_target, TARGET_OBJECT_SPU, annex, buf, 0, 16);
203 break;
204
205 case SPU_SRR0_REGNUM:
206 spu_pseudo_register_read_spu (regcache, "srr0", buf);
207 break;
208
209 case SPU_LSLR_REGNUM:
210 spu_pseudo_register_read_spu (regcache, "lslr", buf);
211 break;
212
213 case SPU_DECR_REGNUM:
214 spu_pseudo_register_read_spu (regcache, "decr", buf);
215 break;
216
217 case SPU_DECR_STATUS_REGNUM:
218 spu_pseudo_register_read_spu (regcache, "decr_status", buf);
219 break;
220
221 default:
222 internal_error (__FILE__, __LINE__, _("invalid regnum"));
223 }
224 }
225
226 static void
227 spu_pseudo_register_write_spu (struct regcache *regcache, const char *regname,
228 const gdb_byte *buf)
229 {
230 gdb_byte reg[32];
231 char annex[32];
232 ULONGEST id;
233
234 regcache_raw_read_unsigned (regcache, SPU_ID_REGNUM, &id);
235 xsnprintf (annex, sizeof annex, "%d/%s", (int) id, regname);
236 xsnprintf (reg, sizeof reg, "0x%s",
237 phex_nz (extract_unsigned_integer (buf, 4), 4));
238 target_write (&current_target, TARGET_OBJECT_SPU, annex,
239 reg, 0, strlen (reg));
240 }
241
242 static void
243 spu_pseudo_register_write (struct gdbarch *gdbarch, struct regcache *regcache,
244 int regnum, const gdb_byte *buf)
245 {
246 gdb_byte reg[16];
247 char annex[32];
248 ULONGEST id;
249
250 switch (regnum)
251 {
252 case SPU_SP_REGNUM:
253 regcache_raw_read (regcache, SPU_RAW_SP_REGNUM, reg);
254 memcpy (reg, buf, 4);
255 regcache_raw_write (regcache, SPU_RAW_SP_REGNUM, reg);
256 break;
257
258 case SPU_FPSCR_REGNUM:
259 regcache_raw_read_unsigned (regcache, SPU_ID_REGNUM, &id);
260 xsnprintf (annex, sizeof annex, "%d/fpcr", (int) id);
261 target_write (&current_target, TARGET_OBJECT_SPU, annex, buf, 0, 16);
262 break;
263
264 case SPU_SRR0_REGNUM:
265 spu_pseudo_register_write_spu (regcache, "srr0", buf);
266 break;
267
268 case SPU_LSLR_REGNUM:
269 spu_pseudo_register_write_spu (regcache, "lslr", buf);
270 break;
271
272 case SPU_DECR_REGNUM:
273 spu_pseudo_register_write_spu (regcache, "decr", buf);
274 break;
275
276 case SPU_DECR_STATUS_REGNUM:
277 spu_pseudo_register_write_spu (regcache, "decr_status", buf);
278 break;
279
280 default:
281 internal_error (__FILE__, __LINE__, _("invalid regnum"));
282 }
283 }
284
285 /* Value conversion -- access scalar values at the preferred slot. */
286
287 static struct value *
288 spu_value_from_register (struct type *type, int regnum,
289 struct frame_info *frame)
290 {
291 struct value *value = default_value_from_register (type, regnum, frame);
292 int len = TYPE_LENGTH (type);
293
294 if (regnum < SPU_NUM_GPRS && len < 16)
295 {
296 int preferred_slot = len < 4 ? 4 - len : 0;
297 set_value_offset (value, preferred_slot);
298 }
299
300 return value;
301 }
302
303 /* Register groups. */
304
305 static int
306 spu_register_reggroup_p (struct gdbarch *gdbarch, int regnum,
307 struct reggroup *group)
308 {
309 /* Registers displayed via 'info regs'. */
310 if (group == general_reggroup)
311 return 1;
312
313 /* Registers displayed via 'info float'. */
314 if (group == float_reggroup)
315 return 0;
316
317 /* Registers that need to be saved/restored in order to
318 push or pop frames. */
319 if (group == save_reggroup || group == restore_reggroup)
320 return 1;
321
322 return default_register_reggroup_p (gdbarch, regnum, group);
323 }
324
325 /* Address conversion. */
326
327 static CORE_ADDR
328 spu_pointer_to_address (struct type *type, const gdb_byte *buf)
329 {
330 ULONGEST addr = extract_unsigned_integer (buf, TYPE_LENGTH (type));
331 ULONGEST lslr = SPU_LS_SIZE - 1; /* Hard-wired LS size. */
332
333 if (target_has_registers && target_has_stack && target_has_memory)
334 lslr = get_frame_register_unsigned (get_selected_frame (NULL),
335 SPU_LSLR_REGNUM);
336
337 return addr & lslr;
338 }
339
340 static CORE_ADDR
341 spu_integer_to_address (struct gdbarch *gdbarch,
342 struct type *type, const gdb_byte *buf)
343 {
344 ULONGEST addr = unpack_long (type, buf);
345 ULONGEST lslr = SPU_LS_SIZE - 1; /* Hard-wired LS size. */
346
347 if (target_has_registers && target_has_stack && target_has_memory)
348 lslr = get_frame_register_unsigned (get_selected_frame (NULL),
349 SPU_LSLR_REGNUM);
350
351 return addr & lslr;
352 }
353
354
355 /* Decoding SPU instructions. */
356
357 enum
358 {
359 op_lqd = 0x34,
360 op_lqx = 0x3c4,
361 op_lqa = 0x61,
362 op_lqr = 0x67,
363 op_stqd = 0x24,
364 op_stqx = 0x144,
365 op_stqa = 0x41,
366 op_stqr = 0x47,
367
368 op_il = 0x081,
369 op_ila = 0x21,
370 op_a = 0x0c0,
371 op_ai = 0x1c,
372
373 op_selb = 0x4,
374
375 op_br = 0x64,
376 op_bra = 0x60,
377 op_brsl = 0x66,
378 op_brasl = 0x62,
379 op_brnz = 0x42,
380 op_brz = 0x40,
381 op_brhnz = 0x46,
382 op_brhz = 0x44,
383 op_bi = 0x1a8,
384 op_bisl = 0x1a9,
385 op_biz = 0x128,
386 op_binz = 0x129,
387 op_bihz = 0x12a,
388 op_bihnz = 0x12b,
389 };
390
391 static int
392 is_rr (unsigned int insn, int op, int *rt, int *ra, int *rb)
393 {
394 if ((insn >> 21) == op)
395 {
396 *rt = insn & 127;
397 *ra = (insn >> 7) & 127;
398 *rb = (insn >> 14) & 127;
399 return 1;
400 }
401
402 return 0;
403 }
404
405 static int
406 is_rrr (unsigned int insn, int op, int *rt, int *ra, int *rb, int *rc)
407 {
408 if ((insn >> 28) == op)
409 {
410 *rt = (insn >> 21) & 127;
411 *ra = (insn >> 7) & 127;
412 *rb = (insn >> 14) & 127;
413 *rc = insn & 127;
414 return 1;
415 }
416
417 return 0;
418 }
419
420 static int
421 is_ri7 (unsigned int insn, int op, int *rt, int *ra, int *i7)
422 {
423 if ((insn >> 21) == op)
424 {
425 *rt = insn & 127;
426 *ra = (insn >> 7) & 127;
427 *i7 = (((insn >> 14) & 127) ^ 0x40) - 0x40;
428 return 1;
429 }
430
431 return 0;
432 }
433
434 static int
435 is_ri10 (unsigned int insn, int op, int *rt, int *ra, int *i10)
436 {
437 if ((insn >> 24) == op)
438 {
439 *rt = insn & 127;
440 *ra = (insn >> 7) & 127;
441 *i10 = (((insn >> 14) & 0x3ff) ^ 0x200) - 0x200;
442 return 1;
443 }
444
445 return 0;
446 }
447
448 static int
449 is_ri16 (unsigned int insn, int op, int *rt, int *i16)
450 {
451 if ((insn >> 23) == op)
452 {
453 *rt = insn & 127;
454 *i16 = (((insn >> 7) & 0xffff) ^ 0x8000) - 0x8000;
455 return 1;
456 }
457
458 return 0;
459 }
460
461 static int
462 is_ri18 (unsigned int insn, int op, int *rt, int *i18)
463 {
464 if ((insn >> 25) == op)
465 {
466 *rt = insn & 127;
467 *i18 = (((insn >> 7) & 0x3ffff) ^ 0x20000) - 0x20000;
468 return 1;
469 }
470
471 return 0;
472 }
473
474 static int
475 is_branch (unsigned int insn, int *offset, int *reg)
476 {
477 int rt, i7, i16;
478
479 if (is_ri16 (insn, op_br, &rt, &i16)
480 || is_ri16 (insn, op_brsl, &rt, &i16)
481 || is_ri16 (insn, op_brnz, &rt, &i16)
482 || is_ri16 (insn, op_brz, &rt, &i16)
483 || is_ri16 (insn, op_brhnz, &rt, &i16)
484 || is_ri16 (insn, op_brhz, &rt, &i16))
485 {
486 *reg = SPU_PC_REGNUM;
487 *offset = i16 << 2;
488 return 1;
489 }
490
491 if (is_ri16 (insn, op_bra, &rt, &i16)
492 || is_ri16 (insn, op_brasl, &rt, &i16))
493 {
494 *reg = -1;
495 *offset = i16 << 2;
496 return 1;
497 }
498
499 if (is_ri7 (insn, op_bi, &rt, reg, &i7)
500 || is_ri7 (insn, op_bisl, &rt, reg, &i7)
501 || is_ri7 (insn, op_biz, &rt, reg, &i7)
502 || is_ri7 (insn, op_binz, &rt, reg, &i7)
503 || is_ri7 (insn, op_bihz, &rt, reg, &i7)
504 || is_ri7 (insn, op_bihnz, &rt, reg, &i7))
505 {
506 *offset = 0;
507 return 1;
508 }
509
510 return 0;
511 }
512
513
514 /* Prolog parsing. */
515
516 struct spu_prologue_data
517 {
518 /* Stack frame size. -1 if analysis was unsuccessful. */
519 int size;
520
521 /* How to find the CFA. The CFA is equal to SP at function entry. */
522 int cfa_reg;
523 int cfa_offset;
524
525 /* Offset relative to CFA where a register is saved. -1 if invalid. */
526 int reg_offset[SPU_NUM_GPRS];
527 };
528
529 static CORE_ADDR
530 spu_analyze_prologue (CORE_ADDR start_pc, CORE_ADDR end_pc,
531 struct spu_prologue_data *data)
532 {
533 int found_sp = 0;
534 int found_fp = 0;
535 int found_lr = 0;
536 int reg_immed[SPU_NUM_GPRS];
537 gdb_byte buf[16];
538 CORE_ADDR prolog_pc = start_pc;
539 CORE_ADDR pc;
540 int i;
541
542
543 /* Initialize DATA to default values. */
544 data->size = -1;
545
546 data->cfa_reg = SPU_RAW_SP_REGNUM;
547 data->cfa_offset = 0;
548
549 for (i = 0; i < SPU_NUM_GPRS; i++)
550 data->reg_offset[i] = -1;
551
552 /* Set up REG_IMMED array. This is non-zero for a register if we know its
553 preferred slot currently holds this immediate value. */
554 for (i = 0; i < SPU_NUM_GPRS; i++)
555 reg_immed[i] = 0;
556
557 /* Scan instructions until the first branch.
558
559 The following instructions are important prolog components:
560
561 - The first instruction to set up the stack pointer.
562 - The first instruction to set up the frame pointer.
563 - The first instruction to save the link register.
564
565 We return the instruction after the latest of these three,
566 or the incoming PC if none is found. The first instruction
567 to set up the stack pointer also defines the frame size.
568
569 Note that instructions saving incoming arguments to their stack
570 slots are not counted as important, because they are hard to
571 identify with certainty. This should not matter much, because
572 arguments are relevant only in code compiled with debug data,
573 and in such code the GDB core will advance until the first source
574 line anyway, using SAL data.
575
576 For purposes of stack unwinding, we analyze the following types
577 of instructions in addition:
578
579 - Any instruction adding to the current frame pointer.
580 - Any instruction loading an immediate constant into a register.
581 - Any instruction storing a register onto the stack.
582
583 These are used to compute the CFA and REG_OFFSET output. */
584
585 for (pc = start_pc; pc < end_pc; pc += 4)
586 {
587 unsigned int insn;
588 int rt, ra, rb, rc, immed;
589
590 if (target_read_memory (pc, buf, 4))
591 break;
592 insn = extract_unsigned_integer (buf, 4);
593
594 /* AI is the typical instruction to set up a stack frame.
595 It is also used to initialize the frame pointer. */
596 if (is_ri10 (insn, op_ai, &rt, &ra, &immed))
597 {
598 if (rt == data->cfa_reg && ra == data->cfa_reg)
599 data->cfa_offset -= immed;
600
601 if (rt == SPU_RAW_SP_REGNUM && ra == SPU_RAW_SP_REGNUM
602 && !found_sp)
603 {
604 found_sp = 1;
605 prolog_pc = pc + 4;
606
607 data->size = -immed;
608 }
609 else if (rt == SPU_FP_REGNUM && ra == SPU_RAW_SP_REGNUM
610 && !found_fp)
611 {
612 found_fp = 1;
613 prolog_pc = pc + 4;
614
615 data->cfa_reg = SPU_FP_REGNUM;
616 data->cfa_offset -= immed;
617 }
618 }
619
620 /* A is used to set up stack frames of size >= 512 bytes.
621 If we have tracked the contents of the addend register,
622 we can handle this as well. */
623 else if (is_rr (insn, op_a, &rt, &ra, &rb))
624 {
625 if (rt == data->cfa_reg && ra == data->cfa_reg)
626 {
627 if (reg_immed[rb] != 0)
628 data->cfa_offset -= reg_immed[rb];
629 else
630 data->cfa_reg = -1; /* We don't know the CFA any more. */
631 }
632
633 if (rt == SPU_RAW_SP_REGNUM && ra == SPU_RAW_SP_REGNUM
634 && !found_sp)
635 {
636 found_sp = 1;
637 prolog_pc = pc + 4;
638
639 if (reg_immed[rb] != 0)
640 data->size = -reg_immed[rb];
641 }
642 }
643
644 /* We need to track IL and ILA used to load immediate constants
645 in case they are later used as input to an A instruction. */
646 else if (is_ri16 (insn, op_il, &rt, &immed))
647 {
648 reg_immed[rt] = immed;
649
650 if (rt == SPU_RAW_SP_REGNUM && !found_sp)
651 found_sp = 1;
652 }
653
654 else if (is_ri18 (insn, op_ila, &rt, &immed))
655 {
656 reg_immed[rt] = immed & 0x3ffff;
657
658 if (rt == SPU_RAW_SP_REGNUM && !found_sp)
659 found_sp = 1;
660 }
661
662 /* STQD is used to save registers to the stack. */
663 else if (is_ri10 (insn, op_stqd, &rt, &ra, &immed))
664 {
665 if (ra == data->cfa_reg)
666 data->reg_offset[rt] = data->cfa_offset - (immed << 4);
667
668 if (ra == data->cfa_reg && rt == SPU_LR_REGNUM
669 && !found_lr)
670 {
671 found_lr = 1;
672 prolog_pc = pc + 4;
673 }
674 }
675
676 /* _start uses SELB to set up the stack pointer. */
677 else if (is_rrr (insn, op_selb, &rt, &ra, &rb, &rc))
678 {
679 if (rt == SPU_RAW_SP_REGNUM && !found_sp)
680 found_sp = 1;
681 }
682
683 /* We terminate if we find a branch. */
684 else if (is_branch (insn, &immed, &ra))
685 break;
686 }
687
688
689 /* If we successfully parsed until here, and didn't find any instruction
690 modifying SP, we assume we have a frameless function. */
691 if (!found_sp)
692 data->size = 0;
693
694 /* Return cooked instead of raw SP. */
695 if (data->cfa_reg == SPU_RAW_SP_REGNUM)
696 data->cfa_reg = SPU_SP_REGNUM;
697
698 return prolog_pc;
699 }
700
701 /* Return the first instruction after the prologue starting at PC. */
702 static CORE_ADDR
703 spu_skip_prologue (struct gdbarch *gdbarch, CORE_ADDR pc)
704 {
705 struct spu_prologue_data data;
706 return spu_analyze_prologue (pc, (CORE_ADDR)-1, &data);
707 }
708
709 /* Return the frame pointer in use at address PC. */
710 static void
711 spu_virtual_frame_pointer (struct gdbarch *gdbarch, CORE_ADDR pc,
712 int *reg, LONGEST *offset)
713 {
714 struct spu_prologue_data data;
715 spu_analyze_prologue (pc, (CORE_ADDR)-1, &data);
716
717 if (data.size != -1 && data.cfa_reg != -1)
718 {
719 /* The 'frame pointer' address is CFA minus frame size. */
720 *reg = data.cfa_reg;
721 *offset = data.cfa_offset - data.size;
722 }
723 else
724 {
725 /* ??? We don't really know ... */
726 *reg = SPU_SP_REGNUM;
727 *offset = 0;
728 }
729 }
730
731 /* Return true if we are in the function's epilogue, i.e. after the
732 instruction that destroyed the function's stack frame.
733
734 1) scan forward from the point of execution:
735 a) If you find an instruction that modifies the stack pointer
736 or transfers control (except a return), execution is not in
737 an epilogue, return.
738 b) Stop scanning if you find a return instruction or reach the
739 end of the function or reach the hard limit for the size of
740 an epilogue.
741 2) scan backward from the point of execution:
742 a) If you find an instruction that modifies the stack pointer,
743 execution *is* in an epilogue, return.
744 b) Stop scanning if you reach an instruction that transfers
745 control or the beginning of the function or reach the hard
746 limit for the size of an epilogue. */
747
748 static int
749 spu_in_function_epilogue_p (struct gdbarch *gdbarch, CORE_ADDR pc)
750 {
751 CORE_ADDR scan_pc, func_start, func_end, epilogue_start, epilogue_end;
752 bfd_byte buf[4];
753 unsigned int insn;
754 int rt, ra, rb, rc, immed;
755
756 /* Find the search limits based on function boundaries and hard limit.
757 We assume the epilogue can be up to 64 instructions long. */
758
759 const int spu_max_epilogue_size = 64 * 4;
760
761 if (!find_pc_partial_function (pc, NULL, &func_start, &func_end))
762 return 0;
763
764 if (pc - func_start < spu_max_epilogue_size)
765 epilogue_start = func_start;
766 else
767 epilogue_start = pc - spu_max_epilogue_size;
768
769 if (func_end - pc < spu_max_epilogue_size)
770 epilogue_end = func_end;
771 else
772 epilogue_end = pc + spu_max_epilogue_size;
773
774 /* Scan forward until next 'bi $0'. */
775
776 for (scan_pc = pc; scan_pc < epilogue_end; scan_pc += 4)
777 {
778 if (target_read_memory (scan_pc, buf, 4))
779 return 0;
780 insn = extract_unsigned_integer (buf, 4);
781
782 if (is_branch (insn, &immed, &ra))
783 {
784 if (immed == 0 && ra == SPU_LR_REGNUM)
785 break;
786
787 return 0;
788 }
789
790 if (is_ri10 (insn, op_ai, &rt, &ra, &immed)
791 || is_rr (insn, op_a, &rt, &ra, &rb)
792 || is_ri10 (insn, op_lqd, &rt, &ra, &immed))
793 {
794 if (rt == SPU_RAW_SP_REGNUM)
795 return 0;
796 }
797 }
798
799 if (scan_pc >= epilogue_end)
800 return 0;
801
802 /* Scan backward until adjustment to stack pointer (R1). */
803
804 for (scan_pc = pc - 4; scan_pc >= epilogue_start; scan_pc -= 4)
805 {
806 if (target_read_memory (scan_pc, buf, 4))
807 return 0;
808 insn = extract_unsigned_integer (buf, 4);
809
810 if (is_branch (insn, &immed, &ra))
811 return 0;
812
813 if (is_ri10 (insn, op_ai, &rt, &ra, &immed)
814 || is_rr (insn, op_a, &rt, &ra, &rb)
815 || is_ri10 (insn, op_lqd, &rt, &ra, &immed))
816 {
817 if (rt == SPU_RAW_SP_REGNUM)
818 return 1;
819 }
820 }
821
822 return 0;
823 }
824
825
826 /* Normal stack frames. */
827
828 struct spu_unwind_cache
829 {
830 CORE_ADDR func;
831 CORE_ADDR frame_base;
832 CORE_ADDR local_base;
833
834 struct trad_frame_saved_reg *saved_regs;
835 };
836
837 static struct spu_unwind_cache *
838 spu_frame_unwind_cache (struct frame_info *this_frame,
839 void **this_prologue_cache)
840 {
841 struct spu_unwind_cache *info;
842 struct spu_prologue_data data;
843 gdb_byte buf[16];
844
845 if (*this_prologue_cache)
846 return *this_prologue_cache;
847
848 info = FRAME_OBSTACK_ZALLOC (struct spu_unwind_cache);
849 *this_prologue_cache = info;
850 info->saved_regs = trad_frame_alloc_saved_regs (this_frame);
851 info->frame_base = 0;
852 info->local_base = 0;
853
854 /* Find the start of the current function, and analyze its prologue. */
855 info->func = get_frame_func (this_frame);
856 if (info->func == 0)
857 {
858 /* Fall back to using the current PC as frame ID. */
859 info->func = get_frame_pc (this_frame);
860 data.size = -1;
861 }
862 else
863 spu_analyze_prologue (info->func, get_frame_pc (this_frame), &data);
864
865
866 /* If successful, use prologue analysis data. */
867 if (data.size != -1 && data.cfa_reg != -1)
868 {
869 CORE_ADDR cfa;
870 int i;
871
872 /* Determine CFA via unwound CFA_REG plus CFA_OFFSET. */
873 get_frame_register (this_frame, data.cfa_reg, buf);
874 cfa = extract_unsigned_integer (buf, 4) + data.cfa_offset;
875
876 /* Call-saved register slots. */
877 for (i = 0; i < SPU_NUM_GPRS; i++)
878 if (i == SPU_LR_REGNUM
879 || (i >= SPU_SAVED1_REGNUM && i <= SPU_SAVEDN_REGNUM))
880 if (data.reg_offset[i] != -1)
881 info->saved_regs[i].addr = cfa - data.reg_offset[i];
882
883 /* Frame bases. */
884 info->frame_base = cfa;
885 info->local_base = cfa - data.size;
886 }
887
888 /* Otherwise, fall back to reading the backchain link. */
889 else
890 {
891 CORE_ADDR reg;
892 LONGEST backchain;
893 int status;
894
895 /* Get the backchain. */
896 reg = get_frame_register_unsigned (this_frame, SPU_SP_REGNUM);
897 status = safe_read_memory_integer (reg, 4, &backchain);
898
899 /* A zero backchain terminates the frame chain. Also, sanity
900 check against the local store size limit. */
901 if (status && backchain > 0 && backchain < SPU_LS_SIZE)
902 {
903 /* Assume the link register is saved into its slot. */
904 if (backchain + 16 < SPU_LS_SIZE)
905 info->saved_regs[SPU_LR_REGNUM].addr = backchain + 16;
906
907 /* Frame bases. */
908 info->frame_base = backchain;
909 info->local_base = reg;
910 }
911 }
912
913 /* The previous SP is equal to the CFA. */
914 trad_frame_set_value (info->saved_regs, SPU_SP_REGNUM, info->frame_base);
915
916 /* Read full contents of the unwound link register in order to
917 be able to determine the return address. */
918 if (trad_frame_addr_p (info->saved_regs, SPU_LR_REGNUM))
919 target_read_memory (info->saved_regs[SPU_LR_REGNUM].addr, buf, 16);
920 else
921 get_frame_register (this_frame, SPU_LR_REGNUM, buf);
922
923 /* Normally, the return address is contained in the slot 0 of the
924 link register, and slots 1-3 are zero. For an overlay return,
925 slot 0 contains the address of the overlay manager return stub,
926 slot 1 contains the partition number of the overlay section to
927 be returned to, and slot 2 contains the return address within
928 that section. Return the latter address in that case. */
929 if (extract_unsigned_integer (buf + 8, 4) != 0)
930 trad_frame_set_value (info->saved_regs, SPU_PC_REGNUM,
931 extract_unsigned_integer (buf + 8, 4));
932 else
933 trad_frame_set_value (info->saved_regs, SPU_PC_REGNUM,
934 extract_unsigned_integer (buf, 4));
935
936 return info;
937 }
938
939 static void
940 spu_frame_this_id (struct frame_info *this_frame,
941 void **this_prologue_cache, struct frame_id *this_id)
942 {
943 struct spu_unwind_cache *info =
944 spu_frame_unwind_cache (this_frame, this_prologue_cache);
945
946 if (info->frame_base == 0)
947 return;
948
949 *this_id = frame_id_build (info->frame_base, info->func);
950 }
951
952 static struct value *
953 spu_frame_prev_register (struct frame_info *this_frame,
954 void **this_prologue_cache, int regnum)
955 {
956 struct spu_unwind_cache *info
957 = spu_frame_unwind_cache (this_frame, this_prologue_cache);
958
959 /* Special-case the stack pointer. */
960 if (regnum == SPU_RAW_SP_REGNUM)
961 regnum = SPU_SP_REGNUM;
962
963 return trad_frame_get_prev_register (this_frame, info->saved_regs, regnum);
964 }
965
966 static const struct frame_unwind spu_frame_unwind = {
967 NORMAL_FRAME,
968 spu_frame_this_id,
969 spu_frame_prev_register,
970 NULL,
971 default_frame_sniffer
972 };
973
974 static CORE_ADDR
975 spu_frame_base_address (struct frame_info *this_frame, void **this_cache)
976 {
977 struct spu_unwind_cache *info
978 = spu_frame_unwind_cache (this_frame, this_cache);
979 return info->local_base;
980 }
981
982 static const struct frame_base spu_frame_base = {
983 &spu_frame_unwind,
984 spu_frame_base_address,
985 spu_frame_base_address,
986 spu_frame_base_address
987 };
988
989 static CORE_ADDR
990 spu_unwind_pc (struct gdbarch *gdbarch, struct frame_info *next_frame)
991 {
992 CORE_ADDR pc = frame_unwind_register_unsigned (next_frame, SPU_PC_REGNUM);
993 /* Mask off interrupt enable bit. */
994 return pc & -4;
995 }
996
997 static CORE_ADDR
998 spu_unwind_sp (struct gdbarch *gdbarch, struct frame_info *next_frame)
999 {
1000 return frame_unwind_register_unsigned (next_frame, SPU_SP_REGNUM);
1001 }
1002
1003 static CORE_ADDR
1004 spu_read_pc (struct regcache *regcache)
1005 {
1006 ULONGEST pc;
1007 regcache_cooked_read_unsigned (regcache, SPU_PC_REGNUM, &pc);
1008 /* Mask off interrupt enable bit. */
1009 return pc & -4;
1010 }
1011
1012 static void
1013 spu_write_pc (struct regcache *regcache, CORE_ADDR pc)
1014 {
1015 /* Keep interrupt enabled state unchanged. */
1016 ULONGEST old_pc;
1017 regcache_cooked_read_unsigned (regcache, SPU_PC_REGNUM, &old_pc);
1018 regcache_cooked_write_unsigned (regcache, SPU_PC_REGNUM,
1019 (pc & -4) | (old_pc & 3));
1020 }
1021
1022
1023 /* Function calling convention. */
1024
1025 static CORE_ADDR
1026 spu_frame_align (struct gdbarch *gdbarch, CORE_ADDR sp)
1027 {
1028 return sp & ~15;
1029 }
1030
1031 static int
1032 spu_scalar_value_p (struct type *type)
1033 {
1034 switch (TYPE_CODE (type))
1035 {
1036 case TYPE_CODE_INT:
1037 case TYPE_CODE_ENUM:
1038 case TYPE_CODE_RANGE:
1039 case TYPE_CODE_CHAR:
1040 case TYPE_CODE_BOOL:
1041 case TYPE_CODE_PTR:
1042 case TYPE_CODE_REF:
1043 return TYPE_LENGTH (type) <= 16;
1044
1045 default:
1046 return 0;
1047 }
1048 }
1049
1050 static void
1051 spu_value_to_regcache (struct regcache *regcache, int regnum,
1052 struct type *type, const gdb_byte *in)
1053 {
1054 int len = TYPE_LENGTH (type);
1055
1056 if (spu_scalar_value_p (type))
1057 {
1058 int preferred_slot = len < 4 ? 4 - len : 0;
1059 regcache_cooked_write_part (regcache, regnum, preferred_slot, len, in);
1060 }
1061 else
1062 {
1063 while (len >= 16)
1064 {
1065 regcache_cooked_write (regcache, regnum++, in);
1066 in += 16;
1067 len -= 16;
1068 }
1069
1070 if (len > 0)
1071 regcache_cooked_write_part (regcache, regnum, 0, len, in);
1072 }
1073 }
1074
1075 static void
1076 spu_regcache_to_value (struct regcache *regcache, int regnum,
1077 struct type *type, gdb_byte *out)
1078 {
1079 int len = TYPE_LENGTH (type);
1080
1081 if (spu_scalar_value_p (type))
1082 {
1083 int preferred_slot = len < 4 ? 4 - len : 0;
1084 regcache_cooked_read_part (regcache, regnum, preferred_slot, len, out);
1085 }
1086 else
1087 {
1088 while (len >= 16)
1089 {
1090 regcache_cooked_read (regcache, regnum++, out);
1091 out += 16;
1092 len -= 16;
1093 }
1094
1095 if (len > 0)
1096 regcache_cooked_read_part (regcache, regnum, 0, len, out);
1097 }
1098 }
1099
1100 static CORE_ADDR
1101 spu_push_dummy_call (struct gdbarch *gdbarch, struct value *function,
1102 struct regcache *regcache, CORE_ADDR bp_addr,
1103 int nargs, struct value **args, CORE_ADDR sp,
1104 int struct_return, CORE_ADDR struct_addr)
1105 {
1106 int i;
1107 int regnum = SPU_ARG1_REGNUM;
1108 int stack_arg = -1;
1109 gdb_byte buf[16];
1110
1111 /* Set the return address. */
1112 memset (buf, 0, sizeof buf);
1113 store_unsigned_integer (buf, 4, bp_addr);
1114 regcache_cooked_write (regcache, SPU_LR_REGNUM, buf);
1115
1116 /* If STRUCT_RETURN is true, then the struct return address (in
1117 STRUCT_ADDR) will consume the first argument-passing register.
1118 Both adjust the register count and store that value. */
1119 if (struct_return)
1120 {
1121 memset (buf, 0, sizeof buf);
1122 store_unsigned_integer (buf, 4, struct_addr);
1123 regcache_cooked_write (regcache, regnum++, buf);
1124 }
1125
1126 /* Fill in argument registers. */
1127 for (i = 0; i < nargs; i++)
1128 {
1129 struct value *arg = args[i];
1130 struct type *type = check_typedef (value_type (arg));
1131 const gdb_byte *contents = value_contents (arg);
1132 int len = TYPE_LENGTH (type);
1133 int n_regs = align_up (len, 16) / 16;
1134
1135 /* If the argument doesn't wholly fit into registers, it and
1136 all subsequent arguments go to the stack. */
1137 if (regnum + n_regs - 1 > SPU_ARGN_REGNUM)
1138 {
1139 stack_arg = i;
1140 break;
1141 }
1142
1143 spu_value_to_regcache (regcache, regnum, type, contents);
1144 regnum += n_regs;
1145 }
1146
1147 /* Overflow arguments go to the stack. */
1148 if (stack_arg != -1)
1149 {
1150 CORE_ADDR ap;
1151
1152 /* Allocate all required stack size. */
1153 for (i = stack_arg; i < nargs; i++)
1154 {
1155 struct type *type = check_typedef (value_type (args[i]));
1156 sp -= align_up (TYPE_LENGTH (type), 16);
1157 }
1158
1159 /* Fill in stack arguments. */
1160 ap = sp;
1161 for (i = stack_arg; i < nargs; i++)
1162 {
1163 struct value *arg = args[i];
1164 struct type *type = check_typedef (value_type (arg));
1165 int len = TYPE_LENGTH (type);
1166 int preferred_slot;
1167
1168 if (spu_scalar_value_p (type))
1169 preferred_slot = len < 4 ? 4 - len : 0;
1170 else
1171 preferred_slot = 0;
1172
1173 target_write_memory (ap + preferred_slot, value_contents (arg), len);
1174 ap += align_up (TYPE_LENGTH (type), 16);
1175 }
1176 }
1177
1178 /* Allocate stack frame header. */
1179 sp -= 32;
1180
1181 /* Store stack back chain. */
1182 regcache_cooked_read (regcache, SPU_RAW_SP_REGNUM, buf);
1183 target_write_memory (sp, buf, 16);
1184
1185 /* Finally, update the SP register. */
1186 regcache_cooked_write_unsigned (regcache, SPU_SP_REGNUM, sp);
1187
1188 return sp;
1189 }
1190
1191 static struct frame_id
1192 spu_dummy_id (struct gdbarch *gdbarch, struct frame_info *this_frame)
1193 {
1194 CORE_ADDR pc = get_frame_register_unsigned (this_frame, SPU_PC_REGNUM);
1195 CORE_ADDR sp = get_frame_register_unsigned (this_frame, SPU_SP_REGNUM);
1196 return frame_id_build (sp, pc & -4);
1197 }
1198
1199 /* Function return value access. */
1200
1201 static enum return_value_convention
1202 spu_return_value (struct gdbarch *gdbarch, struct type *func_type,
1203 struct type *type, struct regcache *regcache,
1204 gdb_byte *out, const gdb_byte *in)
1205 {
1206 enum return_value_convention rvc;
1207
1208 if (TYPE_LENGTH (type) <= (SPU_ARGN_REGNUM - SPU_ARG1_REGNUM + 1) * 16)
1209 rvc = RETURN_VALUE_REGISTER_CONVENTION;
1210 else
1211 rvc = RETURN_VALUE_STRUCT_CONVENTION;
1212
1213 if (in)
1214 {
1215 switch (rvc)
1216 {
1217 case RETURN_VALUE_REGISTER_CONVENTION:
1218 spu_value_to_regcache (regcache, SPU_ARG1_REGNUM, type, in);
1219 break;
1220
1221 case RETURN_VALUE_STRUCT_CONVENTION:
1222 error ("Cannot set function return value.");
1223 break;
1224 }
1225 }
1226 else if (out)
1227 {
1228 switch (rvc)
1229 {
1230 case RETURN_VALUE_REGISTER_CONVENTION:
1231 spu_regcache_to_value (regcache, SPU_ARG1_REGNUM, type, out);
1232 break;
1233
1234 case RETURN_VALUE_STRUCT_CONVENTION:
1235 error ("Function return value unknown.");
1236 break;
1237 }
1238 }
1239
1240 return rvc;
1241 }
1242
1243
1244 /* Breakpoints. */
1245
1246 static const gdb_byte *
1247 spu_breakpoint_from_pc (struct gdbarch *gdbarch, CORE_ADDR * pcptr, int *lenptr)
1248 {
1249 static const gdb_byte breakpoint[] = { 0x00, 0x00, 0x3f, 0xff };
1250
1251 *lenptr = sizeof breakpoint;
1252 return breakpoint;
1253 }
1254
1255
1256 /* Software single-stepping support. */
1257
1258 int
1259 spu_software_single_step (struct frame_info *frame)
1260 {
1261 CORE_ADDR pc, next_pc;
1262 unsigned int insn;
1263 int offset, reg;
1264 gdb_byte buf[4];
1265
1266 pc = get_frame_pc (frame);
1267
1268 if (target_read_memory (pc, buf, 4))
1269 return 1;
1270 insn = extract_unsigned_integer (buf, 4);
1271
1272 /* Next sequential instruction is at PC + 4, except if the current
1273 instruction is a PPE-assisted call, in which case it is at PC + 8.
1274 Wrap around LS limit to be on the safe side. */
1275 if ((insn & 0xffffff00) == 0x00002100)
1276 next_pc = (pc + 8) & (SPU_LS_SIZE - 1);
1277 else
1278 next_pc = (pc + 4) & (SPU_LS_SIZE - 1);
1279
1280 insert_single_step_breakpoint (next_pc);
1281
1282 if (is_branch (insn, &offset, &reg))
1283 {
1284 CORE_ADDR target = offset;
1285
1286 if (reg == SPU_PC_REGNUM)
1287 target += pc;
1288 else if (reg != -1)
1289 {
1290 get_frame_register_bytes (frame, reg, 0, 4, buf);
1291 target += extract_unsigned_integer (buf, 4) & -4;
1292 }
1293
1294 target = target & (SPU_LS_SIZE - 1);
1295 if (target != next_pc)
1296 insert_single_step_breakpoint (target);
1297 }
1298
1299 return 1;
1300 }
1301
1302 /* Target overlays for the SPU overlay manager.
1303
1304 See the documentation of simple_overlay_update for how the
1305 interface is supposed to work.
1306
1307 Data structures used by the overlay manager:
1308
1309 struct ovly_table
1310 {
1311 u32 vma;
1312 u32 size;
1313 u32 pos;
1314 u32 buf;
1315 } _ovly_table[]; -- one entry per overlay section
1316
1317 struct ovly_buf_table
1318 {
1319 u32 mapped;
1320 } _ovly_buf_table[]; -- one entry per overlay buffer
1321
1322 _ovly_table should never change.
1323
1324 Both tables are aligned to a 16-byte boundary, the symbols _ovly_table
1325 and _ovly_buf_table are of type STT_OBJECT and their size set to the size
1326 of the respective array. buf in _ovly_table is an index into _ovly_buf_table.
1327
1328 mapped is an index into _ovly_table. Both the mapped and buf indices start
1329 from one to reference the first entry in their respective tables. */
1330
1331 /* Using the per-objfile private data mechanism, we store for each
1332 objfile an array of "struct spu_overlay_table" structures, one
1333 for each obj_section of the objfile. This structure holds two
1334 fields, MAPPED_PTR and MAPPED_VAL. If MAPPED_PTR is zero, this
1335 is *not* an overlay section. If it is non-zero, it represents
1336 a target address. The overlay section is mapped iff the target
1337 integer at this location equals MAPPED_VAL. */
1338
1339 static const struct objfile_data *spu_overlay_data;
1340
1341 struct spu_overlay_table
1342 {
1343 CORE_ADDR mapped_ptr;
1344 CORE_ADDR mapped_val;
1345 };
1346
1347 /* Retrieve the overlay table for OBJFILE. If not already cached, read
1348 the _ovly_table data structure from the target and initialize the
1349 spu_overlay_table data structure from it. */
1350 static struct spu_overlay_table *
1351 spu_get_overlay_table (struct objfile *objfile)
1352 {
1353 struct minimal_symbol *ovly_table_msym, *ovly_buf_table_msym;
1354 CORE_ADDR ovly_table_base, ovly_buf_table_base;
1355 unsigned ovly_table_size, ovly_buf_table_size;
1356 struct spu_overlay_table *tbl;
1357 struct obj_section *osect;
1358 char *ovly_table;
1359 int i;
1360
1361 tbl = objfile_data (objfile, spu_overlay_data);
1362 if (tbl)
1363 return tbl;
1364
1365 ovly_table_msym = lookup_minimal_symbol ("_ovly_table", NULL, objfile);
1366 if (!ovly_table_msym)
1367 return NULL;
1368
1369 ovly_buf_table_msym = lookup_minimal_symbol ("_ovly_buf_table", NULL, objfile);
1370 if (!ovly_buf_table_msym)
1371 return NULL;
1372
1373 ovly_table_base = SYMBOL_VALUE_ADDRESS (ovly_table_msym);
1374 ovly_table_size = MSYMBOL_SIZE (ovly_table_msym);
1375
1376 ovly_buf_table_base = SYMBOL_VALUE_ADDRESS (ovly_buf_table_msym);
1377 ovly_buf_table_size = MSYMBOL_SIZE (ovly_buf_table_msym);
1378
1379 ovly_table = xmalloc (ovly_table_size);
1380 read_memory (ovly_table_base, ovly_table, ovly_table_size);
1381
1382 tbl = OBSTACK_CALLOC (&objfile->objfile_obstack,
1383 objfile->sections_end - objfile->sections,
1384 struct spu_overlay_table);
1385
1386 for (i = 0; i < ovly_table_size / 16; i++)
1387 {
1388 CORE_ADDR vma = extract_unsigned_integer (ovly_table + 16*i + 0, 4);
1389 CORE_ADDR size = extract_unsigned_integer (ovly_table + 16*i + 4, 4);
1390 CORE_ADDR pos = extract_unsigned_integer (ovly_table + 16*i + 8, 4);
1391 CORE_ADDR buf = extract_unsigned_integer (ovly_table + 16*i + 12, 4);
1392
1393 if (buf == 0 || (buf - 1) * 4 >= ovly_buf_table_size)
1394 continue;
1395
1396 ALL_OBJFILE_OSECTIONS (objfile, osect)
1397 if (vma == bfd_section_vma (objfile->obfd, osect->the_bfd_section)
1398 && pos == osect->the_bfd_section->filepos)
1399 {
1400 int ndx = osect - objfile->sections;
1401 tbl[ndx].mapped_ptr = ovly_buf_table_base + (buf - 1) * 4;
1402 tbl[ndx].mapped_val = i + 1;
1403 break;
1404 }
1405 }
1406
1407 xfree (ovly_table);
1408 set_objfile_data (objfile, spu_overlay_data, tbl);
1409 return tbl;
1410 }
1411
1412 /* Read _ovly_buf_table entry from the target to dermine whether
1413 OSECT is currently mapped, and update the mapped state. */
1414 static void
1415 spu_overlay_update_osect (struct obj_section *osect)
1416 {
1417 struct spu_overlay_table *ovly_table;
1418 CORE_ADDR val;
1419
1420 ovly_table = spu_get_overlay_table (osect->objfile);
1421 if (!ovly_table)
1422 return;
1423
1424 ovly_table += osect - osect->objfile->sections;
1425 if (ovly_table->mapped_ptr == 0)
1426 return;
1427
1428 val = read_memory_unsigned_integer (ovly_table->mapped_ptr, 4);
1429 osect->ovly_mapped = (val == ovly_table->mapped_val);
1430 }
1431
1432 /* If OSECT is NULL, then update all sections' mapped state.
1433 If OSECT is non-NULL, then update only OSECT's mapped state. */
1434 static void
1435 spu_overlay_update (struct obj_section *osect)
1436 {
1437 /* Just one section. */
1438 if (osect)
1439 spu_overlay_update_osect (osect);
1440
1441 /* All sections. */
1442 else
1443 {
1444 struct objfile *objfile;
1445
1446 ALL_OBJSECTIONS (objfile, osect)
1447 if (section_is_overlay (osect->the_bfd_section))
1448 spu_overlay_update_osect (osect);
1449 }
1450 }
1451
1452 /* Whenever a new objfile is loaded, read the target's _ovly_table.
1453 If there is one, go through all sections and make sure for non-
1454 overlay sections LMA equals VMA, while for overlay sections LMA
1455 is larger than local store size. */
1456 static void
1457 spu_overlay_new_objfile (struct objfile *objfile)
1458 {
1459 struct spu_overlay_table *ovly_table;
1460 struct obj_section *osect;
1461
1462 /* If we've already touched this file, do nothing. */
1463 if (!objfile || objfile_data (objfile, spu_overlay_data) != NULL)
1464 return;
1465
1466 /* Consider only SPU objfiles. */
1467 if (bfd_get_arch (objfile->obfd) != bfd_arch_spu)
1468 return;
1469
1470 /* Check if this objfile has overlays. */
1471 ovly_table = spu_get_overlay_table (objfile);
1472 if (!ovly_table)
1473 return;
1474
1475 /* Now go and fiddle with all the LMAs. */
1476 ALL_OBJFILE_OSECTIONS (objfile, osect)
1477 {
1478 bfd *obfd = objfile->obfd;
1479 asection *bsect = osect->the_bfd_section;
1480 int ndx = osect - objfile->sections;
1481
1482 if (ovly_table[ndx].mapped_ptr == 0)
1483 bfd_section_lma (obfd, bsect) = bfd_section_vma (obfd, bsect);
1484 else
1485 bfd_section_lma (obfd, bsect) = bsect->filepos + SPU_LS_SIZE;
1486 }
1487 }
1488
1489
1490 /* "info spu" commands. */
1491
1492 static void
1493 info_spu_event_command (char *args, int from_tty)
1494 {
1495 struct frame_info *frame = get_selected_frame (NULL);
1496 ULONGEST event_status = 0;
1497 ULONGEST event_mask = 0;
1498 struct cleanup *chain;
1499 gdb_byte buf[100];
1500 char annex[32];
1501 LONGEST len;
1502 int rc, id;
1503
1504 if (gdbarch_bfd_arch_info (get_frame_arch (frame))->arch != bfd_arch_spu)
1505 error (_("\"info spu\" is only supported on the SPU architecture."));
1506
1507 id = get_frame_register_unsigned (frame, SPU_ID_REGNUM);
1508
1509 xsnprintf (annex, sizeof annex, "%d/event_status", id);
1510 len = target_read (&current_target, TARGET_OBJECT_SPU, annex,
1511 buf, 0, (sizeof (buf) - 1));
1512 if (len <= 0)
1513 error (_("Could not read event_status."));
1514 buf[len] = '\0';
1515 event_status = strtoulst (buf, NULL, 16);
1516
1517 xsnprintf (annex, sizeof annex, "%d/event_mask", id);
1518 len = target_read (&current_target, TARGET_OBJECT_SPU, annex,
1519 buf, 0, (sizeof (buf) - 1));
1520 if (len <= 0)
1521 error (_("Could not read event_mask."));
1522 buf[len] = '\0';
1523 event_mask = strtoulst (buf, NULL, 16);
1524
1525 chain = make_cleanup_ui_out_tuple_begin_end (uiout, "SPUInfoEvent");
1526
1527 if (ui_out_is_mi_like_p (uiout))
1528 {
1529 ui_out_field_fmt (uiout, "event_status",
1530 "0x%s", phex_nz (event_status, 4));
1531 ui_out_field_fmt (uiout, "event_mask",
1532 "0x%s", phex_nz (event_mask, 4));
1533 }
1534 else
1535 {
1536 printf_filtered (_("Event Status 0x%s\n"), phex (event_status, 4));
1537 printf_filtered (_("Event Mask 0x%s\n"), phex (event_mask, 4));
1538 }
1539
1540 do_cleanups (chain);
1541 }
1542
1543 static void
1544 info_spu_signal_command (char *args, int from_tty)
1545 {
1546 struct frame_info *frame = get_selected_frame (NULL);
1547 ULONGEST signal1 = 0;
1548 ULONGEST signal1_type = 0;
1549 int signal1_pending = 0;
1550 ULONGEST signal2 = 0;
1551 ULONGEST signal2_type = 0;
1552 int signal2_pending = 0;
1553 struct cleanup *chain;
1554 char annex[32];
1555 gdb_byte buf[100];
1556 LONGEST len;
1557 int rc, id;
1558
1559 if (gdbarch_bfd_arch_info (get_frame_arch (frame))->arch != bfd_arch_spu)
1560 error (_("\"info spu\" is only supported on the SPU architecture."));
1561
1562 id = get_frame_register_unsigned (frame, SPU_ID_REGNUM);
1563
1564 xsnprintf (annex, sizeof annex, "%d/signal1", id);
1565 len = target_read (&current_target, TARGET_OBJECT_SPU, annex, buf, 0, 4);
1566 if (len < 0)
1567 error (_("Could not read signal1."));
1568 else if (len == 4)
1569 {
1570 signal1 = extract_unsigned_integer (buf, 4);
1571 signal1_pending = 1;
1572 }
1573
1574 xsnprintf (annex, sizeof annex, "%d/signal1_type", id);
1575 len = target_read (&current_target, TARGET_OBJECT_SPU, annex,
1576 buf, 0, (sizeof (buf) - 1));
1577 if (len <= 0)
1578 error (_("Could not read signal1_type."));
1579 buf[len] = '\0';
1580 signal1_type = strtoulst (buf, NULL, 16);
1581
1582 xsnprintf (annex, sizeof annex, "%d/signal2", id);
1583 len = target_read (&current_target, TARGET_OBJECT_SPU, annex, buf, 0, 4);
1584 if (len < 0)
1585 error (_("Could not read signal2."));
1586 else if (len == 4)
1587 {
1588 signal2 = extract_unsigned_integer (buf, 4);
1589 signal2_pending = 1;
1590 }
1591
1592 xsnprintf (annex, sizeof annex, "%d/signal2_type", id);
1593 len = target_read (&current_target, TARGET_OBJECT_SPU, annex,
1594 buf, 0, (sizeof (buf) - 1));
1595 if (len <= 0)
1596 error (_("Could not read signal2_type."));
1597 buf[len] = '\0';
1598 signal2_type = strtoulst (buf, NULL, 16);
1599
1600 chain = make_cleanup_ui_out_tuple_begin_end (uiout, "SPUInfoSignal");
1601
1602 if (ui_out_is_mi_like_p (uiout))
1603 {
1604 ui_out_field_int (uiout, "signal1_pending", signal1_pending);
1605 ui_out_field_fmt (uiout, "signal1", "0x%s", phex_nz (signal1, 4));
1606 ui_out_field_int (uiout, "signal1_type", signal1_type);
1607 ui_out_field_int (uiout, "signal2_pending", signal2_pending);
1608 ui_out_field_fmt (uiout, "signal2", "0x%s", phex_nz (signal2, 4));
1609 ui_out_field_int (uiout, "signal2_type", signal2_type);
1610 }
1611 else
1612 {
1613 if (signal1_pending)
1614 printf_filtered (_("Signal 1 control word 0x%s "), phex (signal1, 4));
1615 else
1616 printf_filtered (_("Signal 1 not pending "));
1617
1618 if (signal1_type)
1619 printf_filtered (_("(Type Or)\n"));
1620 else
1621 printf_filtered (_("(Type Overwrite)\n"));
1622
1623 if (signal2_pending)
1624 printf_filtered (_("Signal 2 control word 0x%s "), phex (signal2, 4));
1625 else
1626 printf_filtered (_("Signal 2 not pending "));
1627
1628 if (signal2_type)
1629 printf_filtered (_("(Type Or)\n"));
1630 else
1631 printf_filtered (_("(Type Overwrite)\n"));
1632 }
1633
1634 do_cleanups (chain);
1635 }
1636
1637 static void
1638 info_spu_mailbox_list (gdb_byte *buf, int nr,
1639 const char *field, const char *msg)
1640 {
1641 struct cleanup *chain;
1642 int i;
1643
1644 if (nr <= 0)
1645 return;
1646
1647 chain = make_cleanup_ui_out_table_begin_end (uiout, 1, nr, "mbox");
1648
1649 ui_out_table_header (uiout, 32, ui_left, field, msg);
1650 ui_out_table_body (uiout);
1651
1652 for (i = 0; i < nr; i++)
1653 {
1654 struct cleanup *val_chain;
1655 ULONGEST val;
1656 val_chain = make_cleanup_ui_out_tuple_begin_end (uiout, "mbox");
1657 val = extract_unsigned_integer (buf + 4*i, 4);
1658 ui_out_field_fmt (uiout, field, "0x%s", phex (val, 4));
1659 do_cleanups (val_chain);
1660
1661 if (!ui_out_is_mi_like_p (uiout))
1662 printf_filtered ("\n");
1663 }
1664
1665 do_cleanups (chain);
1666 }
1667
1668 static void
1669 info_spu_mailbox_command (char *args, int from_tty)
1670 {
1671 struct frame_info *frame = get_selected_frame (NULL);
1672 struct cleanup *chain;
1673 char annex[32];
1674 gdb_byte buf[1024];
1675 LONGEST len;
1676 int i, id;
1677
1678 if (gdbarch_bfd_arch_info (get_frame_arch (frame))->arch != bfd_arch_spu)
1679 error (_("\"info spu\" is only supported on the SPU architecture."));
1680
1681 id = get_frame_register_unsigned (frame, SPU_ID_REGNUM);
1682
1683 chain = make_cleanup_ui_out_tuple_begin_end (uiout, "SPUInfoMailbox");
1684
1685 xsnprintf (annex, sizeof annex, "%d/mbox_info", id);
1686 len = target_read (&current_target, TARGET_OBJECT_SPU, annex,
1687 buf, 0, sizeof buf);
1688 if (len < 0)
1689 error (_("Could not read mbox_info."));
1690
1691 info_spu_mailbox_list (buf, len / 4, "mbox", "SPU Outbound Mailbox");
1692
1693 xsnprintf (annex, sizeof annex, "%d/ibox_info", id);
1694 len = target_read (&current_target, TARGET_OBJECT_SPU, annex,
1695 buf, 0, sizeof buf);
1696 if (len < 0)
1697 error (_("Could not read ibox_info."));
1698
1699 info_spu_mailbox_list (buf, len / 4, "ibox", "SPU Outbound Interrupt Mailbox");
1700
1701 xsnprintf (annex, sizeof annex, "%d/wbox_info", id);
1702 len = target_read (&current_target, TARGET_OBJECT_SPU, annex,
1703 buf, 0, sizeof buf);
1704 if (len < 0)
1705 error (_("Could not read wbox_info."));
1706
1707 info_spu_mailbox_list (buf, len / 4, "wbox", "SPU Inbound Mailbox");
1708
1709 do_cleanups (chain);
1710 }
1711
1712 static ULONGEST
1713 spu_mfc_get_bitfield (ULONGEST word, int first, int last)
1714 {
1715 ULONGEST mask = ~(~(ULONGEST)0 << (last - first + 1));
1716 return (word >> (63 - last)) & mask;
1717 }
1718
1719 static void
1720 info_spu_dma_cmdlist (gdb_byte *buf, int nr)
1721 {
1722 static char *spu_mfc_opcode[256] =
1723 {
1724 /* 00 */ NULL, NULL, NULL, NULL, NULL, NULL, NULL, NULL,
1725 NULL, NULL, NULL, NULL, NULL, NULL, NULL, NULL,
1726 /* 10 */ NULL, NULL, NULL, NULL, NULL, NULL, NULL, NULL,
1727 NULL, NULL, NULL, NULL, NULL, NULL, NULL, NULL,
1728 /* 20 */ "put", "putb", "putf", NULL, "putl", "putlb", "putlf", NULL,
1729 "puts", "putbs", "putfs", NULL, NULL, NULL, NULL, NULL,
1730 /* 30 */ "putr", "putrb", "putrf", NULL, "putrl", "putrlb", "putrlf", NULL,
1731 NULL, NULL, NULL, NULL, NULL, NULL, NULL, NULL,
1732 /* 40 */ "get", "getb", "getf", NULL, "getl", "getlb", "getlf", NULL,
1733 "gets", "getbs", "getfs", NULL, NULL, NULL, NULL, NULL,
1734 /* 50 */ NULL, NULL, NULL, NULL, NULL, NULL, NULL, NULL,
1735 NULL, NULL, NULL, NULL, NULL, NULL, NULL, NULL,
1736 /* 60 */ NULL, NULL, NULL, NULL, NULL, NULL, NULL, NULL,
1737 NULL, NULL, NULL, NULL, NULL, NULL, NULL, NULL,
1738 /* 70 */ NULL, NULL, NULL, NULL, NULL, NULL, NULL, NULL,
1739 NULL, NULL, NULL, NULL, NULL, NULL, NULL, NULL,
1740 /* 80 */ "sdcrt", "sdcrtst", NULL, NULL, NULL, NULL, NULL, NULL,
1741 NULL, "sdcrz", NULL, NULL, NULL, "sdcrst", NULL, "sdcrf",
1742 /* 90 */ NULL, NULL, NULL, NULL, NULL, NULL, NULL, NULL,
1743 NULL, NULL, NULL, NULL, NULL, NULL, NULL, NULL,
1744 /* a0 */ "sndsig", "sndsigb", "sndsigf", NULL, NULL, NULL, NULL, NULL,
1745 NULL, NULL, NULL, NULL, NULL, NULL, NULL, NULL,
1746 /* b0 */ "putlluc", NULL, NULL, NULL, "putllc", NULL, NULL, NULL,
1747 "putqlluc", NULL, NULL, NULL, NULL, NULL, NULL, NULL,
1748 /* c0 */ "barrier", NULL, NULL, NULL, NULL, NULL, NULL, NULL,
1749 "mfceieio", NULL, NULL, NULL, "mfcsync", NULL, NULL, NULL,
1750 /* d0 */ "getllar", NULL, NULL, NULL, NULL, NULL, NULL, NULL,
1751 NULL, NULL, NULL, NULL, NULL, NULL, NULL, NULL,
1752 /* e0 */ NULL, NULL, NULL, NULL, NULL, NULL, NULL, NULL,
1753 NULL, NULL, NULL, NULL, NULL, NULL, NULL, NULL,
1754 /* f0 */ NULL, NULL, NULL, NULL, NULL, NULL, NULL, NULL,
1755 NULL, NULL, NULL, NULL, NULL, NULL, NULL, NULL,
1756 };
1757
1758 int *seq = alloca (nr * sizeof (int));
1759 int done = 0;
1760 struct cleanup *chain;
1761 int i, j;
1762
1763
1764 /* Determine sequence in which to display (valid) entries. */
1765 for (i = 0; i < nr; i++)
1766 {
1767 /* Search for the first valid entry all of whose
1768 dependencies are met. */
1769 for (j = 0; j < nr; j++)
1770 {
1771 ULONGEST mfc_cq_dw3;
1772 ULONGEST dependencies;
1773
1774 if (done & (1 << (nr - 1 - j)))
1775 continue;
1776
1777 mfc_cq_dw3 = extract_unsigned_integer (buf + 32*j + 24, 8);
1778 if (!spu_mfc_get_bitfield (mfc_cq_dw3, 16, 16))
1779 continue;
1780
1781 dependencies = spu_mfc_get_bitfield (mfc_cq_dw3, 0, nr - 1);
1782 if ((dependencies & done) != dependencies)
1783 continue;
1784
1785 seq[i] = j;
1786 done |= 1 << (nr - 1 - j);
1787 break;
1788 }
1789
1790 if (j == nr)
1791 break;
1792 }
1793
1794 nr = i;
1795
1796
1797 chain = make_cleanup_ui_out_table_begin_end (uiout, 10, nr, "dma_cmd");
1798
1799 ui_out_table_header (uiout, 7, ui_left, "opcode", "Opcode");
1800 ui_out_table_header (uiout, 3, ui_left, "tag", "Tag");
1801 ui_out_table_header (uiout, 3, ui_left, "tid", "TId");
1802 ui_out_table_header (uiout, 3, ui_left, "rid", "RId");
1803 ui_out_table_header (uiout, 18, ui_left, "ea", "EA");
1804 ui_out_table_header (uiout, 7, ui_left, "lsa", "LSA");
1805 ui_out_table_header (uiout, 7, ui_left, "size", "Size");
1806 ui_out_table_header (uiout, 7, ui_left, "lstaddr", "LstAddr");
1807 ui_out_table_header (uiout, 7, ui_left, "lstsize", "LstSize");
1808 ui_out_table_header (uiout, 1, ui_left, "error_p", "E");
1809
1810 ui_out_table_body (uiout);
1811
1812 for (i = 0; i < nr; i++)
1813 {
1814 struct cleanup *cmd_chain;
1815 ULONGEST mfc_cq_dw0;
1816 ULONGEST mfc_cq_dw1;
1817 ULONGEST mfc_cq_dw2;
1818 int mfc_cmd_opcode, mfc_cmd_tag, rclass_id, tclass_id;
1819 int lsa, size, list_lsa, list_size, mfc_lsa, mfc_size;
1820 ULONGEST mfc_ea;
1821 int list_valid_p, noop_valid_p, qw_valid_p, ea_valid_p, cmd_error_p;
1822
1823 /* Decode contents of MFC Command Queue Context Save/Restore Registers.
1824 See "Cell Broadband Engine Registers V1.3", section 3.3.2.1. */
1825
1826 mfc_cq_dw0 = extract_unsigned_integer (buf + 32*seq[i], 8);
1827 mfc_cq_dw1 = extract_unsigned_integer (buf + 32*seq[i] + 8, 8);
1828 mfc_cq_dw2 = extract_unsigned_integer (buf + 32*seq[i] + 16, 8);
1829
1830 list_lsa = spu_mfc_get_bitfield (mfc_cq_dw0, 0, 14);
1831 list_size = spu_mfc_get_bitfield (mfc_cq_dw0, 15, 26);
1832 mfc_cmd_opcode = spu_mfc_get_bitfield (mfc_cq_dw0, 27, 34);
1833 mfc_cmd_tag = spu_mfc_get_bitfield (mfc_cq_dw0, 35, 39);
1834 list_valid_p = spu_mfc_get_bitfield (mfc_cq_dw0, 40, 40);
1835 rclass_id = spu_mfc_get_bitfield (mfc_cq_dw0, 41, 43);
1836 tclass_id = spu_mfc_get_bitfield (mfc_cq_dw0, 44, 46);
1837
1838 mfc_ea = spu_mfc_get_bitfield (mfc_cq_dw1, 0, 51) << 12
1839 | spu_mfc_get_bitfield (mfc_cq_dw2, 25, 36);
1840
1841 mfc_lsa = spu_mfc_get_bitfield (mfc_cq_dw2, 0, 13);
1842 mfc_size = spu_mfc_get_bitfield (mfc_cq_dw2, 14, 24);
1843 noop_valid_p = spu_mfc_get_bitfield (mfc_cq_dw2, 37, 37);
1844 qw_valid_p = spu_mfc_get_bitfield (mfc_cq_dw2, 38, 38);
1845 ea_valid_p = spu_mfc_get_bitfield (mfc_cq_dw2, 39, 39);
1846 cmd_error_p = spu_mfc_get_bitfield (mfc_cq_dw2, 40, 40);
1847
1848 cmd_chain = make_cleanup_ui_out_tuple_begin_end (uiout, "cmd");
1849
1850 if (spu_mfc_opcode[mfc_cmd_opcode])
1851 ui_out_field_string (uiout, "opcode", spu_mfc_opcode[mfc_cmd_opcode]);
1852 else
1853 ui_out_field_int (uiout, "opcode", mfc_cmd_opcode);
1854
1855 ui_out_field_int (uiout, "tag", mfc_cmd_tag);
1856 ui_out_field_int (uiout, "tid", tclass_id);
1857 ui_out_field_int (uiout, "rid", rclass_id);
1858
1859 if (ea_valid_p)
1860 ui_out_field_fmt (uiout, "ea", "0x%s", phex (mfc_ea, 8));
1861 else
1862 ui_out_field_skip (uiout, "ea");
1863
1864 ui_out_field_fmt (uiout, "lsa", "0x%05x", mfc_lsa << 4);
1865 if (qw_valid_p)
1866 ui_out_field_fmt (uiout, "size", "0x%05x", mfc_size << 4);
1867 else
1868 ui_out_field_fmt (uiout, "size", "0x%05x", mfc_size);
1869
1870 if (list_valid_p)
1871 {
1872 ui_out_field_fmt (uiout, "lstaddr", "0x%05x", list_lsa << 3);
1873 ui_out_field_fmt (uiout, "lstsize", "0x%05x", list_size << 3);
1874 }
1875 else
1876 {
1877 ui_out_field_skip (uiout, "lstaddr");
1878 ui_out_field_skip (uiout, "lstsize");
1879 }
1880
1881 if (cmd_error_p)
1882 ui_out_field_string (uiout, "error_p", "*");
1883 else
1884 ui_out_field_skip (uiout, "error_p");
1885
1886 do_cleanups (cmd_chain);
1887
1888 if (!ui_out_is_mi_like_p (uiout))
1889 printf_filtered ("\n");
1890 }
1891
1892 do_cleanups (chain);
1893 }
1894
1895 static void
1896 info_spu_dma_command (char *args, int from_tty)
1897 {
1898 struct frame_info *frame = get_selected_frame (NULL);
1899 ULONGEST dma_info_type;
1900 ULONGEST dma_info_mask;
1901 ULONGEST dma_info_status;
1902 ULONGEST dma_info_stall_and_notify;
1903 ULONGEST dma_info_atomic_command_status;
1904 struct cleanup *chain;
1905 char annex[32];
1906 gdb_byte buf[1024];
1907 LONGEST len;
1908 int i, id;
1909
1910 if (gdbarch_bfd_arch_info (get_frame_arch (frame))->arch != bfd_arch_spu)
1911 error (_("\"info spu\" is only supported on the SPU architecture."));
1912
1913 id = get_frame_register_unsigned (frame, SPU_ID_REGNUM);
1914
1915 xsnprintf (annex, sizeof annex, "%d/dma_info", id);
1916 len = target_read (&current_target, TARGET_OBJECT_SPU, annex,
1917 buf, 0, 40 + 16 * 32);
1918 if (len <= 0)
1919 error (_("Could not read dma_info."));
1920
1921 dma_info_type = extract_unsigned_integer (buf, 8);
1922 dma_info_mask = extract_unsigned_integer (buf + 8, 8);
1923 dma_info_status = extract_unsigned_integer (buf + 16, 8);
1924 dma_info_stall_and_notify = extract_unsigned_integer (buf + 24, 8);
1925 dma_info_atomic_command_status = extract_unsigned_integer (buf + 32, 8);
1926
1927 chain = make_cleanup_ui_out_tuple_begin_end (uiout, "SPUInfoDMA");
1928
1929 if (ui_out_is_mi_like_p (uiout))
1930 {
1931 ui_out_field_fmt (uiout, "dma_info_type", "0x%s",
1932 phex_nz (dma_info_type, 4));
1933 ui_out_field_fmt (uiout, "dma_info_mask", "0x%s",
1934 phex_nz (dma_info_mask, 4));
1935 ui_out_field_fmt (uiout, "dma_info_status", "0x%s",
1936 phex_nz (dma_info_status, 4));
1937 ui_out_field_fmt (uiout, "dma_info_stall_and_notify", "0x%s",
1938 phex_nz (dma_info_stall_and_notify, 4));
1939 ui_out_field_fmt (uiout, "dma_info_atomic_command_status", "0x%s",
1940 phex_nz (dma_info_atomic_command_status, 4));
1941 }
1942 else
1943 {
1944 const char *query_msg = _("no query pending");
1945
1946 if (dma_info_type & 4)
1947 switch (dma_info_type & 3)
1948 {
1949 case 1: query_msg = _("'any' query pending"); break;
1950 case 2: query_msg = _("'all' query pending"); break;
1951 default: query_msg = _("undefined query type"); break;
1952 }
1953
1954 printf_filtered (_("Tag-Group Status 0x%s\n"),
1955 phex (dma_info_status, 4));
1956 printf_filtered (_("Tag-Group Mask 0x%s (%s)\n"),
1957 phex (dma_info_mask, 4), query_msg);
1958 printf_filtered (_("Stall-and-Notify 0x%s\n"),
1959 phex (dma_info_stall_and_notify, 4));
1960 printf_filtered (_("Atomic Cmd Status 0x%s\n"),
1961 phex (dma_info_atomic_command_status, 4));
1962 printf_filtered ("\n");
1963 }
1964
1965 info_spu_dma_cmdlist (buf + 40, 16);
1966 do_cleanups (chain);
1967 }
1968
1969 static void
1970 info_spu_proxydma_command (char *args, int from_tty)
1971 {
1972 struct frame_info *frame = get_selected_frame (NULL);
1973 ULONGEST dma_info_type;
1974 ULONGEST dma_info_mask;
1975 ULONGEST dma_info_status;
1976 struct cleanup *chain;
1977 char annex[32];
1978 gdb_byte buf[1024];
1979 LONGEST len;
1980 int i, id;
1981
1982 if (gdbarch_bfd_arch_info (get_frame_arch (frame))->arch != bfd_arch_spu)
1983 error (_("\"info spu\" is only supported on the SPU architecture."));
1984
1985 id = get_frame_register_unsigned (frame, SPU_ID_REGNUM);
1986
1987 xsnprintf (annex, sizeof annex, "%d/proxydma_info", id);
1988 len = target_read (&current_target, TARGET_OBJECT_SPU, annex,
1989 buf, 0, 24 + 8 * 32);
1990 if (len <= 0)
1991 error (_("Could not read proxydma_info."));
1992
1993 dma_info_type = extract_unsigned_integer (buf, 8);
1994 dma_info_mask = extract_unsigned_integer (buf + 8, 8);
1995 dma_info_status = extract_unsigned_integer (buf + 16, 8);
1996
1997 chain = make_cleanup_ui_out_tuple_begin_end (uiout, "SPUInfoProxyDMA");
1998
1999 if (ui_out_is_mi_like_p (uiout))
2000 {
2001 ui_out_field_fmt (uiout, "proxydma_info_type", "0x%s",
2002 phex_nz (dma_info_type, 4));
2003 ui_out_field_fmt (uiout, "proxydma_info_mask", "0x%s",
2004 phex_nz (dma_info_mask, 4));
2005 ui_out_field_fmt (uiout, "proxydma_info_status", "0x%s",
2006 phex_nz (dma_info_status, 4));
2007 }
2008 else
2009 {
2010 const char *query_msg;
2011
2012 switch (dma_info_type & 3)
2013 {
2014 case 0: query_msg = _("no query pending"); break;
2015 case 1: query_msg = _("'any' query pending"); break;
2016 case 2: query_msg = _("'all' query pending"); break;
2017 default: query_msg = _("undefined query type"); break;
2018 }
2019
2020 printf_filtered (_("Tag-Group Status 0x%s\n"),
2021 phex (dma_info_status, 4));
2022 printf_filtered (_("Tag-Group Mask 0x%s (%s)\n"),
2023 phex (dma_info_mask, 4), query_msg);
2024 printf_filtered ("\n");
2025 }
2026
2027 info_spu_dma_cmdlist (buf + 24, 8);
2028 do_cleanups (chain);
2029 }
2030
2031 static void
2032 info_spu_command (char *args, int from_tty)
2033 {
2034 printf_unfiltered (_("\"info spu\" must be followed by the name of an SPU facility.\n"));
2035 help_list (infospucmdlist, "info spu ", -1, gdb_stdout);
2036 }
2037
2038
2039 /* Set up gdbarch struct. */
2040
2041 static struct gdbarch *
2042 spu_gdbarch_init (struct gdbarch_info info, struct gdbarch_list *arches)
2043 {
2044 struct gdbarch *gdbarch;
2045 struct gdbarch_tdep *tdep;
2046
2047 /* Find a candidate among the list of pre-declared architectures. */
2048 arches = gdbarch_list_lookup_by_info (arches, &info);
2049 if (arches != NULL)
2050 return arches->gdbarch;
2051
2052 /* Is is for us? */
2053 if (info.bfd_arch_info->mach != bfd_mach_spu)
2054 return NULL;
2055
2056 /* Yes, create a new architecture. */
2057 tdep = XCALLOC (1, struct gdbarch_tdep);
2058 gdbarch = gdbarch_alloc (&info, tdep);
2059
2060 /* Disassembler. */
2061 set_gdbarch_print_insn (gdbarch, print_insn_spu);
2062
2063 /* Registers. */
2064 set_gdbarch_num_regs (gdbarch, SPU_NUM_REGS);
2065 set_gdbarch_num_pseudo_regs (gdbarch, SPU_NUM_PSEUDO_REGS);
2066 set_gdbarch_sp_regnum (gdbarch, SPU_SP_REGNUM);
2067 set_gdbarch_pc_regnum (gdbarch, SPU_PC_REGNUM);
2068 set_gdbarch_read_pc (gdbarch, spu_read_pc);
2069 set_gdbarch_write_pc (gdbarch, spu_write_pc);
2070 set_gdbarch_register_name (gdbarch, spu_register_name);
2071 set_gdbarch_register_type (gdbarch, spu_register_type);
2072 set_gdbarch_pseudo_register_read (gdbarch, spu_pseudo_register_read);
2073 set_gdbarch_pseudo_register_write (gdbarch, spu_pseudo_register_write);
2074 set_gdbarch_value_from_register (gdbarch, spu_value_from_register);
2075 set_gdbarch_register_reggroup_p (gdbarch, spu_register_reggroup_p);
2076
2077 /* Data types. */
2078 set_gdbarch_char_signed (gdbarch, 0);
2079 set_gdbarch_ptr_bit (gdbarch, 32);
2080 set_gdbarch_addr_bit (gdbarch, 32);
2081 set_gdbarch_short_bit (gdbarch, 16);
2082 set_gdbarch_int_bit (gdbarch, 32);
2083 set_gdbarch_long_bit (gdbarch, 32);
2084 set_gdbarch_long_long_bit (gdbarch, 64);
2085 set_gdbarch_float_bit (gdbarch, 32);
2086 set_gdbarch_double_bit (gdbarch, 64);
2087 set_gdbarch_long_double_bit (gdbarch, 64);
2088 set_gdbarch_float_format (gdbarch, floatformats_ieee_single);
2089 set_gdbarch_double_format (gdbarch, floatformats_ieee_double);
2090 set_gdbarch_long_double_format (gdbarch, floatformats_ieee_double);
2091
2092 /* Address conversion. */
2093 set_gdbarch_pointer_to_address (gdbarch, spu_pointer_to_address);
2094 set_gdbarch_integer_to_address (gdbarch, spu_integer_to_address);
2095
2096 /* Inferior function calls. */
2097 set_gdbarch_call_dummy_location (gdbarch, ON_STACK);
2098 set_gdbarch_frame_align (gdbarch, spu_frame_align);
2099 set_gdbarch_frame_red_zone_size (gdbarch, 2000);
2100 set_gdbarch_push_dummy_call (gdbarch, spu_push_dummy_call);
2101 set_gdbarch_dummy_id (gdbarch, spu_dummy_id);
2102 set_gdbarch_return_value (gdbarch, spu_return_value);
2103
2104 /* Frame handling. */
2105 set_gdbarch_inner_than (gdbarch, core_addr_lessthan);
2106 frame_unwind_append_unwinder (gdbarch, &spu_frame_unwind);
2107 frame_base_set_default (gdbarch, &spu_frame_base);
2108 set_gdbarch_unwind_pc (gdbarch, spu_unwind_pc);
2109 set_gdbarch_unwind_sp (gdbarch, spu_unwind_sp);
2110 set_gdbarch_virtual_frame_pointer (gdbarch, spu_virtual_frame_pointer);
2111 set_gdbarch_frame_args_skip (gdbarch, 0);
2112 set_gdbarch_skip_prologue (gdbarch, spu_skip_prologue);
2113 set_gdbarch_in_function_epilogue_p (gdbarch, spu_in_function_epilogue_p);
2114
2115 /* Breakpoints. */
2116 set_gdbarch_decr_pc_after_break (gdbarch, 4);
2117 set_gdbarch_breakpoint_from_pc (gdbarch, spu_breakpoint_from_pc);
2118 set_gdbarch_cannot_step_breakpoint (gdbarch, 1);
2119 set_gdbarch_software_single_step (gdbarch, spu_software_single_step);
2120
2121 /* Overlays. */
2122 set_gdbarch_overlay_update (gdbarch, spu_overlay_update);
2123
2124 return gdbarch;
2125 }
2126
2127 void
2128 _initialize_spu_tdep (void)
2129 {
2130 register_gdbarch_init (bfd_arch_spu, spu_gdbarch_init);
2131
2132 /* Add ourselves to objfile event chain. */
2133 observer_attach_new_objfile (spu_overlay_new_objfile);
2134 spu_overlay_data = register_objfile_data ();
2135
2136 /* Add root prefix command for all "info spu" commands. */
2137 add_prefix_cmd ("spu", class_info, info_spu_command,
2138 _("Various SPU specific commands."),
2139 &infospucmdlist, "info spu ", 0, &infolist);
2140
2141 /* Add various "info spu" commands. */
2142 add_cmd ("event", class_info, info_spu_event_command,
2143 _("Display SPU event facility status.\n"),
2144 &infospucmdlist);
2145 add_cmd ("signal", class_info, info_spu_signal_command,
2146 _("Display SPU signal notification facility status.\n"),
2147 &infospucmdlist);
2148 add_cmd ("mailbox", class_info, info_spu_mailbox_command,
2149 _("Display SPU mailbox facility status.\n"),
2150 &infospucmdlist);
2151 add_cmd ("dma", class_info, info_spu_dma_command,
2152 _("Display MFC DMA status.\n"),
2153 &infospucmdlist);
2154 add_cmd ("proxydma", class_info, info_spu_proxydma_command,
2155 _("Display MFC Proxy-DMA status.\n"),
2156 &infospucmdlist);
2157 }